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Introduction

In this thesis, we consider two group theoretical problems involving maxi-
mal subgroups. The first problem is about the upper bound of the maximal
subgroups of a finite solvable group. Newton[10] proved that if a solvable
group has order with prime decomposition pr11 p

r2
2 · · · prnn and pr11 is the small-

est of the piri’s, then the number of maximal subgroups of that group is at most
p
r1
1 −1
p1−1 +

∑n
i=2

p
ri+1
i −1
pi−1 . We follow his ideas but give a slightly different proof of this

result. The other problem has to do with the relationship between maximal sub-
groups and primitive permutation character of solvable groups. These charac-
ters are multiplicity-free and any two distinct primitive permutation characters
only have the trivial character in common. We will show that if all the irre-
ducible complex characters of a solvable group occur as constituents of prim-
itive permutation characters of the group then the group is either elementary
Abelian or is a Frobenius group, whose kernel is elementary Abelian and the
complement is a cyclic group of prime order.

A group is a set of elements together with a binary operation that together
satisfy the properties of associativity, the identity property, and the inverse
property. Groups which arose from the study of polynomial equations are fun-
damental to the study of the symmetry of mathematical objects. Group theory,
the study of the structure of groups, has wide ranging applications in other
mathematical disciplines such as algebraic topology and Galois theory, as well
as in chemistry and physics. Various techniques have been developed to study
the structure of a group. One such technique is the study of their maximal sub-
groups.

A maximal subgroup of a group is a proper subgroup such that no other
proper subgroup contains it. For finite groups, maximal subgroups always ex-
ist. There are however groups that contain no maximal subgroups. An example
of such a group is the Prüfer group. Studying maximal subgroups can help to
understand the structure of a group. Finite groups, all of whose maximal sub-
groups are normal, have limited structure and are called nilpotent groups. The
Frattini subgroup of a group is closely related to its maximal subgroups. It is,
by definition, the intersection of all the maximal subgroups of a group and con-
tains exactly the non-generating elements of the group. Maximal subgroups
can also help in deciding which groups can be embedded in another group.
This problem arises frequently in group theory. If one can find a way of com-
puting maximal subgroups of a group, he can then recursively compute all of
its subgroups. O’Nan and Scott[1] have classified the maximal subgroups of the
alternating and symmetric groups. The maximal subgroups of the small finite
simple groups are listed in the Atlas of Finite Simple Groups.
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2

In studying maximal subgroups, one can also restrict the study to the num-
ber of maximal subgroups. This also can tell something about the group. We
know for example, that a finite group has only one maximal subgroup if and
only if its order is a power of a prime number. The number of maximal sub-
groups of a cyclic group is equal to the number of prime divisors of its order
while the number of maximal subgroups of an elementary Abelian p-group of
rank r is pr−1

p−1 . In this thesis, we will prove an upper bound on the number of
maximal subgroups of a solvable group. A solvable group is a group that is
made up of cyclic groups of prime order. We will use character theory to give a
different proof of Newton’s theorem.

A representation of a group assigns to each element of a group a matrix so
that the group operation is compatible with matrix multiplication. The char-
acter of a group representation is a function on the group that associates to
each group element the trace of the corresponding matrix. The character of a
group carries essential information of a group representation in a condensed
form. Over the field of complex numbers, two representations are isomorphic
if and only if they have the same character. We can study the structure of a
group by studying irreducible characters, which are the building blocks of all
the characters. These characters encode important properties of a group. We
can recover all the normal subgroups of a group from its irreducible charac-
ters. We can therefore determine if a group is simple from its irreducible char-
acters. Moreover, we can determine from its irreducible characters if a group
is simple. Character theory was essential in the classification of finite simple
groups, the proof of Frobenius theorem on the structure of Frobenius groups
and Feit-Thompson theorem which states that every finite group of odd order
is solvable.

The action of a group on a finite set induces a representation of the group.
The corresponding character is called the permutation character. If the action
is transitive and faithful, and does not preserve a non-trivial partition on the
set on which it is acting, we say that the action is primitive and call the corre-
sponding character the primitive permutation character. It can be shown that
a primitive permutation character of a solvable group can be written as linear
combination of irreducible complex characters with coefficients 0 and 1. More-
over, any two distinct primitive permutation characters, upon decomposing,
have only the trivial character in common. In general, it is not true that an ir-
reducible character is a constituent of a primitive character. We will prove that
if all the irreducible characters of a solvable group occur as constituents of its
primitive permutation characters, then such a group is elementary Abelian or a
Frobenius group with elementary Abelian kernel and with complement a cyclic
group of prime order.

In the first chapter, we define concepts and theorems we will need for the
remaining chapters. This includes solvable groups, theory of characters of a
group and primitive permutation characters of a group. The second chapter
gives an outline of results concerning the upper bound of the number of maxi-
mal subgroups of a solvable group. We also compare different bounds and also
give a proof of the theorem by Newton. The last chapter consists of a result of
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3

all solvable groups whose irreducible characters are constituents of primitive
permutation characters. Before the proof, we give an exposition of Frobenius
groups and their character theory.
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Chapter 1

Preliminaries

This chapter contains some basic definitions, examples and results required for
the remaining chapters. We give a brief description of solvable groups, the
theory of characters of finite groups and primitive permutation characters.

1 Groups

A group is an algebraic structure consisting of a set of elements and a a binary
operation that together satisfy certain axioms.

Definition 1.1. A set G together with a binary operation ∗, is called a group if it
satisfies the following axioms:

1. The binary operation is associative on G.

2. G has an element e with the property g ∗ e = e ∗ g = g for all elements g ∈ G.

3. For each element g ∈ G, there exists an element h ∈ G called the inverse of g
with the property that g ∗ h = h ∗ g = e

For g ∈ G, its inverse will be denoted by g−1. If g, h ∈ G, then will simply
write gh instead of g ∗ h.

Groups are important because they can be used to study symmetry of math-
ematical objects. This is done by defining an automorphism of the object which
is a way of mapping the object to itself while preserving all of its structure. The
set of all automorphisms of an object forms a group, called the automorphism
group, and is the symmetry group of the object. Examples of groups are:

• The symmetric group, Sn. This is the group all of whose elements are all
the permutations on the n distinct symbols and binary operation is the
composition of these permutations.

• The dihedal group , Dn. This is the group of symmetries, rotation and
reflections, of an n-sided polygon.

In this thesis, we are concerned with finite groups. These are groups with
finite number of elements. We will restrict ourselves to finite groups for the rest
of this thesis.

4
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Chapter 1. Preliminaries 5

Definition 1.2 (Subgroup). A non-empty subset H of a group G with binary opera-
tion ∗ is called a subgroup of G ifH also forms a group under the operation ∗. We write
H ≤ G to mean H is a subgroup of a group G.

A subgroup H of G is proper if H 6= G. The notation for this is H < G.

Definition 1.3 (Maximal Subgroups). A maximal subgroup H of a group G is a
proper subgroup, such that no proper subgroup K of G strictly contains H .

Maximal Subgroups are a central theme of this thesis. Maximal Subgroups
are important because they help provide information about the group.

Definition 1.4 (Normal Subgroup). A subgroup N of G is called normal, written
N / G, if for all g ∈ G and for all n ∈ N , gng−1 ∈ N .

The notion of normal subgroup is important because it is closely related to
the components or simple groups that make up the group.

Definition 1.5 (Simple Group). A simple group is a nontrivial group whose only
normal subgroups are the trivial group and the group itself.

Theorem 1.1 (Classification of Finite Simple Groups). Let G be a finite simple
group. Then G is isomorphic to one of the following groups:

1. A cyclic group of prime order.

2. An alternating group of degree at least 5.

3. A simple group of Lie type.

4. One of the 26 sporadic simple groups.

Proof. See [5]

Definition 1.6 (Quotient Group). Given a group G and a subgroup H , and an ele-
ment g in G, the set gH = {gh : h ∈ H} is called the left coset of H in G. Let G/H be
the set of all left cosets of H in G, that is, G/H = {gN : g ∈ G}. Define an operation
on G/H as follows: If g1H and g2H are in G/H , then their product is g1g2H .

With this operation G/H becomes a group if and only if H is a normal subgroup of
G. It is called the quotient group of G by H .

If N is a non-trivial proper normal subgroup of a finite group G, then N
and G/N are groups whose orders are smaller than |G|. We cannot recover G
from N and G/N . However, using the method of mathematical induction, we
can use them to prove something about G, see for example 3.11. The notion of
quotient groups is also key in showing that every finite group is comprised of
simple components called composition factors.

A series, 1 = G0 / G1 / · · · / Gn = G, of subgroups of G is called a normal
series if Gi / Gi+1, for 0 ≤ i ≤ n − 1. For 0 ≤ i ≤ n − 1, the quotient groups
Gi+1/Gi are called the factors of the normal series.

C
E

U
eT

D
C

ol
le

ct
io

n



Chapter 1. Preliminaries 6

A normal series 1 = G0 / G1 / · · · / Gn = G, where Gi is maximal in Gi+1 is
called a composition series. In this case, the factors are simple groups and they
are called composition factors.

Every group that is not simple, can be broken into two smaller groups, a
normal subgroup and the quotient group. The process can be repeated so that
we eventually arrive at simple groups. The Jordan–Hölder theorem tells us
that no matter how we break up our group, these simple groups are uniquely
determined.

Theorem 1.2 (Jordan–Hölder). Let G be a non-trivial finite group. The set of com-
position factors in a composition series of a group are unique, up to isomorphism.

Proof. See [9, p. 30]

2 Solvable Groups

In this thesis, we are interested in the number of maximal subgroups of solv-
able groups. Solvable groups are those groups whose composition factors are
groups of prime order.

Definition 1.7 (Solvable Group). A group is solvable if all its composition factors are
cyclic groups of prime order.

The above definition is equivalent to saying that the group has a normal
series all whose factors are Abelian. We examine these groups in a little more
detail.

Solvability of a group is closely related to a subgroup called the derived
subgroup.

Definition 1.8. Define the commutator of two elements g and h of a group G, denoted
by [g, h], to be the element g−1h−1gh . The derived subgroup of a group G which will
be denoted by G′ is the subgroup

G′ = 〈[g, h] | g, h ∈ G〉 .

From the above we define the derived series of a group G to be a series of
subgroups

G(0) = G, G(1) = G′, G(2) = G(1)′, · · ·

Theorem 1.3. The derived subgroup is the smallest normal subgroup such that the
quotient group of the original group by this subgroup is Abelian. That is, G/N is
Abelian if and only if N contains the derived subgroup.

Proof. See ??.

Putting everything together, we get that the derived series terminates. By
this we mean there exists n ∈ N such that G(n) = 1, if and only if G is a solvable
group. Furthermore, the derived series is minimal of all the normal series of G
with abelian factors. For the rest of the thesis, we will restrict ourselves to finite
solvable groups.
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Chapter 1. Preliminaries 7

Theorem 1.4 (Feit-Thompson). Let G be a group. If G has odd order, then G is
solvable.

Proof. See [4].

Feit-Thompson theorem also tells us that the order of a finite non-Abelian
simple group is either a prime number or an even number.

Theorem 1.5 (Burnside). For primes p and q, every group of order paqb is solvable.

Proof. See [9, theorem 7.8].

Theorem 1.6. The minimal normal subgroup of a solvable group is elementary Abelian.

Proof. The proof proceeds by showing that the minimal normal subgroup is
Abelian and then that its order is divisible by only one prime number.

Let N be a minimal normal subgroup of a group G. Since N is solvable,
we must have that the derived subgroup N ′ is a proper subgroup. Also N ′ is
a characteristic subgroup of N , hence normal in G. But N is minimal, thus we
have N ′ = 1.

Let p be a prime divisor of |N | and P be a Sylow p-subgroup of N . P is
characteristic subgroup of N since it is the unique Sylow p-subgroup. Thus, P
is a normal subgroup in G implying that P = N .

So far we have shown thatN is an Abelian p-group. To show it is elementary
Abelian, consider the {x ∈ N | xp = 1} of G. This subgroup is characteristic in
N and hence normal in G. Thus, {x ∈ N | xp = 1} is N . It cannot be trivial since
Cauchy theorem guarantees the existence of some element of N with prime
order.

Theorem 1.7. Every maximal subgroup of a finite solvable group has prime power
index.

Proof. LetM be a maximal subgroup ofG andN be a minimal normal subgroup
of G. If N 6≤ M , then NM = G and N ∩M = 1. The first equality is because M
is maximal and N 6≤M . The second equality follows because N ∩M is normal
in M and also normal in N as it is Abelian. Thus [G : M ] = |N |, and from the
previous theorem the minimal normal subgroup is elementary Abelian.

If N ≤M , then we can work in the quotient group G/N , and use induction.

3 The Character Theory of Finite Groups

We would now like to review some results in character theory of finite groups.
These results will be crucial when we come to prove our main results.

A character of a group is closely associated to its representation. A repre-
sentation describes a group in terms of linear transformations of vector spaces
while the character of that group representation associates to each group el-
ement the trace of the corresponding matrix. The character is significant be-
cause it carries the essential information about the representation in a more
condensed form.
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Chapter 1. Preliminaries 8

Definition 1.9. LetG be a group and V be a vector space over the field of complex num-
bers. A linear representation of G over V is a group homomorphism from G to GL(V ),
the general linear group on V. In other words, a representation is a map ρ : G→ GL(V )
such that

ρ(g1g2) = ρ(g1)ρ(g2), for all g1, g2 ∈ G.

• The dimension of the vector space V is called the degree of the represen-
tation. If dim (V ) < ∞, then ρ is called a finite dimensional representa-
tion. In this case, we can choose a basis for V and identify GL(V ) with
GL(n,C), the group of n× n invertible matrices over C.

• The kernel of a representation ρ of a group G is defined as

ker ρ = {g ∈ G | ρ(g) is the the identity transformation} .

It is a normal subgroup of G. A representation ρ is faithful if ker ρ = {e}.

Another way of looking at a representation ρ : G → GL(V ) is that it is a
linear action of G on V . That is to say that ρ : G× V → V is an action such that

1. ∀v1, v2 ∈ V and ∀g ∈ G, ρ(g, v1 + v2) = ρ(g, v1) + ρ(g, v2).

2. ∀λ ∈ C, g ∈ G, v ∈ V, ρ (g, λ · v) = λ · ρ(g, v).

It is for this reason that we will sometimes write g · v or simply gv to mean
ρ (g) (v) when it is clear that ρ is the representation we are considering.

Given two complex vector spaces V and W , two representations ρ : G →
GL(V ) and π : G → GL(W ) are said to be isomorphic if there exists a vector
space isomorphism α : V → W so that for all g in G,

α ◦ ρ(g) ◦ α−1 = π(g).

Isomorphic representations provide the same information about the group and
are considered to be the same.

Example 1. For any group G, the map

ρ : G→ GL1 (C) ∼= C×, g 7→ 1, ∀g ∈ G

is a representation. This is called the trivial representation of G.

Example 2.

Let G = C2 = 1, g be the cyclic group of order 2.

ρ : G→ C×, g 7→ −1

is a representation.
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Chapter 1. Preliminaries 9

Definition 1.10. Let ρ : G → GL(V ) be a representation of G and W be a linear
subspace of V that is preserved by the action ofG, that is, g·w ∈ W for allw ∈ W . Then
denote by ρ

W
: G→ GL (W ), the map that sends each g to the restriction ρ (g) |W . Then

ρ
W

: G → GL (W ), becomes a representation of G and is called a subrepresentation of
the representation ρ.

If ρ : G → GL(V ) has exactly two subrepresentations, namely the trivial
subspace {0} and V itself, then the representation is said to be irreducible.

Definition 1.11. Let V be a finite-dimensional complex vector space and let ρ : G →
GL(V ) be a representation of a group G on V . The character of ρ is the function
χρ : G→ C given by

χρ(g) = Tr(ρ(g)),

where Tr is the trace.

• A character χρ is called irreducible if ρ is an irreducible representation.

• The degree of the character χ is the dimension of ρ: this is equal to the
value χ (1).

• The kernel of the character χρ is the normal subgroup

kerχρ := {g ∈ G | χρ(g) = χρ(1)} ,

which is precisely the kernel of the representation ρ.

• Two representations are isomorphic if and only if they have the same char-
acter.

• Let χρ be the character that affords a representation ρ of G. If g, h ∈ G,
then

χρ
(
hgh−1

)
= Tr

(
ρ (h) ρ (g) ρ

(
h−1
))

= Tr (ρ (g)) = χρ (g) .

We see that a character takes a constant value on a given conjugacy class.
Functions on a given group G into C with this property are called class
functions. The set of irreducible characters of a group G forms a basis of
the C-vector space of all class functions G→ C.

Theorem 1.8. Let G be a finite group. Then the number of non-isomorphic finite-
dimensional irreducible representations is equal to the number of conjugacy classes of
G.

Definition 1.12. Let ρ1 : G → GL(V1) and ρ2 : G → GL(V2). The direct sum of
these two representations is the map ρ1⊕ρ2 : G→ GL(V1⊕V2) given by ρ1⊕ρ2 (g) =
(ρ1(g), ρ2(g)) for all g ∈ G.

Theorem 1.9 (Maschke). Any representation of a finite group can be written as a
direct sum of irreducible representations.
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Chapter 1. Preliminaries 10

Proof. See [8, theorem 1.9]

If a representation is the direct sum of subrepresentations, then the corre-
sponding character is the sum of the characters of those subrepresentations.

Theorem 1.10. Let G be a finite group and χ1, χ2, · · · , χn be the complete set of the
characters of the non-isomorphic finite-dimensional representations of G over C. If di
is the degree of χi, then

|G| = d1
2 + d2

2 · · ·+ dr
2.

Proof. See [8]

We now look at results that study the relationship between characters of a
given group G and the characters of its subgroups.

If H ≤ G and χ is a character of G. Then the restriction of χ to H , χ
H

,
is a character of H . This is the character of the restricted representation. If
χ
H
∈ Irr(H), then χ ∈ Irr(G). The converse is not true. Not much can said be

about χ
H

ifH is not a normal subgroup. Alfred H. Clifford proved the following
result on the restriction of finite-dimensional irreducible representations from a
group to a normal subgroup of finite index.

Let N / G and θ ∈ Irr (G). For g ∈ G, we define θg : N → C by

θg (n) = θ
(
gng−1

)
θg is an irreducible character and it follows that G acts by permutations on

the set Irr(N). In fact, since N acts trivially on Irr (N) it is more precise to say
that G/N acts on Irr(N).

By the Orbit-Stabiliser theorem,

|OrbG(θ)||StabG(θ)| = |G|.

As N acts trivially on Irr (N), we have that N ≤ StabG(θ) ≤ G. This sub-
group StabG(θ), is called the inertia subgroup of θ byG and is denoted by IG (θ).

Theorem 1.11 (Clifford). Let N / G and let χ ∈ Irr(G). Let θ be an irreducible
constituent of χN . Further, let θ = θ1, θ2, . . . , θ[G:IG(θ)] be the distinct conjugates of θ
under the action of G. Then

χ
N

= 〈χ
N
, θ〉

[G:IG(θ)]∑
i=1

θi

Proof. See [8, theorem 6.2]

We now look at a way of obtaining a character of a group from a character
of its subgroup.

Definition 1.13. Let H ≤ G and ψ be a character of H . Then we define the induced
character of ψ on H , denoted by ψG, as

ψG (g) =
1

|H|
∑

t∈G, t−1gt∈H

ψ
(
t−1gt

)
=

1

|H|
∑
t∈G

ψ0
(
t−1gt

)
.

C
E

U
eT

D
C

ol
le

ct
io

n



Chapter 1. Preliminaries 11

where
ψ0 (x) =

{
ψ (x) : x ∈ H0
0 : x 6= H

Below we justify why ψG a character of G. Observe that ψG is constant on
the conjugacy classes of G.

Let G be a finite group, H a subgroup and (ψ, V ) a representation of H .
We define V G to be the vector space of all functions f : G → V such that
f(hx) = ψ(h)f(x) when h ∈ H and x ∈ G. Define, for g ∈ G

(ψG(g)f)(x) = f(xg).

That is g acts on V G by right translation.
We can easily show that if f ∈ V G and g ∈ G then ψG(g)f ∈ V G and

ψG (g1g2) = ψG(g1)ψ
G(g2) so that the pair

(
ψG, V G

)
is a representation of G.

It is called the induced representation and it affords the character defined in
definition 1.13.

Proposition 1.1. Let H be a subgroup of a group G and ψ be a character of H . Then

ker
(
ψG
)

= ∩g∈G (kerψ)g := coreG (kerψ) .

Proof. g ∈ ker
(
ψG
)

if and only if∑
t∈G

ψ0
(
t−1gt

)
=
∑
t∈G

ψ (1) .

Now |ψ0 (t−1gt) | ≤ ψ (1). Therefore, g ∈ ker
(
ψG
)

if and only if ψ0 (t−1gt) =
ψ (1) for all x ∈ G. This is equivalent to requiring that g ∈ (kerψ)t for all t ∈ G
and the proof is complete.

We now state the Mackey Decomposition theorem which concerns the way
a character induced from a subgroup H of a finite group G behaves when re-
stricted to a subgroup K of G.

Theorem 1.12 (Mackey Decomposition). Let H and K be subgroups of a finite
group G. Let θ be a character of H and let

G =
⋃
t∈T

HtK

be partition of G into double cosets. Then(
θG
)
K

=
∑
t∈T

([
θt
]
t−1Ht∩K

)K
.

Proof. See [8, Problem 5.6].

Theorem 1.13 (Frobenius Reciprocity). LetH ≤ G and suppose that ϕ is a character
on H and that θ is a character on G. Then

〈ϕ, θ
H
〉 =

〈
ϕG, θ

〉
.
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Chapter 1. Preliminaries 12

Proof. See [8, lemma 5.2]

In the language of representation theory, Frobenius reciprocity states that
given representations ψ ofH and ρ of G, the space ofH-equivariant linear maps
from ψ to ρ

H
has the same dimension over C as that of G-equivariant linear

maps from ψG to ρ.
The inertia subgroup is important because of the following theorem.

Theorem 1.14. Let N CG and let θ ∈ Irr(N) and T = IG (θ). Let

A = {ψ ∈ Irr (T ) | 〈ψ
N
, θ〉 6= 0} and B = {χ ∈ Irr (T ) | 〈χ

N
, θ〉 6= 0} .

Then ψG is irreducible and the map ψ → ψG is a bijection of A onto B.

Proof. See [8, theorem 6.11]

4 Permution Characters

Recall that if a group G acts as a group of permutations on a set X if

i. e · x = x, ∀x ∈ X , where e is the identity element of G.

ii. g · (h · x) = gh · x, ∀g, h ∈ G and ∀x ∈ X .

If |X| <∞, we can define a finite dimensional representation as follows:
Let V = CX be the vector space defined to have X as its basis. V consists of

elements of the form ∑
x∈X

cxx

Then ρ : G→ GL (V ) given by

ρ (g)

(∑
x∈X

cxx

)
=
∑
x∈X

cxg · x

is a called a permutation representation of G. Moreover, ρ (G) consists of per-
mutation matrices. Let fix (g) = {x ∈ X | g · x = x}. Let χρ be the character of
the above defined representation. Since X forms a basis of V by definition, we
get that

χρ (g) = |fix (g)| .

Lemma 1.1 (Orbit-Counting lemma). Let G be a permutation group on the finite set
X . Then the number of orbits of G on X is equal to the average number of fixed points
of an element of G, that is,

1

|G|
∑
g∈G

fix (g) .
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Chapter 1. Preliminaries 13

An action is said to be transitive if it posseses only a single orbit. This means
that for any pair of elements x, y ∈ X , there exists a g ∈ G such that g · x = y.

Let H be a subgroup of G. The coset space H\G is the set of left cosets
{xH : x ∈ G}. The following theorem is a classification of transitive actions of a
group.

Theorem 1.15. Let G act transitively on X . Let x ∈ X and H = StabG (x). Then

i Then this action on X isomorphic to the natural action of the coset space H\G,

ii The group action on two coset spaces H\G and K\G are isomorphic if and only if
H and K are conjugate subgroups of G.

Let G be a group acting of a finite set X . Further, let x ∈ X and H =
StabG (x). Denote by 1

H
the trivial character of H and by 1G

H
the induced char-

acter of 1
H

to G. Let T be the set of representatives for the cosets of H in G.
Then

1G
H

(g) =
1

|H|
∑

t∈G, t−1gt∈H

1
H

(
t−1gt

)
=
∑
t∈T

1
H

(
t−1gt

)
= |fix (g)| .

We get that 1G
H

is the permutation character associated to the action of a
group G on the coset space H\G.

5 Primitive Permutation Characters

The last thing we would like to discuss in this chapter is primitive permutation
characters. These are central in this thesis and we will discuss them at some
length.

Let G act transitively on X . If Y ⊂ X then define gY = {g · y | y ∈ Y }. A
block is a non-empty subset 4 of X such that g4 = 4 or 4 ∩ g4 = ∅. for all
g ∈ G . Observe that singletons subset and the whole set X are blocks. These
are called trivial blocks.

A group action is called primitive if it is transitive and it has no non-trivial
blocks. A transitive group action that is not primitive is called imprimitive.

Above, we classified all transitive actions of a given group. Below we clas-
sify primitive actions of a group.

Theorem 1.16. A transitive group action of a group G on a set X is primitive if and
only if StabG (x) is a maximal subgroup of G for some x ∈ X .

Proof. Suppose that StabG (x) < H < G and consider the the set

4 = {hStabG (x) : h ∈ H} .
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Chapter 1. Preliminaries 14

Then g4 = 4 for g ∈ H and g4∩4 = ∅ for g 6∈ H .
Conversely, if 4 is a non-trivial block containing x, then the setwise sta-

biliser
StabG (4) = {g ∈ G | g · x ∈ ∆}

is a subgroup and StabG (x) < StabG (4) < G.

We will call the permutation character associated to a primitive group action
a primitive permutation character.

Theorem 1.17. If G is solvable and M,N < G are maximal subgroups then either
MN = G or M and N are conjugate.

Proof. See [3, theorem A.16.2]

We define one more concept. A group G acts regularly of a set X if the
action is transitive and if only the identity element has a fixed point. By the
structure theorem for transitive groups1.15, if G acts regularly on X , then X is
isomorphic to the space of left cosets of the trivial subgroup. This set can be
identified with G with the action being left multiplication.

Theorem 1.18. Let G be a solvable group acting primitively and faithfully on a set X .
Further, let x ∈ X and N be a minimal subgroup of G. Then N is elementary Abelian
(by 1.6) and it acts regularly on X . Hence, N ∩ StabG (x) = 1. Since StabG (x) is a
maximal subgroup of G, NStabG (x) = G.

Proof. See [12, 7.2.6].

Theorem 1.19. Primitive permutation characters of solvable groups are multiplicity-
free.

Proof. LetG be a solvable group with maximal subgroupM . ThenG acts primi-
tively on the space of left cosets ofM with kernel coreG (M). Thus,G/coreG (M)
acts faithfully and primitively on M\G. By 1.18, a minimal normal subgroup
N/coreG (M) of G/coreG (M) has order [G : M ]. Consider the primitive permu-
tation character 1GM . We have

1GM (n) =

{
[G : M ] : n = 1
0 : n ∈ N, n 6= 1

Thus 1GM |N is the regular character of N which is multiplicity-free. Since re-
striction is additive, we infer that 1GM is also multiplicity-free.

Lemma 1.2. Let M,N be non-conjugate maximal subgroups of a group G. Then〈
1GM ,1

G
N

〉
= 1.

Proof. By Frobenius reciprocity1.13, we have that
〈
1GM ,1

G
N

〉
=
〈
1M ,1

G
N |M

〉
. By

theorem 1.17, MN = G. Thus, apply Mackey decomposition theorem 1.12, we
get 〈

1M ,1
G
N |M

〉
=
〈
1M ,1

M
M∩N

〉
= 〈1M∩N ,1M∩N〉 = 1

and the proof is complete.
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Chapter 1. Preliminaries 15

We can infer from proposition 1.1, that

ker
(
1GM
)

= coreG (M) .

Lemma 1.3. LetM be a maximal subgroup of a groupG. If χ ∈ Irr (G) is a non-trivial
constituent of 1GM , then

ker
(
1GM
)

= kerχ.

Proof. Since ker
(
1GM
)

= ∩
{
χ ∈ Irr (G) |

〈
1GM , χ

〉
= 1
}

, we have that ker
(
1GM
)
≤

kerχ. Since ker
(
1GM
)

= coreG (M) and coreG (M) which is the largest normal
subgroup of G contained in the maximal subgroup M , either kerχ is coreG (M)
or G. But χ is non-trivial, thus ker

(
1GM
)

= kerχ.

In the next chapter, we will be applying some of these ideas to examine the
number of maximal subgroups in Solvable groups.
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Chapter 2

Upper Bound for the Number of
Maximal Subgroups of Finite
Solvable Groups

In this chapter, we will use some of the results we introduced in the previous
chapter to give an upper bound for maximal subgroups in solvable groups.

We first present the results already existing in literature.

Theorem 2.1 (Wall). For a finite solvable group G, |m(G)| ≤ |G|

Proof. See [14]

Below is a result which is an improvement on the above theorem.

Theorem 2.2 (Cook, Wiegold and Williamson). Let p be the smallest prime divisor
of the order a finite solvable group G. Then,

|m(G)| ≤ |G| − 1

p− 1
. (2.1)

The bound is achieved if and only if G is elementary Abelian.

Pál Hegedus[7] proved the above using character theory. We present his
proof below because it is closely related to the our main result in chapter 3.

Proof. The idea of the proof is counting the number of maximal subgroups us-
ing the irreducible characters that occur as constituents of primitive permuta-
tion characters.

Let

1. N , the set of maximal subgroups of G that are normal.

2. M, the full set of representatives from the conjugacy classes of non-normal
maximal subgroups of G.

By theorem 1.10, we have

|G| − 1 =
∑

1
G
6=χ∈Irr(G)

χ (1)2 .

16
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Chapter 2. Upper Bound for the Number of Maximal Subgroups of Finite
Solvable Groups 17

Primitive permutation characters are multiplicity-free (theorem 1.19). More-
over, if the maximal subgroup is normal, then its corresponding primitive per-
mutation character consists of only linear characters. If the maximal subgroup
is non-normal, then all the non-trivial constituents of its primitive permutation
character have degree greater than 1.

We also know the the degree of an irreducible character divides |G|. There-
fore, if p is the smallest prime divisor of |G|, then

|G| − 1 =
∑

1
G
6=χ∈Irr(G)

χ (1)2 ≥
∑
N∈N

∑
〈χ,1GN〉=1

χ (1)2 +
∑
M∈M

∑
〈χ,1GM〉=1

χ (1)2

=
∑
N∈N

∑
〈χ,1GN〉=1

χ (1) +
∑
M∈M

∑
〈χ,1GM〉=1

χ (1)2

=
∑
N∈N

∑
〈χ,1GN〉=1

χ (1) +
∑
M∈M

∑
〈χ,1GM〉=1

pχ (1)

=
∑
N∈N

(|G : N | − 1) +
∑
M∈M

p (|G : M | − 1)

≥
∑
N∈N

(p− 1) +
∑
M∈M

(p− 1) |G : M |

= (p− 1)

(
|N |+

∑
M∈M

|G : M |

)

and the proof is complete.

In chapter 3 we will be characterising those solvable groups such that all
their irreducible characters occur as constituents of primitive permutation char-
acters. In the notation of the theorem, it means those groups G such that

|G| − 1 =
∑

1
G
6=χ∈Irr(G)

χ (1)2 =
∑
N∈N

∑
〈χ,1GN〉=1

χ (1)2 +
∑
M∈M

∑
〈χ,1GM〉=1

χ (1)2 .

We now look another related theorem.

Theorem 2.3 (Herzog-Manz). Let G be a finite solvable group. If p is the smallest
prime divisor of |G| and q is the largest prime divisor of |G|, then

|m(G)| ≤ q|G| − p
p (q − 1)

. (2.2)

Theorem 2.2 and 2.3 are equivalent for elementary Abelian groups. Further,
the bound in 2.3 is attained for certain types of Frobenius groups(See 1 for a
section on Frobenius groups). Let p and q be prime numbers such that p | q − 1.
Further, let Qi

∼= Zq, 1 ≤ i ≤ n for n ∈ Z and P ∼= Zp. Consider the group
Q1 × Q2 × · · · × Qn o P . This group has order qnp and P acts fixed-point-
freely in the same way on each Qi. This group has a unique maximal subgroup
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Chapter 2. Upper Bound for the Number of Maximal Subgroups of Finite
Solvable Groups 18

isomorphic to Q1 × Q2 × · · · × Qn. The number of non-conjugate non-normal
maximal subgroups of G is qn−1

q−1 . Thus,

m (G) = q

(
qn − 1

q − 1

)
+ 1 =

qn+1 − 1

q − 1
=
q|G| − p
p (q − 1)

.

It is also worth mentioning that the bound in theorem 2.3 is better than
that of theorem 2.2 for groups which are not elementary Abelian. If G is a p-
group which is not elementary Abelian, then Φ (G) 6= 1. Moreover, π (G) =
π (G/Φ (G)) and m (G) = m (G/Φ (G)). Thus,

m (G) = m (G/Φ (G)) ≤ |G/Φ(G)| − 1

p− 1
<
|G| − 1

p− 1
.

If G is not a p-group, then p2 ≤ |G|, which is equivalent to

(p+ 1)|G|
p2

≤ |G| − 1

p− 1
.

Let q be the largest prime divisor of G. Then q ≥ p+ 1. This is equivalent to the
inequality q

q−1 ≤
p+1
p

. Thus,

q|G| − p
p (q − 1)

=
q|G|

p (q − 1)
− 1

q − 1
<

q|G|
p (q − 1)

≤ (p+ 1) |G|
p2

≤ |G| − 1

p− 1
.

Theorem 2.4 (Newton). Let G be a finite solvable group with |G| = p1
r1p2

r2 · · · pmrm
for distinct primes p1, p2, . . . , pm. If piri = min {p1r1 | 1 ≤ i ≤ m} then

|m(G)| ≤ p1
r1 − 1

p1 − 1
+

m∑
i=2

pi
ri+1 − pi
pi − 1

. (2.3)

Below we present the proof of theorem 2.4. Our only contribution is to give
a different proof of lemma 2.1 to that given by Newton[10] by using using tech-
niques in character theory. Our attempts to give a completely different proof
was unsuccessful.

Lemma 2.1. Let p be a prime number and P be a finite p-group. Suppose that P is a
set of proper subgroups of P such that AB = P for A,B ∈ P . Then∑

A∈P

|P : A| ≤ p (|P | − 1)

p− 1
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Chapter 2. Upper Bound for the Number of Maximal Subgroups of Finite
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Proof.

p (|P | − 1)

p− 1
=
∑
χ 6=1G

pχ(1)2

p− 1

=
∑
χ 6=1G

(
pχ(1)

p− 1
−
∑
A∈P

〈1
A
, χ

A
〉+

∑
A∈P

〈
1G
A
, χ
〉)

χ(1)

=
∑
χ 6=1G

(
pχ(1)

p− 1
−
∑
A∈P

〈1
A
, χ

A
〉

)
χ(1) +

∑
χ 6=1G

∑
A∈P

〈
1G
A
, χ
〉
χ(1)

=
∑
χ 6=1G

(
pχ(1)

p− 1
−
∑
A∈P

〈1
A
, χ

A
〉

)
χ(1) +

∑
A∈P

(
1G
A

(1)− 1
)

≥
∑
χ 6=1G

(
pχ(1)

p− 1
− 1

)
χ(1) +

∑
A∈P

(
1G
A

(1)− 1
)

≥
∑
χ 6=1G

χ(1)

p− 1
+
∑
A∈P

(
1G
A

(1)− 1
)

≥
∑
A∈P

1G
A

(1) =
∑
A∈P

|P : A|

∑
A∈P 〈1A , χA〉 ≤ 1 since AB = P for any two distinct subgroups A,B ∈ P .

Also,
∑

χ 6=1G

χ(1)
p−1 ≥

∑
A∈P 1.

Let G be a group and p be a prime number. Define Op (G) to be the unique
smallest normal subgroup of G of p-power index in G. That is,

Op (G) =
⋂
{N / G | N is a normal subgroup of p-power index in G} .

We present a lemma by Newton [10].

Lemma 2.2. Let M1 and M2 be maximal subgroups of a finite group G, both of which
have p-power index in G and neither of which is normal in G. If P0 ∈ Sylp (Op (G)),
then

(M1 ∩ P0) (M2 ∩ P0) = P0

Proof. We begin by showing that (M1 ∩M2)O
p (G) = G. From the definition

of Op (G) and since every subgroup of a finite group is contained in a maximal
subgroup, it suffices to show that M1 ∩M2 cannot be in a normal maximal sub-
group of index p in G. Let N be a normal maximal subgroup of index p in G.
By [3, Corollary A.16.7], M1 ∩M2 is a maximal subgroup of M2, without loss of
generality. Thus, if M1 ∩M2 ≤ N , then M1 ∩M2 ≤ N ∩M2 ≤ M2. This implies
that M1∩M2 = N ∩M2 and thus M1∩M2 /M2. Therefore, M2 ≤ NG (M1 ∩M2),
the normaliser of M1 ∩M2 in G. Theorem 1.17 gives us that M1M2 = G. Thus,

(M1 ∩M2)
G =

{
g−1mg | g ∈ G and m ∈M1 ∩M2

}
≤M1
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The intersection of two maximal subgroups of p-power index is also of p-power
index. This implies that [G : (M1 ∩M2)

G] is also a power of p and hence
Op (G) ≤ (M1 ∩M2)

G ≤ M1. This contradicts the fact that M1 is maximal but
not normal in G. Thus, (M1 ∩M2)O

p (G) = G.
Let P0 ∈ Sylp (Op (G)). We now wish to show that (M1 ∩ P0) (M2 ∩ P0) = P0.

Observe that [Op (G) : (M1 ∩M2) ∩Op (G)] = [G : M1 ∩M2]. Also, ((M1 ∩M2) ∩Op (G))P0 =
Op (G) so that

[P0 : (M1 ∩M2) ∩ P0] = [G : M1 ∩M2] .

We can use the same argument to show that [P0 : M1 ∩ P0] = [G : M1] and
[P0 : M2 ∩ P0] = [G : M2]. Putting these equations together we get

[P0 : (M1 ∩M2) ∩ P0] = [G : M1 ∩M2] = [G : M1] [G : M2] = [P0 : M1 ∩ P0] [P0 : M2 ∩ P0] .

Therefore, (M1 ∩ P0) (M2 ∩ P0) = P0.

Theorem 2.5. Let p be a prime number and let G be a finite solvable group of order
pkm, where p does not divide the natural number m. If |G : Op (G)| = pr, Then

mp (G) ≤ pr − 1

p− 1
+
pk−r+1−p

p− 1

Proof. The idea of the proof is to partition the set mp (G) into two: those ele-
ments that are normal and those that are not. We will then realise those maxi-
mal subgroups that are normal in the p-group G/Op (G) and those that are not
in P0 ∈ Sylp (Op (G)).

Let M be the set of maximal subgroups of G of p-power index and let
A = {M ∈M |M /G} and B = {M ∈M |M 6 / G} . There is a one-one corre-
spondence between normal maximal subgroups of index p and maximal sub-
groups of G/Op (G). Thus,

|A| ≤ pr − 1

p− 1
,

by theorem 2.2.
Let M1,M2, . . . ,Mt be the complete set of conjugacy representatives of non-

normal maximal subgroups of G. By lemma 2.2. (Mi ∩ P0) (Mj ∩ P0) = P0 for
i 6= j. Applying lemma 2.1

|B| =
t∑
i=1

[G : Mi] ≤
pk−r+1 − p
p− 1

.

Thus, mp (G) ≤ pr−1
p−1 + pk−r+1−p

p−1 . Moreover, observe that for a fixed value of k,

mp (G) is greatest when r = 0, in which case mp (G) ≤ pk+1−p
p−1 . Also, if Op (G) ≤

G, then r ≥ 0 and Op (G) is greatest when r = 1 or r = k. In this case, mp (G) ≤
pk−1
p−1 .

We are now ready to present the proof of Newton’s theorem.
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Proof of theorem 2.4. By theorem 1.7, we have that

m (G) = mp1 (G) + · · ·+ mpm (G) .

A solvable group has proper normal subgroup of prime power index. There-
fore, Opj (G) ≤ G and so mpj (G) ≤ pj

rj−1
pj−1 . Therefore,

m (G) = mp1 (G)+· · ·+mpm (G) ≤ pj
rj − 1

pj − 1
+
∑
i 6=j

pi
ri+1 − pi
pi − 1

=
m∑
i=1

pi
ri+1 − pi
pi − 1

−pjrj+1.

Since p1r1 ≤ pi
rj we have

m (G) ≤
m∑
i=1

pi
ri+1 − pi
pi − 1

− p1r1 + 1 =
p1
r1 − 1

p1 − 1
+

m∑
i=2

pi
ri+1 − pi
pi − 1

.

Having review some results on upper bounds of the number of maximal
subgroups in solvable group, we will now look at a result which relates primi-
tive permutation characters and irreducible characters of a solvable group.
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Chapter 3

Constituents of Primitive
Permutation Characters for Solvable
Groups

We now present a result concerning solvable groups all of whose complex ir-
reducible characters are constituents of primitive permutation characters. This
idea grew out of Hegedus’ proof in which he gave a bound on the number of
maximal subgroups of a group by looking at primitive permutation characters
of the group. His main observation in that proof are, the trivial character is the
only irreducible character which is a common constituent of distinct primitive
permutation characters. Since the order of the group equals the sum of squares
of the degrees of the irreducible characters of the group, we can relate the num-
ber of maximal subgroup with the order of the group. However, an irreducible
character need not be a constituent of a primitive permutation character. In this
chapter, we will characterise those groups such that all irreducible characters
are constituents of a primitive permutation characters of the group. We will
show that such a group is either elementary Abelian or a Frobenius group with
elementary Abelian kernel and complement a cyclic group of prime order.

We begin with an exposition of the structure and character theory of Frobe-
nius groups.

1 The Structure of a Frobenius Group

Definition 3.1. A Frobenius group G is a permutation group acting transitively of a
set Ω such that for all ω ∈ Ω, StabG(ω) 6= 1, and if ω1 6= ω2 for ω1, ω2 ∈ Ω then

StabG(ω1) ∩ StabG(ω2) = 1.

Example 3. The symmetric group on three elements, S3, is a Frobe-
nius group.

S3 = {(1), (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)} acts transitively of the
set {1, 2, 3} in a natural way. The stabilizer of the points 1, 2 and 3 are
the subgroups {(1), (2, 3)}, {(1), (1, 3)} and {(1), (2, 3)}, respectively.
These subgroups intersect trivially pairwise.

If a group G acts transitively on Ω, this action is isomorphic to the the action
of G on the coset space, H\G for some subgroup H of G. For this reason, we

22
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can also say that a group G is a Frobenius group if and only if it has a nontrivial
subgroup H such that H ∩ x−1Hx = 1 for all x in G\H . The subgroup H is a
called the Frobenius complement and observe that NG(H) = H .

Let N = G\ {Hx | x ∈ G} ∪ 1. The non-trivial elements of this set are those
which do not fix any element of Ω.

In 1906, Frobenius proved that N is a normal subgroup. It is called the
Frobenius kernel.

Theorem 3.1 (Frobenius). The Frobenius kernel of a Frobenius group is a normal
subgroup

Proof. See [8, Theorem 7.2]

As NG(H) = H there are [G : H] distinct conjugates of H in G. Therefore,

|∪ {Hx | x ∈ G}| = [G : H] (|H| − 1) + 1 = |G| − [G : H] + 1.

Hence
|N | = |G| − (|G| − [G : H] + 1) + 1 = [G : H].

Thus, G is the semidirect product of N and H . In symbols, G = N o H .
Since H ∩ Hx = 1, for x ∈ G\H , we get that CG(n) ≤ N , for 1 6= n ∈ N . For if
x ∈ CG(n) but x /∈ N , then there is a g ∈ G such that x ∈ Hg. This implies that
gx ∈ H ∩ CG (gn) = 1. That is x = 1, a contradiction.

As a Frobenius group is a semidirect product of its kernel N and comple-
mentH , H acts by conjugation onN so that for 1 6= n ∈ N , StabH(n) = CH(n) =
1. By the orbit-stabiliser theorem, this action has one orbit of size one and the
others have size |H|. It follows therefore that |H| divides |N | − 1.

The converse is also true, that is, if a group G has a non-trivial normal sub-
group N such that CG(n) ≤ N , for 1 6= n ∈ N , then G is a Frobenius group.

Theorem 3.2. A finite group G is Frobenius if and only if it has a non-trivial proper
normal subgroup N such that if 1 6= n ∈ N then CG(n) ≤ N .

Proof. See [6, Theorem 9.2.1]

The Frobenius kernel and the Frobenius complement have very restricted
structures.

Theorem 3.3 (Thompson). The Frobenius kernel is a nilpotent group.

Proof. See [13].

This theorem implies that the Frobenius kernel of a Frobenius group is solv-
able.

Theorem 3.4. The Frobenius kernel of a Frobenius group is unique.

Proof. See [6, Theorem 9.2.8]

Theorem 3.5. If G is Frobenius with complement H , then no subgroup of H is Frobe-
nius.
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Proof. See [6, Theorem 9.2.7].

Theorem 3.6. Suppose that G is Frobenius with complement H and p, q are prime
numbers. If K ≤ H and |K| = pq, then K is cyclic.

Proof. See [6, Propostition 9.2.9].

Theorem 3.7. Suppose that G is Frobenius with complement H and p be a prime
divisor of |H|.

• If p is odd, then a Sylow p-subgroup of H is cyclic.

• If p is even, then a Sylow p-subgroup of H is a cyclic group or a generalised
quaternion group of order greater or equal to 8.

Proof. See [6, Theorem 9.2.10].

Theorem 3.8 (Zassenhaus). Let G be a Frobenius group with kernel N and comple-
ment H . If H is not a solvable group then it has a normal subgroup H0 of index at most
two such that

H0
∼= SL (2, 5)×M, where M is a metacyclic group.

Proof. See [11, Theorem 18.6]

2 Character Theory of Frobenius Groups

Frobenius groups have interesting character theory. Stating that, we can obtain
all its irreducible characters from its kernel and complement by induction and
inflation, respectively.

Theorem 3.9 (Brauer). Let G and H be groups. Suppose that G acts on Irr(H) and
on the set of conjugacy classes of H , Cl(H). If h a is conjugacy class representative and
g ∈ G, the action of g on h is denoted by hg. If

χ(h) = χg(hg), ∀χ ∈ Irr(H), g ∈ G, h ∈ H,

then ∣∣∣fixIrr(H)(g)
∣∣∣ =

∣∣∣fixCl(H)(g)
∣∣∣ , ∀g ∈ G.

Proof. See [8, Theorem 6.32]

Proposition 3.1. Let G be a Frobenius group with kernel N . If 1
N
6= ϕ ∈ Irr (N),

then IG (ϕ) = N .

Proof. We will show that for g ∈ G\N , |fixIrr(N) (g) | = 1, that is, the only irre-
ducible character which is stabilized by elements ofG\N is the trivial character.
This will then imply our result.

Let g ∈ G, n ∈ N and ϕ ∈ Irr (N) then

ϕ (n) = ϕg
(
g−1ng

)
= ϕg (ng) .
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Thus, theorem 3.9 applies and showing that |fixCl(N) (g) | = 1 implies that |fixIrr(N) (g) | =
1 for g ∈ G\N . Let n be a conjugacy representative of congugacy class of N and
suppose that there is a g ∈ G\N such that ng = n. This means that there is
an n′ ∈ N such that ng = nn

′ . This gives that
(
gn′−1

)−1
n
(
gn′−1

)
= n, that

is
(
gn′−1

)
∈ CG (n) or g ∈ CG (n)n′. Unless n = 1, we get a contradiction as

CG(x) ≤ N for 1 6= n ∈ N by theorem 3.2.

For a Frobenius group G with kernel N , let ϕ ∈ Irr (N) \ {1
N
}. We would

like to show that ϕG is irreducible. Let χ ∈ Irr (G) be a constituent of ϕG. Then
ϕ is a constituent of χ

N
and thus by Clifford’s theorem

χ
N

=
〈
χ, ϕG

〉 [G:N ]∑
i=1

ϕi

where ϕi ∈ Orb
G

(ϕ). Thus,〈
χ, ϕG

〉
[G : N ]ϕ (1) = χ

N
(1) = χ (1) ≤ ϕG (1) = [G : N ]ϕ (1) .

From this we get that
〈
χ, ϕG

〉
= 1 and even more, that χ = ϕG.

Theorem 3.10. Let G be a Frobenius group with kernel N and complement H . Then

1. Irr (G) = Irr (H) ∪
{
ϕG | 1

N
6= ϕ ∈ Irr (N)

}
.

2. Let ϕ1 , ϕ2 ∈ Irr (N) \ {1
N
}. Then ϕG

1
= ϕG

2
if and only if ϕ2 ∈ OrbG (ϕ1).

Proof. 1. Let χ ∈ Irr (G). Then either N 6⊆ kerχ or N ⊆ kerχ. If N 6⊆
kerχ then there exist ϕ ∈ Irr (N) \ {1

N
} which is a constituent of χ

N
. By

Frobenius reciprocity,
〈χ

N
, ϕ〉 =

〈
χ, ϕG

〉
.

Thus, χ is a constituent of ϕG. Since ϕG is irreducible, we get ϕG = χ.

If N ⊆ kerχ then χ may be viewed as a character of G/N ∼= H as there
is a one to one correspondence between irreducible characters of G which
contain N in their kernel and irreducible characters of G/N .

2. ϕ2 ∈ OrbG (ϕ1) if and only if there exists h ∈ H such that ϕ2 = ϕh
1
. There-

fore,

ϕG
2

(g) =
1

|N |
∑
x∈G

ϕx
2

(g)

=
1

|N |
∑
hx∈G

ϕhx
2

(g)

=
1

|N |
∑
hx∈G

ϕx
1

(g)

=
1

|N |
∑
x∈G

ϕx
1

(g)

= ϕG
2

(g) .
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As the stabiliser, IH (ϕ) = 1, by the orbit-stabiliser theorem, |Orb
H

(ϕ)| =
|H|. Thus,

|Irr (G)| = |Irr (H)|+ (|Irr (N)| − 1)

|H|
.

3 Frobenius Groups of a Special Type

We would like to examine the structure of special kind of Frobenius groups
which play a central role in the main theorem of this chapter.

Let p and q be prime numbers and n be a natural number. Also, let N ∼= Zn
q

and H ∼= Zp be an elementary Abelian group and a cyclic group of prime order,
respectively. Suppose that H acts fixed-point-freely on N . Then N o H is a
Frobenius group and p | qn − 1.

This group has a unique normal maximal subgroup N . Let e, 1 ≤ e ≤ n
be the smallest such that p | qe − 1 and M be a non-normal maximal subgroup.
Then |M | = qn−ep and the number of non-conjugate non-normal maximal sub-
groups of G is qn−1

qe−1 . For the rest of this chapter, we refer to such groups as
groups of type X.

4 Constituents of Primitive Permutation Characters

We are now ready to present the main result of this chapter.

Lemma 3.1. Let N be a normal subgroup of G. If every irreducible character of G is
a constituent of a primitive permutation character of G. Every irreducible character of
G/N is a constituent of a primitive permutation character of G/N .

Proof. Let χ be an irreducible character of G/N and χ′ be the inflation of χ to G.
There exists a maximal subgroup M < G, such that〈

χ′,1GM
〉

=
〈
χ′

M
,1M

〉
= 1.

Since N ≤ kerχ′ and kerχ ≤ M , we get that
〈
χ
M/N

,1M/N

〉
= 1 and hence〈

χ,1
G/N
M/N

〉
= 1.

Theorem 3.11. Let G be a finite solvable group. Every irreducible complex character
of G is a constituent of a primitive permutation character of G if and only if G is
elementary Abelian or G is a group of type X.

Proof. To see that this property holds for elementary Abelian groups and Frobe-
nius groups of our type, we will use that fact primitive permutation characters
are multiplicity-free and count the number of primitive permutation characters
and irreducible characters and check that the degrees add up.
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• Let G be an elementary Abelian group and let |G| = pn. Then G has pn−1
p−1

of maximal subgroups all of have order pn−1. IfM be a maximal subgroup
of G, then dim 1GM = p and since we know that the primitive permutation
characters are multiplicity free and that an irreducible character of a group
G occurs in at most one primitive permutation character we get

(p− 1)
pn − 1

p− 1
= pn − 1.

This equals the number of irreducible characters of G

• If G = N o H is a group of type X, then the |H| linear characters all of
which are constituents of the permutation character 1GN . It has |N |−1|H| non-
linear characters each of degree |H|.
Let |N | = pn and |H| = q. If e is the smallest number such that q | pe − 1. If
M is a non-normal maximal subgroup ofG, then |M | = pn−eq. Adding the
degrees of those non-linear irreducible which are constituents of a primi-
tive permutation character, we get(

pnq

pn−eq
− 1

)
× pn − 1

pe − 1
= pn − 1 = |N | − 1,

which equals the sum of degrees of the non-principal constituents of G.

Conversely, suppose G is a finite solvable group such that each irreducible
character of G is a constituent of a primitive permutation character of G.

Suppose G is Abelian, then all its irreducible characters are linear. Let χ ∈
Irr (G). By assumption, there exist M < G maximal such that

〈
1GM , χ

〉
= 1.

By lemma 1.3, kerχ = M . Thus, requiring that all the irreducuble characters
of G are constituents of primitive permutation characters of G implies that all
the non-trivial irreducible characters have kernels which are maximal in G. It
follows that G is an elementary Abelian group.

Now suppose that G is not Abelian and that |G| ≥ 6. We will proceed by
induction on the order of G to prove that G is of type X.

Let N be a minimal normal subgroup of G. We know that it is elementary
Abelian since G is solvable. By 3.1, the factor group G/N satisfies our assump-
tion. By the induction hypothesis, either G/N is elementary Abelian or G/N is
Frobenius with elementary Abelian kernel and complement of prime order.

Since the intersection of the kernels of all the irreducible characters of a
group is the trivial group, requiring that all the irreducible characters occur
as constituents of primitive permutation characters implies that the intersec-
tion of all non-conjugate maximal subgroups of the group is trivial. Therefore,
Φ (G) = 1. Thus, there exists a maximal H such that and N � H . And thus,
NH = G and H ∩N = 1 since N ∩H is a normal subgroup in H and also in N .
Therefore, G is a direct product of N and H that is, G = N oH and G/N ∼= H .

Case 1. Suppose that G/N is elementary Abelian. Let N ∼= Znp and H ∼= Zmq .
Now, p 6= q since G cannot be a p-group as all they have non-trivial
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Frattini subgroups. Now, Zmq acts on Znp irreducibly and thus has kernel
isomorphic to Zm−1q . So that is m > 1, then this kernel will be a non-
trivial normal subgroup of G. Thus, G =

(
Znp n Zq

)
×Zm−1q . This group

has two types of maximal subgroups:

(a) A Sylow q-subgroup isomorphic to Zmq .

(b) Maximal subgroups containing the minimal normal subgroup N .

We have that
1GN = 1

NnZq
Zq .

Therefore, this group have qm − 1 non-trivial linear irreducible charac-
ters and pn−1

q
non-linear irreducible character each of dimension q. We

want

pn − 1

q
q2 + qm − 1 = pnqm − 1.

This simplifies to
(pn − 1) (qm − q) = 0.

Thus, m = 1 and G = Znp n Zq, which is what we want.

Case 2. Suppose that G/N is a group of type X. We have two possibilities. Ei-
ther CH (N) = 1 or CH (N) 6= 1.

Case 2.1. If CH (N) = 1 thenG is Frobenius with kernelN and comple-
ment H . Now, a Frobenius complement cannot be a Frobe-
nius group or or elementary Abelian of order rm for some
prime r and m > 1. Thus, H has prime order and our result
follows.

Case 2.2. Suppose that CH (N) 6= 1. Let M = CG (N) = CH (N) ×
N . We know that CH (N) is normal in G and is the kernel
of the action by conjugation of H on N . Let G/CH (N) =
N o K. Then K acts faithfully on N , and thus N o K is
Frobenius and K has prime order by case A. Furthermore,
by the induction hypothesis, H is Frobenius with Frobenius
kernel CH (N) since

G/M ∼= K

Let N ∼= Znp , CH (N) ∼= Zmq and K ∼= Zr for prime numbers
p, q, r and integers n,m. Suppose p 6= q. Let m1 be the small-
est integer such that r | qm1 − 1 and m2 = m − m1. Then
G ∼= Znp × Zmq o Zr has unique normal maximal subgroup
Znp × Zmq and non-normal maximal subgroups isomorphic to
either Znp×Zm2

q oZr or Zmq oZr. The subgroups Znp×Zm2
q oZr

and Zmp o Zr have core Znp × Zm2
q and Zmq , respectively.

We will find an irreducible character of G = Znp × Zm2
q o Zr

whose kernel is neither isomorphic to Znp ×Zm2
q nor Zmq . Let χ
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be a non-trivial irreducible character of Znp × Zmq with kernel
isomorphic toZn−1p ×Zm−1q . SinceZr acts faithfully onZnp×Zmq ,
we have that IG (χ) = Znp × Zmq . Therefore, χG is irreducible
and has kernel isomorphic to the coreG

(
Zn−1p × Zm−1q

)
. It

is not possible to have coreG
(
Zn−1p × Zm−1q

) ∼= Znp × Zm2
q or

coreG
(
Zn−1p × Zm−1q

) ∼= Zmq
We therefore must have that p = q and the proof is complete.

This whole thesis grew out of idea of using character theory to prove re-
sults in finite group theory. Initially, we started out to prove a known result,
Newton’s result, using ideas in characters of groups. Although this was not
as successful as we envisioned, we stumbled on the idea of characterising all
those solvable groups all whose irreducible characters occurred at constituents
of primitive permutation characters. We found that these groups are elemen-
tary Abelian groups and Frobenius groups of a special type.

It would be worthwhile to investigate more properties relating maximal
subgroups of a group and its characters in finite groups.
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