
DOI: 10.14754/CEU.2016.01

Boundary Crossing Counting

Processes

Theory and Applications in Statistics and Finance

Peter Farkas

A dissertation submitted in partial fulfilment of the

requirements for the

Dissertation for the Degree of Doctor of Philosophy

at

Central European University

Budapest, Hungary

Supervisor: Laszlo Matyas

Associate supervisor: Peter Kondor

c©Copyright by Peter Farkas, 2016

All right reserved

C
E

U
eT

D
C

ol
le

ct
io

n



DOI: 10.14754/CEU.2016.01

Abstract

This thesis presents some new results in the field of statistics and

finance. As for the former, we discuss how to make nonparametric

inference without relying on asymptotic approximation. As for

the latter, we solve the optimal portfolio choice problem without

describing security prices with a parametric model.

These results are accomplished by representing and analyzing

the data using a new, state-dependent, perspective. More precisely,

we relate to the sampling frequency in a new way. Let us consider

Equation (1) below.

∆Xt = Xt −Xt−c, (1)

where Xt is a stochastic process with memory and c is the sampling

frequency. In many econometric studies, the data generating process

is represented and analyzed as if it were sampled using some constant

sampling frequency. Typically, c is chosen to be one, that is ∆Xt =

Xt − Xt−1: for data published with monthly frequency, c is equal to

one months, for daily observations c is equal to one day.

This thesis takes an inverse approach. We represent and analyze

the data generating process as if it were sampled by a specific random

frequency. More precisely, we exogenously fix ∆Xt = Xt −Xt−c to be

either some predefined positive, U , or negative, L, number and allow

the sampling frequency to vary.

∆Xt = Xt −Xt−TA =


U

L

(2)

where TA, as explained later, represents a boundary crossing moment.

Thus, in our representation, the sampling frequency, c, is random
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and the data is represented using boundary crossing events. This

representation requires us to introduce new stochastic processes which

characterize these boundary crossing events.

This new perspective opens up new opportunities in the field of

statistics and in finance. As for the former, using this representation,

nonparametric inference can be made without relying on asymptotic

approximation. As for the latter, we can solve the optimal portfolio

choice problem without describing the security prices with a

parametric model.

The thesis consists of three chapters. Each chapters is a

self-standing article intended for publication in peer-reviewed journals.

Thus, they are kept as separate entities. Consequently, sometimes the

content of the thesis is repetitive although an effort was made to reduce

redundancy as much as possible.

The first chapter aims to provide a brief theoretical foundation

hence its results are applied throughout the thesis. It also discusses

univariate unit root testing from this new perspective. The next

chapter extends some of the results of the first chapter to panel data

settings. The last chapter applies the theoretical results of the first

chapter to solve the optimal portfolio choice problem. The abstract of

each chapters is as follows.

Chapter 1. Counting Process Generated by Boundary

Crossing Events: Theory and Applications in Nonparametric

Statistics

This chapter introduces and analyzes a new class of stochastic

process, named the Boundary Crossing Counting (BCC) process. It

shows how to obtain the upper and lower crossing distribution which

counts how many times a stochastic process crosses some exogenously

defined boundaries. Also, it derives the upper minus lower crossing
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distribution using a binomial grid. The methods of estimation are

calibrated by comparing analytical and estimated BCC distributions.

The next part of the chapter shows how to use boundary crossing

events to test for unit roots. Our Monte Carlo studies show that the

proposed test is more powerful than the Augmented Dickey-Fuller

test or the Phillips-Perron test in time series settings when the error

term has t-distribution and the time-dimension is relatively short. It

is also more powerful than the Variance ratio test. We conclude with a

financial application in which we show that based on Shiller’s data, the

excess total return based on S&P500 exhibits mean reverting behavior.

Chapter 2. Testing for Unit Roots in Panel Data with

Boundary Crossing Counts, which is joint work with Laszlo

Matyas.

This chapter introduces a new, distribution free, non-asymptotic,

approach for unit root testing based on boundary crossing counts.

Using this approach, we develop two versions of a panel unit root test.

The first can be applied in the case of cross-sectionally independent

panel data, while the second is designed for cross-sectionally

dependent panels. As for the results, the first version of the newly

proposed test dominates the IPS test and the Maddala-Wu test in

case of relatively short, cross-sectionally independent panel data. The

second version is more powerful than existing second generation panel

data tests, such as Bai and Ng’s PANIC unit root test or Pesaran’s

CADF test in case the data is generated by a multi-factor model and

the time dimension is relatively short. Next, we show that the unit

root hypothesis cannot be rejected on real exchange rate data hence

we do not find supportive evidence for the PPP hypothesis. Finally, we

discuss various methodological issues related to this newly proposed

test.
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Chapter 3. Portfolio Choice Without Distributional

Assumptions: State-dependent Rebalancing in the Nonparametric

Domain

We solve the portfolio choice problem without distributional

assumptions by extending the use of state-dependent rebalancing

to nonparametric settings. We propose a specific, state-dependent

rebalancing and show how it is related to the Kelly criterion.

Under this rebalancing, the full distribution of the portfolio’s

terminal value can be approximated by a well-behaving and discrete

probability distribution based on boundary crossings. When applied

to parametric specifications under transaction costs, the method

replicates the baseline results of the geometric Brownian motion. As

for nonparametric applications, first, we show that the log-optimal

allocation in the US was a leveraged purchase; next we find that

leveraged returns were significantly different in various epochs. We

continue by explaining how this newly-proposed method can be used

for density forecast and conclude with some additional technical

details.
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Chapter 1

Counting Process Generated by

Boundary Crossing Events

Abstract

This chapter introduces and analyzes a new class of stochastic process,

named the Boundary Crossing Counting Process. It shows how to obtain

the upper and lower crossing distribution which counts how many times

a stochastic process crosses some exogenously defined boundaries. Also,

it derives the upper minus lower crossing distribution using a binomial

grid. The methods of estimation are calibrated by comparing analytical

and estimated BCC distributions. The next part of the chapter shows how

to use boundary crossing events to test for unit roots. Our Monte Carlo

studies show that the proposed test is more powerful than the Augmented

Dickey-Fuller test or the Phillips-Perron test in time series settings when the

error term has t-distribution and the time-dimension is relatively short. It is

also more powerful than the Variance ratio test. We conclude with a financial

application in which we show that based on Shiller’s data, the excess total

return based on S&P500 exhibits mean reverting behavior.
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1.1 Introduction

Technological innovation and the IT revolution have brought us into a new

era of data abundance. This previously unseen richness of data creates an

opportunity for nonparametric methods, especially in fields where there is a

genuine need for flexible stochastic modeling.

In this chapter, we discuss a new class of stochastic process which

may prove to be a promising tool for nonparametric data analysis. These

stochastic processes are called Boundary Crossing Counting Processes or

BCC-processes. The study of these BCC-processes is motivated by their

useful applications. These stochastic processes appear to have diverse

applications in the field of statistics, finance and management sciences, but

here, we focus only on their statistical applications.

As far as we know, repeated boundary crossing behaviour has not been

described before using boundary crossing counting distributions. Also, the

mapping between the first exit time distribution and the BCC distributions

is new and non-trivial. As such, they are still novelties in probability theory.

Naturally, the statistical tests and the financial applications are also new.

These stochastic processes are characterized by an underlying stochastic

process, Xt, with memory, enclosed by a lower boundary, Lt and an upper

boundary, Ut. Boundary crossing events are defined as the first event when

some stochastic process crosses either of the boundaries. We derive a new

stochastic process, called restarted process, indicated byX∗t , from the original

one by restarting it at some initial value X0
t upon each boundary crossing

event. Note that the initial value, X0
t may be a fixed value or a random

variable, as long as it is enclosed by the lower and the upper boundary.

Boundary Crossing Counting Processes are those discrete processes which

count the number of boundary crossing events for these restarted stochastic
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processes. More specifically,

1. upper crossing counting, Y U
t , counts the number of upper crossing

events: Y U
t = Y U

t + 1 if X∗t = Ut and X∗t+ε = X0.

2. Also, lower crossing counting Y L
t counts the number of lower crossing

events: Y L
t = Y L

t + 1 if X∗t = Lt and X∗t+ε = X0,

where ε is an arbitrarily small positive number. Let us now introduce two

additional boundary crossing counting distributions.

1. Y A
t = Y U

t + Y L
t counts all events, both the upper and lower crossing

events.

2. Finally, Y D
t = Y U

t − Y L
t describes the difference between the number

of upper and lower crossing events.

Finally, Yt is used to refer to all these stochastic processes. The counting

process is the function of the restarted process, Yt(X
∗
t (Xt, Lt, Ut, X

0
t )), but

this dependence is suppressed for ease of notation. Figure 1.1 illustrates an

upper and lower crossing counting process.

The main innovation of our work is two-fold: on the one hand, the

second section extends the existing theoretical results of probability by

introducing and analyzing these new Boundary Crossing Counting stochastic

processes. To our knowledge, BCC-processes have not been dealt with or

characterized in this manner. On the other hand, we show how to use

boundary crossing events for unit root testing. We find that our test is

more powerful than the Augmented Dickey-Fuller test or the Phillips-Perron

test in time series settings when the error term has t-distribution and the

time-dimension is relatively short. It is also more powerful than the Variance
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Figure 1.1: An upper and lower crossing counting process. The original

stochastic process, Xt is restarted upon each boundary crossing events. The

counting process, Y A
t (X∗t ), counts the number of restarts.

ratio test. We also find that based on Shiller’s data, a total return index

based on the S&P500 exhibits mean reverting behavior.

The BCC test has several desirable properties. Besides the usual

favorable properties of nonparametric methods, our method is a non-asymptotic

one. Therefore it does not suffer from asymptotic size-distortion. Naturally,

the BCC test suffers from some minor drawbacks. The BCC distribution is

a discrete one, hence similarly to Fisher’s exact test, selecting the critical

values for the usual significance levels is somewhat problematic and we have

to make use of the closest available discrete value. Also, boundary selection

at this stage is exogenous.
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The theory applied here builds heavily on the mathematical results

related to boundary crossing events. There is no clear consensus on how to

name the various concepts, therefore, let us briefly review the terminology.

“First passage time” or “hitting time” is typically used in situation, where

there is only one boundary. “Expected first passage time” describes the

expected amount of time needed to reach that boundary. “First passage

time distribution” aims to characterize the full distribution. The case of two

boundaries is usually referred to as “first exit time” or “double-barrier hitting

time” although the notation “first exit time” is also used to describe first

passage time1. “Exit times” should not be confused with “first range time”,

as range is generally used to describe the difference between the maximum

and the minimum value. In this thesis, we follow the terminology of Borodin

and Salminen (2002) who use the term “first exit time” to describe the case

of double boundaries.

The first wave of literature on this topic is by classical authors, like

Bachelier (1900) or Kolmogoroff (1931) and was motivated by the gamblers

ruin problem in finance and by repeated (independent) sampling problem in

statistics.

The second wave of literature aimed to formalize these early results,

along with some corresponding results in physics which is summarized by

Feller (1971). Another general treatment is given by Karlin and Taylor

(1981), who characterizes boundary crossing probabilities and expected first

passage-times using certain functionals and the concept of scale function and

speed function under fairly general assumptions. A less general approach

focusing on the geometric Brownian motion is given by Karlin and Taylor

(1998).

1This terminology is used for example in Wilmott (1998, p. 144).

5

C
E

U
eT

D
C

ol
le

ct
io

n



DOI: 10.14754/CEU.2016.01

A third wave of literature consists of articles partially motivated by

pricing certain financial options (barrier-options). Lin (1998) for example,

proposes to use the Gerber-Shiu technique, Gerber and Shiu (1994), along

with the Laplace Transforms for calculating the first exit time (double-barrier

hitting time) distributions. Linetsky (2004) proposes to use a spectral

expansion approach for calculating hitting time distributions. The results

for common continuous stochastic processes have been summarized in a

handbook format by Borodin and Salminen (2002). Here, they also discuss

the theory used in deriving these results, although actual proofs are generally

not included. Valov (2009) proposes an even more general approach which

connects the theory of boundary crossing events with the theory of integral

equations.

In general, the theory of exit times and hitting times are much more

developed for continuous processes than for discrete ones, which is why

applying simulations when dealing with discrete data is fairly common.

For example, Valenti et al. (2007) compare empirical and simulated hitting

time distributions. More precisely, they find substantial deviation between

the hitting time distributions derived from the Brownian motion, from the

GARCH model and from the Heston model and the hitting time distribution

obtained from actual data on security prices. Yet, they have not devised an

exact test to quantify these deviations.

We use the BCC processes for statistical testing. Our test is basically a

nonparametric specification test, or, in other words, a nonparametric method

for model validation. One of the first articles in this relatively new field was

written by Ait-Sahalia (1996), who compared the marginal density estimator

with the nonparametric sample-based alternative. His method has certain

drawbacks in finite samples, as shown by Pritsker (1998), notably, it requires
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a relatively large sample. Consequently, researchers have developed several

alternative tests.

A common method for these nonparametric tests is to devise and

compare some measure for both the parametric and the nonparametric

specifications. Naturally, rejection occurs when the discrepancy between the

two measures is substantial. Papers essentially differ in how to measure

the discrepancy. Transition density based comparisons have been used, for

example, by Gao and King (2004) or Hong and Li (2005). Alternatively, a

comparison based on the likelihood function has been proposed by Fan et al.

(2001) who developed a generalized likelihood ratio test for this purpose.

Anderson (1993) suggested a comparison based on the spectral densities.

Recently, Song (2011) recommended a comparison based on the infinitesimal

operator. These methods have been reviewed, for example, by Fan et al.

(2005) and Zhao et al. (2008).

Our method differs from these nonparametric tests because we do not

rely on asymptotic approximations. In this regard, our method is similar in

spirit to the literature on exact statistics, such as the work of Fisher (1932)’s

on binomial test and the method proposed by Dufour and Farhat (2001).

The first chapter is organized as follows. The second section introduces

and characterizes BCC-processes and connects them to the existing literature

on stochastic processes. The third section discusses estimation-related issues.

In the fourth section, we devise a univariate unit root test which is based

on boundary crossings. We finish the chapter with a financial application in

which we analyze mean-reversion in total excess returns based on S&P500.

The last section offers concluding thoughts.
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1.2 Theory of BCC Processes

This section is a non-technical discussion on the theory of BCC-processes. In

particular, we do not prove the existence of the concepts we introduce; rather

we provide references for readers interested in such existential proofs. The

main innovation here is a recursive algorithm, which allows us to calculate

the upper and lower crossing counting distribution, Y A
t , from the first exit

time distribution and the upper minus lower crossing distribution using Y A
t

and the upper crossing probabilities. The procedure allows us to obtain

BCC distributions even in cases where only one realization of the underlying

stochastic process is observed.

1.2.1 Concepts and Assumptions

The theory of first exit times is more developed for continuous-time processes;

therefore first, we begin the discussion with the continuous case. The concepts

used in the subsection are known in the literature on probability and

stochastic processes.

Concepts

Definition 1 Let Xt be some stochastic process with memory.

A commonly used example for Xt is the Wiener process. The stochastic

process is enclosed by some lower, Lt and upper Ut boundaries.

Definition 2 Let Lt and Ut be two measurable functions, Lt < Ut.

For example, Lt = −1 and Ut = 1.

8

C
E

U
eT

D
C

ol
le

ct
io

n



DOI: 10.14754/CEU.2016.01

Potentially, there are three kinds of boundaries2. The simplest case is

the one of constant boundaries, where Lt = L and Ut = U . Also, in certain

applications, it may be useful to define boundaries as a function of physical

time. Finally, boundaries may be stochastic as well.

Depending on the actual applications, boundaries may be chosen

exogenously or endogenously, as a solution to the appropriate optimal

(stochastic) control problem. For example, in statistical applications one

may ask which boundary functions would maximize the statistical power

of the Boundary Crossing Counting test. In this dissertation, we are not

going to solve such problems under general settings because doing so would

require a lengthy technical discussion and at this stage we do not see any

significant additional benefits of going down this path.3 Instead, we work with

exogenously chosen constant boundaries denoted by L and U . Hence, our

solutions are suboptimal and they lack the elegance of the optimal solutions.

Nevertheless, they may prove to be useful in certain cases. Besides, we also

carry out robustness exercises in order to evaluate the importance of the

boundaries’ role.

The restarted process is derived from the original stochastic processes

and the double boundaries.

Definition 3 Let X0
t be a fixed or a stochastic restarting value, L < X0

t < U .

2Boundary classification may be found in Karlin and Taylor (1981, p. 234), where they

differentiate between “regular”, “absorbing”, “natural” and “entrance” types. The type of

boundary applied in our dissertation does not have a one to one correspondence to any of

these cases: They could be called “restarting boundaries”. If one must classify, restarting

boundaries are attainable and regular boundaries, where the process is restarted upon

boundary crossing events.
3Interested readers may find the description of these methods, for example, in the book

of Kirk (2004).
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Each time the stochastic process crosses the boundaries, its value is “almost

immediately” reset to this restarting value, X∗TA+ε = X0
TA+ε, where TA is a

boundary crossing moment and ε is an arbitrarily small positive real number.

If no boundary crossing occurs, then the change of the restarted process equals

to the change of the original process, Xt2−Xt1 = X∗t2−X∗t1, where no boundary

crossing moments exists in the [t1, t2] interval.

For example, if Xt is the Wiener process, Lt = −1 and Ut = 1 and the

restarting value is zero, then X∗T is a restarted Wiener process which is a

Wiener process almost everywhere except in boundary crossing moments.

The notation “almost immediately” assumes that the process is reset

to its initial value exogenously. Therefore, we know that at the first exit time

TA, the stochastic process is at X∗TA 6∈ (L,U) and we know that at time

X∗TA+ε, the process is at X0
TA+ε, yet we do not deal with what happens in the

time-period (TA, TA + ε).

How should the BCC distribution be calculated? We can distinguish

between two cases. First, if we have a parametric process with known

parameters, then we can simulate a large number of sample paths, count the

number of boundary crossing events at each path, and finally approximate the

BCC distribution by a histogram built from the number of events observed

in each sample path. The other, more interesting, case is when we only have

one realization of the underlying stochastic process. In this case, we can still

obtain the BCC distribution using the concept of first exit time.

Definition 4 Let first exit time, TA be defined as the first time-moment in

which some stochastic process first crosses either of the boundaries.

TA =

inf(t : X∗t 6∈ (L,U) if t is finite

∞ otherwise

(1.1)
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Note that the literature typically uses the T ab notation, while we applied

the TA convention for the sake of consistency. It is important that we take

the first occasion on which the boundary is crossed. Take4 a standard Wiener

process Wt, Lt = −1 and Ut = 1 as an example. If Wt = 1 at some time t,

then, by the Blumenthal 0-1 law, Wt crosses the upper boundary infinitely

many times in an arbitrarily small neighborhood of t. From all of these

crossing events, we choose the first one which makes the boundary crossing

events well defined. For the same reason, we also assume that the restarting

value is strictly larger than the lower boundary and strictly smaller than the

upper boundary.

Definition 5 The cumulative first exit time distribution describes the

probability that the first exit time is smaller or equal than t, that is FET (t) =

P (TA ≤ t). As for the first exit time distribution,
∫ t
0
fet(t)dt = FET (t).

The distribution function’s dependence on the boundaries and on

the restarted process is suppressed for ease of notation. As an example,

the first exit time distribution for Brownian motion has the shape of the

Inverse-Gaussian distribution as described by Feller (1971, p. 52) or by

Lin (1998). Also, this distribution is shown in Figure 1.3. We postpone

the somewhat technical discussion on how to calculate the first exit time

distribution until the end of this section.

Finally, in order to characterize the upper minus lower crossing counting

distribution, we also need to introduce the following concept.

Definition 6 Let upper boundary crossing probability, p, be defined as the

probability that the stochastic process reaches the upper boundary before

4The review of Robert Lieli has proposed this insightful example.
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hitting the lower one.

p = P (X∗TA = U) (1.2)

To conclude, we rely on the concept of first exit time and on the concept

of upper crossing probability. Both concepts are known in the literature on

probability and on stochastic processes. Our contribution is to use these

concepts to characterize repeated boundary crossing behavior.

Assumptions

Assumption 1 Let TA be positive and finite.

In the standard literature on stochastic processes, this assumption

is frequently a theorem derived from more elementary assumptions. The

finiteness of the first exit time is a well-known property for martingales,

as explained, for example, by Medvegyev (2007). The typical proof for

non-martingales is to convert the process to a martingale, as shown, for

example by Karlin and Taylor (1998). The non-zero property of the first

exit time is only problematic if the limits of the boundaries are equal to the

initial value of the process, a case which is not dealt with here. A similar

problem for hitting times is discussed by Valov (2009). In any case, this

is a non-elementary assumption, it imposes restrictions on the underlying

stochastic process and the boundary structure, and not all stochastic

processes and corresponding boundaries will satisfy this assumption.

We also need the following simplifying assumption.

Assumption 2 Let us assume that the boundary crossing counting distributions

are unconditional. Also, let the first exit time distribution as well as the

upper-boundary crossing probability also be unconditional.
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The term “unconditional” is adopted from the user guide of the Matlabs

Econometric toolbox.

The following examples will elaborate further on Assumption 2. Let us

first take the Brownian motion with drift as an example. The first exit time

distribution in general, as explained by Borodin and Salminen (2002, p. 640),

is as follows:

fetc(t) ≈ cct(
U + L− 2X∗t

2
,
U − L

2
) (1.3)

where fetc(.) is the conditional first exit time distribution, cct is defined in

formula (1.22). Note that fetc(.) depends on Xt. Assumption 2 restricts Xt to

be the restarting value. Hence, the unconditional first exit time distribution

for the Brownian motion with drift is as follows.

fet(t) ≈ cct(
U + L− 2X0

TA+ε

2
,
U − L

2
) (1.4)

where fet(.) is the unconditional first exit time distribution, TA is a boundary

crossing moment and TA + ε < t.

Moreover, let us consider the Brownian motion without drift as another

example. As explained by Feller (1971), the upper crossing probability is as

follows:

P c(X∗TA+1 = U) =
X∗t − L
U − L

(1.5)

where P c(.) is the conditional upper crossing probability, TA and TA + 1 are

boundary crossing moments and TA + ε < t < TA + 1. Essentially, in this

case, the upper crossing probability only depends on the relative distance

of Xt from the boundaries. Assumption 2 restricts X∗t to be the restarting

value.

P (X∗TA+1 = U) =
X0
TA+ε − L
U − L

(1.6)
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For example, if the restarting value, X0
TA+ε, is zero, the stochastic process

is currently at 50, that is Xt = 50, U = 100, L − 100, then the conditional

upper crossing probability, conditioned on the current value of the stochastic

process, is 0.75. The unconditional probability, which is based on the

restarted value, is 0.5.

1.2.2 Upper and Lower Crossing Counting

In this subsection, we discuss how to calculate the upper and lower crossing

counting distribution using the first exit time distribution. This is a new

contribution to the literature.

The probability that no boundary crossing event occurs until time T

is simply the probability that the first boundary crossing event occurs at a

later time:

pA0 (T ) = 1−
∫ ∞
T

fet(t) dt. (1.7)

It can be shown by induction that the probability of exactly k boundary

crossing events occurs until time T can be calculated as:

pAk (T ) =

∫ T

0

fet(t)× pAk−1(T − t) dt. (1.8)

Now, if the first exit time is known, then pA0 (T ) can be calculated directly

from the first exit time distributions, pA1 (T ) can be calculated from pA0 (T )

and fet(.), and so on. Therefore, by applying (1.8) recursively, we can

characterize the BCC distribution completely, using the first exit time

distributions. Carrying out this recursion analytically in continuous time

is challenging even for simple stochastic processes. But the procedure is

relatively straightforward in discrete time to be discussed next.
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Restarting the process in discrete time is problematic as it may happen

that the process crosses two boundaries between two observations. The

following simplifying assumption excludes this possibility.

Assumption 3 The probability that boundaries were crossed twice within

one time interval is negligibly small. Assuming that boundary crossing has

occurred between t and t + 1, p(L < Xt < U and Xt+1 > 2U or Xt+1 <

2L) = ε′, where ε′ is an arbitrarily small positive real number.

This assumption can be justified in a number of different ways. If

the underlying process is continuous, then it implies that the sampling is

sufficiently frequent so that the probability of double boundary crossing

is negligibly small. Thus, in case of continuous processes, this is really an

issue related to sampling frequencies. Also, the underlying process may be

discontinuous as long as the size of the jumps is restricted to be less than the

size of the boundaries.

In any case, if we have T observations, then the maximum number of

boundary crossing events is T . In this case we can characterize the boundary

crossing counting distribution with the help of the following PA matrix:

PA =


pA0 (1) pA1 (1) · · · pAn (1)

pA0 (2) pA1 (2) · · · pAn (2)
...

...
. . .

...

pA0 (T ) pA1 (T ) · · · pAn (T )

 (1.9)

where the subscript indicates the number of boundary crossing events, for

example pAi (t) indicates that until period t, exactly i boundary crossing

events have occurred. The rows of PA describe the BCC distribution at a

given moment of time, while the columns of PA are also meaningful: they
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describe the probability that exactly 1, 2, ..., t, ..., T period is needed for some

i boundary crossing events to occur.

The first column can be calculated from the first exit time distribution

using Equation (1.7). Any other column, j, may be calculated recursively

using:

PA(:, j) = F2(j)× F1 (1.10)

In this expression, F1 is a static matrix composed of the first exit time

distributions while F2(j) can be expressed recursively, using probabilities

obtained in the previous steps. More precisely,

F1 = [FET (1), (FET (2)−FET (1)), ..., (FET (T )−FET (T−1))]′, (1.11)

while

F2(j) =


pAj−1(0) pAj−1(−1) · · · pAj−1(−T )

pAj−1(1) pAj−1(0) · · · pAj−1(−T + 1)
...

...
. . .

...

pAj−1(T − 1) pAj−1(T − 2) · · · pAj−1(0)

 (1.12)

A general term of F2(j) is given by pAj−1(t− (t−r+ c)) where t is the number

of observations, r is the row number and c is the column number and the

following conventions are respected.

• if j− 1 > t− (t− r+ c) then pAj−1(t− (t− r+ c)) = 0 since the number

of boundary crossing events between two observations is at most one.

• if j − 1 = t− (t− r + c) = 0 then pAj−1(t− (t− r + c)) = 1

The advantage of this matrix-formulation over a brute-force combinatorial

calculation is the reduction in the calculation-complexity: while the

brute-force combinatorial method would require T 3 steps, the matrix-formulation

described above reduces the required number of steps to T 2. Thus, the

algorithm becomes slow, yet feasible for not very large sample sizes.
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1.2.3 Upper Minus Lower Crossing Counting

Next, we show that the upper minus lower crossing counting distribution,

defined on page 4 of this chapter, denoted by Y D
t , can be obtained from

the upper boundary crossing probabilities and the upper and lower crossing

distribution. This is also a new contribution to the literature.

The idea is to use a tree-based approach frequently applied in option

pricing. More specifically, Y D
t can be represented in a “random-time binomial

tree”5. The term “random time” is appropriate because the time needed to

move from one state to the next is random.

In tree-based models, stochastic processes are modeled with discrete

states. The time to move from one state to the next is typically

non-stochastic. Compared to classical binomial trees where the stochastic

variable may either go up or down, here we allow for three options: the

stochastic process may either go up, go down, or remain in that particular

state.

Intuitively, Y D
t depends on two factors. On the one hand, we need to

know how many boundary crossing events occur. On the other hand, we also

need to know the probability of moving up. A node of the tree Bt(i, j) can

be described by the number of boundary crossing events, i is the number of

upper crossings, j is the number of lower crossings. Note that the grid itself

also changes dynamically as time changes. Figure 1.2 is essentially a snapshot

taken at a given point of time.

Next, the grid is characterized with a Vt matrix. Note that some of

5Such random-time binomial tree could also be represented by a classical trinomial

tree. From an IT point of view, trinomial tree would be a less efficient representation in

a sense that the number of redundant representation leading to the same outcome would

be higher.
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Figure 1.2: Random-time binomial tree. In contrast to a classical binomial

tree, here, the stochastic process may not need to terminate at the last

column but it can terminate anywhere in the grid. The boundary crossing

probabilities characterize the horizontal dimension while the upper crossing

probability characterizes the vertical one.

the states in this matrix have zero probability which does not influence

the results. Characterizing the grid can be done in two steps. The vertical

location, Vt, can simply be described by the number of boundary crossings.

Vt =


PA
t (0) PA

t (1) · · · PA
t (t)

PA
t (0) PA

t (1) · · · PA
t (t)

...
...

. . .
...

PA
t (0) PA

t (1) · · · PA
t (t)

 (1.13)

where PA
t (k) is the probability to observe exactly k boundary crossing

events until time t. Conditioned on the vertical location, the horizonal

location, Ht = [h(0), h(1)...h(j)...h(t)], can simply be described using upper

boundary crossing probabilities. For the simplest case of constant6 upper

6Mean-reversion as well as autocorrelation for example would imply non-constant
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crossing probability, the constant-probability binomial distribution can be

used. For j number of boundary crossings,

h(j) =



0
...(
j
j

)
pj(

j
j−1

)
pj−1 × (1− p)

...(
j
0

)
(1− p)j

...

0



(1.14)

, where p is the upper crossing probability. Since the vertical and the

horizontal location is independent, the grid can be characterized as:

Bt = Vt �Ht, (1.15)

where � indicates element by element multiplication or the Hadamard

product. Obtaining the distribution of Y D
t from Bt simply involves collecting

terms where i− j are equal.

p(Y D
t = k) =

n∑
l=k

Bt(l, l − k) (1.16)

Overall, Y D
t can be calculated based on Y A

t and p, that is based on the

upper and lower crossing counting distribution and on the upper crossing

probability.

1.2.4 Further Details on Analytical Solutions

This subsection briefly summarizes the relevant literature on the analytical

methods for calculating the first exit time distribution and the upper crossing

upper-crossing probability. In this case, the binomial distribution may be replaced by

an appropriately chosen recursive algorithm.
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probability.

The analytical solution for the first exit time distribution can largely

be facilitated by assuming constant boundaries. The cases of non-constant or

stochastic boundaries are somewhat more challenging and to our knowledge,

these cases have not been solved in the literature. One possible solution may

be to adopt the techniques which have been used to solve for the first passage

time distribution.7

A potential procedure for deriving the first exit time distribution

analytically is described as follows. First, by subtracting the expected value

from the original stochastic process, we obtain a martingale. If the initial

value of the martingale is known, then we can express the expected value

of the martingale at the first exit time. This is so because according

to the Optimal Sampling Theorem, or Doobs lemma, the expected value

of a martingale conditioned on the information available at time zero is

equal to its initial value at any time-period. By rearranging this expected

value, we can obtain the Laplace transforms of the first exit times. The

probability distribution functions can then be derived by inverting these

Laplace transforms.

The formula for first exit time distribution functions can be found in

the handbook of Borodin and Salminen (2002) for several processes, such as

for the Brownian motion with no drift (p. 212), for Brownian motion with

drift, (p.309), for Bessel process of order 0.5 (p.309) and finally for geometric

Brownian motion (p.627). In page 109, the authors also discuss briefly a

general method for deriving these distributions. More detailed proof for the

geometric Brownian motion is discussed in Lin (1998).

Let us finish this subsection by briefly discussing how to calculate the

7These methods are discussed in Redner (2001) and in Valov (2009).
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upper crossing probability. For nonparametric cases, the probability can be

estimated similarly to how the success rate is estimated in the case of binomial

distributions. On the other hand, for many frequently used8, parametric

processes, the boundary crossing probability can be expressed using scale

functions, as explained for example in Karlin and Taylor (1981).

p =
S(X0)− S(L)

S(U)− S(L)
(1.17)

where

S(x) = exp(−
∫ x 2µ(y)

σ2(y)
dy) = exp(×− S(X)) (1.18)

is the scale function, µ(.) and σ2(.) are the infinitesimal moments and finally∫ x 2µ(y)
σ2(y)

dy = S(X), is the scale function. The lower limit of the integrals does

not play a significant role and thus, it is omitted which is a typical convention

in the corresponding literature. This equations essentially shows that once

the process has been appropriately scaled, the probability of upper (or lower)

boundary crossing depends only on the initial points relative distance from

the lower and upper boundaries.

1.3 Estimating BCC Distributions

This section focuses on how to actually estimate BCC distributions. As

the BCC distribution has not been introduced in the literature beforehand,

we cannot compare our results against standard benchmarks. Instead, we

calibrate our method by developing and comparing three different estimation

procedures.

Throughout this section, we use T to indicate the lengths of a sample

path and N to indicate the number of sample paths. Moreover, we introduce

8 This formulation is true for Ito processes, for details see Karlin and Taylor (1981)
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the count operator, #(.), which essentially counts the number of cases

meeting certain criteria.

We primarily focus on Y A
T as it is also fundamental to estimating Y D

T .

There are two main methods, the first one requires many realizations of the

stochastic process, the second method can also be applied in cases where only

one realization of the stochastic process is available.

1.3.1 Direct Estimation

The following fairly straightforward method uses the fact that the number of

boundary crossing events can simply be counted in the data. The probability

that we observe exactly k boundary crossing events is as follows:

P (Y A
T = k) =

#(Y A
T = k)

N
(1.19)

If the data generating process suggests that this is a smooth distribution,

then it may be appropriate to apply some smoothing algorithm, for example

fitting kernel density using inverse normal distribution. The advantage of the

method of direct estimation is its simplicity. In particular, it does not require

any specific assumption on the data generating process.

On the other hand, this method often produces only a single point

estimate, as in actual time series data, we can typically observe only one

realization of the stochastic process.

1.3.2 Estimation Using First Exit Time Distribution

Obtaining the BCC distribution in this case can be done in two steps.

The first step is to derive or estimate the first exit time distribution. The

next step is to apply the recursion described in the previous section. For

analytically given stochastic processes, the method to derive the first exit
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time distribution has already been discussed in the previous chapter. For

nonparametric processes, the first exit time distribution can be obtained by

the following counting estimation.

FET (t)− FET (t− 1) = fet#(t) =
#(t− 1 < TA ≤ t)∑N

i=1 Y
A
i (T )

, (1.20)

where (.)# is the counting estimator, TA represents a boundary crossing

moment, Y A
i (T ) is the number of boundary crossing events for cross-section

i and N is the number of cross sections. If we are willing to assume that

fet(t) is a smooth function, then it may be appropriate to apply some kind

of smoothing algorithm on fet#(t), for example fitting a kernel density using

the inverse normal distribution.

Once the first exit time distribution has been estimated, we can

carry out recursions described in Equation (1.10). With the help of this

second method, we can reconstruct the number of boundary crossing

events even in case where there is only one sample path. Besides, it is

relatively more accurate in case of rare events which is of course highly

important for statistical specification testing. Intuitively, this method uses

more information than the method of direct estimation as in this case, we

not only consider the number of boundary crossing events, but also the timing

of the crossings.

1.3.3 Calibrating Estimation Methods

The following subsection highlights a few practical problems related to the

estimation of the BCC distribution. As explained in the review of Fan et al.

(2005) and in the corresponding commentaries, one of the most important

problems of nonparametric statistical testing is the issue of sampling biases

which is analyzed first. Next, we analyze the effect of small sample size which
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results in unregistered boundary crossing events and small sample bias. We

conclude with some further issues.

Sampling issues

Sampling bias occurs when the null hypothesis is a continuous

stochastic process that is to be tested on discretely sampled data. Let

us illustrate this issue by comparing an analytical and a nonparametric

estimation. In order to obtain an analytical solution, let us assume that

Xt is generated by sampling from a continuous Wiener process, using some

constant sampling frequency.

Xt = Xt−1 + µ, (1.21)

where µ ∼ N(0, 1). The first exit time distribution in this case can be

expressed using the following theta function as shown in Borodin and

Salminen (2002, p. 640):

cct(v, z) ≈
k=k∗∑
k=−k∗

(−1)k
z + v + 2k × z
√

2× πt 32
exp
−(z − v + 2k × z)2

2t
,v < z, (1.22)

where v and z can be calculated from the boundaries and from the initial

value while k describes the precision with which the calculation is carried

out. Note that the approximation improves as k∗ →∞. In our calculations,

we have used k∗ = 1000 although k∗ = 50 already provides reasonable

approximation. The first exit time for upper or lower crossing can be

calculated as follows:

fetA(t) ≈ cct(
U + L− 2X0

t

2
,
U − L

2
) (1.23)

Note that U + L − 2X0 < U + L − 2L = U − L, therefore the condition in

formula (1.22) is fulfilled.
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As for the nonparametric approach, let us simulate 1000 sample paths,

each having the length of 2520 observations. Estimations were done using

equations (1.20), and the counting estimator was smoothed using kernel

density estimate.

Figure 1.3: Analytical and nonparametric first exit time distribution of the

standard Brownian motion for boundaries L = -6 and U =6. The two

distributions differ because of the sampling bias.

Figure 1.3 reveals that the nonparametric and the analytical first exit

time distributions are not equal, the difference appears to be significant.

The nonparametric first exit time distribution tends to underestimate

the probability of shorter exit times and overestimate the probability of longer

exit times. The estimation does not improve as the sample size increases

therefore this is not a small-sample bias. What causes this difference? It is

due to sampling: the analytical solution treats time as a continuous variable,

while the other solution works with discretely sampled observations. In the

latter case, the value of the random variable between the two observations is

unknown. It may very well be possible that the random variable crosses the

boundaries between the two observations, yet at the moment of observation,

the random variable is no longer outside the boundaries. Such unobserved
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crossings are not registered as boundary crossings in the case of discrete

sampling.

The upper and lower crossing counting distributions have the shape of a

normal distribution. It is a discrete distribution9. Since the BCC distribution

is based on the first exit time distribution, it inherits its sampling bias.

The solution to the problem of sampling bias is to take into account

both the minimum and the maximum values. This, for example, can easily

be done in the case of financial data when not only closing prices, but when

the minimum and the maximum prices are also recorded. In case of simulated

data, minimum and maximum prices can be obtained by increasing the

sampling frequency and taking into account certain extreme values.10. That

is to say, instead of generating 2 520 observations using mean zero and unit

standard deviations, we simulate 252 000 observations using mean zero and

standard deviation of 1/100 from which we not only select the closing values,

but the minimum and the maximum values as well.

As shown in Figure 1.4, the first simulated BCC distribution

underestimates the number of boundary crossing events. This is in-line with

the explanation given above, namely that the simulated distribution only

counts those boundary crossing events where the random variable remains

outside of the boundaries at the moment of sampling. On the other hand, the

bias in the second BCC distribution is largely reduced. Therefore, sampling

9Still, we often use solid lines in the diagrams, so that readers can differentiate between

the various distributions.
10We acknowledge that this method underestimates the maximum value and

overestimates the minimum value. There are more sophisticated methods for generating

extreme prices as explained, for example, in Mcleish (2002). As here we use extreme

values for illustrative purpose only, we would not substantially benefit from using more

sophisticated models.

26

C
E

U
eT

D
C

ol
le

ct
io

n



DOI: 10.14754/CEU.2016.01

Figure 1.4: Analytical and recursively estimated nonparametric upper and

lower crossing counting distribution for boundaries L = -6 and U =6. The

sampling bias can be reduced by taking into account minimum and maximum

values.

bias can be substantially reduced by taking into account the minimum and

the maximum values as well.

To conclude, the BCC distribution is sensitive to sampling. Therefore,

potentially, the difference in the number of boundary crossing events may be

due to difference in the data generating process or to the difference in the

sampling frequency.

Small sample bias

Small sample bias is due to the fact that the counting estimator does

not take into account the evolution of the stochastic process after the last

boundary crossing event. In other words, we do not observe where and when

the stochastic process crosses the boundaries after it has been restarted for

the last time. Naturally, as sample size increases, the role of this last boundary

crossing observation diminishes.
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The comparison of the analytical and the nonparametric distribution

is useful in quantifying this bias. For this experiment, we have simulated

5000 sample paths with sample lengths of 252 observations, which is

approximately one year in the financial price-series. We have simulated

minimum and maximum values as well. As each sample path results in one

observation, overall we have 5000 observations. The direct estimation for

the BCC distribution is essentially a normalized, non-smoothed histogram

based on these 5000 observations, which is compared to the analytical BCC

distribution.

Figure 1.5: Analytical and direct upper and lower crossing counting

distribution for 252 observation for the standard Brownian motion in case of

constant boundaries set to L = -5 and U = 5. The two distributions differ

due to small sample bias.

Naturally, as sample size increases, the role of this last boundary

crossing observation diminishes. In data having lengths of 1000 observations,

for boundaries placed at five standard deviations, the difference between

the Direct and the Analytical distribution in case of the BM(0,1) process is

almost completely eliminated.
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Selecting from a discrete distribution

The next issue is related with selecting critical values from a discrete

distribution. Often, test-statistics have continuous distributions. Therefore,

selecting the desired critical values resulting in the usual probability for

type-1 errors is relatively straightforward.

On the other hand, the BCC distribution, analogously for example to

the binomial distribution which is being used in the Fisher’s exact test, is

discrete. Thus, we are unable to find the exact critical values matching the

desired type-1 error probabilities.

As a convention, we chose the critical values in a way that the resulting

probability for type-1 error lies as close to the desired value as possible.

Hence, although the BCC test is a non-asymptotic test and does not suffer

from asymptotic size distortion, yet the actual size and the nominal size is

not necessarily equal.

Boundary selection

Throughout the dissertation, we assume that the data-generating

process is a continuous process which is being sampled as described in

Equation (1.24).

∆Xt = Xt −Xt−c, (1.24)

where c is the sampling frequency. In most econometric studies, the following

(often implicit) assumptions are applied when representing and analyzing the

DGP:

• First of all, c is constant
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• It is exogenously given or chosen.

• Typically c = 1, that is the change in the state variable is measured as

Xt −Xt−1.

How do we chose c? Most of the time, it is set to be one in the unit in which

the data is published. But sometimes, based on theoretical reasoning, c is

exogenously chosen to be larger than one as on page 186. in the book of

Shiller (2005). There, the dataset has monthly frequency but the sampling

frequency is exogenously chosen to be 120 months, that is c = 120.

It is also important to mention that the number of data points available

under such sampling frequency is very limited which is also mentioned

by the author: “The relation between price-earnings ratios and subsequent

returns appears to be moderately strong, though there are questions about

its statistical significance since there are fewer than twelve non-overlapping

ten-year intervals in the 115 years worth of data.” The choice of the sampling

frequency drives the number of data points available for inference just as the

choice on boundaries limit the number of boundary crossing events in our

approach.

Finally, it worth mentioning that the frequency using which the data

is published limits the choice of c. Monthly data cannot be used to analyze

how daily changes behave. Similarly, in our case, the sampling frequency of

the data limits the choice on boundaries.

The main difference between our study and typical econometric studies

is that in our dissertation, we represent and analyze the data-generating

process using a random sampling frequency. This random frequency is driven

by exogenously chosen boundaries. The choice on the boundaries is limited

by the frequency of the data. Hence in these aspects, our approach does not

improve the standard method. Table 1.1 below summarizes the discussion on
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the role of boundary selection.

Sampling mechanism

Time-dependent State-dependent, boundary based

Change in the

state variable
Flexible Limited, either U or L

Constant, typically

c = 1

Flexible, described by

the first exit time distribution

Sampling

frequency

Exogenous, driven by how the data is published

or by economic theory or by the interest

of the researcher

Table 1.1: Time-dependent and state-dependent, boundary based sampling.

To conclude, the choice of boundaries in our paper, similar to

the decision on the sampling frequency in many econometric studies, is

exogenous. Therefore, it should be based on the research question. However,

as explained in the sampling subsection above, the choice on the boundaries

is very much limited by the sampling frequency of the data.

1.4 Univariate Unit Root Testing

1.4.1 Baseline Model

We begin our analysis by demonstrating how to apply a boundary crossing

based method for univariate unit-root testing, which is an important question

in statistics as well as in economics. Consequently, authors, starting perhaps

from Dickey and Fuller (1981) and Phillips and Perron (1988), have devised

a large number of tests for identifying unit-roots. As reviewing these tests

would require a separate article and this has already been done, for example
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by Phillips and Xiao (1998), we do not attempt to provide a comprehensive

review here.

Instead we treat the most simple (and hence typically unrealistic)

case of a single time series with i.i.d. errors in detail. Our goal here is to

demonstrate how a new statistical tool operates in an environment that is

familiar to most researchers.

The baseline model is as follows.

xt = µ+ αxt−1 + ut, (1.25)

where α = 1 or α = 0.9, which is a typical choice in simulation studies as

in Maddala and Wu (1999). For simplicity, we assume that µ = 0 and ut is

independent but not necessarily identically or normally distributed. Finally,

let us assume that xt starts from minus infinity. The null hypothesis is as

follows.

H0 : α = 1 (1.26)

The alternative hypothesis is as follows.

H1 : α < 1 (1.27)

The alternative hypothesis typically assumes that α < 1 while here, we

could test for explosive null-hypothesis as well. Nevertheless, we chose the

non-explosive case so as to be able to compare our results to common

unit-root procedures.

1.4.2 Testing Procedure

We aim to test for unit roots using boundary crossing events. Boundaries are

chosen to be symmetric, L = −U , and the restarting value is zero for all t,
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that is X0
t = 0. Finally, let the restarted process be defined over X̃t = Xt−X0

for ease of notation.

Under these conditions, Y D
k−1 > 0 implies that X̃t moves in a positive

range in between the two boundary crossing events. Also, if Y D
k−1 < 0, then

X̃t moves in a negative range. Finally, if Y D
k−1 = 0, then X̃t fluctuates around

zero.

Furthermore, let Zk describe the kth boundary crossing event in a way

that Zk = 1 in case of an upper crossing and Zk = −1 is case of lower

crossing. We aim to exploit the relationship between Y D
k−1 and Zk.

Under the null hypothesis, δxt = µ + ut. Consequently, the following

upper-crossing probabilities are equal:

H0 : p(Zk = −1|Y D
k−1 < 0)︸ ︷︷ ︸

p11

= p(Zk = −1|0 < Y D
k−1)︸ ︷︷ ︸

p12

(1.28)

Likewise, the lower crossing probabilities below are also equal:

H0 : p(Zk = 1|Y D
k−1 < 0)︸ ︷︷ ︸

p21

= p(Zk = 1|0 < Y D
k−1)︸ ︷︷ ︸

p22

(1.29)

By combining Equation (1.31) and Equation (1.32), we obtain the following

equality under the null:

H0 : p11 + p22 = p12 + p21 (1.30)

Under the stationary alternative hypothesis, the stochastic process has the

tendency to return to the mean. Since (α− 1) < 0, a lower crossing event is

more likely in case Y D
k−1 > 0, than in case Y D

k−1 < 0.

H1 : p(Zk = −1|Y D
k−1 < 0)︸ ︷︷ ︸

p11

< p(Zk = −1|0 < Y D
k−1)︸ ︷︷ ︸

p12

(1.31)
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Also, an upper crossing event is more likely in case Y D
k−1 < 0, than in case

Y D
k−1 > 0.

H1 : p(Zk = 1|Y D
k−1 < 0)︸ ︷︷ ︸

p21

> p(Zk = 1|0 < Y D
k−1)︸ ︷︷ ︸

p22

(1.32)

Consequently, the alternative hypothesis can be described as

H1 : p11 + p22 < p12 + p21 (1.33)

In the data, we can observe five kinds of events, which are summarized in

Table 1.2.

Cumulative Upper minus Lower Crossing

Y D
k−1 < 0 Y D

k−1 = 0 0 < Y D
k−1

Next

BC

Event

Zk = −1
E11 + 0.25

(Divergence)
E00

(Non

Informative)

E12 + 0.25

(Convergence)

Zk = 1
E21 + 0.25

(Convergence)

E22 + 0.25

(Divergence)

Table 1.2: Contingency table based on boundary crossing events. Ejk

indicates the number of events observed in the data. Note that 0.25 is added

to each cells for technical reasons to avoid any division with zero.

We essentially differentiate between three cases. First, in case of events

E11 or E22, the stochastic process drifts further away from the origin, in other

words, it diverges. Also, in the case of events E12 and E21, it converges back

towards the origin. Finally, in the case of events E00, the stochastic process

is close to the origin, thus these boundary crossing events are considered to

be noninformative in this regard and hence, they are not taken into account.

From what has been noted above, the right hand side of Equation (1.30)

expresses the convergence probabilities, pc = p12+p21, which can be estimated
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as follows:

p#c =
E12 + E21 + 1

2

E11 + E12 + E21 + E22 + 1
=
Bc

BT

, (1.34)

where (.)# is the counting estimator, Bc is the number of convergence events

and BT > 0 is the total number of informative boundary crossing events.

To conclude, under the null hypothesis, the convergence probability is

0.5. Under the stationary alternative, the convergence probability is greater

than 0.5. Note that we could also analyze the explosive alternative hypothesis,

which would imply that the convergence probability is less than 0.5 as well

as the joint stationary or explosive alternatives, which would imply that

p#c 6= 0.5, but these cases are not discussed due to space constraints.

We continue by discussing how to test the p#c = 0.5 hypothesis.

Essentially, the test statistics can be obtained by a quasi-binomial

distribution as each boundary crossing event can be interpreted as a Bernoulli

trial which takes the value of one upon convergence event and the value of

zero upon divergence event.

The number of Bernoulli trials are BT = E11 +E12 +E21 +E22 + 1, the

number of successful trials are Bc = E12+E21+0.5 and the success probability

is 0.5. The difference between our case and the pure binomial distribution

is that here, the number of trials is stochastic. This can, however, be easily

accounted for as the test distribution can be conditioned on the realized

number of trials: the resulting conditional distribution is a binomial one,

(Bc|BT )
H0∼ Bin(Bc, 0.5|BT ), (1.35)

where Bin(.) denotes the binomial distribution. Since the stationary

alternative states that p#c > 0.5 the test is one sided.
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1.4.3 Monte Carlo Analysis

In this subsection, we carry out two Monte Carlo studies. The first analyzes

the role of boundary selection for the BCC-test. The second compares the

BCC-test to other, commonly used unit root tests. The data-generating

process is as described by Equation (1.25). In both studies, we consider two

different models. The first is the case of unit root, the second is the stationary

case with αi = 0.9. Also, µ is assumed to be zero for simplicity.

The design of the first Monte Carlo study is as follows. We simulate

2000 sample paths, each consisting of either 100, 500 or 1000 observations. We

consider six different set of boundaries, measured in the standard deviations

of ∆xt, ranging from +/−1 to +/−6. After counting the number of boundary

crossing events, we obtain the p–values from the corresponding binomial

distribution. We accept the null hypothesis if the p–value is larger than 5%.

Rejection frequencies are calculated as the ratio of the number of cases when

the null hypothesis is rejected and the total number of simulated sample

paths. Hence, the first part of the table shows the actual size of the test,

while the second part shows the power.

Table 1.3 reveals that as sample size increases the ideal boundaries

widen. For small sample sizes, wider boundaries are not practical since

such setup does not generate enough boundary crossing events for inference.

Hence, neither the null, nor the alternative hypothesis can be rejected. For

larger sample sizes, having enough boundary crossing event is less of an issue

and hence, in this case, we can focus on having more informative events.

Characterizing the optimal boundaries analytically is beyond the scope

of this paper, but clearly, the goal, as far as possible, is to minimize size

distortion while maximiz the power of the test. Here, we settle for the
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Probability of Rejecting the Null Hypothesis

DGP Lower boundaries at the standard deviation of ∆x1t

α N T [-1,1] [-2,2] [-3,3] [-4,4] [-5,5] [-6,6]

1 1 100 0.0780 0.0490 0.0280 0.0060 0.0000 0.0000

1 1 500 0.1040 0.0600 0.0550 0.0500 0.0330 0.0310

1 1 1000 0.0920 0.0480 0.0410 0.0410 0.0430 0.0460

0.9 1 100 0.2600 0.1730 0.0280 0.0000 0.0000 0.0000

0.9 1 500 0.6530 0.6270 0.7170 0.7980 0.5620 0.1420

0.9 1 1000 0.6750 0.6570 0.7450 0.8390 0.8860 0.6520

Table 1.3: Boundary selection for univariate unit root test. The table shows

the rejection frequencies. The nominal significance level is 5%. Rejection

occurs when the p-value is less than 0.05.

following heuristic rule.

Ui =

σ if T < 100

(1 + (T−100)
225

)× σ̂ otherwise,

(1.36)

where T is the number of observations and σ̂ is the sample standard deviation.

The test provides reasonable differentiating power while, at the same time,

the empirical size is close to the nominal one. In the remaining part of this

chapter, we use this heuristic rule for setting up the boundaries.

We continue with the comparative Monte Carlo study. The BCC test is

compared to several parametric unit-root tests. In particular, we compare the

BCC test to the Augmented Dickey-Fuller test by Dickey and Fuller (1981),

further referred to as ADF test, to the Phillips-Perron test by Phillips and

Perron (1988), further referred to as PP test and finally to the variance

ratio test by Lo and MacKinlay (1988) further referred to as VR test. We

implement these tests using the corresponding build-in Matlab functions. As
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for the BCC-test, we select boundaries according to the rule (1.36).

The design of the experiment is as follows. We simulate 2000 sample

paths, each consisting of either 50, 100 or 200 observations. As for the error

term, ut is assumed to follow a t-distribution whose parameters match the

log-returns of the S&P500. The table show the rejection frequencies. The first

part of the table shows the actual size of the test, while the second part of

the table shows the power.

DGP Unit Root Tests

αi N T ADF PP VR BCC

1 1 50 0.0535 0.0535 0.051 0.0445

1 1 100 0.0455 0.0455 0.0505 0.0705

1 1 200 0.0605 0.0605 0.048 0.061

0.9 1 50 0.1085 0.1085 0.0565 0.1415

0.9 1 100 0.321 0.321 0.0500 0.345

0.9 1 200 0.8865 0.8865 0.0915 0.4975

Table 1.4: Monte Carlo results for time series unit root tests. The table shows

the rejection frequencies for the BCC test as well as other, commonly used,

time series unit root tests. The nominal significance level is 5%. Rejection

occurs when the p-value is less than 0.05.

Table 1.4 reveals that the BCC test performs better than the standard

ADF and PP test in case the sample size is small, 50 in our case, while the

ADF and the PP test performs better for larger sample sizes. Although the

differentiating power in a small sample is modest, by combining multiple

cross-sections in the case of panel-data, even this small difference may result

in sizable gain of statistical power for the panel data case. This possibility will

be explored in the next chapter. Also, the BCC test performs better than the
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Variance Ratio tests. Note that the Variance Ratio test has been primarily

designed to identify heteroscedasticity and it is not primarily designed to

differentiate between unit root and near unit root processes.

Furthermore, the statistical power of the BCC test in larger samples

may be improved further by perfecting the counting mechanism. The idea is

as follows. Right now, we discard those boundary crossing events for which

the Y D
t is zero. Yet, one of the characteristics of stationary processes is

that they are more likely to cross the long-term mean than a unit root

process. Hence, the number of such events, E00 in Table 1.2, also contains

information. Incorporating this information into the testing procedure may

improve performance further, especially for larger samples.

To conclude, the BCC test is relatively powerful in case the sample size

is small. For larger samples, tests based on the ADF regression dominate the

current version of the BCC test.

1.5 Financial Application

In this section, we consider a financial application which analyzes the

possibility of mean reversion in financial markets. The starting point is based

on the first equation of Balvers et al. (2000).

log(Rt+1)− log(Rt) = µ+ β(Pt − P ∗t ) + ut (1.37)

whereRt is the total return index, P ∗t is the long term mean or the equilibrium

value of the market which is unobserved and Pt is the price level. Moreover,

we assume that ut is independent but not necessarily identically or normally

distributed. The null hypothesis is as follows.

H0 : β = 0 (1.38)
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The alternative hypothesis is as follows:

H1 : β < 0 (1.39)

The fundamental problem is that P ∗t , that is the long-term mean or the

equilibrium value to which the stochastic process supposedly returns, is

unobserved. Hence, parametric estimation may be problematic.

The above-described nonparametric method is useful in overcoming this

problem. In our approach, we assume that we can infer (Pt − P ∗t ), that is

the difference between the equilibrium value and the current market value,

based on some fundamental measure, Ft. As for this fundamental measure,

we use the price earnings ratio as suggested by Shiller (2005, p. 186).

Figure 1.6: P/E ratio and annualized returns. This figure is based on Shiller

(2005, p. 186). The data is downloaded from Shiller’s website. Note that

observations are overlapping.

Shiller states that there is probably a weak relationship between the

price earnings ratio and the long-run stock returns. However, quantifying

this relationship is problematic because the observations are overlapping.
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Our approach for measuring this relationship differs from Shiller’s as

we do not work with overlapping observations for the returns. Instead, we

measure returns using boundary crossing events. Consequently, we do not

work with constant sampling frequency but rather with random sampling

frequency.

Also, in our approach, we do not need to specify the exact relationship

between the equilibrium value and this fundamental measure, it is sufficient

to assume the following:

Assumption 4 Market is overvalued, that is Pt − P ∗t > 0 if the price

earnings ratio, Ft, is sufficiently above its long-term average, that is Ft >

F̄ + C, where F̄ is the median P/E ratio and C is an exogenously chosen

constant.

Likewise,

Assumption 5 Market is undervalued, that is Pt − P ∗t < 0 if the price

earnings ratio is sufficiently below its long-term average, that is Ft < F̄ −C.

If the price-earnings ratio is above its long-term average, then it is a sign

that the market is overvalued, that is Pt is above its equilibrium value, P ∗.

Likewise, if the price-earnings ratio is below its long-term average then the

market is undervalued, hence Pt is below its equilibrium value, P ∗.

Under the null hypothesis, the upper crossing probability is not

influenced by the market fundamentals. Under the alternative hypothesis,

an upper crossing event is more likely when the market is undervalued than

when it is overvalued. Likewise, a lower crossing event is more likely when the

market is overvalued than when it is undervalued. We test the null hypothesis

using the convergence probability described in equations (1.34).
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As for the data, we use monthly S&P500 data as obtained from Shiller’s

website11. We measure the returns as excess log returns. As for the risk-free

rate, we use the 10-year rate as provided by Shiller. As for the boundaries,

U = 0.2070 = 5 × σtelr, where telr indicates total excess log returns and

L = −0.2070. As for Ft, that is for the fundamental value, we use Shiller’s

cyclically adjusted price earnings ratio, or CAPE ratio, as calculated on the

spreadsheet provided by Shiller. This is the 10 year moving average of the

real price-earnings ratios.

As for F̄ , we use the median value of the CAPE ratios which is 16.0.

We chose C = 1.5, that is we assume that the market is undervalued if the

Ft < 14.5. Likewise, we assume that the market is overvalued if Ft > 17.5.

The baseline results are shown in the following contingency table.

Market valuation

undervaluation

(Ft < F̄ − C)

neutral

(F̄ − C ≤ Ft ≤ F̄ + C)

overvaluation

F̄ + C < Ft

Next BC

Event

Zk = −1 8 7 10

Zk = 1 28 8 14

Table 1.5: Stock market valuation and boundary crossing events. In total,

we observe 75 boundary crossing events over the periods of 135 years. Thus,

the average holding period is 1.80 years. The convergence probability is 0.63

which is significantly above 0.5 at 5% significance level, the p-value is 0.0259.

The data rejects the null hypothesis. The convergence probability as

defined in Equation (1.34) is 0.63 which is significantly above 0.5. The p-value

is 0.0259. In total, we observe 75 counting events over 135 years. Hence, the

average holding period is 1.80 years which is much lower than the holding

11http://www.econ.yale.edu/~shiller/data.htm
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period of 10 years suggested by Shiller. We could increase the average holding

period by applying wider boundaries. However, such an increase would reduce

the number of boundary crossing events which would make inference more

difficult.

The results can be interpreted as follows. In the past 135 years, under

the current boundary setting, there were 25 occasions on which the excess

return of the S&P500 over some random investment horizon were -20.7%.

One could have avoided 17 occasions, that is approximately 68% of the cases

by exiting the market when the CAPE ratio rises above 14.5. Of course, the

price to pay for such market timing strategy is to avoid 22 occasions in which

the market increased by 20.7%.

Let us conclude the application by analyzing how the choice on

the parameters influences our results. We consider two factors: boundary

selections and the choice of C for determining over and undervaluation. As

for the choice on boundaries, we also consider upper boundaries placed at 4

and 6 standard deviation distance, that is for example in case of log returns

to U = 0.1657 = 4×σtelr and U = 0.2485 = 6×σtelr, L = −U . Finally, as for

the choice on C, we also consider C = 1 and C = 2. The results are shown

in Table 1.6.

p–values of the BCC-test

Boundaries in

standard deviation

C

1.0 1.5 2.0

-4,4 0.0272 0.0140 0.0147

-5,5 0.0178 0.0259 0.0240

-6,6 0.0871 0.0586 0.0266

Table 1.6: Robustness exercise for the BCC-test on mean-reversion.
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Table 1.6 further confirms what Shiller proposes in his book: the

relationship between the seasonally adjusted price-earnings ratio and the

excess returns is probably significant. None of the settings accept the null

hypothesis at 10% significance level. This finding may be interpreted as

supportive evidence against strong efficient market hypothesis and in favour

for fundamental analysis and market timing strategies.

1.6 Summary of Chapter 1.

In this chapter, we introduce and characterize a new stochastic process which

counts how many times the original stochastic process crosses boundaries. We

discuss some common pitfalls when estimating BCC-distributions.

Next, we develop a testing procedure based on boundary crossing

counts. We apply this procedure for univariate unit root testing. We find

that the BCC test is more powerful than the Augmented Dickey-Fuller test

and the Phillips-Perron test when the sample size is small. Also, it is more

powerful than the Variance ratio test.

We finish this chapter with an application in which we analyze the

possibility of mean reversion in the excess returns for the S&P500. We identify

the unobserved mean using Shiller’s CAPE ratio. Our test supports mean

reversion which can be interpreted as evidence against strong efficient market

hypothesis.

We have identified several opportunities for further development. First

of all, the counting procedure for the unit root test can be improved. Also,

the test procedure can be extended to panel data. The latter will be covered

in the next chapter.

Finally, statistical tests could be developed based on the number of
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upper and lower crossing events. These tests would essentially compare the

number of boundary crossing events under the null and the alternative

hypothesis. By using this version of the BCC test, one can evaluate the

probability that an observed realization of a potentially unknown stochastic

process is generated by some other, parametrically or non-parametrically

defined stochastic process. A financial analyst may, for example, calculate the

probability that the DGP for the price of some security is well represented

by the Brownian motion or by some GARCH(p,q) process.

Initial Monte Carlo studies not detailed in this dissertation however

show that such tests are not particularly powerful. More specifically, these

additional Monte Carlo studies show that unit root test based on the number

of upper and lower crossing events is less powerful than the usual parametric

alternatives. Also, such a specification test is less powerful than the likelihood

based tests when identifying GARCH models. Nevertheless, in some cases,12

as explained in Andrews (2001), the LR test is problematic because of

the nonnegativity constraints on the GARCH coefficients. In such cases,

when the LR test statistic does not have the usual chi-squared asymptotic

null distribution, one could still use the BCC-test. These options may be

investigated further in additional papers.

12The review of Robert Lieli has proposed this insightful example.
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Chapter 2

Testing for Unit Roots in Panel

Data with Boundary Crossing

Counts

This is a joint work with Laszlo Matyas.

Abstract

In this chapter, we introduce a new, distribution free, non-asymptotic,

approach for unit root testing based on boundary crossing counts. Using

this approach, we develop two versions of a panel unit root test. The first

one can be applied in the case of cross-sectionally independent panel data,

while the second is designed for cross-sectionally dependent panels. As for

the results, the first version of the newly proposed test dominates the IPS

test and the Maddala-Wu test in case of relatively short, cross-sectionally

independent panel data. The second version is more powerful than existing

second generation panel data tests, such as Bai and Ng’s PANIC unit root

test or Pesaran’s CADF test in case the data is generated by a multi-factor

model and the time dimension is relatively short. Next, we show that the
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unit root hypothesis cannot be rejected on real exchange rate data hence we

do not find supportive evidence for the PPP hypothesis. Finally, we discuss

various methodological issues related to our newly proposed test.

2.1 Introduction

The problem of unit roots in economic time series has been studied

in econometrics for decades, both from a methodological, as well as a

strictly economic point of view. Many statistical and econometric techniques,

for example the Box and Jenkins analysis, assume that we are able to

differentiate between stationary and unit root processes. Also, verifying

economic theory empirically — such as, for example, the purchasing power

hypothesis or various other convergence hypotheses, often involves testing for

unit roots. Hence, developing and refining statistical tests in order to verify

or falsify the unit root hypothesis has long been an important item on the

agenda of econometrics.

In this paper, we develop a new second generation panel data unit

root test. Depending on the underlying data generating process (DGP),

the literature considers two basic model structures. The first is suited for

data which do not exhibit a deterministic trend, such as, for example, real

exchange rates, inflation rates or interest rates, etc. The second can be used to

formalize DGP with deterministic trends, such as the GDP, etc. Let us take,

as a starting point, the first structure without deterministic trend, which is

also discussed in the review of Breitung and Pesaran (2008, p. 295):

Xit = µi + αiXit−1 + uit (2.1)

where Xit are the data series to be analysed, µi are the individual-specific

fixed effect and uit are the composite error terms, with the number of cross
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sections being i = 1, . . . , N and the number of time dimensions t = 1, . . . , Ti,

that is we cater for unbalanced panels as well.

In line with the literature, as in Levin and Lin (1992), Maddala and

Wu (1999) and Im et al. (2003), our null hypothesis assumes that all αi are

1:

H0 : α1 = · · · = αN = 1 for all i = 1, . . . , N (2.2)

We consider the heterogeneous alternative where some, but not necessarily

all, cross sections are stationary:

H1 : ∃ N0: αN0 < 1, 0 < N0 ≤ N (2.3)

As for the individual effects, they may or may not be nil under the null

hypothesis. Under the former, the individual effects are typically defined as

(1 − αi) × µi, which is the discrete counterpart of the Ornstein-Uhlenbeck

process, as detailed in Szimayer and Maller (2004). This formulation

(described for time series as the “second case” in Hamilton (1994, p. 490))

facilitates the analysis in two different ways. First, under this specification,

the Dickey-Fuller asymptotics can be used for the OLS estimates, while with

individual effect present in the null (described for time series as the “third

case” in Hamilton (1994, p. 497)) it cannot. Second, fixed effects in the

dynamic model result in biased OLS estimates, moreover, consistency in

N cannot generally be established. Since in this paper, we do not rely on

asymptotic distributions, we do not restrict the individual effects under the

null hypothesis. Instead, we discuss both, the specific as well as the more

general formulation.

As for the composite error terms, Hurlin et al. (2007) highlight two

main approaches. First, authors may use various factor structures, such as in

Choi (2006) or in Pesaran (2007). Others, for example Chang (2002), propose
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to work with the residuals covariance matrix and to rely on instrumental

variables. Here, we apply a covariance matrix-based technique as well, but

instead of relying on the residual covariance matrix, we work with the

covariance matrix of variables describing boundary crossing events.

The panel unit root testing literature, in general, is structured as

follows (see Banerjee (1999), Baltagi and Kao (2001), Hurlin et al. (2007)

and Breitung and Pesaran (2008)). First, there are first generation tests (see

Levin and Lin (1992)), where the error terms of the model are assumed to

be independent across i, and second generation tests (see Pesaran (2007)),

where the errors terms are allowed to be contemporaneously correlated.1

The independence assumption can be quite problematic, as cross-sectional

dependence may arise in many applications, for example in the case of output

growth equations, as in Pesaran (2004), or due to spatial dependence as in

Baltagi et al. (2007).

Second, the alternative hypothesis may be homogeneous or heterogeneous.

The former, used for example by Levin et al. (2002), assumes that α1 = ... =

αi = ...αn. This homogeneous alternative is somewhat restrictive, for example

in the case of convergence hypothesis for different countries in a macro model,

this would imply that all countries or regions converge at the same rate if

indeed they converge at all. Consequently, the less restrictive heterogeneous

alternative which allow for cross-sectional differences has been introduced,

for example, by Im et al. (2003).

Finally, tests differ in how they aggregate across different cross sections.

There is in fact quite a variety of different aggregational techniques to

combine individual cross sections. Maddala and Wu (1999), for example,

1A more elaborate classification of first and second generation tests is provided in Hurlin

et al. (2007, p. 3, Table 1.).
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suggest making use of the early results of meta analysis described in Tippett

et al. (1931) and Fisher (1932), or more recently by Wolf (1986) who combines

individual significance levels. Alternatively, Im et al. (2003) propose to merge

individual t-statistics. What we propose in this paper is to aggregate by

counting the number of boundary crossing events.

To summarize: The test we propose in this paper can be classified as

a second generation unit root test with heterogeneous alternatives which

aggregates across individuals using the number of boundary crossing events

(to be introduced below).

The intuition behind the test is very simple. Let us assume that a

series Xit is enclosed by an upper and a lower boundary. If the process is

stationary, a boundary crossing event is less likely than if it is unit root, as

the demeaned process, unlike the unit root one, has the tendency to return

to zero. By counting the boundary crossings therefore we can distinguish

between the two processes.

Formally, let us introduce a new class of discrete stochastic process

called boundary crossing counting process or BCC process, Yit, which counts

the number of boundary crossing events. Let Ui be some upper boundary and

Li be some lower boundary (the decision on the boundaries will be discussed

in the next section). Also, upon each boundary crossing, the underlying

stochastic process is restarted at some restarting value, X0
it. (the choice of this

restarting value will also be detailed in the next section). Let the restarted

process be denoted by X∗it. Note that the process may be restarted several

times.2 Let us differentiate between the following counting processes.

2Boundary classification may be found in Karlin and Taylor (1981, p. 234), where they

differentiate between “regular”, “absorbing”, “natural” and “entrance” types. The type

of boundary applied in our paper does not have a one to one correspondence to any of

these cases: They could be called “restarting boundaries”. If one must classify, restarting
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1. Y U
it (X∗it) counts the number of upper crossing events, that is how many

times X∗it needs to be restarted after an upper-crossing event.

2. Y L
it (X∗it) counts the number of lower crossing events, that is how many

times X∗it needs to be restarted after a lower-crossing event.

3. Y A
it (X∗it) = Y U

it (X∗it) + Y L
it (X∗it) counts all crossing events.

4. Y D
it (X∗it) = Y U

it (X∗it)− Y L
it (X∗it) is the difference between the number of

upper and lower crossing events.

5. Finally, sometimes there is a need to refer to all of these processes at

once, in this case we use the notation Yit(X
∗
it).

Thus, the counting process is a function of the restarted process, Yit(X
∗
it).

Also, the restarted process is a function of the underlying data, the two

boundaries and finally the restarting value, Yit(X
∗
it(Xit, Ui, Li, X

0
it)). These

dependencies are suppressed in the rest of the paper for ease of notation.

Our approach has several desirable properties. Besides the usual

favorable properties of nonparametric tests, our method is non-asymptotic

(although we briefly discuss the large sample properties as well). Moreover,

the technique can also be used in the case of unbalanced panels, or panels

with missing values, or when the data generating process is sampled with an

uneven frequency. Also, the test is relatively powerful when the error term of

the underlying data generating process follows a t-distribution rather than a

normal one.

Naturally, the BCC test suffers from certain drawbacks. Similar to

Fisher’s exact test, the distribution of the test statistics is a discrete one.

boundaries are attainable and regular boundaries, where the process is restarted upon

boundary crossing events.
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Consequently, selecting the usual 1%, 5% and 10% as critical value is

somewhat problematic, and we have to make use of the closest available

discrete value.

Our paper is structured as follows. Section 2 sets out the model

and discusses some estimation issues. Section 3 compares the finite sample

properties of this newly introduced test to other frequently used unit root

tests using Monte Carlo simulations. Section 4 is dedicated to an application.

Section 5 discusses additional technical details while the last section provides

a conclusion.

2.2 Testing for Unit Roots Using Boundary

Crossing Events

In this section, we show how to use the number of boundary crossing events

for testing for unit roots in panel data. We proceed with the derivation in

two steps. First, we discuss how to construct the test statistics in an ideal

case when errors are independent. We continue by extending the derivation

for cases when the error terms are not independent.

We assume that the DGP is characterized by Equation 2.1. Moreover,

let us assume that Xit starts from minus infinity. Also, for the time being,

we assume that the individual effects3 are zero. Moreover, boundaries are

chosen to be symmetric, Li = −Ui, and the restarting value is zero for all

i and t, that is X0
it = 0. Finally, let the restarted process be defined over

X̃it = Xit −Xi0 for ease of notation.

3This assumption is discussed in detail at the end of this chapter.
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2.2.1 Test Statistics in case of Independent Errors

This case is a straight-forward extension of the time series version of the test.

If errors are independent then boundary crossing events can be pooled over

the cross sections. Formally, under the null hypothesis, Equation (1.32) can

be modified as follows.

p(Zik = −1|Y D
ik−1 < 0)︸ ︷︷ ︸

p11

= p(Zik = −1|0 < Y D
ik−1)︸ ︷︷ ︸

p12

(2.4)

Likewise, the lower crossing probabilities below are also equal:

p(Zik = 1|Y D
ik−1 < 0)︸ ︷︷ ︸

p21

= p(Zik = 1|0 < Y D
ik−1)︸ ︷︷ ︸

p22

(2.5)

By combining Equation (2.5) and Equation (2.4), we obtain equality (1.30)

under the null. Under the stationary alternative, since (αi − 1) < 0, a lower

crossing event is more likely in case Y D
ik−1 > 0, than in case Y D

ik−1 < 0.

Also, an upper crossing event is more likely in case Y D
ik−1 < 0, than in case

Y D
ik−1 > 0. Consequently, the alternative hypothesis can be described as in

Equation (1.33).

Similarly to the time series case of Chapter 1, we observe five kinds of

events as described in Table 2.1.

These events are now based on pooled observations. The convergence

probability, which is defined in Equation (1.34) and the test statistics which

is defined in Equation (1.35) can be obtained as in the time series case of

Chapter 1.

As for the boundary settings, we can modify Equation 1.36 as follows.

Ui =

σi if T < 100

(1 +min(1, N
100

)× (Ti−100)
225

)× σ̂i otherwise,

(2.6)

53

C
E

U
eT

D
C

ol
le

ct
io

n



DOI: 10.14754/CEU.2016.01

Cumulative Upper minus Lower Crossing

Y D
ik−1 < 0 Y D

ik−1 = 0 0 < Y D
ik−1

Next

BC

Event

Zik = −1
E11 + 0.25

(Divergence)
E00

(Non

Informative)

E12 + 0.25

(Convergence)

Zik = 1
E21 + 0.25

(Convergence)

E22 + 0.25

(Divergence)

Table 2.1: Contingency table based on boundary crossing events. Ejk

indicates the number of events observed in the data. Note that 0.25 is added

to each cells for technical reasons in order to avoid any division with zero.

where N is the number of cross sections, Ti is the number of observations in

cross-section i and finally σ̂i is the sample standard deviation for cross section

i. The test provides reasonable differentiating power while, at the same time,

it’s empirical size is close to the nominal one. In the remaining part of the

dissertation, we use this heuristic rule for setting up the boundaries unless

explicitly stated otherwise.

2.2.2 Test Statistics in case of Dependent Errors

The following section analyzes the case of dependent errors. If errors are

dependent, then the boundary crossing events can no longer be described

by independent Bernoulli trials and hence, the binomial distribution cannot

be used anymore. Yet, under cross-sectional dependence, the null hypothesis

described in Equation 1.30 is still valid under the null, only the variance of

the test distribution is affected. Let us begin by dealing with cross-sectional

dependence. We return to the question of autocorrelation later.

Additional Monte Carlo studies show that applying the binomial

distribution which ignores cross-sectional dependence results in size distortion.
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Depending on the strengths of the dependence and the number of cross

sections, the actual size may be between 5% and 40% in case the nominal

size is 5%. Consequently, the test procedure needs to be modified for panel

data with cross-sectional dependence.

Potentially, there are three methods to adjust for cross-dependence. The

first one is to rely on the law of dependent large numbers. The second one,

which is somewhat theoretical in nature, aims to restore the independence

of the Bernoulli trials by modifying the counting procedure. Finally, the last

one is built on the fact that under the null hypothesis, the variance of the

sum of the variables describing the individual trials can be estimated from

the individual boundary crossing events. We continue our analysis with this

last solution while the first two approaches are discussed in the fifth section.

Next, we show how to capture the cross-dependence with the covariance

matrix of the individual trials. First, for some boundary crossing k, let us

define Cik in the following way:

Cik = −1 if

Zik = 1 and Y D
ik−1 > 0 or

Zik = −1 and Y D
ik−1 < 0.

(2.7)

Also, in case the boundary crossing event points toward convergence:

Cik = 1 if

Zik = 1 and Y D
ik−1 < 0 or

Zik = −1 and Y D
ik−1 > 0.

(2.8)

Using these notations, the null hypothesis can be restated as

H0 :
N∑
i=1

Bi∑
k=1

Cik = Sc = 0 (2.9)

where Bi is the total number of quasi-Bernoulli4 trials for cross-section i, that

is for those boundary crossing events where Y D
ik−1 6= 0. From now on, we refer

4In case of Bernoulli trials, the outcome is either +1 or zero. Here, the outcome is either

+1 or -1.
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to Cik as convergence dummies and Sc as convergence sum. For the ease of

notation, we suppress the indexes of the summations. Under the stationary

alternative, the convergence sum is greater than zero:

H1 :
∑∑

Cik > 0 (2.10)

Next, let us define C as follows:

C =


c11 c12 · · · c1n

c21 c22 · · · c2n
...

...
. . .

...

cT1 cT2 · · · cTn

 (2.11)

where the elements of C may be one, zero or minus one:

cit =

0 if Y A
it = Y A

it−1 or Y D
it−1 = 0

Cik(t) otherwise.

(2.12)

where the subscript in Cik(t) indicates that the kth boundary crossing event

occurs in time t. Also, let Σ = C ′C./(1n×1B), where B = [B1, B2, ...BN ]

describes the number of quasi-Bernoulli trials for each cross sections and

./ indicates element by element division. Note that if no boundary crossing

events are observed for a particular cross section, then it needs to be removed

from the sample. The variance of the test statistics can be expressed using

Σ:

var(Sc) = E(Sc
2) = E(B × Σ× 1n×1)) (2.13)

where the first equality is due to the fact that E(Sc) = 0 under the null

hypothesis, while the second equality is due to the fact that adding zeros to

a sum does not modify its value.

We construct the empirical distribution by simulation. The idea is to

make use of the fact that under the null, if we simulate
∑

(Bi) random
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numbers having zero mean and Σ as covariance matrix, then the sum of these

simulated random numbers will have the same mean and the same variance

as Sc. Hence, under the null, we can approximate the confidence interval for

Sc using the sum of these simulated random numbers. In theory, we could

draw the elements for the summation from an arbitrarily distribution, yet in

practice, the convenient choice for this simulated distribution is the normal

distribution.

Potentially, depending on the given application, there may be many

different methods to carry out the above-described simulation. Here, we show

a solution which is based on the Cholesky decomposition. The algorithm to

obtain the test distribution and its critical value is the following:

1. Count the number of boundary crossing events. Multiple boundary

crossings between two observations shall be recorded as two consecutive

boundary crossing events.5

2. Estimate Σ from the sample.

3. Simulate 1000 correlated random numbers using normal distribution

with mean zero and covariance matrix Σ and a sample size of BT . In

practice, especially when N is large and T is small, it may happen

that Σ is not positive definite. Since we are dealing with matrixes

containing only 1,0,-1, we are more and more likely to observe perfect

dependence by chance as the number of cross sections increases even

if the underlying DGP does not involves dependent cross sections. In

practice, this can be corrected by finding the nearest symmetric positive

semi-definite matrix as described by Higham (1988).6

5This is in fact a sampling issue, the sampling frequency is not fine enough to record

what happens between two observations.
6The procedure was implemented based on John D’Errico’s Matlab code. We would
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4. The test statistics can be obtained by summing up each simulated

sample, the critical value being the 95% percentile of these sums.

5. The null hypothesis is rejected if the convergence sum observed in the

sample is larger than this critical value.

To sum up: the above-described algorithm simulates random numbers having

the same mean and the same variance as the sample convergence sum. Hence,

although they may differ in higher moments, they are likely to be distributed

similarly, and so the simulated sums can be used to approximate the true

test distribution.

Our Monte Carlo studies show that this method indeed reduces

size distortion. The actual size of this simulation-based BCC test on a

factor model was less than 10% for a nominal size of 5%. Naturally, the

power against the stationary alternative is somewhat also reduced by these

measures, yet the test is still quite capable to differentiate between the

stationary and the unit root processes.

Regarding the BCC-test, there are a couple of additional issues7 of

interest. First of all, the inference is based on constructing the empirical

distribution of the test statistic by simulation. Hence, the covariance matrix

is not necessarily generated under the null hypothesis because it is computed

from the panel. Note that our test is very similar to many of the tests analyzed

above as they all suggest capturing dependence based on the data.

Moreover, the dependence may also be captured using principle

component analysis. In fact, the ideal method to capture dependence varies

from application to application. If the method to capture the dependencies

is inappropriate, then the BCC-test also suffers. Here, we only have room to

like to take this opportunity to acknowledge his contribution.
7These insightful comments are based on the review of Timo Teräsvirta.
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describe one potential solution for illustrative purposes.

In addition, we use the normal distribution to construct the empirical

distribution. Although we present a technical device to correct for possible

singularity, if the matrix is near-singular then the normality assumption may

not be appropriate.

2.3 Comparative Monte Carlo Analysis

This section compares the performance of the BCC test with other, commonly

used unit root tests. It is important to mention that, strictly speaking, direct

power comparisons between the different tests are not valid, since they have

different null and/or alternative hypotheses. These differences are discussed

in more detail in the fifth section. Yet, we still present the actual size and

the power of the different tests in one table, but these results need to be

interpreted with caution.

The design of the Monte Carlo experiments aims to simulate data

for which nonparametric, in a distribution-free sense, methods may be

reasonably applied. In particular, throughout the experiments, we assume

that error terms have t-distribution with three degrees of freedom, which

is approximately equal to the estimated degree of freedom of the daily log

returns of the S&P500.

The DGP may be unit root or stationary with αi = 0.9, which is a

typical choice also taken by Maddala and Wu (1999). For the stationary

case, we assume that the initial observation is close to the long-term mean.

The Monte Carlo trials are repeated 2000 times, and for each repetition

we carry out the tests at 5% significance level, the probability of rejecting

the null hypothesis is obtained by dividing the number of cases when the null
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is rejected by the total number of Monte Carlo trials.

We begin by analyzing the first generation panel unit root tests and

conclude with the second generation tests. The simulations were implemented

in Matlab,the code was inspired by Hurlin’s Matlab codes8 for which we are

very grateful.

2.3.1 First Generation Panel Unit Root Tests

We begin by comparing the BCC test with three different first generation

tests under cross-sectional independence. First, we consider several versions

of Im et al. (2003)’s IPS tests. More specifically, we calculate the w-bar

test which is based on the t-values, the t-bar test which is based on the

moments of the DF distribution and finally the z-bar test which is based on

the assumption of no autocorrelation of the residuals. Since the error term

in the DGP is not autocorrelated, the results of w-bar, t-bar and z-bar tests

should not be substantially different.

In addition, we consider two versions of Maddala and Wu (1999)’s test,

further referred to as MW test, and Choi (2001)’s test, further referred

to as CH test. The two tests differ in how they combine the individual

p-values. In Maddala and Wu (1999), the p-values are calculated based on

the critical values of Fisher’s statistics while in Choi (2001), they are based on

the individual ADF statistics. Since these tests rely on meta-analysis-based

techniques to combine p-values, from now on, we will refer to them as

meta-analysis based tests. For both tests, we consider two versions. In the

first version, the autocorrelation is estimated from the simulated data, while

in the second version, the lag parameter is set to be zero.

Finally, as for the BCC test, since the Bernoulli trials are independent,

8The libraries were downloaded from the website of Orlean’s University.
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we rely on the binomial distribution-based version. The test statistics are

obtained by pooling the number of boundary crossing events over the cross

sections and the p-values are obtained from the right hand side of the

corresponding binomial distribution.

As for the DGP, besides the baseline assumptions detailed in the

beginning of this section, we assume that the cross sections are independent

DGP First Generation Unit Root Tests

fi αi N T
IPS

(w-bar)

IPS

(t-bar)

IPS

(z-bar)

MW

(lag = 0)

MW

(DF-lag)

CH

(lag = 0

CH

(DF-lag)
BCC

0 1 12 25 0.1030 0.1505 0.0605 0.0985 0.0325 0.1190 0.0460 0.0630

0 1 20 25 0.1015 0.1720 0.0590 0.1155 0.0430 0.1350 0.0515 0.0575

0 1 12 50 0.0550 0.0545 0.0575 0.0380 0.0405 0.0480 0.0505 0.0855

0 1 20 50 0.0595 0.0570 0.0580 0.0400 0.0420 0.0505 0.0505 0.0750

0 0.9 12 25 0.3455 0.4205 0.2830 0.2995 0.1635 0.3335 0.1960 0.5010

0 0.9 20 25 0.4300 0.5615 0.4175 0.3945 0.2320 0.4315 0.2665 0.6855

0 0.9 12 50 0.8440 0.8395 0.8230 0.6710 0.6230 0.7105 0.6735 0.9150

0 0.9 20 50 0.9745 0.9720 0.9660 0.8755 0.8365 0.8995 0.8615 0.9880

Table 2.2: Monte Carlo results for first generation panel data unit root tests.

The table shows the probability of rejecting the null hypothesis for the BCC

test and other, commonly used, first generation panel data unit root tests

in case of balanced panels and cross-sectional independence. The nominal

significance level is 5%. Rejection occurs when the p-value is less than 0.05.

The table reveals that the BCC test has the highest power. As the

sample size grows, the difference in the power between the existing tests and

the BCC test diminishes. These results are in line with the findings of the

time series analysis detailed in the previous chapter where we have shown

that the BCC test is more powerful than the ADF test in case the sample size

is small. Moreover, pooling the number of boundary crossing events over all
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cross-sections seems to be an effective aggregational technique. Combining

relatively powerful individual tests in an effective way results in a panel data

test which has high differentiating power.

Moreover, in this particular Monte Carlo setup, the t-bar version of the

IPS-tests has the highest power in small samples, even in the case T is small,

it also suffers from minor size-distortion. Also, the IPS tests typically show a

somewhat higher differentiating power than the tests based on meta-analysis.

As for the meta-analysis based tests, the test of Choi (2001) has somewhat

higher differentiating power than the test of Maddala and Wu (1999). Finally,

by providing additional information on the lag structure, the power of the

meta-analysis based tests, especially in small sample, can be improved.

Additional Monte Carlo experiments show that missing data causes

size-distortion in parametric first generation tests. In case of BCC test, some

size-distortion is also present but to a much lesser degree. Under time series

settings, the ADF test does not exhibit significant size distortion, hence the

problem is probably caused by aggregational techniques.

Overall, the binomial BCC test can be used, when the cross-sections

are independent and it is advised to be used when the panel has missing

observations.

2.3.2 Second Generation Panel Unit Root Tests

We continue by studying second generation unit root tests. Since Maddala

and Wu (1999) already conducted a set of experiments in which the simulated

data is spatially dependent, here, we focus on factor models. Table 1. in Hurlin

et al. (2007)’s review differentiates between two main approaches to deal with

cross-sectional dependencies. First, authors may use various factor models,

such as in Choi (2006) or in Bai and Ng (2002). Others, for example Chang
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(2002), propose to work with the residuals’ covariance matrix.

Factor models assume that the dependence is captured by one or more

factors. In the case of a single common factor, Pesaran (2007) proposes to

deal with cross-sectional dependence by further augmenting the Augmented

Dickey-Fuller regressions by both the cross section average of the lagged

levels and of the lagged first differences. These cross-sectionally augmented

Augmented Dickey-Fuller equations, CADFs, are estimated by OLS, and the

individual t–ratios of the OLS estimates are combined to obtain the test

statistics. The advantage of this approach is its simplicity, while it may not

be able to fully capture those cross-dependence structures which consist of

several factors.

Multiple common factors are typically quantified using principle

components. Bai and Ng (2004), for example, propose to first separate

the common factors and the idiosyncratic terms and then to test them

separately. The advantage of their method is that the properties of the

common components may also be of economic interest, not just the those

of the original data. Moon and Perron (2004), on the other hand, promote

testing for unit roots on the de-factored series, which allows for a rather

general specification of the common components. Since both multi-factor

approaches described above rely on principle component analysis, the results

may depend on the scale on which the variables are measured. Also, the

differentiating power of these tests in finite samples when N is large and T

is small may in some cases be limited.

Alternatively, cross-dependence may be captured via the covariance

matrix. Fundamentally, the difficulty arises from the fact that the limiting

distribution of the OLS or GLS estimators is dependent on certain nuisance

parameters and hence, the usual Wald type of test cannot directly be
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applied. There are, however, some methods to overcome this problem.

First, bootstrap-based estimators starting perhaps from Maddala and

Wu (1999) may be used. Also, Chang (2002) proposes using a special,

non-linear instrumental variable estimator and make use of the fact that the

proposed individual IV estimates for the t–ratio statistics are asymptotically

independent even for dependent cross-sectional units. Finally, Demetrescu

et al. (2006) explain how to combine individual p–values in the cases where

there is constant correlation among the p–values of the individual estimates.

In the next Monte Carlo exercise, we are interested in how tests perform

under general conditions. Hence, we simulate data using the following

multiple common factor model:

uit = f 1
i ×Θ1

t + f 2
i ×Θ2

t + f 3
i ×Θ3

t + εit, (2.14)

where Θ1
t , Θ2

t , and Θ3
t are i.i.d. random unobserved common components and

f 1
i , f 2

i , and f 3
i are the factors. The random components are assumed to be

drawn from a t-distribution with three degrees of freedom. As for the value

of f 1
i , f 2

i , and f 3
i , we assume that they are randomly chosen from the uniform

distribution centered around some predefined constants, which are detailed

in Table 2.3. Hence, the loadings are different for each cross section.

f 1
i f 2

i f 3
i

neg. dep. pos. dep. neg. dep. pos. dep neg. dep. pos. dep.

w.f.d. -0.2 0.4 -0.1 0.3 -0.3 0.2

s.f.d. -0.6 0.8 -0.5 0.7 -0.75 0.7

Table 2.3: Assumption for factor loadings on the individual cross sections in

case cross-dependence arise out of multiple common factors.

The first row, w.f.d, abbreviates weaker factor dependence while the

second row, s.f.d. abbreviates stronger factor dependence. For example, in
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the first row, for the first factor loading, half of the cross-sections are assumed

to have f 1
i around −0.2 while for the remaining cross sections, f 1

i is assumed

to be around 0.4. The first row models a case when more than half of the

variation is driven by the idiosyncratic term. For the second row, most of the

variation is driven by the unobserved common factors.

We compare the BCC test to the PANIC unit root test of Bai and Ng

(2004), further referred to as BNG test, and the Cross-sectionally Augmented

Dickey-Fuller test, or CADF test, of Pesaran (2007), further referred to as

PS test. As for the former unit root test, once the factor structure has

been removed, the p-values of the different cross sections are aggregated

either by Choi (2001)’s method, shown in the first column, or by Maddala

and Wu (1999)’s method, shown in the second column. As for the latter

unit root test, the first column, titled CIPS, shows the cross-sectionally

augmented version of the IPS test, which is based on t-bar statistics while

the second column, titled CIPS∗, shows the suitably truncated version of

the cross-sectionally augmented DF-statistics. As for the BCC test, we rely

on the simulation-based version. The test statistics are obtained by pooling

the convergence dummies from the cross sections. The p-values are obtained

from the distribution of the simulated convergence sums.

Table 2.4 shows the rejection frequencies. The first part of the table

shows the actual size of the tests and the second part of the table shows the

power. The nominal size is set at 5.0% for all tests.
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DGP Second Generation Panel Unit Root Tests

fi αi N T
BNG

(Choi)

BNG

(MW)

PS

(CIPS)

PS

(CIPS*)

BCC

(sim)

w.f.d 1 12 25 0.066 0.057 0.045 0.041 0.096

w.f.d 1 20 25 0.046 0.039 0.054 0.050 0.077

w.f.d 1 12 50 0.043 0.036 0.042 0.040 0.088

w.f.d 1 20 50 0.032 0.025 0.046 0.045 0.105

w.f.d 0.9 12 25 0.251 0.217 0.094 0.094 0.520

w.f.d 0.9 20 25 0.416 0.381 0.129 0.129 0.692

w.f.d 0.9 12 50 0.827 0.784 0.331 0.331 0.906

w.f.d 0.9 20 50 0.974 0.967 0.570 0.570 0.971

s.f.d 1 12 25 0.072 0.061 0.084 0.084 0.097

s.f.d 1 20 25 0.047 0.040 0.100 0.097 0.105

s.f.d 1 12 50 0.060 0.046 0.081 0.080 0.109

s.f.d 1 20 50 0.044 0.037 0.093 0.093 0.134

s.f.d 0.9 12 25 0.276 0.241 0.149 0.149 0.482

s.f.d 0.9 20 25 0.388 0.353 0.225 0.225 0.557

s.f.d 0.9 12 50 0.801 0.768 0.405 0.405 0.820

s.f.d 0.9 20 50 0.963 0.949 0.571 0.571 0.884

Table 2.4: Monte Carlo results for second generation panel unit root tests.

The table shows the probability of rejecting the null hypothesis for the BCC

test and other, commonly used, second generation panel data unit root tests

for balanced panels in case dependence arises out of multiple common factors.

The nominal significance level is 5%. Rejection occurs when the p-value is

less than 0.05.

BCC test continues to be the most powerful when the sample size is
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small. For larger sample sizes, the BNG test dominates the BCC test in a

sense that it has comparable power while the size of the BNG test is closer

to the nominal size than the size of the BCC test.

As for the BNG test, Choi’s aggregational technique is slightly more

powerful than the alternative method. The test of Bai and Ng (2004) is more

powerful than the test of Pesaran (2007) which is in line with the expectation

as the former is a test specifically designed for multiple factor models.

As for the BCC-test, Table 2.4 suggest that its empirical size increases

with the amount of information. This is related to how the dependence

is captured. Hence for larger panels, we may need to develop additional

techniques for capturing dependence. The use of principle component analysis

for example could improve the properties further.

To conclude, the BCC test can be applied in cases when the

cross-sectional dependence arises out of a common unobserved component.

It dominates existing tests when the sample size is small. However,

its performance weakens as the sample size increases. Hence, it may

be reasonable to combine the BCC-technique with factor-analysis based

procedures. This possibility is briefly outlined in the last section when the

direction for further research is discussed.

2.4 Empirical Application

This section applies the new test to evaluate whether the PPP hypothesis

holds. This is a common application for the above-reviewed panel unit tests

as in Chang (2002) or in Pesaran (2007). We use the data of Pesaran (2007)

as downloaded from the data archive of the Journal of Applied Econometrics

for comparability. This panel covers the period of 1974 -1998 for 17 OECD
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countries. The test is applied to log real exchange rates which are computed

as xit = sit+pust−pit, where sit is the log of the nominal exchange rate of the

currency of country i in terms of US dollars and pust and pit are logarithms

of consumer price indices for the United States and country i respectively.

We define the counting process over x̃it = xit − xi0. We chose the

boundaries as described in Equation (2.6). We construct the empirical

distribution by simulation as described in the section entitled “test statistics

in case of dependent errors.” The results are shown in Table 2.5.

Cumulative Upper minus Lower Crossing

Y D
ik−1 < 0 Y D

ik−1 = 0 0 < Y D
ik−1

Next BC

Event

Zik = −1 161
93

102

Zik = 1 206 91

Table 2.5: Testing the PPP hypothesis using boundary crossing events.

The convergence probability is 0.5500 which is not significant at the usual

significance levels. The p-value is 0.1722.

Based on the data, the unit root hypothesis cannot be rejected.

Therefore our test does not support the PPP hypothesis. This result is in-line

with some of the findings in the literature while it contradicts others. For

example, Pesaran (2007) found that the CIPS test does not reject the unit

root hypothesis for the same dataset. On the other hand, using a similar

dataset, the test of Chang (2002) strongly rejects the unit root hypothesis.

Our findings are robust to the parameter settings. In particular, as

shown in Table 2.6, applying narrower or wider boundaries results in a similar

conclusion.

Note that some caution may be needed when interpreting this result.

In particular, the presence of autocorrelation, which is discussed in the next
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Li Ui convergence probability p-value

-1 1 0.5419 0.1796

-1.18 1.18 0.5500 0.1722

-2 2 0.5749 0.1116

Table 2.6: Sensitivity analysis for the BCC test on the PPP hypothesis. The

null hypothesis of unit root cannot be rejected even if applying narrower or

wider boundaries.

section, may influence this finding. Thus, further development of the test

may be needed to fully confirm this result.

2.5 Discussion

In this section, we discuss several additional issues. First, we analyze the role

of individual effects. We continue by briefly discussing methodological issues.

Next, we analyze how to deal with autocorrelation and finally, we conclude

with a brief discussion on the large sample properties.

2.5.1 The Role of Individual Effects

Let us begin by analyzing what happens if the individual effects are not zero

under the null hypothesis of unit root. Table 2.7 summarizes the necessary

additional notations.

Thus, δ captures the effect of µi. Let us substitute E12 = (0.5 − δ) ×

BT × (1− p22) and E21 = (0.5 + δ)×BT × p21 in Equation(1.34).

p#c =
(0.5− δ)×BT × (1− p22) + (0.5 + δ)×BT × p21

BT

(2.15)
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Cumulative Upper minus Lower Crossing

Y D
ik−1 < 0 0 < Y D

ik−1

Zik−1 = −1 E11 = (12 − δ)×BT × (1− p21) E12 = (12 + δ)×BT × (1− p22)

Zik−1 = 1 E21 = (12 − δ)×BT × p21 E21 = (12 + δ)×BT × p22

Total (12 − δ)×BT (12 + δ)×BT

Table 2.7: The role of individual effect for the panel BCC test.

Simplifying yields

p#c =
1

2
+

1

2
(p22 − p21) + δ(1− (p21 + p22)). (2.16)

Under the unit root hypothesis, assuming away from autocorrelation for the

time being, p21 = p22. As for the individual effect of Equation (2.1), there

are three cases.

1. If µi = 0, then δ = 0 and p#c = 0.5.

2. If µi > 0, then δ > 0 and (p21 + p22) > 1. Hence, p#c < 0.5.

3. Finally, if µi < 0, then δ < 0 and (p21 + p22) < 1. Hence, p#c < 0.5.

To conclude, if the null hypothesis assume that µi = 0 and in the true

process, µi <> 0, then the actual size of the BCC test will be less than

the nominal size. Note that this is similar to other unit root tests which

are based on the Dickey-Fuller asymptotics since in this case, they use

the DF-statistics when in reality, they should be using the standard OLS

t-statistics. In both cases, the actual inference9 is unlikely to be negatively

affected by the potential misspecification of the individual effect in the null

hypothesis because economics theory, most of the time, postulates that a

9This issue is discussed further in the next subsection.
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stochastic process is either stationary or unit root. If the true process is unit

root with a drift then it is easier to identify the lack of stationarity.

Let us continue by analyzing the stationary case. Here, the critical

assumption is that Xit starts from minus infinity which, for simplicity, is

quantified as Xi0 = µi/(1− αi). What happens if the process does not start

from minus infinity? Substituting Xi0 = Xi0 +
∑t−1

j=1 ∆Xij to Equation 2.1

results

Xit = µi + αi(Xi0 +
t−1∑
j=1

∆Xij) + uit (2.17)

Assuming that Xi0 = (µi + γi)/(1 − αi), where γi captures the difference

between the process initial value and its long-term mean, Equation (2.17)

can be reformulated as follows.

Xit = µi + αi(
µi + γi
1− αi

+
t−1∑
j=1

∆Xij) + uit (2.18)

Substituting µi = µi × (1− αi)/(1− αi) and X̃it = Xit −Xi0 results

X̃it = −γi + αi

t−1∑
j=1

∆Xij + uit. (2.19)

Thus, if the process is assumed to start at minus infinity, that is γi = 0, then

it is free of individual effects in the sample period. Consequently, δ = 0 in

Equation (2.16) and the convergence probability captures only the difference

in p11 and p12. On the other hand, if the process starts far away from the

long-term mean, that is γi <> 0, then the individual effect is not zero, thus

δ <> 0 and this effects the convergence probability.

Note that depending on the initial value, Xi0, the stochastic process

may exhibit fairly different behavior in finite samples, which is illustrated

in Figure 2.1. In the first subdiagram of Figure 2.1, the stochastic process

does not appear to exhibit mean-reverting behavior. Since the BCC test is
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Figure 2.1: Stationary process with an off-equilibrium and near-equilibrium

initial value. The DGP for both cases is as in Equation (2.1) with αi = 0.9.

In the first case, the stationary process is started from an off-equilibrium

position while in the second case, the first observation is close to its long-term

mean.

designed to measure the tendency to return to the mean, it would not reject

the null hypothesis in this case. Note that economic theory often postulates

the case shown in the second subdiagram of Figure 2.1: It not only predicts

that a stochastic process is stationary, but the theory often also implicitly

infers that it is close to its long-term mean. Hence, the BCC test incorporates

this implicit assumption as well.

To conclude, the BCC test essentially quantifies the tendency to return

to the mean. If the null hypothesis is accepted, then there is no such tendency,

which implies that the DGP is either unit root process, or a stationary process

for which the initial value is far away from the process’s long term mean.

In other words, the stochastic process has been initiated from an out of

equilibrium position and it has not been measured for a sufficiently long

time period for the process to return to its long-term mean. The BCC test is

less suitable for differentiating between these two cases. If the null hypothesis

is rejected, then there is a tendency to return to the mean and hence, the

DGP is likely to be stationary near to its long-term mean.
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2.5.2 Methodological Issues

In this chapter, we mirror closely the typical assumptions made by the panel

unit root tests, such as in Im et al. (2003), Chang (2002) or in Breitung

and Pesaran (2008), including their strengths as well as their weaknesses.

Potentially, there are several meaningful research questions, for example:

1. Is the DGP unit root without deterministic trend or stationary process

without deterministic trend?

2. Is the DGP unit root with drift or trend-stationary?

Although the second question is fully relevant, in this paper, we only

deal with the first question due to space constraints. In the literature, it is

common to begin the discussion with the first case as seen in Im et al. (2003),

Chang (2002) or in Breitung and Pesaran (2008). Additional cases may be

discussed in a separate paper.

When dealing with the first question, we make two implicit assumptions.

First, we assume that the deterministic trend is excluded based on economic

theory as well as based on the nature of the problem being modeled.

Moreover, we assume that economic theory predicts stationarity. These

implicit assumptions are claimed to be true for many commonly tested

hypothesis such as the PPP hypothesis.

Using Carl Popper’s terminology, in order to test any theory, one needs

to try to falsify it. Thus, in order to test for stationarity, we need to assume a

non-stationary null hypothesis. There are many options for choosing this null

hypothesis. We considered the one without individual effect because among

all the non-stationary models described by Equation (2.1), it has the highest

convergence probability. If µi 6= 0 then as explained in Equation (2.16), the

convergence probability is less than half. Consequently, if we reject the null
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hypothesis under the model with no individual effect then we would reject it

in cases of positive or negative individual effect as well.

On the other hand, accepting the null hypothesis implies that there

is at least one realistic non-stationary model which is supported by the

data. Hence, economic theory suggesting stationarity cannot be confirmed.

(It cannot necessarily be falsified either due to potential issues related to

statistical power but that is a separate issue.) Of course, there may be

infinite many non-stationary models which could be rejected. However, using

Popper’s terminology, in order to falsify the economic theory, it is sufficient

to show one realistic counter-example.

2.5.3 Boundary Crossing Counts and Autocorrelation

Let us discuss the case when there is autocorrelation in the error term in

Equation (2.1). Typically, such as in Bai and Ng (2002), Choi (2006), Im

et al. (2003), Chang (2002), Levin et al. (2002), Maddala and Wu (1999)

and Pesaran (2007), panel unit root tests are based on individual ADF tests

and the number of lags are estimated from the data. This can safely be done

as (Said and Dickey (1984)) the variable of interest in the ADF test and

in the DF test have the same limiting distribution even in the case when

the number of lags, m, is unknown, if m3/T → ∞ as T → ∞. This result

holds under more general conditions as well, as discussed in Chang and Park

(2002). Alternatively, as in Moon and Perron (2004), instead of using the

ADF test, one may incorporate the lag structure into the factor model as

well.

In case of BCC test, based on Equation (2.16), autocorrelation effects

the convergence probability in finite samples. In particular, in the case of

positive autocorrelation, the convergence probability is less than 0.5 while in
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the case of negative autocorrelation, the convergence probability is greater

than 0.5 under the null hypothesis in finite samples. Thus, autocorrelation

may induce size distortion. Similarly, in the case of stationary process,

autocorrelation may induce loss of power.

We continue by outlining two potential solutions to the problem of

autocorrelation in finite samples. Note that we do not provide detailed

resolution due to space constrains. The first option is to filter out the

autocorrelation of the error term in Equation (2.1) and continue by carrying

out the BCC test on the autocorrelation-adjusted data.

In order to implement this option, the first step is to assume that the

autocorrelation structure can be captured by the following model.

∆Xit = µi+(αi−1)Xit−1+ρi1∆Xit−1+ρi2∆Xi,t−2+...ρimi
∆Xi,t−mi

+εit (2.20)

where εit is free of autocorrelation and mi is the number of lags. The

convergence probability can be restored to 0.5 by first estimating the

autocorrelation structure and second by defining the counting process over

the autocorrelation-adjusted differences as shown in Equation (2.21).

X̃ ′ it =

0 if t ≤ mi∑t
j=mi+1 ∆Xij − (ρEi1∆Xit−1 + ...+ ρEimi

∆xi,t−mi
) for t > mi.

(2.21)

where ρEi1, ...ρ
E
imi

are the estimated autocorrelation coefficients. This option

may be problematic because, besides the usual issues such as selection of

lags as discussed in Harris (1992), it requires a parametric estimation which

is somewhat alien to the original nonparametric philosophy of the test.

Alternatively, we can account for potential autocorrelation via the

contingency table. The idea is similar to what has been discussed in section
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two, but instead of analyzing the relationship between the full history of the

process, Y D
ik−1, and the next boundary crossing event,Zik, as in Table 2.1, here,

we analyze the relationship between the “immediate history”, represented by

the last, Y U
ik−1, or last few, boundary crossing events, and the next boundary

crossing event.

More precisely, the condition Y U
ik−1 = 1 implies that the DGP’s

immediate history was characterized by positive shocks. If there is no

autocorrelation, this information should not affect the next boundary crossing

event.

p(Zik = 1|Y U
ik−1 = 0) = p(Zik = 1|Y U

ik−1 = 1); (2.22)

Likewise, the lower crossing probabilities below should also not depend on

the previous boundary crossing events:

p(Zik = −1|Y U
ik−1 = 0) = p(Zik = −1|Y U

ik−1 = 1); (2.23)

By combining these two equations, we obtain the following equality under

the null:

p(Zik = 1|Y U
ik−1 = 0) + p(Zik = −1|Y U

ik−1 = 1) =

= p(Zik = −1|Y U
ik−1 = 0) + p(Zik = 1|Y U

ik−1 = 1)
(2.24)

For ease of notation, let us introduce an additional variable which describes

the effect of the process’s immediate history.

Aik = −1 if

Zkt = 1 and Y U
ik−1 = 0 or

Zkt = −1 and Y U
ik−1 = 1.

(2.25)

Also, the events of the right hand side of Equation (2.24) are denoted as

follows:

Aik = 1 if

Zkt = 1 and Y U
ik−1 = 1 or

Zkt = −1 and Y U
ik−1 = 0.

(2.26)
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Using these notations, the null hypothesis, which is somewhat analogue with

the null hypothesis of no autocorrelation in the parametric case, stating that

the stochastic process’s immediate history does not affect its next realization,

can be described as follows:

H0 : p(Aik = 1) = p(Aik = −1) =
1

2
(2.27)

From now on, we refer to p(Aik = 1), as autocorrelation probability. Under

the alternative hypothesis of autocorrelation, these probabilities are no longer

equal, the stochastic process’s immediate history has an effect on the next

event.

H1 : p(Aik = 1) 6= p(Aik = 0) (2.28)

More precisely, in case of positive correlation, p(Aik = 1) > p(Aik = 0), while

in case of negative autocorrelation, p(Aik = 1) < p(Aik = 0). All this is

summarized in Table 2.8.

Last Boundary Crossing Event

Y U
ik−1 = 0 Y U

ik−1 = 1

Next

BC Event

Zik = −1 Aik = 1 Aik = −1

Zik = 1 Aik = −1 Aik = 1

Table 2.8: Contingency table describing the effect of autocorrelation.

In case of the parametric approach, one can include additional lags into

the autocorrelation structure. In this nonparametric, state-based approach,

it is also possible to include additional states. Assuming we find significant

autocorrelation probability in the above-described first step, we can check

for additional autocorrelation by adding an additional states. For example,

we may ask if

p(Zik = 1|Y U
ik−1 = 0, Y U

ik−2 = 0)
?
= p(Zik = 1|Y U

ik−1 = 0, Y U
ik−2 = 1)? (2.29)
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The null hypothesis in this case would state that once we have controlled for

the immediate history of the process by controlling for Y U
ik−1, the additional

history represented by Y U
ik−2 = 0 does not affect the next boundary crossing

probabilities significantly, while the alternative hypothesis would state that

the additional history is of importance.

Finally, let us discuss how to combine the effect of the process’s

immediate and full history. More precisely, let us assume that we have

found significant autocorrelation probability in the first state but did not

find a significant relationship in the second state. Table 2.9 summarizes the

potential states for this case.

Cumulative Upper minus Lower Crossing

Y D
ik−1 < 0 Y D

ik−1 = 0 0 < Y D
ik−1

Zik = −1 C1
ik = −1 C1

ik = 1

Zik = 1 C1
ik = 1 C1

ik = −1
Y U
ik−1 = 0

Zik = −1 C2
ik = −1 C2

ik = 1

Next

Boundary

Crossing

Event Zik = 1 C2
ik = 1

Non

Informative

C2
ik = 1

Y U
ik−1 = 1

Previous

Boundary

Crossing

Event

Table 2.9: Contingency table describing the logic of the BCC unit root test

in case of autocorrelation.

The remaining steps are almost identical to what has been described

above for the case of no autocorrelation. The null hypothesis states that:

H0 : p(C1
ik = 1) + p(C2

ik = 1) = p(C1
ik = −1) + p(C2

ik = −1), (2.30)

while alternative hypothesis states that

H1 : p(C1
ik = 1) + p(C2

ik = 1) > p(C1
ik = −1) + p(C2

ik = −1). (2.31)

In case of cross-sectionally independent error terms, the distribution of the

test statistics can be calculated by using the fact that the sum of two
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binomial distributions is also binomial. In case of cross-sectional dependence,

the simulation-based methods can be used. Further elaborating on the

method outlined above is well beyond the scope of our paper. At this stage,

we can conclude that potentially, we can adjust for autocorrelation in a

nonparametric manner as well.

2.5.4 Large Sample Properties

Here, we briefly discuss the large sample properties of the BCC test under

the assumptions stated in the second section. The structure of the problem in

our case differs, to a certain extent, from a typical asymptotic analysis. Here,

the properties of test statistics depend basically on the number of restarts,

that is on the number of Bernoulli trials, which only indirectly depends on

the sample size of the original data.

Fundamentally, we analyze the data in two steps. The first step is

to characterize the original data using boundary crossing events. This step

converts the original data (having some unknown distribution) to random

variables having Bernoulli distribution. The second step is to estimate the

convergence probabilities based on the resampled data.

The properties of this second-step estimator depend on the properties

of the boundary crossing events, namely, on its dependence structure and on

its sample size. These properties, in turn, depend both on the original data

as well as on the counting procedure, specifically on how the boundaries are

selected and how the counting is carried out. The structure of the problem

is summarized in Table 2.10.

Let us begin by the first case, when the error terms in Equation (2.1)

are independent. In this case, the necessary condition for consistency requires

that the resampled data’s sample size converges in probability to infinity
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Original DGP Counting BC events Estimator

of p(Cik = 1)Sample

size

Dep.

of uit
Restart Boundaries

Sample

size

Dep.

of Cik

1
T →∞

or N →∞
Ind. Full Constant BT →∞ Ind. Consistent

2
T →∞ and

N is finite

Strong

crosss-dep.
Full Constant BT →∞ Dep.

Consistent, as

dep. LLN applies

3
T →∞ and

N is finite

Strong

cross-dep.
Rand. Constant BT →∞ Ind. Consistent

4
N →∞

and T is finite

Strong

cross-dep.
Full Constant BT →∞ Dep.

Not consistent, dep.

LLN does not apply

5
N →∞

and T is finite

Strong

cross-dep.
Rand. Constant BT is finite Ind.

Not consistent,

sample size is finite

6
N →∞

and T is finite

Weak

cross-dep.
Full Constant BT →∞ Dep.

Consistent,

as dep. LLN applies

7 T,N finite Ind. Full b→∞ BT →∞ Ind.
Probably

inconsistent

Table 2.10: What drives the large sample properties of the BCC test?

when the underlying data converges to infinity. This is ensured if the

probability of observing a boundary crossing event is positive and either

N → +∞ and T is finite, or T → +∞ and N is finite, finally when N → +∞

and T → +∞ regardless of how N/T behaves.

There are basically two methods to deal with the problem of

cross-dependence. The first method (cases 2, 4 and 6 in Table 2.10) is to

carry out the counting the usual way, that is to restart the counting process

immediately after the boundary crossing event has been observed. As a result,

the resampled data will consist of dependent Bernoulli trials. The consistency

of the convergence probability estimator in this case depends on whether the
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law of dependent large number applies, or not.

While, in a way, independence is unique, dependence comes in many

different forms. Consequently, there are many different dependent LLNs, as

found in Andrews (1988), Hansen (1991) or De Jong (1995). The fundamental

idea behind these theorems is essentially very similar: if the dependence

between the observations decrease sufficiently quickly as the distance between

them increases then the LLN applies.

Such a decrease in dependency occurs in the second case due to

the increasing time-distance and in case 6 when the error terms are by

definition weak-dependent. This latter case may be used to model spatial

dependence when the dependence between the cross-sections decreases as

physical distance increases. On the other hand, the law of dependent LLN

would probably not apply in case 4 when there is strong cross-dependence.

Such strong cross-dependence may arise as a result of common unobserved

factors.

So far, we have used general dependent LLN. Alternatively, it may

be possible to make use of the specific law of large numbers for dependent

Bernoulli trials. To our knowledge, such law does not exists under general

specification, but special models have been analyzed. For example, James

et al. (2008) examines a special case when the success probability of the

trials is conditioned on the total number of successes achieved up to that

point. Unfortunately, this model cannot be directly adapted to the case of

BCC test as the counting procedure induces effects which are not captured by

this model. Yet, a more general model along these lines may provide further

insights on the large sample properties in the future.

The second method to deal with cross-dependence, shown as case 3 and

5 of Table 2.10, is to alter the counting procedure in a way that the resulting
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counting events consist of independent Bernoulli trials. The idea is as follows:

• Start the counting procedure at the first cross section.

• Assuming that we observe a boundary crossing event in time T ∗1 , we

do not restart the procedure for this cross-section but continue the

counting on the next cross section. More precisely, we continue the

counting on X̃2t =
∑t

j=T ∗1 +1 ∆X2j.

• Likewise, each time we observe a boundary crossing event, the counting

continues in the next cross section. Naturally, if the number of cross

sections are finite and the counting on the last cross section is finished,

then the counting continues in the first cross section again.

• Finally, if we do not observe boundary crossing for some cross-section,

the counting also continues in the next cross section. Simply, such cross

sections are ignored.

This procedure re-establishes the independence of the Bernoulli trials as

the resampled variables are calculated based on observations which come

from different time-periods and hence which are independent. Therefore, the

only remaining necessary condition for consistency is to make sure that the

counting does not stop so that the sample size of the resampled data goes to

infinity as the sample size of the original data goes to infinity. This condition

holds for example in case 3 but does not hold in case 5, when the time

dimension is not sufficiently large.

Finally, let us examine case 7, which is interesting from a theoretical

point of view. In this case, the sample size in the original data is finite, but

b → 0 where Ui = b × σi and Li = −Ui. First of all, in order to be able

to carry out the counting, we would need to assume that the underlying
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DGP is continuous from which we can obtain an infinitely fine sample. The

dilemma is as follows. If b→ 0, then the conjecture10 is that the sample size

of the resampled data goes to infinity. Thus, we would be able to estimate

the convergence probability with arbitrary precision. Such precision would

contradict statistical intuition, as it is unlikely that the limitation posed by

the lengths of the observation period could be overcome by resampling.

2.6 Conclusion

In this paper, we introduce and analyze a new unit root test which is based

on counting boundary crossing events. We detail two versions of the test. The

first is designed for cross-sectionally independent panel data. The second is

able to take into account cross-sectional dependence as well. Our Monte Carlo

studies find that in small samples, the proposed tests are more powerful than

existing unit root tests in cases where the error term has t-distribution.

During the analysis, we identified two opportunities for further

improvements. First of all, our method can very well be combined with

principle component analysis. Also, the method for choosing boundaries

may be improved further. These ideas may be pursued further in additional

papers.

10In order to verify this hypothesis, the first step would be to examine the limit of the

first exit time distribution as the boundary goes to zero. The limiting function is likely

to be similar to the Dirac delta function. The second step would be to show that the

sample size of the resampled data converge in probability to infinity for any finite T ,

which would follow from the fact that boundary crossing counting distribution essentially

involves repeated convolutions as discussed in the first chapter.

83

C
E

U
eT

D
C

ol
le

ct
io

n



DOI: 10.14754/CEU.2016.01

Chapter 3

Portfolio Choice Without

Distributional Assumptions

Using Boundary Crossing

Counts

Abstract

We solve the portfolio choice problem without distributional assumptions

by extending the use of state-dependent rebalancing to nonparametric

settings. We propose a specific, state-dependent rebalancing and show how it

is related to the Kelly criterion. Under this rebalancing, the full distribution

of the portfolio’s terminal value can be approximated by a well-behaving,

discrete, probability distribution based boundary crossings. When applied

to parametric specifications under transaction costs, the method replicates

the baseline results of the geometric Brownian motion. As for nonparametric

applications, first, we show that the log-optimal allocation in the USA was a

leveraged purchase, next we find that leveraged returns were significantly
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different in various epochs. We conclude by explaining how this newly

proposed method can be used for density forecast.

3.1 Introduction

The optimal portfolio choice is an important problem for theoreticians, for

financial practitioners as well as for any non-professional with an investment

decision to make. The history of security markets as well as the recent

financial crisis highlight the importance of relying on robust assumptions

and techniques when dealing with financial markets.

In this chapter, we discuss how to solve the portfolio choice problem

without assuming a parametric process for the returns of the assets. We

exogenously assume a specific, state-dependent, constant, double boundary

based rebalancing mechanism similar in spirit to the one used in the literature

on optimal inattention and transaction costs.1 Then, we show that finding

the optimal strategy within this family needs only the characterization of

the portfolio’s boundary crossing probability and frequencies. The terminal

value’s distribution can be characterized by a well-behaving, discrete,

probability distribution called boundary crossing counting distribution.

Finally, we find the optimal trading strategy within this family using this

distribution.

Our focus is to find the optimal portfolio weights without assuming

a parametric process for the returns. Hence, we do not analyze rebalancing

behavior in detail. Rebalancing is exogenous in our model: we assume a

constant, double boundary based rebalancing, which may or may not be

1Optimal inattention originates from Baumol (1952) and Tobin (1956), their method

was later was taken up in the literature on transaction costs starting by Constantinides

(1986) and Dumas and Luciano (1991).
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optimal. Also, we exogenously assume that the entire portfolio is rebalanced

at the same time, when the change in the portfolio’s value since the last

rebalancing reaches some pre-defined, critical level. We provide a heuristic

argument for selecting the optimal portfolio weights from a pre-defined set of

options given this rebalancing rule if the returns are nonparametric, defined

by data, and investor’s utility is either constant relative risk aversion, CRRA,

or logarithmic, potentially constrained by the VAR of the terminal value.

The proposed approach has several advantages. As we discuss later,

boundary crossing counting distributions can be estimated directly from

data, therefore we can derive the optimal portfolio weights directly, without

parametric assumptions on the returns. Consequently, we can incorporate

many features typical of financial data, such as fat tails. Moreover, besides

finding the optimal portfolio, we can also characterize its evaluation in time

through density forecasts as we characterize the portfolio’s full distribution,

not only its expected value. Consequently, we can also calculate value at risk,

VAR, limits directly from data, without simulations. Finally, we can easily

deal with important practical issues, such as transaction costs, the issue of

ruin conditions for leveraged positions, or the cost of margin financing. In

particular, under certain not very restrictive assumptions, the method allows

us to analyze leveraged positions and short-selling in discrete time under

zero ruin probability. This is especially important for today’s economy since

economic conditions have led to a record-high level in margin loans in the

USA. It appears that many investors choose to hold leveraged positions.

Our approach has certain limitations. First of all, we implicitly assume

that prices are continuous, therefore at this stage we do not allow for

discontinuities. Also, by assuming that the portfolio can be rebalanced at
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the boundaries, we essentially abstract away from execution risk.2

The specific, state-dependent rebalancing we propose shows that the

Kelly criterion and the Merton’s model essentially differ only in how

they model rebalancing. Moreover, our method has both analytical and

nonparametric applications. As for the former, we solve for the optimal

portfolio under geometric Brownian motion analytically, without simulations,

so as to find that results are similar to the baseline model of continuous

rebalancing. Therefore, we gain more flexibility without losing the insights

provided by the simpler approach. As for the latter, we show that the

profitability of leveraged positions differs in the various epochs of the stock

market in the USA. There are expansion and consolidation periods. In the

former, leveraged positions are profitable and the log-optimal investment is

a leveraged purchase. In the latter, the log-optimal allocation is close to the

buy and hold strategy. The difference in the leveraged positions’ profitability

between these periods is closed to being statistically significant.

In the literature on optimal portfolio choice, authors often begin by

specifying and estimating a parametric model for the returns. We choose to

avoid this step as it has been proven notoriously difficult to come up with

an accurate parametric model.3 Parametric specifications usually describe

the asset’s returns almost everywhere, while we focus only on those points

which drive the terminal value’s distribution and these points do not require

2 Incorporating discontinuities as well as execution risk is possible, yet would induce

additional complexities and we do not see the benefit of going down this path at this stage.
3Classical papers such as Markowitz (1952), Merton (1969), Merton (1971), Samuelson

(1969), Malkiel and Fama (1970), often assume that prices follow a geometric Brownian

motion and abstract away from financial frictions. The GBM hypothesis is often rejected

by the data as discussed by Lo and MacKinlay (1999), by Cont (2001) or by Campbell

and Thompson (2008).
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a parametric specification.

The closest approach to ours is the one described in the paper of

Dumas and Luciano (1991) which, under a different specification including

only two assets and a parametric specification for the return process, shows

that if the portfolio is rebalanced each time the ratio of the risk-free and

the risky asset falls below or exceeds the optimally chosen boundaries, then

it is optimal to choose fixed boundaries. They also provide a heuristic

argument for determining the level of these fixed boundaries. A similar

state-dependent mechanism was applied by Balduzzi and Lynch (2000), who

show that if we take into account predictability and heteroscedasticity, then

the optimal boundaries are no longer constant. Also, under another, fairly

different, set of assumptions including dynamic consumption and rebalancing

between transaction accounts and investments, Abel et al. (2013) discuss the

merits of time-dependent versus state-dependent rebalancing. As pointed

out by Dumas and Luciano, and elaborated further by Buss and Dumas

(2013), many of these models suffer from a logical quasi-inconsistency as they

assume an exogenous process (geometric Brownian motion which is an infinite

variation process) which is inconsistent with the optimization problem itself:

it is not clear how a universe populated by participants trading based on

state-dependent rules would result in such an infinite variation process. As

we solve the problem without the GBM assumption, this quasi-inconsistency

does not directly apply to our case.

Nonparametric studies rely on time-dependent adjustment, such as

Brandt (1999), Brandt (2003) or the universal portfolio approach invented

by Cover (1991), which has been extended, for example, by Blum and Kalai

(1999) to be able to incorporate transaction costs, and further explored by

Gyorfi and Vajda (2008) and by Horváth and Urbán (2011). State dependent
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adjustment, up to our knowledge, has only been used in parametric studies.

Here, we extend the use of state-dependent rebalancing to nonparametric

specifications.

The chapter is structured as follows. The second section begins by

describing the portfolio choice problems under infrequent adjustment. Next,

we explain how to use boundary crossing counting processes (BCC processes)

to characterize these problems. We begin the application by solving the

well-known problem of simple portfolio choice under geometric Brownian

motion analytically, without simulations. Here, we also compare ours to the

standard solution. Next, we continue with the nonparametric specifications

where we assume that the data generating process is well represented by the

historical data of the USA. Thereafter, we discuss some additional technical

details. Finally, the last section provides a balanced conclusion.

3.2 Rebalancing and BCC Distributions

In this section, we discuss how to solve the optimal portfolio choice

under infrequent adjustment assuming a specific, state dependent, boundary

crossing based rebalancing mechanism. After writing up the problem

generally, we reformulate and solve it using boundary crossing counting

processes.
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3.2.1 Portfolio Choice Under Infrequent Adjustment

Under general settings, the optimal portfolio choice problem entails searching

for the expected utility maximizing portfolio weights.

max
W

E(U(VT (W,P )))

where wit =
qit × pit
Vt

,
N∑
i=1

wit = 1 for every t.
(3.1)

where N is the number of securities, T is the investment horizon, W is a

T × N matrix of the portfolio weights, wit ∈ W is a weight of a security i

in time t, E(.) indicates the expected value, U(.) is a non-path dependent

utility function, VT is the portfolio’s terminal value, P is a T ×N matrix of

the security prices, pit ∈ P is a price of a security i at time t and finally qit

indicates quantity, that is the number of shares held in the portfolio security

i in time t. The weights, unless wit = 1 or 0 for any t, are typically not

constant in time. Hence, controlling for portfolio weights involves changing

the quantities.

This act is typically referred to as rebalancing which may be continuous

or infrequent. The former assumes that quantities are changed continuously

in such a way which keeps the weights constant. Most of the papers in the

field including both the mean-variance paradigm of Markowitz (1952) and the

continuous time approach based on Bellman equation starting from Merton

(1969), Merton (1971) and Samuelson (1969) take this path. Continuous

rebalancing may be problematic in the presence of transaction costs as pricing

processes are typically assumed to have infinite variations, hence even a small

proportional transaction cost would result in infinite costs over any finite

interval. Besides, securities are traded in discrete quantities in the exchanges,

prices are discrete and evaluation of the historical performance is based on

discrete observations.
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Models of infrequent rebalancing can make up for some of these

weaknesses. These mechanisms are often characterized as time-dependent

or state-dependent. Both approaches can be described in the language

of boundary crossing. Since rebalancing is infrequent, quantities are only

adjusted occasionally, each time some rebalancing signal4 X∗it crosses either

an upper or a lower boundary.

In the case of time-dependent rebalancing, the rebalancing signal is

chosen to be the economic time5, X∗it = teconomic, and the upper boundary is

an exogenously selected constant, for example one day in case of analyzing

daily data. Also, rebalancing is typically simultaneous, X∗it = X∗jt. The lower

boundary does not play a role as economic time is a non-decreasing function

of time, hence it can be an arbitrarily negative number.

In the state-dependent case, the rebalancing signal differs from

application to application. In case of optimal portfolio choice, Dumas and

Luciano (1991) for example propose to rebalance based on the ratio of the

risk-free asset and risky asset. A similar problem arises in case of modeling

delta hedge in option pricing. Authors, for example Martellini and Priaulet

(2002), typically propose to rebalance based on the option’s delta.

In portfolio choice, time-dependent rebalancing is problematic for

various reasons. First of all, portfolios including leveraged positions or

short-selling are inadmissible over any discrete time interval if the underlying

distribution describing the price change is unbounded as the possibility that

prices drop arbitrarily close to zero in case of leveraged purchase or rise

arbitrarily high in case of short-selling implies a positive probability that an

investor cannot repay the loan. As bankruptcy would imply infinite disutility

4Note that the rebalancing signal is essentially a restarted process.
5The time passed between Friday and Monday is typically assumed to be equal to the

time passed between Monday and Tuesday.
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under many commonly used utility functions, such as CRRA utility or

log-utility, investors will not choose such positions under these assumptions.

If we want to model market participants who do choose to take leveraged

positions or to sell short, then either we have to restrict the underlying

distribution to be bounded, introduce some kind of insurance against ruin

events or abandon time-dependent rebalancing altogether.

Moreover, the optimal behavior of an investor facing transaction

costs is mostly state-dependent, therefore time-dependent rebalancing may

overestimate transaction costs. Finally, under time-dependent adjustment,

transaction costs introduce path-dependence, therefore, even if one finds

the optimal allocation, it is challenging to characterize the portfolio’s full

distribution.

The state-dependent rebalancing mechanism we propose overcomes

many of these issues. First, by assuming away from potential liquidity

constrains and price-discontinuities, we can establish no-ruin conditions

for any finite weights. As for transaction costs, the optimal behavior

under parametric specification is mostly state-dependent. Assuming that the

insights of the parametric case carries over to nonparametric specifications,

we can probably get closer to the optimal case using state-dependent

rebalancing strategies. Finally, as we describe the portfolio’s value with a

single discrete stochastic variable, we are able to characterize the optimal

portfolio’s full distribution. Consequently, we can carry out statistical

inference or create nonparametric density forecasts.

3.2.2 Rebalancing Based on the Portfolio’s Value

We begin by describing a rebalancing scheme based on the change in the

portfolio’s value, similar in spirit but different in focus to the one used in
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the literature on optimal inattention. We assume that the entire portfolio is

rebalanced at once, when the cumulative change in the portfolio’s value since

the last rebalancing reaches some critical level.

X∗t =
V ′t∗+t′

Vt∗∈TA

=

GU for upper crossings

GL for lower crossings

(3.2)

Also, we assume that boundaries are constant6, GU > 1 and 0 < GL < 1. In

the formula above, as well as in the rest of the chapter, we need to differentiate

between four different types of “time”:

1. First, t indicates time in general, the economic time as it is normally

used.

2. Next, t∗ ∈ TA indicates the boundary crossing moments.

3. Moreover, t
′
indicates the time passed since the last boundary crossing,

t
′
= t−max(t∗).

4. Finally, T ∈ TA indicates the investment horizon.

The chronology of rebalancing is as follows. At some time t, the rebalancing

signal, X∗t , reaches the critical level. The portfolio is rebalanced at t+ε, where

ε is sufficiently small so that Pt+ε ≈ Pt. Overall, the rebalancing occurs almost

instantaneously. Thus, some ε time after the rebalancing event, the portfolio

is perfectly balanced and the value of the rebalancing signal is one.

X∗t∗+ε =
Vt∗+ε
Vt∗

= 1; (3.3)

Thus, the portfolio’s value can be approximated by a step function. Or

to put it another way, this step function describes the portfolio’s value

6Consequently, all our results can be considered as a lower bound for the case of full

optimization where boundaries are non-constant.
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for an observer who only observes the portfolio’s value at rebalancing and

approximates the portfolio’s value for another observer who observes the

portfolio’s value in economic time. Since boundaries are constant, the change

Figure 3.1: Approximating the portfolio’s value by a step function using

state-dependent rebalancing. The portfolio is assumed to be rebalanced each

time the change since the last rebalancing reaches some upper or lower

boundary.

in the portfolio’s value upon boundary crossing can only take two discrete

values. Consequently, the portfolio’s terminal value at some investment

horizon T can be described as follows:

VT = V0 ×G
Y U
T
U ×G

Y L
T
L (3.4)

where V0 is the portfolio’s initial value and the stochastic elements of the

problem are captured by boundary crossing counting distributions:

1. Y U
t counts the number of upper crossing events: Y U

t∗ = Y U
t∗ + 1 if X∗t∗ =

GU and X∗t∗+ε = 1.
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2. Y L
t counts the number of lower crossing events: Y L

t∗ = Y L
t∗+1 ifX∗t∗ = GL

and X∗t∗+ε = 1.

Let us introduce two additional boundary crossing counting distributions for

further use.

1. Y A
t = Y U

t + Y L
t counts the number of upper and lower crossing events,

that is it counts how many times the portfolio needs to be rebalanced

altogether.

2. Y D
t = Y U

t − Y L
t described the difference between the upper and the

lower crossing events.

Finally, Yt is used to refer to these stochastic processes at once. In this

formulation, no-ruin conditions only require finite weights for the risky assets

as VT ≥ V0 × Gk
L > 0 for any k, where k is a natural number. Without loss

of generality, we can normalize7 the initial portfolio’s value to one.

In order to finish the formulation, let us impose the G = GU = 1/GL

restriction8 on the boundaries. Also, in the rest of this chapter, we use the G

notation instead of the GU and GL when we want to emphasize that GU =

1/GL. Imposing this restriction on Equation (3.4) results in the following

expression for the portfolio’s value:

VT = GY D
T (3.5)

Here, the randomness of the problem is captured using one stochastic

7 It would also make sense to take into account the cost of entry by setting the initial

values to V0 =
∑
|wi| × (1 − tc). Here, we aim to analyze annualized returns over long

horizons, therefore we abstract away from these initial costs.
8Our rebalancing mechanism essentially allows us to use tree-based pricing similar to

the one used for pricing options. This restricting ensures that trees are recombining.
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variable. Hence, the optimization problem can be described as follows:

max
W,G,T

m∑
i=−m

P (Y D
T (W,G, T ) = i)× U(Gi) (3.6)

where m describes the precision at which the infinite sum is evaluated and

P (Y D
T (W,G, T ) = i) is the probability that Y D

T (W,G, T ) = i. We have

assumed that the investment horizon is also a decision variable9 for the sake

of completeness. Similarly to the parametric case, the optimization involves

deciding which distribution we want to sample from. Here, however, the

distribution is discrete, endogenous and it is the result of the choice on the

control variables, T , W and G.

So far, we have assumed a general utility function, There is one utility

function, the logarithmic, where the optimization is even simpler: it does

not require to know the upper minus lower crossing counting distribution.

Instead, it is sufficient to know its expected value. This is an advantage from

a statistical point of view. Due to this advantage as well as other favorable

properties10, the rest of the chapter will mainly use the logarithmic utility

as the base case. In finance, returns are mostly measured in annualized

9This possibility could for example be used to model retirement decisions.
10 Logarithmic utility is considered to be an important benchmark case having many

theoretically appealing properties as detailed by the large number of papers starting from

Kelly (1956), and Breiman (1961), reviewed recently for example by Christensen (2005) or

in MacLean et al. (2011). In particular it has been shown by Breiman (1961) and by Long

(1990) that there exists a portfolio (growth-optimal portfolio or numeraire portfolio or

log optimal portfolio) for which the price of any other portfolio denominated in the price

of the growth-optimal portfolio becomes supermartingale. Furthermore, growth-optimal

strategy maximizes the probability that the portfolio is more valuable than any other

portfolio, therefore has a certain selective advantage as detailed by Latane (1959). Among

all admissible portfolios, the growth-optimal portfolio minimizes the expected time needed

to reach, for the first time, any predetermined constant as shown by Merton and Samuelson

(1992). If claims are discounted using the growth-optimal portfolio, then expectation needs
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growth rate for convenience. Therefore, the baseline optimization problem

is as follows:

max
Wt

(
E(

log(VT )

T
) = E(rT ) = E(

Y D
T

T
)× log(G)

)
(3.7)

where rT is the annualized growth rate. Furthermore, the expected value

of the portfolio’s return can be expressed as follows.

E(
Y D
T

T
)× log(G)) =

n

T
E(
Y A
T

n
(
Y U

Y A
− Y L

Y A
))× log(G) (3.8)

where n is the sample size, T is the holding period. For example, when

analyzing a 10 year investment using daily data, n = 2520 and T = 10. By

letting q = E(Y
A

N
) be the frequency of boundary crossing and letting p =

E(Y
U

Y A ) be the probability of upper crossing, Equation(3.8) can be rewritten

as follows.

E(rT ) =
n

T
× q × (2p− 1)︸ ︷︷ ︸

Kelly−ratio

× log(G) (3.9)

This formulation connects the gambling literature’s well-known formula of

Kelly (1956), also discussed in more detail in Poundstone (2010), with the

portfolio choice literature.

The intuition of the formulation above can be understood by

considering the following analogy. The investor walks in to a casino where

there are a large number of different tables each offering the option of

doubling or losing the initial bet. These tables differ in three aspects:

• The speed at which the game is played which corresponds to q,

to be taken with respect to historical probability measures as explained in Long (1990)

or Bajeux Besnainou and Portait (1997) therefore these portfolios may provide a unifying

framework for asset prices as shown by Platen (2006).
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• the probability of winning, represented by p,

• and finally the amount of stake required, which is log(G) in our

formulation.

At which table will the log-optimal investor sit? Regardless of the table

chosen, the optimal bet for p > 0.5 is (2p− 1), the amount to win or lose at

each round is log(G). The games, in average, are repeated n× q times. Since

the investor has only a limited amount of time to play, which corresponds

to the investment horizon, T , he will choose the table at which the expected

amount of gain combining these three factors is at its maximum.

Accordingly, the Kelly criterion and Merton’s classical solution for

the optimal portfolio choice under logarithmic utility essentially differs in

the rebalancing behavior. The former assumes infrequent, state-dependent

rebalancing while the latter operates with continuous rebalancing. Hence, our

approach allows us to represent the portfolio choice problem as a repeated

game, and this allows us to solve the problem without having to build a

parametric model for the asset returns.

Overall, we have shown that if we can obtain the boundary crossing

counting distribution, which is discussed in detail in the previous chapter,

then we can also solve the optimal portfolio choice without assuming a

parametric process for the returns.

3.3 Applications

In this section, we consider the case of optimal portfolio choice with two asset

classes. We begin by analytically solving the simple portfolio choice when

there is only one single risky asset whose price follows geometric Brownian

motion (GBM), and a single composite (risk-free) asset which does not pay
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interest. Besides being a frequently used pricing model, the GBM is a good

starting point as it has analytical solutions for both the newly introduced

boundary crossing based rebalancing as well as for the standard continuous

case, which is very helpful in validating our method. We continue with the

nonparametric case where we analyze the profitability of leveraged positions

in the various epochs of the USA.

3.3.1 Analytical Solutions for Simple Portfolio Choice

Under Transaction Cost and Geometric Brownian

Motion

Obtaining an analytical solution requires a simplifying assumption: In order

to be able to work with constant boundaries, we abstract away from the

interest paid on the risk-free asset. Moreover, we define the counting process

over log(XGBM
t ), that is X∗t (log(XGBM

t ), U, L, 0)). For constant boundaries

over Brownian motion, the first exit time distribution as well as the upper

crossing probability can be calculated analytically. In order to be able to

calculate the expected return, we need to express how much the portfolio’s

value changes upon boundary crossing, meaning that we need to express GU

and GL as a function of the boundaries.

The logic of the derivation is as follows. We begin by exogenously

defining the lower boundary, L. Next, we express GL from L and GU from

GL since GU = 1/GL. Finally, we express U from GU . Note that as a result of

transaction costs, the boundaries are slightly asymmetric, that is, U 6= −L.

The lower boundaries are chosen exogenously, L = 7× σ. In this case,

as shown in the appendix, the change in the portfolio’s value upon lower
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crossing can be described as follows:

GL =
1 + w × exp(L)× (1 + pct)− w

1 + w × ptc
, (3.10)

where ptc is the proportional transaction cost. Since GU = 1/GL, the change

in the portfolio’s value upon upper crossing can be described as follows:

GU =
1 + w × ptc

1 + w × exp(L)× (1 + ptc)− w
. (3.11)

Finally, the change in the portfolio’s value upon upper crossing determines

the value of the upper boundary

U = log(
(1 + w × ptc)2 − (1− w)(1 + w × exp(L)× (1 + ptc)− w)

(1 + w × exp(L)× (1 + ptc)− w)× w × (1 + ptc)
),

(3.12)

The first exit time distribution for the Brownian motion with variance

normalized to one can be obtained by substituting L and U into the formula

of Borodin and Salminen (2002):

fet(t′, L, U) = e−ms
2t′/2(emsLss(U,U−L)dt+emsUss(−L,U−L)dt′) (3.13)

where ss(.) is the theta function and ms = µ
σ
. Using Equation (3.13) and the

recursion described in Equation (1.10), we can obtain the Y A
T .

Substituting the scale function of the Brownian motion results in the

following formula for upper boundary crossing probability.

P (XBM
t∗ = U) =

1− exp(−L× 2µ
σ2 )

exp(−U × 2µ
σ2 )− exp(−L× 2µ

σ2 )
(3.14)

Using Equation(3.13) and Equation (3.14) as detailed in Equation (1.15)

and in Equation (1.16), we can characterize the upper minus lower crossing

distribution. Substituting this distribution and G from Equation (3.11) to

Equation (3.7) characterizes the solution.
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The analytical solution for logarithmic utility and continuous rebalancing

– detailed briefly in the appendix – is well-known, it is derived under more

general utility by Merton (1969) put into perspective for example, by Peters

(2011). Figure 3.2 compares the expected growth rate for BCC-based and

continuous rebalancing policies using the diffusion parameters estimated

based on the closing prices of the Dow Jones Industrial Average between

1928 and 2012 by the standard maximum likelihood method, detailed, for

example, in Gourieroux and Jasiak (2001), resulting in µML = 0.0437 and

σML = 0.1849.

Figure 3.2: Continuous and boundary crossing based rebalancing under

geometric Brownian motion. The two approaches result in an almost identical

solution in case there is no transaction cost. The BC-based approach is able

to take into account proportional transaction costs as well.

The diagram reveals little difference between the continuous and the

BCC-based rebalancing under the setup without transaction costs. Therefore,

replacing the continuous rebalancing of the Mertons model with the boundary

crossing based one ceteris-paribus does not lead to significantly different

result. Hence, the new approach keeps the intuition of the simpler model;
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results are not driven by the BCC-based rebalancing using exogenous

boundaries placed at seven standard deviation distance. This means that

we can extend the analysis to nonparametric specifications without losing

the insights provided by the simpler parametric case.

Although logarithmic form offers certain advantage in the BCC-framework,

yet the method can be adopted without much difficulty to other utility

functions as well. For example, assuming utility has CRRA form, the optimal

investment can be approximated as follows:

E(
V 1−θ
3.96

1− θ
) =

150∑
i=−150

P (Y D
T = i)× Gi×(1−θ)

1− θ
(3.15)

where θ is the risk aversion coefficient. Evaluating this equation for portfolio

weights in the [0.15, 0.25...3.75] range and selecting the weight where the

utility is at its maximum provides us with the following approximation for

optimal weight.

Rebalancing tc
Risk Aversion Coefficient

3 3.5 4 4.5 5

Continuous 0% 0.63 0.54 0.47 0.42 0.38

Infrequent,

BC-based

0% 0.65 0.55 0.45 0.45 0.35

1% 0.65 0.55 0.45 0.45 0.35

Table 3.1: Optimal portfolio weights under CRRA utility and geometric

Brownian motion for continuous and boundary crossing based rebalancing.

The two approaches result in an almost identical solution.

Once again, besides the approximation error which could be reduced

by applying a finer grid, the results under BC-rebalancing are similar

to the baseline continuous case. Transaction costs do not influence the

results significantly in this case since rebalancing is not very expensive for
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non-leveraged portfolios.

For both utility functions described above, our solution is comparable

with that of Dumas and Luciano. Both solutions are analytical yet they

provide a closed form solution while here, we provide an algorithmic

approximation. Both models assume that rebalancing is infrequent, state-based,

yet we do not assume that investors are optimally inattentive.

3.3.2 Simple Portfolio Choice Under Nonparametric

Data Generating Process

We are now in the position to discuss the optimal portfolio choice if the data

generating process is unknown but well represented by historical data. For

simplicity, we discuss the simple portfolio choice, where the DGP has two

components: for risky assets, we use the S&P500 gross total return index as

obtained from Shiller’s website for the period 1934-1988 and 1988 onwards,

we use Chicago Board of Trade’s TRI. As for the composite asset, we use the

secondary market three months treasury bill rate as obtained from FRED’s

database under ticker TB3MS as the reference rate. Naturally, we implicitly

assume that the dependence between these two assets is also well represented

by the historical DGP.

We obtained the cost of financing by an educated guess based on

Fortune (2000), Fortune (2001) papers; we assume that deposits are 10 basis

point lower than the reference rate but at least zero, borrowing costs 200

basis points above the reference rate. Regarding further data-related issues,

when combining data sampled with different frequencies, we adjust to the

highest frequency using Brownian Bridge for risky assets and step-function

for the composite assets.

Furthermore, we use logarithmic utility in this subsection. The point
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estimation is obtained using the counting estimator. Transaction costs are

assumed to be 1%. The change in the portfolio’s value upon lower crossings

are defined as follows:

GL =
1 + w × exp(7× σ)× (1 + 0.01)− w

1 + w × 0.01
(3.16)

where σ = 0.1849 is the estimated standard deviation for this period. We set

GU = 1/GL. We select the optimal portfolio weight from a predefined range

of [0.15, 0.25, ... ,5].

Diagram 3.3 shows the log-optimal allocation in major epochs of the

USA’s stock markets:

• The first epoch starts11 in 1934 and finishes with the attack on Pearl

Harbour in 1941.

• The next period finishes with Nixon’s Shock in 1971, which is often

considered as the date of abolishing the gold standard.

• The third epoch starts 1971 and finishes in 1987. This is the epoch of

consolidation characterized by the oil-price shock as well as monetary

stabilization policies.

• Finally, the last period is the modern days, which we categorize from

1987 to 2013.

Note that the years are rounded to the nearest integer when shown in

Diagram 3.3. For example, the second epoch ends on December 7, 1941,

but it is rounded and displayed as 1942.

Diagram 3.3 reveals three interesting observations. First, the GBM

under continuous rebalancing gives very similar optimal weight and returns

11We could not including the 1929 crisis because the time series for the short term rate

started in 1934.
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Figure 3.3: Log-optimal allocation (right axis) and the corresponding

annualized returns (left axis) in the various epochs of the USA’s stock market.

The lr(1) is the log return in case the weight for the risky asset is one, re is

the excess return and σML is the estimated standard deviation. Also, w* is

the optimal weight and lr(w*) is the log-optimal return. Finally, ptc is the

proportional transaction cost and mf is the cost of margin financing. The

data between 1934 and 1987 is from Shiller which has monthly frequency.

The data from 1987 onwards is from CBOT which has daily frequency. The

years are rounded to the nearest integer. For example, the second period

starts on December 7, 1941, but it is rounded and displayed as 1942.

as the nonparametric BCC with 1% transaction cost. It appears that despite

its simplicity, the GBM model operates reasonably well. Also, relatively large

transaction costs are needed to deviate the optimal weight considerably from

those of the baseline GBM model. Second, the profitability of leveraged
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positions varies greatly in the different epochs. There are periods, the pre-war

period and the consolidation period, when leveraged positions are not very

profitable and the log-optimal allocation is close to the w = 1 strategy.

There are also expansion periods, when leveraged positions are profitable

and the log-optimal investment involves extensive use of leverage. Third,

the leveraged returns in some of these epochs appear to be higher than one

would expect. For instance, between 1942 and 1971, over 20% annual return12

prevailed for almost 30 years. Therefore, leveraged equity investments appear

to be “too profitable.”

How do these findings fit into the literature? Some authors argue that

the log-optimal portfolio weight for the risky asset should be close to one.

For example Peters (2011) argues that “it is unlikely that the simple strategy

of borrowing money and investing it in the S&P500 would outperform the

market. It is equally unlikely that investing only part of ones money in the

S&P500 would outperform the market.” Yet, we show that in certain epochs,

leveraged returns outperform the market even after taking into account

transaction costs as well as the cost of margin financing.

Our findings are similar in spirit to those of the equity premium

literature which originates from Mehra and Prescott (1985). There are

however some technical differences in measurement. The equity premium

literature typically compares the real return on the market index to the

risk-free returns. Here, we compare the log-optimal and the market returns.

Based on the results of the equity premium literature, our findings are

somewhat less surprising. It is actually reasonable that if equity premium

12George Soros, considered to be among one of the most successful hedge-fund

managers, returned roughly 20% return to investors annually, according to internet sources:

http://www.investopedia.com/financial-edge/0912/buffet-vs.-soros-investment-strategies.aspx.
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exists then leveraged equity investments are more profitable than one would

expect but only to a certain degree.

Authors suggest many explanations on why equity premium prevails, as

summarized in Mehra and Prescott (2003). The closest in spirit to what one

sees in Diagram 3.3 are those articles which emphasize the difference between

ex-ante and ex-post measurements. The equity premium as well as the

log-optimal weight and the corresponding returns are ex-post measurements

while only ex-ante difference would be truly puzzling. Indeed, Fama and

French (2002) found that the average returns were higher than expected in

the second half of the twentieth century.

Why do ex-ante and ex-post figures differ? Stock prices are under

several types of risk, namely diffusion risk, jump risk and the risk of

parameter uncertainty. It has been shown by Santa-Clara and Yan (2010)

using option-price implied risk and Gabaix (2012) using calibrated macro

model that unrealized events, jumps or disasters, which could have happened

but did not happen may cause such a difference.

The next section investigates whether the profitability of diversified

investments is constant in time or not. In other words, we test for structural

breaks. The existence of such breaks would explain why an unexpectedly

high ex-post leveraged return can prevail for an extended period of time.

If structural breaks create different regimes and if investors do not know

in advance which regime will emerge in the future, then the ex-post

measurement does not reflect the regime uncertainty. Consequently, ex-post

figures such as the one analyzed in the equity premium literature or the one

described in Diagram 3.3 may be higher than one would expect.

In particular, we analyze whether the profitability between the

second period is different to the other periods. Under the null hypothesis,
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investments in the period between 1942 and 1971 did not have significantly

higher returns. Under the alternative hypothesis, investments in this period

had significantly higher returns. Since the annualized growth rates are not

invariant to the portfolio weights, we carry out the tests under two different

set of weights. The mechanism13 for calculating the test statistics is as follows.

1. Based on the observations ranging from 1934 to 1942 and from 1971

to 2014, we estimate the full distribution of the annualized log returns

for a holding period of 29.58 years using the method outlined in the

first chapter under the subsection “Recursive estimation using first

exit time distribution.” Specifically, we first estimate the first exit

time distribution and the upper crossing probability from the data.

We next obtain the upper and lower crossing distribution. Finally, we

obtain the annualized log returns from the upper minus lower crossing

distribution.

2. Next, we calculate the probability that the annualized returns observed

in the second period come from this distribution.

3. Finally, we reject the null hypothesis if the p-values calculated in the

previous step are lower 0.05.

The results in Figure 3.4 reveal that returns on leveraged investments

in the second period, between 1942 and 1971, are likely to be significantly

higher than in the complementary periods. Hence, investors are likely to

face regime-switching risk. This may explain why ex-post leverage premium

prevails for an extended period of time. Indeed, it has been shown for example

by Maenhout (2004) that ex-ante demand for a robust investor who also takes

13This mechanism was greatly improved based on the review of Timo Teräsvirta.
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Figure 3.4: Testing the null hypothesis of no structural breaks in the USA

stock market. The distribution is calculated based on the data between 1934

and 1942 and between 1971 and 2013. The point estimation is calculated

based on the data between 1942 and 1971. The null hypothesis assumes that

the observed log-returns between 1942 and 1971 come from this distribution.

The null hypothesis is rejected at 5.0% significance level.

into account the risk of parameter uncertainty is significantly lower than the

ex-post demand under no parameter uncertainty.

Table 3.2 below shows how the choice of the parameters influences these

results.

From Table 3.2, it is clear that only leveraged returns have been

significantly higher which essentially implies that the excess return over the

risk-free rate were significantly higher. Naturally, further investigation would

be needed to identify the source of the differences in the ex-post returns.

Here, we only have space to mention a few possible explanations. The lower

returns of the pre-war period may be explained by the stock market crash of

1929. Basically, the public may have lost interest14 in investments. The high

14Historical records characterize this period as “boring.” It is interesting to notice that

Jesse Lauriston Livermore, the famous speculator committed suicide in the pre-war period,

in 1940.
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w L U p-value

1.85 -4 4 0.8%

1.85 -5 5 1.2%

1.85 -6 6 1.7%

0.55 -4 4 21.7%

0.55 -5 5 12.8%

0.55 -6 6 13.8%

Table 3.2: Sensitivity analysis for the test on structural breaks in financial

data. Regardless of how boundaries are chosen, the null hypothesis of no

structural breaks is rejected for leveraged positions. On the other hand, the

null hypothesis cannot be rejected for a conservative portfolio where the

weight of the risky asset is 0.55. Hence, it is the excess return which was

significantly higher between 1942 and 1971.

returns of the war and the post war period may be explained by favorable

real economic conditions such as high GDP growth, low unemployment and

low inflation.

It may also be the case that the relatively high log-optimal returns

between 1942 and 1971 was a one time event. It may have been the

result of credit constraints and it is possible that due to the lack of

financial infrastructure, companies could not obtain an optimal financial

structure. Hence, investors could gain from leveraging. As a result of financial

innovation, the introduction of high-yield bonds, etc., this imperfection has

been eliminated. This possibility is somewhat supported by for example

Saretto and Tookes (2013), who show that companies with traded CDS

contracts on their debt are able to maintain higher leverage ratios.
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3.3.3 Extension: Nonparametric Density Forecast

Since the BCC technique allows us to describe the complete distribution of

the portfolio’s value, not just its expected value, and we are also capable of

producing density forecasts. Moreover, our method does not suffer from some

of the commonly encountered density forecast pitfalls. In particular, we do

not need to assume Gaussian innovations. Also, we do not need to capture

the dependence between the returns with simplified models. The following

diagram shows how an unleveraged, conservative portfolio’s density evolves

in time.

Figure 3.5: Density forecast for non-leveraged allocation if the

data-generating process is as the S&P total return index between 1934 and

2013.

This diagram complements the debate on whether the optimal fraction

of wealth invested into stocks is horizon-dependent or not. For the

conservative portfolio shown in the diagram above, the probability of not

recovering the investment at least in nominal term decreases in time.

For more leveraged allocation, it may not be the case. Overall, there

are downside decreasing and downside increasing allocations. Hence, if

an investor’s preference includes downside risk, which is highly possible

otherwise guaranteed investment funds would not be so popular, then
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investment rules are horizon-dependent.

This observation is in line with common wisdom, described by Malkiel

and Fama (1970), which states that the broker’s typical recommendation

is a horizon-dependent one: “The longer period over which you can hold

on to your investment, the greater should be the share of common stocks

in your portfolio“. Early academic papers such as Samuelson (1969) and

Merton (1971) have often derived horizon-independent rules which go against

this common wisdom. Consequently, authors, for example Brennan et al.

(1997), Liu and Loewenstein (2002), Cocco et al. (2005), Brandt (2009),

finally Wachter and Yogo (2010), proposed many adjustments to these

early models, such as time-varying investment opportunities, time-varying

parameters, transaction costs, borrowing constrains and human capital,

predictability of dividend’s growth or heterogeneity in wealth in order to

explain horizon-dependence.

Here, we complement these findings by noticing the difference in the

downside risk’s evolution: in order to explain horizon-dependence, it is

sufficient to assume that older investors are more concerned with preserving

their wealth, at least in nominal terms, and put more emphasise on downside

risk, while younger investors are more focused on the potential upside.

Besides noticing this fact, we also provide a method to solve such problems.

Figure 3.5 also explains why one may argue that long-run investments

are less risky. Risk is often measured as the portfolio’s standard deviation

which indeed increases over time. However, if we choose to measure risk with

some other measures, for example by the probability that the investment

does not lose value, at least in nominal terms, then the risk may indeed be

decreasing over time. Overall, the answer depends on how we measure risk.
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3.4 Discussion

Here, we discuss some additional details. First, we briefly discuss volatility

clustering before outlining the logic of optimization under nonparametric

DGP.

3.4.1 Volatility Clustering

At this stage, we solve the problem without explicitly considering volatility

clustering. Our method however could be used to solve the portfolio choice

problem under volatility clustering which may be covered in a separate paper.

The main idea is as follows.

Similarly to conditional/unconditional volatility, one can differentiate

between conditional upper crossing probabilities and unconditional upper

crossing probabilities. Conditional upper crossing probabilities (which could

be used to obtain conditional portfolio weights) are not constant in time.

This is due to conditional heteroscedasticity, in high volatility periods,

upper crossing probabilities are lower as described in Equation (3.17) and

in Equation (3.18). Hence, conditional optimal portfolio weights are not

constant either.

More specifically, optimal conditional portfolio weights in high-volatility

periods are likely to be lower than the average. Likewise, the optimal portfolio

weights are likely to be higher than average in low volatility periods. I will

try to confirm this hypothesis in a separate paper.

3.4.2 Factors Affecting the Optimization

In our formulation, the randomness of the problem is captured by the upper

minus lower crossing distribution. The optimization takes into account three
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factors: the investment horizon, the exposure to risky asset(s) and boundary

selection. The remainder of this section illustrates the role of these factors

for simple portfolio choice, when the risk-free asset does not pay interest, the

investment horizon is approximately 4 years (1000 observations) and finally

the risky asset’s data generating process (further referred as DGP) is the

geometric Brownian motion (GBM) with annualized moments of µ = 0.0642

and σ = 0.1849, which also implies, as we shall see later, that p > 0.5.

Investment horizon

The effect of ceteris paribus changing the investment horizon is trivial.

The number of boundary crossing events increases, while the upper boundary

crossing probability is unaffected. Consequently, the distribution of the

terminal value shifts right in time, and widens.

Exposure to risky asset

The effect of increasing exposure to risky asset is similar yet ceteris

paribus increasing exposure not only increases the number of boundary

crossing events but also decreases the upper boundary crossing probability.

Intuitively, increasing the weight of the risky asset increases the first

moment linearly and the second moment quadratically, therefore larger

weight increases the randomness of the stochastic process. This can also be

shown formally for Ito processes. As explained in Karlin and Taylor (1981),

the boundary crossing probability is typically expressed using scale functions:

p = P (Xt∗ = U) =
S(X0)− S(L)

S(U)− S(L)
(3.17)
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Figure 3.6: The relationship between the exposure to risky assets and the

portfolio’s terminal value in the BCC framework

where t∗ ∈ TA indicates a boundary crossing moment, S(.) is the scale

function, X0 is the initial value, U is the upper boundary and finally L

is the lower boundary. As for the scale function,

S(X) = exp(−
∫ X w × 2µ(y)

w2 × σ2(y)
dy) = exp(w−1 ×−SX) (3.18)

where, mu(.) and σ2(.) are the infinitesimal moments and
∫ x 2µ(y)

σ2(y)
dy = S(X).

In other words, S(X) indicates the scale function taken at some variable, X.

The lower limit of the integrals does not play a significant role thus is omitted

in accord with the literature.

Equation (3.18) essentially shows that once the process has been

appropriately scaled, the probability of upper (or lower) boundary crossing

depends only on the initial values relative distance from the lower and upper

boundaries. The derivative of the boundary crossing probability with respect

to the risky asset’s weight is equal to:

∂p

∂w
=

e
S(L)+S(U)−S(X)

w(
e

S(L)
w − e

S(U)
w

)2
w2

× (e
S(X)
w (S(L) + S(U))

+ e
S(U)
w (S(L)− S(X)) + e

S(L)
w (−S(U) + S(X))) (3.19)

where S(L) is the scale function taken at a lower limit and SU is the scale

function taken at the upper limit. The derivative is always negative as the
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denominator and the first term of the numerator is trivially positive while

the second term of the numerator is negative due to Jensen’s inequality as

−S(L) + S(U) + S(L) − S(X) − S(U) + S(X) = 0 and the exponential

function is convex. Consequently, the upper boundary crossing probability is

a decreasing function of the risky asset’s weight, w.

This finding is very intuitive. For a pure random process with zero

drift, the probability of upper crossing is 0.5, while for a pure deterministic,

monotone increasing process, the probability of upper crossing is one.

Therefore, by increasing the weight of the risky asset w, we increase the

randomness of the process and hence we decrease the probability of upper

boundary crossing. Essentially, we balance between how many times we

collect the gain or the loss and the probability of collecting a gain instead of a

loss. Overall, when choosing optimal portfolio weight for the risky asset under

exogenously given rebalancing rules, the tradeoff is to have a higher number

of rebalancing and a lower probability of favorable boundary crossing, or

lower number of rebalancing and a higher probability of favorable boundary

crossings.

Boundary selection

A change in the boundary structure alters three factors simultaneously:

• First, widening the boundaries trivially decreases the number of

boundary crossing events.

• Next, it increases the magnitude of the gain or losses at boundary

crossing.

• Finally, it increases the upper boundary crossing probabilities.
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The overall effect combines these factors. Essentially, the choice on

the set of boundaries determines the bins in the histogram describing the

portfolio’s terminal value. If boundaries are narrowed, then the histogram

will consist of more bins. Yet, under typical circumstances, such as 1%

proportional transaction costs or usual market volatility, it will not describe

a fundamentally different distribution.

Figure 3.7: The relationship between the rebalancing boundaries and the

portfolio’s terminal value in the BCC framework

In the parametric domain, researchers are mostly interested in

optimizing between the effect of transaction costs and the frequency of

rebalancing. For nonparametric applications however, both financial and

statistical considerations need to be taken into account.

Optimization based on the data itself presents some challenges in

comparison to the parametric case mainly because the properties of the DGP

is not defined axiomatically. Rather, these properties are captured by stylized

facts as in Cont (2001) or is Teräsvirta and Zhao (2011). One of the stylized

fact relevant to this topic is as follows:

Rama Cont: “Aggregational Gaussianity As one increases the

time scale ∆t over which returns are calculated, their distribution looks

more and more like a normal distribution. In particular, the shape of the

distribution is not the same at different time scales. ”
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Formally, Cont discusses how the distribution of ∆Xt = Xt − Xt−c

depends on c. He claims that as c increases the distribution of ∆Xt looks

more and more like a normal distribution. Although this statement is not

explained in detail by Cont, it appears to be plausible since financial data is

essentially tick by tick data aggregated over some c period. As c increases,

so does the average number of observations being condensed into one data

point. The number of these observations is likely to influence the properties

of the data.

Naturally, similar things occur when widening the boundaries. In our

dissertation, the time scale over which ∆Xt is calculated is random:

T ≈ Y A × c (3.20)

where T is the time dimension, Y A is the number of boundary crossing

events. Consequently, if boundaries widen then E(Y A) decreases, E(c)

increases. As E(c) increases, the distribution looks more and more

normal by Aggregational Gaussianity. Of course, we implicitly assume that

Aggregational Gaussianity also applies to our sampling scheme.

Besides, the sampling frequency of the data limits the choice on

the boundaries. For tighter boundaries, one also needs finer sampling. For

analyzing small changes, one may need intra-day data, while for wider

boundaries, daily data may suffice.

From what has been said above, choosing optimal boundaries is more

involved than choosing optimal weight for the risky asset as the choice needs

to take into account many different aspects. Reconsolidating all these aspects

is well beyond the scope of our work and we do not see the benefit of favouring

one aspect over the other. Therefore, boundaries are chosen in a way in which

all of these aspects are acknowledged to some extent.

To conclude, optimization in the BCC framework essentially involves
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calculating the expected utility derived from the portfolio’s terminal value,

where the probabilities can be obtained from BCC distributions. A change

in the risky asset’s weight alters the distribution of the portfolio’s terminal

value. The utility function, depending on the level of risk aversion15 penalizes

negative outcomes, which is reflected in the expected value. The optimal value

is found by searching for those values where the expected utility is maximal.

3.5 Summary of Chapter 3.

In this chapter, we have introduced a new, nonparametric, technique to solve

the optimal portfolio problem. This is therefore a methodological study which

aims to provide an approach through which problems related to portfolio

choice can be modeled under less restrictive assumptions. The novelty of our

work is twofold, as we introduce a new method and we obtain some new

results using this method.

As explained earlier, this is a methodological study. Therefore, the

content of this chapter is definitely not intended to be received as an

investment advice. Moreover, it is also not meant to be an advice to portfolio

managers on how to rebalance. Rather, it advises quants on how to model

rebalancing.

It is important to note that rebalancing is almost always an exogenous

technical device in financial models. For example, the Black-Scholes model

should not be interpreted as advice for option traders on how to hedge

options. Nor does it try to describe how options are hedged in practice. It

actually delivers advice to quants on how to calculate the value of an option.

15Note that not all utility functions have well-defined solution, risk-neutral utilities for

example may result in corner solutions.
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This dissertation is similar in this regard.

On the other hand, papers on endogenous rebalancing such as

Constantinides (1986) or Dumas and Luciano (1991) actually find that

under parametric settings, constant boundaries-based rebalancing is optimal.

Assuming that their insights carry over to nonparametric cases, it is not

necessarily a bad idea to rebalance in a way described in this dissertation.

Yet from a methodological point of view, rebalancing assumptions does not

necessarily need to be realistic or fully optimal.

The new method we introduced finds that by assuming a specific,

state dependent rebalancing, we can solve the portfolio choice problem

without parametric assumptions on the return process. Hence, we can

incorporate many important features of financial data, such as fat-tails

or volatility-clustering. Furthermore, we can deal with important practical

issues, such as proportional transaction costs or the cost of margin financing.

Moreover, our method describes the portfolio’s value using a discrete

stochastic variable, which allows us to calculate not only the expected value,

but the full distribution as well. This is useful in nonparametric density

forecasts and statistical inference. Finally, the method can also be used to

solve the baseline model of geometric Brownian motion analytically, hence the

model generalizes the standard solution without losing the insights provided

by the simpler cases.

As for the results of this method, historical data of the USA’s stock

market suggests that not particularly extensive leveraged purchase of a

diversified stock index is log-optimal therefore leveraged purchase does not

imply risk-seeking behavior: risk averse investors may also rely on this

technique if their risk-aversion is not too high. There are epochs, for example

between 1942 and 1971 when leveraged positions are probably more profitable
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than in consolidation periods, such as the one between 1971 and 1987.

Interpretation of these findings can be done from both a theoretical and

a policy level. As for the former, researchers starting perhaps with Bogen

and Krooss (1960) often argue that the level of leveraged positions play an

important role in financial stability. Our contribution is to show that there

is a tendency in USA’s stock market to favour those, who hold leveraged

positions, and these leveraged positions may also be held by risk-averse,

log-optimal investors. As for the latter, some authors, for example Shiller

(2005), or Hardouvelis and Theodossiou (2002) argue that the FED should

return to more active margin policy, such that between 1934 and 1974. Based

on our findings, log-optimal investment strategies may involve leveraged

purchases. Thus, these policies may result in reduction of leveraged positions

held by log-optimal investors.

The method offers many additional opportunities. For example,

volatility clustering at this stage is not fully taken into account. Our method

however could be used to solve the portfolio choice problem under volatility

clustering. The idea is that we now work with constant upper crossing

probabilities. However, this approach could be refined by predicting upper

crossing probabilities using conditional variances. This may be covered in a

separate paper.

3.6 Appendix on the Counting Procedures

The following section discussed the relationship between the boundaries and

the change in the portfolio’s value upon boundary crossing. We consider two

separate moments of time. The first moment is right after rebalancing, the

second moment lies between rebalancing moments. Variables describing the
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second moment are indicated with (.)′. Also, qj indicates the quantity of stock

j right after rebalancing. The change in the portfolio’s value between these

two periods can be described as follows.

V ′ = V + Π− TC +DBS (3.21)

where Π is the profit or loss, TC is the transaction cost while DBS, which

abbreviates deposits, borrowing, short-selling, describes the cost of financing.

Let us substitute each element one by one. Assuming that the total number

of asset is m, the profit of the loss between two periods can be described as

follows.

Π =
m∑
j=1

qj×∆pj =
m∑
j=1

wjV

pj
×∆pj = V ×

m∑
j=1

wj× (exp(lnrj)−1) (3.22)

where lnrj indicates cumulative log change of asset i since the last boundary

crossing. Since there is no change in the quantity between two boundary

crossing events, the profit is the weighted average price change. The cost of

financing is the cumulative interest received or paid, which can be obtained

directly from the data.

DBS = V × dbs; (3.23)

Finally, the transaction cost is equal to:

TC =
m∑
j=1

abs(q′j − qj)× p′j × ptc =
m∑
j=1

(q′j − qj)× p′j × ptcj (3.24)

where the proportional transaction cost, ptcj = ptc if q′j > qj and ptcj = −ptc

otherwise. Substituting out quantities yields:

TC =
m∑
j=1

(
w′j × V ′

p′j
− wj × V

pj
)× p′j × ptcj (3.25)
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Simplifying yields

TC = V ′ ×
m∑
j=1

w′j × ptcj − V ×
m∑
j=1

wj × ptcj × exp(lnrj) (3.26)

Substituting Π, DBS and TC results

V ′(1+
m∑
j=1

w′j×ptcj) = V×(1+
m∑
j=1

wj×(exp(lnrj)−1)+dbs+
m∑
j=1

wj×ptcj×exp(lnrj))

(3.27)

From which the rebalancing signal, that is the change in the portfolio’s value

is equal to:

X∗t∗ =
V ′

V
=

1−
∑m

j=1w
j + dbs+

∑m
j=1w

j × exp(lnrj)× (1 + ptcj)

1 +
∑m

j=1w
′j × ptcj

(3.28)

The following technical assumption on the timing of the payments concludes

the derivation. In particular, we assume that interest on margin financing as

well as for short-selling is collected at the beginning of the period while

interests paid on deposits are accounted at the end of the period. For

lower-crossing events, the log change is calculated using the closing price and

the next period’s minimum price while for upper-crossing events the closing

price and next period’s maximum price. It is assumed that the rebalancing

signal is initiated at one, X0 = 1. Then, the following steps needs to be

repeated for each number of observations.

1. Increment the value of dbs by the coming period’s borrowing and

shortselling costs.

2. Calculate the critical price level at which lower crossing event would

occur.

3. Update the log change using the minimum price.
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4. Evaluate if a lower-crossing event has occurred by comparing the

cumulative log change with the critical price. If the cumulative log

change is lower then the critical price, then carry out the boundary

crossing steps and return to the previous step.

5. Calculate the critical price level at which upper crossing event would

occur.

6. Update the log change using the maximum price.

7. Evaluate if an upper-crossing event has occurred by comparing the

cumulative log change with the critical price. If the cumulative log

change is higher then the critical price, then carry out the boundary

crossing steps and return to the previous step.

8. Update the value of the cumulative log change using the closing price

9. Finally, ad the interest received on the deposit, if any.

Upon each boundary crossing event, the following steps are required.

1. Increment the appropriate counting variable, Yt = Yt + 1

2. Record how much time was needed for the crossing event to occur This

information can be used to estimate the first exit time distribution.

3. Reset the value of the cumulative variables, such as DBS and the

cumulative log change to zero.

Overall, based on Equation (3.28), constant change in the domain of

portfolio’s value upon rebalancing requires non-constant boundaries in the

log-change domain: the interest collected or paid increase as t′ increases,

therefore the log change needs to be adjusted accordingly.
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First exit time distribution and upper boundary crossing probabilities

are not well defined for non-constant boundaries. In this case, we need to

assume that no interest paid/received on the composite asset. Yet, we can

account for proportional transaction costs. The derivation for the simplified

case is as follows. The change in the portfolio’s value is as follows.

V ′ = V + Π− TC (3.29)

where V is the value of the portfolio upon rebalancing, Π is the profit or loss

and finally TC is the transaction cost. The profit is as follows.

Π = q ×∆p =
V × w
P

×∆p = V × w × (exp(lnr)− 1) (3.30)

The transaction cost, assuming ptc is negative for purchases and positive for

sales is equal to:

TC = abs(q′ − q)× p′ × ptc = (
V ′ × w
p′

− V × w
p

)× p′ × ptc (3.31)

Substituting yields:

V ′ = V +V ×w×(exp(lnr)−1)−(V ′×w×ptc−V ×w×exp(lnr)×ptc) (3.32)

Rearranging yields:

V ′ × (1 + w × ptc) = V × (1 + w × exp(lnr)× (1 + ptc)− w) (3.33)

From which, the change in wealth is equal to

V ′

V
= Xt =

1 + w × exp(lnr)× (1 + ptc)− w
1 + w × ptc

(3.34)

The change in wealth upon lower crossing, GL, is equal to:

GL =
1 + w × exp(L)× (1 + ptc)− w

1 + w × ptc
(3.35)
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If boundaries are defined in the portfolio’s value domain, then change in the

log-return domain can be calculated as follows.

log(
GL × (1 + w × ptc)− 1 + w

w × (1 + ptc)
) = L (3.36)

The change in wealth upon upper crossing is equal to:

GU =
1

GL

=
1 + w × ptc

1 + w × exp(L)× (1 + ptc)− w
(3.37)

From which the value of the upper bound in the log-change domain is equal

to.

1 + w × exp(U)× (1 + ptc)− w
1 + w × ptc

=
1 + w × ptc

1 + w × exp(L)× (1 + ptc)− w
(3.38)

Finally, the value of the upper bound can be expressed as follows.

U = log(
(1 + w × ptc)2 − (1− w)(1 + w × exp(L)× (1 + ptc)− w)

(1 + w × exp(L)× (1 + ptc)− w)× w × (1 + ptc)
) (3.39)

Constant boundaries therefore require us to abstract away from the interest

paid on the composite asset. If we do want to take financing into account,

then we either have to solve the problem for non-constant boundaries which

is somewhat more involved, or rely on simulations instead.

3.7 Supplementary Appendix on Optimal

Simple Portfolio for Geometric Brownian

Motion under Continuous Rebalancing

The portfolio consisting of a risky asset and a risk-free composite asset

follows:

dPt = (µrr + wµe)Ptdt+ wσPtdWt (3.40)
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where µrr is the return on the risk-free assets assumed to be zero for the

purpose of this exercise, µrm is the market return, µe = µrm − µrr is

the excess return, w is the weight of the risky asset and finally Wt is the

Wiener process. This formulation implicitly assumes that investors can keep

a constant fraction of their wealth in the risky asset which would require

continuously adjusting the number of shares, unless w = 1. The question of

interest is log-optimal value of w. Using Ito formula:

dln(Pt) = (µrr + wµe −
1

2
w2σ2)dt+ wσdWt (3.41)

The expected value of the Wiener process is zero, the expected value of the

exponential growth rate can be expressed as:

E(g) = E(
dln(Pt)

dt
= (µrr + wµe −

1

2
w2σ2) (3.42)

Solving for the optimal value and substituting for µrr = 0 yields:

wopt =
µ

σ2
(3.43)
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