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ABSTRACT

The guarded fragment (GF), introduced by H. Andréka, J. van Benthem and I. Németi in

[AvBN98], is a large decidable fragment of first order logic that has a wide range of applica-

tions in computer science, linguistics, among others, because of its good properties. Its logical

properties were investigated by many logicians. By being decidable, GF gives up some expres-

sive power relative to first order logic. A measure of expressive power of a logic is Gödel’s

Incompleteness Property (GIP). A logic is said to have GIP (wGIP, respectively) if there is a

satisfiable formula in this logic which cannot be extended to a recursively (finitely, respectively)

axiomatized complete theory of the logic in question.

GIP fails for the guarded fragment, but we prove that wGIP holds for GF on infinite lan-

guages while for finite languages wGIP does not hold, either. On the other hand, we prove that

the so-called solo-guarded fragment of GF has wGIP on finite languages, too.

To prove the above, we use algebraic methods. Namely, we use the theorem from [Ném86]

that a logic has wGIP if and only if its Lindenbaum-Tarski formula algebras are not atomic.

The latter in the case of GF are closely related to the free cylindric relativized set algebras.

We solve a long-standing open problem first asked in 1985 and then published in [Ném86],

[AMN91] and [AFN13] by proving that most of the free cylindric relativized set algebras are

non-atomic. We also give structural descriptions of these free algebras from the point of view

of atoms.
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INTRODUCTION

One of the main interests of mathematical logic is to study several versions of predicate logic.

This helps in understanding the reasons for the particular properties of the predicate logic, but

also helps in finding versions of predicate logic with desirable properties. Here is an example

of an excellently behaving version of predicate logic. Basic modal logic is concerned with the

intensional operators possibly ♦ and necessarily �. It can be seen as a fragment of first order

logic via the well-known translation t that sends the modalities ♦ϕ and �ϕ to ∃v(Ruv ∧ t(ϕ))

and ∀v(Ruv → t(ϕ)), respectively. The image of basic modal logic under this translation is

referred to as the modal fragment. It was shown that modal fragment shares nice properties

with the standard first order logic, e.g., Craig interpolation and Beth definability. In addition,

modal fragment has some nice properties that fail for the predicate logic, e.g., decidability.

In [AvBN98], it is argued that the distinguishing characteristic of the modal fragment is its

restriction on quantifier patterns. This brings H. Andréka, J. van Benthem and I. Németi to

investigate the question of what extent we can loosen these quantifier restrictions while retain-

ing the attractive modal behavior. The outcome of this investigation is the guarded fragment

which allows quantifications of the form ∃ū(R(ū, v̄) ∧ ϕ(ū, v̄)) and ∀ū(R(ū, v̄) → ϕ(ū, v̄)),

where ū and v̄ are finite sequences of variables and ϕ is a guarded formula with free variables

among ū, v̄ which all must appear in the atomic formula R(ū, v̄). Other more liberal versions

of guarded fragment are the loosely guarded fragment and the packed fragment. In these ver-

sions the quantifications can be guarded with conjunctions of some special formulas. Clearly,

guarded fragments extend the modal fragment.

Another way of having nice versions of first order logic is to keep the set of formulas

as it is but consider generalized models when giving meaning for these formulas. Such a

move was first taken by Henkin in [Hen50]. The general assignment models for first order

logic, where the set of assignments of the variables into a model is allowed to be an arbitrary
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subset of the usual one, was introduced by I. Németi [Ném86]. With selecting a subset of the

assignments, dependence between the variables can be introduced into the semantics. For a

survey on generalized semantics see [AvBBN14]. There is an important connection between

first order logic with general assignment models and the guarded fragment mentioned above.

This connection was pointed out by the creators of guarded fragment in [AvBN98].

The above versions of predicate logic attracted many logicians and were shown to have

several desirable properties, e.g., decidability through finite model property. These logics are

considered to be the most important decidable versions of first order logic among the large

number that have been introduced over the years. They are widely applied in various areas of

computer science and linguistics (e.g., description logics, database theory, combining logics),

see [AMdNdR99], [BMP13], [GHKL14], [PH04]. But having a decidable version of first order

logic has a price: we give up expressive power either by banning the use of some formulas (in

the case of guarded fragment), or by changing the meaning of the formulas (in the case of the

general assignment models). An interesting question arises here: How much expressive power

did we give up? One way of measuring the expressive power of a logic is to investigate whether

it has Gödel’s incompleteness property or not.

Gödel’s (first) incompleteness theorem is among the most important results in modern logic.

This discovery revolutionized the understanding of mathematics and logic, and had strong im-

pacts in mathematics, physics, psychology, theology and some applications in other fields of

philosophy. It also plays a part in modern linguistic theories, which emphasize the power of

language to come up with new ways to express ideas. The first incompleteness theorem states

that no formal system within first order logic (i.e., effectively axiomatized first order theory)

capable of expressing elementary arithmetic can be both consistent and complete. A formal

system is basically a set of axioms together with a set of rules of reasoning that can be ex-

pressed in some formal language. The existence of an incomplete formal system in itself is

not particularly surprising. A system may be incomplete simply because not all the necessary

axioms have been discovered. Gödel’s theorem shows that a complete and consistent finite list

of axioms for arithmetic can never be created, nor even an infinite list that can be enumerated

by an effective method (an algorithm or a computer program).
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To investigate the analogous property for any logic, first we abstract from expressing arith-

metic. Indeed, not every logic can speak about numbers and their arithmetic and Gödel’s in-

completeness theorem in fact speaks about a phenomenon of formal systems that is important

without being able to speak about arithmetic. A logic is said to have Gödel’s incompleteness

property (GIP) if there is a formula that cannot be extended to an effectively axiomatized the-

ory that is both consistent and complete. A logic is said to have weak Gödel’s incompleteness

property (wGIP) if there is a formula that cannot be extended to a finitely axiomatized the-

ory that is both consistent and complete. These properties were introduced, and named, by I.

Németi in [Ném86] and investigated in [Gye11]. GIP says about a logic that it is capable to

state a statement which is strong in the sense that no model in which it is true can be recur-

sively axiomatized. wGIP says the same, but “recursive” replaced with “finite”. Under mild

assumptions, no decidable logic has GIP.

No logic we deal with in this thesis has GIP (except for a few cases when we do not know

whether GIP holds or not). This still leaves wGIP possible. Let us now restrict attention to

finite languages. We show that guarded fragments do not have wGIP either, but both their solo-

quantifier fragments, where quantifiers can only occur in the form ∃u(R(u, v̄)∧ϕ(u, v̄)) with u

a single variable, and first order logic with generalized assignment models do have wGIP. With

this we also provide natural logics distinguishing the two properties GIP and wGIP on finite

languages. In proving or disproving wGIP, we rely on the fact that wGIP has a natural algebraic

equivalent, namely non-atomicity of the formula-algebras (Lindenbaum-Tarski algebras), and

we devise novel algebraic methods for proving or disproving atomicity of a free algebra.

The results presented here can be classified as part of algebra or algebraic logic. That

is the science which is concerned with the ways of algebraizing logics and with the ways of

investigating the algebras of logics. Algebraic logic effectively began with G. Boole, A. De

Morgan, C. S. Peirce and E. Schröder in the mid-nineteenth century. Today, the framework of

algebraic logic is universal algebra. Universal algebra is the field which investigates classes

of algebras in general, interconnections, fundamental properties and so on. In other words,

universal algebra is a unifying framework for investigating properties of the algebras of logics.

Algebraic logic in the modern sense can be said to have begun with A. Tarski in 1935. The
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state of algebraic logic owes more to Tarski and his followers than to the nineteenth century

founders.

The main idea of algebraic logic is that it states equivalences of important and intuitive al-

gebraic and logical properties, and then uses these equivalences to transfer results and methods

from one field to the other. For example, we often solve problems in logic by first translating

them to algebra, then using the powerful methodology of algebra for solving the translated

problems, and then we translate the solution back to logic. In [Hal85, on page 212], P. Halmos

raised the question of what the algebraic counterpart of Gödel’s incompleteness theorem was.

I. Németi argued that GIP is connected to the atomicity of the so-called Lindenbaum-Tarski

formula algebras. He showed that if the Lindenbaum-Tarski formula algebra of some logic is

atomic then GIP fails for this logic, cf., [Ném86, proposition 8]. The property wGIP was in-

troduced by Németi as the property that is equivalent to the non-atomicity of the Lindenbaum-

Tarski algebras. Lindenbaum-Tarski formula algebras of a logic are the free algebras of the

corresponding class of algebras. The algebraic counterpart of first order logic with generalized

assignment models (GAM) is the class of cylindric relativized set algebras. Our main concern

in this work is to investigate the atomicity of free algebras of this class with algebraic methods.

Then we apply what we found to GAM and to the related guarded fragment logics.

Cylindric algebras were introduced by A. Tarski in 1930-1940. These are Boolean algebras

of relations enriched with some natural operations such as the operations of creating cylinders

in the n-dimensional space. The notion of a relativized algebra has been introduced in the the-

ory of Boolean algebras and then it was extended to algebras of logics by L. Henkin. Relativiza-

tion of an algebra amounts to intersecting all its elements with a fixed set and to defining the

new operations as the restrictions of the old operations on this set. Relativized algebras gained

their own interest at the end of the twentieth century. Indeed, relativization in many cases turns

the negative results to positive ones. Several relativized versions of algebras do have most of

the nice properties which their standard counterparts lack. See [AT88],[AvBN95], [AvBN98],

[Fer12], [Mik95], [Mon93] and [Ném91].

The free algebras of a variety play an essential role in understanding this variety. These free

algebras are algebras that live at the frontier of syntax and semantics. On the one hand, they are
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semantic by virtue of being members of the variety. On the other hand, they are syntactic in that

their elements behave like terms or formulas. The free algebras of a variety represent the struc-

ture of the different concepts that can be expressed in its variety. The intrinsic structures of the

free relativized cylindric algebras are very involved. Some problems concerning these algebras

still remained open. For example, the problem addressing the atomicity of these algebras was

still open. This problem dates back to 1985 when I. Németi posed it in his Academic Doctoral

Dissertation [Ném86, Remark 18 (i), p. 97]. In 1991, Németi posed the same problem again

in [AMN91, Problem 38, p. 738]. Then, it was posed again as an open problem in 2013 in the

most recent book on algebraic logic [AFN13, Problem 1.3.3, p. 34]. We solve this problem in

the present dissertation by showing that almost none of these free algebras is atomic.

The above problem presented some difficulties. The relevant free algebras are infinite (ex-

cept only very few of them) and showing atomicity (or non-atomicity) of an infinite Boolean

algebra is not so easy. Either we had to find a nonzero element below which there is no dis-

tinct nonzero element, or else we had to show that below each nonzero element there is another

nonzero element. A proof showing atomicity of an infinite free algebra, due to A. Tarski, can be

found in [HMT85, 2.5.7]. In [AN16], H. Andréka and I. Németi generalized Tarski’s proof and

showed that the (finitely generated) free algebras of any discriminator variety (of finite similar-

ity type) which is generated by its finite members are atomic. The varieties of the relativized

algebras are generated by their finite members, this points to the free algebras being atomic.

On the other hand, none of these varieties is discriminator, this points to the free algebras being

non-atomic. The question basically was, which property was more decisive in these varieties.

Below, we summarize our answer to this problem.

Let n,m be finite numbers, n > 1. Let Crsn denote the class of n-dimensional cylindric-

relativized set algebras. These are natural algebras of subrelations of a relation V . The sub-

classesDn, Pn, Gn ofCrsn are defined by posing various natural restrictions on V , for concrete

definition see definition 1.0.1. An element is called zero-dimensional if it is a fixed-point to all

of the cylindrifications. They correspond in logic to formulas with no free variables. For a class

K of algebras, let FrmK denote the m-generated free algebra of K. Let K ∈ {Crs,D, P,G}.

We prove the following.
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(a) The free algebra Fr0G2 is finite, hence, atomic. Some of its atoms are zero-dimensional

while there are other atoms that are not zero-dimensional.

(b) The free algebras Frm+1G2, FrmGn+1, FrmDn, FrmP2 and FrmCrs2 are not atomic and

each of them contains only finitely many atoms. Every atom in these free algebras is zero-

dimensional. Each of these free algebras can be decomposed as a direct product of an

atomless algebra and a finite, hence atomic, algebra.

(c) The free algebras FrmCrsn+2 and FrmPn+2 are not atomic but each of them contains in-

finitely many atoms. In these free algebras only finitely many atoms are zero-dimensional

while infinitely many atoms are not zero-dimensional.

(d) The free algebras FrmCrs3 and FrmP3 are not atomic and each of them contains only

finitely many atoms. There are atoms in these free algebras that are zero-dimensional and

there are other atoms that are not zero-dimensional.

(e) There are only finitely many zero-dimensional elements in the free algebra FrmKn.

We note that FrmCrs3 contains finitely many atoms while FrmCrsn, for n ≥ 4, con-

tains infinitely many atoms. This is quite surprising because usually, in cylindric-like algebras,

dimension 3 shares the characteristic properties with the higher dimensions but with harder

proofs. Here, dimension 3 and the higher dimensions behave differently. The reason is com-

binatorial: in dimension 3 “there is not enough room” for the techniques that work in higher

dimensions.

It is worth mentioning that similar results concerning related classes of relativized relation

algebras were shown in [Kha15b]. The classes of relativized relation algebras correspond to

decidable fragments of the so-called arrow logic. It is a two-dimensional modal logic and it has

various applications, e.g., in linguistics (dynamic semantics of natural language, relational se-

mantics of Lambek Calculus), and in computer science (dynamic algebra, dynamic logic). For

more about arrow logic as modal logic see [vB91], [vB94], [vB96], [GKWZ03] and [MV97].

Similar results concerning the free algebras of syntactical variants of cylindric algebras were

shown in [Kha15a].
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In the present thesis, we assume familiarity with the basic notions and concepts of both

universal algebra and logic. The thesis consists of two chapters plus two appendices:

- Chapter 1: Here, we consider the class of relativized cylindric algebras and its above-

mentioned subclasses. We investigate the atomicity of the free algebras of these classes and

we show that almost none of them is atomic. We also give results about the number of the

atoms in each of these free algebras.

- Chapter 2: Here, we apply the results of chapter 1 and/or we modify the method used there

a little bit. We prove that guarded fragment of first order logic has neither GIP nor wGIP on

finite languages. We also show that the solo-fragment of guarded fragment and first order

logic with general assignment models have wGIP but not GIP.

- Appendix A: In the above chapters, we make a novel use of the disjunctive normal forms

introduced by Kit Fine in [Fin75]. In this appendix, we prove disjunctive normal forms for

any class of Boolean algebras with operators.

- Appendix B: Here, we investigate the atomicity of the free algebras of the classes of rela-

tivized cylindric algebras when the dimension is infinite or the number of free generators is

infinite.

Algebraic logic is a living and lively subject. We hope that this will be conveyed by the

large sequence of works that leads to the work in the present thesis.
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NOTATION

We define only those notions and notation which are not universally adopted in the literature.

Set-theoretic notions. Throughout, we use the von Neumann ordinals. The smallest infinite

ordinal (the set of natural numbers) is denoted by ω. The empty set is denoted by ∅. Let A,B

be any two sets.

• P(A) is the powerset (set of all subsets) of A.

• A ⊆ω B
def⇐⇒ A ⊆ B and A is finite.

• f ◦ g def
= {(a, b) : ∃c [(a, c) ∈ g & (c, b) ∈ f ]}; the composition of the functions f and g.

• AB
def
= {f : f : A→ B}; the set of all functions mapping A into B.

Let R ⊆ A×B be any relation, we define the domain and the range of R as follows.

• Dom(R)
def
= {a ∈ A : ∃b ∈ B (a, b) ∈ R}.

• Rng(R)
def
= {b ∈ B : ∃a ∈ A (a, b) ∈ R}.

Let α be any ordinal. A function f with domain α is called a sequence of length α. We do not

distinguish the sequences of length 2 from pairs. Let i, j ∈ α.

• [i/j] ∈ αα is the sequence that sends i to j and fixes any element in α \ {i}.

• [i, j] ∈ αα is the sequence that interchanges i and j and fixes any element in α \ {i, j}.

Algebraic notions. An algebraic similarity type, or for short a type, is a set of function sym-

bols each of which is associated with a finite rank. The function symbols of rank 2, 1 and 0

are called binary function symbols, unary function symbols and constant, respectively. Let t be

any type and let K be a class of algebras of type t.
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• IK, SK, PK and HK denote the classes of isomorphic copies, subalgebras, direct prod-

ucts and homomorphic images of the members of K, respectively.

• Tmα,t denotes the set of terms of type t built up using α-many variable symbols.

• Tmα,t denotes the natural t-type algebra with universe Tmα,t.

• [τ ]Aι denotes the interpretation of the term τ in the algebra A under the evaluation ι.

• FrαK denotes the free algebra of the class (most likely variety) K that is generated by

α-many free variables.

Boolean algebras. A boolean algebra is an algebraic structure of the form

A := 〈A,+, ·,−, 0, 1〉

such that + and · are binary operations, − is a unary operations, 0 (called the zero of A) and 1

(called the unit of A) are constants in A and the followings are true for every x, y, z ∈ A:

BA1 x+ y = y + x and x · y = y · x.

BA2 x+ (y · z) = (x+ y) · (x+ z) and x · (y + z) = x · y + x · z.

BA3 x+ 0 = x and x · 1 = x.

BA4 x+−x = 1 and x− · − x = 0.

An algebra A is said to be an algebra with Boolean reduct if and only if its type contains

the type of Boolean algebras {+, ·,−, 0, 1} and the Boolean part BfA = 〈A,+, ·,−, 0, 1〉 is

Boolean algebra. One can define a relation (pre-order) on A as follows. For every x, y ∈ A,

x ≤ y ⇐⇒ x · y = x. An atom in a ∈ A is a minimal non zero element, i.e., a 6= 0 and, for

every b ∈ A, b ≤ a =⇒ b = 0 or b = a. A is said to be atomic if for every non zero b ∈ A

there is an atom a ∈ A such that a ≤ b. The set of all atoms in A is denoted by At(A).
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CHAPTER

1
Free relativized cylindric set algebras

The notion of a relativized algebra has been introduced in the theory of Boolean algebras and

was extended to algebras of logics by L. Henkin. Intuitively, relativized cylindric (set) algebras

are Boolean algebras of sets of sequences where the non-Boolean operations are derived from

the structure of these sequences in a natural way. Let n ≥ 2 be any ordinal. Let V be an

arbitrary set of sequences of length n, that is V ⊆ nU for some set U . Then the set V is said

to be a concrete Crsn-atom structure. If, in addition, f ◦ [i/j] ∈ V for every f ∈ V and every

i, j ∈ n then we say that V is a concrete Dn-atom structure. The set V is said to be a concrete

Pn-atom structure if f ◦ [i, j] ∈ V for every f ∈ V and every i, j ∈ n. The set V is said to

be a concrete Gn-atom structure if it is both concrete Dn-atom structure and concrete Pn-atom

structure. For every i ∈ n and every two sequences f, g ∈ V , we write f ≡i g if and only if

g = f iu for some u ∈ U . Where, f iu is the sequence which is like f except that its value at i

equals to u. For every i, j ∈ n and every X ⊆ V , let

D
[V ]
ij := {f ∈ V : f(i) = f(j)} and C

[V ]
i X := {f ∈ V : (∃g ∈ X)f ≡i g}.

When no confusion is likely, we merely omit the superscript [V ] from the above defined objects.

Definition 1.0.1 (Henkin and Németi). Let n be any ordinal and let K ∈ {Crs,D, P,G}. Let

V be a concrete Kn-atom structure. The complex algebra over V is defined to be the structure

CmV = 〈P(V ),∪,∩, \, ∅, V, C [V ]
i , D

[V ]
ij 〉i,j∈n.

The smallest U with V ⊆ nU is called the base of V . Both V and U are also called the unit and

the base of the complex algebra CmV , respectively. Define Kn to be the class of all isomorphic

copies of the subalgebras of the complex algebras over the concrete Kn-atom structures.
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Thus, Kn = IS{CmV : V is a concrete Kn-atom structure}. Note that the equational the-

ory of Kn coincides with the equational theory of the class of the complex algebras over con-

crete Kn-atom structures. We make use of this fact so often. For instance, if Kn 6|= τ = 0 then

we suppose a concrete Kn-atom structure V and an evaluation ι of the free variables into P(V )

such that [τ ]CmVι 6= ∅.

Relativized algebras were not really studied in their own right, but as tools to obtain results

for the standard algebras. At the end of the twentieth century, H. Andréka, J. van Benthem, J. D.

Monk and I. Németi started promoting relativized algebras as structures which are interesting

independently of their classical versions, see e.g. [AT88],[AvBN95], [AvBN98], [Mon93],

[Ném91] and [Mik95]. Indeed, relativization in many cases turns the negative results to positive

ones. Several relativized versions of algebras do have most of the nice properties which their

standard counterparts lack. The standard (representable) cylindric algebras of dimension n can

be defined as follows: RCAn := ISP{CmnU : for some set U}. Here, we are interested only

in the algebras of finite dimensions. Fix a finite ordinal n ≥ 2 and fix K ∈ {Crs,D, P,G}.

Property
When n = 2 When n > 2

RCAn Kn RCAn Kn

variety if K ∈ {Crs,D,G} 3 3 3 3

finitely axiomatizability if K ∈ {D,G} 3 3 7 3

finite variables axiomatizability if K ∈ {Crs,D,G} 3 3 7 3

Decidability 3 3 7 3

finite base property 3 3 7 3

Discriminator variety 3 7 3 7

AP & SAP & SUPAP if K ∈ {Crs,G} 7 3 7 3

The class RCAn is a variety by [HMT85, 3.1.103] and it is well known that it is a discrimi-

nator variety, e.g., [BS81, Examples (2) on pages 186-187]. It was shown that the class RCAn

has any of the following properties if and only if n = 2: finite axiomatizability, finite vari-

able axiomatizability, decidability, finite algebra property and finite base property. Moreover,

RCAn does not have the amalgamation property AP (and the stronger versions SAP, SUPAP).

See [Mon69], [HMT71], [HMT85], [And91],[ANS94] and [AKN+96].

In [Ném81], I. Németi proved that the class Crsn is a variety, but not finitely axiomatizable

if n ≥ 3. We guess that his proof can be applied to show similar results for the class Pn, but

this has not been thoroughly checked yet. An elegant infinite-axiomatization for Crsn that uses
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only finitely many variables, due to D. Resek and R. J. Thompson, can be found in [Mon00].

In [AT88], it was shown that the class Dn is finitely axiomatizable. Then, in [And01], Andréka

used the finite axiomatization of Dn to give a finite axiomatization for the class Gn. The same

method, but using the axioms of Crsn, may give finite variable axiomatization for the class Pn,

but we did not check this yet.

Decidability of the equational theories of the classes Crsn, Dn, Pn and Gn was shown

by Németi in [Ném86] and [Ném95, Theorem 4.2 (3)]. All the above relativized classes

were shown to have the finite base property (and, consequently, the finite algebra property)

in [AHN99]. M. Marx in [Mar95, Appendix 5] showed that the classes Crsn and Dn have the

super amalgamation property, hence they have the strong amalgamation and the amalgamation

properties. For Gn and Pn, we don’t know even if they have the amalgamation property or

not. In [AN], it was shown that the class Kn is not discriminator by constructing subdirectly

irreducible algebras that are not simple. We note that the results in this chapter together with

[AN16, Theorem 2] imply that these classes are not discriminator.

From the universal algebra, the free algebras of the variety Kn play an essential role in

understanding this variety. The Kn-free algebras represent the structure of the different con-

cepts that can be expressed in Kn by using terms in the language of Kn. In this chapter, we

investigate the atomicity of the Kn-free algebras and we prove the following.

Theorem 1.0.2. Let n ∈≥ 2, m ∈ ω and K ∈ {Crs,D,G, P}. The free algebra FrmKn is

atomic if and only if n = 2, m = 0 and K = G. Moreover, FrmKn contains infinitely many

atoms if and only if n ≥ 4 and K ∈ {Crs, P}. In more detail, we have the followings.

• FrmCrsn is not atomic, it contains finitely many atoms for n ≤ 3 and it contains infinitely

many atoms for n ≥ 4. The same are true for FrmPn.

• FrmDn is not atomic and contains finitely many atoms.

• Fr0G2 is finite, hence atomic. FrmGn is not atomic but still contains finitely many atoms

if either n ≥ 3, or, n = 2 and m ≥ 1.

Proving the above theorem answers an open problem. The atomicity problem of the finitely

generated free relativized cylindric algebras goes back to 1985 when it was posed by I. Németi
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in his DSc dissertation [Ném86, Remark 18 (i), p. 97]. This problem presents some difficulties,

that is why it was posed again in [AMN91, Problem 38, p. 738] and in the most recent book

in algebraic logic [AFN13, Problem 1.3.3, p. 34]. These free algebras are infinite (except only

FrmK0, Fr0K1 and Fr0G2) and we cannot use the method in [HMT85, 2.5.7] or use [AN16,

Theorem 2] because none of the above varieties is discriminator.

§1.1 Disjunctive normal forms for the cylindric type

We shall use the disjunctive normal forms. Disjunctive normal forms can provide elegant and

constructive proofs of many standard results, cf. [And54] and [Fin75]. Fix finite ordinals

n ≥ 2 and m ≥ 0. The algebras in Kn are of type cyln, the cylindric type, that consists of

binary operation symbols ·,+, unary operation symbols −, ci (i ∈ n) and constant symbols

0, 1, dij (i, j ∈ n).

For every k ∈ ω, we define a set F n,m
k ⊆ Tmm,cyln of normal forms of degree k such

that every normal form contains complete information about the cylindrifications of the normal

forms of the smaller degrees. Then, we show that every term in Tmm,cyln can be rewritten as a

disjunction of some normal forms of the same degree. First we need the following conventions:

Let
∏
,
∑

be the grouped versions of ·,+, respectively. Let T ⊆ Tmm,cyln be a finite set of

terms and let α ∈ T{−1, 1}. For every τ ∈ T , let τα = τ if α(τ) = 1 and τα = −τ otherwise.

Define, CT := {ciτ : i ∈ n, τ ∈ T} and Tα :=
∏
{τα : τ ∈ T}.

Definition 1.1.1. Set Dn,m = {dij : i, j ∈ n}∪ {x0, . . . , xm−1}, where x0, . . . , xm−1 are the m

free variables that generate Tmm,cyln . For every k ∈ ω, we define the followings inductively.

- The normal forms of degree 0, F n,m
0 = {Dβ

n,m : β ∈ Dn,m{−1, 1}}.

- The set of normal forms of degree k + 1,

F n,m
k+1 = {Dβ

n,m · (CF
n,m
k )α : β ∈ Dn,m{−1, 1} and α ∈ CFn,mk {−1, 1}}.

- The set of all forms, F n,m =
⋃
k∈ω F

n,m
k .

Theorem 1.1.2. Let n ≥ 2 and m ≥ 0 be finite ordinals, K ∈ {Crs,D, P,G} and k ∈ ω. The

followings are true:
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(i) Kn |=
∑
F n,m
k = 1.

(ii) For every τ, σ ∈ F n,m
k , if τ and σ are different then Kn |= τ · σ = 0.

(iii) There exists an effective method (a finite algorithm) to find, for every τ ∈ Tmm,cyln , a

non-negative integer q ∈ ω and a finite set Sτ ⊆ F n,m
q such that Kn |= τ =

∑
Sτ .

Proof. Let CBAn be the class of all Boolean algebras with operators of type cyln. In appendix

A, it is shown that the above theorem is true for CBAn instead of Kn. But since Kn ⊆ CBAn,

then the statement above is true for Kn as well.

Thus, any satisfiable term that is not equal to any normal form (in Kn) can be broken into

at least two disjoint satisfiable normal forms. Hence, to find the atoms in FrmKn, it is enough

to search for them among the normal forms. Recall that every form in F n,m is determined by

some information given on the diagonals, free variables and the cylindrifications of the forms

of the first smaller degree. So, we need to introduce some notions that allow us to handle this

information easily.

Definition 1.1.3. Define the colors of the normal forms, colorn,m : F n,m → Dn,m, as follows.

For every k ∈ ω, every β ∈ Dn,m{−1, 1} and every α ∈ CFn,mk {−1, 1}, define

colorn,m(Dβ
n,m) := colorn,m(Dβ

n,m · (CF
n,m
k )α) := {σ ∈ Dn,m : β(σ) = 1}.

Definition 1.1.4. For every i ∈ n, define subn,mi : F n,m → P(F n,m) as follows.

• For every form τ ∈ Fm
0 of degree 0, let subn,mi (τ) = ∅.

• For every k ∈ ω, every β ∈ Dn,m{−1, 1} and every α ∈ CFn,mk {−1, 1}, let

subn,mi (Dβ
n,m · (CF

n,m
k )α) = {σ ∈ F n,m

k : α(ciσ) = 1}.

Theorem 1.1.2 can be also used to label the elements of any concrete Kn-atom structure

by normal forms of any desired degree. Let S be any concrete Kn-atom structure and let

ι : {x0, . . . , xm−1} → P(S) be any evaluation. For every f ∈ S and every τ ∈ Tmm,cyln , we

write (S, f, ι) |= τ if and only if f ∈ [τ ]CmSι . Let k ∈ ω. For every f ∈ S, the unique term

τ ∈ F n,m
k for which (S, f, ι) |= τ is called the label of f of degree k.
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Remark. Let S and ι be as above. For every k ∈ ω and every f ∈ S, let tagk(f) be the label

of f of degree k. Now, fix k ∈ ω, i ∈ n and f ∈ S such that k ≥ 1. Set the i-th neighbors

of f as follows, Nbri(f) := C
[S]
i ({f}) = {h ∈ S : h ≡i f}. Note that in order to determine

tagk+1(f), we need also to determine the label tagk(g) for every g ∈ Nbri(f). For example,

let τ ∈ F n,m
k+1 and suppose that we need to show that tagk+1(f) = τ . Then we need to check

that tagk(g) ∈ subn,mi (τ) for every g ∈ Nbri(f). For any g ∈ Nbri(f), the information carried

by the label tagk−1(g) might be consistent with the information carried by τ , however, it is not

enough to prove that tagk+1(f) = τ . We call this observation the “degree consistency” of the

atom structure S.

§1.2 The free algebra FrmCrs2 is not atomic.

In this section, we show that FrmCrs2 is not atomic. Our strategy goes as follows. Fix a finite

ordinal k ∈ ω and a normal form τ ∈ F 2,m
k such that FrmCrs2 6|= τ = 0. First, we associate

to τ an algebra Aτ ∈ Crs2, with finite base, that witnesses FrmCrs2 6|= τ = 0. Then, in most

of the cases, we use Aτ to show that τ is not an atom in FrmCrs2 by constructing a “sister”

algebra Aτ ′ and a term σ such that τ ·σ 6= 0 in Aτ while τ ·−σ 6= 0 in Aτ ′ . Here is a convention:

For every i ∈ 2, let j ∈ 2 denote the unique non-negative integer satisfying i+ j = 1.

To construct Aτ , we construct a concrete Crs2-atom structure V τ and we let Aτ to be the

complex (full) algebra over V τ . We construct, inductively, a sequence V0 ⊆ · · · ⊆ Vk of

concrete Crs2-atom structures. For V0: Let f0, f1 be two elements such that f0 = f1 if and

only if d01 ∈ color2,m(τ). Set V0 := V 0
0 := V 1

0 := {(f0, f1)} and define tag(f0, f1) = τ . The

label tag(f0, f1) = τ means that the pair f := (f0, f1) is responsible for validating τ at the

end of the construction. To guarantee this, we need to extend V0 by the information given by

sub2,m
i (τ), i ∈ 2, as follows. Let U be an infinite set disjoint from {f0, f1}. For each i ∈ 2,

construct an injective function, ψif : {σ ∈ sub2,m
i (τ) : d01 6∈ color2,m(σ)} −→ U , such that

Rng(ψ0
f ) ∩Rng(ψ1

f ) = ∅ and U \ (Rng(ψ0
f ) ∪Rng(ψ1

f )) is infinite. Set

V i
1 = {(f0, f1)iu : u ∈ Rng(ψif )}

∪ {(fj, fj) : f0 6= f1 and ∃!σ ∈ sub2,m
i (τ) with d01 ∈ color2,m(σ)}.
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We omitted the terms in sub2,m
i that contain d01 in their colors from the domain of ψif

because we do not need new bases to represent these terms, in other words these terms have

to be represented by (fj, fj). Moreover, if there is such a term then it is unique because every

two different normal forms are disjoint. Define the labels as follows. Let u ∈ Rng(ψif ) and

σ ∈ sub2,m
i (τ) such that ψif (σ) = u, define tag(f iu) = σ. If f0 6= f1 and there exists a unique

σ ∈ sub2,m
i (τ) with d01 ∈ color2,m(σ), define tag(fj, fj) = σ. Finish this round by setting

V1 := V 0
1 ∪ V 1

1 .

It is not hard to see that, under a suitable evaluation, if every element in V1 satisfies its

label then f satisfies τ . Hence, we need to extend V1 by adding more elements according to

the information carried by the functions sub2,m
i , i ∈ 2, to guarantee that each element of V1

satisfies its label. Here, we note that every two elements g, h ∈ V 0
1 (similarly in V 1

1 ) are 0-

connected, i.e., g ≡0 h. In the class Crs2, the operator c0 is a complemented closure operator.

Therefore, the information given by sub2,m
0 of any element in V 0

1 is already guaranteed by the

other elements in V 0
1 . So, we need to consider the information given by sub2,m

1 only. See the

figure below (the dotted edges represent the 0-connections while the thick edges represent the

1-connections.)

More generally, suppose that Vl,V 0
l and V 1

l have been constructed and the labeling tag has

been extended to cover Vl, for some 0 < l < k. Let i ∈ 2, for every g ∈ V j
l create an injective

function,

ψig : {σ ∈ sub2,m
i (tag(g)) : d01 6∈ color2,m(σ)} −→ (U \

⋃
{Rng(Vq) : q ∈ l + 1}),

such that Rng(ψig)’s are pairwise disjoint and (U∗ \
⋃
{Rng(ψig) : i ∈ 2, g ∈ V j

l }) is still
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infinite, where U∗ := (U \
⋃
{Rng(Vq) : q ∈ l + 1}). Set

V i
l+1 = {(g0, g1)iu : g = (g0, g1) ∈ V j

l and u ∈ Rng(ψig)}

∪ {(gj, gj) : g = (g0, g1) ∈ V j
l , g0 6= g1 and ∃!σ ∈ sub2,m

i (tag(g)), d01 ∈ color2,m(σ)}.

The labels are extended in a natural way. Let g = (g0, g1) ∈ V j
l , u ∈ Rng(ψig) and let

σ ∈ sub2,m
i (tag(g)) such that ψig(σ) = u, define tag(giu) = σ. If g0 6= g1 and there exists

a unique σ ∈ sub2,m
i (tag(g)) with d01 ∈ color2,m(σ), define tag(gj, gj) = σ. Finally, set

Vl+1 := V 0
l+1 ∪ V 1

l+1.

Set V τ = V0 ∪ · · · ∪ Vk and let Aτ = CmV τ be the complex algebra over V τ . For an

evaluation, define ιτ (xi) = {g ∈ V τ : xi ∈ color2,m(tag(g))} for every i ∈ m. The next

lemma proves that Aτ 6|= τ = 0.

Lemma 1.2.1. For every g ∈ V τ , we have (V τ , g, ιτ ) |= tag(g).

Proof. Let l, q ∈ k + 1 and let g ∈ Vl. Note that the label tag(g) ∈ F 2,m
k−l . If q ≤ k − l, then

define tagq(g) to be the unique term in F 2,m
q such that Crs2 |= tag(g) ≤ tagq(g). If q ≥ k− l,

then let tagq(g) = tag(g). To prove the statement above, it suffices to prove the following. For

every g ∈ V τ and every q ∈ k + 1,

(V τ , g, ιτ ) |= tagq(g). (1.1)

We use induction on q. By the construction of V τ and the special choice of the evaluation ιτ ,

it is clear that (V τ , g, ιτ ) |= tag0(g), for every g ∈ V τ . Suppose that k > 0 and, for some

q ∈ k, (V τ , g, ιτ ) |= tagq(g), for every g ∈ V τ . We need to step the induction up to q + 1. Let

g = (g0, g1) ∈ V τ be arbitrary, then there exists l ∈ k + 1 such that g ∈ Vl. If q ≥ k − l then

tagq+1(g) = tagq(g) and, by induction hypothesis, (V τ , g, ιτ ) |= tagq(g) = tagq+1(g).

So, we may suppose that q < k − l. Let i ∈ 2 and let σ ∈ sub2,m
i (tagq+1(g)). Remember

Crs2 |= tag(g) ≤ tagq+1(g), so there exists χ ∈ sub2,m
i (tag(g)) such that Crs2 |= χ ≤ σ.

• Suppose that g ∈ V j
l and d01 6∈ color2,m(χ). By the construction of V τ , there exists

u ∈ Rng(ψig) such that giu ∈ V i
l+1 and tag(giu) = χ. Then by induction hypothesis,

(V τ , giu, ι
τ ) |= tagq(g

i
u) = σ. Hence, (V τ , g, ιτ ) |= ciσ.
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• Suppose that g ∈ V j
l and d01 ∈ color2,m(χ). If g0 6= g1, then (gj, gj) ∈ V i

l+1 and

tag(gj, gj) = χ. We have (V τ , (gj, gj), ι
τ ) |= tagq(gj, gj) = σ, by the induction hypoth-

esis. Consequently, (V τ , g, ιτ ) |= cjσ.

• Suppose that g ∈ V j
l and d01 ∈ color2,m(χ). If g0 = g1, then d01 ∈ tag(g). That implies

that Crs2 |= tag(g) ≤ χ ≤ σ, otherwise FrmCrs2 |= tag(g) = 0 which contradicts

the assumption FrmCrs2 6|= τ = 0. By induction, we have (V τ , g, ιτ ) |= tagq(g) = σ.

Hence, (V τ , g, ιτ ) |= ciσ.

• Suppose that l 6= 0 and g ∈ V i
l . Then there exists an element h ∈ V j

l−1 such that

h ≡i g and tag(g) ∈ sub2,m
i (tag(h)). Then, there exists γ ∈ sub2,m

i (tag(h)) with

Crsn |= γ ≤ χ ≤ σ. By a similar arguments to the ones used in the above items, one

can easily find h̄ ∈ V i
l such that h̄ ≡i h and tag(h̄) = γ. Hence, h̄ ≡i g and, by the

induction hypothesis, (V τ , h̄, ιτ ) |= tagq(h̄) = σ. Therefore, (V τ , g, ιτ ) |= ciσ.

Conversely, let σ ∈ (F 2,m
q \sub2,m

i (tagq+1(g))). Assume toward a contradiction that there exists

h ∈ V τ such that g ≡i h and (V τ , h, ιτ ) |= σ. It is not hard to see that, by the construction and

the induction hypothesis, there exists γ ∈ sub2,m
i (tagq+1(g))) such that (V τ , h, ιτ ) |= γ. Then

γ 6= σ but Crs2 6|= σ · γ = 0. This contradicts theorem 1.1.2, (ii). Hence, (V τ , g, ιτ ) 6|= ciσ.

Now, recall that (V τ , g, ιτ ) |= tag0(g). Therefore, (V τ , g, ιτ ) |= tagq+1(g). We have proved

(1.1) for every g ∈ V τ and every q ∈ k + 1, as desired.

Now we are ready to show that FrmCrs2 is not atomic. The idea basically is as follows. For

the term τ , if we can find a zigzag in V τ that is starting from the unique point in V0 and goes

up one level at each step then, at the k-th level, we have freedom to decide whether to extend

this zigzag and construct a new algebra or to leave it as it is. This may give two different non

zero disjoint terms each of which is below τ , hence τ is not an atom in FrmCrs2.

Proposition 1.2.2. Let m ∈ ω. There is no atom in FrmCrs2 that is below c0− d01 + c1− d01.

Proof. Let k ≥ 1 and let τ ∈ F 2,m
k be such that FrmCrs2 |= 0 6= τ ≤ c0 − d01 + c1 − d01.

Consider the algebra Aτ , its unit V τ = V0 ∪ · · ·Vk and the labeling tag as constructed before.

Without loss of generality, we may assume that FrmCrs2 6|= τ · c0 − d01 = 0. Our aim is
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to find a (zigzag) sequence, h0 . . . , hk, of elements from V τ such that, for every 1 ≤ q ≤ k,

d01 6∈ color2,m(tag(hq)) and hq−1 ≡i hq where i ∼= q − 1 (mod 2).

Let h0 = (f0, f1) be the unique element in V0 whose label is τ . The assumption on τ that

FrmCrs2 6|= τ · c0 − d01 = 0 implies that there is a form σ0 ∈ sub2,m
0 (tag(h0)) such that

d01 6∈ color2,m(σ0). By the construction of V τ , there exists h1 ∈ V 0
1 such that h0 ≡0 h1 and

tag(h1) = σ0. Suppose that we have already found hq, for some 0 < q < k, such that hq ∈ V i
q ,

hq−1 ≡i hq and d01 6∈ color2,m(tag(hq)), where i ∈ 2 and i ∼= q−1 (mod 2). By the assumption

d01 6∈ color2,m(tag(hq)), there exists σq ∈ sub2,m
j (tag(hq)) such that d01 6∈ color2,m(σq).

Therefore, there exists hq+1 ∈ V j
q+1 such that hq ≡j hq+1 and tag(hq+1) = σq. Recall that by

lemma 1.2.1, we have the following.

(∀q ∈ k + 1) (V τ , hq, ι
τ ) |= tag(hq). (1.2)

Suppose that hk = (u0, u1) and assume that hk ∈ V i
k , for some i ∈ 2. Note that tag(hk)

is a normal form of degree 0 and d01 6∈ color2,m(tag(hk)). Therefore, by the construction of

V τ , (ui, ui) 6∈ V τ . Set W τ = V τ ∪ {(ui, ui)} and define Dτ := CmW τ . Define an evaluation

ντ : {x0, . . . , xm−1} → P(W τ ) such that ντ (xi) = ιτ (xi), for every i ∈ m. By a similar

argument to the one used in the proof of lemma 1.2.1, one can easily prove the following.

(∀q ∈ k + 1) (W τ , hq, ν
τ ) |= tag(hq). (1.3)

For each q ∈ k + 1, let χq and γq be the unique forms in F 2,m
q+1 satisfy (V τ , hk−q, τ

τ ) |= χq

and (W τ , hk−q, ν
τ ) |= γq, respectively. Hence, both χq, γq are not zeros in FrmCrs2. Moreover,

by (1.2) and (1.3), we have,

FrmCrs2 |= 0 6= χq ≤ tag(hk−q) and FrmCrs2 |= 0 6= γq ≤ tag(hk−q). (1.4)

It remains to show that, for every q ∈ k + 1, FrmCrs2 |= χq · γq = 0. We use induction on

q. Remember, we have hk = (u0, u1) ∈ V i
k , (ui, ui) 6∈ V τ and (ui, ui) ∈ W τ for some i ∈ 2.

Hence, Crs2 |= χ0 ≤ −cjd01 while Crs2 |= γ0 ≤ cjd01. Therefore, FrmCrs2 |= χ0 · γ0 = 0.

The induction step is going in a similar way. Suppose that FrmCrs2 |= χq · γq = 0, for some

q ∈ k. Consider the elements hk−q and hk−q−1. Let i ∈ 2 be such that i = k − q − 1 (mod 2).
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Remember that hk−q−1 ≡i hk−q. Also, remember that χq, γq, tag(hk−q−1) ∈ F 2,m
q+1 . But χq

and γq are disjoint in FrmCrs2, hence χq or γq is disjoint from tag(hk−q−1). Without loss of

generality, assume that Crs2 |= χq · tag(hk−q−1) = 0. By the construction of V τ we have,

for every g ∈ V τ \ {hk−q−1, hk−q}, if g ≡i hk−q−1 then Crs2 |= tag(g) · tag(hk−q) = 0.

Therefore, by (1.4), we have the following. For every g ∈ V τ \ {hk−q}, if g ≡i hk−q−1 then

(V τ , g, ιτ ) 6|= χq and (W τ , g, ντ ) 6|= χq. Remember that χq and γq were chosen such that

(V τ , hk−q, ι
τ ) |= χq and (W τ , hk−q, ν

τ ) |= γq. Hence, (W τ , hk−q−1, ν
τ ) |= γq+1 · −ciχq and

(V τ , hk−q−1, ι
τ ) |= χq+1 · ciχq. Therefore, Crs2 |= χq+1 ≤ ciχq but Crs2 |= γq+1 ≤ −ciχq.

By the induction principle, we have the following. For every q ∈ k + 1,

FrmCrs2 |= χq · γq = 0. (1.5)

Combining (1.4) and (1.5) with the fact tag(h0) = τ shows that τ is not an atom in the free

algebra FrmCrs2, as desired.

§1.3 The free algebra FrmCrsn is not atomic.

Suppose that n ≥ 3. The aim of this section is to prove the non-atomicity of the free algebra

FrmCrsn. Unfortunately, at least if we apply it verbatim, the idea used in the previous section

cannot help for this purpose. To explain why it doesn’t work, let τ ∈ F n,m
5 and suppose that

Crsn |= 0 6= τ ≤
∏

i∈j∈n−dij . Suppose that an atom structure V τ is constructed in the very

similar way to the construction in the previous section. Suppose that f := (f0, . . . , fn−1) has

label τ and suppose that the elements (f0, f0, f2, . . . , fn−1) and g := (f2, f1, f2, . . . , fn−1) were

added in V1. Suppose that for building V 2, one needed to add (u, f0, f2, . . . , fn−1), for some

brand new u. Then in V 3, the element h := (f2, f0, f2, . . . , fn−1) might be added. Since h was

added in V 3, then its label has to be from F n,m
2 . But h ≡1 g and g carries a label from F n,m

4 .

Therefore, h carries a consistent information with the label of g but it is not complete. Recall

the remark on page 20 and note that yet we don’t know which normal form in F n,m
3 would be

satisfied by h at the end of the construction. To overcome this problem, h has to get a label

from F n,m
3 . Actually there is a way to do that, but now it is clear that V τ has to be changed
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and it cannot be constructed in the same way as before. Moreover, we may lose one of the key

properties that we used in our proof. Namely, we cannot guarantee that there is a node that is

connected by a finite zigzag to f and whose label is a normal form of degree 0.

However, there is a nice way to show that the free algebra FrmCrsn is not atomic using

the fact that the free algebra FrmCrs2 is not atomic. Roughly, we do this by showing that

the Boolean part of FrmCrs2 is isomorphic to the Boolean part of some relativized subalgebra

of FrmCrsn. To be self contained, we recall the definition of relativized subalgebras of the

members of Crsn. Let A = 〈A,∪,∩, \, ∅, V, C [V ]
i , D

[V ]
ij 〉i,j∈n ∈ Crsn. Let X ∈ A and let

RlXA = {B ∩X : B ∈ A}. Then the structure RlXA = 〈RlXA,∪,∩, \, ∅, X, C [X]
i , D

[X]
ij 〉i,j∈n

is called the X-relativization of A. Clearly, RlXA ∈ Crsn. Note that Tmm,cyl2 ⊆ Tmm,cyln .

En•

Fn,m

F2,m

Let En :=
∏
{−ck − d1j : 1 < k < n, 1 < j < n} ∈ Tmm,cyln . The Boolean alge-

bra BfFrmCrs2 is not atomic by proposition 1.2.2. We show that BfFrmCrs2 is Boolean

isomorphic to BfRlEnFrmCrsn. Therefore, the algebra RlEnFrmCrsn is not atomic and, con-

sequently, FrmCrsn is not atomic. We need the following lemmas.

Lemma 1.3.1. For every τ ∈ Tmm,cyl2 , if Crs2 6|= τ = 0 then Crsn 6|= τ · En = 0.

Proof. Let τ ∈ Tmm,cyl2 be such that Crs2 6|= τ = 0. Then there is a concrete Crs2-atom

structure V , an evaluation of the free variables ι : {x0, . . . , xm−1} → P(V ) and (u, v) ∈ V

such that (V, (u, v), ι) |= τ . For every f ∈ V , let f ∗ be the sequence that extends f such that

f ∗(i) = v for every 2 ≤ i < n. Let V ∗ = {f ∗ : f ∈ V }. Let ι∗ : {x0, . . . , xm−1} → P(V ∗) be

the evaluation defined as follows: For every i ∈ m, ι∗(xi) = {f ∗ : f ∈ V ∩ ι(xi)}. Now, we
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prove the following. For every t ∈ Tmm,cyl2 ,

(∀f ∈ V )[(V, f, ι) |= t ⇐⇒ (V ∗, f ∗, ι∗) |= t]. (1.6)

We prove (1.6) by induction on terms. For t ∈ {d01, x0, . . . , xm−1}, it is clear that (1.6) holds.

Suppose that (1.6) hold for σ1 and σ2. It is easy to see that (1.6) holds for σ1 · σ2, σ1 + σ2 and

−σ1. Let k ∈ 2 and let f ∈ V , then

(V, f, ι) |= ckσ1 ⇐⇒ (∃g ∈ V )g ≡k f and (V, g, ι) |= σ1

⇐⇒ (∃g∗ ∈ V ∗)g∗ ≡k f ∗ and (V ∗, g∗, ι∗) |= σ1

⇐⇒ (V ∗, f ∗, ι∗) |= ckσ1.

We have proved (1.6). In particular, (V ∗, (u, v)∗, ι∗) |= τ . Moreover, (V ∗, (u, v)∗, ι∗) |= En.

Therefore, Crsn 6|= τ · En = 0, as desired.

Lemma 1.3.2. For every τ ∈ Tmm,cyl2 , if Crsn 6|= τ · En = 0 then Crs2 6|= τ = 0.

Proof. Let τ ∈ Tmm,cyl2 be such that Crsn 6|= τ · En = 0. Then there is a concrete Crsn-

atom structure V , an evaluation ι : {x0, . . . , xm−1} → P(V ) and (u, v, . . . , v) ∈ V such that

(V, (u, v, . . . , v), ι) |= τ · En. Let W = {f ∈ V : (∀ 2 ≤ i < n)f(i) = v}. For every f ∈ W ,

let f∗ be the sequence (f(0), f(1)). Let V∗ = {f∗ : f ∈ W} and, for each i ∈ m, define

ι∗(xi) = {f∗ ∈ V∗ : f ∈ ι(xi) ∩W}. Now we prove the following. For every t ∈ Tmm,cyl2 ,

(∀f ∈ W )[(V, f, ι) |= t ⇐⇒ (V∗, f∗, ι∗) |= t]. (1.7)

We use induction on terms. It is easy to check that (1.7) holds for {d01, x0, . . . , xm−1}. Suppose

that (1.7) hold for σ1 and σ2. One can easily check that (1.7) holds for σ1 ·σ2, σ1 +σ2 and−σ1.

It remains to show that, for every k ∈ 2, (1.7) holds for ckσ1. Let k ∈ 2 and let f ∈ W , then

(V, f, ι) |= ckσ1 ⇐⇒ (∃g ∈ W )g ≡k f and (V, g, ι) |= σ1

⇐⇒ (∃g∗ ∈ V∗)g∗ ≡k f∗ and (V∗, g∗, ι∗) |= σ1

⇐⇒ (V∗, f∗, ι∗) |= ckσ1.

We have proved (1.7). Therefore, Crs2 6|= τ = 0, as desired.
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Now, we are ready to prove the non-atomicity of FrmCrsn. For the following proposition,

it is worth noting that RlEnFrmCrsn |= En = 1.

Proposition 1.3.3. The Boolean algebras BfFrmCrs2 and BfRlEnFrmCrsn are Boolean iso-

morphic.

Proof. We show this isomorphism via ψ : (∀τ ∈ Tmm,cyl2)τ 7→ τ · En. Note that, by lemma

1.3.1 and lemma 1.3.2, we have the following. For every τ, σ ∈ Tmm,cyl2 ,

Crs2 |= τ = σ ⇐⇒ Crs2 |= ((τ · −σ) + (−τ · σ)) = 0

⇐⇒ Crsn |= ((τ · −σ) + (−τ · σ)) · En = 0

⇐⇒ Crsn |= τ · En = σ · En. (1.8)

Therefore, by (1.8), ψ is well defined injective function. It is straightforward to check that ψ

preserves the Boolean-operations. Hence, ψ is a Boolean-monomorphism. To show that ψ is

onto, it is enough to prove the following. For every σ ∈ Tmm,cyln , there exists τ ∈ Tmm,cyl2

such that

RlEnFrmCrsn |= τ · En = σ · En. (1.9)

We prove (1.9) by induction on terms. Let i, j ∈ n and let k ∈ m. If σ is d01, dij (and

i, j 6∈ {0, 1}) or xk, let τ be d01, 1 or xk, respectively. Then (1.9) holds for those σ and τ . Let

σ1, σ2 ∈ Tmm,cyln and suppose that there exist τ1, τ2 ∈ Tmm,cyl2 such that

RlEnFrmCrsn |= τ1 · En = σ1 · En and RlEnFrmCrsn |= τ2 · En = σ2 · En.

Then we have the followings. Let j ∈ 2 and let 1 < k < n,

RlEnFrmCrsn |= (τ1 + τ2) · En = (τ1 · En) + (τ2 · En) = (σ1 + σ2) · En

RlEnFrmCrsn |= (τ1 · τ2) · En = (τ1 · En) · (τ2 · En) = (σ1 · σ2) · En

RlEnFrmCrsn |= −τ1 · En = En · −(τ1 · En) = En · −(σ1 · En) = −σ1 · En

RlEnFrmCrsn |= cjτ1 · En = cj(τ1 · En) · En = cj(σ1 · En) · En = cjσ1 · En

RlEnFrmCrsn |= τ1 · En = ck(τ1 · En) · En = ck(σ1 · En) · En = ckσ1 · En.

The first = in the last line is because Crsn |= ck(dij · x) · dij = x · dij . Thus, we have proved
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(1.9). Therefore, ψ is an isomorphism as desired.

Theorem 1.3.4. Let n ≥ 2 and m ≥ 0 be finite ordinals. The free algebra FrmCrsn is not

atomic. Let i ∈ j ∈ n, then neither the part below dij nor the part below −dij in FrmCrsn is

atomic.

Proof. For n = 2, we are done by proposition 1.2.2. Suppose that n ≥ 3. If i = 0 and j = 1,

the statement follows from propositions 1.2.2 and 1.3.3. For arbitrary i ∈ j ∈ n, it is enough

to find an isomorphism ψ : FrmCrsn → FrmCrsn such that ψ(d01) = dij .

Let ρ ∈ nn be any permutation on n (bijection from n onto n). For every τ ∈ Tmm,cyln ,

define τ ρ inductively as follows. For every i, j ∈ n, k ∈ m and τ1, τ2, τ ∈ Tmm,cyln , define

• dρij = dρ(i)ρ(j), x
ρ
k = xk,

• (τ1 + τ2)ρ = τ ρ1 + τ ρ2 , (τ1 · τ2)ρ = τ ρ1 · τ
ρ
2 ,

• (−τ)ρ = −(τ ρ) and (ciτ)ρ = cρ(i)τ
ρ.

Clearly, for every τ ∈ Tmm,cyln ,

(τ ρ)ρ
−1

= (τ ρ
−1

)ρ = τ where ρ−1 is the inverse of ρ. (1.10)

Let V be any concrete Crsn-atom structure and let ι : {x0, . . . , xm−1} → P(V ) be an eval-

uation of the free variables. Set V ρ = {f ◦ ρ : f ∈ V }. Clearly, V ρ is concrete Kn-atom

structure. Let ιρ : {x0, . . . , xm−1} → P(V ρ) be the evaluation defined as follows. For every

i ∈ m, ιρ(xi) = {f ◦ ρ : f ∈ V ∩ ι(xi)}. By a simple induction argument on terms, one can

easily check the following. For every f ∈ V and every τ ∈ Tmm,cyln ,

(V, f, ι) |= τ ⇐⇒ (V ρ, f ◦ ρ, ιρ) |= τ ρ. (1.11)

The ⇐⇒ above is because of (1.10). Therefore, for every τ, σ ∈ Tmm,cyln , we have

Crsn |= τ = σ ⇐⇒ Crsn |= ((τ · −σ) + (−τ · σ)) = 0

⇐⇒ Crsn |= ((τ · −σ) + (−τ · σ))ρ = 0

⇐⇒ Crsn |= τ ρ = σρ. (1.12)
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Now, let ρ ∈ nn be a permutation such that ρ(0) = i and ρ(1) = j. Define the isomorphism

ψ : FrmCrsn → FrmCrsn as follows. For every τ ∈ Tmm,cyln , define ψ(τ) := τ ρ. By

(1.12) and (1.10), ψ is a well defined bijection. By the definition of ψ, it is clear that ψ is a

homomorphism. Therefore, ψ is an isomorphism and ψ(d01) = dρ(0)ρ(1) = dij , as desired.

In this section, we showed the non-atomicity of FrmCrsn by reducing the case of n ≥ 3 to

the case of n = 2, which was treated in § 1.2. In the next section, we generalize the method

used to show the non-atomicity for n = 2 to n ≥ 3, and with this we get more information

about the structure of the free algebras FrmKn for K ∈ {Crs,D, P,G}.

§1.4 Almost no free algebra FrmKn is atomic

The method used in § 1.2 can be modified to obtain the same results but with D2 in the place of

Crs2. Let k ∈ ω and let τ ∈ F 2,m
k . We have to add extra elements to the structure V τ , namely

to close the elements added in the last level Vk under the substitutions [0/1] and [1/0]. This

guarantees that the resulting atom structure is indeed a concrete D2-atom structure. Suppose

that D2 |= τ ≤ c0 − d01 + c1 − d01. To prove τ is not an atom in FrmD2, find the zigzag

h0, . . . , hk as in the proof of proposition 1.2.2. Suppose that hk = (u0, u1) ∈ V i
k for some i ∈ 2.

We extend the structure V τ by picking a brand new node w and adding (u1, w), (w,w) if i = 1,

or (w, u0), (w,w) if i = 0, to W τ . Then by choosing suitable labels for these new elements,

one can mimic the proof of proposition 1.2.2 but to find two disjoint forms in F 2,m
k+2 (instead of

F 2,m
k+1) each of which is satisfiable and below τ in the free algebra FrmD2. Unfortunately, we

cannot use the idea of the previous section to jump to the higher dimensional free D-algebras.

Indeed, for n ≥ 3, lemmas 1.3.1 and 1.3.2 are not true if we replace Crs by D. Instead, we

introduce a new idea that is, basically, developed from the idea used in § 1.2. Using this new

idea we prove following.

Theorem 1.4.1. Let n ≥ 2 and m ≥ 0 be finite ordinals and let K ∈ {Crs,D, P,G}. Then

the free algebra FrmKn is not atomic if and only if m 6= 0, n 6= 2 or K 6= G.

In fact we prove more than this, see lemma 1.4.2 and proposition 1.4.10 below. We start

with the following lemma which proves one direction of the above theorem.
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Lemma 1.4.2. The free algebra Fr0G2 is finite, hence atomic.

Proof. Let λ := d01 · −c0 − d01 · −c1 − d01, β := d01 · c0 − d01 · c1 − d01 and δ := −d01. One

can easily check that for any arbitrary satisfiable form τ ∈ F 2,0
1 there exists σ ∈ {λ, β, δ} such

that G2 |= τ = σ. Let i ∈ 2, the followings are straightforward.

G2 |= λ · ciβ = 0, G2 |= λ · ciδ = 0,

G2 |= β · ciλ = 0, G2 |= β · ciδ = β,

G2 |= δ · ciλ = 0, G2 |= δ · ciβ = δ.

Hence, by theorem 1.1.2 (iii) and by the construction of the normal forms F 2,0, the free algebra

Fr0G2 is +-generated by the terms λ, β and δ. Therefore, Fr0G2 is finite and, consequently,

atomic.

For the other direction, we need to analyze the idea used in § 1.2 and to highlight what was

really essential for the proofs there. To prove the non-atomicity of the free algebra FrmCrs2, we

constructed for every satisfiable τ ∈ F 2,m a concrete Crs2-atom structure Sτ associated with

labels for its elements that are consistent with the desired “degree consistency”. We showed

that each of the elements of Sτ satisfies its label under some natural evaluation.

Definition 1.4.3. Let q ∈ ω and let S be any concrete Kn-atom structure associated with a

degree function, deg : S → {0, . . . , q}, and a labeling function, tag : S →
⋃
{F n,m

i : i ∈ q}.

1. (S, deg) is said to be a degree consistent concrete (Kn, q)-atom structure if:

(a) For every f ∈ S, tag(f) ∈ F n,m
k where k = deg(f).

(b) For every f, g ∈ S and every i ∈ n, if f ≡i g then | deg(f)− deg(g) |≤ 1.

2. (S, tag) is said to be a label consistent concrete (Kn, q)-atom structure if: For every ele-

ment f ∈ S, (S, f) |= tag(f). Where (S, f) |= tag(f) means that f satisfies the normal

from tag(f) in the algebra CmS under the evaluation ι which is defined as follows: For

every i ∈ m, ι(xi) = {g ∈ S : xi ∈ colorn,m(tag(g))}.
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3. (S, deg, tag) is said to be a consistent concrete (Kn, q)-atom structure if (S, deg) is a de-

gree consistent concrete (Kn, q)-atom structure and (S, tag) is a label consistent concrete

(Kn, q)-atom structure.

For the sake of simplicity, when we speak about the type of consistency of some concrete Kn-

atom structure, we may use only S instead of (S, deg), (S, tag) or (S, deg, tag). But, in this

case, we indicate the type of consistency we are talking about. Also, we may use the same

name for the labeling functions (same for the degree functions) of two different concrete Kn-

atom structures if these functions agree on the intersection of their domains. We hope these

simplifications don’t cause any confusion.

Then we found two elements f, g ∈ Sτ with (Sτ , f) |= τ such that f and g are connected

by some zigzag and the element g has one (only one) degree of freedom in Sτ , i.e., there exists

(unique) i ∈ 2 such that no matter how we extend Sτ through an i-connection between g and a

new element h, the new extension still satisfies τ at f . Finally, we used the freedom of g to get

two disjoint satisfiable forms each of which is below τ . We give formal definition for zigzags

and then we define “free elements” that have full freedom (n-degrees of freedom).

Definition 1.4.4. Let S be any concrete Kn-atom structure and let k ∈ ω be such that k ≥ 1.

For every f, g ∈ S, we say that f and g are connected by a zigzag of length k if and only

if there exist β ∈ kn and h0, h1, . . . , hk−1, hk ∈ S such that f = h0, g = hk and, for every

j ∈ k + 1, hj ≡βj hj+1. In this case we write f ≡β g and we say that β is a zigzag of finite

length connecting f and g.

Definition 1.4.5. Let q ∈ ω and let (S, deg) be any degree consistent concrete (Kn, q)-atom

structure. An element f ∈ S is said to be

• a regular element if and only if all the elements in {f ◦ ρ : ρ ∈ nn} ∩ S have the same

degree.

• a free element if it is regular of degree 0.

Let δ :=
∏

i∈j∈n−dij be the co-diagonal. Lemma 1.4.7 below shows that, for every q ∈ ω

and every τ ∈ F n,m
q with Kn |= 0 6= τ ≤ δ, the form τ can be associated with a consistent
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concrete (Kn, q)-atom structure that witnesses the satisfiability of τ at some element which is

connected by a finite length zigzag to some free element. We need the following definition.

Definition 1.4.6. Let S1 and S2 be two concrete Kn-atom structures. We say that S1 and S2

are isomorphic if there is a bijection ψ : S1 → S2 such that the bijection given by, for every

A ⊆ S1, A 7→ {ψ(e) : e ∈ A} is an isomorphism between CmS1 and CmS2.

Let S be a concrete Kn-atom structure with base U . Let ψ : U → U∗ be any bijection for

some set U∗. Define ψ(S) = {(ψ(a0), . . . , ψ(an−1)) : (a0, . . . , an−1) ∈ S}. Thus, ψ(S) is a

concrete Kn-atom structure, and, S and ψ(S) are isomorphic via the bijection ψ̂ : S → ψ(S)

given as follows: ψ̂(a0, . . . , an−1) = (ψ(a0), . . . , ψ(an−1)), for every (a0, . . . , an−1) ∈ S. ψ̂ is

called the point wise extension of ψ.

Lemma 1.4.7. Let q ∈ ω and let τ ∈ F n,m
q be a normal form such that Kn |= 0 6= τ ≤ δ. Then

there exist a consistent concrete (Kn, q)-atom structure (S, deg, tag), f, g ∈ S and a finite

length zigzag β such that tag(f) = τ , f ≡β g and g is a free element in S.

Proof. Let q ∈ ω and let τ ∈ F n,m
q be a satisfiable normal form. Then there is a concrete Kn-

atom structure Sq and an evaluation of the free variables ι such that (Sq, fq, ι) |= τ , for some

fq ∈ Sq. For every element g ∈ Sq, let deg(g) = q and let tag(g) be the unique term in F n,m
q

such that (Sq, g, ι) |= tag(g). Therefore, Sq is a consistent concrete (Kn, q)-atom structure and

there exists a regular element, fq, with degree q and label τ . Suppose that U is the base of Sq.

Suppose that fq = (r0, . . . , rn−1). Let U0, . . . , Un−1 be mutually disjoint sets such that each

of which is disjoint from U and has the same size of U \ Rng(fq). Pick brand new n-many

different nodes s0, . . . , sn−1. Let j ∈ n be arbitrary. Let

ψjq−1 : U → Uj ∪ {s0, . . . , sj} ∪ {rj+1, . . . , rn−1}

be any bijection such that, for every i ∈ n, ψjq−1(ri) = si if i ≤ j and ψjq−1(ri) = ri if i > j.

Set Sjq−1 = {(ψjq−1(u0), . . . , ψjq−1(un−1)) : (u0, . . . , un−1) ∈ Sq}.

Clearly, Sjq−1 is a concrete Kn-atom structure that is isomorphic to Sq via the component

wise extension ψ̂jq−1 of the bijection ψjq−1. Extend the functions deg and tag as follows. Let

g ∈ Sjq−1, suppose that h ∈ Sq is the inverse image of g under the isomorphism ψ̂jq−1. If g ∈ Sq,
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keep its label and degree, i.e., deg(g) = deg(h) = q and tag(g) = tag(h). If g 6∈ Sq then let

deg(g) = q − 1 and let tag(g) be the unique term in F n,m
q−1 such that (Sq, h, ι) |= tag(g).

Sn−1
q−1

S0
q−1

Sq

Finally, let Sq−1 = Sq
⋃
{Sjq−1 : j ∈ n}. Clearly, Sq−1 is a degree consistent concrete

(Kn, q)-atom structure. Indeed, every element of Sq−1 has degree either q or q − 1. Moreover,

the element fq−1 := ψ̂n−1
q−1 (fq) = (s0, . . . , sn−1) ∈ Sn−1

q−1 is a regular element of degree q − 1

that is connected to fq via the zigzag (0, . . . , n− 1).

Let Uq−1 be the base of Sn−1
q−1 and let V be the base of Sq−1. We extend Sq−1 to Sq−2 by

adding n-many isomorphic copies of Sn−1
q−1 (copies of Sq) in a similar way. Let V0, . . . , Vn−1

be mutually disjoint sets such that each of which is disjoint from V and has the same size of

Uq−1 \Rng(fq−1). Pick brand new n-many different nodes z0, . . . , zn−1. Let j ∈ n be arbitrary.

Let

ψjq−2 : Uq−1 → Vj ∪ {z0, . . . , zj} ∪ {sj+1, . . . , sn−1}

be any bijection such that, for every i ∈ n, ψjq−1(si) = zi if i ≤ j and ψjq−1(si) = si if

i > j. Set Sjq−2 = {(ψjq−2(u0), . . . , ψjq−2(un−1)) : (u0, . . . , un−1) ∈ Sn−1
q−1 }. Again, Sjq−2 is a

concrete Kn-atom structure that isomorphic to Sn−1
q−1 via the component wise extension ψ̂jq−2 of

the bijection ψjq−2 and, of course, isomorphic to Sq via the composition ϕjq−2 := ψ̂jq−2 ◦ ψ̂n−1
q−1 .

Extend deg and tag as follows. Let g ∈ Sjq−2, suppose that h ∈ Sq is the inverse image of

g under the isomorphism ϕjq−2. If g ∈ Sn−1
q−1 , keep its label and degree. If g 6∈ Sn−1

q−1 then let

deg(g) = q − 2 and let tag(g) be the unique term in F n,m
q−2 such that (Sq, h, ι) |= tag(g). The

structure Sq−2 = Sq−1

⋃
{Sjq−2 : j ∈ n} is a degree consistent concrete (Kn, q)-atom structure,
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because the bases of Sq and the base of Sn−1
q−1 are disjoint, so there are no neighboring elements

of degree q and q − 2. The element fq−2 := ψ̂n−1
q−2 (fq−1) = (z0, . . . , zn−1) ∈ Sn−1

q−2 is a regular

element of degree q − 2 that is connected to fq via the zigzag (0, . . . , n− 1, 0, . . . , n− 1).

Inductively, we get a sequence of concrete Kn-atom structures Sq ⊆ . . . ⊆ S0 with a

sequence of elements (fq, . . . , f0) such that: For every k ∈ q + 1,

(a) Sk is a degree consistent concrete (Kn, q)-atom structure and tag(fq) = τ .

(b) fk ∈ Sk is a regular element of degree k and there is a zigzag of finite length that connects

both fq and fk.

(c) For every i, j ∈ n and every l ∈ q + 1, if base(Sik) ∩ base(S
j
l ) 6= ∅ then there exists a

bijection ψ : base(Sik) → base(Sjl ) that fixes the elements in this intersection such that

the point-wise extension of ψ, ψ̂ : Sik → Sjl is an isomorphism and, for every g ∈ Sik,

(Sjl , ψ̂(g)) |= tag(g).

It remains to prove that S0 is the desired atom structure, i.e., it remains to prove that it is label

consistent with the labeling tag. Toward this end, we introduce the tagl’s of the nodes in S0 as

follows. For every l ∈ q+1 and every g ∈ S0, define tagl(g) = tag(g) if l ≥ deg(g) and define

tagl(g) to be the unique form in F n,m
l such that Kn |= tag(g) ≤ tagl(g) if l ≤ deg(g). To

prove the label consistency, it is enough to prove the following. For every l ∈ q + 1 and every

g ∈ S0, (S0, g) |= tagl(g). We use induction on l. For l = 0, it is clear that (S0, g) |= tag0(g),

for every g ∈ S0. Suppose that for some l ∈ q and for every g ∈ S0, (S0, g) |= tagl(g).

Let g ∈ S0. If deg(g) ≤ l, then (S0, g) |= tagl(g) = tagl+1(g). So suppose that deg(g) > l.

Let i ∈ n and let σ ∈ F n,m
l . We have to show that

σ ∈ subn,mi (tagl+1(g)) ⇐⇒ ∃h ∈ S0 (g ≡i h and (S0, h) |= σ).

Suppose that deg(g) = k, that means that g appeared for the first time in Sjk, for some j ∈ n.

Suppose that σ ∈ subn,mi (tagl+1(g)). Recall that Sjk is isomorphic to Sq (the original atom

structure satisfying τ ), then there exists a node h ∈ Sjk such that h ≡i g and tagl(h) = σ.

Then we are done by the induction hypothesis. Conversely, suppose that ∃h ∈ S0 such that

g ≡i h and (S0, h) |= σ. Suppose that h first appears in some Szp for some p ∈ q + 1 and
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some z ∈ n. Then Rng(g) \ {gi} = Rng(h) \ {hi} ⊆ base(Sjk−1) ∩ base(Szp). Therefore,

by (c) above, there exists a bijection ψ : base(Szp) → base(Sjk−1) that fixes the elements of

the intersection base(Sjk−1) ∩ base(Szp) and the point-wise extension ψ̂ : Szp → Sjk−1 is an

isomorphism with (Sjk−1, ψ̂(h)) |= tag(h). Then h̄ ≡i h ≡i g and tagl(h̄) = tagl(h) = σ,

where h̄ := ψ̂(h). But tagl(h̄) ∈ subn,mi (tagl+1(g)), otherwise (Sjk−1, g) 6|= tag(g). Therefore,

σ ∈ subn,mi (tagl+1(g)), as desired.

Thus, we can use the above lemma to prove that there are no atoms below δ in the non-

atomic free algebras. From now on throughout this section, suppose that m ≥ 1, n ≥ 3 or

K ∈ {Crs,D, P}. Before proving that the part below the co-diagonal in the free algebra

FrmKn contains no atoms, we prove that it contains infinitely many different elements.

Proposition 1.4.8. Let n ≥ 2 and m ≥ 0 be finite ordinals and let K ∈ {Crs,D, P,G}.

Suppose that n 6= 2, m 6= 0 or K 6= G, then there are infinitely many (mutually disjoint) non

zero elements below the co-diagonal δ in the free algebra FrmKn.

Proof. We divide the proof into four cases as follows.

Case 1: Suppose that m ≥ 1. Then one can find two normal forms δ0, δ1 ∈ F n,m
0 such that

Kn |= 0 6= δ0 ≤ δ, Kn |= 0 6= δ1 ≤ δ and Kn |= δ0 · δ1 = 0. Inductively, we define

infinitely many distinct terms σ0, σ1, . . . as follows. Define σ0 = δ0 · −c0δ1. Let i ∈ ω be

such that i ≥ 1. If i is even, define σi = δ0 · c0σi−1. If i is odd, define σi = δ1 · c1σi−1.

Then, we define infinitely many disjoint elements below δ as follows. Define τ0 = σ0

and, for every finite k ≥ 1, define τk =
∏
{−σi : i ∈ k} · σk. Hence, for every i, j ∈ ω,

FrmKn |= τi · τj = 0 if i 6= j. Therefore, it remains to prove that FrmKn 6|= τk = 0, for

every k ∈ ω.

Let u0, u1, . . . be infinitely many distinct positive numbers and let v0, . . . , vn−3 be a string

of distinct negative numbers of length n − 2 (note that this string is empty if n = 2).

For every i ∈ ω, set Vi = nRng(fi) where fi := (ui, ui+1, v0, . . . , vn−3) if i is even

and fi := (ui+1, ui, v0, . . . , vn−3) if i is odd. Let k ∈ ω be arbitrary but fixed. Let

Sk := V0 ∪ · · · ∪ Vk and define the evaluation ιk as follows. For every i ∈ m, let

ιk(xi) = {fj : j is odd and xi ∈ colorn,m(δ1), or, j is even and xi ∈ colorn,m(δ0)}.
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It is easy to check that, Sk is concrete Kn-atom structure and (Sk, fk, ιk) |= τk (See page

39). Therefore, τk is a non-zero element in the free algebra FrmKn.

Case 2: Suppose thatK ∈ {Crs,D}. Let λ := d01 ·−c1δ, σ0 = δ ·c0λ and λ0 = d01 ·c1σ0. For

every finite i ≥ 1, define σi = δ · c0λi−1 and λi = d01 · c1σi. The terms σi’s are distinct

in FrmKn, we give the disjoint terms as follows. Let τ0 = σ0 and, inductively, for every

finite k ≥ 1, let τk =
∏
{−σi : i ∈ k} ·σk. Clearly, the terms τ0, τ1, . . . are disjoint in the

free algebra FrmKn. It remains to show that, for every k ∈ ω, FrmKn 6|= τk = 0.

Let u0, u1, . . . be infinitely many distinct positive numbers and let v0, . . . , vn−3 be a string

of distinct negative numbers of length n− 2 (empty string if n = 2). For every i ∈ ω, let

fi := (ui, ui+1, v0, . . . , vn−3), let gi := (ui, ui, v0, . . . , vn−3) and set

Vi = {fi ◦ ρ : ρ ∈ nn is not a bijection}.

Let k ∈ ω be arbitrary but fixed. Let Sk = V0 ∪ · · ·Vk and let ιk be any evaluation of the

free variables (if any). It is not hard to check that, Sk is concrete Kn-atom structure and

(Sk, fk, ιk) |= τk (See page 39). Therefore, FrmKn 6|= τk = 0, as desired.

Case 3: Suppose that K ∈ {Crs, P}. Let χ0 := δ · −c0d01 · −c1d01, χ1 := δ · c0d01 · −c1d01,

χ2 := δ · c0d01 · c1d01 and χ3 := δ · −c0d01 · c1d01. Let σ0 := χ0 · −c0(δ · c1d01) and, for

every finite k ≥ 1, define σk := χi · cjσk−1, where i = k (mod 4) and j = k (mod 2).

The infinitely many disjoint terms are given as follows. Let τ0 = σ0 and, inductively, for

every finite k ≥ 1, let τk =
∏
{−σi : i ∈ k} · σk. We need to show that, for every k ∈ ω,

FrmKn 6|= τk = 0.

Let u0, u1, . . . be infinitely many distinct positive numbers and let v0, . . . , vn−3 be a

string of distinct negative numbers of length n − 2 (empty if n = 2). Let i ∈ ω.

If i = 0 (mod 2), define fi := (ui, ui+1, v0, . . . , vn−3). If i = 1 (mod 2), define

fi := (ui, ui−1, v0, . . . , vn−3). If i = 2, 3 (mod 4), define gi := (ui, ui, v0, . . . , vn−3). If

i = 0, 1 (mod 4), define gi = ∅. Set Vi = {gi ◦ ρ, gi+1 ◦ ρ, fi ◦ ρ : ρ ∈ nn is a bijection}.

Let k ∈ ω be arbitrary but fixed. Let Sk = V0 ∪ · · ·Vk and let ιk be any evaluation of the

free variables (if any). It is not hard to check that, Sk is concrete Kn-atom structure and
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(Sk, fk, ιk) |= τk (See page 39). Therefore, FrmKn 6|= τk = 0.

Case 4: Suppose that n ≥ 3. Let λ0 := d02 · −c2δ, β0 := d02 · c1λ0 and σ0 := δ · c0β0. For

every finite i ≥ 1, define λi = d02 · c2σi−1, βi = d02 · c1λi and σi = δ · c0βi. We purpose

the following infinitely many elements below δ. Let τ0 = σ0 and, inductively, for every

finite k ≥ 1, let τk =
∏
{−σi : i ∈ k} · σk. We need to show that, for every k ∈ ω,

FrmKn 6|= τk = 0.

Let u0, v0, u1, v1, . . . be infinitely many distinct positive numbers and let w0, . . . , wn−1

be n many distinct negative numbers. Let f0 := (w0, . . . , wn−1), g0 = f0 ◦ [0/2] and

h0 = [g0]1u0 . For every finite i ≥ 1, let fi = [h0]2vi−1
, gi = fi ◦ [0/2] and hi = [gi]

1
ui

. Let

k ∈ ω be arbitrary but fixed. Set Sk = nRng(f0) ∪ · · · ∪ nRng(fk) ∪ nRng(hk). One

can easily see that Sk is concrete Kn-atom structure and for any evaluation of the free

variables (if any) ιk, (Sk, f0, ιk) |= τk (See page 39). Therefore, FrmKn 6|= τk = 0.

Definition 1.4.9. For every finite k ≥ 1 and every β ∈ kn, define a new operator Cβ in the

language cyln such that Cβ := cβ0cβ1 · · · cβk−1
.

We are ready now to prove that the free algebra FrmKn is not atomic. The idea goes as

follows. For any normal form Kn |= 0 6= τ ≤ δ, we find a different term and a sequence of

finite length β such that Kn |= 0 6= σ ≤ δ and Kn 6|= τ · −cβσ = 0. Then we use lemma 1.4.7

to build a structure A ∈ Kn in which A 6|= τ · cβσ = 0. We use the finite base property for the

class Kn that was proved in [AHN99].

Proposition 1.4.10. Let n ≥ 2, m ≥ 0 be finite ordinals and let K ∈ {Crs,D, P,G} be such

that n 6= 2, m 6= 0 or K 6= G. There is no atom below the co-diagonal δ in the free algebra

FrmKn.

Proof. Let q ∈ ω and let τ ∈ F n,m
q be a satisfiable normal form such that Kn |= 0 6= τ ≤ δ.

By [AHN99], there exists a finite concrete Kn-atom structure S and an evaluation ι of the free

variables such that (S, f, ι) |= τ for some f ∈ S. Since S is finite, by theorem 1.1.2 (iii) and

proposition 1.4.8, there exists a satisfiable normal form σ such that Kn |= 0 6= σ ≤ δ and
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0 1

u0

u1

u2

u3

Case 1: (S3, f3, ι3) |= τ3

0 1

u0

u1

u2

u3

Case 2: (S3, f3, ι3) |= τ3

0 1

u0

u1

u2

u3

u4

u5

Case 3: (S5, f5, ι5) |= τ5

0 1 2

w0

w1

w2

u0

v0

u1

Case 4: (S2, f0, ι2) |= τ2
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(S, g, ι) 6|= σ for every g ∈ S. Therefore, for every finite length sequence α of elements from

n, we have (S, f, ι) |= τ.− Cασ, i.e.,

Kn 6|= τ.− Cασ = 0. (1.13)

Suppose that σ ∈ F n,m
q∗ for some q∗ ∈ ω. By lemma 1.4.7, there are a consistent concrete

(Kn, q)-atom structure Sτ and a consistent concrete (Kn, q
∗)-atom structure Sσ (without loss of

generality we can assume that they are disjoint) such that there exist f, f ∗ ∈ Sτ and g, g∗ ∈ Sσ

satisfy the followings.

• (Sτ , f) |= τ and (Sσ, g) |= σ.

• f ∗ is free element and it is connected to f by a finite zigzag in Sτ .

• g∗ is free element and it is connected to g by a finite zigzag in Sσ.

Sτ Sσ

f ∗
•

g∗
•

•

•

•

•

•

•

• •

•

• •
f g

•

•

•

•

•

•

•

•

Suppose that f ∗ = (f0, . . . , fn−1) and g∗ = (g0, . . . , gn−1). Let h0 = [f ∗]g00 and, for every

i ∈ {1, . . . , n− 1}, let hi = [hi−1]gii . Note that hn−1 = g∗. Define

Sbridge =
⋃
{nRng(hi) : i ∈ n− 1}.

Let S ′ = Sτ ∪ Sbridge ∪ Sσ. Since both Sτ and Sσ are concrete Kn-atom structures, then S is

concrete Kn-atom structure as well. Define the evaluation ι as follows. For every i ∈ m, let
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ι(xi) = {h ∈ Sτ ∪ Sσ : xi ∈ colorn,m(tag(h))}. Then (By a very similar argument to the one

used in lemma 1.4.7. The nodes that don’t have degrees and labels will not disturb the prove,

indeed they are connected to nodes of degree 0 only.) we have (S ′, f, ι) |= τ and (S ′, g, ι) |= σ.

Moreover, by the construction there is a finite length sequence β of elements from n such that

f ≡β g. That means, (S ′, f, ι) |= τ · Cβσ. Hence,

Kn 6|= τ · Cβσ = 0. (1.14)

By equations 1.13 and 1.14, τ is not an atom in FrmKn. Recall that τ was arbitrary satisfiable

normal form below the co-diagonal δ, therefore there is no atom below δ in the free algebra

FrmKn.

In the next section, we give structural descriptions of these free algebras from the point of

view of atoms.

§1.5 On the atoms in the free algebra FrmKn

In the theory of cylindric algebras, it is well known that there is a connection between the

zero-dimensional elements and the atoms in the free cylindric algebras. Indeed, many zero-

dimensional elements in the free cylindric algebras are in fact atoms (c.f. [HMT71, 1.10.3(i)]).

Here, we try to investigate the analogous connection for the class Kn. Let A ∈ Kn, an element

a ∈ A is said to be zero-dimensional element if ∆(a) := {i ∈ n : A |= cia 6= a} = ∅, i.e., if it

is closed under all cylindrifications.

Proposition 1.5.1. Let n ≥ 2 be finite and let K ∈ {Crs,D, P,G}. Suppose that A ∈ Kn is

generated by Y . Let a ∈ A be a non-zero zero-dimensional element such that either a ≤ dij or

a ≤ −dij and either a ≤ y or a ≤ −y for all i, j ∈ n and all y ∈ Y . Then a is an atom in A.

Proof. Suppose that A, a ∈ A are as required above. To prove that a is an atom in A, it is

enough to prove the following. For every b ∈ A, we have

a ≤ b or a ≤ −b. (1.15)

41

C
E

U
eT

D
C

ol
le

ct
io

n



We prove (1.15) by induction. If b ∈ {dij : i, j ∈ n}∪Y , then (1.15) holds by the assumptions.

Suppose that (1.15) holds for some b1, b2 ∈ A. Clearly, the induction step goes smoothly for

the Boolean operations, that is (1.15) holds for b1 · b2, b1 + b2 and −b1. Let k ∈ n, we need

only to check that (1.15) holds for ckb1. The operator ck is complemented operator, that is

ck − cka = −cka. But a is zero-dimensional, i.e., cka = a. Thus, ck − a = −a. Suppose that

a ≤ b1, then a = cka ≤ ckb1 because ck is an additive operator. Suppose that a ≤ −b1, or

equivalently, b1 ≤ −a. Therefore, ckb1 ≤ ck − a = −a and a ≤ −ckb1, as desired.

Now, we give some zero-dimensional elements in FrmKn that are also atoms. This shows

that the free algebra FrmKn is not atomless. An α ∈ Dn,m{−1, 1} is said to be equalizer if

α(dij) = 1 for every i, j ∈ n. Let α ∈ Dn,m{−1, 1} be an equalizer, define

aα :=
∏
{−ck −Dα

n,m : k ∈ n}.

Proposition 1.5.2. Let n ≥ 2 and m ≥ 0 be finite and let K ∈ {Crs,D, P,G}. Then, for any

equalizer α ∈ Dn,m{−1, 1}, the term aα defined above is an atom in the free algebra FrmKn.

Proof. Let α ∈ Dn,m{−1, 1} be an equalizer and let aα be as defined above. It is not hard to

see that FrmKn |= aα 6= 0. Let i, j ∈ n and let k ∈ {i, j}. Since α is an equalizer, then we

have FrmKn |= Dα
n,m ≤ dij . Consequently, FrmKn |= aα ≤ −ck −Dn,m ≤ −ck − dij ≤ dij .

That means, FrmKn |= aα · dij = aα. It is well known that Kn |= (∀x) ck(x · dij) · dij = x · dij

(it is one of the axioms proposed by Andréka for the class Crsn that contains Kn by definition,

moreover, one can easily check that it is true by the same argument used in proposition 1.5.3

below). Thus, FrmKn |= ckaα = ckaα · dij + ckaα · −dij = aα + 0 = aα. Therefore, aα is an

atom in FrmKn, by proposition 1.5.1, as desired.

The following proposition is new in the theory of relativized cylindric algebras. We know

that the algebras in the class Kn don’t need to obey the commutativity axiom of the cylindri-

fications, however, the following proposition shows that they obey a weaker version of this

axiom.

Proposition 1.5.3. Let n ≥ 2 be finite and let K ∈ {Crs,D, P,G}. Let i, j ∈ n, then

Kn |= cicj(−dij + x) = cjci(−dij + x).
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Proof. Let A ∈ Kn. Without loss of generality, we can assume that A is a concrete algebra,

i.e., a subalgebra of a complex algebra over a concrete Kn-atom structure. Let x ∈ A and let

f = (f0, . . . , fn−1) ∈ cicj(−dij + x). If f(i) 6= f(j), then f ∈ cjci(−dij + x). Assume that

f(i) = f(j), then there exists u such that f iu ∈ cj(−dij+x). If u = f(i), then f ∈ cj(−dij+x)

and we are done. If u 6= f(i), then fui ∈ −dij , hence f ∈ ci(−dij +x), i.e., f ∈ cjci(−dij +x)

as desired.

Let d :=
∏
{−ck − dij : i ∈ j ∈ n, k ∈ n}. By proposition 1.5.3, for every τ ∈ Tmm,cyln ,

one can see that both d · τ and −(d · τ) are zero-dimensional elements in FrmKn. Therefore,

both RldFrmKn and Rl−dFrmKn are homomorphic images of FrmKn and

FrmKn
∼= RldFrmKn ⊕Rl−dFrmKn.

This isomorphism can be easily checked via ψ : (∀τ ∈ Tmm,cyln)τ 7→ (τ · d) + (τ · −d).

The algebra RldFrmKn is finite, by proposition 1.5.2, and +-generated by the terms aα’s,

for the equalizers α’s, because d =
∑
{aα : α ∈ {−1,1}Dm is an equalizer}. By proposi-

tion 1.2.2, FrmCrs2 is decomposed into a finite algebra RldFrmCrs2 and an atomless algebra

Rl−dFrmCrs2. We show that the same also holds for non atomic FrmKn when K ∈ {D,G}

(Fr0G2 is excluded).

Proposition 1.5.4. Let n ≥ 2 and m ≥ 0 be finite and let K ∈ {D,G}. Suppose that n 6= 2,

n 6= 0 or K 6= G, then there is no atom below −d in the free algebra FrmKn. Hence, FrmKn

contains only finitely many atoms.

Proof. Suppose that K ∈ {D,G} and the free algebra FrmKn is not atomic. Let q ∈ ω be such

that q ≥ 1 and let τ ∈ F n,m
q be a satisfiable normal form such that Kn |= 0 6= τ ≤ −d. We

prove that τ is not an atom in FrmKn. Let S be a finite concrete Kn-atom structure and let ι

be an evaluation such that (S, f, ι) |= τ for some f ∈ S. Since S is finite, then (by proposition

1.4.8) there exists a satisfiable normal form σ such that Kn |= 0 6= σ ≤ δ and, for every finite

length sequence α of elements from n, we have (S, g, ι) 6|= τ · Cασ for every g ∈ S, i.e.,

Kn 6|= τ.− Cασ = 0. (1.16)
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We define another concreteKn-atom structure, in the same spirit of lemma 1.4.7, as follows.

Define Sq := S and for every h ∈ Sq, define deg(h) = q and let tag(h) be the unique normal

form of degree q such that (S, h, ι) |= tag(h). Clearly Sq is a consistent concrete (Kn, q)-atom

structure. Without loss of generality, we may assume that K |= τ ≤ c0 − d01. Therefore, there

exists g ∈ Sq such that g ≡0 f and g0 6= g1. Since K ∈ {D,G}, then both (g0, . . . , g0) and

(g1, . . . , g1) are in Sq. We may assume that f 6= (g0, . . . , g0). Then gq := (g0, . . . , g0) is a

regular elements of degree q that is connected to f by a zigzag of finite length.

Let Uq be the unit of Sq and let V be any set such that V ∩ Uq = ∅ and | V |=| Uq \ {g0} |.

Let ψq−1 be a bijection between Uq and V ∪ {g0} such that ψq−1(g0) = g0. Set,

Sq−1 := {(ψq−1(h0), . . . , ψq−1(hn−1)) : (h0, . . . , hn−1) ∈ Sq}.

Clearly, Sq−1 is a concrete Kn-atom structure that is isomorphic to Sq(= S) via the component

wise extension ψ̂q−1 of ψq−1. Extend deg and tag as follows. Let h ∈ Sq−1, suppose that

h̄ ∈ Sq is the inverse image of h under the isomorphism ψ̂q−1. If h ∈ Sq, keep its label and

degree, i.e., deg(h) = deg(h̄) = q and tag(h) = tag(h̄). If h 6∈ Sq then let deg(h) = q− 1 and

let tag(h) be the unique term in F n,m
q−1 such that (S, h̄, ι) |= tag(h). Thus, Sq−1 is a consistent

concrete (Kn, q)-atom structure and ψ̂q−1(g1, . . . , g1) is a regular elements of degree q− 1 that

is connected to f by a finite length zigzag.

Let Uq−1 be the unit of Sq−1 and suppose that ψ̂q−1(g1, . . . , g1) = (w, . . . , w). Let W be

any set such that W ∩Uq = ∅, W ∩Uq−1 = ∅ and | W |=| Uq−1 \{w} |. Let ψq−2 be a bijection

between Uq−1 and W ∪ {w} such that ψq−2(w) = w. Set,

Sq−2 := {(ψq−2(h0), . . . , ψq−2(hn−1)) : (h0, . . . , hn−1) ∈ Sq−1}.

Clearly, Sq−2 is a concrete Kn-atom structure that is isomorphic to Sq−1 via the component

wise extension ψ̂q−2 of ψq−2 and isomorphic to S via the composition ψ̂q−2 ◦ ψ̂q−1. Extend deg

and tag as follows. Let h ∈ Sq−2, suppose that h̄ ∈ Sq is the inverse image of h under the

isomorphism ψ̂q−2 ◦ ψ̂q−1. If h ∈ Sq−1, keep its label and degree, i.e., deg(h) = deg(h̄) = q−1

and tag(h) = tag(h̄). If h 6∈ Sq−1 then let deg(h) = q − 2 and let tag(h) be the unique term

in F n,m
q−2 such that (S, h̄, ι) |= tag(h) satisfies. Thus, Sq−2 is a consistent concrete (Kn, q)-atom
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structure and ψ̂q−2(ψ̂q−1(g0, . . . , g0)) is a regular elements of degree q − 2 that is connected to

f by a finite length zigzag.

Inductively, we get a sequence of consistent (Kn, q)-atom structures Sq, . . . , S0. Finally,

let Sτ =
⋃
{Sk : k ∈ q + 1}. One can easily check that Sτ is a consistent concrete (Kn, q)-

atom structure and there exist f, f ∗ ∈ Sτ such that (Sτ , f) |= τ , f is connected to f ∗ via a

finite length zigzag and f ∗ is a free element. Remember the form σ and (1.16). Suppose that

σ ∈ F n,m
q∗ , for some q∗ ∈ ω. By lemma 1.4.7, let Sσ be a consistent concrete (Kn, q

∗)-atom

structure such that Sτ ∩Sσ = ∅, there exist h, h∗ ∈ Sσ such that (Sσ, h) |= σ, h is connected to

h∗ via a finite length zigzag and h∗ is a free element.

Suppose that f ∗ = (u, . . . , u) and h∗ = (h0, . . . , hn−1). Let y0 = [f ∗]h00 and, for every

i ∈ {1, . . . , n− 1}, let yi = [yi−1]hii . Note that yn−1 = h∗. Define

Sbridge =
⋃
{nRng(yi) : i ∈ n− 1}.

Let S∗ = Sτ ∪ Sbridge ∪ Sσ. Since both Sτ and Sσ are concrete Kn-atom structures, then S

is concrete Kn-atom structure as well. Also, it is not hard to check that, for some evaluation

ι∗, (S∗, f, ι∗) |= τ and (S∗, h, ι∗) |= σ and there is a finite length zigzag connecting f and h.

Hence, there exists a finite length sequence β such that

Kn 6|= τ · Cβσ = 0. (1.17)

By equations 1.16 and 1.17, τ is not an atom in FrmKn as desired.

Surprisingly, although the analogue of the above proposition is true for FrmCrs2, it is

not true for FrmKn when n ≥ 4 and K ∈ {Crs, P}. Indeed, in this case, the subalgebra

Rl−dFrmKn contains infinitely many atoms. The reason for this is that the assumption n ≥ 4

that allows us to construct a zigzag of elements such that in all of them two specific entries,

say the third and the forth entries, are identically equal to some entity and, no matter how we

continue this zigzag, we cannot add a co-diagonal sequence (that is a sequence whose entries

are all different from each other). To prove this, we need the following definitions.

Definition 1.5.5. Let S be a concrete Kn-atom structure and let ι be an evaluation of the free

variables. For every k ∈ ω and every f ∈ S, let tagk(S, f, ι) be the unique term in F n,m
k such
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that (S, f, ι) |= tagk(S, f, ι).

Definition 1.5.6. Let S1, S2 be two concrete Kn-atom structures and let ι1, ι2 be two evalua-

tions of the free variables into S1, S2, respectively. A relation Θ ⊆ S1 × S2 is said to be a

tag-homomorphism between (S1, ι1) and (S2, ι2) if and only if the followings hold for every

(f, g) ∈ Θ, every i, j ∈ n and every k ∈ m.

1. (f(i) = f(j) ⇐⇒ g(i) = g(j)) and (f ∈ ι1(xk) ⇐⇒ g ∈ ι2(xk)).

2. If there is f ∗ ∈ S1 such that f ≡i f ∗, then there exists g∗ ∈ S2 such that g ≡i g∗ and

(f ∗, g∗) ∈ Θ.

3. If there is g∗ ∈ S2 such that g ≡i g∗, then there exists f ∗ ∈ S1 such that f ≡i f ∗ and

(f ∗, g∗) ∈ Θ.

Lemma 1.5.7. Let S1, S2 be two concrete Kn-atom structures and let ι1, ι2 be two evaluations

of the free variables into S1, S2, respectively. Let Θ ⊆ S1×S2 be a tag-homomorphism between

(S1, ι1) and (S2, ι2). Then for every (f, g) ∈ Θ and every k ∈ ω, we have

tagk(S1, f, ι1) = tagk(S2, f, ι2).

Proof. By induction on the degrees of the normal forms. The base of the induction follows from

condition 1 of the above definition. For the induction step, it follows directly from conditions

2 and 3 together with the induction hypothesis.

Proposition 1.5.8. Let n ≥ 4 and m ≥ 0 be finite and let K ∈ {Crs, P}, then there are

infinitely many atoms below −d in the free algebra FrmKn.

Proof. Let h0 := (0, . . . , 0) ∈ n{0}. For every finite j ≥ 1, define hj inductively as follows. If

j is even, let hj = [hj−1]0j . If j is odd, let hj = [hj−1]1j . Let k ∈ ω be arbitrary but fixed. let

Sk = {hj : j ∈ k + 1} ∪ {hj ◦ ρ : j ∈ k + 1, ρ ∈ nn is bijection and K = P}.

(The condition K = P in the second part of Sk is not necessary, i.e., if we omit it we get more

atoms in FrmCrsn.) Fix any arbitrary evaluation ιk and define τk := tag2k+1(Sk, h0, ιk). One
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can easily check that, for every j ∈ ω\{k}, (Sk, fk, ιk) |= τk ·−τj . Therefore, K |= τk ·τj = 0,

for every j ∈ ω.

We claim that the term τk is an atom in the free algebra FrmKn. Let S be a concrete Kn-

atom structure and let ι be an evaluation of the free variables. Suppose that there is h ∈ S such

that

(S, h, ι) |= τk = tag2k+1(Sk, h0, ιk). (1.18)

It is enough to prove the following. For every j ∈ ω, tagj(S, h, ι) = tagj(Sk, h0, ιk). We use

lemma 1.5.7, so we need to construct a tag-homomorphism Θ between (Sk, ιk) and (S, ι) such

that (h0, h) ∈ Θ. Inductively, define Θ0 = {(h0, h)} and suppose that we are given Θj for

some j ∈ k. Define Θj+1 as follows. Let Vj+1 := {f ∈ Sk : f 6∈ Dom(
⋃
i∈j+1 Θi)}. For every

(f, g) ∈ Vj+1 × S,

(f, g) ∈ Θj+1 ⇐⇒ ∃(f ∗, g∗) ∈ Θj and i ∈ n such that f ≡i f ∗, g ≡i g∗ and

tag2k−j(Sk, f, ιk) = tag2k−j(S, g, ι).

Let Θ =
⋃
{Θj : j ∈ k + 1}. Clearly, conditions 1 and 2 of the tag-homomorphisms are

guaranteed for Θ by (1.18). It remains to check condition 3. Let j ∈ k + 1 and let (f, g) ∈ Θj .

Suppose that there exists g∗ ∈ S and i ∈ n such that g∗ ≡i g and g∗ 6∈ Rng(
⋃
l≤j Θl). By

the definition of Θj , we have tag2k−j+1(S, g, ι) = tag2k−j+1(Sk, f, ιk). Therefore, there exists

f ∗ ∈ Sk such that f ≡i f ∗ and

tag2k−j(S, g
∗, ι) = tag2k−j(Sk, f

∗, ιk). (1.19)

If f ∗ 6∈ Dom(
⋃
l≤j Θl) then j < k and, by the definition of Θj+1, (f ∗, g∗) ∈ Θj+1. Suppose

that f ∗ ∈ Dom(Θl) for some l ≤ j. Thus, for every s < l, there is fs ∈ Sk such that

f0 = h0 and (without loss of generality) h0 ≡1 f1 ≡0 f2 ≡1 f3 ≡ · · · ≡ f ∗. Here is the

secrete of choosing τk to be of degree 2k + 1. By (1.19), for every s < l, there is gs ∈ S such

that g0 = h and h ≡1 g1 ≡0 g2 ≡1 g3 ≡ · · · ≡ g∗. It is not hard to check that, for every

s < l, (fs, gs) ∈ Θs. Hence, (f ∗, g∗) ∈ Θl which makes a contradiction. Therefore, Θ is a

tag-homomorphism between (Sk, ιk) and (S, ι), and, (h0, h) ∈ Θ, as desired.

The assumption n ≥ 4 is essential in the proof of the above proposition. If n = 3 and

47

C
E

U
eT

D
C

ol
le

ct
io

n



we construct τk, for some k ≥ 2, as above, one can easily find a satisfiable term below the

co-diagonal that is connected to τk by a sequence of finite length. Then the method used in

lemma 1.4.7 can be applied to prove that τk is not an atom in FrmKn.

Proposition 1.5.9. Let m ≥ 0 be finite. In the free algebra FrmP2, there is no atom below −d.

In each of the free algebras FrmCrs3 and FrmP3, there are only finitely many atoms below−d.

Proof. The method used in proposition 1.4.10 (and lemma 1.4.7) can be used again to show that

there are no atoms below −d in the free algebra FrmP2. For the other free algebras, we need

to consider all the possible cases of constructing a sub-unit that does not contain a co-diagonal.

Let V = {(0, 0, 0)}, V0 = {(1, 0, 0)}, V1 = {(0, 1, 0)} and V2 = {(0, 0, 1)}. For every i, j ∈ 3,

let Vij = Vi ∪ Vj and let V012 = V0 ∪ V1 ∪ V2. We claim the followings.

At(FrmCrs3) = {tag1(V, f, ι) : f ∈ V and ι any evaluation}

∪ {tag2(Vi, f, ι) : i ∈ 3, f ∈ Vi and ι any evaluation}

∪ {tag2(Vij, f, ι) : i, j ∈ 3, f ∈ Vij and ι any evaluation}

∪ {tag2(V012, f, ι) : f ∈ V012 and ι any evaluation}

∪ {tag3(V ∪ Vi, f, ι) : i ∈ 3, f ∈ V ∪ Vi and ι any evaluation}

∪ {tag3(V ∪ Vij, f, ι) : i, j ∈ 3, f ∈ V ∪ Vij and ι any evaluation}

∪ {tag3(V ∪ V012, f, ι) : f ∈ V ∪ V012 and ι any evaluation}.

At(FrmP3) = {tag1(V, f, ι) : f ∈ V and ι any evaluation}

∪ {tag2(V012, f, ι) : f ∈ V012 and ι any evaluation}

∪ {tag3(V ∪ V012, f, ι) : f ∈ V ∪ V012 and ι any evaluation}.

To prove the inclusions ⊇, one can use the tag-homomorphism method used in proposition

1.5.8. To prove the other inclusions, let k ∈ ω be such that k ≥ 3. Take any term τ ∈ F n,m
3 that

is not equal to any of the terms in the sets given on the right hand side. Then one can easily see

that there should be terms σk = σ, . . . , σ0 such that σ0 is below the co-diagonal and, for every

l ∈ k − 1, σl ∈ subj(σl+1) for some j ∈ n. Hence, one can build a structure satisfying τ and

has a free element as we did in lemma 1.4.7. Therefore, proposition 1.4.10 can be extended to

show that τ is not an atom.
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Let n ≥ 2 and m ≥ 0 be arbitrary finite ordinals and let K ∈ {Crs,D, P,G}. To describe

all the atoms in the free algebra FrmKn, one has to find all the possible ways of constructing a

zigzag such that, no matter how we extend it, it cannot contain a sequence that all of its entries

are different, i.e., it cannot contain a sequence that satisfies the co-diagonal.

We end this chapter by summarizing our results in this chapter. First, we would like to

indicate that the method used in this chapter was not used before to investigate the atomicity

of the free algebras. The secret key in this chapter is the normal forms and the structures that

satisfy the “gradually fading” constructions of these normal forms. This method is powerful

and we believe that it can be used to write simpler proofs of some known facts and/or to answer

some open problems. The following interesting result follows as a consequence of our method

in the former results. It might seem not so hard for the classes Dn and Gn, but it is surprising

for the classes Crsn and Pn.

Theorem 1.5.10. Let n ∈ ω and m ∈ ω be such that n ≥ 2. Let K ∈ {Crs,D, P,G}. The

free algebra FrmKn contains only finitely many zero-dimensional elements.

Proof. Recall the equalizers α’s and the atoms aα’s defined before proposition 1.5.2. We claim

that the set of all zero-dimensional elements in the free algebra FrmKn is:

{0, 1} ∪ {aα,−aα : α ∈ Dn,m{−1, 1} is an equalizer}.

In the proof of proposition 1.5.2, we proved that each of aα, for any equalizer α, is

zero-dimensional. The complementarity of the cylindrifications implies that −aα is zero-

dimensional too. It remains to prove that no other element in the free algebra FrmKn is zero

dimensional. Remember the co-diagonal element δ =
∏
{−dij : i ∈ j ∈ n}. Let τ ∈ Tmm,cyln ,

then we have one of the following cases:

(a) Suppose that FrmKn 6|= δ · τ = 0 and FrmKn 6|= δ · −τ = 0. Then there are normal forms

σ1 and σ2 such that FrmKn |= σ1 ≤ δ · τ and FrmKn |= σ2 ≤ δ · −τ . By the proof of

proposition 1.4.10, there is a concrete Kn-atom structure V , an evaluation ι and f, g ∈ V

such that (V, f, ι) |= δ · τ , (V, g, ι) |= δ ·−τ and f, g are connected by a finite length zigzag

f = h0, . . . , hl = g. Let k := min = {j ∈ l + 1 : (V, hj, ι) 6|= τ}. Clearly, such k

49

C
E

U
eT

D
C

ol
le

ct
io

n



exists because (V, hl, ι) 6|= τ and k ≥ 1. Since f = h0, . . . , hl = g is a zigzag, then there

exists i ∈ n such that hk−1 ≡i hk. Hence, (V, hk−1, ι) |= τ · ci − τ . Therefore, τ is not

zero-dimensional in FrmKn as desired.

(b) Suppose that FrmKn |= δ · τ = 0. Then FrmKn |= τ ≤ −δ =
∑
{dij : i ∈ j ∈ n}.

Suppose that there are i ∈ j ∈ n and k ∈ n such that FrmKn 6|= τ · ck − dij = 0, then

τ is not zero-dimensional as desired. Suppose that, for every i ∈ j ∈ n and every k ∈ n,

FrmKn |= τ · ck − dij = 0. Hence, FrmKn |= τ ≤ d :=
∏
{−ck − dij : i ∈ j ∈ n, k ∈ n}.

But, FrmKn |= d =
∑
{aα : α ∈ Dn,m{−1, 1} is an equalizer}. By proposition 1.5.2,

since all aα’s are atoms, there is an equalizer β ∈ Dn,m{−1, 1} such that FrmKn |= τ = aβ

as desired.

(c) Suppose that FrmKn |= δ · −τ = 0. By (b), there is an equalizer α ∈ Dn,m{−1, 1} such

that FrmKn |= τ = −aα as desired.

Let n ≥ 2 and m ≥ 0 be any two finite ordinals. In this chapter, we have shown the

followings.

• There are only finitely many zero-dimensional elements in the free algebra FrmKn.

• The free algebra Fr0G2 is finite, hence, atomic. Some of its atoms are zero-dimensional

while there are other atoms that are not zero-dimensional.

• The free algebras Frm+1G2, FrmGn+1, FrmDn, FrmP2 and FrmCrs2 are not atomic and

each of them contains only finitely many atoms. Every atom in these free algebras is

zero-dimensional. Each of these free algebras can be decomposed into a finite algebra

and an atomless algebra.

• The free algebras FrmCrsn+2 and FrmPn+2 are not atomic but each of them contains in-

finitely many atoms. In these free algebras only finitely many atoms are zero-dimensional

while infinitely many atoms are not zero-dimensional. Each of these algebras can be de-

composed into a finite algebra and a non atomic algebra that contains infinitely many

atoms.

50

C
E

U
eT

D
C

ol
le

ct
io

n



• The free algebras FrmCrs3 and FrmP3 are not atomic and each of them contains only

finitely many atoms. There are atoms in these free algebras that are zero-dimensional

and there are other atoms that are not zero-dimensional. Each of these free algebras can

be decomposed into a finite algebra and a non atomic algebra that contains only finitely

many atoms atoms.
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CHAPTER

2
Guarded fragment and FO with general

assignment models

The guarded fragment (GF) of first order logic was introduced by H. Andréka, J. van Benthem

and I. Németi in [AvBN98]. It is closely connected to first order logic (FO) with general

assignment models introduced by I. Németi [Ném86]. These logics were investigated by many

logicians and it was shown that they have a number of desirable properties, e.g. decidability

through finite model property. These logics are considered to be the most important decidable

versions of first order logic among the large number that have been introduced over the years.

They have applications in linguistics (dynamic semantics of natural language) and computer

science.

Gödel’s incompleteness property (GIP) fails for most of these logics (because they are de-

cidable) on countable languages. Weak Gödel’s incompleteness property (wGIP) holds for

most of these logics, too, but on infinite languages. We show that guarded fragment do not

have wGIP on finite languages, but both its solo-quantifier fragment and FO with general as-

signment models do have wGIP. On the other hand, we prove that FO with general assignment

models enriched with polyadic-quantifiers does not have wGIP on finite languages.

We assume familiarity with first order logic, but here we briefly recall the definitions that we

will use. By a (first order) language we understand a set of relation symbols each of which is

associated with a finite (positive) rank, together with a set of variables (of size at least 2). That

is, a language is L := 〈R,V〉 where R = {(Ri, rank(Ri)) : i ∈ β, 0 ∈ rank(Ri) ∈ ω ∩ α}

and V = {xi : i ∈ α} for some ordinals α ≥ 2, β. We put the restriction α ≥ 2 because

the results in this chapter are already known for the propositional logic, so we need to deal
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with logics that are different than the propositional logic. The restriction of having relation

symbols only of positive rank is not important, the relation symbols of rank 0 do not affect

(at least semantically) the logics under question. We say that L is finite, infinite, countable or

uncountable if α ∪ β is finite, infinite, countable or uncountable, respectively.

A relational FO-atom on L is a string of the form R(v0, . . . , vk−1) for some (R, k) ∈ R

and some v0, . . . , vk−1 ∈ V . An equational FO-atom on L is a string of the form u = v (where

= is the equality logical symbol) for some variables u, v ∈ V . A FO-atom on L is a relational

or an equational FO-atom on L. The set of the first order formulas (FO-formulas) on L is

defined recursively to be the smallest set that contains the FO-atoms on L such that, for any

FO-formulas ϕ, ψ and any variable u, the conjunction ϕ∧ψ, the disjunction ϕ∨ψ, the negation

¬ϕ and the existential quantification ∃uϕ are all FO-formulas. Let ϕ and ψ be any FO-formulas

on a language L. The formulas ∀viϕ, ϕ→ ψ and ϕ↔ ψ denote the usual abbreviations.

A (first order) model for the language L is a pair M = (M,RM) where M is a nonempty

set and RM = {RM ⊆ rank(R)M : (R, rank(R)) ∈ R}. Usually the old capital German

letters are used to denote the models and the corresponding capital Latin letters are used to

denote their underlying sets. An assignment of the variables V into the model M is a function

f ∈ VM that assigns for each variable an element ofM . The interpretations of the FO-formulas

are defined by induction on the their complexity as follows.

M, f |= u = v ⇐⇒ f(u) = f(v),

M, f |= R(v0, . . . , vk−1) ⇐⇒ (f(v0), . . . , f(vk−1)) ∈ RM,

M, f |= ϕ ∨ ψ ⇐⇒ M, f |= ϕ or M, f |= ψ,

M, f |= ϕ ∧ ψ ⇐⇒ M, f |= ϕ and M, f |= ψ,

M, f |= ¬ϕ ⇐⇒ M, f 6|= ϕ,

M, f |= ∃uϕ ⇐⇒ (∃g ∈ VM) [f ≡u g and M, g |= ϕ].

Where, f ≡u g means f(v) = g(v) for all v ∈ V \ {u}. Let ϕ be any FO-formula on L.

The formula ϕ is said to be valid in M, in symbols M |= ϕ, if M, f |= ϕ for any assignment

f ∈ VM . The formula ϕ is said to be valid if N, g |= ϕ for any model N and any assignment
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g. The formula ϕ is said to be satisfiable if there is a model N for the language L and an

assignment g such that N, g |= ϕ. A FO-formula ψ is said to be a consequence of ϕ, in

symbols ϕ |= ψ, if N, g |= ϕ =⇒ N, g |= ψ, for every model N and every assignment g.

Let n ≥ 2 be any ordinal and let FO(n) be the collection of first order logics on languages

with exactly n-many variables. It was shown that FO(n) has several undesirable properties.

See [Göd29], [Chu36], [Mon69], [HMT71], [HMT85], [Sai90], [AvBN98] and [ACM+09].

(1) There is a finitely axiomatizable Hilbert-style system for FO(n) iff n = 2 or n ≥ ω.

(2) FO(n) has the finite model property if and only if n = 2.

(3) FO(n) is decidable if and only if n = 2.

(4) Craig’s interpolation and Beth definability fail for FO(n) if and only if n ∈ ω.

§2.1 Guarded fragment of first order logic

Roughly, the guarded fragment is a large part of first order logic in which quantification is

allowed only when it is bounded with atomic formulas. Let ϕ and ψ be any two FO-formulas

on L. We write ϕ(v1, . . . , vn) to indicate that the free variables of ϕ are among the variables

v1, . . . , vn. Let free(ϕ) denote the set of the variables that occur free in ϕ. For any finite tuple

of variables v̄ = v1, . . . , vk, let ∃v̄ϕ := ∃v1 · · · ∃vkϕ.

Definition 2.1.1 (Guarded fragment (GF)). Let L = 〈R,V〉 be any language. The set of GF-

formulas on L is defined recursively to be the smallest subset of the set of FO-formulas on L

that satisfies the followings.

(a) Any FO-atom on L is a GF-formula on L.

(b) If ϕ and ψ are GF-formulas on L, then ϕ ∧ ψ, ϕ ∨ ψ and ¬ϕ are GF-formulas on L.

(c) Let ϕ be a GF-formula on L and G be a FO-atom on L such that free(ϕ) ⊆ free(G).

Then, for any finite tuple v̄ ⊆ free(G), ∃v̄(G ∧ ϕ) is a GF-formula on L and such G is

called a suitable GF-guard for ϕ.
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As a dual of GF-guarded existential quantification we also get GF-guarded universal quan-

tification of the form ∀v̄(γ → ψ), where γ is a suitable GF-guard for ψ. The semantics of the

guarded logic GF on L is the standard semantics of FO on L.

Let n ≥ 2 be any ordinal and let GF (n) be the collection of the guarded fragments of

FO logics on languages that have exactly n-many variables. It turns out that in GF (n) many

of the undesirable properties of FO(n) disappear, see [AvBN95], [Grä99], [Mar01], [HO03],

[HM02] and [Hoo01].

(1) GF (n) has a finitely axiomatizable Hilbert-style system.

(2) GF (n) has finite model property.

(3) GF (n) is decidable.

(4) GF (n) has Craig’s interpolation if and only if n = 2. The modal interpolation and Beth

definability hold for GF (n).

A GF-sentence on a language L is a GF-formula on L that contains no free variable. For the

sake of simplicity, if a language L is specified then we rather use GF-formula and GF-sentence

instead of GF-formula on L and GF-sentence on L.

2.1.1 wGIP fails for GF on finite languages

Let L be any language. The notions satisfiable, valid, consequence, etc, are identical with the

standard corresponding notions for first order logic. For any GF-formula ϕ, we say that ϕ has

a GF-complete extension if there is GF-formula ψ such that ϕ ∧ ψ is satisfiable and, for any

GF-formula χ, either ϕ ∧ ψ |= χ or ϕ ∧ ψ |= ¬χ.

Theorem 2.1.2. Let L be a finite language. Each satisfiable GF-formula ϕ on L has a GF-

complete extension.

The above theorem says that GF has neither GIP nor wGIP on finite languages. The proof

of theorem 2.1.2 relies on the finite model property of guarded fragment [Grä99] and on the

presence of polyadic quantifiers ∃v1 . . . vn. In § 2.1.2, we show that in the “non-polyadic”
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fragment (or the solo-fragment) of GF, where only “monadic” quantifiers ∃v1 are available, the

theorem is not true anymore. We begin with some lemmas that seem to be interesting in their

own. Fix a finite language L = 〈R,V〉.

Let M be a finite model for L. The meaning of any GF-formula ϕ in M, denoted by ϕM,

is the set of assignments f for which ϕ is true in M at, i.e., ϕM = {f ∈ VM : M, f |= ϕ}.

Let us call two formulas equivalent if they have the same meaning. For each X ⊆ V and

GF-formula ϕ let us select a GF-formula ρ(ϕ,X) such that ρ(ϕ,X)M = ϕM, and further

free(ρ(ϕ,X)) ⊆ X if there is such a GF-formula. Let rep(ϕ) denote ρ(ϕ, free(ϕ)), we call it

the representative of ϕ. The main idea of the proof of Theorem 2.1.2 is to write up a sentence

∆(M) which contains enough information for proving that each GF-formula is equivalent to

its representative, below any suitable GF-guard.

Lemma 2.1.3. Let M be a finite model. There is a GF-sentence ∆(M) that is valid in M and

∆(M) |= γ → (ϕ↔ rep(ϕ)) for any GF-formula ϕ and suitable GF-guard γ for ϕ.

Proof. The set of representatives R(M) = {rep(ϕ) : ϕ is a GF-formula} is finite because

both M and V are finite, and so {ϕM : ϕ is a GF-formula} is also finite. We define the

GF-sentence ∆(M) as the conjunction of all the GF-sentences listed below, where G is any

FO-atom, ρ, ρ1, ρ2, ρ3, ρ4 ∈ R(M) are any representatives such that ρ3 and ρ4 are equivalent, ū

is a finite tuple of variables, γ′ and γ are GF-guards such that γ′ is a suitable GF-guard in the

GF-formula ∃ū(γ′ ∧ ρ), γ is a suitable GF-guard for the formula that it guards, e.g., in the first

line γ is a suitable GF-guard for G↔ rep(G), and v̄ is any enumeration of free(γ).

• ∀v̄[γ → (G↔ rep(G))],

• ∀v̄[γ → (¬ρ↔ rep(¬ρ))],

• ∀v̄[γ → ((ρ1 ∧ ρ2)↔ rep(ρ1 ∧ ρ2))],

• ∀v̄[γ → ((ρ1 ∨ ρ2)↔ rep(ρ1 ∨ ρ2))],

• ∀v̄[γ → (∃ū(γ′ ∧ ρ)↔ rep(∃ū(γ ∧ ρ)))],

• ∀v̄[γ → (ρ3 ↔ ρ4)].
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Each one of the above GF-formulas is indeed a GF-sentence (recall that v̄ is an enumeration

of free(γ) and γ contains all the free variables of the formula that it guards). There are only

finitely many such GF-sentences, because there are only finitely many GF-guards on the finite

language L and R(M) is finite. Hence, ∆(M) is a finite conjunction of GF-sentences, thus it

is also a GF-sentence. It is valid in M by the definition of the representative formulas. Now we

prove that ∆(M) is the desired GF-sentence. For every GF-formula ϕ we need to show that

∆(M) |= γ → (ϕ↔ rep(ϕ)), for all suitable GF-guard γ for ϕ. (2.1)

We prove this by induction on the complexity of the GF-formula ϕ. When ϕ is a FO-atom G,

then (2.1) holds by the first line in the definition of ∆(M).

Let ϕ = ¬ψ and let γ be any suitable GF-guard for ϕ. Note that γ is a suitable GF-guard for

ψ also. By the induction hypothesis (2.1) holds for ψ and γ, thus ∆(M) |= γ → (ψ ↔ rep(ψ)).

Then, by ϕ = ¬ψ,

∆(M) |= γ → (ϕ↔ ¬rep(ψ)).

By the second line in the definition of ∆(M) we have

∆(M) |= γ → (¬rep(ψ)↔ rep(¬rep(ψ)))

since γ is a suitable GF-guard for ¬rep(ψ) and rep(ψ) ∈ R(M). We have, by the definition of

the rep function, that rep(¬rep(ψ)) and rep(¬ψ) are equivalent, both are representatives and γ

is a suitable GF-guard for both, so by the last line in the definition of ∆(M) we have

∆(M) |= γ → (rep(¬rep(ψ)↔ rep(ϕ))).

Putting together the three displayed formulas show that (2.1) holds for ϕ. The induction step

goes in a similar way for all the other cases, too. We write out the proof for the last case.

Let ϕ be ∃ū(γ′ ∧ ψ) and let γ be a suitable GF-guard for ϕ. Note that γ is not necessarily

a suitable GF-guard for ψ. However, by the induction hypothesis (2.1) holds for ψ and γ′, thus

∆(M) |= γ′ → (ψ ↔ rep(ψ)), so

∆(M) |= γ → (ϕ↔ ∃ū(γ′ ∧ rep(ψ))).
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By the fifth line in the definition of ∆(M) we have

∆(M) |= γ → (∃ū(γ′ ∧ rep(ψ))↔ rep(∃ū(γ′ ∧ rep(ψ))))

since γ is a suitable GF-guard for the GF-formula ∃ū(γ′ ∧ rep(ψ)). Now, rep(∃ū(γ′ ∧ rep(ψ)))

and rep(∃ū(γ′ ∧ ψ)) are equivalent, both are representatives and γ is a suitable GF-guard for

both, so by the last line in the definition of ∆(M) we have

∆(M) |= γ → (rep(∃ū(γ′ ∧ rep(ψ)))↔ rep(ϕ)).

Thus we get that (2.1) holds for ϕ.

Lemma 2.1.4. Let M be a finite model for the language L and let f be an assignment of the

variables V into M . There is a GF-formula Γ(M, f) on L such that M, f |= Γ(M, f) and, for

any GF-formula χ on L, either Γ(M, f) |= χ or Γ(M, f) |= ¬χ.

Proof. Let M be a finite model for the language L and let f be an assignment of the variables V

into M . Recall the set R(M) of representatives in M. Let Σ be the set of all FO-atoms together

with all GF-formulas of form ∃ū(γ ∧ ρ) where ρ ∈ R(M) and γ is a suitable GF-guard for ρ,

and their negations. Then Σ is finite. Let ∆(M) be the GF-sentence given in lemma 2.1.3 for

the model M. Define

Γ(M, f) = ∆(M) ∧
∧
{σ ∈ Σ : M, f |= σ}.

It remains to show that for any GF-formula ϕ, either Γ(M, f) |= ϕ or Γ(M, f) |= ¬ϕ. We

use induction on the complexity of the GF-formulas. This is true for any FO-atom ϕ because

ϕ,¬ϕ ∈ Σ and either M, f |= ϕ or M, f |= ¬ϕ. Assume this true for some GF-formulas

ϕ, ψ. Then clearly it is true for ϕ ∧ ψ, ϕ ∨ ψ and ¬ϕ. Let γ be any suitable GF-guard for ϕ

and let χ = ∃ū(γ ∧ ϕ). We need to show that either Γ(M, f) |= χ or Γ(M, f) |= ¬χ. Let

χ′ := ∃ū(γ ∧ rep(ϕ)). By lemma 2.1.3, ∆(M) |= γ → (χ↔ χ′) and χ′,¬χ′ ∈ Σ. Thus either

Γ(M, f) |= χ or Γ(M, f) |= ¬χ and we are done.

Lemma 2.1.4 gives a GF-formula as desired in theorem 2.1.2, but to use lemma 2.1.4 we

need to handle finite GF-models. In [Grä99], it was shown that every satisfiable GF-formula is

satisfiable in a finite model for L.
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Proof of theorem 2.1.2. Let ϕ be a satisfiable GF-formula on a finite language L. Let M be

a finite GF-model for L and f be an assignment of the variables such that M, f |= ϕ. The

required GF-formula ψ is suggested by lemma 2.1.4, i.e., let ψ := Γ(M, f). By lemma 2.1.4

ϕ∧ψ is satisfiable GF-formula (it is satisfied in M at f ) and, for any GF-formula χ on L, either

ϕ ∧ ψ |= χ or ϕ ∧ ψ |= ¬χ.

We give some corollaries. First, we need to define the Lindenbaum-Tarski algebras of the

propositional part of the guarded fragment GF on L.

Definition 2.1.5. Let L be any language. The GF-formula algebra on L is defined as fol-

lows. F =: 〈F,∨,∧,¬,⊥,>〉, where F is the set of all GF-formulas on L, ∨,∧,¬ are the

propositional connectives, > is a fixed GF-formula on L that is valid in every model for L and

⊥ = ¬>. Clearly, F is Boolean-type algebra. Define the congruence ≡ on F as follows. For

all GF-formulas ϕ, ψ on L,

ϕ ≡ ψ ⇐⇒ (∀ model M) M |= ϕ↔ ψ.

This is a congruence relation on the GF-formula algebra. The Lindenbaum-Tarski formula

algebra of the propositional part of GF on L is defined to be the quotient algebra F /≡ . The

Lindenbaum-Tarski sentence algebra S /≡ of the propositional part of GF on L is defined in a

very similar way where S =: 〈S,∨,∧,¬,⊥,>〉 and S is the set of all GF-sentences on L.

Theorem 2.1.6. Let L be any finite language. Then

(i) Both the Lindenbaum-Tarski algebras F /≡ and S /≡ of the propositional part of GF on

L are atomic.

(ii) The GF-theory of any finite model M for the language L is finitely axiomatizable, i.e.,

there exists GF-sentence σ on L such that any GF-sentence on L is valid in M if and only

if it is a consequence of σ.

Proof. First we prove (ii). To prove (ii), we modify the proof of lemma 2.1.4 a bit. Let M be

a finite model for L and let R(M) be the set of representatives in M. Let ∆(M) be the GF-

sentence defined in lemma 2.1.3. Let Σ be the set of GF-sentences of form ∃ū(γ ∧ ρ) where γ
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is a suitable GF-guard for ρ and ρ ∈ R(M), and their negations. Define

Λ(M) = ∆(M) ∧
∧
{σ ∈ Σ : M |= σ}.

Then Λ(M) is a GF-sentence that is valid in M. To show that it is an atom among the GF-

sentences, let first σ be a GF-sentence of form ∃ū(γ∧δ) where δ is any GF-sentence and γ is any

GF-guard. By lemma 2.1.3, ∆(M) |= γ → (δ ↔ rep(δ)), so ∆(M) |= (σ ↔ ∃ū(γ ∧ rep(δ)).

By Λ(M) |= ∆(M) and ∃ū(γ ∧ rep(δ)) ∈ Σ, we have either Λ(M) |= σ or Λ(M) |= ¬σ

according to whether σ or ¬σ is valid in M. Now, let σ be an arbitrary GF-sentence. Then σ

is a Boolean (propositional) combination of GF-sentences of the form ∃ū(γ ∧ δ), thus again

Λ(M) |= σ or Λ(M) |= ¬σ according to whether σ or ¬σ is valid in M, by using the proven

previous case.

To prove (i), next we prove that the Lindenbaum-Tarski formula algebra F /≡ (of the propo-

sitional part of GF ) is atomic. This follows from theorem 2.1.2 as follows. Let ϕ be any GF-

formula such that F /≡ 6|= ϕ = ⊥. Then ϕ is satisfiable and, by theorem 2.1.2, there exists a

GF-formula ψ such that ϕ ∧ ψ is an atom in F /≡ below ϕ in F /≡ . For the second part, the

atomicity of the Lindenbaum-Tarski sentence algebra S /≡ follows from (ii). Indeed, assume

that σ is a GF-sentence such that S /≡ 6|= σ = ⊥. Then there exists a finite model M for L

such that M |= σ (for any assignment f because σ is GF-sentence). Take the GF-sentence ρ

that implies the GF-theory of M, then σ ∧ ρ is an atom below σ in S /≡ .

2.1.2 wGIP holds for solo-GF on finite languages

We show that the polyadic-quantifiers are responsible for not having Gödel’s incompleteness

property for the guarded fragment. We define the solo-fragment of GF (sGF) as follows. Let

L = 〈R,V〉 be any language. The set of the sGF-formulas on L is defined analogously to the

set of the GF-formulas on L except that the sGF-guarded existential quantification ∃ū(γ ∧ ϕ)

is allowed only if the block of quantifiers ū is of length ≤ 1.

The semantics of the solo fragment sGF is same as the semantics of guarded fragment GF.

The notions satisfiable, valid, consequence, etc, are defined as usual.

For any sGF-formula ϕ, we say that ϕ has a sGF-complete extension if there is an sGF-
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formula ψ such that ϕ ∧ ψ is satisfiable and, for any sGF-formula χ, either ϕ ∧ ψ |= χ or

ϕ∧ψ |= ¬χ. We show that the use of longer blocks of quantifiers in GF is essential in proving

Theorems 2.1.2, 2.1.6. We note that if rank(R) = 1 for every (R, rank(R)) ∈ R, let us call

these unary languages, then the solo-fragment sGF on L coincides with GF on L, and therefore

the opposite of the conclusion of theorem 2.1.7 below holds for it.

Theorem 2.1.7. Let L = 〈R,V〉 be any finite non-unary language such that there is a relation

symbol (R, rank(R)) ∈ R with rank(R) =| V |. Then, there is a satisfiable sGF-formula ϕ

that has No sGF-complete extension.

Suppose L and R are as required in the above theorem and let v̄ be any enumeration of

the variables V . We adapt the method used in § 1.4 to show that there are no atoms in the

Lindenbaum-Tarski sGF-formula algebra that is below the sGF-formula

R(v̄) ∧
∧
{¬(u = v) : u, v ∈ V are different variables}.

We need to introduce normal forms for the sGF-formulas. Fix a finite language L = 〈R,V〉.

For every k ∈ ω and every X ⊆ V , we define a set F (k,X) of sGF-formulas and we call it the

set of sGF-normal forms of degree k and free variables inX . We need the following convention:

Let Σ be any finite set of sGF-formulas and let α ∈ Σ{−1, 1}, define Σα :=
∧
{ϕα : ϕ ∈ Σ}

where, for every ϕ ∈ Σ, ϕα = ϕ if α(ϕ) = 1 and ϕα = ¬ϕ otherwise.

Definition 2.1.8. Let X ⊆ V be any set of variables in the language L. Let At(X) denote the

set of all FO-atoms whose free variables are members of the set X . Let G(X) be the set of all

GF-guards whose free variables are exactly the variables in X . For any k ∈ ω, we define the

followings recursively.

- F (0, X) := {(At(X))α : α ∈ At(X){−1, 1}}.

- F (k + 1, X) := {(At(X))α ∧ (∃F (k,X))β : α ∈ At(X){−1, 1} and β ∈ ∃F (k,X){−1, 1}},

where ∃F (k,X) = {∃u(γ ∧ ϕ) : γ ∈ G(Y ), ϕ ∈ F (k, Y ), u ∈ Y and Y \ {u} ⊆ X}.

- F (X) :=
⋃
{F (k,X) : k ∈ ω}.
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By definition, every normal form contains complete information about the guarded quan-

tifications of all the normal forms of the first smaller degree. As before, we introduce the

following notions that focus on this information.

Definition 2.1.9. Let X ⊆ V be any set of variables in L. Let k ∈ ω, let α ∈ At(X){−1, 1} and

let β ∈ ∃F (k,X){−1, 1}. Define

• colorX((At(X))α) := colorX((At(X))α ∧ (∃F (k,X))β) := {ψ ∈ At(X) : α(ψ) = 1}.

Let γ be any sGF-guard and let u ∈ free(γ) be such that free(γ) \ u ⊆ X , define

• subu,γX (At(X)α) := ∅ and

• subu,γX ((At(X))α ∧ (∃F (k,X))β) := {ϕ ∈ F (k, free(γ)) : β(∃u(γ ∧ ϕ)) = 1}.

We prove that every sGF-formula can be rewritten in an equivalent form as a disjunction

of some normal forms in F (k,X) for some k,X . The following lemma follows immediately

from definition 2.1.8.

Lemma 2.1.10. Let k ∈ ω, let X ⊆ V and let ϕ, ψ ∈ F (k,X) be two different normal forms.

Then

|= ϕ↔ ϕ ∧ ¬ψ and |=
∨

F (k,X).

Theorem 2.1.11. Let L = 〈R,V〉 be any finite language. Let ϕ be any sGF-formula on L and

suppose that d is the maximum depth of quantifier nesting in ϕ. Then, for any k ≥ d and any

Y ⊇ free(ϕ), there is Σ(k, ϕ, Y ) ⊆ F (k, Y ) such that |= ϕ↔
∨

Σ.

Proof. We use induction on the complexity of the sGF-formula ϕ.

• Suppose that ϕ is an FO-atom. Let k ≥ 0 and let Y ⊇ free(ϕ). Set

Σ(k, ϕ, Y ) = {ψ ∈ F (k, Y ) : ϕ ∈ colorY (ψ)}.

Then, it is easy to see that |= ϕ↔
∨

Σ(k, ϕ, Y ).

• Suppose that ϕ = ϕ1 ∧ ϕ2 for some sGF-formulas ϕ1 and ϕ2. Let d1, d2 and d be the

the maximum depths of quantifiers nesting in ϕ1, ϕ2 and ϕ, respectively. Let k ≥ d and
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let Y ⊇ free(ϕ). Then, for every i ∈ {1, 2}, k ≥ di, Y ⊇ free(ϕi) and, by induction

hypothesis, there is Σ(k, ϕi, Y ) ⊆ F (k, Y ) such that |= ϕi ↔
∨

Σ(k, ϕi, Y ). Set,

Σ(k, ϕ, Y ) = {ψ1 ∧ ψ2 : ψ1 ∈ Σ(k, ϕ1, Y ) and ψ2 ∈ Σ(k, ϕ2, Y )}.

Therefore, by lemma 2.1.11, Σ(k, ϕ, Y ) ⊆ F (k, Y ) and |= ϕ ↔
∨

Σ(k, ϕ, Y ). The

induction step goes in a similar way for the disjunction ϕ1 ∨ ϕ2.

• Suppose that ϕ = ¬ψ for some sGF-formula ψ. Let d be the maximum depths of quan-

tifiers nesting in ϕ, then d is the maximum depths of quantifiers nesting in ψ as well.

Moreover, we have free(ϕ) = free(ψ). Let k ≥ d and let Y ⊇ free(ϕ). By induc-

tion hypothesis, there is Σ(k, ψ, Y ) ⊆ F (k, Y ) such that |= ψ ↔
∨

Σ(k, ψ, Y ). Set,

Σ(k, ϕ, Y ) = F (k, Y ) \ Σ(k, ψ, Y ). Now, it is clear that |= ϕ↔ Σ(k, ϕ, Y ).

• Suppose that ϕ = ∃u(γ ∧ ψ) for some sGF-formula ψ, some sGF-guard γ suitable

for ψ and some u ∈ free(γ). Let d be the maximum depths of quantifiers nesting in

ϕ, then d − 1 is the maximum depths of quantifiers nesting in ψ. Let X = free(γ)

and let k ≥ d. Then there is a set of normal forms Σ(k − 1, ψ,X) ⊆ F (k − 1, X)

such that |= ψ ↔
∨

Σ(k − 1, ψ,X). Note that free(σ) ⊆ X = free(γ) for every

σ ∈ Σ(k − 1, ψ,X). Hence, |= ϕ ↔
∨
{∃u(γ ∧ σ) : σ ∈ Σ(k − 1, ψ,X)}. Let

Y ⊇ free(ϕ) = X \ {u}. Set,

Σ(k, ϕ, Y ) = {χ ∈ F (k, Y ) : subu,γY (χ) ∩ Σ(k − 1, ψ,X) 6= ∅}.

Therefore, |= ϕ↔
∨
{∃u(γ ∧ σ) : σ ∈ Σ(k − 1, ψ,X)} ↔ Σ(k, ϕ, Y ) as desired.

Definition 2.1.12. Let M be any model for L. For any assignment f ∈ VM , any X ⊆ V and

any k ∈ ω, let tag(k,X)(M, f) denote the unique normal form in F (k,X) that is satisfiable at

M, f , i.e., M, f |= tag(k,X)(M, f). Lemma 2.1.10 ensures the existence and the uniqueness of

such normal form.

Definition 2.1.13. Let M = (M,RM) and N = (N,RN) be two models for L and suppose

that π : M → N is a bijection. We say that π is a tag-isomorphism between M and N if, for
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any (R, k) ∈ R and any f ∈ kM , we have f ∈ RM ⇐⇒ π ◦ f ∈ RN.

Lemma 2.1.14. Let M = (M,RM) and N = (N,RN) be two models for L and suppose that

π : M → N is a tag-isomorphism between M and N. Then for any assignment f ∈ VM , any

X ⊆ V and any k ∈ ω, we have tag(k,X)(M, f) = tag(k,X)(N, π ◦ f).

Proof. Let M, N and π be as above. We need to prove the following. For every X ⊆ V , every

k ∈ ω and every ϕ ∈ F (k,X),

(∀f ∈ VM) [M, f |= ϕ ⇐⇒ N, π ◦ f |= ϕ]. (2.2)

We use induction on the degrees of the normal forms. By the definition of tag-isomorphisms,

it is clear that (2.2) holds for any X ⊆ V and any ϕ ∈ F (0, X). Let k ∈ ω and suppose that

(2.2) holds for every X ⊆ V and every ϕ ∈ F (k,X). Let X ⊆ V , let ϕ ∈ F (k + 1, X) and let

f ∈ VM . By the definition of tag-isomorphisms, we have

(∀ψ ∈ At(X)) [M, f |= ψ ⇐⇒ N, π ◦ f |= ψ]. (2.3)

Let u ∈ V , Y ⊆ X , γ ∈ G(Y ∪ {u}) and ψ ∈ F (k, Y ). Suppose that M, f |= ∃u(γ ∧ ψ).

Then there exists f ′ ∈ VM such that f ′ ≡u f and M, f ′ |= γ ∧ ψ. Since π is bijection,

then π ◦ f ≡u π ◦ f ′ and, by induction hypothesis, we have N, π ◦ f ′ |= γ ∧ ψ. Hence,

N, f ′ |= ∃u(γ ∧ ψ). Conversely, Suppose that N, π ◦ f |= ∃u(γ ∧ ψ). Then there exists

f ′ ∈ VN such that f ′ ≡u π ◦ f and N, f ′ |= γ ∧ ψ. Since π is bijection then π−1 ◦ f ′ ≡u f ,

where π−1 is the inverse of π. By induction hypothesis, we have M, π−1 ◦ f ′ |= γ ∧ ψ. Hence,

M, f |= ∃u(γ ∧ ψ). Thus,

(∀χ ∈ ∃F (k,X)) [M, f |= χ ⇐⇒ N, π ◦ f |= χ]. (2.4)

By (2.4) and (2.3), it follows that M, f |= ϕ ⇐⇒ N, π ◦ f |= ϕ. Therefore, we have proved

(2.2) as desired.

From now on, suppose that L = 〈R,V〉 is as required in theorem 2.1.7. Fix an enumeration

v0, . . . , vn−1 of V , where n =| V |. For the sake of simplicity, we write any assignment of the

variables into any model as f = (f0, . . . , fn−1), where fi = f(vi) for every i ∈ n. Fix a relation
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symbol (R, rank(R)) ∈ R of rank rank(R) = n. Consider the following sGF-formula

ϑ := R(v0, . . . , vn−1)
∧
{¬(vi = vj) : i, j ∈ n and i 6= j}.

One can see that ϑ is satisfiable by constructing a model M for L and an assignment f as

follows. Let a0, . . . , an−1 be different numbers, let f = (a0, . . . , an−1), let M = Rng(f), let

RM = {f} and SM = ∅ for any other relation symbol in R that is different than R. Clearly,

M, f |= ϑ. We prove that ϑ cannot be extended to a sGF-complete extension. We still follow

the strategy used in § 1.4. We prove the following preliminary lemmas.

Lemma 2.1.15. There are infinitely many satisfiable sGF-formulas {ϑ∧ ϕi : i ∈ ω} such that,

for every i, j ∈ ω, if i 6= j then |= ¬(ϑ ∧ ϕi) ∨ ¬(ϑ ∧ ϕj).

Proof. Let χ := (v0 = v1)∧¬∃v0((R(v0, . . . , vn−1)∧ϑ), ψ0 := ϑ∧∃v1(R(v0, . . . , vn−1)∧χ)

and χ0 := (v0 = v1) ∧ ∃v0((R(v0, . . . , vn−1) ∧ ψ0). Inductively, for every finite i ≥ 1, define

ψi := ϑ ∧ ∃v1((R(v0, . . . , vn−1) ∧ χi−1) and χi := (v0 = v1) ∧ ∃v0((R(v0, . . . , vn−1) ∧ ψi).

Now, we are ready to give the desired infinitely many sGf-formulas. Define ϕ0 := ψ0 and,

for every finite k ≥ 1, ϕk :=
∧
{¬ψi : i ∈ k} ∧ ψk. Clearly, for any i, j ∈ n, if i 6= j then

|= ¬(ϑ ∧ ϕi) ∨ ¬(ϑ ∧ ϕj).

It remains to prove that the formulas constructed above are satisfiable. Let a0, a1, . . . be

infinitely many distinct positive numbers and let b0, . . . , bn−3 be a string of distinct negative

numbers of length n− 2 (empty string if n = 2). Let k ∈ ω. Let fk := (ak+1, ak, b0, . . . , bn−3),

let gk := (ak, ak, b0, . . . , bn−3) and set Mk = {a0, . . . , ak} ∪ {b0, . . . , bn−3}. Define the model

Mk = (Mk,RMk) such thatRMk = {f0, g0, . . . , fk, gk} and SMk = ∅ for every relation symbol

S ∈ R that is different from R. Therefore, Mk, fk |= ϑ ∧ ϕk as desired.

Now, we prove that there is no normal form in F (V) that is an atom below ϑ in the

Lindenbaum-Tarski sGF-formula algebra. We define zigzags as follows.

Definition 2.1.16. Let M be any model and let k ∈ ω be such that k ≥ 1. Any f, g ∈ VM are

said to be connected by a zigzag of length k if there exist β ∈ kn and h0, h1, . . . , hk−1, hk ∈ VM

such that f = h0, g = hk, (∀j ∈ k) hj ≡vβ(j) hj+1 and (∀j ∈ k + 1) M, hj |= ϑ. In this case

we write f ≡β g and we say that β is a zigzag of finite length (of length k) connecting f and g.
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Definition 2.1.17. Let k ∈ ω be such that k ≥ 1 and let ϕ be any sGF-formula. Let β ∈ kn, we

define a sGF-formula ∃βϕ as follows. Let ∃β(0)ϕ = ∃vβ(0)(R(v0, . . . , vn−1) ∧ ϕ). Inductively,

for every i ∈ k \ {0}, let ∃β(i)ϕ = ∃vβ(i)(R(v0, . . . , vn−1) ∧ ∃β(i−1)ϕ). Finally, we define

∃βϕ := ∃β(k−1)ϕ.

Lemma 2.1.18. Let q ∈ ω and let ϕ ∈ F (q,V) be any normal form such that ϑ∧ϕ is satisfiable.

Then there exists sGF-formula ϕ′ such that both ϑ ∧ ϕ ∧ ϕ′ and ϑ ∧ ϕ ∧ ¬ϕ′ are satisfiable.

Proof. Let q ∈ ω and let ϕ ∈ F (q,V) be any normal form such that ϑ ∧ ϕ is satisfiable.

By [Grä99] and [HO03], there is a finite model M and an assignment f ∈ VM such that

M, f |= ϑ ∧ ϕ. Since M and V are finite then, by theorem 2.1.11 and lemma 2.1.15, there is

q′ ∈ ω and χ ∈ F (q′,V) such that ϑ∧χ is satisfiable and M, g 6|= χ for every g ∈ VM . Hence,

(∀ finite k ≥ 1) (∀β ∈ kn) M, f |= ϑ ∧ ϕ ∧ ¬∃βχ. (2.5)

Since ϑ ∧ χ is satisfiable, then there is a model N and an evaluation g such that N, g |= ϑ ∧ χ.

Step 1: We construct a sequence of models and a sequence of assignments as follows. Let

M0
q := · · · := Mn−1

q := M and let f 0
q := · · · := fn−1

q := f ; the assignment for which

M, f |= ϑ∧ϕ. SetMq := M0
q ∪· · ·∪Mn−1

q = M and suppose that f = fn−1
q = (r0, . . . , rn−1).

Let U0, . . . , Un−1 be mutually disjoint sets such that each of which is disjoint from M and

has the same size of M \Rng(fn−1
q ). Pick brand new n-many different nodes s0, . . . , sn−1. Let

i ∈ n be arbitrary. Set M i
q−1 := Ui∪{s0, . . . , si}∪{ri+1, . . . , rn−1} and let πiq−1 : M →M i

q−1

be any bijection such that, for all j ∈ n, πiq−1(rj) = sj if j ≤ i and πiq−1(rj) = rj if j > i.

Define Mi
q−1 := (M i

q−1,RMi
q−1), where for every (S, k) ∈ R,

SMi
q−1 = {(πiq−1(a0), . . . , πiq−1(ak−1)) : (a0, . . . , ak−1) ∈ SM}.

Let f iq−1 = (s0, . . . , si, ri+1, . . . , rn−1). We have constructed the models M0
q−1, . . . ,M

n−1
q−1

and the assignments f 0
q−1, . . . , f

n−1
q−1 . By construction, it is easy to see the following. For any

s, t ∈ {q, q − 1} and any i, j ∈ n: Mi
s, f

i
s |= ϑ and there is a tag-isomorphism π : M i

s → M j
t

such that π(a) = a for every a ∈ M i
s ∩M

j
t . Set Mq−1 := Mq ∪M0

q−1 ∪ · · ·Mn−1
q−1 . We repeat

what we did above but for Mn−1
q−1 and fn−1

q−1 in place of Mn−1
q and fn−1

q .

Let V0, . . . , Vn−1 be mutually disjoint sets such that each of which is disjoint fromMq−1 and
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has the same size of Mn−1
q−1 \Rng(fn−1

q−1 ). Pick brand new n-many different nodes z0, . . . , zn−1.

Let i ∈ n be arbitrary. Set M i
q−2 := Vi ∪ {z0, . . . , zi} ∪ {si+1, . . . , sn−1} and consider any

bijection πiq−2 : Mn−1
q−1 → M i

q−2 such that, for every j ∈ n, πiq−1(sj) = zj if j ≤ i and

πiq−1(sj) = sj if j > i. Define Mi
q−2 := (M i

q−2,RMi
q−2), where for every (S, k) ∈ R,

SMi
q−2 = {(πiq−2(a0), . . . , πiq−2(ak−1)) : (a0, . . . , ak−1) ∈ SM}.

Let f iq−2 = (z0, . . . , zi, si+1, . . . , sn−1). Set Mq−2 := Mq−1 ∪M0
q−2 ∪ · · ·Mn−1

q−2 . We continue

in the same way. For every j ∈ q, we construct M0
j , . . . ,M

n−1
j by adding n-many copies of

Mn−1
j+1 by changing the coordinates of fn−1

j+1 on by one. At the end, we get a sequence of models

and a sequence of assignments

M0
q, . . . ,M

n−1
q , . . . ,M0

q−1, . . . ,M
n−1
q−1 , . . . ,M

0
0, . . . ,M

n−1
0

f 0
q , . . . , f

n−1
q , . . . , f 0

q−1, . . . , f
n−1
q−1 , . . . , f

0
0 , . . . , f

n−1
0

such that, for any i, j ∈ n and any s, t ∈ q + 1, Mi
s, f

i
s |= ϑ and the following holds.

(M) There is a tag-isomorphism π : Mi
s →Mj

t such that π(a) = a for every a ∈M i
s ∩M

j
t .

Step 2: We repeat what we did for M and f but for N and g to get a sequence of models and

a sequence of assignments

N0
q′ , . . . ,N

n−1
q′ , . . . ,N0

q′−1, . . . ,N
n−1
q′−1, . . . ,N

0
0, . . . ,N

n−1
0

g0
q′ , . . . , g

n−1
q′ , . . . , g0

q′−1, . . . , g
n−1
q′−1, . . . , g

0
0, . . . , g

n−1
0

such that, for any i, j ∈ n and any s, t ∈ q′ + 1, Ni
s, g

i
s |= ϑ and the followings holds.

(N) There is a tag-isomorphism π : Ni
s → Nj

t such that π(a) = a for every a ∈ N i
s ∩N

j
t .

Without loss of generality, we can assume that N ∩M = ∅. So we can suppose the following.

(MN) For every i, j ∈ n, every s ∈ q + 1 and every t ∈ q′ + 1, we have M i
s ∩N

j
t = ∅.

Now, we connect f 0
n−1 and g0

n−1 by a zigzag and we construct a model that contains this zigzag

together with all the models constructed above. For every i ∈ n, let gi denotes gn−1
0 (vi).
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Step 3: Let h0 = [fn−1
q ]g0v0 and, for every i ∈ {1, . . . , n − 1}, let hi = [hi−1]givi . Note that

hn−1 = gn−1
q′ . Define K = (K,RK) whereK =

⋃
{M i

s, N
j
t : i, j ∈ n, s ∈ q+1 and t ∈ q′+1},

RK =
⋃
{RMi

s , RNjt : i, j ∈ n, s ∈ q + 1 and t ∈ q′ + 1} ∪ {h0, . . . , hn−1}

and, for every (S, k) ∈ R with R 6= S, SK =
⋃
{SMi

s , SNjt : i, j ∈ n, s ∈ q+ 1 and t ∈ q′+ 1}.

By the construction of K, we have the followings.

(K) For any relational FO-atom ψ and any h ∈ VK, if K, h |= ψ then we have one of the

followings:

(a) h = hi for some i ∈ n.

(b) h ∈ VM i
s for some i ∈ n and some s ∈ q + 1.

(c) h ∈ VN j
t for some j ∈ n and some t ∈ q′ + 1.

(KM) For every s ∈ q + 1 and every i ∈ n, if s ≥ 1 then Rng(hj) ∩M i
s = ∅ for every j ∈ n.

(KN) For every t ∈ q′ + 1 and every j ∈ n, if t ≥ 1 then Rng(hi) ∩N j
s = ∅ for every i ∈ n.

Now, we prove the following. For every s ∈ q + 1 and every k ≤ s,

(∀i ∈ n) (∀X ⊆ V) (∀h ∈ VM i
s) K, h |= tag(k,X)(M

i
s, h). (2.6)

We use double induction on s and k. By the constructions of Mi
0’s and K, it is clear that (2.6)

holds for s = k = 0. Suppose that (2.6) holds for some s ∈ q and for all k ≤ s. We need to

show that (2.6) holds for s + 1 and every k ≤ s + 1. By the constructions of Mi
s+1’s and K,

(2.6) hold for s+ 1 and k = 0. Now suppose that (2.6) holds for s+ 1 and some k ∈ s. So, we

need to show that (2.6) holds for s + 1 and k + 1. Let i ∈ n, let X ⊆ V and let h ∈ VM i
s. By

the definition of K, it is clear that

(∀ψ ∈ At(X)) [K, h |= ψ ⇐⇒ ψ ∈ colorX(tag(k,X)(M
i
s+1, h))].

Let γ be an sGF-guard and let u ∈ free(γ) such that free(γ) \ {u} ⊆ X . We need to show

the following.

(∀ψ ∈ F (k, free(γ))) [K, h |= ∃u(γ ∧ ψ) ⇐⇒ ψ ∈ subu,γX (tag(k,X)(M
i
s+1, h))].
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Let ψ ∈ F (k, free(γ)). Suppose that ψ ∈ subu,γX (tag(k,X)(M
i
s+1, h)), then there exists an

assignment h′ ∈ VM i
s+1 such that h ≡u h′ and Mi

s+1, h
′ |= γ ∧ ψ. By the constriction of K,

we should have K, h′ |= γ (since γ is an atomic formula). Moreover, by induction we should

have K, h′ |= ψ. Hence, K, h′ |= γ ∧ ψ and K, h |= ∃u(γ ∧ ψ). Conversely, Suppose that

K, h |= ∃u(γ ∧ ψ), then there exists h′ ∈ VK such that h ≡u h′ and K, h |= γ ∧ ψ. Then

Rng(h) ∩ Rng(h′) 6= ∅. By condition (K) and since K, h′ |= γ, we have one of the following

cases.

• h′ = hi for some i ∈ n. But M i
s+1 ⊇ Rng(h′) 6= ∅, then this contradicts condition (KM).

• h′ ∈ VN j
t for some j ∈ n and some t ∈ q′ + 1, again this contradicts condition (MN).

• h′ ∈ VM j
t for some j ∈ n and some t ∈ q + 1. Then by condition (M), there is a tag-

isomorphism π : M i
s+1 →M j

t such that π(a) = a for every a ∈ Rng(h)∩Rng(h′). Then

by lemma 2.1.14, there is h̄ ∈ M i
s+1 such that tag(k,X)(M

i
s+1, h

′) = tag(k,X)(M
j
t , h̄).

Thus, Mi
s+1, h̄ |= γ ∧ ψ. Hence, Mi

s+1, h |= ∃u(γ ∧ ψ) as desired.

Therefore, we have proved (2.6). Similarly, one can prove the following. For every t ∈ q′ + 1

and every k ≤ t,

(∀j ∈ n) (∀X ⊆ V) (∀h ∈ VN j
t ) K, h |= tag(k,X)(N

j
t , h). (2.7)

Step 4: By (2.6) and (2.7), we have K, f 0
q |= ϑ∧ϕ and K, g0

q′ |= ϑ∧χ. Moreover, the assign-

ments f 1
q , . . . , f

n−1
q , . . . , f 0

0 , . . . , f
n−1
0 , h0, . . . , hn−2, g

n−1
0 , . . . , g0

0, . . . , g
n−1
q′ , g1

q′ form a zigzag

between f 0
q and g0

q′ in K. Thus, there exist finite k ≥ 1 and α ∈ kn such that

K, f 0
q |= ϑ ∧ ϕ ∧ ∃αχ. (2.8)

Put ϕ′ := ∃αχ. Therefore, by (2.5) and (2.8), both ϑ ∧ ϕ ∧ ϕ′ and ϑ ∧ ϕ ∧ ¬ϕ′ are satisfiable

sGF-formulas as desired.

Proof of theorem 2.1.7. Recall the sGF-formula ϑ define in page 66. We prove that ϑ has no

sGF-extension. Let ψ be any sGF-formula such that ϑ∧ψ is satisfiable. We prove that ϑ∧ψ is

incomplete, i.e., we find a sGF-formula χ such that ϑ ∧ ψ 6|= χ and ϑ ∧ ψ 6|= ¬χ. By theorem
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2.1.11, there is some k ∈ ω and some Σ(k, ϑ ∧ ψ,V) ⊆ F (k,V) such that

|= ϑ ∧ ψ ↔
∨

Σ(k, ϑ ∧ ψ,V).

Suppose that there are ϕ1, ϕ2 ∈ Σ(k, ϑ ∧ ψ,V) such that both ϕ1 and ϕ2 are satisfiable. There-

fore, by lemma 2.1.10, we have ϑ ∧ ψ 6|= ϕ1 and ϑ ∧ ψ 6|= ¬ϕ1 as desired.

Suppose that there is only one satisfiable ϕ ∈ Σ(k, ϑ∧ψ,V). Then, |= ϑ∧ψ ↔ ϑ∧ϕ. By

lemma 2.1.18, there is sGF-formula ϕ′ such that both ϑ∧ϕ∧ϕ′ and ϑ∧ϕ∧¬ϕ′ are satisfiable

and |= ϑ∧ψ ↔ ϑ∧ϕ↔ (ϑ∧ϕ∧ϕ′)∨ (ϑ∧ϕ∧¬ϕ′). Therefore, we have ϑ∧ψ 6|= ϑ∧ϕ∧ϕ′

and ϑ ∧ ψ 6|= ¬(ϑ ∧ ϕ ∧ ϕ′) as desired.

Let L be a as required in theorem 2.1.7. We have shown that GF on L do have neither

Gödel’s incompleteness property nor weak Gödel’s incompleteness property. However, the

solo-fragment of GF on L does have weak Gödel’s incompleteness property. On the language

L, we have a chain FO ⊇ GF ⊇ sGF of logics in which weak Gödel’s incompleteness

property alternates.

2.1.3 wGIP holds for both GF and solo-GF on infinite langauges

Now, we show that wGIP holds for GF and sGF on real infinite languages. This because any

formula is built up from finitely many atomic formulas, but if the language is infinite then there

are infinitely many atomic formulas, thus any formula can be refined by some atom that does

not appear in it.

Theorem 2.1.19. Let L ∈ {GF, sGF} and let L = 〈R,V〉 be an infinite language. Then there

is a satisfiable L-formula that has no L-complete extension.

Proof. Let R = 〈R,V〉 be an infinite language. Suppose that R = {(Rj, rank(Rj)) : j ∈ m}

and V = {vi : i ∈ n} for some ordinals n ≥ 2,m ≥ 0. For every L-formula ϕ, let index(ϕ)

be the set of all i ∈ n such that vi appears in ϕ and let rel(ϕ) be the set of all relation symbols

that appear in ϕ. Hence, both index(ϕ) and rel(ϕ) are finite.

• Suppose that n is infinite. We prove that the L-formula ϑ := ¬(v0 = v1) has no complete

extensions. Let ϕ be any L-formula such that ϑ ∧ ϕ is satisfiable, we need to show
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that ϑ ∧ ϕ not complete. There exist a model M and an evaluation f ∈ VM such that

M, f |= ϑ ∧ ϕ. For any two evaluations g, h ∈ VM and any γ ⊆ n, we write g ≡Γ h if

and only if g(vk) = h(vk) for every k ∈ n \ Γ. Let Γ := index(ϑ ∧ ϕ). The following

can be easily checked by an induction argument on the complexity of the L-formulas:

For every g, h ∈ VM and every L-formula ψ,

[index(ψ) ⊆ Γ & g ≡n\Γ h] =⇒ [M, g |= ψ ⇐⇒ M, h |= ψ] (2.9)

Γ is finite subset of n, fix i, j ∈ n \ Γ such that i 6= j. Let g ∈ VM be such that

g ≡n\Γ f and g(i) = g(j) ⇐⇒ f(i) 6= f(j). Such g exists because f(0) 6= f(1) and

f(0), f(1) ∈M . Then, by (2.9), we have M, g |= ϑ ∧ ϕ and

M, g |= (vi = vj) ⇐⇒ M, f |= ¬(vi = vj).

Hence, both ϕ1 := ϑ ∧ ϕ ∧ (vi = vj) and ϕ2 := ϑ ∧ ϕ ∧ ¬(vi = vj) are satisfiable.

Therefore, ϑ ∧ ϕ 6|= ϕ1 and ϑ ∧ ϕ 6|= ϕ2 as desired.

• Suppose that m is infinite. We prove that no L-formula on L has complete extension. Let

ϕ, ψ be any L-formulas such that ϕ ∧ ψ is satisfiable. Then there is a model M and an

assignment f ∈ VM such that M, f |= ϕ ∧ ψ. Let (R, k) ∈ R be such that k ≥ 1 and

R 6∈ rel(ϕ ∧ ψ). Define the model N = (N,RN) as follows: N = M , SN = SM for

every S 6= R and

(f(0), . . . , f(k − 1)) ∈ RM =⇒ RN = RM \ {(f(0), . . . , f(k − 1))}

(f(0), . . . , f(k − 1)) 6∈ RM =⇒ RN = RM ∪ {(f(0), . . . , f(k − 1))}.

By induction on the complexity of L-formulas, one can prove the following. For every

g ∈ VN and for every L-formula χ,

rel(χ) ⊆ rel(ϕ ∧ ψ) =⇒ [M, g |= χ ⇐⇒ N, g |= χ]. (2.10)

Hence, in particular, N, f |= ϕ ∧ ψ. By the construction of N, we have

N, f |= R(v0, . . . , vk−1) ⇐⇒ M, f |= ¬R(v0, . . . , vk−1).
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Therefore, ϕ ∧ ψ 6|= R(v0, . . . , vk−1) and ϕ ∧ ψ 6|= ¬R(v0, . . . , vk−1) as desired.

We note that definition 2.1.1, contrary to [AvBN98], allows for equational atoms as guards.

This issue does not affect any of the results presented above, i.e., same statements eventually

hold for guarded fragment defined in [AvBN98]. This is also place us in line with [Grä99],

[HM02] and [Hoo01].

The loosely guarded fragment [vB97] and the packed fragment [Mar01] are more liberal

versions of guarded fragment in the sense that the guards can be conjunctions of some special

formulas.

Definition 2.1.20 (Loosely guarded fragment (LGF)). Let L = 〈R,V〉 be a language. The

set of LGF-formulas on L is defined analogously to the GF-formulas by relaxing clause (c) as

follows:

(c’) Let v̄ be a finite tuple of variables, ϕ be a LGF-formula on L and γ be a conjunction of

relational FO-atoms on L such that free(ϕ) ∪ v̄ ⊆ free(γ) and, for any v ∈ v̄ and any

u ∈ free(γ), there exists a conjunct in γ in which both u and v occur free. Then ∃v̄(γ, ϕ)

is a LGF -formula on L and such γ is called a suitable LGF-guard for ϕ.

Definition 2.1.21 (Packed fragment (PF)). Let L = 〈R,V〉 be a language. The set of PF-

formulas on L is defined analogously to the GF-formulas by relaxing clause (c) as follows:

(c”) Let γ be a conjunction of FO-formulas on L each of which is either a FO-atom or of the

form ∃ūR(ū) (where R(ū) is a relational FO-atom). Let ϕ be a PF-formula on L such that

free(ϕ) ⊆ free(γ) and, for every u, v ∈ free(γ), there is a conjunct in γ in which u and

v booth occur free. Then, for any finite tuple v̄ ⊆ free(γ), ∃v̄(γ, φ) is a PF-formula on L

and such γ is called a suitable PF -guard for φ.

On the one hand, PF is more liberal. The FO-formulas of the form ∃ūR(ū) and the equa-

tional FO-atoms may occur in the PF-guards but not in the LGF-guards. On the other hand, the

loosely guarded fragment is more liberal as in a LGF-formula ∃v̄(γ, ψ) a pair of variables from

free(γ) \ v̄ doesn’t need to occur free in one of the conjuncts of γ.
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In [HO03], it was shown that LGF and PF have the finite model property and by definition

both contain polyadic-quantifiers. Thus the proof of theorem 2.1.2 can be applied verbatim to

show that both wGIP and GIP fail for LGF and PF on finite languages. If we define the solo-

quantifiers fragment sLGF of the loosely guarded fragment in the very similar way to sGF,

i.e., by allowing bounded solo-quantifiers only, then one can easily see that the method used in

§ 2.1.2 works to proving theorem 2.1.7 for sLGF in place of sGF. This is not the case for the

packed fragment. Indeed the PF-guards may contain polyadic-quantifiers in their conjuncts, so

(2.6) and (2.7) in the proof of lemma 2.1.18 are no longer true in this case. But, if we define the

solo-fragment sPF of the packed fragment such that we allow only solo-quantifiers even in the

conjuncts of the PF-guards then theorem 2.1.7 is true for sPF in place of sGF for the languages

that have at least three variables. It is easy to see that the proof of theorem 2.1.19 works to

show that LGF, sLGF, PF and sPF do have wGIP on infinite languages.

§2.2 FO with K-general assignment models

The guarded fragment is closely connected to first order logic with general assignment models

introduced by I. Németi [Ném86]. The general assignments present intermediate semantics

that take away the existential assumption of “fullness” from the standard models for first order

logic. The algebraic counterparts of FO with general assignment models are the classes of

relativized cylindric algebras. Therefore, the nice properties of these classes imply several nice

properties for first order logic with general assignment models.

Definition 2.2.1 (FO with K-general assignment models (GAM(K))). Let L = 〈R,V〉 be any

language and let K ∈ {Crs,D, P,G}. Suppose that V = {vi : i ∈ n} for some ordinal n.

First order logic with K-general assignment models (GAM(K)) on L is defined as follows.

The GAM(K)-formulas are the usual FO-formulas. A GAM(K)-model for L is an ordered

pair (M, V ) such that M = (M,RM) is a standard FO-model for L and ∅ 6= V ⊆ VM is

a concrete Kn-atom structure. The GAM(K)-formulas on L are interpreted as usual, now at

triples M, V, f with f ∈ V -with the following clause for quantifiers:

M, V, f |= ∃uϕ iff for some g ∈ V : g ≡u f and M, V, g |= ϕ,

74

C
E

U
eT

D
C

ol
le

ct
io

n



where g ≡u f means that, for every v ∈ V , if v is different than u then g(v) = f(v).

Fix K ∈ {Crs,D, P,G} and let L be any language. Suppose that L contains exactly n-

many variables, for some ordinal n ≥ 2. The Lindenbaum-Tarski formula algebras of first order

logic with GAM(K) models are very close to the free K-algebras, we sketch this connection

in the paragraph below. We investigated the atomicity of the free Kn-algebras in the previous

chapter. In this section we use the results of the previous chapter to investigate wGIP for first

order logic with K-general models GAM(K).

We now turn to sketching the connection between formula algebras and free algebras. Let

L = 〈R,V〉 be a language, let n = |V| and let F(L, K) denote the Lindenbaum-Tarski formula

algebra of first order logic with GAM(K)-semantics for this language as defined in defini-

tion 2.1.5. Let R(L) denote the set of relational atomic formulas of L and let m = |R(L)|.

There is a strong connection between F(L, K) and FrmKn as follows. By the definition of

satisfiability, the function assigning ϕM,V = {f ∈ V : M, V, f |= ϕ}, the meaning of ϕ in

(M, V ), to ϕ is a homomorphism from F(L, K) to the complex algebra CmV over V . Not

every homomorphism from F(L, K) to CmV is of this form, though, because the meanings of

the atomic formulas R(v1, . . . , vk) have to be k-regular in the sense that they do not distinguish

sequences that agree on the first k indices, and there are dependencies between the meanings

of the atomic formulas, e.g., the meaning of R(v1, v0) is determined by that of R(v0, v1). Thus,

the formula algebra F(L, K) is a homomorphic image of FrmKn, but not necessarily isomor-

phic to it. In the literature, investigating regular K-algebras and so-called restricted languages

is used to fill this gap, see e.g., [HMT85, sec.4.3], [?], [?]. In this section, instead of us-

ing only the statements of the precise bridge-theorems of algebraic logic for formula algebras

and free algebras, we sketched above informally the connection between formula algebras and

free algebras in order to illuminate why the proofs of atomicity/non-atomicity of the free al-

gebras FrmKn can almost always be adapted in a more-or-less straightforward way to show

atomicity/non-atomicity of F(L, K).

For any GAM(K)-formula ϕ on L, we say that ϕ is GAM(K)-satisfiable if and only if

there is GAM(K)-model (M, V ) such that M, V, f |= ϕ for some f ∈ V . For any GAM(K)-

formulas ϕ, ψ on L, we say that ψ is a GAM(K)-consequence of ϕ, in symbols ϕ |= ψ, if and
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only if M, V, f |= ϕ → ψ, for every GAM(K)-model (M, V ) and every assignment f ∈ V .

For any GAM(K)-formula ϕ, we say that ϕ has a GAM(K)-complete extension if there is

GAM(K)-formula ψ such that ϕ∧ψ is GAM(K)-satisfiable and, for any GAM(K)-formula χ,

either ϕ ∧ ψ |= χ or ϕ ∧ ψ |= ¬χ.

Theorem 2.2.2. Let K ∈ {Crs,D, P,G} and let L = 〈R,V〉 be any language. Let n ≥ 2 be

the number of the variables in V and let m ≥ 0 be the number of the relation symbols in L.

Then,

• Suppose that both n and m are finite. If n ≥ 3, m ≥ 1, or, n = 2, m = 0 and K 6= G,

then there is GAM(K)-satisfiable formula ϕ on L that has no GAM(K)-complete exten-

sion. Otherwise, each GAM(K)-satisfiable formula has a GAM(K)-complete extension.

• Suppose that m is infinite. Then there is no GAM(K)-satisfiable formula ϕ on L that has

GAM(K)-complete extension.

• Suppose that n is infinite. If K = Crs, or, m ≥ 1 and K 6= P then there is GAM(K)-

satisfiable formula ϕ on L that has no GAM(K)-complete extension. Otherwise, we do

not know whether wGIP holds or not.

Proof. Let K, L, n and m be as above. One can prove the above statements by repeating the

algebraic proofs of theorem 1.0.2 (we only need the fact if n is finite then GAM(K) on L has

the finite model property [AHN99]), theorem B.0.5 and theorem B.0.6 in the present logical

setting, analogously as we did for sGF in the previous section.

2.2.1 Polyadic FO with K-general assignment models

Let K ∈ {Crs,D, P,G}. The polyadic version of first order logic with K-general assign-

ment models (pGAM(K)) is defined by allowing quantifiers of the form ∃v̄ϕ, for any tuple

of variables v̄, together with the following clause: At a pGAM(K)-model (M, V ) (that is a

GAM(K)-model) and an assignment f ∈ V ,

M, V, f |= ∃v̄ϕ iff for some g ∈ V : g ≡v̄ f and M, V, g |= ϕ
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where g ≡v̄ f means that g(v) = f(v) for every variable v ∈ V \ v̄. To investigate wGIP

for the pGAM(K), we need to investigate the atomicity of its Lindenbaum-Tarski formula

algebras. We do this by investigating the atomicity of the free algebras of the algebraic classes

that correspond to the polyadic version of FO with K-general assignment models.

Polyadic relativized cylindric set algebras. Let n ≥ 2 be any ordinal and let V ⊆ nU for

some set U . Let Γ ⊆ω n and let X ⊆ V , define

C(Γ)X = {f ∈ V : (∃g ∈ X)(∀i ∈ n \ Γ)f(i) = g(i)}.

Define the polyadic complex algebra CmpolyV over V to be the structure of the form

CmpolyV = 〈P(V ),∩,∪, \, ∅, V, C(Γ), Dij〉i,j∈n,Γ⊆ωn,

where ∪,∩, \ are the Boolean set-theoretic operations, Dij (i, j ∈ n) is as given in chapter 1

and C(Γ) (Γ ⊆ω n) is as defined above.

Definition 2.2.3. Let n ≥ 2 be any ordinal and let K ∈ {Crs,D, P,G}. The class Kpoly
n

is defined to be the class of all subalgebras of the polyadic complex algebras over concrete

Kn-atom structures, i.e., Kpoly
n = S{CmpolyV : V is a concrete Kn-atom structure}.

In [AHN99], it was shown that the same equations hold in Kpoly
n as in the finite members of

this class, for finite n ≥ 2. We use this fact together with [AN16, theorem 2] to investigate the

atomicity of the free algebra of the class Kpoly
n .

Theorem 2.2.4. Let n ≥ 2 and m ≥ 0 be any finite ordinals and let K ∈ {Crs,D, P,G}. The

free algebra FrmK
poly
n is atomic.

Proof. We show that Kpoly
n is a discriminator class, i.e., we show that there is a term τ(x) such

that Kpoly
n |= ∀x[x 6= 0 ↔ τ(x) = 1]. Indeed, let V be a concrete Kn-atom structure and let

A ⊆ V , one can easily see that CmpolyV |= A 6= ∅ ⇐⇒ CmpolyV |= C(n)A = 1. Thus, the

following term τ(x) := c(n)(x) will do in Kpoly
n . Moreover, the same equations hold in Kpoly

n as

in the finite members of this class as it was shown in [AHN99]. Therefore the variety generated

by Kpoly
n is a discriminator variety generated by its finite members. In [AN16, theorem 2],
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it is shown that any class of algebras with Boolean reducts has atomic finitely generated free

algebras if it is both discriminator and generated by its finite members. Therefore, FrmKpoly
n is

atomic as desired.

wGIP for the polyadic version pGAM(K). Let L be any language. The notions of

pGAM(K)-satisfiability, pGAM(K)-validity, pGAM(K)-consequences, etc, are defined as ex-

pected. For any pGAM(K)-formula ϕ, we say that ϕ has a pGAM(K)-complete extension if

there is pGAM(K)-formula ψ such that ϕ∧ψ is pGAM(K)-satisfiable and, for any pGAM(K)-

formula χ, either ϕ ∧ ψ |= χ or ϕ ∧ ψ |= ¬χ. The same argument that is used in the proof of

theorem 2.2.2 can be used again to prove the following. We note that the proofs of theorems

B.0.5 and B.0.6 work if we replace each occurrence of K by Kpoly in them.

Theorem 2.2.5. Let K ∈ {Crs,D, P,G} and let L = 〈R,V〉 be any language. Let n ≥ 2

be the number of the variables in V and let m ≥ 0 be the number of the relation symbols

in L. Suppose that both n and m are finite. Then, each pGAM(K)-satisfiable formula has

a pGAM(K)-complete extension. Suppose that m is infinite. Then no pGAM(K)-satisfiable

formula ϕ on L has pGAM(K)-complete extension. Suppose that n is infinite. If K = Crs,

or, m ≥ 1 and K 6= P . Then there is pGAM(K)-satisfiable formula ϕ on L that has no

pGAM(K)-complete extension.

Problem 1. Let L = 〈R,V〉 be any language. Let n ≥ ω be the number of the variables in V

and let m ≥ 0 be the number of the relation symbols in L. Does GAM(P ) or pGAM(P ) have

wGIP? Suppose that m = 0, does any of GAM(D), GAM(G), pGAM(D) or pGAM(G) have

wGIP?

§2.3 GIP fails for any of the above logics

Let L be any countable language and suppose that n ≥ 2 is the number of variables in L. Let

L ∈ {GF, sGF,LGF, sLGF, PF, sPF,GAM(K), pGAM(K)}, whereK ∈ {Crs,D, P,G}

if n is finite and K ∈ {Crs,G} if n is infinite. Here, we show that Gödel’s incompleteness

property fails for L because of the finite model property, cf. [Grä99], [AHN99], [Ném86,
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lemma 10.10], [Ném95, lemma 4.2] and [HO03], as we will see below.

For the sake of unification, we say that ϕ is L-satisfiable formula to mean that ϕ is L-

formula and it is satisfiable with respect to the semantics of the logic L. Similarly for all the

other notions, e.g., L-models and L-assignments. Let Σ be a set of L-formulas. We say that

Σ is recursively enumerable if Σ is countable and there is an algorithm that correctly decides

when a L-formula is in the set Σ; the algorithm may give no answer (but not the wrong answer)

for L-formulas not in Σ. We say that Σ is consistent if Σ 6|= ϕ∧¬ϕ for any L-formula ϕ, where

Σ |= ϕ means that M, V, f |= ψ for all ψ ∈ Σ implies M, V, f |= ϕ, for all M, V, f . We say

that Σ is complete if for every L-formula ϕ we have that either Σ |= ϕ or Σ |= ¬ϕ.

Theorem 2.3.1. Let L be any countable language and let n ≥ 2 be the number of vari-

ables in L. Let L ∈ {GF, sGF,LGF, sLGF, PF, sPF,GAM(K), pGAM(K)}, where

K ∈ {Crs,D, P,G} if n is finite and K ∈ {Crs,G} if n is infinite. For every L-satisfiable

formula ϕ on L, there is a set Σ of L-formulas on L such that Σ is recursively enumerable,

ϕ ∈ Σ, Σ is consistent and Σ is complete.

Proof. Let ϕ be any L-satisfiable formula. By [Grä99], [Ném95, lemma 4.2], [AHN99] and

[HO03], there is a finite L-model M and an L-assignment f such that M, f |= ϕ. Set,

Σ := {ψ : ψ is L-formula and M, f |= ψ}.

Clearly, Σ is consistent, complete and contains ϕ. it remains to prove that Σ is recursively

enumerable. The set of all L-formulas on L is countable (because the set of all FO-formulas is

countable), hence Σ is countable. Now, we describe an algorithm that recursively enumerates

the L-formulas in Σ.

• Remember that M is finite, so for every R ∈ R the interpretation RM is finite (because

its rank is finite). Thus, there is an algorithm SATATOMS that takes any R ∈ R with

rank k and any a0, . . . , ak−1 ∈ Rng(f) then tells YES if (a0, . . . , ak−1) ∈ RM and tells

NO otherwise.

• The set of the L-formulas is defined recursively such that all these formulas are built

up from the FO-atoms. So, we can define an algorithm FINDATOMS that takes any
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L-formula ϕ as an input and gives as an output the set of all the atomic formulas that the

formula ϕ is built up from.

• Combining the above algorithm, we get an algorithm SAT that decides for every L-

formula ϕ whether M, f |= ϕ or not.

Therefore, the set Σ is recursively enumerable (in fact, it is decidable) as desired.

We do not know whether GAM(K), for K ∈ {D,P}, has GIP on languages that have

countably infinite many variables or not, because we even do not whether GAM(K) on such

languages is decidable or not. We note that it was accurate to name the property wGIP as a

weaker version of GIP. By definition, it is clear that wGIP is weaker than GIP but there was no

known example until now showing that wGIP is strictly weaker than GIP. Our results in this

chapter show that wGIP is strictly weaker than GIP, indeed, we showed, for instance, GF on

infinite languages and sGF on finite languages are such examples that differentiate wGIP and

GIP.
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APPENDIX

A
Disjunctive normal form for BAO’s

Here, we give disjunctive normal forms for any class of Boolean algebras with operators. Let I

and J be any two index sets and let t = {+, ·,−, 0, 1, fi, dj : i ∈ I and j ∈ J} be a similarity

type such that {+, ·,−, 0, 1} is the type of Boolean algebras, fi is an operator symbol of positive

rank rank(fi) ≥ 1 (for any i ∈ I) and dj is a constant symbol (for any j ∈ J). Let K be the

class of all Boolean algebras with operators of type t, that is the class of all algebras of type t,

A = 〈A,+, ·,−, 0, 1, fi, dj : i ∈ I, j ∈ J〉, that satisfy the following conditions:

K0 The Boolean part 〈A,+, ·,−, 0, 1〉 is a Boolean algebra.

K1 The operators of positive ranks are additive, i.e., for any i ∈ I , any k ∈ ni := rank(fi)

and any a0, . . . , ak−1, a, b, ak+1, . . . , ani−1,

fi(a0, . . . , ak−1, a+ b, ak+1, . . . , ani−1) = fi(a0, . . . , ak−1, a, ak+1, . . . , ani−1)

+ fi(a0, . . . , ak−1, b, ak+1, . . . , ani−1).

Fix a finite number m ∈ ω. Let Tmm,t denote the term algebra of type t generated by m-many

free variables. For every n ∈ ω, we define a finite set of terms Fm,t
n ⊆ Tmm,t and we call it the

set of normal forms of degree n. Every normal form is defined as a term that is built up from

from the normal forms of the first smaller degree. We note that the normal forms we define

here are similar to the ones introduced by Kit Fine in [Fin75]

Let
∏

and
∑

be the grouped versions of · and +, respectively. That is, for any set of

terms Y ⊆ Tmm,t, we fix any enumeration of Y and then we define
∏
Y and

∑
Y inductively

according to this enumeration. The algebras in the classK are Boolean algebras with operators,

hence · and + are both commutative on the elements of these algebras. Thus, it doesn’t matter

85

C
E

U
eT

D
C

ol
le

ct
io

n



which enumeration we use to define
∏

and
∑

, all are equivalent terms in the class K.

Definition A.0.2. Let Y ⊆ Tmm,t be finite and let α ∈ Y {−1, 1}. Define

1. CY = {fiτ : τ ∈ Y, i ∈ I}, the one-step closure of Y by the operations 〈fi : i ∈ I〉.

2. Y α =
∏
{τα : τ ∈ Y }, where for every τ ∈ Y , τα = τ if α(τ) = 1 and τα = −τ

otherwise.

Definition A.0.3. Let Dm = {dj : j ∈ J} ∪ {x0, . . . , xm−1}, where x0, . . . , xm−1 are the m

free variables that generate Tmm,t. For every n ∈ ω, we define the followings inductively.

- The normal forms of degree 0, Fm,t
0 = {Dβ

m : β ∈ Dm{−1, 1}}.

- The set of normal forms of degree n+ 1,

Fm,t
n+1 = {Dβ

m · (CFm,t
n )α : β ∈ Dm{−1, 1} and α ∈ CFm,tn {−1, 1}}.

- The set of all forms, Fm,t =
⋃
k∈ω F

m,t
k .

Every form in Fm,t
0 is determined by the information telling whether its below any constant

or its complement and whether it is below any free variable or its complement. Every form of

degree n + 1, n ∈ ω, is determined by the same information plus information telling whether

this term is below (or below the complement of) the elements in the closure CFm,t
n of the set

of the normal forms of the first smaller degree.

Theorem A.0.4. Let n ∈ ω. Then the followings are true:

(i) K |=
∑
Fm,t
n = 1.

(ii) For every τ, σ ∈ Fm,t
n , if τ 6= σ then K |= τ · σ = 0.

(iii) There exists an effective method to find, for every τ ∈ Fm,t
n , a finite S ⊆ Fm,t

n+1 such that

K |= τ =
∑
S.

(iv) There exists an effective method to find, for every τ ∈ Tmm,t, an k ∈ ω and a finite

Sτ ⊆ Fm,t
k such that K |= τ =

∑
Sτ .
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Proof.

(i) Remember that the Boolean part of every member of K is Boolean algebra. Then, for

any S ⊆ Tmm,t, we have K |=
∑
{Sβ : β ∈ S{−1, 1}} = 1. Therefore, in particular, we

have K |=
∑
Fm,t

0 =
∑
{Dα

m : α ∈ Dm{−1, 1}} = 1 and, for any n ∈ ω,

K |=
∑

Fm,t
n+1 =

∑
{Dα

m · (CFm,t
n )β : α ∈ Dm{−1, 1} and β ∈ CFm,tn {−1, 1}}

=
∑
{Dα

m ·
∑
{(CFm,t

n )β : β ∈ CFm,tn {−1, 1}} : α ∈ Dm{−1, 1}}

=
∑
{Dα

m : α ∈ Dm{−1, 1}}

= 1.

(ii) Let τ, σ ∈ Fm,t
0 be two different normal forms. There exists α1, α2 ∈ Dm{−1, 1} such

that τ = Dα1
m and σ = Dα2

m . Since τ and σ are different then, without loss of generality,

we can assume that there is xi ∈ Dm such that α1(xi) = 1 and α2(xi) = −1. Hence,

K |= τ ≤ xi, K |= σ ≤ −xi. Therefore, K |= τ · σ = 0 as desired. Suppose that

n ≥ 1 and let τ, σ ∈ Fm,t
n be two different normal forms. Similarly and without loss

of generality, we can assume that there is y ∈ Dm ∪ CFm,t
n−1 such that K |= τ ≤ y and

K |= σ ≤ −y. Therefore, K |= τ · σ = 0, as desired.

(iii) By induction on n. Let τ ∈ Fm,t
0 , then there is α ∈ Dm{−1, 1} such that τ = Dα

m. Since

the Boolean parts of the members of K are Boolean algebras, we have

K |= τ =
∑
{Dα

m · (CF
m,t
0 )β : β ∈ Fm,t0 {−1, 1}}.

Suppose that n ≥ 1 and, by induction, suppose that for each σ ∈ Fm,t
n−1 there is Sσ ⊆ Fm,t

n

such that K |= σ =
∑
Sσ. Let i ∈ I and suppose that fi is of rank ki ≥ 1. For every

forms σ0, . . . , σki−1 ∈ Fm,t
n−1, set

Sfi(σ0,...,σki−1) := {fi(γ0, . . . , γki−1) : (∀l ∈ ki) γl ∈ Sσl}.

Let τ = Dα
m · (CF

m,t
n−1)β ∈ Fm,t

n . For every β ′ ∈ CFm,tn {−1, 1}, we say that β ′ is compati-

ble with β if for each term σ ∈ CFm,t
n−1, we have β(σ) = 1 ⇐⇒ (∃γ ∈ Sσ) β

′
(γ) = 1.

Set, Sτ = {Dα
m · (CFm,t

n )β
′

: β
′ ∈ CFm,tn {−1, 1}, β ′ is compatible with β} ⊆ Fm,t

n+1.
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Recall that K is a class of Boolean algebras with operators, therefore K |= τ =
∑
Sτ .

(iv) By induction on terms. For every τ ∈ Dm, we have

K |= τ =
∑
{Dα

m : α ∈ Dm{−1, 1}, α(τ) = 1}.

Let i ∈ I and suppose that the rank of fi is ki. Let σ1, σ2, γ0, . . . , γki−1 ∈ Tmm,t be such

that there is an effective method to find n1, n2, q0, . . . , qki−1 and finite

S1 ⊆ Fm
n1
, S2 ⊆ Fm

n2
, S
′

0 ⊆ Fm,t
q0
, . . . , S

′

ki−1 ⊆ Fm,t
qki−1

such that K |= σ1 =
∑
S1, K |= σ2 =

∑
S2 and K |= γl =

∑
S
′

l for all l ∈ ki. By item

(iii) we may assume that n1 = n2 = q0 = · · · = qki−1 =: n.

- If τ = σ1 + σ2 then K |= τ =
∑

(S1 ∪ S2).

- If τ = σ1 · σ2 then K |= τ =
∑
{λ · β : λ ∈ S1, β ∈ S2}. By item (ii), it is clear that

{λ · β : λ ∈ S1, β ∈ S2} ⊆ Fm,t
n .

- If τ = −σ1, then K |= τ =
∑

(Fm,t
n \ S1).

- If τ = fi(γ0, . . . , γki−1) then, for every w ∈ S := {fi(λ0, . . . , λki−1) : λl ∈ S
′

l}, let

Sw = {Dα
m · (CFm,t

n )β : α ∈ Dm{−1, 1}, β ∈ Fm,tn {−1, 1}, β(w) = 1}.

Therefore, K |= τ =
∑⋃

{Sw : w ∈ S}.

Thus, every term in Tmm,t can be rewritten in an equivalent form (in K) as a disjunction of

normal forms of the same degree. Disjunctive normal forms are often used to give elegant and

constructive proofs for many standard results. They can be used to prove finite model property

and decidability as in [And54] and [Fin75]. In chapter 1, we used them to show non-atomicity

of the free relativized cylindric algebras and we also used them to specify the atoms, e.g., in

the proof of proposition 1.5.8. Without the use of the normal forms, specifying the terms that

are atoms would be quite lengthy. Disjunctive normal forms were used to show non-atomicity

of other similar free algebras in [Kha15b] and [Kha15a].
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APPENDIX

B
Infinite dimensional free algebras

The infinite dimensional relativized cylindric algebras are more interesting, many problems are

still open for the infinite dimensions. Let n be any infinite ordinal. I. Németi [Ném86] showed

thatCrsn is a variety, hence it follows thatDn is a variety too. It is not known yet whetherGn is

a variety or not, but H. Andréka showed that HGn is a finite-variable axiomatizable variety. In

[Ném86], it was shown that both Crsn and Gn have the finite base property and have decidable

equational theories. Németi, also in [Ném86], showed that Dn does not have the finite model

property, and the following problem was posed as an open problem.

Problem 2. Let n ≥ ω be any infinite ordinal. Is the equational theory of Dn decidable?

We know much less about the class Pn. We even don’t know wether Pn is a variety or not

and we don’t know whether the variety generated by Pn is finite-variable axiomatizable or not.

Note that the variety generated by Pn is HPn because Pn is closed under both S and P.

Problem 3. Let n ≥ ω be any infinite ordinal.

(1) Is Pn a variety? Is HPn finite-variable axiomatizable?

(2) Does Pn have the finite base property?

(3) Does Pn have decidable equational theory?

Throughout, let n and m be any two ordinals and let K ∈ {Crs,D, P,G}. We note that

the equational theory of the variety generated by Kn coincides with the equational theory of

the class of complex algebras over concrete Kn-atom structures. Let V be any concrete Kn-

atom structure, let f ∈ V and ι : {xi : i ∈ m} → P(V ) be any evaluation. For every term
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τ ∈ Tmm,cyln (cyln is the signature of the class Kn), we write (V, f, ι) |= τ if and only if

f ∈ [τ ]CmVι . In chapter 1, we investigated the atomicity of FrmKn if both n and m are finite.

Suppose that n or m is infinite, here we investigate the atomicity of the free algebra FrmKn.

Non-atomicity of FrmKn for infinite m’s. In [HMT71, 2.5.13], it was shown that if m is in-

finite then FrmCAn is atomless, i.e., contains no atom. The proof of [HMT71, 2.5.13] depends

only on the universal mapping property of the free algebras, so it can be used again to prove

the following.

Theorem B.0.5. Let n ≥ 2 and m ≥ ω be any two ordinals and let K ∈ {Crs,D, P,G}. The

free algebra FrmKn contains no atom.

Proof. Let {xi : i ∈ m} be the set of the free generators of FrmKn. Let τ ∈ Tmm,cyln be

such that FrmKn 6|= τ = 0. Then we can assume that there is a concrete Kn-atom structure V ,

f ∈ V and an evaluation ι : {xi : i ∈ m} → P(V ) such that (V, f, ι) |= τ . But, τ is built up

only from finitely many free variables, hence there is j ∈ m such that xj never appears in the

syntactical construction of τ , fix such a j ∈ m. We define two evaluations ι1 and ι2 as follows.

For every i ∈ m \ {j}, let ι1(xi) := ι(xi) =: ι2(xi), ι1(xj) := V and ι2(xj) := ∅. One can

easily check that,

(V, f, ι1) |= τ · xj and (V, f, ι2) |= τ · −xj.

Therefore, both τ · xj and τ · −xj are non-zero elements below τ in the free algebra FrmKn,

i.e., τ is not an atom in FrmKn as desired.

Non-atomicity of FrmKn for infinite n’s. We begin with some notation. For every term

τ ∈ Tmm,cyln , let index(τ) be the set of all i ∈ n such that dij , dji or ci appears in the

syntactical construction of τ , for some j ∈ n. Let f, g be any sequences of length n and let

Γ ⊆ n. We write f ≡Γ g if and only if f and g agree on n \ Γ.

Theorem B.0.6. Let n ≥ ω and m ≥ 1 be any ordinals. Let K ∈ {Crs,D,G}, then the free

algebras FrmKn and Fr0Crsn are not atomic.

Proof. Suppose that n ≥ ω, m ≥ 1 and K ∈ {Crs,D,G}. We prove that there is no atom in

FrmKn that is below −d01. Let τ ∈ Tmm,cyln be such that FrmKn 6|= −d01 · τ = 0. Let V be
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a concrete Kn-atom structure, f ∈ V and ι be an evaluation such that (V, f, ι) |= −d01 · τ . Let

Γ := index(τ) ∪ {0, 1}. Every term is built up from finitely many variables and finitely many

symbols in the signature of Kn, thus Γ is finite. Fix i, j ∈ n \ Γ such that i 6= j. We divide the

proof into the following two cases.

Case 1: Suppose that f(i) = f(j). By the assumption (V, f, ι) |= −d01 · τ and without loss

of generality, we may assume that f(0) 6= f(j). Let T = {g ∈ V : g(i) = g(j)}. Set

V ′ = V ∪{f ◦ [i/f(0)]}. It is easy to see that V ′ is a concrete Kn-atom structure because

V is a concrete Kn-atom structure (we note that this is not true if K = P ). Define the

following evaluations on P(V ′). For every k ∈ m, let

ι1(xk) = ι(xk) ∩ T and ι2(xk) = ι1(xk) ∪ {f ◦ [i/f(0)]}.

A simple induction argument on the complexity of terms can show the following. For

every σ ∈ Tmm,cyln and every g ∈ V ,

[index(σ) ⊆ Γ & g ≡Γ f ] =⇒ [(V, g, ι) |= σ ⇐⇒ (V ′, g, ι1) |= σ]. (B.1)

[index(σ) ⊆ Γ & g ≡Γ f ] =⇒ [(V, g, ι) |= σ ⇐⇒ (V ′, g, ι2) |= σ]. (B.2)

By (B.1) and (B.2), we have the followings:

(V ′, f, ι1) |= −d01 · τ · −ci(x0 · −dij) and (V ′, f, ι2) |= −d01 · τ · ci(x0 · −dij)

Thus, −d01 · τ is not an atom in the free algebra FrmKn as desired.

Case 2: Suppose that f(i) 6= f(j). Set V ′ = V ∪ {f ◦ [i/f(j)]}. It is easy to see that V ′ is

a concrete Kn-atom structure. Let T = {g ∈ V : g(i) 6= g(j)}. Define the following

evaluations on P(V ′). For every k ∈ m, let

ι1(xk) = ι(xk) ∩ T and ι2(xk) = ι1(xk) ∪ {f ◦ [i/f(j)]}.

Similarly to the above case, one can show the followings:

(V ′, f, ι1) |= −d01 · τ · −ci(x0 · dij) and (V ′, f, ι2) |= −d01 · τ · ci(x0 · dij).
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Thus, −d01 · τ is not an atom in the free algebra FrmKn as desired.

Now, we show that the free algebra Fr0Crsn is not atomic, more precisely, contains no atom.

Let τ ∈ Tm0,cyln be any term such that Fr0Crsn 6|= τ = 0. Then there is a concrete Crsn-atom

structure V and f ∈ V such that (V, f, ι) |= τ where ι = ∅. Let Γ = index(τ), then Γ is

finite. Fix i, j ∈ n \ Γ such that i 6= j. Pick brand new elements a, b that are not in the base

of V such that a = b ⇐⇒ f(i) 6= f(j). For every h ∈ V with h ≡Γ f , let h∗ be the

sequence given as follows: h∗(k) = h(k) for every k ∈ n\{i, j}, h∗(i) = a and h∗(j) = b. Set

V ∗ = {h∗ : h ∈ V and h ≡Γ f}. By induction on terms, one can easily check the following.

For every σ ∈ Tmm,cyln and every h ∈ V ,

[index(σ) ⊆ Γ & h ≡Γ f ] =⇒ [(V, h, ι) |= σ ⇐⇒ (V ∗, h∗, ι) |= σ]. (B.3)

Thus, (V ∗, f ∗, ι) |= τ . But, by the choice of a, b, we have

(V, f, ι) |= dij ⇐⇒ (V ∗, f ∗, ι) |= −dij.

Therefore, both τ · dij and τ · −dij are not zero in the free algebra Fr0Crsn, i.e., τ is not an

atom in Fr0Crsn as desired.

Let n ≥ ω and m ∈ ω be any ordinals. We do not know anything about the atomicity

of the free algebras FrmPn, Fr0Dn and Fr0Gn. We could not modify the above proof to show

non-atomicity of these free algebras. I. Németi in [Ném86] proved the non-atomicity of the free

algebras FrmCAn and FrmGsn, his proofs depend on (the syntactical and semantical) wGIP of

first order logic. We don’t know anything about wGIP for the logics that correspond to the free

algebras FrmPn, Fr0Dn and Fr0Gn.

Problem 4. Let n ≥ ω and m ∈ ω be any ordinals. Is any of the free algebras FrmPn, Fr0Dn

and Fr0Gn atomic?

One may think that the free algebras mentioned in the above problem should be non-atomic.

We believe that FrmPn is not atomic. But we would not be surprised if the free algebras Fr0Dn

and Fr0Gn are atomic.

92

C
E

U
eT

D
C

ol
le

ct
io

n



C
E

U
eT

D
C

ol
le

ct
io

n



C
E

U
eT

D
C

ol
le

ct
io

n



BIBLIOGRAPHY
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[AKN+96] H. Andréka, A. Kurucz, I. Németi, I. Sain, and A. Simon. Causes and remedies

for undecidability in arrow logics and in multi-modal logics. In [MPM96],

pages 63–99. 1996.

[AMdNdR99] C. Areces, C. Monz, H. de Nivelle, and M. de Rijke. The guarded fragment:

Ins and outs. In J. Gerbrandy, M. Marx, M. de Rijke, and Y. Venema, editors,

Essays dedicated to Johan van Benthem on the occasion of his 50th birthday,

volume 28, pages 1–14. Vossiuspers, Amsterdam University Press, Amsterdam,

1999.
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