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Abstract

Electricity cannot be stored such as the other commodities, therefore the demand and the supply
side of the power market has to be in balance all the time. As a result, an accurate forecasting
model is crucial in terms of system security in order to avoid blackouts or excessive power
generation. However, the currently applied model of Hungarian Transmission System Operator
IS inaccurate, which resulted in a high operational cost. The main objective of my thesis is to
develop a handy and accurate system load forecasting model for 2015. For my research, | used
the database of the Hungarian Transmission System Operator, which contains hourly system
load and weather forecast data for 2014-2015. | tested the forecasting performance of double
seasonal ARIMA, Holt-Winters exponential smoothing with double seasonal cycle and log-
linear models. One of the key findings of my thesis is that in terms of the Hungarian system
load the dummy variables can handle the seasonal pattern better than the seasonal differencing.
Moreover, the calendar variables proved to be more significant explanatory variable, than the
weather variables, especially those which were responsible for the effect of the holidays. Finally
the log-linear model specification had the best forecasting accuracy, in the case of which the
average MAPE of a day-ahead forecast is 2.4%. With the help of my model the Hungarian
Transmission System Operator could increase the predictability and security of the system,

furthermore decrease its operational cost.
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Introduction

Electricity is all around us. All of the devices surrounding us in our everyday lives such as smart
phones, laptops or household appliances work with electricity. Moreover, the industrial
production and technology heavily rely on electricity as well. However, the operation of the
power system on country level is difficult due to the special property of electricity, namely that
it cannot be stocked like other commaodities. As a result, the demand and the supply sides of the
power system have to be in balance all the time. The control and schedule of electricity
generation and transmission of electricity to meet the demand are the duty of the Transmission
System Operator (TSO) of the given countries or regions. TSO has a high responsibility because
deviation from equilibrium could have severe consequences. If the supply side exceeds the
demand side, it can lead to the waste of the sources and to the increase of the cost of electricity
supply. On the other hand, if the demand side is excessive, then it can be resulted in blackouts.
The main stress in the system is the volatility of the demand side, which is constantly subjected
to random shocks. However, it is hard to instantly adjust to the demand side, because the supply
side of the system is quite inflexible. This inelasticity is due to the fact that launching a new
generator has a high fix cost, its variable cost based on its efficiency level, moreover some types
of generators cannot start producing at once. Furthermore, the spread of intermittent resources
in the system such as solar panels and wind turbines makes it even harder to predict the supply
side. Therefore, the biggest challenge of the TSO is to meet the constantly fluctuating electricity
demand with a quite inflexible supply side without relying on any inventory. As a consequence,
a precise model and accurate forecast of system load is very important from a system security
point of view. (As electricity demand is equal to electricity supply all the time, it can be used

as a synonym for system load).
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Since electricity system stability is a crucial and strategical question of a given region or
country, many publications in the economic literature have dealt with the problem of load
forecasting. However, the currently applied model of MAVIR is inaccurate, which resulted in
a high operational cost. Nevertheless, there is no relevant Hungarian publication from this field.
Therefore, the main objective of my thesis is to develop a handy and accurate forecasting model

for the Hungarian Transmission System Operator (MAVIR).

However, the development of a precise forecasting model is a complex task. According to Hahn
et al (2009) the main purpose of the forecast has to be clarified as a first step, because that
determines immediately the horizon of the forecast, which defines the set of the most influential
factors, which have to be considered and the modelling approach as well. If the forecast is
supposed to endorse a strategic decision of a company or the implementation of a new policy,
then its breadth of vision should span a period from 1 up to 20 years. In the case of long term
forecast economic related determinants, such as GDP, inflation, price of electricity have to be
considered. On the other hand, when the scope of the load forecast is a year with monthly or
weekly frequency then we speak about medium term load forecast. These serve for planning
business operation and production or support the contract negotiation with the power trader.
Finally, the short term load forecast (STLF) stands for promoting the day-to-day operation of
the TSO. The horizon of STLF is usually from one day a week ahead with hourly or half-hourly
frequency. (Hahn et al, 2009) For the aim of my thesis the STLF approach is the most suitable,

hence | cover the literature focusing exactly on STLF.

There are two prevailing trends in the case of STLF: one is the class of conventional statistical
methods and regression-based econometric techniques, the other newly emerged group is the
Artificial Intelligence (Al) and Computational procedures (Hahn et al, 2009). The substantial
part of the studies written in this field introduce a specific Machine Learning or Hybrid

techniques for load forecasting and use only conventional methods as benchmark to prove the
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superiority of the computational algorithms. For this reason I regard it very important to give a
broader overview about these routines and map the future possibilities, therefore | introduce
some case studies as well, which solved the exact load forecast problems with Al methods.
However, in my thesis | focus on conventional statistical and econometric techniques because
these modelling approaches suit my research problem. Hence, | cover those papers in the
literature in depth which use ARIMA, SARIMA model, exponential smoothing techniques and
further multivariate regression-based models, incorporating the influential weather and

calendar related exogenous variables for load forecast.

Therefore, in the next chapter I give an overview of the applied approaches and techniques on
load forecast and | also introduce some case studies to demonstrate the forecasting power, the
advantages and disadvantages of the given methods in a practical, real life situation. Then in
chapter 2 | map the characteristic of the Hungarian system load and reveal the most influential
external factors and their relationship to the system load. The available dataset for my analysis,
given by MAVIR contains load and one-day-ahead weather forecast data for the 2014-2015
period. Based on the results of my graphic analysis, | consider the replication of the most
suitable models among the introduced studies in my literature review. Hence, in Chapter 3 |
demonstrate the goodness of fit of the models of Taylor et al (2006), Ergun and Jun (2011) and
Ramanathan et al (1997) on the Hungarian load database. In chapter 4, | experiment with the
development of an own model taking into account the specificity of the Hungarian system
according to the main findings of the replications. Finally, I summarize the key research

findings of my thesis and give recommendation for further improvements.
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1. Literature review

As the main purpose of my thesis is to develop an intuitive forecasting model for MAVIR, |
will review the available solutions and best practices in the literature of STLF. Since, there is
no relevant Hungarian studies related to my research topic, | covered the foreign studies written
in the topic. According to the categorization of Hahn et al (2009) the STLF models can be
assigned to two big families: to the classical models, which use the concept of regression
analysis and conventional statistical methods; and to the Artificial and Computational
Intelligence models. My thesis gives a detailed overview of the different methods and
techniques belonging to the two main groups. Therefore, among the classical models the
ARIMA time series models, exponential smoothing techniques and regression based principal
component analyses methods are explained. With respect to the computational algorithms my
thesis presents the key concepts of logic and percepton based routines, the statistical learning
procedures and the support vector regression according to the classification of Maglogiannis
(2007). Beside the theoretical overview of the listed methods, their application for real life
forecasting problems are introduced through some case studies. The main aim of the detailed
literature review is to map the best practice of STLF and to use up the key findings of the studies

for the development of my own model.

However, before the selection of the appropriate STLF it is necessary to clarify the set of
exogenous variables which have the most influential effect on the evolution of load on short
horizon (Hahn et al, 2009). In the case of short time horizon prediction the most influential
external factors are the fast changing, fluctuating weather forecast variables and calendar
variables. In the short term the economic related determinants, such as GDP, inflation, price of
electricity are not as relevant as in longer-term forecast, because these factors are stable on a

daily basis.
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It is important to mention that among the weather related variables the most important one is
the air temperature, which is in a non-linear connection with the load demand, because usually
the electricity usage is higher in winter due to heating. On the other hand, electricity
consumption become higher again in the hot summer days because of cooling. However, the
explanatory power of the weather related variables depend on the climatic condition of the given
country or region (Hahn et al, 2009). Beside the weather variables, the calendar ingredients play
an important role in capturing the superimposed seasonal pattern of the load demand. The
electricity demand has intraday, within-week and yearly cycles. In the literature weekdays,
weekends, holidays and transitory days such as Mondays and Fridays are differentiated. Among
the studies, collected by Hahn et al (2009) there are two modelling approaches in handling the
periodic electricity demand: the local and the global approach. In relation to the local approach
there are separate models for each identified features, which means that distinct regressions are
specified for each hour or for weekdays and weekends. However, it requires large databases,
which are often not available. On the other hand, with respect to the global approach there is a
single monolithic model which captures the seasonality via the introduction of additional
explanatory variables (Hahn et al, 2009). After the determination of the most essential factors

affecting the power load system on short term, it can be continued with the model selection.

Based on the argumentation of Piras and Buchenel (1999), there is no ultimate forecasting
model of load demand, as a result of which it is necessary to analyze the predicting power of
different modelling methods. The most widespread error measure index in the industry is the
MAPE, because it captures the proportionality between the forecast error and the actual load.

100 7 |Y:-7

, where Y, is the actual load data, while Y, is the forecast (Hahn et al,

2009). I apply this index in order to choose the most promising models among elaborated ones
in the case studies. Moreover, | evaluate the forecasting performance of my own developed

models based on this index as well.
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In order to explain which model I am going to apply to my research question, the two mentioned
model families will be reviewed in more detailed. First of all, the conventional statistical and
regression based methods are covered. The two main subgroups of this family are the univariate
and multivariate models. The former is used for very short term forecast and it is based on the
historical load data, while the latter takes into consideration also exogenous variables (Hahn et
al, 2009). Among the univariate models | will give a brief insight into the ARMA and
exponential smoothing techniques, while with regard to the multivariate models | will present
the SARIMAX, Principal Component Analyses (PCA) based regression, monolithic and system

models.

The ARMA (p, q) models are one of the univariate time series approaches applied for load
forecasting which are a (p, q)-th ordered mixed autoregressive and moving average processes
can be described in the form if satisfy both the stationarity and the invertibility conditions.
¢p (L)Y, = 64(L)&;, Where Yy is the load, &, is the white noise at time t, while ¢,,(L) and 6,(L)
are the autoregressive and the moving lag polynomials. If the load time series is not stationary
and contains unit root(s), then the appropriate extension of the model has to be applied, which
is the ARIMA (p, d, q) specification, where d is the order of integrity of the time series, in other
words the d-th difference of the series become stationary. In order to take into account the
seasonality in load data the seasonal version of the AR(I)MA models or the periodic
autoregressive models can be applied (Hahn et al, 2009). The other conventional univariate
statistical methods are the exponential smoothing techniques. The simple exponential
smoothing is used for short range forecasting, when there is no observed trend and seasonality
in the time series, only the data fluctuates around a stable or slowly evolving mean (Chatfield
and Yar, 1988). Consequently, the smoothed value is the weighted averages of the former

values with more weight on the current values.
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S = a¥y + (1 — a)S;_1, where S stand for the smoothed values, while X for the real data and
a > 0. When there is a straightforward trend in the series, than the Holt’s exponential

smoothing method has to be employed (Chatfield and Yar, 1988).
Se=aYe+ (1 —a)(Se—1 — Tr—1), @ € [0,1]
Ty =v(St —Se-1) + (1 —a)Ti_1, ¥ € [0,1]

When seasonal pattern can be observed also in the time series then Holt-Winters exponential
smoothing technique has to be put into force. If the electricity demand pursues a steady seasonal
fluctuation then the additive version is the appropriate. Otherwise if the amplitude of the
fluctuating seasonality is increasing then the multiplicative version is the suitable one. In
connection with load forecast the multiplicative version is the relevant (Chatfield and Yar,

1988).

S, = aIYt—_1+(l—a)(St1 _Tt—l)

t-s

T = 7(St _St—l)+(1_7)Tt—l

|t=5§-+(1—5)|t_s

t

, where |t is the seasonal factor and § € [0,1]. However, most of the exponential smoothing
models have the equivalence with (S)AR(I)MA models with the exception of the multiplicative
Holt-Winters method. For example, the Simple Exponential Smoothing is similar to
ARIMA(0,1,1) and Holt's Exponential Smoothing to ARIMA(0,2,2), while additive Holt-
Winters exponential smoothing is corresponding to a SARIMA model (Chatfield and Yar,

1988).

In order to explain the application of the formerly explained univariate regression-based
techniques for load forecast, | present the studies of Hippert et al (2005) and Taylor et al (2006).
Hippert et al (2005) tested the performance of the different smoothing techniques, while Taylor

et al (2006) compared the goodness of fit of double-seasonal ARMA models to the modified
7
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Holt-Winters exponential smoothing method. One of the filtering models of Hippert et al (2005)
was the application of 24 separate smoothing filters of Winters for each hour of the day, because
hourly load series are seasonal as the consumption profile varies over weekdays and weekends.
To eliminate the weekly seasonality as well, 168 separate filters can be introduced for each
hours of the day but the drawback of this process is that forecasts based on one week old data
(Hippert et al, 2005).The proposed solution of the authors was the combination of the two
filtering techniques. As a result, not only the information which occurred a week ago was taken
into account but also the information of the previous day and the within-week trend at the load
forecast. Hence, load was defined as daily average and hourly deviation. The authors tested the
forecasting performance of the Holt’s filter and the simple exponential smoothing method. The
elaborated technique did not outperform the simple exponential smoothing, because in short
term the trend does not matter and the essential difference of these models is their trend

prediction mechanism. (Hippert et al, 2005).

On the other hand, Taylor et al (2006) developed a double-seasonal ARIMA model to handle
the seasonality. The general form of a double-seasonal ARIMA model is the
following:ARIMA(p, d, )X (P1, D1, Q1)s,X (P2, D2, Q3)s,, Where P is the number of seasonal
autoregressive terms, D stands for number of seasonal differences and Q represents the number
of seasonal moving average terms. With respect to their hourly intraday Brazilian database s; =
24, while s, = 168. The authors applied the Box-Jenkins method for the development sample
in order to figure out the most suitable SARIMA specification. Therefore, they studied the
autocorrelation and partial autocorrelation functions to identify the order of the model. Taylor
et al (2006) used the Schwartz-Bayesian Information Criteria to compare the fit of the different
SARIMA models, furthermore at each case they tested the serial correlation of the residuals.
The most appropriate specification of the Brazilian dataset

was ARIMA(3,0,3)X(3,0,3)24X(3,0,3)16s-
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As it was mentioned earlier the only exponential smoothing method which cannot be substituted
by ARIMA models is the multiplicative Holt-Winters exponential smoothing technique,
therefore it is often tested which method has a stronger predicting power (Hahn et al, 2009).
Taylor et al (2006) had to modify the standard Holt-Winters exponential smoothing formula in
order to incorporate both the daily and weekly seasonal cycles. Hence, the authors introduced
an additional seasonal index and an extra smoothing equation. Therefore the model contained
a separate intraday and intraweek seasonal cycles beside the smooth and trend equations. The
authors extended the forecast equation with an extra term to adjust the first-order

autocorrelation (Taylor et al, 2006).

Ve
Ss=al—— |+ (A —-a)(Se—1 + Tr—1)
t (Dt_51Wt_SZ> t-1 t-1

T, =y(S — Si-) + A —y)Tey

Dt == 6( yt ) + (1 - S)Dt—sl

Ve(k) = (S¢ + kT)De—g, 4k We—s, 41 + d* (e — ((St—l + Tt—l)Dt—slwt—sz))’

where S stands for smoothing, T for capturing trend, D is responsible for the daily seasonality,
while W for the weekly. The parameters (a, v, 6, w, ¢) were estimated by minimizing the one-
step-ahead sum of forecasted error squares (Taylor et al, 2006). Based on the result of the
minimizing procedure, the optimal value of the parameters suggest that the load demand time
series is dominated by seasonality and first-order autocorrelation, hence the weight of trend and
smooth equations are low in the forecast (Taylor et al, 2006). Taylor et al (2006) regarded
practical this exponential smoothing procedure because it does not require any model

specification, therefore it is technically a simple method and give robust results in long term.
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It is important to mention that both Hippert et al (2005) and Taylor et al (2006) smoothed out
those atypical data, when idiosyncratic shock or special holiday occurred, because their main

purpose was to model the routine days.

In forecasting studies it is a commonly used technique to create a naive benchmark model to be
able to evaluate not only the absolute but the relative forecasting power of the developed model
as well (Hahn et al, 2009). Both Hippert et al (2005) and Taylor et al (2006) followed the
consideration that the forecast of a given day can be predicted by the load of the previous day,
which is resembled to Random Walk Theory. However, according to Hippert et al (2005) this
procedure leads to a high forecast error after weekends due to the different load profile.
Therefore, an improvement of this naive benchmark is to take into account the type of a given
day, whether that given day is a weekday or a weekend. From practical perspective it means
that Monday load is forecasted by the electricity demand on the previous Friday, while Saturday
load is forecasted by the demand on last Sunday (Hippert et al, 2005). Further fine-tuning of
the benchmark model could be the consideration of the weekly periodicity of the electricity
consumption pattern. Hence the load forecast of a given day would be based on the load value
a week ago (Hippert et al, 2005). Taylor et al (2006) applied the latest approach of Hippert et
al (2005), hence they also defined the predicted value as the value of the corresponding period
of the previous week. Y (k);=Y;4x—_16s Where k<168 and it is the forecast lead time, while Y; is
the demand in period t. The authors regarded insensible to incorporate the daily periodicity as

well.

The other subgroup of the classical regression based methods are the multivariate regression
models. Compare to the univariate models when the forecasting horizon is wider, then it is

advisable to use multivariate models, which considers the effect of exogenous variables as well.
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The most relevant exogenous variables are the calendar and weather related information. The
AR(I)MA models can be extended with exogenous variables, which are called AR(I)MAX or
their seasonal version as SAR(I)MAX. Another regression based method is the application of
the principal component analyses, which “...is a standard statistical method that is used for
reducing the dimension of multivariate datasets, where variables are highly correlated, to a
smaller set of variables. These are linear combinations of the original variables; they are
uncorrelated and explain most of the variation in the data and are thus called principal
components. In a regression context, one can therefore focus on this smaller number of
independent variables, rather than dealing with the large number of original variables with
complex interrelationships” (Taylor et al, 2006, p8.). Therefore, in the case of an enormous
dataset a PCA based regression could be a more parsimonious solution than a (S)AR(I)MAX
model. However it could be also possible that some of the influential explanatory variables are
not observable or not available, then with the help of state-space models and Kalman-filter the
forecast can be still reliable in terms of linear relationship between input and output data (Gary

and Grag, 2001).

As an illustration of the application of the introduced multivariate methods, | present the paper
of Taylor et al (2006), Ergiin and Jun (2011) and Ramamnathan et al (1997). | selected these
studies because they give an insight into different approaches and modelling routines. Taylor
et al (2006) used the combination of regressions and PCA, Ergiin and Jun (2011) applied a
monolithic model with exact day-matching technique, while Ramanathan et al (1997) employed
the local modelling approach. I give a detailed overview of the work of the authors, because |

rely on the setup and experience of these studies during the development of my own model.
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The other break-through of Taylor et al (2006) was the introduction of the PCA approach as an
alternative of regression, beyond the exponential smoothing with double seasonal cycles
method. First of all, the authors transformed the dataset into a Y;; matrix, where i stands for the
given days, while j for the hours, therefor j varies between 1 and 24 in the hourly Rio load data.
Then C matrix was created in the following way: C = (N — 1)~/2YTY. After it the eigenvalue
decomposition was executed: C = VQ2VT, as aresult P = YV (Taylor et al, 2006). Therefore,
the principal components were obtained by the basis transformation of the daily electricity
demand. Only Q number of components with the strongest explanatory power were kept
according to a given cut-off rate. However, the components could capture only the observed
intraday pattern in the datasets. Hence, in order to handle the weekly seasonality as well, the
components which belonged to the given days were regressed on dummies, representing the
days of the weeks (Taylor et al, 2006). p(i)q = aq, + aq,d1 + - + ag ds + Bgi + A4i* +

error(i), where B,i + A,i term captured the growth trend over the observed period. The

forecasting formula was the following: m = Zgzlp(i + 1), Vjq (Taylor et al, 2006).
However, the authors revealed serial correlation in the forecasted error term, therefore an
additional AR process was added to the forecasting procedure, where the k step ahead
forecasted error was predicted by the linear combination of the error occurred 24 hours ago and
the last known prediction error. The weights were depended on the length of the forecast
horizon. The formula of the error adjusting process: E;(k) = ay(k) + a;(k)Ei(_4(k) +

a,(k)E._,(1) (Taylor et al, 2006).

The second case study is interesting becasue Ergun and Jun (2011) built a simple monolithic
multivariate model with a between estimator paneling technique as a treatment for seasonality.
The main objective of Ergiin and Jun (2011) was to develop an intuitive benchmark model for

forecasting electricity demand, which can be used by non-expert industrial actors as well.
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For that reason the authors applied the exact matching-day technique instead of difficult
mathematical methods and seasonal adjusting procedures. They claimed that each day within a
year has a unique demand, therefore the cycle of seasonality is a year. As a result, Erglin and
Jun (2011) predicted the daily demand for electricity of a given day by taking the average
demand of the same day in the former years. The available dataset for the authors was the daily
system load of New England region between 2004 and 2008. One of the advantages of this
construction is that there is no restriction on the form of seasonality but on the other hand it can
still capture the calendar effect in a parsimonious way according to the argumentation of Ergiin

and Jun (2011).

This means that the solution of Erglin and Jun (2011) is equivalent of the introduction of 365
dummy variables for each day in each year to identify the varying electricity consumption
pattern but by this way the computational time would significantly increase in line with the
noise in the coefficient estimations. The previous N year matching-day average demand for

electricity was defined in the following way in the paper (Ergiin and Jun, 2011):

Based on the result of the studies dealing with STLF, the authors took into account the effect
of weather condition, beside the calendar impact. As, the authors examined the relationship of
temperature and daily demand for electricity, they identified the classic V-shape connection
with turning point at 60.2°F. For simplicity the authors incorporated separate interacted terms
of temperature above and below 60.2°F instead of introducing a higher order term to capture
the non-linear effect of the temperature. The effect of those hidden factors, which did not change
on daily level only over a year were also considered. Therefore, Ergiin and Jun (2011)
implemented another term in the demand forecast equation, which was responsible for

capturing the systematic deviation of the expected value of the demand on a given day from the
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corresponding calculated mean value. The developed electricity load forecasting equation is the

following (Ergun and Jun, 2011):

D; = ByMean; + B,(D;_; — Mean;) + BsTemperature, + B, Temperature,_; + & :

where Temperature; = a,(Temperature, — 60.2)d, + a,(60.2 — Temperature,)d,
d, = 1if Temperature; > 60.2°F, while d, = 1 if Temperature; < 60.2°F

The significance of the regression-based method of Erguin and Jun (2011) that it parsimoniously
and efficiently exploits the available information and it has an intuitive simple structure.
However, it is worth to mention that one of the main drawback of this exact day-matching
technique is that if the weekly seasonality is dominant in the given load dataset, then this weekly
cycle will be smoothed via averaging, which leads to information loss and noisier, less accurate

predictions (Erglin and Jun, 2011).

The third case study is the most advanced one among the introduced classic regression based
studies, because the developed model of Ramanathan et al (1997) is already a multivariate
model, which handles the seasonality with local modelling approach and dummy variables.
Puget Sound Power & Light company organized a “forecasting competition” for which several
teams of researchers were invited. The aim of the project was to model short run forecasts for
hourly system load between 1983 and 1990 for winter and fall terms. Engle, Granger,
Ramanathan, and Vahid-Arraghi formed a team and their model specification was called EGRV
and the model specification is detailed in their Ramanathan et al (1997) study. The authors
decided to follow a simple approach instead of nonparametric, time-varying parameter or
general dynamic regression models. Therefore, they chose hour by hour modelling strategy,
which means that hourly dataset was not considered as a single chronological ordered

consecutive time series.
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As the forecast was separated by hours, the authors specified 48 models because the weekdays

and weekends were distinct. The general form of a forecast equation of Ramanathan et al (1997)

was the following:

Loady = aDeterministic + bTemperature + cLoad + dPasterrors + € , where

Load,,: the predicted demand for electricity in that given hour on any day
Deterministic: predictable variables whose values are known in advance, like calendar
variables, such as the year, day of the week, month. The authors specified a day after
holiday variable to capture the deviant consumption pattern in transition between
weekends or holidays and weekdays. All of these deterministic variables were dummy
variables (Ramanathan et al, 1997)

Temperature: it is a common fact that the relationship between temperature and load
follows a nonlinear pattern but in this case, regard to the winter and fall terms, the
connection is generally monotonic. As the temperature decreases, the demand for
electricity is increasing. Although, it is not necessary to take into account the impact of
cooling in the summer, the EGRV model did not neglect the nonlinear effect of
temperature on load, hence squared variables were also introduced. Furthermore, the
authors claimed that the effect of temperature is not constant over the months, therefore
interacted terms were also incorporated into the model. Besides, the level and squared
value of the maximum temperature of the given and previous days were also added to
the forecasting equation as well as the moving average of past seven days midnight
temperature in order to capture the effect of long cold spell. There was one-day-ahead
weather forecast data available for the estimation (Ramanathan et al, 1997)

Load8AM: As the forecast made at Puget at the beginning of the day at 8 am, LoadS8AM
variable stood for representing the state of the system at time of forecasting. If the
coefficient of this variable is close to 1 that would mean the validity of Random Walk
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hypothesis. In that case the best prediction of tomorrow load is the today load. In order
to take into account the pattern transition between weekends or holidays and weekdays,
LoadBAM*Monday and Load8AM*Dayafterholiday interacted variables were defined
(Ramanathan et al, 1997)

e Pasterrors: Ramanathan et al (1997) assumed that missed factors have a recurring
nature, as a consequence the forecast errors of the previous week were also considered
in their model. But by this way the error terms of the model become heavily serially
correlated. Therefore the authors applied the Cochrane-Orcutt autoregressive error

structure at the estimation.

At the practical implementation and estimation of the model the authors had a dilemma. They
considered the advantages and drawbacks of hour by hour estimation versus grouping the
variables and create a seemingly unrelated regressions system (SUR). The main benefit of SUR
is the parsimonious estimation process. On the other hand, the error terms in the error vector
has to be contemporaneously uncorrelated in order to estimate a SUR model with OLS.
However, in this case this requirement might not fulfill because a shock that hits the system has
carry-over effect to the following hours as well. Besides, the hourly residuals of the consecutive
days are also correlated due to the incorporated past errors. Moreover, the correlation between
the first hour of a given day and the last hour of the previous day is highly correlated
(Ramanathan et al, 1997). Furthermore, the reaction of load to the calendar and temperature
effects is varying in the different hours, therefore the authors regarded it advisable to drop the
insignificant variables and let slightly different specification in terms of each hour. By this way
the coefficients varied in a systematic way hours by hours, moreover the model was more
accurate, less multicollinear and less noisy (Ramanathan et al, 1997). In order to make the
model more dynamic, Ramanathan et al (1997) developed an adaptive version of the EGRV

model as well. This model was designed to systematic error correction.
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They applied a simple exponential smoothing techniques, where the adaptive forecast was the
linear combination of the original forecast and the adjusted error (Ramanathan et al, 1997).
Yer1 = Ver1 = Ve = Ve + 0(ve — Vi)

The drawback of this setup is a decrease in accuracy when the structure of the underlying dataset
remains constant over the observed period. However in this case it performed well especially
in connection with the weekend model (Ramanathan et al, 1997). The main critic of the model
was that it is only a simple multiple regression model with numerous correlating variables
without any economic related term. The argumentation of the authors was that their model was
not based on economic theory, the main objective of the specification was to capture the short
run behavior of households and industrial consumers’ responses to weather conditions and
calendar effects, moreover in short run the economic variables are unchanged and not influential
(Ramanathan et al, 1997). Besides, the authors believed that in the case of a forecasting model
the interpretation of the coefficients are not necessary and the multicollinearity does not hinder
the forecasting ability of a model, the estimate remains consistent and unbiased. It is due to the
fact that the coherence and connection among the explanatory variables sustains, only their
effect could not be separated, therefore the estimation of their coefficient will be uncertain

(Ramanathan et al, 1997).

To sum it up the main advantages of the classical regression based and statistical models that
they easily can cover the connection between the input and output data, furthermore their results
can be simply interpreted. However, the main drawbacks of these regression based models that
they are suffered from numerical instabilities, they are unable to capture complex and non-

linear relationships (Hahn et al, 2005).
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Therefore, in line with the development of the computational technology, the authors from the
beginning of 2000 turned to the artificial intelligence methods in case the of load forecasting.
According to John McCarthy, the father of the artificial intelligence (Al) is “(t)he science and
engineering of making intelligent machines, especially intelligent computer programs”. The
resounding success of these techniques is the ability to cope with theoretically poor but big and
meaningful databases (Hahn et al, 2005). Moreover, they can reveal complex and non-linear
relationship between input and output data, in a way to learn a set of rule via instances without
defining a pre-specified form (Hahn et al, 2005). However, these techniques are time and
capacity consuming, moreover at most cases they are black box models, which means that the
results are impenetrable and hardly interpretable (Taylor et al, 2006). The most commonly used
techniques in studies focusing on STLF are the: (1) logic based and (2) statistical learning
algorithm, (3) percepton based techniques, (4) support vector regressions and (5) further hybrid
procedures (Hahn et al, 2005). However, the Al solutions for STLF are rather belongs to the
computational and operational research field than to economics, besides their modelling
approach is not suitable for my research objective. Despite, | would like to give a brief overview
about the main concepts of these methods and some real life forecast solutions, because most

of the papers dealing with STLF apply these computational routines.

Among the logic based algorithm the decision tree is the most widespread, because it is the
most interpretable and it has the highest transparency. Furthermore, this process is quite fast
and robust to missing values and noise in the dataset. The procedure describes the potential
range of the values of outputs in the function of the traits of the input set (Maglogiannis, 2007).
Generally the structure of a decision tree consists of hierarchically ordered nodes and edges

without any loop. Each node is a decision point, which stores a test function for incoming data.
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The result of the test is binary and based on the outcome, the dataset is divided to two outgoing
edges, called left child and right child. The final results are contained in the terminal nodes, in
the so called leaves (Lahouar and Slama, 2015). For the development of the most accurate
decision tree structure it is necessary to build a training and testing procedures. In the
framework of this experimenting phase the algorithm tests the number of optimal nodes and the
relevance of the decision questions belonged to the nodes based on the features of the input
dataset (Lahouar and Slama, 2015). The process optimizing for the goodness of fit of the
predictions to the training sample. In order to avoid an infinite cycle it is necessary to define
the maximum number of leaves and a termination rule (Lahouar and Slama, 2015). The
enhanced version of the decision tree is the random forest. The random forest, as it name
suggests is the combination of the predictions of many decision trees (Lahouar and Slama,
2015). In the framework of this procedure there are g randomly selected training sample from
the given dataset. For this g training samples, g predicting trees are developed according to the
explained algorithm. Finally, the outputs of all these predictors are averaged (Lahouar and
Slama, 2015). The added value of the random forest machine learning technique to the simple
decision tree method is that by this way predictions are more immune to noise, because during
the randomization of the different training sample uncorrelated trees were also generated.
However, this technique performs well only with discrete features and simple decision
structures, besides duplicates can be also occurred (Lahouar and Slama, 2015). An excellent
instance for the use of random forest methods for STLF is the study of Lahouar and Slama
(2015). The main objective of Lahouar and Slama (2015) was to develop a forecasting model
for the electricity demand of Tunisia. The Tunisian Power Company provided a dataset of
hourly load data between 2009 January 1 and 2014 August 31, the expected horizon of the
forecast was a day-ahead prediction. The authors decided to design a forecasting model with

the help of the random forest machine learning technique.
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The consideration of Lahouar and Slama (2015) was based on the fact that the conventional
statistical methods cannot handle the non-linear features of the load data time series, hence they
turned to the more sophisticated, currently widespread artificial intelligence method. According
to the argumentation of the authors among the machine learning techniques the random forest
is the most suitable ones, because it is less sensitive to parameter values, more robust and
resistant to irrelevant inputs, therefore it can cope with any load profile and complex
consumption pattern. Furthermore this method provides a good interpretation as well. The
decision tree defined by Lahouar and Slama (2015) for the Tunisia load dataset can be seen on
the figure Al.1. Lahouar and Slama (2015) incorporated the months, day types, minimum and
maximum temperature of weather forecast, morning and peak load of the previous day,
furthermore electricity demand of the preceding 24 and 48 hours of the given hour into the
model as input data for decision points based on the graphic analyses of the historical Tunisian
load. Finally, the authors decided to build 24 separate modes for each hours in order to avoid
the accumulation of forecasting errors. In this way the one-day-ahead forecast requires 24 times
one-step-ahead forecast instead of a 24-steps-ahead forecast at a monolithic model, which is
subjected to much larger error accumulation than the solution of the authors. Besides, the
authors kept the poorly correlated input variables to increase the immunity of the algorithm.
Furthermore, to be the model as long lasting as possible the authors chose the online version of
this machine learning technique, which means a step by step broadening training sample base,
because the previous day become part of the training sample for the next forecast. With this
approach the model can handle changes emerged in the electricity demand pattern and
consumers behavior (Lahouar and Slama, 2015). During the fine-tuning phase of the model the
authors figured out that electricity demand on Mondays were consistently underestimated,
therefore a new rule were added to forecast Monday load from the previous Friday instead of

Sunday.
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The model was also inaccurate in the case of the moving holidays and on the extreme hot days,
as a consequence the algorithm was trained to use the former historical data belonged to these

special days instead of the standard forecasting procedure (Lahouar and Slama, 2015).

The second subgroup of the most commonly used STLF Al techniques is the statistical learning
algorithm. In the case of the statistical learning algorithm there is an explicit underlying model,
which provides a probability that an example belongs to a given group (Maglogiannis, 2007).
For example the Bayesian Network possesses a conditional probabilistic structure. The other
well-known routine is the k-nearest neighbor method, which is based on the principle that
“instances within a dataset will generally exist in close proximity to other instances that have
similar properties” (Maglogiannis, 2007, p11.). The advantage of this procedure that it is fast

and not memory consuming, however very sensitive to irrelevant inputs (Maglogiannis, 2007).

The most popular percepton based process is the artificial neural network (ANN), which is the
third subgroup. It simulates the working of a human brain. The structure of the ANN model
consists of nodes, which imitate the neurons of human brains and these are connected by links
and interact with each other via these links (Maglogiannis, 2007). The nodes can take input data
and execute simple manipulations on the data, while weights are assigned to the links. The
learning procedure is developed by changing the weights in the sake of generating outputs
fitting the most accurate way to the real values (Maglogiannis, 2007). It is the most frequently
applied method for load forecasting, because it can model complex and multidimensional
relationships, copes with multicollinearity and there is no need to understand the underlying
data (Hahn et al, 2009). However, this method is prone to overfitting, it is a time and capacity
consuming technique, furthermore the inside optimization process is a black box, hence the
model is uninterpretable (Maglogiannis, 2007). For the realization of ANN in STLF Taylor et
al (2006) is a good illustration. Taylor et al (2006) constructed a single hidden layer feedforward

network, which consists of input data, one hidden layer and input data.
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In this case the input data functions as explanatory variable, which was the lagged load demand
data, while the output was the load demand of a given hour. During the training process the

system optimized the following loss function (Taylor et al, 2006):
miny,, (% Y1 — f(xe v, w))? + 4 XL, Yo szi + A2 2o Uiz)’ where

e f: the resultant sigmoidal model

v and w are the weights

n: the number of in-sample observations

k: units of inputs

m: units in the hidden layer

e A;and A, stand for penalization terms in order to avoid overfitting
Although, theoretically this technique should perform the best forecast by construction but in
the case of Taylor et al (2006) it was outperformed by the classical regression based methods.
The authors explained the poor performance of their artificial neural network with the fact that

their dataset was short and they did not separate the weekdays and weekends.

The fourth subgroup is the support vector machine or regression, which is the state of the art
machine learning procedure. This technique is “used for data classification and regression with
non-linear kernel-based approaches, which means that instead of regressing in the (x,y) space,
X is mapped into a higher-dimensional space by a mapping function in order to make the
optimization process numerically easier and find the maximum distance among the separated
group of input data” (Hahn et al, 2009, p4.). Like ANN this routine is also robust to noise and
it can cope with complex and higher dimensional problems. From the other side, it is capacity

consuming and parameters of the model is hard to interpret (Hahn et al, 2009).

Further hybrid computational techniques have already appeared in the literature, which main
aim is to alloy the mentioned methods to overcome their weaknesses. These procedures are

usually stochastic algorithm that try to find a good solution to a hard optimization problem by
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sampling the objective function, like particle swarm optimization and genetic, evolutionary
algorithms (Hahn et al, 2009). These routines are applied to fine-tune the parametrization and
the training period of a machine learning model or to help in the determination of the optimal
setup of explanatory variables. These algorithms can find the global optimum and they are more

resistant toward noise (Lahouar and Slama, 2015).

One case study for the utilization of hybrid technique is the paper of Zhang and Luo (2015).
Zhang and Luo (2015) developed a hybrid method for short term load forecast of Jiangxi
province in China. The authors combined the Gaussian Process machine learning technique
with transfer learning procedure for this reason. Their underlying consideration was that most
of the exogenous variables which influence the short term electricity demand are hard to obtain
and difficult to quantify, however Gaussian Process can handle the latent variables well, as it is
the only non-parametric machine learning technique and due to this feature it is less time and
capacity consuming. Furthermore, based on the argumentation of the authors these mentioned
hidden variables are resembled to each other within short distance area, therefore they came up
with the idea to complete the Gaussian Process with knowledge transfer and apply the available
dataset of the neighboring cities for the load forecast of the target city. The main assumption of
the transfer learning technique is that two groups of tasks can be defined, target and source
ones. Besides, the performance of the target task can be improved due to the exploitation of the
accumulated information of the selected source tasks (Zhang and Luo, 2015). The notion of
the authors is similar to the combination and the development of the Kalman-filter and k-nearest
neighbor method. In this special case the selection of the source task is based on the similarity
of the load profile of the cities in the province (Zhang and Luo, 2015). The available dataset of
the authors consisted of the 15 minutes frequency load data of the 12 cities, which meant 16000
data points in case of each city. The power load prediction was taken as a random variable

which was correlated with the previous load values.
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The extent of the correlation was measured by a defined covariance function. The predictor of
the load output sequence was the joint distribution of the predictor itself and the historical load
data (Zhang and Luo, 2015). The structure of the model of Zhang and Luo (2015) can be

observed on the figure A1.2.

Finally I summarize aspects and findings of the introduced studies, which are relevant related
to the development of a customized forecasting model of the Hungarian system net load. First
of all I chose the conventional regression based STLF methods and not the computational
techniques, because the former is faster and more intuitive, therefore more suitable for a handy
forecasting model. Then it can be stated that the biggest challenge of the conventional STLF
methods is to cope with the superimposed seasonality of the power load, which is emerged on
daily, weekly and yearly level. The most often used techniques in the covered studies for the
elimination of the seasonality were the introduction of seasonal dummy variables or executing
double seasonal differencing. The further important question was the consideration of the
modelling approach beside the handle of the seasonality. The two approaches were the local
and the global modelling approach. The former one used separate model for each hour or for
weekdays and weekends, while the latter applied only a monolithic model, which treated the

intraday load data as chronologically ordered consecutive time series.

The advantage of the local modelling approach is that it can easily handle the intraday
seasonality, however it leads to the loss of interrelated information. On the other hand, in the
case of a single model the one-day-ahead forecast means 24-steps-ahead forecast, which is
resulted in the accumulation of the forecast error and in decreasing accuracy. Therefore, it is an
ambiguous question that which approach should be employed for the Hungarian load
forecasting model. Further important aspects of the models were the appropriate selection of
the explanatory variables. In the short term forecasting horizon the economic variables are not

elementary, because they do not change significantly during a short time interval.
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However, the weather and calendar variables are very influential. The most important weather
related variable is the temperature, which has a nonlinear connection with the electricity
demand due to active heating in cold winter days and cooling in case of hot summer days. It is
also important to consider the geographical fact that the measured or forecasted temperature of
a given hour has a delayed effect on the system load, which is approximately three hours.
Regarding to the calendar effects the most relevant experience of the papers were that the load
profile is different on weekdays, weekends and holidays. Furthermore Mondays and Fridays
behave as transition days and they are characterized by specific electricity consumption
patterns. There was an agreement in the studies that the load profile of holidays is similar to the
load profile on Sundays. Furthermore, some of the papers pointed out that the load on Mondays
has to be forecasted from the previous Friday load, otherwise it would be consistently
underestimated. However, it was not straightforward whether it is worth to be estimated a
separate weekend model or forecasting Saturday from Friday does not cause consistent bias. In
the next section | analyze the key features of the Hungarian system net load profile and check

the relevance of the discoveries of the covered studies.
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2. Data and Methodology

In this chapter | would like to reveal the key features and specificity of the Hungarian system
load with the help of the database made available by the Hungarian Transmission System
Operator (MAVIR). In the framework of the graphic analyses | present the evolution of the
electricity usage over a year on monthly and daily frequency. Besides, | also give an insight
into the connection of the weather factors and the system load. Furthermore, | investigate the
atypical behavior of the electricity demand on national holidays and long weekends. Finally,
according to the key findings of the graphic analyses, | explicate the main aspects of the chosen

modelling approach and methods.

I got hourly net power system load data and meteorological data from MAVIR for 2014 and
2015, however the historical load data are also available on the website of MAVIR. From the
terminological point of view the industry distinguishes gross from net system load. The
difference between them is that net system load does not contain the self-consumption of the
generators and further technical losses. As | have no data for controlling these phenomena, |
decided to work with the system net load time series. The meteorological dataset, made
available by MAVIR contains hourly day-ahead-forecasts of wind speed, humidity, light and
temperature for 2014 and 2015. The dataset does not involve the winter holiday period (20"
December to 5" January), because based on the industrial experience of MAVIR it is a very
special part of the year, therefore forecasts for these weeks are made by a separate and special
model. Furthermore, according to the advice of MAVIR some outlier days when sudden and
unexpected issues happened such as big unforeseen sky tears were excluded. The consideration
of the Hungarian TSO is in line with the international practice, because in the case of the

covered literature the authors also smoothed out the outlier days.
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As it can be observed on the charts A2.1 the classical W-shape yearly load pattern can be
identified in relation to the Hungarian net load data in 2014 and in 2015. The electricity demand
IS decreasing as spring is coming, but in the middle of the summer it reaches its peak again due
to cooling. After the summer dog days the load decreases until the beginning of the heating
period. In 2015, this peak period was prolonged, besides it was more volatile due to various
extreme weather conditions in summer and in September. In order to get a deeper insight into
the nature of the periodicity of the system load, | executed monthly and daily aggregation in the
function of hour. Based on the graphs A2.2 it can be concluded that the daily electricity demand
pattern is the same in each month with parallel shifts. The highest load occurs during winter
and in the middle of summer, while the lowest electricity consumption can be observed in
spring. A slight difference can be noted between the two years with regard to the hierarchical
order of average monthly load, especially in the case of summer, which is due to the different
weather condition in the two years. Considering the daily run of the load, the global minimum
is around 3-4 am, then a steep increase can be identified due to the “busy morning”, such as the
beginning of the morning shift and the morning schedule of the public transportation. After the
start of the office hours, the electricity demand pursues a dampened growth up until the lunch
break. The second local peak can be connected to the end of the business day and to sunset. As
a result, this evening peak is varying over the months between 5-9 pm. The importance of this
double peaks phenomenon in the intraday pattern was mentioned in the study of Labouar and
Salma (2015) as well. With respect to the intraweek periodicity of the system load, the
electricity demand on weekdays and weekends deviates in a significant way (see on A2.3). On
Tuesdays, Wednesdays, Thursdays a similar pattern can be marked, however Friday and
Monday behave in a different way. Until 3 am the Monday load is coincided with the Sunday
load and during the consecutive hours a slow catching up effect can be detected. On the other

hand, the deviation from the weekdays load figure starts from Friday afternoon.
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Furthermore, there is a distinct load profile even on Saturdays and on Sundays. Saturdays
behave similar to the weekdays until 2 am, while on Sundays the demand is lower than on
Saturdays. Besides, weekends and weekdays have different evening peaks as well: the former
has it around 7 pm, while the latter at 8 pm. The correlation matrix of the net load and the
calendar variables also confirms the former findings because the days of the week have the
strongest relationship with net load (see on A2.4). Beside the days of the week, the national
holidays are also highly correlated with the net load. Therefore, | conduct further analyses

focusing on the impact of holidays on net system load.

According to the studied literature further special behavior pattern can be noticed in terms of
holidays compare to simple weekdays or weekends. In Hungary it is a usual practice that the
holidays are completed with an extra day for the sake of long weekends. Of course, the
additional holiday has to be worked off on a given Saturday. As a first step, it is important to
examine the relationship of the calendar variables with the net load from dynamic perspective
as well. Therefore, | study in detail the cross-correlation functions of net load and the calendar
variables. The charts A2.5 show the strength of the daily connections. The calendar variables
change only on daily level, furthermore their lead values are also known. As it can be noticed
on the cross-correlograms A2.5, the working Saturday has almost no impact on the net load,
only its 6™ lag is significantly different from 0. However, the current, previous and consecutive
values of the “National holiday” variable are influential. In order to understand the spillover
effect of the national holidays and working Saturdays, | analyze some special cases. Six types
of holiday can be differentiated: (1) a long weekend consists of four days including Thursday
and Friday, (2) a long weekend consists of four days including Monday and Tuesday, (3) a long
weekend consists of three days including Friday, (4) a long weekend consists of three days
including Monday, (5) single holiday and (6) working Saturdays. Although my sample is too

short to draw general consequences, however some interesting observations can be made based
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on the investigation of some special cases. The main findings are summarized in the following

table:

Type of
holiday/Influences

Given day

Further deviant behavior

single day

2014.08.20 — Wednesday (A2.6)

o Until 2am the pattern was similar to
the previous day

e The global minima shifted from 3 to
6 am

¢ During the day load profile showed
the same pattern with a 25%
downward shift

The demand on Thursday and
Tuesday was lower than on the
following week, especially in
the case of Thursday.
Moreover, the dawn of
Thursday still resembled to a
holiday load profile

2014.11.01 — Saturday (A2.7)
e The figure of the load profile was the
same with a downward shift
compare to the following Saturday

The load on Friday resembled to
the forthcoming week, in case
of Sunday the same tendency
could be observed, but the dawn
was still like a holiday pattern

2015.11.01 — Sunday (A2.8)
e Pattern remained the same with a
substantial downward shift versus
forthcoming Sunday

Both in case of Monday and
Saturday the demand was lower
than a week later, especially in
the middle of the day.
Moreover, the dawn of Monday
acted like a holiday

3 days with Friday

2015.05.01 and 2015.10.23 - (A2.9)

e The dawn of Friday until 2 am
behaved like other Fridays but then
during the whole day the demand
was significantly lower. Besides,
there was a time shift in case of the
global minima as well

In case of Thursday from the
middle of the day some
deviation can be observed in the
load profile versus other
Thursday. The dawn of
Saturday acted like a holiday
and the total load profile
slightly differentiated from the
usual ones.

3 days with
Monday

2014.04.20 and 2015.04.05 - (A2.10)
e The same trend was observed as in
case of the other 3-days long
weekend

Besides the same trend as in the
former case. When this long
weekend was at Eastern the
previous weekdays and the
following Tuesday slightly
deviated the common profile
which perhaps due to the spring
school holiday

4 days with
Thursday and
Friday

2014.10.23 and 2015.08.20 - (A2.11)

e The formerly noticed phenomena
were valid in this case as well, hence
dawn behave like on normal days,

The electricity demand on the
afternoon of the previous day
was already lower. The dawn of
the following day of the holiday
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then time shift in the global minima | was still as low as during
and during the day downward shift | holiday. The extra day mostly
in the load profile behaved like a Saturday

2014.10.18 and 2015.10.18 - (A2.12) Sunday showed similar pattern

Working Saturday e The profile was resembled to | to normal Saturdays

Fridays

1. Table - Spillover effects of holidays in 2014-2015
Unfortunately, there was no 4-day-long weekend, where Tuesday and Monday would have been
the holidays, therefore I could not reveal the specificity of this type of holiday. Although my
time series is too short to draw general rules with regard to the specific load profile on holidays,
however the main findings of table 1 could be built into the model as a rule-of-thumb:
e The demand on holiday is roughly 25% lower than otherwise would be
e The load profile of holiday at dawn is similar to its standard daily value until 2 am
e There is a time shift with regard to the global minimum of electricity usage on holidays
e Some spillover effect after a holiday can be noticed, because the load of the previous day
shows a decreasing tendency in the afternoon and evening versus the usual value of that day
and hour. Furthermore, the load is also as low as it was on the holiday at dawn of the
following day

e In the case of working Saturdays the electricity demand is as high as on Fridays, as a result

the Sunday profile acts similar to a normal Saturday

After the deep analyses of the influence of the calendar variables, |1 would like to discuss the
relevant impacts of the weather related variables on the system net load. As | have mentioned,
the given meteorological dataset contained one-day-ahead forecast values for temperature,
humidity, illumination and wind speed on average for the whole country. According to the
correlation matrix of the net load and the weather variables, temperature and illumination have
the largest impact on net load (see on A2.13). However, there is a strong negative correlation
between illumination and temperature, moreover humidity also highly correlates with
illumination and temperature. However, it is essential from the modelling point of view to
scrutinize the exact relationship between net load and the weather variables. Based on the

empirical results of the covered studies, the most influential weather variable is the temperature,
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which is in a non-linear relationship with the load due to the heating activity in winter and
cooling activity during the summer. As it can be observed on the chart A2.14 a U-shape pattern
is valid in the case of Hungary, but the dispersion of the data points is quite high. A further
relevant remark is that the turning point is around 290°Kelvin. As for the forecasted wind speed,
no strong polynomial connection to load could be identified (see on A2.15). Furthermore, the
illumination is in a negative linear relationship with load during the winter below 20 klux, while
the humidity is in a positive linear relationship with the load above 80%, however these
connections are not strong (see on A2.16 and A2.17). Beside the static graphic analyses | study
in detail again the cross-correlation functions of net load and the weather variables, to reveal
the strength of the hourly and the daily connections (see on A2.18-A2.25). It is important to
keep in mind that only one-day-ahead weather forecast values are available for the Hungarian
TSO, hence only the information about the lag values can be utilized during the modelling. In
the case of temperature, the formerly revealed strong correlation can be identified from dynamic
prospect as well. Temperature on the past 7 days and the past 8-18 hours have significant impact
on the net load. With regard to humidity and illumination, the past 7 days also count. However,
with reference to illumination past 1-7 lags have positive, while the past 12-20 lags have
negative effect on net load within the day. A reverse pattern can be observed in relation to
humidity, where within day the past 1-4 lags have negative and the past 9-18 lags have positive
influence on net load, however the correlation is weak. Furthermore, in line with the key
remarks of the correlation matrix, wind speed is not a significant factor neither on hourly, nor
on daily level. Based on the findings of the graphic analyses of the weather related factors, it
can be concluded that the weather variables have strong interday and intraday spillover impact
on net load. Furthermore, beside temperature humidity and illumination also have to be built

into the model, especially at the identified relevant periods.
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After the exploration of the key traits of the Hungarian system load dataset in 2014 and 2015,
as a next step the concept of the modelling have to be set in line with the studied papers of the
literature review part. As | have already emphasized, the main aim of my thesis is to develop a
useful forecasting model for the Hungarian TSO. For this reason the model should have a
transparent structure with meaningful explanatory variables, with intuitive coefficients and
results. These considerations are important because the dispatchers in the head offices have to
understand which factors are the most essential from the operation point of view and toward
which exogenous effect is the system the weakest. Furthermore, sometimes the industrial
officers have to make expertise judgement and conduct modifications in the forecasts by hand.
As a consequence, | choose to use the conventional regression based methods, because these
are the most suitable modelling approaches to my project because the new machine learning
techniques require outstanding programming knowledge and computational capacity, special

software license which are not necessarily available at MAVIR.

The most widespread regression based technique is the ordinary least squares estimation (OLS)
but this estimator requires numerous conditions to be consistent. Therefore, | check the validity
of the OLS requirements as for my dataset. First of all, I test the stationarity of the time series
with the help of the ADF test (see A2.26). None of the variables contain unit root, as a result of
which cointegration is not an issue. Besides, there is no threat of perfect multicollinearity among
the calendar and meteorological variables based on the correlation matrices. In addition, as it
was formerly argued by Ramanathan et al (1997), multicollinearity does not hinder the
forecasting power, only an obstacle to interpreting the effect of the explanatory variables.
Furthermore, | also consider the presence of simultaneity because developing a forecasting

model for system load is related to some extent to a demand-supply estimation problem.
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There is no simultaneity in the case of power system load estimation, because it was shown in
the literature that in the short term price has no influence on demand. It is due to the fact that
excessive demand or supply has to be immediately counterbalanced at any price, besides price
does not change within day at most cases. In the case of Hungary the price cannot change within
the day because the Hungarian power market is a half-regulated market. For the residential
consumer the electricity price is time-invariant and set by the authority with yearly revision.
There is free market for the industrial consumers but in their contracts the cost of the electricity
supply is also fixed in advance. Dynamic electricity price is present only on the power exchange
market, although here can be only day-ahead and future products traded which means that the
current disturbance of the system will not influence the current price. Finally, | take into account
the occurrence of endogeneity. One of the main sources of endogeneity could be the
simultaneity but as | explained there is a low probability of simultaneity in the current case.
Omitted variables could be a further potential source of endogeneity but it is also not an issue
in the current case because all of the relevant explanatory variables, which were mentioned in
the literature, are available and can be incorporated into the analysis. Therefore | exclude the
presence of endogeneity as well. After the justification of the necessary conditions for OLS,
based on the main findings of the graphic analyses | regard the model specification of Taylor
et al (2006), Ergiin and Jun (2011) and Ramanathan et al (1997) relevant, because these authors
applied classical regression based techniques specified to capturing the impact of weather and
calendar variables on system load. Therefore as a starting point I will experiment with the
replication of the mentioned studies before the creation of my own model. I will estimate the

model for 2014 and tested its forecasting performance on 2015 based on the MAPE index.
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3. Replication

In this chapter | will test the fit of the model specification of Taylor et al (2006), Ergiin and Jun
(2011) and Ramanathan et al (1997) to the Hungarian system net load dataset for 2014 and
2015. The object of the replication is to reveal those approaches and modelling techniques
which can capture the specific pattern of the Hungarian net load dataset. Moreover, | would like
to recognize the deficiencies that cannot be solved in the framework of the mentioned model
specifications and by this way mean a field for development. As a result, | will carry out the
original model specification of each study, then I will check the correctness of the models with
the help of statistical tests (Durbin-Watson test, Breusch-Godfrey Serial Correlation LM Test,
RESET test and Heteroscedasticity test), after if it is necessary | will execute amendments in
order to develop a statistically correct model. Finally | will test the forecasting performance of
the established model specifications and summarize the findings. In logical order I will
demonstrate the univariate naive benchmark model, the double-seasonal ARIMA model and
the exponential smoothing with double seasonal cycles technique of Taylor et al (2006), then |
will present the model specification of Ergun and Jun(2011) and Ramanathan et al (1997)

among the multivariate models.
3.1 Naive benchmark model

In the case of the Hungarian power system net load data, the presence of unit root was rejected
by ADF tests (see on A3.1). Therefore, instead of seasonal random walk model specification, a
seasonal version of an AR process can be still applied as a naive benchmark model. First of all
| ran the hourly net load data on their corresponding week ago value (see on A3.2). Although
the week ago hourly electricity demand seemed to be a significant explanatory variable,
however the Durbin-Watson statistics and LM-test proved the presence of serial correlation (see

on A3.3).
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Therefore, | applied the error correction mechanism used by Taylor et al (2006) at their PCA
models, thus I incorporated the last prediction error and the one, which occurred 24 hours ago
(see on A3.4). However, this modification could not solve still the problem of the autocorrelated
error terms (see on A3.5). Then with the help of the ACF graph | tried to identify the relevant
MA terms, which were the errors of the last 1.5 day (see on A3.6). In the final model

specification, the following terms remained significant:

2537.692 0.0000
0.859835 0.0000
1.518117 0.0000

1.601950 0.0000
1.492930 0.0000
1.364681 0.0000
1.214870 0.0000
1.084793 0.0000
0.923570 0.0000

0.745217 0.0000
0.593087 0.0000
0.447893 0.0000
0.285762 0.0000
0.111064 0.0000
0.385616 0.0000

0.593214 0.0000
0.599864 0.0000
0.541596 0.0000
0.490606 0.0000
0.420439 0.0000
0.313818 0.0000
0.186045 0.0000
0.064765 0.0000
0.993547
0.993529
13.52342
1.957238

2. Table - The first correct specification of the naive benchmark model
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As it can be observed in Table 2, the test statistics improved significantly but the model still
suffered from serial correlation (p-value of LM-test F-statistics was 0). Therefore my
conclusion was that in the case of the Hungarian load data, it is not enough to take into account
only the weekly cycle. In order to get a statistically correct model, it is necessary to get rid of
the intraday periodicity. As a result, | re-estimated the original setup of Taylor et al (2006) on
the daily seasonally differenced dataset (see on A3.7). However, the residuals of the estimates
remained serially correlated in the case of the added error correction process as well, even when
| further extended the original model and incorporated the past errors of the last 1.5 day (see on
A3.8). Therefore | relaxed the assumption of Taylor et al (2006) and beside the week ago
corresponding load demand I also included further lags. The additional lags solved the problem
of serial correlation, but could not eliminate the heteroscedasticity (see on A3.9). Hence, | used
the White heteroscedasticity-consistent standard errors in order to get a consistent estimate.
However, the drawback of the White heteroscedasticity-consistent standard errors is that it
complicates the calculation of the confidence intervals, furthermore it increases the forecast
errors. | tested whether the explanatory variables of the final model specification remained
significant after the use of the White heteroscedasticity-consistent standard errors (see on
A3.10). Furthermore, | tested the validity of the correct model specification with the RESET-
test (see on A3.11). Based on the test results, the best model specification was already
statistically valid with the application of the White heteroscedasticity-consistent standard
errors, because its error terms were not serially correlated, the explanatory variables were

jointly significant, and the RESET-test could not undermine the correctness of the specification.
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0.226744 0.0000
-0.216492 0.0000
2.508853 0.0000

-3.140097 0.0000
2.842575 0.0000
-1.876450 0.0000
0.829308 0.0000
-0.180802 0.0000
0.023930 0.0000
-0.092504 0.0000
0.164791 0.0000
-0.172303 0.0000
0.122430 0.0000
-0.048349 0.0000
-1.060635 0.0000

0.957771 0.0000
-0.618984 0.0000
0.196859 0.0000

0.062944 0.0005
-0.062221 0.0000
0.047652 0.0000
0.058931 0.0000
-0.772072 0.0000

0.753567 0.0000
-0.695775 0.0000
0.450985 0.0000

-0.136039 0.0000
-0.044159 0.0013
0.981754
0.981692

13.35742
1.997533

3. Table - The second correct specification of the naive benchmark model

Finally | tested the forecasting power of the naive benchmark model to set a reference point for
the evaluation of the further model specifications. | executed a static one-step-ahead forecasting
procedure. As it can be observed on the charts A3.12 the naive benchmark model is extremely

imprecise as the average MAPE is 107%, while in Taylor et al (2006) it was around 4.5%.
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The biggest errors occurred on Thursdays, on Fridays, in spring and in autumn. The Chow
forecast test also signaled that this specification cannot handle well the changing load profile in
autumn (see on A3.13). Therefore, it can be concluded that this model specification is neither

statistically robust, nor accurate from the forecasting point of view.

To sum it up, the Hungarian net load dataset does not contain unit root, therefore the seasonal
version of the Random Walk model was not appropriate as a naive benchmark model. As a
result, | estimated an AR process based on the consideration of Taylor et al (2006), hence | used
the week ago hourly net load data as an explanatory variable. However, the model was serially
correlated even with respect to the application of the error correction procedure developed by
Taylor et al (2006). The problem could not be eliminated with the extension of the model with
further past errors. To resolve the intraday periodicity, | executed the 24 hour seasonal
differencing and re-estimated the former models, but the autocorrelated error terms did not
disappear. Finally, I relaxed the hypothesis of Taylor et al (2006) and incorporated further past
net load data beside the week ago based on the PACF and ACF graphic analyses. After the
development phase I also tested the forecasting performance of the model, which was very weak
especially when seasons changed. The main conclusion was that in the case of the Hungarian
electricity demand, the intraday seasonality is very substantial and not only the week ago

demand is relevant but also the electricity need during the past 1.5 day.
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3.2 Double-seasonal ARIMA model

In the case of the Hungarian system net load dataset, | also followed the Box-Jenkins
methodology to find the most suitable SARIMA specification. In order to identify the lags I
plotted PACF and ACF of net load. ACF showed a seasonality in spite of the fact that the series
was double seasonal differenced but PACF broke down after 3 lags (see on A3.14). As a result,
the AR part consisted of 3 lags, while the number of relevant MA terms is ambiguous hence |
was experimenting with more lags. Even though | set the Newey-West seasonal error
correction, the 24" and 168" lags of the residuals of the estimated model remained significant.
Consequently, 1 tried to incorporate these lags of the MA and AR terms in the regression (see
on A3.15). However, the Durbin-Watson statistic, the Serial Correlation LM-test and the
residual diagnostics (autocorrelation, normality test) proved the presence of serial correlation
(see on A3.16). Therefore, | doubted the correct specification of the model, as a result of which
| executed the RESET test, but it could not confirm the misspecification of the model (see on
A3.17). Hence, | thought that maybe some structural break cause the problem. Therefore, I
tested the Chow Breakpoint Test for the 2400" hour and the 5300 hour, which are the middle
of spring and the beginning of autumn. The null hypothesis could have been rejected in both
cases, so there are structural breaks in the relationship (see on A3.18). As a next step | checked
the same model specification for the subsamples. The results were not unanimous:

e 1-2400th hours: serial correlation was not rejected by the Durbin-Watson test statistic
and the Serial Correlation LM test, according to the RESET test the model was
misspecified

e 2400-5300th hours: serial correlation could not be eliminated but the RESET test null
hypothesis remained significant

e 5300-8136th hours: the model remained well specified and serial correlation could be

eliminated according to the tests
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Finally, I resolved the restriction of the SARMA specification. Based on the result of the
development of the naive benchmark model, | reran the model on the lags and past errors of the
past 1.5 day. The final specification passed the Durbin-Watson, LM-test, RESET-test but
among the different heteroscedasticity tests only the Harvey-test could undermine the presence
of heteroscedasticity, therefore | applied again the White heteroscedasticity-consistent standard
errors and checked again the joint significance of the variables of the last specification with

Wald-test (see on A3.19).

1.517865 0.0000
-0.446246 0.0000
-0.155827 0.0001
0.077533 0.0000
-0.305443 0.0000
0.482028 0.0000
-0.180587 0.0000
0.114546 0.0000
-0.014418 0.0010
-0.068195 0.0026
0.053116 0.0086
0.021063 0.0078
-0.177737 0.0000
0.062009 0.0000
-0.124965 0.0000
0.086158 0.0000
-0.103925 0.0000
-0.046213 0.0000
-0.291605 0.0000
-0.102289 0.0000
0.056405 0.0233
-0.012679 0.0340
-0.797394 0.0000

0.260387 0.0000
0.124648 0.0000
-0.049571 0.0430
0.011507 0.0037
-0.005468 0.0304
0.975551
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0.975466
13.33888
1.993292

4. Table - The final correct specification of the "double-seasonal ARMA"

After the specification phase | tested again the forecasting performance of the final version. As
it can be noted on the charts A3.20, the accuracy of the model is extremely weak even worse
than the naive benchmark. The average MAPE of the one-step-ahead forecast is 175%, while
the double-seasonal ARIMA model of Taylor et al (2006) had 2.3% MAPE. The highest error
occurred on Mondays, in April and in September. The Chow forecast test signaled once more

a structural break at the beginning of autumn.

All in all, even with double seasonal differencing the lags of the 1.5 days and MA terms had to
be incorporated into the model because the double seasonal differencing could not solve the
problem of daily and weekly periodicity and the error terms remained serially correlated. As a
consequence, the final specification was similar to the naive benchmark model, even though it
was outperformed by the naive benchmark model. It implicates that in this case double seasonal

differencing led to information loss and turned out to be counterproductive.
3.3 Exponential smoothing with double seasonal cycles

At the beginning it is important to mention that | executed the replication of the exponential
smoothing model of Taylor et al (2006) with a special dwhs() forecast program in R software
which was developed according to the Taylor (2003) process. Consequently, it was a black box
procedure, hence | did not conduct any adjustment on the original setup. Therefore, the
forecasting performance of the technique can be immediately discussed. As it can be observed
on the chart A3.22, the forecasted values fit almost perfectly the real dataset. The average
MAPE of the one-step-ahead forecast was 0.89%, while it varied in the range between 0.6%

and 1.25% (see on A3.23).
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The result is not unexpected, because with reference to Taylor et al (2006), the exponential
smoothing with double seasonal cycles performed the best. It is also interesting to mention that
the least predictable months are April, May and September, when the weather conditions are
usually the most variable, and at the turn of seasons. From the daily aggregation point of view,
the method was the least accurate on Mondays and weekends, which are special days according
to the studies. These days have special consumption patterns, especially on national holidays
and long weekends. Finally, | checked the correctness of the model, therefore | tested the ACF
and PACF of the residuals of the forecast. Based on the diagrams A3.24, it can be concluded
that despite the incorporation of the intraday and intraweek seasonal cycles, the residuals of the
Holt-Winters exponential smoothing with double cycles remained highly autocorrelated,

therefore the model is statistically not correct.

Based on the results, | argue that the univariate techniques are not appropriate for the forecasting
of the Hungarian net load, because these methods cannot handle the influence of the weather
conditions and the varying residential and industrial consumption patterns in the function of the
weekdays and holidays. Consequently, the univariate models missed relevant information and
in spite of the incorporation of the past values, they produced inaccurate predictions. Hence, |
continued with the testing of the forecasting performance of the multivariate models, Ergiin and

Jun (2011) and Ramanthan et al (1997).
3.4 Model with exact-day matching technique

At the beginning it is necessary to declare that the authors worked with daily data and the
Hungarian system net load database consists of hourly data. According to the argumentation of
the authors the yearly periodicity counts, as a result their model specification should also work
on the hourly level as well. Historical load data are publicly available on the website of the
Hungarian Transmission System Operator, therefore | could calculate the average demand of a
given hour on a given day from 2010 up to 2015, and execute the exact-day matching technique
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on the hourly level. Regarding the specification of the temperature variable, | relied on the
findings of the graphic analyses, hence | declared 290°K as the turning point. As a result d, =

1if Temperature, > 290°K, while d, = 1 if Temperature, < 290°K

After the generation of the variables defined in the study, | tested the goodness of fit of the
model of Ergiin and Jun (2011) on the Hungarian dataset (see on A3.25). The lags of the
temperature and the increasing interval of the temperature function were not significant,
therefore 1 made sure with F-test whether these variables are jointly significant or not (see on
A3.26). The lags of the temperature were not significant jointly, hence | dropped them from the
equation and re-estimated the model (see on A3.27). The variables were strongly significant,
moreover the R-square was high but the Durbin-Watson statistics and the serial correlation LM
test indicated autocorrelation in the residuals (see on A3.28). Therefore, | tried to adjust the
model with the application of the Newey-West seasonal error correction, but it could not
eliminate the identified autocorrelation. After the check of the ACF and PACF of the residuals,
it can be concluded that the first three lags of the net load variable are deviated the highest
extent from 0, hence these should be incorporated into the model (see on A3.29). Although, all
of the lags were significant, they could not solve the problem of serial correlation. Therefore,
the correctness of the model was doubtful, as a result of which | executed the RESET test which
could confirm the misspecification of the model (see on A3.30). Therefore, | hypothesized that
the model is rather sensitive to the mean or the demeaned net load variables. Consequently, |
was experimenting with the first 3 lags of demeaned net load, mean net load and simple net
load. In order to avoid multicollinearity, only two out of three mentioned variables were
incorporated into the equations. | applied LSE type of modelling, put all the relevant variables
in the equation, then drop the most insignificant ones, after that checking F-test statistics
whether these are jointly insignificant as well. The first priority was to develop a statistically

correct model, therefore in the case of each specification | executed the serial correlation LM
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test and tested the Durbin-Watson statistic as well as heteroscedasticity. My secondary
objective was to reach the highest explanatory power of the developed model based on the
Schwartz and Akaike information criteria (AIC and BIC values). At the end of the iteration the
best specification could not solve still the problem of autocorrelation in the residuals based on
the LM test, however the Durbin-Watson statistics was already convincing (see on A3.31).
Therefore, | plotted again the ACF and PACF of the residuals, the 24th lag remained highly
correlated (see on A3.32). With the incorporation of the 24th lag, the statistics of the model
improved. The LM-test could undermine the presence of serial correlation (see on A3.33). I do
not think that this result is robust, therefore my final conclusion is that the original model does

not fit the Hungarian dataset because it cannot handle the intraday seasonality.

As a consequence, | decided to develop further the model of Ergin and Jun (2011) and figure
out the way to handle the intraday seasonality. My first attempt was to conduct seasonal
differencing in order to get rid of the intraday periodicity and then reran the original model
specification. The seasonal differencing did not solve the problem of the autocorrelation in the
error terms, but the first lag of the temperature variable turned partly significant (see on A3.34).
I checked again the plot of the ACF and PACF of the residuals and repeatedly the first three
lags were significant at the highest extent. Therefore | started again the LSE-type of iteration
with all combinations of the three lags of the net load, mean load and demeaned load variables
taking into account the possibility of multicollinearity. The best performing specification was
still serially correlated based on the LM-test, although the Durbin-Watson statistics was again
promising. After the check of the ACF and PACF the 6th lag of the residuals showed high
partial autocorrelation, as a result of which I decided to extend the model with those lags as
well. Finally with the exclusion of the 4th lag, all of the explanatory variables remained
significant. Besides, both the Durbin-Watson statistics and the LM-test rejected the presence of

serial correlation but the model was heteroskedastic according to the test result, therefore

44



CEU eTD Collection

instead of the Nevey-West correction | applied the White heteroscedasticity-consistent standard
error correction, with the check of the joint significance of the variables in the latest model with

Wald-test. The model is still not robust, but at least theoretically gives a consistent estimate.

-0.156932 0.0003
-0.133546 0.0009
19.30455 0.0006
-17.96129 0.0016
5.008207 0.0003
1.761574 0.0000
-0.919797 0.0000
0.240234 0.0000
0.044787 0.0003
-0.020762 0.0260
0.968470
0.968435
13.89841
2.000854

5. Table - The first correct specification of the model with exact-day matching

Consequently, I experimented with another approach to handle the intraday seasonality. Instead
of daily seasonal differencing, I introduced the days of the week in a form of dummy variables.
First of all, I ran the original model specification of Ergiin and Jun (2011) with the incorporation
of the day dummies, taking into account the possibility of multicollinearity (see on 3.35). The
lags of temperature variables and Tuesday, Thursday dummies were not significant, thus I
tested with F-statistics whether they are jointly insignificant as well (see on 3.36). After the test
proved their jointly insignificance, they could have been removed from the equation. However,
after the re-estimation of the model, in spite of the significant explanatory variables and the
high R?, the Durbin-Watson statistics and the LM test proved the presence of serial correlation
in the residuals (see on 3.37). In order to identify which left out lags caused the serial
correlation, | plotted the ACF and PACF (see on 3.38). Again the problem was with the first 6"

and 24" lags.
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However, the extension of the model with these variables could not solve the problem of serial
correlation. Therefore, as a next attempt | took the interaction of the 23" — 25" lags and the day
dummies and re-estimated the last specification. Even though, in the case of the most
appropriate version, when all of the variable were significant and the BIC, AIC was the lowest,
the Durbin-Watson statistics and LM-test indicated the presence of serial correlation (see on
3.39). My final guess was to eliminate the autocorrelation in the residuals with the incorporation
of MA terms. My idea was based on the consideration that the evolution of the load data within
day might be due to the specific conditions of that given hours, thus the lags of the different
load variables are not as strong indicators as the current or former conditions. Only the day
dummies and the temperature variables signal the conditions of the given hours, as a result of
which it can be assumed that there are some latent variables which are embedded into the error
terms and cause systematic deviation in the prediction, which leads to serial correlation in the
residuals. My argumentation also explained why the demeaned net load term, which stands for
capturing the systematic difference from the expected value of the net load, does not include
the missed information. In my point of view, the solution for the problem was the incorporation
of the past errors into the model in order to capture the effect of the latent variables and get rid
of the serial correlation. | completed the model with the past errors of the last six hours and
with the past errors occurred 23-25 hours ago. In relation to the final specification, the model
passed the Durbin-Watson and the LM-test but it had to be estimated with the White
heteroscedasticity-consistent standard errors in order to get a theoretically proper model (see

on A3.40).
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703.0654 0.0000
0.750043 0.0000
0.686545 0.0000
7.344490 0.0000

2.648539 0.0008
-122.9244 0.0288
-167.6213 0.0272
-298.1386 0.0000
-994.1958 0.0000
-1477.538 0.0000
0.374283 0.0000
-0.207570 0.0001
0.048703 0.0070
0.107999 0.0000
0.043292 0.0001
0.041150 0.0000
0.101347 0.0000
-0.030992 0.0304
-0.075839 0.0041
0.095013 0.0000
0.144127 0.0000
-0.107287 0.0000
-0.035280 0.0000
-0.092116 0.0000
-0.124653 0.0000
0.069163 0.0000
0.311662 0.0000
-0.134514 0.0000
-0.111078 0.0000
-0.065439 0.0000
0.052466 0.0000
-0.048861 0.0100
0.375970 0.0000
0.090434 0.0016
0.992287
0.992256
13.70645
1.989081

6. Table - The second correct specification of the model with exact-day matching
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After the positive results | also incorporated the past error terms into the seasonally differenced
model as well to test which approach can handle the problem of serial correlation in a more
efficient way. The final specification of the model was statistically correct only with the White
standard error correction. It had a better Durbin-Watson statistics and it was more robust against

the LM-test, which could also disproved the presence of autocorrelation (see on A3.41).

-0.015685 0.0057
1.619028 0.0000
-0.902104 0.0000
0.213492 0.0000
0.048101 0.0000
2.734653 0.0027
3.326240 0.0002
-0.761517 0.0000
-0.077169 0.0000
-0.047631 0.0000
-0.037431 0.0000
0.034521 0.0000
-0.021465 0.0021
0.027168 0.0000
0.975396
0.975356
13.65141
1.997509

7. Table - The third correct specification of the model with exact-day matching

Then | tested the forecasting performance of the two improved versions. As it can be noticed
on the charts A3.42 the forecasting efficiency of the model using seasonally differenced data is
very weak. This model specification is even outperformed by the naive benchmark model. The
critical days are again Thursdays and Fridays, furthermore the worst predicted months are
March, April and October. However, as the charts A3.43 show the forecasting power of the
model specification that applies daily dummies instead of differencing is quite strong. The
average MAPE of the one-step-ahead forecasting procedure was 0.85%, which is even better

than the MAPE of the exponential smoothing with double seasonal cycles technique and this
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model is statistically correct. In the case of the original model the average day-ahead MAPE
was 2.1%. Therefore it can be stated that the latest model specification is almost as robust as

the original one.

To sum it up, one of the key experiences of the replication of Ergun and Jun (2011) is that the
exact-day matching technique cannot handle the daily and the weekly seasonality. Besides, with
respect to the Hungarian dataset it is also relevant to take into consideration the nonlinear
relationship of temperature and net load. Furthermore, it seemed that beside temperature and
past values of net load, there are still further relevant omitted information which could be
included into the model via past errors. However the most essential finding was that the
incorporation of the day dummies into the model can handle the intraday periodicity better than
seasonal differencing. Finally | tried out another multivariate model specification of
Ramanathan et al (1997), which follows the local modelling approach and estimate separate

models for each hours.

3.5 EGRV model
In line with the paper of Ramanathan et al (1997), | separated the Hungarian database according

to weekdays and weekends. Then | created the necessary daily and monthly dummy variables
as well as the special temperature variables. The authors used the square of the defined
temperature variables in order to capture the nonlinear effect counter to Ergiin and Jun (2011)
who applied a VV-shape formula. After the necessary data manipulation, | ran the original model
specification on the Hungarian dataset. As the estimate was noisy and at some cases the
statistical tests failed, | customized each regression separately. First of all, I got rid of all of the
insignificant explanatory variables with the help of the Wald-test, then conducted the LM-test
and Heteroscedasticity test, finally all of the 48 models were statistically correct (see on A3.44).
Generally, there was less problems with serial correlation connected with this local approach

and it could be easily eliminated by the drop of the insignificant variables from the equations.
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Besides, dummy variables for months and days worked well in the case of these models.
Furthermore, their interaction with the weather variables were most of the time statistically
significant and influential. Usually the dummy variables of winter and summer months were
the most impactful in all regressions, but their interactions with temperature were only
statistically significant. However, different days remained significant in the different equations
and the most important one was Monday. The “Dayafterholiday” variable was a relevant
explanatory variable in each equation. Its coefficient was negative until 4 am then it turned into
positive. This fact underpins the spillover effect that the load profile behaves in the dawn of a
day, after holiday still like on a holiday, and it begins to catching up its normal pattern only
from morning. Beside the calendar variables the temperature of the given hour and former day
maximum temperature were important variables as well as the average midnight temperature
of the past seven days. Squared variants of the different temperature variables remained
significant but their explanatory power were weak. It is important to mention that MA terms in
the case of these model specifications were still essential. The difference between the weekday
and weekend models were that fewer explanatory variables remained significant, which were
the months and the interacted terms with temperature. The key findings of the model
specifications were in line with the original one, which means that in both model the months,
Monday, temperature and maximum temperature of the former day were the most relevant

explanatory variables (see on A3.45).

Finally | tested the forecasting performance of the models. It is important to take into
consideration that the forecasting horizon of this specification is one-day-ahead instead of one-
step-ahead. As it can be observed on the charts A3.44 the worst prediction occurred in August
and May, but otherwise the average daily MAPE on the given days and in the given months
were around 2.5-3%. The total average MAPE of the day-ahead forecast was 3.07%, which is

even better than in the case of the original model where the average daily MAPE was 4.79%.
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After the detailed analyses of the different model specifications, it can be concluded that the
univariate models had the worst forecasting performance, with the exception of exponential
smoothing techniques, however this model remained serially correlated. The model
specification with exact-day matching technique and dummy variables proved to be the best in
terms of forecasting accuracy. However, the forecast of this model was only one-step-ahead,
therefore it is questionable whether in the case of a 24-step-ahead forecast it could still
outperform the EGRV model. The main advantage of the EGRV-type model is that it was
homoscedastic as opposed to the other ones. On the other hand, the RESET-test signaled
misspecification almost at each equation, however in the case of the other models the null
hypothesis of the RESET-test could not be rejected. Hence, there is no ultimate model
specification; each of them has its advantages and disadvantages which have to be considered
during the modelling and have to be handle with the appropriate econometrics techniques.
However it has to be emphasized that according to the interpretation of the Chow forecasting
test, there is a change in the set of coefficients, which indicates that the model is not robust and
questions the long-lasting predicting power of the model or the linearity of the underlying

relationships (see on A.46).

All in all, the main objective of the replication of Taylor et al (2006), Erglin and Jun (2011) and
Ramanathan et al (1997) was to find the fittest modelling approach and modelling techniques
for the forecasting model of the Hungarian net load. In line with the mentioned studies, | was
experimenting with univariate and multivariate models, moreover with local and global
modelling approaches, furthermore | tested whether seasonal differencing or dummy variables
handle the seasonality pattern of the net load better. According to the result of the replications,
it can be concluded that with respect to the Hungarian data both the weekly and the daily periods
are strong and dummy variables can handle them. Therefore, in the framework of my own

model 1 will apply dummies for the days of the week and for the months. Besides, it turned out
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that univariate models are not suitable for precise forecasting because they do not take into
account lot of influential factors. Hence in spite of the incorporation of lags and MA terms they
usually suffer from serial correlation. As a consequence, my model specification will be
multivariate because based on the replication of Erglin and Jun (2011) and Ramanathan et al
(1997) the weather and the calendar variables have a huge impact on the net load, as a result of
which these variables had significant explanatory power in the replicated models as well.
However it is not straightforward which solution can capture the nonlinear impact of
temperature on net load better, the V-shape or the incorporation of the squared values.
Furthermore, it is also questionable whether the other weather variables such as humidity, wind
speed and illumination have a significant effect on net load beside the temperature or not. As
far as | see, these questions open the field for development, therefore according to the result of
the graphic analyses it is worth to experiment with the incorporation of the further weather
variables and test the fit of the two temperature specifications. On the other hand, it is evident
that the interaction of the months and temperature is essential, because it can also capture the
seasonal cycles and the changing influence of temperature, therefore I am planning to apply
this approach with regard to the other weather variables. The other crucial experience of the
replication is that on holiday the load profile changes and some spillover effect also can be
identified. However I doubt that the “Dayafterholiday” variables defined by Ramanathan et al
(1997) can capture all of the alterations in electricity demand which are due to a holiday. Hence
| also regard this question as a potential improvement in my own model. Finally, I considered
the modelling approach and chose the local one, because separate models for the hours can
handle the intraday change in a more parsimonious way. In the case of a monolithic model,
extra interacted variables should be introduced to be able to pursue the within day electricity
demand change. Besides, regarding a non-monolithic model, there are less fear of serially

correlated error terms and accumulation of forecast errors, because instead of a 24-step-ahead
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forecast it is enough to execute one step to get the day-ahead load prediction. However, the
drawback of this local modelling approach is that it cannot take into account the within day
impacts, because it prepares the forecast from the yesterday value. Therefore as a solution, it is
important to use aggregated variables such daily mean, minimum or maximum of the weather
variables like Ramanathan et al (1997). As a result, in the next chapter | will experiment with
an own model based on the key findings of the graphic analyses and the replications, trying to
answer the open questions and tying to exploit the field of potential improvement. Hence, I will
use the EGRV model as a starting point and test the incorporation of the further weather and
holiday variables in order to figure out the most precise forecasting model of the Hungarian net

load for 2015.
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4. My own model

The main objective of this chapter is to figure out the most fitted forecasting model of the
Hungarian system net load for 2015, based on the findings of the graphic analyses and the
replications. Before the deep analyses | committed myself to some standpoints in advance. First
of all, it was a straightforward conclusion of the replication that the dummy variables can handle
the seasonal pattern of the load profile better than seasonal differencing. Therefore |
incorporated the days of the week and months as dummy variables into my own model. Besides,
| decided to employ the local modelling approach and ran separate regressions for each hour of
the day. One of the advantages of this solution might be an easier handling of the intraday
transition in the load profile, since the value of the coefficients of the given dummy variables
can differ by equations in this setup. On the other hand, in the case of a monolithic model
interacted day and hour variables should be created for this reason, which would mean less
parsimonious and precise estimation procedure. However, it remained an open question of the
replications whether the separation of the weekdays and weekends increases the accuracy of
the forecast or not. Furthermore, it was also questionable whether the VV-shape or the U-shape
definition of the temperature can capture the nonlinear nature of the temperature in a more
precise way. As a result, during the development of my own model | had to consider these
problems as well. As opposed to the introduced studies, | deemed the incorporation of the
humidity and the illumination in my own model necessary based on the graphic analyses. | also
considered the expansion of the set of the holiday variables important. The studied papers used
only one holiday variable, but based on the result of the replication it could not capture the
complex and long-lasting impact of a holiday on the net load profile. Therefore I introduced a
“national holiday” variable, a simple “holiday” variable, which contained the extra days of the
long weekends and a “working Saturday” variable. Moreover, | defined “after holiday” and
“before holiday” variables in order to pick up the spillover effects of a holiday, moreover a
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“Sunday after working Saturday” variable for the spillover effects of working Saturdays.
Besides, I also created a “summer holiday” variable based on the expertise advice of MAVIR.
This dummy variable was 1 from the last week of July till August, which is the most favored
period of the (family) vacations and in-parallel it is a slowing down period in the business life.
After the clarification of the main aspects of my own modelling procedure, | continue the

description of the technical parts.

Based on the logic of the EGRV model, | expanded the original setup with the forecasted value
of illumination and humidity of the given day and their interaction with the months. | added
also the mean, minimum and maximum humidity values of the given and previous days in order
to incorporate the cross-hourly impact of the variables as well. | employed the minimum and
mean values of the new weather variables beside their maximum because there was no rule-of-
thumb in the literature about which measures are the most relevant regarding to these variables
such in the case of temperature. Furthermore, I also included the different holiday variables into
the regressions. However | used the past seven lags of the net load instead of the net load at 8

am, because the latter was not an essential explanatory variable in the replicated EGRV model.

The first specification of my own model already outperformed the replicated EGRV model,
therefore | did not hold it important to separate the weekends and the weekdays. As a next step,
| tested which temperature specification is the better. | chose the solution of Ramanathat et al
(1997), because that model specification had better forecasting performance which used their
temperature variables. Besides, the solution of Ergiin and Jun (2011) is less parsimonious in the
matter of estimation, because it requires the introduction of several new interacted terms.
Finally, I customized each equation of my own model and dropped the insignificant variables

(see on A4.1).
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Generally, the R-squared was higher, the AIC was lower in the case of the 24 models compare
to the replicated EGRV model, which indicated that the new specification had stronger
explanatory power regard to the evolution of the load profile. This improvement reflected in
the forecasting performance of my own model as well. As it can be observed on the charts A4.2
the average MAPE of the day-ahead-forecast was 2.89%, which means 0.18% point decrease
compare to the replication of the EGRV model. The biggest forecasting errors occurred on

Sundays and in August, however the MAPE was below 2% in November, June and February.

Although, the most important feature of a forecasting model is the accuracy but it is worth to
check whether the models are in line with the intuition and the findings of the graphic analyses.
The most relevant variables are the months of summer and winter, the days of the week,
temperature and the newly introduced different holiday variables. Saturday, Sunday had
significant negative coefficient, while Thursday and Tuesday were not relevant from the
economic point of view. Monday and Friday were significant explanatory variables during the
transitory period, which means that Monday had negative coefficient between lam and 4 am,
while Friday had negative coefficient from 5 pm. These facts are in line with the discoveries of
the graphic analyses, therefore it can be proved that the dawn of Monday still acts like Sunday,
while the load profile pursues its weekend pattern after the end of the working hours on Friday.
A similar phenomenon characterized the “after holiday” and “before holiday” variables. The
former was significant at the beginning of the day, while the latter from the afternoon. “Working
Saturday” variable had positive coefficient, which means that the electricity consumption is
higher on those Saturdays which are working Saturdays versus it would not be a working
Saturday. It was relevant from 5 am, which is the start of the first working shift and the daytime
public transport. However, the impact of working Saturdays on Sundays can be neglected based
on the result of the regressions. Among the weather variables the temperature and the maximum

temperature of the given day remained only significant from economic perspective.
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As well as in the replication of the EGRV model, the lags of the net load, interaction of the
months and the weather variables, moreover the MA terms contributed only to the statistical

correctness of the model specification.

All of the explanatory variables were significant at 5% significance level, furthermore none of
the models was serially correlated based on the Durbin-Watson statistics and the LM-test. The
heteroscedasticity could not be eliminated, thus | applied the White heteroscedasticity-
consistent standard errors. Furthermore, the RESET-test signaled again the misspecification of
the regressions, similar to the replication of the EGRV model. However, in the case of my own
model the underlying problem of the RESET-test also could have been the heteroscedasticity.
Therefore, | carried out the PE-test in order to figure out whether the linear specification is
correct or not. As it can be noted in the table A4.3 the results of the PE-test were ambiguous. It
could be stated that the logarithmic terms had mostly significant contribution to the linear
equations, however the linear terms in the logarithmic specification were not significantly zero.
Consequently, I turned to a graphic solution to be able to draw conclusion. As the graphs A4.4
show the evolution of the net load profile of the given hours were far not linear, it rather pursued

a U-shape or other complex polynomial form.

Finally I conducted the logarithmic specification of the first version of my own model and then
| dropped the insignificant explanatory variables. As it can be detected in the table A4.5 the R-
squared and especially the AIC improved in a substantial way. Based on the AIC it can be
assumed that the logarithmic version is a better specification than the linear. The forecasting
performance of the new setup also proved the superiority of the logarithmic form. As the graphs
A4.6 represent, the average MAPE of the day-ahead-forecast was 2.39%, which means 0.51%
point improvement compare to the linear version and 0.86% point compare to the replication

of the EGRV model. Sunday remained still the critical day and August the critical months with
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respect to accuracy. It is important to mention that for a correct comparison of the MAPE
indices, the forecasted logarithmic values first had to be retransformed to linear ones. The
transformation of the forecasted logarithmic values were executed according to the formula of
Wooldridge (2013, p211-212). Taking the exponential of the forecasted logarithmic values
would be a naive approach (Wooldridge, 2013) and would consistently overestimate the true
values based on Jensen’s inequality. In terms of the set of explanatory variable there was no
remarkable change between the linear and logarithmic version. The only exceptions are

Monday and the lag of net load which were not significant in the logarithmic models.

In summarizing, | experimented with the development of the fittest forecasting model of the
Hungarian system net load for 2015. Based on the results of the replications and the graphic
analyses | considered the EGRV model as my starting point with the inclusion of humidity,
illumination and different holiday variables. The extended version had already outperformed
the replicated EGRV model according to the R-square, AIC and MAPE statistics. However the
RESET-test indicated that the hourly models are misspecified, and this result was also
underpinned by the PE-test. The re-specified models in logarithmic forms proved to be the most
accurate in terms of forecasting performance. Hence, the main findings of my own modeling
were the discovery of the nonlinear nature of the Hungarian load profile and its handling with
a logarithmic form. Besides, it is also useful to mention that illumination and humidity variables
were only statistically significant. However the extension of the original EGRV model with
further specific holiday variables seemed to increase the accuracy of the forecast. As a result, it
is a field of improvement to scrutinize the exact functional form of the Hungarian net profile

and the weather variables.
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Conclusion

The main objective of my thesis was to develop a handy and accurate load forecasting model
for the Hungarian Transmission System Operator. My research question is relevant, because
the currently applied load forecasting model of the Hungarian TSO is inaccurate, which risks
security of the system and increases the operational cost. Nevertheless, there was no Hungarian
study written about this problem. According to the literature the most suitable models for my
research topic are the conventional statistical methods and regression-based econometric
techniques. Therefore, | tested the forecasting performance of some classical methods: the
univariate double seasonal ARIMA and Holt-Winters exponential smoothing with double
seasonal cycle models of Taylor et al (2006), the monolithic multivariate model with exact-day
matching techniques of Ergiin and Jun(2011), as well as the multivariate non-monolithic model
specification of Ramanathan et al (1997). Based on the results of the replication of the
mentioned model specifications and the graphic analyses | developed an own model, taking into

account all of the specificity of the Hungarian net load.

One of the key findings of my modelling procedure was that the Hungarian net load is
characterized by several cycles and it means a challenge to handle the intraday, intraweek and
yearly periodicity or to capture the special load profile pattern on weekend and on holidays. In
the case of the Hungarian dataset the dummy variables were more efficient in the handling of
the underlying seasonal cycles than the seasonal differencing processes. Furthermore the
holiday, national holiday, before and after holiday variables, as well as the working Saturday
and Sunday after working Saturday special dummy variables could effectively explain the
deviant behavior of the load profile. Furthermore, it turned out that the log-linear model
specification is more precise than the linear models because it can solved the estimation of the

non-linear evolution of the system load with a linear regression. However, none of the covered
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literature applied this logarithmic transformation. The final version of my own model was log-
linear transformation of the expanded EGRV model. This final specification had the best

forecasting accuracy, in the case of which the average MAPE of a day-ahead forecast was 2.4%.

However there is still field for the improvement of forecasting accuracy. First of all, the MAPE
was the highest in the case of the summer months, which could be decreased with the
incorporation of the impact of air conditioning. For this extension it would be necessary to know
the reaction of the market participants to the heath and their cooling behavior and heuristics.
Moreover, the explanatory power of humidity and illumination could be strengthened by the
clarification of their exact functional form such in the case of temperature. Furthermore, the
determination of the accurate polynomial form of the system load would be also a great
progress. Besides, as far as | see, the biggest risk of the Transmission System Operator is the
deviation from the balanced schedule during the day, therefore it would be advisable to forecast
only the difference instead of the total net load of the hour. The advantage of this new approach
would be the exclusion of latent variables and the decrease of the noise of the estimate. For the

implementation of this new approach the dataset of the balanced net load would be required.
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Appendices

Al. Appendix for literature review

1. Al — Sample Regression Tree for predicting load at midday in 2013, Tunisia (Lahouar and Slama, 2015,
p1042.)

Features (inputs): - Max Temp.

- Day type
Max Temp. <35 °C - Season

Root

Max Temp. > 35 °C

Output: Load value

O Nodes

D Leaves (terminal nodes)

Weekend Working Day

2800 MW
Summer Other seasons

2600 MW

2550 MW 2300 MW

2. Al — Target task, source task and negative transfer in transfer learning problems (Zhang and Luo, 2015,
p163.)

Inputof  Input of Input of Input of
Target Source Source Negative
task task 1 task2 ~  task

Dashed Line:
Negative transfer

<}:| Hidden Variables

Output of
Target task
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A2. Appendix for Data and Methodology1

1. A2— The evolution of net system load in 2014 and 2015
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2. A2- Average hourly net system load by months in 2014 and 2015
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3. A2- Average hourly net system load by days in 2014 and 2015

Average hourly net system load [k¥vh]
Average hourly net system load [kvh]
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4. A2- Correlation matrix of the net load and the calendar variables
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5. A2— Cross-collelograms of daily net load with “working Saturdays” and “national holidays
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6. A2— Single holiday: 2014.08.20 — Wednesday
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7. A2—- Single holiday: 2014.11.01 — Saturday
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8. A2 — Single holiday: 2015.11.01 — Sunday
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10. A2 — Long weekends, 3 days with Monday: 2014.
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11. A2 — Long weekends, 4 days with Thursday and Friday: 2014.10.23 and 2015.08.20
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12. A2— Working Saturdays: 2014.10.18 and 2015.10.18
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14. A2— Average daily net load and daily average forecasted temperature
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15. A2 - Average daily net load and daily average forecasted wind speed
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16. A2 - Average daily net load and daily average forecasted illumination
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17. A2- Average daily net load and daily average forecasted humidity
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18. A2— Cross-correlogram of hourly net load with hourly temperature
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19. A2- Cross-correlogram of daily net load with daily temperature
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21. A2- Cross-correlogram of daily net load with daily illumi
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22. A2- Cross-correlogram of hourly net load with hourly hu
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23. A2- Cross-correlogram of daily net load with daily humidity
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24. A2- Cross-correlogram of hourly net load with hourly wind speed
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25. A2- Cross-correlogram of daily net load with daily wind speed

df2$Net_load & df2$Max_wind
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26. A2— ADF test of net load

Mull Hypothesis: NET_LOAD has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 42 (Automatic - based on SIC, maxlag=42)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -13.51928 0.0000
Test critical values: 1% level -3.953593

5% level -3.410076

10% level -3.126765
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A3-Appendix for Replication
1. A3— ADF test of net load

Mull Hypothesis: MET_LOAD has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 42 (Automatic - based on SIC, maxlag=42)

t-Statistic Prob.*
Augmented Dickey-Fuller test statistic -13.51928 0.0000
Test critical values: 1% level -3.958593
5% level -3.410076
10% level -3.126765
2. A3— First specification of the naive benchmark model
HAC standard errors & covariance (Bartlett kernel, Newey-West fixed
bandwidth = 11.0000)
Variable Coefficient Std. Error t-Statistic Prob.
C 1786.841 229.5242 7.784977 0.0000
NET_LOAD(-168) 0.901512 0.012204 73.87201 0.0000
R-squared 0.814114 Mean dependent var 18086.59
Adjusted R-squared 0.814090 S.D. dependent var 2595.480
S.E. of regression 1119.100 Akaike info criterion 16.87869
Sum squared resid 9.98E+09 Schwarz criterion 16.88044
Log likelihood -67242.69 Hannan-Quinn criter. 16.87929
F-statistic 34888.11 Durbin-Watson stat 0.047691
Prob(F-statistic) 0.000000

3. A3 — LM test of the first specification of the naive benchmark model

Breusch-Godfrey Serial Correlation LM Test:

F-statistic 161075.5 Prob. F(1,7965) 0.0000
Obs*R-squared 7592.557 Prob. Chi-Square(1) 0.0000
Variable Coefficient Std. Error t-Statistic Prob.
C -34.92383 19.13850 -1.824795 0.0681
NET_LOAD(-168) 0.001919 0.001048 1.831658 0.0670
RESID(-1) 0.976331 0.002433 401.3421 0.0000
R-squared 0.952881 Mean dependent var 2.90E-12
Adjusted R-squared 0.952869 S.D. dependent var 1119.029
S.E. of regression 242.9370 Akaike info criterion 13.82386
Sum squared resid 4.70E+08 Schwarz criterion 13.82649
Log likelihood -55071.25 Hannan-Quinn criter. 13.82476
F-statistic 80537.73 Durbin-Watson stat 1.196582
Prob(F-statistic) 0.000000
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4. A3- Second specification of the naive benchmark model

HAC standard errors & covariance (Bartlett kernel, Newey-West fixed

bandwidth = 11.0000)
MA Backcast: 145 168

Variable Coefficient Std. Error t-Statistic Prob.
C 1910.595 227.5018 8.398154 0.0000
NET_LOAD(-168) 0.894647 0.012082 74.05018 0.0000
MA(1) 0.906963 0.006835 132.6860 0.0000
MA(24) 0.077954 0.004457 17.49144 0.0000
R-squared 0.946327 Mean dependent var 18086.59
Adjusted R-squared 0.946307 S.D. dependent var 2595.480
S.E. of regression 601.4182 Akaike info criterion 15.63696
Sum squared resid 2.88E+09 Schwarz criterion 15.64047
Log likelihood -62293.65 Hannan-Quinn criter. 15.63816
F-statistic 46805.51 Durbin-Watson stat 0.332108

Prob(F-statistic) 0.000000

5. A3— LM test of the second specification of the naive benchmark model

Breusch-Godfrey Serial Correlation LM Test:

F-statistic 28760.08 Prob. F(1,7963) 0.0000
Obs*R-squared 6240.226 Prob. Chi-Square(1) 0.0000
Variable Coefficient Std. Error t-Statistic Prob.
C 38.95376 42.47568 0.917084 0.3591
NET_LOAD(-168) -0.002167 0.002324 -0.932350 0.3512
MA(1) -0.104858 0.002015 -52.04325 0.0000
MA(24) -0.000230 0.001909 -0.120518 0.9041
RESID(-1) 0.939211 0.005538 169.5879 0.0000
R-squared 0.783161 Mean dependent var -0.008923
Adjusted R-squared 0.783052 S.D. dependent var 601.3050
S.E. of regression 280.0739 Akaike info criterion 14.10861
Sum squared resid 6.25E+08 Schwarz criterion 14.11299
Log likelihood -56203.71 Hannan-Quinn criter. 14.11011
F-statistic 7190.019 Durbin-Watson stat 3.024818
Prob(F-statistic) 0.000000
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6. A3— ACF and PACF of the residuals after the second specification of the naive benchmark model

Autocorrelation Partial Correlation A PAC Q-5tat  Prob
— 0876 04976 75927 0.000
| — 0.833 -0.408 14535 0.000
| 0.881 0467 20860, 0.000
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0731 -0.001 453832, 0.000
0704 -0.004 49733 0.000
10 0.676 -0.021 53430, 0.000
11 0.649 0008 56791. 0.000
12 0.623 -0.008 593385 0.000
12 0593 0008 62736. 0.000
I 14 0575 0027 65375 0.000
15 0555 0020 67836. 0.000
16 0537 0001 7¥0141. 0.000
17 0521 0020 ¥2306. 0.000
18 0506 0022 74352, 0.000
1 19 0495 0075 ¥6312. 0.000
20 0483 0012 78215 0.000
21 0483 0031 80078, 0.000
22 0479 0027 81914, 0.000
23 0477 0031 83734, 0.000
24 0469 -0184 85489 0.000
25 0440 -0.350 8&7040. 0.000
| 26 0405 0183 83354, 0.000
27 0373 -0.052 B89466. 0.000
28 0.243 -0.053 90406. 0.000
29 0314 -0.014 91195 0.000
30 0287 0001 91354, 0.000
I 31 0262 0045 092405 0.000
32 0241 0001 92369. 0.000
33 0221 0017 932538, 0.000
34 0201 0012 935383, 0.000
35 0183 -0.001 93850 0.000
36 0164 -0.005 94066, 0.000
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7. A3— The third specifications of the naive benchmark model

HAC standard errors & covariance (Bartlett kernel, Newey-West fixed
bandwidth = 11.0000)

Variable Coefficient Std. Error t-Statistic Prob.
C -4.437129 37.27824 -0.119027 0.9053
D24_NET_LOAD(-168) 0.641108 0.037419 17.13340 0.0000
R-squared 0.411883 Mean dependent var 1.472728
Adjusted R-squared 0.411808 S.D. dependent var 1419.711
S.E. of regression 1088.828 Akaike info criterion 16.82384
Sum squared resid 9.42E+09 Schwarz criterion 16.82560
Log likelihood -66822.31 Hannan-Quinn criter. 16.82445
F-statistic 5562.105 Durbin-Watson stat 0.052462
Prob(F-statistic) 0.000000
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Variable Coefficient Std. Error t-Statistic Prob.
D24_NET_LOAD(-168) 0.737957 0.007412 99.56104 0.0000
MA(1) 0.934840 0.004108 227.5426 0.0000
MA(24) -0.049821 0.004112 -12.11595 0.0000
R-squared 0.871439 Mean dependent var 0.237995
Adjusted R-squared 0.871408 S.D. dependent var 1501.567
S.E. of regression 538.4573 Akaike info criterion 15.41565
Sum squared resid 2.41E+09 Schwarz criterion 15.41819
Log likelihood -64187.78 Hannan-Quinn criter. 15.41652
Durbin-Watson stat 0.370209
8. A3— The fourth specification of the naive benchmark model
Variable Coefficient Std. Error t-Statistic Prob.
D24_NET_LOAD(-168) 0.584046 0.031278 18.67267 0.0000
MA(1) 1.569711 0.028223 55.61878 0.0000
MA(2) 1.658692 0.043520 38.11354 0.0000
MA(3) 1.517071 0.047816 31.72730 0.0000
MA(4) 1.365331 0.046945 29.08377 0.0000
MA(5) 1.223452 0.046860 26.10873 0.0000
MA(6) 1.152322 0.045861 25.12632 0.0000
MA(7) 1.075753 0.046814 22.97926 0.0000
MA(8) 1.006205 0.046123 21.81588 0.0000
MA(9) 0.974011 0.046140 21.10994 0.0000
MA(10) 0.921432 0.047842 19.25977 0.0000
MA(11) 0.750372 0.044599 16.82472 0.0000
MA(12) 0.464541 0.031701 14.65388 0.0000
MA(24) -0.452062 0.022770 -19.85313 0.0000
MA(25) -0.673809 0.036511 -18.45502 0.0000
MA(26) -0.646493 0.041486 -15.58357 0.0000
MA(27) -0.522839 0.041892 -12.48057 0.0000
MA(28) -0.399069 0.039600 -10.07759 0.0000
MA(29) -0.258546 0.036741 -7.037014 0.0000
MA(30) -0.179422 0.031362 -5.721069 0.0000
MA(31) -0.114115 0.022350 -5.105803 0.0000
MA(32) -0.058420 0.011916 -4.902475 0.0000
MA(13) 0.167330 0.014516 11.52696 0.0000
MA(23) 0.074196 0.011914 6.227368 0.0000
R-squared 0.980861 Mean dependent var 1.472728
Adjusted R-squared 0.980806 S.D. dependent var 1419.711
S.E. of regression 196.6921 Akaike info criterion 13.40417
Sum squared resid 3.06E+08 Schwarz criterion 13.42526
Log likelihood -53217.38 Hannan-Quinn criter. 13.41139
Durbin-Watson stat 1.938987
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9. A3— The LM and Heteroscedasticity test of the fourth specification of the naive benchmark model

Breusch-Godfrey Serial Correlation LM Test:

F-statistic 2.316585 Prob. F(3,7913) 0.0736
Obs*R-squared 6.958738 Prob. Chi-Square(3) 0.0732
Variable Coefficient Std. Error t-Statistic Prob.

D24 _NET_LOAD(-167)  0.004657 0.006550 0.711101  0.4770
D24 _NET_LOAD(-168)  -0.003669 0.006354  -0.577382  0.5637

D24_NET_LOAD(-1) -0.026636 0.033148  -0.803531  0.4217
D24_NET_LOAD(-2) 0.068873 0.096516 0.713596  0.4755
D24_NET_LOAD(-3) -0.086750 0.138889  -0.624603  0.5322
D24_NET_LOAD(-4) 0.069439 0.129317 0.536972  0.5913
D24_NET_LOAD(-5) -0.031821 0.078154  -0.407151  0.6839
D24_NET_LOAD(-6) 0.005664 0.023992 0.236095  0.8134

D24 NET_LOAD(-23) 0.000150  0.002495  0.060113  0.9521
D24 NET LOAD(-26)  -0.000574  0.013806  -0.041587  0.9668
D24_NET_LOAD(-27) 0.001756  0.031809  0.055204  0.9560
D24 _NET LOAD(-28)  -0.003210  0.038824  -0.082688  0.9341
D24_NET_LOAD(-29) 0.002416  0.029572  0.081714  0.9349
D24 _NET LOAD(-30)  -0.000592  0.011180  -0.052916  0.9578

MA(1) -0.146815 0.090789 -1.617097 0.1059

MA(2) 0.096376 0.115831 0.832037 0.4054

MA(3) -0.068672 0.084909 -0.808767 0.4187

MA(4) 0.037780 0.047971 0.787561 0.4310

MA(6) -0.014092 0.023044 -0.611534 0.5409

MA(7) 0.001174 0.010822 0.108444 0.9136

MA(8) 0.002354 0.006212 0.378872 0.7048

MA(11) -0.006406 0.005607 -1.142506 0.2533

MA(24) 0.003846 0.007564 0.508530 0.6111

MA(25) 0.116289 0.072663 1.600387 0.1096

MA(26) -0.065826 0.087367 -0.753448 0.4512

MA(27) 0.053105 0.062625 0.847983 0.3965

MA(28) -0.029881 0.036697 -0.814266 0.4155

MA(30) 0.009226 0.015965 0.577867 0.5634

RESID(-1) 0.176482 0.097037 1.818709 0.0690

RESID(-2) 0.067206 0.050316 1.335679 0.1817

RESID(-3) -0.018870 0.042109 -0.448107 0.6541

R-squared 0.000876 Mean dependent var -0.236990

Adjusted R-squared -0.002912 S.D. dependent var 191.7724

S.E. of regression 192.0514 Akaike info criterion 13.35730

Sum squared resid 2.92E+08 Schwarz criterion 13.38454

Log likelihood -53024.19 Hannan-Quinn criter. 13.36662
Durbin-Watson stat 2.000746

Heteroskedasticity Test: Breusch-Pagan-Godfrey

F-statistic 6.238248 Prob. F(14,7929) 0.0000
Obs*R-squared 86.54740 Prob. Chi-Square(14) 0.0000
Scaled explained SS 826.5737 Prob. Chi-Square(14) 0.0000
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10. A3— Wald test of the fourth specification of the naive benchmark model

Wald Test:
Equation: FINALRW

Test Statistic Value df Probability
F-statistic 55219.49 (28, 7916) 0.0000
Chi-square 1546146. 28 0.0000

Null Hypothesis: C(1)=0,C(2)=0,C(3)=0,C(4)=0,
C(5)=0,C(6)=0,C(7)=0,C(8)=0,C(9)=0,
C(10)=0,C(11)=0,C(12)=0,C(13)=0,
C(14)=0,C(15)=0,C(16)=0,C(17)=0,
C(18)=0,C(19)=0,C(20)=0,C(21)=0,
C(22)=0,C(23)=0,C(24)=0,C(25)=0,
C(26)=0,C(27)=0,C(28)=0

Null Hypothesis Summary:

Normalized Restriction (= 0) Value Std. Err.

Cc(@) 0.226744 0.010111
C(2) -0.216492 0.009553
C(3) 2.508853 0.036754
C(4) -3.140097 0.105360
C(5) 2.842575 0.149462
C(6) -1.876450 0.136549
C(7) 0.829308 0.080402
C(8) -0.180802 0.024045
C(9) 0.023930 0.004847
C(10) -0.092504 0.015592
C(11) 0.164791 0.031080
C(12) -0.172303 0.035719
C(13) 0.122430 0.026442
C(14) -0.048349 0.010027
C(15) -1.060635 0.045687
C(16) 0.957771 0.062979
C(17) -0.618984 0.059273
C(18) 0.196859 0.033105
C(19) 0.062944 0.018052
C(20) -0.062221 0.010219
C(21) 0.047652 0.006977
C(22) 0.058931 0.006304
C(23) -0.772072 0.012533
C(24) 0.753567 0.040455
C(25) -0.695775 0.050780
C(26) 0.450985 0.047075
C(27) -0.136039 0.026476
C(28) -0.044159 0.013733

Restrictions are linear in coefficients.
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11. A3— RESET test of the fourth specification of the naive benchmark model

Ramsey RESET Test

Equation: FINALRW

Specification: D24_MNET_LOAD D24 MNET_LOAD(-167 TO-168)
D24 WET_LOAD(-1 TO-6) D24 _MET_LOAD{-23) D24 _MET_LOAD(
-26T0-30) MACT) MALZ) MA{Z) MA(4) MALG) MAT)Y MAS) MA[11)
MAZ24) MA(Z25) MAZ2E) MAZT)Y MALZE) MAL30)

Omitted Variables: Squares of fitted values

Yalue df Probability
t-statistic 0972811 Ta15 0.3307
F-ztatistic 0946361 (1, 7915) 0.3307
Likelihood ratio 0.949771 1 0.3298

WARMIMG: the MA backcasts differ for the original and test equation.
nder the null hypothesis, the impact of this difference vanishes
asymptotically.

F-test summary:

Sum of 54q. df Mean Squares

Test 3R 24922 938 1 24922 938
Restricted S5R 2.92E+08 7816 3690216
Unrestricted SSR 2.92E+08 7a15 36902 .41
Unrestricted S5SR 2.92E+08 Ta15 3690241

LR test summary:

Yalue df
Restricted LoglL -53027 .68 7916
Unrestricted LogL -53027.20 715

12. A3— Daily and Monthly average MAPE of the one-step-ahead forecast of the final naive benchmark

model, 2015
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13. A3— Chow forecast test of the day-ahead forecast of the final naive benchmark model for 2015

Chow Forecast Test

Equation: FINALRWY

Specification: D24_MNET_LOAD D24 _MNET_LOAD({-167 TO -168)
D24 _MET_LOAD{-1 TO-6) D24_MNET_LOAD{-23) D24_MET_LOAD(
-26T0O-30) MACT) MACZ)Y MALZ) MAC4) MAG) MAT) MALS) MAT1)
MAZ4) MAIZ2E) MAZ2E) MALZT) MA(ZE) MA{30)

Test predictions for obsemvations from 2400 to 8136

Yalue df Probability
F-statistic 0.884543 (5737, 2179) 06713
Likelihood ratio 10158 .43 73T 0.0000
F-test summary:

Sum of 3q. df Mean Squares

Test 3SR 2 11E+08 BT3T 3674337
Restricted 35R 2.92E+08 7916 3690216
Unrestricted S2R 81320776 21749 AT320.23
Unrestricted S5SR 81320776 21749 A7320.23
LR test summary:

Yalue df
Restricted LogL -R3027 68 7916
Unrestricted LoglL -47948 46 2174

Unrestricted log likelinood adjusts test equation results to account for
abservations in forecast sample

Chow Forecast Test

Equation: FINALREWY

Specification: D24_MET_LOAD D24 NET_LOAD(-167 TO-168)
D24 MNET_LOAD{-1TO-6) D24_MET_LOAD{-23) D24_MET_LOAD{
-26T0-30) MACT) MACZ) MALZ)Y MAT4) MAG) MAT) MALS) MA1T1)
MAZ24) MA(Z25) MAIZE) MALZT) MALZE) MA{30)

Test predictions for obsernvations from 5300 to 8136

Value df Probabhility
F-statistic 1165170 (2837, 5079)  0.0000
Likelihood ratio 3882174 2837 0.0000
F-test summary:

Sum of 3q. df Mean Squares

Test 35R 1.15E+08 2837 40594 30
Restricted 35R 2 92E+08 7916 36902.16
Unrestricted 33R 1.77E+08 50749 3483982
Unrestricted S2R 1.77E+08 5074 2483982
LR test summary:

Value df
Restricted LoglL -53027 68 7916
LInrestricted LogL -51036.59 50749

Unrestricted log likelihood adjusts test equation results to account for
observations in forecast sample
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14. A3— The ACF and PACF of the seasonally double differenced net load

Autocorrelation Fartial Correlation AC PAC Q-Stat Prob

0973 0973 75302 0.000
0.924 -0.452 14313, 0.000
0.871 0129 20345 0.000
0.823 0042 25733, 0.000
0.779 -0.033 20562. 0.000
0.737 -0.027 24875 0.000
0.691 -0.096 328669. 0.000
0.642 -0.004 41951, 0.000
i 0592 -0.062 44740, 0.000
i 10 0.540 -0.074 47056. 0.000
11 0.485 -0.038 48928 0.000
12 0.430 -0.044 50399. 0.000
13 0376 -0.012 51523, 0.000
14 0.324 -0.020 52357. 0.000
15 0.274 -0.013 52955, 0.000
16 0.226 -0.039 53360. 0.000
17 0477 -0.047 53609. 0.000
18 0129 -0.012 53741, 0.000
19 0.083 0.024 53796. 0.000
i 20 0.041 -0.053 53809. 0.000
21 -0.001 -0.037 53809. 0.000
i 22 -0.043 -0.054 53824, 0.000
23 -0.084 -0.001 538231. 0.000
-0.120 0.063 53995 0.000
| 25 -0.140 0228 54151, 0.000
O 26 -0.152 -0.164 54336. 0.000
1] 27 -0.162 0.068 54546, 0.000
28 -0.171 0.015 54778 0.000
29 -0.179 -0.032 55034, 0.000
30 -0.188 -0.023 55314. 0.000
-0.196 -0.047 55620. 0.000
32 -0.203 -0.006 55949. 0.000
33 -0.210 -0.044 56301, 0.000
i 34 -0.217 -0.050 56676. 0.000
i 35 -0.225 -0.064 57079. 0.000
36 -0.233 -0.015 57512, 0.000
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15. A3- The first specification of the double-seasonal ARMA model

Wariable Coefficient Std. Error t-Statistic Prob.
AR(1) 1.485993 0.029151 50.97554 0.0000
AR(Z2) -0.702646 0.044610 1575080 0.0000
AR(3) 0190783 0.019262 9904628 0.0000
AR(23) 0.1585449 0.030482 5.201475 0.0000
AR(24) -0.155817 0.028053 -5558018 0.0000
AR(168) -0.182411 0.029999  -5.080530 0.0000
AR(169) 0177037 0.028889 6.128096 0.0000
MA{Z3) -0.175031 0014629  -11.96469 0.0000
MA[Z4) -0.700021 0015767  -44.39881 0.0000
MA{Z5) -0.128187 0.010347  -12.48557 0.0000
MAL1GT) 0156121 0.012840 1215894 0.0000
MAL1G8) -0.257109 0.013626  -18.86855 0.0000
MA[169) 0112231 0.009900 11.33600 0.0000
R-squared 08974733 Mean dependentvar -G.246654
Adjusted R-squared 0974694 S.D.dependentvar 1214988
S.E. of regression 193.2781  Akaike info criterion 13.367381
Sum squared resid 2.890E+08 Schwarz criterion 13.37944
Log likelihood -51854.35 Hannan-Quinn criter. 13.37180
Durbin-Watson stat 2015921

16. A3- The LM test of the first specification of the double-seasonal ARMA model

Breusch-Godfrey Serial Correlation LM Test:

F-statistic 5013366 Prob F(2,7760) 0.0067
Obs*R-squared 9580650 Prob. Chi-Square(2) 0.0083

17. A3- The RESET test of the first specification of the double-seasonal ARMA model

Ramsey RESET Test

Equation: DTOT_ARMA

Specification: DTOT_MET_LOAD AR(1) AR(2) AR(3) AR(23) AR(24)
AR(M1G68) AR(M1E69) MAIZ3) MAZ4) MAZE) MAMET) MAMEE) MA(1G69)

Omitted Variables: Squares of fitted values

Value df Probability
t-statistic 1.320740 7761 0.1866
F-statistic 1744354 (1, 7761) 0.1866
Likelihood ratio 1.747305 1 0.1862
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18. A3- The Chow breakpoint test of the first specification of the double-seasonal ARMA model

Chow Breakpoint Test: 2400
Mull Hypothesis: Mo breaks at specified breakpaints

Equation Sample: 362 5000

F-statistic 8.828362 Prob. F(13,4613) 0.0000
Log likelihood ratio 1140032 Prob. Chi-Square(13) 0.0000

Chow Breakpoint Test: 5300
Mull Hypothesis: Mo breaks at specified breakpoints

Equation Sample: 362 8136

F-statistic 5937069 Prob. F(13,7749) 0.0000
Log likelihood ratio T7.05774 Prob. Chi-Square(13) 0.0000

19. A3— The RESET, Heteroscedasticity and Wald test of the final specification of the “double-seasonal
ARMA model”

Ramsey RESET Test

Equation: OTOT_MA_LAGS

Specification: DTOT_MET_LOAD DTOT_MNET_LOAD(-1 TO -4)
DTOT_MET_LOAD(-168 TO-170) MAZ3) MACTGT) MA168) MA1)
DTOT_MET_LOAD(-23) DTOT_MNET_LOAD(-11) DTOT_MNET_LOAD(
-18TO-19) DTOT_MET_LOAD(-16) DTOT_MET_LOAD{-25)
DTOT_MET_LOAD-27 I MAZIMALZIMAE MATT IMA[24)
MAZEMAZTIMALZ0) MAIS) MA(12)

Omitted Variables: Squares of fitted values

Yalue df Probability
t-statistic 1.352387 7745 01763
F-statistic 1.828951 (1, 7745) 01763
Likelihood ratio 1.835583 1 0.1755

WARNING: the MA backcasts differ for the original and test equation.
LInder the null hypothesis, the impact ofthis difference vanishes
asymptotically.

F-test summary:

Sum of 3q. df Mean Sguares
TestS3SR GE240.47 1 GE240.47
Restricted 33R 2.81E+08 7746 26221.61
Unrestricted S5SR 2 81E+08 7745 36217 74
Unrestricted S5R 281E+08 7745 6217 T4
LR test summary:
Yalue df
Restricted LogL -51820.24 7746
Unrestricted LoglL -51819.32 7745

Heteroskedasticity Test: Harvey

F-statistic 1.819462 Prob. F(15,7758) 0.0266
Obs*R-squared 27.25235 Prob. Chi-Square(15) 0.0267
Scaled explained SS 31.84796 Prob. Chi-Square(15) 0.0068
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Wald Test:
Equation: DTOT_MA_LAGS

Test Statistic Value df Probability
F-statistic 31183.46 (28, 7746) 0.0000
Chi-square 873136.9 28 0.0000
Null Hypothesis: C(1)=0,C(2)=0,C(3)=0,C(4)=0,
C(5)=0,C(6)=0,C(7)=0,C(8)=0,C(9)=0,
C(10)=0,C(11)=0,C(12)=0,C(13)=0,
C(14)=0,C(15)=0,C(16)=0,C(17)=0,
C(18)=0,C(19)=0,C(20)=0,C(21)=0,
C(22)=0,C(23)=0,C(24)=0,C(25)=0,
C(26)=0,C(27)=0,C(28)=0
Null Hypothesis Summary:
Normalized Restriction (= 0) Value Std. Err.
C(1) 1.517865 0.030551
C(2) -0.446246 0.046482
C(3) -0.155827 0.039967
C(4) 0.077533 0.017348
C(5) -0.305443 0.027766
C(6) 0.482028 0.041755
C(7) -0.180587 0.019074
C(8) 0.114546 0.019808
C(9) -0.014418 0.004365
C(10) -0.068195 0.022665
C(11) 0.053116 0.020219
C(12) 0.021063 0.007917
C(13) -0.177737 0.022398
C(14) 0.062009 0.010282
C(15) -0.124965 0.011793
C(16) 0.086158 0.010373
C(17) -0.103925 0.012440
C(18) -0.046213 0.008817
C(19) -0.291605 0.033298
C(20) -0.102289 0.024955
C(21) 0.056405 0.024866
C(22) -0.012679 0.005980
C(23) -0.797394 0.014263
C(24) 0.260387 0.032245
C(25) 0.124648 0.024064
C(26) -0.049571 0.024497
C(27) 0.011507 0.003959
C(28) -0.005468 0.002525

Restrictions are linear in coefficients.
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20. A3- Daily and Monthly average MAPE of one-step-ahead forecast of the final specification of the
“double-seasonal ARMA model” for 2015
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21. A3— The Chow forecast test of the final specification of the “double-seasonal ARMA model”

Chow Forecast Test

Equation: DTOT_MA_LAGS

Specification: DTOT_MET_LOAD DTOT_MNET_LOAD{-1 TO -4)
DTOT_MET_LOAD{-168 TO-170) MA(Z3) MACTGT) MATGE) MAT)
DTOT_MET_LOAD(-23) DTOT_MWET_LOAD(-11) DTOT_NET_LOAD(
-18 TO-19) DTOT_MET_LOAD(-16) DTOT_MET_LOAD{-25)
DTOT_MET_LOAD{-27 IMAZIMALIMAGIMAT IMALZ4)

MACZEMMALZT IMACZO) MAD) MAT2)

Test predictions for obsenvations from 2400 to 8136

Yalue df Probability
F-statistic 0.887351 (5737, 2009) 0.6381
Likelihood ratio 1041815 5737 0.0000
F-test summary:

Sum of 3q. df Mean Squares

Test 3SR 2.07E+08 73T 36101.66
Restricted 35R 2.81E+08 T746 36221.61
Unrestricted S5R 73457398 2008 3656416
Unrestricted S5R T3457398 2008 3656416
LR test summary:

Yalue df
Restricted LogL -51820.24 T746
Unrestricted LoglL -46611.17 20049

Unrestricted log likelinood adjusts test equation results to account for
abservations in forecast sample
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Chow Forecast Test

Equation: DTOT_MA_LAGS

Specification: DTOT_MET_LOAD DTOT_MNET_LOAD(-1 TO -4)
DTOT_MET_LOAD{-168 TO-170) MAZ3) MACTGT) MAC1G3) MA1)
DTOT_MET_LOAD(-23) DTOT_MWET_LOAD(-11) DTOT_NET_LOAD(
-18 TO-19) DTOT_MET_LOAD(-16) DTOT_MET_LOAD{-25)
DTOT_MET_LOAD-27 IMALZIMALZIMALEMALT IMA[24)
MAZEMAZTIMALZ0) MACS) MA(12)

Test predictions for obsemvations from 5300 to 8136

Yalue df Probability
F-statistic 1.151100 (2837, 4909)  0.0000
Likelihood ratio 3964 508 2837 0.0000
F-test summary:

Sum of 3q. df Mean Squares

Test 3SR 1.12E+08 2837 38508 27
Restricted 35R 2.81E+08 7746 3622161
Unrestricted 33R 1.68E+08 4809 3432219
Unrestricted S2R 1.68E+03 4809 2432219
LR test summary:

Yalue df
Restricted LogL -B1820.24 7746
nrestricted LoglL -49837.99 4909

Unrestricted log likelihood adjusts test equation results to account for
observations in forecast sample

22. A3— Forecasted system net load for 2015 with the Taylor (2003) exponential smoothing
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23. A3- Daily and Monthly average MAPE of the one-step-ahead forecast of the Taylor (2003) exponential
smoothing for 2015
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24. A3— The ACF and PACF of the residuals of the of the day-ahead forecast of the Taylor (2003)
exponential smoothing for 2015
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25. A3— The first specification of the model with the exact-day matching

Variable Coefficient Std. Error t-Statistic Prob.
C 299.0817 27.83755 10.74382 0.0000
MEAN_NET_LOAD 0.982088 0.001586 619.0711 0.0000
DEMEAN_NET_LOAD(-1) 0.972511 0.002387 407.3882 0.0000
TEMP_V*D1 -0.256117 5.914901 -0.043300 0.9655
TEMP_V*D2 10.12413 5.062075 1.999995 0.0455
TEMP_V(-1)*D1 6.541399 5.923027 1.104401 0.2695
TEMP_V(-1)*D2 -7.164025 5.064662 -1.414512 0.1572
R-squared 0.984404 Mean dependent var 18100.76
Adjusted R-squared 0.984392 S.D. dependent var 2598.780
S.E. of regression 324.6656 Akaike info criterion 14.40433
Sum squared resid 8.57E+08 Schwarz criterion 14.41036
Log likelihood -58575.40 Hannan-Quinn criter. 14.40639
F-statistic 85494.75 Durbin-Watson stat 1.148821
Prob(F-statistic) 0.000000
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26. A3— Wald test of the Temperature variables of the first specification of the model with the exact-day
matching

Wald Test:
Equation: ERG1

Test Statistic Value df Probability
F-statistic 0.917869 (2, 8127) 0.3994
Chi-square 1.835738 2 0.3994

Null Hypothesis: C(6)=0, C(7)=0
Null Hypothesis Summary:

Normalized Restriction (= 0) Value Std. Err.
C(6) 6.541399 7.959555
C(7) -7.164025 6.751411

27. A3- The second specification of the model with the exact-day matching

Variable Coefficient Std. Error t-Statistic Prob.
C 300.8572 27.80024 10.82211 0.0000
MEAN_NET_LOAD 0.981997 0.001583 620.4272 0.0000
DEMEAN_NET_LOAD(-1) 0.972440 0.002385 407.6834 0.0000
TEMP_V*D1 6.178001 1.345430 4.591842 0.0000
TEMP_V*D2 2.977166 0.666043 4.469931 0.0000
R-squared 0.984398 Mean dependent var 18100.76
Adjusted R-squared 0.984390 S.D. dependent var 2598.780
S.E. of regression 324.6903 Akaike info criterion 14.40424
Sum squared resid 8.57E+08 Schwarz criterion 14.40854
Log likelihood -58577.02 Hannan-Quinn criter. 14.40571
F-statistic 128221.8 Durbin-Watson stat 1.148449
Prob(F-statistic) 0.000000

28. A3— The LM test of the second specification of the model with the exact-day matching

Breusch-Godfrey Serial Correlation LM Test:

F-statistic 1103.710 Prob. F(2,8127) 0.0000
Obs*R-squared 1737.413 Prob. Chi-Square(2) 0.0000
Variable Coefficient Std. Error t-Statistic Prob.
C 11.30200 24.66249 0.458267 0.6468
MEAN_NET_LOAD -0.000523 0.001404 -0.372378 0.7096
DEMEAN_NET_LOAD(-1) -0.012193 0.002227 -5.475506 0.0000
TEMP_V*D1 0.386384 1.193961 0.323615 0.7462
TEMP_V*D2 0.056488 0.590743 0.095622 0.9238
RESID(-1) 0.512428 0.010926 46.90121 0.0000
RESID(-2) -0.175101 0.011188 -15.65123 0.0000
R-squared 0.213599 Mean dependent var -3.67E-13
Adjusted R-squared 0.213018 S.D. dependent var 324.6104
S.E. of regression 287.9684 Akaike info criterion 14.16444
Sum squared resid 6.74E+08 Schwarz criterion 14.17047
Log likelihood -57599.77 Hannan-Quinn criter. 14.16650
F-statistic 367.9033 Durbin-Watson stat 2.048500
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29. A3— The ACF and PACF of the residuals of the second specification of the model with the exact-day
matching and the third specification

Autocorrelation Partial Correlation AC PAC Q-Stat Prob

— —
O
O
I

1 0426 0426 14745 0.000
2 0026 -0.190 1480.3 0.000
3 -0.188 -0.153 1769.5 0.000
4 -0.204 -0.059 2107.2 0.000
5
i
7
8

[mBN AN

-0.134 -0.043 22537 0.000

0.016 0062 22557 0.000

0.099 0026 23351 0.000

0133 0055 24802 0.000
9 0.074 -0.004 25246 0.000
1l 10 0.045 0.056 25411 0.000
11 -0.006 -0.000 25414 0.000
12 -0.040 -0.010 25547 0.000
0 13 -0.080 -0.048 2607.3 0.000
I 14 -0.062 -0.012 2638.2 0.000
15 -0.019 -0.000 26412 0.000
1] 1l 16 0072 0.063 2683.6 0.000
1l 17 0.064 -0.027 27167 0.000
o 18 -0.028 -0.086 2723.3 0.000
0 19 -0.100 -0.046 28045 0.000
-0.084 0002 28623 0.000
I 21 -0.056 -0.023 2888.0 0.000
22 0020 0.027 28912 0.000
il 0.106 0069 28820 0.000
— 1 24 0299 0269 37108 0.000
il O 25 0.099 -0.166 3791.2 0.000
1l 26 -0.029 0.041 37981 0.000
[ 27 -0.084 0.034 38558 0.000
I 28 -0.058 0.028 38832 0.000
29 -0.038 -0.003 38947 0.000
30 0,002 -0.031 38947 0.000
31 -0.002 -0.043 38947 0.000
32 0024 -0.010 3899.6 0.000
33 0031 0012 3907.4 0.000
1l 34 0057 0.022 39340 0.000
1l 35 0.049 0025 39537 0.000
36 0029 0.015 3960.8 0.000

-
=]
(=1

1=
P
L

HAC standard errors & covariance (Bartlett kernel, Newey-West fixed
bandwidth = 11.0000)

Variable Coefficient Std. Error t-Statistic Prob.
C 369.7019 37.31385 9.907899 0.0000
MEAN_NET_LOAD 0.757293 0.020402 37.11839 0.0000
DEMEAN_NET_LOAD(-1) 0.752438 0.020183 37.28157 0.0000
TEMP_V*D1 6.197113 1.094614 5.661462 0.0000
TEMP_V*D2 3.169993 0.719054 4.408558 0.0000
NET_LOAD(-1) 0.515380 0.036098 14.27722 0.0000
NET_LOAD(-2) -0.413421 0.019563 -21.13292 0.0000
NET_LOAD(-3) 0.118815 0.005750 20.66196 0.0000
R-squared 0.986986 Mean dependent var 18101.81
Adjusted R-squared 0.986975 S.D. dependent var 2598.238
S.E. of regression 296.5282 Akaike info criterion 14.22314
Sum squared resid 7.14E+08 Schwarz criterion 14.23003
Log likelihood -57823.31 Hannan-Quinn criter. 14.22550
F-statistic 88020.36 Durbin-Watson stat 1.544496
Prob(F-statistic) 0.000000
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30. A3—- RESET test of the third specification of the model with the exact-day matching

Ramsey RESET Test
Equation: ERG1

Specification: NET_LOAD C MEAN_NET_LOAD DEMEAN_NET_LOAD(-1)
TEMP_V*D1 TEMP_V*D2 NET_LOAD(-1 TO -3)
Omitted Variables: Squares of fitted values

Value df Probability
t-statistic 7.041718 8123 0.0000
F-statistic 49.58580 (1, 8123) 0.0000
Likelihood ratio 49.48984 1 0.0000
F-test summary:

Mean
Sum of Sq. df Squares

Test SSR 4334107. 1 4334107.
Restricted SSR 7.14E+08 8124 87928.95
Unrestricted SSR 7.10E+08 8123 87406.22
Unrestricted SSR 7.10E+08 8123 87406.22
LR test summary:

Value df
Restricted LogL -57823.31 8124
Unrestricted LogL -57798.56 8123

31. A3— The fourth specification of the model with the exact-day matching

HAC standard errors & covariance (Bartlett kernel, Newey-West fixed

bandwidth = 11.0000)

Variable Coefficient Std. Error t-Statistic Prob.
C 358.4734 72.37289 4953144 0.0000
MEAN_NET_LOAD 0.849455 0.037174 22.85071 0.0000
MEAN_NET_LOAD(-1) 0.241972 0.067391 3.590546 0.0003
MEAN_NET_LOAD(-2) -0.112508 0.033939 -3.314980 0.0009
TEMP_V*D1 4.804909 1.011843 4.748669 0.0000
TEMP_V*D2 2.999902 0.759125 3.951788 0.0001
DEMEAN_NET_LOAD(-1) 1.493487 0.057824 25.82810 0.0000
DEMEAN_NET_LOAD(-2) -0.697800 0.102245 -6.824776 0.0000
DEMEAN_NET_LOAD(-3) 0.174174 0.047290 3.683116 0.0002
R-squared 0.988322 Mean dependent var 18101.81
Adjusted R-squared 0.988311 S.D. dependent var 2598.238
S.E. of regression 280.9109 Akaike info criterion 14.11506
Sum squared resid 6.41E+08 Schwarz criterion 14.12281
Log likelihood -57382.83 Hannan-Quinn criter. 14.11771
F-statistic 85935.64 Durbin-Watson stat 2.017164
Prob(F-statistic) 0.000000
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32. A3- The ACF and PACEF of the fourth specification of the model with the exact-day matching

Autocorrelation Partial Correlation AC PAC Q-Stat Prob

-0.002 -0.002 00211 0.884
0.034 0034 92419 0010
-0.090 -0.090 74322 0.000
-0.038 -0.039 85879 0.000
-0.062 -0.056 116.84 0.000
0.070 0085 15677 0.000
0.038 0036 16832 0000
0107 0093 26088 0.000
9 0009 0014 26148 0000
1l 1 10 0.045 0.043 27321 0.000
I 11 0007 0.035 278.65 0.000
I I 12 0031 0.039 28648 0000
| 13 -0.037 -0.024 29759 0.000
14 -0.009 -0.019 293832 0.000
| 15 -0.042 -0.039 31263 0000
1] 1 16 0071 0.056 353.80 0.000
I I 17 0041 0.035 367.33 0.000
18 0.000 -0.029 367.33 0.000
I [ 19 -0.054 -0.058 391.22 0.000
20 0.003 0.004 39129 0000
| 21 -0.033 -0.014 40041 0000
I I 22 0039 0.029 41272 0.000
| 23 -0.039 -0.046 42505 0.000
] 1 24 0362 0356 14931 0000
| 25 -0.034 -0.026 15025 0.000
| [ 26 -0.029 -0.054 1509.4 0.000
0 27 -0.068 -0.007 15487 0.000
I 28 0007 0027 15471 0.000
| 29 -0.025 0.012 15521 0.000
I 30 0.040 -0.022 1565.0 0.000
| [ 31 -0.035 -0.059 15751 0.000
32 0023 -0.045 1579.3 0.000
33 -0.014 -0.015 15809 0.000
I 34 0028 -0.007 15875 0.000
35 0011 0.009 15884 0.000
1 I 36 0.046 0.026 16059 0.000
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33. A3— The fifth specification of the model with the exact-day matching and its LM test

HAC standard errors & covariance (Bartlett kernel, Newey-West fixed
bandwidth = 11.0000)

Variable Coefficient Std. Error t-Statistic Prob.
C 351.9691 70.76167 4.974008 0.0000
MEAN_NET_LOAD 0.840093 0.039874 21.06866 0.0000

MEAN_NET_LOAD(-1) 0.239830  0.067000  3.579537  0.0003
MEAN_NET_LOAD(-2)  -0.111516  0.033729  -3.306264  0.0009
TEMP_V*D1 4.983267 1.080641  4.611398  0.0000
TEMP_\V*D2 3.129881  0.788280  3.970520  0.0001
DEMEAN_NET_LOAD(-1)  1.486768  0.058710  25.32389  0.0000
DEMEAN_NET LOAD(-2) -0.690439  0.102580  -6.730711  0.0000
DEMEAN_NET LOAD(-3)  0.167850  0.048092  3.490173  0.0005

NET_LOAD(-24) 0.010762 0.004222 2.549177 0.0108
R-squared 0.988359 Mean dependent var 18105.74
Adjusted R-squared 0.988346 S.D. dependent var 2598.335
S.E. of regression 280.5012 Akaike info criterion 14.11227
Sum squared resid 6.37E+08 Schwarz criterion 14.12090
Log likelihood -57222.29 Hannan-Quinn criter. 14.11522
F-statistic 76421.18 Durbin-Watson stat 2.003059
Prob(F-statistic) 0.000000
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Breusch-Godfrey Serial Correlation LM Test:

F-statistic 0.366927 Prob. F(1,8100) 0.5447

Obs*R-squared 0.367408 Prob. Chi-Square(1) 0.5444
Variable Coefficient Std. Error t-Statistic Prob.

C -4.304379 28.41425 -0.151487 0.8796

MEAN_NET_LOAD 0.000979 0.007280 0.134417 0.8931

MEAN_NET_LOAD(-1) 0.000706  0.012025  0.058722  0.9532
MEAN_NET_LOAD(-2)  -0.000998  0.006904  -0.144532  0.8851
TEMP_\V*D1 -0.144862 1.188542  -0.121882  0.9030
TEMP_\*D2 -0.049893  0.587082  -0.084985  0.9323
DEMEAN_NET_LOAD(-1)  0.026405  0.044922  0.587790  0.5567
DEMEAN_NET_LOAD(-2) -0.036641  0.063068  -0.580978  0.5613
DEMEAN_NET_LOAD(-3)  0.011339  0.021558  0.525998  0.5989

NET_LOAD(-24) -0.000426 0.002772 -0.153670 0.8779
RESID(-1) -0.028077 0.046352 -0.605745 0.5447
R-squared 0.000045 Mean dependent var 4.27E-12
Adjusted R-squared -0.001189 S.D. dependent var 280.3455
S.E. of regression 280.5122 Akaike info criterion 14.11247
Sum squared resid 6.37E+08 Schwarz criterion 14.12196
Log likelihood -57222.11 Hannan-Quinn criter. 14.11571
F-statistic 0.036693 Durbin-Watson stat 2.001129
Prob(F-statistic) 0.999999

34. A3 - The sixth specification of the model with the exact-day matching on differenced net load

HAC standard errors & covariance (Bartlett kernel, Newey-West fixed
bandwidth = 11.0000)

Variable Coefficient Std. Error t-Statistic Prob.
D24_MEAN_NET_LOAD 0.848907 0.021131 40.17340 0.0000
D24_DEMEAN_NET_LOAD(-1) 0.940689 0.005897 159.5202 0.0000
D24 _TEMP_V*D1 7.271383 7.911724 0.919064 0.3581
D24 _TEMP_V*D2 30.44331 8.820174 3.451554 0.0006
D24_TEMP_V(-1)*D1 5.097942 8.126116 0.627353 0.5304
D24_TEMP_V(-1)*D2 -25.87723 8.942083 -2.893871 0.0038
R-squared 0.929943 Mean dependent var 2.956045
Adjusted R-squared 0.929900 S.D. dependent var 1418.399
S.E. of regression 375.5407 Akaike info criterion 14.69535
Sum squared resid 1.14E+09 Schwarz criterion 14.70053
Log likelihood -59583.65 Hannan-Quinn criter. 14.69712
Durbin-Watson stat 1.040204

HAC standard errors & covariance (Bartlett kernel, Newey-West fixed
bandwidth = 11.0000)

Variable Coefficient Std. Error t-Statistic Prob.
D24 MEAN_NET_LOAD 0.848844 0.021124 40.18416 0.0000
D24_DEMEAN_NET_LOAD(-1) 0.940740 0.005896 159.5464 0.0000
D24 _TEMP_V*D1 11.93046 2.693984 4.428555 0.0000
D24 _TEMP_V*D2 30.44377 8.820009 3.451671 0.0006
D24 _TEMP_V(-1)*D2 -25.88007 8.941643 -2.894330 0.0038
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R-squared 0.929939 Mean dependent var 2.956045

Adjusted R-squared 0.929905 S.D. dependent var 1418.399
S.E. of regression 375.5285 Akaike info criterion 14.69516
Sum squared resid 1.14E+09 Schwarz criterion 14.69948
Log likelihood -59583.88 Hannan-Quinn criter. 14.69664
Durbin-Watson stat 1.040204

35. A3—- The ACF and PACF of the residuals of the sixth specification of the model with the exact-day
matching and further re-specifications

Autocorrelation Partial Correlation A PAC  Q-5tat  Prob

1 ]
] =
O
[

1 0480 0480 18675 0.000
2 0089 -0.210 19061 0.000
3 -0141 0109 20669 0.000
4 -0159 -0.026 227371 0.000
5
]
7
g

=00

-0.068 0.024 23111 0.000
0.060 0073 23404 0.000
0109 0.020 24362 0.000
0130 0073 25729 0.000
1 8 0107 0042 26657 0.000
I 10 0.074 0044 27105 0.000
11 0.015 -0.008 27124 0.000
-0.054 -0.044 27361 0.000
O [ 12 -0.090 -0.035 28015 0.000
1 14 -0.074 -0.022 23459 0.000
15 -0.024 -0.004 23505 0.000
I 16 0.029 0003 238574 0.000
[ 17 0.024 -0.037 2862.0 0.000
1 O 18 -0.060 -0.096 22909 0.000
1 19 -0.076 0.007 29377 0.000
[ 20 -0.035 0023 29479 0.000
21 -0.001 -0.002 29479 0.000
[ 22 -0.016 -0.041 29499 0.000
1 1 23 -0.061 -0.051 29303 0.000
O O 24 -0.148 -0112 31591 0.000
-0.035 0134 31689 0.000
O 26 -0.022 -0.099 231727 0.000
2y -0.003 0008 231727 0.000
I 28 0.019 0029 231757 0.000
I 20 0026 0019 231812 0.000
30 0011 0012 31823 0.000
[ 31 -0.020 -0.037 31856 0.000
32 -0.013 0.045 3187.0 0.000
33 0.0258 0048 31936 0.000
34 0062 0052 32253 0.000
35 0077 0032 32739 0.000
36 0.062 -0.002 33052 0.000
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HAC standard errors & covariance (Bartlett kernel, Newey-West fixed

bandwidth = 11.0000)

Variable Coefficient Std. Error t-Statistic Prob.
C -0.143638 2.846612 -0.050459 0.9598
D24_MEAN_NET_LOAD -0.175437 0.057338 -3.059714 0.0022
D24 _MEAN_NET_LOAD(-1) 1.749462 0.059528 29.38870 0.0000
D24 _MEAN_NET_LOAD(-2) -0.640078 0.024235 -26.41176 0.0000
D24 _DEMEAN_NET_LOAD(-1) 1.599249 0.021313 75.03519 0.0000
D24_DEMEAN_NET_LOAD(-2) -0.830124 0.035274 -23.53328 0.0000
D24_DEMEAN_NET_LOAD(-3) 0.198007 0.017600 11.25073 0.0000
D24_TEMP_V*D1 5.372039 1.292557 4.156132 0.0000
D24_TEMP_V*D2 19.07988 5.637895 3.384220 0.0007
D24 _TEMP_V(-1)*D2 -17.56207 5.731883 -3.063926 0.0022
R-squared 0.967731 Mean dependent var 2.965853
Adjusted R-squared 0.967695 S.D. dependent var 1418.574
S.E. of regression 254.9681 Akaike info criterion 13.92139
Sum squared resid 5.26E+08 Schwarz criterion 13.93002
Log likelihood -56427.30 Hannan-Quinn criter. 13.92434
F-statistic 26983.90 Durbin-Watson stat 1.940911
Prob(F-statistic) 0.000000
HAC standard errors & covariance (Bartlett kernel, Newey-West fixed
bandwidth = 11.0000)
Variable Coefficient Std. Error t-Statistic Prob.
D24_MEAN_NET_LOAD -0.175437 0.057335 -3.059887 0.0022
D24_MEAN_NET_LOAD(-1) 1.749463 0.059521 29.39230 0.0000
D24_MEAN_NET_LOAD(-2) -0.640078 0.024225 -26.42171 0.0000
D24_DEMEAN_NET_LOAD(-1) 1.599249 0.021309 75.05146 0.0000
D24_DEMEAN_NET_LOAD(-2) -0.830124 0.035269 -23.53702 0.0000
D24 _DEMEAN_NET_LOAD(-3) 0.198007 0.017599 11.25079 0.0000
D24_TEMP_V*D1 5.369597 1.289157 4.165200 0.0000
D24_TEMP_V*D2 19.07976 5.637718 3.384306 0.0007
D24 _TEMP_V(-1)*D2 -17.56093 5.729995 -3.064738 0.0022
R-squared 0.967731 Mean dependent var 2.965853
Adjusted R-squared 0.967699 S.D. dependent var 1418.574
S.E. of regression 254.9524  Akaike info criterion 13.92114
Sum squared resid 5.26E+08 Schwarz criterion 13.92891
Log likelihood -56427.30 Hannan-Quinn criter. 13.92380
Durbin-Watson stat 1.940910
HAC standard errors & covariance (Bartlett kernel, Newey-West fixed
bandwidth = 11.0000)
Variable Coefficient Std. Error t-Statistic Prob.
D24 _MEAN_NET_LOAD -0.156932 0.055161 -2.844959 0.0045
D24 DEMEAN_NET_LOAD(-1)  -0.133546 0.050625 -2.637977 0.0084
D24_TEMP_V*D2 19.30455 5.448045 3.543390 0.0004
D24 _TEMP_V(-1)*D2 -17.96129 5.583816 -3.216670 0.0013
D24 _TEMP_V(-1)*D1 5.008207 1.424248 3.516388 0.0004
D24 _NET_LOAD(-1) 1.761574 0.049484 35.59896 0.0000
D24 _NET_LOAD(-2) -0.919797 0.045201 -20.34907 0.0000
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D24_NET_LOAD(-3) 0.240234 0.026673 9.006681  0.0000
D24_NET_LOAD(-5) 0.044787 0.011986 3.736773  0.0002
D24_NET_LOAD(-6) -0.020762 0.008430  -2.462820  0.0138

R-squared 0.968470 Mean dependent var 2.673242
Adjusted R-squared 0.968435 S.D. dependent var 1418.710
S.E. of regression 252.0559 Akaike info criterion 13.89841
Sum squared resid 5.14E+08 Schwarz criterion 13.90705
Log likelihood -56313.31 Hannan-Quinn criter. 13.90137
Durbin-Watson stat 2.000854

Autocorrelation Partial Correlation A PACZ Q-5tat  Prob

-0.010 -0.010 07425 0.389
0.019 0019 26525 0161
-0.013 -0.013 50369 0169
0.007 0.006 54071 0248
-0.0458 -0.0458 24301 0.000
0110 0109 12169 0.000
0.005 0.009 12180 0.000
0.065 0.061 155982 0.000
0.060 0.065 18511 0.000
0.020 0.016 188.40 0.000
0.058 0070 21576 0.000
-0.020 -0.031 21915 0.000
-0.025 -0.023 22411 0.000
-0.024 -0.031 22861 0.000
-0.030 -0.046 236.03 0.000
0.012 0.009 23728 0.000
0.046 0022 25423 0.000
-0.081 -0.098 32226 0.000
-0.014 -0.023 323831 0.000
-0.016 -0.017 32581 0.000
0.008 0019 326.34 0.000
-0.010 -0.004 32747 0.000
-0.005 -0.011 327.37 0.000
-0.233 -0.216 F70.51 0.000
0.072 0075 81273 0.000
-0.052 -0.035 82445 0.000
-0.015 -0.019 83634 0.000
-0.012 -0.005 83V.44 0.000
0.005 -0.007 83767 0.000
0.005 0.066 B837.90 0.000
-0.026 -0.040 24319 0.000
-0.029 0.000 85024 0.000
I 33 0007 0026 85063 0.000
34 0013 0022 85216 0.000
I 35 0.002 0049 85218 0.000
| 36 0.036 0007 86257 0.000

0000 = O N = LI P =

- = 1] = —-——
=] =T =T
- — = -
I I I
S I S T e e T LT T L e e s e B e B T e e e ]
P2 =& 2 0D 00 =] O N = Ld I = O 00~ M RSO

96



CEU eTD Collection

bandwidth = 11.0000)

HAC standard errors & covariance (Bartlett kernel, Newey-West fixed

Variable Coefficient Std. Error t-Statistic Prob.
D24_MEAN_NET_LOAD -0.157018 0.055147 -2.847273 0.0044
D24 _DEMEAN_NET_LOAD(-1) -0.133616 0.050608 -2.640242 0.0083
D24 _TEMP_V*D2 19.31576 5.450732 3.543700 0.0004
D24 _TEMP_V(-1)*D2 -17.97342 5.587749 -3.216576 0.0013
D24 _TEMP_V(-1)*D1 5.012959 1.424519 3.519053 0.0004
D24_NET_LOAD(-1) 1.760863 0.049851 35.32229 0.0000
D24_NET_LOAD(-2) -0.915376 0.050088 -18.27520 0.0000
D24_NET_LOAD(-3) 0.228777 0.042490 5.384303 0.0000
D24_NET_LOAD(-4) 0.015408 0.027624 0.557777 0.5770
D24 _NET_LOAD(-5) 0.034074 0.018341 1.857820 0.0632
D24_NET_LOAD(-6) -0.017612 0.008778 -2.006355 0.0449
R-squared 0.968472 Mean dependent var 2.673242
Adjusted R-squared 0.968433 S.D. dependent var 1418.710
S.E. of regression 252.0648 Akaike info criterion 13.89861
Sum squared resid 5.14E+08 Schwarz criterion 13.90811
Log likelihood -56313.10 Hannan-Quinn criter. 13.90186
Durbin-Watson stat 1.998580
Breusch-Godfrey Serial Correlation LM Test:
F-statistic 2.675872 Prob. F(2,8093) 0.0689
Obs*R-squared 5.343443 Prob. Chi-Square(2) 0.0691
Variable Coefficient Std. Error t-Statistic Prob.
D24_MEAN_NET_LOAD 0.005576 0.015902 0.350644 0.7259
D24_DEMEAN_NET_LOAD(-1) -0.001627 0.015763 -0.103233 0.9178
D24_TEMP_V*D2 -1.802994 4.644213 -0.388224 0.6979
D24_TEMP_V(-1)*D2 1.180916 4.588104 0.257387 0.7969
D24 _TEMP_V(-1)*D1 -1.152921 2.058426 -0.560098 0.5754
D24 _NET_LOAD(-1) 0.211661 0.100383 2.108540 0.0350
D24 _NET_LOAD(-2) -0.308750 0.138638 -2.227022 0.0260
D24 _NET_LOAD(-3) 0.130871 0.058810 2.225312 0.0261
D24_NET_LOAD(-5) -0.025811 0.018742 -1.377154 0.1685
D24_NET_LOAD(-6) 0.000532 0.011546 0.046092 0.9632
RESID(-1) -0.213348 0.098744 -2.160628 0.0308
RESID(-2) -0.030417 0.034198 -0.889448 0.3738
R-squared 0.000659 Mean dependent var -0.315354
Adjusted R-squared -0.000699 S.D. dependent var 251.9157
S.E. of regression 252.0037 Akaike info criterion 13.89824
Sum squared resid 5.14E+08 Schwarz criterion 13.90861
Log likelihood -56310.63 Hannan-Quinn criter. 13.90179
Durbin-Watson stat 1.993357

Heteroskedasticity Test: White

F-statistic
Obs*R-squared
Scaled explained SS

22.35826 Prob. F(53,8051)
1039.881 Prob. Chi-Square(53)
11816.74 Prob. Chi-Square(53)

0.0000
0.0000
0.0000
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White heteroskedasticity-consistent standard errors & covariance

Variable Coefficient Std. Error t-Statistic Prob.
D24_MEAN_NET_LOAD -0.156932 0.043114 -3.639957 0.0003
D24_DEMEAN_NET_LOAD(-1) -0.133546 0.040034 -3.335842 0.0009
D24_TEMP_V*D2 19.30455 5.636429 3.424961 0.0006
D24_TEMP_V(-1)*D2 -17.96129 5.698225 -3.152085 0.0016
D24 _TEMP_V(-1)*D1 5.008207 1.374023 3.644923 0.0003
D24 _NET_LOAD(-1) 1.761574 0.046113 38.20146 0.0000
D24_NET_LOAD(-2) -0.919797 0.042351 -21.71838 0.0000
D24 _NET_LOAD(-3) 0.240234 0.024058 9.985736 0.0000
D24_NET_LOAD(-5) 0.044787 0.012509 3.580371 0.0003
D24_NET_LOAD(-6) -0.020762 0.009328 -2.225884 0.0260
R-squared 0.968470 Mean dependent var 2.673242
Adjusted R-squared 0.968435 S.D. dependent var 1418.710
S.E. of regression 252.0559 Akaike info criterion 13.89841
Sum squared resid 5.14E+08 Schwarz criterion 13.90705
Log likelihood -56313.31 Hannan-Quinn criter. 13.90137
Durbin-Watson stat 2.000854

Wald Test:
Equation: D24 WHITE_SEASON_BEF_FIN

Test Statistic Value df Probability
F-statistic 2887.470 (8, 8094) 0.0000
Chi-square 23099.76 8 0.0000

Null Hypothesis: C(1)=0,C(2)=0,C(3)=0,C(4)=0,C(5)=0,C(6)

=0,C(7)=0,C(8)=0

Null Hypothesis Summary:

Normalized Restriction (= 0) Value Std. Err.

C(1) -0.157018 0.043106
C(2) -0.133616 0.040027
C(3) 19.31576 5.636267
C(4) -17.97342 5.698234
C(5) 5.012959 1.374057
C(6) 1.760863 0.046213
C(7) -0.915376 0.044419
C(8) 0.228777 0.033739

Restrictions are linear in coefficients.
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36. A3— Wald test for the dummies of the seventh specification of the model with exact-day matching

Wald Test:
Equation: Untitled

Test Statistic Value df Probability
F-statistic 0.932630 (4, 16448) 0.4437
Chi-square 3.730522 4 0.4437

Null Hypothesis: C(6)=0, C(7)=0, C(9)=0, C(10)=0
Null Hypothesis Summary:

Normalized Restriction (= 0) Value Std. Err.

C(6) -3.037145 3.736342
C(7) -4.633860 3.295732
C(9) 7.321488 8.922574
C(10) 8.698754 8.974031

Restrictions are linear in coefficients.

37. A3— The eighth specification, LM-test of the model with exact-day matching

Variable Coefficient Std. Error t-Statistic Prob.
C 393.8356 27.69775 14.21905 0.0000
MEAN_NET_LOAD 0.981938 0.001534 639.9296 0.0000
DEMEAN_NET_LOAD(-1) 0.914302 0.003669 249.2263 0.0000
TEMP_V*D1 7.593717 1.306562 5.811983 0.0000
TEMP_V*D2 2.783018 0.644673 4.316945 0.0000
MONDAY 32.44513 11.00001 2.949555 0.0032
FRIDAY -45.73352 10.62051 -4.306153 0.0000
SATURDAY -271.4916 13.49651 -20.11569 0.0000
SUNDAY -262.0624 15.54966 -16.85325 0.0000
R-squared 0.985413 Mean dependent var 18100.76
Adjusted R-squared 0.985399 S.D. dependent var 2598.780
S.E. of regression 314.0278 Akaike info criterion 14.33795
Sum squared resid 8.01E+08 Schwarz criterion 14.34570
Log likelihood -58303.43 Hannan-Quinn criter. 14.34060
F-statistic 68609.11 Durbin-Watson stat 1.153065

Prob(F-statistic) 0.000000

Breusch-Godfrey Serial Correlation LM Test:

F-statistic 1149.373 Prob. F(2,8123) 0.0000

Obs*R-squared 1794.133 Prob. Chi-Square(2) 0.0000
Variable Coefficient Std. Error t-Statistic Prob.

C 57.73433 24.63739 2.343362 0.0191

MEAN_NET_LOAD -0.001157 0.001356 -0.852969 0.3937

DEMEAN_NET_LOAD(-1) -0.034974 0.003681 -9.502071 0.0000

TEMP_V*D1 1.282403 1.156593 1.108776 0.2676
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TEMP_V*D2 0.127672 0.569309 0.224258 0.8226

MONDAY -19.02611 9.785603 -1.944296 0.0519
FRIDAY -8.412660 9.384567 -0.896436 0.3700
SATURDAY -81.41253 12.57782 -6.472706 0.0000
SUNDAY -110.0965 14.77847 -7.449788 0.0000
RESID(-1) 0.526896 0.010997 47.91181 0.0000
RESID(-2) -0.160183 0.011575 -13.83904 0.0000
R-squared 0.220572 Mean dependent var 1.41E-11
Adjusted R-squared 0.219613 S.D. dependent var 313.8734
S.E. of regression 277.2743 Akaike info criterion 14.08924
Sum squared resid 6.25E+08 Schwarz criterion 14.09871
Log likelihood -57289.95 Hannan-Quinn criter. 14.09248
F-statistic 229.8746 Durbin-Watson stat 2.045263
Prob(F-statistic) 0.000000

38. A3— ACF and PACF of the eighth specification of the model with exact-day matching

Autocorrelation Partial Carrelation A PAC Q-5tat  Prob

/1 1 0.423 0423 14537 0.000
0.016 -0.199 14607 0.000
-0.207 -0.166 18096 0.000

1
2
3
4 -0.233 -0.082 22529 0.000
5
]
7
g

ool

]
(-
O -0.170 -0.068 24888 0.000
-0.015 0.043 24907 0.000
0.097 0034 256871 0.000
0142 0043 27333 0.000
9 0078 -0.017 2¥824 0.000
1 10 0.041 0051 27963 0.000
11 -0.009 0.004 2797.0 0.000
[ 12 -0.044 -0.007 28131 0.000
O 1 13 -0.086 -0.050 2873.0 0.000
1
[

L =)

=
=r

14 -0.070 -0.017 29129 0.000
15 -0.036 -0.016 29232 0.000
0.052 0053 29448 0.000
0.056 -0.024 29707 0.000
1 18 -0.004 -0.063 29708 0.000
[ 19 -0.066 -0.044 3006.8 0.000
-0.050 0.019 3027.0 0.000
21 -0.023 0002 32031.3 0.000
22 0.045 0048 320478 0.000
23 0124 0087 231734 0.000
0.316 0291 38835 0.000
O 25 0111 -0146 40395 0.000
-0.026 0.055 40851 0.000
-0.092 0036 41643 0.000
-0.070 0.031 42041 0.000
29 -0.050 -0.003 42249 0.000
a0 -0.004 -0.025 42250 0.000
[ 31 0019 -0.031 42280 0.000
32 0056 0003 42536 0.000
33 0057 0027 42302 0.000
34 0077 0.041 432534 0.000
35 0.067 0048 43654 0.000
36 0.046 0046 43824 0.000

=g —
=T
A
==

,_|
=]
=]

I_I|_|I_I'—'
= U._,._.
[ ] ]

o Lh

P e T e
| o ]
o6~

== | == ==}
= = =

100



CEU eTD Collection

39. A3— The ninth specification of the model with exact-day matching

HAC standard errors & covariance (Bartlett kernel, Newey-West fixed
bandwidth = 11.0000)

Variable Coefficient Std. Error t-Statistic Prob.
C 726.1602 55.63285 13.05272 0.0000
MEAN_NET_LOAD 0.671669 0.023810 28.20917 0.0000
DEMEAN_NET_LOAD(-1) 0.624460 0.025955 24.05898 0.0000
TEMP_V*D1 6.022807 1.411466 4.267057 0.0000
TEMP_V*D2 1.846939 0.545978 3.382809 0.0007
TUESDAY -354.0742 74.43751 -4.756664 0.0000
THURSDAY -250.7364 71.69008 -3.497504 0.0005
FRIDAY -412.3337 77.80744 -5.299413 0.0000
SATURDAY -1306.597 92.36943 -14.14534 0.0000
SUNDAY -1532.115 101.1931 -15.14051 0.0000
NET_LOAD(-1) 0.515648 0.034066 15.13690 0.0000
NET_LOAD(-2) -0.333561 0.015947 -20.91638 0.0000
NET_LOAD(-3) 0.109771 0.006044 18.16106 0.0000
MONDAY*NET_LOAD(-23) 0.143262 0.011992 11.94631 0.0000
FRIDAY*NET_LOAD(-23) 0.034715 0.009605 3.614372 0.0003

TUESDAY*NET_LOAD(-23) 0.036430 0.008721 4.177443 0.0000
THURSDAY*NET_LOAD(-23) 0.043196 0.011138 3.878448 0.0001
SUNDAY*NET_LOAD(-23) -0.090895 0.029705 -3.059901 0.0022
FRIDAY*NET_LOAD(-24) 0.176352 0.019886 8.867964 0.0000
TUESDAY*NET_LOAD(-24) 0.179995 0.017754 10.13827 0.0000
THURSDAY*NET_LOAD(-24) 0.217774 0.022803 9.550228 0.0000
SUNDAY*NET_LOAD(-24) 0.268926 0.049636 5.417984 0.0000
MONDAY*NET_LOAD(-25) -0.141891 0.011851 -11.97337 0.0000
TUESDAY*NET_LOAD(-25) -0.198432 0.014768 -13.43642 0.0000
THURSDAY*NET_LOAD(-25)  -0.247482 0.018196 -13.60112 0.0000
FRIDAY*NET_LOAD(-25) -0.191127 0.017108 -11.17157 0.0000
SATURDAY*NET_LOAD(-25) 0.056854 0.004989 11.39561 0.0000
SUNDAY*NET_LOAD(-25) -0.103108 0.029139 -3.538561 0.0004

R-squared 0.990383 Mean dependent var 18106.13
Adjusted R-squared 0.990350 S.D. dependent var 2598.253
S.E. of regression 255.2320 Akaike info criterion 13.92567
Sum squared resid 5.26E+08 Schwarz criterion 13.94984
Log likelihood -56440.59 Hannan-Quinn criter. 13.93394
F-statistic 30824.73 Durbin-Watson stat 1.553554
Prob(F-statistic) 0.000000

40. A3— The LM and Wald test of the second correct specification of the model with exact-day matching

Breusch-Godfrey Serial Correlation LM Test:

F-statistic 3.824160 Prob. F(1,8075) 0.0506
Obs*R-squared 3.838649 Prob. Chi-Square(1) 0.0501

101



CEU eTD Collection

Wald Test:
Equation: FINAL

Test Statistic Value df Probability
F-statistic 1225429. (34, 8076) 0.0000
Chi-square 41664596 34 0.0000

Null Hypothesis: C(1)=0,C(2)=0,C(3)=0,C(4)=0,

C(5)=0,C(6)=0,C(7)=0,C(8)=0,C(9)=0,
C(10)=0,C(11)=0,C(12)=0,C(13)=0,
C(14)=0,C(15)=0,C(16)=0,C(17)=0,
C(18)=0,C(19)=0,C(20)=0,C(21)=0,
C(22)=0,C(23)=0,C(24)=0,C(25)=0,
C(26)=0,C(27)=0,C(28)=0,C(29)=0,C(30)=0,C(31
)=0,C(32)=0,C(33)=0,C(34)=0

Null Hypothesis Summary:

Normalized Restriction (= 0) Value Std. Err.

c@) 703.0654 57.05434
C(2) 0.750043 0.038011
C(3) 0.686545 0.038017
C(4) 7.344490 1.160118
C(5) 2.648539 0.793201
C(6) -122.9244 56.20736
C(7) -167.6213 75.87193
C(8) -298.1386 68.20254
C(9) -994.1958 71.98901
C(10) -1477.538 83.28664
C(11) 0.374283 0.071318
C(12) -0.207570 0.052683
C(13) 0.048703 0.018068
C(14) 0.107999 0.014797
C(15) 0.043292 0.011181
C(16) 0.041150 0.009729
C(17) 0.101347 0.008699
C(18) -0.030992 0.014310
C(19) -0.075839 0.026390
C(20) 0.095013 0.021327
C(21) 0.144127 0.026870
C(22) -0.107287 0.014681
C(23) -0.035280 0.008591
C(24) -0.092116 0.008063
C(25) -0.124653 0.018337
C(26) 0.069163 0.014699
C(27) 0.311662 0.058145
C(28) -0.134514 0.015729
C(29) -0.111078 0.014940
C(30) -0.065439 0.011578
C(31) 0.052466 0.011291
C(32) -0.048861 0.018960
C(33) 0.375970 0.024028
C(34) 0.090434 0.028577

Restrictions are linear in coefficients.
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41. A3- The LM and Wald test of the third correct specification of the model with exact-day matching

Breusch-Godfrey Serial Correlation LM Test:

F-statistic 1.683945 Prob. F(3,8089) 0.1681
Obs*R-squared 5.058120 Prob. Chi-Square(3) 0.1676
Variable Coefficient Std. Error t-Statistic Prob.
D24_MEAN_NET_LOAD  -0.012991 0.008319 -1.561616 0.1184
D24_NET_LOAD(-1) -0.888154 0.554133 -1.602781 0.1090
D24_NET_LOAD(-2) 1.391113 0.908323 1.531517 0.1257
D24 _NET_LOAD(-3) -0.643135 0.442121 -1.454659 0.1458
D24 _NET_LOAD(-5) 0.121761 0.077228 1.576650 0.1149
D24_TEMP_V*D2 2.309507 1.519074 1.520339 0.1285
D24_TEMP_V(-1)*D1 2.632082 1.832359 1.436444 0.1509
MA(24) 0.001938 0.007189 0.269573 0.7875
MA(23) -0.001112 0.006883 -0.161573 0.8716
MA(25) 0.000407 0.007234 0.056296 0.9551
MA(2) -0.003171 0.008936 -0.354866 0.7227
MA(4) 0.007296 0.008379 0.870688 0.3840
MA(5) -0.005820 0.007713 -0.754587 0.4505
MA(6) -0.003415 0.007496 -0.455629 0.6487
RESID(-1) 0.888494 0.553952 1.603918 0.1088
RESID(-2) 0.051141 0.046268 1.105333 0.2690
RESID(-3) -0.077200 0.081571 -0.946420 0.3440
R-squared 0.000624 Mean dependent var -0.084641
Adjusted R-squared -0.001353 S.D. dependent var 222.5386
S.E. of regression 222.6890 Akaike info criterion 13.65152
Sum squared resid 4.01E+08 Schwarz criterion 13.66621
Log likelihood -55312.63 Hannan-Quinn criter. 13.65655
Durbin-Watson stat 2.002033
Wald Test:
Equation: D24_6LAG_MA
Test Statistic Value df Probability
F-statistic 22463.18 (14, 8092) 0.0000
Chi-square 314484.5 14 0.0000
Normalized Restriction (= 0) Value Std. Err.
C(1) -0.015685 0.005669
C(2) 1.619028 0.022281
C(3) -0.902104 0.035351
C(4) 0.213492 0.021124
C(5) 0.048101 0.006677
C(6) 2.734653 0.912262
C(7) 3.326240 0.882131
C(8) -0.761517 0.013836
C(9) -0.077169 0.009841
C(10) -0.047631 0.008433
C(11) -0.037431 0.008023
C(12) 0.034521 0.006689
C(13) -0.021465 0.006975
C(14) 0.027168 0.006258
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42. A3— Daily and Monthly average MAPE of the one-step-ahead forecast of seasonally differenced model
with exact-day matching for 2015
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43. A3— Daily and Monthly average MAPE of the one-step-ahead forecast of the model with exact-day
matching and dummies for 2015
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44. A3 — Replication of the EGRV model (weekday and weekend versions)

Homoscedastic weekday

105

models 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

C 421 532,50 388028,10 359 967,30 371 030,60 323 982,40 304 007,60 211 048,70 340 698,80 585 078,50 223 196,60 51107520 569 116,90 646 248,10 1094 588,00 477 645,20 728 759,50 943 867,20 1014 898,00 776 649,10 545 929,20 522 914,90 600 379,90 531 500,00 513 834,20
MONDAY - - - - - - - -17997,89 -16 185,37 - -16169,98 -19732,70 -19243,04 -15613,95 -17 254,78 -12407,06 -17 150,28  -20 535,89 - -16 083,65 -10633,53 -14 694,54 -11 226,41

APRIL 20 900,68 - - -880,33 - - - - - 82434 - - -1710,16 -2088,65 -28166,17 - - - E
AUGUST 818853 882859  -447,76 -422,41 - -113447 572,29 - -26768,96 -44 140,55 -38 730,30 - -29 986,62 -590,95 - -35384,77 -172508 - -130558  -805,91 - 573,75
DAYAFTERHOLIDAY -141829 -1591,32 -1360,80 -1300,47 - - 1973456 1758245 854586 1711804 20707,10 1985719  16730,17 1990149 1475552 1975880  18889,45 - 1498546 1084354 16889,14 1390431 2991,99
FEBRUARY -10042,45 -11202,39 -12091,48 -12127,53 -10653,26 -9381,15 -16 231,49 -40 725,01 -1441834 -3086374 -41558,73 -41549,66 -59128,88 -16392,67 -38954,08 -60830,87 -54809,11 -54 919,93 -28 85553 -27 686,63 -24 172,90 -23278,01 -21 056,93]
FRIDAY - - 51,24 - - - - - - - - - - - - - - -30556  -350,09 - - E
JANUARY -221,74  -366,19 -450791 -732925 -31208 -381,71 - -23630,94 -38 175,00 -29576,49 -4454515 -42559,55 -64 898,88 -27 484,07 -40 647,66 -75557,71 -8689599 -52 756,98 -25921,80 -24505,80 -19 756,33 -14 92555 -15009,75|
JULY - - -13050,76 -11980,05 -13231,61 -18 925,68 -17 055,03 -28 416,70 - - -41226,95 -28508,02 - -22 885,06 - - - - -33652,31 -30799,67 916,60 588,20)
JUNE 283,74 337,84 - -75428  -929,65 - - 274,37 594,90 358,02 - - - - -397,68  -97500 -205525 -110549 643,29 481,35
MA(1) - 0,12 -0,12 -0,27 - - -0,25 -0,27 -0,38 -0,21 0,34 - - - - - 0,26 0,72 0,59 0,65 0,58 E
MA(2) -0,38 -0,37 -0,34 -0,34 -0,32 -0,18 -0,28 -0,28 -0,37 -0,32 : -0,36 -0,35 -0,45 - -0,32 -0,34 -0,32 0,19 - - -0,35
MA(3) 0,27 - - - -0,18 - - - - - - -0,13 - - - - -0,41 -0,21 - -0,19
MA(4) -0,35 0,34 -0,32 -0,23 -0,28 -0,08 -0,18 -0,21 -0,23 -0,21 - -0,23 0,27 0,22 - - -0,32 0,24 -0,24
MA(5) - 0,22 -0,16 -0,22 -0,13 -0,23 -0,15 -0,28 -0,24 - -0,24 - -0,26 -0,38 -0,31 -0,14 -0,21 -0,19 -0,23 -0,22
MARCH 8201,89 - - 128,30 - - - - 208,72 - : - 502,98 : - - -899,72 - -
MAX_TEMP_F(-1) -55495  -670,47  -99850 -113505  -36551  -91491 -136023 -2197,89 -1633,79 -140452  -1477,69 -1291,99  -2191,86 - -150329 -132992  -1920,58 - -532,12]
MAX_TEMP_F_S(-1) 0,93 113 1,70 193 0,61 155 2,30 375 2,79 -0,06 243 2,56 2,24 373 - 2,55 2,24 327 - -0,04 0,89)
NET_LOAD_8(-1) 0,27 0,21 0,20 0,20 0,28 0,24 0,41 0,37 0,44 0,89 0,43 0,23 033 0,30 0,60 0,40 0,70 - 0,23 - - 0,16 0,26 0,33]
NET_LOAD_8(-1)*DAYAFTEI - - - - -0,06 -0,06 - -1,51 -1,29 -0,44 -1,19 -1,43 -1,36 -1,19 -1,25 -1,01 -1,26 -1,36 -1,03 -0,73 -1,13 -0,90 -0,15
NET_LOAD_8(-1)*MONDAY -0,02 - - - - - -0,03 1,40 121 113 1,36 1,33 112 111 0,89 1,13 143 - 1,07 0,71 1,03 0,77 -
NOVEMBER -6 086,54 - -11498,75 -11670,25 -9966,89 -9970,41 - -15182,26 -20 244,52 774,05 - -11950,74  -33174,46 - -16 883,16 -31677,86 -5210857 -36 841,92 - -19961,91 -17 396,80 - -11 843,96
OCTOBER 9419,68 - - - 197,25 - -21 365,67 -18 962,70 432,28 - 393,51 684,58 - - - - - - -19625,23 - - E
SEPTEMBER 15099,16 13 206,82 155,71 313,04 105,59 458,62 608,27 - 569,08 672,42 464,67 448,63 : - - -648,77 690,66 -

SEVENDAYMIDTEMP_F -14,13 -20,36 -20,17 -12,71 -12,86 - - 56,37 - - 26,84 99,77 71,36 64,33 87,40 - -49,36 -51,13

TEMP_F*APRIL 73,55 - - - -0,86 -1,97 - -7 -1,24 -1,35 - -2,05 - - -1,61 -1,36 - 92,15 - -

TEMP_F*AUGUST -31,11 -32,97 - -1,02 - -3,75 -5,68 - - - 90,05 148,67 130,03 2,25 100,01 - - 114,76 -9,75 - - - E
TEMP_F*FEBRUARY 36,88 40,59 44,09 44,58 38,77 34,32 59,01 148,10 52,39 143,91 148,35 148,75 212,80 59,24 139,49 216,05 195,20 199,14 104,77 100,37 88,29 86,02 77,63]
TEMP_F*JANUARY - - 15,18 25,78 - - - 85,64 138,42 - 106,75 159,16 152,12 231,98 98,69 144,92 269,93 313,07 190,14 93,29 87,94 71,30 54,71 54,60
TEMP_F*JULY - 46,42 4321 46,70 63,10 55,20 96,46 1,03 1,19 2,81 142,02 98,57 1,02 78,09 0,98 - -2,13 107,51 101,97 - - E
TEMP_F*MARCH -29,13 - - - - - - - - - - - - - - - - - - - 1,10 1,75 1,69)
TEMP_F*MAY -32,47 - - -0,83 -3,20 -3,39 -0,91 - - : - : : - - -3,50 5,11 -9,18 -4,26 - - -
TEMP_F*NOVEMBER 22,51 42,75 43,65 37,08 37,40 2,07 56,55 75,51 157 - 45,29 121,06 2,35 62,29 116,15 191,71 135,68 3,00 73,78 64,60 2,68 44,02
TEMP_F*OCTOBER -33,29 0,44 118 1,64 - 0,35 - 76,67 68,48 - 1,79 - - - - - 1,50 70,34 - - E
TEMP_F -2311,77 -1936,86 -1387,76 -1341,70 -1811,93 -110313 - 232404 -162337 -202790 -2278,07 -3082,68 -540422 -3352,30 -3521,39 -526550  -4877,15 -5249,28 -3639,48 -340090 -4084,85 -3546,00 -2981,25
TEMP_F_S 4,13 3,45 2,45 2,36 3,20 192 -0,08 4,02 2,84 3,46 381 523 9,27 574 6,04 9,05 8,34 9,05 6,31 5,92 718 6,24 5,25)
TUESDAY - - - - 81,25 257,50 271,61 281,06 607,44 295,38 - 288,51 307,27 524,78 390,45 432,85 394,48 - 399,64 350,24 382,49
WEDNESDAY - - < - - - - - - - - - - - - - - - - - - 210,31 182,05 202,31
R-squared 0,97 0,95 &358 0,95 0,94 09 0,79 0,75 0,72 0,68 0,71 0,625 0,69 0,63 0,65 0,61 0,73 0,85 0,87 0,86 08 0,72 0,78 0,76}
AIC 13,65 13,78 53 13,67 13,94 14,75 16,08 16,36 16,20 16,11 16,05 16,23 16,13 16,29 16,2 16,4 16,31 16,09 11,99 15,93 15,67 15,42 153 15,31
DW 2,15 173 97 1,9985 198 2,18 197 1,95 1,96 192 1,94 1,996 2,00 1,96 1,989 19 1,914 191 2,09 1,96 1,85 2 2,01 1,91
LM-test 0,083 0,024 §03 0,014 0,80 0,034 0,61 0,01 0,06 0,27 0,25 ,9905 1,00 0,12 0,95 0,3 0,3055 0,06 0,075 0,36 0,075 0,734 0,71 0,06}

Syudie ruut Syudre rouLuir
RESET (p-value of F-stat) 0,00 square root '609 0,04 0,00 0,03 0,17 0,00 0,00 0,00 0,00 of negative 0,00 0,00 0,00  negative 0,72 0,00 0,00 0,00 0,01 0,04 0,15 0,00}
a
O
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Homoscedastic weekend models 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 %

c 1322475 29635940 11373010 16080160 26602640 27851310 15414570 3349025 14629560 - 43053900 4170475 4104650 2001499 1959088 1973238 2086017 2059836 31880,88 3497048 17778170 38443600 39187460 25956170
APRIL -68L,15  -482,80 - - 66563 - -47668,90 - - 4287241 - - - - - 253152 - - - - - 127387 - 2022642
AUGUST - 128682 62181 -492,99 - - 244615 - 95666  -98886 - 2474829 -84099 -3262599 -4440172 -4531327 -39226,15 -3862421 -41470,03 -2545230 -132368 -248452 -220472 -236613
DAYAFTERHOLIDAY - - - - - 96076 5644422 -3200747  -76723 - - - - - - - - - - - - - - 1023150
FEBRUARY - VY - - - - - - 2184760 - - - 2721822 2578618 2838098 3670560 4565686 - - - - 63984  -517.3f
JANUARY - - - - -30037 - - 1166252 - 2055283 -3592347 - - 1546704 1346102 1060238 - - - 1380436 - -100528 -1755463  -958,62
uLy -33687  -47543 5207217 -4184506  -51238 - 246585 - - - - - - -6107338 - -142305 -3791300 -43802,77 -4425662 -41619,54 - 4146929 80481  -98526
JUNE -64341 54451 - - T375 61494 -2521,89 - 34768 - - - - -193009 -192070 -216655 -330425 -345791 -267269 -199790 -171017 -192537 -116753 -1434,66
MA(1) - - -0,63 - - 055 191 - -0,66 108 033 044 0,46 -049 -0,46 0,50 0,55 - - - 0,34 - - -
MA() - - -0,34 - - 075 0,92 - -0,34 0,9 - 0,28 0,30 -0,48 0,52 -047 -042 - - - - -0,98 - -
MARCH 2504504 1988313  -198,03 - a8l - 47448 - - - - 78295 -89590 -191067 -196388 -233661 -343633 -308680 -1101,98 - 29868 - -
MAX_TEMP_F(-1) . - 67921 -1011,00 i - 8323 - 88083 - - - - - . . . - 4140 - - -789,89 i -
MAX_TEMP_F_S(-1) - - 112 170 - - 140 - 148 -0,08 - - - - - - - - - - - 135 - -
MAY -862,74  -641,66 - - - - - - - - - - - - - - - - - - - 154458 -149314 -1713,65
NET_LOAD_8(-1) 0,26 0,22 0,24 0,24 0,12 - -0,88 0,19 033 -051 - - - - - - - - - 021 - 011 - -
NET_LOAD_8(-1)*DAYAFTERHOLIDAY -0,10 -0,09 -0,08 - -0,08 i -3,79 2,05 - -0,04 - i - -0,08 -0,06 -0,06 0,07 - i i - - - 0,65
NOVEMBER - - 2210 . - 1699698 . - 378 - . . - 4792510 4741670 4741912 4711485 . . - - 1584779 - -
OCTOBER - 29113 - - -31308 - 4411567 - - - - - - - 140553 - - 1699370 -88903 - - 4118286 -120053 -111511
SEPTEMBER - 1899414 - - 491 - 161926 - - - - - - 4162262 -160874 -193586 -320614 -325194 -227016 - - 163295 -1568,16 -1740,10
SEVENDAYMIDTEMP_F - - - - - 5698 - 8901 - 5460 - 7968 -T72L - - - - - - 6625 5167 - - -
SUNDAY -1886,18 -159564 -1479,63 -143186 -128637 -12063L - 205722 -202978  -32988  -93671  -91087 -101824 -107801  -91608  -87447  -81652  -59531  -43930  -64847  -150,60 - -10047 282725
TEMP_F - -200498 - - 178528 -174951 - - - 32376 -279854 - - - - - - - - - -100045 -177308 -2630,00 -170596
TEMP_F*APRIL - - -1,20 - - - 17040 -1,26 169 149,92 - - - 747 7,68 - 1305 -1280 -1072 -6,43 -1 - 412 7576
TEMP_F*AUGUST -4,70 - - - 435 -3.85 - 311 - - 288 8002 - lo111 14108 14367 11907 11704 12090 7954 - - - -
TEMP_F*FEBRUARY . - - . - - - - - 1653 - - - 9844 9325  -10355 -13716  -16695 - - - -2,05 - -
TEMP_F*JANUARY - - - - - - - 8301 - 1387 12845 - - 5728 5009 -4057 -483 - - 5025 -1,03 - 59,60 -
TEMP_FXJULY - - 17955 14494 - - - - - - - - - 19859 -4,04 S w75 13132 4214 13619 -3,63 - - -
TEMP_F*MARCH -9506 72,79 - - - - - - - - - - - - - - - - - - - -424 456 472
TEMP_F*MAY . - -0,90 . -2,87 -345 7,39 - -1,28 - - 315 325 -6,73 -6,53 780 1230 1273 -1068 775 -4,63 . i -
TEMP_F*NOVEMBER - - - - - 62,36 -2,14 - - - - - - 17142 17009 -17092  -17145 - - - - 5963 2,74 -2.4
TEMP_F*OCTOBER -1,99 - - - - - -15981 - - 479 - - - -4,98 - 610  -1048  -6842 - - - - - -
TEMP_F*SEPTEMBER 270 -6792 - - - - - - - - - - - - - - - - - - - - - -
TEMP_F_S - 354 - - 3,15 3,00 - i - -0,54 475 i - i i : - - i i 177 3,16 463 3,00
R-squared 097 0% 096 0% 094 090 079 075 072 068 071 062 069 083 064 061 073 08 087 086 080 072 078 07§
AIC 1365 1378 1353 1367 13% 475 1608 1636 1620 1611 1605 1623 1613 1630 1620 1640 1630 16,10 1599 159 1567 1540 1530 1530)
ow 215 173 197 200 1% 218 197 19 19 192 194 200 200 19 19 192 191 190 210 1% 185 200 200 191
LM-test 008 002 0 001 080 03 061 001 006 027 025 100 100 012 0% 03 031 001 008 03 008 073 o7 00§
RESET (p-value of F-stat) 0g1 032 001 100 044 004 000 030 000 0,00 square root of 024 023 000 000 000 000 078 098 008 090 000 053 0,15
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P-values of the weekday model ) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

C 0,000 0,000 0,00 0000 0000 0000 0000 0002 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0,000 0,000 0,000 0,000
MONDAY - - - - - - - 0031 0,043 - 003 0001 0009 0037 0022 0046 0,018 0,007 - 0001 0005 0,000 0,003 -
APRIL 0,001 - - = B - 0,000 - - - = - - - 0,000 - - 0000 0,000 0,028 - - - -
AUGUST 0,080 0,014 0,000 - 0,000 - - 0,000 0,003 - 0032 0037 0,003 - 0,004 0,044 - 0,004 0,000 - 0012 0,014 - 0,000
DAYAFTERHOLIDAY 0,000 0,000 0,000 0,000 - - - 0028 0046 0000 0024 0000 0004 0031 0,004 0007 0003 0,010 - 0000 0000 0000 0000 0,036
FEBRUARY 0,003 0,000 0,000 0,000 0,000 0,019 - 003 0000 0001 0000 0001 0000 0000 0020 0001 0000 0000 0000 0001 0002 0001 0001 0,001
FRIDAY - - - 0,054 B - - - - - = - - - - - - - - 0,000 0,000 B - -
JANUARY 0,000 0,000 0,05 0,005 0,000 0,000 - 0024 0,001 - 0000 0000 0000 0000 0000 0000 0000 0000 0000 0006 0013 0014 0,018 0,005
JULY - - 0001 0017 0001 0000 0001 0,000 - - - 0,009 0,092 - 0,012 - - - - 0017 0,016 - 0,000 0,000
JUNE - - 0,000 0,000 - 0,000 0,000 - - - 0052 0036 0,066 - - - - 0005 0000 0,000 0,000 - 0,001 0,000
MA(1) - - 0134 0191 0,002 - - 0043 0013 0000 0043 0,001 - - - - - 0,026 - 0000 0000 0,000 0,000 -
MA(2) 0,000 - 0000 0000 0000 0000 0045 0000 0000 0,000 0,000 - 0,000 0,000 0,000 - 0000 0004 0000 0,022 - - - 0,000
MA(3) 0,000 - - - - 0,002 - - - - - - 0034 - - - - 0,000 0,000 - - - - 0,000
MA(4) 0,000 - 0000 0000 0000 0000 008 0001 0000 0000 0,001 - 0001 0000 0,002 - - 0,000 0,000 - - - - 0,000
MA(5) - 0004 0025 0005 0039 0001 0040 0,011 0,045 - 0,005 - 0000 0004 0000 0066 0029 0010 0,001 - - - - 0,003
MARCH 0,040 - - 0,000 - - - - 0,055 - - - - 0,001 - - - 0,000 - - - - - -
MAX_TEMP_F(-1) 0,026 0,000 0,000 0,000 0015 0001 0000 0002 0,014 - 005 0011 0,088 0,002 - 0021 0025 0,002 - - - - - 0,040
MAX_TEMP_F_S(-1) 0,030 0,000 0000 0000 0017 0001 0000 0003 0016 0022 0054 0010 0,084 0,002 - 0022 0027 0,002 - - - 0,006 - 0,048
NET_LOAD_8(-1) 0,000 0,000 0,00 0000 0000 0000 0000 0027 0011 0000 0000 0033 0004 0017 0000 0,006 0,000 - 0,010 - - 0062 0012 0,000
NET_LOAD_8(-1)*DAYAFTERHOI - - - - 0,000 0,000 - 0016 0029 0000 0025 0000 0005 003 0010 0016 0,008 0,010 - 0001 0001 0000 0000 0,039
NET_LOAD_8(-1)*MONDAY 0,077 - - - - - 0000 0018 0,029 - 003 0001 0009 0034 0028 0051 0,024 0,008 - 0001 0004 0,000 0,002 -
NOVEMBER 0,040 - 0000 0000 0,000 0,001 - 0062 0,042 - 0,000 - 0081 0,000 - 0018 0,000 0000 0,000 - 0043 0,022 - 0,002
OCTOBER 0,001 - - - 0,000 - - 0016 0,015 - 0,000 - 0,001 0,000 - - - - - - 0,001 - - -
SEPTEMBER 0,000 0,000 0,000 0,000 0,002 - - 0,000 0,000 - 0000 0005 0017 0,009 - - - - 0,000 - 0,010 - - -
SEVENDAYMIDTEMP_F 0,064 0,009 0,001 0,047 0,030 - - - - 0,000 - - 0266 0002 0,000 0,000 0,000 - - - 0,005 - 0,001 -
TEMP_F*APRIL 0,001 - - - 0,000 0,000 - 0,002 - 0001 0,008 - 0,001 - - 0,026 0,006 - - 0,037 - - - -
TEMP_F*AUGUST 0,053 0,008 - 0,000 - 0,000 0,000 - - - 0033 003 0003 0000 0,004 - - 0,006 - 0,000 - - - -
TEMP_F*FEBRUARY 0,003 0,000 0,000 0,000 0,000 0,017 - 003 0000 0001 0000 0001 0000 0000 0019 0001 0000 0000 0000 0001 0002 0001 0001 0,001
TEMP_F*JANUARY - - 0077 0,007 - - - 0,024 0,001 - 0000 0000 0000 0000 0000 0000 0000 0000 0000 0006 0013 0014 0,017 0,005
TEMP_F*JULY - - 0001 0013 0001 0000 0002 0000 0003 0000 0000 0007 008 008 0011 0,103 - - 0004 0025 0,020 - - -
TEMP_F*MARCH 0,041 - - - - - - - - - - - - - - - - - - - - 0018 0,000 0,000
TEMP_F*MAY 0,001 - - - 0000 0000 0000 0,044 - - - - - - - - - 0000 0,000 0000 0,002 - - -
TEMP_F*NOVEMBER 0,035 - 0000 0000 0000 0000 0000 0054 003 0,000 . - 0061 0000 0000 0013 0000 0000 0000 0010 0037 0017 0,000 0,001
TEMP_F*OCTOBER 0,001 0,039 0,000 0,000 - 0,002 - 0015 0,013 - - 0,065 - - - - - - 0,000 - 0,001 - - -
TEMP_F 0,000 0,000 0,000 0,000 0,000 0,017 - - 0013 0000 0028 0037 0012 0000 0000 0001 0000 0000 0000 0000 0000 0000 0,000 -
TEMP_F_S 0,000 0,000 0,000 0,000 0,000 0,018 - 008 0013 0000 0031 0044 0013 0,000 0,000 0,001 0,000 0,000 0,000 - - - - 0,000
TUESDAY - - - - 0,018 - 0001 0020 0005 0,000 0,001 - 0005 0003 0000 0,002 0,000 - 0,000 - - 0,001 0,001 0,000
WEDNESDAY - _ - - - - - - - - - - - - - - - - - - - - 0,036 0,039 0,016
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P-values of the weekend models 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
[ 0,000 0,000 0,000 0,000 0,000 0,000 0,005 0,000 0,000 - 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,005 0,000 0,000 0,000
APRIL 0,000 0,000 - - 0,000 - 0,000 - - 0,066 - - - - - 0,000 - - - - - 0,000 - 0,000
AUGUST - 0,000 0,000 0,000 - - 0,000 - 0,000 0,000 - 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
DAYAFTERHOLIDAY - - - - - 0,000 0,000 0,000 0,002 - - - - - - - - - - - - - - 0,010
FEBRUARY - - 0,001 - - - - - - 0,012 - - 0,000 0,000 0,000 0,000 0,000 - - - 0,000 0,012
JANUARY - - - - 0,000 - - 0,000 - 0,003 0,000 - 0,000 0,000 0,000 - - - 0,000 - 0,000 0,023 0,000
JULY 0,036 0,027 0,000 0,000 0,014 - 0,000 - - - - - 0,000 - 0,000 0,001 0,000 0,000 0,000 - 0,000 0,009 0,002
JUNE 0,000 0,001 - - 0,000 0,000 0,000 - 0,001 - - - - 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
MA(1) - - 0,000 - - 0,000 0,000 - 0,002 0,000 0,010 0,000 0,001 0,000 0,000 0,000 0,000 - - - 0,000 - - -
MA(2) - - 0,007 - - 0,000 0,000 - 0,041 0,000 - 0,017 0,002 0,000 0,000 0,000 0,000 - - - - 0,000 - -
MARCH 0,000 0,000 0,000 - 0,000 - 0,025 - - - - 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,003 - 0,032 - - -
MAX_TEMP_F(-1) - - 0,000 0,000 - - 0,025 - 0,000 - - - - - - - - - 0,001 - - 0,007 - -
MAX_TEMP_F_S(-1) - - 0,000 0,000 - - 0,029 - 0,000 0,000 - - - - - - - - - - 0,008 - -
MAY 0,000 0,001 - - - - - - - - - - - - - - - - - 0,000 0,000 0,000
NET_LOAD_8(-1) 0,001 0,001 0,000 0,000 0,007 - 0,000 0,005 0,001 0,000 - - - - - - - 0,000 - 0,000 - -
NET_LOAD_8(-1)*DAYAFTERHOI 0,001 0,000 0,000 - 0,000 - 0,000 0,000 - 0,000 - - 0,000 0,000 0,000 0,000 - - - - - 0,016
NOVEMBER - - 0,000 - - 0,000 - - 0,000 - - - 0,000 0,000 0,000 0,000 - - - - 0,013 - -
OCTOBER - 0,029 - - 0,005 - 0,012 - - - - - - 0,000 - - 0,039 0,018 - - 0,000 0,000 0,000
SEPTEMBER - 0,002 - - 0,007 - 0,000 - - - - - - 0,000 0,000 0,000 0,000 0,000 0,000 - - 0,000 0,000 0,000
SEVENDAYMIDTEMP_F - - - - - 0,000 - 0,000 - 0,010 - 0,001 0,001 - - - - - - 0,001 0,011 - - -
SUNDAY 0,000 0,000 0,000 0,000 0,000 0,000 - 0,000 0,000 0,016 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,005 - 0,003 0,000
TEMP_F - 0,000 - - 0,000 0,000 - - - 0,000 0,000 - - - - - - - - - 0,019 0,000 0,000 0,000
TEMP_F*APRIL - - 0,000 - - - 0,000 0,011 0,000 0,064 - - - 0,000 0,000 - 0,000 0,000 0,000 0,000 0,022 - 0,000 0,000
TEMP_F*AUGUST 0,000 - - - 0,000 0,000 - 0,000 - - 0,000 0,000 - 0,000 0,000 0,000 0,000 0,000 0,000 0,000 - - - -
TEMP_F*FEBRUARY - - - - - - - - - 0,014 - - - 0,000 0,000 0,000 0,000 0,000 - - - 0,000 - -
TEMP_F*JANUARY - - - - - - - 0,000 - 0,003 0,000 - 0,000 0,000 0,000 0,000 - - 0,000 0,019 - 0,032 -
TEMP_F*JULY - - 0,000 0,000 - - - - - - - - 0,000 0,000 - 0,001 0,000 0,000 0,000 0,000 - - -
TEMP_F*MARCH 0,000 0,000 - - - - - - - - - - - - - - - - - - - 0,000 0,000 0,000
TEMP_F*MAY - - 0,000 - 0,000 0,000 0,000 - 0,000 - - 0,005 0,004 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 - - -
TEMP_F*NOVEMBER - - - - - 0,000 0,028 - - - - - - 0,000 0,000 0,000 0,000 - - - - 0,010 0,001 0,006
TEMP_F*OCTOBER 0,000 - - - - - 0,010 - - 0,001 - - 0,000 - 0,000 0,000 0,016 - - - - -
TEMP_F*SEPTEMBER 0,000 0,002 - - - - - - - - - - - - - - - - - - - -
TEMP_F S - 0,000 - - 0,000 0,000 - - - 0,000 0,000 - - - - - - - 0,023 0,000 0,000 0,000

CEU eTD Collection

108



CEU eTD Collection

45. A3- Daily and Monthly average MAPE of the day-ahead forecast of the replicated EGRV model for
2015
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46. A3- Daily and Monthly average MAPE of the replicated model for 2015

2015.01.05-2015.12.20 Naive benchmark v_vith “SARMA" Exponer?tial Exact-day mat(_:hing vWFh Exact-day matching with EGRV
seasonal differencing smoothing daily seasonal differencing dummy
Type of forecast one-step ahead one-step ahead one-step ahead one-step ahead one-step ahead one-day ahead

Monday 45% 466% 1,14% 41% 1,24% 3,18%
Tuesday 98% 157% 0,91% 123% 0,64% 3,78%
Wednesday 137% 203% 0,63% 201% 0,76% 2,37%
Thursday 248% 91% 0,63% 411% 0,59% 2,68%
Friday 156% 110% 0,75% 221% 0,70% 2,81%
Saturday 22% 132% 0,99% 23% 0,98% 3,16%
Sunday 40% 79% 1,08% 51% 1,12% 3,54%
January 91% 127% 1,07% 111% 0,76% 2,85%
February 99% 143% 0,76% 140% 0,75% 2,04%
March 111% 93% 0,79% 151% 0,85% 2,75%
April 128% 261% 1,21% 161% 0,99% 3,83%
May 66% 133% 1,03% 62% 0,95% 4,11%
June 73% 136% 0,68% 91% 0,82% 2,04%
July 58% 76% 0,62% 85% 0,82% 3,08%
August 57% 66% 0,79% 79% 0,86% 5,21%
Spetember 73% 616% 1,12% 86% 0,84% 2,30%
October c 306% 213% 0,99% 484% 1,08% 3,56%
November 2 109% 131% 0,74% 226% 0,84% 2,13%
December % 101% 77% 0,61% 144% 0,70% 2,92%

o
MEAN of MAPE E 107% 173% 0,87% 151,67% 0,85% 3,07%

L

O
Chow forecast test - winter time 0,67 0,64 NA 1,00 0,00 NA
Chow forecast test - summer time 0,00 0,00 NA 0,00 0,00 NA|
Heteroscedasticity yes yes ? yes yes no|
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A4-Appendix for My own model

1. A4— The first specification of my own model
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P-values of the heteroscedastic

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
models
C 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,001 0,000 0,000 0,000 0,000
|_7DAYS_MIDTEMP_F 0,000 0,000 0,000 0,000 0,004 0,000 0,000 0,000 0,000 0,001 0,001 0,006 0,007 0,012 0,000 0,000 - - 0,000 0,000 0,001 0,000 0,000 0,000
AFTER_HOLIDAY 0,000 0,000 0,000 0,000 0,037 0,003 0,001 0,000 0,004 0,000 0,000 0,005 - - - - - - - - - - - -
APRIL - - - - - - 0,004 - - - - - - - 0,013 0,009 - - - - - - - -
APRIL*HUMIDITY - - - 0,036 - - 0,014 - - - - - - - - - - - 0,000 0,000 - - - -
APRIL*TEMP_F - - - 0,000 0,000 0,000 0,005 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,011 0,008 - - - - - - - -
AUGUST - - - - - - - 0,000 0,001 0,002 0,000 0,000 0,000 0,000 0,000 0,000 - - - 0,000 - - - -
AUGUST*TEMP_F - - - - - 0,000 0,002 - 0,004 0,004 0,000 0,000 - - - - - - - 0,000 - - - -
BEFORE_HOLIDAY 0,038 0,275 0,020 - - - - - 0,048 0,048 0,016 0,034 0,011 0,015 0,005 0,003 0,003 0,002 0,001 0,001 0,000 0,002 0,000 0,000
DECEMBER - - - - - - - 0,000 0,000 0,000 0,000 0,007 - - - - - - - - - - - -
DECEMBER*ILLUM - - - - - - - - - 0,015 0,004 0,017 - - - - - - - - - - - -|
DECEMBER*TEMP_F - - - - - - - 0,000 0,000 0,000 0,000 0,009 - - - - - - - 0,003 - - - -
FEBRUARY 0,004 0,012 0,049 0,012 0,000 0,000 0,000 - - - - - 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 - 0,000 0,000 0,000
FEBRUARY*HUMIDITY - - - - - - - - - - - - - - 0,003 0,001 - - - - - - - -
FEBRUARY*HUMIDITY(-1) - - - - - - - - - - - - - - 0,029 0,004 - - - - - - - -
FEBRUARY*TEMP_F 0,004 0,011 0,047 0,012 0,000 0,000 0,000 - - - - - 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 - 0,000 0,000 0,000
FRIDAY - - - - - - - - - - - - - - - - 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000
HOLIDAY 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000}
ILLUM - - - - - - - 0000 0000 0000 0000 0,000 - - - - - - - - - - - |
JANUARY - 0011 0,029 - 0032 0005 0001 - - 003 0000 0000 0000 0000 0000 0000 0000 0000 0000 0,016 - 0000 0000  0,000]
JANUARY*HUMIDITY - - - 0,000 - 0044 0043 - - - - - - - - - - - - - - - - |
JANUARY*TEMP_F - - - - 0039 0017 0,002 - 0012 0037 0000 0000 0000 0000 0000 0000 0000 0000 0000 0,020 - 0000 0000  0,000]
JULY 0,21 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0002 0000 0000 0,000 - - - 0000 0002 0000 0000 0,000
JULY*HUMIDITY - - - - - - 0032 004 0005 0001 0000 0000 0001 0001 0000 0,001 - - - 0002 - 0008 - o001
JULY*TEMP_F 0018 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0002 0000 0000 0,000 - - - 0000 0003 0000 0000 0,000
JUNE - - - - - - - 0000 0000 0000 0000 0,000 - - - - - - - 0,000 - - - |
JUNE*HUMIDITY - - - 0,000 - 0000 0,000 - - - - - . - - - - - . . - 0201 - 0,102
JUNE*TEMP_F 0,05 0005 0023 0,000 - - 0008 0000 0000 0000 0000 0,000 - - - - - - - 0,000 - 0212 0000  0,010]
MA(1) 0,000 - 0000 0002 0000 0,000 - - - - - - - - - - 0003 0000 0000 0013 0000 0000 0000 0,028
MA(2) - 0013 - 0020 0000 0053 0000 0000 0000 0000 0000 0011 . - - - 0000 0001 0,000 - 0,000 - - -
MA(3) 0,08 008 0,000 - 0000 0000 0000 0000 0000 0001 0000 000l 0000 0000 0000 0000 0003 0000 0,000 - 0,000 - - |
MA(4) - - - 0,000 - - - 0000 0000 0000 0000 0000 0000 0000 0000 0,000 - - - 0000 0000 0000 0000 0,000
MA(5) 0002 0000 0000 0000 0000 0000 002 000l 0003 0000 0000 0000 0000 0000 0000 0,000 - - - 0,000 - 0000 0000 0,000
MA(6) - - - 0071 - - 0,000 - - - - 0,000 - - - - 0002 0011 - 0,000 - 0000 0000 0,000
MA(7) - - - - - 0,004 - - - - - - - - - - - - - 0,005 - 0001 0058  0,000]
MARCH - - - - - - - - - - - - 0000 0000 0000 0000 - - - - - - - |
MARCH*HUMIDITY - - - 0,000 0,000 0,000 0,000 - 0,003 0,003 0,007 0,004 - - - - - - - - - - - -
MARCH*ILLUM - - - - - - - - - - - 0,019 - - - - - - - - - - - -
MARCH*TEMP_F - - - - - - - 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 - - - 0,001 - - - -
MAX_HUMIDITY - - - - - - - - - - - - - - 0,035 0,007 - - - - - - - -
MAX_HUMIDITY(-1) - - - - - - 0010 - - - - - - - - - - - - - - - - |
MAX_ILLUM - - - 0,003 0,001 0,001 0,000 - - - - - 0,000 0,000 0,000 0,000 - - - - - - - -
MAX_TEMP_F - 0,003 0,009 - - - - - - - - - 0,000 0,000 0,000 0,000 - - - - 0,025 0,000 0,000 0,000
MAX_TEMP_F_S - 0,004 0,011 - - - - - - - - - 0,000 0,000 0,000 0,000 - - - - 0,026 0,000 0,000 0,000
MAY - - - - - - - 0,002 0,000 0,000 0,000 0,000 - - - - - - - 0,000 - - - -
MAY*HUMIDITY - - - 0,000 0,000 0,000 0,000 - - - - - - - - - - - - 0,009 - 0,000 0,000 0,000
MAY*TEMP_F - - - - - - - 0,003 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 - - 0,000 0,000 - - - -
MEAN_HUMIDITY(-1) -c - - - - - - - - - - - - - 0,001 0,001 - - - - - 0,003 - 0,011
MEAN_ILLUM - g - - - - - - - - - - - - - - - 0,000 0,000 0,000 0,000 - - - -
MIN_HUMIDITY(-1) 19 - - - - - - - - - - - - - - - - - - - - - - 0,029
MONDAY 0,000 % 0,000 0,000 0,000 - - - - - - - - - - - - - - - - - - - -
NAT_HOLIDAY 0,000 (5 0,000 0,000 0,000 - 0,054 0,033 - 0,011 0,011 0,002 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,018
NET_LOAD(-1) 0,000 - 0,000 0,000 0,000 0,000 0,000 0,000 0,000 - - - 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
NET_LOAD(-2) 0,000 -~ 0,000 0,002 0,006 0,000 0,000 - - - 0,000 0,000 0,000 - - - - 0,007 0,000 - - 0,001 0,000 0,000 0,000
NET_LOAD(-4) 0,001 o 0,421 0,000 0,000 - - - - - - - - - - - - 0,006 0,000 0,000 0,005 0,000 0,000 0,000 0,000
NET_LOAD(-5) 0,004 a 0,001 0,016 - 0,005 - - - - - - - 0,000 0,000 0,000 0,000 0,000 0,000 - - 0,000 - - -
NET_LOAD(-3) -0 - - - 0,000 0,000 - - - - - - 0,010 0,002 - - 0,005 0,017 - - 0,045 - - -
NET_LOAD(-7) - - - - - - - - - - - - - - - - - - - - 0,000 - - -
NET_LOAD(-6) - - - - - 0013 - - - - - - - - - - - - - - - - - |
NOVEMBER - - - - - 0,006 0,004 - - - - - 0,000 0,000 0,000 0,000 0,002 0,001 0,001 0,000 0,005 0,000 0,000 0,001
NOVEMBER*TEMP_F 0,000 0,000 0,000 0,000 0,000 0,005 0,003 0,000 0,000 0,000 0,000 0,000 - - - - 0,001 0,001 0,000 0,000 0,004 0,000 0,000 0,001
OCTOBER - - - - - 0,000 0,000 - - - - - 0,000 0,000 0,000 0,000 - - - 0,000 - - - -
OCTOBER*HUMIDITY 0,000 0,000 0,000 - - - - - - - - - - - - - - - - - 0,006 0,000 0,000 0,000
OCTOBER*TEMP_F - - - 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 - 0,018 0,000 0,000 - - - -
SATURDAY 0,000 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
SUMMER_HOL 0,000 0,000 0,000 0,000 0,000 0,001 0,000 - - L - - - - - 0,000 0,000 0,000 0,035 - 0,000 0,000 0,000
SUNDAY 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,0001 12000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
SUNDAY_AFTER_WORKSAT - - - - - - - - - - - - - - - - - - 0,002 0,016 - - - -
TEMP_F 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 - - - - 0,000 0,000 0,000 0,006 0,004 0,000 0,000 0,000
TEMP_F_S 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 - - - - 0,000 0,000 0,000 0,009 0,004 0,000 0,000 0,000
THURSDAY - 0,223 - - - - - - - - - - - - - 0,027 - - - - - 0,002 0,038 0,000
TUESDAY - - - - - - - - - 0,000 0,000 0,000 - - - - - - - - - - - -
WORKING_SAT - - - - 0,002 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,001 - 0,145 0,001 0,000




Heteroscedastic models | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
C 278049,00 285703,00 25837590 22562290 212742,00 31192840 40511570 189404,70 177 162,80 25116150 294 476,30 315678,60 548692,20 550306,70 58293510 613 496,50 691 688,50 663 523,10 588 114,70 240106,20 269 351,50 480252,90 480 950,00 417 759,90
|_7DAYS_MIDTEMP_F -43,99 -40,82 -32,13 -31,82 -12,72 -19,92 -52,90 -53,92 -42,14 -25,35 -20,31 -16,38 -19,97 -19,34 -32,12 -41,16 - - -79,72 -67,33 -45,46 -28,84 -32,10 -35,92]
AFTER_HOLIDAY -2199,07 -229264 -173958 -152727  -33034  -397,33  -53199  -93974  -623,75  -72558  -59190  -467,03 - - - - - - - - - - - |
APRIL - - - - - - 2036504 - - - - - - - 2127329 2425248 - - - - - - - -
APRIL*HUMIDITY - - - 4,81 - - -15,40 a - - - - - - - - h = -12,47 -22,68 - - - a
APRIL*TEMP_F - - - -2,54 -0,66 -121 -69,61 -171 -1,48 -147 -154 -1,83 -1.37 -142 -74,94 -85,39 - - - - - - - -
AUGUST - - - - - - - -1510,73 -12343.89 -13606,60 -17911,90 -21 084,00 -800,90 -816,37 -919,04 -903,68 - - - -32463,58 - - - -
AUGUST*TEMP_F - - - - - -1,58 -2,24 - 38,24 42,86 57,98 69,08 - - - - - - - 107,27 - - - -
BEFORE_HOLIDAY -134,98 -104,91 -152,66 - - - - - -392,91 -371,27 -409,38 -379,90 -401,64 -385,43 -436,74 -499,13 -409,39 -492,05 -456,65 -435,46 -527,57 -540,82 -620,72 -710,40
DECEMBER - - - - - - - 3407525 4289364 4037473 3542375 27836,74 - - - - - - - - - - - -
DECEMBER*ILLUM - - - - - - - - - -19,95 -15,63 -18,44 - - - - - - - - - - - -
DECEMBER*TEMP_F - - - - - - - -122,54 -154,96 -144,29 -126,38 -98,22 - - - - - - - -2,82 - - - -
FEBRUARY -1015491 -10230,16 -6307,03 -6537,72 -8509,09 -15347,13 -18550,56 - - - - - -16276,13 -18795,66 -21561,43 -24907,20 -42722,87 -37 903,94 -32076,56 -24 922,85 - -20684,10 -2423847 -17665,94
FEBRUARY*HUMIDITY - - - - - - = a - - - - - - 13,00 13,65 h = - - - - - a
FEBRUARY*HUMIDITY(-1) - - - - - - - - - - - - - - -7,93 -9,45 - - - - - - - -
FEBRUARY*TEMP_F 37,10 37,28 23,11 23,66 30,86 55,52 66,63 - - - - - 58,17 67,16 75,39 87,32 152,09 135,95 116,17 87,17 - 74,67 88,12 64,28
FRIDAY - - - - - - - - - - - - - - - -241,56 -329,32 -406,61 -478,91 -589,38 -576,01 -425,51 -352,21]
HOLIDAY -2913,99  -259522 -253167 -227648 -1327,73 -147900 -2968,73 -457548 -3223,13 -313392 -2889,79 -280571 -2376,08 -2413,33 -245211 -255891 -196521 -1853,85 -1557,04 -1577,57 -1446,13 -1627,20 -1637,89 -1862,10
ILLUM - - - - - - - -6,66 -6,28 -6,03 -6,70 -8,03 - - - - - - - - - - - -
JANUARY - -184,81 -159,87 - -4037,29 -1046559 -16 72346 - - -8596,16 -1441507 -15134,84 -2705856 -26558,83 -25408,32 -31753,15 -54618,80 -50 011,07 -33571,40 -17 564,49 - -20620,79 -25937,24 -17599,78|
JANUARY*HUMIDITY - - - -1,67 - 12,52 15,27 - - - - - - - - - - - - - - - - -
JANUARY*TEMP_F - - - - 14,14 32,77 54,28 - -0,48 30,57 51,30 53,65 96,18 94,47 90,28 113,14 195,17 180,55 120,99 60,03 - 73,40 93,42 63,27}
JULY -10842,41 -1809586 -17292,46 -21769,19 -16914,87 -19368,29 -33927,35 -48279,12 -54003,17 -51500,84 -53734,27 -54269,80 -25158,59 -28866,79 -30606,42 -29008,60 h = - -70696,93 -23326,39 -32050,62 -15716,59 -19134,17|
JULY*HUMIDITY - - - - - - 10,65 10,04 12,91 15,18 16,31 18,77 15,24 14,58 20,92 17,78 - - - 16,39 - 9,61 - 6,04
JULY*TEMP_F 38,05 62,93 60,13 75,57 58,30 65,09 110,95 160,07 179,54 170,46 178,06 179,71 81,29 93,63 98,38 93,58 - - - 233,82 79,15 106,63 54,61 64,92
JUNE - - - - - - - -44006,09 -50179,04 -4485512 -3999691 -37608,78 - - - - - - -43 179,04 - - - -
JUNE*HUMIDITY - - - -12,20 - -5,16 -22,64 - - - - - - - - - - - - - - -5,12 - -7,60)
JUNE*TEMP_F 0,79 0,71 0,63 3,59 - - 3,88 149,62 170,67 152,00 135,64 127,78 - - - - - - - 144,64 - 143 1,26 3,06
MA(1) 0,27 - 0,36 0,19 -0,73 -0,36 - - - - - - - - - - 0,25 0,35 0,40 0,19 0,52 0,30 0,29 0,17
MA(2) - 0,16 - -0,16 0,48 0,15 -0,29 -0,20 -0,20 -0,29 -0,23 -0,16 - - - - 0,33 0,28 0,38 - 0,57 - - -
MA@3) 0,16 0,10 0,24 - -0,43 -0,28 -0,24 -0,31 -0,32 -0,19 -0,19 -0,17 -0,26 -0,28 -0,25 -0,26 0,22 0,26 0,32 - 0,59 - - -
MA(4) - - - -0,34 - - = -0,24 -0,29 -0,31 -0,34 -0,22 -0,36 -0,36 -0,40 -0,39 b = - -0,36 0,31 -0,36 -0,33 -0,33
MA(5) -0,19 -0,23 -0,25 -0,52 -0,30 -0,34 -0,19 -0,22 -0,16 -0,18 -0,22 -0,24 -0,35 -0,33 -0,32 -0,32 - - - -0,38 - -0,44 -0,48 -0,36]
MA(6) - - - -0,14 - - -0,25 - - - - -0,21 - - - - 0,16 0,16 - -0,27 - -0,29 -0,35 -0,23
MA(7) - - - - - -0,15 - - - - - - - - - - - - 0,14 - 0,18 -0,10 -0,21]
MARCH - - - - - - - - - - - - 1716679 18821,30 1987807 19781,68 - - - - - - - -
MARCH*HUMIDITY - - - 3,22 -2,09 -293 -5,.26 - 7,63 8,37 7,35 11,11 - - - - - - - - - - - f
MARCH*ILLUM - - - - - - - - - - - 6,82 - - - - - - - - - - - |
MARCH*TEMP_F - - - - - - - -1,43 -3,29 -349 -2,94 -5,29 -60,85 -66,48 -70,16 -70,24 - - - -1,47 - - - -
MAX_HUMIDITY - - - - - - - - - - - - - - -6,14 -7,68 - - - - - - - -
MAX_HUMIDITY(-1) - - - - - - 8,52 - - - - - - - - - - - - - - - - -
MAX_ILLUM B B - -1,28 0,84 -1,43 3,10 B : - B B 592 -6,15 -6,37 -6,48 B B i - B B - f
MAX_TEMP_F - -524,50 -443,32 - - - - - - - - -3641,66 -3659,03 -386245 -4051,87 - - - - -79329 -137548 -1383,94 -1294,38
MAX_TEMP_F_S - 0,88 0,75 - - - - - - - - - 6,29 6,33 6,70 7,03 - - - - 137 2,37 2,40 2,23
MAY - - - - - - - -13972,63 -1562564 -13090,63 -14709,01 -15747,71 - - - - h = - -27737,39 - - - a
MAY*HUMIDITY - - - -2,93 -2,41 -6,95 -9,97 - - - - - - - - - - - - 12,12 - -1,64 -1,44 -3,01]
MAY*TEMP_F - - - - - - - 46,49 52,26 43,55 48,97 52,49 -131 -122 -1,21 -1,49 - - -2,76 86,84 - - - -
MEAN_HUMIDITY(-1) - - - - - - - - - - - - - 7,75 7,59 - - - - - 4,33 - 9,56
MEAN_ILLUM - - - - - - - - - - - - - - - - -19,11 -16,21 -16,47 -10,83 - - - -
MIN_HUMIDITY(-1) - - - - - - - - - - - - - - - - - - - - - - - -5,99)
MONDAY -1869,69 -174831 -134531 -1292,71 - - - - - - - - - - - - - - - - - - - -
NAT_HOLIDAY 2092,58 173833 1627,08 1408,28 - -547,16 -878,91 - -1272,66 -989,01 -1120,76 -1202,10 -1417,66 -153221 -1446,99 -148499 -2082,18 -2083,82 -199800 -1806,65 -1672,83 -1119,34 -853,21 -624,49
NET_LOAD(-1) 0,13 - 0,14 0,14 0,86 0,57 0,16 0,10 0,10 - - - 0,12 0,11 0,09 0,08 0,13 0,15 0,13 0,12 0,15 0,12 0,14 0,13]
NET_LOAD(-2) 0,08 0,13 0‘8 0,06 -0,55 -0,26 = a - 0,12 0,12 0,11 - - - - 0,06 0,09 - - 0,08 0,07 0,10 0,08
NET_LOAD(-4) 0,07 0,02 04 0,10 - - - - - - - - - - - - 0,05 0,09 0,07 0,06 0,12 0,07 0,09 0,06
NET_LOAD(-5) 0,06 0,09 Qg - -0,05 - - - - - - - 0,06 0,07 0,07 0,08 0,08 0,09 - - 0,13 - - -
NET_LOAD(-3) - - % - 0,28 0,10 - - - - - 0,04 0,05 - 0,06 0,06 - 0,05 - - -
NET_LOAD(-7) - - (&) - - - - - - - - - - - - - - - - - 0,06 - - |
NET_LOAD(-6) - - ) - - -0,04 - - - - - - - - - - - - - - - - - |
NOVEMBER - - [ - - -7969,43 -14164,38 - - - - - 568,09 553,85 497,69 552,69 -18015,23 -24 854,65 -25910,78 -2345372 -1447451 -18991,14 -1819563 -13798,93|
NOVEMBER*TEMP_F 115 1,19 Lf@ 0,76 0,68 29,55 52,22 167 1,59 151 141 1,66 - - - - 66,82 92,48 96,51 83,66 53,85 69,23 66,56 50,77,
OCTOBER - - 2 - - -6570,23 -23091,65 - - - - - 1577449 1442236 1225187 1303568 - - - -24446,77 - - - -
OCTOBER*HUMIDITY 3,31 3,98 3% - - - = a - - - - - - - - h = - - 4,31 1,65 1,30 2,00]
OCTOBER*TEMP_F - - - 0,62 0,39 23,70 82,78 111 0,83 0,99 0,89 0,97 -53,63 -48,92 -41,42 -44,47 - 1,46 2,53 86,81 - - - -
SATURDAY -246,28 -196,59 -301,15 -400,57 -682,06 -126393 -2569,68 -2976,17 -245333 -2029,08 -1830,10 -177926 -194567 -224818 -240235 -2610,65 -2698,21 -2747,84 -2319,07 -211251 -219578 -203846 -1943,80 -199147
SUMMER_HOL -511,73 -583,58 -449,30 -596,26 -427,50 -348,48 -828,08 - - - - - - - - -525,38 -505,34 -795,82 -624,29 - -686,38 -580,02 -620,06
SUNDAY -1763,24 -158569 -143651 -1486,74 -122562 -173487 -366839 -432649 -371066 -324647 -2804,17 -267812 -276248 -312458 -315743 -332941 -323544 -3 083,60 -257440 -2280,34 -212540 -2098,49 -1924,80 -2023,99
SUNDAY_AFTER_WORKSA1 - - - - - - - - - - - - - - - - - - 528,78 469,04 - - - -
TEMP_F -1799,14 -131337 -123593 -145491 -142111 -207374 -262594 -1087,18 -100845 -154840 -1847,66 -199545 - - - - -4686,39 -4510,19 -3816,24  -1368,62 -940,83 -181425 -1807,07 -1448,01
TEMP_F_S 3,18 2,34 2,20 2,57 2,50 3,63 4,59 1,89 1,73 2,65 3,16 3,40 - - - - 8,09 7,79 6,63 2,30 167 3,19 3,15 2,53]
THURSDAY - -63,76 - - - - - - - - - - - - - 109,37 - - - - - -123,90 -96,43 -136,86
TUESDAY - - - - - - - - - 364,12 329,37 286,22 - - - - - - - - - - - -
WORKING_SAT - - - - 328,61 409,87 1030,01 1247,93 1033,92 852,99 856,90 945,20 925,87 986,38 974,65 1104,28 1301,80 1109,93 885,18 669,10 - 334,36 673,01 964,84]
R-squared 0,96 0,95 0,96 0,96 0,95 0,97 0,98 0,97 0,97 0,97 016’]_‘5 0,96 0,96 0,96 0,96 0,97 0,966 0,97 0,98 0,98 0,96 0,96 0,96 0,97]
AIC 138 13,88 135 133 13,88 13,88 14,52 14,9 14,63 14,50 14,50 14,49 14,55 14,58 14,57 14,57 14,67 147 14,56 14,34 143 13,90 13,90 13,60
DW 19 174 1,89 19 19 1,89 2,04 2,19 2,15 2,05 1,99 1,96 1,94 1,93 1,95 1,93 2 1,96 1,98 2 2,01 1,95 2,00 1,98]
LM-test (p-value of F-stat) 0,1 0,015 0,14 0,17 0,05 0,02 07 0,07 0,17 0,67 0,93 0,33 0,66 0,57 0,68 0,55 0,68 0,36 0,83 0,98 0,43 0,25 0,75 0,57
square root of ~ square root of
RESET (p-value of F-stat) square root of square root of square root of 0.2330 0.0000 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,44 negative number_negative number 0,35 0,00 0,00 0,00 0,00
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2. A4— The daily and monthly MAPE of the one-day-ahead forecast of the first specification of my own

model

Average MAPE [%]
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3. A4— The result of the PE-test

Average MAPE [%]

o
R I
i 2 3 4 5 & T & § W 1 12

Months

Linear difference in logarithmic

Log difference in linear

Hours equation p-values equation p-values
1 0,00 0,00 14 106,60 0,03
2 0,00 0,00 1544111 0,01
3 0,00 0,00 6 283,15 0,29
4 0,00 0,00 11 017,44 0,07
5 0,00 0,62 -5 082,38 0,21
6 0,00 0,80 -7 541,57 0,06
7 0,00 0,02 -25 259,73 0,00
8 0,00 0,05 -29 692,05 0,00
9 0,00 0,43 -31 753,47 0,00

10 0,00 0,92 -26 585,17 0,04
11 0,00 0,45 -16 900,98 0,22
12 0,00 0,15 -8 654,14 0,48
13 0,00 0,24 -19 055,75 0,05
14 0,00 0,52 -23 966,96 0,01
15 0,00 0,80 -18172,16 0,03
16 0,00 0,67 -17 089,43 0,02
17 0,00 0,07 -8 112,05 0,23
18 0,00 0,01 890,86 0,87
19 0,00 0,00 2529,75 0,63
20 0,00 0,02 -3 266,86 0,60
21 0,00 0,10 -21 484,57 0,00
22 0,00 0,27 -30 005,62 0,00
23 0,00 0,60 -22 269,42 0,00
24 0,00 0,04 -11 941,15 0,03
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4. A4— The evolution of the net load of the given hours in 2014 and 2015

jan. 2014 dpr. 2014 jil. 2014 okt, 2014 jan. 2015
Date

5. A4— The daily and monthly MAPE of the one-day-ahead forecast of the logarithmic specification of my

Average MAPE [%]
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6. A4— The logarithmic specification of my own model

116

Heteroscedastic models 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

C 17,372 17,651 16,478 16,555 19,362 20,329 24,985 16,003 15656 18575 24,658 25437 34,551 34,802 37,185 38,580 40,023 38551 35832 23,165 21,725 25623 24,073 25,989
_7DAYS_MIDTEMP_F -0,001 -0,001 -0,0001 -0,001 -0,001 -0,002 -0,004 -0,002 -0,002 -0,002 -0,001 -0,001 -0,001 -0,001 -0,002 -0,002 - - -0,004 -0,004 -0,005 -0,003 -0,004 -0,004
AFTER_HOLIDAY -0,043 -0,040 -0,033 -0,029 -0,025 -0,040 -0,032 -0,040 -0,035 -0,040 -0,035 -0,030 - - - - - - - - - - - -
APRIL - - - - - 0906 1,531 - - - - - - - 1164 1,335 - - - - - - - -
APRIL*HUMIDITY - - - - - - -0,001 - - - - - - - - - - - -0,001 0,000 - - - -
APRIL*TEMP_F - - 0000 0000 0,000 -0003 -0005 0,000 0,000 0000 0000 0000 0000 0000 -0,004 -0,005 - - - - - - - -
AUGUST - - - - - - - -0080 -1,011 -1,032 -0,988 -1,006 -0,043 -0,044 -0,050 -0,049 - - - - - - - -
AUGUST*TEMP_F - - - - - 0,000 0,000 - 0003 0,003 0003 0,003 - - - - - - - - - - - -
BEFORE_HOLIDAY - - - - - - - - - - -0019 -0,020 -0,023 -0,022 -0,024 -0,028 -0,022 -0,028 -0,024 -0,024 - - - -
DECEMBER - - - - - - - 1409 1,630 1,497 - 0,041 - - - - - - - - - - - -
DECEMBER*ILLUM - - - - - - - - - -0,001 -0,001 -0,001 - - - - - - - - - - - -
DECEMBER*TEMP_F - - - - - - - -0,005 -0,006 -0,005 0,000 - - - - - - - - - - - - -
FEBRUARY -0625 -0,619 -0521 -0476 -0,651 -0,536 -0,664 - - - - - -0,798 -0,907 -1,029 -1,191 -2,056 -1,926 -1,614 -0,489 - - - -
FEBRUARY*HUMIDITY - - - - - - - - - - - - - - 0001 0,001 - - - - - - - -
FEBRUARY*HUMIDITY(-1) - - - - - - - - - - - - - - 0,000 0,000 - - - - - - - -
FEBRUARY*TEMP_F 0,002 0,002 0002 0002 0,002 0002 0,002 - - - - - 0003 0003 0004 0004 0007 0007 0006 0,002 - 0,000 - 0,000
FRIDAY - - - - - - - - - - - - - - - - -0,013 -0,017 -0,020 -0,020 - - - -
HOLIDAY -0,082 -0,082 -0,083 -008 -0,101 -0,154 -0,194 -0,273 -0,184 -0,173 -0,159 -0,156 -0,127 -0,128 -0,130 -0,136 -0,104 -0,098 -0,085 -0,076 -0,146 -0,133 -0,125  -0,136
ILLUM - - - - - - - - 0000 0,000 0,000 0,000 - - - - - - - - - - - -
JANUARY -0,007 -0,009 -0,010 -0,009 -0,335 - - - - -0011 -0,756 -0,762 -1,345 -1,349 -1291 -1599 -2,683 -2,523 -1552 -0,014 - - - -
JANUARY*HUMIDITY - - - - - - - - - - - - - - - - - - - - - - - -
JANUARY*TEMP_F - - - - 0001 0,000 0,000 - - - 0003 0,003 0005 0005 0005 0006 0010 0,009 0,006 - - - - -
JuLy - - -0672 -0,749 -1,194 -1234 -1,829 -1542 -1,710 -1547 -1,268 -2,038 -1,082 -1,289 -1516 -1,439 - - - - - - -0,723 -
JULY*HUMIDITY - - - - - - - - - - - 0001 0,001 0001 0001 0,001 - - - - - - - -
JULY*TEMP_F - - 0002 0003 0,004 0004 0006 0005 0006 0005 0004 0007 0003 0004 0,005 0,005 - - - - - - 0,003 -
JUNE - - - - - - - -1,780 -2,377 -2,245 -1901 -1,917 - - - - - - - - - - - -
JUNE*HUMIDITY - - - - - 0,000 -0,001 - - - - - - - - - - - - - - - - -
JUNE*TEMP_F - - - - - - 0000 0006 0,008 0008 0006 0,007 - - - - - - - - - - - -
MA(1) -0,815 -0,805 -0,794 -0,754 -0,724 - - - - - - - - - - - 0279 0351 0393 0451 0610 0530 0,566 0,598,
MA(2) 0,788 0,780 0,744 0,703 0,467 - -0,214 - - - - - - - - - 0283 0218 0345 0497 0590 0351 0,368 0,464
MA(_3) -0,442  -0,473 -0,463 -0456 -0,413 - -0174 - - - - - -0,227 -0,232 -0,264 -0276 0,205 0232 0324 0453 0615 0327 0,345 0,481
MA(4) - - - - - - - - - - - - -0272 -0,280 -0,381 -0,373 - - - 0222 0415 - - 0,212,
MA(G5) - - - - -0,312 - -0,265 - - - - - -0332 -0331 -0,326 -0,325 - - - - 0247 -0,054 -0,101 -
MA(6) - - - - - - -0333 - - - - - -0,138 -0,127 - - 0178 0,218 - - 0172 - - -
MA(7) - - - - - - - - - - - - - - - - - - - - - - - -
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MARCH - - - - - - - - - - - - 0900 1001 1079 1,083 - - - - - - - -
MARCH*HUMIDITY 0000 0000 0000 0000 0000 0000 0,000 - 0000 0000 0000 0,001 - - - - - - - - - - - -
MARCH*ILLUM - - - - - - - - - - - 0,000 - - - - - - - - - - - -
MARCH*TEMP_F - - - - - - - 0000 0000 0000 0000 0000 -0003 -0004 -0,004 -0,004 - - - - - - - -
MAX_HUMIDITY - - - - - - - - - - - - - - 0000 0,000 - - - - - - - -
MAX_HUMIDITY(-1) - - - - - - 0,001 - - - - - - - - - - - - - - - - -
MAX_ILLUM - - - - 0000 0000 0,000 - - - - - 0000 0000 0000 0,000 - - - - - - - -
MAX_TEMP_F - - - - - - - - - - - - -0183 -0185 -0,197 -0,205 - - - - - - - -
MAX_TEMP_F_S - - - - - - - - - - - - 0000 0000 0000 0,000 - - - - - - - -
MAY - - - - - - - -0035 -0482 -0510 -0458 -0,451 - - - - - - - - - - - -
MAY*HUMIDITY 0000 0000 0000 0000 0000 0000 -0,001 - - - - - - - - - - - - - - - 0000 0,000
MAY*TEMP_F - - - - - - - - 0002 0002 000l 000l 0000 0000 0000 0,000 - - 0000 0,000 - - - -
MEAN_HUMIDITY(-1) - - - - - - - - - - - - - - 0000 0,000 - - - - - - - -
MEAN_ILLUM - - - - - - - - - - - - - - - - -0001 -0,001 -0,001 -0,001 - - - -
MIN_HUMIDITY(-1) - - - - - - - - - - - - - - - - - - - - - - - -
MONDAY - - - - - - - - - - - - - - - - - - - - - - - -
NAT_HOLIDAY - - - - - - -0,067 - -0073 -0061 -0068 -0069 -0088 -0098 -0094 -0097 -0129 -0129 -0121 -0,117 - - - -
NET_LOAD(-1) - - - - - - - - - - - - - - - - - - - - - - - -
NET_LOAD(-2) - - - - - - - - - - - - - - - - - - - - - - - -
NET_LOAD(-4) - - - - - - - - - - - - - - - - - - - - - - - -
NET_LOAD(-5) - - - - - - - - - - - - - - - - - - - - - - - -
NET_LOAD(-3) - - - - - - - - - - - - - - - - - - - - - - - -
NET_LOAD(-7) - - - - - - - - - - - - - - - - - - - - - - - -
NET_LOAD(-6) - - - - - - - - - - - - - - - - - - - - - - - -
NOVEMBER - - - - - - - - - - - - 0029 0029 0027 0029 -0640 -0943 -0975 - - - - -
NOVEMBER*TEMP_F 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0,000 - - - - 0002 0004 0004 0000 0000 0000 0000 0,000
OCTOBER - - - - - - -0,982 - - - - - 0903 0835 0724 0772 - - - - - - - -
OCTOBER*HUMIDITY - - - - - - - - - - - - - - - - - - - - - - - -
OCTOBER*TEMP_F - 0000 0000 0000 0000 0000 0004 0000 0000 0000 0000 0000 -0,003 -0,003 -0,002 -0,003 - 0000 0000 0,000 - - - -
SATURDAY 0,020 -0,022 -0023 -0028 -0,048 -0079 -0158 -0167 -0,33 -0,06 -0,095 -0,090 -0,098 -0114 -0124 -0135 -0139 -0141 -0,120 -0112 -0,094 -0,090 -0,092  -0,102
SUMMER_HOL 0,030 -0,030 -0030 -0031 -0032 -0025 -0,026 - - - - - - - - - -0030 -0,030 -0,046 -0,040 - -0034 -0040 -0,048
SUNDAY -0,097 -0,087 -0,080 -0079 -0089 -0138 -0,236 -0261 ~-0,208 -0175 -0148 -0139 -0143 -0164 -0167 -0176 -0172 -0163 -0137 -0124 -0109 -0106 -0102 -0,115
SUNDAY_AFTER_ WORKSAT - - - - - - - - - - - - - - - - - - 0036 0,027 - - - -
TEMP_F 0,091 -0,093 -0,084 -0085 -0,03 -0,097 -0,110 -0052 -0,041 -0,064 -0,07 -0,113 - - - - -0233 -0,228 -0,185 -0,114 -0,084 -0,116 -0,099  -0,104
TEMP_F_S 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0,000 - - - - 0000 0000 0000 0000 0000 0000 0000 0,000
THURSDAY - - - - - - - - - - - - - - - 0,005 - - - - - - - -
TUESDAY - - - - - - - - - 0018 0016 0015 - - - - - - - - - - - -
WORKING_SAT 0035 002 0020 0019 0025 0035 0072 0076 0061 0049 0049 0050 0049 0053 0052 0059 0067 0057 0049 0,029 - 0026 0038 0054
R-squared 0,88 09 091 092 094 09 098 097 0966 090 095 0950 096 096 096 0966 096 096 097 097 094 094 094 0948
AlC -45 467 -485  -49 518 -5 -483  -462 -491 -5030 -5060 -5090 -515  -51 -508 -5080 -493  -48 -497 -506 -498 -536 -528 -53
DW 21 8,05 2 1% 19 2,1 2 203 19 1800 1,700 1,760 195 195 194 1920 199 195 197 199 195 198 192 1,97
LM-test (p-value of F-stat) 001 Q02 073 076 005 03 079 07 04 0100 0010 0,040 07 066 063 0500 098 018 0,66 09 003 064 005 041
RESET (p-value of F-stat) 000 W00 000 000 000 004 000 000 000 004 049 034 000 000 000 000 006 013 014 004 000 002 _ 000 0,00
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P-values of the heteroscedastic

models 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
c 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0,000
_7DAYS_MIDTEMP_F 0020 0010 0003 0012 0008 0000 0000 0000 0000 0000 0014 0042 0006 0011 0000 0,000 - - 0000 0000 0000 0000 0000 0,000
AFTER_HOLIDAY 0003 0002 0009 0013 0038 0000 0002 0000 0005 0000 0000 0,000 - - - - - - - - - - - -
APRIL - - - - - 0016 0,002 - - - - - - - 0020 0014 - - - - - - - -
APRIL*HUMIDITY - - - - - - oo0m - - - - - - - - - - - 0000 0,031 - - - -
APRIL*TEMP_F - - 0020 0002 0000 0014 0003 0000 0000 0000 0001 0000 0000 0000 0018 0012 - - - - - - - -
AUGUST - - - - - - - 0000 0003 0002 0004 0003 0000 0000 0000 0,000 - - - - - - - -
AUGUST*TEMP_F - - - - - 0000 0,000 - 0006 0003 0006 0,005 - - - - - - - - - - - -
BEFORE_HOLIDAY - - - - - - - - - - 0050 0028 0003 0005 0004 0001 0010 0006 0001 0,000 - - - -
DECEMBER - - - - - - - 0003 0004 0023 - 0001 - - - - - - - - - - - -
DECEMBER*ILLUM - - - - - - - - - 0012 0016 0,000 - - - - - - - - - - - -
DECEMBER*TEMP_F - - - - - - - 0003 0004 0027 0033 - - - - - - - - - - - - -
FEBRUARY 0000 0001 0001 0002 0000 0005 0,004 - - - - - 0000 0000 0000 0000 0000 0000 0000 0,040 - - - -
FEBRUARY*HUMIDITY - - - - - - - - - - - - - - 0004 0001 - - - - - - - -
FEBRUARY*HUMIDITY(-1) - - - - - - - - - - - - - - 0035 0,005 - - - - - - - -
FEBRUARY*TEMP_F 0000 0001 0001 0002 0000 0005 0,004 - - - - - 0000 0000 0000 0000 0000 0000 0000 0,039 - 0,080 - 0,000
FRIDAY - - - - - - - - - - - - - - - - 0001 0000 0000 0,000 - - - -
HOLIDAY 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0,000
ILLUM - - - - - - - - 0000 0000 0000 0,000 - - - - - - - - - - - -
JANUARY 0011 0002 0000 0000 0011 - - - - 0010 0003 0001 0000 0000 0000 0000 0000 0000 0000 0,060 - - - -
JANUARY*HUMIDITY - - - - - - - - - - - - - - - - - - - - - - - -
JANUARY*TEMP_F - - - - 0014 0000 0,000 - - - 0004 0001 0000 0000 0000 0000 0000 0000 0,000 - - - - -
JuLy - - 0003 0001 0000 0001 0000 0000 0000 0000 0000 0000 0007 0001 0000 0,001 - - - - - - 0,009 -
JULY*HUMIDITY - - - - - - - - - - - 0023 0001 0001 0000 0,000 - - - - - - - -
JULY*TEMP_F - - 0003 0001 0000 0001 0000 0000 0000 0000 0000 0000 0009 0001 0000 0,001 - - - - - - 0,007 -
JUNE - - - - - - - 0027 0000 0000 0000 0,000 - - - - - - - - - - - -
JUNE*HUMIDITY - - - - - 0000 0,001 - - - - - - - - - - - - - - - - -
JUNE*TEMP_F - - - - - - 0009 003 0000 0000 0000 0,000 - - - - - - - - - - - -
MA(1) 0000 0000 0000 0000 0,000 - - - - - - - - - - - 000l 0000 0000 0000 0000 0000 0000 0,000
MA(2) 0000 0000 0000 0000 0,000 - 0,003 - - - - - - - - - 0000 0007 0000 0000 0000 0000 0000 0,000
MA(3) 0000 0000 0000 0000 0,000 - 0,003 - - - - - 0000 0000 0000 0000 0002 0000 0000 0000 0000 0000 0000 0,000
MA(4) - - - - - - - - - - - - 0000 0000 0000 0,000 - - - 000l 0,00 - - 0,001
MA(5) - - - - 0,000 - 0,001 - - - - - 0000 0000 0000 0,000 - - - - 0002 0370 0,097 -
MA(6) - - - - - - 0,000 - - - - - 0006 0011 - - 0001 0,001 - - 0,010 - - -
MA(7) - - - - - - - - - - - - - - - - - - - - - - - -
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MARCH
MARCH*HUMIDITY
MARCH*ILLUM
MARCH*TEMP_F
MAX_HUMIDITY
MAX_HUMIDITY(-1)
MAX_ILLUM
MAX_TEMP_F
MAX_TEMP_F S
MAY
MAY*HUMIDITY
MAY*TEMP_F
MEAN_HUMIDITY(-1)
MEAN_ILLUM
MIN_HUMIDITY(-1)
MONDAY
NAT_HOLIDAY
NET_LOAD(-1)
NET_LOAD(-2)
NET_LOAD(-4)
NET_LOAD(-5)
NET_LOAD(-3)
NET_LOAD(-7)
NET_LOAD(-6)
NOVEMBER
NOVEMBER*TEMP_F
OCTOBER
OCTOBER*HUMIDITY
OCTOBER*TEMP_F
SATURDAY
SUMMER_HOL
SUNDAY
SUNDAY_AFTER_WORKSAT
TEMP_F

TEMP_F_S
THURSDAY
TUESDAY
WORKING_SAT

0,004

0,001

0,000

0,000

0,000
0,000

0,034

0,000

0,001

0,000

0,000
0,000

0,002

0,000

0,000
0,000

0,000

0,000

0,000

0,000

0,000
0,000

0,000
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2015.01.05-2015.12.20 Naive benc_hmark v_vith "SARMA™ Exponer?tial E_xact-day mat(_:hing vviFh Exact-day matching with EGRV pr model Own r_nodel
seasonal differencing smoothing daily seasonal differencing dummy linear log-linear
Type of forecast one-step ahead one-step ahead one-step ahead one-step ahead one-step ahead one-day ahead one-day one-day
ahead ahead
Monday 45% 466% 1,14% 41% 1,24% 3,18%, 2,65% 2,42%
Tuesday 98% 157% 0,91% 123% 0,64% 3,78% 2,53% 2,00%
Wednesday 137% 203% 0,63% 201% 0,76% 2,37% 2,70% 2,04%
Thursday 248% 91% 0,63% 411% 0,59% 2,68% 2,98% 2,16%
Friday 156% 110% 0,75% 221% 0,70% 2,81%, 2,99% 2,36%
Saturday 22% 132% 0,99% 23% 0,98% 3,16% 2,73% 2,24%
Sunday 40% 79% 1,08% 51% 1,12% 3,54% 3,59% 3,70%
January 91% 127% 1,07% 111% 0,76% 2,85% 3,15% 1,58%)
February 99% 143% 0,76% 140% 0,75% 2,04% 1,99% 1,24%)
March 111% 93% 0,79% 151% 0,85% 2,75% 3,93% 2,28%
April 128% 261% 1,21% 161% 0,99% 3,83%, 2,72% 2,33%)
May 66% 133% 1,03% 62% 0,95% 4,11% 2,82% 2,16%
June 73% 136% 0,68% 91% 0,82% 2,04% 1,96% 2,90%
July 58% 76% 0,62% 85% 0,82% 3,08%, 3,28% 2,89%
August 57% 66% 0,79% 79% 0,86% 5,21%, 5,47% 4,33%
Spetember 73% 616% 1,12% 86% 0,84% 2,30% 2,72% 2,19%
October 306% 213% 0,99% 484% 1,08% 3,56% 2,22% 2,02%
November 109% 131% 0,74% 226% 0,84% 2,13%, 1,84% 2,66%
December 101% 7% 0,61% 144% 0,70% 2,92% 2,62% 2,09%
MEAN of MAPE 107% 173% 0,87% 151,67% 0,85% 3,07% 2,89% 2,39%
Chow forecast test - winter time 0,67 0,64 NA 1,00 0,00 NA] NA NA|
Chow forecast test - summer time 0,00 0,00 NA 0,00 0,00 NA| NA NA
Heteroscedasticity yes yes ? yes yes no yes yes
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