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Abstract

The thesis first proposes three novel algorithms that can rearrange generic vertex fea-
tures of a network in a way that target levels of homophily or heterophily regarding
the variables are achievable. The thesis generalizes these algorithms to multivariate net-
works where vertices have more than a single generic vertex feature. Simulation results
demonstrate that the homophily rearrangement algorithms’ expected convergence time
to a target homophily level depends on the network size, the target homophily level and
in multivariate cases on the correlation among the generic vertex features. In addition, I
extend the susceptible-infect model in a way that the transmission probability between
vertices depends on the dissimilarity of generic vertex features. With the ability to con-
trol the level of homophily on the network with homophily rearrangement networks, the
properties of the proposed similarity based diffusion model can be investigated. Empirical
results establish the phenomenon that homophily propagates similarity based diffusion.
Moreover, I demonstrate that the opposite is true when agents discriminate based on
breed and the initial seeding originates from the discriminating breed.
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Chapter 1: Introduction

The thesis in hand focuses on three closely related research questions about homophily
on complex networks. Algorithms and models that are introduced in order to answer
the proposed research questions help to deepen our current understanding of homophily
and similarity based spreading processes on networks. A major goal of my research is to
investigate homophily and diffusion in a theoretically unified modeling framework. In the
next three paragraphs I am going to elaborate on the proposed research questions and
argue about their connectedness and relevance.

First, my thesis investigates whether it is possible to construct algorithms that can gen-
erate homophilous networks (regarding a single feature) without changing the network
topology and the investigated feature’s distribution. This question is relevant, because
different assignments of a generic vertex property (which has a preset empirical distribu-
tion) might result in the same level of homophily on the network. From this it comes that
the feature vector’s correlation with the topological vertex properties might be heteroge-
neous. These heterogeneous correlations imply that vertices that have the same feature
value have different functional roles in networks while the macro-level similarity of neigh-
bors is the same in the system. In addition, it will be shown, that the existing network
topology is a constraint which is a possible obstacle to the potential level of homophily
on the network.

Second, real networks exhibit homophily towards multiple generic features, it is crucial
to invent methods that generate homophilous networks with respect to multiple features.
The thesis raises the question, whether the proposed univariate algorithms are extendable
in order to deal with systems that have multiple generic vertex features. This question
is important as generic vertex features that are behind homophily are possibly corre-
lated with each other and identifying the true factors behind homophily is essential when
one considers the true cause of homophily. Generating networks that show homophily
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regarding multiple variables while the features’ distribution is fixed might help our un-
derstanding of the endogenous homophily phenomenon.

Third, the similarity of nodes regarding generic properties might influence the diffusion
of information, technologies, diseases or beliefs on the investigated network. Moreover,
the homophily in the network is an emergent phenomenon which has roots in local sim-
ilarity. These two statements together imply that there might be a connection between
diffusion and homophily. The algorithms that answer the first and second research ques-
tions are able to control homophily. With the ability to control homophily one is able
to investigate how homophily affects the diffusion on the network. Current research on
this simple phenomenon, namely the connection between homophily and diffusion, uses
modeling approaches that are different from the ones that I will use in my thesis. To
put it simply, I propose a modification of the susceptible infected model to investigate
properties of similarity based diffusion on networks where the homophily is controlled.

Initial state Pseudo-ordered state Diffusion process started

Diffusion process endedOrdered state

Homophily rearrangement Diffusion initialized

DiffusionRandomization

Figure 1.1: The schematics of the modeling framework used in my thesis

A high-level overview of how the modeling elements which are introduced in my thesis
are connected to each other is depicted in Figure 1.1. Initially the network has a single
generic vertex feature or a number of generic vertex features that are assigned to the
nodes based on a rule – the network is either representation of a real world complex
system or artificial and resulted from a network generation algorithm. The generic vertex
properties can be randomized, by this step the topological vertex characteristics are going
to be unchanged. The application of the homophily rearrangement algorithms, results in
a network which has the same topology, the distributions of the features are the same,
but the respective homophily levels reach certain targets. On the homophily rearranged
network susceptible-infected diffusion process starts which converges when all of the ver-
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tices reach an infected state. This series of steps – feature randomization, homophily
rearrangement and diffusion is repeatable in order to characterize the properties of the
spreading phenomena. It should be noted that numerical results that can be obtained
from similarity based diffusion on the initial network are useful null-model results which
are possible benchmarks of the diffusion results obtained on the rearranged network.

Results presented in the thesis and answers given to the research questions are summa-
rized in the following. The thesis proposes three algorithms to solve the univariate and
multivariate homophily rearrangement tasks. These algorithms are capable of rearranging
categorical, ordinal, binary, count and continuous features alike. In addition, the simula-
tion results obtained from applying the algorithms revealed certain intriguing empirical
regularities. First, simulation results demonstrated that homophily rearrangement solu-
tions are unstable and the resulting generic features are uncorrelated with the topological
vertex properties. Second, sensitivity analysis of results demonstrated that the number
of iterative steps needed for solving the homophily rearrangement problems is increasing
in the level of target homophily. Third, the sensitivity analysis had also proved that as
the size of the system increases the number of steps required in order to achieve a target
homophily level also increases. Multivariate simulations of homophily rearrangement high-
lighted that the correlation of generic vertex features helps the homophily rearrangement
process. With regard to similarity based diffusion: the similarity based spreading model
demonstrated that homophily propagates the spreading of information and consequently
heterophily obstructs the diffusion. The simulations about diffusion with discrimination
shown that discrimination slows down the spreading, especially when the initial seeder is
from the discriminating group.

Before moving to the next chapter I must highlight a few essential points about the
terminologies used throughout the paper. In my whole thesis I use certain terms in an
exchangeable way to describe the same concept. The expressions node and vertex are
used commutable in the whole paper. The term agents is exchangeable with nodes and
vertices in the parts about similarity based diffusion. The idioms link and edge are inter-
changeable with each other in every single chapter. In addition, the terms features and
traits are used as equivalents.

The remainder of my thesis is structured as follows. The related literature on previous
research is summarized in Chapter 2. Functions that measure homophily on networks
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are characterized and defined for continuous and multinomial features in Chapter 3. A
novel contribution is made in Chapter 4 with the introduction of three different types
of homophily rearrangement algorithms. Multivariate extensions of the homophily rear-
rangement algorithms are brought on in Chapter 5. The similarity based diffusion model
used for simulations on networks is introduced in Chapter 6. Simulation results of the
homophily rearrangement algorithms are presented in the sections of Chapter 7. The find-
ings based on the diffusion processes are dealt with in Chapter 8. The thesis concludes
by Chapter 9 with a summary and possible policy applications.

The list of notations is enclosed in Appendix A. Pseudo code of the auxiliary algorithms
is in Appendix B. The tables are attached in Appendix C while the additional Fig-
ures are in Appendix D. The R implementations of algorithms, models and experiments
can be found in Appendix E. The R codes were also uploaded to http://github.com/

benedekrozemberczki to help reproducibility.
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Chapter 2: Literature review

Homophily as a social phenomenon has an extensive theoretical and empirical literature.
In order to position the homophily rearrangement algorithms and the similarity based
diffusion model introduced by my thesis I provide an overview of the relevant homophily
related literature. The chapter is divided into three main sections. First, I discuss the gen-
eral context of homophily and related empirical results in Section 2.1. Various measures
of homophily are treated in Section 2.2. The literature on homophilous network gener-
ation algorithms, homophily rearrangement algorithms and similarity based diffusion is
covered by Section 2.3.

2.1 The context of homophily

The term homophily is applied by Lazarsfeld & Merton (1954) to describe the phe-
nomenon that people are more likely to have connections with other people who are
similar to themselves. McPherson et al. (2001) uses homophily in a slightly different de-
notation – their homophily definition has a time dimension, namely that people who are
similar to each other interact more frequently. Homophily is even used by Jackson (2010)
only to refer to the regularity that in social networks the linked actors tend to be similar
to each other. In my thesis the term homophily will be used to describe the regularity
when vertices in a particular network are more likely to have links with other vertices
that are similar to them in generic vertex properties. Another important and closely
related phenomenon is heterophily. Heterophily is present in a network when vertices
are more likely to have links with other vertices that are different from them regarding
generic vertex features. These general definitions of homophily and heterophily allow for
a universal understanding of the phenomenon in a wide variety of complex networks –
based on these more general definitions one can investigate homophily in more abstract
networks such as the network of protein-protein interactions or the network of blogs that
spread similar political ideas. It should be emphasized that homophily and heterophily
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are macro-level properties of a network that originate from the micro-level similarity of
the vertices (Schelling, 1969; Jackson et al., 2016). In addition, my approach assumes
that the generic feature similarity among vertices (homophily) is quantifiable and the
quantification is distance based (Frey & Dueck, 2007).

Interestingly, in the work of Noldus & Mieghem (2015) the term non-topological feature
assortativity is used to describe homophily regarding vertex features. Importantly, the
empirical phenomena observed in social networks that Noldus & Mieghem (2015) de-
scribe are the same as what the majority of the literature coins as homophily. The term
generic vertex feature assortativity is used interchangeably with homophily by Quayle
et al. (2006), who point out that the term homophily is more widely used in social sci-
ences. In my thesis I use the term homophily to describe the macro-level aggregated
similarity of generic vertex properties on every network (not just on social networks).

2.1.1 Homophily on social and economic networks

In order to prove that homophily should be used in a more general sense I collected re-
sults of empirical research regarding the presence of homophily within and outside the
social sciences. This section deals with socio-economic networks that show homophily.
First, I give an overview on the literature connected to homophily in friendship networks.
Second, I summarize our current knowledge on corporate governance networks. Third, I
epitomize empirical findings about the network of labor market referrals. Finally, the rel-
evant research on the homophilous nature of sexual relationship networks and assortative
mating is traversed. It is evident that the covered literature is not exhaustive, there are
other socio-economic networks that show homophily or heterophily, but in this section
only the above listed networks are considered based on their policy relevance.

Friendship networks

A generic example of social networks is a network of friendships where people are repre-
sented by the nodes and the links are the friendships between pairs of people. The fact
that friendship networks (and most of the social networks in multiple dimensions) are
homophilous is an ubiquitous assertion (Lazarsfeld & Merton, 1954). However, the mea-
sured level of homophily originates in two specific social processes, namely self-selection
and peer-influence (McPherson et al., 2001). Self-selection in the social networks setup
simply means that people form social relationships with others who share with them cer-
tain fairly immutable features such as race or gender. Importantly the linked persons can
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influence each others mutable features after bonding – these dimensions probably include
political views, preferences and other properties that are generic vertex features. Impor-
tantly, this means that the observed homophily regarding features that are mutable is a
result of peer-influence among people and self-selection into having a social connection.
The fact that two factors contribute to the measured homophily is indicative regarding
that cross-section measurement of homophily on social-networks is likely to be biased in
case of mutable features.

As the works of Epstein (1986) and Moody (2001) highlight it networks of friendships
show strong homophily regarding race, gender and age. While the research of Epstein
(1986) and Moody (2001) was only restricted to the investigation of students in the
United States it is easy to see that their results are likely to have high external validity.
Namely that friendship networks are homophilous with respect to race, gender and age.
The before mentioned findings about the network level preferences towards racial, gender
and age based similarities of friendships are supported by a wide range of literature (Kao
& Joyner, 2004; Shrum et al., 1988; Noel & Nyhan, 2011; Mayer & Puller, 2008).

However, universal homophily with respect to these features does not characterize sub-
networks of the system which might not share the properties of the whole-system. It has
to be noted that networks of friendships are compositions of friendship clusters, highly
connected cliques of closely related friends. Moreover, the same person might belong to
multiple friendship clusters and these clusters probably show heterogeneous levels of ho-
mophily. The results of Gonzalez et al. (2007) show that in friendship clusters the level
of observed homophily might depend on the distribution of features. For example, whites
in minority might act differently than blacks in minority. This specific mechanism is also
supported by the findings of Wimmer & Lewis (2010).

Corporate governance networks

In corporate governance networks, boards of companies are represented by the nodes
and they are linked by the board members who are present in both boards. Essentially
these networks are projected versions of bipartite networks where one type of nodes is
represented by companies, and the other type is represented by the board members.
As Kogut et al. (2012) point out these networks show strong homophily in multiple
dimensions. These dimensions include the average experience and tenure of the boards
members, the industry of the firm and the gender composition of the boards that are
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interlinked. The fact that companies that are connected by board members are more likely
to be in the same industry is not surprising if one considers that board members are likely
to have industry specific domain-knowledge and experience. For corporate governance
networks in Scandinavia (namely Denmark, Norway and Sweden) Edling et al. (2012)
identified similar patterns of homophily. The diverse boards (regarding age and gender)
are more interlinked with other diverse boards while homogeneous boards, which consist
mostly elderly males, are usually linked with other homogeneous boards. This simply
means that Scandinavian corporate governance networks show homophily regarding the
board homogeneity.

Labor market referral networks

In labor market referral networks the referees and refereed persons represent nodes, and
the referral itself is the link between them. As Petersen et al. (2000) shown the labor
market referrals are biased towards sharing a common gender and race on the labor
market of the United States. However, their results did not support evidence that the
hiring process itself would be homophilous towards the above mentioned variables. In
their similarly designed research, Fernandez & Fernandez-Mateo (2006) investigated the
network of labor market referrals of a medium sized company in the United States and
their results support the findings of Petersen et al. (2000). On the supply side they
found that the referee and the refereed person have the same gender and race with a
disproportionate probability – which is a sign of supply side homophily. Interestingly,
about the demand side they found that during the screening and selection there is no
evidence of homophily or heterophily towards race. However, Fernandez & Fernandez-
Mateo (2006) observed that there is weak evidence of a gender based homophily during
the screening process – male interviewers favor disproportionately males.1

Networks of sexual relationships

The network of sexual relationships is driven by the assortative mating phenomenon –
namely the principle that romantic relationships are between participants who are on av-
erage similar to each other. Formally, this definition of assortative mating describes that
the network emerging from the pairwise relationships is homophilous. The assortative

1Although it is beyond the scope of my thesis, but it must be noted that these empirical regularities
found by Petersen et al. (2000) and Fernandez & Fernandez-Mateo (2006) together with the assumption
of homophilous network formation and the model of Calvo-Armengol & Jackson (2004) have troublesome
implications about the effects of homophily on the employment chances of minorities and females.
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mating extends to the education level of couples (Mare, 1991), their ethnic background
(Vandenberg, 1972), shared hobbies (Kalmijn & Flap, 2001) and even to their aligned
political views (Watson et al., 2004). Because of the above mentioned facts, namely that
the structure of sexual networks is affected by homophily, investigating the nature of ho-
mophily and diffusion in sexual networks helps understanding why certain communities
are more affected by sexually transmitted diseases. The work done by Laumann & Youm
(1999) revealed that the network of sexual relationships in the United Sates of America
shows homophily regarding education, income and race. In their work Laumann & Youm
(1999) demonstrated that the increased prevalence of HIV in the African-American com-
munity has roots in the interplay of the sexual network’s topology and the distribution of
features. First, the Africa-American community shows a higher level of homophily than
any other community in this regard. Second, the peripheral African-Americans are more
likely to have sexual relationships with those who are in the core of African-American
sexual relationship network. This is not true for other races – peripheral whites have sex-
ual relationships with peripheral whites and peripheral Hispanics and Asians act similarly.

Importantly the results of Bearman et al. (2004) on the sexual relationship network of
teenagers in the United States point out an empirical phenomenon that later introduced
homophily rearrangement algorithms can reproduce. Besides the homophilous nature of
the network regarding features such as test scores and income, Bearman et al. (2004)
also demonstrate that students who have rare feature values are on the periphery in the
sexual relationships network. First of all as I mentioned this is reproducible and also it
implies that vertices with extreme properties are less prone to contagion.

According to Kenyon & Colebunders (2013) the network of sexual relationships in Sub-
Saharan Africa exhibits heterogeneous levels of homophily regarding socio-economic fea-
tures such as ethnic group, race, age and education level. They found that sexual rela-
tionships of larger ethnic groups show strong homophily, while small size groups show
heterophily – which is meaningful if one considers the risk of inbreeding in a population.
It should be noted that in Kenyon & Colebunders (2013) certain generic features such as
education level, income and race are positively correlated which shows that homophily
might be endogenous in this specific network.
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2.1.2 Homophily on non socio-economic networks

As it was previously pointed out not only socio-economic networks show homophily.
A number of non socio-economic networks show homophily which fosters the idea that
homophily is not just a social phenomenon, therefore in this subsection I give an overview
about such networks. First, I will give computer networks as an example. Second, the
network of hyperlinked blogs is used as an illustrative homophilous non socio-economic
network. Finally, the homophilous nature of protein-protein interactions is highlighted.

Computer networks

The idiom computer networks is unequivocal, it simply means that computers are repre-
sented by nodes in the network and if two of them are connected they will share a link – the
nodes and links together form a network. The main ideas outlined in Balthrop et al. (2004)
underpin that computer networks show homophily regarding multiple generic vertex fea-
tures such as quality of hardware, specific software versions, firewalls and patches applied
to the softwares. An unpretending implication coming from Balthrop et al. (2004) that
the before mentioned homophilous network properties is that shared features of clusters
that make computers vulnerable to targeted attacks make the whole cluster vulnerable to
these attacks. This simply means that a shared feature of vertices might propagate diffu-
sion and spreading. The similarity based diffusion model that I introduce in Chapter 6 is
capable of reproducing this regularity, the fact that homophily might help the diffusion
of a contagion.

Networks of hyperlinked blogs

As Park & Thelwall (2003) points out, blogs on the web are likely to be connected to
other blogs that deal with similar content. In their small-scale examination of political
blogs in South-Korea, Park et al. (2001) demonstrated that the hyperlink network of
political blogs and news pages is homophilous regarding political views. It is unequivocal
that this is not just a phenomena which has internal validity only. The results of Bisgin
et al. (2010) support the idea that the findings of Park et al. (2001) can be generalized.
Based on data from BlogCatalog which is an American blog service provider, Bisgin et al.
(2010) prove that political blogs have hyperlinks to other blogs that spread similar po-
litical ideas. Furthermore, Bisgin et al. (2010) also revealed that the hyperlinked blogs
on BlogCatalog exhibit homophily with respect to their general category – for example,
entertainment blogs are mostly connected to other entertainment blogs.
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I have emphasized in the case of social networks that the measured level of cross-section
homophily has two root causes – the initial selection into attaching a link and the apparent
influence between connected nodes. Roth & Cointet (2010) describe a similar phenomenon
regarding the hyperlinked blogs and the content on these blogs. Their study uses data on
the network of political blogs in the United States and the content on these political blogs.
First, blogs establish hyperlinks to other blogs that have a similar content. Simply the
attachment rule describing the linking is preferential towards the content, which results
in homophily. Later one observes an increasing similarity between the connected blogs
semantical content, due to influence between the hyperlinked blogs.

Biological networks –protein-protein interactions

Protein-protein interaction networks are specific examples of so called intractomes, in
these networks vertices represent the molecules (here specifically proteins) and edges are
representing the interactions among molecules. As Rahmani et al. (2011) points out, the
understanding of homophily on protein-protein interaction networks helps effective tar-
geted medicine design and identification of proteins that are associated with diseases.
A major concern about the before mentioned usefulness of protein-protein interaction
networks is that for certain proteins their functionality and association with a disease
(generic vertex features) are unknown and probabilistic predictions about these features
have to be made. It is worth noting that unlike the majority of networks brought forward
in my thesis the protein-protein interaction networks show both homophily or heterophily
with respect to the function of the proteins (Rahmani et al., 2011). In addition, Rahmani
et al. (2011) argue that due to the co-existence of homophilous and heterophilous protein-
protein networks implies that on different networks different types of predictive methods
will be effective (e.g., support vector machines, random forests or neural networks). Prac-
tically, this means that the type of predictive analytics used to decide the functionality
of proteins has to be hand-picked for every specific protein-protein interaction network.

The extensive work of Navlakha & Kingsford (2010) highlights the homophilous nature
of protein-protein interaction networks with respect to being associated with a certain
disease. They show that proteins that are associated with a certain type of diseases
are more interconnected with each other. Additionally, they revealed that on protein-
protein interaction networks the increase of homophily in absolute terms is also increasing
the accuracy of predictive methods. This also means that identifying proteins that are
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associated with the disease is easier when homophily (or heterophily) is stronger in the
network.

2.2 Measuring homophily and segregation

A central question in my thesis is how one could control the level of homophily in a
complex network. In order to control the level of homophily, it has to be measured with
a function that describes homophily and target homophily values have to be predefined
according to the chosen homophily measurement function. This section gives an overview
on the most frequently used homophily measures in the literature.

If one looks at the homophily measurement related literature it is clear that there are
two main typification of homophily measurement functions. First, a categorization can
be made based on the types of generic vertex features that one can process with the
measure. In this regard there are homophily measurement functions that measure ho-
mophily regarding categorical, ordinal and binary features and their output is a vector of
group specific homophily values – later from Chapter 3 I reference these homophily mea-
surement functions as categorical homophily measurement functions. Other homophily
measurement function are able to characterize homophily regarding continuous generic
vertex features – these are upheld as universal homophily measurement functions. Second,
the categorization can also be made based on whether the function gives an overall system
level measure of homophily or rather individual vertex specific measure of homophily (or
segregation). The algorithms introduced by the thesis deal with homophily measurement
functions that consider both binary, count, categorical, ordinal and continuous features
which provide systematic measure of similarity in the network. In the forthcoming para-
graphs I characterize the most important measures of homophily in the literature – a
summary table with the measurement functions is enclosed in Appendix C as Table C.1.

A frequently used measure of categorical homophily is the homophily index introduced
by Coleman (1958). This measure gives a measure of homophily or heterophily for each of
the vertices that share a common feature value regarding a categorical, ordinal or binary
feature. Importantly, this measure is constrained to the [−1, 1] interval and calculated
from the within group average degree (vertices that share a common generic vertex fea-
ture value) and outside the group average degree (vertices that do not share a common
generic vertex feature value). In their work Currarini et al. (2009) go a step further and

12

C
E

U
eT

D
C

ol
le

ct
io

n



normalize Coleman’s homophily index with the relative size of the group. This modifica-
tion of the original homophily index takes into account that the relative group size is a
serious constraint on the potential level of homophily if the average degree in the different
groups (vertices that share a common generic vertex feature value) is independent from
the group membership.

Another categorical homophily measurement function which is comparable to Coleman’s
homophily index is the external-internal link index, which was introduced by Krackhardt
& Stern (1988). The external-internal link index can measure homophily in respect to
categorical, ordinal and binary generic vertex features. It gives for each distinct value of
the feature a groups specific homophily level in the [−1, 1] interval. This normalization
of the measurement (the constrained interval and zero expected value) means that ho-
mophily levels regarding different features are comparable on the same network. If one
takes a closer look, we can see that the external-internal link index is directly related to
Coleman’s homophily index – the difference lies in that the external-internal link does
not divide the number of links with the number of vertices.

The segregation matrix index described by Freshtman & Gneezy (2001) is an additional
categorical homophily measure which is constrained to the [−1, 1] interval. This metric
measures homophily based on the within and out of group density in the network if the
feature is binary, ordinal or categorical. For each group it assigns a value based on the
difference of the within and out of network density, normalized by the sum of the before
mentioned densities. By its construction it has similar meaning as the external-internal
link and the homophily index. If it has a negative value the groups which share a common
feature value (and which is investigated) show heterophily if it has a positive value they
show homophily.

It is straightforward that averaging out homophily measures that describe group (or in-
dividual) specific homophily levels would result in measures that describe system wide
homophily. However, in my whole thesis I do not consider such approaches, because
taking the arithmetic mean would obscure the group specific behaviors. Moreover, cer-
tain categorical and individual homophily measures such as the spectral homophily index
(Echenique & Fryer, 2007), the homophily test (Easley & Kleinberg, 2010) or the Gupta-
Anderson-May index (Gupta et al., 1989) do not take values from a constrained interval.
So averaging them without rescaling would not be meaningful. To sum it up, my thesis
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does not consider homophily measures that give individual level measure of segregation
or homophily and categorical homophily measures are not going to be averaged.

On universal homophily measurement functions, a frequently used universal homophily
measure is the segregation index of Freeman (1972, 1978). However, the original formu-
lation of this measure only considers a single binary variable. Because of this in the algo-
rithm design process I am not going to apply it. This measure gives a single network wide
measure of homophily in the [0, 1] interval. It takes zero when the networks shows base-
line homophily (random assignment of edges) and one when the network shows perfect
homophily. A simplistic measure of system-wide universal homophily can be Pearson’s
linear correlation coefficient if it is calculated based on all of the node-pairs. As Noldus &
Mieghem (2015) point out if one considers that every edge has two endpoints (the vertex
pair) and these endpoints have feature values, listing all the features of edge endpoints
results in two variables. These two variables can be correlated with each other. While
Noldus & Mieghem (2015) only considers linear correlations, other correlation measures
can be computed from such variables with ease. These correlation based measures are
all universal homophily measurement functions as they do not describe group specific
homophily levels. Because these are computationally cheap measures of homophily they
are possibly useful for algorithm design.

The spatial autocorrelation measures introduced by Moran (1950) and Geary (1954) are
actually measures of homophily regarding continuous, count and binary variables. These
spatial autocorrelation measures take into account feature values in the first order neigh-
borhood’s of vertices in a network which has an arbitrary topology and give back measures
of system wide homophily. In addition, they can be computed based on the adjacency
matrix of the network and the generic vertex feature vector which makes them useful in
later algorithm design efforts of my thesis.

2.3 Homophilous network generation, homophily re-

arrangement and similarity based diffusion

In this section first I discuss the ideas of homophilous network generation and homophily
rearrangement. Moreover, I distinguish between them, the two concepts are similar, but
only the second one is a core concept investigated in my thesis. After this distinction is
made, I summarize the main ideas and results about homophilous network generation,
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homophily rearrangement and the connection between homophily and diffusion.

Homophilous network generation means that one generates a network that shows ho-
mophily either by a probabilistic network generation process or by rearranging links of
a network among the vertices. In contrast, homophily rearrangement means that generic
vertex feature values are exchanged in order to achieve a given level of homophily. Im-
portantly, in case of the first concept the topology is not fixed, while in the second case
the topology cannot be changed.

One of the major novel modeling approaches to generate homophilous networks is when
the homophily is a result of a micro-level similarity based preferential attachment rule. In
these models, the network starts from a state when vertices have no links among them.
The probability of realizing a linkage depends positively on the similarity of vertices (re-
garding generic vertex features). With simplistic assumptions, these models are able to
show that homophily can be a result of preferences towards similarity (Jackson et al.,
2016). These models are different from the probabilistic network generation models that
Barabási & Albert (1999) and Bianconi & Barabasi (2001) contrived, because the pref-
erential attachment is purely generic vertex feature similarity based. A common element
of these models is that they are able to reproduce a number of empirical regularities,
namely:

1. Strong preferences towards similarity in a variable result in a strong homophily
regarding the variable in the resulting network.

2. The stronger the vertices preference towards similarity, the stronger is clustering in
the resulting network.

3. The degree assortativity is increasing as the preferences towards similarity increase.

The preferential attachment model that Quayle et al. (2006) propose uses generic ver-
tex feature similarity to generate scale-free networks that show homophily. With their
simplistic approach they were able to prove that homophily increases as the preferential
attachment is more similarity based (similarities are upweighted), and that generic feature
correlations increase within communities as the preference towards similarity increases.
However, Quayle et al. (2006) made no attempt to supervise the macro-level similarity
in the model, there is no exact control of the overall level of homophily in their model.
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Another similarity based preferential attachment model is the one that van Eck & Jager
(2010) introduced. Their similarity based preferential attachment algorithm generates
networks that show homophily regarding multiple variables. They use survey data ob-
tained from social media to describe the individual preferences of agents in their model.
In the initialization of their model, the agents have no social ties, and later social ties
form based on individual preferences. In this regard (micro-level incentives) their model
is similar to the one that Quayle et al. (2006) implemented and the greedy homophily
rearrangement algorithm that I propose later in Chapter 4. They also investigate certain
macro-level characteristics of the system such as macro-level satisfaction (utility) of the
agents. However, their model has no macro-level control of homophily (there is no target
homophily value). Essentially the above mentioned facts mean that the network generator
processes introduced by Quayle et al. (2006) and van Eck & Jager (2010) are fundamen-
tally different from the models that Yavas & Yusel (2014) and my thesis introduces.

The other major approach to generate networks that show homophily is to generate an
initial network and later rearrange links in a way that a target homophily criteria is sat-
isfied. A homophilous network generator model is the one that Holzhauer et al. (2013)
inducted in order to generate homophilous agent based modeling setups. However, like
in many other approaches, Holzhauer et al. (2013) does not generate networks that show
homophily regarding multiple variables. The agent based model and the framework that
Yavas & Yusel (2014) proposes is suitable for investigating the relationship between ho-
mophily and diffusion. In their analysis Yavas & Yusel (2014) used a two stage model:
first they generated networks which had shown a given level of homophily. Later they
started diffusion processes on the networks which were influenced by similarity of the
connected vertices. My approach is also two-stage, but unlike the generator process that
Yavas & Yusel (2014) introduced, my homophily generator process assumes that the
network structure is fixed and only the generic vertex features are exchangeable. The
diffusion stage is also different in my approach, because I modify the susceptible infected
model, while the authors used a modified variant of the threshold model. The reason that
I chose the susceptible-infected model is that it can be modified with ease to characterize
similarity based diffusion.

The agent-based segregation model of Schelling (1969) might be classified as a homophily
rearrangement algorithm, because the topology of the network where agents are allo-
cated is totally fixed. However, there are three considerable weaknesses of this model.
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First, the agents are located on a square lattice which is a very simplistic topology – the
emerging homophily . Second, there is no exact macro-level control over the homophily
appearing in the system – the homophily is a byproduct of the micro-level incentives of
agent’s. Third, in the basic model a number of vertices in the network are vacant – so
agents do not change their location with each other, but they simply move to the va-
cant vertices that are in line with their individual preferences. The first potential concern
was addressed by Fagiolo et al. (2007) who investigated the model proposed by Schelling
(1969) on networks that show a non-uniform degree distribution. Their results with this
modified model supported that micro-incentives might lead to emerging homophily on
canonical complex networks. Moreover, augmenting the Fagiolo et al. (2007) model with
an early stopping condition (regarding system-level homophily) would make their model a
homophily rearrangement algorithm. Nevertheless, the problem of vacant vertices would
remain and the greatest novelty of the homophily rearrangement algorithms proposed in
my thesis lies with respect to the fact that there are no vacant vertices in the system.

The fact that individual preferences towards similarity and homophily might affect dif-
fusion is widely researched. At the same time, the broad research done concerning the
relationship of homophily and diffusion is rather inconclusive. There are mainly two con-
ceptions about how homophily effects diffusion: one is that it slows down the spreading
compared to a none homophilous state the other is that it speeds up the diffusion pro-
cess. Intriguingly, both of these ideas have reasonable theoretical models and literature
of empirical evidence that supports them. The simulations of similarity based diffusion
in my thesis will show that the homophily affects diffusion heterogeneously.

First, theoretical model of Golub & Jackson (2012) had shown that under certain condi-
tions homophily might slow down the diffusion of information on a network (learning is
slackened). This ideas is supported by the empirical findings of Kamath & Cowan (2015),
who shows that homophily can be an obstacle to the diffusion of technological innovations
when innovations appear in dense clustered communities and extra-group relationships
are rare in the observed network.

Second, the agent-based model introduced by Yavas & Yusel (2014) promotes that ho-
mophily can speed up diffusion on a wide-range of networks. The experiments of Centola
(2011); Centola & van de Rijt (2015), who investigated the adaptation of healthy life-style
related behaviors, backed up the theoretics of Yavas & Yusel (2014) that homophily prop-
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agates diffusion. This positive relationship between homophily and diffusion is supported
by the non-experimental findings of de Matos et al. (2014) who shown that homophily
positively influences the adaptation of information technologies. Importantly, Centola
(2011) uses a small-scale experimental setup where the topology is fixed while the ho-
mophily can be controlled arbitrarily. With this unique experimental setup peer-effects
and the effect of homophily on health-related decisions becomes quantifiable. This fixed
topology and controlled homophily approach will characterize my later efforts – as my
goal is to rearrange features in a homophilous way on a network that has a given topology
while the diffusion is affected by homophily.

The spreading model that I develop is based on the susceptible infected model and different
from the independent cascade model, because the same node might try to pass the infection
(information) multiple times to the neighboring nodes. In case of the independent cascade
model each of the nodes has a single probabilistic attempt to propagate the infection to
other nodes. Because of this, the heuristic quasi-optimal initial seeding method of Kempe
et al. (2003) which helps to maximize the potential spreading is not applicable for the
similarity based diffusion model.
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Chapter 3: Homophily measurement

Let us imagine that we have a network with a single generic vertex feature denoted by
G(V,E,x). In this network V is the set of vertices, E denotes the set of edges among
the vertices and x represents a single generic vertex feature. Another representation of
G(V,E,x) is the network G(W,x), where W is the adjacency matrix and x is the sin-
gle generic feature vector. This simple network might represent students in a high school
(vertices), their friendships (edges) and properties of students such as age, gender or race.
The phenomenon of interest in this chapter is the homophily regarding the single generic
vertex feature and the proper measurement of homophily.

This chapter introduces the fundamental definitions of homophily measurement needed
for the implementation of homophily rearrangement algorithms. To illustrate the concepts
introduced in the chapter I included a number of detailed examples. Section 3.1 introduces
the concept of universal homophily measurement functions, which are used extensively in
the algorithm designs later in my thesis. Categorical homophily measurement functions
are discussed in Section 3.2 and ensemble homophily measurement and related concepts
are developed in Section 3.3.

3.1 Universal homophily measurement

Definition 3.1. The universal homophily measurement function HU(x,W) → C takes
the feature vector x and the weight matrix W of the network and gives a measure of
homophily (here denoted by C) on the network. If the number of elements in the feature
vector is denoted by N , the universal homophily measurement function is essentially a
HU(x,W) → R mapping, where x ∈ RN and W ∈ RN×N . A universal homophily
measurement function requires a feature vector x that is a binary, count or continuous
variable.
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The universal homophily measurement function described in definition 3.1 satisfies the
following requirements:

1. Takes a positive value, when the network shows homophily regarding variable x.

2. It takes a negative value, when the network in x shows heterophily.

3. It is zero when the network shows neither heterophily or homophily in variable x.

These formal requirements, for example, imply that the measure described by Moran
(1950) (a metric used for describing spatial autocorrelation) can be considered to be a
universal homophily measure. It is zero when homophily or heterophily regarding the
feature is not present in the network, takes negative value in presence of heterophily and
positive when the network shows homophily. The formula used for calculating Moran’s I is
described by Equation (3.1). The notations used in the equation are in line with Definition
(3.1), the only new element is x, which describes the mean of the feature vector. It should
be noted that the number of operations needed for calculating the numerator of the second
fraction in Equation (3.1) scales quadratically with the number of vertices – this means
that for larger networks the computation of Moran’s I is demanding.

Moran’s I =
N

N∑
i=1

N∑
j=1

Wij

·

N∑
i=1

N∑
j=1

Wij · (xi − x)(xj − x)

N∑
i=1

(xi − x)2
(3.1)

Intriguingly, the network level segregation index introduced by Freeman (1978) cannot
be considered to be a universal homophily measurement function. It should be noted that
another spatial autocorrelation measure called Geary’s C does not satisfy any of these
requirements, so it cannot be considered to be an homophily measure function (Geary,
1954). However, some of the linear transformations of this specific function satisfy these
prescribed requirements. In Equation (3.2) I define a measure that is based on Geary’s
C to express a function that is a universal homophily measurement function.

Reciprocal Geary’s C = 1−
(N − 1) ·

N∑
i=1

N∑
j=1

Wij · (xi − xj)
2

2 ·

(
N∑
i=1

N∑
j=1

Wij

)
·

N∑
i=1

(xi − x)2

(3.2)

Definition 3.2. A universal homophily measurement function HU(x,W) is normalized
when it satisfies that HU(x,W)→ {C ∈ R | −1 ≤ C ≤ 1}.

20

C
E

U
eT

D
C

ol
le

ct
io

n



Essentially definition 3.2 implies that a universal homophily measurement function is
normalized when its value is constrained to the [−1, 1] interval. A normalized univer-
sal homophily measurement function is Moran’s I or the reciprocal Geary’s C defined
by Equations (3.1) and (3.2), respectively. This property of a universal homophily mea-
surement function ensures that the level of measured homophily will be scale invariable.
For example, in a network of firms connected by supplier relationships, the measured
homophily in market capitalization will be unchanged by the rescaling of market capital-
ization from dollars to million dollars. This setting of lower and upper limits also helps
in the understanding of perfect heterophily and homophily.

Remark 3.3. The universal homophily measurement functions defined by Equations (3.1)
and (3.2) require that the feature vector x has an arithmetic mean. Definition 3.1 allows
for binary features, in case of binary features the arithmetic means represents the ratio
of vertices with a feature value equal to one. If x is an ordinal variable, it must have a
numeric variable representation which has an arithmetic mean.

An ordinal feature with meaningful arithmetic mean can be the highest school qualifica-
tion of a person, the highest school qualification can be equivalent to the overall number
of years associated with obtaining a degree. Therefore the strings can be mapped into
numeric values – for details see Equation (3.3).

Schooling =



0, if did not attend school.

8, if highest degree is elementary school.

12, if highest degree is high school.

15, if highest degree is a Bachelor’s degree.

17, if highest degree is a Master’s degree.

22, if highest degree is a PhD.

(3.3)

However, not every ordinal variable has similar mappings like this. For example, if un-
finished educational degrees are included, the mapping from ordinal variable to a purely
numerical one is ambiguous. Another example of ambiguous mapping can be the case of
a language knowledge ordinal feature (with feature values basic, intermediate, advanced
and native) into numeric values. There is no reliable way to map with a fair reliability
such variable into a numeric one.

Definition 3.4. A network shows perfect universal homophily in feature x whenHU(x,W)

is a normalized universal homophily measurement function and HU(x,W) = 1.
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Definition 3.5. A network shows perfect global heterophily in feature x when HU(x,W)

is a normalized universal homophily measurement function and HU(x,W) = −1.

The concept of perfect heterophily and homophily can be understood through visualiza-
tions and a simple example. Let us imagine that we have a network of firms that are
linked by supplier relationships – this is depicted in Figure 3.1. The firms (vertices in the
network) are located on a square lattice without periodic boundary conditions. The ones
that are located on the corners of the lattice have 2 connections, the ones on the sides
but not on the corners have 3 neighbors and the remainder has 4 neighbors. The firms
have one single feature, their capitalization. There are two types of firms in this simple
system – Type I. has a capitalization of $100, while Type II. has a somewhat higher
capitalization, namely $200. In Figure 3.1 firms from Type I. are shown as black nodes,
while Type II. firms are shown as white ones. The size of the lattice is 4× 4 which means
that this simple system has 16 vertices and 24 edges.

(a) Perfect heterophily (b) Strong heterophily (c) Perfect homophily (d) Strong homophily

Figure 3.1: Different levels of universal homophily on a 4 × 4 square lattice without
periodic boundary conditions

The subfigures of Figure 3.1 show four different levels of homophily, for all four cases I
measure the level of homophily with universal homophily measurement functions. The
perfect heterophily is shown by Subfigure 3.1a. For this setup the value of Moran’s I,
the linear transformed Geary’s C and the end-node correlation are the same, namely,
all of them are -1. In Subfigure 3.1c perfect universal homophily is shown, the respective
measures all have a value of 1. This artificial example demonstrates that perfect homophily
can exist only in two scenarios:

1. There is only one value that the generic feature of the vertices can take.

2. Vertices who share a common vertex value are segregated and do not have connec-
tions with vertices who have a different feature value.
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A state with strong homophily is depicted in Figure 3.1d, where the end node correlation
is 0.466̇, Moran’s I is 0.494̇ and the linear transformed Geary’s C is 0.483̇. While these
values are close to each other, they are incomparable.

3.2 Categorical homophily measurement

The measurement approach discussed in Section 3.1 is only viable when the generic
vertex feature x is not categorical. However, in a number of networks the generic vertex
features are categorical – race, religion or social status in social networks are such generic
vertex features. Consequently, to characterize homophily related to categorical variables
a slightly different set of definitions has to be introduced.

Definition 3.6. The categorical homophily measurement function HC(x,W)→ C takes
the feature vector x and the weight matrix W of the network and gives a measure of
homophily (here denoted by C) on the network. If one denotes by N , the number of ele-
ments in the feature vector, the universal homophily measurement function is essentially
a HC(x,W)→ RM mapping, where x ∈ RN and W ∈ RN×N . The M denotes the num-
ber of unique values that a categorical feature vector x can take. A categorical homophily
measurement function requires a generic vertex feature which is categorical (or ordinal).

Essentially the homophily is measured for each of the groups and C is a vector with M
components. The categorical homophily measurement function described by Definition
3.6 has the following properties:

1. The group specific homophily measurement value Cm is positive when vertices which
have an x value equal to m show homophily.

2. The group specific homophily measurement value Cm is zero when vertices which
have an x value equal to m neither show heterophily or homophily.

3. The group specific homophily measurement value Cm is negative when vertices which
have an x value equal to m show heterophily.

This proposed definition allows that regarding that vertices which share the same x value
might show heterophily, while other vertices with different x might show homophily. For
example, the study of Kenyon & Colebunders (2013) shown that the network of sexual
relationships might show heterophily for certain small size ethnic groups and homophily
for other ethnic groups that are relatively large.
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Definition 3.7. A categorical homophily measurement function HC(x,W) is normalized
when it satisfies that HC(x,W)→ {C ∈ RM | −1 ≤ Cm ≤ 1, ∀m ∈M}.

The homophily index of Coleman (1958) and the segregation matrix index of Fresht-
man & Gneezy (2001) are both normalized categorical homophily measurement functions
according Definition 3.7. The way that Definition 3.7 introduces normalized categori-
cal homophily measurement functions is a straightforward extension of Definition 3.2.
The level of categorical homophily is constrained to the [−1, 1] interval for each of the
groups. Homophily measures such as the homophily, inbreeding homophily and segre-
gation indices are all normalized categorical homophily measurement functions. Impor-
tantly, the normalization of the homophily rearrangement function makes homophily
levels across groups comparable. One can compare the level of ethnic homophily (specif-
ically for Asians, Blacks, Hispanics and Whites) in a network of friendships or the level
of homophily among linked blogs or websites regarding political affiliation.

Definition 3.8. A network shows perfect categorical group homophily regarding vertices
that have feature x = m when HC(xm,W) is a normalized categorical homophily mea-
surement function and Cm = 1.

Definition 3.9. A network shows perfect categorical group heterophily regarding vertices
that have feature x = m when HC(xm,W) is a normalized categorical heterophily mea-
surement function and Cm = −1.

Definitions 3.8 and 3.9 take into account that groups that have a certain level of a categor-
ical feature x might show perfect homophily or heterophily while groups with different
levels might show a non-perfect level of heterophily or homophily. This definition also
implies that vertices that show perfect categorical group homophily only have relation-
ships within the group, while others who belong to a group that does not have perfect
level of homophily have links to vertices that are outside the group. Similarly, it also
means that vertices which belong to a given group and show perfect categorical group
heterophily have only relationships with nodes that have different x values. The above
mentioned fact has an interesting consequence about universal homophily measurement.
Let us imagine that we have a network of friendships, and x denotes a generic feature
which describes the income of the people in this simple network. If one would measure
universal homophily regarding income, the network might show homophily. However, if
the income variable is binned into a categorical variable, groups that have a small relative
size in the population might show perfect categorical group heterophily.
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Definition 3.10. A network shows perfect global categorical homophily regarding feature
x = m when HC(xm,W) is a normalized categorical homophily measurement function
and Cm = 1, ∀m ∈M .

Definition 3.11. A network shows perfect global categorical heterophily regarding feature
x when HC(xm,W) is a normalized categorical heterophily measurement function and
Cm = −1, ∀m ∈M .

It is an outright extension of Definitions 3.8 and 3.9 to describe networks that show
perfect categorical group homophily or heterophily for all unique values of x. Perfect
global categorical heterophily, that is described by Definition 3.10, practically means
that vertices which share the same value of categorical feature vector x have only links to
vertices which have the same value of x. Similarly, perfect global categorical heterophily
means that it will be true for all vertex, which have x = m that they only have links to
vertices which have x 6= m.

Remark 3.12. The heuristic explanation of perfect categorical group homophily and per-
fect global categorical homophily means that for networks which have a single component
a state of perfect categorical group homophily cannot be achieved for any group of vertices
if x can take more values than one – intrinsically if m > 1. This also results in the
regularity that a state of perfect global categorical homophily does not exist. Practically, a
homophily rearrangement algorithm which has a a target of perfect categorical group ho-
mophily and runs on a single component network is not going to converge (if one assumes
fixed topology).

The distinction between perfect categorical group homophily/heterophily and perfect
global categorical homophily/heterophily can be understood through an example. In the
subfigures of Figure 3.2 two simple networks are depicted. Each of the networks has
12 nodes and a single categorical generic feature vector x. This feature can take three
distinct values, respectively this is represented as black, gray and white vertex coloring on
the network. In Subfigure 3.2a black vertices exhibit perfect categorical homophily, while
white and gray ones only show categorical homophily. Thus, there is no perfect global
categorical homophily in the system. By contrast, in Subfigure 3.2b the black, white and
gray vertices only have within group links, so this network shows perfect global categorical
homophily.
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(a) Perfect categorical group homophily (b) Perfect global categorical homophily

Figure 3.2: Perfect categorical group homophily and perfect global categorical homophily
distinction – illustrative example

3.3 Ensemble homophily measurement

In real networks vertices usually have multiple generic features. For example, in a network
of friendships the vertices have features such as age, gender, race, income and religion and
other variables, among many others. Each of these generic features is a potential driver of
homophily, and homophily is measurable regarding all of these variables. Let us imagine
that we have a network, and the number of generic vertex features is j, and vertex features
are simply denoted as X1, . . . ,Xp. Among these generic vertex features one might have
multiple types including binary, categorical, ordinal and continuous ones. Together these
column vectors can form the generic vertex feature matrix X, which has the individual
generic vertex features X1, . . . ,Xp as its columns. For each of the features, homophily is
measurable with an arbitrarily chosen homophily measurement function H(x,W ) – the
lower index is missing because the function is either universal or categorical.

Definition 3.13. The function E(H1(X1,W), . . . ,Hp(Xp,W)) is an ensemble homophily
measurement function if it is a series of p arbitrary universal or categorical homophily
measurement functions which describe homophily for each features in matrix X with p

features.

The ensemble homophily measurement function described by Definition 3.13 can be ex-
plained in plain words as follows: we have p homophily measurement functions and they
all give a measure of homophily regarding a certain feature, just as Equation system (3.4)
shows.

C1 =H1(X1,W)

... (3.4)

Cp =Hp(Xp,W)

Definition 3.14. The homophily levels (C1, . . . , Cp) together form a homophily profile.
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The individual homophily levels in a homophily profile (C1, . . . , Cp) are either scalars1

(universal homophily measurement function), vectors (categorical homophily measure-
ment function), according to the number of distinct elements in the respective feature
vector. The ensemble homophily profile (C1, . . . , Cp) itself is a series of scalars, vectors or
a series of scalars and vectors combined.

Definition 3.15. An ensemble homophily measurement function is normalized if all the
corresponding homophily measurement functions that are its elements are normalized.

Definition 3.15 requires that all of the values in a homophily profile are in the [−1, 1] in-
terval. This means that different types of homophilies in two networks that have the same
generic feature vectors are comparable for the same variables. In the algorithms intro-
duced later, this comparison is done within networks. However, the different homophily
values across variables are incomparable due to the fact that the functions themselves
might differ.

Definition 3.16. The function E(H1(X1,W), . . . ,Hp(Xp,W)) is an unitary ensemble
homophily measurement function if the encompassed homophily measurement functions
are all the same.

The concept of unitary ensemble homophily measurement functions put down in Defini-
tion 3.16 can be demonstrated with a simple example. Let us take a network of co-working
relationships where the vertices are employees and the links are the working relations.
Age, income and job tenure of the employees are known (these are generic vertex features)
and homophily can be measured regarding these variables with Moran’s I. In this case
the set of Moran’s I functions is an unitary ensemble homophily measurement function.
If one of the functions that measure feature specific homophily would have been changed
to an other homophily measurement function, the set of functions would not be anymore
a unitary homophily measurement function.

1In the previous sections scalar valued homophily was denoted by C, here to have a unified notation
system I denote scalar and vector homophily levels alike with C.
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Chapter 4: Univariate homophily re-

arrangement algorithms

This chapter introduces algorithms that generate networks that show a given level of ho-
mophily. The common property of these algorithms is that they only deal with homophily
in one single generic feature of the vertices. Topology of the networks is unchanged, and
the initial distribution of the feature is also untouched by the algorithms. Only the as-
signment of the feature values to vertices is manipulated by the introduced procedures.
In each section I give a formal pseudo code of the algorithms and describe their mechan-
ics in detail. The algorithms are implemented for universal and categorical homophily
measurement functions that satisfy the normalization criteria described in Sections 3.1
and 3.2 of Chapter 3.

The remaining sections of this chapter present the univariate homophily rearrangement
algorithms. The most simple heuristic homophily rearrangement algorithms are intro-
duced in Section 4.1. More stringent variants of these heuristic algorithms are discussed
in Section 4.2. Greedy homophily rearrangement algorithms are described in Section 4.3.
All of the sections include pseudo-codes which summarize the respective algorithms.

4.1 Heuristic homophily rearrangement algorithm

Heuristic homophily rearrangement algorithms are the most simple types of homophily re-
arrangement algorithms introduced. The basic idea behind them is that randomly switch-
ing the feature values between a pair of vertices might increase or decrease the level of
homophily. In addition, the exchange of values does not change the topology (generic
vertex properties are unchanged) and the distribution of the generic vertex feature it-
self is unchanged. The genuine key invention is that with a sufficient number of proper
random value switches a target level of homophily or heterophily is achievable. The al-
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gorithm design is dependent on the chosen homophily measurement function. Because
of this there are two variants of the heuristic homophily rearrangement algorithm. The
version which uses universal homophily measurement functions is discussed in Subsection
4.1.1 and the one which considers categorical homophily measurement is introduced in
Subsection 4.1.2.

4.1.1 Universal homophily measurement function

The heuristic homophily rearrangement algorithm on a single feature is summarized with
pseudo code by Algorithm 1. The algorithm needs three inputs: a prescribed level of
homophily denoted by φ, a vector of the feature that is behind homophily x and an
adjacency matrix W. The adjacency matrix can describe both binary, weighted, directed
or asymmetric relationships among the vertices. The feature vector can be continuous,
binary or ordinal. The working of the algorithm can be summarized as follows.

The parameter N is defined as the number of elements in feature vector x. Essentially
this equals the number of vertices in the system. The initial characteristic solution time
is declared to be zero – put it simply, this is stating that t = 0. The initial level of
homophily, here noted by C, is calculated from x and W with the normalized universal
homophily measurement function HU(x,W) during the initialization. Through its run
the algorithm always uses the same normalized universal homophily measurement func-
tion which gives a scalar value of homophily. The time specific homophily level ωt equals
C when the algorithm starts.

The iterative process stops when φ is positive and the level of homophily is higher than
φ, or when φ is negative and the level of homophily is below φ. Importantly the logical
statements connected by the OR operator cannot be true at the same time, because φ
cannot be positive and negative. This practically means that either φ ≥ C or φ ≤ C is
the active controlling logical block statement – they cannot be active and binding at the
same time. If the condition is not satisfied, an iterative process starts until it becomes a
true logical statement:

1. As a first step the characteristic solution time is increased by one. The temporary
feature vector x̃ is set to be equal with the feature vector x. Two random integers
i and j are drawn from the [1, N ] interval. This is expressed in the pseudo-code by
choosing i and j from a discrete uniform distribution.
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2. The steps enlisted here only happen when the ith and jth elements of the feature
vector x do not equal – this also ensures that different vertices were selected. The
ith element of the feature vector x is assigned in place of the jth element of the
temporary vector x̃. Similarly, the jth element of the feature vector x is assigned to
be the ith element of the temporary vector x̃. Based on the temporary feature vector
x̃ the temporary homophily level can be calculated with the homophily measure
function – this is described by the assignment C̃ = HU(x̃,W).

3. The following steps presume that the previous condition, see step 2, was satisfied.
If it was not satisfied a new pair of vertices is selected. In addition, it has to be true
that the preset homophily is positive and the previously assigned C̃ is higher than
C, or that the preset homophily is negative and C̃ is lower than C. If the condition
is satisfied, the ith element of the temporary feature vector x̃ is assigned in place
of the ith element of the feature vector x. In the same way, the jth element of the
temporary feature vector x̃ is defined to be the jth element of the feature vector
x. The level of homophily is updated with the temporary homophily value – C = C̃.
Essentially, the two elements of the original feature vector are swapped and the new
homophily level is calculated form the transformed feature vector and the original
weight matrix. The swap only happens permanently when the distance from the
objective homophily value is decreased.

4. In every step of the iteration the time specific homophily is set to be the current
level of homophily unconditionally.

There are a few observations and points that have to be clarified about the heuristic
homophily rearrangement algorithm.

• The homophily measurement function is not specified in the pseudo code, technically
the algorithm might be implemented with different universal normalized homophily
measure functions.

• Convergence towards the prescribed homophily is stochastic, which means that for
multiple runs the algorithm might result in fundamentally different networks. This
phenomenon and its consequences are investigated in Section 7.1.2 of Chapter 7.

• The feature value switching condition might be relaxed, which means that those
feature value changes that result in the same homophily or heterophily are allowed.
Relaxation of the switching conditions results in flat regions of the homophily level
– this phenomenon is show in Section 7.1.2 of Chapter 7.
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• It is self-evident that the proposed algorithms might never reach a target level of
homophily or heterophily if initial distribution of the generic vertex feature satisfies
certain conditions.

An R implementation of this algorithm (with Moran’s I as a universal homophily measure)
is attached in Appendix E as Script E.1.

Data: Target homophily level φ, a single feature vector x and and adjacency
matrix describing the weighted edges in the network denoted by W.

Result: Network with adjacency matrix W, feature vector x where the homophily
in absolute terms is at least φ.

1 N ⇐ |x|
2 t⇐ 0

3 C ⇐ HU(x,W)

4 ωt ⇐ C

5 while (φ ≥ C and φ > 0) or (φ ≤ C and φ < 0) do

6 t⇐ t+ 1

7 x̃⇐ x

8 i ∼ U([1, N ])

9 j ∼ U([1, N ])

10 if x̃i 6= x̃j then

11 x̃i ⇐ xj

12 x̃j ⇐ xi

13 C̃ ⇐ HU(x̃,W)

14 if (̃C > C and φ > 0) or (̃C < C and φ < 0) then

15 xi ⇐ x̃i

16 xj ⇐ x̃j

17 C ⇐ C̃

18 end

19 end

20 ωt ⇐ C

21 end

Algorithm 1: Pseudo code of the heuristic homophily rearrangement algorithm for
a single non-categorical vertex feature

31

C
E

U
eT

D
C

ol
le

ct
io

n



4.1.2 Categorical homophily measurement function

The variant of the heuristic homophily rearrangement algorithm which can take categor-
ical variables as an input is described by pseudo code of Algorithm 2. The running of
this algorithm needs the following: a categorical generic vertex feature (like religion or
race) denoted by x, a vector describing the group specific target homophily levels Φ, and
an adjacency matrix marked by W. This algorithm requires that the homophily target
vector satisfies one of the conditions described by Inequalities (4.1) and (4.2).

Φm > 0, ∀m ∈ 1, . . . ,M (4.1)

Φm < 0, ∀m ∈ 1, . . . ,M (4.2)

The m index notifies the number of the category in the feature vector. Essentially, the
conditions mean that either all of the group specific components of the homophily target
value vector are positive or all of them are negative. This also means that for all of the
groups we either have homophily or heterophily. The algorithm in addition to the above
mentioned requirements needs a normalized categorical homophily measurement to be
preset, in the pseudo code it is the expression HC(x,W).

Initialization of the algorithm can be summarized as follows. The number of elements in
the categorical feature vector is counted and the number of elements (which equals to
the number of vertices) is assigned to N . The initial time running time is set to be zero.
For each of the groups the groups specific homophily levels are calculated and stored in
C. The time specific homophily at time t are stored in Ωt.

After the initialization, an iterative process starts which is controlled by a block statement
related to the target homophily vectors. The iterative process only stops when convergence
to the preset level of homophily happens. Vector 0 has elements equal to the number of
groups in feature vector x, and all of its elements are zeros. One of the possible loop
breaking outcomes is when elements of the target homophily vector were higher than
zero and the group specific homophily levels are all higher than the target homophily
vector’s values. Fundamentally this means that Φ � C and Φ � 0 is true at the same
time. The another outcome which stops the iterative process is happening when all of the
groups specific homophily values are lower than the target homophily vectors elements
pairwise and the elements of the target homophily vector are all negative. This means
that we know that Φ � C and also that Φ ≺ 0.
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1. First the characteristic solution time of the problem is increased to be the next
integer in order. The feature vector x is assigned to be the temporary feature vector
x̃. A pair of random integers, respectively i and j, are drawn from the interval [1, N ].

2. The subsequent operations only take place if it is true that the ith and jth elements of
the generic feature vector do not have the same value. Just as before, this also means
that one chose different vertices of the network. The temporary generic feature
vectors jth element is replaced with the ith element of the feature vector. In an
analogous way, the ith element of the temporary feature vector is replaced with the
jth element of the feature vector. The resulting temporary feature vector x̃ is used
for calculating the temporary homophily level vector C̃.

3. The following procedures takes place in two scenarios. The first possibility is that
the target homophily was positive for every group and for all of the groups the
homophily increased. The second is that the prescribed homophily was negative
for all of the groups and the group specific homophily values all decreased . If
one of these conditions was satisfied the following happens: the ith element of the
feature vector x is replaced with the ith element of the temporary feature vector
x̃. Furthermore, the jth element of the feature vector x is replaced with the jth

element of the temporary feature vector x̃. In addition, the homophily criteria C is
replaced with the temporary homophily criteria C̃.

4. Irrespective of the change in temporary homophily values and on the selected ver-
tices, the time specific homophily vector Ωt is set to be equal with the the homophily
criteria vector C.

Just like in the case of the heuristic universal homophily rearrangement algorithm, the
switching condition of the categorical variant can be relaxed. In the relaxed model, the
group specific homophily levels might stay constant in iterative steps that result in a per-
manent feature value exchange. This phenomenon is demonstrated by simulation results
in Section 7.1.2 of Chapter 7. It is worth emphasizing that in each time period a time
specific homophily level vector is generated. At the end of the iterative process one has
t+ 1 time specific homophily level vectors which allow for comparing the time dependent
evolution of group specific homophily levels. For example, the group specific homophily
levels can be plotted as a function of time. Moreover, other group specific topological
features can be monitored during the iterative process – such as mean betweenness cen-
trality, coreness or clustering coefficient in the group.
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As simulations are essential parts of the thesis, an R implementation of this algorithm
(with the homophily index as a categorical homophily measure) is enclosed as Script E.2
in Appendix E.

Data: Homophily target vector Φ, a single feature vector x and adjacency matrix
describing the weighted edges in the network denoted by W.

Result: Network with adjacency matrix W and feature vector x where the group
specific homophily values are greater than the corresponding elements of
the vector Φ.

1 N ⇐ |x|
2 t⇐ 0

3 C ⇐ HC(x,W)

4 Ωt ⇐ C

5 while (Φ � C and Φ � 0) or (Φ � C and Φ ≺ 0) do

6 t⇐ t+ 1

7 x̃⇐ x

8 i ∼ U([1, N ])

9 j ∼ U([1, N ])

10 if x̃i 6= x̃j then

11 x̃i ⇐ xj

12 x̃j ⇐ xi

13 C̃ ⇐ HC(x̃,W)

14 if (C̃ � C and Φ � 0) or (C̃ ≺ C and Φ ≺ 0) then

15 xi ⇐ x̃i

16 xj ⇐ x̃j

17 C ⇐ C̃
18 end

19 end

20 Ωt ⇐ C
21 end

Algorithm 2: Pseudo code of the heuristic homophily rearrangement algorithm for
a single categorical generic vertex feature
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4.2 Heuristic homophily rearrangement algorithm with

bag of indices

The heuristic homophily rearrangement algorithms with bag of indices are effective iter-
ative step number restricted versions of the homophily rearrangement algorithms intro-
duced in Section 4.1. First, an effective iterative step results in a homophily/heterophily
level that is closer to the target. Second, the restriction means that the number of effec-
tive steps is limited. Simply, the presented algorithms have a limit on this effective step
number. The algorithms presented in this section rearrange a single vertex feature to ob-
tain a target level of homophily. This target level can be either a scalar value or a vector
of group specific homophily values if the vertex feature is categorical. The variant of the
algorithm which is able to deal with count, continuous and binary variables is discussed
in Subsection 4.2.1, while the one that can deal with categorical ones is described with
pseudo-code in Subsection 4.2.2.

4.2.1 Universal homophily measurement function

The heuristic homophily rearrangement algorithm might be relaxed (virtually the fea-
ture value exchanges can take place that do not decrease homophily). Importantly it
follows that mutual pairwise exchanges might take place between nodes that do not get
homophily closer to the target level. This means that restricting vertices to participate
in more than one value exchange during the iterative process might help the convergence
– as stated above this might be especially true when the switching condition is relaxed
to be an inequality.

The heuristic homophily rearrangement algorithm with a bag of indices for an universal
homophily measurement function is described with pseudo-code by Algorithm 3. The
algorithm needs an adjacency matrix which represents the network, a single generic ver-
tex feature which is binary, count or continuous, and a normalized universal homophily
measurement function. The homophily rearrangement algorithm is initialized by counting
the number of vertices, which is practically the number of elements in the generic feature
vector x. This number is assigned to be the scalar N . After this, the bag of indices is
defined to be the set of integers starting from 1 to N inclusive – this set is denoted by
B. The time ticker is set to be zero, and the universal level of homophily C is calculated
from the feature vector and the adjacency matrix. Finally, the time specific homophily
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level is equalized with the level of homophily. After the initialization the algorithm starts
an iterative process, in the next few paragraphs I synthesize this iterative mechanism.

1. The iterative process stops when homophily is at least the target homophily φ or
when heterophily is at least below the target homophily. When these conditions are
unsatisfied the following steps take places. The time ticker is incremented by one,
the temporary feature vector x̃ is set to be equal the feature vector x. Two random
integers i and j are chosen from the bag of indices. The probability of choosing a
given index is the same for every index – this is why the probability distribution
over B is discrete uniform.

2. The process takes the following steps only if the respective elements of the feature
vector do not equal with each other. The ith element of the temporary feature vector
is set to be the jth element of the generic vertex feature. In a similar manner, the jth

element of the temporary feature vector is set to be the ith element of the feature
vector. Essentially, these two steps mean the feature exchange. With the use of the
temporary feature vector a temporary measure of universal homophily is calculable,
here denoted by C̃.

3. The finalization of the feature value exchange takes place on two specific occasions.
First, if the temporary homophily criterion is higher than the permanent homophily,
when the target is homophily. This simply means that C̃ > C and φ > 0 are satisfied
at the same time. Second, if the temporary homophily criterion is lower than the
permanent homophily, while the target was heterophily. This connotes that C̃ < C

and φ < 0 are true at the same time. If the above mentioned are satisfied, the
following steps finalize the feature value exchange: the ith element of the feature
vector is assigned to be the ith element of the temporary vertex feature. In a similar
manner, the jth element of the temporary feature vector is assigned to be the ith

element of the feature vector. The universal homophily level is C, assigned to be
the temporary universal homophily level C̃. The indices i and j are removed from
the bag of indices – the corresponding vertices cannot participate in further feature
value switchings.

4. Independent of any condition on homophily level improvement, the time dependent
homophily level is set to be the homophily level.

The heuristic nature of the algorithm postulates that it might never converge to the target
homophily or heterophily level. Moreover, it might end up being stalled in an infinite
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while loop – when the bag of indices is empty and the homophily target value condition
is not satisfied. The pseudo-code can be augmented with a termination condition to stop
infinite while loops. A simple R implementation of the algorithm is enclosed as Script E.3
in Appendix E.

Data: Target homophily value φ, a single feature vector x and adjacency matrix
describing the weighted edges in the network denoted by W.

Result: Network with adjacency matrix W and feature vector x where the
homophily in absolute terms is at least φ.

1 N ⇐ |x|
2 B ⇐ {1, . . . , N}
3 t⇐ 0

4 C ⇐ HU(x,W)

5 ωt ⇐ C

6 while (φ ≥ C and φ > 0) or (φ ≤ C and φ < 0) do

7 t⇐ t+ 1

8 x̃⇐ x

9 i ∼ U(B)

10 j ∼ U(B)

11 if x̃i 6= x̃j then

12 x̃i ⇐ xj

13 x̃j ⇐ xi

14 C̃ ⇐ HU(x̃,W)

15 if (̃C > C and φ > 0) or (̃C < C and φ < 0) then

16 xi ⇐ x̃i

17 xj ⇐ x̃j

18 C ⇐ C̃

19 B ⇐ B \ {i, j}
20 end

21 end

22 ωt ⇐ C

23 end

Algorithm 3: Pseudo code of the heuristic homophily rearrangement algorithm
with bag of indices for a single generic vertex feature

37

C
E

U
eT

D
C

ol
le

ct
io

n



4.2.2 Categorical homophily measurement function

The categorical heuristic homophily rearrangement algorithm with a bag of indices is a
restricted version of the heuristic homophily rearrangement algorithm for categorical vari-
ables. The individual vertices can only participate in one effect feature value exchange.
The algorithm needs a network with a single binary, categorical or ordinal generic vertex
feature x. The homophily measurement function needs to be normalized and categorical.
In addition, a vectorial target of group specific homophily values has to be set. This Φ

vector must have only positive or negative components as group specific target values.

A pseudo-code summary of the algorithm is included as Algorithm 4. To start the algo-
rithm one has to declare the number of vertices to be N , just as in Algorithms 1, 2 and
3. The bag indices is set to be the series of integers between 1 and N . The time index
is set to be zero, and the level of homophily is quantified with the categorical homophily
measurement function specified for the algorithm. The time specific vector of homophily
levels is equalized with the level of homophily in the network regarding the generic ver-
tex feature x. The iterative process that starts after initialization is similar to the one
implemented in Algorithm 2. In the consequential paragraphs I summarize this process.

1. The iterative process stops on two occasions. First, when all the groups specific
homophily levels are above the target homophily levels – formally, when (Φ � C
and Φ � 0). Second, when all the group specific heterophily levels are at the
heterophily threshold or below. To put simply, it holds that Φ � C and Φ ≺ 0 .
Again, intuitively only one of the controlling block statements is active – the goal is
either homophily for every group or heterophily. While one of the controlling block
statements is true, the time ticker is increased by one. The temporary feature vector
is set to be equal to the single generic vertex feature. Two random vertex indices i
and j are chosen from B.

2. The iterative process envoys by exchanging feature values if the feature values cor-
responding to the indices do not equal. The ith element of the temporary feature
vector overwritten be the jth element of x. Likewise, the jth element of the tempo-
rary feature vector is overwritten by the ith element of x. The obtained temporary
feature vector is used for calculating the temporary categorical homophily level on
the network.
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Data: Homophily target vector Φ, a single categorical vertex feature vector x and
adjacency matrix describing the weighted edges in the network denoted by
W.

Result: Network with adjacency matrix W and feature vector x where the group
specific homophily values are greater than the corresponding elements of
vector Φ.

1 N ⇐ |x|
2 B ⇐ {1, . . . , N}
3 t⇐ 0

4 C ⇐ HC(x,W)

5 Ωt ⇐ C

6 while (Φ � C and Φ � 0) or (Φ � C and Φ ≺ 0) do

7 t⇐ t+ 1

8 x̃⇐ x

9 i ∼ U(B)

10 j ∼ U(B)

11 if x̃i 6= x̃j then

12 x̃i ⇐ xj

13 x̃j ⇐ xi

14 C̃ ⇐ HC(x̃,W)

15 if (C̃ � C and Φ � 0) or (C̃ ≺ C and Φ ≺ 0) then

16 xi ⇐ x̃i

17 xj ⇐ x̃j

18 C ⇐ C̃
19 B ⇐ B \ {i, j}
20 end

21 end

22 Ωt ⇐ C
23 end

Algorithm 4: Pseudo code of the heuristic homophily rearrangement algorithm
with bag of indices for a single categorical generic vertex feature
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3. Similar to other algorithms implemented previously in my thesis the temporary
feature exchange is becoming permanent in two cases. One case is when the tem-
porary homophily profile is element-wise greater than the elements of the actual
homophily profile, and the target was homophily for each group. Another case is
when the temporary homophily profile is element-wise below the actual homophily
profile and the target vector described group wise heterophily. In these two cases,
the ith element of x becomes the ith element of x̃. Correspondingly, the jth element
of x becomes the jth element of x̃. The vector that describes the homophily level is
replaced by the temporary homophily level. Finally, the indices i and j are removed
from the bag of indices.

4. The time specific homophily vector Ωt is equalized with the homophily vector.

This algorithm only differs from Algorithm 2 in that the indices are selected from the
bag of indices. Importantly, the exchange conditions are relaxable and like the heuristic
homophily rearrangement algorithm this one is also prone to infinite loops. The iterative
assignment of time specific homophily levels once again allows for time-dependent tracking
of homophily levels. An R implementation of the algorithm is enclosed as Script E.4 in
Appendix E.

4.3 Greedy homophily rearrangement algorithm

The heuristic homophily rearrangement algorithm presented in Section 4.1 and its re-
stricted variant, the heuristic homophily rearrangement algorithm with bag of indices,
discussed in Section 4.2 select the vertices randomly in the feature switching process.
This results in feature value changes that do not move the level of homophily towards
the target homophily level. In each step the level of homophily has to be measured –
and this step-wise measurement is computationally costly. Because of this, in large com-
plex networks the convergence to a prescribed level of homophily or heterophily takes a
large number of iterative steps. In order to make switches of feature values that move
the target homophily level in the right direction in each iterative step, one can come up
with decision rules about how to choose the right vertices in the network. In addition,
these decision rules might result in changes in the target value that are larger in absolute
terms on average than the changes that would result from the random switches of the
feature values. In order to treat these algorithms in a generalized way I provide certain
definitions at the beginning of this section.
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On the basis of the set of criteria laid down by Cormen et al. (2009), the design of Algo-
rithms 5 and 6 discussed in the section is greedy. First, both algorithms have a well defined
candidate set of vertex pairs for the feature exchanges (the sub optimization problems
that have to be solved) – either based on the feature mean or a randomly chosen cate-
gorical vertex feature value. Second, the algorithms both use a selection heuristic which
ensures that proper vertex pairs are chosen in the iterations in order to move the objective
value in the right direction. Third, after selecting a pair of vertices, the algorithms check
whether the selected pair of indices can contribute to the homophily rearrangement in a
way that there is a feasibility function element in the designs. Fourth, in each case there
is an objective function included in the algorithms, namely, the level of homophily or het-
erophily in the system. Fifth, the algorithms have a stopping criteria which indicates that
a final solution to the homophily rearrangement problem is achieved. The co-existence of
these 5 elements together signify that these algorithms are greedy indeed.

Definition 4.1. Let us have a network with a single generic vertex feature represented
by G(x,W). The network G(x,W) has N vertices, and the set V represents the corre-
sponding vertex indices of the network from 1 to N . The first order neighboring vertices
of vertex i are defined as: Vi = {j ∈ V : Wi,j > 0}.

The first order neighbors concept discussed in Definition 4.1 is needed for defining a
subnetwork of the original network which contains the neighbors of a given vertex. Only
those vertices are included in the neighborhood of vertex i which have a relationship with
i – importantly these relationships are possibly weighted, that is why I used an inequality.
The use of an inequality makes my neighborhood definition different from the one that
Fagiolo et al. (2007) introduced, who only consider unweighted neighbors and use an
equality (Wi,j = 0) instead of an inequality. Moreover, Fagiolo et al. (2007) require that
Wi,j = Wj,i which is always satisfied in the setting of my thesis, because the weighted
adjacency matrix is defined to be symmetric in my thesis.

Definition 4.2. The vertex i induced star subnetwork of G(x,W) is a network which
includes i and its first order neighboring vertices. In the vertex i induced star subnet-
work edges only exist between i and its neighboring vertices. The vertex i induced star
subnetwork of G(x,W) is connoted by G∗i (x∗,W

∗).

It should be emphasized that Definition 4.2 does not allow the existence of edges among
vertex i’s neighbors. This restriction is needed because the similarity of i’s neighboring
vertices is not in focus when one investigates the dissimilarity of i itself from its neighbors.
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We know that exchanging feature values between vertices that are starkly dissimilar from
their neighbors and have different vertex feature values from each other can increase
homophily. Similarly, if one is able to change the feature values between vertices that are
similar to their neighbors regarding the generic vertex feature and different from each
other the heterophily in the network can be increased in an effective greedy way.

Definition 4.3. The network denoted by G(x,W) has the single feature x, and in this
network G∗i (x∗,W

∗) is a vertex i induced star subnetwork. In this subnetwork the scalar
d∗i is defined to be the average feature dissimilarity of vertex i from its neighbors.

The average feature dissimilarity in Definition 4.3 is a simple concept, the dissimilarity of
a vertex from its neighbors can be quantified by averaging out the pairwise dissimilarities
between the central vertex and the neighbors. The dissimilarity measure that is averaged
out has to be the same for all considered relationships. Furthermore, when choosing such
measure one has to take into account that different types of generic vertex features (for
example, the ordinal and continuous variables) might need different types of dissimilarity
measures (Deza & Deza, 2009).

Definition 4.4. The degree corrected average feature dissimilarity of node i is denoted by
∆i and equals to deg(i) · di, where deg(i) is the degree of vertex v in the original network
G(x,W), and d∗i is the average feature dissimilarity of node i.

The measure set down in Definition 4.4 is needed because the average dissimilarity of a
vertex does not take into account the fact that a node that is strongly dissimilar from
its neighbors can have a low degree. The degree corrected average dissimilarity takes into
account the connectedness of the inspected vertex – it is practically the sum of pairwise
dissimilarity measures in the i induced star subnetwork.

4.3.1 Universal homophily measurement function

The greedy homophily rearrangement algorithm which uses universal homophily mea-
surement functions is included as Algorithm 5. The algorithm needs a specified target
homophily level, a network with adjacency matrix W which has a single generic vertex
feature x which is either binary, continuous or count. The universal homophily measure-
ment function has to be preset and the universal vertex selection algorithm SU has to be
predefined – later in this section I show a very specific vertex selection algorithm that I
use for homophily rearrangement algorithm design.
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1. During the initialization the control flag Θ is set to be zero, likewise the time ticker
t is equalized with zero. The initial level of homophily is measured regarding the
generic vertex feature, and the time specific homophily level ωt is assigned to be
the level of homophily. After these steps an iterative process starts.

2. The iterative process stops on three occasions: First when the achieved homophily
level is at least the target homophily φ. Second, the target was heterophily and the
heterophily level is at least below φ. Third, the iterative process stops because it is
halted by an exit flag equal to one – this is connected to the previous conditions by
an AND operator.

3. During the run of the iterations the time ticker value is incremented by one. The
temporary feature vector is equalized with the feature vector. The universal vertex
index selection algorithm based on the target homophily level, the feature vector
and the adjacency matrix chooses a pair of indices for the feature value exchange.
A simplistic greedy universal index selection method is described by Algorithm 11
in Appendix B. It works as follows:

(a) The scalar N is set to be the number of vertices in the system. The set V
describes the set of vertex indices in the network. If the original target of the
homophily rearrangement algorithm calling the index selection algorithm is
homophily the above the mean (X ↑) and the below the mean (X ↓) control
values are symbolically set to to be equal to −∞. In a similar manner, if the
target of the greedy homophily rearrangement algorithm the control values
both equal to ∞. After this an iterative process goes through the vertices in
the system.

i. The output index i is equalized with index v and the above the mean
control value is set to be the degree corrected average feature dissimilarity
of node v if three conditions hold at the same time. First, the generic
feature value is below the vertex feature’s mean. Second, the target of
the homophily rearrangement was obtaining homophily. Third, the degree
corrected average feature dissimilarity of node v is higher than the above
the mean control value.

ii. Similarly, the index i is overwritten by v and the above the mean control
value is set as the degree corrected average feature dissimilarity if three
conditions are true. First, the xv value is above the mean of x. Second,
the target was a network which shows heterophily regarding the variable.
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Third, the degree corrected average feature dissimilarity of node v is lower
than the above the mean control value.

iii. Alike, the returning index j is set to be v, and the below the mean control
value is substituted with the degree corrected average feature dissimilarity
of v if three logical statements hold. First, the feature value is below
the mean of the feature. Second, the target network shows homophily
regarding x. Third, the d∗v value is above the current below the mean
control value.

iv. Finally, index j is set to be v and the below the mean control value is
replaced by the degree corrected average dissimilarity of vertex v if three
conditions stand at the same time. First, the vertex has a feature value that
is below the feature’s mean. Second, the target network that one wants to
achieve shows heterophily regarding x. Third, the degree corrected average
feature dissimilarity of v is below the current below the mean control value.

(b) The universal vertex selection algorithm returns the indices i and j as the
vertices to be chosen next for the feature value rearrangement.

4. Based on a pair of indices that were returned by the universal vertex selection
algorithm, the replacements in the temporary feature vector take place. The ith

element of the temporary feature vector is replaced by the jth element of the actual
feature vector. Likewise, the jth element in the temporary vector is replaced by
the ith element of the actual feature vector. With a temporary feature vector a
temporary homophily criteria (level) is calculated and assigned to be C̃.

5. If the target was homophily (φ > 0), and the homophily level is increased by the
temporary exchange, the temporary feature vectors respective elements replace the
elements in the feature vector and the temporary homophily criteria is replaced by
the homophily criteria. In addition, if the target was heterophily (φ < 0) and the
homophily decreased (heterophily increased) the feature value exchange becomes
permanent and the temporary homophily criteria replaces the homophily criteria.
Otherwise the exit flag is set to be one and the iterative process will terminate in
the next iteration.

6. The homophily is assigned to be the time dependent homophily level uncondition-
ally in each iterative step.
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Data: Target homophily level φ, a single feature vector x and adjacency matrix
describing the weighted edges in the network denoted by W.

Result: Network with adjacency matrix W and feature vector x where the
homophily in absolute terms is at least φ.

1 Θ⇐ 0

2 t⇐ 0

3 C ⇐ HU(x,W)

4 ωt ⇐ C

5 while [(φ ≥ C and φ > 0) and (Θ = 0)] or [(φ ≤ C and φ < 0) and (Θ = 0)] do

6 t⇐ t+ 1

7 x̃⇐ x

8 {i, j} ⇐ SU(φ,x,W)

9 x̃i ⇐ xj

10 x̃j ⇐ xi

11 C̃ ⇐ HU(x̃,W)

12 if (̃C > C and φ > 0) or (̃C < C and φ < 0) then

13 xi ⇐ x̃i

14 xj ⇐ x̃j

15 C ⇐ C̃

16 else

17 Θ⇐ 1

18 end

19 ωt ⇐ C

20 end

Algorithm 5: Pseudo code of the greedy homophily rearrangement algorithm for
a single vertex feature

About Algorithm 5 and the auxiliary vertex selection heuristic described by Algorithm 11
in Appendix B a few important observations and notions have to be highlighted. These
can be briefly summarized as follows.

If the greedy algorithm stalls in an infinite while loop, namely because the exchange of
features do not move homophily in the direction of the target homophily, the algorithm is
stopped by the exit flag. This is particularly intriguing, because one will have information
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whether the greedy algorithm was able to tackle the homophily rearrangement problem
or not – this is just a product of the greedy algorithm design.

The vertex selection heuristic (this is true for the categorical case also) implemented in
the thesis is computationally complex. In each iterative step, the number of pairwise dis-
similarities calculated equals to the number of links in the network. Moreover, as vertex
feature values are exchanged these dissimilarities are recalculated in each iterative step in
order to choose indices that move the objective value towards the target level. This means
that the relative potential of a given vertex to increase or decrease homophily changes
with each iterative step.

The selection heuristic chooses the vertices based on a comparison that is done for all
of the individual vertices. This means that once the pairwise dissimilarities are obtained
the order of the vertex selection algorithm equals to the number of vertices in the sys-
tem. Recalculating the dissimilarities in each iterative step only for the affected vertices
(the pair of nodes that participate in the exchange and their neighbors) would make the
algorithm computationally cheaper. On the other hand, as a trade off all of the pairwise
dissimilarities should be stored.

As it is clearly stated, the proposed selection of the vertex pair that participates in the
feature exchange is partially based on whether a vertex has a feature value below or above
the mean. The rational behind this is that universal homophily measurement functions
take into account deviations from the feature mean explicitly. The Moran’s I and the
transformed Geary’s C both consider deviations from mean of the feature. My thesis only
considers a single index selection mechanism. However, other selection algorithms might
be proposed to choose the pair of indices. It is self-evident that choosing a different ver-
tex selection mechanism might change the simulation results presented later in the paper.

The R implementation of the main algorithm appears as Script E.5 in Appendix E. The
auxiliary index selection mechanism is attached as E.6 in Appendix E. The algorithm
assumes that the universal homophily measurement function is Moran’s I.

4.3.2 Categorical homophily measurement function

The greedy algorithm is extendable in a way that it can rearrange a single categorical or
ordinal feature in order to achieve a given vector of group specific homophily/heterophily
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levels in the network – the pseudo-code sketch of the method is shown by Algorithm 6.
The algorithm is defined in a generic way, this means that the categorical homophily mea-
surement function is left unspecified. In order to choose the vertices participating in the
feature value exchange in a greedy way, the algorithm needs a categorical vertex selection
algorithm. The before mentioned categorical vertex feature selection algorithm is chosen
arbitrarily. A self-developed algorithm which is suitable can be found as Algorithm 12 in
Appendix B.

In order to start the homophily rearrangement one has to set the exit flag Θ to be zero.
The time ticker is also zero in the beginning, the C homophily vector contains the initial
group specific homophily values and the time specific homophily vector Ωt inherits its
value from the homophily vector. After this an iterative process of feature value exchanges
starts in order to achieve the given level of homophilies. The steps of the iterations and
the controlling statements of the iteration itself are subsumed as:

1. The algorithm stops when the group specific homophily values are above the spec-
ified target Φ, or when the respective heterophily values are below the elements of
Φ. Furthermore, the algorithm also stops when the exit flag is not zero anymore. If
the stopping conditions are not satisfied the subsequent steps take place.

2. The time tickers is increased by one. The temporary feature vector x̃ is replaced
by the categorical feature vector x. A categorical index selection algorithm SC ,
based on the target vector Φ, the feature vector x and the adjacency matrix W is
used for choosing a pair of vertices (i and j) for the feature value exchange. This
auxiliary algorithm is described by Algorithm 12 in Appendix B. Basic mechanics
of the vertex selection algorithm can be summarized as:

(a) The number of elements in the vertex feature is assigned to be N . The set V
contains the vertex indices from 1 to N . The index of unique feature values
is contained by the setM, and a random feature is assigned to be the scalar
m. If the target is achieving homophily for each of the groups, then the within
and outside group control values (respectively Xm and X 6m with my notations)
are set to be −∞. Otherwise, in case of a heterophily target both of them is
set to be ∞.

(b) An iterative process loops through the indices in V and for each vertex v the
degree corrected average dissimilarity is calculated. Based on the target vector
of the homophily rearrangement algorithm, the corresponding feature value of
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the vertex and the investigated node’s degree corrected average dissimilarity
the following can happen:

i. The vertex index i is replaced by index v, the withing group control value
Xm is replaced by the degree corrected average feature dissimilarity of
node v, if the following three criteria hold together. First, the vertex spe-
cific feature value xv equals to the randomly chosen category m. Second,
the target of the rearrangement algorithm was homophily – formally it
means that Φ � 0.Third, the degree corrected average dissimilarity is
higher than the within group specific control value.

ii. Analogously, index i is set to be index v and Xm is equalized with deg(v) ·
d∗v under the withstanding of three criteria. First, the feature value xv

corresponding to index v has to be equal to m. Second, target of the
algorithm has to be heterophily for all of the groups. Third, the degree
corrected average feature dissimilarity has to be lower than the withing
group control value.

iii. In a similar manner, the returning index j is transcribed by v, and the
outside the group control value is replaced by the vertex v specific degree
corrected average feature dissimilarity. These replacements take place if
the following three statements are all true. First, the feature value does
not equal to m. Second, the target vector Φ described homophily. Third,
deg(v) is greater than the outside the group specific control value X 6m

iv. Akin, output index j is substituted out by index v and the outside the
group control value X 6m is replaced by deg(v) · d∗v if three separate condi-
tions are true. First, the index v specific feature value does not equal m.
Second, the target was heterophily for each categorical groups of x. Third,
the degree corrected average feature dissimilarity of vertex v is below the
outside the group control value.

(c) The vertex selection algorithm returns the index pair consisting i and j.

3. The pair of indices returned by SC is used for exchanging values between the tem-
porary and actual feature vector. The xi is assigned in place of x̃j, while the xj

value is assigned in place of x̃i. After the feature value exchange took place based
on the temporary feature vector a temporary homophily vector is calculated.

4. If the temporary homophily levels are above the actual ones, while the target vector
Φ described homophily or when the temporal heterophily levels are below the actual
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heterophily level and the target vector Φ described heterophily, additional opera-
tions take place. The ith element of the temporary feature vector is assigned to be
the ith element of the feature vector. Likewise, the jth element of the temporary fea-
ture vector is set as the jth element of the feature vector. The temporary homophily
vector overwrites the homophily vector. If the preconditions are not satisfied, Θ is
set to be one which results in termination of the iterative process.

5. Independent from any of the above mentioned conditions the time dependent ho-
mophily levels are set to be the homophily levels.

The most novel contribution of the greedy homophily rearrangement algorithm which
can deal with categorical variables is the vertex selection heuristic which chooses the
pair of vertices that participate in the feature exchange. In each iterative step one of the
unique values of the categorical feature are chosen to notify membership in a reference
group. The degree corrected average dissimilarity values are calculated for all of the in-
dividual vertices. Later based on the degree corrected average dissimilarity levels, two
vertices are chosen, one of them from those vertices that have an x value equal to the
reference group’s value, and another vertex from those that do not belong to the ref-
erence group. Importantly, this selection heuristic treats ordinal variables in a way that
there is no meaning of their structured nature – only common group membership matters.

Random choice of the specific feature value that is used for reference ensures that none of
the groups ends up with an abnormally high group specific homophily value. For example,
if one has a categorical generic vertex feature which can take 4 different unique values and
one group is always participating in the feature value exchanges than the chosen group’s
homophily value might increase faster than homophily regarding the other groups.

The main algorithm’s R implementation is enclosed as Script E.7 in Appendix E. The
vertex pair selection method’s R implementation is in Appendix E as Script E.8
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Data: Homophily target vector Φ, a single feature vector x and an adjacency
matrix describing the weighted edges in the network denoted by W.

Result: Network with adjacency matrix W and feature vector x where the group
specific homophily values are greater than the corresponding elements of
the vector Φ.

1 Θ⇐ 0

2 t⇐ 0

3 C ⇐ HC(x,W)

4 Ωt ⇐ C

5 while [(Φ � C and Φ � 0) or (Φ � C and Φ ≺ 0)] and (Θ = 0) do

6 t⇐ t+ 1

7 x̃⇐ x

8 {i, j} ⇐ SC(Φ,x,W)

9 x̃i ⇐ xj

10 x̃j ⇐ xi

11 C̃ ⇐ HC(x̃,W)

12 if (C̃ � C and Φ � 0) or (C̃ ≺ C and Φ ≺ 0) then

13 xi ⇐ x̃i

14 xj ⇐ x̃j

15 C ⇐ C̃
16 else

17 Θ⇐ 1

18 end

19 Ωt ⇐ C
20 end

Algorithm 6: Pseudo code of the greedy homophily rearrangement algorithm for
a single categorical generic vertex feature
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Chapter 5: Multivariate homophily re-

arrangement algorithms

As I highlighted previously, it is self-evident in real networks that the vertices have multi-
ple generic features. This also means that homophily might be present regarding multiple
features, and the presence of different types of homophily might drive the network evolu-
tion and spreading processes on the network in multiple ways. Because of this, generating
networks that show prescribed levels of homophily regarding all of the known generic
vertex features to obtain reference models. Moreover, it is an important step in order to
simulate similarity based diffusion. Importantly, the work of Yavas & Yusel (2014) does
not consider the generation of such networks. They only consider univariate systems,
while my work is more comprehensive as it considers multivariate homophily rearrange-
ment algorithms. Their simulations of diffusion only consider networks that have a single
generic vertex feature. Therefore, it is a novel contribution that one is able to generate
networks that show homophily and heterophily regarding multiple features.

The correlation structure of generic vertex features is an important macro-level property
of networks. In addition, the correlation of the non-topological node features might show
that certain observed homophilous phenomena are possibly endogenous. By switching the
values of a single generic vertex feature in order to achieve certain levels of homophily,
this correlation structure is prone to be changed. This disorganization of the homophily
structure is troublesome if our goal is to understand the homophilous phenomena under
the assumption of an unchanged correlation structure. In this section I propose algorithms
that keep the network’s generic vertex feature correlation structure, the topology, and
distributions of generic vertex features unchanged, and rearrange the feature values in
a way that target levels of homophily or heterophily regarding multiple variables are
achieved. The heuristic multivariate homophily rearrangement algorithm is presented in
Subsection 5.1 and the heuristic multivariate homophily rearrangement algorithm with

51

C
E

U
eT

D
C

ol
le

ct
io

n



bag of indices is described in Subsection 5.2. A multivariate implementation of the greedy
algorithm is discussed in Section 5.3

5.1 Heuristic algorithm

The operation of the multivariate heuristic homophily rearrangement algorithm is de-
scribed by pseudo-code in Algorithm 7. The algorithm requires a network described by
an adjacency matrix W, and a matrix of generic vertex features here denoted by X.
The matrix of generic vertex features has p columns according to the number of generic
vertex features, each feature is represented by a column. The target vector of homophily
levels are imputed by (Φ1, . . . ,Φp), which has scalar an vector elements (according to the
type of homophily measurement – categorical or universal). In addition, the algorithm
requires an ensemble homophily measurement function which is normalized – for details
see Definition 3.15 in Section 3.3 of Chapter 3.

The multivariate heuristic homophily rearrangement algorithm is initialized by counting
the vertices in the network – this number equals the number of rows in X. The number
of vertices is assigned to be the scalar N . The iterative step counter is set to be zero, an
initial homophily profile (C1, . . . , Cp) is calculated from the initial assignment of feature
values by the ensemble homophily measurement function. The time specific homophily
profile Ωt is assigned to be the previously calculated homophily profile. Following the
initialization of the rearrangement algorithm an iterative process starts.

The iterative process is controlled by two conditions in the block statement, they are
connected by an OR operator. Therefore, only one of the conditions is active. If either
of them is satisfied, the iterative process stops. In one case the process stops when the
prescribed target homophily vector elements are positive for all of the variables, and
the homophily profiles elements are all higher than respective elements of the target
homophily vector – when it holds that (Φ1, . . . ,Φp) � (C1, . . . , Cp). In the other case,
the imputed target vector described heterophily for each of the variables. The iterative
process stops when the elements of the homophily profile are all lower than corresponding
elements of the target vector – formally, when (Φ1, . . . ,Φp) � (C1, . . . , Cp). Until the
conditions are satisfied, the algorithm iteratively repeats the steps that are recapitulated
in the following paragraphs.

1. The iterative step counter is increased by one. The generic feature matrix X is

52

C
E

U
eT

D
C

ol
le

ct
io

n



assigned to be the temporary feature matrix X̃. Later two random integers are
chosen from the [1, N ] interval, and assigned to be i and j.

2. The following step only takes place if the ith and jth rows of the feature matrix
do not equal. Practically, the vertices that were chosen randomly have at least one
feature value that is different. The jth row of the feature matrix X is assigned to
be the ith row of the temporary generic feature matrix X̃. Similarly, the ith row of
the feature matrix X is assigned to be the jth row of the temporary generic feature
matrix. Based on the temporary feature matrix a temporary homophily profile is
calculated, this is denoted by (C̃1, . . . , C̃p).

3. These steps only take place if the previous condition was satisfied and in addition
one the followings is also true. First, the target vector described homophily, and the
elements of the temporary homophily profile are element-wise higher than elements
of the homophily profile. Second, the target vector described heterophily, and the
elements of the temporary homophily profile are element-wise lower than elements
of the homophily profile. If one of these criteria was fulfilled, the ith row of the
temporary feature matrix X̃ is assigned to be the ith row of the generic feature
matrix X. Alike, the jth row of the temporary feature matrix X̃ is assigned to be
the jth row of the generic feature matrix X. The homophily profile is updated with
the temporary homophily profile.

4. The time specific homophily profile Ωt is set to be equal with the homophily profile
irrespective of the previous controlling block statements.

This algorithm does not differ fundamentally from the heuristic algorithms discussed in
Section 4.1 of Chapter 4, but a few important observations have to be made about it.
The algorithm exchanges all of the generic feature values between the participating ver-
tices. This means that whole rows of the generic vertex feature matrix are exchanged.
Exchanges are becoming permanent only if all of the homophily values are increased or
decreased. If the generic vertex feature matrix is wide (the number of features is high)
the number of effective steps that result in permanent feature value exchanges will be
low. Relaxation of the conditions that control permanent feature value exchanges helps
this, as simulation results in Section 7.2 of Chapter 7 show. In addition, the homophily
levels might diverge from the target value if the target value is achieved in an early it-
erative step and features are correlated. An R implementation specifically for continuous
variables is attached in Appendix E as Script E.9. This specific implementation assumes
that the generic vertex features are continuous.
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Data: Target homophily profile (Φ1, . . . ,Φp), a feature matrix X with p columns
and an adjacency matrix describing the weighted edges in the network
denoted by W.

Result: Network with adjacency matrix W, feature matrix X with p columns
where the elements of the homophily profile (C1, . . . , Cp) in absolute terms
are greater than corresponding elements of (Φ1, . . . ,Φp).

1 N ⇐
∣∣X1

∣∣
2 t⇐ 0

3 (C1, . . . , Cp)⇐ E(H1(X1,W), . . . ,Hp(Xp,W))

4 Ωt ⇐ (C1, . . . , Cp)

5 while ((Φ1, . . . ,Φp) � (C1, . . . , Cp) and (Φ1, . . . ,Φp) � 0) or

6 ((Φ1, . . . ,Φp) � (C1, . . . , Cp) and (Φ1, . . . ,Φp) ≺ 0) do

7 t⇐ t+ 1

8 X̃⇐ X

9 i ∼ U([1, N ])

10 j ∼ U([1, N ])

11 if X̃i 6= X̃j then

12 X̃i ⇐ Xj

13 X̃j ⇐ Xi

14 (C̃1, . . . , C̃p)⇐ E(H1(X̃
1
,W), . . . ,Hp(X̃

p
,W))

15 if ((C̃1, . . . , C̃p) � (C1, . . . , Cp) and (Φ1, . . . ,Φp) � 0) or

16 ((C̃1, . . . , C̃p) ≺ (C1, . . . , Cp) and (Φ1, . . . ,Φp) ≺ 0) then

17 Xi ⇐ X̃i

18 Xj ⇐ X̃j

19 (C1, . . . , Cp)⇐ E(H1(X1,W), . . . ,Hp(Xp,W))

20 end

21 end

22 Ωt ⇐ (C1, . . . , Cp)
23 end

Algorithm 7: Pseudo code of the heuristic homophily rearrangement algorithm for
a matrix of generic vertex features
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5.2 Heuristic algorithm with bag of indices

The bag of indices algorithm is also applicable in multivariate homophily rearrangement
problems. They key is again the application of ensemble homophily measurement func-
tions in order to describe global similarities regarding multiple generic vertex features.
The algorithm needs a feature matrix X with p features of interest, a target homophily
profile denoted by (Φ1, . . . ,Φp) and an adjacency matrix W. The homophily profile el-
ements either have to be all positive or negative – the goal has to be homophily re-
garding all of the variables or heterophily towards all of them. The imputation of a
mixed target profile is not allowed. In addition, an ensemble homophily measurement
function E(H1(X1,W), . . . ,Hp(Xp,W)) has to be predefined with p homophily mea-
surement functions that are type specific for the corresponding features.

Algorithm 8 summarizes with pseudo-code the heuristic multivariate homophily rear-
rangement algorithm with bag of indices. The process is initiated by defining the scalar
N which equals to the number of elements in the first feature vector. This number is
essentially the number of vertices in the system. Based on this number of vertices, B the
bag of indices (a set of integers) is defined which contains all integers from 1 to N . Each of
the vertices has a linked index. The time index t has a zero value during the initialization
process. The ensemble homophily measurement function is used for calculating an initial
homophily profile, which is denoted by (C1, . . . , Cp). The profile is assigned in place of the
time dependent homophily profile Ωt. The algorithm inchoates an iterative process which
is controlled by the homophily target and the actual level of homophily. The iterative
operations stop on two occasions. First, if the target profile describes homophily and the
homophily level for each variables reaches the corresponding Φ value. Second, if the tar-
get is heterophily for all the generic vertex features and the feature specific heterophily
levels get at (or get below) the respective Φ values. In the following paragraphs I briefly
summarize the steps during the operations that are part of the iterative process.

1. The discrete time ticker t is incremented by one. The temporary feature matrix X̃

gets its value from the generic feature matrix X. Two random indices are chosen
from the bag of indices – these random indices are assigned in place of i and j.

2. If the temporary features matrices rows X̃i and X̃j are not the same the row
row exchanges take place between the temporary feature matrix and the feature
matrix. The jth row of the feature matrix replaces the ith row of the temporary
feature matrix. Similarly, the ith row of the feature matrix replaces the jth row of

55

C
E

U
eT

D
C

ol
le

ct
io

n



the temporary feature matrix. After the feature row swap, X̃ is used in order to
obtain a temporary homophily profile. This homophily profile is used for evaluating
whether the exchange was effective.

3. The exchange of feature matrix rows is effective and permanent on two occa-
sions. First, if the temporary homophily profile, which is denoted by (C̃1, . . . , C̃p),
is element-wise greater than (C1, . . . , Cp) and the target is homophily for each of
the features. Second, if the target is heterophily for each of the features and the
(C̃1, . . . , C̃p) is element-wise smaller than (C1, . . . , Cp). When one of these conditions
is satisfied, the ith row of the feature matrix becomes the ith row of the temporary
feature matrix. Likewise, the ith row of the feature matrix replaces the ith row of
the temporary feature matrix. The new feature matrix is used for calculating the
homophily profile. As a result of the effective feature matrix row exchange, the
indices i and j are removed from the bag of indices.

4. Independent from the conditions on feature matrix row exchanges, the time specific
homophily profile is defined to be (C1, . . . , Cp) in each iterative step.

Again, the heuristic homophily rearrangement algorithms that use a bag of indices are
prone to be stalled because of the bag reduction step – each vertex can participate in one
permanent exchange of features. The severeness of this problem increases with relaxation
of the exchange conditions, feature exchanges are allowed that do not move the homophily
levels closer to the target values. However, the algorithm can be augmented with a time
dependent control exit flag – if the time index is above a certain number, the exit flag
returns with a value that stops the iterative process. In this way the algorithm might
exit with a homophily profile that is not reaching the target value, but the algorithm
does not end up an infinite loop. This augmentation is a possible extension of all the
heuristic algorithms (both in case of univariate and multivariate ones). The algorithm
can be reinitialized with a new bag of indices after such exit. In this case it would not
be fundamentally different from the simple heuristic homophily rearrangement algorithm.

The R implementation of the multivariate heuristic homophily rearrangement algorithm
with bag of indices is enclosed as Script E.10 in Appendix E. Similarly to the the baseline
heuristic multivariate homophily rearrangement algorithm the features are assumed to
be Gaussian.
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Data: Target homophily profile (Φ1, . . . ,Φp), a feature matrix X with p columns
and an adjacency matrix describing the weighted edges in the network
denoted by W.

Result: Network with adjacency matrix W, feature matrix X with p columns
where the elements of the homophily profile (C1, . . . , Cp) in absolute terms
are greater in absolute terms than corresponding elements of (Φ1, . . . ,Φp).

1 N ⇐
∣∣X1

∣∣
2 B ⇐ {1, . . . , N}
3 t⇐ 0

4 (C1, . . . , Cp)⇐ E(H1(X1,W), . . . ,Hp(Xp,W))

5 Ωt ⇐ (C1, . . . , Cp)

6 while ((Φ1, . . . ,Φp) � (C1, . . . , Cp) and (Φ1, . . . ,Φp) � 0) or

7 ((Φ1, . . . ,Φp) � (C1, . . . , Cp) and (Φ1, . . . ,Φp) ≺ 0) do

8 t⇐ t+ 1

9 X̃⇐ X

10 i ∼ U(B)

11 j ∼ U(B)

12 if X̃i 6= X̃j then

13 X̃i ⇐ Xj

14 X̃j ⇐ Xi

15 (C̃1, . . . , C̃p)⇐ E(H1(X̃
1
,W), . . . ,Hp(X̃

p
,W))

16 if ((C̃1, . . . , C̃p) � (C1, . . . , Cp) and (Φ1, . . . ,Φp) � 0) or

17 ((C̃1, . . . , C̃p) ≺ (C1, . . . , Cp) and (Φ1, . . . ,Φp) ≺ 0) then

18 Xi ⇐ X̃i

19 Xj ⇐ X̃j

20 (C1, . . . , Cp)⇐ E(H1(X1,W), . . . ,Hp(Xp,W))

21 B ⇐ B \ {i, j}
22 end

23 end

24 Ωt ⇐ (C1, . . . , Cp)
25 end

Algorithm 8: Pseudo code of the heuristic homophily rearrangement algorithm
with bag of indices for a matrix of generic vertex features
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5.3 Greedy algorithm

The extension of the homophily rearrangement algorithms to multivariate systems is the
most complex in case of the greedy algorithm. The vertex index selection heuristic di-
rectly takes advantage of the feature’s type (categorical or not). However, with inducing
a random element, the proper multivariate extension of this homophily rearrangement
algorithm also becomes possible. The greedy multivariate homophily rearrangement al-
gorithm is described with pseudo-code by Algorithm 9.

Similarly to the other multivariate homophily rearrangement algorithms, this one needs
a generic vertex feature matrix X with p features, which might contain multiple types of
variables. The algorithm also needs a W matrix, which describes the relationships among
vertices, and a target homophily profile (Φ1, . . . ,Φp). Again, this target homophily profile
either contains only positive or negative elements, but not a mixture of positive and neg-
ative elements. In order to measure the macro-level similarities properly the algorithm
uses an ensemble homophily measurement function which has to be normalized. All of
the ensemble homophily measurement functions have to be type specific – universal or
categorical, according to the type of the feature. Furthermore, the algorithm needs to
define a specific vertex selection heuristic. One of the selection heuristics should be able
to treat a single non-categorical feature (SU), while the other heuristic should be able to
deal with a single categorical generic vertex feature (SC). In this case, auxiliary vertex
selection heuristics are chosen to be, respectively, Algorithms 11 and 12 in Appendix B.

The greedy multivariate homophily rearrangement algorithm is initiated by setting the
exit parameter Θ to be zero. The discrete time ticker starts with a zero value. The set P
contains the indices of the generic vertex features – essentially the integers from 1 to p,
which is the number of features. Based on the initial set up features with the ensemble
homophily function, a homophily profile is calculated. The homophily profile (C1, . . . , Cp)
is assigned in place of the time specific homophily profile Ωt. Following these early steps,
the algorithm starts an iterative procedure in order to achieve the preset homophily levels.
This procedure stops when the values in the homophily profile are higher or are at the
target homophily profile values. It also terminates when the heterophily values in the
heterophily profile are below or at the heterophily values in the heterophily target profile.
It also ends when the exit flag takes a value different from one. The next paragraphs give
a sketch of the above mentioned iterative steps.
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1. The time ticker is incremented by one, the feature matrix X is set to be the tem-
porary feature matrix X̃. A random integer k is chosen from the set P . The integer
k is used for choosing a generic vertex feature from the feature matrix.

2. Based on the type of the randomly chosen generic vertex feature, there are two
possibilities. If the feature is categorical or ordinal, the categorical vertex index
selection algorithm is applied to choose a pair of vertices for feature value exchange
in a greedy way. In the other case, the universal vertex index selection is applied
in order to choose a pair of indices. It is substantial that the choice of indices is
only affected by Xk and the corresponding homophily/heterophily target. Later the
feature value exchange happens for all of the features between the pair of nodes.

3. The chosen pair of vertex indices is used for exchanging the rows of the feature
matrix. The ith row of the temporary feature matrix is overwritten by the jth row
of the feature matrix. Just like this, the jth row of the temporary feature matrix is
replaced by the ith row of the feature matrix. The temporary feature matrix X̃ is
used for calculating a temporary homophily profile.

4. Exchange of feature matrix rows is made to be permanent by two main steps:
by replacing the feature matrices ith and jth row with the ith and jth row of the
temporary feature matrix. This happens on two occasions. First, if the target of the
rearrangement is homophily for each of the variables and the homophily levels are
increased. Second, if the the target of the rearrangement process is heterophily and
the homophily values are all decreased. Importantly, if the conditions are satisfied,
the temporary homophily profile replaces the actual homophily profile. Otherwise,
the exit flag receives a value equal to one and the algorithm stops.

5. Independent from the above listed criteria and conditions the time specific ho-
mophily profile receives its value from the homophily profile.

The choice of indices is only based on potential homophily or heterophily based on the
randomized feature. However, the goal of the algorithm is to achieve homophily regarding
a number of variables not just the one that is randomized in the vertex selection process.
Because of this, individual steps are only greedy towards the feature that is chosen in
the iterative step. The greediness of the algorithm is not ensured with respect to other
generic vertex features in a specific step. However, the random nature of the feature
selection ensures that the probability of being greedy towards a certain feature is the
same for all of the features in each iterative step.
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Data: Target homophily profile (Φ1, . . . ,Φp), a feature matrix X with p columns
and matrix W describing the weighted edges in the network.

Result: Network with adjacency matrix W, feature matrix X with p columns
where the elements of the homophily profile (C1, . . . , Cp) in absolute terms
are greater than corresponding elements of (Φ1, . . . ,Φp).

1 Θ⇐ 0

2 t⇐ 0

3 P ⇐ {1, . . . , p}
4 (C1, . . . , Cp)⇐ E(H1(X1,W), . . . ,Hp(Xp,W))

5 Ωt ⇐ (C1, . . . , Cp)

6 while [((Φ1, . . . ,Φp) � (C1, . . . , Cp) and (Φ1, . . . ,Φp) � 0) and (Θ = 0)] or

7 [((Φ1, . . . ,Φp) � (C1, . . . , Cp) and (Φ1, . . . ,Φp) ≺ 0) and (Θ = 0)] do

8 t⇐ t+ 1

9 X̃⇐ X

10 k ⇐ U(P )

11 if Xk is ordinal or categorical then

12 {i, j} ⇐ SC(Φk,Xk,W)

13 else

14 {i, j} ⇐ SU(Φk,Xk,W)

15 end

16 X̃i ⇐ Xj

17 X̃j ⇐ Xi

18 (C̃1, . . . , C̃p)⇐ E(H1(X̃
1
,W), . . . ,Hp(X̃

p
,W))

19 if ((C̃1, . . . , C̃p) � (C1, . . . , Cp) and (Φ1, . . . ,Φp) � 0) or

20 ((C̃1, . . . , C̃p) ≺ (C1, . . . , Cp) and (Φ1, . . . ,Φp) ≺ 0) then

21 Xi ⇐ X̃i

22 Xj ⇐ X̃j

23 (C1, . . . , Cp)⇐ E(H1(X1,W), . . . ,Hp(Xp,W))

24 else

25 Θ⇐ 0

26 end

27 Ωt ⇐ (C1, . . . , Cp)
28 end

Algorithm 9: Pseudo code of the heuristic homophily rearrangement algorithm
with bag of indices for a matrix of generic vertex features
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Due to the multivariate nature of the problem and the stringent permanent feature value
switching conditions, the algorithm returns an exit flag equal to one numerous times.
Nevertheless, due to the random nature of variable and selection the homophily rear-
rangement algorithm is restartable. If the algorithm stops with an exit flag different from
zero, it can be restarted until it is stalled totally (none of the features can move the
homophily levels towards the target values). It has to be underlined that multivariate
homophily rearrangement algorithms are combinable, this connotes that when one of the
algorithms is stalled an other algorithm can take the partial solution as an input. With
a series of algorithm pipelines that pass to each other partial solutions, one might solve
complex – high dimensional homophily rearrangement problems.
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Chapter 6: Similarity based diffusion

The majority of models which investigate the process of diffusion on networks does not
consider that the diffusion might depend on similarity of the nodes participating in the
spreading. Those models that do consider similarity based diffusion, such as Halberstam
& Knight (2014); Yavas & Yusel (2014), are limited in multiple ways as discussed in
Section 2.3 of Chapter 1. The novelty of the similarity based diffusion model introduced
in this chapter lies in three important features.

First, in my model the similarity of vertices is measured by distances which can describe
dissimilarity regarding multiple features that have different types (binary, ordinal, cat-
egorical or continuous). Because of this, when vertices are multi-dimensional, similarity
regarding multiple generic vertex features can be taken into account in order to quantify
the likeliness of spreading. Moreover, this allows for investigating how correlated generic
vertex features influence spreading on the network. Second, the spreading mechanism
in earlier models is different from the mechanism applied in my model. Earlier models
used either the threshold model (Granovetter, 1978) with a relative adaptation thresh-
old (Watts, 2002) or modifications of the model proposed by Bass (1969) to capture
similarity based adaptation dynamics on the network. Third, with the use of the intro-
duced homophily rearrangement algorithms, the similarity based diffusion process can be
simulated on networks that have the same topology, homophily regarding the features,
correlation structure and distribution of these features.

The remainder of the chapter is structured as follows. In Section 6.1 I discuss the pair-
wise transmission probability equations that are a core idea of the similarity based dif-
fusion model introduced. The idea of heterogeneous pairwise transmission probability
weighting is presented in Section 6.2, and the chapter concludes with the similarity based
susceptible-infected model itself in Section 6.3.
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6.1 Pairwise transmission probability equations

In the baseline setup we consider a network which is essentially a non directed graph,
with multiple generic vertex features (considering a single vertex feature would not make
a difference). This network is described by a weighted adjacency matrix W and a generic
feature matrix X. This matrix contains features that have different types – these features
are possibly binary, categorical, ordinal, count or continuous. The vertices in the network
represent agents and the edges among the vertices represent the links between the agents.
It is assumed throughout the thesis that the topology is fixed. In this setting, it simply
means that agents cannot form new ties, and agents do not appear or disappear in the
system. In addition, the model has a simple discrete time dimension, where the time
periods are indexed by t.

In addition to their generic features the agents can obtain an information from outside
the system and also from other agents. The agents who do not receive this information
from outside the network are the seeders. An agent who received the information from
outside in the first time period is an initial seeder. This above mentioned information
can take the form of a gossip, first contact with a technological innovation or intelligence
about labor market opportunities. Knowledge about the information in time period t is
described by the binary vector y. The number of elements in the vector equals to the
number of vertices in the network. State of agent i regarding the information in time
period t can be described as:

yt,i =

 1, if agent i received the information in period t.

0, otherwise

Let us imagine that we have two agents, respectively denoted with the indices i and j.
These agents can interact with each other, because there is a link between them. At time
period t node i already received the information, while node j did not. In terms of the
susceptible-infected model node i is infected, while node j is susceptible. The probability
that in a certain time period node i passes to j the information is denoted by Pi,j. This
probability can be expressed as a function of dissimilarity between the two nodes – for a
single feature this is described by Equation (6.1).

Pi,j = P0 ·Ψ(−γ · d(Xi,Xj))︸ ︷︷ ︸
Base function

(6.1)

In the remainder of the paper I reference Equation (6.1) as the pairwise transmission prob-
ability equation. In a pairwise transmission probability equation P0 denotes the baseline
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transmission probability of the information or infection. The base function Ψ depends on
two factors:

1. First, it depends on the sensitivity coefficient γ, which is a global control parameter
– for each considered pairwise relationships between two agents it is assumed to be
the same.1 The γ parameter is strictly positive.

2. Second, it depends on the dissimilarity between agent i’s and j’s features, which
is described by d(Xi,Xj) – this is a simple canonical dissimilarity metric (Deza &
Deza, 2009). For example, if all of the features are continuous the dissimilarity can
be described by the Euclidean distance of two agent’s features. But at the same
time if the feature matrix contains categorical or ordinal variables the dissimilarity
metric has to be chosen in a way that it can describe dissimilarity regarding such
features. The metric proposed by Gower (1971) is able to include ordinal features
in the dissimilarity measurement.

Importantly, the first order derivative of the base function regarding the dissimilarity of
agents satisfies Inequality 6.2.

∂Ψ(−γ · d(Xi,Xj))

∂d(Xi,Xj)
< 0 (6.2)

Practically Inequality (6.2) means that the value of the base function decreases as the
dissimilarity between two agents increases. Conversely, if the dissimilarity decreases be-
tween two agent’s, the value of the base function increases. Moreover, the base function Ψ

has to be be characterized by the two important limits. These are described by Equations
(6.3) and (6.4).

lim
d(Xi,Xj)→∞

Ψ(−γ · d(Xi,Xj)) = 0 (6.3)

lim
d(Xi,Xj)→0

Ψ(−γ · d(Xi,Xj)) = 1 (6.4)

Inequality 6.2 combined with Equations (6.3) and (6.4) ensure that the base function has
a [0, 1] range. A potential base function which satisfies the above mentioned criteria is
the exponential. The sensitivity analysis of the pairwise transmission probability values
can be summarized as follows:

1. The transmission probability increases if the baseline transmission probability is
higher. Reversely, if the baseline transmission probability is lower, the pairwise
transmission probability will also be lower.

1It is essential to point out that this assumption is relaxed in the next section.
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2. If the sensitivity to dissimilarity increases the pairwise transmission probability
decreases (this affects the whole system). Likewise, if the sensitivity to dissimilarity
decreases, the transmission probabilities increase.

3. Finally, the higher the dissimilarity is between two agents the lower the informa-
tion transmission probability will be between them. The higher similarity between
vertices results in higher transmission probabilities.

Remark 6.1. Because the pairwise dissimilarity between agents i and j satisfies the
non-negativity axiom it is always true that the baseline transmission probability is not
smaller than any pairwise transmission probability in the system – basically this means
that P0 ≥ Pi,j.

The base function’s range is constrained to the [0, 1] interval. From this it comes that
Pi,j is the highest when the base functions value is one, otherwise, it is smaller than 1. In
the first case, the pairwise transmission probability, which is the product of P0 and base
function value, will be smaller than P0.

Remark 6.2. If the pairwise transmission between agents i and j equals to the baseline
transmission probability, then agents i and j have the same feature values. The reversal
is also true. If two agents share the same feature values, then the pairwise transmission
probability between them is the baseline transmission probability.

The phenomenon that Remark 6.2 discusses results from the identity of indiscernibles. If
agents i and j have the same features, we know that Xi = Xj. In this case the distance
of features satisfies that d(Xi,Xj) = 0. Based on Equation (6.4), we know that the value
of the base function equals to one when the distance between two agents’ features is zero.
The baseline transmission probability P0 multiplied by one is the baseline transmission
probability itself. Proving that the reversal is true is straightforward.

P0 = Pi,j ⇔ Xi = Xj

Remark 6.3. The pairwise transmission probability of agent i transmitting the informa-
tion to j if only i has the information equals to the probability that j passes the information
to i when only j has the information. Simply it is true that the pairwise transmission prob-
abilities between two agents satisfy that Pi,j = Pj,i.

The property described by Remark 6.3 comes from the the symmetry property of the
feature distances. We know that the feature distances satisfy that d(Xi,Xj) = d(Xj,Xi).
The base function is universal for the agents and also in this model it is assumed that
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the sensitivity of agents to the feature distances is the same. From this it also comes that
the pairwise transmission probabilities are equal to each other.

6.2 Asymmetric weighting of dissimilarity

The basic pairwise transmission probability approach which is the subject of Section
6.1 assumes that agents share a universal sensitivity to dissimilarities. This means that
γi = γj for any pair of agents i and j. However, this is a considerably strong assumption
about the behavior of agents. It is a well-founded assumption that the same social tie is
asymmetrically up-weighted and down-weighted by agents who differ in a certain (cate-
gorical, ordinal or binary) trait. For example, the importance of a social link (in terms of
gaining information) in a network of friendships might be different for two students who
only differ in their race.

Let us imagine the we have a network which is characterized by either an adjacency matrix
W or by the set of edges and vertices such that G(V,E). Furthermore, let us assume
that vertices in the network represent agents and links between them to allow spreading
information. The agents have generic features and these features are represented in the
matrix X, where columns denote different features and the indexed rows describe the
specific agent’s features. The feature x is a column of matrix X. In addition it is binary,
ordinal or categorical and it has 1, . . . ,m unique values. The sensitivity of agent i to the
dissimilarity of other agents is a function of its respective x value. The different breeds
of agents (regarding feature x) have a shared value of sensitivity, so agents who have a
given level of x have the same sensitivity to dissimilarity. Formally this is expressed by
Equation 6.5.

γi =


Γ1, if xi = 1
...

Γm, if xi = m

(6.5)

Parameter values Γ1, . . . ,Γm denote the group specific sensitivities to dissimilarity. This
idea, namely that the heterogeneous weighting of dissimilarity is a function of generic ver-
tex features, can be generalized to continuous generic vertex features and to multivariate
system (the sensitivity is a function of multiple generic vertex features). Nevertheless, to
make my thesis self contained I only included the case when the sensitivity to dissimilarity
is a function of a single non continuous generic vertex feature. The properties of pairwise
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transmission probabilities which were stated in Remarks 6.1 and 6.2 hold even when the
sensitivity to dissimilarity is not the same for every agent. At the same time Remark 6.3
will not hold anymore.

Remark 6.4. The pairwise transmission probabilities between agents i and j does not
necessarily satisfy that Pi,j = Pj,i if the sensitivity to dissimilarity is weighted in an
asymmetric way.

Let us consider that agents i and j have the same generic vertex feature values except
for x. Furthermore, let us assume that the sensitivity to dissimilarity is a function of
x, which is a non continuous generic vertex feature. The non equivalence of the feature
values simply means that xi 6= xj, which implies that Γi 6= Γj, from this it follow that the
pairwise transmission probabilities Pi,j and Pj,i will not be the same. A straightforward
consequence of this phenomenon is that if one of the groups has a high sensitivity to
dissimilarity and the initial seeder belongs to this sensitive group, the information might
get stuck in the seeders group. This has troublesome implications about the spread of
innovations or labor market informations, intrinsically discrimination against the other
group(s) slows down the spreading of information.

6.3 The similarity based susceptible-infected model

This section introduces the similarity based diffusion model, it is a simple modification of
the susceptible-infected diffusion model discussed in (Easley & Kleinberg, 2010; Jackson,
2010; Barabási, 2016). My description of the model and algorithm is general enough to
allow for asymmetric weighting of dissimilarity. The similarity based susceptible-infected
diffusion model is summarized with pseudo-code by Algorithm 10. The model works on
a network which has a predefined topology (this is either defined by the sets of edges
and vertices or the adjacency matrix) and a number of generic vertex features. The de-
lineated algorithm assumes, in addition, that the baseline transmission probability, the
base function Ψ, the sensitivity parameter(s) and the distance metric are predefined.
Sensitivity to the dissimilarity is either universal for the vertices or vertex specific to de-
scribe heterogeneous transmission probabilities among nodes. This is why the sensitivity
parameter has an index – each of the respective agents has an own sensitivity to the
dissimilarity. The initial number of seeders is one, only a single node is infected or has
the information – this aspect of the model is easily modifiable, but I have to emphasize it.
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The model is initiated by calculating the number of vertices in the system. The num-
ber of vertices equals to the length of the first feature vector, this is the scalar N . The
convergence to a fully infected system (where every one has the information) is an in-
teresting aspect, his is why I measure the time. Initially, the discrete time index t is
set to be zero. Later it will be incremented in each iteration. A random vertex index
k is drawn from the set of vertex indices, the corresponding vertex is the initial seeder
in the system. This random choice of the initial seeder is substitutable with targeted
choice of a vertex. Because initially all of the vertices are in a not infected state, their
initial state of having the information is formalized by setting y0 to be a vector of zeros.
Based on the chosen vertex the kth component of y0 is set to be one. Nodes that have the
information are in the set B̃, while the nodes that do not have the information are in set B.

The spreading process stops when all of the nodes received the information – formally
this is satisfied when the number of elements in B̃ equals to the number of vertices in the
system. Otherwise, if the above mentioned condition is not satisfied, an iterative process
starts. First, the set of newly infected nodes, which is noted by K, is set to be an empty
set and the time index is incremented by one. In case of each vertex that is infected, the
infection is transferable to other vertices that are neighboring the infected ones and they
are not infected at time period t. This is done by a double for loop in the implementation,
and the exact process is summarized in the following.

The first for loop iterates through the infected nodes – the infected nodes are indexed by
i. For each of the infected vertices an empty initial set of infected neighboring nodes is
created, this is denoted by the set I. In addition, the set of i’s neighbors is obtained with
the neighborhood function, this index specific set is Ñi. Later one can iterate through
the indices of i’s neighboring vertices with ease, the second for loop does exactly this.
For each of the neighboring indices a value is drawn randomly from a continuous uni-
form distribution in the zero-one interval. Based on the pairwise transmission probability
equation between nodes i and j, a pair specific transmission probability is calculable. If
the transmission probability is higher than the random number drawn from the uniform
distribution and the vertex is not already in the set of infected vertices, the neighbor is
added to the set of possibly infected neighbors. In addition, its time specific infection
state is set to be one – in the pseudo code this is shown by setting Yt,j equal to one.
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Data: Network defined by an adjacency matrix or by sets of edges and vertices
with generic vertex features in matrix X.

Result: Time dependent infection states for each of the vertices stored in yt. The
characteristic convergence time to a fully infested state denoted by t.

1 N ⇐
∣∣X1

∣∣
2 t⇐ 0

3 k ⇐ random index from 1, . . . , N

4 y0 ⇐ 0

5 y0,k ⇐ 1

6 Yt ⇐ 1

7 B̃ ⇐ {k}
8 B ⇐ {1, . . . , N} \ B̃

9 while N 6= Yt do

10 K ⇐ ∅
11 t⇐ t+ 1

12 for i in B̃ do

13 I ⇐ ∅
14 Ñi ⇐ NG(i)
15 for j in Ñi do

16 P ∼ U([0, 1])

17 Pi,j ⇐ P0 ·Ψ(−γi · d(Xi,Xj))

18 if j /∈ B̃ and Pi,j > P then

19 I ⇐ I ∪ {j}
20 yt,j ⇐ 1

21 end

22 end

23 K ⇐ K ∪ I
24 end

25 B ⇐ B \ K
26 B̃ ⇐ B̃ ∪ K
27 Yt ⇐

∣∣∣B̃∣∣∣
28 yt+1 ⇐ yt

29 end

Algorithm 10: The similarity based diffusion model
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This algorithm design allows for time dependent tracking of the node specific infection
during the diffusion process. Importantly in each iteration possibly a new node is added
to I and at the end of the iterative process it contains the nodes infected by vertex i.
Before moving to the next infected node the set of nodes that is infected by i is added
to the set of newly infected nodes – this is expressed by the union of the index sets K
and I. When the double for loop terminates the set of nodes that was infected in time
period t is obtained. From the next time period these nodes will be in the set of seeders,
who can pass the information to other nodes, so the newly infected nodes are added to
the set B̃. Moreover, they will not be part of the set of non-infected nodes, because of
this they are removed from B. With the new set of seeders one can calculate the time
dependent number of infected nodes. The iterations are stopped when all of the nodes
have the information (infected). Convergence to the previously mentioned state, where
all of the nodes are infected, is only achieved under the assumption that the baseline
probability of spreading is non zero, formally, if P0 > 0 and the network has only a single
component.

The algorithm can be enriched in a way that time dependent properties of the network
can be measured. In each time period one can measure vertex, edge and system specific
properties of the networks described by the sets B̃ and B. The iterative generation of
time specific infected vertex sets K while time and index specific sets, such as I, allow for
observing the role and importance of nodes during the spreading process. The simulation
results of similarity based diffusion are discussed in Chapter 8 while the algorithm’s R
implementation is enclosed in Appendix E as Script E.11.
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Chapter 7: Feature rearrangement sim-

ulations

This chapter presents the simulation results that were obtained by applying the ho-
mophily rearrangement algorithms. The findings support that the algorithms introduced
in my thesis are able to tackle the task of homophily rearrangement for both single feature
and multivariate networks. Results support that the algorithms are sensitive to certain
parameters, such as the target homophily level, the size of the system and the initial
distribution of the generic vertex feature. First, I analyze the simulation results gener-
ated with univariate homophily rearrangement simulations in Section 7.1. Second, the
results of homophily rearrangement simulation on multivariate networks are presented
and discussed in Section 7.2.

7.1 Univariate simulations

There are three main goals of the univariate homophily rearrangement simulations. First,
I establish with my results that the proposed algorithms are able to generate networks
that exhibit preset levels of homophily or heterophily – this is supported by the evidence
in Subsections 7.1.1 and 7.1.2. Second, as I mentioned previously the expected conver-
gence time is dependent on multiple properties of the network, namely, the generic vertex
feature vector and the target homophily level. In order to show these dependencies I im-
plemented simulations that show the sensitivity of the expected convergence time. Results
obtained from these simulations are analyzed in Subsection 7.1.1. Third, it is evident that
the proposed heuristic homophily rearrangement algorithms have a random element, this
results in that the rearranged generic feature vectors are uncorrelated with each other.
Essentially, simulation results regarding this phenomenon and its consequences are inves-
tigated in Subsection 7.1.2.
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7.1.1 General sensitivity analysis

The fact that the homophily rearrangement algorithms are functional can be proved by
a single simulation run on an arbitrarily chosen network. The subfigures of Figure 7.1
were obtained by the application of the heuristic homophily rearrangement algorithm.
The topology of the network is described by a Barabási-Albert graph with 1000 nodes,
2 arriving connections and the power parameter is unit (Barabási & Albert, 2002). The
vertices only have a single generic vertex feature, which is denoted by x. The actual
generic vertex feature was generated by a binary random variable which had a Bernoulli
distribution with a parameter equal to 0.5. The R script that was used for the simulation
and plotting is attached as Script E.25 in Appendix E. The algorithm used for the rear-
rangement was the heuristic homophily rearrangement algorithm and Moran’s I was used
as the homophily measurement function. The target homophily level was prescribed to
be 0.6. In Subfigures 7.1a and 7.1b, the binary feature values are represented by the blue
and red feature values. The emerging homophily is clearly visible, the vertices on Subfig-
ure 7.1b are likely to have connections with other vertices that have the same color (and
feature value). A visualization of another experiment that supports the effectiveness of
the algorithm is attached in Appendix D as Figure D.1. In that experiment the topology
is described by a fully connected Erdős-Rényi graph (Erdős & Rényi, 1960) with 1000
vertices and 3000 edges. The generic vertex feature that is rearranged had a Bernoulli
distribution with p = 0.5.

(a) Unordered state (b) Homophilous state

Figure 7.1: Heuristic homophily rearrangement of a binary feature
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System size and feature distribution

The previous simulations on the networks which have a a topology described by the
Barabási-Albert Model and the Erdős-Rényi graph demonstrate that my homophily re-
arrangement algorithms work on networks with an arbitrary topology. A simple network
which can be used during the sensitivity analysis is a square lattice with periodic condi-
tions. When I analyze the sensitivity of the expected solution time to the distribution of
the generic vertex feature and the size of the system, I use the above mentioned lattice
topology with von Neumann neighborhood – so all of the vertices have 4 neighbors in
the investigated networks. The R scripts that was used for the simulations is attached as
Script E.13 in Appendix E.

0.2 0.25 0.3 0.35 0.4 0.45 0.5

400

800

1,200

1,600

P (X = 1)

E(t) N = 121
N = 196
N = 256

Figure 7.2: Expected convergence time of the heuristic algorithm as a function of system
size and balancedness of the feature distribution

The simulation results regarding the effect of system size and initial feature distribution
are summarized in Figure 7.2. The simulations ran on square lattices with 121, 196 and
256 vertices. The nodes had a generic vertex feature which had a Bernoulli distribution.
The outcomes were either one or zero and the parameter of this distribution was varying
between 0.21 and 0.5 with a step size of 0.01. Each of the points in Figure 7.2 represent
the average of 200 convergence times. Actually a given point of the scatter plot represents
the expected convergence time as a function of the system size and the ratio of agents
with feature value equal to one. The horizontal axis marks the changing parameter of the
Bernoulli distribution, the vertical axis denotes the expected convergence time and the
coloring corresponds to the system size (number of vertices).
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Based on the visualization, one can infer the existence of two important relationships.
First, as the number of vertices increases, the expected convergence time also increases.
This is not a surprising regularity, the feature value exchanges have atomic effects on the
overall feature similarity on a large network, while on small networks the effect can be
large. Nonetheless, this observed phenomenon can be relaxed if the degree distribution
is not as particular as in case of a square lattice. Second, the balancedness of the feature
distribution (the ratio of feature values equal to one and zero) decreased the expected
convergence time. In Figure 7.2 only those particular cases are shown where the ratio
of vertices with a feature equal to one is at 0.5 or below it. However, it is logical that
the expected convergence time increases when the ratio of feature values equals to one
is above 0.5. Generally, finding vertices that move the actual level of homophily towards
the target is becoming harder.

Target homophily level

If the observed generic vertex feature has variance and it was assigned randomly to the
vertices, initially the network shows only weak signs of homophily or heterophily. Funda-
mentally, it is an unordered state, from this unordered state the homophily rearrangement
algorithms move the network into an ordered state – vertices mainly have neighbors that
are similar or neighbors that are primarily dissimilar. It is an undeniable orderliness that
achieving a state with high order is computationally costly. So it is expected that the
number of steps needed for attaining a given level of homophily increases in the target
homophily level. The simulation results that I will present demonstrate that this relation-
ship exists. An R implementation of the experiment is enclosed in Appendix E as Script
E.14.

The experiments and simulations were implemented for square lattices with periodic
boundary conditions. The number of vertices in the square lattice was 100 – the size of
the lattice was simply (10× 10). During the simulations the single generic vertex feature
has a Bernoulli distribution with a parameter equal to 0.5. The level of homophily is
calculated with a universal homophily measure which gives a scalar measure of homophily
(Moran’s I). The scatter plots in Figures 7.3 and 7.4 were generated based on the following
experiment. The initial assignment of the feature values to the vertices is random. The
level of prescribed homophily varies between -0.5 and 0.5 with a stepsize of 0.01. For each
level of homophily, I solve the homophily rearrangement problem 200 times, and store
the average (expected) and median solution time. The algorithms used for solving the
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homophily rearrangement problem are the heuristic and the greedy one.

(a) Mean solution time
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(b) Median solution time
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Figure 7.3: Expected average and median convergence times of the heuristic algorithm
on a square lattice with periodic boundary conditions as a function of target homophily

The simulation results obtained with the use of the heuristic algorithm are plotted in
Figure 7.3. The horizontal axes is the target homophily and heterophily level within the
predefined interval, the vertical axes are the expected and median solution times respec-
tively. One can observe that the solution time increases in the absolute level of heterophily
or homophily. In addition, the relationship is non-linear, based on the plot it seems to be
quadratic both for the expected and median solution times. In plain words, this means
that the higher the level of order that we want to achieve in the system, the higher
number of iterative steps we will need. The observed non-linearity is a byproduct of the
random vertex pair selection during the feature value exchange process. Initially, finding
vertex pairs that increase the homophily in absolute terms is a simple task, later as the
assignment of features becomes ordered it is becoming a more cumbersome challenge.
Plainly, randomly choosing a suitable pair of vertices becomes complicated.

If one looks at Figure 7.4, it turns out that the greedy algorithm needs a lower number
of iterative steps to solve the same problem. The expected and median solution times of
the algorithm are lower in case of the greedy algorithm. Moreover, the concave profile
of the homophily – solution time curve is also different. It seems that the expected and
median solution time is linear (with some random noise) in the target homophily value.
This observed linearity is a consequence of the square lattice with periodic boundary
conditions topology. The greedy algorithm chooses vertices that are in the neighborhood
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of vertices that have 4 neighbors with dissimilar feature values. Because of this, each of
the feature value exchanges has the same unit effect on the increase of the homophily.
Similarly, when the target of the rearrangement is heterophily the feature value exchange
takes place between a node which has similar neighbors and one which has dissimilar
neighbors in terms of the generic vertex feature. The observed random noise is a result
of the initial random assignment of the feature values to the nodes.

(a) Mean solution time

-0.5 -0.25 0.25 0.5

5
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φ

E(t)

(b) Median solution time

-0.5 -0.25 0.25 0.5

5

10

φ

Me(t)

Figure 7.4: Expected average and median convergence times of the greedy algorithm on
a square lattice with periodic boundary conditions as a function of target homophily

The difference of the mean and median solution times gives valuable information about
the skewness of the solution time distributions as a function of the homophily objective
values. These differences are plotted as a function of the target homophily value in Figure
7.5. The results obtained with applying the heuristic algorithm are shown in Subfigure
7.5a, while results generated by the greedy one can be seen in Subfigure 7.5b. In case of
the heuristic homophily rearrangement algorithm, the mean-median difference is increas-
ing in the homophily objective value. This means that the solution time distribution is
becoming skewed and starts to have a tail on the right as the absolute level of homophily
or heterophily increases (the mean is increasingly above the median). Moreover, the dif-
ference is increasing in a non-linear way – the shape of the curve is again quadratic.
However, this is not true for the greedy algorithm. In Subfigure 7.5b, one can observe
that the difference between mean and median is becoming more and more dispersed, but
there is no clear linear or non-linear relationship.
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(a) Heuristic algorithm
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Figure 7.5: Difference in the mean and median convergence times as a function of ho-
mophily target value on a square lattice with periodic boundary conditions

7.1.2 Stability of solutions

The heuristic homophily rearrangement and its constrained variant (with bag of indices)
choose the vertices that participate in the feature value exchange randomly. Henceforth,
it is plausible that the homophily rearranged feature vectors that result from separate
simulation runs with the same target value are different from each other. This results in
two paramount phenomena that are worth further examination. One of them is the ho-
mophily inertia and the instability of solution times. The other one is the weak similarity
of the resulting rearranged feature vectors. Particularly, that the rearranged generic ver-
tex feature vectors that result from multiple simulation runs are just slightly correlated
with each other and the original feature vector. In addition, it also holds that topologi-
cal vertex properties and the rearranged generic vertex features are marginally associated.

It is straightforward that square lattices have a degree distribution which promotes the
existence of unstable homophily rearrangement solutions. On the other hand, it is not
a pronounced regularity when the network has a structure that is not as simplistic as
it is in case of a square lattice. During the analysis about the stability of homophily
rearrangements, I use a variant of the National Longitudinal Study of Adolescent Health
(Harris, 2009). This is a dataset about friendship networks in high schools, which is
used in a number of empirical studies about social networks (Moody, 2001; Gonzalez
et al., 2007; Currarini et al., 2009). The specific focus of my analysis is the network of
friendships obtained from school Nr. 81. Importantly, the network has a non-uniform
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degree distribution described by a power-law, so it is remarkably different from a square
lattice. As a preliminary data handling procedure, I removed students who had missing
generic vertex features (grade, race and gender) or generic vertex feature values that
are not meaningful. The number of nodes was 1268, and the number of edges was 4524.
Distribution of the gender and grade variables is fairly uniform, this is why I focus later
on these two generic vertex features. The gender feature is binary, while grade is ordinal
with 4 different outcomes.

Homophily inertia and instability of the solution time

The term homophily inertia used by Yavas & Yusel (2014) describes the phenomenon
that when a homophily rearrangement or homophilous network generation process starts
certain groups end up with higher categorical homophily level than the target homophily
level. The reason behind this is simple. If one of the groups reaches the target homophily
level while others not, the group that reached the target level starts to show increased
levels of homophily well beyond the target level. This means that the actual level of cat-
egorical homophily that a groups shows diverges from the target level. This phenomenon
can be demonstrated with a few simulation runs.

First, I investigate homophily rearrangement regarding the gender variable. The chosen
algorithm is the heuristic homophily rearrangement algorithm and I applied the inbreed-
ing homophily index as a categorical homophily measurement function. Before the ho-
mophily rearrangement started, I randomized the features. In Figure 7.6 I plotted the
level of inbreeding homophily in each iterative step regarding the gender variable in the
high school. The actual level of homophily can be seen both for the males and females
in the high school. The prescribed target level of homophily was 0.05 for both males and
females. The unrelaxed version of the algorithm by design usually results in time series,
where one time series is always above the other one because in each iterative steps both
elements of the objective value vector must increase.

The first simulation run results in an inbreeding homophily of 0.07 for males and an
inbreeding homophily of females around 0.05, for details see Subfigure 7.6a. The male
specific inbreeding homophily is always above the female specific one. The convergence
approximately took 5000 iterative steps. Another simulation’s results are plotted in Sub-
figure 7.6b. In this run the initial homophily was higher for females, the resulting ho-
mophily was around 0.05 for both groups and the specific time needed for achieving the
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preset level of homophily was 3500 steps. These two runs had shown that the inbreeding
homophily levels can diverge and also that the time needed for achieving the objective
value varies. This is not surprising due to the probabilistic nature of the heuristic algo-
rithm.

(a) Simulation run 1.
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(b) Simulation run 2.
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Figure 7.6: The convergence of gender based inbreeding homophily to a target vector in
two separate simulation runs – based on the school friendship network

Second, regarding the grade variable I ran simulations to achieve a prescribed level of
heterophily, for all the groups I wanted to have an inbreeding heterophily of -0.15. The
algorithm used for obtaining a network that satisfies the heterophily condition was the
heuristic one with relaxed switching conditions. Results of two distinct simulation runs
are shown in Figure 7.7. The inbreeding homophily as a function of iterative steps is
plotted in Subfigure 7.7a for the first simulation run. Due to the relaxation, flat regions
of inbreeding homophily appear, for certain groups the homophily is increased while for
others it is unchanged . In case of 9th graders this is quite prevalent, during iterative steps
between steps 250 an 500 the inbreeding homophily stops to decrease multiple times for
longer periods. Also, one observes a divergence in the inbreeding homophily values just
as before in case of the gender vertex feature. The 9th graders had an objective value just
below -0.15, while the 10th graders had a value that was well below -0.23. The difference
of in inbreeding homophily among groups in the solution is quite stark, the fact that there
is no upper limit on inbreeding homophily results in divergence. The results of a second
simulation run are plotted in Subfigure 7.7b. The flat regions in the level of homophily
show that for certain random feature switches the vector which describes the homophily
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values is essentially the same. For this second run, the time needed for achieving the
prescribed homophily vector is considerably lower – it was approximately 270 steps.

(a) Simulation run 1.
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Figure 7.7: The convergence of grade based inbreeding homophily to a target vector in
two separate simulation runs – based on the school friendship network

As the simulation results in Figures 7.6 and 7.7 show, the algorithm design results in
homophily inertia – which was described by Yavas & Yusel (2014). The group specific
homophily target values result in an average of group specific homophily (heterophily)
levels that is above the average of the prescribed levels. This is even true, when the fea-
ture value switching condition was relaxed and steps that result in the same homophily
or heterophily for a certain group were allowed. It should be emphasized that this phe-
nomenon is only present when the feature of interest is categorical and the function used
for measuring the homophily is a categorical homophily measurement function. The dif-
ferent simulation runs show that the strength of homophily inertia is different in multiple
runs.

Stability of solutions

Results on the gender and grade based homophily rearrangement show the resulting
features are distinct regarding homophily. In different runs, the same vertex might end
up with different feature values. In the end, it results in different group specific homophily
levels that are all at above a given level of homophily or heterophily as Figures 7.6 and 7.7
had shown. The instability of solutions can be proved by an uncomplicated experiment.
The universal homophily regarding the original gender feature is approximately 0.27
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(measured by Moran’s I). Not surprisingly, students are more likely to have friends who
have the same gender. With this information and with knowing the original ratio of
males and females in the dataset, using the heuristic algorithm I generated 100 artificial
gender features which satisfy that the homophily measured by Moran’s I is roughly 0.27.
A simple linear correlation can be calculated between each of these artificial features and
the resulting correlation matrix is plotted in Subfigure 7.8a of Figure 7.8. None of the
pairwise correlations is significant, which is quite surprising, considering that I tested the
significance of 4851 pairwise correlations. This means that the resulting synthetic gender
feature vectors are not similar to each other. The above mentioned phenomenon is even
present even when the level of target homophily is increased. This idea is supported by
the same simple experiment, the generation of 100 artificial gender feature vectors that
correspond to a homophily level of 0.5. Later these features are correlated with each
other. The resulting correlation matrix is visualized in Subfigure 7.8b, where the lack of
strong positive or negative associations is visible.
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Figure 7.8: Linear correlations of the resulting feature vectors that show a target gender
based homophily

The artificial generic and topological vertex features (betweenness centrality, degree or
coreness) are possibly correlated with each other. Furthermore, these associations are
likely to be influenced by the homophily or heterophily present on the network. With the
proposed algorithms it is feasible to generate an arbitrary number of artificial features that
satisfy a given homophily criteria. For a given pair of artificial generic and topological
vertex feature a linear correlation coefficient is computable. This can be done for all
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the simulated artificial features and the resulting correlation coefficients can be used for
estimating the distribution of correlation among a given generic and topological vertex
feature, while the generic vertex feature’s distribution, network topology and homophily
regarding the feature are fixed. The resulting distributions can be practical for making
quite complex inferences about the actual correlations of the generic vertex feature and
the topological features.
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Figure 7.9: The distribution of correlation between a homophily rearranged generic vertex
feature and topological properties based on the school friendship network

Panels of Figure 7.9 show the distribution of the correlation coefficients among topologi-
cal vertex features and replicated artificial gender features – these are the feature vectors
that were utilized for creating Subfigure 7.8a. Densities of the distributions were esti-
mated from 1000 synthetic feature replicates with a kernel density estimator. The target
homophily was set to be 0.27 again. The kernel used Gaussian smoothing and the band-
width of the kernel was set according to recommendations by Silverman (1986). The R
code snippet that generated the simulation data is attached in Appendix E as Script E.15.

In Subfigure 7.9a, the correlation between gender and the betweenness centrality of ver-
tices. The distribution of linear correlation coefficients is unimodal and compared to a
normal distribution (with the same expected value and standard deviation) it is skewed
slightly. The actual level of correlation between the original gender variables and between
centrality was 0.05. Based on the simulation results, it comes that this factual correlation
of betweenness centrality and gender is higher than 91.9% of the simulated correlations
that were obtained by generating synthetic gender features and correlating them with the

82

C
E

U
eT

D
C

ol
le

ct
io

n



betweenness centrality. The distribution of the correlations among gender and coreness
is shown in Figure 7.9b, it is inferable that the distribution is seemingly close the the
normal, but compared to a normal distribution which has the same expected value and
standard deviation, it is weakly skewed. Importantly the low number of generated ob-
servations might influence these findings. The factual level of linear correlation between
coreness and gender was 0.13. Based on the simulation results, it follows that the observed
correlation of coreness (degeneracy) and gender is higher than 97.3% of the simulated cor-
relations that were obtained by generating synthetic gender features and correlating them
with the coreness vector. As these two examples has shown, sophisticated inferences can
be formed from the results of the algorithms, as in both cases the topology of the network
is unchanged, the feature’s distribution is the same and the homophily level is approxi-
mately identical.

These simulations regarding the gender and grade variable support the existence of three
phenomena. First, the number of iterative steps needed to achieve a a given level of
homophily or heterophily is volatile – the initial assignment of feature values influences
the convergence time. This is is also supported by the sensitivity analysis results. Second,
there is evidence of homophily inertia regarding binary and ordinal (categorical) features.
Third, the resulting feature vectors do not show associations with each other – there are
multiple solutions that have the same level of homophily.

7.2 Multivariate simulations

The three proposed homophily rearrangement algorithms were generalized to multivari-
ate networks in Chapter 5. First of all, my results demonstrate that these algorithms
are capable of reshuffling multiple generic vertex features in order to create networks
that show homophily regarding more than one dimension. The proposed algorithms have
similar properties as the univariate homophily rearrangement algorithms with respect to
sensitivity (in terms of target homophily and system size). In the remainder of the section
I show with simulation results three important properties of the heuristic multivariate
homophily rearrangement algorithm. First, I show that the expected convergence time
to the target homophily level depends on the correlation of the generic vertex features
in Subsection 7.2.1. Second, I establish in Subsection 7.2.2 that the expected solution
time increases with the system size. Moreover, the product of the experiments in Subsec-
tion 7.2.2 implies that the expected solution time is quadratic in the correlation of the
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generic vertex features. Third, in Subsection 7.2.3 the simulation results expose that the
homophily level increases sub-linearly with the number of iterative steps. In all of the
experiments I assume that the features are continuous and the homophily regarding the
variable is measured by Moran’s I metric.

7.2.1 Sensitivity to the generic vertex feature correlations

The introduction of multiple generic vertex features in the system allows for correlations
among the features. The observed level of correlation among the generic features influ-
ences the convergence to the target homophily level. It is evident that if two generic
vertex features are perfectly correlated, the multivariate nature of the system will not in-
fluence the expected convergence time. However, in most of the real networks, the generic
vertex features are only slightly correlated with each other. To show that the correlation
(and absence of correlation) among the vertex features influences this convergence time,
I implemented homophily rearrangement experiments.

In all of the experiments I used the multivariate heuristic homophily rearrangement algo-
rithm on square lattices. The size of the square lattice was fixed at 10×10, so the number
of vertices was 100 in the system. The lattice had periodic boundary conditions, so ev-
ery single vertex had connection to 4 other vertices. The nodes had two generic vertex
features, denoted by x and y. These generic vertex features had standard normal distri-
butions and the correlation between them was described by the parameter ρ. Altogether
I implemented 6 × 1000 separate simulation runs, the parameters that I adjusted were
the correlation between the features and the target homophily level. Correlation between
the generic vertex features was described by three different states: negative correlation
(ρ = −0.5), the lack of correlation (ρ = 0) and positive correlation (ρ = 0.5). The target
homophily level was the same for the two features. In one case the target was homophily
Φ = (0.5, 0.5) in the other it was heterophily with respect to both variables, so the target
vector was Φ = (−0.5,−0.5). The R implementation of the experimental setting and the
functions generating the plots are attached in Appendix E as Scripts E.16 and E.17. The
distribution of the resulting convergence times to homophilous or heterophilous states is
plotted in Figure 7.10.
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Figure 7.10: The distribution of expected solution times conditional on the correlation of
generic vertex features

In Subfigure 7.10a one can see the distribution of solution times obtained when the
target of the multivariate homophily rearrangement was heterophily for both variables.
It is evident that both positive and negative autocorrelation reduces the expected (mean)
convergence time of the heuristic homophily rearrangement algorithm. Interestingly, the
solution time distributions obtained from the runs when generic vertex feature correlation
was present are closely overlapping.1 The distribution of the solution times when the
target was heterophily is shown in Subfigure 7.10b. This also supports that solution times
were lower on average when the features were correlated with each other. My later results
will support that the increase in correlation results in lower expected and median solution
times. Moreover, it will demonstrate that the effect on the solution time is non-linear.

7.2.2 Sensitivity to the system size

Univariate simulations indicated that as the system size is increasing, the time needed to
rearrange the feature in a homophilous ways is also increasing. As I argued, this comes
from the fact that the effect of a single vertex feature exchange is becoming atomic, the
effect on the global similarity of features becomes negligible. The same phenomenon can
be validated regarding multivariate homophily rearrangement, namely that the number
of iterative steps increases with the number of vertices in the network. In the previous

1Based on the respective Kolmogorov–Smirnov, test one could conclude that the observed data points
are drawn from the same theoretical distribution.
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subsection I have only established that the correlation of features reduces the time needed
for solving the homophily rearrangement problem. However, I did not specify the exact
relationship between the expected solution time and the correlation of generic vertex fea-
tures. With the proper design of experiments both of the above mentioned regularities
can be proven.

The multivariate homophily rearrangement simulations were implemented on square lat-
tices which had varying size. The correlation among the generic vertex features also
varied. The respective sizes of the lattices were between 10×10 and 16×16, which means
that in the largest network the number of vertices was more than double the number of
vertices in the smallest network. The vertices had two generic vertex features, denoted
by x and y. These generic vertex features had a standard normal distribution and the
linear correlation of the features was between -0.5 and 0.5 with a stepsize of 0.1. For each
parametric set up (network size and correlation between features) I ran 1000 simulations.
The R script used for the simulation set up is attached in Appendix E as Script E.18.
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Figure 7.11: Expected solution time of the multivariate heuristic homophily rearrange-
ment algorithms as a function of feature correlation and lattice size

In Figure 7.11, I plotted the mean solution time obtained from the simulation runs as
a function of the generic vertex feature correlation (horizontal line) and the system size
(color of the dots). Each of the points on the scatter plot represents the mean of 1000
simulation runs. There are two phenomena that can be inferred with high confidence
based on the simulation results. First, the average time needed for solving the homophily
rearrangement problem increases with the size of the network. Second, as correlation
increases in absolute terms the time needed for solving the homophily rearrangement
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problem is also increasing. Moreover, the scatter plot in Figure 7.11 supports that the
expected solution time is a quadratic function of the absolute correlation time. The me-
dian of the solution times is plotted on Figure D.2 in Appendix D. The medians also
support that the solution time depends positively on the system size and negatively on
the absolute level of feature correlation.

7.2.3 Convergence to the target homophily level

Simulation results in Subsections 7.2.1 and 7.2.2 show that the expected convergence
time depends on the correlation of the generic vertex features. Not only the expected
convergence time to a homophilous state, but the expected level of homophily during the
iterative process at a given time period also depends on the correlation of the features.
This simple regularity about the faster convergence to a homophilous or heterophilous
state conditional on correlated features can be underpinned by a set of experimental
simulations on square lattices. Moreover, my results imply that the correlation of the
generic vertex features mitigates homophily inertia – the homophily levels diverge from
each other less when the features are correlated.

In order to demonstrate the existence of the above mentioned regularity, I set up an ex-
periment where the topology of the networks was defined by a square lattice with periodic
boundary conditions. The size of the lattice was 10× 10, and the vertices had 2 generic
vertex features which were standard normally distributed. In order to investigate the ef-
fect of homophily, I investigated three different cases regarding the correlation: negative
correlation of the features, no correlation and positive correlation between them. The fea-
ture values were assigned randomly to the vertices, only the correlation between them was
preset. There were separate runs with homophilous targets and heterophilous targets, the
respective homophily target vectors were Φ = (0.5, 0.5) and Φ = (−0.5,−0.5). For each
scenario ( preset correlation level and homophily target value), I generated 1000 multi-
variate homophily rearrangement simulations and saved the time specific homophily or
heterophily levels. Time specific homophily levels are averaged out for the simulations and
the two features. This simply means that each point is a the average of 2000 homophily
levels for a given time period. The R implementation of the respective experiments can
be found in Appendix E as Scripts E.19, E.20, E.21 and E.22.
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In the subfigures of Figure 7.12, I plotted the expected homophily and heterophily level as
a function of time. Based on the results summarized by Subfigure 7.12a, it is evident that
the expected time dependent homophily level is the same when the features are correlated
positively or negatively with each other and the correlations equal in absolute terms. The
observed homophily level is always lower when the the features are uncorrelated with
each other – it is not surprising considering that the correlation of the features speeds
up the convergence. The same conclusion holds when one looks at the simulation results
obtained with targets of heterophily. When features are uncorrelated, the convergence to
the target state is somewhat slower. The reason behind this observed regularity is simple.
If two features are correlated, then a given observation of feature values is likely to be
similar to the neighboring nodes’ feature or dissimilar. Therefore, both of them would
likely to move the target homophily levels towards the same direction. On the other hand,
when they are uncorrelated the similarity or dissimilarity from the neighbors’ features is
independent. On accounts of this, choosing suitable pairs of vertices for the feature value
exchange becomes unlikely.
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Figure 7.12: Expected level of homophily as a function of time and correlation among the
generic vertex features

Based on the time dependent homophily levels simulated previously an expected absolute
difference of homophily levels can be calculated by applying the following simple proce-
dure. First, for each simulation run we calculate the time specific homophily levels for
each of the variables. Second, we take the difference of them – this shows the time specific
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difference in homophilies. Third, if one takes the absolute value of the differences, they can
be averaged out and plotted as a function of time. This is the way how I obtained the time
series in Figure 7.13.2 First, one can observe that the absolute difference in homophily
levels is decreasing with the number of iterations. Second, based on Subfigures 7.13a and
7.13b, it follows that the correlation of generic vertex features reduces homophily inertia
– this is not an unpredictable fact. Let us image that two features would be strongly
correlated, then the homophily levels regarding them would be also close to each other.
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Figure 7.13: Expected absolute difference of homophily as a function of time and corre-
lation among the generic vertex features

2Figures 7.12 and 7.13 were generated from the same simulation data.
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Chapter 8: Simulation of diffusion

The proposed homophily rearrangement algorithms allow for controlled levels of ho-
mophily in networks that have an arbitrary topology. In Chapter 6, I proposed a model
of diffusion where the transmission of an idea, information or infection depends on the
similarity of the agents’ generic vertex properties. As I highlighted previously, homophily
is an aggregated measure of generic vertex feature similarity. By applying the homophily
rearrangement algorithms, one can investigate the similarity based diffusion on a network
where homophily of a certain feature (or multiple features) is under control. To put it
simply, one can simulate similarity based diffusion on homophilous or heterophilous net-
works without changing the topology and the distribution of the generic vertex feature.

This chapter comprises two sections that present the simulation results obtained by ap-
plying the similarity based diffusion model. Section 8.1 focuses on the basic similarity
based diffusion model and investigates the sensitivity of the model to the parameters.
In Section 8.2, I analyze the effects of heterogeneous sensitivity to generic vertex feature
dissimilarity.

8.1 Sensitivity analysis

The sensitivity analysis that I carry out in this section has three focal points. First, in
Subsection 8.1.1, I examine the effect of homophily on the convergence time to a fully
infected state. My goal is to demonstrate that the expected convergence time and the
expected ratio of infected nodes in the system is affected by the level of homophily. Second,
in Subsection 8.1.2, I analyze how the change in the baseline transmission probability
effects the convergence of the similarity based diffusion model. Third, in Subsection 8.1.3,
I run simulations to investigate the effect of changes in the sensitivity parameter to the
spreading phenomenon.
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8.1.1 Sensitivity to homophily

The pairwise transmission probability equation’s dependence on the dissimilarity of agents
accounts for the fact that homophily influences the spread of information on the network.
This phenomenon, namely that changes in homophily influence the distribution of the
pairwise transmission probability values is proved by the following experiment. Let us
imagine a square lattice with periodic boundary conditions, the size of the lattice is
50× 50, so the number of agents is 2500. The agents have a single generic vertex feature
denoted by x, which has a standard normal distribution. The transmission probability
between agents i and j during my simulation is expressed by Equation (8.1). So the
dissimilarity is expressed by the Manhattan distance of the feature values.

Pi,j = P0 · exp (−γ · |xi − xj|) (8.1)

The black and blue distributions in Figure 8.1 were generated by rearranging x in ho-
mophilous and heterophilous way with a target Moran’s I of 0.5 and -0.5. The algorithm
used for the rearrangement was the heuristic one. The γ parameter was equal to 1, the
baseline transmission probability P0 was 0.45 and the base function was the exponen-
tial. As can be seen from Figure 8.1, homophily increases the transmission probabilities
because the dissimilarity among agents is lower. Similarly, the heterophily decreases the
transmission probability because the dissimilarity increases between the agents. From
these it follows that the change in the transmission probabilities effects the convergence
of the diffusion process. It is also evident that the shape of the distributions is changed
by the feature value rearrangement. In case of a homophilous state, the distribution has
a tail on the left, otherwise, it is less skewed.
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Figure 8.1: The distribution of pairwise transmission probabilities

91

C
E

U
eT

D
C

ol
le

ct
io

n



The convergence to a state when all of the nodes are infected is effected by homophily
through the increased pairwise transmission probabilities. This can be proven by an ex-
periment where the topology is fixed, the distribution of the feature is fixed and the
feature is rearranged in heterophilous and homophilous ways. The network used in the
simulations has a square lattice topology with periodic boundary conditions and the size
of the lattice was 10 × 10. Vertices have a single generic vertex feature x, which has a
standard normal distribution. The homophily was measured by Moran’s I and the target
values of the homophily rearrangement were 0.8 and -0.8 respectively. First, I generated
a random assignment of the feature values. Second, I applied the heuristic homophily
rearrangement 100 times and on the obtained networks that show the given levels of ho-
mophily. Third, I initiated a similarity based diffusion process with a single seeder. The
pairwise transmission probability equation was defined by Equation (8.1). The baseline
probability was 0.45 and the sensitivity to dissimilarity was one unit.
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Figure 8.2: Distribution of the time needed for a perfectly infected state under homophily
and heterophily

In Figure 8.2, I plotted the frequency of the solution times obtained from the simulation
experiments. The results obtained with the homophilous networks are plotted in Subfigure
8.2a, while the results obtained under heterophily are plotted in Subfigure 8.2b. It can
be inferred that the average solution time when homophily is present is lower. Moreover,
the variance of the distribution is also lower compared to the the case when the network
shows a strong heterophily regarding x. The values plotted on the two histograms in
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Figure 8.2 barely overlap with each other. This implies that the change in homophily
influences heavily the convergence time to a fully infected state even when the network
topology is fairly simple and the size of the network is small.
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Figure 8.3: The ratio of infected nodes as a function of time

The simulation results that were used to generate Figure 8.2 can be used for highlighting
another regularity of the similarity based diffusion model. Different levels of homophily
result in different levels of mean ratio of infected nodes at a certain time period. For each
level of homophily, an expected time specific ratio of infected nodes, here denoted by
E(Yt)/N , can be calculated by dividing the expected number of infected nodes at time
period t by the total number of nodes. The curves in Figure 8.3 were obtained by doing
the before mentioned operation on the simulation data that was created for Figure 8.2.
The horizontal axis is the time ticker, while the expected ratio of infected nodes is noted
on the vertical. It should be noted that the curves were smoothed out as the time ticker
is discrete and one would only have data points at integer time points. As Figure 8.3
shows all of the curves have sigmoid shapes, which is not different from the results of the
susceptible-infected model. Nevertheless, the main finding is that under homophily the
time specific expected ratio of infected nodes is higher than under the lack of homophily.
Similarly, under heterophily the time specific expected ratio of infected nodes is lower
than under the lack of homophily. These findings also underpin that homophily helps the
propagation of information, if one assumes that the information transmission probability
depends negatively on the dissimilarity among nodes. The R scripts that were used for
generating data and creating Figures 8.2 and 8.3 are attached in Appendix E as Scripts
E.24 and E.25.
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8.1.2 Sensitivity to the baseline transmission probability

A major tuning parameter of the similarity based diffusion model is the baseline transmis-
sion probability. The sensitivity of the model to this parameter is visible – if the baseline
transmission probability increases, the convergence to a state where all of the nodes
have the information becomes shorter. This connection between the baseline transmis-
sion probability and homophily is shown by my simulation results. In the first simulation,
the network of interest is again a square lattice with boundary conditions. The size of the
lattice is 50×50 and the vertices have a single generic vertex feature x, which has a stan-
dard normal distribution. The steps implemented in order to generate the distributions
in the subfigures of Figure 8.4 were as follows.

1. Random assignment of the feature values to the vertices. Homophilous and het-
erophilous rearrangement of the feature values. The respective target values of
Moran’s I were 0.8 and -0.8.

2. Calculating the pairwise transmission probabilities for the unordered, homophilous
and heterophilous networks assuming that the pairwise transmission probability
equation is is described Equation 8.1. The macro-level parameters are set such as
P0 = 45 and γ = 0.5.

3. Changing the baseline transmission probability to P0 = 0.9 and recalculating the
pairwise transmission probabilities.

(a) Baseline P0
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Figure 8.4: The effect of increased baseline transmission probability on the distribution
of pairwise transmission probabilities
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First of all, in Figure 8.4, one can observe that the change of the baseline transmission
probability only rescales the distribution of the pairwise transmission probabilities. As
one can see, the rescaling results in that the average and median of the pairwise transmis-
sion probability values among the vertices simply doubled by the doubling of the baseline
transmission probability. The change in the transmission probabilities also affects the ex-
pected convergence time to a state when all of the nodes have the information (infected).
This effect is quantifiable by averaging out simulation runs while one changes the baseline
transmission probabilities and the homophily is also controllable with the heuristic ho-
mophily rearrangement algorithms. The network of interest had a square lattice topology,
the size of the lattice was 10 × 10 and vertices had a single vertex feature. Simulations
were implemented on a network that shows homophily, heterophily or one one which was
not feature rearranged. For each homophily level and baseline probability combination, I
simulated 200 similarity based diffusion processes. The homophily level was measured by
Moran’s I, the sensitivity to dissimilarity was equal to 1, and the pairwise transmission
probability equation was described by Equation (8.1). The baseline transmission proba-
bility varied between 0.4 and 0.8 with a stepsize of 0.05. The respective R script is added
in Appendix E as Script E.26.
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Figure 8.5: Expected and median solution time as a function of baseline transmission
probability

In the subfigures of Figure 8.5 I plotted the mean and median convergence times to a fully
infected state. One can observe that the increase in the baseline transmission probability
results in decreased mean solution time. This is apparent from Subfigure 8.5a. Moreover,
as it seems the effect of the transmission probability on the expected convergence time is
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non-linear. Similarly, the results on Subfigure 8.5b imply that the increase of the baseline
transmission probability decreases the median solution time. These results are in line
with the changed distribution of pairwise transmission probabilities.

8.1.3 Sensitivity to the dissimilarity

Another major tuning parameter of the similarity based diffusion model is the sensitiv-
ity to dissimilarity. The intuition regarding the sensitivity to dissimilarity is that, when
it increases the expected convergence time to a state where all of the nodes have the
information also increases. This simple relationship again has roots in the changing dis-
tribution of the pairwise transmission probabilities. Let us consider a similar experiment
to the one that was used for generating Figure 8.4. A square lattice with periodic bound-
ary conditions, with a size of 50 × 50 and a single generic vertex feature, which has a
standard normal distribution. In order to show the effect of the changed sensitivity to
the pairwise transmission probabilities I constructed a simple simulation experiment. The
steps of the simulation experiment were as follows.

1. The feature values are assigned randomly to the vertices, and the are rearranged in
a homophilous and heterophilous manner. The target of these rearrangements was
0.8 and -0.8. The resulting rearranged feature values are the same as the ones used
for generating Figure 8.4.

2. These rearranged feature values are sufficient for calculating the pairwise transmis-
sion probabilities between the vertices. The chosen pairwise transmission probability
equation is defined by Equation 8.1. The parameters are chosen such as P0 = 45

and γ = 0.5.

3. The sensitivity to dissimilarity is increased to be equal to 1 and the pairwise trans-
mission probabilities are recalculated.

The distributions of the resulting pairwise transmission probabilities are plotted in Figure
8.6. The increased sensitivity to dissimilarity not just rescales the respective distributions,
but makes them positively skewed. This skewness is the strongest when the network is
heterophilous regarding the generic vertex feature of interest. Nonetheless, the shape of
the distribution is changed even when the system shows homophily regarding the feature
or when homophily is not present. This phenomenon foreshadows a later result, namely
that the increased sensitivity increases the expected convergence time most on networks
that show heterophily. The related R script is enclosed in Appendix E as Script E.23.
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(a) Baseline γ
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Figure 8.6: The effect of increased sensitivity to dissimilarity on the distribution of pair-
wise transmission probabilities

The nature relationship between the sensitivity to dissimilarity and the expected and
median convergence times is assessable by similarity based diffusion simulations. The
spreading process happens on a square lattice with periodic boundary conditions. The
vertices have a single generic vertex feature, this feature has a standard normal distribu-
tion. Next, the feature is rearranged in order to generate networks that show homophily
or heterophily. During the homophily rearrangements the homophily measurement func-
tion was Moran’s I and the respective homophily rearrangement target values were 0.8
and -0.8. Initially, the generic vertex feature is assigned to the vertices in a random way.
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Figure 8.7: Expected and median solution time as a function of sensitivity to dissimilarity
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The baseline transmission probability was 0.5 and the γ value varied between 0.1 and 0.8
with a stepsize of 0.1. The pairwise transmission probabilities were specifically defined by
Equation 8.1. In Subfigure 8.7a of Figure 8.7, each point represents the expected conver-
gence time of the diffusion process calculated from 200 simulations. It is evident that the
expected convergence time is increasing in the sensitivity. Moreover, this increase is the
highest when the features are rearranged in a heterophilous way. The median convergence
time’s behavior can be observed in Subfigure 8.7b, where values were again calculated
from 200 simulation runs for each pair of parameters (homophily and sensitivity). The
median solution time is also increasing in the sensitivity just as the expected solution
time. This R implementation of the experiment is enclosed in Appendix E as Script E.27.

8.2 Heterogeneous sensitivity

The core idea of the similarity based diffusion model with heterogeneous sensitivity to
dissimilarity is that the probability of passing on the information between two agents
can be different. In such settings, when the dissimilarity is weighted heterogeneously, the
exact effect of homophily will depend on the breed of the initial seeder node. In this
section I demonstrate this regularity with similarity based diffusion simulations.

In my simulations, the system of interest is a network, which has square lattice topology
with periodic boundary conditions. The nodes have a single generic vertex feature x,
and this variable is binary with two numeric outcomes. The probability that the outcome
is 1 equals to 0.3 and, from this, it comes that the the probability that the outcome
is 0 equals to 0.7. In the non homophilous set up of the network, the feature values
are assigned randomly to the vertices. The pairwise transmission probability equations
between nodes i and j are described by Equations 8.2 and 8.3.

Pi,j = P0 · exp (−γ1 · |xi − xj|) , if xi = 1 (8.2)

Pi,j = P0 · exp (−γ2 · |xi − xj|) , if xi = 0 (8.3)

From this it comes that there are three types of pairwise transmission probability values
in the system. First, if xi = xj, then it holds that Pi,j = Pj,i = P0. Second, if xi = 1

and xj = 0, then it comes that Pi,j = P0 · exp(−γ1). Third, if xi = 0 and xj = 1,
then one knows that Pi,j = P0 · exp(−γ2). If γ1 is larger then γ2, then agents who have
x = 1 discriminate the other type of agents. In the simulation runs, I assume that the
baseline transmission probability is 0.6, the γ1 value is 6, while the γ2 value equals to
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0.1. This means that the potential pairwise transmission probabilities conditionally on
the participants’ feature values are as follows.

Pi,j =



0.6 · exp(0), if xi = 1 and xj = 1

0.6 · exp(0), if xi = 0 and xj = 0

0.6 · exp(−0.1), if xi = 0 and xj = 1

0.6 · exp(−6), if xi = 1 and xj = 0

With this experimental set up, I simulated 500 similarity based diffusion processes with
a random choice of the initial seeder. The random choice of the seeder means that with
a 0.3 probability the initial seeder is an agent who discriminates, and with a probability
of 0.7, the agent is not discriminating based on the feature value. Because of this, the
time dependent expected ratio of infected nodes will be different in those simulation runs
when the initial seeder is from the discriminating breed. Simulation results regarding a
non homophilous feature arrangement (when Moran’s I is roughly 0) is plotted in Figure
8.8, where the discrete points are smoothed out. In the simulation runs, when the initial
seeder was discriminating the time dependent expected ratio of infected nodes is lower,
then the runs when the initial seeder was a non discriminating agent. In Figure 8.8 this
is represented by that the red curve is above the blue one in all of the time periods. It is
also observable that only the red curve has sigmoid shape, the blue one (when the seeder
is a discriminator) converges to a fully infected state with a much slower pace. The R
scripts used for the simulation are attached in Appendix E as Scripts E.28 and E.29.
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Figure 8.8: The ratio of infected nodes as a function of time – non-homophilous state
with discrimination
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This difference in the time dependent expected ratio of infected nodes (between discrim-
inator and non-discriminator initiated diffusion) is more remarkable when the network
shows homophily. The curves in Figure 8.9 were generated by using the similarity based
diffusion model on a homophilous network. The only difference from the previous sim-
ulation is that the network shows mild homophily – in each simulation run I rearrange
the generic vertex feature in a way that the network shows homophily. The target value
of the homophily rearrangement is a Moran’s I equal to 0.5. There are three important
phenomena that can be inferred based on the curves in Figure 8.9. First, the difference
between the two types of diffusion is stronger. Second, homophily also effect the expected
convergence time to a perfectly infected state. Both in case of the discriminating and
the non-discriminating seeder initiated diffusion, the expected convergence time is higher
than it was when homophily was not present – for comparison, see the curves in Figure
8.8. Third, the sigmoid shape of the time–expected ratio of infected nodes curve disap-
pears if the seeder is a discriminator and the network shows homophily regarding the
feature. The R Script that generated the diffusion process and the data used for the plot
is enclosed in Appendix E as Scripts E.28 and E.29.
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Figure 8.9: The ratio of infected nodes as a function of time – homophilous state with
discrimination
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Chapter 9: Conclusion

This chapter gives an overview of my thesis regarding the main results, the possible policy
relevant applications of my ideas, the limitations and plausible extensions of my research.
The main findings and the novel achievements of the thesis are summarized in Section
9.1. The policy relevant implications of the thesis, possible applications of the proposed
algorithms and the diffusion model are the subject of Section 9.2. The major theoretical
and empirical limitations of my research are highlighted in Section 9.3. The chapter
concludes in Section 9.4 with the discussion of possible improvements of the algorithms,
models and experiments done in my thesis.

9.1 Summary of findings

The thesis in hand had three closely related research questions that it wanted to inves-
tigate. The first one was about algorithms and the properties of these algorithms that
can rearrange the sole generic vertex feature of networks in a way that the resulting
feature shows homophily while the feature’s distribution and the network topology are
unchanged. My thesis coined these algorithms as homophily rearrangement algorithms.
The second research question was about the multivariate extension of the algorithms
proposed by the first research question and also about the characteristics of these multi-
variate homophily rearrangement algorithms. The third question dealt with an extension
of the susceptible-infected model in a setting where the pairwise transmission probabili-
ties between vertices depended on the generic vertex similarity of the vertices.

The results regarding the first and second research question can be summarized as follows.
In Chapter 4 I proposed three new algorithms that can rearrange a single generic vertex
features in a way that the network shows homophily regarding them. These algorithms
are able to tackle the homophilous rearrangement of binary, categorical, ordinal, count
and continuous features on a network which has an arbitrary topology with high relia-
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bility. These algorithms were augmented in Chapter 5 to solve multivariate homophily
rearrangement problems. Sensitivity analysis of the proposed univariate and multivariate
homophily rearrangement algorithms in Chapter 7 established how macro-level param-
eters effect the results of the homophily rearrangement process. The most important
simulation results are enumerated below.

1. The expected and median time (number of iterative steps) needed for univariate
homophily rearrangement increases in the absolute value of the target homophily
and the size of the network. This is even true when the network has multiple generic
vertex features.

2. The feature vectors that result from the univariate homophily rearrangement are
practically uncorrelated with each other and the original generic vertex feature.

3. The multivariate homophily rearrangements show that the correlation of the generic
vertex features decreases the number of iterative steps needed for solving the ho-
mophily rearrangement problem. This holds both for positive and negative generic
vertex feature correlation.

4. The results obtained with multivariate homophily rearrangements show that the
correlation of the generic vertex features mitigates homophily inertia – the phe-
nomenon that the homophily levels diverge from each other.

To answer the third proposed research question, I defined the the similarity based diffusion
model in Chapter 6. In this agent based model, the pairwise transmission probability of
the infection depended negatively on the dissimilarity of agents’ generic vertex features.
The model was used for simulations and the simulation results presented in Chapter
8 supported that in this similarity based diffusion setting, homophily propagates the
spreading on the network, while heterophily slows down the spreading of the infection. In
addition, I proposed a modified version of the similarity based diffusion model in Chapter
6 where certain agents weighted the dissimilarity of other agents up. The simulation
results in Chapter 8 obtained with the modified model indicated that homophily slowed
down the spreading of the infection if it originated from the discriminating group.

9.2 Policy relevant implications

While the topic of my thesis is theoretical and computational, the introduced algorithms
and empirical results have direct applications and also important policy related implica-
tions. First I will touch upon the application of the homophily rearrangement simulations.
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Second, I will highlight the policy relevant implications of the simulation results obtained
by the similarity based diffusion model.

Let us imagine that one wants to investigate with a randomized experiment how ho-
mophily changes peer effects and different outcomes in work relationships. The experi-
mental setup includes that participants have to co-operate in a predefined way, the co-
working relationships are described by a network, where nodes represent the participants
and the existence of co-working is described by the edges. If one separates the participants
randomly into two groups, we can assume that the participants in the two groups have
traits that are distributed identically in the two groups. These two groups can form two
artificially generated network mentioned above in a way that people are assigned to work
with others in a preset way. In this case, one would expect that the homophily regarding
the generic vertex features (the traits of participants) will be basically the same on the
two networks. Nevertheless, one can assign the participants to take certain co-working
roles based on the homophily rearrangement of the original assignment.

In line with the above mentioned one can construct a network of co-operations that show
homophily or heterophily regarding a single dimension of participants (gender, race or
ability among many others) or multiple dimensions. Moreover, if one is able to do a mul-
tiple homophily rearrangement in a way that only homophily regarding a single feature
is changed, then the effect of other observed traits that are correlated with the feature
of interest can be filtered out. However, it should be emphasized that the change in
homophily regarding unobserved characteristics cannot be assessed. This method might
quantify the effectiveness of firm-level policies about co-working or the effect of peer-
based interventions in education. Generally, it is useful in every situation when one wants
to control peer-effects. With the application of homophily rearrangement algorithms, the
above mentioned experiments can be done on networks of arbitrary size, so experiments
such as the one done by Centola (2011) are testable on large networks.

The similarity based diffusion model has no direct applications, but it has important pol-
icy implications about the spreading of ideas and innovation on networks that show ho-
mophily. Simulation results that were obtained with the similarity based diffusion model
show that the spreading of information is way slower when the network is homophilous
regarding a certain feature and the initial seeder is in a groups which discriminates based
on the feature. An obvious example for this can be a social network of everyday interac-
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tions, where one observes race based homophily and discrimination based on race at the
same time. The importance of the slower diffusion lies in the fact that the innovation or
information might have a life-cycle which is shorter than the the expected convergence
time. One example is the spreading of information about new positions in the labor mar-
ket. If the spreading of the information is sufficiently slow, the position might be already
filled when a discriminated person gets to know that the opening existed. Another exam-
ple can be the adaptation of a technological innovation such as a software or a gadget. By
the time the discriminated agents adapt it is possibly seriously outdated. This lag in the
adaptation leads to another inefficiency. However, these inefficiencies are bridgeable if the
initial seeding of the information happens in multiple communities of the network that
do not share the same feature value. In the labor market case it means that the position
should be advertised in communities that are different from each other. While in the case
of technological innovation, it simply means that early adapters should be in different
communities regarding the feature of interest (race, gender, religion or education level).

These above described policy ideas about the connection of homophily, diffusion and
possible discrimination could solve certain actual labor market and corporate governance
problems. As the findings of Petersen et al. (2000) support it, the labor market referrals
are biased towards shared race and gender. To help the diffusion of information about
job postings companies might give extra incentives to support successful cross gender
and race talent referrals within the company. This way the diffusion process is probably
speeded up and potential able applicants hear about the positions in time. Another ap-
plication of the results obtained with the similarity based diffusion model is related to
the findings of Edling et al. (2012) about Scandinavian corporate governance networks.
There are two important facts highlighted by Edling et al. (2012). First, boards have
homophilous connections to other boards. Second, that the ratio of females increases
in boards through diffusion, boards that have connections to other boards with female
members are likelier to replace aged out male members with females. This gives place for
a reasonable regulation of the gender ratio in the boards.1 We know that the networks
show homophily regarding board composition and assuming similarity based diffusion is
reasonable in this case. Because of the before mentioned, the board composition regula-
tion should primarily target those firms that are well connected with others in boards
and have traits (e.g. board composition, industry or firm size) that make them extremely
similar to their neighbors.

1Which is an actual policy target of Scandinavian governments.
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9.3 Limitations of the research

There are certain considerable computational and theoretical limitations of the homophily
rearrangement algorithms introduced in my thesis. An important shortcoming of the pro-
posed homophily rearrangement algorithms is that both the univariate and multivariate
homophily rearrangement algorithms assume that the homophily measurement function
needs the adjacency matrix in order to quantify the level of homophily. This slows down
the homophily rearrangement algorithms. Such measures of homophily are inefficient, be-
cause one has to calculate computationally demanding inner products. Another imperial
weakness of the homophily rearrangement algorithms is that the multivariate ones can
only have target values that are either all positive or negative. This can be problematic
because there are certain networks that show homophily in one dimension while in an-
other one heterophily can be present. An example, is the network of sexual relationships,
where relationships are homophilous regarding race and heterophilous with respect to
gender.

The empirical investigation of the homophily rearrangement algorithms and the similar-
ity based diffusion model is also limited. These limitations can be summarized in four
major points. First, the sensitivity analyses regarding both the homophily rearrangement
algorithms and the similarity based diffusion model are all implemented on square lat-
tice. This choice of topology might affect the sensitivity analysis results presented in my
thesis. Second, the generic vertex features of interest have Bernoulli and standard normal
distributions in my thesis, which is a simplistic assumption about the nature of generic
vertex features. Third, the homophily regarding the generic vertex features is measured
just by two specific homophily measurement functions – the inbreeding homophily index
and Moran’s I. The stability of results should be assessed by applying other homophily
measurement functions. Fourth, the similarity based diffusion is only analyzed in systems
where the nodes have a single generic vertex feature. Correlation of the generic vertex
features with each other might influence the diffusion process.
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9.4 Further research possibilities

The algorithms and the diffusion model proposed in my thesis are fairly modular – cer-
tain elements of them can be changed and the change results in a different algorithm or
model. This flexibility allows for extensions of the proposed algorithms in multiple ways.
Current results of the empirical investigation about the sensitivity of the homophily re-
arrangement algorithms and the similarity based diffusion model might be also enriched.
There are three main ways that my research can be augmented or improved to hedge its
current shortcomings.

First, the proposed algorithms use homophily measurement functions that calculate the
level of homophily based on the generic vertex feature and the adjacency matrix of the
network. This is a computationally inefficient way of quantifying homophily on the net-
work. Implementing the proposed univariate and multivariate algorithms with homophily
measurement functions that quantify homophily based on the generic vertex feature and
the edge list could be a novel contribution to my research. Such improvement of the al-
gorithms would allow for the simulation of large-scale homophily rearrangements. This
idea would fit with the Apache Spark GraphX environment which is a scalable big data
analysis tool for network analytics.2

Second, the results about the expected convergence time of the similarity based diffusion
model and the dispersion of the observed convergence times implies that choosing cer-
tain seeders can speed up the similarity based diffusion process. Creating vertex selection
heuristics that can choose vertices that initiate similarity based diffusion processes which
have short expected convergence times would be an interesting extension of my results.
The unique value of these heuristic would lie in the fact that such heuristics might es-
sentially find a fairly optimal way to initiate fast diffusion of the networks. This would
be helpful, when one can assume that the diffusion is similarity based and the subject
of the spreading is either a technical innovation or an important information with short
life-cycle.

Third, as highlighted previously, the sensitivity analyses were mainly implemented for
networks that have a simple square lattice topology. Both the similarity based diffu-
sion model and the homophily rearrangement algorithms have properties that were only

2For details see http://spark.apache.org/graphx/.
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demonstrated on lattices. Because of this, my study should be repeated on networks that
have topology different from a square lattice in order to prove that the sensitivity analy-
sis results hold more generally. The particular empirical investigation might focus on real
world networks or on artificial ones which have topology described by canonical models
such as the Erdős-Rényi graph.
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Appendix A: Notations

V − Set of vertices in a network

E − Set of edges in a network

x−Generic vertex feature vector

xi − The ith element of the generic feature vector x

X−Matrix of generic vertex features

Xi − The ith row of generic feature matrix X

x̃− Temporary generic vertex feature

X̃− Temporary feature matrix

G(V,E,x)− Network with a single generic feature

G(V,E,X)− Network with a feature matrix

W − Adjacency matrix of the network

G(W,x)− Network with a single generic feature

G(W,X)− Network with a feature matrix

N − Number of elements in feature vector x

t− Step of the homophily rearrangement/diffusion algorithm

C − Level of homophily

C − Categorical homophily levels (criteria)

H− Homophily measurement function

HU − Universal homophily measurement function

HC − Categorical homophily measurement function

ωt − Level of homophily at step t.

Ωt − Level of categorical homophily values at step t.
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φ− Universal target homophily value

Φ− Categorical target homophily vector

(C1, . . . , Cp)− Homophily profile

E(H1(x1,W), . . . ,Hp(xp,W))− Ensemble homophily measurement function

(Φ1, . . . ,Φp)− Homophily target profile

SU(φ,x,W)− Universal vertex pair selection heuristic

SC(Φ,x,W)− Categorical vertex pair selection heuristic

X ↑ − Above the mean control value

X ↓ − Below the mean control value

Xm −Within group control value

X 6m −Outside the group control value

P0 − Baseline transmission probability

Pi,j − Pairwise transmission probability from agent i to j

d(Xi,Xj)−Dissimilarity of agents i and j

γ − Transmission sensitivity to dissimilarity

Ψ− Base function

K − Set of newly infected nodes

I − Set of newly infected nodes by node i

yt − Infestion state vector at time period t

yt,i − Infection state of node i at time period t

Yt − Number of infected nodes at time period t

G∗i (x
∗,W∗)− Vertex i induced star network

NG − First order neighborhood function

d∗i − Average feature dissimilarity from vertex i

∆i −Degree corrected feature dissimilarity of vertex i

Θ− Stopping flag
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Appendix B: Auxiliary algorithms

Data: Homophily target value φ, the feature value x and the weighted adjacency
matrix W.

Result: Pair of indices i and j participating in the feature value rearrangement.

1 N ⇐ |x|
2 V ⇐ {1, . . . , N}
3 if φ > 0 then

4 X ↑ ⇐ −∞
5 X ↓ ⇐ −∞
6 else

7 X ↑ ⇐∞
8 X ↓ ⇐∞
9 end

10 for v in V do

11 if xv ≥ x then

12 if [(φ > 0 and deg(v) · d∗v > X ↑) or (φ < 0 and deg(v) · d∗v < X ↑)] then
13 i⇐ v

14 X ↑ ⇐ deg(v) · d∗v
15 end

16 else

17 if [(φ > 0 and deg(v) · d∗v > X ↓) or (φ < 0 and deg(v) · d∗v < X ↓)] then
18 j ⇐ v

19 X ↓ ⇐ deg(v) · d∗v
20 end

21 end

22 end

Algorithm 11: Pseudo code of the universal vertex selection algorithm
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Data: Homophily target vector Φ, the feature value x and the weighted adjacency
matrix W.

Result: Pair of indices i and j participating in the feature value rearrangement.

1 N ⇐ |x|
2 V ⇐ {1, . . . , N}
3 M⇐ {1, . . . ,M}
4 m⇐ U(M)

5 if Φ � 0 then

6 Xm ⇐ −∞
7 X 6m ⇐ −∞
8 else

9 Xm ⇐∞
10 X 6m ⇐∞
11 end

12 for v in V do

13 if xv = m then

14 if [(Φ � 0 and deg(v) · d∗v > Xm) or (Φ ≺ 0 and deg(v) · d∗v < Xm)]

then

15 i⇐ v

16 Xm ⇐ deg(v) · d∗v
17 end

18 else

19 if [(Φ � 0 and deg(v) · d∗v > X 6m) or (Φ ≺ 0 and deg(v) · d∗v < X 6m)]

then

20 j ⇐ v

21 X 6m ⇐ deg(v) · d∗v
22 end

23 end

24 end

Algorithm 12: Pseudo code of the categorical vertex selection algorithm
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Appendix C: Tables

Table C.1: Classification of homophily measurement functions

Measure’s name Type Normalized Additional information

Moran’s I Universal Yes Moran (1950)

Transformed Geary’s C Universal Yes Geary (1954)

End-node correlations Universal Yes Noldus & Mieghem (2015)

External-internal links index Categorical Yes Krackhardt & Stern (1988)

Homophily index Categorical Yes Coleman (1958)

Segregation matrix index Categorical Yes Freshtman & Gneezy (2001)

Gupta-Anderson-May index Categorical No Gupta et al. (1989)

Segregation index Universal/Categorical No Freeman (1978)

Homophily test Categorical No Easley & Kleinberg (2010)

Inbreeding homophily index Categorical Yes Currarini et al. (2009)

Spectral segregation index Individual No Echenique & Fryer (2007)
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Appendix D: Figures

(a) Unordered state (b) Homophilous state

Figure D.1: Heuristic homophily rearrangement of a binary feature – ER topology
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Figure D.2: Median solution time of the multivariate heuristic homophily rearrangement
algorithms as a function of feature correlation and lattice size
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Appendix E: R Scripts

E.1 Heuristic algorithms

1 randomkick_generator ← f unc t i on (Phi ,X,W){

2 NX← l ength (X)

3 t index ← 0

4 Cal_C ← Moran(X,W) [ 1 ]

5 whi le ( ( Phi>Cal_C & Phi>0 ) | ( Phi<Cal_C & Phi< 0 ) ) {

6 Tilde_X ← X

7 t index ← t index + 1

8 i ← sample ( 1 :NX, 1 ) [ 1 ]

9 j ← sample ( 1 :NX, 1 ) [ 1 ]

10

11 i f (Tilde_X [ i ] != Tilde_X [ j ] ) {

12 Tilde_X [ i ] ← X[ j ]

13 Tilde_X [ j ] ← X[ i ]

14 Tilde_Cal_C ← Moran(Tilde_X ,W) [ 1 ]

15

16 i f ( ( Tilde_Cal_C>Cal_C & Phi>0) | ( Tilde_Cal_C<Cal_C & Phi<0) ) {

17 pr in t (Tilde_Cal_C)

18 X[ i ] ← Tilde_X [ i ]

19 X[ j ] ← Tilde_X [ j ]

20 Cal_C ← Tilde_Cal_C

21 }

22 }

23 }

24 re turn (X) }

Script E.1: R implementation of the heuristic rearrangement algorithm for a general
homophily measure function
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1 randomkick_generator ← f unc t i on (Phi , X, W){

2 NX← l ength (X)

3 t ← 0

4 Cal_C ← HI_measure (W, Tilde_X)

5 Z ← rep (0 , l ength (Cal_C) )

6 whi le ( ( any ( Phi > Cal_C)& a l l ( Phi >Z) ) | ( any ( Phi < Cal_C)& a l l ( Phi

< Z) ) ) {

7 Tilde_X ← X

8 t ← t + 1

9 i ← sample ( 1 :NX, 1 ) [ 1 ]

10 j ← sample ( 1 :NX, 1 ) [ 1 ]

11 i f (Tilde_X [ i ] != Tilde_X [ j ] ) {

12 Tilde_X [ i ] ← X[ j ]

13 Tilde_X [ j ] ← X[ i ]

14 Tilde_Cal_C ← HI_measure (W, Tilde_X)

15 i f ( ( a l l (Tilde_Cal_C > Cal_C) & a l l ( Phi > Z) ) | ( a l l (Tilde_Cal_C

< Cal_C) & a l l ( Phi < Z) ) ) {

16 X[ i ]←Tilde_X [ i ]

17 X[ j ]←Tilde_X [ j ]

18 Cal_C←Tilde_Cal_C

19 }

20 }

21 }

22 re turn (X) }

Script E.2: R implementation of the heuristic rearrangement algorithm for a categorical
homophily measure function
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E.2 Heuristic algorithms with bag of indices

1 randomkick_generator ← f unc t i on (Phi , X, network ) {

2 Bag ←1 : l ength (X)

3 time ← 0

4 Cal_C ← Moran(X,W) [ 1 ]

5 Z ← rep (0 , l ength (Cal_C) )

6 whi le ( ( Phi>Cal_C & Phi>0 ) | ( Phi<Cal_C & Phi< 0 ) ) {

7 Tilde_X ← X

8 time ← time + 1

9 i ← sample (Bag , 1 ) [ 1 ]

10 j ← sample (Bag , 1 ) [ 1 ]

11 i f (Tilde_X [ i ] != Tilde_X [ j ] ) {

12 Tilde_X [ i ] ← X[ j ]

13 Tilde_X [ j ] ← X[ i ]

14 Tilde_Cal_C ← Moran(Tilde_X ,W) [ 1 ]

15 i f ( ( Tilde_Cal_C>Cal_C&Phi>0) | ( Tilde_Cal_C<Cal_C&Phi<0) ) {

16 X[ i ] ← Tilde_X [ i ]

17 X[ j ] ← Tilde_X [ j ]

18 Cal_C ← Tilde_Cal_C

19 Bag ← Bag [ Bag!= i ]

20 Bag ← Bag [ Bag!= j ]

21 }

22 }

23 }

24 re turn (X) }

Script E.3: R implementation of the heuristic rearrangement algorithm with bag of indices
for a general homophily measure function
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1 randomkick_generator ← f unc t i on (Phi , X, network ) {

2 Bag ←1 : l ength (X)

3 t ← 0

4 Cal_C ← HI_measure ( network ,X)

5 Z ← rep (0 , l ength (Cal_C) )

6 whi le ( ( any (Phi>Cal_C)&a l l ( Phi>Z) ) | ( any (Phi<Cal_C)&a l l (Phi<Z) ) ) {

7 Tilde_X ← X

8 t ← t + 1

9 i ← sample (Bag , 1 ) [ 1 ]

10 j ← sample (Bag , 1 ) [ 1 ]

11

12 i f (Tilde_X [ i ] != Tilde_X [ j ] ) {

13 Tilde_X [ i ] ← X[ j ]

14 Tilde_X [ j ] ← X[ i ]

15 Tilde_Cal_C ← HI_measure ( network , Tilde_X)

16

17 i f ( ( a l l (Tilde_Cal_C>Cal_C)&a l l ( Phi>Z) ) | ( a l l (Tilde_Cal_C<Cal_C

)&a l l (Phi<Z) ) ) {

18 X[ i ] ← Tilde_X [ i ]

19 X[ j ] ← Tilde_X [ j ]

20 Cal_C ← Tilde_Cal_C

21 Bag ← Bag [ Bag!= i ]

22 Bag ← Bag [ Bag!= j ]

23 }

24 }

25 }

26 re turn (X) }

Script E.4: R implementation of the heuristic rearrangement algorithm with bag of indices
for a categorical homophily measure function
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E.3 Greedy algorithms

1 greedy_universa l ← f unc t i on ( phi ,X,W){

2 Theta ← 0

3 t ← 0

4 c ← Moran(X,W)

5 omega ← c ( )

6 whi le ( ( ( phi >= c & phi >0) | ( phi <= c & phi < 0) ) & (Theta == 0) ) {

7 t ← t +1

8 X_tilde ← X

9 i ← s e l e c t o r_un i v e r s a l ( phi ,X,W) [ 1 ]

10 j ← s e l e c t o r_un i v e r s a l ( phi ,X,W) [ 2 ]

11 X_tilde [ i ] ← X[ j ]

12 X_tilde [ j ] ← X[ i ]

13 c_t i lde ← Moran( X_tilde ,W)

14 i f ( ( c_t i lde >c & phi > 0) | ( c_t i lde < c & phi < 0) ) {

15 X[ i ] ← X_tilde [ i ]

16 X[ j ] ← X_tilde [ j ]

17 c ← c_t i lde

18 } e l s e {

19 Theta ← 1

20 }

21 omega [ t ] ← c

22 }

23 re turn (X) }

Script E.5: R implementation of the heuristic rearrangement algorithm with bag of indices
for a general homophily measure function
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1 s e l e c t o r_un i v e r s a l ← f unc t i on ( phi ,X,W){

2 N ← l ength (X)

3 V ← 1 :N

4 i f ( phi >0){

5 X_above ← −(10∧ 10)
6 X_below ← −(10∧ 10)
7 } e l s e {

8 X_above ← (10∧ 10)

9 X_below ← (10∧ 10)

10 }

11 X_me ← mean(X)

12 f o r ( i in 1 :N) {

13 d i s ← sum( abs (X[W[ , i ]==1]−X[ i ] ) )

14 i f (X[ i ] >= X_me ) {

15 i f ( ( phi > 0 & d i s > X_above) | ( phi <0 & d i s <X_above) ) {

16 out_i ← i

17 X_above ← d i s

18 }

19 } e l s e {

20 i f ( ( phi > 0 & d i s > X_below) | ( phi <0 & d i s <X_below) ) {

21 out_j ← i

22 X_below ← d i s

23 }

24 }

25 }

26 re turn ( c ( out_i , out_j ) )

27 }

Script E.6: R implementation of the heuristic rearrangement algorithm with bag of indices
for a general homophily measure function
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1 greedy_categor i ca l ← f unc t i on (Phi ,X,W){

2 network ← graph .ad jacency (W)

3 Theta ← 0

4 t ← 0

5 C ← HI_measure ( network ,X)

6 Z ← rep (0 , l ength (C) )

7 whi le ( ( any ( Phi > C)& a l l ( Phi >Z) ) | ( any ( Phi < C)& a l l ( Phi < Z) ) & (

Theta == 0) ) {

8 t ← t + 1

9 pr in t (C)

10 X_tilde ← X

11 i ← s e l e c t o r_c a t e g o r i c a l ( phi ,X,W) [ 1 ]

12 j ← s e l e c t o r_c a t e g o r i c a l ( phi ,X,W) [ 2 ]

13 X_tilde [ i ] ← X[ j ]

14 X_tilde [ j ] ← X[ i ]

15 C_tilde ← HI_measure ( network , X_tilde )

16 i f ( ( a l l ( C_tilde > C) & a l l ( Phi > Z) ) | ( a l l ( C_tilde < C) & a l l (

Phi < Z) ) ) {

17 X[ i ] ← X_tilde [ i ]

18 X[ j ] ← X_tilde [ j ]

19 C ← C_tilde

20 } e l s e {

21 Theta ← 1

22 }

23 }

24 re turn (X) }

Script E.7: R implementation of the heuristic rearrangement algorithm with bag of indices
for a categorical homophily measure function
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1 s e l e c t o r_c a t e g o r i c a l ← f unc t i on (Phi ,X,W){

2 N ← l ength (X)

3 V ← 1 :N

4 M← 1 : l ength ( unique (X) )

5 m← sample ( unique (X) ,1 )

6 Z ← rep (0 , l ength ( Phi ) )

7 i f ( a l l ( Phi>Z) ) {

8 X_m← −(10∧ 10)
9 X_notm ← −(10∧ 10)

10 } e l s e {

11 X_m← (10∧ 10)

12 X_notm ← (10∧ 10)

13 }

14 f o r ( i in 1 :N) {

15 d i s ← sum( abs (X[W[ , i ]==1]−X[ i ] ) )

16 i f (X[ i ] == m){

17 i f ( ( a l l ( Phi > Z) & ( d i s > X_m) ) | ( a l l ( Phi < Z) & ( d i s <X_m) ) )

{

18 out_i ← i

19 X_m← d i s

20 }

21 } e l s e {

22 i f ( ( a l l ( Phi > Z) & ( d i s > X_notm) ) | ( a l l ( Phi < Z) & ( d i s

<X_notm) ) ) {

23 out_j ← i

24 X_notm← d i s

25 }

26 }

27 }

28 re turn ( c ( out_i , out_j ) )

29 }

Script E.8: R implementation of the heuristic rearrangement algorithm with bag of indices
for a categorical homophily measure function
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E.4 Heuristic multivariate algorithm

1 Moran_Vector ← f unc t i on (X,W){

2 Out_vector ←c ( )

3 f o r ( i in 1 : nco l (X) ) {

4 Out_vector [ i ] ←Moran(X[ , i ] ,W)

5 }

6 re turn (Out_vector )

7 }

8 randomkick_generator_multi ← f unc t i on (Phi ,X,W){

9 NX← nrow (X)

10 t ← 0

11 Cal_C ← Moran_Vector (X,W)

12 Z ← rep (0 , l ength (Cal_C) )

13 whi le ( ( any ( Phi > Cal_C)& a l l ( Phi >Z) ) | ( any ( Phi < Cal_C)& a l l ( Phi

< Z) ) ) {

14 Tilde_X ← X

15 t ← t + 1

16 i ← sample ( 1 :NX, 1 ) [ 1 ]

17 j ← sample ( 1 :NX, 1 ) [ 1 ]

18 i f (Tilde_X [ i , ] != Tilde_X [ j , ] ) {

19 Tilde_X [ i , ] ← X[ j , ]

20 Tilde_X [ j , ] ← X[ i , ]

21 Tilde_Cal_C ← Moran_Vector (Tilde_X ,W)

22 i f ( ( a l l (Tilde_Cal_C > Cal_C) & a l l ( Phi > Z) ) | ( a l l (Tilde_Cal_C

< Cal_C) & a l l ( Phi < Z) ) ) {

23 X[ i , ] ← Tilde_X [ i , ]

24 X[ j , ] ← Tilde_X [ j , ]

25 Cal_C ← Tilde_Cal_C

26 }

27 }

28 }

29 re turn ( t ) }

Script E.9: R implementation of the heuristic rearrangement algorithm for a general
homophily measure function for multivariate networks
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E.5 Heuristic multivariate algorithm with bag of in-

dices

1 randomkick_generator_multi_bag ← f unc t i on (Phi ,X,W){

2 Bag ←1 : nrow (X)

3 NX← nrow (X)

4 t ← 0

5 Cal_C ← Moran_Vector (X,W)

6 Z ← rep (0 , l ength (Cal_C) )

7 whi le ( ( any ( Phi > Cal_C)& a l l ( Phi >Z) ) | ( any ( Phi < Cal_C)& a l l ( Phi

< Z) ) ) {

8 Tilde_X ← X

9 t ← t + 1

10 i ← sample (Bag , 1 ) [ 1 ]

11 j ← sample (Bag , 1 ) [ 1 ]

12

13 i f (Tilde_X [ i , ] != Tilde_X [ j , ] ) {

14 Tilde_X [ i , ] ← X[ j , ]

15 Tilde_X [ j , ] ← X[ i , ]

16 Tilde_Cal_C ← Moran_Vector (Tilde_X ,W)

17

18 i f ( ( a l l (Tilde_Cal_C > Cal_C) & a l l ( Phi > Z) ) | ( a l l (Tilde_Cal_C

< Cal_C) & a l l ( Phi < Z) ) ) {

19 X[ i , ] ← Tilde_X [ i , ]

20 X[ j , ] ← Tilde_X [ j , ]

21 Cal_C ← Tilde_Cal_C

22 Bag ← Bag [ Bag!= i ]

23 Bag ← Bag [ Bag!= j ]

24 }

25 }

26 }

27 re turn ( t ) }

Script E.10: R implementation of the heuristic rearrangement algorithm with bag of
indices for a general homophily measurement function for multivariate networks
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E.6 Similarity based diffusion model

1 s im i l a r i t y_bas ed_d i f f u s i on ← f unc t i on (g ,X,gamma,P_0, ran , non_ran ) {

2 B ← c ( 1 : vcount ( g ) )

3 i f ( ran == TRUE){ Bt i l d e ← c ( sample (B, 1) ) }

4 e l s e { Bt i l d e ← c ( non_ran ) }

5 B ← s e t d i f f (B, Bt i l d e )

6 t ← 0

7 N ← vcount ( g )

8 whi le (N != length ( Bt i l d e ) ) {

9 pr in t ( paste0 ("The time per iod i s : " , t ) )

10 pr in t ( paste0 ("The number o f i n f e c t e d nodes : " , l ength ( Bt i l d e ) ) )

11 K ← c ( )

12 t ← t + 1

13 f o r ( i in Bt i l d e ) {

14 I ← c ( )

15 N_G_I ← neighborhood (g , 1 , (V( g ) [ i ] ) ) [ [ 1 ] ]

16 f o r ( j in N_G_I) {

17 P ← r un i f ( 1 , 0 , 1 )

18 i f ( nco l (X)==1){ P i j ← P_0∗exp (gamma[ i ] ∗sum( abs (X[ i ]−X[ j ] ) ) ) }

19 e l s e { P i j ← P_0∗exp (gamma[ i ] ∗sum( abs (X[ i , ]−X[ j , ] ) ) ) }

20 i f (P < Pi j ) { I ← union ( I , j ) }

21 }

22 K ← union (K, I )

23 }

24 B ← s e t d i f f (B,K)

25 Bt i ld e ← union ( Bt i lde ,K)

26 }

27 }

Script E.11: R implementation of the similarity based diffusion model
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E.7 Simulations

E.7.1 Univariate homophily rearrangement

1 l i b r a r y ( igraph )

2 s e t . s e e d (2016)

3 g ← e rdo s . r eny i . game (1000 , 3000 , type="gnm" )

4 W← as .mat r ix ( g e t . ad j a c ency ( g ) )

5 X_1 ← sample ( c (0 , 1 ) , vcount ( g ) , r ep l a c e = TRUE)

6 X_temp_1 ← randomkick_generator (0 .5 , X_1, W)

7 g_2 ← barabas i .game (1000 , 1 , 2)

8 W_2← as .mat r ix ( g e t . ad j a c ency (g_2) )

9 X_2 ← sample ( c (0 , 1 ) , vcount (g_2) , r ep l a c e = TRUE)

10 X_temp_2 ← randomkick_generator (0 .5 , X_2, W_2)

Script E.12: R implementation of the homophily rearrangements

1 Phi ← 0 . 5

2 means ← data . f rame ( matrix (0 ,10 ,30 ) )

3 medians ← data . f rame ( matrix (0 ,10 ,30 ) )

4 f o r ( i in 1 : 10 ) {

5 Dimensions ← 10+ i

6 W← Weightgenerator ( Dimensions ) [ [ 1 ] ]

7 f o r ( j in 1 : 30 ) {

8 pr in t ( paste0 ("The number o f c e l l s i s : " , (10 + i ) ∗ (10 + i ) ) )

9 pr in t ( paste0 ("The r a t i o o f b lack c e l l s i s : " ,0 . 2+0.01 ∗ j ) )
10 Ratio ← 0 . 2 + 0 .01 ∗ j
11 X ← Valuegenerator ( Dimensions , Ratio ) [ [ 1 ] ]

12 out ← c ( )

13 f o r ( k in 1 : 200 ) {

14 pr in t ( k )

15 out [ k ] ← randomkick_generator (Phi ,X,W) [ 1 ]

16 }

17 means [ i , j ] ← mean( out )

18 medians [ i , j ] ← median ( out )

19 }

20 }

Script E.13: R implementation of the system size – feature entropy experiment
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1 dimensions ← 10

2 means ← c ( )

3 medians ← c ( )

4 W← Weightgenerator ( dimensions ) [ [ 1 ] ]

5 f o r ( i in 1 : 101 ) {

6 Phi ← (−0.51+0.01 ∗ i )
7 X ← sample ( c (0 , 1 ) ,100 , r ep l a c e=TRUE)

8 pr in t ( paste0 ("The cur rent run i s : " , Phi ) )

9 out_1 ← out_2 ← c ( )

10 f o r ( k in 1 : 200 ) {

11 pr in t ( k )

12 out_1 [ k ] ← Greedy_Generator_Function (Phi ,X,W)

13 out_2 [ k ] ← Heurist ic_Generator_Function (Phi ,X,W)

14 }

15 means_1 [ i ] ← mean( out_1 )

16 medians_1 [ i ] ← median ( out_1 )

17 d i f f s_1 [ i ] ← means_1 [ i ]−medians_1 [ i ]

18 means_2 [ i ] ← mean( out_2 )

19 medians_2 [ i ] ← median ( out_2 )

20 d i f f s_2 [ i ] ← means_2 [ i ]−medians_2 [ i ]

21 }

22 t ← (−50 : 5 0 ) /100
23 phi_dependence_greedy ← cbind ( t , means_1 , medians_1 , d i f f s_1 )

24 phi_dependence_heurist ic ← cbind ( t , means_2 , medians_2 , d i f f s_2 )

25 wr i t e . c s v ( phi_dependence_greedy , f i l e="greedy_phi_dep.csv" )

26 wr i t e . c s v ( phi_dependence_heurist ic , f i l e="heur i s t i c_phi_dep .c sv " )

Script E.14: R implementation of the target homophily expected and median solution
time experiment

XIX

C
E

U
eT

D
C

ol
le

ct
io

n



1 l i n k s ← r e ad . t a b l e ( paste0 (" addHealth83 . txt" ) , header=TRUE)

2 a t t r i b u t e s ← r e ad . t a b l e ( paste0 (" addHealth83Attr . txt" ) , header=TRUE)

3 colnames ( l i n k s ) ← c (" in " ,"out" ,"weight" )

4 colnames ( a t t r i b u t e s ) ← c ( " id " ," sex" , " race " , "grade" )

5 network ← graph .data . f rame ( l i n k s [ , 1 : 2 ] , d i r e c t ed = FALSE)

6 a t t r i b u t e s ← a t t r i b u t e s [ as .numer ic (V( network ) $name) , ]

7 Y ← a t t r i b u t e s $ sex

8 Y[Y==0] ← 1

9 Y ← Y−1
10 W← as ( g e t . ad j a c ency ( network ) ,"matrix" )

11 out ← c ( )

12 f o r ( i in 1 :1000) {

13 s e t . s e e d ( i )

14 Phi ← 0 . 5

15 X ← sample (Y)

16 pr in t ( paste0 ("The cur rent run i s : " , i ) )

17 out ← randomkick_generator (Phi ,X,W)

18 wr i t e . c s v ( out , f i l e=paste0 (" . / Heur i s t i c_gene ra t i on s /Same_more" , i , "

. c s v " ) , row.names = FALSE)

19 }

20 Concatenated ← data . f rame ( matrix (0 ,1268 ,1000) )

21 f o r ( i in 1 :1000) {

22 Concatenated [ , i ] ← r e ad . c s v ( paste0 (" . / Heur i s t i c_gene ra t i on s /

Same_more" , i , " . c s v " ) )

23 }

24 bet ← betweenness ( network )

25 coren ← co r ene s s ( network )

26 bet_out_cor ← c ( )

27 coren_out_cor ← c ( )

28 f o r ( i in 1 :1000) {

29 coren_out_cor [ i ] ← cor ( coren , Concatenated [ , i ] )

30 bet_out_cor [ i ] ← cor ( bet , Concatenated [ , i ] )

31 }

32 Outer ← data . f rame ( matrix (0 ,512 ,8 ) )

33 Outer [ , 1 ] ← dens i ty ( coren_out_cor ) $x

34 Outer [ , 2 ] ← dens i ty ( coren_out_cor ) $y

35 Outer [ , 3 ] ← dens i ty ( bet_out_cor ) $x
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36 Outer [ , 4 ] ← dens i ty ( bet_out_cor ) $y

37 Outer [ , 5 ] ← paste0 (" (" , Outer [ , 1 ] , " ," , Outer [ , 2 ] , " )" )

38 Outer [ , 6 ] ← paste0 (" (" , Outer [ , 3 ] , " ," , Outer [ , 4 ] , " )" )

39 mu_1 ← mean( coren_out_cor )

40 sigma_1 ← sd ( coren_out_cor )

41 mu_2 ← mean( bet_out_cor )

42 sigma_2 ← sd ( bet_out_cor )

43 normal_coren ← rnorm (10000 ,mu_1, sigma_1 )

44 normal_bet ← rnorm (100000 ,mu_2, sigma_2 )

45 Outer [ , 7 ] ← paste0 (" (" , d ens i ty ( normal_coren ) $x , " ," , d ens i ty (

normal_coren ) $y , " )" )

46 Outer [ , 8 ] ← paste0 (" (" , d ens i ty ( normal_bet ) $x , " ," , d ens i ty ( normal_bet )

$y , " )" )

47 wr i t e . c s v (Outer , f i l e="Kerne l s . c s v " , row.names=FALSE)

Script E.15: R implementation of the homophily rearrangement solution stability and
solution correlation experiment
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E.7.2 Multivariate homophily rearrangement

1 Rho ← c (0 .5 , 0 ,−0.5 )
2 f o r ( r in Rho) {

3 Out ← c ( )

4 f o r ( i in 1 :1000) {

5 Sigma ← matrix (1 , 2 , 2 )

6 Sigma [ 1 , 2 ] ← Sigma [ 2 , 1 ] ← r

7 mu ← c (0 , 0 )

8 X ← data . f rame (mvrnorm(n = 100 , mu, Sigma , t o l = 1e−6) )
9 W← Weightgenerator (10) [ [ 1 ] ]

10 Phi ← c (−0.5 ,−0.5 )
11 t ← randomkick_generator_multi ( Phi ,X,W)

12 Out [ i ] ← t

13 pr in t ( t )

14 }

15 wr i t e . c s v (Out , f i l e=paste0 (" . /Negative /Correlation_Test_Phi_" , Phi

[ 1 ] , "_Rho_" , r , " . c s v " ) , row.names=FALSE)

16 }

Script E.16: R implementation of the correlated features – solution time experiment
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1 merging_up ← f unc t i on ( path_to_fi les , output_name ) {

2 docs ← l i s t . f i l e s ( path_to_f i l e s )

3 proper_frame ← data . f rame ( matrix (0 ,512 ,3 ) )

4 i ← 0

5 f o r ( doc in docs ) {

6 i ← i + 1

7 proper_path ← paste0 ( path_to_fi les , doc )

8 s e r i ← r e ad . c s v ( proper_path )

9 proper_frame [ , i ] ← paste0 (" (" , d ens i ty ( s e r i $x ) $x , " ," , d ens i ty (

s e r i $x ) $y , " )" )

10 colnames ( proper_frame ) [ i ]← s t r s p l i t ( s t r s p l i t ( doc , "Test_" )

[ [ 1 ] ] [ 2 ] , " . c s v " ) [ [ 1 ] ] [ 1 ]

11 }

12 wr i t e . c s v ( proper_frame , f i l e=output_name , row.names = FALSE)

13 }

14

15 path_to_f i l e s ← " . /Negative /"

16 output_name ← "Negat iv e_Di s t r ibu t i on s . c sv "

17 merging_up ( path_to_fi les , output_name )

18

19 path_to_f i l e s ← " . / Po s i t i v e /"

20 output_name ← "Pos i t i v e_D i s t r i bu t i on s . c s v "

21 merging_up ( path_to_fi les , output_name )

Script E.17: R implementation of the correlated features – solution time data aggregation
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1 Rho ← c (−0.5 ,−0.4 ,−0.3 ,−0.2 ,−0.1 , 0 , 0 .1 , 0 .2 , 0 .3 , 0 .4 , 0 . 5 )

2 Dimensions ← c (10 ,12 ,14 ,16)

3 Means_out ←data . f rame ( matrix (0 , 4 , 11 ) )

4 Medians_out ←data . f rame ( matrix (0 , 4 , 11 ) )

5 i ← 0

6 f o r (d in Dimensions ) {

7 i ← i +1

8 j ← 0

9 f o r ( r in Rho) {

10 j ← j +1

11 Vector ← r e ad . c sv ( paste0 (" . /Size_Rho/DIM_" ,d , "_Rho_" , r , " . c s v " ) ,

s t r i ng sAsFac to r s = FALSE)

12 Means_out [ i , j ] ←mean( Vector $x )

13 Medians_out [ i , j ] ←median ( Vector $x )

14 }

15 }

16

17 Means_out ←data . f rame ( t (Means_out ) )

18 Medians_out ←data . f rame ( t (Medians_out ) )

19

20 f o r ( i in 1 : 4 ) {

21 Means_out [ , i +4] ← paste0 (" (" ,Rho , " ," ,Means_out [ , i ] , " )" )

22 Medians_out [ , i +4] ← paste0 (" (" ,Rho , " ," ,Medians_out [ , i ] , " )" )

23 }

Script E.18: R implementation of the correlated features – system size experiment
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1 Rho ← c (−0.5 , 0 , 0 . 5 )

2 Phi ← c (−0.5 , 0 . 5 )

3 f o r ( r in Rho) {

4 f o r (p in Phi ) {

5 f o r ( i in 1 :1000) {

6 pr in t ( i )

7 Sigma ← matrix (1 , 2 , 2 )

8 Sigma [ 1 , 2 ] ← Sigma [ 2 , 1 ] ← r

9 mu ← c (0 , 0 )

10 X ← data . f rame (mvrnorm(n = 100 , mu, Sigma , t o l = 1e−6) )
11 W← Weightgenerator (10) [ [ 1 ] ]

12 Phi ← c (p , p)

13 s e t . s e e d ( i )

14 Calva lues ← randomkick_generator_multi ( Phi ,X,W)

15 wr i t e . c s v ( Calvalues , f i l e = paste0 ("C: /Users /212551747/Desktop

/Divergence /" , r , "_" ,p , "/Run_Rho_" , r , "_Phi_" ,p , "_number_" , i ,

" . c s v " ) , row.names = FALSE)

16 }

17 }

18 }

Script E.19: R implementation of the correlated features and homophily experiment
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1 B ←l i s t . d i r s ( ) [ 2 : 7 ]

2 f o r ( i in 1 : 6 ) {

3 maxer ← 0

4 docs ← l i s t . f i l e s (B[ i ] )

5 f o r ( doc in docs ) {

6 DF ← r e ad . c s v ( paste0 (B[ i ] , "/" , doc ) , s t r i ng sAsFac to r s = FALSE)

7 pr in t ( nrow (DF) )

8 i f ( nrow (DF)>maxer ) {maxer ← nrow (DF) }

9 }

10 Out_DF ←data . f rame ( matrix ( as .numer ic ( s t r s p l i t (B[ i ] , "_" ) [ [ 1 ] ] [ 2 ] )

,maxer , 2000 ) )

11 j←0
12 f o r ( doc in docs ) {

13 j ← j + 1

14 DF ← r e ad . c s v ( paste0 (B[ i ] , "/" , doc ) , s t r i ng sAsFac to r s = FALSE)

15 c on t r o l ← nrow (DF)

16 m1 ← 2∗ j
17 m2 ← 2∗ j−1
18 Out_DF[ 1 : cont ro l ,m1:m2] ← DF

19 }

20 wr i t e . c s v (Out_DF, f i l e=paste0 ( s t r s p l i t (B[ i ] , " . /" ) [ [ 1 ] ] [ 2 ] , " . c s v " )

, row.names=FALSE)

21 Means ← apply (Out_DF, 1 ,mean)

22 t ← 1 : l ength (Means )

23 p lo t ( t , Means )

24 }

Script E.20: R implementation of the convergence to the target homophily experiment
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1 to_read_in ← l i s t . f i l e s ( ) [ c ( 2 , 4 , 6 , 8 , 10 , 12 ) ]

2 i ← 1

3 OUTF← data . f rame ( matrix (0 ,2000 ,7 ) )

4 OUTF[ , 1 ] ←1 :2000

5 colnames (OUTF) [ 1 ] ← "Time"

6 f o r ( doc in to_read_in ) {

7 i ← i + 1

8 DF ← r e ad . c s v ( doc , s t r i ng sAsFac to r s = FALSE)

9 Evalue ← apply (DF, 1 ,mean) [ 1 : 2 0 0 0 ]

10 OUTF[ , i ] ← paste0 (" (" ,OUTF[ , 1 ] , " ," , Evalue [ 1 : 2 0 0 0 ] , " )" )

11 colnames (OUTF) [ i ] ←paste0 (" rho" , doc , "phi" )

12 p lo t (OUTF[ , 1 ] , Evalue )

13 }

14 wr i t e . c s v (OUTF, f i l e = " . / Resu l t s / Impu l s e s . c sv " , row.names=FALSE)

Script E.21: R code to aggregate the convergence to the target homophily experiment I.
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1 to_read_in ← l i s t . f i l e s ( ) [ c ( 2 , 4 , 6 , 8 , 10 , 12 ) ]

2 i ← 1

3 OUTF← data . f rame ( matrix (0 ,2000 ,7 ) )

4 OUTF[ , 1 ] ←1 :2000

5 colnames (OUTF) [ 1 ] ← "Time"

6 f o r ( doc in to_read_in ) {

7 i ← i + 1

8 DF ← r e ad . c s v ( doc , s t r i ng sAsFac to r s = FALSE)

9 even ← ( 1 : 1000 ) ∗2
10 odd ← even −1
11 Le f t ← DF[ , c ( even ) ]

12 Right ← DF[ , c ( odd ) ]

13 Funk ← abs ( Left−Right )

14 Evalue ← apply (Funk , 1 ,mean) [ 1 : 2 0 0 0 ]

15 OUTF[ , i ] ← paste0 (" (" ,OUTF[ , 1 ] , " ," , Evalue [ 1 : 2 0 0 0 ] , " )" )

16 colnames (OUTF) [ i ] ←paste0 (" rho" , doc , "phi" )

17 p lo t (OUTF[ , 1 ] , Evalue )

18 }

19 wr i t e . c s v (OUTF, f i l e = " . / Resu l t s /Abs_Impulses.csv" , row.names=FALSE)

Script E.22: R code to aggregate the convergence to the target homophily experiment II.
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E.7.3 Similarity based diffusion

1 Phi ← c (−0.5 , 0 , 0 . 5 )

2 i ← 0

3 W← Weightgenerator (50) [ [ 1 ] ]

4 Dis ← data . f rame ( matrix (0 ,5000 ,3 ) )

5 f o r (p in Phi ) {

6 i ← i + 1

7 X ← rnorm (2500 ,0 ,1 )

8 Xhat ← randomkick_generator (p ,X,W)

9 Edges←g e t . e d g e l i s t ( g )

10 Dis [ , i ] ← abs (Xhat [ Edges [ , 1 ] ]−Xhat [ Edges [ , 2 ] ] )

11 }

12 Dis←Dis [ , 1 : 3 ]

13 wr i t e . c s v (Dis , f i l e="Di s . c s v " , row.names=FALSE)

14 Gams ← c (1 ,0 . 5 )

15 Pvalues ← c (0 .9 , 0 . 45 )

16 f o r (Gam in Gams) {

17 f o r (P_0 in Pvalues ) {

18 Dis ← r e ad . c s v ("Di s . c s v " , s t r i ng sAsFac to r s = FALSE)

19 Dis$Het ← P_0∗ exp (−Gam∗Dis [ , 1 ] )

20 Dis$Neutral ← P_0∗ exp (−Gam∗Dis [ , 2 ] )

21 Dis$Hom ← P_0∗ exp (−Gam∗Dis [ , 3 ] )

22 Out ←data . f rame ( matrix (0 ,512 ,3 ) )

23 colnames (Out) ← c ("Het" ,"Neutra l" ,"Hom" )

24 Out$Het ← paste0 (" (" , d ens i ty ( Dis $Het ) $x , " ," , d ens i ty ( Dis $Het ) $y , "

)" )

25 Out$Neutral ← paste0 (" (" , d ens i ty ( Dis $Neutra l ) $x , " ," , d ens i ty ( Dis $

Neutra l ) $y , " )" )

26 Out$Hom ← paste0 (" (" , d ens i ty ( Dis $Hom)$x , " ," , d ens i ty ( Dis $Hom)$y , "

)" )

27 wr i t e . c s v (Out , f i l e=paste0 ("Distribution_P_" ,P_0, "_Gam_" ,Gam, "

. c s v " ) , row.names = FALSE)

28 }

29 }

Script E.23: R implementation of the changing pairwise transmission probabilities
experiment
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1 s im i l a r i t y_bas ed_d i f f u s i on ← f unc t i on (g ,X,gamma,P_0, randn , non_ran ,

I d e n t i f i e r ) {

2 B ← c ( 1 : vcount ( g ) )

3 i f ( randn == TRUE) { Bt i l d e ← c ( sample (B, 1) ) } e l s e { Bt i l d e ← c (

non_ran ) }

4 i f (X[ Bt i l d e ]>0){ seede r = 1} e l s e { s e ede r=0}

5 B ← s e t d i f f (B, Bt i l d e )

6 t ← 0

7 Timeout←Yout←c ( )

8 X_inf_out←X_noninf_out←rep (1 , 1 )

9 Timeout [ t+1] ← t

10 N ← vcount ( g )

11 Yout [ t+1] ← l ength ( Bt i l d e ) /N

12 X_inf_out [ 1 ] ← t ( c (mean(X[ Bt i lde , 1 ] ) ) )

13 X_noninf_out [ 1 ] ← t ( c (mean(X[B, 1 ] ) ) )

14 whi le (N != length ( Bt i l d e ) ) {

15 pr in t ( paste0 ("The time per iod i s : " , t ) )

16 pr in t ( paste0 ("The number o f i n f e c t e d nodes : " , l ength ( Bt i l d e ) ) )

17 K ← c ( )

18 t ← t + 1

19 f o r ( i in Bt i l d e ) {

20 I ← c ( )

21 N_G_I ← neighborhood (g , 1 , (V( g ) [ i ] ) ) [ [ 1 ] ]

22 f o r ( j in N_G_I) {

23 P ← r un i f ( 1 , 0 , 1 )

24 i f ( nco l (X)==1){ P i j ← P_0∗exp (−gamma[ i ] ∗sum( abs (X[ i ]−X[ j ] ) ) )

}

25 e l s e { P i j ← P_0∗exp (−gamma[ i ] ∗sum( abs (X[ i , ]−X[ j , ] ) ) ) }

26 i f (P < Pi j ) { I ← union ( I , j ) }

27 }

28 K ← union (K, I )

29 }

30 B ← s e t d i f f (B,K)

31 Bt i ld e ← union ( Bt i lde ,K)

32 Timeout [ t+1] ← t

33 Yout [ t+1] ← l ength ( Bt i l d e ) /N

34 X_inf_out ←rbind (X_inf_out , c (mean(X[ Bt i lde , 1 ] ) ) )
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35 X_noninf_out ← rbind (X_noninf_out , c (mean(X[B, 1 ] ) ) )

36 }

37 Out ←rbind (Timeout , Yout , t (X_inf_out ) , t (X_noninf_out ) )

38 wr i t e . c s v (Out , f i l e=paste0 (" . / Resu l t s /Result" , I d e n t i f i e r , "

s e e d e r s t a t e " , seeder , " . c s v " ) , row.names = FALSE)

39 }

Script E.24: R implementation of the similarity based diffusion model used for the
experiments

1 W← Weightgenerator (10) [ [ 1 ] ]

2 g ← graph_from_adjacency_matrix (W,mode="und i rec ted " )

3 Phi ← c (−0.8 , 0 .01 , 0 . 8 )

4 f o r (ph in Phi ) {

5 f o r ( i in 1 : 100 ) {

6 s e t . s e e d ( i )

7 pr in t ( i )

8 X ← c ( cbind ( rnorm ( vcount ( g ) , 0 , 1 ) ) )

9 i f ( ph != 0 .01 ) {

10 X ←randomkick_generator (ph ,X,W)}

11 X ← cbind (X)

12 P_0 ← 0 . 8

13 randn ← TRUE

14 non_ran ← 100

15 gamma ← rep (0 .1 , vcount ( g ) )

16 I d e n t i f i e r ← paste0 ("Lattice_Spread_BaseGamma_Phi_" , ph , "Run_" , i )

17 s im i l a r i t y_bas ed_d i f f u s i on (g ,X,gamma,P_0, randn , non_ran ,

I d e n t i f i e r )

18 }

19 }

Script E.25: R implementation of the similarity based diffusion model
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1 l i b r a r y ( igraph )

2 W← Weightgenerator (10) [ [ 1 ] ]

3 g ← graph_from_adjacency_matrix (W,mode="und i rec ted " )

4 Phi ← c (−0.8 , 0 .01 , 0 . 8 )

5 P_values ← c (0 .4 , 0 .45 , 0 .5 , 0 .55 , 0 .6 , 0 .65 , 0 .7 , 0 .75 , 0 . 8 )

6 f o r (ph in Phi ) {

7 f o r (p in P_values ) {

8 f o r ( i in 1 : 200 ) {

9 s e t . s e e d ( i )

10 pr in t ( i )

11 X ← c ( cbind ( rnorm ( vcount ( g ) , 0 , 1 ) ) )

12 i f ( ph != 0 .01 ) {

13 X ←randomkick_generator (ph ,X,W)}

14 X ← cbind (X)

15 P_0 ← p

16 randn ← TRUE

17 non_ran ← 100

18 gamma ← rep (1 , vcount ( g ) )

19 I d e n t i f i e r ← paste0 ("Lattice_Spread_Pbase" ,p , "Phi_" , ph , "Run_" , i )

20 s im i l a r i t y_bas ed_d i f f u s i on (g ,X,gamma,P_0, randn , non_ran ,

I d e n t i f i e r )

21 }

22 }

23 }

Script E.26: R implementation of the changing baseline transmission probability and
diffusion time experiment
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1 l i b r a r y ( igraph )

2 W← Weightgenerator (10) [ [ 1 ] ]

3 g ← graph_from_adjacency_matrix (W,mode="und i rec ted " )

4 Phi ← c (−0.8 , 0 .01 , 0 . 8 )

5 Gammas ← c ( 1 : 8 ) /10

6 f o r (ph in Phi ) {

7 f o r (G in Gammas) {

8 f o r ( i in 1 : 200 ) {

9 s e t . s e e d ( i )

10 pr in t ( i )

11 X ← c ( cbind ( rnorm ( vcount ( g ) , 0 , 1 ) ) )

12 i f ( ph != 0 .01 ) {

13 X ←randomkick_generator (ph ,X,W)}

14 X ← cbind (X)

15 P_0 ← 0 . 5

16 randn ← TRUE

17 non_ran ← 100

18 gamma ← rep (G, vcount ( g ) )

19 I d e n t i f i e r ← paste0 ("Lattice_Spread_Gamma" ,G, "Phi_" , ph , "Run_" , i )

20 s im i l a r i t y_bas ed_d i f f u s i on (g ,X,gamma,P_0, randn , non_ran ,

I d e n t i f i e r )

21 }

22 }

23 }

Script E.27: R implementation of the changing sensitivity to dissimilarity and diffusion
time experiment
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1 s im i l a r i t y_bas ed_d i f f u s i on ← f unc t i on (g ,X,gamma,P_0, randn , non_ran ,

I d e n t i f i e r ) {

2 B ← c ( 1 : vcount ( g ) )

3 i f ( randn == TRUE) { Bt i l d e ← c ( sample (B, 1) ) } e l s e { Bt i l d e ← c (

non_ran ) }

4 i f (X[ Bt i l d e ]>0){ seede r = 1} e l s e { s e ede r=0}

5 B ← s e t d i f f (B, Bt i l d e )

6 t ← 0

7 Timeout←Yout←c ( )

8 X_inf_out←X_noninf_out←rep (1 , 1 )

9 Timeout [ t+1] ← t

10 N ← vcount ( g )

11 Yout [ t+1] ← l ength ( Bt i l d e ) /N

12 X_inf_out [ 1 ] ← t ( c (mean(X[ Bt i lde , 1 ] ) ) )

13 X_noninf_out [ 1 ] ← t ( c (mean(X[B, 1 ] ) ) )

14

15 whi le (N != length ( Bt i l d e ) ) {

16

17 pr in t ( paste0 ("The time per iod i s : " , t ) )

18 pr in t ( paste0 ("The number o f i n f e c t e d nodes : " , l ength ( Bt i l d e ) ) )

19 K ← c ( )

20 t ← t + 1

21 f o r ( i in Bt i l d e ) {

22

23 I ← c ( )

24 N_G_I ← neighborhood (g , 1 , (V( g ) [ i ] ) ) [ [ 1 ] ]

25

26 f o r ( j in N_G_I) {

27 P ← r un i f ( 1 , 0 , 1 )

28 i f ( nco l (X)==1){ P i j ← P_0∗exp (−gamma[ i ] ∗sum( abs (X[ i ]−X[ j ] ) ) )

}

29 e l s e { P i j ← P_0∗exp (−gamma[ i ] ∗sum( abs (X[ i , ]−X[ j , ] ) ) ) }

30 i f (P < Pi j ) { I ← union ( I , j ) }

31 }

32 K ← union (K, I )

33 }

34 B ← s e t d i f f (B,K)
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35 Bt i ld e ← union ( Bt i lde ,K)

36 Timeout [ t+1] ← t

37 Yout [ t+1] ← l ength ( Bt i l d e ) /N

38 X_inf_out ←rbind (X_inf_out , c (mean(X[ Bt i lde , 1 ] ) ) )

39 X_noninf_out ← rbind (X_noninf_out , c (mean(X[B, 1 ] ) ) )

40 }

41 Out ←rbind (Timeout , Yout , t (X_inf_out ) , t (X_noninf_out ) )

42 wr i t e . c s v (Out , f i l e=paste0 (" . /Binary/Homophily/Resu l t s " , I d e n t i f i e r ,

" s e e d e r s t a t e " , seeder , " . c s v " ) , row.names = FALSE)

43 }

Script E.28: R implementation of the similarity based diffusion model with discriminating
seeders

1 Phi ←c (0 .0001 , 0 . 8 )

2 m← 60

3 f o r (ph in Phi ) {

4 f o r ( i in 1 : 500 ) {

5 s e t . s e e d ( i )

6 pr in t ( i )

7 X ← sample ( c (0 , 1 ) , vcount ( g ) , prob=c (0 .7 , 0 . 3 ) , r ep l a c e = TRUE)

8 X ← cbind (X)

9 P_0 ← 0 . 5

10 randn ← TRUE

11 non_ran ← 100

12 gamma ← rep (0 .1 , vcount ( g ) )

13 gamma[X>0] ← m∗ gamma[X>0]

14 I d e n t i f i e r ← paste0 ("Lattice_Spread_BaseGamma" ,m, "Phi_" , ph , "

Run_" , i )

15 s im i l a r i t y_bas ed_d i f f u s i on (g ,X, gamma,P_0, randn , non_ran ,

I d e n t i f i e r )

16 }

17 }

Script E.29: R implementation of the discriminative seeding of diffusion experiment
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