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Introduction

Merton’s optimal investment problem is a well known problem of continuous-
time finance, which was named after Nobel laureate Robert Merton’s pioneering
work in this area. It concerns finding the optimal investment strategy for the
investor, who has only two possible objects of investment: a risk-less asset (e. g.
a savings account), paying a fixed rate of interest and a number of risky assets
(e. g. stock, real estate) whose price is assumed to follow a geometric Brownian
motion. Assume that the investor lives for a finite period of time, from present
until time T , he starts with an initial amount of money, and he wants to decide
how much of which security to hold at each time in order to maximize the final
wealth. Naturally, the investor is risk averse to a certain degree, which means
that he refrains from investing in assets which have a high risk of loosing money
even if it might have high return. The investor’s attitude to risk and individual
preferences can be characterized by the so called utility functions, this way we
do not maximize the expected return of the investment, but the expected utility,
making it possible not only to maximize the expected value of the final wealth,
but also limit the risk of losing money at the same time.

We consider a continuous-time market model, which means that the investor
can re-balance his capital at any moment before the terminal time, that is moving
capital from risk-less security to stock and vice versa, without any transaction
costs. The assets are supposed to be infinitely divisible, they can be bought or
sold in arbitrary amounts anytime. The investor has all the information about the
prices at present, but no additional information. Merton formulated and solved
the problem (1969, 1971) [3], [4], for the case where there are no transaction costs.
Using the methods of stochastic control, he derived a nonlinear partial differential
equation (the so called Hamilton-Jacobi-Bellman equation) for the value function
of the optimization problem. For some special cases of utility functions (i. e.
logarithmic and power utility), closed form of solution was found by him. For
these cases, it turns out that the optimal strategy is to keep a constant fraction
of the wealth in stocks.
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The aim of present thesis to develop better understanding of the above pre-
sented problem. It consists of three chapters, first chapter aims to give a brief
introduction, we present the financial setting, introduce a method of stochastic
control called dynamic programming which we will use later to solve the opti-
mization problem. We also present the solution of the problem for the logarithmic
utility function: this case can be treated separately due to the simpler form.

In the second chapter we obtain the theoretical results for power utility:
first we derive the optimal strategy to maximize the utility of the consumption
throughout the investment and also the final wealth for a finite time horizon,
then for an infinite time horizon we maximize the consumption only. The results
are indeed theoretical: keeping a constant fraction of the wealth in risky asset
(and therefore also a constant fraction in the risk-less one) would mean contin-
uous trading, which is not very realistic. Also, to achieve the optimal result we
made the assumption that the asset prices follow a geometric Brownian motion
with constant drift and constant volatility. Merton in his original paper already
questioned the accuracy of this assumption, however, this model is still the most
frequently used financial model.

In the third chapter we would like to check how this strategy works in practice.
We take a more general model dropping the assumption of constant drift and
check how the Merton strategy works for this case. We would like to answer the
following questions: does the expected utility decrease because of discretization?
Will an investor who wants to use a Merton-type of strategy, i.e. a constant
allocation strategy, get the same constant if we change the model a little bit? Is
it better to invest less in the risky asset as uncertainty in the drift of the modified
model grows or can an investor profit from it? If we change the model but use the
allocation strategy which is optimal in the Black-Scholes case, can we still reach
the same expected utility? We will come back to answer these questions in the
end of the thesis.
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List of Notations and Abbreviations

Wt - Brownian motion
1 - the vector (1, 1, ..., 1)>

C1,2 = {f(t, x)|f continuously differentiable in t, twice continuously differentiable in x}
Diag(V )− diagonal matrix with the entries of the vector V in the diagonal
Et,x[Y ] = E[Y |Xt = x], when it is clear which X we are talking about
Ex[Y ] = E0,x[Y ]

Dxf− the gradient of f
Dxxf− the Hessian of f
J(t, x, u)− optimization criterion
A(t, x)− admissible set
V (t, x)− value function
V (x0) = V (0, x0)
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Chapter 1

Background Theory and

Formulation of the Problem

This chapter aims to give a brief introduction, we present the financial setting,
and we introduce a method of stochastic control called dynamic programming
which we will use later to solve the optimization problem. When presenting the
basic notions of stochastic finance, we will follow [2] and [8], the part about
stochastic control theory is based on [5].

1.1 The Market Model

Let us consider a complete probability space (Ω,F ,P), with the filtration
(Ft)t∈[0,T ] satisfying the usual conditions, (i.e. F0 contains all the measure 0 sets,
and the filtration is right-continuous: Ft =

⋂
s>tFs, for all t ) and let T > 0

be a non-random terminal time. (Wt)t∈[0,T ] denotes a stochastic process called
Brownian motion.

Definition 1. A process W = (Wt)t≥0 is a P-Brownian motion (with respect
to (Ft)) if it is (Ft)-adapted and it satisfies

1. W is continuous with W0 = 0 (a.s.),

2. Wt −Ws is independent of Fs, 0 ≤ s < t,

3. For any t > 0, Wt ∼ N(0, t) under the probability measure P, 0 ≤ s < t.

A higher dimensional Brownian motion is the vector

Wt = (W 1
t , . . . ,W

n
t )>

where the W i are independent Brownian motions, all adapted to the same filtra-
tion F .
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As the model for the financial market we will use the Black-Scholes model:
suppose that the financial market consists of one bond (a riskless bank account
paying a fixed interest rate r) with prices

dBt = Btrdt, B0 = 1, that is Bt = ert,

and one stock (risky asset) with prices evolving like

dSt = St(µdt+ σdWt), S0 = s0 > 0,

with trend parameter µ ∈ R and volatility σ > 0. Using Itô’s formula, we can
derive the explicit solution of the stochastic differential equation:

St = S0 exp((µ− σ2

2
)t+ σWt).

A such kind of process is said to follow a geometric Brownian motion.
The wealth (the value of the portfolio) of the investor with initial capital x0 > 0

evolves like
dXt = NB

t dBt +NS
t dSt, X0 = x0,

where NB
t and NS

t denote the number of the bonds and stocks held by the investor
at time t. NB

t and NS
t are non-negative, but not necessarily integer.

Suppose that the wealth is always non-negative:

X(t) ≥ 0 a.s., for 0 ≤ t ≤ T.

1.2 Stochastic Control Theory

In this section we will introduce the basic notions of stochastic control theory,
following [5].

In this thesis we will consider controls of Itô processes, which satisfy stochastic
differential equations driven by Brownian motion.

The SDE
dXt = b(t,Xt)dt+ σ(t,Xt)dWt,

where W denotes the m-dimensional Brownian motion, has a unique strong so-
lution called an Itô diffusion when the drift b : [0,∞) × Rn → Rn and diffusion
coefficient σ : [0,∞)×Rn → Rn×m satisfy the following conditions for all 0 ≤ s, t

and x, y ∈ Rn

||b(s, x)− b(t, y)||+ ||σ(s, x)− σ(t, y)|| ≤ K(||y − x||+ |t− s|)

||b(t, x)||2 + ||σ(t, x)||2 ≤ K2(1 + ||x||2)

for some K positive constant.
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Definition 2. An F -progressively measurable process (ut)t∈[0,T ] with values in
some set U ⊆ Rp is called a control process. An n-dimensional process (Yt)t∈[0,T ]

controlled by ut if it is defined by

dYt = b(t, Yt, ut) + σ(t, Yt, ut)dWt, Y0 = y0,

where b : [0, T ]× Rn × U → Rn, σ : [0, T ]× Rn × U → Rn×m, (Wt)t∈[0,T ] denotes
the m-dimensional Brownian motion.

The optimization criterion is

J(t, x, u) = E
[ ∫ T

t

ψ(t,Xu
t , ut)dt+ Ψ(T,Xu

T )|Xu
t = x

]
We denote the admissible set of controls by A(t, x) and it contains all the

controls, which fulfil the following properties:

1. The control process u = (us)s∈[t,T ] is progressively measurable with values
in U and E[

∫ T
t
||us||2ds] <∞.

2. The SDE describing the controlled process has a unique strong solution
(Xs)s∈[t,T ] with Xt = x and

Et,x[ sup
t≤s≤T

||Xs||2] <∞.

3. The optimization criterion J(t, x, u) is well defined.

With the above notations our aim is to maximize the value function of the
the control problem, that is defined by

V (t, x) = sup
u∈A(t,x)

J(t, x, u)

and find the optimal value V (0, x0) as well as the optimal control strategy u∗ for
which this value is attained, that is V (0, x0) = J(0, x0, u

∗).

1.2.1 Dynamic programming

The idea of dynamic programming is to break the optimization problem down
to smaller sub-problems and use these result to get the overall optimum. In this
section we briefly describe how this method works and later we are going to use
this to solve the portfolio optimization problem. In order to be able to use dynamic
programming, the problem needs to have a specific optimal substructure. This
property is called the Bellman Principle:

V (t, x) = sup
u∈A(t,x)

Et,x
[ ∫ t1

t

ψ(s,Xu
s , us)ds+ V (t1, X

u
t1

)
]
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This principle basically states that we can isolate a part of the optimization
problem, an optimal control on an interval [t, t1] will stay optimal if at t1 we
continue optimally.

One way to solve an optimal control problem is to use the Bellman principle (it
needs to be proved that it holds). If the wealth process has sufficient smoothness
properties, we can apply Itô formula to V (t1, X

u
t1

) and put it back to the above
equation, yielding

V (t, x) = sup
u∈A(t,x)

Et,x
[ ∫ t1

t

ψ(s,Xs, us)ds+ V (t,Xt)

+

∫ t1

t

Vt(s,Xs)(DxV (s,Xs))
>b(s,Xs, us)ds

+

∫ t1

t

(DxV (s,Xs))
>σ(s,Xs, us)dWs

+
1

2

∫ t1

t

tr((DxxV (s, Vs))
>σ(s,Xs, us)σ(s,Xs, us)

>
]

The stochastic integral part
∫ t1
t

(DxV (s,Xs))
>σ(s,Xs, us)dWs is a martingale,

so its expectation is 0. Using the notation

a(s,Xs, us) = σ(s,Xs, us)σ(s,Xs, us)
>

for the diffusion matrix we obtain

V (t, x) = sup
u∈A(t,x)

Et,x
[ ∫ t1

t

ψ(s,Xs, us)ds+ V (t,Xt)

+

∫ t1

t

Vt(s,Xs)(DxV (s,Xs))
>b(s,Xs, us)ds

+
1

2

∫ t1

t

tr((DxxV (s, Vs))
>a(s,Xs, us)

]
.

Let us subtract V (t, x) from the equation and divide by (t1−t) and let t1 tend
to t. Now we have to check whether taking limit and expectation can be inter-
changed, as well as taking supremum and limit. If so, since we take conditional
expectation when Xt = x, it follows that V (t,Xt) = V (t, x). Then we get that

0 = sup
u∈U

{
Ψ(t, x, u) + Vt(t, x) + (DxV (t, x))>b(t, x, u)

+
1

2
tr((DxxV (t, x))a(t, x, u))

}
We define a differential operator (which depends on u) for C1,2 functions

Luf(t, x) = Vt(t, x) + (Dxf(t, x))>b(t, x, u) +
1

2
tr((Dxxf(t, x))a(t, x, u))

8

C
E

U
eT

D
C

ol
le

ct
io

n



and we can rewrite the above equation as

0 = sup
u∈U
{Ψ(t, x, u) + LuV (t, x)}

This equation is called Hamilton-Jacobi-Bellman equation (or HJB equa-
tion). Now we have derived a necessary condition, since we have seen that the
value function V solves the Hamilton-Jacobi-Bellman equation under certain con-
ditions.

Now we want to formulate a condition which ensures that the solution found
is indeed the value function and it provides an optimal control strategy.

Theorem 3. (Verification Theorem) Let σ satisfy the growth condition
||σ(t, x, u)||2 ≤ Cσ(1 + ||x||2 + ||u||2), and let ψ be continuous with
||ψ(t, x, u)||2 ≤ Cψ(1 + ||x||2 + ||u||2) for Cσ, Cψ positive constants for all t ∈
R+, x ∈ Rn, u ∈ U .

1. Let Φ ∈ C1,2([0, T )× Rn) be continuous on [0, T ]× R with
||Φ(t, x)|| ≤ CΦ(1 + ||x||2) for a positive constant CΦ and

sup
u∈U
{Φ(t, x, u) + LuΦ(t, x)} = 0, for t ∈ [0, T ), x ∈ Rn

Φ(T, x) = Ψ(t, x), x ∈ Rn

Then for every t ∈ [0, T ], x ∈ Rn

Φ(t, x) ≥ V (t, x).

2. If there exists a maximizer û(t, x) of the function u 7→ ψ(t, x, u) +LuΦ(t, x)

such that u∗t = û(t,X∗t ) is admissible, u∗ = (u∗t )t∈[0,T ], then Φ(t, x) = V (t, x)

for t ∈ [0, T ), x ∈ Rn and the optimal control strategy is given by u∗.

This means that V (t, x) = J(t, x, ut,x), where ut,x = (u∗s)s∈[t,T ] and X∗t denotes
the solution of the SDE describing the controlled process, for control u∗s.

Proof. Let us fix t ∈ [0, T ], x ∈ Rn and define the following hitting times

τn = min{T, inf{s > t : ||Xs −Xt|| ≥ n}},

this way we can argue for bounded processes. Using Itô formula for Xt we get

Φ(τn, Xτn) = Φ(t, x) +

∫ τn

t

LusΦ(s,Xs)ds+

∫ τn

t

Φx(s,Xs)
>σ(s,Xs, us)dWs
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Finiteness of Et,x[
∫ τn
t
||Φx(s,Xs)

>σ(s,Xs, us)||2ds follows from the continuity
of Φ and boundedness of X, therefore

Et,x
[ ∫ τn

t

Φx(s,Xs)
>σ(s,Xs, us)dWs

]
= 0.

Then

Et,x
[ ∫ τn

t

ψ(s,Xs, us)ds+ Φ(τn, Xτn)
]

= Et,x
[ ∫ τn

t

ψ(s,Xs, us)ds+ Φ(t, x) +

∫ τn

t

LusΦ(s,Xs)ds
]

= Φ(t, x) + Et,x
[ ∫ τn

t

(ψ(s,Xs, us) + LusΦ(s,Xs))ds
]

Ψ satisfies the HJB, i.e.

sup
u∈U
{Φ(s, x, u) + LuΦ(s, x)} = 0, for t ∈ [0, T ), x ∈ Rn,

therefore
(ψ(s,Xs, us) + LusΦ(s,Xs)) ≤ 0 for all s ∈ [t, T ],

yielding

Et,x
[ ∫ τn

t

ψ(s,Xs, us)ds+ Φ(τn, Xτn)
]
≤ Φ(t, x).

As n tends to infinity τn → T . Then, using dominated convergence, we get

Et,x
[ ∫ τn

t

ψ(s,Xs, us)ds+ Φ(τn, Xτn)
]
→ J(t, x, u), as n→∞,

as an integrable dominating function we can use the growth conditions on Φ and
ψ to define∣∣∣ ∫ τn

t

ψ(s,Xs, us)ds+Φ(τn, Xτn)
∣∣∣ ≤ Cψ

∫ T

t

(1+||Xs||2+||us||2)ds+CΦ(1+||XT ||2) ∈ L1.

Then we get that also
J(t, x, u) ≤ Φ(t, x),

and taking supremum in u
V (t, x) ≤ Φ(t, x).

To prove part (2.), let us observe that if we manage to find an optimizer û(t, x)

and use the strategy u∗t = (t,X∗t ), then we get equality instead of inequality, so
using similar arguments we get

V (t, x) = Φ(t, x)

10
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To sum up, to solve the optimization problem we will proceed as follows:

1. Find an optimal û for the HJB equation.

2. If we find a such û, it will depend on Vt, DxV,DxxV formally, so it will have
the form

û(t, x) = û(t, x, Vt, DxV,DxxV ).

Then we plug in the value we got for u in the HJB equation to get a partial
differential equation for V . Solving this equation for the boundary condition
V (T, x) = Ψ(T, x) we get a V ∗ which is our candidate for the value function.

3. Use the verification theorem to check that the function V we got from the
HJB and the maximizer û are indeed the value function optimal and the
optimal control strategy.

1.3 Utility Functions

In order to characterize the investor’s decisions and preferences we need the
concept of utility functions. Utility function basically expresses how satisfied the
investor is with a certain outcome of the investment, this way it is a function of
the wealth or a function of the consumption.

We assume the investor to be risk averse, meaning that he will only accept
investments which are "better than fair game", this implies strict concavity of
the utility function. The second assumption we make is that he will always prefer
more wealth to less, this can be referred to as non-satiation of the investor and
it implies that the utility function is strictly monotone increasing.

Definition 4. For a subset S ⊆ R, U : S → R is a utility function, if U is
strictly increasing, strictly concave and continuous on S.

Definition 5. For a utility function U : S → R the absolute risk aversion

coefficient is defined to be the ratio

A(x) = −U
′′(x)

U ′(x)
,

respectively the relative risk aversion coefficient is the ratio

R(x) = −xU
′′(x)

U ′(x)

11
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In this thesis we will use two different utility functions, logarithmic utility
U(x) = log(x), log denoting the natural logarithm, and power utility U(x) = xγ

γ
,

where γ ∈ R, γ < 1, γ 6= 0. In fact, the logarithmic case corresponds to γ = 0.
These two classes of functions are the so called hyperbolic absolute risk aversion
(HARA) or also referred to as constant relative risk aversion (CRRA) class.

Coming back to the portfolio optimization problem,a s control at time t we
will use the fraction ut of the total wealth which should be invested in risky assets.
Then

NB
t =

(1− ut)Xt

Bt

, NS
t =

utXt

St
then we can rewrite the wealth process in the following way

dXt = (1− ut)Xtrdt+ utXt(µdt+ σdWt)

= Xt((r + ut(µ− r))dt+ utσdWt).

1.4 First Example

In the case of logarithmic utility function we can derive the solution in a
simpler way for the case when there is no consumption, meaning that we only
want to maximize the expected utility of the final wealth, without consuming
money from the bank account throughout the investment period.

Our aim is to solve the following optimization problem:

max
u

E[U(XT )|X0 = x0]

Theorem 6. For U(x) = log x the optimal policy is

u∗t =
µ− r
σ2

, for all t ∈ [0, T ].

Proof. We need to solve the following SDE:

dXt = Xt((r + ut(µ− r))dt+ utσdWt).

To do so, guessing

Xt = x0 exp{
∫ t

0

gsds+

∫ t

0

hsdWs},

applying Itô-formula we get

dXt = Xtgtdt+XthtdWt +
1

2
Xtg

2
t dt

= Xt((gt +
1

2
h2
t )dt+ htdWt)

12
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then comparing the coefficients we get gt + 1
2
h2
t = r + (µ− r)ut, ht = σut. Thus

we get

Xt = x0 exp{
∫ t

0

(r + (µ− r)us −
1

2
σ2u2

s)ds+

∫ t

0

σusdWs}

Our aim is to maximize

E[log(Xu
T )|X0 = x0]

over all admissible control strategies in

A(x0) = {u : E
∫ t

0

(|but|+ |σut|2)dt <∞, Xu
t > 0,E[(logXT )−] <∞}.

We have that
∫
σutdWt is a martingale, thus in particular

E
[ ∫ T

0

σutdWt

]
= 0.

So for every u ∈ A(x0)

J(x0, u) = log x0 + E
[ ∫ T

0

(r + (µ− r)us −
1

2
σ2u2

s)ds
]
.

We can check that (r + (µ − r)us − 1
2
σ2u2

s) is strictly concave, by taking
derivatives

∂

∂u
((r + (µ− r)us −

1

2
σ2u2

s)) = µ− r − σ2u

∂2

∂u2
((r + (µ− r)us −

1

2
σ2u2

s)) = −σ2 < 0.

Setting µ− r − σ2u = 0 we get that the unique optimal value for ut is

u∗t =
µ− r
σ2

,

with the corresponding value function

V (0, x0) = J(0, x0, u
∗) = log(x0) + (r +

µ− r
2σ2

)T

This means that the optimal investment strategy is to keep the same, fixed
proportion of the total wealth invested in stocks, e.g. if the optimal policy ut = 0.2

then the investor should always keep 20% of the wealth is the risky asset. This
strategy is not doable in practise: it would mean constant trading. In Chapter
3. we will see how close we can get to the optimal expected utility by discrete
trading.

The simplicity of this solution is due to the fact that the SDE had an expo-
nential solution, thus taking the logarithm leads to a simple equation which we
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were able to maximize pointwise. This method would not work for another type
of utility function.

The following step would be the case, where there is not only one stock to
choose. We basically get the same result for this case, as stated below, the optimal
strategy is keeping a constant fraction of the wealth in stocks.

Let us consider n stocks with prices (St)t∈[0,T ], St = (S1
t , ..., S

n
t )>, with dy-

namics
dSt = Diag(St)(µdt+ σdWt), S0 = s0,

where si0 > 0 for I = 1, 2, ..., n, µ ∈ Rn, and σ a non-singular volatility matrix in
Rn×n. So stock i evolves like

dSit = Sit

(
µidt+

n∑
j=1

σijdW
j
t

)
, i = 1, ..., n.

As control at time t, we will take an n-dimensional process u, where uit denotes
the fraction of wealth which is invested in stock i.

The optimal solution is

u∗t = π∗ = (σσ>)−1(µ− r), t ∈ [0, T ].

14
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Chapter 2

The Main Result

Let us now assume that the investor does not only want to maximize the
expected utility of the final wealth, but also wants to make a living from the
investment and he consumes money at rate c(t) from the bank account. This way,
his objective is to maximize the expected utility of the consumption throughout
the investment period. In this chapter we will follow [5].

2.1 Utility of Consumption

We consider a similar financial market consisting of one bond with prices
evolving like

dBt = Btrdt, B0 = 1

that is Bt = ert,

and n stocks with prices

dSt = Diag(St)(µdt+ σdWt), S0 = s0,

whereW is anm-dimensional Brownian motion,m ≥ n, si0 > 0 for i = 1, ..., n, µ ∈
Rn, and σ ∈ Rn×m with maximal rank, implying that the matrix σσ> ∈ Rn×n is
not singular.So stock i evolves like

dSit = Sit

(
µidt+

m∑
j=1

σijdW
j
t

)
, i = 1, ..., n.

As controls u = (π, c) we take the vector of fractions πt = (π1
t , ..., π

n
t )>,

where πit denotes fraction of the wealth invested in stock i, and ct stands for the
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consumption rate. Then the wealth process is evolving like

dXu
t =

n∑
i=1

Xu
t π

i
tdS

i
t/S

i
t +Xu

t (1− πt)dBt/Bt − ctdt

= ((r + π>t (µ− r1))Xu
t − ct)dt+Xu

t π
>
t σsWt,

The investor assigns utility U1(ct) to the consumption rate ct and utility
U2(Xu

T ) to the wealth at terminal time T . U1 and U2 could be different, but
we will consider power utility function for both, i.e.

U(x) =
xα

α
, α < 1, α 6= 0

and a discounting factor e−βt, β ≥ 0. Thus we want to maximize

J(t, x, u) = Et,s
[ ∫ T

t

e−βtU(ct)dt+ e−βTU(Xu
T )
]
.

Theorem 7. For U(x) = xα

α
and the above presented optimization problem, the

optimal policy pair (c∗t , π
∗
t ) is

c∗t = e−
βt

1−αh(t)−1X∗t

π∗t =
1

1− α
(σσ>)−1(µ− r1)

Proof. We want to proceed using dynamic programming.
The corresponding partial differential operator is

L(π,c)v(t, x) = vt(t, x) + ((r + π>(µ− r1))x− c)vx(t, x) +
1

2
π>σσ>πx2vxx(t, x)

with the Hamilton-Jacobi-Bellman equation

sup
π,c

{
e−βt

cα

α
+ L(π,c)V (t, x)

}
= 0.

When V is increasing and concave and x positive, we get the following maxi-
mizers

c(t, x) = (eβtVx(t, x))
1

α−1

π(t, x) = −(σσtop)−1(µ− r1)
Vx(t, x)

xVxx
Putting this back to the Hamilton-Jacobi-Bellman equation, we have to solve

1− α
α

e−
βt

1−αV
α
α−1
x + Vt + rxVx −

1

2
(µ− r1)>(σσ>)−1(µ− r1)

V 2
x

Vxx
= 0

at terminal time we have boundary condition V (T, x) = e−βT x
α

α
.

Guessing
V (t, x) = h(t)1−αx

α

α
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we get h(T ) = e−
βT
1−α boundary condition at terminal time for h and

e−
βt

1−α + ch(t) + h′(t) = 0,

where
c =

α

1− α

(
r +

1

2(1− α)
(µ− r1)>(σσ>)−1(µ− r1)

)
.

This is a linear ODE and for β − (1− α)c 6= 0 it has the solution

h(t) = e−
βt

1−α e−c(T−t) +
(1− α)e−ct

β − (1− α)c

{
e−

β−(1−α)c
1−α t − e−

β−(1−α)c
1−α T

}
,

for β − (1− α)c = 0

h(t) = e−ct(1 + T − t).

It is easy to see that this solution for h takes strictly positive values for every
t. Then, since V (t, x) = h(t)1−α xα

α
, if the equation for the controlled process

(for controls c, π defined above) has a positive unique solution, then the value
function V is also positive. This means that V ∈ C1,2, furthermore, monotonicity
and concavity of V follow from the sign of the derivatives

Vx(t, x) = h(t)1−αxα−1 > 0

Vxx(t, x) = −(1− α)h(t)1−αxα−2 < 0

Substituting V (t, x) = h(t)1−α xα
α

into the equations for c and π we get

c(t, x) = e−
βt

1−αh(t)−1x

π(t, x) =
1

1− α
(σσ>)−1(µ− r1)

For the control defined by the policy pair (c∗t , π
∗
t ), where

c∗t = c(t, x) = e−
βt

1−αh(t)−1X∗t

π∗t = π(t, x) =
1

1− α
(σσ>)−1(µ− r1)

we get that the controlled process X∗t is of form

dX∗t = ((r + π>t (µ− r1))Xu
t − ct)dt+X∗t π

>
t σsWt

= X∗t ((r + π>t (µ− r1)− e−
βt

1−αh(t)−1)dt+ π>t σsWt),

so the unique strong solution for this SDE is a stochastic exponential, hence
strictly positive. To use the verification theorem we need integrability conditions,
which are satisfied because the solution is strong. Admissibility and growth con-
ditions can be checked using a a suitable set U of controls, which, being partly
difficult, is out of the scope of this thesis.

This means that the value function is indeed how we defined it and (c∗t , π
∗
t ) is

indeed the optimal control strategy.
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2.2 Discounted Utility of Consumption

We now want to maximize the the discounted utility of consumption in the
same model, that is

J(x, u) = Ex

[ ∫ ∞
0

e−βt
cαt
α
dt
]

over all admissible policy pairs u = (π, c) that control the process

dXt = ((r + π>t (µ− r1))Xt − ct)dt+Xtπ
>
t σdWt,

X0 = x.

Note that in this case we take an infinite period of time: final wealth has no
utility, we only care about the utility of consumption.

Theorem 8. For U(x) = xα

α
and the above presented optimization problem, the

optimal policy pair (c∗t , π
∗
t ) is

π∗t =
1

1− α
(σσ>)−1(µ− r1)

c∗t = A
1

α−1X∗t ,

where A =
(

α
1−α

(
β
α
− r − 1

2(1−α)
(σσ>)−1(µ− r1)>σσ>(σσ>)−1(µ− r1)

))α−1

Proof. Let β > 0, α ∈ (0, 1), initial wealth x > 0, and we also assume that
P(Xt > 0) = 1 for every t>0. The value function is

V (x) = sup
u∈A(x)

J(x, u),

and the corresponding Hamilton-Jacobi-Bellman equation reads as

sup
u∈Rn×[0,∞)

{
((r + π>(µ− r1))x− c)Vx +

1

2
π>σσ>πx2Vxx − βV +

cα

α

}
= 0.

Supposing Vx > 0 and Vxx < 0, we get the following optimum:

π = −ν Vx(x)

xVxx(x)
, where ν = (σσ>)−1(µ− r1),

and
c(x) = Vx(x)

1
α−1 .

Putting these values in the HJB equitation, we get the ODE

−1

2
ν>σσ>ν

V 2
x

Vxx
+ rxVx − βV +

1− α
α

V
α
α−1
x = 0.
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Guessing V (x) = Axα

α
for some A > 0 yields Vx(x) = Axα−1,

Vxx(x) = −(1− α)Axα−2, so we need to solve

1

2(1− α)
ν>σσ>ν + r − β

α
+

1− α
α

A
1

α−1 = 0.

for x > 0. So we need to assume that

β >
α

2(1− α)
ν>σσ>ν + αr,

because A was assumed to be strictly positive. Solving the equation for A we get

A =
( α

1− α

(β
α
− r − 1

2(1− α)
ν>σσ>ν

))α−1

.

So we get the following candidates for the optimal policy

π∗t =
1

1− α
(σσ>)−1(µ− r1)

c∗t = A
1

α−1X∗t

and the wealth process, controlled by this policy pair, is evolving like

dX∗t =
1

1− α
X∗t ((1− α)r + ν>(σσ>ν − r1)− (1− α)A

1
α−1 )dt+ ν>σdWt).

Solving the SDE gives us the unique strong solution

X∗t = X0 exp
{((

1− 1

1− α
ν>1

)
r+

1− 2α

2(1− α)2
ν>σσ>ν−A

1
α−1

)
t+

1

1− α
ν>σWt

}
.

Since X0 > 0, the solution is also strictly positive, then it follows that Vx > 0

and Vxx < 0. We want to use the verification theorem to argue that we indeed
have found the optimum. V is clearly twice continuously differentiable. The inte-
grability conditions follow from the fact that (Xt) is an L2 process.

19

C
E

U
eT

D
C

ol
le

ct
io

n



Chapter 3

Simulations

As we have already seen in the previous chapter, the best strategy for the
investor is to keep a constant fraction of the wealth in the risky asset. To achieve
this result we made the assumption that the asset prices follow a geometric Brow-
nian motion. Merton in his original paper already questioned the accuracy of the
above assumption, however, this model is still the most frequently used financial
model. In this chapter we would like to study how the Merton-strategy works if
we consider a more general market model.

3.1 Fads Models

The Fads-models were introduced by Summers [9] and Shiller [6] in the eight-
ies. These models can be considered as modified Black-Scholes models where we
do not assume that the drift is constant. For a positive constant ε let Yε be an
Ornstein-Uhlenbeck process defined by the following SDE:

dYε(t) = −1

ε
Yε(t)dt+ dW (t)

Yε(0) = 0

Ornstein-Uhlenbeck processes, and this specific one in particular, have mean
reverting property: the drift part of the process depends on the current value,
and as the white-noise term given by dW (t) draws the process around, the drift
pulls it back to the mean, 0 in this case. Plots below show that the smaller ε is,
the more the process is pulled back to 0. Above stochastic differential equation
has the explicit solution

Yε(t) =

∫ t

0

e−(t−s) 1
εdW (s).
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Figure 3.1: 5 plots of Ornstein-Uhlenbeck process for ε = 0.01

Figure 3.2: 5 plots of Ornstein-Uhlenbeck process for ε = 1

We can now introduce a modified Black-Scholes model as follows:

dS(t) = S(t)((µ+ Yε(t))dt+ σρdW (t) + σ
√

1− ρ2dB(t)),

where B(t) and W (t) are two independent Brownian motions and 0 < ρ < 1. For
ε = 0 this is exactly the original Black-Scholes model, but but ε 6= 0 it clearly
does not have constant drift.

3.2 The Simulation Model

We will use the method of discretization to simulate the solution trajectories
of the stochastic differential equations. These trajectories will be the asset prices.
Let T be fixed and let us take N discretization steps,
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0 = t0 < t1 < ... < tN = T , dt = T/N . We know the analytic solution of SDEs
describing both the geometric Brownian motion Xt and Ornstein-Uhlenbeck Yt,
so these processes can be modeled as follows:

Xt = X0 exp((µ− σ2

2
)t+ σW1(t))

yielding the discretized version:

X(tn) = X0(exp(
n−1∑
j=0

(µ− 1

2
σ2)dt+ σ

√
dtZ1(j))).

Yε,t =

∫ t

0

e−(t−s) 1
εdB(s),

Yε(tn) = e
−tn
ε

n−1∑
j=1

e
tj
ε

√
dtZ2(j)

Figure 3.3: 20 plots of geometric Brownian motion for parameters µ = 0.12, σ =

0.4, X0 = 100 with T = 1 and 200 discretization steps

For the solution trajectories of the Fads model we have:

dS(t) = S(t)((µ+ Yε(t))dt+ σρdW (t) + σ
√

1− ρ2dB(t)),

which can be simulated by discretization as follows:

S(tn+1) = S(tn)(µ+ Yε(t))dt+ σρ
√
dtZ3(n) + σ

√
1− ρ2

√
dtZ2(n),
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whereW1,W an B are independent Brownian motions, thus Z1, Z2, Z3 are vectors
of independent N(0, 1) random variables. Once the asset prices are simulated, we
can get the wealth process for a trading strategy.

3.3 Finding the Best Constant Allocation Strat-

egy

In this section we study which is the best constant allocation strategy for the
Fads-model for different values of ε. The ratio of the wealth invested in stock is
a value between 0 and 1, so we take a mesh of the [0, 1] interval and compute the
expected utility of final wealth using this constant trading strategy.

This case resembles an investor, who is aware of the fact that the market is
not a Black-Scholes market, still he wants to use a Merton-type of strategy, i.e.
a constant allocation strategy.

3.3.1 Logarithmic utility

The following table contains the simulation results for logarithmic utility, ini-
tial capital V0 = 500, initial stock price S0 = 100, ρ = 0.3, MR and OV being the
theoretically obtained Merton-ratio and optimal value, Sim. MR and Sim. OV re-
spectively the values obtained by simulation. For these results we took N = 1000

discretization steps (this means also re-balancing the wealth 1000 times) and
M = 1000000 trajectories of each process.

Model µ σ r ε MR Sim. MR OV Sim OV

BS 0.12 0.4 0.07 - 0.3125 0.312 6.4409 6.2923

Fads 0.12 0.4 0.07 0.01 - 0.308 - 6.2921

Fads 0.12 0.4 0.07 0.1 - 0.307 - 6.2921

Fads 0.12 0.4 0.07 1 - 0.305 - 6.2920

BS 0.5 1 0.1 - 0.4 0.4 6.5146 6.3952

Fads 0.5 1 0.1 0.01 - 0.4 - 6.3944

Fads 0.5 1 0.1 0.1 - 0.399 - 6.3939

Fads 0.5 1 0.1 1 - 0.397 - 6.3935

From the first row we can see that that in the case of Black-Scholes model, we
get back the Merton-ratio we obtained theoretically, but the simulated expected
utility of the final wealth will always be a lower estimation of the true optimal
value, since continuous trading is not possible.
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Now looking at the constants we got for the best allocation strategies, we can
see that it slightly decreases as ε grows (we can also think of the Black-Scholes
case as the Fads-model with ε = 0). The interpretation for this phenomenon
would be that, although an investor with logarithmic utility function is not very
risk-averse, as the uncertainty in the drift grows, he will invest less and less in
the risky asset in order to control the downside risk.

3.3.2 Power utility

The following table contains the simulation results for power utility function,
with exponent γ, initial capital V0 = 500, initial stock price S0 = 100, ρ = 0.3,
MR and OV being the theoretically obtained Merton-ratio and optimal value,
Sim. MR and Sim. OV respectively the values obtained by simulation. For these
results we took N = 1000 discretization steps (this means also re-balancing the
wealth 1000 times) and M = 1000000 trajectories of each process.

Model µ σ r γ ε MR Sim. MR OV Sim OV

BS 0.12 0.4 0.07 0.1 - 0.3472 0.347 18.7098 18.7635

Fads 0.12 0.4 0.07 0.1 0.01 - 0.347 - 18.7632

Fads 0.12 0.4 0.07 0.1 0.1 - 0.411 - 18.7637

Fads 0.12 0.4 0.07 0.1 1 - 0.411 - 18.7658

BS 0.12 0.4 0.07 0.5 - 0.6250 0.625 46.7798 46.6767

Fads 0.12 0.4 0.07 0.5 0.01 - 0.632 - 47.4220

Fads 0.12 0.4 0.07 0.5 0.1 - 1 - 48.0235

Fads 0.12 0.4 0.07 0.5 1 - 1 - 48.0235

BS 0.5 1 0.1 0.1 - 0.444 0.444 18.8768 18.9706

Fads 0.5 1 0.1 0.1 0.01 - 0.444 - 18.9696

Fads 0.5 1 0.1 0.1 0.1 - 0.461 - 18.9702

Fads 0.5 1 0.1 0.1 1 - 0.461 - 18.9759

We can see that in all of the above cases it is better for the investor to invest
more in the risky asset as uncertainty in the drift grows. Not only the Merton-ratio
grows, but we can see a significant growth in the expected utility as well.

Note that these investors are even less risk averse than the previous one, e.g.
while the investor using logarithmic utility function invest 30% of the wealth in
the risky asset for the parameters µ = 0.12, σ = 0.4, r = 0.07, ε = 1, the investor
using power utility function with parameter γ = 0.5 will keep all his money in
the risky asset. The relative risk aversion of an investor using logarithmic utility
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is 1, while for the γ-power utility it is 1− γ, that is 0.5 for this case.

3.4 Merton-strategy for the Modified Model

In this section we take a look at how the optimal strategy obtained by using
the Black-Scholes model works for the generalized model.

This case resembles an investor who wants to use the Merton-strategy al-
though he knows that the Black-Scholes model is not accurate.

3.4.1 Logarithmic utility

Table below contains the theoretically obtained values for the Merton ratio
(MR) and expected utility (OV - optimal value) of this trading strategy in the
case of Black-Scholes model and logarithmic utility function, and the expected
utility (OV) given by the same trading strategy for the modified model. For these
results we took N = 1000 discretization steps, M = 1000000, the initial wealth
is 500, the initial stock price S0 = 100.

The expected utility of the final wealth for the Black-Scholes model denoted
by OV, and respectively the optimal policy (MR) are calculated by the formulas:

E[log(XT )] = log(V0) + (r +
µ− r
2σ2

)

u∗t =
µ− r
σ2

Model µ σ r ε ρ MR OV Sim OV

BS 0.12 0.4 0.07 - - 0.3125 6.4409 6.2923

Fads 0.12 0.4 0.07 0.01 0.3 - - 6.292

Fads 0.12 0.4 0.07 0.1 0.3 - - 6.2922

Fads 0.12 0.4 0.07 1 0.3 - - 6.2923

BS 0.5 1 0.1 - - 0.4 6.5146 6.3952

Fads 0.5 1 0.1 0.01 0.3 - - 6.3943

Fads 0.5 1 0.1 0.1 0.3 - - 6.3938

Fads 0.5 1 0.1 1 0.3 - - 6.3935

We have already seen in the previous section that the best constant allocation
strategy for the logarithmic utility does not always agree with the Merton-ratio,
and we could not get bigger expected utility for any constant allocation strategy
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in the case of Fads-models than what we got for the Black-Sholes model, using the
Merton-ratio. According to this, the Merton-ratio for the modified model gives
slightly worse expected utility for the final wealth than in the Black-Scholes case.

3.4.2 Power utility

Table below contains the theoretically obtained values for the Merton ratio
(MR) and expected utility (OV - optimal value) of this trading strategy in the
case of Black-Scholes model and power utility function with exponent γ, and the
expected utility (OV) of the final wealth, given by the same trading strategy for
the modified model. For these results we took N = 1000 discretization steps,
M = 1000000, µ denotes the drift, σ the volatility of the processes, r = 0, the
initial wealth is set to be 500 and the initial stock price S0 = 100.

The expected utility of the final wealth for the Black-Scholes model denoted
by OV, and respectively the optimal policy (MR) are calculated by the formulas:

E
[Xγ

T

γ

]
=
V γ

0

γ
exp

( µ2γ

2σ2(1− γ)

)
u∗t =

µ

σ2(1− γ)

Model µ σ ε γ MR OV Sim. OV

BS 0.12 0.4 - 0.1 0.8333 18.7098 18.6166

Fads 0.12 0.4 0.01 0.1 - - 18.7091

Fads 0.12 0.4 1 0.1 - - 18.7103

Fads 0.12 0.4 100 0.1 - - 18.7204

BS 0.12 0.4 - 0.01 0.7576 106.4602 106.4585

Fads 0.12 0.4 0.01 0.01 - - 106.4591

Fads 0.12 0.4 0.1 0.01 - - 106.4597

Fads 0.12 0.4 1 0.01 - - 106.4601

BS 0.3 1 - 0.5 0.6 46.7798 46.2725

Fads 0.3 1 0.01 0.5 - - 46.2643

Fads 0.3 1 0.1 0.5 - - 46.2882

Fads 0.3 1 1 0.5 - - 47.5763

BS 0.3 1 - 0.1 0.3333 18.7098 18.6919

Fads 0.3 1 0.01 0.1 - - 18.7082

Fads 0.3 1 0.1 0.1 - - 18.7102

Fads 0.3 1 1 0.1 - - 18.7143
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Looking at the results we can see that for γ = 0.01, when we are "very close"
to the case of logarithmic utility, the expected utility of the final wealth decreases
as we modify the model, but for the less risk-averse investors, for γ = 0.1 and
γ = 0.5, the investor can actually profit from the uncertainty in the drift and get
even better expected utility.
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Conclusion and Further Extensions

In this thesis we studied Merton’s classical portfolio problem. First we derived
theoretically the optimal allocation strategy using the methods of stochastic con-
trol theory, then we tested this result in practice in discrete time simulation
scenario. The answers for the questions formulated in the introduction would be:

• Does discretization decrease the expected utility of the final wealth?
Yes it does. The maximal value obtained theoretically requires continuous
trading, a discrete approximation of continuous trading leads to a lower
estimate for the utility.

• Will an investor who wants to use a Merton-type of strategy, i.e. a constant
allocation strategy, get the same constant if we change the model a little
bit?
For the case when we modified the model just a little bit (i.e. ε = 0.01

in the Fads model), we got the same/almost the same constant allocation
strategy as in the Black-Scholes model.

• Is it better to invest less in the risky asset as uncertainty in the drift of the
modified model grows or can an investor profit from it?
It is also up to the risk aversion of the investor: we have seen that the in-
vestor using logarithmic utility function is more careful: is this case is better
to slightly decrease the amount of money invested in the risky asset, how-
ever, less risk-averse investors can get higher expected utility by investing
more in stock.

• If we change the model but use the allocation strategy which is optimal in
the Black-Scholes case, can we still reach the same expected utility?
We can reach it or at least we can get close to it. In the logarithmic case, we
cannot reach it, however, since the optimal constant allocation strategy for
the modified model is very close to the Merton-ratio, the expected utility
almost agrees. For the power-utility, we can reach the same expected utility,
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but in this case we have seen, that even higher expected utility is possible
using another constant allocation strategy.

There are several ways how this problem can be generalized for further study
and research:

• Non-random/random income can be added.

• Transaction costs can be added (e.g. proportional or small fixed transaction
costs) [1].

• Other types of utility function can be used.

• A more general market model can be used (e.g. stochastic variance, stochas-
tic drift).

• Bankruptcy can be treated [7].
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Appendix

MATLAB code

func t i on BlackScho les = BlackScho les (N,M,mu, sigma ,T, S0 )
%Construct ion o f Black−Scho l e s t r a j e c t o r i e s
%N d i s c r e t i z a t i o n steps , M t r a j e c t o r i e s , mu d r i f t ,
%sigma v o l a t i l i t y , T time horizon , S0 i n i t i a l wealth
dt = T/N;
z = randn (N,M) ;
BS = (mu−0.5∗ sigma^2)∗dt+sigma∗ s q r t ( dt )∗ z ;
BS = S0∗exp (cumsum(BS ) ) ;
BlackScho les = [ S0∗ones (1 ,M) ;BS ] ;

end

func t i on Fads = Fads (N,M, eps i l on , sigma ,mu, ro ,T, S0 )
%Construct ion o f Fads t r a j e c t o r i e s
%N d i s c r e t i z a t i o n steps , M t r a j e c t o r i e s , mu d r i f t ,
%sigma v o l a t i l i t y , T time horizon , S0 i n i t i a l wealth
%ep s i l o n constant f o r the O−U proce s s
%ro c o r r e l a t i o n o f Brownian motions

%s imu la t i on o f O−U proce s s
dt = T/N;
t = 0 : dt :T;
w1 = randn (N,M) ;
w2 = randn (N,M) ;
c = exp(−1/ ep s i l o n .∗ t ) ;
OU = ze ro s (N+1,M) ;
f o r m = 1 :M

OU( : ,m) = diag ( c )∗cumsum( diag ( exp (1/ ep s i l o n ∗ t ) )∗
[ 0 ; s q r t ( dt )∗w1 ( : ,m) ] ) ;
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end

%s imu la t i on o f FADS model
St = ze ro s (N+1,M) ;
St ( 1 , : ) = S0∗ones (M, 1 ) ;
f o r m = 1 :M

f o r n = 1 :N
St (n+1,m) = St (n ,m) + St (n ,m)∗ ( (mu+OU(n ,m))∗ dt+
sigma∗ ro∗ s q r t ( dt )∗w1(n ,m)+sigma∗ s q r t (1− ro ^2)∗
s q r t ( dt )∗w2(n ,m) ) ;

end
end
Fads = St ;

end

func t i on mert = mert (S ,mr ,V0 ,N, t , r )
%re tu rn s the f i n a l wealth , when the s tock p r i c e s
%f o l l ow the proce s s S , mr Merton ra t i o ,
%r i n t e r e s t rate , V0 i n i t i a l wealth
B = exp ( r .∗ t ) ; %value o f bond at time t
%(1−mr)∗V0 wealth in bond at 0 ,
%mr∗V0 wealth in s tock at time 0
NB = (1−mr)∗V0/B( 1 ) . ∗ ones (1 ,N+1);
%i n i t number o f bonds he ld at i
NS = mr∗V0/S ( 1 ) . ∗ ones (1 ,N+1);
%i n i t number o f s t o ck s he ld at i
f o r i = 1 :N

wealth = NB( i )∗B( i+1)+NS( i )∗S( i +1);
%t o t a l wealth ar time i+1
NB( i +1) = (1−mr)∗wealth /B( i +1);
%reba l anc ing
NS( i +1) = mr∗wealth /S( i +1);
%reba l anc ing

end
mert = NB(N)∗B(N)+NS(N)∗S(N) ;

end
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f unc t i on [ ov , op ] = tv l og (mu, sigma , r ,V0)
%Ca l cu la t ing the t rue maximal expected u t i l i t y ( ov )
%and the Merton−r a t i o ( op ) f o r l og u t i l i t y
beta = (mu − r )/ sigma ;
op = beta / sigma ;
ov = log (V0)+( r + (mu − r )/(2∗ sigma ^2) ) ;

end

func t i on [ ov , op ] = tvpow (mu, sigma , r ,V0 , alpha )
%True va lue s f o r the maximal expected u t i l i t y ( ov )
%and Merton−r a t i o ( op ) f o r power u t i l i t y
op = (mu−r ) / ( ( 1 − alpha )∗ sigma ^2) ;
cons = mu^2∗alpha /(2∗ sigma^2∗(1−alpha ) ) ;
ov = ( (V0^alpha )/ alpha )∗ exp ( cons ) ;

end

func t i on ExpUtLog = ExpUtLog(S ,mu, sigma ,M,N,V0 , t , r )
%Computing the expected u t i l i t y o f f i n a l wealth us ing
%the s t r a t e gy given by the Metron−r a t i o ach ieved
%t h e o r e t i c a l l y f o r the FADS−model f o r l og u t i l i t y
[ ov , op ] = tv log (mu, sigma , r ,V0 ) ;
f o r m = 1 :M

x(m) = mert (S ( : ,m) , op ,V0 ,N, t , r ) ;
end
ExpUtLog = mean( log (x ) ) ;

end

func t i on ExpUtPow = ExpUtPow(S ,mu, sigma ,M,N,V0 , t , r , alpha )
%Computing the expected u t i l i t y o f f i n a l wealth us ing
%the s t r a t e gy given by the Metron−r a t i o ach ieved
%t h e o r e t i c a l l y f o r the FADS−model f o r power u t i l i t y
[ ov , op ] = tvpow (mu, sigma , r ,V0 , alpha ) ;
f o r m = 1 :M

x(m) = mert (S ( : ,m) , op ,V0 ,N, t , r ) ;
end
ExpUtPow = mean ( ( x .^ alpha )/ alpha ) ;

end
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f unc t i on [ val , opt ] = OptConstLog (S ,N,M,V0 , t , r )
%Finds the optimal constant a l l o c a t i o n s t r a t e gy
%S stock p r i c e t r a j e c t o r i e s , N d i s c r e t i z a t i o n steps , M
%t r a j e c t o r i e s s imulated , V0 i n i t i a l wealth , t time , r
%i n t e r e s t r a t e
ut = ze ro s ( 1000 , 1 ) ;
f o r i = 1:1000

x = ze ro s (M, 1 ) ;
f o r m = 1 :M

x(m) = mert (S ( : ,m) , i /1000 ,V0 ,N, t , r ) ;
end
ut ( i ) = mean( log (x ) ) ;

end
[ val , opt ] = max( ut ) ;

end

func t i on [ val , opt ] = OptConstPow(S ,N,M,V0 , t , r , alpha )
%Finds the optimal constant a l l o c a t i o n s t r a t e gy and
%the optimal va lue
%S stock p r i c e t r a j e c t o r i e s , N d i s c r e t i z a t i o n steps ,
%M t r a j e c t o r i e s s imulated , V0 i n i t i a l wealth , t time ,
%r i n t e r e s t r a t e

ut = ze ro s ( 1000 , 1 ) ;
f o r i = 1:1000
x = ze ro s (M, 1 ) ;
f o r m = 1 :M

x(m) = mert (S ( : ,m) , i /1000 ,V0 ,N, t , r ) ;
end

ut ( i ) = mean ( ( x .^ alpha )/ alpha ) ;
end
[ val , opt ] = max( ut ) ;

end
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