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Abstract

The content of this thesis report is based on the bounds of the base size of affine type
primitive permutation groups, the bound was conjectured by Pyber and later was proved by
Akos Seress. The the primary focus of this thesis is to understand the basic idea and the
proof given by Akos Seress.
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Chapter 1

Introduction

Overview

The study of Permutation groups plays a significant role in the field of mathematics and
science, as they help us to understand the different types of symmetry around us. These
concepts can be understood in an efficient way using a very prominent characterization of
groups called bases.
In this thesis report I will focus on studying the bounds of the base size of primitive solvable
permutation groups. Let G be a transitive permutation group which is acting on a set Ω, it
is called primitive if its action can only have the trivial G-invariant partitions of Ω,(formal
definition given later on). Subsequently it means that the action of G cannot be disintegrated
into smaller portions. Now throughout this thesis report I will denote b(G) as the minimal
base size of the group G. However the imprimitive groups have more information stored
in their actions than the primitive groups. This makes the study of primitive permutation
groups more crucial to solve any problem in permutation group theory. So it is sensible to
talk about the base size of these groups and it makes sense to minimize the size as well.
There are some extensive research works have been done on bounding the base size of a
primitive permutation group [6]. I am going to discuss here a prominent one.
Most of the research on the bounding the bases of primitive permutation groups has been on
proving a well known conjecture made by Pyber [10], which states that there exists an abso-
lute constant c for which the base size of a primitive permutation group G of degree n (i.e.
the set on which G is acting on has size n) is at most c log |G|/ log n(the formal statement
and the discussion given later). Since the base size of G is bounded below by log |G|/ log n ,
this conjecture, if true, would imply that we can have the necessary control on the base size
of a primitive permutation group even when the size of G is infinity. However for the finite
primitive groups we have a very powerful theorem which categorizes these groups namely
The O’Nan-Scott Theorem [9]. It classifies the finite primitive group into five categories,
namely diagonal type, twisted wreath type, product type, affine type and almost simple
type.
Cameron [7] conjectured and later which was proved [8] that for almost simple type primitive
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permutation group b(G) ≤ 7 unless the group action is standard.(G has a standard action if
G is either Sn or An acting on the set of k-subsets of {1, ..., n}) Now apart from the almost
simple type groups some research has been done to find the bounds of the base size of affine
type primitive permutation groups, which is dealt by Akos Seress [5] and understanding this
is the primary goal of my thesis report.
There are some recent developments [11] happened about the base sizes of finite primitive
groups of product types and twisted types which satisfies the Pyber’s conjecture. For the
case of finite primitive groups of diagonal types considerable advancement has been done by
Joanna B. Fawcett [17]. This thesis report is structured as follows. In the second chapter I
will discuss about some basic definitions, examples and theorems about base, primitive group
action, solvable groups, finite group representation theory, and a very important algorithm
(namely sim-schreier algorithm) of how to compute base and strong generating set (namely
BSGS) of a group. In the third chapter, I will present the proof of the theorem that state
that all the primitive solvable permutation groups has base size at most 4 (the proof is due
to Akos seress [5], who proved the pyber’s conjecture about the base size of a group).
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Chapter 2

Basic Concepts

Definition and examples

Definitions

• Let G be a group acting on a set Ω, Now let α ∈ Ω. Then orbit of α ∈ Ω under the
action of group is defined as follows :

{αG = {αg, g ∈ G}}.

• Let G be a group acting on a set Ω, Now let α ∈ Ω. Now we will define the stabilizer
of α as:

Gα = {g ∈ G,αg = α}.

• Let G be a group acting on a set ∆. Now the group blocks are defined as follows :
either g preserves ∆, i.e.,

g∆ = ∆,

or g translates everything in ∆ out of ∆, i.e.,

g∆ ∩∆ = φ.

• Let G be a permutation group acting on a finite set Ω of size n. A primitive group
action is transitive and it has no nontrivial group blocks.

• An action of a group on a non-empty set is called semiregular if for any two (Possibly
equal) elements in the underlying set there is at-most one element in the group taking
the first element to the second.

• An action of a group is called regular if it is transitive and semiregular.
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• A group G is called solvable if it has a solvable(or normal) series, i.e. if there are
subgroups,

{1} = G0 ⊂ G1 ⊂ G2 ⊂ ... ⊂ Gk = G,

such that Gt−1 is normal in Gt and Gt/Gt−1 is abelian.

• A group action of a group G on a set Ω is said to be doubly transitive if given any
(a, b) and (a1, b1) with a 6= a1, b 6= b1, elements in Ω there exists a g ∈ G such that
g(a) = a1 and g(b) = b1.

Examples

• The general linear group GL(2,R) acts on the plain R2 − {0, 0}. Now the straight
lines {at, bt} in the above mentioned plain are the blocks of imprimitivity of the group
GL(2,R). As the matrices in the group will either map the straight line into another
one or into the same line. In general if two blocks intersect then their intersection is
also a block.

• An example of a solvable group is any abelian group(even if the order is infinity).
Another example would be S4. The solvable series of S4 is :

{1} ⊂ K ⊂ A4 ⊂ S4,

Where the the quotients are clearly abelian groups. Here K: the Klein 4- groups,

K ∼= Z2 × Z2

.

Theorems and lemmas:

Theorem 2.0.1. If N CG and both N and G/N are solvable then G is solvable.

Proof. Let φ : G→ G/N be a cannonical homomorphism. Then solvable series of G can be
given as:

G = φ−1(M0) ≥ φ−1(M1) ≥ ≥ φ−1(Mn) = N = N0 ≥ N1 ≥ ≥ Nk = 1.

The first part of the chain involving φ coming from the fact that G/N is solvable and
the second part is true because N is solvable.

Corollary 2.0.2. If G and H are solvable then G×H is also solvable.

Theorem 2.0.3. Every finite p-group is solvable.
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Proof. Order of any p-group is pn. We will prove the claim by doing induction on n. If
n = 1, then the underlying group is cyclic group of order p. Then we have nothing to prove.
Now, suppose for n ≤ k − 1 the statement is true.

Therefore if n = k then then by class equation, center of the group namely Z(G) is non-
trivial. And it’s order is a power of p. Hence Z(G) is solvable. Now G/Z(G) is a p-group
with order pt where t ≤ k − 2. Therefore G/Z(G) is also solvable. So according to the
theorem (theorem 2.0.1) discussed above we can conclude that G is solvable.

So every p-group is solvable.

A subgroup H of a group G is called characteristic subgroup if φ(H) = H for all auto-
morphisms φ of G.

Examples of characteristic subgroup:

• Z(G) is a characteristic subgroup of G.

• the commutator subgroup G′ is a characteristic subgroup of G.

• The frattini subgroup [Intersection of all maximal subgroup of G] Φ(G) of G is a
characteristic subgroup of G.

• An is a characteristic subgroup of Sn. This is because An is generated by all elements
of order 3 in Sn, since automorphisms take elements of order 3 to elements of order 3.

Theorem 2.0.4. For any homomorphism f : G → H we have f(G′) = f(G)′ ≤ H ′. In
particular, φ(G′) = G′ for any automorphism φ of G.

Proof. f maps the generators of G′ to the generators of f(G)′ ,since f([a, b]) = f(aba−1b−1) =
f(a)f(b)f(a)−1f(b)−1 = [f(a), f(b)]

Theorem 2.0.5. Every subgroup of a solvable group is solvable.

Proof. We know by the definition of commutator subgroup that, H ′ ≤ G′ if H ≤ G. Then
H(n) ≤ G(n) ≤ 1.Where G′ = G1, G′′ = G2,... etc.

Theorem 2.0.6. Any minimal normal subgroup of a solvable group is elementary abelian.

Proof. Let N be a normal subgroup of G. We have to first realize that N is abelian. First of
all, N is solvable by the previous theorem. Now let’s look at the first commutator subgroup
of N viz. N ′. So N ′, by definition is a characteristic subgroup of N , hence a normal subgroup
of G. Therefore looking at the assumption we can say that N ′ = 1. (N ′ = N , this option
can not happen as N is solvable, otherwise the solvable series will not stop)

Let p||N |, then N has a p-Sylow subgroup P . Since N is normal in G and P is charac-
teristic in N (because it’s the unique Sylow subgroup since N is abelian) we must have that
P is normal in G, by assumption this implies that P = N so that |N | = pn for some n.
Now we have to prove that N is elementary abelian. We will those elements n ∈ N , which
have order p(by Cauchy’s theorem), this will generate a subgroup(say M) of N which is
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characteristic, so M will be normal in G, but by minimality of N means M will be same as
N . Hence N is elementary abelian.

Now we have described some useful theorems and lemmas about solvable groups, we would
turn our attention towards primitive groups. The results and lemmas which are presented
here are mostly taken from the book on matrix groups written by D.Suprunenko.[15]

In this section we will assume that G is a group and Ω is the set on which it is acting on.
Let G be a transitive permutation group acting on Ω, then we will define a partition of

Ω =
⋃

Xα,

where α ∈ I. If the conditions are as follows:

• |I| > 1.

• There exists an α such that |Xα| > 1.

• For an α ∈ I and any g ∈ G ,there exist a β such that g(Xα) ⊂ Xβ.

Then we call the partition of Ω as a system of Imprimitivity for a group G. If there are no
partition of Ω, then we call the group G primitive.

Lemma 2.0.7. If we consider the partition of Ω as described above for a imprimitive group
G, then all the sets Xα have same cardinality. Moreover for any α ∈ I and g ∈ G there
exists a β ∈ I such that:

g(Xα) = Xβ

Proof. Now by the third condition given in the above, we can say that g(Xα) ⊂ Xβ, where
β ∈ I.

Therefore we can say that g−1(Xβ) ⊃ Xα. If x ∈ g(Xα) then g−1(x) ∈ (Xα), so in turn
we can conclude that g−1(Xβ) ⊂ Xα. This proved the second statement of the lemma.

As the underlying group G is transitive, for a, b ∈ I there exist h ∈ G such that h(Xa) =
Xb. So the cardinality of the sets are the same.

Corollary 2.0.8. A transitive permutation group acting on a set whose cardinality is prime
(Group of prime degree) is primitive.

Theorem 2.0.9. A doubly transitive group is is primitive.

Proof. Let for contradiction G is a doubly transitive group which is imprimitive. Then by
the above we can have a partition of Ω based on the imprimitivity of G.

So for any two elements a, a′ ∈ Xα and b ∈ Xβ where a 6= a′ and α 6= β, by the doubly
transitivity of G there exist g ∈ G such that g will send (a, a′) to (a, b) i.e. g(a) = a and
g(a′) = b. But g(a) = a means Xα = Xβ which is contradictory to our assumption.
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Now the theorem below will tell us about the primitivity criterion of a transitive permu-
tation group.

Theorem 2.0.10. A transitive permutation group is primitive if and only if any stabilizer
of an element in its permutation domain is maximal.

Proof. Suppose G is transitive group acting on a set Ω. Let a ∈ Ω and Ga is stabilizer
subgroup of G fixing a.

Suppose on contrary Ga is not a maximal subgroup of G, so there exist another subgroup
H such that Ga ⊂ H ⊂ G. We will try to show that this strict inclusion makes G imprimitive.
Now we partition G into left cosets of H.

So
G =

⋃
α∈I

gαH,

now define
gαH := Hα

where α ∈ I.
Now denote Xα := Hα(a) where ,

Ω =
⋃

Xα

.
We will show that this partition defines the partition of imprimitivity of G. So we have

to show that Xα ∩ Xβ = ∅ if α 6= β. Let x(a) = y(a) for x ∈ Hα and y ∈ Hβ. Therefore
x−1y(a) = a, it implies that x−1y ∈ Ga. Hence y ∈ xGa ⊂ Hα. This proves contradiction to
the partition of G. Therefore

Ω =
⋃

Xα

really represents the partition of imprimitivity of G.
Now the converse.
Suppose first that G has a nontrivial system of imprimitivity and B is a block of imprim-

itivity that contains a. Then we will show that Ga < GB < G and therefore that Ga is not
maximal. If g ∈ Ga,then B ∩ Bg is nonempty (for it contains a) and hence B = Bg. Thus
Ga ≤ GB.

Now to show that the inclusion is proper we find an element in GB that is not in Ga.
Let b 6= a be another element of B. Since G is transitive it contains an element h such that
h(a) = b. But then B = Bh, yet h /∈ Ga, and hence Ga < GB.

Corollary 2.0.11. A regular permutation group is either imprimitive or of prime order.

Corollary 2.0.12. A transitive permutation group whose all subgroups are normal is a
imprimitive group except when order of the group and the degree is same prime number.

Corollary 2.0.13. Any stabilizer of a symmetric group is maximal.
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Now we will talk about normal subgroups of Transitive groups.

Theorem 2.0.14. Let G be a transitive permutation group acting on Ω. And N be a nor-
mal intransitive subgroup of G. Then partition of Ω into orbits of N defines a system of
imprimitivity of G.

Proof. Let

Ω =
⋃

Xα,

where α ∈ I defines the partition of Ω into orbits of N .
Now as N is intransitive, |I| > 1 and as N is non-trivial, there exist an α ∈ I such that

|Xα| > 1.
Now we have to show that h(Xα) ⊂ (Xβ) for h ∈ G and α, β ∈ I.
Let x, y ∈ h(Xα), therefore we can say that x = h(x1) and y = h(y1) with x1, y1 ∈ Xα.

Now as the partition was made by the orbits of N , there exists n ∈ N such that n(x1) = y1.
N being a normal subgroup we can say that n1 = hnh−1 ∈ N . Consequently n1(x) = y.

Hence x, y ∈ Xβ. So the partition of Ω defines the imprimitivity of G.

Corollary 2.0.15. Any non trivial normal subgroup of a primitive group is transitive.

Corollary 2.0.16. A non-trivial abelian normal subgroup of a primitive group contains no
non-trivial characteristic subgroup.

Proof. Let, otherwise H be a characteristic subgroup of N . By the previous corollary we can
say that H is a transitive abelian subgroup, which is maximal abelian subgroups of symmetric
groups. So H can not be a proper subgroup of N , which will lead to the contradiction of
the statement assumed before.

Corollary 2.0.17. The additive group of a division ring is characteristically simple.

Proof. Let D be a division ring. And G be the subgroup of the symmetric group acting on
D, consisting of elements defined as below :

φ ∈ G ,such that φ(x) = ax+ b,where x, a, b ∈ D and a 6= 0.
We can clearly say that G is doubly transitive which by above theorem is primitive. Now

the maps f ∈ G defined as f(x) = x+ c where c ∈ D form a normal subgroup of G. Which
is a additive group of the division ring.

Theorem 2.0.18. A transitive permutation group G acting on Ω with non-trivial center is
imprimitive except the |G| = |Ω| = p where p is a prime number.

Proof. Let G be a primitive group and Z(G) denotes it’s center. By the above corollary
Z(G) is a transitive subgroup. Now as Z(G) is abelian, Z(G) defines the regular action on
Ω. Therefore |Z(G)| = |Ω|. Now (g)Z(G) is also transitive abelian where (g) is a cyclic
group generated by an element g ∈ G. Now any transitive abelian group is maximal among
the abelian subgroups. (g)Z(G) = Z(G). So G = Z(G). Now any regular permutation
group is either imprimitive or of prime order. Hence |G| = |Ω| = p.
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Theorem 2.0.19. Clifford’s Theorem:
Let G be an irreducible subgroup of GL(V ), and let H be a normal subgroup of G. Then H
is completely reducible.

Proof. Let S1 be a H-irreducible subspace of V , such that SH1 = S1. If S1 = V , then we are
done.
So suppose S1 6= V , then there exist g1 ∈ G such that g1(S1) 6= S1. As H is normal the
subspace g1(S1) is H-irreducible and H-invariant. Therefore S1 + g1(S1) is a direct sum.
Now as V is finite dimensional we can have finitely many elements g1, g2, ..., gk ∈ G such
that the sum

S = S1 + g1(S1) + g2(S1) + ...+ gk(S1)

is a direct sum but for any other element t ∈ G, S + t(S) is not a direct sum. So by the
construction of S and H-irreducibility of t(S) we can conclude that t(S) = S. As G is
irreducible, S = V . So the decomposition of S shows the complete reducibility of H.

Now we will describe the concept of imprimitive linear group. The notion of an imprim-
itive group of permutations can be defined similarly for the groups of linear transformations
of vector spaces. Namely, a linear representation ρ of a group is called imprimitive if there
exists a decomposition of the vector space V of the representation ρ into a direct sum of
proper subspaces V1, V2, ..., Vk with the following property: For any g ∈ G and any α = 1(1)k
there exists a β = 1(1)k, such that:

ρ(g)(Vα) = Vβ,

Here V1, V2, ..., Vk are the systems of imprimitivity of G. And the group G is called primitive
linear group if there is no decomposition of V .

Let V be a linear space over some field F and we can decompose V as

V =
∑
i∈I

Li,

according to the systems of imprimitivity ofG .Then each element ofG induces a permutation
of the set {Li, i ∈ I}.Therefore we can define a epimorphism:

φ : G→ H, g 7→ h,

where h : Li 7→ h(Li). So clearly H is a subgroup of the symmetric group S(T ), where
T = {Li, i ∈ I}. Now fix a index α ∈ I, and let HLα be the stabilizer of Lα. Now we define
a subgroup Hα of G as

Hα = φ−1(HLα)

.

C
E

U
eT

D
C

ol
le

ct
io

n



Theorem 2.0.20. Let G be an irreducible imprimitive subgroup of GL(V ) and

V =
∑
i∈I

Li.

where this decomposition explains the system of imprimitivity of G. Let H be the subgroup
of the symmetric group S(T ), where T = {Li, i ∈ I} and Hi = {g ∈ G|g(Li) = Li} Then
followings are true:

1. The subgroup H is transitive.

2. The set of all distinct subgroups Hα’s are the conjugate subgroups of G.

3. The subgroup Hα|Lα is an irreducible subgroup of GL(Lα).

Proof. Let O be the orbit of H. Then the sum of all the subspaces (say W ) of all the Li’s
that lies inside the aforementioned orbit is G-invariant. Now as G is irreducible we can
conclude that W = V . So H is transitive.
As H is transitive, the set of stabilizers namely Hα will constitute a class of conjugate sub-
groups.

Now we will focus on the imprimitivity criterion of groups. We will assume that V is a
vector space over some field F of dimension n.

Theorem 2.0.21. Let G ≤ GL(V ) is a irreducible subgroup. Then G is imprimitive if and
only if there exist a subspace S of V such that F : S = m, where m|n, and the index of
H = {g|g ∈ G, g(S) = S} is n/m.

Proof. G is a irreducible imprimitive subgroup of GL(V ). Set

V =
∑
i∈I

Li

as the systems of imprimitivity of G. Then we define S as Li and H as Hi(as mentioned in
theorem 2.0.20). So according to the previous discussion, dimension of S over F is m, such
that m|n. And the index of H is n/m.
Now the we will show the converse. Let G be irreducible and S be the subspace of V that
satisfies the statement. Suppose a = n/m and ti’s are the left transversal to H in G, where
t1 = 1. Consider the subspace defined as follows:

Q = t1(S) + t2(S) + ...+ ta(S).

Let g ∈ G, then g(tα(S)) = (tβ(h(S))) = tβ(S), where h ∈ H.
Therefore g(Q) = Q. But as G is irreducible we can conclude that Q = V . So the dimension
of Q over F is n only if the sum presented above is a direct sum. And as g(tα(S)) = tβ(S),
we proved that the sum defines the imprimitivity of G.
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The wreath product of a linear group and a permutation group is an important concept.
It will help us to prove the conjecture on bounds of the base size of the primitive group. It
can be defined as follows:
Let Q be a linear space over the field F , and G be the subgroup of GL(Q). Suppose T is
a subgroup of the symmetric group Sk, k > 1. Now let us define the cartesian product Qk

as U , where U can be regarded as the linear space over F . Take any vector u ∈ U , then we
can write u as (q1, q2, ..., qk), where qi ∈ Q. For any φ1, φ2, ..., φk ∈ G and t ∈ T we define a
mapping

φ : U → U

as
φ = (φ1, φ2, ..., φk, t).

Where φ(u) = φ(u1, u2, ..., uk) = ū ∈ U . Where the t(α)th component of ū is φα(uα),
α = 1(1)k.
Now, obviously φ is an automorphism of U . Let Φ be the set of all such φ’s. Let f ∈ Φ
be another element defined by f = (f1, f2, ..., fk, s). Then we can define the product fφ as
(ft(1)φ1, ..., ft(k)φk, st) ∈ Φ.
It follows that, Φ is a subgroup of GL(U). This group F is called the wreath product of the
linear group G and the permutation group T and denoted as G o T .

Now we will talk about the strong generating set of a primitive permutation group. The
concept of strong generating set was introduced by Charles Sim. Afterwards we will discuss
about the algorithm that were presented by Schreier and Sim to get the strong generating set
of a permutation group. The main motivation of this algorithm was to do group membership
test (if a permutation is given, whether it is contained in a group).

Let G be a permutation group acting on a finite set Ω of size n. A subset of Ω is said
to be a base for G if its pointwise stabilizer in G is trivial. The minimal size of a base for
G is denoted by b(G). Bases have been studied since the early years of permutation group
theory, particularly in connection with orders of primitive groups and, more recently, with
computational group theory.

With the notation we can say that a subset of Ω defined as α1, α2, ..., αk where αi ∈
Ω, 1 ≤ i ≤ k will be called as a base of G if Gα1,α2,...,αk = 1. That means only element of G
which fixes the underlying set is identity.

Now we can define a series as follows:

Gi = Gα1,α2,...,αi−1

where 1 ≤ i ≤ k + 1.
so we will have a series of stabilizers:

G = G1 ≥ G2 ≥ G3 ≥ ... ≥ Gk+1 = 1.

Now let us define the strong generating set with notations.
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The strong generating set(SG) of a group with respect to its base is the set of elements
of a group which together with Gi generate Gi, i.e.

< SG ∩Gi >= Gi. We will denote < SG ∩Gi > as SGi, These are the elements of SG
which will fix {α1, α2, ..., αi−1}.

We begin with a number of examples of bases and strong generating sets.

• The base of Sn is {1, 2, 3, ..., n − 1}, and the alternating group An has the base
{1, 2, 3, ..., n− 2} .therefore b(Sn) = n− 1 and b(An) = n− 2.

• The dihedral group acting on n points has base {1, 2}.

• Let G = Sk acting on the set Ω of pairs in {1, . . . k}. Write k = 3l+r with 0 ≤ r ≤ 2,
and define B to be the subset of consisting of the pairs {1, 2}, {2, 3}, {4, 5}, {5, 6},
. . . , {3l - 2, 3l - 1 }, {3l - 1, 3l} (adding also {3l, 3l + 1} if r = 2). It is easy to see
that B is a base so that b(G) ≤ 2

3
k + 1 in this example.

• If G = PGLd(q) acting on the set Ω of 1-spaces in the underlying vector space Vd(q),
then b(G) = d+ 1, a minimal base being {< v1 >, ..., < vd >,< v1 + ...+ vd >},where
v1, ..., vd is a basis for Vd(q).Let G be the affine group AGLd(q) acting on Vd(q), of
degree qd. Then b(G) = d+ 1

• The strong generating set of Sn is {(12), (23), ..., (n− 1 n)}.

• the strong generating set of An is {(123), (234), ..., (n− 2 n− 1 n).

Lemma 2.0.22. (Schreier Lemma)Let G =< X > be a finite group, H ≤ G and T set
of representatives of the left cosets of H in G such that T contains 1. Denote by ḡ the
representative of gH for g ∈ G such that gH = tH for a unique t ∈ T .

Then H =< XH >=< {(x̄t)−1xt|t ∈ T, x ∈ X} >.

Proof. We have to prove that H is generated by XH ∩X−1
H . Let h ∈ H. Then it also lies in

G, so h = x1x2x3...xk for some sequence of generators xi in X. Let ti = xi+1...xk, the coset
representative of xi+1...xk. Note that tk = e by definition, and t0 = x1..xk = h = 1.
So we can rewrite h as h = (t−1

0 x1t1)(t−1
1 x2t2)...(t−1

k−1xktk).
We can also see that (xiti)H = xi(tiH) = xi(xi+1..xkH) = (xixi+1..xk)H = xixi+1..xk = ti−1

so xiti = ti−1.
We use this to rewrite h once again, to get h = (x1t1

−1
x1t1)(x2t2

−1
x2t2)...(xktk

−1
xktk).

Any element h in H is a product of such factors, so it follows that the set {xt−1
(xt)|t ∈

T, x ∈ X} will generate H.
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Sims idea was to represent an element of G in terms of coset representatives of the
stabilizer subgroups of G. An element g ∈ Gi−1 will be in a coset of Gi. Suppose we have
that g = ab with a ∈ Gi and b a coset representative for Gi in Gi−1.

So by the above lemma(Schreier)if we define Ui a set of representatives for the cosets of
Gi−1 in Gi, then any element g ∈ G can be written as product of elements from the the sets
of Ui. So g = utut−1...u1. Where each ui correspond to the orbit of βi under the action of
Gi−1.

Baiscs of group representation

Take F = C, V is a C vector space, G finite and let ρ : G → GL(V ) be a group ho-
momorphism. Then representation of G defines by the vector space V together with the
homomorphism ρ. For v ∈ V and g ∈ G denote gv as ρ(g)v. Therefore the homomorphism
means we will have (gh)v = g(hv),where g, h ∈ G, v ∈ V , ev = v, where e is the identity
element of G. And g(αv1 + βv2) = αg(v1) + βg(v2), where α, β ∈ C, v1, v2 ∈ V . So we can
have a bijective correspondence between the group homomorphisms and the CG modules.
Now we will state a important lemma concerning irreducible subspaces. The lemma is called
Schur’s lemma.

Theorem 2.0.23. Schur’s Lemma

1. A non-zero homomorphism between two irreducible representation of a group G is an
isomorphism.

2. Let ρ : G → GL(V ) be a finite dimensional irreducible representation over C. Then
any G equivariant linear map between V is α idV , where α ∈ C.

Proof. To prove this I will state the same version of this lemma for the modules.

Lemma 2.0.24. Schur’s Lemma for modules If M1 and M2 are simple R-modules, where R
is any ring, then any non-zero R-module homomorphism φ : M1 → N1 is an isomorphism.

Proof. Here φ 6= 0 is a homomorphism between M1 and M2. So by definition of homomor-
phism, ker(φ) and Im(φ) are the submodule of M1 and M2 respectively. Now as they both
are simple modules, the above mentioned homomorphism is surjective as well as injective.

So, to prove the first part of the theorem, we can use the similar configuration as discussed
above.
To prove the second part, let T : V → V be a linear map and Tρ(g) = ρ(g)T for all g ∈ G
by the definition G-equivariant map. Take an eigenvalue α of T in C. Now we can see that
T − α idV is also a G-module homomorphism. However, Ker(T − α idV ) = {0}. So by the
first part we can deduce that T − α idV = 0. It means that T = α idV .
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The character χ = χV = χ is defined as χ(g) = trρ(g). Where ρ(g) is a matrix and the
degree of the character is the dimension of V .

Now I will state a basic theorem concerning the bounds of minimal base size of a finite
group.

Theorem 2.0.25. For a group G we have 2b(G) ≤ |G| ≤ nb(G).

Proof. By the discussion above we can say that there exist a chain of stabilizers defined as:

G = G1 < G2 < G3 < ... < Gk+1 = 1

.
now we can easily get the inequality:

2 ≤ [Gi : Gi+1] ≤ n

.
We can say that [G : 1] = [G1 : G2][G2 : G3]...[Gk : Gk+1], where Gk+1 = 1.
So multiplying the left hand side and right hand side of the inequality separately we will get
the statement.

At the first sight the Proposition seems elementary, however it defines a significant con-
nection between the order of G and the value of b(G), leading to a number of important
results and conjectures. The minimal base size for G is the minimal number b(G) such that
a base of size b(G) exists. Since any element of G is determined by the images of the base
elements, it follows that |G| ≤ |Ω|b(G).

Taking logarithm, one get the lower bound b(G) ≥ log |G|
log |Ω| . On the other hand, a conjecture

of L. Pyber asserts that for a primitive permutation group G acting on Ω the upper bound
b(G) ≤ c log |G|

log |Ω| holds with some universal constant c ≥ 1.

Results and conjectures:

Theorem 1:

(Bochert [18]) If G is a primitive permutation group of degree n not containing An, then
b(G) ≤ n/2C
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Theorem 2:

(Babai [19, 20]) Let G a primitive permutation group of degree n not containing An.

1. If G is not 2-transitive then b(G) < 4n1/2 log n.

2. If G is 2-transitive then b(G) < c(log n)n/2, where c is an absolute constant.

Theorem 3 :

(Pyber [21])If G is a 2-transitive group of degree n not containing An, then b(G) ≤ c log2 n
, where c is an absolute constant.

The above results were proved using combinatorial methods, in particular not using the
classification of finite simple groups.And the above examples shows that these bounds are
not far off from the best possibles.
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Chapter 3

Main Theorem

statement of the theorem

Akos seress answered Pyber’s question in the first non-trivial case, for primitive solvable
groups.
The statement of the theorem he proved is as follows:

Theorem 3.0.1. All primitive solvable permutation groups have a base of size at most four.

The method he used to prove the theorem is mostly combinatorial. It is well known (I
will prove it later) that if G ≤ Sn is primitive solvable, then n = pd for some prime p, and
the point-stabilizer M is isomorphic to an irreducible subgroup of GL(d, p). First, he used
an extension of a counting method due to Gluck and Manz to handle the case of primitive
(as a linear group) G. Gluck and Manz [12] showed that if a certain parameter e(I will define
it later), has value at least 132, then G has one orbit on which it acts regularly and so the
minimal base size is 1. For most smaller values, this argument helps us to show that G has
a minimal base of size at most 3. When this counting argument fizzles out, then he used
some group theory (mostly, information about maximal solvable subgroups in certain low
dimensional symplectic groups).

Definition 1. Socle of a finite group is The subgroup generated by the minimal normal
subgroups of that group.For solvable case the socle is product of elementary abelian groups.

Now assume that G ≤ Sn is primitive and solvable. Then there exists a unique conjugacy
class of a maximal subgroups M namely the point-stabilizer ; the index of M in G is called
the degree of G (|G : Ga| = |Ω|). Moreover, M complements the socle N of G. Therefore,
the index of M in G is a prime power, pn.
While handling the case where M is imprimitive, he proved the following theorem:

20

C
E

U
eT

D
C

ol
le

ct
io

n



Theorem 3.0.2. Let G ≤ Sym(Ω) be an arbitrary solvable permutation group. Then there
is a partition P of Ω into at most five parts such that only the identity element of G fixes P .

This bound is best possible. For example, S4 oC2 acts on 8 points imprimitively. Then the
partition requires five parts, since if the first four points do not lie into different partition,
then an element of S4 × 1 will fix the partition. Similarly, the second four points must fall
into different parts. However, if there are only four parts then we can have some element of
S4 o C2 (namely, (15)(26)(37)(48)), that will fix the partition.

We can also strengthen the theorem 3.0.1 about the base size in the case of primitive
groups of odd order.The theorem is stated as follows:

Theorem 3.0.3. All primitive permutation groups of odd order have a base of size at most
three.

Palfy [13] proved that if G ≤ Sn is primitive of odd order, then |G| ≤ 3−1/2nc with
c = 2.278..., and equality holds for infinitely many values of n.

Gluck [14] showed a variant of the theorem 3.0.2 concerning the partition of the under-
lying set on which the group is acting on. The variation is as follows:

Theorem 3.0.4. There is always a partition of Ω into two parts whose stabilizer in G is the
identity with finitely many exceptions.

Let G ≤ Sym(Ω) be a primitive solvable permutation group. We will define Ω with
the vector space V = GF (p)n, where p is a prime, and let G0, be the stabilizer of the 0
element of V . In order to prove the main Theorem (namely theorem 3.0.1), we have to prove
that G0 has a base of size at most 3. In this section, we will discuss about the case when
G0 ≤ GL(n, p) is a primitive linear group.
We say that the bases A = (α1, α2, ..., αk), B = (β1, β2, ..., βk) for G0 are nonequivalent if
there is no g ∈ G0 satisfying αgj = βj for 1 ≤ j ≤ k.

Now we can write the following theorem for the case where our underlying group is solv-
able primitive linear.

Theorem 3.0.5. Let G0 ≤ GL(n, p) be a primitive solvable linear group, acting on V =
GF (p)n. Then G0 has a base of size at most 3. Moreover, when the minimal base size of G0

is 3, G0 has at least five non-equivalent minimal bases.

It is enough to prove the above theorem in the case when G0 is a maximal primitive
solvable linear group (with respect to inclusion).
The following lemma [15] (section 19-20) describes the most important properties of the
maximal primitive solvable linear group.
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Lemma 3.0.6. Let G0 ≤ GL(n, p) be a maximal solvable primitive group. Then G0 has a
unique maximal abelian normal subgroup N . Let C = CG0(N) and B = Fit(C), the Fitting
subgroup of C. Then we have the following:

1. N is cyclic of order pa − 1 for some integer a.

2. The linear span of N in Mn(Fp) is the field GF (pa).

3. G0/C is isomorphic to a subgroup of Aut(GF (pa)).

4. n = ae for an integer e.

5. C ≤ GL(e, pa).

6. Let e =
∏
qeii be the prime decomposition of e. Then each qi divides |A| = pa − 1.

7. |B/N | = e2 and B/N is the direct product of elementary abelian groups.

8. There is a C-invariant non-degenerate symplectic form on each Sylow subgroup of B/N .

9. C/B is isomorphic to a completely reducible subgroup of the direct product of symplectic
groups Sp(2ei, qi).[3]

10. For each qi, the qi-Sylow subgroup of B can be written in the form EqiTqi,where Eqi is
an extraspecial group of order q2ei+1

i , Tqi is the qi-Sylow subgroup of N .

11. The degree of the irreducible components of Eqi over GF (pa) is qeii .

Proof. To prove 1 and 2 we will try to construct a maximal solvable primitive group which
has a maximal abelian normal subgroup. Let G′ is an arbitrary solvable primitive subgroup
of GL(n, p) which has N ′ as its normal abelian subgroup.
By clifford’s theorem N ′ is a completely reducible subgroup of G′. And its irreducible
components are pairwise equivalent. Let m be the degree of an irreducible component of N ′.
So m|n. Therefore the set ∑

nifj = ∆,

where ni ∈ N ′ and fi ∈ Fp is a field of degree m over Fp.
Let

N ′1 = ∆∗.

Therefore N ′1 is a normal abelian subgroup. So G′1 = N ′1G
′ will be a solvable group. If it

happens that N ′1 is maximal subgroup of G′1, then we are done. If not then we can take
N ′1 ≤ N ′2 and define G′2 = N ′2G

′
1, Where N ′2 = ∆∗1 and ∆∗1 =

∑
n′if

′
j, n

′
i ∈ N ′1 and f ′j ∈ ∆∗.

So we will have a series of fields

∆ ≤ ∆1 ≤ ∆2 ≤ ...
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But as n is finite and the orders of the fields are the divisors of n this chain will stop. So
we take the field which is maximum in this chain.Let’s call it Σ. So the maximal abelian
normal subgroup is Σ∗ = N . Let the degree of N is a. So order of N is pa − 1.
To prove 3 let us define a map

φ : G0 → Aut(GF (pa)), {n 7→ fn},

where fn : Σ→ Σ ,fn(a) = nan−1. Then Ker(φ) = C. So G0/C is subgroup of Aut(Σ/Fp).
The other proofs can be seen in [3] and [15].

For any g ∈ G0, the fixed points of g produces a subspace of V = GF (p)n.
Gluck and Manz [12] observed that this subspace is of size o(pn). More exactly, the following
lemma holds. Let CV (g) denote the set of fixed points of g, where g ∈ G.

Lemma 3.0.7. Let G0 ≤ GL(n, p) be a maximal solvable primitive groups, then the following
holds:

1. if g ∈ N ,then|CV (g)| = 1.

2. if g ∈ B rN , then |CV (g)| ≤ (pn)1/2.

3. if g ∈ C rB, then |CV (g)| ≤ (pn)3/4.

4. if g ∈ Gr C, then |CV (g)| ≤ (pn)1/2.

Gluck and Manz used this Lemma to show that G0 has a regular orbit when e ≥ 132, by
proving that the union of the sets CV (g) cannot cover V . A similar argument shows that for
most of the values of e, the minimal base size of G0 is at most 3.
Now we will collect some lemmas that will help us to prove the theorem 3.0.5. Extensive
proofs are given by seress in [5].

Lemma 3.0.8. Let G0 ≤ GL(n, p) be a maximal solvable primitive group, n = ae, and
suppose that e ≥ 3. Then B has a regular orbit unless the pair (pa, e) is one of (4, 3), (3, 4)
and (5, 4).

Lemma 3.0.9. Let G0 ≤ GL(n, p) be a maximal solvable primitive group, n = ae,e ≥ 3,and
(pa) is one of (4, 3), (3, 4) and (5, 4). Then if we have this following inequality:⌊

|C/B|
pab

e
4c

⌋
(pab

3e
4 c + (a− 1)pb

ae
2 c + 4a) < pae,

then G0 satisfies the theorem 3.0.5.
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Lemma 3.0.10. Let G0 ≤ GL(n, p) be a maximal solvable primitive group, and n = ae. If
e ≥ 16, then G0 satisfies the conclusion of the Theorem 3.0.5 unless pa = 3 and e = 16.

Lemma 3.0.11. Let G0 ≤ GL(n, p) be a maximal solvable primitive group, and n = ae. If
3 ≤ e ≤ 7 or 10 ≤ e ≤ 15, then G0 satisfies the conclusion of the above mentioned theorem
3.0.5 unless the pair (pa, e) is one of (4, 3), (3, 4), (5, 4) and (1, 4).

Lemma 3.0.12. Let G0 ≤ GL(e, p) (we are assuming here that a = 1) be a maximal solvable
primitive group,with the conditions that e ≥ 4, and (p, e) 6= (3, 4), (5, 4). Moreover, let k
denote the number of elements of prime order in G0/B. If the following inequality holds:⌈

k

pe/4

⌉
p3e/4 < pe − 4

|G0|
|B|

,

then G0 will follow the conclusion of theorem 3.0.5.

These above mentioned lemmas followed by some other special case scenarios (can be
seen in [5]) will finish the proof of theorem 3.0.5.
Given a field automorphism θ of a field F , a function φ : V → W between two F vector
spaces V and W is semilinear, if for all a, b ∈ V and λ ∈ F it follows:

• φ(a+ b) = φ(a) + φ(b).

• φ(λa) = λθφ(a).

Let ΓL(1, pn) be the group of semilinear transformations of GF (pn). Palfy and Espuelas
[16] proved the following analogue of theorem 3.0.5:

Theorem 3.0.13. Let p be an odd prime, and let G0 ≤ GL(n, p) be primitive linear of odd
order. Then G0 has at least two regular orbits unless G0 ≤ ΓL(1, pn).

Proof of theorem 3.0.2

A partition of the underlying set Ω, on which G acting on can be considered as a colouring of
Ω. For each primitive solvable permutation group G, we define a colouring of the underlying
set on which the group is acting on, with the minimal possible number of colours such that
only identity will preserve the colouring.

Clearly, it is enough to prove Theorem 3.0.2 in the case when G ≤ Sym(Ω) is transitive,
as the partition can be done according to the orbits. So we will assume that G is transitive.

Now let us define a structured tree of the permutation domain of G according to it’s
partition. Let T be the structure tree, where T0, T1, T2, ..., Tk define the levels of the tree
with T0 and Tk being the root and leaves of the tree respectively. The construction is as
follows: T0 = {Ω} , and Tk = Ω and for the other levels, we partition Ω into certain blocks
of imprimitivity of G. Suppose, α is a non-leaf node. Then we will also need the set-wise
stabilizer of α to be acting as a primitive group on the children of α.
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Let us define a colouring
C : T → F5.

We will first colour the root T0 with 0. Now suppose recursively T1, T2, T3, .., Ti are coloured.
Let α ∈ Ti, we denote the set-wise stabilizer of α as Gα. It will act on the children of α as a
primitive group by the construction of the structure tree. And there is a fixed colouring of
Gα with j ≤ 4 colours(from the conclusion of theorem 3.0.1). So we can colour the children
of α with c(α) + j colours.

Now we have to show that only colour preserving permutation of T is the identity. We will
use induction on the no. of the levels of the structured tree to prove that. So by induction
on i = 0, 1, 2, 3, .., k ,we can say that the colour preserving permutation on

T0 ∪ T1 ∪ T2 ∪ ... ∪ Tk

will fix this union pointwise.(As the setwise stabilizer of a non-leaf node acts primitively on
the children of that node by the construction of the tree). So eventually the colour preserving
permutation will fix Tk = Ω.

Also, we claim that the only colour-preserving permutation of G of Tk = Ω is the identity.
We first observe that from the colouring of Tk, it is possible to get back the colouring of the
entire tree T . Then, by induction on i = k, k − 1, ..., 0, it is clear that the colour preserving
partition must preserve the colouring of

Ti ∪ Ti+1 ∪ ... ∪ Tm.

In particular, g preserves the colouring of T , so g is the identity

Theorem 3.0.14. Let G0 ≤ GL(n, p) be an irreducible imprimitive solvable linear group,
acting on V = GF (p)n.Then G0 has a base of size at most 3.

Proof. As G0 is imprimitive linear group we will have a decomposition (non-refinable) of V
into subspaces.Therefore

V =
k⊕
j=1

Vj.

Let dimVj = l. Let L be the subgroup of Sk induced by G0 on V1, ..., Vk. As G0 is irre-
ducible, L is transitive.(Let I be an orbit of {1, 2, 3..., k}, then

⊕
t∈I
Vt will be a subspace of

V ,contradictory to the fact that G0 is irreducible)
Let T ≤ GL(V1) be a primitive linear group which is a subgroup of G0 which stabilizes V1

as a set, then G0 ≤ T o L. It will be enough to prove that base size of T o L is at most 3.
By the theorem 3.0.5, we can conclude that the minimal base size of T is at least 3. Also by
the previous theorem (namely theorem 3.0.2) {1, 2, 3, ..., k} can be partitioned into at most
5 parts, say Pi, i = 1, 2, 3, 4, 5, such that only the identity element will fix the partition. We
will allow some of the partitions to be empty.
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We will have three cases, let b(T ) = 1. Let v1
1 ∈ V1 be an element from the regular orbit of

T . Suppose that vi1 ∈ Vi is the image of vi1 by the action of L in Vi. Let

v1 =
∑

i∈P1∪P2∪P3

vi1,

v2 =
∑

i∈P1∪P4

vi1

and
v3 =

∑
i∈P2∪P5

vi1.

We will prove that (v1, v2, v3) is a base for T o L. Let g ∈ (T o L)v1,v2,v3 . We have to show
that g is identity. Let V g

k = Vj where k ∈ P1. As g fixes v1 pointwise so j ∈ P1 ∪ P2 ∪ P3

and as g fixes v2 pointwise so J ∈ P1 ∪ P4. Therefore g fixes P1 and similarly other parts of
the partition. So g is identity.
Now if b(T ) = 2, let (v1

1, v
1
2) be a base of T , and let (vi1, v

i
2) be the L image of those two base

vectors in Vi. Let
v1 =

∑
i∈P1∪P2∪P3∪P4

vi1,

v2 =
∑

i∈P1∪P2∪P3∪P5

vi2,

v3 =
∑

i∈P1∪P4

vi2 +
∑

i∈P2∪P5

vi1.

We claim that (v1, v2.v3) will form a base. Let g ∈ (T o L)v1,v2,v3 . We have to show that g
is identity. Let V g

i = Vj, where i ∈ P1. Now as g fixes v1, v2, v3 , j /∈ P5. As g fixes both
v2 and v3, we can conclude that j /∈ P3 ∪ P4. Now from the fact that vg2 = v2, we can say
that vi2

g
= vj2. Similarly as g fixes v3 we can say that vi2

g
= vj1. So we reach a contradiction.

So j /∈ P2. Therefore g fixes P1. Similarly it will fix the other parts of the partition. So g is
identity.
And for the last case which is b(T ) = 3,let us assume that C1, C2, ..., C5 be the five non-
equivalent bases. Let (vi1, v

i
2, v

i
3) be the L- image of Ck where i ∈ Pk, k = 1(1)5 and i ∈ Pk.

Let us assume that:

v1 =
t∑
i=1

vi1

,

v2 =
t∑
i=1

vi2
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,

v3 =
t∑
i=1

vi3

.
We claim that v1, v2, v3 are the elements of the base. Suppose g fixes the set {v1, v2, v3}
point-wise. For l ≤ t, let V g

l = Vm. Therefore (vi1, v
i
2, v

i
3)g = (vj1, v

j
2, v

j
3). But the definition

of non-refinable bases means they can not be images of the bases. Therefore g fixes the
partition Pk’s. So g is identity.

Proof of Theorem 3.0.3

It is enough to show that for a odd order group G0 ≤ GL(n, p), where p is odd, and G0 is
acting irreducibly on the vector space V = GF (p)n then minimal base size of G0 is at most
2. If G0 is primitive linear group then this statement follows from the theorem 3.0.14.
Now if the group G0 is imprimitive linear then by notation which is described above, n = kl,
and

V =
k⊕
j=1

Vj,

and G ≤ T o L, where T ≤ GL(V1) is primitive linear and a transitive group L ≤ Sk. Gluck
[14] showed that there exist a partition P namely {1, 2, 3, ..., k} = P1

⋃
P2, such that only

identity element of L will fix the partition.
We break up T into two possibilities. One is when T ≤ ΓL(V ) and another when it is not a
subgroup of the semilinear transformation.
If T ≤ ΓL(V ), let v1, v2 ∈ V be in different regular orbit of T . Suppose that vi1, v

i
2 ∈ Vi are

the images of v1, v2 by the action of L. Then

v =
∑
i∈P1

vi1 +
∑
i∈P2

vi2

will be in the regular orbit of T o L.(By using the method described in the previous proof)
Now if T is not a subgroup of ΓL(1, P n), then we will have two non-equivalent bases of T
namely B1, B2, both have size 2. Now for i ∈ Pk we denote (vi1, v

i
2) ∈ Vi as the L-image of

Bk. Let us define

vα =
k∑
i=1

vi1

and

vβ =
k∑
i=1

vi2.

Now by the similar argument showed above we can conclude that (vα, vβ) is a base of T o L.
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