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Chapter 1

Introduction

In this thesis, we discuss the problem of finding the minimum length among

certain sums of primitive p-th roots of unity and explore its relation with

other pieces of mathematics. This is a well-interconnected problem with

many area of mathematics. We will try to cover a few important perspectives.

Through this thesis, our major reference would be T. Tao and Van Vu’s

book [12] for basic definitions and L. Lev and S. V. Konyagin’s paper [7]

for research purpose.

Through this thesis, p is a prime and we assume p ≥ 5 to avoid triviality.

Let S := {ω|ωp = 1} be the set of roots of xp − 1 = 0. We use X to denote

a subset of S. Define ‖X‖ = |
∑

a∈X a|. So the central problem we are going

to address.

Problem 1.1. Which subset X ⊂ S minimizes this function ‖X‖?

The above problem was formally asked by G. Myerson in [9]. Let me

remark that this problem is far harder than at first glance and open for

more than four decades. People tried and failed on this problem many times,

although its counterpart for maximizing ‖X‖ is very easy to solve. The
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author also hoped to solve this problem and failed after half year’s trial. One

chapter will be dedicated to explain why this problem is so hard.

To provide enough background, we recall basic definitions in the following

three sections. The first section is for field theory and cyclotomic polynomi-

als. The second section introduces the additive combinatorics and its relation

of this problem. The third section focuses on the Fourier transformation on

finite Abelian groups and its application in additive combinatorics.

In Chapter 2, we discuss some modifications of Problem 1 and related

problems. Informally, we explain why we pick Problem 1 instead of other

similar problems.

In Chapter 3, we provide the general result, i.e., the current lower bound

and upper bound as well as some partial answers to the related problems.

I will provide a simple idea to exclude sets that cannot give the minimum

sum.

In Chapter 4, we provide some theoretical and computational evidence

on the difficulty from various perspectives.

Chapter 5 is conclusion and discussion of open problems.

1.1 Core Definitions

1.1.1 Notations

In this thesis, Z, Q, R, C denote the ring of integers, the field of rational

numbers, the field of real numbers and the field of complex numbers respec-

tively. i2 = −1 and exp(x) = ex is the standard exponential function in C.

For a prime number p, let Fp be the finite field of p elements.
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1.1.2 The Basics

The p-th unit equation xp − 1 = 0 has p roots in C. They form the set S.

To visualize S, we draw these numbers on the complex plane and we let ω

denote the first root we meet if we go counterclockwisely from the vector

1 + 0i. So

ω = exp

(
2πi

p

)
= cos

(
2π

p

)
+ i sin

(
2π

p

)
.

Note Q(ω) is a Galois extension of Q. The Galois group is isomorphic to

the multiplicative group F∗p ∼= Zp−1. Define the special exponential function

e(x) = e2πix/p in Zp Let G := GalQ(ω)/Q. Let g ∈ G. Then there exists a

k ∈ N such that g(ω = ωk). And we denote gk as g. A group element g can

also act on X ⊂ S by g(X) = {g(x)|x ∈ X|}.

1.1.3 Big O and other notations

We adopt the traditional big O notations.

f(x) = O(g(x)) := lim
x→∞

f(x) < Cg(x)

for some constant C > 0.

f(x) = o(g(x)) := lim
x→∞

f(x)

g(x)
= 0.

f(x) = Θ(g(x)) := lim
x→∞

C1g(x) ≤ f(x) ≤ C2g(x)

for some constants 0 < C1 < C2.

1.2 Additive Combinatorics

Additive combinatorics studies the additive structures in groups and fields.(In

this thesis all groups are Abelian). Our main concern in this thesis is about
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those in finite groups. Let Z be any cyclic Abelian group and A, B be subsets

of G. Define A+B and A−B as follows:

A+B := {a+ b|a ∈ Ab ∈ B}

A−B := {a− b|a ∈ Ab ∈ B}

Then the most fundamental problems are estimating the size of A + B and

A−B. For any A,B ⊂ Z the following is true.

max(|A|, |B|) ≤ |A+B|, |A−B| ≤ |A||B|

|A| ≤ |A+ A| ≤ |A|(|A|+ 1)

2

If A is a subset of Z and |Z| is a prime number, a famous theorem discovered

first by Cauchy [1] and later by Davenport [4] gives better bound.

Theorem 1. Let A, B be subset of Zp then

|A+B| ≥ min{|A|+ |B| − 1, p} (1.1)

To prove Cauchy-Davenport theorem, we need introduce the z-transformation.

Definition 1.2. Pick z ∈ A−B. Then Bz = B∩A− z and Az = A∪B+ z.

The most important properties of the z-transformation are the following

|Az| ≥ |A|

|Bz| ≤ |B|

|Az|+ |Bz| = |A|+ |B|

|Az +Bz| ≤ |A+B|

So z-transformation keeps the sum of sizes but shrinks or keeps the size of B

and the size of the sum. Also the equalities hold for the first two inequalities

if and only if B + z ⊂ A. The proof is straightforward so we omit it.
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Proof. [12] We use induction on |B|. Suppose the Inequality (1.1) holds for

any subset smaller than B. Now take Bz and Az, if |Bz| < |B|, then by the

induction hypothesis, we are done. Now, we may assume now |Bz| = |B| for

all z. this implies B + z ⊂ A for all z ∈ A− B. So B + (A− B) ⊂ A. This

is just

a+ b1 − b2 ∈ A for all a ∈ A and b1, b2 ∈ B

Fixing b1 6= b2, we see A has a non trivial translation symmetry. But this

cannot happen in Zp unless A = Zp for which the theorem holds. So |B| ≤ 1

and we are done.

Cauchy-Davenport theorem suggests that Z and Zp have different additive

properties.

Moreover, Vosper’s theorem describes when the equality in the Cauchy-

Davenport theorem holds.

Theorem 2. (Vosper) Let A,B ⊂ Zp and p is a prime such that |A|, |B| ≥ 2

and |A + B| ≤ p− 2. Then |A + B| = |A| + |B| − 1 if and only if A and B

are arithmetic progression with the same step

Proof. [12] We begin with the case that one of A or B is an arithmetic

progression. Suppose A = {a, a+ v, . . . , a+ (n− 1)v}, where n ≥ 2. If

|A+B| = |A|+ |B| − 1,

then

B + A = B + (A\(a+ (n− 1)v)) + {0, v}(by the Cauchy-Davenport theorem)

|B + A| = |B + {0, v}|+ (|A| − 1)− 1

So this implies

|B + {0, v}| = |B|+ 1.
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by Davenport’s theorem. So B is an arithmetic progression with step v and

so is A+B.

Next, we show that if A+B is an arithmetic progression with step v and

|A+B| = |A|+ |B| − 1, then A and B are both arithmetic progression with

same step. Consider

C = −(Zp\(A+B))

Note C is also an arithmetic progression with the same step v. Now C+B ⊂

−(Zp\A) by if −a ∈ −A is in C + B then this implies −a− b ∈ C for some

b ∈ B contradicts with −(A+B) ∩ C = ∅ So we have

|C| = |Zp| − |A+B|

= |Zp| − |A| − |B|+ 1

≥ |2|

also |C +B| ≤ |Zp| − |A|.

But |C +B| ≥ |C|+ |B| − 1

= |Zp| − |A|.

So by the conclusion we had in the first case, we have B is an arithmetic

progression with step v and for similar reason, so is A.

Finally, we deal with the general case and we prove by induction on |B|.

The case |B| = 2 is obviously done.

For |B| > 2, we use the z-transformation of B. Pick z ∈ A − B and

suppose 1 < |Bz| < |B|. Then recall

|Az|+ |Bz| = |A|+ |B|,

|Az|+ |Bz| − 1 ≤ |Az +Bz| ≤ |A+B| = |A|+ |B| − 1.

The above gives A+B = Az +Bz by observing Az +Bz ⊂ A+B. Then

by induction hypothesis, have Az, Bz and Az +Bz are arithmetic progression

with step v and we are done.
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It remains to show if for all z ∈ A− B, we have |Bz| = 1 or |B|. Denote

Z := {z ∈ A − B||Bz| = |B|}, then by property of z-transform, we have

B+Z ⊂ A. So |Z| ≤ |A| − |B|+ 1 by Davenport’s theorem. Also |A−B| ≥

|A|+ |B| − 1. So we have

|B\Z| ≥ 2|B| − 2

Recall Bz = B ∩ A − z. So by pigeon-hole principle, there exist z1 and z2

such that Bz1 = Bz2 = {b}. This gives

A+B = Az1 + b = Az2 + b.

Therefore Az1 = Az2 . Since |A∩Bz1 | ≤ 1 and |A∩Bz2| ≤ 1. It means B+ z1

and B+z2 differs at most in one elements. So B is an arithmetic progression

with step z1 − z2. With the conclusion of the first case, we are done.

The above two theorems show that arithmetic progressions are very spe-

cial in additive combinatorics.

1.3 Fourier Analysis method in Additive Com-

binatorics

1.3.1 Bilinear Form

Note that our general problem origins from finding the minimum Fourier

coefficient of a characteristic function χA over ZN . To introduce the full ma-

chinery of Fourier Transformation, we borrow the notations and definitions

from [12].

To do Fourier transformation on a finite field, we need the definition of

the bilinear form. A map from Z × Z to R/Z is a bilinear form if (ξ, ) and
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( , x) are both homomorphism. For Z = Z/pZ, (ξ, x) 7→ ξ∗x
p

is a bilinear form

where ∗ is the standard multiplication in R. We usually use x · ξ to denote

bilinear form and xξ to denotes the standard multiplication in Fp.

1.3.2 Fourier Transformation.

The set of all functions from Z to C forms a inner product space.

The inner product is given by

< f, g >=
1

|Z|
∑
x∈Z

f(x)g(x)

The Fourier transformation of a function f is defined as

f̂(ξ) =< f, e(ξ · x) >=
1

|Z|
∑
x∈Z

f(x) · e(ξ · x)

where

e(x · ξ) = exp(
xξ

|Z|
2πi)

The functions e(ξx) (ξ ∈ Z) consists a complete basis for CZ . So we have

the Fourier inversion formula

f(x) =
∑
ξ∈Z

f̂(ξ)e(ξ · x).

Let Z = Z/pZ be the additive group of order p. We use A and B to

denote subsets of Z.

The exponential map induces a bijection from subset of Z to subset of

S. Between A ⊂ Z and X ⊂ S, we write A ←→ X for the correspondence.

Consider the characteristic function of A ⊂ Z:

χA(x) =

1 if x ∈ A

0 if x /∈ A

8
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We will use characteristic functions and random variable interchangeably.

For random variable we can consider Z as a probability space where for

each x ∈ Z, we have Pr(x) = 1
|Z| . χA : Z 7→ R is defined as

χA(x) =

1 if x ∈ A

0 if x /∈ A

And we can have the expectation of χA as

EχA =
1

|Z|
∑
x∈Z

χA(x) =
|A|
|Z|

.

Let A ⊂ Z corresponding to X ⊂ S, the first coefficient of χA

χ̂A(0) =
1

|Z|
∑
x∈Z

χA(x) = EZ(χA).

The coefficient

| ̂χA(p− 1)| = | 1

|Z|
∑
x∈Z

χA(x)e((p− 1) · x)|

=
1

|Z|
∑
x∈A

χA(x)e2πix/p

=
1

|Z|
∑
x∈A

e2πix/p

=
1

|Z|
‖X‖

Example: p = 7 , Let A = {0, 1, 2, 5} ←→ X = {1, ω, ω2, ω5}. Then

χ̂A(0) = EZχA = 4/7

̂χA(p− 1) =
1

|Z|
∑
x∈Z

χA(x)e(x · p− 1)

=
1

7
(1 + e(1) + e(2) + e(5))

=
1

7
‖X‖

We also introduce the convolution and L2-norm

9



C
E

U
eT

D
C

ol
le

ct
io

n

Definition 1.3. If f , g ∈ L2(Z) are random variables over the additive group

Z, then the convolution of f and g are defined as

f ∗ g(x) = Ey∈Zf(x− y)g(y) = Ey∈Zf(y)g(x− y)

We define the support of f to be the set supp(f) = {f(x) 6= 0|x ∈ Z}.

Now there are several simple to verify properties of the convolution.

supp(f ∗ g) ⊂ supp(f) + supp(g)

A+B = supp(χA ∗ χB)

f̂ g(ξ) = f̂ ĝ

EZ(f ∗ g) = (EZf) · (EZg)

where χA and χB are characteristic functions of A,B ⊂ Z respectively.

The L2 norm in the inner product space is simply:

Definition 1.4.

‖f‖2 :=
√
< f, f >

The Fourier transformation is intensively used in additive combinatorics

We pick on a simple theorem with all the above machinery applied. The

proof is very concise in the language of Fourier transformation and no direct

combinatorial method is known.

Theorem 3. [12]Let F be a finite field of order p and A ⊂ F\{0}. Then

F ⊂ A · A+ A · A+ A · A

Proof. [3] We give the non-degenerate bilinear form from F × F 7→ C as

(x, y) 7→ e(x · y). Define

f := Ey∈Aχy·A(x).

Here y · A = {yx|x ∈ A|}.

10
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Now we can observe f(x) > 0 if and only if x ∈ A ·A, otherwise f(x) = 0.

Also:

f̂(ξ) =
1

|F |
∑
x∈F

f(x)e(x · ξ)

=
1

|F |
∑
x∈F

Ey∈Aχy·A(x)e(x · ξ)

= Ey∈A
1

|F |
∑
x∈F

χy·A(x)e(x · ξ)

= Ey∈A
1

|F |
∑
x∈F

χA(x/y)e(x/y · yξ)

= Ey∈Aχ̂A(yξ)

Note that formula on page 158 in the book [12] is erroneous, we used the

version from the original paper [3]. Now apply Cauchy-Schwartz to |f̂(ξ)| =

|Ey∈Aχ̂A(yξ)| as:

|Ey∈Aχ̂A(yξ)| = | 1

|A|
∑
y∈A

χ̂A(yξ)|

≤ |
(
∑

y∈A |χ̂A(yξ)|2)1/2

|A|1/2
|

≤ |
(
∑

y∈F |χ̂A(yξ)|2)1/2

|A|1/2
|

= |‖χA‖
1/2

|A|1/2
|

=
|A|1/2

|F |1/2|A|1/2

= 1/|F |1/2
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For all x,

|f ∗ f ∗ f(x)− 1

|F |
|A|3| = |

∑
ξ∈F

f ∗ f ∗ f(ξ)
∧

e(ξ · x)− 1

|F |
|A|3|

= | 1

|F |
∑
ξ∈F ∗

f̂(ξ)
3
e(xξ)|

≤ 1

|F |
∑
ξ∈F ∗
|f̂(ξ)

3
|

≤ 1√
|F |

∑
ξ∈F

|f̂(ξ)|2

=
√
|F |‖f‖22

=
√
|F ||A|

Note 1√
|F |3

>
√
|F ||A|. So the above calculations gives F ⊂ supp(f ∗ f ∗

f) ⊂ supp(f) + supp(f) + supp(f) ⊂ A ·A+A ·A+A ·A and we are done.

12
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Chapter 2

Related Problems

In this chapter, we discuss some modifications and related problems.

2.1 The Maximum of ‖X‖

As we stated, the maximum problem is rather easy to answer.

Theorem 4. For p sufficiently large, ‖X‖ ≤
(
p
π

)
+ o(1) and the bound is

tight.

Proof. We claim that we find U := {e(j) ∈ U |j ≤ p/4 or j ≥ 3/4p} that

‖U‖ is maximum among all subset of S. The computation for the bound is

easy

‖U‖ = |
0≤j<p/2∑
−p/2<j<0

e(j)|

= |
0≤j<p/2∑
0>j>−p/2

cos

(
2πj

p

)
|

Since every term is positive we obtain:

‖U‖ =

∫ p/2

−p/2
cos

(
2πx

p

)
dx+ o(1) =

p

π
+ o(1)

13
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It remains to show that if X maximizes ‖X‖, then X must be U , rotation of

U or complement of U from S.

We prove the above statement by showing that if X is none of the three

possibilities above, then we can find X ′ such that ‖X ′‖ > ‖X‖.

Lemma 2.1. U maximizes ‖U‖ for subsets of S that is contained in a half

plane of R2.

Proof. We may assume X is a subset set of U . We show ‖X‖ ≤ ‖U‖. let

y =
∑

x∈X x. Then assume arg(y) = θ. If θ = 0, then obviously ‖U‖ ≥ ‖X‖.

Suppose θ > 0, then if we can find v ∈ U\X and | arg(y) − arg(v)| < π/2,

then we are done. If we cannot find such v, it means X contains all v ∈ U

such that | arg(v)− arg(y) < π/2|. So arg(y) < θ− π/2 < 0 contradicts with

arg(y) = θ > 0.

Now we prove the theorem. Let u =
∑

x∈X x and arg(u) = θ. We add all

these vectors to X if <
∑
v, u >≥ 0 and call the modified set X1 Observe

‖X1‖ ≥ ‖X‖ by adding vs. Now X1 contains a rotation of U .

If X1 is a rotation of U , then we are done. If not, then take X2 = S\X1.

So ‖X2‖ = ‖X1‖. Now X2 is contained in some half plane. So ‖U‖ ≥ ‖X2‖

by the lemma and we are done.

2.2 Derived Problms from Problem 1.1

A more detailed problem would be

Problem 2.2. For which X ⊂ S of size k is ‖X‖ minimal?

T. Tao asked this on Mathoverflow.com[11] ( in his question, he asked

for p not necessarily a prime number). If we can answer this problem, then

14



C
E

U
eT

D
C

ol
le

ct
io

n

we can easily deduce the answer of Problem 1.1. But even for k = 5, the

problem is hard.

An important but open problem is to ask whether the following statement

is true.

Conjecture 2.3. For any p, the set X that minimizes ‖‖ is symmetric to

the real line on the complex plane or can be rotated to such.

Experimental data suggest this statement is true for all p < 81. But we

could not prove it.

From the point of view of Fourier transformation, Problem 1 can be

viewed as

Problem 2.4. For which A ⊂ Z, the Fourier coefficient ̂χA(p− 1)) is min-

imum

2.3 The Littlewood Problem

An imporatant related problem is the “Littlewood’s problem”[2]. The L1-

norm of a function from Z to C is defined as

‖f‖1 :=
∑
ξ∈Z

|f̂(ξ)|

we mainly focus on the characteristic functions of subsets of Z. Littlewood’s

problem asks:

Problem 2.5. For each k, what is the minimum of ‖χA‖1, if A ⊂ Z and

|A| = k?

This problem is asking the minimum average of Fourier coefficients rather

than the single minimum value. Littlewood conjectured that if ‖χA‖1 is

15
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minimum among all |A| = k, then A must be an arithmetic progression.

The strong Littlewould Conjecture remains open for finding the exact value

of the minimum and for whether the minimum is obtained when A is an

arithmetic progression. But S. V. Konyagin[6] and O. C. Mcgehee et.al

[8] independently obtained the following partial result:

Theorem 5. For |A| = k, ‖χA‖1 ≥ Clogk for some positive constant C, the

lower bound is tight up to constant.

Estimating the Fourier coefficient of χA(historically called trigonometri-

cal sum) is a very useful tool in number theory, especially in counting the

numbers of solutions of linear systems in Fp[7][5].

16
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Chapter 3

Existing Bounds

3.1 Bounds for the General Problem

Recall the general problem:

Problem 3.1. Which subset X ⊂ S minimizes ‖X‖?

We provide a partial answer by Lev and Konyagin

3.1.1 Lower bound

Theorem 6. (Lev&Konyagin) If X ⊂ S Then ‖X‖ ≥ p−
p−3
4 .

Proof. Suppose X has the minimum sum. Let y =
∑

j∈A e(j) as an algebraic

integer. (|N(y)| ≥ 1 as |y| > 0 )

The norm of y would be

N(y) =
∏

g∈Gal(Q(ω)/Q)

g(y).

Note that for y =
∑
e(j), we have gk(y) =

∑
e(kj) for some k. Recall

17
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|F ∗| = p− 1 and |gp−1(y)| = |y|, so

1 ≤ |N(y)|2 = |y4||
∏
k 6=±1

|gk(y)|2 via Minkowski’s inequality

≤ |y4|(| 1

p− 3

∑
k 6=±1

|gk(y)|)p−3

≤ |y4|pp−3.

By So we we have ‖X‖ ≥ p−
p−3
4 .

3.1.2 Upper bound.

Theorem 7. (Lev&Konyagin) For n = 2k < p
20
, we can find a set X such

that |X|=n and ‖X‖ ≤ n
log p
log 4

Before the proof, we describe the idea behind the proof. Suppose we pick

a unit vector u in S and we need a vector that “cancels” u most Then we can

choose the two vectors which are closest to −u on the complex plane. For

example 1 is the origin vector, then e(p−1
2

) and e(p+1
2

) would be two possible

choices. Now for u′ = e(p−1
2

) + 1, we can pick two vectors and let their sum

cancel u′ as much as possible. So at k-th step we consume 2k vector and we

stop when not more vector can be used.

Proof. We provide the best construction so far. Let p′ = p−1
2

and define A

to be the set of all the sumset sums of

U = {p′ + 1, p′ + 2, p′ + 4, . . . p′ + 2k−1} ⊂ Zp

For the empty set ∅ ⊂ A, we let the sum be 0.

Claim 3.2. Take X ⊂ S and X ←→ A then ‖X‖ < n−
ln p
2 ln 2
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Proof.

P‖X‖ = |
∑
B⊂U

∑
x∈B

e(x)|

By rearranging the terms we have

‖X‖ = |
k∏
j=0

(1 + e(
p′ + 2j

p
))|

Expand e(x) to trigonometric functions we have

‖X‖ = |2k
k−1∏
j=0

cos π
p− 1 + 2j+1

2p
|

= 2k
k∏
j=1

| sin π
p

(2j − 1)|

<

(
π

p

)k
2
k(k+1)

2

= n−
ln(π/(

√
2))

ln 2
+ lnn

2 ln 2

< n−
ln p
2 ln 2

Now, it remains to show the subset sums of U are distinct. Assume∑
i∈I

(p′ + 2i) ≡
∑
j∈J

(p′ + 2j) (mod p) (3.1)

for two subset I, J ⊂ {0, . . . , k − 1} and we show I = J . Define ξ =
∑

i∈I 2i

and η =
∑

j∈J 2j. Then

0 ≤ ξ, η, |I|, |J | ≤ 2k < p/20

And (3.1) gives

2ξ − |I| ≡ 2η − |J | (mod p)

2ξ − |I| = 2η − |J |
Write ξ and η in binary form and |I| and |J | are the counter of digits of 1

in their binary form, so either |I| = |J | and ξ = η implies I = J or |I| 6= |J |

implies ξ 6= η hence I 6= J .
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3.2 Minimum Cardinality of X

Since it is hard to find the exact answer, we find some partial answers.

Problem 3.3. What would be the cardinality of X if X is a set with minimum

sum.

Partial answer:

Theorem 8. Let X be a subset of S. Then ‖X‖ is not minimum if X has

fewer than
√

p
3
elements.

Proof. Let I = [dp/3e, b2p/3c],

Observe that if A + b = {x + b|x ∈ A} (b ∈ I) does not intersect with A

then ||X ∪ e(b)X‖ < ‖X‖.

Consider X ←→ A . Recall that if I * A − A =⇒ ∃b ∈ I such that

(A+ b) ∩ A = ∅.

By the estimation of A−A, We have |A−A| ≤ n2 − n+ 1 ≤ p/3 .where

n = |A|. So we have|A| ≤
√

p
3
.

This method cannot give you bound better than 2
√

p
3
by the following

construction. Pick J = [0, d
√
p/3e] and C = [0, d

√
p/3e].Observe [0, dp/3e] ⊂

J−(−C). So A = J+dp/3e∪−C would be the desired construction. Because

|A| = 2
√
p and I ⊂ A− A.

We might be interested to to ask find A with minimal size and I ⊂ A−A.

But even for similar question on Z = Z and I = [1, n], we don’t know the

exactly bound. This fact is known via personal communication with Imre

Ruzsa.

Problem 3.4. What is minimum |A| such that A ⊂ Z and [1, n] ⊂ A+ A
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3.3 Arithmetic Progression

Proposition 3.5. Let A be an arithmetic progression in Zp with step k and

length m. Then X ←→ A and ‖X‖ is not the minimum.

Proof. suppose A = {0, k, 2k · · · , (m− 1)k}. Then

‖X‖ =
m−1∑
j=0

ωjk

=
1− ω(m−1)k

1− ωk

> |sin(1/p)

2
|

= Θ

(
1

p

)

The above argument shows the characteristic functions of arithmetic pro-

gressions have relatively small Fourier coefficient for every non zero ξ, but

not as small the minimum.

3.4 Expectation of ‖X||2

In this section we compute the second moment of ‖X‖. Recall that the

functions from Z to C form a inner product space. Wwe observe |χX |2 can be

expressed with the square sum of its Fourier coefficients and the expectation

of f(ξ) are the same for ξ 6= 0. Let v be a random subset uniformly picked

from S. So

χv(x) =
∑
ξ∈Z

χ̂v(ξ)e(ξ · x).

Parseval’s equality says that if{vi}s are complete orthogonal basis, then

‖f‖2 =
∑
| < f, vi > |2
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In our case Parseval’s equality gives

‖χv‖22 =
∑
ξ∈Z

|χ̂v(ξ)|2.

Now

E(‖χv‖22) =
1

2n

∑
A⊂Z

‖χA‖22

=
1

2n

∑
A⊂Z

∑
ξ∈Z

|χ̂A(ξ)|2

=
1

2n

∑
A⊂Z

∑
ξ∈Z

| 1

|Z|
∑
x∈Z

χA(x)e(ξ · x)|2

=
1

2n

∑
A⊂Z

∑
ξ∈Z

| 1

|Z|
∑
x∈A

e(ξ · x)|2

=
1

2n

∑
ξ∈Z

∑
A⊂Z

| 1

|Z|
∑
x∈A

e(ξ · x)|2

=
1

2n

∑
X⊂S

(
|X|
|S|

)2 +
1

|S|2
∑
ξ∈Z
ξ 6=0

g∈GalQ(ω)/Q

‖g(p−ξ)(X)‖2

= E(PZ(A)2) +
1

2n

∑
ξ∈Z
ξ 6=0

g∈GalQ(ω)/Q

1

|S|2
∑

g(p−ξ)(X)⊂S

‖X‖2

= E(PZ(A)2) +
|S| − 1

2n|S|2
‖X‖2

= E(PZ(A)2) +
|S| − 1

|S|2
E(||X‖2).

Also note
E(‖χv‖22) =

1

2n

∑
A⊂Z

‖χA‖22

=
1

2n

∑
A⊂Z

∑
x∈Z

|χA(x)|2

=
1

2n

∑
A⊂Z

∑
x∈Z

χ(x) =
1

2
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And the first term on the right is

E((PZA)2) = V ar(PZA) + E(PZ(A))2

= p× 1

2
× (1− 1

2
)× 1

p2
+ (

1

2
)2

=
1

4p
+

1

4
.

So
p− 1

p2
E(‖X‖2) =

1

4
− 1

4p
.

And we have E(‖X‖2) = (1
4

+ o(1))p. So a random X ⊂ S has ‖X‖ ∼
√
p

2
.
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Chapter 4

Difficulties and the Experimental

Evidence

In this chapter, we give some evidence on the difficulty of Problem 1.1.

4.1 Difficulty for k is small

One obvious reason is that the number of subset of S is 2p, which grows expo-

nentially in p. So a brute force method to find the subset X that minimizes

‖X‖ is infeasible.

Moreover, consider the more detailed problem: recall Problem 2.2

Problem 4.1. Which X ⊂ S minimizes ‖X‖ if |X| = k?

Now we try to answer this problem approximately by asking

Problem 4.2. For p sufficiently large, what is the order of the difference of

minimum ‖X‖ and 0 if |X| = k

For k < 5, these questions can be answered easily, see [9] via geometrical

arguments. For k > 5, these problem are connected to how to approximate
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an arbitrary number via algebraic integer and such problems seem generally

hard.

For example, let’s consider the next simplest case. Let k = 5.

We may assume 1 is in X. Then the problem becomes

Problem 4.3. For which four elements of S that their sum approximates −1

best and what is the order of the approximation.

We conjecture the answer is between Θ(p−1) to Θ(p−2) because for k = 4,

the approximation rate is Θ(p−1).

To find the exact answer, let’s begin with checking whether we should

pick e(p−m
2

) where m = o(1). Now we assume Conjecture 2.3 is true. So we

find another element in S that the real part of their sum approximate 1/2

best. It would be e(bp/6c+ l) where l ∈ Z and l = o(p).

Re(e

(
p− 1

2

)
+ e(bp/6c+ l)) = cos

(
2π(p−m)

2p

)
+ cos

(
2π(bp/6c+ l)

p

)
Write them in their Taylor expansions and let u = 2π/p:

I = cos

(
2π(p−m)

2p

)
+ cos

(
2π(bp/6c+ l)

p

)
= cos(

−mu
2

) cosπ − sin(
−mu

2
) sinπ + cos(u(l + a)) cos

π

3
− sin(u(l + a)) sin

π

3

(where a = bp/6c − p/6)

= − cos(mu/2) +
1

2
cos(u(l + a))−

√
3

2
sin(u(l + a))

= −1 +
1

2

(mu
2

)2
+ o(p−3) +

1

2

(
1− 1

2
(u(l + a))2 + o(p−3)

)
+

√
3

2

(
u(l + a) + o(p−2)

)
=

1

2
+ u

(
−
√

3

2
(l + a)− 1

4
u(l + a)2 +

1

8
m2u

)
The above calculation implies that we can obtain a Θ(p−1) approximation,

but not a Θ(p−2) approximation because we have an Θ(1) nonzero term in

the parenthesis.
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Currently, we could not find two vectors that the sum obtained is such.

And furthermore, a negative answer for Θ(p−2) approximation is very diffi-

cult to obtain because we need disprove approximation of an irrational via

algebraic integers, which is generally very difficult.

4.2 Evidence from Empirical data

Here we present the findings of N. D. Noe, for the minimum configuration

for all p < 81. We list then in Table 4.1, the reader can find brief data in

OEIS[10].

(The configuration column in Table 4.1 contais only the upper plane half

because all the minimum configurations are symmetric to the real line).

A visualized plot is also made by T. D. Noe in Figure 4.1.

From Table 4.1 and Figure 4.1, we can see that for prime numbers

min ‖X‖ decreases as p increases and the minimum is close to the existing

upper bound. But we cannot make a theory to explain the configuration.

However we can conjecture:

Conjecture 4.4. For all p prime, The configuration of X such that X min-

imize ‖X‖ is symmetric to the real line.

Conjecture 4.5. For all p, q prime minp ‖X‖ < minq ‖X‖ if p > q.

If we allow composite numbers as shown in Figure 4.1, then we don’t have

the strict monotonicity on the minimum of ‖X‖. Generally, min ‖X‖ is larger
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p min ‖X‖ Cardinality The configuration of

of the minimum A←→ X

5 0.618033988750 2 1

7 0.445041867913 2 2

11 0.088155921225 5 0 2 5

13 0.070101776965 6 1 3 6

17 0.020732553832 5 0 4 6

19 0.015942667074 7 0 2 6 8

23 0.002105883604 8 2 5 6 11

29 0.000531288261 14 3 4 5 7 8 12 13

31 0.000285534741 11 0 4 5 7 13 15

37 0.000009249591 18 4 5 6 7 8 10 13 15 18

41 0.000002427733 19 0 1 4 5 6 13 15 16 17 18

43 0.000000710113 17 0 4 5 6 7 14 18 19 20

47 0.000000296426 22 2 4 6 7 11 12 14 15 16 21 22

53 0.000000036964 18 2 3 6 7 15 16 22 24 26

59 0.000000004723 26 2 3 6 8 13 14 15 16 17 18 26 28 29

61 0.000000002376 29 0 1 2 6 8 9 12 15 16 20 21 26 27 29 30

67 0.0000000004402076 30 2 3 7 8 10 13 14 15 20 21 22 25 31 32 33

71 0.0000000002068930 32 2 4 7 8 9 15 17 18 20 21 22 24 26 27 28

73 0.0000000000855482 34 1 3 9 10 11 12 14 16 17 22 23 24 25 28 29 30 33

79 0.0000000000042344 30 2 4 5 6 7 14 17 21 26 28 29 30 32 34 35

Table 4.1: The minimum sum for p < 81
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Figure 4.1:
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for composite numbers but 35 is an exception that min35 ‖X‖ < min37 ‖X‖

where 37 is a prime.

A weaker conjecutre compared to Conjecture 4.5 can be made for general

n:

Conjecture 4.6. Conjecture 4.4 is true for all n ∈ N+.

Conjecture 4.7. Given c > 0, for m, n sufficiently large, if n > cm, then

minm ‖X‖ > minn ‖X‖

We might be interested in finding how “compositeness” of a number n

impact on minn ‖X‖. But there is no dicect conjecture that we can made.
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Chapter 5

Conclusion

Problem 1.1 remains open and looks inaccessible so far. But rich connections

with other pieces of mathematics might suggest broader view and tools are

needed to attack it.

Before complete solution, we suggest to prove/disprove those conjectures

aforementioned. Conjecture 4.4 looks more hopeful than others but we still

do not know.
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