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Abstract

Recent advances in information technology have been constantly bringing down
the barriers of collecting and managing data sets with sizes and representativeness
unimaginable before. These data sets are typically arranged in the forms of panels,
comprising tens of thousands, perhaps millions of entities, observed over a long
time span. The new ways of data management, the comprehensive registry of trans-
actions and other activities, and the attempts at the international harmonization of
the data lead to the massive presence and direct accessibility of multi-dimensional
panels.

The econometrics of standard, two-dimensional panel data is well-developed: it
has been the subject of practically limitless research in the past fifty-sixty years.
As much as efforts devoted to two-dimensional panels are admirable, multi-dimen-
sional panels challenge analysts in several new ways. First, two-way models and
toolsets are usually insufficient to fully describe and address problems in this three-
dimensional context, where the unobserved heterogeneity can take on several new
and interesting forms. Second, various new or existent, but increasingly present,
data-related issues emerge, like feasibility of the estimators due to the sheer size of
the data, incompleteness of observations, variable index deficiencies, or the large
number of economically feasible model specifications.

Despite the massive presence of multi-dimensional data sets, the econometrics
of three-dimensional panels remains grossly underdeveloped. Luckily, an increas-
ing number of econometricians understand its importance, and aid empiricists with
menus of modelling techniques and estimators capable of extracting the excess in-
formation embedded in the data. This thesis contributes to the literature by collect-
ing several appealing model formulations, fixed effects, random effects and varying
coefficients models, and proposing suitable estimation techniques. The comprehen-
siveness of the results lies in the diversity of issues discussed (both theoretical and
data-related), and the fact that most techniques are feasible in practice and so have
a strong potential for empirical use.

vi

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2017.05

Chapter 1: The Estimation of Multi-dimensional Fixed Effects Panel Data
Models

Sections 1.2–1.6 are joint works with Laszlo Matyas and Tom Wansbeek, Sections
1.7 and 1.8 are solely my own.

The first chapter of the thesis formulates the excess heterogeneity in the data with
fixed, observable parameters. Several such three-dimensional fixed effects models
are collected from the literature, all of which correspond to empirically relevant
cases. The models are estimated with Least Squares Dummy Variable (LSDV) es-
timator. In order to prevent the joint estimation of possibly (hundreds of) thousands
of parameters, the estimators are also expressed separately for each model param-
eter. It is also shown that the so-called Within estimator, which first wipes out the
fixed effect parameters with a linear transformation, then performs a Least Squares
on the transformed model, is numerically equivalent to the LSDV. The Within es-
timator reaches estimates at no costs, as long as the data at hand is complete. Typ-
ically, however, the data contains “holes”. It is discussed how the Within estimator
alleviates the dimensionality issue (the high cost of the estimation) completely,
for structured incompleteness (like the no self-flow phenomenon), and partially,
when it comes to handling incompleteness in general. This chapter also contributes
to the literature by considering dynamic autoregressive specifications with fixed
effects, first, by showing how the presence of various lags of the dependent vari-
able violates the consistency of the Within estimator, then, by proposing Arellano-
Bond-type instrumental variable estimators to correct for the arising inconsistency.
Somewhat surprisingly, not all three-way model specifications carry this asymp-
totic bias. Eventual heteroscedasticity and the cross-correlation of the disturbance
terms are also accounted for by proposing appropriate Feasible Generalized Least
Squares (FGLS) estimators. The chapter ends with a generalization to four- and
higher-dimensional fixed effect models, and intuitively argues that the results of
the study can easily be generalized to any fixed effects specifications in any dimen-
sions.

Chapter 2: Modelling Multi-dimensional Panel Data: A Random Effects Ap-
proach

Sections 2.2–2.4 are joint works with Badi H. Baltagi, Laszlo Matyas and Daria
Pus, Sections 2.5 and 2.6.2–2.6.3 are joint works with Mark N. Harris, Felix Chan
and Maurice Bun, Sections 2.6.1 and 2.7 are solely my own.

The second chapter of the thesis proposes several random effects model specifi-
cations. The chapter first assumes that the strict exogeneity assumption holds for
the regressors, and derives optimal (F)GLS estimators for all models accordingly,
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discussing the estimation processes in depth. This is utterly important, as with the
proposed methods the performed spectral decompositions and variance compo-
nents estimations, needed for feasibility reasons and to complete the estimation
process, can be easily generalized to any random effects model specification in
any dimension. As the data can now grow in not only two, but three dimensions at
the same time, it is crucial to collect the exact properties under which the FGLS
estimator is consistent. Some of the consistency properties also carry a conver-
gence property, which means that the FGLS estimator of a model converges to that
model’s specific Within estimator. For some models, consistency even implies con-
vergence. While this phenomenon by itself does not violate the feasibility of the
estimators or their properties, the parameters of some fixed regressors – just like
in case of fixed effects models – become unidentified, rendering the estimation of
such parameters impossible. Apart from this identification problem, inconsistency
in many of the several semi-asymptotic cases persists. To correct for this, so-called
mixed models are proposed, combining both fixed and random components. One
of the main reasons why random effects lag behind in popularity, is that the strict
exogeneity assumption is hard to fulfill. The chapter also considers the case of en-
dogenous regressors, and proposes Hausman-Taylor IV estimators to reach a full
set of parameter estimates. The main results of the chapter are also extended to
higher dimensions and to incomplete data, to argue for their wide applicability and
easy generalizability. Finally, some basic insights on testing for random effects
model specifications, for exogeneity, and for instrument validity are considered.

Chapter 3: The Estimation of Varying Coefficients Multi-dimensional Panel
Data Models

The third chapter of the thesis considers several new varying coefficients models,
and derives appropriate Least Squares estimators for them. The varying slope co-
efficients are assumed to be fixed, rather than random, and the slope parameters
are assumed to comprise a universal part, common for all entities and time periods,
as well as a varying component, which can be individual and/or time specific. In
order to disentangle these two effects in these under-identified models, some pa-
rameter restrictions are to be assumed. As it turns out, the Least Squares estimation
of the restricted model is simple theoretically, but cumbersome in practice due to
the many complex functional forms and large matrices to work with. Further, as
alternative parameter restrictions mean the full repetition of the calculation, alter-
native solutions are proposed. Luckily, the so-called Least Squares of incomplete
rank, on the other hand, is easy to implement even in practice, and derives the part
of the estimator which is model-specific before arriving at the restriction. In this
way, the flexible exchange of various parameter restrictions is guaranteed. Some
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insights on the identification issues, and on the interpretation of models with vari-
ables with index deficits are considered, as well as some preliminary results on
varying coefficient autoregressive models. Mixed coefficients models, having both
fixed and random coefficients, are also briefly visited, and some of their estimation
issues considered.

Chapter 4: Empirical Applications for Multi-dimensional Panels

Section 4.3 is joint work with Janos Kollo and Istvan Boza, Sections 4.1–4.2 are
solely my own.

The fourth chapter of the thesis merges two distinct empirical studies employed
on three-way data: an international trade application, “Regularities of Panel Esti-
mators: A Trade Application”, and a study on wage returns, “Contemporaneous
and Lagged Wage Returns to Foreign-Firm Experience – Evidence from Linked
Employer-Employee Data”. The former contributes to the literature by (i) compar-
ing several fixed and random effects estimators, reflecting the typical estimation
issues and some further regularities detailed in Chapters 1 and 2; (ii) by consider-
ing a new data set and taking into account data related issues, such as incomplete-
ness, improving the results of several earlier papers which measured the effect of
trade membership on real trade activity. The second study falls in line with several
international studies capturing the (contemporaneous and lagged) wage returns of
foreign experience on workers and on their colleagues. Foreign capital in emerg-
ing economies is subject to many criticisms, such as displacing local businesses,
expatriating profits, or reducing tax liabilities. It is not clear, however, to what ex-
tent the domestic market gains from FDI. Apart from the fact that foreign wages
are spent in the host country, and that domestic firms can imitate foreign-owned
enterprises, workers of foreign-owned firms are usually more productive and are
paid higher (contemporaneous effects). This wage premium can then be preserved
when the worker re-enters the domestic market (lagged effect). Further, the pres-
ence of the accumulated knowledge of ex-foreign workers can also raise the pro-
ductivity of their colleagues with no foreign experience (spillover effect). These
advantages of FDI may in fact outweigh its losses. To elaborate on these ideas,
several, mostly fixed effects models are formulated and regressed on a matched
employer-employee data set covering half of the Hungarian working-age popula-
tion.
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Introduction

In the last decade or so, we have experienced a data revolution of unbelievable size
and scale. The rapid explosion of information technology – and its effects on com-
puter performance and computational limits – opened the way to easily storing,
collecting, and managing data sets with thousands of variables, and (possibly sev-
eral) millions of observations. Users of both cross-sectional and time-series data
have gained from the increased size through several channels, including the rep-
resentativeness of the data, the higher precision of the estimates, or the use of a
larger subset of the observations for testing for the validity of model assumptions.
None of the improvements on the two data types, however, can be compared to the
fundamental developments on panel data.

From traditional two-way panels, forming clusters on individuals as an augmen-
tation of the individual index, or collecting data involving new indices, three- and
higher-dimensional panels emerge. We see several good examples for such data,
e.g., linked employer-employee panels of nearly all advanced economies, world
trade datasets (which can also embrace industry- or even product levels), the EU
KLEMS industry level data, data on academic research performance, and many
others.

Two dimensional (2D) models are not always suitable to describe phenomena
based on multi-dimensional data. Although by defining pairs of individuals with
a composite, single index, any two-dimensional model can be casted in the three-
dimensional context, such models are unable to fully deplete the true richness in
three-dimensional panels. This is so, as the underlying excessive heterogeneity of
the data now takes on several complex forms impossible to be represented by mod-
els formed on 2D data. In order to successfully deal with such multi-dimensional
heterogeneity, new multi-dimensional models, together with new, or adjusted es-
timation techniques should be constructed. Model building and estimation under
three- or higher-way panel data are subject, however, to four key difficulties in
general, which I refer to as the four regularities of multi-dimensional panels.
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First, the number of possible model specifications increases dramatically. Let’s
consider fixed effects models for the moment. Unlike with two-way models, the
decision is not whether to include time effects or individual effects (maybe both),
but which fixed effect(s) to include from the many. As an illustration for the com-
plexity of the problem, three-way data allows 63, while four-way data 16 383 fixed
effects model specifications (as opposed to 3 in case of two-way panels). Although
it comes as no surprise that the majority of model formulations is hardly useful
economically, the remaining number of empirically relevant specifications is still
high, further, it grows exponentially with the dimensions.

Second, the size of the data can make some estimators unfeasible for practical
use. While the mere (stored) size of the data is rarely of any concern (hard disc
spaces are usually well beyond raw data sizes), several calculations involve oper-
ations (e.g., multiplication, inversion) with matrices of extreme orders. If this is
the case, the derived estimators are of no practical use, and the efforts put into the
derivations of the methods are wasted.

Third, the covariates are likely to suffer from index deficits. This phenomenon is
also present for variables on 2D data, fixed over time or entities, like age, gender,
and educational attainment for individuals. Index deficiency, however, is incompa-
rably more significant for variables on three-way data, where it is not uncommon to
exclusively have such variables, which show no variation in some of the three (or
higher) dimensions. While this deficiency of the variables seems harmless, it can
lead to possibly severe identification issues, or, in worst cases, may even invalidate
the model specification.

Lastly, but not less importantly, multi-dimensional data is almost exclusively of
an incomplete nature. Incompleteness can be the consequence of, for example, data
unavailability, non-reporting, or individuals dropping out of the sample for various
reasons, but can also be in the data by construction. One of the leading examples
for such “unbalancedness by construction” corresponds to flow-type data, where
self-flows are naturally unobserved, and so are left out of the data set. While in-
completeness does not affect some estimators, techniques assuming complete data
become biased and inconsistent in general, upon using on incomplete data.

When it comes to modelling on multi-dimensional panels, it is crucial to con-
stantly keep track of the above four regularities, in order not to reduce the value of
the results. Each chapter of this thesis recognizes these problems: the regularities
together with suggested solutions are discussed thoroughly.

In contrast with data constructed by the researcher, panel data for economics use
(and in general, data in social sciences) are usually less transparent, the data gener-
ating processes (DGPs) are harder to identify or detect. Nerlove et al. (2008) argue
that in such cases forming estimators and constructing parameter tests are only
one part of the job: identifying and learning about the DGP is not less important.
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Essential knowledge on how the data was generated should be part of the model
specification. Do I observe all trade flows between countries, or just the ones being
non-zero? Can it be that small trade flows are uniformly non-reported or consid-
ered zero? Do I have a pool of firms coming from random sampling, representative
enough for the universe of Hungarian companies, or are they selective in one way
or another? What about the individuals in the sample? Can I consider them as ran-
dom draws from a large population, or should they be addressed as fixed entities,
like with states or countries? In case of an employer-employee matched panel, it is
usually reasonable to assume that workers or firms are drawn randomly: exchang-
ing two will not alter the distribution of the observables, unlike with time, where
periods can not be switched without consequences. In any such scenarios, individ-
ual effects should be considered random, while time effects should be thought of
as fixed. In typical applications (perhaps heavy) a priori assumptions have to be
made on the DGP, whose validity in turn can be assessed with testing.

The most direct way to capture the relationship between left hand side and right
hand side variables is done with linear econometric models, which this thesis ex-
clusively focuses on. Fixed effects models are dealt with in Chapter 1, where the
unobserved heterogeneity is represented by different intercept parameters for dif-
ferent entities and/or time periods, while Chapter 2 discusses the case when indi-
vidual and/or time variation is random. Due to their popularity, and the tremendous
work dedicated to them, numerous extensions of the traditional fixed and random
effects models exist, like varying slope coefficients models (Chapter 3), simultane-
ous equation models, models with random regressors, just to mention a few.

One of the virtues, which is also a curse of panel data, is that the entities, pairs
of entities are followed over time. While this enables to control for individual char-
acteristics, and by that to compare individuals with similar demographics, observa-
tions in economics panel data almost surely have some path dependence. Individual
histories matter in present decisions, and as such, no perfectly exogenous regres-
sors exist. Regardless of that the econometric model is dynamic (Chapter 1), that is,
has past values of the dependent variable on the right hand side, or some regressors
are endogenous (Chapter 2), and correlated with the disturbance, fixed effects and
random effects estimators are generally biased and inconsistent. Issues with endo-
geneity therefore must be taken into account rigorously when dealing with panel
data. While we will see how different transformations on the data remove part or
all of that endogeneity in some lucky cases, how asymptotics can wipe the bias
out, or even how transformed data can serve as its own instrument, the need for
clever Instrumental Variable (IV) and Generalized Method of Moments (GMM)
techniques is constant.

Although the thesis concentrates on linear models, non-linear models also have
a determinant role in dealing with latent variables or variables describing probabil-
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ities of the occurrence of some event. Incorporating individual and/or time hetero-
geneity to non-linear models in this multi-dimensional context is however much
less trivial, than it is for linear models. Furthermore, failure to account for the
proper form of heterogeneity results in severe biases, not only inefficiencies, which
might have been the case for linear models (Nerlove et al., 2008). Non-linear mod-
els, however, would take me away from the goal of this thesis and would open so
many new and interesting questions, that a separate thesis could be devoted to their
discussion.

As computers are more and more heavily involved in following and registering
everyday transactions, data sets can cover entire populations and can grow almost
without bounds, giving rise to the concept of Big Data. These data sets may not
only consist of billions of individual transactions, but might as well comprise sev-
eral thousands of variables: De Mol et al. (2017) bring the example of how linking
administrative data can tremendously increase their number. Varian (2014) argues
that as much as various econometric- or machine learning techniques associated
with information extraction from Big Data work with more or less success, Big
Data challenges researchers in at least two distinct ways. One, the sheer size of the
data demands high-end computation techniques and resources, and two, the avail-
ability of the excessively many predictors requires some variable selection tool in
order to enhance the estimates. As most Big Data analytic tools originate from
machine learning techniques, Varian (2014) and several other economists undoubt-
edly think that panel data methods have a lot to offer for the better understanding of
Big Data and for the better predictions formed on that. Bringing closer computer-
originated learning techniques to traditional econometric tools is the joint interest
of all Big Data analysts then. Clearly these ideas, and the field of Big Data itself is
a lot bigger than what could be covered, or at least meaningfully addressed by this
thesis. Instead, most estimators are inspected from the side of computational fea-
sibility, and wherever such burdens are expected to persist, alternative, much less
computationally heavy techniques are proposed. This, in some way, can be thought
of as efforts dedicated to dealing with Big Data.

Chapter 1, “The Estimation of Multi-dimensional Fixed Effects Panel Data Mod-
els”, formulates the excess heterogeneity in the data with fixed, observable parame-
ters. In such cases, the heterogeneous parameters are in fact splits of the regression
constant. Several such three-dimensional fixed effects models are collected from
the literature, all of which correspond to empirically relevant cases. The models
are estimated with Least Squares Dummy Variable (LSDV) estimator, and in order
to circumvent the joint estimation of possibly (hundreds of) thousands of param-
eters, the estimators are also expressed separately for each model parameter. It is
also shown that the so-called Within estimator, which first wipes out the fixed ef-
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fect parameters with a linear transformation, then performs a Least Squares on the
transformed model, is numerically equivalent to the LSDV. The Within estimator
reaches estimates at no costs, as long as the data at hand is complete. Typically,
however, the data contains “holes”, which can either correspond to observations
missing “randomly”, or are there by construction. It is shown that conveniently, the
Within estimator completely alleviates the dimensionality issue (the high cost of
the estimation), for structured incompleteness (like the no self-flow phenomenon,
which, to our knowledge, had never been explored), and partially, when it comes
to handling incompleteness in general. As the incompleteness-robust Within esti-
mator can still be cumbersome to perform for some models, an iterative way con-
verging to the Within estimator is also suggested. While this iteration usually takes
a tremendous amount of time, it almost fully eliminates computational burdens.

This chapter also contributes to the literature by considering dynamic autore-
gressive fixed effects specifications, first, by showing how the presence of various
lags of the dependent variable violates the consistency of the Within estimator,
generalizing the so-called Nickell-bias, then, by offering Arellano-Bond-type in-
strumental variable estimators to correct for the arising inconsistency. Somewhat
surprisingly, however, not all three-way model specifications carry this asymp-
totic bias. Eventual heteroscedasticity and the cross-correlation of the disturbance
terms are also accounted for by proposing appropriate Feasible Generalized Least
Squares (FGLS) estimators. The chapter ends with a generalization to four- and
higher-dimensional fixed effect models, and intuitively argues that the results of
the study, especially Within estimators of any nature, can easily be generalized to
any dimensions and for any fixed effects model specifications.

The contribution of the chapter is (i) collecting 3D fixed effects model formula-
tions and deriving estimators universally; (ii) deriving incompleteness-robust esti-
mators in case of general incompleteness (extensions of 2D results), and in case of
no self-flow data (complete novelty); (iii) extending the Nickell-bias and propos-
ing proper IV/GMM estimators; (iv) taking into account cross-section dependence
in the presence of fixed effects; and, (v) arguing for the wide applicability of the
results by discussing four-way extensions. My respective contribution involves the
derivation and explanation of estimators and transformations in (i) and (ii), estima-
tors and bias-formulas in (iii), while points (iv) and (v) are my own work.

The formulation of fixed, observable parameters, however, is not the only way
to incorporate heterogeneity into multi-dimensional panel models. By assuming
that the unobserved heterogeneity is random, that is, can be described with a set of
random variables, we arrive at random effects models.

Chapter 2, “Modelling Multi-dimensional Panel Data: A Random Effects Ap-
proach”, proposes several appealing random effects model specifications. Interest-
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ingly, only a subset of these models has been used in the literature, most probably
due to the unavailability of estimators and their unknown properties. The chapter
first assumes that the strict exogeneity assumption holds for the regressors, and
derives optimal (F)GLS estimators for all models accordingly, discussing the es-
timation processes in depth. This is utterly important, as with the proposed meth-
ods the performed spectral decompositions and variance components estimations,
needed for feasibility reasons and to complete the estimation process, can be easily
generalized to any random effects model specification and to any dimension.

As the data can now grow in not only two, but three dimensions at the same
time, it is crucial to collect the exact properties under which the FGLS estimator is
consistent. Some of the consistency properties also carry a ‘convergence property’,
which means that the FGLS estimator of a model converges to that model’s specific
Within estimator. For some models, consistency even implies convergence. While
this phenomenon by itself does not violate the feasibility of the estimators or their
properties, the parameters of some fixed regressors – just like in case of fixed ef-
fects models – become unidentified, rendering the estimation of such parameters
impossible. Apart from this identification problem, inconsistency in many of the
several semi-asymptotic cases persists. To correct for this, so-called mixed models
are proposed, combining both fixed and random components.

One of the main reasons why random effects lag behind in popularity, is that
the strict exogeneity assumption is hard to fulfill. The chapter also considers the
case of endogenous regressors, and proposes Hausman-Taylor instrumental vari-
able estimators to reach a full set of parameter estimates. As endogeneity can come
from many different sources, further, variables with various index deficiencies are
affected differently, covering the relevant cases and formulating the proper IV es-
timators with the order conditions are real challenges here. The main results of the
chapter are also extended to higher dimensions and to incomplete data, to argue
for their wide applicability and easy generalizability. Finally, some basic insights
on testing for random effects model specifications, for exogeneity, and for instru-
ment validity are considered. These tests are essential to collect some evidence on
which model to choose from the many (by using an extended version of Fisher’s
ANOVA test), and on where to go with our random effects model (are the regres-
sors exogenous or not?). Hausman tests are developed first to test for the existence
of endogeneity among the regressors, and for the identification of the sources of
endogeneity, then to test for the validity of the collected instruments if endogeneity
is the case.

The contribution of the chapter is (i) collecting new random effects formula-
tions and extending (F)GLS estimators giving a technical know-how; (ii) extend-
ing 2D results on incomplete-robust estimators, mixed models, and further to four-
way panels; (iii) extending the Hausman-Taylor instrumental variable estimator to
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tackle the case of endogenous regressors; and, (iv) constructing various tests for
model selection, exogeneity and instrument validity to verify various hypotheses
formed on the models. My respective contribution is the derivation of decompo-
sitions, estimators, properties in (i), (ii) and (iii), the construction of tests in (iv).
Results concerning mixed models, four-dimensional extensions and tests for model
selection are my own work.

Chapters 1 and 2 considered models of average effects. An individual fixed ef-
fect, for example, encompasses all effects specific to the given individual. Its pa-
rameter estimate is then interpreted, as the average of all observed and unobserved
effects, specific to that individual. One of the most important statistical features
of multi-dimensional panel data sets is, however, that heterogeneity is likely to
take more complicated forms, which begs for more complex heterogeneity for-
mulations. One appealing way is to incorporate heterogeneity marginally, that is,
through individual (and/or time) varying slope parameters.

Chapter 3, “The Estimation of Varying Coefficients Multi-dimensional Panel
Data Models” considers several new varying coefficients models, and derives ap-
propriate Least Squares estimators for them. The varying slope coefficients are
assumed to be fixed, rather than random, as it would be the case for random co-
efficients models, further, the slope parameters are also assumed to comprise a
universal part, common for all entities and time periods, as well as a varying com-
ponent, which can be individual and/or time specific. In order to disentangle these
two effects in these under-identified models (economically speaking, to identify the
model parameters), some parameter restrictions are to be assumed. As it turns out,
Least Squares estimation of the restricted model is simple theoretically, but cum-
bersome in practice due to the many complex functional forms and large matrices
to work with. Further, as alternative parameter restrictions mean the full repetition
of the calculation, alternative solutions are proposed. Luckily, the so-called Least
Squares of incomplete rank, on the other hand, is easy to implement even in prac-
tice, and derives the part of the estimator which is model-specific before arriving
at the restriction. In this way, the flexible exchange of various parameter restric-
tions is guaranteed. Some insights on the identification issues with, and on the
interpretation of models with variables with index deficits are considered, as well
as some preliminary results on varying coefficient autoregressive models. Mixed
coefficients models, having both fixed and random coefficients, are briefly visited,
and some of their estimation issues are considered, while the idea of expressing the
varying coefficients as functions of observables, and by that highly reducing the
number of parameters to estimate, is also noted.

The contribution of this chapter is (i) proposing new fixed variable coefficients
models; (ii) applying the concept of Least Squares of incomplete rank to these
models, which, to the best of my knowledge, has never been done; (iii) visiting

7

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2017.05

various extensions, like incomplete data, variables with index deficiency, dynamic
autoregressive models and mixed models. The concept of mixed models within
the context of varying coefficient models is existent, but to my knowledge no real
efforts had been dedicated towards its proper estimation.

Together with the theoretical results, it is important to show how the main mod-
els and estimators of the thesis fare empirically. After all, the ultimate goal of
any theoretical work, apart from motivating other theoretical works, is to form
the foundations of empirical efforts. Chapter 4, “Empirical Applications for Multi-
dimensional Panels”, merges two distinct empirical studies employed on three-way
data: an international trade application, “Regularities of Panel Estimators: A Trade
Application”, and a study on wage returns, “Contemporaneous and Lagged Wage
Returns to Foreign-Firm Experience – Evidence from Linked Employer-Employee
Data”. The former contributes to the literature by (i) comparing several fixed and
random effects estimators, reflecting the typical estimation issues and some further
regularities detailed in Chapters 1 and 2; (ii) by considering a new data set and tak-
ing into account data related issues, such as incompleteness, improving the results
of several earlier papers which measured the effect of trade membership on real
trade activity. This part of Chapter 4 is my own work.

The second study falls in line with several international studies capturing the
(contemporaneous and lagged) wage returns of foreign experience on workers and
on their colleagues. Foreign capital in emerging economies is subject to many crit-
icisms, such as displacing local businesses, expatriating profits, or reducing tax
liabilities. It is not clear, however, to what extent the domestic market gains from
FDI. Apart from the fact that foreign wages are spent in the host country, and that
domestic firms can imitate foreign-owned enterprises, workers of foreign-owned
firms are usually more productive and are paid higher (contemporaneous effects).
This wage premium can then be preserved when the worker re-enters the domes-
tic market (lagged effect). Further, the presence of the accumulated knowledge of
ex-foreign workers can also raise the productivity of their colleagues with no for-
eign experience (spillover effect). These advantages of FDI may in fact outweigh
its losses. To elaborate on these ideas, several, mostly fixed effects models are for-
mulated and regressed on a matched employer-employee data set covering half of
the Hungarian working-age population. The contribution of this second part of the
thesis is (i) taking international efforts devoted to uncovering these three effects
into account and applying them to the case of the Hungarian economy; (ii) turning
to “true” 3D fixed effects models to get a better grip on issues like selectivity. My
respective contributions in this section are the discussion of estimation issues with
multiple fixed effects and the identification and calculation of the contemporaneous
wage gap.
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Ongoing work on random coefficient models (Krishnakumar et al., 2017), and
on models with more complex functions of the dependent variable on the right hand
side are excluded from this thesis due to size limits.
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1
The Estimation of Multi-dimensional Fixed Effects

Panel Data Models

Sections 1.2–1.6 are joint works with Laszlo Matyas and Tom Wansbeek and are
forthcoming in Econometric Reviews. Sections 1.7 and 1.8 are solely my own.

1.1 Introduction

Multi-dimensional panel data sets are becoming more readily available. They are
used to study phenomena like international trade, capital flow between countries or
regions, the trading volume across several products and stores over time, employee-
employer matches over time (three panel dimensions), the air passenger numbers
between multiple hubs by different airlines, research performance (four panel di-
mensions) and so on. Models on multi-dimensional panels have the exceptional
advantage (over two-dimensional (2D) ones) of incorporating excessive hetero-
geneity in several newly attainable forms.

Model formulations in which the individual and/or time heterogeneity factors are
considered observable parameters, rather than random variables are called fixed ef-
fects models. In the basic, most frequently used models, these heterogenous param-
eters are in fact splits of the regression constant. They can take different values in
different sub-spaces of the original data space, while the slope parameters remain
the same. In this chapter we propose estimation mechanisms to deal with three-
dimensional (3D) fixed effects models, and generalize the results using numerous
extensions to widen the applicability of the study.

In Section 1.2, we line up various fixed effects model specifications proposed
in the literature for three-dimensional data. For each of these models, we pay spe-
cial attention to the structure of the intercept parameters. In Section 1.3, we show
the Least Squares estimation procedure along with some of its finite and asymp-
totic properties, also taking an insightful glimpse into parameter testing. The data at
hand is often incomplete, either by construction (like the lack of within-country ob-
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servations in case of flow-type data, hereafter no self-flow), or simply due to exist-
ing ‘gaps’ in the data (general incompleteness). Section 1.4 describes how to adjust
Least Squares to handle incomplete data, together with the caveats of this estimator,
and also presents an intuitive way to fix the arising dimensionality issue. Section
1.5 introduces the so-called Within Estimator, and shows its numerical equivalence
to Least Squares. As the Within Estimator employs linear transformations on the
data, some of the dimensionality problem is alleviated, even in case of incomplete
data. Up to this point, the models considered were static. In Section 1.6, we show
how the presence of the lagged dependent variable may render Least Squares on
the transformed data inconsistent, thus generalizing the well-known Nickell (1981)
bias. Somewhat surprisingly, however, with three-way data, inconsistency does not
occur in all models. For the cases with inconsistency, we present the appropriate
generalization of the Arellano-Bond estimator. We also account in Section 1.7 for
eventual heteroscedasticity and cross-correlation in the disturbance terms, while
Section 1.8 extends the chapter’s results to four- and higher dimensions, to argue
for their easy and wide generalizability. Finally, section 1.9 concludes.

1.2 Models with Different Types of Heterogeneity

In three-dimensional panel data, the dependent variable of a model is observed
along three indices, such as yi jt , i = 1, . . . ,N1, j = 1, . . . ,N2, and t = 1, . . . ,T , and
the observations have the same ordering: index i goes the slowest, then j, and
finally t the fastest,1 such as

(y111, . . . ,y11T , . . . ,y1N21, . . . ,y1N2T , . . . ,yN111, . . . ,yN11T , . . . ,yN1N21, . . . ,yN1N2T )
′ .

We assume in general that the index sets, i ∈ {1, . . . ,N1} and j ∈ {1, . . . ,N2} are
(completely or partially) different. When dealing with economic flows, such as
trade, capital, investment (FDI), etc., there is some kind of reciprocity, in such
cases it is assumed, that N1 = N2 = N.

The main question is how to formalize the individual and time heterogeneity —
in our case, the fixed effects. In standard 2D panels, there are only two effects,
individual and time, so in principle 22 model specifications are possible (if we also
count the model with no fixed effects). The situation is fundamentally different in
three-dimensions. Strikingly, the 6 unique fixed effects formulations enable a great
variety, precisely 26, of possible model specifications. Of course, only a subset of
these are used, or make sense empirically, so in this chapter we are only considering
the empirically most meaningful ones.

Throughout the chapter, we follow standard ANOVA notation, that is I and J
1 Please note, that the N1, N2 notation does not mean, by itself, that the data is unbalanced.

11

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2017.05

denote the identity matrix, and the square matrix of ones respectively, with the size
indicated in the index, J̄ denotes the normalized J (each element is divided by the
number in the index), and ι denotes the column vector of ones, with size in the
index. Furthermore, an average over an index for a variable is indicated by a bar
on the variable and a dot on the place of that index. When discussing unbalanced
data, a plus sign at the place of an index indicates summation over that index. The
matrix M with a subscript denotes projection orthogonal to the space spanned by
the subscript.

The models can be casted in the general form

y = Xβ +Dπ + ε (1.1)

with y and X being the vector and matrix of the dependent and explanatory vari-
ables (covariates) respectively of size (N1N2T ×1) and (N1N2T ×K), β being the
vector of the slope parameters of size (K×1), π the composite fixed effects param-
eters, D the matrix of dummy variables, and finally, ε the vector of the disturbance
terms.

The first attempt to properly extend the standard fixed effects panel data model
to a multi-dimensional setup was proposed by Matyas (1997) (see also Baltagi,
2005 and Balestra and Krishnakumar, 2008). The specification of this model is

yi jt = β
′xi jt +αi + γ j +λt + εi jt (1.2)

where the αi, γ j, and λt parameters are the individual and time-specific fixed effects
(picking up the notation of (1.1), π = (α ′ γ ′ λ ′)′), and εi jt are the i.i.d.(0, σ2

ε )

idiosyncratic disturbance terms. We also assume that the xi jt covariates and the
disturbance terms are uncorrelated.

Matyas (1997) and Matyas et al. (1997) applies model (1.2) to predict foreign
trade flows: with local country i, target country j and year t, yi jt denotes real export,
while x′i jt are various measures to affect the intensity of trade, like GDP, distance,
bilateral dummies. In the present context αi and γ j are local and target country
effects, while λt is the time (business-cycle) effect. The local country parameter
shows the efficiency of country i in exporting, relative to other countries and to
characteristics x′i jt , while the target country parameter γ j is interpreted as trade
openness relative to other target countries and to characteristics x′i jt . Then, the fo-
cus parameter for local GDP, for example, captures the increase in yi jt in response
to a unit increase in local GDP, controlled for the average GDP of the local coun-
try over time, the average target GDP over time, and the average local and target
GDPs over countries. The effect βk of a general x′i jt k regressor is identified from
(i) variation of x′i jt k within group i, (ii) variation of x′i jt k within group j and (iii)

12

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2017.05

variation of x′i jt k within group t. For example for GDPit , the coefficient β is identi-
fied if Var(GDPit) 6= 0 within group i, for some i = 1, . . . ,N1, and at the same time,
Var(GDPit) 6= 0 within group t, for some t = 1, . . . ,T .

A model has been proposed by Egger and Pfaffermayr (2003), popular in the
trade literature, which takes into account bilateral interaction effects. The model
specification is

yi jt = β
′xi jt + γi j + εi jt , (1.3)

where the γi j are the bilateral specific fixed effect.
A variant of model (1.3), proposed by Cheng and Wall (2005), used in empirical

studies is

yi jt = β
′xi jt + γi j +λt + εi jt . (1.4)

It is worth noticing that models (1.3) and (1.4) are in fact straight 2D panel data
models, where the individuals are now the (i j) pairs.

As noted by Cheng and Wall, a country would still export different quantities to
two target countries with the same GDP or distance simply due to having different
cultural, political, ethnic relations affecting the level of trade. Bilateral fixed effects
are then introduced to control for these (possibly) unobserved factors. Clearly to
identify the focus parameters we need x′i jt to have non-zero variation over t for at
least one i j-pair for model (1.3), and we need (i) x′i jt to have non-zero variation
over t for at least one i j-pair and (ii) x′i jt to have non-zero variation over i or j for
at least one t year, for model (1.4). The coefficient for GDP, for example, is inter-
preted as “increasing GDP by one unit, export is increased by βk units, controlling
for other factors in x′i jt and for unobserved country-pair factors”, for model (1.3),
and is interpreted as “increasing GDP by one unit, export changes by βk units, con-
trolling for other factors in x′i jt , and for unobserved country-pair and business-cycle
characteristics”, for model (1.4).

Baltagi et al. (2003), Baldwin and Taglioni (2006) and Baier and Bergstrand
(2007) suggest several other forms of fixed effects. A simpler model is

yi jt = β
′xi jt +α jt + εi jt , (1.5)

where we allow the individual effect to vary over time. It is reasonable to present
the symmetric version of this model (with αit fixed effects); however, as it has
exactly the same properties, we consider the two models together. Grogger and
Hanson (2011) use a somewhat similar gravity setup in analysing the selection and
sorting of international migrants between many host and target countries. While
they consider the left hand side variable to be the utility of worker i moving from
country j to t, and the main explanatory variables are the wages to be paid and costs
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of migrating, we can easily modify the framework to focus on a single target coun-
try with worker i migrating from country j at year t. Although the utility of mov-
ing (wage minus costs) for two workers with similar individual and source country
characteristics is most likely very similar, we can not rule out differences which can
be attributed to unobserved but existing source country–year factors, such as the
source country’s political or cultural relationship with the host country, barriers of
leaving the country of origin, etc. Clearly these unobserved factors might vary over
years, especially if migration patterns are followed for a long enough period. For
the identification of β we need x′i jt to show variation over i for at least one jt-pair.
The focus parameter βk is then interpreted as the response to a unit jump in x′ki jt ,
controlling for observable and home country-year unobservable characteristics.

A variation of model (1.5) is

yi jt = β
′xi jt +αit +α

∗
jt + εi jt , (1.6)

where, using the same application, a worker–time fixed effect is also added to con-
trol for any (unobserved) time-varying worker characteristic, such as personal costs
of leaving the home country, some measurement of current family status, attitude
and motivation towards upcoming employment. Now, along with variation over i
for at least one jt-pair, x′i jt also has to show variation over j for some it-pairs as
well in order to identify β , and further, the parameter for the cost of leaving, for
example, is interpreted as the “change in utility in response to a unit change in cost
of leaving, when other observables, as well as unobservable worker-time and home
country-time effects are controlled for”.

Lastly, the model that encompasses all the above effects is

yi jt = β
′xi jt + γi j +αit +α

∗
jt + εi jt , (1.7)

where yi jt could stand for Hungary’s Foreign Direct Investment (FDI) to sector i
from country j at year t, as explained by x′i jt , like distance, factor endowments,
trade barriers, etc. In the present context, β is not only hard to interpret, but is
difficult to identify as well. To get it identified we need x′i jt to show variation over
i for all jt-pairs, variation over j-for all it-pairs, and finally, variation over t for
all i j-pair. In other words, parameters associated with regressors showing non-zero
variation in all three dimensions are identified only under specification (1.7). A
βk is then interpreted as “the change in yi jt in response to a unit change in x′i jt k,
controlling for other characteristics in x′i jt as well as all fixed unobserved charac-
teristics”.

Each model with its specific D matrix from formulation (1.1) is summarized in
Table 1.1.
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Table 1.1 Model specific D matrices

Model D

(1.2) ((IN1 ⊗ ιN2T ), (ιN1 ⊗ IN2 ⊗ ιT ), (ιN1N2 ⊗ IT ))

(1.3) (IN1N2 ⊗ ιT )

(1.4) ((IN1N2 ⊗ ιT ), (ιN1N2 ⊗ IT ))

(1.5) (IN1 ⊗ ιN2 ⊗ IT )

(1.6) ((IN1 ⊗ ιN2 ⊗ IT ), (ιN1 ⊗ IN2T ))

(1.7) ((IN1N2 ⊗ ιT ), (IN1 ⊗ ιN2 ⊗ IT ), (ιN1 ⊗ IN2T ))

1.3 Least Squares Estimation of the Models

Let us assume, along with their independence from the disturbance terms, that the
vector of regressors xi jt is non-stochastic, and further, that none of the xi jt variables
is perfectly collinear with the fixed effects. In this case, if the matrix (X , D) has
full column rank, the Ordinary Least Squares (OLS) estimation of model (1.1), also
called the Least Squares Dummy Variables (LSDV) estimator(

β̂

π̂

)
=

(
X ′X X ′D
D′X D′D

)−1(
X ′y
D′y

)
,

is the Best Linear Unbiased Estimator (BLUE). This joint estimator, however, in
some cases is cumbersome to implement, for example for model (1.3), as one has
to invert a matrix of order (K +N1N2), which can be quite difficult for large N1

and/or N2. Nevertheless, following the Frisch-Waugh-Lovell theorem, or alterna-
tively, applying partial inverse methods, the estimators can be expressed as

β̂ = (X ′MDX)−1X ′MDy
π̂ = (D′D)−1D′(y−X β̂ ) ,

(1.8)

where the idempotent and symmetric matrix MD = I−D(D′D)−1D′ is the so called
within projector. In the usual panel data context, we call β̂ in (1.8) the optimal
Within estimator (due to its BLUE properties mentioned above). The LSDV esti-
mator for each specific model is then obtained by substituting in the concrete form
of D and MD, specific to that given model. Table 1.2 captures these different pro-
jection matrices for all models discussed. Appendix A gives some insights on how
to obtain MD from D. Also, it is important to define the actual degrees of freedom
to work with, so the third column of the table captures this. By using MD, instead
of possibly large matrices, we only have to invert a matrix of size (K×K) to get
β̂ .

Estimation of the fixed effects parameters are captured by the second part of
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(1.8). So far we have assumed that D has full column rank. Unfortunately, this is
only true for models of one fixed effect, that is, for (1.3) and (1.5). These model-
specific estimators read as

γ̂ =
1
T
(IN1N2⊗ ι

′
T )(y−X β̂ )

for model (1.3), and

α̂ =
1

N2
(IN1⊗ ι

′
N2
⊗ IT )(y−X β̂ )

for model (1.5). For the other models, the fixed effects are not identified, since
the D matrix of such models has no full column rank. This is easy to see, as for
example for model (1.2) the column-wise sums of (IN1⊗ ιN2T ), (ιN1⊗ IN2⊗ ιT ) and
(ιN1N2 ⊗ IT ), the dummy matrices associated with the fixed effects parameters, all
give the column of ones, ιN1N2T . To make them identified, we have to use extra
information in form of some restrictions over the fixed effects parameters. The two
most widely used ones are either to normalize the fixed effects, or to leave the
parameters belonging to the last (or first) individual or time period out. We will
follow this latter approach. Let us illustrate the idea on model (1.2). For model
(1.2), D has a rank deficiency of 2, but for the sake of symmetry, we leave out all
three last fixed effects parameters, αN1 , γN2 , and λT from the model, and add back
a general constant term c. That is, for a given (i jt) observation (i, j, t 6= N1,N2,T ),
the intercept is c+αi+γ j +λt , but for example for i = N1, it is only c+γ j +λt . Let
us denote this modified D dummy matrix by D∗, to stress that now it contains the
restriction. As D∗ has full column rank, estimator (1.8) works flawlessly with D∗:

π̂
∗ = (D∗

′
D∗)−1D∗

′
(y−X β̂ ) ,

where now π∗ = (c′, α ′ γ ′ λ ′)′. We may have a better understanding on these esti-
mators, if we express them separately for each fixed effects parameters. This step,
however, requires the introduction of complex matrix forms, and nontrivial manip-
ulations, but as it turns out, using scalar notation, they can easily be represented.
For model (1.2), this is

ĉ = (ȳN1..+ ȳ.N2.+ ȳ..T −2ȳ...)− (x̄′N1..
+ x̄′.N2.

+ x̄′..T −2x̄′...)β̂
α̂i = (ȳi..− ȳN1..)− (x̄′i..− x̄′N1..

)β̂

γ̂ j = (ȳ. j.− ȳ.N2.)− (x̄′. j.− x̄′.N2.
)β̂

λ̂t = (ȳ..t − ȳ..T )− (x̄′..t − x̄′..T )β̂ .

Notice, that as we excluded αN1 from the model, its estimator is indeed α̂N1 =

(ȳN1..− ȳN1..)−(x̄′N1..
− x̄′N1..

)β̂ = 0, similarly for γ̂N2 , and λ̂T . For model (1.4), where
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we have left out γN1N2 and λT , and, as before, added back some c general constant,

ĉ = (ȳN1N2.+ ȳ..T − ȳ...)− (x̄′N1N2.
+ x̄′..T − x̄′...)β̂

γ̂i j = (ȳi j.− ȳN1N2.)− (x̄′i j.− x̄′N1N2.
)β̂

λ̂t = (ȳ..t − ȳ..T )− (x̄′..t − x̄′..T )β̂ .

For model (1.6), and (1.7), the rank deficiency, however, is not 2 but T , and (N1 +

N2 +T − 1), respectively. This means, that the restriction above can not be used.
Instead, let us leave out the αit parameters for i = N1, that is, that last T from model
(1.6). In this way, the estimators for the intercept parameters are

α̂it = (ȳi.t − ȳN1.t)− (x̄′i.t − x̄′N1.t)β̂

α̂∗jt = (ȳ. jt + ȳN1.T − ȳ..t)− (x̄′. jt + x̄′N1.T − x̄′..t)β̂ .

For model (1.7), we leave out γi j for i = N1, αit for t = T , and α∗jt for j = N2,
and add back a general constant c. In this way, exactly N2 +N1 +T − 1 intercept
parameters are eliminated, so the dummy matrix D∗ has full rank. The estimators,
with this D∗ reads in scalar form

ĉ = (ȳN1N2.+ ȳN1.T + ȳ.N2T − ȳN1..− ȳ.N2.− ȳ..T + ȳ...)
−(x̄′N1N2.

+ x̄′N1.T + x̄′.N2T − x̄′N1..
− x̄′.N2.

− x̄′..T + x̄′...)β̂
γ̄i j = (ȳi j.− ȳN1 j.+ ȳi.T − ȳN1.T − ȳi..+ ȳN1..)

−(x̄′i j.− x̄′N1 j.+ x̄′i.T − x̄′N1.T − x̄′i..+ x̄′N1..
)β̂

ᾱit = (ȳi.t − ȳi.T + ȳ.N2t − ȳ.N2T − ȳ..t + ȳ..T )
−(x̄′i.t − x̄′i.T + x̄′.N2t − x̄′.N2T − x̄′..t + x̄′..T )β̂

ᾱ∗jt = (ȳ. jt − ȳ.N2t + ȳN1 j.− ȳN1N2.− ȳ. j.+ ȳ.N2.)

−(x̄′. jt − x̄′.N2t + x̄′N1 j.− x̄′N1N2.
− x̄′. j.+ x̄′.N2.

)β̂

Now, that we have derived appropriate estimators for all models, it is time to
assess their properties. In finite samples, the OLS assumptions imposed guarantee
that all estimators derived above are BLUE, with finite sample variances

Var(β̂ ) = σ
2
ε (X

′MDX)−1

with the appropriate MD, and

Var(π̂∗) = σ
2
ε (D

∗′D∗)−1 +(D∗
′
D∗)−1D∗

′
X Var(β̂ )X ′D∗(D∗

′
D∗)−1 .

As σ2
ε is usually unknown, we have to replace σ2

ε by its estimator

σ̂
2
ε =

1
rank(MD)−K ∑

i, j,t

ˆ̃ε2
i jt ,

where
ˆ̃ε2
i jt = (ỹi jt − x̃′i jt β̂ )

2 (1.9)
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is the transformed residual square and (rank(MD)−K) is collected for all models
in the last column of Table 1.2.

As multi-dimensional panel data are usually large in one or more directions, it is
important to have a closer look at the asymptotic properties as well. Unlike cross-
sectional, or time series data, panels can grow in multiple dimensions at the same
time. As a matter of fact, three-way panel data can fall in one of the following seven
asymptotic cases:

• N1→ ∞, N2,T fixed; N2→ ∞, N1,T fixed; T → ∞, N1,N2 fixed
• N1,N2→ ∞, T fixed; N1,T → ∞, N2 fixed; N2,T → ∞, N1 fixed
• N1,N2,T → ∞.

It can be shown, that β̂ is consistent in all of the asymptotic cases for all models (if
some weak properties hold). In order to make the models feasible for inference (i.e.,
for testing), we have to normalize the variances according to the asymptotics con-
sidered. When, for example, N1 goes to infinity, and N2 and T are fixed, N1 Var(β̂ )
is finite in the limit, as

plimN1→∞ N1 Var(β̂ ) = σ
2
ε plimN1→∞

(
X ′MDX

N1

)−1

= σ
2
ε Q−1

XMX ,

where QXMX is assumed to be a finite, positive semi-definite matrix. The estimators
of fixed effects are consistent only if at least one of the indices with which they are
fixed with, is growing. For example, for model (1.2), α̂i is consistent only if N2

and/or T is going to infinity, and its variance is finite, and in addition, if it is pre-
multiplied by N2, in the case of N2→ ∞, by T , in the case of T → ∞, and by N2T ,
when N2,T → ∞.

Testing for parameter values or restrictions is done in the usual way, using stan-
dard t-tests or F-tests. Typically, when one seeks to test βk = 0 or αi = 0, for
example in model (1.2), the t-statistic is

β̂k/

√
V̂ar(β̂k) and α̂i/

√
V̂ar(α̂i) ,

where Var(β̂k) is the k-th diagonal element of Var(β̂ ), and Var(αi) is the diago-
nal element from Var(π̂∗) corresponding to αi. The degrees of freedom has to be
adjusted accordingly, for each model, as Table 1.2 shows. The same degrees of
freedom should be used when testing for the slope parameters and/or for the fixed
effects of a given a model. It is not typical, however, to test for the significance of
one particular αi, unless that individual plays some specific role in the model. Usu-
ally we are more concerned with the joint existence of the individual parameters,
in other words, with testing for α1 = α2 = . . . = αN1 . Keep using model (1.2) for
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the illustration, and assuming normality, the statistic for the F-test is obtained as in

F =
(R2

UR−R2
R)/(N1−1)

(1−R2
UR)/(N1N2T −N1−N2−T +1−K)

where R2
UR is the R2 of the unrestricted model (that is the full model (1.2)), while

R2
R is the R2 of the restricted model, that is model (1.2) without the αi individual

effects. The null hypothesis puts (N1−1) restrictions on the parameters, while the
degrees of freedom of the unrestricted model is simply (N1N2T −N1−N2−T +

1−K). This statistic then has an F-distribution with (N1− 1,N1N2T −N1−N2−
T +1−K) degrees of freedom.

1.4 Incomplete Panels

As in the case of the usual 2D panel data sets (see Wansbeek and Kapteyn (1989)
or Baltagi (2005), for example), just more frequently, one may be faced with sit-
uations in which the data at hand is unbalanced. In our framework of analysis
this means that t ∈ Ti j, for all (i j) pairs, where Ti j is a subset of the index set
t ∈ {1, . . . ,T}, with T being chronologically the last time period in which we have
any (i, j) observations. Note that two Ti j and Ti′ j′ sets are usually different. A spe-
cial case of incompleteness, which typically characterizes flow-type data, is the so-
called no self-flow. In such data sets the individual index sets i and j are the same,
so N1 = N2 = N holds. Formally, this means, that, for all t, there are no observa-
tions when i = j, that is, we are missing a total NT of data points. In this section,
however, we only consider general incompleteness, and take the no self-flow issue
under lenses in Section 1.5.

In the case of incomplete data, the models can still be casted as in (1.1), but
now D can not be represented nicely by kronecker products, as done in Table 1.1.
However, with the incompleteness adjusted dummy matrices, D̃ (which we obtain
from D by leaving out the rows corresponding to missing observations), the LSDV
estimator of β and the fixed effects can still be worked out, maintaining its BLUE
properties, following (1.8). There is, however, one practical obstacle in the way.
Remember, that to reach β̂ conveniently, we needed the exact form of MD, which
we collected for complete data in Table 1.2. As D̃ has a known form only if we
know which observations are missing exactly, MD̃ = I− D̃(D̃′D̃)−D̃′ can not be
defined element-wise analytically in general, where “−” stands for any general-
ized inverse. Instead, we have to invert (D̃′D̃) directly, or use partitioned matrix
inversion. Either way, we usually can not avoid large computational burdens when
carrying out (1.8) in case of incompleteness (as opposed to no computational bur-
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den when the data is complete).2 Nevertheless, the estimators and the covariance
matrices are obtained in the same way as for complete data (of course, after ad-
justing the matrices to incompleteness), and the properties of the estimators are the
same as in the complete data case. Notice the crucial difference between D̃ and D∗:
while D̃ has usually no full column rank, as we left out some rows from D (which
also in general has no full column rank), D∗ is simply designed to have full column
rank (more precisely, to fix the rank deficiency in D). That is why we have to turn
to generalized inverses for the former, but is enough to work with “simple” inverses
for the latter dummy matrices.

Incompleteness is less of an issue in case of 2D models, where T is usually
small, and N1 is large (that is when we have one high dimensional fixed effects),
but is generally present in case of 3D data, where typically along with N1, N2 is
also large. In practice, to alleviate this issue with the large dimensions, the best
solution seems to be to turn to iterative solutions. One of the most widely used is
based on the work of Carneiro et al. (2008), and later on Guimaraes and Portugal
(2009). Let us show the procedure on model (1.2), the rest is a direct consequence.
Model (1.2) in matrix form reads as

y = Xβ + D̃1α + D̃2γ + D̃3λ + ε , (1.10)

where D̃k meant to stress, that the data is possibly incomplete: from the original
D1 = (IN1 ⊗ ιN2T ), D2 = (ιN1 ⊗ IN2 ⊗ ιT ), and D3 = (ιN1T ⊗ IT ), the rows matching
with the missing observations are deleted. The normal equations from (1.10) are

β = (X ′X)−1X ′(y− D̃1α− D̃2γ− D̃3λ )

α = (D̃′1D̃1)
−D̃′1(y−Xβ − D̃2γ− D̃3λ )

γ = (D̃′2D̃2)
−D̃′2(y−Xβ − D̃1α− D̃3λ )

λ = (D̃′3D̃3)
−D̃′3(y−Xβ − D̃1α− D̃2γ) ,

which suggests the so-called Gauss-Seidel, also called the “zigzag” algorithm, that
is, we alternate between the estimation of β , and the fixed effects parameters, start-
ing from some arbitrary initial values β 0, and (α0,γ0,λ 0). The computational
improvement is clear: (D̃′kD̃k)

−D̃k defines a simple group average (k = 1,2,3)
of the residuals, so the dimensionality issue is no longer a concern. Specifically,
(D̃′1D̃1)

−D̃′1 is translated into an average over ( jt), (D̃′2D̃2)
−D̃′2 an average over

(it), and (D̃′3D̃3)
−D̃′3 an average over (i j). Furthermore, D̃1α , etc. are just the

columns of the current estimates of α , etc. After the sufficient number of steps,
the iterative estimators all converge to the true LSDV.3

2 Actually the sparsity of (D̃′D̃) can help to reduce the computation. The study of sparse matrices has grown
into a separate field in the past years offering numerous tools to go around (or at least attenuate) the “curse of
dimensionality”. This topic is however beyond the expertise of the authors, and the scope of the text.

3 The STATA program command reg2hdfe implements these results and can be found in the STATA
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1.5 The Within Estimator

1.5.1 The Equivalence between LSDV and the Within Estimator

As seen, LSDV estimates all parameters of the fixed effects models in one step.
Usually, however, the individual/time parameters are outside of the center of atten-
tion, and we only care about the estimates of the focus local parameters. There is,
luckily, an other appealing way to approach the estimation problem. The idea is that
using orthogonal projections the slope parameters (and if needed the fixed effects)
are estimated separately. First, with a projection orthogonal to D, we transform the
model, in fact y and X , in such a way that clears the fixed effects. Then, we carry
out an OLS estimation on the transformed variables ỹ and X̃ . We have to point
out, however, that unlike in the case of 2D models, there are usually multiple such
Within transformations, which eliminate the fixed effects. Nevertheless, only the
Within estimator based on the Within transformation originating from the LSDV
conserves the BLUE properties and therefore is called the optimal one. To show
this, notice, that as MD is idempotent, the first part of formula (1.8) is equivalent to
performing an OLS on

MDy = MDXβ +MDD︸ ︷︷ ︸
0

π +MDε ,

where MD = I−D(D′D)−D′, as before. In the case of complete data, MD can be
translated into scalar notation, so we can fully avoid the dimensionality issue. Let
us now go through all the models, and present the scalar form of the optimal Within
transformation MDy.

For model (1.2), the optimal transformation is

ỹi jt = yi jt − ȳi..− ȳ. j.− ȳ..t +2ȳ... . (1.11)

As mentioned above, the uniqueness of the Within transformation is not guaran-
teed: for example transformation

ỹi jt = yi jt − ȳi j.− ȳ..t + ȳ... (1.12)

also eliminates the fixed effects from model (1.2). For model (1.3), the transforma-
tion is simply

ỹi jt = yi jt − ȳi j. . (1.13)

For model (1.4), the optimal Within transformation is in fact (1.12). Notice, that
model (1.2) is a special case of model (1.4) (with the restriction γi j = αi + γ j),

Documentation. The code is designed to tackle two high dimensional fixed effects, however, it can be
improved to treat three, or even more fixed effects at the same time.
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so while transformation (1.12) is optimal for (1.4), it is clear why it is not for the
former: it ‘over-clears’ the fixed effects, by not using the extra piece of information.

For model (1.5), the transformation is

ỹi jt = yi jt − ȳ. jt , (1.14)

while for models (1.6) and (1.7), they are

ỹi jt = yi jt − ȳ. jt − ȳi.t + ȳ..t , (1.15)

and

ỹi jt = yi jt − ȳi j.− ȳ. jt − ȳi.t + ȳ..t + ȳ. j.+ ȳi..− ȳ... , (1.16)

respectively.
It can be seen, that the Within transformation work perfectly in wiping out the

fixed effects. However, frequently in empirical applications, some explanatory vari-
ables, (i.e., some elements of the vector x′i jt) do not span the whole (i jt) data space,
that is, has some kind of ’index deficiency’. This means, that sometimes one (or
more) of the regressors are perfectly collinear with one of the fixed effects. In such
cases, we can consider that regressor as fixed, as it is wiped out along with the
fixed effects. For example, for model (1.3), if we put an individual’s gender among
the regressors, xi jt ≡ xi holds, and so is eliminated by the Within transformation
(1.11). Clearly, parameters associated with such regressors then can not be esti-
mated. This is most visible for model (1.8), as in that case all regressors fixed at
least in one dimension are excluded from the model automatically after the Within
transformation (1.16).

As seen, Within transformations eliminate all fixed effects parameters with lin-
ear combinations of some group means on the underlying data. In fact, all trans-
formations (1.11)–(1.16) are similar in being “complete”, as opposed to “partial”
transformations, which only eliminate some fixed effects parameters. Take model
(1.2), for example, and assume that the number of individual i-s is extensive (large
N1), but the panel is short in the other two dimensions (N2 and T are small). While
we can proceed directly with the Within transformation (1.11) and wipe out all
fixed effects, we can alternatively transform out αi only with

ỹi jt = yi jt − ȳi.. , (1.17)

and incorporate the rest, γ j and λt , explicitly to the model, ending up with

ỹi jt = x̃′i jtβ + γ̃ j + λ̃t + ε̃i jt , (1.18)

directly estimable with OLS. Clearly estimator 1.18, based on the partial transfor-
mation gives numerically the same estimator for β than the Within estimator, yet
the Within estimator is less computationally complex in case of complete data, as
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only a number of K parameters is estimated, not K +N2 +T . However, as we will
see in Section 1.5.2, if the underlying data is incomplete, Within transformations
in general can not be represented with nice sample means, instead, some matrix
operations have to be introduced. The same is not necessarily true for the partial
transformations: (1.17) for example still defines a group mean over jt, no matter
what form of incomplete data we have. The computational convenience is then ob-
vious: if the Within transformation is hard to implement in incomplete data, and at
the same time some dimensions are “short”, there always exists a partial transfor-
mation, potentially robust to incomplete data,4 wiping out the “long” effects only,
letting the “short” effects to be incorporated to the model directly. Getting back
to the example of model (1.2), while the Within transformation (1.11) involves
matrix operations in case of incomplete data, estimating the transformed model
(1.18) (based on the partial transformation (1.17)) becomes computationally less
demanding.

Some caution is needed, however, when using partial transformations instead
of complete ones. As partial transformations only eliminate some fixed effects pa-
rameters, non-eliminated ones still have to be incorporated to the model. Failure to
do so results possibly biased and inconsistent estimators. If transformation (1.17) is
employed on model (1.2), but γ̃ j and λ̃t , the non-eliminated fixed effects parameters
are ignored during estimation, that is

ỹi jt = x̃′i jtβ + ũi jt

is estimated with the ũi jt disturbance where

ũi jt = γ̃ j + λ̃t + ε̃i jt ,

a classical case of omitted variable problem emerges. Unless γ̃ j = λ̃t ≡ 0, or the
correlation is nil between the regressors and the omitted dummy variables, the
estimator for β will be biased and inconsistent.

1.5.2 Incomplete Panels with the Within Estimator

We have covered briefly incompleteness in Section 1.4 already, but the Within es-
timators, and the underlying transformations, open a new way to deal with it.

No Self-flow Data

Let us start with the no self-flow data, and for a short time, assume, that the index
sets i and j are the same, and so N1 = N2 = N.

In terms of the models from Section 1.2, the scalar transformations introduced
4 Robustness here means that the partial transformation to be employed can be represented with group means

even if the data is incomplete.
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there can no longer be applied. Fortunately, the pattern of the missing observations
is highly structured, allowing for the derivation of optimal transformations that are
still quite simple and maintain the BLUE properties of the Within estimators based
on them. Following the derivations of Balazsi et al. (2015), the transformation for
the models are the following:

ỹi jt = yi jt − N−1
N(N−2)T (yi+++ y+ j+)− 1

N(N−2)T (y j+++ y+i+)

− 1
N(N−1)y++t +

2
N(N−2)T y+++

(1.19)

for model (1.2), and

ỹi jt = yi jt −
1
T

yi j+ (1.20)

for model (1.3). For models (1.4), and (1.5) the no self-flow transformations are

ỹi jt = yi jt −
1
T

yi j+−
1

N(N−1)
y++t +

1
T N(N−1)

y+++ , (1.21)

and

ỹi jt = yi jt −
1

N−1
y+ jt , (1.22)

while for models (1.6), and (1.7), they are

ỹi jt = yi jt − N−1
N(N−2) (yi+t + y+ jt)− 1

N(N−2) (y+it + y j+t)

+ 1
(N−1)(N−2)y++t ,

(1.23)

and

ỹi jt = yi jt − N−3
N(N−2)(yi+t + y+ jt)+

N−3
N(N−2)T (yi+++ y+ j+)− 1

T yi j+

+ 1
N(N−2)(y+it + y j+t)− 1

N(N−2)T (y+i++ y j++)

+ N2−6N+4
N2(N−1)(N−2)(y++t − y+++)

(1.24)

respectively. For the proof of the no self-flow transformations, and for an insightful
detour on the no self-flow issue of purely cross-sectional panels, see Appendix B.
So overall, the self-flow data problem can be overcome by using an appropriate
Within transformation. Optimality of the estimators is preserved, as the transfor-
mations are all derived from the Frisch-Waugh-Lovell theorem.

General Incompleteness

Next, let us go along these lines, and work out suitable Within transformations for
any general form of incompleteness. Now, we are back in the case when i and j
are different index sets. As the expressions below are all derived from the Frisch-
Waugh-Lovell theorem, the transformations are optimal, and the estimators are
BLUE. Remember, that now t ∈ Ti j, and let R = ∑i j |Ti j| denote the total number of
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observations, where |Ti j| is the cardinality of the set Ti j (the number of observations
in the given set).

For models (1.3) and (1.5), the unbalanced nature of the data does not cause
any problem (since they are in fact can be represented as 2D models of one fixed
effect), the Within transformations can be used, and they have exactly the same
properties, as in the balanced case. However, for models (1.2), (1.4), (1.6), and
(1.7), we face some problems. As the Within transformations fail to fully eliminate
the fixed effects for these models (somewhat similarly to the no self-flow case), the
resulting Within estimators suffer from (potentially severe) biases. However, the
Wansbeek and Kapteyn (1989) approach, can be extended to these four cases (in a
slightly different manner than in Davis (2002)).

Let us start with model (1.2). The dummy variable matrix D has to be modified
to reflect the unbalanced nature of the data. Let the Ut and Vt (t = 1 . . .T ) be the
sequence of (IN1⊗ιN2) and (ιN1⊗IN2) matrices, respectively, in which the following
adjustments are made: for each (i j) observation, we leave the row (representing
(i j)) in Ut and Vt matrices untouched where t ∈ Ti j, but delete it from the remaining
T −|Ti j| matrices. In this way we end up with the following dummy variable setup

Da
1 = (U ′1,U

′
2, . . . ,U

′
T )
′ of size (R×N1) ,

Da
2 = (V ′1,V

′
2, . . . ,V

′
T )
′ of size (R×N2) , and

Da
3 = diag{V1 · ιN1 ,V2·, ιN1 . . . ,VT · ιN1} of size (R×T ) .

So the complete dummy variable structure is now Da = (Da
1,D

a
2,D

a
3). In this case,

let us note here that, just as in Wansbeek and Kapteyn (1989), index t goes ‘slowly’
and i j goes ‘fast’. Using this modified dummy variable structure, the optimal pro-
jection removing the fixed effects can be obtained in three steps:

M(1)
Da

= IR−Da
1(D

a′
1 Da

1)
−1Da′

1 ,

M(2)
Da

= M(1)
Da
−M(1)

Da
Da

2(D
a′
2 M(1)

Da
Da

2)
−Da′

2 M(1)
Da

,

and finally

MDa = M(3)
Da

= M(2)
Da
−M(2)

Da
Da

3(D
a′
3 M(2)

Da
Da

3)
−Da′

3 M(2)
Da

. (1.25)

It is easy to see that in fact MDaDa = 0 projects out all three dummy matrices. Note
that in the balanced case (Da′

1 Da
1)
−1 = IN1/(N2T ), but now

(Da′
1 Da

1)
−1 = diag

{
1

∑ j |T1 j|
,

1
∑ j |T2 j|

, . . . ,
1

∑ j |TN1 j|

}
of size (N1×N1) .

With this in hand, we only have to calculate two inverses, (Da′
2 M(1)

Da
Da

2)
−, and

(Da′
3 M(2)

Da
Da

3)
− with respective sizes (N2×N2) and (T ×T ) instead of three. This is

feasible for reasonable sample sizes.
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For model (1.4), the job is essentially the same. Let the Wt (t = 1 . . .T ) be the
sequence of (IN1N2⊗IN1N2) matrices, where again for each (i j), we remove the rows
corresponding to observation (i j) in those Wt , where t /∈ Ti j. In this way,

Db
1 = (W ′1,W

′
2, . . . ,W

′
T )
′ of size (R×N1N2) ,

Db
2 = Da

3 of size (R×T ) .

The first step in the projection is now

M(1)
Db

= IR−Db
1(D

b′
1 Db

1)
−1Db′

1 ,

so the optimal projection orthogonal to Db = (Db
1,D

b
2) is simply

MDb = M(2)
Db

= M(1)
Db
−M(1)

Db
Db

2(D
b′
2 M(1)

Db
Db

2)
−Db′

2 M(1)
Db

. (1.26)

Note that as

(Db′
1 Db

1)
−1 = diag

{
1
|T11|

,
1
|T12|

, . . . ,
1

|TN1N2 |

}
of size (N1N2×N1N2) ,

we only have to calculate the inverse of a (T ×T ) matrix – Db′
2 M(1)

Db
Db

2 – which is
easily doable. Further, as discussed above, given that model (1.2) is nested in (1.4),
transformation (1.26) is in fact also valid for model (1.2).

Let us move on to model (1.6). Now, after the same adjustments as before,

Dc
1 = diag{U1,U2, . . . ,UT} of size (R×N1T ) and

Dc
2 = diag{V1,V2, . . . ,VT} of size (R×N2T ) ,

so the stepwise projection, removing Dc = (Dc
1,D

c
2), is

M(1)
Dc

= IR−Dc
1(D

c′
1 Dc

1)
−1Dc′

1 ,

leading to

MDc = M(2)
Dc

= M(1)
Dc
−M(1)

Dc
Dc

2(D
c′
2 M(1)

Dc
Dc

2)
−Dc′

2 M(1)
Dc

. (1.27)

Note that for MDc , we have to invert (N2T ×N2T ) matrices, which can be compu-
tationally difficult.

The last model to deal with is model (1.7). Let Dd = (Dd
1 ,D

d
2 ,D

d
3), where the

adjusted dummy matrices are all defined above:

Dd
1 = Db

1 of size (R×N1N2) ,

Dd
2 = Dc

1 of size (R×N1T ) ,
Dd

3 = Dc
2 of size (R×N2T ) .
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Defining the partial projector matrices M(1)
Dd

and M(2)
Dd

as

M(1)
Dd

= IR−Dd
1(D

d′
1 Dd

1)
−1Dd′

1 and
M(2)

Dd
= M(1)

Dd
−M(1)

Dd
Dd′

2 (D
d′
2 M(1)

Dd
Dd

2)
−Dd′

2 M(1)
Dd

,

the appropriate transformation for model (1.7) is now

MDd = M(3)
Dd

= M(2)
Dd
−M(2)

Dd
Dd′

3 (D
d′
3 M(2)

Dd
Dd

3)
−Dd′

3 M(2)
Dd

. (1.28)

It can be easily verified that MDd is idempotent and MDd Dd = 0, so all the fixed
effects are indeed eliminated.5 As model (1.6) is covered by model (1.7), projection
(1.28) eliminates the fixed effects from that model as well. Moreover, as suggested
above, all three-way fixed effects models are in fact nested into model (1.7). It
is therefore intuitive that transformation (1.28) clears the fixed effects in all model
formulations. Using (1.7) is not always advantageous though, as the transformation
involves the inversion of potentially large matrices (of order N1T , and N2T ). In the
case of most models studied, we can find suitable unbalanced transformations at the
cost of only inverting (T ×T ) matrices; or in some cases, we can even derive scalar
transformations. It is good to know, however, that there is a general projection that
is universally applicable to all three-way models in the presence of all kinds of data
issues.

It is worth noting that transformations (1.25), (1.26), (1.27), and (1.28) are all
dealing in a natural way with the no self-flow problem, as only the rows cor-
responding to the i = j observations need to be deleted from the corresponding
dummy variable matrices.

All transformations detailed above can also be rewritten in a semi-scalar form.
Let us show here how this idea works on transformation (1.28), as all subsequent
transformations can be dealt with in the same way. Let

φ =C−D̄′y and ω = C̃−(M(2)
Dd

Dd
3)
′y ξ =C−D̄′Dd

3ω ,

where

C =
(

Dd
2

)′
D̄ , D̄ =

(
IR−Dd

1(D
d′
1 Dd

1)
−1Dd′

1

)
Dd

2 , and C̃ = Dd′
3 M(2)

Dd
Dd

3 .

Now the scalar representation of transformation (1.28) is

[MDd y]i jt = yi jt − 1
|Ti j| ∑t∈Ti j yi jt +

1
|Ti j|a

′
i jφ −φit

−ω jt +
1
|Ti j| ã

′
i jω +ξit − 1

|Ti j|

(
ab

i j

)′
ξ ,

where ai j and ãi j are the column vectors corresponding to observations (i j) from
5 A STATA program code for transformation (1.28) with a user-friendly detailed explanation is available at

www.personal.ceu.hu/staff/repec/pdf/stata-program document-dofile.pdf. Estimation of model (1.7) is then
easily done for any kind of incompleteness.

28

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2017.05

matrices A = Dd′
2 Dd

1 and Ã = Dd′
3 Dd

1 , respectively; φit is the (it)-th element of the
(N1T × 1) column vector φ ; ω jt is the ( jt)-th element of the (N2T × 1) column
vector ω; and finally, ξit is the element corresponding to the (it)-th observation
from the (N1T ×1) column vector, ξ .6

1.6 Dynamic Models

In the case of dynamic autoregressive models, the use of which is unavoidable if
the data generating process has partial adjustment or some kind of memory, the
Within estimators in a usual panel data framework are biased. In this section we
generalize these well known results to this higher dimensional setup. We first derive
a general semi-asymptotic bias formulae, then we make it specific for each of the
models introduced in Section 1.2, lastly we propose consistent estimators for the
problematic models.

1.6.1 Nickell Biases

The models of Section 1.2 can all be written in the general dynamic form

y = ρy−1 +Dπ + ε , (1.29)

where D and π correspond to any of the specific D and π discussed in Section 1.2.
With MD the projection matrix orthogonal to D,

ρ̂ =
y′−1MDy

y′−1MDy−1
= ρ +

tr(MDεy′−1)

tr(MDy−1y′−1)
, (1.30)

6 From a computational point of view, the calculation of matrix MDd is by far the most resource requiring as we
have to invert (N1T ×N1T ), and (N2T ×N2T ) sized matrices. Simplifications related to this can dramatically
reduce CPU and storage requirements. This topic, however, is well beyond the scope of this chapter.
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where y and y−1 are the column vectors of dependent and lagged dependent vari-
ables respectively of size N1N2T . Let

B0 =

(
0 0

IT−1 0

)
of size (T ×T ) ,

Γ0 = (IT −ρB0)
−1 =


1 . . . . . . 0

ρ
. . .

...
. . . . . .

...
ρT−1 ρ 1

 of size (T ×T ) ,

Ψ0 =


1 ρ ρT−1

ρ
. . . . . .
. . . . . . ρ

ρT−1 ρ 1

= IT +ρ(Γ0B0 +(Γ0B0)
′)

of size (T ×T ), and let B = IN1N2 ⊗B0,Γ = IN1N2 ⊗Γ0,Ψ = IN1N2 ⊗Ψ0 define ma-
trices necessary for the general bias formulae. With e1 the first unit vector of size
(T ×1) and y0 having N1N2 elements (the initial values of the yi jt for all (i j) pair),

By = y−1− y0⊗ e1 ,

and so the model (1.29) can be rewritten as

y = ρBy+ρy0⊗ e1 +Dπ + ε , or (IN1N2T −ρB)y = ρy0⊗ e1 +Dπ + ε ,

which ultimately leads to

y = ρΓ(y0⊗ e1)+ΓDπ +Γε .

Let ε+ be ε advanced by one time period. Then, under the stationarity of εi jt ,

E(y−1ε
′) = E(yε

′
+) = ΓE(εε

′
+) = σ

2
ε ΓB .

So for the expectation of the numerator in (1.30) we obtain

E(tr(MDεy′−1)) = σ
2
ε tr(MDΓB) =

σ2
ε

2ρ
(tr(MDΨ)− tr(MD)) ,

with Ψ = (IN1N2T +ρ(ΓB+(ΓB)′)). For the denominator in (1.30),

E(tr(MDy−1y′−1)) = E(tr(MDyy′))
= ρ2 E(tr(MDy−1y′−1))+σ2

ε tr(MD)+2E(tr(MDεy′−1)) ,

so, as E(tr(MDεy′−1)) = σ2
ε tr(MDΓB),

E(tr(MDy−1y′−1)) =
σ2

ε

1−ρ2 (tr(MD)+2tr(MDΓB)) =
σ2

ε

1−ρ2 tr(MDΨ) .
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Table 1.3 Trace calculations in (1.30) for different models

Model tr(MD) tr(MDΨ)

(1.2) (N1N2−1)T − (N1 +N2−2) (N1N2−1)T − (N1 +N2−2)Θ
(1.3) N1N2(T −1) N1N2(T −Θ)
(1.4) (N1N2−1)(T −1) (N1N2−1)(T −Θ)
(1.5) N2T (N1−1) N2T (N1−1)
(1.6) (N1−1)(N2−1)T (N1−1)(N2−1)T
(1.7) (N1−1)(N2−1)(T −1) (N1−1)(N2−1)(T −Θ)

Table 1.4 Semi-asymptotic bias of each model formulation

Model plimN1,N2→∞(ρ̂−ρ)

(1.2) 1−ρ2

2ρ

(
1−plimN1,N2→∞

(N1N2−1)T − (N1 +N2−2)
(N1N2−1)T − (N1 +N2−2)Θ

)
= 0

(1.3), (1.4), (1.7) 1−ρ2

2ρ

(
1− T−1

T−Θ

)
(1.5), (1.6) 0

Combining the expressions for the numerator and denominator we get

plimN1,N2→∞ ρ̂ = ρ +
1−ρ2

2ρ

(
1−plimN1,N2→∞

tr(MD)

tr(MDΨ)

)
. (1.31)

As for the specific models, as tr(IT Ψ0) = tr(IT ), we get tr(MD) and tr(MDΨ) as in
Table 1.3, with

Θ = tr(J̄T Ψ0) = 1+2
ρ

1−ρ

(
1− 1

T
1−ρT

1−ρ

)
.

The individual asymptotic biases, following (1.31), are collected in Table 1.4.7

1.6.2 Arellano–Bond Estimation

As seen above, we have problems with the N inconsistency of models (1.3), (1.4)
and (1.7) in the dynamic case. Luckily, many of the well known instrumental vari-
ables (IV) estimators developed to deal with dynamic panel data models can be
generalized to these higher dimensions as well, as the number of available orthog-
onality conditions increases together with the dimensions. Let us take the example

7 A natural extension would be to compute these semi-asymptotic biases, when only N1→ ∞ or N2→ ∞.
These two cases, however, give the same biases for all models as Table 1.4 suggests, except for model (1.2).
In its case, the bias is not completely wiped out when only one individual dimension grows.
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of one of the most frequently used, the Arellano and Bond IV estimator (see Arel-
lano and Bond (1991) and (Harris et al., 2008, p. 260)) for the estimation of model
(1.3).

The model is written up in first differences, such as

(yi jt − yi jt−1) = ρ (yi jt−1− yi jt−2)+(εi jt − εi jt−1) , t = 3, . . . ,T

or

∆yi jt = ρ∆yi jt−1 +∆εi jt , t = 3, . . . ,T.

The yi jt−k, (k= 2, . . . , t−1) are valid instruments for ∆yi jt−1, as ∆yi jt−1 is N asymp-
totically correlated with yi jt−k, but yi jt−k are not with ∆εi jt . As a result, the full
instrument set for a given cross sectional pair, (i j) is

zi j =


yi j1 0 · · · · · · 0 · · · 0
0 yi j1 yi j2 0 0 · · · 0
... · · ·

...
... · · ·

...
0 · · · 0 0 yi j1 · · · yi jT−2


of size ((T −2)× (T −1)(T −2)/2). The resulting IV estimator of ρ is

ρ̂AB =
[
∆y′−1ZAB

(
Z′ABΩZAB

)−1 Z′AB∆y−1

]−1
∆y′−1ZAB

(
Z′ABΩZAB

)−1 Z′AB∆y,

where ∆y and ∆y−1 are the panel first differences, ZAB = (z′11,z
′
12, . . . ,z

′
NN)

′ and
Ω = (IN1N2⊗Σ) is the covariance matrix, with known form

Σ =


2 −1 0 · · · 0
−1 2 −1 · · · 0

0
. . . . . . . . . 0

0 · · · −1 2 −1
0 · · · 0 −1 2

 of size ((T −2)× (T −2)) .

The generalized Arellano-Bond estimator behaves exactly in the same way as the
‘original’ two dimensional one, regardless the dimensionality of the model.

In the case of models (1.4) and (1.7), to derive an Arellano-Bond type estimator,
we need to insert one further step. After taking the first differences, we implement a
simple transformation in order to get to a model with only (i j) pairwise interaction
effects, exactly as in model (1.3). We then proceed as above, as the ZAB instruments
are valid for these transformed models as well. Let us start with model (1.4) and
take the first differences to get

∆yi jt = ρ∆yi jt−1 +∆λt +∆εi jt .
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Now, instead of estimating this equation directly with IV, we carry out the follow-
ing cross-sectional transformation

∆ỹi jt =

(
∆yi jt −

1
N1

∑
i

∆yi jt

)
,

or introducing the notation ∆ȳ. jt = 1
N1

∑i ∆yi jt and, also, noticing that the λ -s had
been eliminated from the model

(∆yi jt −∆ȳ. jt) = ρ (∆yi jt−1−∆ȳ. jt−1)+(∆εi jt −∆ε̄. jt) .

The ZAB instruments proposed above are valid with (∆yi jt−1−∆ȳ. jt−1) now, as they
are uncorrelated with (∆εi jt −∆ε̄. jt), but correlated with the former. The IV esti-
mator of ρ , ρ̂AB has again the form

ρ̂AB =
[
∆ỹ′−1ZAB(Z′ABΩZAB)

−1Z′AB∆ỹ−1
]−1

∆ỹ′−1ZAB(Z′ABΩZAB)
−1Z′AB∆ỹ,

with ∆ỹ and ∆ỹ−1 being the transformed panel first differences of the dependent
variable.

Continuing now with model (1.7), the transformation needed in this case is(
∆yi jt −

1
N1

∑
i

∆yi jt −
1

N2
∑

j
∆yi jt +

1
N1N2

∑
i, j

∆yi jt

)
.

Picking up the previously introduced notation and using the fact that the fixed ef-
fects are cleared again, we get

(∆yi jt −∆ȳ. jt −∆ȳi.t +∆ȳ..t) = ρ(∆yi jt−1−∆ȳ. jt−1−∆ȳi.t−1 +∆ȳ..t−1)

+(∆εi jt −∆ε̄. jt −∆ε̄i.t +∆ε̄..t)

The ZAB instruments can be used again, on this transformed model, to get a consis-
tent estimator for ρ .

1.7 Heteroscedasticity and Cross-correlation

We have assumed so far throughout the chapter that the idiosyncratic disturbance
terms in ε are in fact well-behaved white noises, that is, all heterogeneity is in-
troduced into the model through the fixed effects. Conditioning on the individual
dummy variables is however not always enough to address the dependence between
individual units. In the presence of such remaining dependences the white noise as-
sumption of the disturbances results biased estimators and spurious inferences. To
handle this, we introduce a simple form of cross-correlation and heteroscedasticity
among the disturbance terms and see how this influences the estimation methods
introduced earlier. So far the approach has been to perform directly LSDV on the
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models, or alternatively, to transform the models in such a way that the fixed effects
drop out, and then estimate the transformed models with OLS. Now, however, in
order to use all available information in an optimal way, the structure of the dis-
turbances has to be taken into account for the estimation, promoting Feasible GLS
(FGLS) instead of OLS on the fixed effects model. From the joint FGLS estimator
of the parameters we can express β̂ by partialling out the fixed effects parameters
as a second step.

1.7.1 The New Covariance Matrices and the GLS Estimator

The initial assumptions about the disturbance terms are now replaced by

E(εi jtεkls) =


σ2

i j if i = k, j = l, t = s

ρ1 if i = k, j 6= l,∀t,s
ρ2 if i 6= k, j = l,∀t,s
0 otherwise

which allows for a general form of cross-dependence and heteroscedasticity. Then
the variance-covariance matrix of all models introduced in Section 1.3 takes the
form

E(εε
′) = Ω = (ϒ⊗ IT )+ρ1(IN1⊗ JN2T )+ρ2(JN1⊗ IN2⊗ JT ), (1.32)

where

ϒ =


σ2

11−ρ1−ρ2 0 · · · 0
0 σ2

12−ρ1−ρ2 · · · 0
...

...
. . .

...
0 0 · · · σ2

N1N2
−ρ1−ρ2


is an (N1N2×N1N2) diagonal matrix. Invoking the form of the general fixed effects
model (1.1), and decomposing X and D to Z and β and π to δ , gives

y = Zδ + ε .

The GLS estimator is then reads as

δ̂ =
(
Z′Ω−1Z

)−1
Z′Ω−1y . (1.33)

As much as (1.33) is simple theoretically, it is as forbidding in practice: to carry the
estimation out, we have to compute Ω−1 first, to get δ̂ , then (D′Ω−1D)−1, to ex-
press β̂ from the joint estimator. With a decomposition of Ω (exact derivations are
omitted), the largest matrix to work with is of order min{N1,N2} when computing
Ω−1, however there is no clear way to reduce the computation of (D′Ω−1D)−1.
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The situation is fundamentally different if, along with cross-correlations, ho-
moscedasticity is assumed. In that case, Ω is simplified to

Ω = (σ2
ε −ρ1−ρ2)IN1N2T +ρ1(IN1⊗ JN2T )+ρ2(JN1⊗ IN2⊗ JT ) ,

with only three variance components, and its inverse is easily obtained with a de-
composition similar to Wansbeek and Kapteyn (1982),

Ω
−1 = IN1N2T +θ1(IN1⊗ J̄N2T )+θ2(J̄N1⊗ IN2 J̄T )+θ3(IN1⊗ J̄N2T )

with

θ1 =− N2T ρ1
(N2T−1)ρ1−ρ2+σ2

ε

, θ2 =− N1T ρ2
(N1T−1)ρ2−ρ1+σ2

ε

and

θ3 =
(

N2T ρ1
(N2T−1)ρ1−ρ2+σ2

ε

+ N1T ρ2
(N1T−1)ρ2−ρ1+σ2

ε

− N1T ρ2+N2T ρ1
(N1T−1)ρ2+(N2T−1)ρ1+σ2

ε

)
.

As now we have the exact form of Ω−1, estimation (1.33) can be performed, and the
(BLUE) δ̂ GLS estimators collected. Note, that this GLS estimation is equivalent
to a two-step procedure, where we first transform y, X and D according to

ỹi jt = yi jt −
(
1−
√

θ1 +1
)

ȳi..−
(
1−
√

θ2 +1
)

ȳ. j.
+
(
1−
√

θ1 +1−
√

θ2 +1+
√

θ1 +θ2 +θ3 +1
)

ȳ... ,

which is proportional to the scalar representation of Ω−
1
2 y, then perform an OLS

on the transformed model. To express β̂ out from the composite estimator δ̂ , invok-
ing the Frisch–Waugh–Lovell theorem, the transformed variables should be further
pre-multiplied with the projector

M
Ω−1/2D = I−Ω

−1/2D
(
D′Ω−1D

)−
D′Ω−1/2 ,

and an OLS should be performed on the twice-transformed variables y and X . As
it turns out, the two consecutive transformations, Ω−

1
2 and M

Ω
− 1

2 D
, together are

identical to the Within transformation for all models except for (1.5), with α jt fixed
effects. In other words, the GLS equals the OLS so long the effects are symmetrical
in i and j, as, quite intuitively, the Within transformation for those models eliminate
the cross-correlations from the disturbance terms along with the fixed effects.

1.7.2 Estimation of the Variance Components and the Cross Correlations

What now remains to be done is to estimate the variance components in order to
make the GLS feasible. In principle, the job is to find a set of identifying equations
from which the variance components can be expressed. Remember, that during
the estimation we have transformed the models and performed an OLS on that.
However this, in the case of some models, highly limits the number of identifying
equations available for the variance components. For some models, this even means
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that the variance components are non-estimable without further restrictions on the
structure of the disturbances (for example, ρ1 = ρ2, or an even stronger one, ρ1 =

ρ2 = 0). This would certainly impede our cause, so let us take another track. Along
with the OLS residuals from the transformed models, we can produce an other type
of residual: the one from the LSDV estimation. As we will see, we can estimate
all the variance components from the LSDV residuals, and at the same time, we
can obtain these residuals without directly estimating the possibly numerous fixed
effects.

As Section 1.3 suggests, whenever the D dummy coefficient matrix has no full
column rank, the composite fixed effects parameters, π can not be identified (and
of course, estimated). However, this is not the case for Dπ , which is given by

Dπ̂ = D(D′D)−D′(y−X β̂ ) = (I−MD)(y−X β̂ ) . (1.34)

The LSDV residuals are

ε̂ = y−X β̂ −Dπ̂ = (I− (I−MD))(y−X β̂ ) = MD(y−X β̂ ) = ỹ− X̃ β̂ (1.35)

where ‘∼’ denotes the appropriate Within transformation.
With the residuals in hand, the variance components can be expressed from the

same identifying conditions regardless of the model specification. These are

E
(

ε2
i jt

)
= σ2

i j

E
(

ε̄2
. jt

)
= 1

N2
1

(
∑i σ2

i j +N1(N1−1)ρ2

)
E
(
ε̄2

i.t
)

= 1
N2

2

(
∑ j σ2

i j +N2(N2−1)ρ1

)
.

The last step is to “estimate” the identifying conditions by replacing expectations
with sample means, and the disturbances with the residuals. That is,

σ̂2
i j = 1

T ∑t ε̂2
i jt

ρ̂2 = 1
N1(N1−1)

(
1

N2T ∑ jt (∑i ε̂i jt)
2−∑i σ̂2

i j

)
ρ̂1 = 1

N2(N2−1)

(
1

N1T ∑it
(
∑ j ε̂i jt

)2−∑ j σ̂2
i j

)
.

(1.36)

Equation (1.36) gives consistent estimators of the variance components, as long as
T →∞, as the number of heteroscedastic variances grows along with N1 and N2. In-
serting these estimated variance components into (1.33) gives the FGLS estimator
which handles the new and more flexible correlation structure.

When homoscedasticity is assumed along with the cross-correlations, the vari-
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ance-components estimators become

σ̂2
ε = 1

N1N2T ∑i jt ε̂2
i jt

ρ̂2 = 1
N1−1

(
1

N1N2T ∑ jt (∑i ε̂i jt)
2− σ̂2

ε

)
ρ̂1 = 1

N2−1

(
1

N1N2T ∑it
(
∑ j ε̂i jt

)2− σ̂2
ε

)
,

(1.37)

and T -asymptotics is not necessary any more (N1→∞ or N2→∞ is enough) to get
the estimators consistent.

When the data is incomplete, the derived FGLS estimator for the model with
homoscedasticity and cross-correlations is not appropriate as the decomposition of
Ω can not be represented with Kronecker products any longer, and so the presented
linear transformations to be employed on the data are incorrect. As the full analysis
of such incomplete estimator would certainly be lengthy, we only provide some
guidance on how to carry out the estimation. First, we leave out those rows from
D (similarly as we did in Section 1.5.2), and rows and columns from Ω which
correspond to missing observations. Then we proceed by performing a GLS with
the adjusted covariance matrix, but to get its inverse, we now have to use partial
inverse methods, to at least partially avoid the dimensionality issue. The last step
is to estimate the variance components, for which we only have to adjust (1.36) (or
(1.37)) to the incomplete sample sizes.

Remember, that the FGLS estimator in the presence of heteroscedasticity is con-
sistent only for long panels (when T → ∞). So how to proceed when the data is
small in the time dimension? Let us consider the case of heteroscedasticity only,
so set the cross correlations to null (ρ1 = ρ2 = 0). This special case can be esti-
mated in two ways. The optimal way is to first to transform the model according
to the optimal Within transformation as before, then carry out an FGLS with the
heteroscedastic covariance matrix

Ωh = diag
{

σ
2
11I|T11|, σ

2
12I|T12|, . . . , σ

2
nmI|TN1N2 |

}
,

which is diagonal regardless of the potential data issues. The variance components
are then estimated from

σ̂
2
i j =

1
|Ti j|∑t

ε̂
2
i jt ,

like before, with the ε̂i jt being the LSDV residuals. However, this FGLS, as before,
is still only T consistent. When the data is short in time, it is better to estimate the
transformed model with OLS, which is still an unbiased and consistent estimator
of β in all the asymptotic cases studied before (though not optimal any more), and
use heteroscedasticity robust White covariance matrix to estimate Var(β ). Then we
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get

Var(β̂ ) = (X̃ ′X̃)−1X̃ ′Ω̂hX̃(X̃ ′X̃)−1

=
(

∑i jt x̃i jt x̃′i jt

)−1(
∑i jt x̃i jt x̃′i jt

1
|Ti j| ∑t ε̂2

i jt

)(
∑i jt x̃i jt x̃′i jt

)−1
,

where ‘∼’ indicates that the variables are transformed. Notice again, that only the
data X has to be transformed, but not Ωh, due to the idempotent nature of the
projection matrix.

1.8 Extensions to Higher Dimensions

In four and higher dimensions the number of specific effects, and therefore models,
available is staggering. As a consequence, we have to restrict somehow the model
formulations taken into account. The restriction used in this chapter is to allow
for pairwise interaction effects only. Without attempting to be comprehensive, the
most relevant four dimensional models are introduced in this section. Then, on a
kind of benchmark model, we show intuitively how to estimate them for complete
data, and also, in the case of the same data problems brought up in Sections 1.4
and 1.5. This is carried in a way that gives indications on how to proceed beyond
four dimensions.

1.8.1 Different Forms of Heterogeneity

The dependent variable is now observed along four indices, such as i jst. The gen-
eralization of model (1.4) (and also, that of the 2D fixed effects model with both
individual and time effects) is

yi jst = x′i jstβ + γi js +λt + εi jst ,

or alternatively, a more restrictive formulation is

yi jst = x′i jstβ +αi +α
∗
j + γs +λt + εi jst .

As in the case of 3D models, we can benefit from the multi-dimensional nature of
the data, and let the fixed effects to be time dependent

yi jst = x′i jstβ +αit + γ jt +δst + εi jst

that is we can allow all individual heterogeneity to vary over time as well. Finally,
let us take the four-dimensional extension of the all-encompassing model (1.7),
with pair-wise interaction effects:

yi jst = x′i jstβ + γ
0
i js + γ

1
i jt + γ

2
jst + γ

3
ist + εi jst , (1.38)
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with i = 1 . . .N1, j = 1 . . .N2, s = 1 . . .N3, and t = 1 . . .T . This is what we consider
from now on as a benchmark model, and show step-by-step how to estimate it.

1.8.2 Least Squares and the Within Estimators

If we keep maintaining the standard OLS assumptions lined up in Section 1.2, the
LSDV estimator of model (1.38), following (1.8), is BLUE. Also, if we define the
Within projector MD, to get β̂ , the maximum matrix size to be worked with is still
(K×K). For model (1.38), the composite dummy matrix D is

D = ((IN1N2N3⊗ ιT ), (IN1N2⊗ ιN3⊗ IT ), (ιN1⊗ IN2N3T ), (IN1⊗ ιN2⊗ IN3T ))

with size

(N1N2N3T × (N1N2N3 +N1N2T +N2N3T +N1N3T )) ,

and column rank

(N1N2N3T − (N1−1)(N2−1)(N3−1)(T −1)) ,

leading to

MD = IN1N2N3T − (J̄N1⊗ IN2N3T )− (IN1⊗ J̄N2⊗ IN3T )

−(IN1N2⊗ J̄N3⊗ IT )− (IN1N2N3⊗ J̄T )+(J̄N1N2⊗ IN3T )

+(J̄N1⊗ IN2⊗ J̄N3⊗ IT )+(J̄N1⊗ IN2N3⊗ J̄T )

+(IN1⊗ J̄N2N3⊗ IT )+(IN1⊗ J̄N2⊗ IN3⊗ J̄T )+(IN1N2⊗ J̄N3T )

−(J̄N1N2N3⊗ IT )− (J̄N1N2⊗ IN3⊗ J̄T )− (J̄N1⊗ IN2⊗ J̄N3T )

−(IN1⊗ J̄N2N3T )+ J̄N1N2N3T .

Just as before, MD defines the optimal Within transformation to be performed on
the data, so we can avoid matrix manipulations. That is, the LSDV estimator of β is
analogous to the optimal Within estimator, which is obtained by first transforming
the data according to

ỹi jst = yi jst − ȳ. jst − ȳi.st − ȳi j.t − ȳi js.+ ȳ..st + ȳ. j.t + ȳ. js.
+ ȳi..t + ȳi.s.+ ȳi j..− ȳ...t − ȳ..s.− ȳ. j..− ȳi...+ ȳ....

(1.39)

(which eliminates (γ0
i js, γ1

i jt , γ2
jst , γ3

ist)), then running an OLS on the transformed
variables ỹi jst , x̃′i jst .

The properties of these estimators are identical to those of the three-way models,
with the only modification, that now even more asymptotic cases could be consid-
ered. In general, the estimator of a fixed effects parameter is consistent, if an index
with which the effect is fixed, goes to infinity. The resulting variances of any of the
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estimators should be normalized with the sample sizes which grow, and further, the
degrees of freedom should be corrected to reflect the column rank deficiency in D.8

1.8.3 Some Data Problems

In theory, the missing data problem is corrected for by leaving out those rows
from D which correspond to missing observations. LSDV estimation should then
be done with the modified D̃, or alternatively, with MD̃ = I− D̃(D̃′D̃)−D̃′. Unfortu-
nately, as now MD has no clear structure, the resulting LSDV estimator can not be
reached at an acceptable costs when the data is large. However, the optimal Within
estimator offers a better way to tackle the problem at only moderate costs. Just
like in Section 1.5, we have to come up with adjusted transformations, that clear
out the fixed effects in the case of missing data. The no self-flow and unbalanced
transformations in Section 1.5 can easily be generalized to any higher dimensions.
For model (1.38), the no self-flow robust transformation reads as

ỹi jst = yi jst − 1
N−1 y+ jst − 1

N−1 yi+st − 1
N3

yi j+t − 1
T yi js++ 1

(N−1)2 y++st

+ 1
(N−1)N3

y+ j+t +
1

(N−1)T y+ js++ 1
(N−1)N3

yi++t +
1

(N−1)T yi+s+

+ 1
N3T yi j++− 1

(N−1)2N3
y+++t − 1

(N−1)2T y++s+− 1
(N−1)N3T y+ j++

− 1
(N−1)N3T yi++++ 1

(N−1)2N3T y++++− 1
(N−1)N3T y ji++

+ 1
(N−1)T y jis++ 1

(N−1)N3
y ji+t − 1

N−1 y jist .

(1.40)

Note, that in the no self-flow case N1 = N2 = N had to be assumed.
Incomplete data can also be handled quite flexibly in case of four-dimensional

models. Remember, that the key (iterative) unbalanced-robust transformation in
Section 1.5 was (1.28), which can be generalized simply into a four dimensional
setup. Let the dummy variables matrices for the four fixed effects in (1.38) be
denoted by De = (De

1,D
e
2,D

e
3,D

e
4) and let M(k)

De
be the transformation that clears the

first k fixed effects out; namely, M(k)
De
·
(
De

1, . . . ,D
e
k

)
= (0, . . . ,0) for k = 1 . . .4. The

appropriate Within transformation to clear out the first k fixed effects is then

M(k)
De

= M(k−1)
De

−
(

M(k−1)
De

De
k

)[(
M(k−1)

De
De

k

)′(
M(k−1)

De
De

k

)]−(
M(k−1)

De
De

k

)′
,

(1.41)
where the first step in the iteration is

M(1)
De

= I−De
1
(
(De

1)
′De

1
)−1

(De
1)
′ ,

and the iteration should be processed until k = 4. Note that none of this hinges on
8 For example for model (1.38), the correct degrees of freedom (coming from the rank of MD) is
(N1−1)(N2−1)(N3−1)(T −1)−K.
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the model specification and can be done to any other multi-dimensional fixed ef-
fects model. The drawback, which can not really be addressed at this point, is again
the increasing size of the matrices involved in the calculations. If this is the case,
direct inverse calculations are feasible only up to some point, and further tricks
(parallel computations, iterative inverting methods) should be used. However, this
is beyond the scope of this chapter.

1.9 Conclusion

In the case of three and higher dimensional fixed effects panel data models, due
to the many interaction effects, the number of dummy variables in the model in-
creases dramatically. This circumvents the direct estimation of all model parame-
ters. In order to estimate the slope parameters at least, we either have to partial out
the intercept parameters from the LSDV estimation, or alternatively (producing
numerically equivalent estimates), we can use the appropriate Within estimators
which do not require the explicit incorporation of the fixed effects into the model.
Although these Within estimators are more complex than for the usual two dimen-
sional panel data models, and usually not unique, they turn out to be quite useful in
these higher dimensional setups. Along with the estimators, finite and asymptotic
properties are considered, as well as some insights on testing for parameter values.
Both estimators (the LSDV and the Within), however, are biased and inconsistent
in the case of some relevant data problems, like the lack of self-flows, or general
incompleteness in the data. The chapter offers two ways to correct for this inconsis-
tency: one iterative, following Carneiro et al. (2008) and Guimaraes and Portugal
(2009), and another, which is derived from the Frisch-Waugh theorem. The chapter
also extends the results of 2D dynamic autoregressive models, and generalizes the
so-called Nickell-bias to show that the estimators of 3D fixed effects models are
biased in general. Interestingly, the Within estimator is inconsistent only for some
of the considered three-dimensional models, which inconsistency in turn is easily
tackled by Arellano-Bond-type estimators. Next, we have allowed heteroscedastic-
ity, and a simple form of cross-correlation to the disturbance terms, and derived
(F)GLS estimators for such augmented models. Lastly, we have shown, through
the lenses of a four- and higher-dimensional extension, that generalization of any
result of the chapter is straightforward, and thus can be done without trouble. The
derived estimators and properties of this chapter should be taken into account by
all researchers relying on these methods.
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Appendix A – Background Calculations – Obtaining MD from D

Let us consider model (1.2) in details, the rest is analogous. Remember, that now
the dummy matrix is

D = ((IN1⊗ ιN2T ), (ιN1⊗ IN2⊗ ιT ), (ιN1N2⊗ IT )) .

Wansbeek (1991) has shown, that the column space of D does not change by re-
placing IN1 (or similarly IN2 or IT ) with any (GN1 , ῑN1) orthonormal matrix of order
(N1× (N1−1)), where GN1 has to satisfy the following conditions:

G′N1
ιN1 = 0, and G′N1

GN1 = IN1−1, with ῑN1 ≡ ιN1/
√

N1 .

As matrix D spans the same vector space as the following orthonormal matrix

D̂≡ ((GN1⊗ ῑN2T ), (ῑN1⊗GN2⊗ ῑT ), (ῑN1N2⊗GT ), ῑN1N2T ) ,

which has in fact full column rank (N1 +N2 +T −2), the projection matrix of size
(N1N2T ×N1N2T ) to get rid of D is simply

MD ≡ IN1N2T − D̂D̂′

= IN1N2T − (QN1⊗ J̄N2T )− (J̄N1⊗QN2⊗ J̄T )− (J̄N1N2⊗QT )− J̄N1N2T

= IN1N2T − (IN1⊗ J̄N2T )− (J̄N1⊗ IN2⊗ J̄T )− (J̄N1N2⊗ IT )+2J̄N1N2T ,

with QN1 ≡ GN1G′N1
= IN1− J̄N1 .

Appendix B – Background Calculations – Derivations of the No
Self-flow Transformations

B.1 No Self-flow Derivation for the Pure Cross-sectional Panel Model

To get an insight for the exact derivations, let us consider first the case of T = 1.
This corresponds to pure cross-sectional panels, where the only reasonable model
formulation (ignoring the trivial case of one fixed effect) is, with i, j = 1, . . . ,N

yi j = β
′xi j +αi + γ j + εi j , (B.42)

or in matrix form,

y = Xβ +(IN⊗ ιN)α +(ιN⊗ IN)γ + ε = Xβ +Dαα +Dγγ + ε

= Xβ +D(α ′,γ ′)′+ ε .

As there are no data with i = j, we eliminate these from the model by using the
selection matrix L of order N2×N(N−1) to get

L′y = L′Xβ +L′D(α ′,γ ′)′+L′ε.
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So the optimal effects-eliminating projection matrix is

ML′D = IN(N−1)−L′DW+D′L,

with W = D′LL′D and “+” denoting the Moore-Penrose generalized inverse. We
want to have a simple expression for the elements of ML′DL′y, indicated by a tilde.
When in the data i = j are observed, this expression is

ỹi j = yi j− yi.− y. j + y.. .

Now, it is more complicated. For i 6= j, (ei⊗ e j)
′D = (ei⊗ e j)

′LL′D = (e′i,e
′
j), so

ỹi j = (ei⊗ e j)
′LMDL′y = yi j− (e′i,e

′
j)W

+D′LL′y (B.43)

with ei being the ith unit vector of size N. We have to further elaborate on W . Since

D′αLL′Dα = D′γLL′Dγ = (N−1)IN and D′αLL′Dγ = JN− IN

and, as before, J̄N = JN/N and QN = IN− J̄N , we obtain

W =

(
N−1 −1
−1 N−1

)
⊗ IN +

(
0 1
1 0

)
⊗ JN

=

(
N−1 −1
−1 N−1

)
⊗QN +(N−1)

(
1 1
1 1

)
⊗ J̄N .

Since QN and J̄N are idempotent and mutually orthogonal, the Moore-Penrose in-
verse W+ of W is

W+ = 1
N(N−2)

(
N−1 1

1 N−1

)
⊗QN + 1

4(N−1)

(
1 1
1 1

)
⊗ J̄N

= 1
N(N−2)

(
N−1 1

1 N−1

)
⊗ IN + 1

N

(
p q
q p

)
⊗ JN ,

with

p =
1

4(N−1)
− N−1

N(N−2)
and q =

1
4(N−1)

− 1
N(N−2)

.

Now, with this updated form of W ,

(e′i,e
′
j)W

+ = 1
N(N−2)

(
(N−1)e′i + e′j,e

′
i +(N−1)e′j

)
− 1

2(N−1)(N−2) (ι
′
N , ι
′
N) .

Moreover, with Y being the (N×N) data matrix containing the yi j observations,
with zeros filled in the empty diagonal elements,

D′LL′y =
(

Y ′ιN

Y ιN

)
.

43

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2017.05

So, after multiplying (e′i,e
′
i)W

+ and D′LL′y, and as y++ = ι ′NY ιN = ι ′NY ′ιN , we get

ỹi j = yi j−
N−1

N(N−2)
(yi++ y+ j)−

1
N(N−2)

(y+i + y j+)+
1

(N−1)(N−2)
y++ ,

(B.44)
with

y+i = ∑
i

yi j,( j=i), y j+ = ∑
j

yi j,(i= j) .

When N grows larger, the effect of the missing diagonal elements becomes smaller,
which is reflected in the above expression by the third term at the right-hand side of
formula (B.44) being of lower order than N. The introduction of the “+” notation is
needed to avoid confusions with the indexing. For example, now we take sums with
respect to the first index, fixing the second j, but we also take the same kind of sum,
only fixing i now as the second index. This cannot be properly represented with our
previous ȳ. j-type notations. Let us illustrate these new sums with a small example.
Let N = 3 and let yi j = y12. Then y+i = y+1 = y11 + y21 + y31, and similarly, y j+ =

y2+ = y21 + y22 + y23.

B.2 No Self-flow Transformation for Model (1.2)

We start from the matrix form of (1.2),

y = Xβ +(IN⊗ ιN⊗ ιT )α +(ιN⊗ IN⊗ ιT )γ +(ιN⊗ ιN⊗ IT )λ + ε

= Xβ +Dα∗α +Dγ∗γ +Dλ λ + ε .

To adjust the model for the no self-flow type data, we pre-multiply it with the
selection matrix L̃ of order (N2T × (N(N−1)T )), to get

L̃′y = L̃′Xβ + L̃′Dα∗α + L̃′Dγ∗γ + L̃′Dλ λ + L̃′ε
= L̃′Xβ + L̃′D(α ′,γ ′,λ ′)′+ L̃′ε .

Note, that L̃L̃′= IN2T−∑i (eie′i⊗ eie′i)⊗ IT . The optimal effects-eliminating projec-
tion matrix, orthogonal to L̃′D, is a direct application of the Frisch-Waugh theorem,

ML̃′D = IN(N−1)T − L̃′DW+
1 D′L̃

with W1 = D′L̃L̃′D. From now on, we have three things to do. First, get the L̃′D for
a particular (i jt) element. Second, elaborate on W+

1 (this is the hardest part), and
third, get D′L̃L̃′y. Notice, that (ei⊗ e j⊗ et)L̃L̃′D = (e′i,e

′
j,e
′
t), so

ỹi jt = yi jt − (e′i,e
′
j,e
′
t)W

+
1 D′L̃L̃′y .
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Now

D′α∗ L̃L̃′Dα∗ = (IN⊗ ιN⊗ ιT )
′ {IN2T −∑i (eie′i⊗ eie′i)⊗ IT}(IN⊗ ιN⊗ ιT )

= (IN⊗ ι ′NιN⊗ ι ′T ιT )− (ι ′Nei)
2ι ′T ιT ∑i eie′i

= (N−1)T IN

D′γ∗ L̃L̃′Dγ∗ = (N−1)T IN

D′
λ

L̃L̃′Dλ = (ιN⊗ ιN⊗ IT )
′ {IN2T −∑i (eie′i⊗ eie′i)⊗ IT}(ιN⊗ ιN⊗ IT )

= (ι ′NιN⊗ ι ′NιN⊗ IT )−∑i (ι
′
Neie′iιN)

2⊗ IT

= N(N−1)IT

D′α∗ L̃L̃′Dγ∗ = (IN⊗ ιN⊗ ιT )
′ {IN2T −∑i (eie′i⊗ eie′i)⊗ IT}(ιN⊗ IN⊗ ιT )

= (JN⊗ ι ′T ιT )− (ι ′Nei)
2ι ′T ιT ∑i eie′i

= T (JN− IN)

D′γ∗ L̃L̃′Dα∗ = T (JN− IN)

D′α∗ L̃L̃′Dλ = (IN⊗ ιN⊗ ιT )
′ {IN2T −∑i (eie′i⊗ eie′i)⊗ IT}(ιN⊗ ιN⊗ IT )

= (ιN⊗ ι ′NιN⊗ ι ′T )− (ι ′Nei)
2

∑i ei⊗ ι ′T
= (N−1)ιNι ′T

D′γ∗ L̃L̃′Dλ = (N−1)ιNι ′T
D′

λ
L̃L̃′Dα∗ = (N−1)ιT ι ′N and

D′
λ

L̃L̃′Dγ∗ = (N−1)ιT ι ′N ,

From this, W1 can be constructed as

W1 =

 (N−1)T IN T (JN− IN) (N−1)ιNι ′T
T (JN− IN) (N−1)T IN (N−1)ιNι ′T
(N−1)ιT ι ′N (N−1)ιT ι ′N N(N−1)IT ,


so its inverse is simply

W+
1 =


1

T N(N−2)

(
N−1 1

1 N−1

)
⊗ IN +

(
r s
s r

)
⊗ JN − 1

T N(N−1) ι2Nι ′T

− 1
T N(N−1) ιT ι ′2N

1
N(N−1)(IT + J̄T )


with

r =− −N2 +2N−4
4N2(N−1)(N−2)T

and s =
3N2−10N +4

4N2(N−1)(N−2)T
.
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As

(e′i,e
′
j,e
′
t)W

+
1 = 1

T N(N−2)

(
(N−1)(e′i,e

′
j,0)+(e′j,e

′
i,0)
)

+
(

r+ s− 1
T N(N−1)

)
(ι ′N , ι

′
N ,0)+

1
T N(N−1)(0,0,Te′t − ι ′T )

= 1
T N(N−2)

(
(N−1)(e′i,e

′
j,0)+(e′j,e

′
i,0)
)

− 1
2(N−1)(N−2)T (ι

′
N , ι
′
N ,0)+

1
T N(N−1)(0,0,Te′t − ι ′T ) ,

the final form of the projection is obtained when the above expression is multiplied
by D′L̃L̃′y, which in turn gives

ỹi jt = yi jt − N−1
N(N−2)T (yi+++ y+ j+)− 1

N(N−2)T (y j+++ y+i+)

− 1
N(N−1)y++t +

2
N(N−2)T y+++ .

B.3 No Self-flow Transformation for Model (1.6)

The model in matrix form reads as

y = Xβ +(IN⊗ ιN⊗ IT )α +(ιN⊗ IN⊗ IT )α
∗+ ε

= Xβ +D(α ′,α∗
′
)′+ ε .

With the same selection matrix L̃, we adjust the model to reflect no self-flow data,

L̃′y = L̃′Xβ + L̃′D(α ′,α∗
′
)′+ L̃′ε .

The optimal effects-eliminating projection matrix is

ML̃′D = IN(N−1)T − L̃′DW+
2 D′L̃,

with W2 = D′L̃L̃′D. As (ei⊗ e j⊗ et)
′L̃L̃′D = (e′i,e

′
j,e
′
t) holds again,

ỹi jt = (ei⊗ e j⊗ et)
′L̃ML̃′DL̃′y

= yi jt − (e′i,e
′
j,e
′
t)W

+
2 D′L̃L̃′y .

Further, as

D′L̃L̃′D =

(
(N−1)(IN⊗ IT ) ((JN− IN)⊗ IT )

((JN− IN)⊗ IT ) (N−1)(IN⊗ IT )

)
,

W2 is simply

W2 =

(
N−1 −1
−1 N−1

)
⊗ INT +

(
0 1
1 0

)
⊗ JN⊗ IT

=

(
N−1 −1
−1 N−1

)
⊗QN⊗ IT +(N−1)

(
1 1
1 1

)
⊗ J̄N⊗ IT ,
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Since QN and J̄N are idempotent and mutually orthogonal, the Moore-Penrose in-
verse W+

2 of W2 is

W+
2 = 1

N(N−2)

(
N−1 1

1 N−1

)
⊗QN⊗ IT + 1

4(N−1)

(
1 1
1 1

)
⊗ J̄N⊗ IT

= 1
N(N−2)

(
N−1 1

1 N−1

)
⊗ INT + 1

N

(
p q
q p

)
⊗ JN⊗ IT ,

with again,

p =
1

4(N−1)
− N−1

N(N−2)
and q =

1
4(N−1)

− 1
N(N−2)

.

Now, with this new form of W+
2 ,

(e′i,e
′
j,e
′
t)W

+
2 = 1

N(N−2)

(
(N−1)e′i + e′j,e

′
i +(N−1)e′j,e

′
t

)
− 1

2(N−1)(N−2) (ι
′
N , ι
′
N ,e
′
t) .

So, multiplying (e′i,e
′
i,e
′
t)W

+
2 by D′L̃L̃′y gives

ỹi jt = yi jt − N−1
N(N−2) (yi+t + y+ jt)− 1

N(N−2) (y+it + y j+t)

+ 1
(N−1)(N−2)y++t .

B.4 No Self-flow Transformation for Model (1.7)

As the method developed so far leads to messy matrix formulations in case of
model (1.7), we propose an other way to find the optimal scalar no self-flow Within
transformation. With the same selection matrix L̃ as before, L̃′y is the shortened y
vector without the elements i = j. The main job is again to get an expression for
ML̃′D, or for L̃ML̃′DL̃′ when we fill out arbitrary values for the missing elements
with i = j, to preserve a simple data format. Remember, that D corresponds to the
specific model’s dummy variable structure. Let H = ∑i(eie′i⊗ ei), so

H ′H = IN HH ′ = ∑
i
(eie′i⊗ eie′i) L̃L̃′ = IN2T − (HH ′⊗ IT ) L̃′(H⊗ IT ) = 0.

With G = D̂′(H⊗ IT ) and V = (I−G′G)−, we obtain

ML̃′D = ML̃′D̂ = I− L̃′D̂(D̂′L̃L̃′D̂)−D̂′L̃
= I− L̃′D̂

[
I− D̂′(H⊗ IT )(H⊗ IT )

′D̂
]− D̂′L̃

= I− L̃′D̂(I−GG′)−D̂′L̃
= I− L̃′D̂ [I +G(I−G′G)−G′] D̂′L̃
= L̃′(I− D̂D̂′)L̃− L̃′D̂GV G′D̂′L̃
= L̃′MDL̃− L̃′D̂D̂′(H⊗ IT )V (H⊗ IT )

′D̂D̂′L̃ .
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Notice, that first term leads to the usual optimal transformation MD. The second
term corrects for the missing i = j observations. This is general and holds for any
no self-flow model, however we want to apply it for model (1.7), so we use the
specific dummy matrixes

D = ((IN⊗ IN⊗ ιT ), (IN⊗ ιN⊗ IT ), (ιN⊗ IN⊗ IT ))

D̂ = ((GN⊗GN⊗ ῑT ), (GN⊗ ῑN⊗GT ), (ῑN⊗GN⊗GT ), (GN⊗ ῑN⊗ ῑT ),

,(ῑN⊗GN⊗ ῑT ), (ῑN⊗ ῑN⊗GT ), (ῑN⊗ ῑN⊗ ῑT ))

and get

D̂D̂′ = I− (QN⊗QN⊗QT ), so
L̃′D̂D̂′(H⊗ IT ) =−L̃′(QN⊗QN⊗QT )(H⊗ IT ) .

To elaborate on, we need some auxiliary results.

H ′(QN⊗QN)H = QN ·QN = (IN− 1
N JN) · (IN− 1

N JN)

= (1− 2
N )IN + 1

N2 JN = (1− 2
N )(QN + J̄N)+

1
N J̄N

= N−2
N QN + N−1

N J̄N .

Next,
I−G′G = I− (H⊗ IT )

′D̂D̂′(H⊗ IT )

= I− (H⊗ IT )
′(I−QN⊗QN⊗QT )(H⊗ IT )

= (H⊗ IT )
′(QN⊗QN⊗QT )(H⊗ IT )

= (QN ·QN)⊗QT ,

so
V = (I−G′G)− =

( N
N−2 QN + N

N−1 J̄N
)
⊗QT

=
(

N
N−2 IN− 1

(N−1)(N−2)JN

)
⊗QT .

Further, since e′iQN = e′i− 1
N ι ′N , there holds for i 6= j

(ei⊗ e j⊗ et)
′(QN⊗QN⊗QT )(H⊗ IT ) = [(e′iQN⊗ e′jQN)H]⊗ e′tQT

= (QNei ·QNe j)
′⊗ e′tQT

= 1
N2 [ιN−N(ei + e j)]

′⊗ e′tQT .

So multiplying this elaborated form of (ei⊗ e j⊗ et)
′(QN ⊗QN ⊗QT )(H⊗ IT ) by

V , we get(
1

N2 (ι
′
N−N(e′i + e′j))⊗ (e′t − 1

T ι ′T )
)
·
(

N
N−2 IN− 1

(N−1)(N−2)JN

)
⊗ (IT − J̄T )

=
(

1
(N−1)(N−2) ι

′
N− 1

N−2(e
′
i + e′j)

)
⊗ (e′t − 1

T ι ′T ) .

Let Y now be of order (N2×T ) such that vec(Y ′) = y. Then

(H⊗ IT )
′D̂D̂′L̃L̃′y = (H⊗ IT )

′(I−QN⊗QN⊗QT )vec(Y ′)
= vec(Y ′H)−vec(QTY ′(QN⊗QN)H) .
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After elaborating on this, we get ỹ, a vector of size NT with typical elements

ỹit =
1
N

yi+t +
1
N

y+it −
1

N2 y++t −
1

NT
yi++−

1
NT

y+i++
1

N2T
y+++

So putting everything together, the adjustment we have to make on the complete
data optimal Within transformation is

− 1
N(N−2)(yi+t + y+it + y j+t + y+ jt)+

1
N(N−2)T (yi+++ y+i++ y j+++ y+ j+)

+ 3N−2
N2(N−1)(N−2)(y++t − y+++) ,

leading to the optimal no self-flow Within transformation

yi jt − N−3
N(N−2)(yi+t + y+ jt)+

N−3
N(N−2)T (yi+++ y+ j+)+

1
N(N−2)(y+it + y j+t)

− 1
N(N−2)T (y+i++ y j++)− 1

T yi j++ N2−6N+4
N2(N−1)(N−2)(y++t − y+++) .

Note, that this method is also perfectly legitimate for all fixed effects models
listed in Section 1.2. Let’s consider for example model (1.3). We know, that its
optimal Within transformation in case of the lack of self-flow is, for i 6= j,

ỹi jt = yi jt −
1
T

ȳi j+ .

In principal,

ML̃′D = L̃′MDL̃− L̃′D̂D̂′(H⊗ IT )V (H⊗ IT )
′D̂D̂′L̃

should also give the same result. Notice, that as

D̂ = (IN⊗ IN⊗ ῑT ) ,

now D̂D̂′ = (IN2⊗QT ), and MD = IN2T − (IN2⊗ J̄T ). But as, for i 6= j,

(ei⊗ e j⊗ et)
′L̃′D̂D̂′(H⊗ IT ) = (ei⊗ e j⊗ et)

′(IN2⊗QT ) · (H⊗ IT )

= (ei⊗ e j⊗ et)
′ · (H⊗QT )

= (ei⊗ e j⊗ et)
′ · (∑i (eie′i⊗ ei)⊗QT )

= 0 ,

ML̃′D reduces to L̃′MDL̃, which in turn gives the scalar form

ỹi jt = (ei⊗ e j⊗ et)
′L̃′MDL̃L̃′y = yi jt −

1
T

ȳi j+ .
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2
Modelling Multi-dimensional Panel Data: A Random

Effects Approach

Sections 2.2–2.4 are joint works with Badi H. Baltagi, Laszlo Matyas and Daria
Pus, Sections 2.5 and 2.6.2–2.6.3 are joint works with Mark N. Harris, Felix Chan
and Maurice Bun. Sections 2.7 and the rest of 2.6.1 are solely my own.

2.1 Introduction

The disturbances of an econometric model in principle include all factors influenc-
ing the behaviour of the dependent variable, which cannot be explicitly specified.
In a statistical sense this means all terms about which we do not have enough in-
formation. In this chapter we deal with the cases when the individual and/or time
specific factors, and the possible interaction effects between them are considered
as unobserved heterogeneity, and as such are represented by random variables, and
are part of the composite disturbance terms. From a more practical point of view,
unlike the fixed effects approach, as seen in Chapter 1, this random effects ap-
proach has the advantage that the number of parameters to take into account does
not increase with the sample size. It also makes possible the identification of pa-
rameters associated with some time and/or individual invariant variables (see e.g.
p.60 in Baltagi et al., 2008 or Hornok, 2011).

Historically, multi-dimensional random effects (or error components) models
can be traced back to the variance component analysis literature (see Rao and Kl-
effe, 1980, or the seminal results of Laird and Ware, 1982 or Leeuw and Kreft,
1986), and are related to the multi-level models, well known in statistics (see, for
example, Scott et al., 2013, Luke, 2004, Goldstein, 1995, and Bryk and Rauden-
bush, 1992). We, however, assume fixed slope parameters for the regressors (rather
than a composition of fixed and random elements), and zero means for the random
components.

This chapter follows in spirit the analysis of the two-way panels by Baltagi et al.

50

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2017.05

(2008), that is, in Section 2.2 we introduce the most frequently used models in a
three-dimensional (3D) panel data setup, Section 2.3 deals with the Feasible GLS
estimation of these models, while Section 2.4 analyses the behaviour of this estima-
tor for incomplete/unbalanced data. Section 2.5 investigates the case when regres-
sors are potentially correlated with the random effects and proposes instrumental
variable (IV) estimators to obtain consistent estimators for all model parameters.
Section 2.6 lists various tests concerning random effects panel models: a test for
model selection/specification, a test for identifying the persistence and the sources
of endogeneity, and a test for instrument validity are proposed. Section 2.7 general-
izes the presented models to four and higher dimensional data sets, and extends the
random effects approach toward a mixed effects framework, and finally, Section
2.8 concludes.

2.2 Different Model Specifications

In this section, we present the most relevant three-dimensional model formula-
tions, paying special attention to the different interaction effects. The models we
encounter have empirical relevance, and correspond to some fixed effects model
formulations known from the literature (see, for example, Baltagi et al., 2003; Eg-
ger and Pfaffermayr, 2003; Baldwin and Taglioni, 2006; Baier and Bergstrand,
2007).

The general form of these random effects (or error components) models can be
casted as

y = Xβ +u , (2.1)

where y and X are respectively the vector and matrix of observations of the de-
pendent and explanatory variables, β is the vector of unknown (slope) parameters,
and we want to exploit the structure embedded in the random disturbance terms u.
As it is well known from the Gauss-Markov theorem, the General Least Squares
(GLS) estimator is BLUE for β . To make it operational, in principle, we have
to perform three steps. First, using the specific structure of u, we have to derive
the variance-covariance matrix of model (2.1), E(uu′) = Ω, then, preferably using
spectral decomposition, we have to derive its inverse. This is important, as multi-
dimensional data often tend to be very large, leading to some Ω-s of extreme order.
And finally, we need to estimate the unknown variance components of Ω to arrive
to the well known Feasible GLS (FGLS) formulation.
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2.2.1 Various Heterogeneity Formulations

The most general model formulation in a three-dimensional setup encompassing
all pairwise random effects is

yi jt = x′i jtβ +µi j +υit +ζ jt + εi jt , (2.2)

where i = 1 . . .N1, j = 1 . . .N2, and t = 1 . . .T . Note, that yi jt , x′i jt , and ui jt = µi j +

vit +ζ jt + εi jt are an element of the (N1N2T ×1), (N1N2T ×K), and (N1N2T ×1)
sized vectors and matrix y, X , and u respectively, of the general formulation (2.1),
and β is the (K× 1) vector of parameters. We assume the random effects to be
well-behaved ones, that is, to be pairwise uncorrelated, E(µi j) = 0, E(υit) = 0,
E(ζ jt) = 0, and further,

E(µi jµi′ j′) =

{
σ2

µ i = i′ and j = j′

0 otherwise

E(υitυi′t ′) =

{
σ2

υ i = i′ and t = t ′

0 otherwise

E(ζ jtζ j′t ′) =

{
σ2

ζ
j = j′ and t = t ′

0 otherwise

Most importantly, the regressors are assumed to be uncorrelated with the random
effects (strict exogeneity), which underpins the use of GLS-type estimators. This
assumption is later relaxed in Section (2.5). The covariance matrix of such error
components structure is simply

Ω = E(uu′) = σ
2
µ(IN1N2⊗ JT )+σ

2
υ(IN1⊗ JN2⊗ IT )+σ

2
ζ
(JN1⊗ IN2T )+σ

2
ε IN1N2T ,

(2.3)
where we keep sticking to standard ANOVA notation, so IN1 and JN1 are the identity,
and the square matrix of ones respectively, with the size in the index.

All other relevant model specifications are obtained by applying some restric-
tions on the random effects structure, that is all covariance structures are nested
into that of model (2.2). The model which only uses individual-time-varying ef-
fects reads as

yi jt = x′i jtβ +υit +ζ jt + εi jt , (2.4)

together with the appropriate assumptions listed for model (2.2). Now

Ω = σ
2
υ(IN1⊗ JN2⊗ IT )+σ

2
ζ
(JN1⊗ IN2⊗ IT )+σ

2
ε IN1N2T . (2.5)

A further restriction on the above model is

yi jt = x′i jtβ +ζ jt + εi jt , (2.6)
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which in fact is a generalization of the approach used in multi-level modeling, see
for example, Ebbes et al. (2004) or Hubler (2006).1 The covariance matrix now is

Ω = σ
2
ζ
(JN1⊗ IN2T )+σ

2
ε IN1N2T . (2.7)

Another restrictions of model (2.2) is to leave in the pair-wise random effects,
and restrict the individual-time-varying terms. Specifically, model

yi jt = x′i jtβ +µi j +λt + εi jt (2.8)

incorporates both time and individual-pair random effects. We assume, as before,
that E(λt) = 0, and that

E(λtλ
′
t ) =

{
σ2

λ
t = t ′

0 otherwise

Now

Ω = σ
2
µ(IN1N2⊗ JT )+σ

2
λ
(JN1N2⊗ IT )+σ

2
ε IN1N2T . (2.9)

A restriction of the above model, when we assume, that µi j = υi +ζ j is2

yi jt = x′i jtβ +υi +ζ j +λt + εi jt (2.10)

with the usual assumptions E(υi) = E(ζ j) = E(λt) = 0, and

E(υiυi′) =

{
σ2

υ i = i′

0 otherwise

E(ζ jζ j′) =

{
σ2

ζ
j = j′

0 otherwise

E(λtλt ′) =

{
σ2

λ
t = t ′

0 otherwise

Its covariance structure is

Ω = σ
2
υ(IN1⊗ JN2T )+σ

2
ζ
(JN1⊗ IN2⊗ JT )+σ

2
λ
(JN1N2⊗ IT )+σ

2
ε IN1N2T . (2.11)

Lastly, the simplest model is

yi jt = x′i jtβ +µi j + εi jt (2.12)

with

Ω = σ
2
µ(IN1N2⊗ JT )+σ

2
ε IN1N2T . (2.13)

1 The symmetric counterpart of model (2.6), with υit random effects, could also be listed here, however, as it
has the exact same properties as model (2.6), we take the two models together.

2 This model has in fact been introduced in Matyas (1998), and before that, in Ghosh (1976).
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Note, that model (2.12) and (2.8) can be considered in fact as straight panel data
models, where the individuals are now the (i j) pairs (so essentially it does not
take into account the three-dimensional nature of the data). In this sense, models
(2.2), (2.4) and (2.10) are more advantageous and are flexible in tackling problems,
which can not be handled with standard 2D panels.

2.2.2 Spectral Decomposition of the Covariance Matrices

To estimate the above models, the inverse of Ω is needed, a matrix of size (N1N2T×
N1N2T ). For even moderately large samples, this can be unfeasible in practice with-
out further elaboration. The common practice is to use the spectral decomposition
of Ω, which in turn gives the inverse as a function of fairly standard matrices (see
Wansbeek and Kapteyn, 1982). We derive the algebra for model (2.2), Ω−1 for all
other models can de derived likewise, so we only present the final results. First,
consider a simple rewriting of the identity matrix

IN1 = QN1 + J̄N1 , where, remember QN1 = IN1− J̄N1 ,

with J̄N1 = 1/N1JN1 . Now Ω becomes

Ω = T σ2
µ((QN1 + J̄N1)⊗ (QN2 + J̄N2)⊗ J̄T )

+N2σ2
υ((QN1 + J̄N1)⊗ J̄N2⊗ (QT + J̄T ))

+N1σ2
ζ
(J̄N1⊗ (QN2 + J̄N2)⊗QT )

+σ2
ε ((QN1 + J̄N1)⊗ (QN2 + J̄N2)⊗ (QT + J̄T )) .

If we unfold the brackets, the terms we get are in fact the between-group variations
of each possible groups in three-dimensional data. For example, the building block

Bi j. = (QN1⊗QN2⊗ J̄T )

captures the variation between i and j. All other B matrices are defined in a similar
manner: the indices in the subscript indicate the variation with respect to which it
is captured. The two extremes, Bi jt and B... are thus

Bi jt = (QN1⊗QN2⊗QT ) and B... = (J̄N1⊗ J̄N2⊗ J̄T ) .

Notice, that the covariance matrix of all three-way error components model can be
represented by these B building blocks. For model (2.2), this means

Ω = σ2
ε Bi jt +(σ2

ε +T σ2
µ)Bi j.+(σ2

ε +N2σ2
υ)Bi.t +(σ2

ε +N1σ2
ζ
)B. jt

+(σ2
ε +T σ2

µ +N2σ2
υ)Bi..+(σ2

ε +T σ2
µ +N1σ2

ζ
)B. j.

+(σ2
ε +N2σ2

υ +N1σ2
ζ
)B..t +(σ2

ε +T σ2
µ +N2σ2

υ +N1σ2
ζ
)B... .

(2.14)
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Also notice, that all B matrices are idempotent and mutually orthogonal by con-
struction (as QN1 J̄N1 = 0, likewise with N2 and T ), so

Ω−1 = 1
σ2

ε

Bi jt +
1

σ2
ε +T σ2

µ

Bi j.+
1

σ2
ε +N2σ2

υ

Bi.t +
1

σ2
ε +N1σ2

ζ

B. jt

+ 1
σ2

ε +T σ2
µ+N2σ2

υ

Bi..+
1

σ2
ε +T σ2

µ+N1σ2
ζ

B. j.

+ 1
σ2

ε +N2σ2
υ+N1σ2

ζ

B..t +
1

σ2
ε +T σ2

µ+N2σ2
υ+N1σ2

ζ

B... .

This means that we can get the inverse of a covariance matrix at virtually no compu-
tational cost, as a function of some standard B matrices. After some simplification,
we get

σ2
ε Ω−1 = IN1N2T − (1−θ1)(J̄N1⊗ IN2T )− (1−θ2)(IN1⊗ J̄N2⊗ IT )

−(1−θ3)(IN1N2⊗ J̄T )+(1−θ1−θ2 +θ4)(J̄N1N2⊗ IT )

+(1−θ1−θ3 +θ5)(J̄N1⊗ IN2⊗ J̄T )

+(1−θ2−θ3 +θ6)(IN1⊗ J̄N2T )

−(1−θ1−θ2−θ3 +θ4 +θ5 +θ6−θ7)J̄N1N2T ,

(2.15)

with

θ1 = σ2
ε

σ2
ε +N1σ2

ζ

, θ2 =
σ2

ε

σ2
ε +N2σ2

υ

, θ3 =
σ2

ε

σ2
ε +T σ2

µ

θ4 = σ2
ε

σ2
ε +N2σ2

υ+N1σ2
ζ

, θ5 =
σ2

ε

σ2
ε +T σ2

µ+N1σ2
ζ

,

θ6 = σ2
ε

σ2
ε +T σ2

µ+N2σ2
υ

, and θ7 =
σ2

ε

σ2
ε +T σ2

µ+N2σ2
υ+N1σ2

ζ

.

The good thing is that we can fully get rid of the matrix notations, following Fuller
and Battese (1973), as σ2

ε Ω−1/2y can be written up in scalar form as well. This
transformation can be represented with its typical element

ỹi jt = yi jt − (1−
√

θ1)ȳ. jt − (1−
√

θ2)ȳi.t − (1−
√

θ3)ȳi j.

+(1−
√

θ1−
√

θ2 +
√

θ4)ȳ..t
+(1−

√
θ1−
√

θ3 +
√

θ5)ȳ. j.+(1−
√

θ2−
√

θ3 +
√

θ6)ȳi..

−(1−
√

θ1−
√

θ 2−
√

θ 3 +
√

θ 4 +
√

θ 5 +
√

θ 6−
√

θ 7)ȳ... .

By using the OLS on these transformed variables, we get back the GLS estimator.
For other models, the job is essentially the same. For model (2.4),

σ2
ε Ω−1 = IN1N2T − (IN1⊗ J̄N2⊗ IT )− (J̄N1⊗ IN2T )+(J̄N1N2⊗ IT )

+ σ2
ε

N1σ2
ζ
+σ2

ε

((J̄N1⊗ IN2T )− (J̄N1N2⊗ IT ))

+ σ2
ε

N2σ2
υ+σ2

ε

((IN1⊗ J̄N2⊗ IT ))− (J̄N1N2⊗ IT ))

+ σ2
ε

N2σ2
υ+N1σ2

ζ
+σ2

ε

(J̄N1N2⊗ IT ) ,

and so σ2
ε Ω−1/2y in scalar form reads as, with a typical ỹi jt element,

ỹi jt = yi jt − (1−
√

θ 8)ȳi.t − (1−
√

θ 9)ȳ. jt +(1−
√

θ 8−
√

θ 9 +
√

θ 10)ȳ..t ,
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with

θ8 =
σ2

ε

N2σ2
υ +σ2

ε

, θ9 =
σ2

ε

N1σ2
ζ
+σ2

ε

, θ10 =
σ2

ε

N2σ2
υ +N1σ2

ζ
+σ2

ε

.

For model (2.6), the inverse of the covariance matrix is even simpler,

σ
2
ε Ω
−1 = IN1N2T − (J̄N1⊗ IN2T )+

σ2
ε

σ2
ε +N1σ2

ζ

(J̄N1⊗ IN2T ) ,

so σ2
ε Ω−1/2y defines the scalar transformation

ỹi jt = yi jt − (1−
√

θ 11)ȳ. jt , with θ11 =
σ2

ε

σ2
ε +N1σ2

ζ

.

For Model (2.8), it is

σ2
ε Ω−1 = IN1N2T − (IN1N2⊗ J̄T )− (J̄N1N2⊗ IT )+ J̄N1N2T

+ σ2
ε

σ2
ε +T σ2

µ

((IN1N2⊗ J̄T )− J̄N1N2T )

+ σ2
ε

σ2
ε +N1N2σ2

λ

((J̄N1N2⊗ IT )− J̄N1N2T )+
σ2

ε

σ2
ε +T σ2

µ+N1N2σ2
λ

J̄N1N2T ,

so σ2
ε Ω−1/2y in scalar form is

ỹi jt = yi jt − (1−
√

θ 12)ȳi j.− (1−
√

θ 13)ȳ..t +(1−
√

θ 12−
√

θ 13 +
√

θ 14)ȳ... ,

with

θ12 =
σ2

ε

σ2
ε +T σ2

µ

, θ13 =
σ2

ε

σ2
ε +N1N2σ2

λ

, θ14 =
σ2

ε

σ2
ε +T σ2

µ +N1N2σ2
λ

.

The spectral decomposition of model (2.10), which was in fact proposed by Baltagi
(1987), is

σ2
ε Ω−1 = IN1N2T − (J̄N1N2⊗ IT )− (J̄N1⊗ IN2⊗ J̄T )− (IN1⊗ J̄N2T )

+2J̄N1N2T + σ2
ε

N2T σ2
υ+σ2

ε

((IN1⊗ J̄N2T )− J̄N1N2T )

+ σ2
ε

N1T σ2
ζ
+σ2

ε

((J̄N1⊗ IN2⊗ J̄T )− J̄N1N2T )

+ σ2
ε

N1N2σ2
λ
+σ2

ε

((J̄N1N2⊗ IT )− J̄N1N2T )

+ σ2
ε

N2T σ2
υ+N1T σ2

ζ
+N1N2σ2

λ
+σ2

ε

J̄N1N2T .

With the covariance matrix in hand, σ2
ε Ω−1/2y translates into

ỹi jt = yi jt − (1−
√

θ 15)ȳi..− (1−
√

θ 16)ȳ. j.− (1−
√

θ 17)ȳ..t
+(2−

√
θ 15−

√
θ 16−

√
θ 17 +

√
θ 18)ȳ... ,
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Table 2.1 Structure of the Ω−1 matrices

Model (2.2) (2.4) (2.6) (2.8) (2.10) (2.12)

IN2T +a + + + + +
(IN2 ⊗ J̄T ) + + +
(IN⊗ J̄N⊗ IT ) + +
(J̄N⊗ INT ) + + +
(IN⊗ J̄NT ) + +
(J̄N⊗ IN⊗ J̄T ) + +
(J̄N2 ⊗ IT ) + + + +
J̄N2T + + +

a Notes: a “+” sign in a column says which building element is part of the given model’s
Ω−1. If the “+”-s in the column a given model A cover that of another model B’s means
that model B is nested into model A. It can be seen, for example, that all models are in
fact nested into (2.2), or that model (2.12) is nested into model (2.8).

where

θ15 =
σ2

ε

N2T σ2
υ+σ2

ε

, θ16 =
σ2

ε

N1T σ2
ζ
+σ2

ε

, θ17 =
σ2

ε

N1N2σ2
λ
+σ2

ε

, and

θ18 =
σ2

ε

N2T σ2
υ+N1T σ2

ζ
+N1N2σ2

λ
+σ2

ε

.

For model (2.12), the inversion gives

σ
2
ε Ω
−1 = IN1N2T − (IN1N2⊗ J̄T )+

σ2
ε

T σ2
µ +σ2

ε

(IN1N2⊗ J̄T ) ,

and so σ2
ε Ω−1/2y can be written up in scalar form, represented by a typical element

ỹi jt = yi jt − (1−
√

θ 19)ȳi j. , with θ19 =
σ2

ε

T σ2
µ +σ2

ε

.

Table 2.1 summarizes the key elements in each models’ inverse covariance matrix
in the finite case.

When the number of observations grow in one or more dimensions, it can be
interesting to find the limits of the θk weights. It is easy to see, that if all N1, N2,
and T → ∞, all θk, (k = 1, . . . ,19) are in fact going to zero. That is, if the data
grows in all directions, the GLS estimator (and in turn the FGLS) is identical to
the Within Estimator. Hence, for example for model (2.2), in the limit, σ2

ε Ω−1 is
simply given by

lim
N1,N2,T→∞

σ
2
ε Ω
−1 = IN1N2T − (J̄N1⊗ IN2T )− (IN1⊗ J̄N2⊗ IT )

−(IN1N2⊗ J̄T )+(J̄N1N2⊗ IT )+(J̄N1⊗ IN2⊗ J̄T )

+(IN1⊗ J̄N2T )− J̄N1N2T ,
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Table 2.2 Asymptotic conditions when the models’ FGLS converges to
a Within estimator

Model Condition

(2.2) N1→ ∞, N2→ ∞, T → ∞

(2.4) N1→ ∞, N2→ ∞

(2.6) N1→ ∞

(2.8) (N1→ ∞, T → ∞) or (N2→ ∞, T → ∞)
(2.10) (N1→ ∞, N2→ ∞) or (N1→ ∞, T → ∞) or (N2→ ∞, T → ∞)
(2.12) T → ∞

which is the covariance matrix of the Within estimator. Table 2.2 collects the
asymptotic conditions, when the models’ (F)GLS estimator is converging to a
Within estimator.

2.3 FGLS Estimation

To make the FGLS estimator operational, we need estimators for the variance com-
ponents. Let us start again with model (2.2), for the other models, the job is es-
sentially the same. Using the assumptions that the error components are pairwise
uncorrelated,

E(u2
i jt) = E((µi j +υit +ζ jt + εi jt)

2)

= E(µ2
i j)+E(υ2

it)+E(ζ 2
jt)+E(ε2

i jt) = σ2
µ +σ2

υ +σ2
ζ
+σ2

ε .

By introducing different Within transformations and so projecting the error compo-
nents into different subspaces of the original three-dimensional space, we can de-
rive further identifying equations. The appropriate Within transformation for model
(2.2) (see for details Balazsi et al., 2015) is

ũi jt = ui jt − ū. jt − ūi.t − ūi j.+ ū..t + ū. j.+ ūi..− ū... . (2.16)

Note, that this transformation corresponds to the projection matrix

M = IN1N2T − (IN1N2⊗ J̄T )− (IN1⊗ J̄N2⊗ IT )− (J̄N1⊗ IN2T )

+(IN1⊗ J̄N2T )+(J̄N1⊗ IN2⊗ J̄T )+(J̄N1N2⊗ IT )− J̄N1N2T ,

and u has to be pre-multiplied with it. Transforming ui jt according to this wipes
out µi j, υit , ζ jt , and gives, with i = 1 . . .N1, and j = 1 . . .N2,

E(ũ2
i jt) = E(ε̃2

i jt) = E((εi jt − ε̄. jt − ε̄i.t − ε̄i j.+ ε̄..t + ε̄. j.+ ε̄i..− ε̄...)
2)

= (N1−1)(N2−1)(T−1)
N1N2T σ2

ε ,
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where (N1−1)(N2−1)(T−1)
N1N2T is the rank/order ratio of M, likewise for all other subse-

quent transformations. Further, transforming ui jt according to

ũa
i jt = ui jt − ū. jt − ūi.t + ū..t ,or with the underlying matrix

Ma = IN1N2T − (J̄N1⊗ IN2T )− (IN1⊗ J̄N2⊗ IT )+(J̄N1N2⊗ IT )

eliminates υit +ζ jt , and gives

E((ũa
i jt)

2) = E((µ̃a
i j + ε̃a

i jt)
2) = E((µ̃a

i j)
2)+E((ε̃a

i jt)
2)

= (N1−1)(N2−1)
N1N2

(σ2
µ +σ2

ε ) .

Transforming according to

ũb
i jt = ui jt − ūi j.− ū. jt + ū. j. , or

Mb = IN1N2T − (IN1N2⊗ J̄T )− (J̄N1⊗ IN2T )+(J̄N1⊗ IN2⊗ J̄T )

eliminates µi j +ζ jt , and gives

E((ũb
i jt)

2) = E((υ̃b
it + ε̃

b
i jt)

2) = E((υ̃b
it)

2)+E((ε̃b
i jt)

2) =
(N1−1)(T −1)

N1T
(σ2

υ +σ
2
ε ) .

Finally, using

ũc
i jt = ui jt − ūi j.− ūi.t + ūi.. , or

Mc = IN1N2T − (IN1N2⊗ J̄T )− (IN1⊗ J̄N2⊗ IT )+(IN1⊗ J̄N2T )

wipes µi j and υit out, and gives

E((ũc
i jt)

2) = E((ζ̃ c
jt + ε̃c

i jt)
2) = E((ζ̃ c

jt)
2)+E((ε̃c

i jt)
2)

= (N2−1)(T−1)
N2T (σ2

ζ
+σ2

ε ) .

Putting the four identifying equations together gives a solvable system of four
equations. Let ûi jt be the residual from the OLS estimation of y = Xβ + u. With
this notation, the estimators for the variance components are

σ̂2
ε = 1

(N1−1)(N2−1)(T−1) ∑i jt ˜̂u2
i jt

σ̂2
µ = 1

(N1−1)(N2−1)T ∑i jt ( ˜̂ua
i jt)

2− σ̂2
ε

σ̂2
υ = 1

(N1−1)N2(T−1) ∑i jt ( ˜̂ub
i jt)

2− σ̂2
ε

σ̂2
ζ

= 1
N1(N2−1)(T−1) ∑i jt ( ˜̂uc

i jt)
2− σ̂2

ε .

where, obviously, ˜̂ui jt , ˜̂ua
i jt , ˜̂ub

i jt , and ˜̂uc
i jt are the transformed residuals according to

M, Ma, Mb, and Mc respectively.
Note, however, that the FGLS estimator of model (2.2) is only consistent if the

data grows in at least two dimensions, that is, any two of N1 → ∞, N2 → ∞, and
T → ∞ has to hold. This is, because σ2

µ (the variance of µi j) cannot be estimated
consistently, when only T → ∞, σ2

υ , or when only N1 → ∞, and so on. For the

59

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2017.05

consistency of the FGLS we need all variance components to be estimated consis-
tently, something which holds only if the data grows in at least two dimensions.
Table 2.3 collects the conditions needed for consistency for all models considered.
So what if, for example, the data is such that N1 is large, but N2 and T are small
(like in case, for example, of an employee-firm data with an extensive number of
workers, but with few hiring firms observed annually)? This would mean, that σ2

µ

and σ2
υ is estimated consistently, unlike σ2

ζ
. In such cases, it makes more sense to

assume ζ jt to be fixed instead of random (while still assuming the randomness of
µi j and υit), arriving to the so-called “mixed effects models”, something explored
in Section 2.7.

We can estimate the variance components of the other models in a similar way.
As the algebra is essentially the same, we only present here the main results. For
model (2.4),

E(ũ2
i jt) = (N1−1)(N2−1)

N1N2
σ2

ε , E((ũa
i jt)

2) = N1−1
N1

(σ2
υ +σ2

ε ) and
E((ũb

i jt)
2) = N2−1

N2
(σ2

ζ
+σ2

ε ) ,

now with ũi jt = ui jt − ū. jt − ūi.t + ū..t , and ũa
i jt = ui jt − ū. jt , and ũb

i jt = ui jt − ūi.t ,
which correspond to the projection matrices

M = IN1N2T − (J̄N1⊗ IN2T )− (IN1⊗ J̄N2⊗ IT )+(J̄N1N2⊗ IT )

Ma = IN1N2T − (J̄N1⊗ IN2T )

Mb = IN1N2T − (IN1⊗ J̄N2⊗ IT )

respectively. The estimators for the variance components then are

σ̂2
ε = 1

(N1−1)(N2−1)T ∑i jt ˜̂u2
i jt , σ̂2

υ = 1
(N1−1)N2T ∑i jt ( ˜̂ua

i jt)
2− σ̂2

ε , and
σ̂2

ζ
= 1

N1(N2−1)T ∑i jt ( ˜̂ub
i jt)

2− σ̂2
ε ,

where again, ˜̂ui jt , ˜̂ua
i jt and ˜̂ub

i jt are obtained by transforming the residual ûi jt accord-
ing to M, Ma, and Mb respectively. For model (2.6), as

E(u2
i jt) = σ

2
ζ
+σ

2
ε , and E(ũ2

i jt) =
Ni−1

N1
σ

2
ε ,

with now ũi jt = ui jt− ū. jt (or with M = IN1N2T − (J̄N1⊗ IN2T )), the appropriate esti-
mators are simply

σ̂
2
ε =

1
(N1−1)N2T ∑

i jt

˜̂u2
i jt , and σ̂

2
ζ
=

1
N1N2T ∑

i jt
û2

i jt − σ̂
2
ε .

For model (2.8),

E(ũ2
i jt) = (N1N2−1)(T−1)

N1N2T σ2
ε , E((ũa

i jt)
2) = N1N2−1

N1N2
(σ2

µ +σ2
ε ) , and

E((ũb
i jt)

2) = T−1
T (σ2

λ
+σ2

ε ) ,
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with ũi jt = ui jt − ū..t − ūi j.+ ū..., and ũa
i jt = ui jt − ū..t , and ũb

i jt = ui jt − ūi j. which
correspond to

M = IN1N2T − (J̄N1N2⊗ IT )− (IN1N2⊗ J̄T )+ J̄N1N2T

Ma = IN1N2T − (J̄N1N2⊗ IT )

Mb = IN1N2T − (IN1N2⊗ J̄T )

respectively. The estimators for the variance components are

σ̂2
ε = 1

(N1N2−1)(T−1) ∑i jt ˜̂u2
i jt , σ̂2

µ = 1
(N1N2−1)T ∑i jt ( ˜̂ua

i jt)
2− σ̂2

ε , and
σ̂2

λ
= 1

N1N2(T−1) ∑i jt ( ˜̂ub
i jt)

2− σ̂2
ε .

For model (2.10), as

E(ũ2
i jt) = (N1N2−1)T−(N1−1)−(N2−1)

N1N2T σ2
ε

E((ũa
i jt)

2) = (N1N2−1)T−(N2−1)
N1N2T (σ2

υ +σ2
ε )

E((ũb
i jt)

2) = (N1N2−1)T−(N1−1)
N1N2T (σ2

ζ
+σ2

ε )

E((ũc
i jt)

2) = N1N2T−N1−N2+1
N1N2T (σ2

µ +σ2
ε )

with ũi jt = ui jt− ū..t− ū. j.− ūi..+2ū..., ũa
i jt = ui jt− ū..t− ū. j.+ ū..., ũb

i jt = ui jt− ū..t−
ūi.. + ū..., and ũc

i jt = ui jt − ūi..− ū. j. + ū... which all correspond to the projection
matrices

M = IN1N2T − (J̄N1N2⊗ IT )− (J̄N1⊗ IN2⊗ J̄T )− (IN1⊗ J̄N2T )+2J̄N1N2T

Ma = IN1N2T − (J̄N1N2⊗ IT )− (J̄N1⊗ IN2⊗ J̄T )+ J̄N1N2T

Mb = IN1N2T − (J̄N1N2⊗ IT )− (IN1⊗ J̄N2T )+ J̄N1N2T

Mc = IN1N2T − (J̄N1⊗ IN2⊗ J̄T )− (IN1⊗ J̄N2T )+ J̄N1N2T

respectively. The estimators for the variance components are

σ̂2
ε = 1

(N1N2−1)T−(N1−1)−(N2−1) ∑i jt ˜̂u2
i jt

σ̂2
υ = 1

(N1N2−1)T−(N2−1) ∑i jt ( ˜̂ua
i jt)

2− σ̂2
ε

σ̂2
ζ

= 1
(N1N2−1)T−(N1−1) ∑i jt ( ˜̂ub

i jt)
2− σ̂2

ε

σ̂2
λ

= 1
N1N2T−N1−N2+1 ∑i jt ( ˜̂uc

i jt)
2− σ̂2

ε .

Lastly, for model (2.12) we get

E(u2
i jt) = σ

2
µ +σ

2
ε , and E(ũ2

i jt) =
T −1

T
σ

2
ε ,

with ũi jt = ui jt − ūi j. (which is the same as a general element of Mu with M =

IN1N2T − (IN1N2⊗ J̄T )). With this, the estimators are

σ̂
2
ε =

1
N1N2(T −1) ∑

i jt

˜̂u2
i jt , and σ̂

2
µ =

1
N1N2T ∑

i jt
û2

i jt − σ̂
2
ε .

Standard errors are computed accordingly, using Var(β̂FGLS)= (X ′Ω̂−1X)−1. In the
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Table 2.3 Sample conditions for the consistency of the FGLS
Estimator

Model Consistency requirements

(2.2) (N1→ ∞, N2→ ∞) or (N1→ ∞, T → ∞) or (N2→ ∞, T → ∞)
(2.4) (T → ∞) or (N1→ ∞, N2→ ∞)
(2.6) (N2→ ∞) or (T → ∞)
(2.8) (N1→ ∞, T → ∞) or (N2→ ∞, T → ∞)
(2.10) (N1→ ∞, N2→ ∞, T → ∞)
(2.12) (N1→ ∞) or (N2→ ∞)

limiting cases, the usual normalization factors are needed to obtain finite variances.
If, for example N1 and T are growing,

√
N1T (β̂FGLS−β ) has a normal distribution

with zero mean, and Q−1
XΩX variance, where Q−1

XΩX = plimN1,T→∞
X ′Ω̂−1X

N1T is assumed
to be a finite, positive definite matrix. This holds model-wide.

We have no such luck, however, with the OLS estimator. The issue is best illus-
trated with model (2.12). It can be shown, just as with the usual 2D panel models,
Var(β̂OLS) = (X ′X)−1X ′Ω̂X(X ′X)−1 (with Ω̂ being model-specific, but let us as-
sume for now, that it corresponds to (2.13)).

In the asymptotic case, when N1,N2→ ∞,
√

N1N2(β̂OLS−β ) has a normal dis-
tribution with finite variance, but this variance grows without bound (at rate O(T ))
once T → ∞. That is, an extra 1/

√
T normalization factor has to be added to re-

gain a normal distribution with bounded variance. Table 2.4 collects normalization
factors needed for a finite Var(β̂OLS) for the different models considered. As it is
uncommon to normalize with 1, or with expression like

√
N1N2√

A
, some insights into

the normalizations are given in Appendix A.
Another interesting aspect is revealed by comparing Tables 2.2 and 2.3, that is

the consistency requirements for the estimation of the variance components (Table
2.2) and the asymptotic results, when the FGLS converges to the Within estimator
(Table 2.3).

As can be seen from Table 2.5, for all models the FGLS is consistent if all
N1,N2,T go to infinity, but in these cases the (F)GLS estimator converges to the
Within one. This is problematic, as some parameters, previously estimable, be-
come suddenly unidentified. In such cases, we have to rely on the OLS estimates,
rather than the FGLS. This is generally the case whenever a “+” sign is found in
Table 2.5, most significant for models (2.8) and (2.10). For them, the FGLS is only
consistent, when it is in fact the Within Estimator, leading to likely severe identi-
fication issues. The best case scenarios are indicated with a “−” sign, where the
respective asymptotics are already enough for the consistency of the FGLS, but do
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Table 2.4 Normalization factors for the finiteness of β̂OLS

Model (2.2) (2.4) (2.6) (2.8) (2.10) (2.12)

N1→ ∞ 1 1 1 1 1
√

N1

N2→ ∞ 1 1
√

N2 1 1
√

N2

T → ∞ 1
√

T
√

T 1 1 1

N1,N2→ ∞

√
N1N2

a
√

A

√
N1N2√

A

√
N2 1 1

√
N1N2

N1,T → ∞

√
N1T√

A

√
T

√
T

√
N1T√

A
1

√
N1

N2,T → ∞

√
N2T√

A

√
T

√
N2T

√
N2T√

A
1

√
N2

N1,N2,T → ∞

√
N1N2T√

A

√
N1N2√

A

√
T
√

N2T
√

N1N2T√
A

√
N1N2T b
√

A1A2

√
N1N2

a A is the sample size which grows with the highest rate, (N1, N2, or T )
b A1,A2 are the two sample sizes which grow with the highest rates.

Table 2.5 Asymptotic results when the OLS should be used

Model (2.2) (2.4) (2.6) (2.8) (2.10) (2.12)

N1→ ∞ +a −
N2→ ∞ − −
T → ∞ − − +
N1,N2→ ∞ − + + + −
N1,T → ∞ − − + + + +
N2,T → ∞ − − − + + +
N1,N2,T → ∞ + + + + + +

a Notes: a “−” sign indicates that the model is estimated consistently with FGLS, a “+”
sign indicates that OLS should be used as some parameters are not identified, and
a box is left blank if the model can not estimated consistently (under the respective
asymptotics).

not yet cause identification problems. Lastly, blank spaces are left in the table if,
under the given asymptotic, the FGLS is not consistent. In such cases we can again
rely on the consistency of the OLS, but its standard errors are inconsistent, just as
with the FGLS.
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2.4 Incomplete Data

2.4.1 Structure of the Covariance Matrices

Our analysis has concentrated so far on balanced panels. We know, however, that
real life data sets usually have some kind of incompleteness embedded. This can be
more visible in the case of higher dimensional panels, where the number of miss-
ing observations can be substantial. As known from the analysis of the standard
two-way error components models, in this case the estimators of the variance com-
ponents, and in turn, those of the slope parameters are inconsistent, and further, the
spectral decomposition of Ω is inapplicable. Next, we present the covariance ma-
trices of the different models in an incomplete data framework, we show a feasible
way to invert them, and then propose a method to estimate the variance components
in this general setup.

In our modelling framework, just like in Chapter 1, incompleteness means, that
for any (i j) pair of individuals, t ∈ Ti j, where Ti j index-set is a subset of the general
{1, . . . ,T} index-set of the time periods spanned by the data. Further, let |Ti j| de-
note the cardinality of Ti j, i.e., the number of its elements. Note, that for complete
(balanced) data, Ti j = {1, . . . ,T}, and |Ti j|= T for all (i j). We also assume, that for
each t there is at least one (i j) pair, for each i, there is at least one ( jt) pair, and for
each j, there is at least one (it) pair observed. This assumption is almost natural,
as it simply requires individuals or time periods with no underlying observation to
be dropped from the data set. As the structure of the data now is quite complex, we
need to introduce a few new notation and definitions along the way. Formally, let
us call nit , n jt , ni, n j, and nt the total number of observations for a given (it), ( jt)
pair, and for given individuals i, j, and time t, respectively. Further, let us call ñi j,
ñit , ñ jt the total number of (i j), (it), and ( jt) pairs present in the data. Remember,
that in the balanced case, ñi j = N1N2, ñit = N1T , and ñ jt = N2T . It would make
sense to define similarly ñi, ñ j, and ñt , however, we can assume, without the loss
of generality, that there are still N1 i, N2 j, individuals, and T total time periods in
the data (of course, there are holes in it).

For the all-encompassing model (2.2), ui jt can be stacked into vector u. Remem-
ber, that in the complete case it is

u = (IN1⊗ IN2⊗ ιT )µ +(IN1⊗ ιN2⊗ IT )υ +(ιN1⊗ IN2⊗ IT )ζ + IN1N2T ε

= D1µ +D2υ +D3ζ + ε ,

with µ , υ , ζ , ε begin the stacked vectors of µi j, υit , ζ jt , and εi jt , of respective
lengths N1N2, N1T , N2T , N1N2T , and ι is the column of ones with size on the
index. The covariance matrix can then be represented by

E(uu′) = Ω = D1D′1σ
2
µ +D2D′2σ

2
υ +D3D′3σ

2
ζ
+ Iσ

2
ε ,
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which is identical to (2.3). However, in the case of missing data, we have to modify
the underlying Dk dummy matrices to reflect the unbalanced nature of the data. For
every (i j) pair, let Vi j denote the size (|Ti j|×T ) matrix, which we obtain from the
(T ×T ) identity matrix by deleting rows corresponding to missing observations.3

With this, the incomplete Dk dummies are

D1 = diag{V11ιT ,V12ιT , . . . ,VN1N2ιT} of size (∑i j |Ti j|× ñi j) ,

D2 = diag
{
(V ′11,V

′
12, . . . ,V

′
1N2

)′, . . . ,(V ′N11,V
′
N12, . . . ,V

′
N1N2

)′
}

of size (∑i j |Ti j|× ñit)

D3 =
(
diag{V ′11,V

′
12, . . . ,V

′
1N2
}′, . . . ,diag{V ′N11,V

′
N12, . . . ,V

′
N1N2
}′
)′

of size (∑i j |Ti j|× ñ jt) .

These then can be used to construct the covariance matrix as

Ω = E(uu′) = I∑i j |Ti j|σ
2
ε +D1D′1σ

2
µ +D2D′2σ

2
υ +D3D′3σ

2
ζ

of size
(
∑i j |Ti j|×∑i j |Ti j|

)
. If the data is complete, the above covariance structure

in fact gives back (2.3). The job is the same for other models. For models (2.4) and
(2.6),

u = D2υ +D3ζ + ε

and

u = D3ζ + ε

respectively, with the incompleteness adjusted D2 and D3 defined above, giving in
turn

Ω = I∑i j |Ti j|σ
2
ε +D2D′2σ

2
υ +D3D′3σ

2
ζ

for model (2.4), and

Ω = I∑i j |Ti j|σ
2
ε +D3D′3σ

2
ζ

for model (2.6). Again, if the panel were in fact complete, we would get back (2.5)
and (2.7). The incomplete data covariance matrix of model (2.8) is

Ω = I∑i j |Ti j|σ
2
ε +D1D′1σ

2
µ +D4D′4σ

2
λ
,

with

D4 = (V ′11,V
′
12, . . . ,V

′
N1N2

)′ of size (∑
i j
|Ti j|×T ) .

The covariance matrix for model (2.10) is

Ω = I∑i j |Ti j|σ
2
ε +D5D′5σ

2
υ +D6D′6σ

2
ζ
+D4D′4σ

2
λ
,

3 If, for example, t = 1,4,10 are missing for some (i j), we delete rows 1, 4, and 10 from IT to get Vi j .
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where

D5 = diag
{
(V ′11ιT ,V ′12ιT , . . . ,V ′1N2

ιT )
′, . . . ,(V ′N11ιT ,V ′N12ιT , . . . ,V ′N1N2

ιT )
′}

D6 =
(
diag{V ′11ιT ,V ′12ιT , . . . ,V ′1N2

ιT}′, . . .×
× . . . ,diag{V ′N11ιT ,V ′N12ιT , . . . ,V ′N1N2

ιT}′
)′
.

of sizes (∑i j |Ti j|×N1), and (∑i j |Ti j|×N2). Lastly, for model (2.12) we simply get

Ω = I∑i j |Ti j|σ
2
ε +D1D′1σ

2
µ .

An important practical difficulty is that the spectral decomposition of the co-
variance matrices introduced in Section 2.3 are no longer valid, so the inversion
of Ω for very large data sets can be forbidding. To go around this problem, let
us construct the quasi-spectral decomposition of the incomplete data covariance
matrices, which is simply done by leaving out the missing rows from the appro-
priate B. Specifically, let us call B∗ the incompleteness-adjusted versions of any B,
which we get by removing the rows corresponding to the missing observations. For
example, the spectral decomposition (2.14) for the all-encompassing model reads
as

Ω∗ = σ2
ε B∗i jt +(σ2

ε +T σ2
µ)B

∗
i j.+(σ2

ε +N2σ2
υ)B

∗
i.t +(σ2

ε +N1σ2
ζ
)B∗. jt

+(σ2
ε +T σ2

µ +N2σ2
υ)B

∗
i..+(σ2

ε +T σ2
µ +N1σ2

ζ
)B∗. j.

+(σ2
ε +N2σ2

υ +N1σ2
ζ
)B∗..t +(σ2

ε +T σ2
µ +N2σ2

υ +N1σ2
ζ
)B∗... ,

where now all B∗ have number of rows equal to ∑i j |Ti j|. Of course, this is not a
correct spectral decomposition of Ω, but helps to define the following conjecture.4

Namely, when the number of missing observations relative to the total number
of observations is small, the inverse of Ω based on the quasi-spectral decompo-
sition of it, Ω∗−1, approximate arbitrarily well Ω−1. More precisely, if [N1N2T −
∑i ∑ j |Ti j|]/[N1N2T ]→ 0, then (Ω−1−Ω∗−1)→ 0. This means that in large data
sets, when the number of missing observation is small relative to the total num-
ber of observations, Ω∗−1 can safely be used in the GLS estimator instead of Ω−1.
Let us give an example. Multi-dimensional panel data are often used to deal with
trade (gravity) models. In these cases, however, when country i trade with coun-
try j, there are no (ii) (or ( j j)) observations, there is no self-trade. Then the total
number of observations is N2T −NT with NT being the number of missing ob-
servations due to no self-trade. Given that [N2T − (N2T −NT )]/N2T → 0 as the
sample size increases, the quasi-spectral decomposition can be used in large data.

4 This can be demonstrated by simulation.
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2.4.2 The Inverse of the Covariance Matrices

The solution proposed above, however, suffers from two potential drawbacks. First,
the inverse, though reached at very low cost, may not be accurate enough, and sec-
ond, when the “holes” in the data are substantial this method cannot be used. These
reasons spur us to derive the analytically correct inverse of the covariance matrices
at the lowest possible cost. To do that, we have to reach back to the comprehen-
sive incomplete data analysis carried out by Baltagi and Chang (1994), and later
Baltagi et al. (2002) for one- and two-way error component models, Baltagi et al.
(2001) for nested three-way models, and also, we have to generalize the results of
Wansbeek and Kapteyn (1989) (in a slightly different manner though, than seen in
Davis, 2002). This leads us, for model (2.2), to

σ
2
ε Ω
−1 = Pb−PbD3(Rc)−1D′3Pb (2.17)

where Pb and Rc are obtained in steps:

Rc = D′3PbD3 +
σ2

ε

σ2
ζ

I , Pb = Pa−PaD2(Rb)−1D′2Pa ,

Rb = D′2PaD2 +
σ2

ε

σ2
υ

I , Pa = I−D1(Ra)−1D′1 , and

Ra = D′1D1 +
σ2

ε

σ2
µ

I ,

where D1, D2, D3 are the incompleteness-adjusted dummy variable matrices, and
are used to construct the P and R matrices sequentially: first, construct Ra to get
Pa, then construct Rb to get Pb, and finally, construct Rc to get Pc. Proof of (2.17)
can be found in Appendix B. Note, that to get the inverse, we have to invert
min{N1T ; N2T ; N1N2} matrices. The quasi-scalar form of (2.17) (which corre-
sponds to the incomplete data version of transformation (2.15)) is

yi jt −

(
1−

√
σ2

ε

|Ti j|σ2
µ +σ2

ε

)
1
|Ti j|∑t

yi jt −ω
a
i jt −ω

b
i jt ,

with

ω
a
i jt = χ

a
i jt ·ψa , and ω

b
i jt = χ

b
i jt ·ψb ,

where χa
i jt is the row corresponding to observation (i jt) from PaD2, ψa is the col-

umn vector (Rb)−1D′2Pay, ωb
i jt is the row from matrix PbD3 corresponding to ob-

servation (i jt), and finally, ψb is the column vector (Rc)−1D′3Pby.
For the other models, the job is essentially the same, only the number of steps

in obtaining the inverse is smaller (as the number of different random effects de-
creases). For model (2.4), it is, with appropriately redefining P and R,

σ
2
ε Ω
−1 = Pa−PaD3(Rb)−1D′3Pa , (2.18)
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where now

Rb = D′3PaD3 +
σ2

ε

σ2
ζ

I , Pa = I−D2(Ra)−1D′2 and Ra = D′2D2 +
σ2

ε

σ2
υ

I ,

with the largest matrix to inverted now of size min{N1T ; N2T}. For model (2.6), it
is even more simple,

σ
2
ε Ω
−1 = I−D3(Ra)−1D′3 with Ra = D′3D3 +

σ2
ε

σ2
ζ

I , (2.19)

defining the scalar transformation

ỹi jt = yi jt −

(
1−
√

σ2
ε

n jtσ
2
ζ
+σ2

ε

)
1

n jt
∑

i
yi jt ,

with n jt being the number of observations for a given ( jt) pair. For model (2.8),
the inverse is

σ
2
ε Ω
−1 = Pa−PaD4(Rb)−1D′4Pa (2.20)

where

Rb = D′4PaD4 +
σ2

ε

σ2
λ

I , Pa = I−D1(Ra)−1D′1 and Ra = D′1D1 +
σ2

ε

σ2
µ

I .

and we have to invert a min{N1N2; T} sized matrix. For model (2.10), the inverse
is again the result of a three-step procedure:

σ
2
ε Ω
−1 = Pb−PbD4(Rc)−1D′4Pb , (2.21)

where

Rc = D′4PbD4 +
σ2

ε

σ2
λ

I , Pb = Pa−PaD6(Rb)−1D′6Pa ,

Rb = D′6PaD6 +
σ2

ε

σ2
ζ

I , Pa = I−D5(Ra)−1D′5 , and Ra = D′5D5 +
σ2

ε

σ2
υ

I ,

(with inverting a matrix of size min{N1; N2; T}) and finally, the inverse of the
simplest model is

σ
2
ε Ω
−1 = I−D1(Ra)−1D′1 with Ra = D′1D1 +

σ2
ε

σ2
µ

I , (2.22)

defining the scalar transformation

ỹi jt = yi jt −

(
1−

√
σ2

ε

|Ti j|σ2
µ +σ2

ε

)
1
|Ti j|∑t

yi jt

on a typical yi jt variable.
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2.4.3 Estimation of the Variance Components

Let us proceed to the estimation of the variance components. The estimators used
for complete data are no longer applicable here, as for example, transformation
(2.16) does not eliminate µi j, υit , and ζ jt from the composite disturbance term
ui jt = µi j +υit +ζ jt + εi jt , when the data is incomplete. This problem can be tack-
led in two ways. We can derive incompleteness-robust alternative to (2.16), i.e., a
transformation which clears the non-idiosyncratic random effects from ui jt , in the
case of incomplete data (see Balazsi et al., 2015). The problem is that most of these
transformations involve the manipulation of large matrices resulting in heavy com-
putational burden. To avoid this we propose simple linear transformations, which
on the one hand, are robust to incomplete data, and on the other hand, identify the
variance components. Let us see, how this works for model (2.2). As before

E(u2
i jt) = σ

2
µ +σ

2
υ +σ

2
ζ
+σ

2
ε , (2.23)

but now, let us define

ũa
i jt = ui jt − 1

|Ti j| ∑t ui jt , ũb
i jt = ui jt − 1

nit
∑ j ui jt , and

ũc
i jt = ui jt − 1

n jt
∑i ui jt .

It can be seen that

E((ũa
i jt)

2) =
|Ti j|−1
|Ti j| (σ

2
υ +σ2

ζ
+σ2

ε ) , E((ũb
i jt)

2) = nit−1
nit

(σ2
µ +σ2

ζ
+σ2

ε ) ,

and E((ũc
i jt)

2) =
n jt−1

n jt
(σ2

µ +σ2
υ +σ2

ε ) .

(2.24)
Combining (2.23) with (2.24) identifies all four variance components. The appro-
priate estimators are then

σ̂2
µ = 1

∑i j |Ti j| ∑i jt û2
i jt − 1

ñi j
∑i j

1
|Ti j|−1 ∑t ( ˜̂ua

i jt)
2

σ̂2
υ = 1

∑i j |Ti j| ∑i jt û2
i jt − 1

ñit
∑it

1
nit−1 ∑ j ( ˜̂ub

i jt)
2

σ̂2
ζ

= 1
∑i j |Ti j| ∑i jt û2

i jt − 1
ñ jt

∑ jt
1

n jt−1 ∑i ( ˜̂uc
i jt)

2

σ̂2
ε = 1

∑i j |Ti j| ∑i jt û2
i jt − σ̂2

µ − σ̂2
υ − σ̂2

ζ
,

(2.25)

where ûi jt are the OLS residuals, and ˜̂uk
i jt are its transformations (k = a,b,c), where

ñi j, ñit , and ñ jt denote the total number of observations for the (i j), (it), and ( jt)
pairs respectively in the data.

The estimation strategy of the variance components is exactly the same for all
the other models. Let us keep for now the definitions of ũb

i jt , and ũc
i jt . For model
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(2.4), with ui jt = υit +ζ jt + εi jt , the estimators read as

σ̂2
υ = 1

∑i j |Ti j| ∑i jt û2
i jt − 1

ñit
∑it

1
nit−1 ∑ j ( ˜̂ub

i jt)
2

σ̂2
ζ

= 1
∑i j |Ti j| ∑i jt û2

i jt − 1
ñ jt

∑ jt
1

n jt−1 ∑i ( ˜̂uc
i jt)

2

σ̂2
ε = 1

∑i j |Ti j| ∑i jt û2
i jt − σ̂2

υ − σ̂2
ζ
,

(2.26)

whereas for model (2.6), with ui jt = ζ jt + εi jt , they are

σ̂2
ζ

= 1
∑i j |Ti j| ∑i jt û2

i jt − 1
ñ jt

∑ jt
1

n jt−1 ∑i ( ˜̂uc
i jt)

2

σ̂2
ε = 1

∑i j |Ti j| ∑i jt û2
i jt − σ̂2

ζ
,

(2.27)

Note, that these latter two estimators can be obtained from (2.25), by assuming
σ̂2

µ = 0 for model (2.4), and σ̂2
µ = σ̂2

υ = 0 for model (2.6).
For model (2.8), let us redefine the ũk

i jt-s, as

ũa
i jt = ui jt −

1
|Ti j|∑t

ui jt , and ũb
i jt = ui jt −

1
nt

∑
i j

ui jt ,

with nt being the number of individual pairs at time t. With ui jt = µi j +λt + εi jt ,

E((ũa
i jt)

2) =
|Ti j|−1
|Ti j| (σ2

λ
+σ2

ε ) , E((ũb
i jt)

2) = nt−1
nt

(σ2
µ +σ2

ε ) ,

and E(u2
i jt) = σ2

µ +σ2
λ
+σ2

ε .

From this set of identifying equations, the estimators are simply

σ̂2
µ = 1

∑i j |Ti j| ∑i jt û2
i jt − 1

ñi j
∑i j

1
|Ti j|−1 ∑t ( ˜̂ua

i jt)
2

σ̂2
λ

= 1
∑i j |Ti j| ∑i jt û2

i jt − 1
T ∑t

1
nt−1 ∑i j ( ˜̂ub

i jt)
2

σ̂2
ε = 1

∑i j |Ti j| ∑i jt û2
i jt − σ̂2

µ − σ̂2
λ
.

(2.28)

For model (2.12), with ui jt = µi j + εi jt , keeping the definition of ũa
i jt ,

σ̂2
µ = 1

∑i j |Ti j| ∑i jt û2
i jt − 1

ñi j
∑i j

1
|Ti j|−1 ∑t ( ˜̂ua

i jt)
2

σ̂2
ε = 1

∑i j |Ti j| ∑i jt û2
i jt − σ̂2

µ .
(2.29)

Finally, for model (2.10), as now ui jt = υi +ζ j +λt + εi jt , using

ũa
i jt = ui jt −

1
ni

∑
jt

ui jt , ũb
i jt = ui jt −

1
n j

∑
it

ui jt , ũc
i jt = ui jt −

1
nt

∑
i j

ui jt ,

with ni and n j being the number of observation-pairs for individual i, and j, respec-
tively, the identifying equations are

E((ũa
i jt)

2) = ni−1
ni

(σ2
ζ
+σ2

λ
+σ2

ε ) , E((ũb
i jt)

2) =
n j−1

n j
(σ2

υ +σ2
λ
+σ2

ε ) ,

E((ũc
i jt)

2) = nt−1
nt

(σ2
υ +σ2

ζ
+σ2

ε ) , and E(u2
i jt) = σ2

υ +σ2
ζ
+σ2

λ
+σ2

ε ,
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in turn leading to

σ̂2
υ = 1

∑i j |Ti j| ∑i jt û2
i jt − 1

ñi
∑i j

1
ni−1 ∑ jt ( ˜̂ua

i jt)
2

σ̂2
υ = 1

∑i j |Ti j| ∑i jt û2
i jt − 1

ñ j
∑it

1
n j−1 ∑it ( ˜̂ub

i jt)
2

σ̂2
ζ

= 1
∑i j |Ti j| ∑i jt û2

i jt − 1
T ∑ jt

1
nt−1 ∑i j ( ˜̂uc

i jt)
2

σ̂2
ε = 1

∑i j |Ti j| ∑i jt û2
i jt − σ̂2

υ − σ̂2
ζ
− σ̂2

λ
.

(2.30)

2.5 Endogenous Regressors

When the unobserved effects are correlated with the regressors, the (F)GLS esti-
mators proposed in Sections 2.2-2.3 are biased and inconsistent. An alternative ap-
proach is to seek an appropriate transformation to eliminate the unobserved hetero-
geneity, like we did in Chapter 1. While these Within estimators are generally con-
sistent under various assumptions, they have two major shortcomings. First, these
estimators eliminate all time-invariant and individual-invariant variables from the
model. This includes the unobserved heterogeneity as well as some of the explana-
tory variables in xi jt . As a result, any parameters associated with the time-invariant
or individual-invariant variables cannot be estimated using these estimators. This
can be a potentially very important issue if these variables are key policy ones, for
example. Second, these estimators eliminate unobserved heterogeneities by com-
puting the deviation of each variable from different means, such as group means
(averages over time) and overall means (average over time and individual). This
approach often leads to information lost and this is reflected by the fact that these
estimators, while consistent, are generally not efficient.

From a practical perspective, the efficiency issue is generally a lesser concern as
multi-dimensional datasets have an overwhelmingly large number of observations
over all (most) indexes. Thus, the ease of computation of these estimators often
outweighs the efficiency benefit from the more computationally complicated, but
more efficient, estimators. The identifiability of parameters associated with time-
invariant and individual-invariant variables are often the more serious issue. For
example, standard Gravity models of trade employ distance, the GDP of the export
and the import countries as key regressors (see, for example, Harris et al., 2002;
Bun and Klaassen, 2007). Distance is clearly be time-invariant; GDP of the ex-
porting country is invariant with respect to all import countries; and likewise, the
GDP of the importing country is invariant with respect to all export countries, thus
they are both individual-invariant. Under the assumption that ui jt = µi j +υit +ζ jt ,
the standard Within-type approach will eliminate all t-invariant, j-invariant and
i-invariant explanatory variables and thus it is impossible to estimate their effects.

This section, based on Balazsi et al. (2017) thus proposes a consistent way to
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estimate all model parameters under the assumption that the random effects are
possibly correlated with some of the regressors. To do this we use the 2D results
of Hausman and Taylor (1981) (hereafter HT), and extend their approach to our
multi-dimensional random effects panel data models.

2.5.1 The Hausman-Taylor-like Instrumental Variable Estimator

Let’s consider model (2.10) first:

yi jt = x′i jtβ +υi +ζ j +λt + εi jt = x′i jtβ +ui jt (2.31)

and show in details how to extend the HT approach. To make the subsequent anal-
ysis more transparent, x′i jt in (2.10) is re-written as xi jt , and x′i jt is assigned with
a slightly different meaning. This change in notation is only used in Section 2.5
and in Sections 2.6.2 and 2.6.3, where tests concerning endogenous regressors are
detailed.

Sources of Endogeneity

In addition to the specification as stated in equation (2.31), we consider the ran-
dom effects in ui jt to be well-behaved, as outlined in Section 2.2, however, we do
not impose any correlation restriction between the regressors and the unobserved
heterogeneity. In order to accommodate the most general correlation structure be-
tween regressors and any of these unobserved heterogeneity terms. For ease of
exposition, we divide the explanatory variables according to their index properties
as follows:

x′i jt = (x̄′i jt , x′i, x′j, x′t).

Note that x̄′i jt = (x′i jt , x′it , x′jt , x′i j), that is, it includes all regressors that vary over at
least two indices. This particular partition highlights the fact that any parameters
associated with variables that vary over more than one index can be identified and
estimated from Within-type estimation, unlike the parameters of x′i, x′j, or x′t , as
these variables would be eliminated during the Within transformations.

Without loss in generality, we partition each group of variables as follows

x̄′i jt = (x′1i jt , x′2i jt , x′3i jt , x′4i jt , x′5i jt , x′6i jt , x′7i jt , x′8i jt)

x′i = (x′1i, x′2i)

x′j = (x′1 j, x′2 j)

x′t = (x′1t , x′2t)

where each partition is assumed to have a different correlation structure with the
unobserved heterogeneities. These are summarized in Table 2.6. The subsequent
analysis does not explicitly impose any further assumptions on the correlations
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between the regressors; multicollinearity does not generally violate the feasibility
and consistency of the estimators with the exception of perfect collinearity, which
case will be excluded from the rank condition.

Table 2.6 Sources of endogeneity on the level
of partitions of the regressors for model (2.31)

Correlated with Partition

None x′1i jt x′1i x′1 j x′1t
υi x′2i jt x′2i
ζ j x′3i jt x′2 j
λt x′4i jt x′2t
υi, ζ j x′5i jt
υi, λt x′6i jt
ζ j, λt x′7i jt
υi, ζ j, λt x′8i jt

Following HT and Wyhowski (1994), the basic idea is to construct a set of in-
ternal instruments by using the group means of variables in the partition x̄i jt . The
approach can be outlined as follows. First, the parameters associated with x̄i jt are
estimated via standard Within estimator, which is consistent. Second, the group
means of x̄i jt are used to construct instruments for the endogenous partitions in x′i,
x′j and x′t .

The Hausman-Taylor Estimator

Using matrix notation for the partitions of the regressors, we define X (1) as the
stacked matrix version of x̄′i jt , namely

X (1) =
(

X (1)
1 , X (1)

2 , X (1)
3 , X (1)

4 , X (1)
5 , X (1)

6 , X (1)
7 , X (1)

8

)
,

with respective columns k(1)l , l = 1 . . .8. Similarly, we define X (2), X (3), X (4) for x′i,
x′j and x′t , respectively. The number of columns in each partition X (m)

l is k(m)
l with

the associated parameter vector being β
(m)
l .

Consider the following transformation on X (1)

H1 =
(
I− (J̄N1⊗ J̄N2⊗ J̄T )− (QN1⊗ J̄N2⊗ J̄T )

−(J̄N1⊗QN2⊗ J̄T )− (J̄N1⊗ J̄N2⊗QT )
)
X (1)

which can be used as instrument for X (1) in order to obtain consistent estimate of
β
(1)
l for l = 1, . . . ,8. It is clear that H1 is correlated with X (1), but the transformation

also removes the unobserved heterogeneities, namely it removes υi, ζ j and λt when
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the transformation applies to (2.31). While this transformation looks complicated,
it can be interpreted quite easily. Essentially, it is equivalent to (xi jt − x̄i.− x̄. j.−
x̄..t +2x̄...).

Intuitively, to instrument x′2i, the endogenous part of x′i, we can use all regressors
from x′i jt which are uncorrelated with υi but this will work only if these instruments
are also not correlated with ζ j and λt . One way to ensure this is to remove j- and
t- variations from the instruments. As a result, the instrument set for x′2i is simply

H2 = (QN1⊗ J̄N2T ) ·
(

X (1)
1 , X (1)

3 , X (1)
4 , X (1)

7 , X (2)
1

)
where the exogenous X (2)

1 does not require any instrument.
Also note that H2 is a matrix containing the j, t-group means minus the overall

sample mean of the included variables. That is, it only contains variation over i
and therefore, this transform will remove ζ j and λt . It is also important to note that
H2 only comprises of variables that are uncorrelated with υi, which underpins its
usage as an instrument for X (2)

2 , the individual-specific regressors correlated with
υi.

Following the similar arguments, the largest variable set uncorrelated with ζ j is

H3 = (J̄N1⊗QN2⊗ J̄T ) ·
(

X (1)
1 , X (1)

2 , X (1)
4 , X (1)

6 , X (3)
1

)
,

and finally, the largest set uncorrelated with λt is

H4 = (J̄N1N2⊗QT ) ·
(

X (1)
1 , X (1)

2 , X (1)
3 , X (1)

4 , X (4)
1

)
.

In other words, we have, by construction

plim
N1→∞

1
N1N2T H ′2(υ + ε) = 0

plim
N2→∞

1
N1N2T H ′3(ζ + ε) = 0

plim
T→∞

1
N1N2T H ′4(λ + ε) = 0 .

Unfortunately, transformation matrices such as (QN1⊗ J̄N2⊗ J̄T ) can be memory
demanding even on powerful personal computers when the dataset is large. How-
ever, these transformations only define operations on simple group means and the
deviations from these. Table 2.7 provides a list of matrix transformations with their
equivalent scalar operations on each observation.

Naturally, it is possible to utilise H = (H1, H2, H3, H4) directly to instrument
the endogenous regressors. Alternatively, we can construct an asymptotically more
efficient estimator by accommodating the error component structure of the model.

Performing instrumental variable estimation on model (2.31) with instrument set
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Table 2.7 Translation of matrix operations into scalar

Matrix Scalar

(QN1 ⊗QN2 ⊗QT )X x′i jt − x′. jt − x′i.t − x′i j.+ x′i..+ x′. j.+ x′..t − x′...
(J̄N1 ⊗QN2 ⊗QT )X x′. jt − x′..t − x′. j.+ x′...
(QN1 ⊗ J̄N2 ⊗QT )X x′i.t − x′i..− x′..t + x′...
(QN1 ⊗QN2 ⊗ J̄T )X x′i j.− x′. j.− x′i..+ x′...
(J̄N1 ⊗ J̄N2 ⊗QT )X x′..t − x′...
(J̄N1 ⊗QN2 ⊗ J̄T )X x′. j.− x′...
(QN1 ⊗ J̄N2 ⊗ J̄T )X x′i.− x′...

H is identical to estimating

PHy = PHXβ +PHu (2.32)

with Least Squares where PH is the projection matrix, H(H ′H)−1H ′. Given the
orthogonality nature of Hp for p = 1, . . . ,4,

PH =
4

∑
p=1

PHp ,

gives the projection that is identical to the sum of individual projections of the Hp.
The estimator is then defined as

β̂HT 1 = (X ′PHX)−1X ′PHy . (2.33)

Since the Hp matrices can be constructed by calculating simple group means and
deviations from groups means from the original data matrix and the elements of
PHp are also straightforward to calculate, the resulting estimator is computationally
simple without imposing excessive burden on the memory or computation require-
ment.

The More Efficient Hausman-Taylor Estimator

The asymptotic efficiency of this estimator can be improved, if we exploit the error
component structure. As shown in Fuller and Battese (1973), and exactly as it was
done in Section 2.2, we can multiply model (2.31) by Ω−1/2 to get

Ω
−1/2y = Ω

−1/2Xβ +Ω
−1/2u

where Ω = E(uu′). Then the same estimator as defined in equation (2.33), with the
same instrument set, is asymptotically efficient. Alternatively, we can interpret this
2SLS, using Maddala’s (1971) work, as a direct Least Squares on model

P∗Hy = P∗HXβ +P∗Hu
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with

P∗H =
4

∑
p=1

1
σp

PHp ,

where different weights are assigned to different parts of the instruments:5

σ
2
1 = σ

2
ε σ

2
2 = σ

2
ε +N2T σ

2
υ σ

2
3 = σ

2
ε +N1T σ

2
ζ

σ
2
4 = σ

2
ε +N1N2σ

2
λ
.

The more efficient estimator can then computed as

β̂HT 2 = (X ′P∗HX)−1X ′P∗Hy . (2.34)

In practice, these variances are unknown. Specifically, the components of the
variance-covariance matrix Ω are usually unknown and must be estimated in order
for (2.34) to be feasible. The first observation is that the variance of the idiosyn-
cratic error term can always be estimated from the residuals given by the Within
estimator:

ε̂ = ỹ− X̃ (1)
β̂
(1)
W , and σ̂

2
ε = ˆ̃ε ′ ˆ̃ε/(N1N2T −N1−N2−T +1)

where ỹ and X̃ denote y and X (1) after the Within transformation, respectively. β
(1)
W

is the Within estimates associated with X (1). Once we obtain consistent estimates
for β (m), m = 1 . . .4, we can use them to estimate συ , σζ and σλ . Specifically,

(QN1⊗ J̄N2T )
(

y−X (1)
β̂
(1)
HT −X (2)

β̂
(2)
HT

)
= û1 ,

and it can be shown that

plim
N1→∞

û′1û1/(N1N2T ) =plim
N1→∞

1
N2T
· N1−1

N1
σ

2
ε +

N1−1
N1

σ
2
υ

=
1

N2T
σ

2
ε +σ

2
υ .

From this, we can estimate σ2
υ as

σ̂
2
υ = û′1û1/(N1N2T )− 1

N2T
σ̂

2
ε .

Similar procedures apply to the estimation of σ2
ζ

and σ2
λ

, where residuals are col-
lected from

(J̄N1⊗QN2⊗ J̄T )
(

y−X (1)β̂
(1)
HT −X (3)β̂

(3)
HT

)
= û2

(J̄N1N2⊗ Q̄T )
(

y−X (1)β̂
(1)
HT −X (4)β̂

(4)
HT

)
= û3 ,

5 The result PH Ω−1/2 = P∗H is coming from the definition of the Q and J̄ matrices.
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which can be used to estimate the variance components as

σ̂2
ζ

= û′2û2/(N1N2T )− 1
N1T σ̂2

ε

σ̂2
λ

= û′3û3/(N1N2T )− 1
N1N2

σ̂2
ε .

Notice, that for the consistent estimation of σ2
υ , we need N1 → ∞. Similarly, we

need N2 and T asymptotics for the consistency of the other two variance compo-
nents estimators.

The rank condition to ensure parameter identifiability is that X ′PHX must have
full rank. Similar to HT, there is also a set of necessary order conditions that is
easier to verify. Specifically,

k(1)1 + k(1)3 + k(1)4 + k(1)7 ≥ k(2)2

k(1)1 + k(1)2 + k(1)4 + k(1)6 ≥ k(3)2

k(1)1 + k(1)2 + k(1)3 + k(1)5 ≥ k(4)2

(2.35)

have to be satisfied jointly. Although it looks like the number of instruments far
exceeds the number of endogenous regressors, it is often the case that k(m)

l = 0 for
several m and l.

These order conditions reduce to the order condition in HT in the case of stan-
dard two dimensional panel. This can be seen by assuming the presence of only a
single random effect, υi, with ζ j = λt = 0 for all j and t. By merging indexes j and
t and representing the joint index by s, we reduce the three-dimensional panel into
a standard two-dimensional case. This allows us to combine X (1)

1 , X (1)
3 , X (1)

4 , X (1)
7

as they all vary over i and s and they are uncorrelated with υi. If we denote the total
number of their columns k1, the first order condition in (2.35) simplifies to

k1 ≥ k(5)2 . (2.36)

Also, as k(3)2 = k(4)2 = 0, the second and third order conditions hold by construction.
Thus, the three order conditions reduce to equation (2.36), which requires at least
as many exogenous variables in x′is as endogenous variables in x′i. This is identical
to the order condition in HT.

We can also relate our order conditions to those of the two-way panel models
found in Wyhowski (1994). If we restrict ζ j = 0 for all j and β

(3)
1 = β

(3)
2 = 0 with

N2 = 1, then the model reduces once again to a standard two-dimensional panel.
Let k1 = k(1)1 , k2 = k(1)4 +k(1)7 and k3 = k(1)2 +k(1)5 , then the above conditions reduce
to

k1 + k2 ≥ k(2)2 and k1 + k3 ≥ k(4)2 ,

which is identical to the order conditions given in Wyhowski (1994).
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2.5.2 Time Varying Individual Specific Effects

Let’s repeat the analysis for model (2.2), and again use x′i jt for x′i jt :

yi jt = x′i jtβ +µi j +υit +ζ jt + εi jt , (2.37)

Recall in the case of model (2.31), only variables with a single index, namely, x′i,
x′j and x′t required instruments from x′i jt , as the rest of the parameters could be
identified from the Within estimator. This is no longer case with model (2.37).
Since the unobserved heterogeneities vary over individuals and time, the Within
transformation will also eliminate all x′i j, x′it and x′jt variables in addition to the
variables with a single index. This means the parameters of x′i j, x′it and x′jt will be
unidentified as well.

Following the same approach as in the previous sections, Table 2.8 shows the
partitions of the regressor vector based on the sources of endogeneity:

Table 2.8 Sources of endogeneity on the level of partitions of
the regressors for model (2.37)

Correlated with Partition

None x′1i jt x′1i j x′1it x′1 jt x′1i x′1 j x′1t
µi j x′2i jt x′2i j x′2it x′2 jt x′2i x′2 j
υit x′3i jt x′3i j x′3it x′3 jt x′3i x′2t
ζ jt x′4i jt x′4i j x′4it x′4 jt x′3 j x′3t
µi j, υit x′5i jt x′5i j x′5it x′5 jt x′4i
µi j, ζ jt x′6i jt x′6i j x′6it x′6 jt x′4 j
υit , ζ jt x′7i jt x′7i j x′7it x′7 jt x′4t
µi j, υit , ζ jt x′8i jt x′8i j x′8it x′8 jt

The different group means of xi jt ′ can be used as instrumental variables for the
endogenous variables in x′i j, x′it , x′jt , x′i, x′j and x′t but interestingly, groups means
of x′i j, x′it and x′jt can also be used as instruments for x′i, x′j and x′t . The potential of
each group of variables to be instruments of the others is illustrated in Figure 2.1.

Allowing individual specific effects to be time varying leads to some additional
complications in implementing variations on the HT estimator. Extra care is re-
quired to ensure the validity of each internal instrument. For example, while the
group means of x′2i jt can in theory be used as instruments for x′3i j and x′5i j, the fact
that x′2i jt is correlated with µi j means that the group means must be taken over both
i and j indexes which makes it invalid to be an instrument for x′5i j. This argument
applies more generally to model (2.37) and can be summarised in Table 2.9.

While the general HT approach is still theoretical sound in this setting, the time
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Figure 2.1 Possible Instrumental Variables

Table 2.9 Pairs of variables
needed to be instrumented jointly

Variable Pairs

x′i j (x′3i j x′5i j)
(x′4i j x′6i j)
(x′7i j x′8i j)

x′it (x′2it x′5it )
(x′4it x′7it )
(x′6it x′8it )

x′jt (x′2 jt x′6 jt )
(x′3 jt x′7 jt )
(x′5 jt x′8 jt )

x′i (x′2i x′3i x′4i)
x′j (x′2 j x′3 j x′4 j)
x′t (x′2t x′3t x′4t )

varying nature of individual specific effects imposes additional restrictions on the
order conditions. Following the same notation as above, define X (m)

l as the data
matrix counterpart of row l and column m in Table 2.9 with k(m)

l denotes the number
of columns of X (m)

l . The instrument(s) for variable X (m)
l can always be expressed as

linear transformations of the original variable(s). Specifically, Hp = Rp ·Xp, where
Xp is a collection of variables which are used to create internal instruments and
Rp represents the appropriate linear transformation. For each endogenous variable,
Table 2.10 presents the instruments, Hp, the associated transformations, Rp, and
the original variable set, Xp, for each group of endogenous variables.
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Table 2.10 Proposed instruments Hp for each endogenous variable

Endogenous Instrument
Variablea Rp Xp

X (1) (QN1 ⊗QN2 ⊗QT ) X (1)

(X (2)
2 , X (2)

1 ) (QN1 ⊗QN2 ⊗ J̄T ) (X (1)
1 , X (1)

3 , X (1)
4 , X (1)

7 , X (2)
1 )

(X (2)
3 , X (2)

5 ) (QN1 ⊗QN2 ⊗ J̄T ) (X (1)
1 , X (1)

4 )

(X (2)
4 , X (2)

6 ) (QN1 ⊗QN2 ⊗ J̄T ) (X (1)
1 , X (1)

3 )

(X (2)
7 , X (2)

8 ) (QN1 ⊗QN2 ⊗ J̄T ) X (1)
1

(X (3)
3 , X (3)

1 ) (QN1 ⊗ J̄N2 ⊗QT ) (X (1)
1 , X (1)

2 , X (1)
4 , X (1)

6 , X (3)
1 )

(X (3)
2 , X (3)

5 ) (QN1 ⊗ J̄N2 ⊗QT ) (X (1)
1 , X (1)

4 )

(X (3)
4 , X (3)

7 ) (QN1 ⊗ J̄N2 ⊗QT ) (X (1)
1 , X (1)

2 )

(X (3)
6 , X (3)

8 ) (QN1 ⊗ J̄N2 ⊗QT ) X (1)
1

(X (4)
4 , X (4)

1 ) (J̄N1 ⊗QN2 ⊗QT ) (X (1)
1 , X (1)

2 , X (1)
3 , X (1)

5 , X (4)
1 )

(X (4)
2 , X (4)

6 ) (J̄N1 ⊗QN2 ⊗QT ) (X (1)
1 , X (1)

3 )

(X (4)
3 , X (4)

7 ) (J̄N1 ⊗QN2 ⊗QT ) (X (1)
1 , X (1)

2 )

(X (4)
5 , X (4)

8 ) (J̄N1 ⊗QN2 ⊗QT ) X (1)
1

(X (5)
2 , X (5)

3 , X (5)
4 , X (5)

1 ) (QN1 ⊗ J̄N2 ⊗ J̄T ) (X (1)
1 , X (1)

4 , X (2)
1 , X (2)

4 , X (3)
1 , X (3)

4 , X (5)
1 )

(X (6)
2 , X (6)

3 , X (6)
4 , X (6)

1 ) (J̄N1 ⊗QN2 ⊗ J̄T ) (X (1)
1 , X (1)

3 , X (2)
1 , X (2)

3 , X (4)
1 , X (4)

3 , X (6)
1 )

(X (7)
2 , X (7)

3 , X (7)
4 , X (7)

1 ) (J̄N1 ⊗ J̄N2 ⊗QT ) (X (1)
1 , X (1)

2 , X (3)
1 , X (3)

2 , X (4)
1 , X (4)

2 , X (7)
1 )

a For each row p, the instrument is obtained as Hp = Rp ·Xp . Instruments for exogenous regressors are simply
themselves, and added, quite arbitrarily, to lines 2,6,10,14,15,16.

Note that exogenous variables also serve as their own instruments. Once we
have all the instruments collected, it is straightforward to extend the HT estimator
by following the same approach as before.

β̂HT 1 = (X ′PHX)−1X ′PHy ,

and since all Hp are orthogonal to each other,

PH =
16

∑
p=1

PHp .

The more efficient estimator which takes into account the error structure in ui jt :

β̂HT 2 = (X ′P∗HX)−1X ′P∗Hy , (2.38)
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with

P∗H = PH ·Ω−1/2 =
16

∑
p=1

1
σp

PHp ,

where
σ2

1 = σ2
ε

σ2
p = σ2

ε +T σ2
µ p = 2, . . . ,5

σ2
p = σ2

ε +N2σ2
υ p = 6, . . . ,9

σ2
p = σ2

ε +N1σ2
ζ

p = 10, . . . ,13
σ2

14 = σ2
ε +N2σ2

υ +T σ2
µ

σ2
15 = σ2

ε +N1σ2
ζ
+T σ2

µ

σ2
16 = σ2

ε +N1σ2
ζ
+N2σ2

υ .

The set of order conditions necessary to ensure parameter identification is how-
ever, much less trivial here. It is clear that the order condition for each X (m) is
independent from each other, as we use different group variations of the (possibly
same) instruments. The same is not true for the partitions within X (m). The order
condition for each has to hold not only individually, but jointly as well. Table 2.11
organizes these conditions which all have to be satisfied, in order to have as many
instruments, as endogenous variables.

The complexity of these necessary order conditions means that the general HT
approach may not be as practical in higher dimension as it is in standard two dimen-
sional panel data model. Nevertheless, as several km

l are potentially null, whether
the order conditions are hard to satisfy or not is a matter of the exact economic
application and model, and not the result of a purely theoretical investigation.

2.5.3 Properties

While the order conditions are necessary for parameter identification it is well-
known that HT-type estimators, as with other IV estimators in general, are biased
in finite samples. It is therefore important to examine their asymptotic properties.
In general, the estimators are consistent, if the proposed instruments are asymp-
totically uncorrelated with the composite disturbance term ui jt . As the instruments
are constructed to fulfil this particular requirement under different types of asymp-
totics, we have to derive the specific asymptotics that would ensure the validity of
all the instrument sets. For both models (2.31) and (2.37), the β̂HT 1 and β̂HT 2 have
asymptotic normal distributions, and are consistent only when all N1,N2,T → ∞

jointly. This is perhaps not surprising, as instruments for x′i, x′j and x′t are asymp-
totically uncorrelated with ui jt if N1→ ∞, N2→ ∞, and T → ∞, respectively.
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Table 2.11 Order conditions for Model (2.37)

Variable Condition

X (2) k(1)1 ≥ k(2)7 + k(2)8
k(1)1 − k(2)7 − k(2)8 + k(1)3 ≥ k(2)4 + k(2)6
k(1)1 − k(2)7 − k(2)8 + k(1)3 − k(2)4 − k(2)6 + k(1)4 ≥ k(2)3 + k(2)5
k(1)1 − k(2)7 − k(2)8 + k(1)3 − k(2)4 − k(2)6 + k(1)4 − k(2)3 − k(2)5 + k(1)7 ≥ k(2)2

X (3) k(1)1 ≥ k(3)6 + k(3)8
k(1)1 − k(3)6 − k(3)8 + k(1)2 ≥ k(3)4 + k(3)7
k(1)1 − k(3)6 − k(3)8 + k(1)2 − k(3)4 − k(3)7 + k(1)4 ≥ k(3)2 + k(3)5
k(1)1 − k(3)6 − k(3)8 + k(1)2 − k(3)4 − k(3)7 + k(1)4 − k(3)2 − k(3)5 + k(1)6 ≥ k(3)3

X (4) k(1)1 ≥ k(4)5 + k(4)8
k(1)1 − k(4)5 − k(4)8 + k(1)2 ≥ k(4)3 + k(4)7
k(1)1 − k(4)5 − k(4)8 + k(1)2 − k(4)3 − k(4)7 + k(1)3 ≥ k(4)2 + k(4)6
k(1)1 − k(4)5 − k(4)8 + k(1)2 − k(4)3 − k(4)7 + k(1)3 − k(4)2 − k(4)6 + k(1)5 ≥ k(4)4

X (5) k(1)1 + k(1)4 + k(2)1 + k(2)4 + k(3)1 + k(3)4 ≥ k(5)2 + k(5)3 + k(5)4

X (6) k(1)1 + k(1)3 + k(2)1 + k(2)3 + k(4)1 + k(4)3 ≥ k(6)2 + k(6)3 + k(6)4

X (7) k(1)1 + k(1)2 + k(3)1 + k(3)2 + k(4)1 + k(4)2 ≥ k(7)2 + k(7)3 + k(7)4

2.5.4 Incomplete Data

Incompleteness, in general, does not violate the feasibility and the validity of HT-
type estimators, but can lead to computational difficulties. The transformations to
be imposed on the data to construct the instruments cannot be represented as neat
sample means of the variables. Instead, we have to rely on the results from Section
1.5 which derives incompleteness-robust data transformations.

Obviously this complexity is directly related to the complexity of the error com-
ponent structure. For model (2.31), (QN1⊗ J̄N2T ) can still be represented with scalar
operations: first, by taking averages over j and t for each i, then de-mean the data
with respect to i:

(QN1⊗ J̄N2T )X in scalar form is 1

∑
j
|Ti j|

N2

∑
j=1

∑
t∈Ti j

x′i jt −
1

∑
i, j
|Ti j|

N1

∑
i=1

N2

∑
j=1

∑
t∈Ti j

x′i jt

for i = 1 . . .N1 .

Similar logic holds for (J̄N1⊗QN2⊗ J̄T ) and (J̄N1N2⊗QT ). The situation gets com-
plicated, when multiple Q matrices appear in the Kronecker products, that is we
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remove more, than one within group variation. For such cases, unfortunately, in-
volving matrix operations is inevitable.

2.5.5 Using External Instruments

The discussion so far focused on HT-type estimators, which utilise existing vari-
ables to generate “internal” instruments for any endogenous regressors. This sec-
tion discusses briefly the more conventional IV approach, specifically, the use of
“external” variables as instruments for the endogenous variables.

Consider model (2.31) with the a priori knowledge that x′i jt , or any of its trans-
formed counterparts are not correlated with x′i. Obviously, we can still use the
Within transform of x̄′i jt to instrument itself and use its different group means to
instrument x′j and x′t but the parameters associated with x′i cannot be identified due
to the Within transformation. In this case, we can try to find a variable z′i jt , which
perhaps is fixed over j and/or t, such that

Corr
(
z′i jt ,x

′
i
)
6= 0 and Corr

(
z′i..− z′...,ui jt

)
= 0 (2.39)

Note that for the second condition in (2.39) to hold we only require Corr(z′i jt ,υi) =

0. Once we obtain z′i jt , the instrument is constructed as in Section 2.5.1, where z′i jt
is used as instruments instead of x̄′i jt for x′2i. In terms of identification, the addi-

tional order condition g ≥ k(2)2 , where g is the number of instrumental variables,
is required. The condition requires that the number of instrumental variables must
be as large as the number endogenous regressors in x′i, which coincides with the
standard result of identifiability in the instrumental variable literature.

2.6 Various Tests for Random Effects Models

This section lines up various tests for random effects models. First, a model selec-
tion tool is developed based on Baltagi et al. (1992), then two tests are discussed
concerning the endogeneity issue: a simple test for endogeneity, and a test for in-
strument validity.

2.6.1 Testing for Model Specification

In this section we show for the all-encompassing model (2.2) how to test for the
existence of different components of the unobserved heterogeneity. More specifi-
cally, we test for the nullity of the variance of some random components against
the alternative, that the given variance is positive. We have to be careful, however,
about what we assume about the rest of the variances. Testing H0 : σ2

µ = 0 against
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HA : σ2
µ > 0 implicitly assumes, that σ2

υ = σ2
ζ
= 0, and so on. In what follows, we

collect some null-, and alternative hypotheses, and present the mechanism to test
them:

Ha
0 : σ2

µ = 0 | σ2
υ > 0 , σ2

ζ
> 0; Ha

1 : σ2
µ > 0 | σ2

υ > 0 , σ2
ζ
> 0

Hb
0 : σ2

µ = 0 | σ2
υ = 0 , σ2

ζ
> 0; Hb

1 : σ2
µ > 0 | σ2

υ = 0 , σ2
ζ
> 0

Hc
0 : σ2

µ = 0 | σ2
υ = 0 , σ2

ζ
= 0; Hc

1 : σ2
µ > 0 | σ2

υ = 0 , σ2
ζ
= 0

Hd
0 : σ2

µ = 0 | σ2
υ > 0 , σ2

ζ
> 0; Hd

1 : σ2
µ > 0 | σ2

υ = 0 , σ2
ζ
> 0

He
0 : σ2

µ = 0 | σ2
υ > 0 , σ2

ζ
= 0; He

1 : σ2
µ > 0 | σ2

υ = 0 , σ2
ζ
= 0

To test these hypotheses, we will invoke the ANOVA F-test, and adjust it to our
purposes. In its general form, as derived in Baltagi et al. (1992),

F =
y′MZ1D(D′MZ1D)−D′MZ1y/(p− r)

y′MZ2y/(N1N2T − k̃− p+ r)
, (2.40)

where both MZ1 and MZ2 are orthogonal projectors, and the degrees of freedom is
calculated from p, r, and k̃. Table 2.12 captures each specific matrix and constant
for all hypotheses listed above.

Although (2.40) suffices theoretically, let us not forget that in order to perform
the test, we have to invert (D′MZ1D), a matrix as large as the data. Instead, to
avoid this computational burden, we can elaborate on (2.40), and find out what the
respective projection matrices do to the data:

F =
F1/(p− r)

F2/(N1N2T − k̃− p+ r)

where

F1 = ( ˜̃y− ˜̃X(X ′X)−1X ′y)′(I +X(X̃ ′X̃)X ′)( ˜̃y− ˜̃X(X ′X)−1X ′y)
= ( ˜̃y− ˜̃X β̂OLS)

′(I +X(X̃ ′X̃)X ′)( ˜̃y− ˜̃X β̂OLS) ,

and

F2 = (ỹ− X̃(X̃ ′X̃)−1X̃ ỹ)′(ỹ− X̃(X̃ ′X̃)−1X̃ ỹ) = (ỹ− X̃ β̂w)
′(ỹ− X̃ β̂w) ,

with the “ ∼′′-s on the top denoting different transformations. For Ha
0 and Ha

A for
example, these are

ỹi jt = yi jt − ȳ. jt − ȳi.t − ȳi j.+ ȳ..t + ȳ. j.+ ȳi..− ȳ... (2.41)

(which is the optimal Within of model (2.2)), and

˜̃yi jt = yi jt − ȳ. jt − ȳi.t + ȳ..t . (2.42)

To get an insight into the specific formula, notice, that we actually compare two
models, the one where the sources of all variations are cleared (the denominator of
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(2.40)) with the one where all variation is cleared, but the one coming from µi j (the
numerator of (2.40)). This is, because both under the null and the alternative, we
assume, that σ2

υ > 0 and σ2
ζ
> 0, that is, they are irrelevant from our point of view,

we can eliminate both υit and ζ jt with an orthogonal projection. Further, under the
alternative, σ2

µ > 0 also holds, so we eliminate µi j as well, but save it under the
null. The numerator and the denominator of (2.40) is then compared, and if it is
sufficiently close to 1, we cannot reject the nullity of σ2

µ .
Not much changes when the underlying data is incomplete. In principle, the

orthogonal projections MZ1 and MZ2 now cannot be represented as linear trans-
formations on the data, only in semi-scalar form, with the inclusion of some ma-
trix operations, listed in Section 1.5.2. For example, (2.41) corresponds to (1.28),
while (2.42) corresponds to (1.27) in case of incomplete data. Once we have the
incomplete-robust ỹ, ˜̃y (similarly for X) variables, the F statistic is obtained as in
(2.40), with the properly computed degrees of freedom.

2.6.2 Testing for Exogeneity

While the presence of endogeneity can often be argued from theoretical grounds,
there are many cases where its presence is not particularly obvious from a practical
perspective. As such, tests for endogeneity are clearly useful. In the case of the
one-way error component model in standard two dimensional panel data model, a
simple Hausman test (see Hausman, 1978 and further Section 4.3 of Baltagi, 2013)
is sufficient. In this case, the rejection of the null of exogeneity not only suggests
the presence of endogeneity but also the source of endogeneity, specifically, the
regressors are correlated with the unobserved heterogeneity.

The higher-dimensional case is slightly more complicated, as a standard Haus-
man-test, which compares the GLS to the Within estimator, can only reveal the
presence of endogeneity but not the actual sources of endogeneity. The null hy-
pothesis is

H0 : E(υi +ζ j +λt |x′i jt) = 0 against H1 : E(υi +ζ j +λt |x′i jt) 6= 0 (2.43)

The GLS estimator under model (2.31) is consistent only if H0 is true, but the
Within estimator is consistent both under the null and alternative hypotheses. Fol-
lowing Hausman (1978), a test can be constructed with the vector q̂1 = β̂

(1)
GLS −

β̂
(1)
Within,

m = q̂′1 Var(q̂1)
−1q̂1

=
(

β̂
(1)
GLS− β̂

(1)
Within

)′(
Var(β̂ (1)

GLS)−Var(β̂ (1)
Within)

)−1(
β̂
(1)
GLS− β̂

(1)
Within

)
(2.44)
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where Var(β̂ (1)
GLS− β̂

(1)
Within) = Var(β̂ (1)

GLS)−Var(β̂ (1)
Within).

Note that plim q̂1 = 0 under the null, but plim q̂1 = plim β̂
(1)
GLS−β 6= 0 under the

alternative. Therefore, if q̂1 is sufficiently far from 0 then there are evidence against
the null of exogeneity. The test statistic m can be shown to have a χ2

d distribution
with d = k(1), the number of variables in x′i jt .

The test of (2.44) only provides evidence against exogeneity but it does not pro-
vide any information on the sources of endogeneity. For example, it may be the
case that the regressors are correlated with the error components solely through
υi, and so both E(ζ j|xi jt) = 0 and E(λt |xi jt) = 0. If this is the case, only two parti-
tions of x′i jt and x′i should be considered. Specifically, the ones that are uncorrelated
and the ones that are correlated with υi. This obviously reduces the assumptions
we have to make about the model and, at the same time, increases the number of
variables available for purposes of constructing internal instruments.

In order to address this issue, a set of subsequent tests can be constructed. If we
eliminate (ζ j,λt) from the model with a simple transformation such that

ỹi jt = x̃′i jtβ + υ̃i + ε̃i jt with x̃′i jt = (x′i jt − x̄′. j.− x̄′..t + x̄′...)

we can test

H0 : E(υ̃i|x̃′i jt) = 0 against H1 : E(υ̃i|x̃′i jt) 6= 0 , (2.45)

i.e., if the source of endogeneity is υi, after removing possible correlations with ζ j

and λt . We can repeat this test for ζ j and λt on models

ỹi jt = x̃′i jtβ + ζ̃ j + ε̃i jt with x̃′i jt = (x′i jt − x̄′i..− x̄′..t + x̄′...)
ỹi jt = x̃′i jtβ + λ̃t + ε̃i jt with x̃′i jt = (x′i jt − x̄′i..− x̄′. j.+ x̄′...)

by testing

H0 : E(ζ̃ j|x̃′i jt) = 0 against H1 : E(ζ̃ j|x̃′i jt) 6= 0
H0 : E(λ̃t |x̃′i jt) = 0 against H1 : E(λ̃t |x̃′i jt) 6= 0 ,

(2.46)

respectively. All three test statistics can be constructed similar to equation (2.44)
and they follow a χ2

d distribution with d = k(1). Depending on the outcome of the
tests, we can reformulate the partitions of the variables to obtain a set of valid
instruments more efficiently.

2.6.3 Testing for Instrument Validity

The discussion in Section 2.5.1 implicitly assumes the existence of valid instru-
ments, specifically,

plim H ′u = 0 .
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Typically economic rationale are often used to argue for or against this assump-
tion, however these arguments are usually much less credible and more difficult to
justify in random effects panel models. This is largely due to the many interdepen-
dencies between the variables and the error components. Fortunately, it is possible
to test for the validity of the proposed instruments, so long as the parameters are
over-identified in the model. The basic idea is to compare the HT-type estimator to
the Within one. This is essentially just another form of Hausman-test as proposed
in Hausman (1978), where we form our null and alternative as

H0 : plim H ′u = 0 against H1 : plim H ′u 6= 0 (2.47)

and use the fact that the Within estimator is consistent under both the null and
the alternative, serving as a “reference estimator”, but the HT-type estimator is
consistent but efficient under the null.

A test statistic of the form, with q̂2 = β̂HT 2− β̂Within,

m = q̂′2 Var(q̂2)
−1q̂2

can be constructed, and shown to have a χ2
d distribution with d = rank(Var(q̂2)).

We can elaborate on Var(q̂2) and find that

Var(q̂2) = Var(β̂HT 2− β̂Within) = Var(β̂HT 2)−Var(β̂Within)

= (X ′PHΩ̂−1PHX)−1− (X̃ ′X̃)−1σ̂2
ε .

Intuitively, if q̂2 deviates from zero raises concerns about the validity of the
instruments. If the null is rejected, it does not only suggest that some variables
failed as instruments, it also implies that these variables required instruments from
other variables. In order words, these variables are themselves endogenous

2.7 Extensions

So far we have seen how to formulate and estimate three-way error components
models. However, it is more and more typical to have data sets which require an
even higher dimensional approach. As the number of feasible model formulations
grow exponentially along with the dimensions, there is no point to attempt to col-
lect all of them. Rather, we will take the 4D representation of the all-encompassing
model (2.2), and show how the extension to higher dimensions can be carried out.
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2.7.1 4D and beyond

The baseline 4D model we use reads as, with i = 1 . . .N1, j = 1 . . .N2, s = 1 . . .N3,
and t = 1 . . .T ,

yi jst = x′i jstβ +µi js +υist +ζ jst +λi jt + εi jst = x′i jstβ +ui jst , (2.48)

where we keep assuming, that u (and its components individually) have zero mean,
the components are pairwise uncorrelated, and further,

E(µi jsµi′ j′s′) =

{
σ2

µ i = i′ and j = j′ and s = s′

0 otherwise

E(υistυi′s′t ′) =

{
σ2

υ i = i′ and s = s′ and t = t ′

0 otherwise

E(ζ jstζ j′s′t ′) =

{
σ2

ζ
j = j′ and s = s′ and t = t ′

0 otherwise

E(λi jtζi′ j′t ′) =

{
σ2

λ
i = i′ and j = j′ and t = t ′

0 otherwise

The covariance matrix of such error components formulation is

Ω = E(uu′) = σ2
µ(IN1N2N3⊗ JT )+σ2

υ(IN1⊗ JN2⊗ IN3T )

+σ2
ζ
(JN1⊗ IN2N3T )+σ2

λ
(IN1N2⊗ JN3⊗ IT )+σ2

ε IN1N2N3T .

(2.49)
Its inverse can be simply calculated, following the method developed in Section
2.3, and the estimation of the variance components can also be derived as in Section
2.4, see for details Appendix C.

The estimation procedure is not too difficult in the incomplete case either, at least
not theoretically. Taking care of the unbalanced nature of the data in four dimen-
sional panels has nevertheless a growing importance, as the likelihood of having
missing and/or incomplete data increases dramatically in higher dimensions. Con-
veniently, we keep assuming, that our data is such, that, for each (i js) individual,
t ∈ Ti js, where Ti js is a subset of the index-set {1, . . . ,T}, that is, we have |Tis j| iden-
tical observations for each (i js) pair. First, let us write up the covariance matrix of
(2.48) as

Ω = E(uu′) = σ
2
ε I +σ

2
µD1D′1 +σ

2
υD2D′2 +σ

2
ζ

D3D′3 +σ
2
λ

D4D′4 , (2.50)

where, in the complete case,

D1 = (IN1N2N3⊗ ιT ) , D2 = (IN1⊗ ιN2⊗ IN3T ) , D3 = (ιN1⊗ IN2N3T ) ,

D4 = (IN1N2⊗ ιN3⊗ IT ) ,

all being (N1N2N3T ×N1N2N3), (N1N2N3T ×N1N3T ), (N1N2N3T ×N2N3T ), and
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(N1N2N3T ×N1N2T ) sized matrices respectively, but now we delete, from each Dk,
the rows corresponding to the missing observations to reflect the unbalanced nature
of the data. The inverse of such covariance formulation can be reached in steps, that
is, one has to derive

Ω
−1

σ
2
ε = Pc−PcD4(Rd)−1D′4Pc (2.51)

where Pc and Rd are obtained in the following steps:

Rd = D′4PcD4 +
σ2

ε

σ2
λ

, Pc = Pb−PbD3(Rc)−1D′3Pb ,

Rc = D′3PbD3 +
σ2

ε

σ2
ζ

, Pb = Pa−PaD2(Rb)−1D′2Pa ,

Rb = D′2PaD2 +
σ2

ε

σ2
υ

, Pa = I−D1(Ra)−1D′1 , and Ra = D′1D1 +
σ2

ε

σ2
µ

.

Even though the calculation above alleviates some of the “dimensionality curse”,6

to perform the inverse we still have to manipulate potentially large matrices. The
last step in finishing the FGLS estimation of the incomplete 4D models is to esti-
mate the variance components. Fortunately, this is not too difficult, however, due
to the size of the formulas, the results are presented in Appendix C.

2.7.2 Mixed Fixed-Random Effects Models

As briefly mentioned in Section 2.4, when one or more of the indices are small,
or the effects associated with the indices should be treated as observable parame-
ters, rather then random draws from a population, it makes more sense to treat the
corresponding effects as fixed, than random.

The Idea

As an illustration, consider a linked employee-employer data set, where we usually
have numerous workers and firms, but typically annual or monthly data (low T ).
This means that the variance of the time random effect can not be estimated consis-
tently, and that this inconsistency carries over to β̂ . While firm and worker effects
can still be represented by random variables, now it makes more sense to add the
year (or month) effect as fixed, arriving to a mixed effects model. All in all, model
(2.10) can be rewritten as

yi jt = x′i jtβ +λt +ui jt with ui jt = υi +ζ j + εi jt , (2.52)

or similarly, with D1 = (ιN1⊗ ιN2IT ),

y = Xβ +D1λ +u .
6 The higher the dimension of the panel, the larger the size of the matrices we have to work with.
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Notice, that λt is moved out from the composite disturbance term, unlike with the
pure random effects model (2.10), and added as estimable dummy. We offer two
consistent estimators for model (2.52), one optimal, and one sub-optimal. The op-
timal estimator is the (F)GLS, which jointly estimates β and λ , and unless we
want to express β out from the joint estimator, is computationally simple. The sub-
optimal estimator first transforms out λ with some projection orthogonal to D1,
then estimates the transformed model with (F)GLS, using the underlying trans-
formed composite disturbance term to construct the variance-covariance matrix.
As it turns out, this sub-optimal estimator is computationally not demanding at all,
and also estimates β directly. Although the presence of D1λ , specifically its per-
fect multicollinearity with xt-type (that is, purely time-varying) regressors makes
parameters associated with such regressors unidentifiable, T → ∞ is not required
any longer to reach consistent estimators. Remember, that in case of the purely ran-
dom effects model (2.10), all N1,N2,T → ∞ is needed for consistency. This mixed
effects estimator is then clearly substantial improvement over the (F)GLS estimator
for short panels, and in spite of leaving some parameters unidentified, consistency
conditions are much easier to sustain.

The Estimators

Let us take the two estimators under lenses, and derive specific formulas for model
(2.52). The GLS (optimal) estimator reads as(

β̂

λ̂

)
=

(
X ′Ω−1X X ′Ω−1D1

D′1Ω−1X D′1Ω−1D1

)−1(
X ′Ω−1y
D′1Ω−1y

)
,

with Ω = E(uu′), or expressed for β̂ by partialling out λ̂ :

β̂ =
(

X ′Ω−1/2M
Ω−1/2D1

Ω
−1/2X

)−1
X ′Ω−1/2M

Ω−1/2D1
Ω
−1/2y . (2.53)

As both Ω and D1 are constructed using elementary matrices, lengthy calculations
lead to

β̂ =
(
X ′Ω−1− (J̄N1N2⊗ IT )Ω

−1X
)−1

X ′Ω−1− (J̄N1N2⊗ IT )Ω
−1y ,

which is the same as running an OLS on the transformed variables

ỹi jt =
(

yi jt − ȳ..t +
√

ϕ1ȳ. j.+
√

ϕ2ȳi..−
√

(ϕ1 +ϕ2)ȳ...
)

(2.54)

with

ϕ1 =
σ2

ε

σ2
ε +N1T σ2

ζ

−1; ϕ2 =
σ2

ε

σ2
ε +N2T σ2

υ

−1 ,

similarly for X .

91

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2017.05

The suboptimal estimator first transforms out D1λ with the orthogonal projec-
tion MD1 , then uses the covariance structure of the transformed model to construct
the (F)GLS estimator for β . Formally, (F)GLS is to be performed on the trans-
formed model

MD1y = MD1Xβ +MD1u or ỹi jt = x̃′i jtβ + ũi jt with ỹi jt = (yi jt − ȳ..t)

which now clearly is a pure random effects model with variance-covariance matrix

Ω̃ = E(ũũ′) = Iσ2
ε +(IN1⊗ J̄N2T )N2T σ2

α +(J̄N1⊗ IN2⊗ J̄T )N1T σ2
γ

−(J̄N1N2⊗ IT )σ
2
ε − J̄N1N2T (N2T σ2

α +N1T σ2
γ ) .

In spite of this covariance matrix being slightly less trivial, as it turns out, tricks
used in Section 2.2 can be also used here to analytically derive its inverse:

Ω̃−1 = I− (J̄N1N2⊗ IT )+ϕ1(IN1⊗ J̄N2T )

+ϕ2(J̄N1⊗ IN2⊗ J̄T )− (ϕ1 +ϕ2)J̄N1N2T .

The GLS is then identical to run a Least Squares regression with ˜̃x′i jt on ˜̃yi jt where

˜̃yi jt = yi jt − ȳ..t +
√

ϑ1ȳi..+
√

ϑ2ȳ. j.− (
√

ϑ1 +
√

ϑ2)ȳ... , (2.55)

similarly for X .
The results are more than interesting. The optimal and sub-optimal data trans-

formations (2.54) and (2.55) to be employed on the mixed effects model (2.52)
are almost identical, the only difference is the coefficient of the overall mean of
y:
√

ϑ1 +ϑ2 in the optimal case, and
√

ϑ1 +
√

ϑ2 for the sub-optimal estimator.
This suggests that the two estimators will fall close to each other, and that in-
formation held in the data will most likely outweigh this slight difference in the
corresponding estimators. Further, both transformations are in fact the adjusted
Within transformations, where the structure of the variance-covariance matrix is
taken into account. It easy to see, that if N1,N2→ ∞, the data transformations uni-
formly converge to the Within transformation to be employed on model (2.10) with
fixed effects.

Alternative Scenarios and Incomplete Data

Table 2.13 summarizes alternative mixed effects scenarios for model (2.10) with
their corresponding data transformations both for the optimal and for the sub-
optimal estimator.

The last question concerns with the extensions of the above estimators for un-
balanced data. As detailed in Section 2.4, the covariance matrix now can not be
represented with the kronecker product of elementary matrices, and so its potential
inverse might be costly to calculate. Further, expressing β̂ as in (2.53) from the
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Table 2.13 Mixed effects model formulations

FEa RE Optimal transformation Sub-optimal transformation

υi ζ j +λt yi jt − ȳi..+
√

ϕ2ȳ. j.+
√

ϕ3ȳ..t −
√

ϕ1 +ϕ2ȳ... yi jt − ȳi..+
√

ϕ2ȳ. j.+
√

ϕ3ȳ..t − (
√

ϕ1 +
√

ϕ2)ȳ...
ζ j υi +λt yi jt +

√
ϕ1ȳi..− ȳ. j.+

√
ϕ3ȳ..t −

√
ϕ1 +ϕ3ȳ... yi jt +

√
ϕ1ȳi..− ȳ. j.+

√
ϕ3ȳ..t − (

√
ϕ1 +

√
ϕ3)ȳ...

λt υi +ζ j yi jt +
√

ϕ1ȳi..+
√

ϕ2ȳ. j.− ȳ..t −
√

ϕ1 +ϕ2ȳ... yi jt +
√

ϕ1ȳi..+
√

ϕ2ȳ. j.− ȳ..t − (
√

ϕ1 +
√

ϕ2)ȳ...
υi +ζ j λt yi jt − ȳi..− ȳ. j.+

√
ϕ3ȳ..t −

√
1+ϕ3ȳ... yi jt − ȳi..− ȳ. j.+

√
ϕ3ȳ..t − (1+

√
ϕ3)ȳ...

υi +λt ζ j yi jt − ȳi..+
√

ϕ2ȳ. j.− ȳ..t −
√

1+ϕ2ȳ... yi jt − ȳi..+
√

ϕ2ȳ. j.− ȳ..t − (1+
√

ϕ2)ȳ...
ζ j +λt υi yi jt +

√
ϕ1ȳi..− ȳ. j.− ȳ..t −

√
1+ϕ1ȳ... yi jt +

√
ϕ1ȳi..− ȳ. j.− ȳ..t − (1+

√
ϕ1)ȳ...

a Note: the pure random effects and pure fixed effects models are excluded from the table for obvious reasons.
ϕ1 and ϕ2 are already defined, in a similar manner, ϕ3 = σ2

ε /(N1N2σ2
λ
+σ2

ε ).

joint estimator can not be done that easily, as a result, data transformation (2.54) is
subject to (potentially computationally burdening) matrix operations.

In case of the sub-optimal estimator, some fixed effects transformations, like the
one we used, yi jt − ȳ..t , are still suitable if the data is incomplete. This is not gen-
eral, unfortunately, as argued in Chapter 1, and such Within transformations often
involve matrix operations to some extent. Nevertheless, the sub-optimal estimator
still seems to perform better computationally, especially with mixed models of two
effects, one fixed and one random. To see this, consider that transforming out a
single fixed effect can always be done with scalar operations, just as the inverse of
a variance-covariance matrix with a single random effect, regardless of the form of
incompleteness.

2.8 Conclusion

When observations can be considered as samples from an underlying population,
random effects specifications seem to be more suited to deal with multi-dimen-
sional data sets. FGLS estimators for three-way error components models are al-
most as easily obtained as for the traditional 2D panel models (especially the spec-
tral decomposition of the covariance matrices and estimation of the variances of the
random effects), however the resulting asymptotic requirements for their consis-
tency are more peculiar. In fact, now the data can grow in three directions, and only
some of the asymptotic cases are sufficient for consistency. Interestingly, for some
error components specifications, consistency implies the convergence of the FGLS
estimator to the Within estimator. This is utterly important, as under the Within
estimation, the parameters of some fixed regressors are unidentified, which is in
fact carried over to the FGLS estimation of those parameters as well. To solve this,
we have shown that a simple OLS can be sufficient to get the full set of parameter
estimates (of course, bearing the price of inefficiency), wherever this identification
problem persists. As the strict exogeneity assumption in these multi-dimensional
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random effects models might fail, the proposed FGLS estimators are biased and in-
consistent, and the results are of no practical relevance. To overcome this, HT-type
IV estimators are proposed which, under reasonable assumptions, yields consistent
estimators for all model parameters. Some insights on testing are also considered,
easing the decision between different model specifications (Fisher’s ANOVA test),
testing for endogeneity (Hausman test), or testing for instrument validity. Lastly,
estimation issues with mixed effects models – models with both fixed and random
effects – are also taken into account. The main results of the chapter are also ex-
tended to treat incomplete data and towards higher dimensions.
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Appendix A – Rationale Behind the Normalization Factors

A.1 Example for Normalizing with 1: Model (2.12), T → ∞

plimT→∞V (β̂OLS) = plimT→∞(X
′X)−1X ′ΩX(X ′X)−1

= plimT→∞

(
X ′X
T

)−1
X ′ΩX

T 2

(
X ′X
T

)−1
.

We assume, that plimT→∞ X ′X/T = QXX is a finite, positive definite matrix, and
further, we use that Ω = σ2

ε IN1N2T +σ2
µ(IN1N2⊗ JT ). With this,

plimT→∞V (β̂OLS) = Q−1
XX ·plimT→∞

σ2
ε X ′X +σ2

µX ′(IN1N2⊗ JT )X
T 2 ·Q−1

XX ,

where we know, that plimT→∞

σ2
ε X ′X
T 2 = 0, and we assume, that

plimT→∞

σ2
µX ′(IN1N2⊗ JT )X

T 2 = QXBX

is a finite, positive definite matrix. Then the variance is finite, and takes the form

plimT→∞V (β̂OLS) = Q−1
XX ·QXBX ·Q−1

XX .

Notice, that we can arrive to the same result by first normalizing with the usual√
T term, and then adjusting it with 1/

√
T to arrive to a non-zero, but bounded

variance:

plimT→∞V (
√

T β̂OLS) = plimT→∞ T (X ′X)−1X ′ΩX(X ′X)−1

= plimT→∞

(
X ′X
T

)−1
X ′ΩX

T

(
X ′X
T

)−1
,

which grows at O(T ) because of X ′ΩX
T . We have to correct for it with the 1/

√
T

factor, leading to the overall normalization factor
√

T/
√

T = 1. The reasoning is
the similar for all other cases and other models.

A.2 Example for Normalizing with
√

N1N2/A: Model (2.2), N1,N2→ ∞

Using the standard
√

N1N2 normalization factor gives

plimN1,N2→∞ Var(
√

N1N2β̂OLS) = plimN1,N2→∞ N1N2 · (X ′X)−1X ′ΩX(X ′X)−1

= plimN1,N2→∞

(
X ′X
N1N2

)−1
X ′ΩX
N1N2

(
X ′X
N1N2

)−1

= Q−1
XX ·plimN1,N2→∞

X ′ΩX
N1N2
·Q−1

XX ,
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where we assumed, that plimN1,N2→∞ X ′X/N1N2 = QXX , is a positive definite, finite
matrix. Further, we use, that

Ω = σ
2
ε IN1N2T +σµ(IN1N2⊗ JT )+σ

2
υ(IN1⊗ JN2⊗ IT )+σ

2
ζ
(JN1⊗ IN2T ) .

Observe, that

plimN1,N2→∞
X ′ΩX
N1N2

= plimN1,N2→∞

σ2
ε X ′X

N1N2
+plimN1,N2→∞

σµ X ′(IN1N2⊗JT )X
N1N2

+plimN1,N2→∞

σ2
υ X ′(IN1⊗JN2⊗IT )X

N1N2
+plimN1,N2→∞

σ2
ζ

X ′(JN1⊗IN2T )X
N1N2

(A.56)
is an expression where the first two terms are finite, but the third grows with O(N2)

(because of JN2), and the last with O(N1) (because of JN1), which in turns yields
unbounded variance of β̂OLS. To obtain a finite variance, we have to normalize the
variance additionally with either 1/

√
N1 or 1/

√
N2, depending on which grows

faster. Let us assume, without loss of generality, that N1 grows at a higher rate
(A = N1). In this way, the effective normalization factor is

√
N1N2√

A
=
√

N1N2√
N1

=
√

N2,
under which the first three plim terms in (A.56) are zero, but the fourth is finite:

plimN1,N2→∞

σ2
ζ

X ′(JN1⊗ IN2T )X

N2
1 N2

= QXBX ,

with some QXBX finite, positive definite matrix. The same reasoning holds for other
models and other asymptotics as well.

Appendix B – Proof of Formula (2.17)

Let us make the proof only for model (2.2) (so formula (2.17)), the rest is just direct
application of the derivation below. The outline of the proof is based on Wansbeek
and Kapteyn (1989).

First, notice, that using the Woodbury matrix identity,

(Pa)−1 =
(

I−D1(D′1D1 + I σ2
ε

σ2
µ

)−1D1

)−1

= I +D1

(
D′1D1 + I σ2

ε

σ2
µ

−D′1D1

)−1
D′1

= I +
σ2

µ

σ2
ε

D1D′1

Second, using that

D′2PaD2 = D′2D2−D′2D1(Ra)−1D′1D2 = Rb− σ2
ε

σ2
υ

I
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gives

Rb−D′2PaD2 =
σ2

ε

σ2
υ

I .

Using the Woodbury matrix identity for the second time,

(Pb)−1 =
(
Pa−PaD2(Rb)−1D′2Pa

)−1

= (Pa)−1 +(Pa)−1PaD2
(
Rb−D′2Pa(Pa)−1PaD2

)−1 D′2Pa(Pa)−1

= (Pa)−1 +D2
(
Rb−D′2PaD2

)−1 D′2 = (Pa)−1 +D2

(
σ2

ε

σ2
υ

I
)−1

D′2

= I +
σ2

µ

σ2
ε

D1D′1 +
σ2

υ

σ2
ε

D2D′2 .

Now we are almost there, we only have to repeat the last step one more time. That
is,

D′3PbD3 = D′3D3−D′3D2(Rb)−1D′2D3 = Rc− σ2
ε

σ2
ζ

I gives Rc−D′3PbD3 =
σ2

ε

σ2
ζ

I .

again, and so(
Ω−1σ2

ε

)−1
=
(
Pb−PbD3(Rc)−1D′3Pb

)−1

= (Pb)−1 +(Pb)−1PbD3
(
Rc−D′3Pb(Pb)−1PbD3

)−1 D′3Pb(Pb)−1

= (Pb)−1 +D3
(
Rc−D′3PbD3

)−1 D′3 = (Pb)−1 +D3

(
σ2

ε

σ2
ζ

I
)−1

D′3

= I +
σ2

µ

σ2
ε

D1D′1 +
σ2

υ

σ2
ε

D2D′2 +
σ2

ζ

σ2
ε

D3D′3 = Ωσ−2
ε .

Appendix C – Inverse of (2.49), and the Estimation of the Variance
Components

σ2
ε Ω−1 = IN1N2N3T − (1−θ20)(JN1⊗ IN2N3T )− (1−θ21)(IN1⊗ JN2⊗ IN3T )

−(1−θ22)(IN1N2⊗ JN3⊗ IT )− (1−θ23)(IN1N2N3⊗ JT )

+(1−θ24)(JN1N2⊗ IN3T )+(1−θ25)(JN1⊗ IN2⊗ JN3⊗ IT )

+(1−θ26)(JN1⊗ IN2N3⊗ JT )+(1−θ27)(IN1⊗ JN2N3⊗ IT )

+(1−θ28)(IN1⊗ JN2⊗ IN3⊗ JT )+(1−θ29)(IN1N2⊗ JN3T )

−(1−θ30)(JN1N2N3⊗ IT )− (1−θ31)(JN1N2⊗ IN3⊗ JT )

−(1−θ32)(JN1⊗ IN2⊗ JN3T )− (1−θ33)(IN1⊗ JN2N3T )

+(1−θ34)JN1N2N3T
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with

θ20 = σ2
ε

σ2
ε +N1σζ

θ21 =
σ2

ε

σ2
ε +N2συ

θ22 =
σ2

ε

σ2
ε +N3σλ

θ23 =
σ2

ε

σ2
ε +T σµ

θ24 = θ20 +θ21− σ2
ε

σ2
ε +N1σ2

ζ
+N2σ2

υ

θ25 = θ20 +θ22− σ2
ε

σ2
ε +N1σ2

ζ
+N3σ2

λ

θ26 = θ20 +θ23− σ2
ε

σ2
ε +N1σ2

ζ
+T σ2

µ

θ27 = θ21 +θ22− σ2
ε

σ2
ε +N2σ2

υ+N3σ2
λ

θ28 = θ21 +θ23− σ2
ε

σ2
ε +N2σ2

υ+T σ2
µ

θ29 = θ22 +θ23− σ2
ε

σ2
ε +N3σ2

λ
+T σ2

µ

θ30 = θ24 +θ25 +θ27−θ20−θ21−θ22 +
σ2

ε

σ2
ε +N1σ2

ζ
+N2σ2

υ+N3σ2
λ

θ31 = θ24 +θ26 +θ28−θ20−θ21−θ23 +
σ2

ε

σ2
ε +N1σ2

ζ
+N2σ2

υ+T σ2
µ

θ32 = θ25 +θ26 +θ29−θ20−θ22−θ23 +
σ2

ε

σ2
ε +N1σ2

ζ
+N3σ2

λ
+T σ2

µ

θ33 = θ27 +θ28 +θ29−θ21−θ22−θ23 +
σ2

ε

σ2
ε +N2σ2

υ+N3σ2
λ
+T σ2

µ

θ34 = θ20 +θ21 +θ22 +θ23−θ24−θ25−θ26−θ27−θ28−θ29

+θ30 +θ31 +θ32 +θ33− σ2
ε

σ2
ε +N1σ2

ζ
+N2σ2

υ+N3σ2
λ
+T σ2

µ

.

The estimation of the variance components in case of complete data are as follows:

σ̂2
ε = 1

(N1−1)(N2−1)(N3−1)(T−1) ∑i jst ˜̂u2
i jst

σ̂2
µ = 1

(N1−1)(N2−1)(N3−1)T ∑i jst ( ˜̂ua
i jst)

2− σ̂2
ε

σ̂2
υ = 1

(N1−1)N2(N3−1)(T−1) ∑i jst ( ˜̂ub
i jst)

2− σ̂2
ε

σ̂2
ζ

= 1
N1(N2−1)(N3−1)(T−1) ∑i jst ( ˜̂uc

i jst)
2− σ̂2

ε

σ̂2
λ

= 1
(N1−1)(N2−1)N3(T−1) ∑i jst ( ˜̂ud

i jst)
2− σ̂2

ε ,

where, as before, ûi jst is the OLS residual, and

ũi jst = ui jst − ūi js.− ūi j.t − ūi.st − ū. jst + ūi j..+ ūi.s.+ ū. js.
+ūi..t + ū. j.t + ū..st − ūi...− ū. j..− ū..s.− ū...t + ū....

ũa
i jst = ui jst − ūi j.t − ūi.st − ū. jst + ūi..t + ū. j.t + ū..st − ū...t

ũb
i jst = ui jst − ūi js.− ūi j.t − ū. jst + ūi j..+ ū. js.+ ū. j.t − ū. j..

ũc
i jst = ui jst − ūi js.− ūi j.t − ūi.st + ūi j..+ ūi.s.+ ūi..t − ūi...

ũd
i jst = ui jst − ūi js.− ūi.st − ū. jst + ūi.s.+ ū. js.+ ū..st − ū..s. .

Estimation of the variance components in case of incomplete data yields

σ̂2
µ = 1

∑i js |Ti js| ∑i jst û2
i jst − 1

ñi js
∑i js

1
|Ti js|−1 ∑t ( ˜̂ua

i jst)
2

σ̂2
υ = 1

∑i js |Ti js| ∑i jst û2
i jst − 1

ñist
∑ist

1
nist−1 ∑ j ( ˜̂ub

i jst)
2

σ̂2
ζ

= 1
∑i js |Ti js| ∑i jst û2

i jst − 1
ñ jst

∑ jt
1

n jst−1 ∑i ( ˜̂uc
i jst)

2

σ̂2
λ

= 1
∑i js |Ti js| ∑i jst û2

i jst − 1
ñi jt

∑i jt
1

ni jt−1 ∑s ( ˜̂ud
i jst)

2

σ̂2
ε = 1

∑i js |Ti js| ∑i jst û2
i jst − σ̂2

µ − σ̂2
υ − σ̂2

ζ
− σ̂2

λ
,

(C.57)
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where ûi jst are the OLS residuals, and ˜̂uk
i jst are its transformations (k = a,b,c,d)

according to

ũa
i jst = ui jst − 1

|Ti js| ∑t ui jst , ũb
i jst = ui jst − 1

nist
∑ j ui jst ,

ũc
i jst = ui jst − 1

n jst
∑i ui jst , ũd

i jst = ui jst − 1
ni jt

∑s ui jst .

Further, |Ti js|, ñist , ñ jst , and ñi jt denote the total number of observations for a given
(i js), (ist), ( jst), and (i jt) pair respectively, and finally, ñi js, ñist , ñ jst , and ñi jt are
the total number of unique (i js), (ist), ( jst), and (i jt) observations in the data.
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3
The Estimation of Varying Coefficients
Multi-dimensional Panel Data Models

3.1 Introduction

Over the last few years there has been an explosion in the amount of data available
for economic analysis. Many of these data sets present themselves in the form
of multi-dimensional panels and are used to study phenomena like international
trade, capital flows between countries or regions, exchange rates between multiple
currencies, and so on. Several fixed effects model specifications (along with some
random effects specifications) have been put forward in the literature and used in
practice to deal with these types of observations. All these specifications, however,
formalize the individual and time heterogeneity of the data through simple (but
multiple, due to the multi-dimensionality of the panels) individual and time effects
(let them be fixed or random, see Chapters 1 and 2, and further see, for example,
Egger and Pfaffermayr, 2003, Baltagi et al., 2003, Baldwin and Taglioni, 2006,
Baier and Bergstrand, 2007, Matyas, 1997, Matyas, 1998, Ghosh, 1976). This in
fact means, that the heterogeneity is captured through the intercept parameter in
case of fixed effects (i.e., via the shifts of the intercept for different individuals
and time points), and is captured through unobserved random variables in case of
random effects.

One of the most important statistical features of these data sets is, however, that
heterogeneity is likely to take more complicated forms (like clustering, for exam-
ple) which begs for more complex econometric models. Accounting for omitted
variables through individual and/or time effects (or with their interactions) is not
always enough. In many cases changes in economic structures or factors imply that
the slope parameters may be different across entities or vary over time periods. Two
of the most famous examples in the literature to promote varying coefficient mod-
els are Kuh (1963) and Swamy (1970). Kuh’s study on the investment expenditure
of 60 small and medium-sized firms rejects the joint hypothesis of common inter-
cept and slope parameters for all firms, but more interestingly, it soundly rejects
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the hypothesis of a variable intercept and common slope parameters (that is, fixed
effects models). Similarly, when Swamy undertook his project on 11 US corpora-
tions to fit the Grunfeld (1958) investment functions, the test for varying intercept
parameters and common slope coefficient was strongly rejected.

In such cases tests suggest that common slopes and variable intercepts are un-
satisfactory in explaining why some effects differ across individuals and/or time
periods, and it makes sense to allow the slope parameters to vary across individu-
als and/or over time. Such formulation in its most general form can be constructed
as, with i = 1, . . . ,N1, j = 1, . . . ,N2, and t = 1, . . . ,T ,

yi jt = x′i jtβi jt + εi jt (3.1)

where yi jt is the dependent variable corresponding to observation (i jt), x′i jt is a
(1×K) vector of regressors, βi jt is the (K×1) vector of the slope parameters, and
εi jt is assumed to be an idiosyncratic white noise disturbance term.1

If βi jt are considered as fixed parameters, (3.1) obviously can not be regressed,
as the number of slope parameters to be estimated (KN1N2T ) well exceed the num-
ber of observations (N1N2T ). One possibility to reduce the number of coefficients
is to allow some structure on βi jt , something I will encounter in Section 3.2. Alter-
natively, by assuming that βi jt is coming from a probability distribution with some
common mean:

βi jt = β +µi jt ,

the number of parameters to be estimated reduces highly. In this context β is es-
timated with GLS or Maximum Likelihood techniques and the zero mean µi jt is
called the random coefficients. Giving some structure to µi jt and assuming that it is
in fact well-behaved, K model parameters and some (K×K) variance-covariance
matrices are to be estimated.

This latter case is called the random coefficients approach, something I can not
take into account here due to size considerations.2

The choice between the two modelling frameworks, however, is usually not up to
the researcher, but, as Hsiao (2003) puts it, depends on whether βi jt is coming from
a heterogeneous population, or is viewed as a random draw from a common pop-
ulation, and whether we are making inferences conditional on the individual/time
characteristics, or making unconditional inferences on the population characteris-
tics. In the former case, βi jt should be considered as fixed, estimable parameter
(after giving proper structures to reduce the overall number of slope parameters),
invoking the fixed varying coefficient approach, whereas in the latter, the random

1 It now makes sense not to treat the intercept parameter differently from the slope parameters (unlike in
Chapters 1 and 2), and so to include it into x′i jt by setting x1

i jt = 1.
2 The interested reader can find an extensive, fresh-from-the-oven analysis of multi-dimensional random

coefficients models in Krishnakumar et al. (2017).
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coefficients approach is more feasible.3 Further, fixed- or random coefficients are
not necessarily exclusive: mixed effects models, comprising both fixed and ran-
dom slopes, are naturally viewed as general cases of pure fixed-coefficients or pure
random-coefficients models. Mixed effects models are briefly visited in Section
3.3.3.

It is not always clear, however, which (the fixed- or the random coefficients) ap-
proach is more suitable economically. In such cases, we have to keep in mind the
advantages each approach may offer, and make decisions accordingly. The fixed
coefficient framework (as it is based on a standard analysis of variance approach) is
computationally much simpler (if we ignore the mere size of the data for a minute),
moreover, no distributional assumptions are needed for the underlying slope pa-
rameters. The drawback of the fixed coefficients framework is twofold: (i) as the
differences between individuals and/or time periods are fixed and different (Hsiao
and Pesaran, 2008), meaningful inferences on the population are hard to make, and
(ii) the number of parameters to be estimated is radically large, as compared to
random coefficients models, where estimates are only required for certain (K×K)

variance-covariance matrices.
In this study I extend the well-known two-dimensional (2D) fixed coefficient

model (Balestra and Krishnakumar, 2008, pp. 41–44, and Hsiao, 2003, pp. 138–
140) to higher dimensions together with some extensions of the basic results, and,
at the same time, I get some new insights into the 2D case by proposing a widely
generalizable estimation methodology. Fixed coefficients models are almost com-
pletely absent from the literature, except for Hsiao’s somewhat light theoretical
foundations and a few applications of random coefficients models where fixed-
coefficient-like joint estimators of β and a single individual-varying parameter are
derived (Arellano and Bonhomme, 2012). To the best of my knowledge, no higher-
dimensional models, and more importantly, no models with multiple varying coef-
ficients have been considered properly in the literature, most probably due to the
excessive number of parameters to estimate and due to the incomplete theoretical
background. The contribution of the chapter is twofold. One, new fixed coefficients
models are proposed, and proper estimators are derived which can readily be used
in practice, further, can be traced back to the incomplete 2D results (like estima-
tor (3.17) of model (3.16)). Two, using the so-called Least Squares of no-full rank
estimator (which is a principal result of algebra/statistics), as we will see in Sec-
tion 3.2, is a complete novelty in the fixed-coefficients context, and beneficial for
at least three reasons: (i) Easy to apply for any fixed coefficients model regardless
of parameter structure or the number of dimensions; (ii) flexibly handles multi-

3 Hereafter, the ‘fixed coefficient’ terminology will be used to refer to fixed varying coefficient models. The
‘fixed’ term should not confuse the reader: the slope coefficients are varying, only they are not drawn
randomly from a distribution.
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ple forms of identifying parameter restrictions; (iii) naturally alleviates part of the
dimensionality issue if the data is large.

The chapter is structured as follows: Section 3.2 presents different types of
fixed coefficients formulations for three-dimensional panels, and derives appropri-
ate Least Squares estimators for each of them. Extensions to unbalanced data are
also considered here. Section 3.3 discusses two important extensions of the main
results: the case when fixed coefficients are functions of the observables, and the
case of variables with index deficiencies: variables which potentially do not vary
in all three directions. Section 3.4 takes a brief look at the estimation issues with
fixed coefficient autoregressive models deriving a general form of the well-known
Nickell-bias (Nickell, 1981). Finally, some conclusions are drawn in Section 3.5.

3.2 Fixed Coefficients Models and their Estimation

This section discusses estimation issues with a benchmark fixed coefficients model,
proposes two distinct estimators, and lists possible model specifications, all being
special cases of the benchmark.

3.2.1 The Benchmark Model and its Estimation with Least Squares

Model (3.1) of course in this general form is not identified, so some parameter
restrictions need to be applied. To start with, let us assume that the parameter
structure is the most general possible, that is, βi jt = (β + γi j +αit +α∗jt). In other
words, the parameter vector βi jt is assumed to have a two-part effect: β captures
the universal effect of x′i jt on yi jt , something which is the same across entities and
time periods, while individual-pair, individual-time specific effects are captured by
γi j +αit +α∗jt . The case of β = 0 is clearly a special case of this and so won’t
be investigated here. The restriction on the parameter structure gives the so called
all-encompassing model (as I am going to show later on, by applying appropriate
restrictions, several other useful models are in fact encompassed in model (3.2))

yi jt = x′i jt(β + γi j +αit +α
∗
jt)+ εi jt (3.2)

or

y = X1β +X2γ +X3α +X4α
∗+ ε

with
X1 = ∆(ιN1N2T ⊗ IK) (N1N2T ×K)

X2 = ∆(IN1N2⊗ ιT ⊗ IK) (N1N2T ×N1N2K)

X3 = ∆(IN1⊗ ιN2⊗ IT ⊗ IK) (N1N2T ×N1T K)

X4 = ∆(ιN1⊗ IN2⊗ IT ⊗ IK) (N1N2T ×N2T K)
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where I keep assuming that I and ι are the identity matrix and the column of ones
respectively with sizes on the index, and

∆ =


x′111

x′112
. . .

x′N1N2T

 (N1N2T ×N1N2T K)

is the diagonally arranged data matrix.
Unfortunately, β still can not be identified, as the matrix X = (X1, X2, X3, X4)

has no full column rank (K(N1N2 +N1T +N2T − 2) instead of K(N1N2 +N1T +

N2T +1)), because the column-wise sums of X2, X3 and X4 are all identical to X1.
The question is what further restrictions (a number of 3K) to make to properly
identify the model. We have many options at hand, for example the most obvious
one is to set γi j = αkt = α∗ls = 0 for particular pairs.4 This may as well be too
restrictive in certain applications so a more ‘even’ restriction could be to normalize
to the averages of the parameters,

∑
i j

γi j = 0; ∑
it

αit = 0; ∑
jt

α
∗
jt = 0 (3.3)

as proposed in Hsiao (2003) for 2D models.5 Then X̃ = (X1, X̃2, X̃3, X̃4) has
full column rank, where the X̃k-s denote the matrices of observations Xk, after
imposing the proper restrictions. To proceed, the adjusted (identified) model can
be estimated with straight OLS to get an estimator for the composite parameter
δ = (β ′ γ ′ α ′ α∗

′
)′,

δ̂ =
(
X̃ ′X̃

)−1 X̃y

or alternatively, expressing it for β̂ from the Frisch-Waugh theorem,

β̂ =
(
X ′1MX̃2X̃3X̃4

X1
)−1 X ′1MX̃2X̃3X̃4

y

where MX̃2X̃3X̃4
is the optimal projection orthogonal to (X̃2, X̃3, X̃4). Although mul-

tiplication of the model with MX̃2X̃3X̃4
removes the heterogeneous effects, one is

still faced with the problem of inverting (KN1N2×KN1N2), (KN1T ×KN1T ), and
(KN2T ×KN2T ) matrices repeatedly, which can become quickly computationally
forbidding. One could try to figure out what this projection (with a set of non-trivial
matrices) does to a typical x′i jt , and be lost in the algebra quickly. Even if the above
estimators can be dealt with in small samples, we still have the inconvenience of

4 We usually set the first of the parameters to zero and interpret the rest of the parameters as differences from
the first one.

5 With different restrictions the estimator for β will naturally be different, as well as the interpretation of the
varying parameters. For example with γ11 = 0, γ̂i j is a measure relative to a benchmark pair, γ11, on the other
hand with γ̄ = 0 γ̂i j is a measure relative to the mean of the effects.
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incorporating the restrictions first. Having said that, if we are uncertain about what
the proper set of restriction would be, or simply there is scope for experimenting
different restrictions, we would have to painfully redo the estimation each time.

3.2.2 The Least Squares of Incomplete Rank

There is, however, a more general, and useful approach to be used to derive es-
timators for β and for the heterogeneous parameters as well. The so-called Least
Squares of incomplete rank (wonderfully explained in Searle, 1971, pp. 164–225)
is presented in the general form

δ̂ =
(
X ′X

)−X ′y+
((

X ′X
)−X ′X− I

)
y1 (3.4)

with ‘−’ standing for any generalized inverse, now X = (X2, X3, X4, X1) and y1

being an arbitrary vector satisfying some regularity conditions to be detailed later
on.6 To have an insight on the formula, notice that (X ′X)−X ′y is a general solution
of the (under-identified) linear system of equations, while the second part incorpo-
rates the restriction needed for identification, through y1. Specifically, with a linear
restriction of form

R′δ = r

y1 is such, that it satisfies

R′
(
(X ′X)−X ′X− I

)
y1 = r−R′(X ′X)−X ′y (3.5)

Notice, that if the model were identified, the first part of (3.4) would be a full-
rank (straight) Least Squares (as the generalized inverse boils down to a ‘regu-
lar’ inverse), and the second part would drop out for the same reason.7 This ap-
proach has the advantage of being able to incorporate the restriction as the last
step: everything, which is model-specific can be derived strictly before arriving
to the restriction, offering a flexible way to handle multiple forms of restrictions.
The shortcoming of the approach lies in the derivation of the generalized inverse
(hereafter, g-inverse) of the block matrix X ′X . This can be cumbersome and chal-
lenging in some cases. Let me note here, that this method does not fully alleviate
the dimensionality problem: to go through the g-inverse of X ′X , using sophisti-
cated block-inverse theory and clever matrix manipulations, one still have to invert

6 The reason for placing X2 to the front of X is that X ′2X2 is the largest matrix, yet block-diagonal. As its
inverse is the inverses of its blocks, it is easy to be computed, alleviating some of the issues with the
dimensions. Such simple rearrangement of matrix elements comes very handy, and should be kept in mind
whenever computational limits are close.

7 As (X ′X)−X ′X− I = I− I = 0 in case of an X ′X of full rank.
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full matrices of order max{N1T K, N2T K}. This is unfeasible in practice even for
moderate sample sizes.8

Full calculations (employing some of the results of Miao, 1991 and Hartwig,
1976) are included to Appendix A, I only present the main steps and results of
the estimation procedure. The data matrix to be inverted, X ′X , is a (4× 4) block
matrix of order K(N1N2 +N1T +N2T +1). Direct inversion of such is clearly im-
possible even for moderate N1 (N2). Instead, we can proceed by first calculating the
g-inverse of its second principal minor (that is, the inverse of the upper left (2×2)
block), then use this g-inverse to calculate the g-inverse of X ′X’s third principal mi-
nor (for which we need the inverse of its upper left block, which we already have),
and so on. The resulting (X ′X)− multiplied with X ′y gives the general solutions
δ 0 = (γ0′ α0′ α∗0

′
β 0′)′, where ‘0’-s are inserted to the superscripts to emphasise

that they are not yet estimators. Even though (X ′X)− can only be specified up to
full (KN1T ×KN1T ) and (KN2T ×KN2T ) matrices, interestingly (X ′X)−(X ′X),
necessary for the restriction, can be fully recovered (see Appendix A for the full
derivations). That being said, with restrictions (3.3),

((
X ′X

)−X ′X− I
)

y1 =


−ιN1N2⊗ 1

N1N2
∑i j γ0

i j
−ιN1T ⊗ 1

N1T ∑it α0
it

−ιN2T ⊗ 1
N2T ∑ jt α∗0jt

1
N1N2

∑i j γ0
i j +

1
N1T ∑it α0

it +
1

N2T ∑ jt α∗0jt

 ,

a (K(N1N2+N1T +N2T +1)×1) matrix. This is nice, as the estimators (separately
defined for each parameter) then read, as

γ̂i j = γ0
i j− 1

N1N2 ∑
i j

γ
0
i j (i = 1 . . .N1, j = 1 . . .N2)

α̂it = α0
it − 1

N1T ∑
it

α
0
it (i = 1 . . .N1, t = 1 . . .T )

α̂∗jt = α∗0jt − 1
N2T ∑

jt
α
∗0
jt ( j = 1 . . .N2, t = 1 . . .T )

β̂ = β 0 + 1
N1N2 ∑

i j
γ

0
i j +

1
N1T ∑

it
α

0
it +

1
N2T ∑

jt
α
∗0
jt .

(3.6)

Loosely speaking, the generalized solutions are adjusted (here, de-meaned) to cor-
rect for identification. Still, we can not forget about the crucial problem of arriving
to the general solutions β 0, γ0, α0, and α∗0. To have them, we have to invert po-
tentially large matrices which makes the estimators in this present form hardly ap-
plicable for practical purposes if N1 (N2) is even moderately large. Unfortunately,
no scalar solutions per se are available currently.

8 A simple model with 20 regressors on a data of 10 years with 1000 individual i (and less individual j) sets up
a 200000×200000 matrix to be inverted directly. This clearly exceeds all reasonable computational limits.
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3.2.3 Incomplete Data

The results, so far, have assumed complete data. We know, however, that real-
life panels (especially large and higher-dimensional ones) are almost exclusively
incomplete of some nature. Let us see then how unbalanced data affects estimator
(3.6), in order to make these fixed coefficient models more suitable for empirical
analysis. Let us assume then (in line with Chapter 1), that for each (i j) pair, instead
of having data over 1 . . .T , we have a Ti j set of observations, where Ti j⊆{1, . . . ,T}.
I also assume, that |Ti j| ≥ 2 for all (i j), and that for every t = 1 . . .T , there is at least
two (i j) pairs having observations. This way I guarantee the identification of all
individual parameters, also avoiding all kinds of rank issues with the data matrix
X . The unbalanced version of (3.6) is then obtained in the following way. The data
matrices, X1, X2, X3, X4, and y has to be adjusted to reflect the unbalanced nature of
the data, i.e., the rows corresponding to the missing observations has to be deleted,
to get the desired number of rows, ∑i j |Ti j|. Note, that column-wise, the dimensions
of the respective matrices are unchanged. Using these adjusted data matrices, the
unbalanced estimator of model (3.2) is formulationally identical to (3.6).9 As this
result is not model specific, the above reasoning underpins the easy application
of such unbalanced estimators for all subsequent models as well. Even though the
estimators are different in the underlying data and sample sizes, the estimators with
the adjusted data matrices are formulationally identical to their complete versions.

3.2.4 Alternative Model Specifications

Due to the severe computational limitations with the estimation of model (3.2), I
assume that some of the heterogeneous parameters are restricted over some of the
indices, or even more so, completely missing. This gives us numerous new model
versions, many of which carry empirical relevance. For example, if we set γi j = 0
for all (i j) pairs, we arrive to a simpler fixed coefficients marginal effect model,

yi jt = x′i jt
(
β +αit +α

∗
jt
)
+ εi jt (3.7)

with restrictions

∑
it

αit = 0; ∑
jt

α
∗
jt = 0 .

9 That is so, as (X ′X)−X ′X− I and with it, y1 are unaffected by the unbalanced data, as long as the column
space of X does not shrink.
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The optimal estimator, very similar to estimator (3.6) takes the form

α̂it = α0
it − 1

N1T ∑
it

α
0
it (i = 1 . . .N1 , t = 1 . . .T )

α̂∗jt = α∗0jt − 1
N2T ∑

jt
α
∗0
jt ( j = 1 . . .N2 , t = 1 . . .T )

β̂ = β 0 + 1
N1T ∑

it
α

0
it +

1
N2T ∑

jt
α
∗0
jt .

(3.8)

Unfortunately, the same problem arises as with model (3.2): I can not avoid to
directly invert order max{KN1T, KN2T} non-sparse matrices. To fully get rid of
this dimensionality problem, I take one step forward, and assume also, that α∗jt = 0,
for all ( jt) pairs, as

yi jt = x′i jt (β +αit)+ εi jt (3.9)

shows, or using matrix notation,

y = X1β +X3α + ε

with the suitable restriction (to fix the rank deficiency of K)

∑
it

αit = 0 .

As the upper left block of the square matrix X ′X (with X = (X3, X1)) is block diag-
onal, the g-inverse of X ′X is obtained easily. This also means, that the estimator can
be further simplified to reach scalar formed estimators for all model parameters:

α̂it = α0
it − 1

N1T ∑
it

α
0
it =

(
∑

j
xi jtx′i jt

)−1(
∑

j
xi jtyi jt

)
− β̂

β̂ = β 0 + 1
N1T ∑

it
α

0
it =

1
N1T ∑

it

(
∑

j
xi jtx′i jt

)−1(
∑

j
xi jtyi jt

)
,

(3.10)

where again, α0
it and β 0 are the generalized solutions coming from (X ′X)−X ′y. As

seen from (3.10), the largest matrix to be inverted, to get the estimators, is (K×K).
This model can, however, be considered well too restrictive. So let me turn,

instead, to an other set of restrictions of the all-encompassing model (3.2), which
mirrors the structure used in 2D fixed effects panel data models:

yi jt = x′i jt(β + γi j +λt)+ εi jt , (3.11)

or similarly,

y = X1β +X2γ +X5λ + ε

with

X5 = ∆(ιN1N2⊗ IT ⊗ IK) (N1N2T ×KT ) .
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For identification, I impose the restrictions

∑
i j

γi j = 0; ∑
t

λt = 0 ,

which ultimately leads to the estimators

γ̂i j = γ0
i j− 1

N1N2 ∑
i j

γ
0
i j (i = 1 . . .N1, j = 1 . . .N2)

λ̂t = λ 0
t − 1

T ∑
t

λ
0
t (t = 1 . . .T )

β̂ = β 0 + 1
N1N2 ∑

i j
γ

0
i j +

1
T ∑

t
λ

0
t .

(3.12)

To get expressions for γ0, λ 0, and β 0, however, we have to elaborate on (X ′X)−X ′y.
While model (3.11) already seems to be of high practical relevance, as it captures
both individual and time heterogeneity (without over-complicating the parameter
structure), it is also appealing computationally, as for its full estimation, I only have
to invert (KT ×KT ) matrices. Moreover, this model can also be viewed as a 2D
fixed coefficients panel data model, with the (i j) pairs being the individuals.

Model

yi jt = x′i jt(β +αi + γ j +λt)+ εi jt , (3.13)

or alternatively,

y = X1β +X6α +X7γ +X5λ + ε

with

X6 = ∆(IN1⊗ ιN2T ) X7 = ∆(ιN1⊗ IN2⊗ ιT )

is a special case of model (3.11), with the restriction γ∗i j = αi + γ j. The Least
Squares of no full rank estimator for this model can easily be worked out as for
the other models. With the identifying restrictions

∑
i

αi = 0; ∑
j

γ j = 0; ∑
t

λt = 0 ,

the estimators become

α̂i = α0
i − 1

N1
∑i α0

i (i = 1 . . .N1)

γ̂ j = γ0
j − 1

N2
∑ j γ0

j ( j = 1 . . .N2)

λ̂t = λ 0
t − 1

T ∑t λ 0
t (t = 1 . . .T )

β̂ = β 0 + 1
N1

∑i α0
i +

1
N2

∑ j γ0
j +

1
T ∑t λ 0

t

(3.14)

The above approach is not practical for large N1 and/or N2 however, as to get
there, I need to invert non-sparse, (KN1×KN1) and/or (KN2×KN2) matrices. One
possible way to fix this dimensionality problem is to estimate model (3.13) as if
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it were model (3.11), that is, by estimating some γ∗i j = αi + γ j (with the restriction
∑i j γ∗i j = 0), rather than αi and γ j separately. The estimator for β and γ∗, and λ

is then identical to (3.12). As I prefer to have estimators for αi and γ j separately
(rather than for some joint bilateral parameter γ∗i j), I can do it so by applying the
restrictions ∑i αi = 0 and ∑ j γ j = 0 on (3.12), leading to

α̂i = 1
N2

∑ j γ̂∗i j (i = 1 . . .N1)

γ̂ j = 1
N1

∑i γ̂∗i j ( j = 1 . . .N2) .
(3.15)

It is clear, that even though these estimators are unbiased for all parameters, they
are clearly not optimal: I do not derive the estimators from the Frisch-Waugh the-
orem any more. In this case, in fact, I do not use the information present in the
restrictions for the estimation: while estimator (3.14) is optimal, (3.15) can only be
suboptimal. Intuitively, the optimal estimator outperforms the suboptimal for small
N1 (N2), as computational burdens are not yet present, but I get more precise es-
timates due to optimality. For large N1 (N2) however, the optimal estimator (3.14)
becomes computationally forbidding, making the suboptimal estimator (3.15) the
more attractive for estimation. I am going to assess the efficiency loss versus practi-
cality trade off through a Monte Carlo experiment. I expect, even in small samples,
the data information being so overwhelming relative to the information content of
the restrictions, that the efficiency loss can be completely neglected and the subop-
timal estimator recommended for use.

I conducted our experiment for various parameter values, sample sizes, and un-
derlying data generating processes (DGP) for x′i jt and εi jt . Table 3.1 summarizes
some of my typical results. It can be seen, that (i) there is virtually no difference
between the optimal and suboptimal estimates of β , α , and γ ,10 not even for small
N1 (N2); (ii) differences from true parameter values are redundant for all parameter
estimates, even in small sample sizes; (iii) the estimated standard errors are higher
(although this difference is barely noticeable) in case of the suboptimal estimators,
corresponding to the loss in efficiency. The above regularities are robust across
different DGP, sample sizes, and assigned parameter values.

A further restriction on model (3.11) can be implemented when we assume that
there is no time effect (λt = 0), arriving to one of the simplest models imple-
mentable in 3D data,

yi jt = x′i jt(β + γi j)+ εi jt , (3.16)

or

y = X1β +X2γ + ε

10 There is no point in comparing optimal and suboptimal αi (γ j) for all individuals one-by-one, rather, I
illustrated their closeness with some descriptive statistics, like min, max, or mean of the differences.
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Table 3.1 Monte Carlo simulation for assessing optimality against
efficiency loss

N = 5 N = 10 N = 20
Opta Subopt Opt Subopt Opt Subopt

β = 0.5 xi jt ∼U [−1,1] εi jt ∼ N(0,1)

β̂ 0.496 0.499 0.497 0.495 0.499 0.499
(0.025) (0.028) (0.006) (0.008) (0.002) (0.002)

1/N1 ∑i α̂i/αi 1.002 1.002 0.999 0.998 1.000 1.001
maxi{α̂i−αi} 0.009 0.007 0.014 0.015 0.010 0.014
mini{α̂i−αi} 0.000 0.001 0.001 0.001 0.001 0.002
1/N2 ∑ j γ̂ j/γ j 0.999 0.999 0.999 0.999 0.999 0.999
max j{γ̂ j− γ j} 0.012 0.020 0.012 0.014 0.011 0.015
min j{γ̂ j− γ j} 0.001 0.002 0.004 0.000 0.000 0.000

β = 0.5 xi jt ∼ N(0,0.5) εi jt ∼ N(0,10)

β̂ 0.419 0.499 0.499 0.483 0.495 0.499
(4.141) (5.554) (0.841) (1.256) (0.199) (0.321)

1/N1 ∑i α̂i/αi 1.018 1.046 1.014 1.015 1.011 0.996
maxi{α̂i−αi} 0.217 0.317 0.199 0.167 0.122 0.171
mini{α̂i−αi} 0.036 0.042 0.005 0.010 0.005 0.001
1/N2 ∑ j γ̂ j/γ j 1.079 1.061 0.950 0.949 1.128 1.157
max j{γ̂ j− γ j} 0.129 0.265 0.120 0.149 0.111 0.175
min j{γ̂ j− γ j} 0.031 0.029 0.001 0.012 0.001 0.006

β = 0.5 xi jt ∼ N(5,0.5) εi jt ∼ N(0,1)

β̂ 0.500 0.500 0.500 0.500 0.499 0.499
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

1/N1 ∑i α̂i/αi 1.000 1.000 1.000 1.000 0.999 0.999
maxi{α̂i−αi} 0.001 0.001 0.002 0.002 0.002 0.002
mini{α̂i−αi} 0.000 0.000 0.000 0.000 0.000 0.001
1/N2 ∑ j γ̂ j/γ j 1.000 1.000 1.000 1.000 1.004 1.004
max j{γ̂ j− γ j} 0.001 0.001 0.001 0.001 0.001 0.001
min j{γ̂ j− γ j} 0.000 0.000 0.000 0.000 0.000 0.000

a Monte Carlo (MC) Simulation of model (3.13) with 1000 MC repetitions for various sample sizes and
Data Generating Processes (DGP). αi, γ j , λt are drawn from a uniform distribution over [−10,10],
for K = 1, T = 5, β = 0.5. For simplicity, N1 = N2 = N is assumed. Each MC repetition uses the
same defined parameters, but different underlying X data and ε disturbances. ‘Opt’ is for the optimal
estimator, following (3.14), ‘Subopt’ stands for the suboptimal estimator, keep following (3.14) for β ,
but using (3.15) for αi, γ j .

with the typical identifying restriction

∑
i j

γi j = 0 .
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The estimator, similarly to (3.10), simplifies to

β̂ = 1
N1N2 ∑

i j

[(
∑

t
xi jtx′i jt

)−1

∑
t

xi jtyi jt

]
γ̂i j =

(
∑

t
xi jtx′i jt

)−1(
∑

t
xi jtyi jt

)
− β̂ (i = 1 . . .N1, j = 1 . . .N2) .

(3.17)

Though this model is less appealing, as it probably over-simplifies the varying ef-
fect regressors can have, it corresponds to the one-fold 2D fixed coefficient model
(when the (i j) pairs are treated as individuals, detailed exhaustingly in Hsiao,
2003).11

Conveniently, other restrictions, like γ̄i j = c, affect the estimators through y1

only, so switching between different forms of restrictions is fundamentally easy:

β̂ = 1
N1N2 ∑

i j

[(
∑

t
xi jtx′i jt

)−1

∑
t

xi jtyi jt

]
− c · ιK (K×1)

γ̂i j =

(
∑

t
xi jtx′i jt

)−1(
∑

t
xi jtyi jt

)
− β̂ (i, j = 1 . . .N1,N2) (K×1)

Finally, let me note, that model

yi jt = x′i jt(β +αi + γ j)+ εi jt , (3.18)

or similarly,

y = X1β +X6α +X7γ + ε

is a restricted case of model (3.13), if I set λt = 0, but also a special case of model
(3.16), when I let γ∗i j = αi+γ j. Model (3.18) can be estimated optimally, following
the Least Squares of incomplete rank approach. Relying on the identifying restric-
tions

∑
i

αi = 0; ∑
j

γ j = 0 ,

the estimators become

α̂i = α0
i − 1

N1
∑i α0

i (i = 1 . . .N1)

γ̂ j = γ0
j − 1

N2
∑ j γ0

j ( j = 1 . . .N2)

β̂ = β 0 + 1
N1

∑i α0
i +

1
N2

∑ j γ0
j .

(3.19)

Unfortunately, my hands are tied again with the problem of inverting order KN1 (or
KN2) matrices. As suggested for model (3.13) however, I can use the suboptimal
estimator by using (3.17) to estimate β , and γ∗i j (reducing the largest matrix to be

11 Even if its practical use is questionable (at least narrower, than, for example, model (3.2)’s), its role as being
a ‘reference model’, to derive benchmark estimators and properties, is still distinguished.
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Table 3.2 Orders of the largest matrix to be inverted
during estimation

Modela Largest Order to be Inverted Rating

Optimal Suboptimal

(3.2) max{KN1T, KN2T} - *b

(3.7) min{KN1T, KN2T} - *
(3.9) K - ***
(3.11) T K - **
(3.13) min{KN1, KN2} T K **
(3.16) K - ***
(3.18) max{KN1, KN2} K ***

a Along the way, I always assume, that N1 >> T and N2 >> T , while N1 and
N2 are expected to be of similar magnitudes.

b Ratings (computationally): * forbidding; ** feasible; *** first-best.

inverted to a mere order of K), then, by applying the relevant restrictions on γ∗i j,
reach separate (but suboptimal) estimators

α̂i = 1
N1

∑ j γ̂∗i j
γ̂ j = 1

N2
∑i γ̂∗i j .

(3.20)

While this section provided relevant consistent estimators (in fact appealing ones
in terms of generality and flexibility) for all considered models, their empirical
usage fully hinges on computer memory requirements (i.e., on the order of the
largest matrix to be stored an inverted).12 As some models are also supplemented
with a suboptimal estimator, it is of our best interest to collect the largest matrix
orders to be inverted directly for each model, as Table 3.2 does.

3.3 Extensions

3.3.1 Varying Coefficients as Functions of Observables

Estimating any of the fixed coefficients models (3.2), (3.7), etc. as done in Section
3.2, implicitly assumes that no further knowledge is available on the slope coeffi-
cients. If, on the other hand, it is suspected what actual economic factors cause the
coefficients’ varying nature, the corresponding parameters might be expressed as
12 Do not forget, that while storing a matrix of order n is O(n2), inverting it is O(n3).
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(linear) functions of the observables. Specifically, let us assume, that it is known in
model (3.16) that

γi j = Zi jν ,

where Zi j is a (K×L) matrix of observed variables, and ν is an (L×1) column of
unknown parameters. The model then can be rephrased as

yi jt = x′i jtβ + x′i jtZi jν + εi jt = x′i jtβ +w′i jtν + εi jt , (3.21)

having a number of K+L slope parameters, and a single error variance to estimate.
Unless in some very special cases, (3.21) is identified as the underlying data ma-
trix is of full rank, and an estimator is reached by regressing (X , W ), the matrix
stacked versions of x′i jt and w′i jt , on y. This model (3.21) is then exceptionally con-
venient from an estimation point of view, as its fixed coefficients nature reduces to
having interactions in some variables. Beyond its simplicity (remember that orig-
inally KN1N2 parameters were needed to be estimated), the model is also capable
of identifying the exact sources of the variation in γi j: Zi j. We have to be careful
with the interpretation of the coefficients, however, as the marginal change in yi jt

as a response to a unit change in the kth regressor xi jt,k is β +Zi j,kν , where Zi j,k is
the kth row of Zi j. So, just as with the original fixed coefficients model, we expect
x′i jt to have differential effect on yi jt for different (i j) pairs of entities.

A more general form of a model where varying coefficients are rephrased as
functions of observable variables are obtained from model (3.2):

yi jt = x′i jtβ + x′i jtZ
(1)
i j ν(1)+ x′i jtZ

(2)
it ν(2)+ x′i jtZ

(3)
jt ν(3)+ εi jt

= x′i jtβ +w′(1)i jt ν(1)+w′(2)i jt ν(2)+w′(3)i jt ν(3)+ εi jt ,
(3.22)

with Z(1)
i j , Z(2)

it and Z(3)
jt being (K×L1), (K×L2) and (K×L3) matrix of regres-

sors, and ν(1), ν(2), ν(3) matching (fixed, unknown) parameters. Note that Z(1)
i j is

expected to be sparse in each row: it is highly unlikely that L1 different regressors
govern the variability of γi j for each k = 1 . . .K. Similar statements can be made
for Z(2)

it and Z(3)
jt as well.

The idea of expressing varying slope coefficients as functions of observables has
been present in the literature for some time now, and been used to estimate random
coefficients models in several recent empirical applications (see, e.g., Wu and Lin,
2002; Huber and Stanig, 2011). Its theoretical foundations can be traced back to
Amemiya (1978), who reformulates an individual random coefficient as

αi = Ziν +ϑi

where ϑi is some unknown random variable uncorrelated with the disturbance. In
my application ϑi is ignored, as no randomness in the coefficients are ever assumed,
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but as seen in model (3.22), multiple varying slope coefficients are allowed to have
functional dependence on the observables at the same time.

Intuitively, not much changes when indeed a disturbance in the varying coeffi-
cients is allowed, like if

x′i jtγi j = x′i jt(Zi jν +ϑi j)

is assumed in model (3.10) with some mean zero random variable ϑi j, so long it is
uncorrelated with x′i jt and Zi j. A Least Squares with x′i jt and w′i jt = x′i jtZi j on y′i jt
gives consistent estimates, yet a better, GLS estimator can be constructed by taking
into account the error structure with ui jt = x′i jtϑi j + εi jt . This is, however, beyond
the scope of the section.

3.3.2 Index Deficiency in the Variables

So far we have assumed that our data fully spans the three-dimensional (i jt) space,
i.e., it is heterogeneous in all directions. Most typically, however majority of the
covariates fail to show variation in all three ways. Regressors of such are fixed over
one (or some) of the indices, raising new identification issues. If, for example, the
regressors are time invariant (which is the case in many trade models), like distance,
common language, common border, we have (x′i j)-type observations; Population
or GDP observations are (x′it)-type (or similarly (x′jt)-type). Let us illustrate the
problems of such limitations on model (3.16). If the data is such, that it is fully
constant over time, model (3.16) is simplified to

yi jt = x′i j(β + γi j)+ εi jt

It is true, that the model parameters are identified (obviously after imposing the
usual K restrictions), but the number of observations (KN1N2) exactly matches with
the number of model parameters to be estimated (KN1N2). This raises two serious
issues: one, standard errors can not be computed, so the model is unfeasible for
testing, and two, the parameter estimates are extremely imprecise (as we actually
use one observation to estimate one parameter).

Other data limitations, like

yi jt = x′it(β + γi j)+ εi jt

affects the model in an other (though not less problematic) way: now γi j is not
identified, as x′it is fixed over j. Even though estimates for γi j can be obtained
numerically, it makes no sense to formulate the model this way any more. Other
models, addressed by this chapter, also have these kinds of identification problems,
only even more significantly. Table 3.3 collects, for each type of data limitation,
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Table 3.3 Feasible model restrictions in response to various forms of index
deficiencies

Data Restriction Parameter Specifications
Feasible

Sample Size Parameters to Esti-
mate

x′i j β +αi + γ j KN1N2 K(N1 +N2−1)
β +αi KN1N2 KN1
β + γ j KN1N2 KN2

x′it β +αi +λt KN1T K(N1 +T −1)
β +αi KN1T KN1
β +λt KN1T KT

x′jt β + γ j +λt KN2T K(N2 +T −1)
β + γ j KN2T KN2
β +λt KN2T KT

the feasible restricted models to work with, along with the number of parameters
to be estimated compared to the size of the data.

It is now clear how different restrictions over the data vector x′i jt lead to iden-
tification issues, but I have not yet covered the case where only elements of the
x′i jt vector are restricted, but x′i jt , as a vector, do span the (i jt) three-dimensional
space. This is probably the most typical case, as there is virtually no chance of
all the regressors being three dimensional. Take the following example. Let yi jt be
the volume of real export, with i ( j) being the origin (destination) country, t being
time, and let the two regressors employed be the GDP of the origin and the desti-
nation country. In this way, x′i jt = (GDP(1)

it , GDP(2)
jt ) spans the whole (i jt) space,

even though separately none of the regressors do. Luckily, from point of view of
the estimation, such scenario does not violate the estimators detailed in Section 3.2,
until none of the restricted x(k)i jt (k = 1 . . .K) is orthogonal to all the other regressors.
To have an insight for this observation, consider the following. Even if it does not
make sense at first to estimate a γ

(1)
i j parameter for GDP(1)

it , if GDP(2)
jt is also among

the regressors, γ
(1)
i j is interpreted as the effect of a unit increase of GDP of country i

at time t on the export activity between county pair (i j). If Corr(GDPit ,GDPjt) 6= 0
(which we can believe easily), the unit change in GDPit has also have an impact
on GDPjt . As a result, a change in GDPit has different effects on different country
pairs (i j), justifying the use of the γi j model parameters.
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3.3.3 Mixed Models

In this chapter I have covered the cases when the varying coefficients are exclu-
sively thought of as fixed, while Krishnakumar et al. (2017) covers the cases where
these effects are represented by random variables. Now, it is not at all necessary to
assume that either all are random or all are fixed. It may very well happen in prac-
tice that it makes sense to incorporate different type of effects at different levels.
Such models can be specified in an analogous manner to model (3.13), where, for
example the λt’s are considered as fixed-, but αi and γ j are random coefficients.13

While this interesting concept is briefly mentioned in theoretical works (Hsiao,
2003), it is seemingly fully absent from empirical works. This is hardly surpris-
ing for two main reasons. First, there is an enormous number of possible model
specifications. I have already shown multiple economically meaningful fixed coef-
ficient models – now imagine how this number changes when each coefficient can
either be fixed or random, or further, if out of the number K αi parameters some are
random, some are fixed. There is no testing tool constructed at the moment to my
knowledge, which can help deciding between the unbelievably many model specifi-
cations. Second, computational difficulties are already present for many pure fixed
coefficients models (as well as for pure random coefficients models), and their joint
presence does not help either.

Due to the aforementioned number of models, and the scope of this chapter, I
only briefly visit the essentials of estimation issues with mixed models, rather than
excessively (and possibly dauntingly) carry out a full analysis.

Let us rewrite model (3.13) as

yi jt = x′i jt(β +λt)+ui jt with ui jt = x′i jt(αi + γ j)+ εi jt . (3.23)

Notice, that β and λt are still estimable, fixed parameters, but αi and γ j are now
assumed to be zero mean pairwise uncorrelated random coefficients satisfying

E(αiα
′
s) =

{
∆α , if i = s

0, otherwise
E(γ jγ

′
s) =

{
∆γ , if j = s

0, otherwise.

The first observation to make is that just like with pure fixed coefficients models,
β and λ can not be separated, and so are not identified. To be able to separate and
estimate β and λt , the usual K parameter restrictions has to be imposed, like

T

∑
t=1

λt = 0 (K×1)

The restricted model from this point behaves exactly as a pure random coefficients
13 Some thoughts on mixed effects models are also published in the joint work Krishnakumar et al. (2017).
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model, where β and λt are estimated with FGLS, performed by taking the covari-
ance structure

E(ui jtu′i jt) = E
(
(x′i jtαi + x′i jtγ j + εi jt)(x′i jtαi + x′i jtγ j + εi jt)

′)
into account. So long as the random coefficients are uncorrelated with x′i jt , the
estimators for λt and β are consistent.

In theory, any mixed model can be estimated using the following recipe:

1. Identify the number and the form of parameter restrictions necessary to identify
the model, and incorporate them

2. Derive the variance-covariance matrix Ω (more precisely its inverse)
3. Perform the GLS
4. Estimate the covariance matrix to make the GLS feasible.

Although these steps are easily formulated in theory, the size and the number of
the fixed coefficients and random coefficients can strongly discourage its practical
application. For example, when both αi and λt are considered fixed along with
β , the number of parameters to be estimated directly (in the restricted model) is
K+(N1−1)K+(T −1)K = (N1+T −1)K, whose feasibility is doubtful with any
statistical package for large N1.

A viable alternative is to estimate the incomplete rank model with FGLS first,
then line up the parameter restriction. This might be more convenient, as long as
Ω−1/2 can be attained at reasonable costs, as I first transform model (3.23) by pre-
multiplying with Ω−1/2, then estimate the transformed model with Least Squares
of incomplete rank. Intuitively,

Ω
−1/2y = Ω

−1/2Xβ +Ω
−1/2X5λ +Ω

−1/2u

is simply the pure fixed coefficients model

ỹ = X̃β + X̃5λ + ũ .

3.4 Some Thoughts on Dynamic Models

Despite the wide applicability of the static models considered, many applications
also require some autoregressive structure to the models. In order to make it oper-
ational, I have to expand fixed coefficients models to allow for lagged dependent
variables as regressors. What is coming next has similarities to the static models,
however, as the consistency properties of the OLS are bad, some new estimation
methodology is warranted.
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Take the fixed coefficient dynamic autoregressive model of order one with the
simplest possible structure

yi jt = yi jt−1(ρ +ψi j)+ εi jt (3.24)

with the usual identifying restriction

∑
i j

ψi j = 0 .

Luckily, estimator (3.16) can be put to my use with the only modification of replac-
ing x′i jt by yi jt−1. Although there is no real modal novelty as opposed to estimators
of the static models, there is a huge conceptual difference between static and dy-
namic models: the resulting estimators are now N1-inconsistent (N2-inconsistent).
This falls very close to the Nickell-bias in concept (see Nickell, 1981), but falls
very far from it algebraically.

Estimator (3.17) adjusted for model (3.24) reads as

ρ̂ = 1
N1N2 ∑

i j

(
T

∑
t=2

yi jt−1yi jt

)−1( T

∑
t=2

y2
i jt−1

)
(1×1)

ψ̂i j =

(
T

∑
t=2

yi jt−1yi jt

)−1( T

∑
t=2

y2
i jt−1

)
− ρ̂ (i, j = 1 . . .N1,N2) (1×1)

The asymptotic properties of ρ̂ are not surprising: the estimator is T -consistent,
but inconsistent in N1 (N2). To see this, consider

plim
T→∞

(ρ̂−ρ) =
1

N1N2
∑
i j

plim
T→∞

1
T

T

∑
t=2

yi jt−1εi jt

plim
T→∞

1
T

T

∑
t=2

y2
i jt−1

=
1

N1N2
∑
i j

Et (yi jt−1εi jt)

Et

(
y2

i jt−1

) = 0

as yi jt−1 and εi jt are uncorrelated (and assuming the finiteness of Et(y2
i jt−1)). On

the other hand, taking plim with respect to N1,N2 gives

plim
N1,N2→∞

(ρ̂−ρ) = plim
N1,N2→∞

1
N1N2

∑
i j

T

∑
t=2

yi jt−1εi jt

T

∑
t=2

y2
i jt−1

= Ei j


T

∑
t=2

yi jt−1εi jt

T

∑
t=2

y2
i jt−1

 6= 0

as the numerator and the denominator of the expression are correlated both through
∑t yi jt−1 and through ∑t εi jt .14

14 The same non-nullity of the asymptotic bias also holds, when only N1 or N2 grows.
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3.5 Conclusion

This chapter has taken a step into the relatively unexplored and underdeveloped
area of fixed coefficient models. A varying setup is superior to fixed effects specifi-
cations in incorporating heterogeneity not only as an average effect for an individ-
ual (or for its interaction with time), but marginally, accompanying (possibly) all
covariates, resulting in several appealing model specifications. As such models by
construction suffer from severe identification issues, some parameter restrictions
need to be imposed. To estimate such restricted models, I take the so-called Least
Squares of no full rank approach off the shelf and adjust it to deal with these fixed
coefficient models. While the proposed method is fairly simple to implement and
it flexibly handles multiple forms of restrictions, it clearly fails to offer a full solu-
tion for the dimensionality problem arising from the size of the data. Some further
tricks have been introduced. First, turning to suboptimal estimators and bearing
the negligible loss in efficiency while improving a lot on computation, with which
many of the problematic models become feasible in practice. Second, expressing
the varying parameters as functions of observables, and by that tracing back the
model into a one with fixed slope parameters, highly reducing the number of pa-
rameters to be estimated. Finally, some insights on variables with index deficiency
and on the inconsistency of autoregressive specifications have been drawn.

Two ideas of the chapter require, and deserve further elaboration. First, there is
no argument against the possibility to fully reduce calculations of the Least Squares
of no full rank approach (i.e., give scalar representations for the estimators). If this
is in fact the case, the estimation of fixed coefficient models would face no com-
putational burden any more, no matter how large the data set is. Second, a GMM
approach should be proposed along with the dynamic models, to fix the arising in-
consistency, and put such models into practical use. These ideas are, however, left
for future research.
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Appendix A – Detailed Estimation Strategy

I am going to show the exact derivation of the Least Squares of no full rank for
model (3.2); the method is analogous to all other models, and require only small
modifications.

I start with data matrices y and X = (X2, X3, X4, X1) of sizes (N1N2T × 1) and
(N1N2T ×K(N1N2 +N1T +N2T + 1)), respectively, with the Xk (k = 1, . . . ,4) al-
ready defined.

Step 1. Get the generalized inverse of the matrix X ′X , by applying partial inverse
theory repeatedly (Miao (1991) gives an excellent guide on how to calculate the
g-inverse of block matrices of various properties). First, take the second principal
minor of X ′X (i.e., its 2×2 upper left block), and calculate its g-inverse as

(X ′X)−(1) =

(
X ′2X2 X ′2X3

X ′3X2 X ′3X3

)−
=

(
A1 B1

B′1 D1

)−
=

Q1A−1
1 Q′1 +

(
K1

−IKN1T

)
Zg

1

(
K1

−IKN1T

)′
with

Q1 =

(
IKN1N2−K1(IKN1T −Zg

1Z1)K̃−1
1 K′1

(IKN1T −Zg
1Z1)K̃−1

1 K′1

)

K1 = A−1
1 B1 , K̃1 = IKNT +K′1K1 , and Zg

1 = K̃−
1
2

1 (K̃−
1
2

1 Z1K̃−
1
2

1 )−K̃−
1
2

1

where Z1 = (D1−B′1A−1
1 B1) is the Schur complement. Notice, that A1 is a nonsin-

gular block-diagonal matrix, so its inverse is simply the inverse of its blocks, but Z1

is a (KN1T ×KN1T ) singular full matrix, whose inversion can be computationally
forbidding.

Having the inverse of the second principal minor, (X ′X)−(1) = A−2 , in hand, the
next iterating step is the g-inverse of the third principal minor of X ′X .

(X ′X)−(2) =

 A2
X ′2X4

X ′3X4

X ′4X2 X ′4X3 X ′4X4

− =

(
A2 B2

B′2 D2

)−
=

Q2A−2 Q′2 +
(

K2

−IKN2T

)
Zg

2

(
K2

−IKN2T

)′
again, with

Q2 =

(
IK(N1N2+N2T )−K2(IKN2T −Zg

2Z2)K̃−1
2 K′2

(IKN2T −Zg
2Z2)K̃−1

2 K′2

)

122

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2017.05

K2 = A−2 B2 , K̃2 = IKN2T +K′2K2 , and Zg
2 = K̃−

1
2

2 (K̃−
1
2

2 Z2K̃−
1
2

2 )−K̃−
1
2

2

where Z2 = (D2−B′2A−2 B2) is the (KN2T ×KN2T ) singular (but non-scarce) Schur
complement. Notice, that as A−2 has already been derived, only Z2 should be in-
verted directly.

Lastly, picking up (X ′X)−(2) = A−3 , the g-inverse of the fourth principal minor of
X ′X , that is, of the matrix itself, is

(X ′X)−(3) = (X ′X)− =

 A3

X ′2X1

X ′3X1

X ′4X1

X ′1X2 X ′1X3 X ′1X4 X ′1X1


−

=

(
A3 B3

B′3 D3

)−
= Q3A−3 Q′3 +

(
K3

−IK

)
Zg

3

(
K3

−IK

)′
with

Q3 =

(
IK(N1N2+N1T+N2T )−K3(IK−Zg

3Z3)K̃−1
3 K′3

(IK−Zg
3Z3)K̃−1

3 K′3

)
and

K3 = A−3 B3 , K̃3 = IK +K′3K3 , and Zg
3 = K̃−

1
2

3 (K̃−
1
2

3 Z3K̃−
1
2

3 )−K̃−
1
2

3

where Z3 = (D3−B′3A−3 B3) is the Schur complement of size (K×K). Note that,
if Z3 = 0, IK − Zg

3Z3 = IK holds, further, Zg
3 = 0, so the above formula reduces

significantly. Multiplying (X ′X)− with X ′y gives the generalized solution vectors
γ0, α0, α∗0, β 0.

Step 2. Calculate (X ′X)−X ′X − I from the g-inverse of X ′X . As (X ′X)−X ′X has a
lot of structure, this is most easily done by ‘guessing and verifying’:

(X ′X)−X ′X− I =
1

N1N2T +N1 +N2 +T


H11 H12 H13 H14

H ′12 H22 H23 H24

H ′13 H ′23 H33 H34

H ′14 H ′24 H ′34 H44

⊗ IK ,
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with

H11 =
(

N2T+1
N2+T + N1T+1

N1+T −T
)

JN1N2−
N1N2T+N1+N2+T

N2+T (IN1⊗ JN2)

−N1N2T+N1+N2+T
N1+T (JN1⊗ IN2)

H12 =−N2T+1
N2+T ιN1N2⊗ ι ′N1T + N1N2T+N1+N2+T

N2+T (IN1⊗ ιN2⊗ ι ′T )

H13 =−N1T+1
N1+T ιN1N2⊗ ι ′N2T + N1N2T+N1+N2+T

N1+T (ιN1⊗ IN2⊗ ι ′T )

H14 = T ιN1N2

H22 =
(

N2T+1
N2+T + N1N2+1

N1+N2
−N2

)
JN1T − N1N2T+N1+N2+T

N2+T (IN1⊗ JT )

−N1N2T+N1+N2+T
N1+N2

(JN1⊗ IT )

H23 =−N1N2+1
N1+N2

JN1T + N1N2T+N1+N2+T
N+T JN2⊗ IT

H24 = N2ιN1T

H33 =
(

N1T+1
N1+T + N1N2+1

N1+N2
−N1

)
JNT − N1N2T+N1+N2+T

N1+T (IN1⊗ JT )

−N1N2T+N1+N2+T
N1+N2

(JN2⊗ IT )

H34 = N1ιN2T

H44 =−(N1 +N2 +T )

Step 3. Formulate the linear restrictions

∑
i j

γi j = 0; ∑
it

αit = 0; ∑
jt

α
∗
jt = 0 .

With δ = (γ ′, α ′, α∗
′
β ′)′ being the composite parameter,

R′δ = r

is written up with

R′ =

 ι ′N1N2
0 0 0

0 ι ′N1T 0 0
0 0 ι ′N2T 0

⊗ IK r =

 0
0
0

⊗ ιK ,

(3K×K(N1N2 +N1T +N2T +1)) and (3K×1) matrices, respectively.

Step 4. Find a y1 of size (K(N1N2+N1T +N2T +1)×1) satisfying condition (3.5):

R′
(
(X ′X)−X ′X− I

)
y1 = r−R′(X ′X)−X ′y .
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As all matrices and vectors in (3.5) are already derived, finding y1 is straightfor-
ward. Such candidate y1 is

y1 =


(1+N1N2

N2
1 N2

2
∑i j γ0

i j +
1

N2
1 N2T ∑it α0

it +
1

N1N2
2 T ∑ jt α∗0jt )ιN1N2

( 1
N2

1 N2T ∑i j γ0
i j +

1+N1T
N2

1 T 2 ∑it α0
it +

1
N1N2T 2 ∑ jt α∗0jt )ιN1T

( 1
N1N2

2 T ∑i j γ0
i j +

1
N1N2T 2 ∑it α0

it +
1+N2T
N2

2 T 2 ∑ jt α∗0jt )ιN2T

0

⊗ ιK .

Computing

(I− (X ′X)−X ′X)y1 =


− 1

N1N2
∑i j γ0

i j⊗ ιN1N2

− 1
N1T ∑it α0

it ⊗ ιN1T

− 1
N2T ∑ jt α∗0jt ⊗ ιN2T

1
N1N2

∑i j γ0
i j +

1
N1T ∑it α0

it +
1

N2T ∑ jt α∗0jt


of size (K(N1N2 +N1T +N2T +1)×1) gives the correction I have to make on the
generalized solutions, in order to arrive to estimator (3.6).
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4
Empirical Applications for Multi-dimensional Panels

Section 4.3 is joint work with Janos Kollo and Istvan Boza, Sections 4.1 and 4.2
are solely my own.

4.1 Introduction

This chapter collects two favoured applications of multi-dimensional panel data.
The first, a model performance assessment, takes an international trade data off
the shelf, and shows how various panel estimators fare vis-a-vis each other. While
Section 4.2 is primarily devoted to uncovering typical regularities of these estima-
tors, I also shed light on some famous and controversial results of trade member-
ship not boosting trade activity (Rose, 2004). Section 4.3 falls in line with several
international attempts to measure the contemporaneous and lagged effects of for-
eign experience. To show the existence of and quantify such effects, we use linked
employer-employee data covering half the Hungarian working-age population.

While both of these data sets are in fact three-dimensional panels, the relative po-
sition of the individual indices are fundamentally different. 3D International trade
data is superior to its 2D correspondents in augmenting country pairs with the time
dimension, or more typically, to substitute unilateral trade by bilateral. Either way,
the individuals are at the same level (country), or as in many cases, they even share
elements (one group of country trading with an other overlapping group). Linked
employer-employee data is superior to usual 2D data on employees by adding a
new cluster (employers), and by that, a rich set of information on the grouping of
individuals (i.e., a level above employees). As we will see, the models proposed in
Chapters 1 and 2 are successfully applied to the problems of both Sections 4.2 and
4.3.
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4.2 Regularities of Panel Estimators: A Trade Application

4.2.1 Introduction and Previous Results

In this section I illustrate through an empirical application how the models and
estimators introduced in Chapters 1 and 2 (that is, the Within Estimator, FGLS,
and the OLS) fare against each other. Along with the general performance of the
models, I also hope that the estimation outcome on the introduced gravity model
itself will be insightful in some ways and further supports/falsifies some earlier
results.

Gravity models have enjoyed a more or less stable attention since the semi-
nal results of Tinbergen (1962) and Pyhnen (1963). Among many others, gravity
equations are capable of answering questions like the effects of trade membership
on various measures of trade activity. Possibly the best example for such trade
agreement is the so called ‘General Agreement on Tariffs and Trade’ (hereafter,
GATT), founded in 1947, which was later replaced by the World Trade Organiza-
tion (WTO), currently comprising 153 member countries. Even though this agree-
ment had the clear prime objective to enhance trade between member countries,
Rose in his famous 2004 paper found no such promoting effect. Rose’s (2004)
findings naturally started a heated debate, and opened the path for several follow-
up studies aiming to explain the absence of the GATT/WTO trade effect.1

The studies taking this debate to a new level and which this section mostly relies
on, are Konya et al. (2011) and Konya et al. (2013). They attempted to overcome
several shortcomings of Rose (2004) by creating a new, bilateral trade data set.
They argued that as Rose employed several country-combined variables and aver-
age bilateral trade values (on a 2D data set), country-specific measures could not be
traced back. Further, Rose merged real import and real export (and used them as an
indicator for ‘real trade activity’), but most importantly, he did not distinguish zero
trade from missing observations. The last point is of paramount importance, as the
excess zeros in Rose (2004) (which are partly attributed to missing observations)
can easily mitigate any positive effect of the GATT/WTO trade membership.

Though Konya et al. (2011) and Konya et al. (2013) find strong positive effects
and partly explain why Rose (2004) might have failed, they suffer from two limita-
tions which I fix in this study. First, 3D data offers a great variety of model specifi-
cations (fixed effects as well as random effects), of which many can be compared to

1 These studies were mainly looking for reasons related to the data set or the model specification, e.g.,
distinguishing developed and developing countries (Subramanian and Wei, 2007), reclassifying countries as
being actual participants of trade agreements, rather than formal GATT/WTO members (Tomz et al., 2007),
counting on relative trade barriers, not only absolute (Anderson and Wincoop, 2003), endogeneity and the
issue of self-selection (Baier and Bergstrand, 2007 and Magee, 2003), etc.
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give further robustness to the results. Second, as is detailed in Chapter 1, most 3D
fixed effects formulations give biased and inconsistent estimators when the data is
unbalanced, resulting in erroneous estimates. By using the incompleteness robust
estimators for all models considered, the resulting estimators are uniformly consis-
tent and yield better estimates then previous ones. These advantages together are
expected to render the results of Konya et al. (2011) and Konya et al. (2013) more
credible.

More explicitly, the questions I seek to answer in the following sections are
(i) On a World trade data set which distinguishes zero trade from missing obser-
vations, and under various fixed effects and random effects model specifications,
what is the effect of GATT/WTO trade membership on real trade activity? (ii) To
what extent are the theoretical results of Chapters 1 and 2, specifically identifica-
tion problems with fixed effects models and the convergence of FGLS to the Within
estimator reflected by the empirical results?

4.2.2 The Data and Model Specifications

The new GATT/WTO data set used in the study involves 182 trading countries
worldwide, observed annually over 53 years (for the period 1960–2012),2 with over
1.2 million exporter–importer–time (i.e., i jt-type) observations. Raw net import-
export data were collected from IMF’s Direction of Trade Statistics Yearbook,
and were deflated to 2000 US $ using US CPI from IMF’s International Financial
Statistics Yearbook. Population and GDP measures were obtained from the World
Bank’s World Development Indicators. Other country- and country-pair specific
demographics were collected from several sources, including World Trade Organi-
zation, CIA’s Factbook and Wikipedia. The panel is highly unbalanced, as around
25% of the observations are missing (relative to a complete, fully balanced data).
Finally, as mentioned earlier, the data set keeps track of the occurrence of zero
trades separately from missing observations.

I estimate a fairly standard gravity model, using multiple ways to formulate het-
erogeneity, closely following the specification proposed by Rose (2004), and later

2 The data set was originally embracing the 1960–2005 period, and had been updated in 2014 with an
additional 7 year of data.

128

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2017.05

modified by Konya et al. (2013):

log(RT)i jt = β0 +β1BOTHINi jt +β2 log(rGDP)it +β3 log(rGDP) jt

+β4 log(rGDP/POP)it +β5 log(rGDP/POP) jt
+β6 log(DIST)i j +β7 log(LAND)i +β8 log(LAND) j

+β9CLANGi j +β10CBORDi j +β11LLOCKi

+β12LLOCK j +β13ISANDi +β14ISLAND j

+β15EVCOLi j +β16COMCOLi j +β17MUNi jt

+β18TAi jt +FE(RE)i jt + εi jt ,

(4.1)

where RT is real trade activity (export or import), measured uniformly in 2000 US
$, BOTHIN (the main variable of interest) is the dummy variable taking 1, if coun-
try i and j are both GATT/WTO members at time t; rGDP is a country’s GDP in
real terms at time t; rGDP/POP is the real GDP per capita; DIST is the great circle
distance in miles; LAND is land area of the country; CLANG is a dummy taking 1,
if the country-pair shares language; CBORD is a dummy taking 1, if the country-
pair shares border; LLOCK and ISLAND are 1, if the country is landlocked or an
island, respectively; EVCOL and COMCOL are dummies taking 1, if the country
has ever been colonized or if there is a common colonizer, respectively; MUNI
takes 1, if the country-pair is a member of the same monetary union at time t; TA
is a dummy for existing trade agreement; FE (RE) is the corresponding fixed ef-
fects (random effects) structure (any of (1.2)–(1.7) in Chapter 1, and (2.2)–(2.12)
in Chapter 2, which, for more transparency, are re-collected in Table 4.1); finally,
ε is the idiosyncratic disturbance term. Notice, that β2–β8 are all elasticities, while
the rest of the parameters are all semi-elasticities. A positive BOTHIN means that
trade membership promotes trade activity between member countries.

4.2.3 Results

The Pooled OLS

Equation (4.1) is estimated on the GATT/WTO trade data set using various model
specifications and formulations. First, I estimate the model with Pooled OLS which
in fact completely omits individual and/or time effects. The coefficient of main
interest is identified if the variable BOTHIN varies at least in one dimension. Its
estimate captures the effect of being a GATT/WTO member on the volume of real
trade: trade activity between two GATT/WTO member countries are higher by
β log points as compared to countries not sharing this membership, controlling
for various, time fixed and time varying, country and country-pair characteristics.
Table 4.2 contains the estimates and the estimated standard errors. All estimates
are strongly statistically significant.
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Table 4.1 Fixed effects and random effects model
specifications used in estimating (4.1)

Equation Number Model

FE Models

(1.2) yi jt = x′i jtβ +αi + γ j +λt + εi jt
(1.3) yi jt = x′i jtβ + γi j + εi jt
(1.4) yi jt = x′i jtβ + γi j +λt + εi jt
(1.5) yi jt = x′i jtβ +α jt + εi jt
(1.6) yi jt = x′i jtβ +αit +α∗jt + εi jt
(1.7) yi jt = x′i jtβ + γi j +αit +α∗jt + εi jt

RE Models

(2.2) yi jt = x′i jtβ +µi j +υit +ζ jt + εi jt
(2.4) yi jt = x′i jtβ +υit +ζ jt + εi jt
(2.6) yi jt = x′i jtβ +ζ jt + εi jt
(2.8) yi jt = x′i jtβ +µi j +λt + εi jt
(2.10) yi jt = x′i jtβ +υi +ζ j +λt + εi jt
(2.12) yi jt = x′i jtβ +µi j + εi jt

As seen from the table, after controlling for several country-specific, country-
time-specific, and country-pair specific factors, trade membership still has a strong
positive effect on real export. Being a member of GATT/WTO raises annual real
export significantly, by 0.601 log points. Running the regressions with real import,
as dependent variable, gives similar estimates in magnitudes, therefore I exclude
these from the table. Both the exporters’ and importers’ GDP seem to be an im-
portant factor in governing trade activity: a 1% jump of the home country’s GDP
(destination country’s GDP) in real terms raises exports by 2.025% (1.549%). Per
capita GDP has ambiguous sign after controlling for real GDP, and is only slightly
different economically from zero. The rest of the estimates suggest that trade activ-
ity grows in ‘commons’, that is, with sharing language, border, colonizer, and with
being in the same monetary union, but not surprisingly, falls sharply with distance.

Even though I control for a rich set of factors which may explain trade activity,
and may account for individual differences as well, it is highly unlikely that there is
no further omitted unobserved individual/time heterogeneity which in turn biases
the Least Squares estimator.3 The presence of such unobserved factor, which makes
a country-pair more likely to trade (some innate similarity) by also raising the
likelihood of them being members of the same trade union, would cause the Pooled

3 Such omitted variables can be countries’ attitude, historical bonds, general openness, general willingness to
trade in a given year, etc.

130

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2017.05

Table 4.2 Pooled OLS estimate of
model (4.1)

Variablea β̂ Se(β̂ )

C −54.365 0.120
BOTHIN 0.601 0.014
LNRGDP1 2.025 0.004
LNRGDP2 1.549 0.004
LNRGDPPOP1 0.076 0.005
LNRGDPPOP2 −0.031 0.006
LNDIST −2.058 0.009
LNLAND1 −0.259 0.004
LNLAND2 −0.166 0.004
CLANG 0.588 0.014
CBORD 1.450 0.045
LLOCK1 0.233 0.018
LLOCK2 −0.642 0.018
ISLAND1 0.170 0.017
ISLAND2 0.238 0.017
EVCOL 1.266 0.070
COMCOL 1.013 0.020
MUNI 1.434 0.022
TA 0.818 0.017

R2 0.804

a Estimation is done on the GATT/WTO World data
set, with LNREXPORT as dependent variable.

OLS to overestimate the true effect. For this reason, I now account for this excess
individual/time heterogeneity via fixed effects first, then via random effects.

The Fixed Effects

Let me consider first the case, when the individual heterogeneity is incorporated
as observable (and estimable) parameters, that is, the case of fixed effects. Table
4.4 collects Within estimates of the fixed effects models (1.2)–(1.7) (for the exact
model specifications see Table 4.1).4 As it is not always clear what is the source of
variation needed for the identification of the coefficient of main interest, nor how
to interpret the estimates, a supporting Table 4.3 collects these ideas for each fixed
effects model specification.

Estimation procedures are detailed and discussed in Section 1.5. As can be seen
from the table, several variables are not identified under Within estimation, simply

4 Program codes written in R for the LS, Within- and the FGLS estimation of the listed fixed- and random
effects models are publicly available at
https://www.dropbox.com/sh/gzbixlckpqj8839/AAAeAPNnZEdt5jPJ-7k74gBIa?dl=0
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Table 4.3 The source of variation needed for identification, and the interpretation
of the coefficient of main interest

Model Variation needed in BOTHINa Interpretation of β1
b

(1.2) In two dimensions at the same time . . . the average trade memberships of the exporting country with
all importing countries over all time periods, the average trade
memberships of the importing country with all exporting coun-
tries over all time periods, and the average total memberships in
year t

(1.3) In t for at least one (i j) pair . . . the average trade memberships of the country-pair over years
(1.4) In t for at least one (i j) pair and in

i or j for at least one t period
. . . the average trade memberships of the country-pair over years,
and the average trade memberships in year t

(1.5) In i for at least one jt pair . . . the average trade memberships of the importing country in
year t

(1.6) In j for at least one it pair and in i
for at least one jt pair

. . . the average trade memberships of the importing country in
year t, and the average trade memberships of the exporting coun-
try in year t

(1.7) In t for at least one i j pair, in j for
at least one it pair and in i for at
least one jt pair

. . . the average trade memberships of the country-pair over years,
the average trade memberships of the importing country in year
t, and the average trade memberships of the exporting country in
year t

a These conditions are only met in case of models (1.2), (1.5) and (1.6), as seen in Table 4.4.
b The interpretation starts with: “Difference between the real trade activity of two GATT/WTO member coun-

tries relative to the case when one or both countries are non-members, controlling for country- and country-pair
specific observables, as well as for...”

because some variables are fixed in some dimensions and are eliminated by the
Within transformation. For example, model (1.3) has γi j fixed effects, whereas,
DISTi j is fixed in a similar manner. When we eliminate γi j, we also clear the latter
from the model.5 This is even more visible in case of the all-encompassing model
(1.7), where all variables are fixed in one way or an other, and so are eliminated.

The estimates are qualitatively the same as of the Pooled OLS’s. Table 4.4 sug-
gests that a GATT/WTO member country trades around 0.6-1.1 log points more
with an other member country, than with a country of similar characteristics, but
outside the trade union. This observation about the positivity of the effect of trade
membership is robust across various model specifications, though it varies strongly
in magnitude.

The low R2 values are of no concern, and are simply reflecting the fact that
after the Within transformation, much of the variation is removed from the data.
As the left hand side variables are fixed in one way, or another, the transformations
eliminate the major part of this existing variation, as opposed to the right hand
side, where real export, after the Within transformation, still exhibits a considerable
variation.

As much as fixed effects results are more credible in this panel data context
5 To be fully precise, not only xi j-type covariates are eliminated, but also which are ‘nested’ in xi j: xi and x j ,

i.e., all country-specific measures as well.
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and are considerable improvements over the Pooled OLS estimator as well, many
important parameters (among them the key parameter of focus) are not identified
and so are non-estimable. Further, the number of model parameters is incredibly
high, especially when interaction fixed effects (country–country, country–time) are
added to the model, which can easily lead to a classical textbook over-specification.
These fixed effect parameters can in fact capture too much from the data variation,
and might actually capture some of the trade union’s effect which I would like to
uncover. To go around this problem, I incorporate the individual/time heterogene-
ity as random variables next, and compare the estimates to those of the Within
estimator’s.

The Random Effects

The random effects specifications, i.e., models (2.2)–(2.12) from Chapter 2 (see
also the second panel of Table 4.1 for the exact model specifications), are esti-
mated optimally with FGLS. Random effects specifications in general correspond
to the case where the heterogeneity is incorporated to the models as unobservable,
random variables, significantly reducing the number of parameters to estimate.6

If the data resembles more to a random sample from the underlying population,
random effects is more suitable, than fixed effects.7 Table 4.5 captures the FGLS
estimates of the random effects models. While the interpretation of the coefficient
of main interest is similar to fixed effects models, now BOTHIN only needs to ex-
hibit variation in one direction in order to make its coefficient identified. This result
is universal across random effects models.

From the table it is clear that although the parameter estimates vary somewhat
across model specifications, they all lead to the same qualitative outcome: being
a GATT/WTO member raises trade flows by 0.5–0.9 log points, a 1% jump in
GDP is associated with a 1–2% increase in trade activity, whereas per capita GDP
estimates are mixed and much smaller in magnitude. Similarly to Table 4.4, trade
activity grows in commons, and falls with distance. R2-s are much higher now, and
imply that about 75% of the variation of real export is explained by the covariates.

Sections 2.2 and 2.3 of Chapter 2 collected the conditions needed for the con-
sistency of the FGLS estimator (Table 2.3), and also the conditions, under which
the FGLS converges to each model’s specific Within estimator (Table 2.5). These
tables are repeated here in Table 4.6 for transparency reasons.

In the present scenario, when all N1, N2 and T are considered ‘large’, the FGLS
estimator of all models in fact converge to the Within. This means that in the limit,

6 Instead of a number of N1 ·N2 γi j fixed parameters, for example, only the variance of γi j has to be estimated.
7 Let me note here, that if, for example for model (2.12), the µi j interaction effects were incorporated as fixed

effects (model (1.3)), as it has been the practice in most applied studies, it would mean the explicit or implicit
estimation of N1N2 parameters, in this case about 182 ·182 = 33,124. This would look very much like a
textbook over-specification case.
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Table 4.6 Asymptotic conditions under which the FGLS estimator
converges to a Within, and conditions needed for consistency

Model Condition

FGLS converges to a Within

(2.2) N1→ ∞, N2→ ∞, T → ∞

(2.4) N1→ ∞, N2→ ∞

(2.6) N1→ ∞

(2.8) (N1→ ∞, T → ∞) or (N2→ ∞, T → ∞)
(2.10) (N1→ ∞, N2→ ∞) or (N1→ ∞, T → ∞) or (N2→ ∞, T → ∞)
(2.12) T → ∞

Consistency

(2.2) (N1→ ∞, N2→ ∞) or (N1→ ∞, T → ∞) or (N2→ ∞, T → ∞)
(2.4) (T → ∞) or (N1→ ∞, N2→ ∞)
(2.6) (N2→ ∞) or (T → ∞)
(2.8) (N1→ ∞, T → ∞) or (N2→ ∞, T → ∞)
(2.10) (N1→ ∞, N2→ ∞, T → ∞)
(2.12) (N1→ ∞) or (N2→ ∞)

for each model, the estimates in Tables 4.4 and 4.5 should fall very close, which is
actually the case here. According to the theoretical results in Section 2.3, in case of
‘exploding’ data (all-asymptotics), the FGLS estimator becomes the Within, and
so all severe identification issues of the Within estimator is carried over to the
FGLS. This is unfortunate, and would certainly reduce the attractiveness of the
random effects approach specifically in those cases, where its application is usually
recommended: in large panels.8 Luckily, as seen from Table 4.5, under FGLS, I
reach full identification of the parameters, and the convergence of the estimators
only results similar fixed effects and random effects estimates.9 This comes handy
in cases when the Within estimation fails (like in case of the identification of model
(1.7)), as we get asymptotically identical results under the FGLS approach.

There is, however, an other (among others) way to estimate random effects mod-
els: by running a Least Squares regression to estimate the model parameters and
then estimate the standard errors according to the specific random effect specifica-
tion. Basic algebra shows, that the resulting estimators are consistent (as long as the

8 Of course, the decision between fixed and random effects should not be governed by merely the size of the
data (despite what we see in practice), but rather by the economic rationale.

9 The GLS estimator can also be interpreted as a two-step procedure, in which first a linear transformation is to
be employed on the variables, then the transformed variables are estimated with Least Squares. When the
underlying data grows in all directions, the GLS transformation becomes the Within, but for a given data and
sample sizes, it never actually reaches it. This is why fixed variables are never actually eliminated from the
model (their parameters are still identified, maybe only weakly), and estimates can still be collected.
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random effects and covariates are uncorrelated). Table 4.7 collects Least Squares
estimates of the random effect models (2.2)–(2.12).

The parameter estimates are naturally the same model-wide, but the estimated
standard errors are different, as they are calculated by based on the specific model’s
disturbance term structure. The parameter estimates and the overall R2 (naturally
the same as in Table 4.2) stand considerably close to the FGLS estimates (and to
the Within estimates in case of the parameter estimates), but the standard errors
are slightly higher now, reflecting the loss of efficiency from not using the extra
information about the error components structure for the estimation. Despite its
non-optimality, Least Squares gives a decent first estimate to the random effects
models whilst it’s low computational cost is also appealing.

4.2.4 Discussion

The conclusion to be drawn from this study is twofold. In terms of empirics, I have
supported the results of Konya et al. (2011) by identifying the same positive effect
of GATT/WTO membership on real trade activity (export or import) in magnitude.
With that, I reject Rose’s (2004) result on the nullity of the trade membership effect.
Although my typical estimate of the effect (around 0.7 log points) is somewhat
smaller what Konya et al. (2011) finds (who concluded with 0.9-1.4 log points),
this difference is most probably attributed to differences in model specification, in
the underlying data or in estimation techniques, and not to various economic factors
in the background. Furthermore, the fact that both fixed and random effects model
formulations are considered and estimated optimally and consistently makes it hard
to argue against the applied methodology and the estimates (also keeping in mind
that the employed gravity model is widely used and supported by the literature).

The fact that all 6 model specifications (estimated with fixed effects or random
effects) gave the same qualitative results, although they vary somewhat in magni-
tude, serves some evidence against the result of Rose (2004). It is not clear, how-
ever, which model specification should we trust the most and why: an issue of
high empirical relevance. Let us see first the fixed effects models. The key regres-
sor BOTHIN shows no variation in the time dimension, and so models involving
country-pair fixed effects γi j render its parameter unidentified. As much as country-
pair effects are appealing in capturing any unobserved bilateral economic factor
affecting trade, the excess number of parameters might in fact over-fit the model.
A better way to account for country-specific differences in trade is to add country
fixed effects, as in model (1.2). Not to mention that nearly all parameters are es-
timable now, model (1.2) is far from being over-specified (having a few hundred
fixed effect instead of several thousand) yet rich enough to control for systematic
differences in countries’ trade. In case of random effects models the question of the
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best model specification is not that obvious, as the incidental parameter problem
now vanishes. The all-encompassing model (2.2) appears to be the most power-
ful one, as all dependencies possible under three-way data are accounted for, yet
the number of parameters to be estimated grows only by 3 (the variance of the
respective random effects), as opposed to Pooled OLS estimates. The concern of
having “more” effects is only reflected in higher standard errors: the estimate for
the variance of a “missing” random effect should be close to zero, and so its weight
in the parameter estimation diminishes. Yet, to find more precise estimates a test
for model specification (discussed in Section 2.6.1) can be carried out, starting
from the all-encompassing model. Systematically testing for the nullity of random
effects variances reveals which random components should be represented in the
model defining the exact specification to go with. This, however, is beyond the
scope of this section.

The conclusion to be drawn in terms of the underlying theory, is that some typ-
ical regularities of different panel estimators were proven. We have seen how the
identification problems arising from the presence of fixed effects were tackled by
the FGLS estimators of the random effects models, and how the emerging esti-
mates in the latter case were converging to the former. Even though the Within
estimators or the FGLS are computationally forbidding if done directly, due to the
techniques discussed in Chapters 1 and 2 for incomplete panels, computational
times and memory requirements were highly reduced. To get a vague idea about
their magnitude, note that none of the estimations used more than 2GB of RAM or
took more than 2 hours on a middle-end computer (dual core Intel i5 2.6GHz pro-
cessor with 8GB of RAM). This is not bad, considering that the dataset has over
one million observations, underpinning the wide applicability of the incomplete
estimation techniques in Chapters 1 and 2.

We should not forget, however, that the primary purpose of this section is to
implement the theoretical results of Chapters 1 and 2. Although the results obtained
here appear to be appealing, issues like endogeneity or selection bias induced by
mostly observing non-zero trades are likely to affect the validity and most certainly
affect the credibility of the section. I ignored these issues for the moment in order
to not lose focus on the goal, but future research has to take them into account.
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4.3 Contemporaneous and Lagged Wage Returns to Foreign-Firm
Experience – Evidence from Linked Employer-Employee Data

4.3.1 Introduction

The presence of foreign capital generates heated debates in emerging market econ-
omies. The opponents charge foreign firms with displacing local businesses, ex-
patriating their profits and fraudulently reducing their tax liabilities by means of
transfer pricing. The proponents emphasize the influx and diffusion of novel tech-
nologies and modern corporate culture, and stress the direct and indirect productiv-
ity gains from FDI. Domestic firms can learn from multinationals by copying them
and adopting technological and quality standards required on the part of local sup-
pliers. Importantly, the wages paid by foreign companies remain and are mostly
spent in the host country. Furthermore, workers leaving these enterprises can be
more productive and earn higher wages in the domestic sector than their incum-
bent counterparts. The presence of ex-foreign workers in domestic companies can
also boost the productivity of co-workers with no foreign-firm experience. These
advantages can outweigh the losses caused by displacement, expatriated profit and
foregone tax revenues.

This study looks at the wage advantage of workers in foreign-owned firms, the
portability of this advantage to the domestic sector through worker mobility (result-
ing in lagged returns), and possible spillover effects. We do so under the assump-
tion that multinational enterprise (hereafter MNE) employees accumulate valuable
knowledge that is partly transferable and, when former MNE workers shift to the
domestic sector, helps their co-workers to acquire part of that knowledge.

The process of skill accumulation and skills themselves are largely unobserv-
able, therefore their presence can be inferred only from their effects on observed
outcomes like wages and productivity.10 This study looks at the implications for
wages similar to Aitken et al. (1996), Barry et al. (2005) and Poole (2013) as
opposed to similar studies by Aitken and Harrison (1999), Smarzynska Javorcik
(2004), Görg and Strobl (2005) or Vera-Cruz and Dutrenit (2005) and others who
rather look at the effects of previous MNE experience on firms’ productivity.

Aitken et al. (1996) investigate the effects of FDI on wages paid in the US, Mex-
ican and Venezuelan economy using a wage equation similar to ours, having log
wages on the left hand side and the degree of foreign presence in a given location
and industry on the right hand side. While a higher level of FDI is uniformly asso-
10 This, of course, is not to say that research on the impact of formal training is useless but it clearly covers only

a fraction of ‘on-the-job training’, which includes copying, informal communication and trial-and-error. See
Loewenstein and Spletzer (1999), Görg et al. (2007) and Konings and Vanormelingen (2015) as examples of
research on the differential effects of formal general and specific training.
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ciated with higher wages in all three economies, they only observe a spillover of
increased foreign presence to domestic wages in case of the US, which is consistent
with the theory of emerging economies having high wage differentials between the
domestic and foreign sectors. As much as these results suggest that the Hungarian
economy may as well potentially benefit from such increased presence of foreign
investments, Barry et al. (2005) draw attention that the identified higher wages
might be due to the fact that MNEs poach high ability workers. In particular, they
argue that such “poaching effect” can not occur under (near to) perfect competition
and Cobb-Douglas-type productions, but may arise in case of higher elasticities of
substitution. Sure enough, consistently with their theoretical results, estimates on
a pool of Irish firms identifies that wage spillovers are absent for domestic non-
exporter firms, but both skilled and unskilled workers benefit from a higher FDI in
case of exporters (firms involved in international competition).

In identifying the spillover effects what ex-MNE workers may exert on domestic
incumbents by labour turnover, our study is closest in spirit to Poole (2013) and
mirrors his empirical strategy. Poole was the first to quantify wage increments as
a result of formal or informal communications between domestic incumbent and
MNE-trained coworkers. On a fixed effects wage equation with the share of ex-
MNE workers on the right hand side he finds, that identical workers earn more at
firms with higher presence of foreign trained colleagues, and concludes that this
spillover effect corresponds to knowledge transfers of MNE workers when moving
to the domestic sector, and preserved by domestic incumbents.

A historical starting point for a skill-accumulation and skill-transfer analysis is
Becker’s (1962) seminal work on the wage effects of general and firm-specific
human capital. Becker’s benchmark model predicts that productivity and wages
move in tandem in case the worker accumulates general skills. Since these skills are
valuable for all firms in the market, a firm risks losing the returns to its investment if
it also covered the costs of accumulation (through forfeiting the direct expenses and
tolerating foregone revenues) and pays less than the worker’s increased marginal
product afterwards. Therefore the costs are borne and the gains are collected by
the worker. By contrast, wages are unaffected by the accumulation of firm-specific
skills if the risk of voluntary separation, motivated by factors other than inter-firm
wage differentials, is zero.

In both of these extreme scenarios workers can move between firms without
wage losses. Workers accumulating a substantial stock of general skills can earn
higher-than-average wages in any firm and, as far as general skills are developed
by informal communication between co-workers, their presence will also have a
spillover effect. Firm-specific skills are lost with separation without an effect on
wages: pre- and post-separation wages are equal, post-separation wages do not
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exceed the host firm’s average level and do not exert influence on the earnings of
co-workers.

The benchmark model’s sharp distinction between general and specific knowl-
edge has been relaxed in several ways, by Gary Becker himself in the first place,
arguing that in the likely case of non-zero risk of voluntary quits the firm will share
in the costs and benefits which implies lower wages in the accumulation phase and
higher wages afterwards. In this case post-training involuntary separations imply a
wage loss but we continue not to expect lagged returns and spillover effects. Only
voluntary quits may result in apparent lagged returns through the effect of high
pre-separation earnings on reservation wages.

The subsequent literature has been trying to reconcile the theory of on-the-job
training with a series of facts inconsistent with the extreme scenarios. A series
of empirical findings and ample everyday experience suggest that most skills are
general, or at least sector- rather than firm-specific; enterprises are willing to pay
for general training, and involuntary separations typically imply a loss. Acemoglu
and Pischke (1998) demonstrate that in a variety of market settings such as a com-
pressed wage structure, substantial hiring costs, information asymmetry and other
labour market imperfections, workers general skills are rewarded as if they were
partly specific. The ‘skill-weights’ model of Lazear (2009) hypothesizes that skills
are general but firms attach different weights to its components. A worker who
leaves a firm will have a difficult time finding another firm that can make use of all
the skills he acquired at the first firm. This imposes a cost on mobile workers so
the workers are unwilling to bear the full cost of training and the costs and benefits
will be shared.

In these and similar settings (i) workers accumulating general and sector spe-
cific knowledge in the modern environment of MNEs are expected to earn more,
than their domestic counterparts barring the youngest of them; (ii) Earnings are
expected to rise with tenure; (iii) The specific components in their skills and/or the
scarcity of firms applying the same skill weights as their parent company imply
that MNE workers lose a part of their wage advantage after involuntary separation;
(iv) The general component in their skills give rise to wage advantages in their
new (domestic) workplace and exert positive influence on the productivity of their
incumbent co-workers.

In search of these symptoms of a ‘knowledge transfer’ scenario we estimate the
instantaneous and lagged wage effects of MNE experience then the spillover effect
of having ex-MNE co-workers. All models are estimated for low skilled, middling
and high-skilled workers separately.

Human capital accumulation is not the only possible source of a wage gap be-
tween MNEs and domestic firms. MNEs may try to prevent leakage of informa-
tion through labour turnover by paying higher-than-average wages and/or provid-
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ing deferred compensation schemes. Efficiency wages induce an instantaneous gap
and/or rising tenure-wage profiles in MNEs, and also imply lagged advantages by
increasing reservation wages in the course of on-the-job search. Nevertheless, they
are not expected to generate spillover effects.

Wage Gap

The first research question to be answered regards a contemporaneous wage gap:
“Is there a difference in wages paid for a worker, if he is employed in a domestically
owned firm versus when the firm is foreign owned?”. Specifically, the task is to un-
cover a wage gap induced solely by firm ownership status, and disentangle it from
the wage gap caused by working for more productive firms or having higher abil-
ities. There exists a wage w1 paid for a worker in some month by some company,
when the company is owned domestically, and there exists a wage w2 paid for the
same worker in the same month, by the same company, except that now the com-
pany is owned by a foreign entrepreneur. The w2−w1 difference gives the wage
gap for our worker in some month and for some company. The (not surprising)
problem with this thought experiment is that either w1 or w2 is latent (unobserved).
Rather, to estimate the gap we have to compare workers with similar skills (to en-
sure that the comparison in fact makes sense) working for similar companies (to
ensure that the gap is not attributed to productivity, size, etc. differentials), where
the first group works for domestic firms, the second for foreign-owned firms.

We follow the literature in estimating the foreign-domestic wage gap by control-
ling for both person and firm fixed effects. Foreign owners may take over high-
wage firms (ones which pay above the market average irrespective of who mo-
mentarily owns them) and hire high quality workers (who would be paid similarly
high wages elsewhere). Methods originating in Abowd et al. (1999) and further
developed by Cornelissen (2008), Carneiro et al. (2008), Guimaraes and Portugal
(2009) (see Section 1.4 of Chapter 1) and Balazsi et al. (2015) (see Section 1.5 of
Chapter 1) can help remove the impact of unobserved, time fixed worker and firm
characteristics.

The worker- and employer fixed effect models identify the wage gap using infor-
mation on shifts of firms and workers between ownership categories.11 However,
many multinationals settle in the country by way of greenfield investment, remain
under foreign ownership ‘forever’ and the majority of their employees remain with
them for long periods. Rather than simply neglecting the huge wage difference be-
tween ‘always foreign’ enterprises and their ‘always domestic’ counterparts we try
to remove the effect of worker quality from it by studying newly established always
foreign and always domestic firms and comparing the post and pre-entry earnings
11 An alternative is restricting attention to firms undergoing acquisition as Earle and Telegdy (2008, 2013) and

Earle et al. (2006, 2010) do using Hungarian data, among others.
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of their incumbent workers. This approach helps to account for ownership-specific
differences in unobserved worker quality (albeit it obviously fails to answer the
question of how Audi or General Motors would pay their workers in the unlikely
event of takeover by a local businessman).

The findings suggest that high-skilled workers in foreign firms earn more by 0.23
log points than their domestic counterparts even after controlling for person fixed
effects. This gap is small compared to the 0.76 log points raw differential and the
0.45 log points OLS estimate, but still a sizeable one. The gap virtually disappears
after adding firm fixed effects to the model, suggesting that foreign sector workers
typically work in high-wage firms (be them foreign or domestic) throughout their
career while the wage changes associated with their firms’ changes of ownership
are small. The OLS estimate of the wage gap between newly established foreign
and domestic firms is similarly wide (0.7 for skilled workers) but we also find a
substantial gap (0.3) between the pre-entry earnings of their high skilled workers.

Lagged Returns

“Is there a difference in the current earnings of a domestic worker when he comes
from a foreign owned firm or when he comes from a domestically owned firm?”
This second research question identifies a current wage differential exerted by hav-
ing foreign experience. Ideally we would observe the wage paid (w1) by some
domestic firm at some point in time to the worker when the worker came from firm
f when f is owned domestically, and also a wage with all being the same, except
that the sending firm f is foreign owned. The gap w2−w1 in this case measures
the lagged wage effect on the particular worker at the given time, solely induced
by having foreign experience what he can (at least partially) preserve and transfer
when moving to the domestic sector. Unfortunately as we can not observe w1 and
w2 at the same time, we have to compare domestic workers of similar skills coming
from domestic firms and coming from foreign firms, where the sending firms have
similar characteristics except for the ownership status.

We start with a model which compares workers, who had arrived at their domes-
tic employers from foreign versus other domestic firms. The wage equations esti-
mated for them are controlled for attributes of the sending and receiving firms, time
spent with the sending firm, time elapsed between the two jobs and both worker
and firm fixed effects. We address endogeneity of the moves from foreign to do-
mestic enterprises by paying special attention to workers arriving from firms which
discharged nearly all of their workers, that is, employees leaving their previous jobs
for reasons other than insufficient individual performance, dismissal for a cause, or
a desire to achieve individual wage gains.12

12 The data set we use provides no direct information on the reasons of separation.
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While this model has desirable qualities, it identifies the wage effect of previous
outside experience from a small sample meeting a series of special requirements
(the existence and observability of a previous employer, sufficient time spent there,
availability of lagged and lead variables on the sending firm, and several observa-
tions within the time window on both workers and firms in order to identify fixed
effects). Therefore, we estimate a second model for a much larger sample of domes-
tic workers (including information from left-censored employment spells), which
compares domestic workers with past and future foreign experience to workers
with past and future involvement in domestic enterprises other than their current
employer. This approach is closest in spirit to models, which study the wage ef-
fect of incarceration by comparing past and future convicts (see Grogger, 1995,
LaLonde and Cho, 2008, Pettit and Lyons, 2009 and Czafit and Köllő, 2015) un-
der the assumption that the dates of incarceration can be treated as random. This
model can also control for unobserved quality differentials but it cannot address
the possibly endogenous selection of workers to separating from their employers.

We find that skilled people leaving collapsing or relocating MNEs earn signifi-
cantly more than those leaving similar domestic enterprises (12.6 and 11.6 per cent
after controlling for worker fixed affects and both worker and firm fixed effects,
respectively). The average skilled ex-MNE worker’s advantage is much smaller
(4 per cent) that we attribute to the negative selection of those, who exit slightly
downsizing or expanding firms in the well-paying foreign sector. The compara-
ble estimate from the ‘overlapping cohorts’ model, which includes a much higher
number of long-lasting spells at multinationals is larger, close to 7 per cent in the
case of skilled workers.

Spillover Effects

“Is there a difference in the wages paid for a employee with no foreign experi-
ence when his colleague has foreign experience versus if he has not?” This last
research question concerns with the transferability of the knowledge premia be-
tween workers. Ideally we would observe the wage of the domestic employee when
his colleague has foreign experience (w2) and also the wage when the colleague
has always been employed by domestically owned companies (w1). The difference
w2 −w1 identifies the spillover effect of the colleague on the domestic worker,
solely induced by foreign experience. Unfortunately, as before, both w1 and w2

can not be observed, so we compare the wages of domestic workers with similar
colleagues when the colleagues have or do not have foreign experience. The equa-
tions to be regressed are also controlled for both person and firm fixed effects. The
estimated spillover effects might seem relatively weak at first sight (the estimates
fall short of a one per cent wage surplus in response to a one standard deviation
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difference in the share of ex-foreign co-workers) but they exceed rather than lag
behind similar estimates in the literature.

The rest of the study is organized as follows. Section 4.3.2 gives a short intro-
duction to FDI in Hungary. Section 4.3.3 introduces the data while Section 4.3.4
discusses estimation issues. Section 4.3.5 presents the results of the models esti-
mated for low, middle and high skilled workers, and finally, Section 4.3.6 discusses
the results and draws conclusions. The text is supplemented with Appendix A con-
taining supplementary tables, and a Data Appendix, Appendix B, describing the
variables.

4.3.2 FDI in Hungary

In the first decade after the start of the transition, Hungary was the most successful
country within the former Soviet bloc in attracting foreign capital. By the begin-
ning of our period of observation, cumulative FDI inflows exceeded 40 per cent
of the GDP (UNECE, 2001), multinationals employed 15 per cent of the labour
force (including self-employment and the public sector into the denominator) and
more than 30 per cent of private sector employees. They produced 20 per cent of
the GDP and delivered over 2/3 of the exports (Balatoni and Pitz, 2012). Large
multinationals including Audi, General Motors and Suzuki dominated the motor
industry and foreign presence was already decisive in the tobacco, leather, chemi-
cal, rubber and electronics industries, with employment shares between 50 and 80
per cent.

Almost three-fourth of the cumulative FDI inflows have arrived to sectors out-
side manufacturing and, as shown in Table 4.8, over 40 per cent of the workforce
within the foreign sector were employed in the tertiary sector.13 Therefore, we
do not restrict the analysis to manufacturing as most papers do in the strand of
the literature we follow. (See Barry et al. (2005), Görg and Strobl (2005), Lipsey
and Sjöholm (2004) and Smarzynska Javorcik (2004) as opposed to Poole (2013)
whose study covers all sectors in Brazil). While FDI typically boosts exports and
may generate demand for domestic manufacturers producing intermediate goods,
its contribution to the quality of retail trade, banking and services can be equally
important for the host country. This is a particularly important aspect in the former
state socialist countries, which started the transition with critically undeveloped
non-tradeable sectors.

Furthermore, we believe that the scope for spillovers is wider in the tertiary sec-
tor. There are few domestic manufacturers outside a small group of local suppliers
13 The quoted figures are the authors’ calculations using the main data set of the study and relate to workers in

firms employing more than 10 workers.
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Table 4.8 Foreign ownership in the estimation sample in 2003

The share of majority foreign-
owned firms in person-months
observed in the estimation sam-
ple (per cent)

Industrial distribution of person-
months within the foreign-firm
sector (per cent)

Agriculturea 4.5 0.7
Manufacturing 45.8 58.6
Construction 7.0 1.5
Energy 42.9 3.6
Trade 26.6 15.0
Finance 78.1 6.6
Services 23.0 14.0
Average/Total 33.4 100.0

a The data are annual averages and relate to workers in foreign and domestic firms employing more than 10
workers. The number of observations is 4,355,581 (first column) and 1,454,284 (second column)

to learn from Audi and other car manufacturers but there are tens of thousands of
local tradesmen, craftsmen, guesthouse owners and shop keepers to absorb knowl-
edge from Auchan, Accor, Strabag and other multinationals in retail trade, services,
catering and construction.

4.3.3 Data

Our estimation samples are drawn from a large longitudinal data set covering a
randomly chosen 50 per cent of Hungary’s population aged 5–74 in 2003. The data
collects information from registers of the Pension Directorate, the Tax Office, the
Health Insurance Fund, the Office of Education, and the Public Employment Ser-
vice. Each person in the sample is followed, on a monthly basis, from January 2003
until December 2011 or exit from the registers for reasons of death or permanent
out-migration.

The data provides information on the highest paying job of a given person in a
given month, days in work and amounts earned in that job, occupation and type
of the employment relationship. Financial data of the employer are available for
incorporated firms. Furthermore, we have data on registration at a labour office,
receipt of transfers and several proxies of the person’s state of health. Gender and
age are observed but educational attainment is not – this is approximated with the
highest occupational status achieved in 2003–2011. A detailed description of the
variables used in the paper is presented in Appendix B.

Our analysis is restricted to workers employed with a labour contract at least
once in a foreign or domestic private enterprise the maximum employment level
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of which exceeded the 10 workers limit at least once in 2003–2011. We have sev-
eral reasons to set a size limit: (i) foreign firms are nearly absent in the small firm
sector14; (ii) financial data are not available for sole proprietorships and unincor-
porated small businesses; (iii) the financial reports of incorporated small firms are
often incomplete and erroneous; and (iv) their wage data are flawed by the massive
presence of ‘disguised’ minimum wage earners.15 Furthermore, the inclusion of
small firms would substantially raise the risk of measurement error in the analysis
of spillover effects since the probability of not observing an ex-MNE employee
is much higher in small establishments. Moreover, we removed workers and firms
with less than two data points, zero wages and missing covariates.

After these steps of data cleaning we are left with a sample of 92,663,887 person-
months belonging to 1,762,812 workers and 218,572 firms.16 Out of the 1.76 mil-
lion workers in the sample, 41.3 per cent had at least one spell of employment in
the foreign sector and 15.2 per cent did not work outside the foreign sector at all
in 2003–2011. We draw special sub-samples from this starting population for the
study of lagged returns and spillover effects. Descriptive statistics of the main data
set are presented in Table A.1 of Appendix A.

4.3.4 Estimation Strategies

Foreign-domestic Wage Gap

Estimates on All Firms. Different specifications of our first model estimate the
foreign-domestic wage gap in the following way:

logwi jt = δFi jt +β1Pi +β2Xit +β3Yi jt +β4Z jt +[αi + γ j]+ εi jt (4.2)

where wi jt is the daily average earnings of person i at firm j and month t, F is a
dummy for being employed in a majority foreign owned firm, Pi and Xit are time
fixed and time varying individual attributes (gender, age, time spent unemployed,
receiver of disability payment, etc.), Yi jt stands for job-specific variables (occupa-
tion, tenure, etc.), Z jt denotes time varying firm-specific covariates (firm size, ex-
porter, capital-labour ratio, etc.), αi, γ j are person, firm fixed effects, respectively,
and εi jt is the white noise disturbance term.

We estimate (4.2) first with pooled OLS, excluding αi and γ j, then with Within
14 In 2014, foreign enterprises had a mere 4.5 per cent share in the 1–10 workers category. (Authors’

calculation based on the 2014 Q4 wave of the Labor Force Survey).
15 This term hints at the practice of paying workers the minimum wage (subject to taxation) and the rest of their

remuneration in cash. Elek et al. (2012) estimate that in 2006 the share of workers paid in this way amounted
to 20 per cent in firms employing 5–10 workers, 10 per cent in slightly higher firms (11–20 workers) and less
than 3 per cent in larger enterprises.

16 Hungary is a country of 10 million inhabitants. Dependent employment varied between 3.3 and 3.4 million in
our period of observation. See http://www.mtakti.hu/file/download/mt 2014 hun/statisztika.pdf
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estimator with worker fixed effects only, and both worker and firm fixed effects as
well.

When the equation is estimated with pooled OLS, the δ parameter captures the
pure ownership effect, plus the employment duration weighted average residual
worker and firm effects given personal characteristics P and X (Abowd et al.,
2006b). The person fixed effect absorbs the unobserved time invariant mean ‘qual-
ities’ of workers but the estimated gap is still affected by the employment-duration
weighted average of the firm effects for the firms in which the worker was em-
ployed. When both person and firm fixed effects are included, δ captures a pure
ownership effect identified from worker flows between ownership categories, on
the one hand, and changes in ownership, on the other. It shows the wage advantage
of a foreign firm employee over a domestic worker with similar observable at-
tributes, controlled for their average wages in the entire period of observation and
also controlled for average wages of the firms where they worked during the period
of observation. We control for unobserved shocks to productivity by including in-
dicators of the firm’s capital-labour ratio, exports and size, and adding sector-year
interactions to the equations. Standard errors are adjusted for clustering by firms.
The coefficient δ is identified from any variation in F when estimated with Pooled
OLS; from ( jt) variation in F for at least one worker i when estimated with worker
fixed effects; and from ( jt) variation in F for at least one worker i and from (it)
variation in F for at least one firm j when estimated with both firm and worker
fixed effects.17

Problems with the Model of Two Fixed Effects. The identification of fixed effects
requires that workers move across ownership categories and some firms change
majority owner. Table 4.9 seems to suggest that these requirements are met: we ob-
serve nearly 1 million workers, who changed employer in the period of observation,
with close to half million of them crossing ownership boundaries. Furthermore, we
observe 3,389 firms whose majority owner changed at least once in 2003–2011.
While these figures might seem impressive, and conditions for the identification are
clearly met, the table makes clear that the majority of workers and a vast majority
of firms play no role in the identification of ownership-specific wage differentials
when these are estimated with fixed effects models. This problem is particularly
grave in the case of firm fixed effects since we observe a relatively small number
of enterprises that switched from foreign to domestic ownership and vice versa (a
mere 1.7% of the firms in the sample). Though this issue will not leave the model
unidentified, we expect the firm fixed effect to pick up most of the wage gap.
17 A within group variation of F with respect to i means that firm j changed ownership while i was working

there, or that i moved between firms of different ownerships. A within group variation of F with respect to j
means that the firm changed ownership at least once during the period of observation.
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Table 4.9 Firms and workers by type of mobility in the estimation sample

Firmsa Number % Workers Number %

Always D 197,246 91.8 Inc. in F firms 214,075 12.2
Always F 14,171 6.6 Inc. in F sector 82,921 4.7
F to D, once 1,539 0.7 Inc. in D firms 539,393 30.7
D to F, once 1,605 0.8 Inc. in D sector 439,915 25.1
Multiple shifts 245 0.1 Switched sector 487,351 27.3
Total 214,806 100.0 Total 1,754,655 100.0

a F and D are abbreviations for foreign and domestic ownership, respectively. F to D (D to F) denote
firms that changed majority owner once. ‘Multiple shifts’ stands for firm changing ownership more
than once. ‘Inc.’ stands for incumbents, i.e., workers who did not change employer (incumbents in
firms), or, did change employer but did not leave their sectors of origin (incumbents in sectors).

Second, it comes as no surprise that mobile workers, on the one hand, and firms
changing owners, on the other, are non-randomly selected, as suggested by a pre-
liminary overview of average earnings by type of mobility (Table 4.10). Workers
permanently employed in the foreign sector earn twice as much as incumbent do-
mestic workers do. Those switching sectors earn more than their incumbent coun-
terparts in the domestic sector but less than their incumbent co-workers in the
foreign sector. Similarly, firms under majority foreign ownership throughout the
period of observation pay 77 percentage points higher wages than their ‘always
domestic’ counterparts. Firms switching majority owner pay only about 40 per
cent higher wages than ‘always domestic’ firms and about 30 per cent lower wages
than ‘always foreign’ companies.

The raw data foreshadow that wage changes associated with shifts between sec-
tors and changes of ownership will prove to be small compared to the tremendous
ownership-specific differences between incumbent workers and firms. The OLS
equations capture these differences but do so without isolating the influence of
unobserved differences in worker quality and enterprise wage policies. The fixed
effects models can solve the latter problem but improvements in model quality
come at the cost of distortions in the sample.

Estimates on Newly Established Incumbent Firms. We try to identify the sources
of the large gap between incumbent firms by looking at foreign and domestic firms
established after 2003, which did not change owner until the end of 2011, and
their incumbent workers, who stayed with them until 2011 or disappearance of the
enterprise from the data set.

We base the definition of a ‘new firm’ on its employment dynamics rather than
its date of registration, since the latter is often associated with break-ups, mergers
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Table 4.10 Average wages of firms and workers by type of
mobility (Fraction of the national average wage, group-level

means in 2003-2011)

Firmsa Workersb

Always F 1.31 Incumbent in F firm 1.43
Always D 0.54 Incumbent in F sector 1.49

Switched from F to D once
wage while F 0.96 Incumbent in D firm 0.70
wage while D 0.96 Incumbent in D sector 0.63

Switched from D to F once Switched sector
wage while F 1.00 wage while in F 1.07
wage while D 0.98 wage while in D 0.90

Multiple shifts
wage while F 0.97
wage while D 0.94

a Firms: F and D are abbreviations for foreign and domestic ownership. ‘Multiple shifts’
stands for firms changing ownership more than once. The figures are unweighted group
means of the enterprise average wages.

b Workers: ‘Incumbent’ stands for workers who did not change employer (incumbents in
firms), or, did change employer but did not leave their sectors of origin (incumbents in
sectors).

and acquisitions rather than actual birth of a new economic actor. We rely on the
fact that a mid-sized or large firm’s creation typically starts with hiring a small
group of managers who arrange the start-up. This preparatory stage is followed by
a ‘big bang’ when ‘rank-and-file’ employees are hired. We speak of a big bang
when a firm’s staff jumps from an initial level of Lt−1 ≤ 5 to Lt ≥ 50. We find
317 such firms (with no subsequent change of ownership) in the data.18 Combined
employment in these enterprises jumped from 6,728 one year before the big bang
to 126,544 one year after the big bang (i.e., an estimated growth from 13 to 253
thousand taking into account the 50 per cent sampling quota).

We estimate model (4.2) on a restricted data set to identify a foreign-domestic
wage gap for incumbent workers in new firms (i) during their service in these firms;
(ii) prior to being hired by these firms, and interpret the pre-entry wage differential
as a signal of difference in worker quality. Since assignment to the groups com-
pared is person-specific, and the firms do not change owner, we estimate the wage
gap with pooled OLS but include firm fixed effects in one of the model variants.
18 To be more precise, we found 311 firms meeting the above criteria and manually reclassified another 6 firms

jumping from the range of 5 < Lt−1 < 50 to levels of hundreds or thousands.
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Lagged Returns

Domestic workers arriving from MNEs earn higher wages than their colleagues
by 9 per cent (14 per cent in the case of high skilled workers). These raw advan-
tages are affected by compositional and quality differences between workers and
potentially biased by the non-random selection of workers to transition from for-
eign to domestic firms. The direction of the bias is uncertain. The wage advantage
of ex-foreign workers may arise because those, who leave the foreign sector do so
in response to meeting exceptionally favorable wage offers. Alternatively, workers
who quit the well-paying foreign sector may be negatively selected i.e., fired for
insufficient individual performance or dismissed for a cause. We leave it to the data
to tell which of these patterns dominate.

Domestic Workers Arriving from Foreign Versus Domestic Firms. Our first model
compares domestic workers having arrived to their current domestic employers
from foreign versus domestic firms:

logwi jt = δ1A f terFi jt +δ2dL jt +δ3(A f terFi jt ×dL jt)

+β1Pi +β2Xit +β3Yi jt +β4Z jt +[αi + γ j]+ εi jt .
(4.3)

We regress the wages of newcomers on their personal characteristics, current and
past job attributes, months between the two jobs, selected indicators of the send-
ing and receiving firms, sector-year interactions and worker and firm fixed effects,
which remove the average wages these workers earned during their career within
the domestic sector and the wage levels of the domestic firms where they worked.
The estimation is restricted to workers who have spent at least two years in the
sending firm, a period long enough to absorb some knowledge. We pay special
attention to workers whose previous employer collapsed so they had to leave in-
voluntarily, for reasons other than their personal deficiencies or wish to earn higher
wages.

After F is a dummy variable set to 1 for workers, who arrived from foreign
firms and 0 for workers arriving from domestic companies. dL = L(t +1)/L(t−1)
measures the change of employment in the sending firm between month t−1 and
t + 1, with t denoting the month when the worker left that firm. Controls in P, X ,
Y and Z are the same as for equation (4.2). The coefficient of dL, δ2, measures
how wages vary with employment dynamics of the sending domestic firms while,
δ3, the parameter of the interaction term A f terF × dL captures the effect of dL
among workers arriving from foreign employers. The wage advantage of workers
arriving from foreign firms over workers arriving from domestic firms, conditional
on employment dynamics of the sending firms and on various worker and firm
characteristics, is given by δ1 + δ3 · dL. δ1 and δ3 are identified if (i) in case of
estimation with worker fixed effects: a worker does multiple moves to the domestic
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sector involving domestic and foreign past employers; (ii) in case of estimation
with both worker and firm fixed effects: along with the condition in (i), for at least
one firm at least one worker comes from the domestic sector, at least one worker
comes from the foreign sector.

As was mentioned earlier, this model severely restricts the sample for which the
equations can be estimated. Members of the sample must have at least two em-
ployment spells in the domestic sector and a minimum of 3 jobs in 9 years in case
of workers with foreign experience. We need to observe employment dynamics of
the previous employer. To make sure that a worker had at least 2 year’s tenure with
his/her previous employer the time window should be narrowed to 2005–2011. We
want to compare workers arriving at their current firms via employer change, so we
exclude those getting to the domestic sector due to domestic buyout. These require-
ments are met by only 29 792 workers with 433 477 monthly observations. This
specification we use would be first best in a wide time window comprising several
decades but in the one we actually have identification comes from a relatively small
sample of workers with short employment spells.

Domestic Workers Before and After Working for Multinationals. Our second model
also relates to the employees in domestic firms. Each month t we identify work-
ers whose previous employer was a foreign firm (A f terFi jt) and those, whose next
employer is known to be a foreign firm and had no previous experience in the
foreign sector (Be f oreFi jt). Furthermore, we single out workers whose previous
employer was domestic but had foreign sector experience earlier (earlierFi jt) and
those who arrived at the domestic sector via acquisition. Finally, we split the rest
of the workers to groups with past and future experience in domestic firms other
than the current one (A f terDi jt and Be f oreDi jt). The reference category consists
of workers, who had no contact with other firms in 2003–2011. We plug these
variables to the OLS wage equation

logwi jt = δ1A f terFi jt +δ2Be f oreFi jt +δ3A f terDi jt +δ4Be f oreDi jt

+β1Pi +β2Xit +β3Yi jt +β4Z jt + εi jt .
(4.4)

and measure the effect of foreign sector experience with the double difference
δ = (δ1− δ2)− (δ3− δ4). δ1 and δ2 are identified from movements between sec-
tors, while δ3 and δ4 are identified from movements within sectors. The diff-in-diff
coefficient δ is interpreted as the effect of foreign experience on current wages,
removing the effect of future foreign experience (a signal for higher ability), re-
moving the effect of domestic future and past experience other then the current
employer (wage increment due to experience, tenure, etc.), and controlling for ear-
lier past foreign experience, foreign to domestic buyout, as well as for various
individual and job characteristics.
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We see no strong arguments against the assumption of random timing of the
moves between the foreign and domestic sectors. In our sample, the share of for-
eign firms in employment fluctuated in a narrow range around 32 per cent in 2003–
2011 and we have no information of strong shocks that could have altered the
patterns of hiring and firing before the crisis. In order to account for the possibility
that these patterns changed after 2009, we also estimate the model excluding the
crisis period. Furthermore, we start the analysis only in 2005 in order to make sure
that the new hires had sufficiently long experience in their previous jobs.

While this model is able to remove the effect of unobserved worker quality it
can not control for endogeneity of the move from foreign to domestic firms since
the sample includes left-censored spells at the current domestic employer.

Spillover Effects

We estimate spillover effects for the sample of domestic workers with no previous
foreign experience. Their wages are regressed on a set of controls and the variable
ShareF measuring the share of workers with previous foreign experience within
the worker’s company and skill category:

logwi jt,s = δShareFjt,s′+β1Pi,s +β2Xit,s +β3Yi jt,s +β4Z jt,s +αi,s +[γ j,s]+ εi jt,s .

(4.5)
We examine how the shares in skill categories s′ = {1,2,3} affect the wages of
incumbents in skill categories s = {1,2,3} so we arrive at a (3× 3) matrix of
parameter estimates. We estimate the models with both worker and worker and
firm fixed effects including the controls used to estimate models (4.2), (4.3) and
(4.4). The coefficient of main interest δ is identified from movements from the
foreign sector to the domestic, and is interpreted as the effect of a unit change
in the share of colleagues with foreign experience within skill category s′ on the
wages of incumbent workers within skill category s, controlling for various worker
and firm characteristics, as well as for the average wages of workers (in case of the
model with worker fixed effects), and for the average wages of workers and within
a firm (in case of the model with both worker and firm fixed effects).

On Estimating More Than One High-dimensional Fixed Effects

The incomplete estimation method detailed in Section 1.5 of Chapter 1 (or in Bal-
azsi et al., 2015) is designed to break down giant matrix calculations to smaller
components, while constantly keeping an eye on optimality. As in case of more
than one fixed effects, one still have to directly store and invert matrices as large as
the number of the second largest fixed effect, dimensionality can still circumvent
its application. In such cases, the suggestive solutions of Guimaraes and Portugal
(2009), or Carneiro et al. (2008) are well taken, which, despite being iterative (that
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is, only precise after converging), completely avoid dimensionality. Obviously,
both methods eventually reach the same estimates, but they do so in fundamen-
tally different ways: rapidly, by pressing a little more on memory (Balazsi et al.)
and memory-friendly, by pressing on time (Guimaraes and Portugal and Carneiro
et al.).

Selecting Periods for the Estimations

While our data yields a detailed view of developments between January 2003 and
December 2011, it provides no information about any event taking place before
2003. It is particularly painful that we have no data on the start date of left-censored
employment spells. Therefore, we will choose shorter estimation periods (2005–
2011 and 2005–2009) in cases the models require information on past and/or fu-
ture states or events. We also have to consider the possibility that the patterns of
wage setting changed during the economic crisis. Previous research (Köllő, 2011)
suggested that Hungarian private firms kept wages and relative wages virtually con-
stant in 2008–2009 and large scale wage adjustment started only in 2010. Therefore
we treat 2010–2011 as the crisis period.

4.3.5 Results

The Foreign-Domestic Wage Gap

Results on All Firms. Estimates of the foreign-domestic wage gap on model (4.2)
are summarized in Table 4.11. A full estimation outcome for the entire sample
is shown in A.2 of Appendix A. We see that the estimated effects of the control
variables are ‘properly’ signed, have reasonable magnitudes and very low standard
errors resulting in two and three digit t-values. The models also fit the data well,
with the R2 statistics typically exceeding 0.4 in the fully controlled OLS regres-
sions and 0.25 (overall R2) in the fixed effects panel models. In Table 4.11, only
the coefficients of the ‘foreign’ dummies and their corresponding t-statistics are
presented.

As shown in the first column, the raw gap controlled only for sector-year interac-
tions exceeds 0.75 in the case of high skilled employees while it is narrower in the
case of medium and low skilled workers (0.41 and 0.35 log points, respectively).

Controlling for individual attributes (gender, age, proxies of educational attain-
ment, state of health, risk of unemployment, receipt of care allowances and disabil-
ity payment) exerts weak influence, if any, on estimates of the wage gap. Even after
the inclusion of occupation dummies and tenure, the estimated gaps reach 0.44 log
points in the entire sample, 0.7 for high-skilled workers and 0.3–0.4 log points for
other groups of workers.

About half of these differences vanish after allowing for the effects of firm size,

155

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2017.05

Table 4.11 Estimates of the foreign-domestic wage gap by skill levels

Specificationa (1) (2) (3) (4) (5) (6)
Controls none Xit Xit , Yi jt Xit , Yi jt , Z jt αi αi + γ j
Estimator OLS OLS OLS OLS Within Within

2003–2011
Entire sample 0.525 0.488 0.439 0.276 0.151 0.014

(18.05) (21.96) (25.04) (18.01) (8.49) (4.34)
Unskilled 0.353 0.354 0.289 0.202 0.113 0.011

(12.96) (16.00) (14.84) (9.94) (2.92) (1.99)
Med. skilled 0.407 0.400 0.360 0.215 0.120 0.012

(17.24) (20.83) (20.75) (13.83) (7.44) (3.39)
High skilled 0.755 0.753 0.696 0.448 0.234 0.020

(22.18) (25.44) (29.10) (22.82) (11.15) (7.54)

2005–2009
Entire sample 0.518 0.476 0.424 0.274 0.140 0.014

(16.51) (20.34) (22.44) (17.34) (5.11) (3.19)
Unskilled 0.348 0.346 0.278 0.198 0.103 0.011

(11.77) (14.29) (13.20) (8.82) (1.48) (1.34)
Med. skilled 0.394 0.387 0.345 0.208 0.110 0.013

(15.38) (18.97) (18.45) (12.76) (4.43) (3.13)
High skilled 0.746 0.738 0.681 0.454 0.214 0.019

(20.74) (23.67) (26.72) (22.32) (6.68) (5.67)

a All coefficients are significant at 0.01 level. t-values are in brackets. Dependent variable: log daily earnings
in the given month. Reference category: domestic firm employees. Sample: persons employed in firms em-
ploying more than 10 workers at least once in 2003–2011. The data comprise 92,118,857 worker-months
belonging to 1,758, 834 workers in 218,572 firms. All equations, including (1) are controlled for sector-year
dummies. Other controls include: (X): gender, age, age squared, Budapest dummy, log regional unemploy-
ment rate, receipt of care allowance and/or disability payment, log monthly expenditures on health services
and medicine. (Y): job tenure, occupation. (Z): log firm size, log capital-labour ratio and the share of exports
in sales revenues. Specifications (5) and (6) include only time-varying covariates and worker and firm fixed
effects (αi, γ j). These specifications were estimated with Within estimators.

export share, the capital-labour ratio and industrial affiliation, suggesting that a
large part of the foreign-domestic wage gap is explained by the bigger size and
higher capital endowments of multinationals, and their much higher propensity to
export. However, even after controlling for the most important firm-level observ-
ables, a sizeable advantage remains on the part of foreign firms – a gap of 0.28 log
points in the whole sample and 0.45 in the case of skilled workers.

After allowing for worker fixed effects, the wage gap falls substantially, to only
13 per cent in the entire sample, 23 per cent for skilled and 11 per cent for unskilled
workers, suggesting that about half of the residual wage gap is accounted for by
the higher quality (generally higher wage level) of workers hired by multinationals.
Finally, the wage gap virtually disappears (falls 1 per cent in the whole sample and
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2 per cent for skilled workers) when we also include firm fixed effects i.e., take
into account the level of wages paid by foreign firms in periods when they were
under domestic control and vice versa. This result suggests that the wage gain of
workers from foreign ownership mostly stems from the permanently high level of
their employers’ average wages rather than large fluctuations in their pay levels
depending on who transitorily own them. However, as was previously discussed,
this result is based on information relating to a relatively small and non-randomly
selected set of companies undergoing foreign or domestic acquisition during the
period of observation.

Results on New Firms. Incumbent workers in newly established foreign firms earn
more than their domestic counterparts by more than 0.5 log points in general and
0.7 log points in the case of skilled labour, as shown in the first row of Table 4.12.

Estimates in the lower block of the table indicate that the workers of new foreign
firms also earned more than their domestic counterparts prior to their entry to the
new firms, by 0.22 log points on average. The pre-entry wage gap is wider for high
skilled than medium skilled employees (0.36 and 0.11 log points, respectively) and
much narrower for the low skilled (0.04 log points).

The pre-entry advantage partly stems from foreign start-up’s higher propensity to
hire skilled workers from other foreign firms as shown by a comparison of the sec-
ond and third rows. Even more importantly, foreign start-ups seem to hire skilled
employees from high-wage firms in general: with the inclusion of firm fixed ef-
fects the pre-entry advantage falls to 0.09 log points for all skill categories and
0.12 log points for high skilled workers. These results suggest that those foreign
enterprises, which tend to appear as incumbents in a narrow time window indeed
pay significantly higher wages than similar domestic businesses and this remains
true after allowing for the fact that they lure high wage workers from high wage
firms. An ownership-specific wage differential of about 0.3 log points remains be-
tween incumbent foreign and domestic workers even after removing the pre-entry
pay differential between them.

Lagged Returns to Foreign Firm Experience

Domestic Workers Arriving from Foreign versus Domestic Firms. Table 4.13 and
4.14 summarize the parameter estimates on model (4.3) with worker, and both
worker and firm fixed effects of the key variables. The tables present the marginal
effects at different levels of dL below the blocks containing the parameter esti-
mates. Since now we work with much smaller samples than before, we also indi-
cate significance levels.

Starting with the last column, which summarizes the results for skilled workers,
the estimates suggest a 4.1 per cent advantage on the part of ex-foreign employees
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Table 4.12 Comparing incumbent workers in newly created incumbent firms
before and during their service in these firms: Pooled OLS estimates of the

ownership-specific wage differences

Wage advantagea Low skilledb Middling High skilled Entire sample

After entry to the
new firm 0.317 0.394 0.721 0.529

(82.0) (167.9) (125.5) (218.7)
Person-months 59,049 234,515 78,622 372,186
aR2 0.531 0.473 0.432 0.437

Before entry to the
new firm
Control Ac 0.039 0.114 0.360 0.223

(10.5) (62.0) (84.4) (126.8)
Person-months 94,989 429,706 136,712 661,407
aR2 0.369 0.307 0.375 0.312

Control Bd 0.015 0.090 0.294 0.182
(4.1) (49.5) (71.0) (107.1)

Person-months 94,989 429,706 136,712 661,407
aR2 0.392 0.328 0.416 0.343

Control Ce -0.056 0.027 0.119 0.086
(12.1) (12.3) (23.2) (45.7)

Person-months 94,989 429,706 136,712 661,407
aR2 0.774 0.701 0.817 0.706

a of incumbent workers employed in new foreign-owned firms over incumbent workers in new domestic
firms

b All coefficients are significant at the 0.01 level. The equations have been controlled for gender, age, age
squared, months spent non-employed in 2003–2011, log health expenditures, receipt of disability payment,
receipt of care allowances, tenure, Budapest dummy, log regional unemployment rate, 63 sector-year in-
teractions and the log size, log capital-labour ratio and export shares of the current employer.

c Uncontrolled for ownership of the current employer.
d Controlled for ownership of the current employer.
e Controlled for firm fixed effects.

over workers arriving from domestic firms in the model with worker fixed effects
and 3.6 per cent in the model with both worker and firm fixed effects. However,
the advantage varies strongly with employment dynamics of the sending firm: it
amounts to 12-13 per cent at dL = 0 and only about 2 per cent at dL = 1.2.19 We
interpret this finding as a signal of predominantly negative selection: workers who
19 Separate estimates by categories of dL are broadly consistent with these results. The wage gap between

highly skilled ex-foreign and ex-domestic workers is 13.4 per cent in case their sending firms lost more than
half of their employees, as opposed to only 1.9 per cent in the range of 0.49 < dL < 0.99 and −1.7 per cent
when dL > 1.
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Table 4.13 The wage advantage of ex-foreign workers controlled for employment
change in the sending firm, 2005–2011, worker fixed effects

Entire samplea Unskilled Medium skilled High skilled

After F 0.041∗∗∗ 0.030∗∗ 0.010∗∗ 0.126∗∗∗
(11.1) (2.6) (2.1) (15.7)

dL of the sending firm −0.021∗∗∗ −0.014 −0.014∗∗∗ −0.053∗∗∗
(6.7) (1.4) (4.0) (8.5)

After F×dL of the send-
ing firm

−0.019∗∗∗ 0.001 0.001 −0.085∗∗∗

(5.7) (0.1) (0.3) (16.9)
Marginal effect of foreign experience at different levels of dL (per cent)

0 4.1 3.0 1.0 12.6
0.3 3.5 3.0 1.0 10.1
0.6 3.0 3.1 1.1 7.5
0.9 2.4 3.1 1.1 5.0
1.2 1.8 3.1 1.1 2.4
At the group-level me-
dian of dL

2.2 3.1 1.1 4.1

R2 overall 0.056 0.001 0.037 0.191
Person-months 462,608 46,761 273,178 142,669
Persons 30,343 3180 18,605 8588

a Coefficients and t-values in parentheses. Significant at the 0.1 (*), 0.05 (**), 0.01 (***) level. Sample: The
sample consists of domestic firm employees with more than two year’s tenure at a previous employer. Key
variables: After F denotes workers arriving from foreign employers. dL measures the change of employment
in the sending firm between year t−1 and t +1 (dL = L(t +1)/L(t−1)), where t is the year of the worker’s
separation from that firm. Reference category: domestic workers arriving from a domestic firm. Controls: The
equations are controlled for age, age squared, health expenditures, receipt of disability and care allowances,
completed duration of the previous employment spell, months of non-employment between exit from the
previous employer and entry to the current one, tenure at the current employer, log regional unemployment
rate, year dummies and the size, capital-labour ratio, export share and industrial affiliation of the sending and
the receiving firms.

leave expanding or only slightly downsizing firms are likely to have left involun-
tarily and tend to be selected from among less productive employees.

The estimates for medium skilled and unskilled workers indicate minor advan-
tages on the part of ex-MNE employees, which practically do not vary with em-
ployment dynamics of the sending firm.

Domestic Workers Observed Before and After Working for Multinationals. Our
second model identifies the private returns to foreign firm experience by comparing
the wages of domestic firm employees with past and future experience in multina-
tional and domestic companies. We restrict the analysis to 2005–2009 in order to
have sufficient observations on both past and future experience outside the work-
ers’ current firms. The estimates relate to nearly 31 million monthly observations
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Table 4.14 The wage advantage of ex-foreign workers controlled for employment
change in the sending firm, 2005–2011, worker and firm fixed effects

Entire samplea Unskilled Medium skilled High skilled

After F 0.037∗∗∗ 0.031∗∗∗ 0.008∗ 0.116∗∗∗
(10.4) (2.7) (1.8) (15.1)

dL of the sending firm −0.041∗∗∗ −0.109∗∗∗ −0.021∗ 0.043
(4.2) (3.3) (1.9) (1.1)

After F×dL of the send-
ing firm

−0.017∗∗∗ 0.002∗ 0.002 −0.080∗∗∗

(5.4) (0.3) (0.6) (16.2)
Marginal effect of foreign experience at different levels of dL (per cent)

0 3.7 3.1 0.8 11.6
0.3 3.2 3.2 0.9 9.2
0.6 2.7 3.2 0.9 6.8
0.9 2.2 3.3 1.0 4.4
1.2 1.7 3.3 1.0 2.0
At the group-level mean
of dL

2.0 3.3 1.0 3.6

Adjusted R2 0.941 0.875 0.911 0.955
Person-months 462,608 46,761 273,178 142,699
Persons 30,343 3180 18,605 8858

a Coefficients and t-values in parentheses. Significant at the 0.1 (*), 0.05 (**), 0.01 (***) level. Sample: The
sample consists of domestic firm employees with more than two year’s tenure at a previous employer. Key
variables: After F denotes workers arriving from foreign employers. dL measures the change of employment
in the sending firm between year t−1 and t +1 (dL = L(t +1)/L(t−1)), where t is the year of the worker’s
separation from that firm. Reference category: domestic workers arriving from a domestic firm. Controls: The
equations are controlled for age, age squared, health expenditures, receipt of disability and care allowances,
completed duration of the previous employment spell, months of non-employment between exit from the
previous employer and entry to the current one, tenure at the current employer, log regional unemployment
rate, year dummies and the size, capital-labour ratio, export share and industrial affiliation of the sending and
the receiving firms.

belonging to 1,431,706 workers in 204,064 firms. The coefficients of interest are
summarized in Table 4.15.

Starting with the results on high-skilled workers (last column), we observe that
those having arrived to the domestic sector from a foreign firm earn more by 14.5
per cent than their observationally similar counterparts, who arrived from a domes-
tic enterprise. This difference clearly overestimates the returns to foreign sector
experience since those domestic workers, who are on their way to a foreign firm
(Before F) also earn more by 7.7 per cent than those, who are about to leave for a
domestic employer (Before D): the former earn 3.5 per cent more than the incum-
bents while the latter earn less by 4.2 per cent. These data suggest that about half of
the 14.5 per cent difference between the ex-foreign and ex-domestic entrants arises
from a selection effect.

Put differently, workers having arrived to their domestic employer from a for-
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Table 4.15 The wages of workers arriving from/leaving for foreign and other
domestic enterprises. 2005–2009, domestic firm employees – Pooled OLS

regression coefficients

Entire samplea Unskilled Medium skilled High skilled

After F .045 .044 .025 .116
(22.3) (8.9) (11.5) (22.4)

Before F −.006 −.035 −.014 .035
(2.7) (6.0) (6.0) (7.2)

After D −.031 −.027 −.021 −.029
(21.2) (8.3) (12.9) (10.2)

Before D −.062 −.069 −.065 −.042
(38.8) (20.4) (35.3) (18.2)

F to D buyout .127 .001 .102 .178
(112.8) (0.2) (30.3) (24.4)

Previous F experience,
months

.001 .001 −.000 .002

(4.3) (3.4) (1.6) (7.1)
After F − After D .076 .071 .046 .145
Before F − Before D .058b .034 .051 .077
After F − Before F .051 .079 .039 .081
After D − Before D .031 .042 .044 .013
DiD .020 .037 −.005 .068
aR2 .351 .353 .279 .315
Number of obs. 30,789,701 4,418,245 18,942,910 7,428,546

a Pooled OLS regression coefficients. The reference category comprises workers with no outside work expe-
rience in 2005–2009. All the reported coefficients are significant at the 0.01 level. t-statistics in parentheses.
For the full results see the online appendix. The equations have been controlled for gender, age, age squared,
months spent non-employed in 2003–2011, log health expenditures, receipt of disability payment, receipt of
care allowances, months elapsed between previous and current jobs, tenure, Budapest dummy, log regional
unemployment rate, 63 sector-year interactions and the log size, log capital-labour ratio and export shares of
the current employer. Further dummies stand for missing information on tenure and time spent non-employed
prior to entry to the current employer. After F/After D: previous employer is foreign/domestic. Before F/Before
D: next employer is foreign/domestic. F to D buyout: the worker arrived at the firm via domestic buyout of a
foreign firm.

b Rounding error.

eign firm (After F) earn more by 8.1 per cent than those, who are about to leave
for a foreign firm (Before F). A similarly signed but smaller difference (1.3 per
cent) exists between those who came from, or go to, another domestic enterprise
(After D−Before D).

Using these estimates, we can approximate the return to foreign work experience
as the double difference (After F−Before F)−(After D−Before D) equal to 6.8 per
cent. Alternatively, we can start the calculus with the extra value of having foreign
firm experience (After F−After D) and remove the differential in the pre-separation
difference (Before F−Before D) to arrive at the same, 6.8 per cent estimate.
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Similarly calculated double differences are significantly lower (3.7 per cent)
for unskilled workers, virtually zero for the medium skilled (−0.5 per cent) and
amount to a mere 2 per cent in the entire sample.

The results of the two models, aimed at measuring lagged wage effects, are sim-
ilar. The first model identified a 4 per cent advantage on the part of the average
skilled worker arriving from a foreign firm over a worker arriving from a domes-
tic company. In this case worker quality was taken into account with the help of
worker fixed effects. The quality-adjusted estimate in the second, ‘overlapping co-
horts’ model is 6.8 per cent, not very far: recall that this model included more
persons working for multinationals over a long period. The two models are also
similar in suggesting much lower returns for less skilled workers.

The first model drew attention to downward bias in estimates for the average
worker: it seems that foreign sector employees leaving for domestic companies are
negatively selected unless they had to leave because of the closure or relocation of
their employers. However, it seems that even after allowing for a selection effect,
the lagged private returns must fall short of the contemporaneous ones, which in-
dicated 25 and 30 per cent advantages on the part of skilled foreign sector workers
(after allowing for observed and unobserved individual attributes) and over 10 per
cent for all workers.

Results on Spillover Effects

The fixed effects panel equations summarized in Table 4.16 regress the log wages
of domestic workers with no foreign experience on the share of workers with for-
eign experience within the worker’s firm and skill group. The coefficient in the up-
per left corner (0.031), for instance, suggests that the wages of low skilled workers
would grow by 3.1 per cent if the share of low skilled coworkers with foreign-
firm experience grew from 0 to 100 per cent, holding observed and time fixed
unobserved personal attributes constant. The equations have been estimated for
2005–2009, in order to leave time for accumulation of a stock of newcomers and
disregard the crisis period in the latter case. We also estimated the equations sep-
arately for smaller (11–50) and larger (50+) firms, taking into consideration the
higher risk of measurement error in small establishments. Table 4.16 presents the
result for all and larger firms in 2005–2009. The full results are available in the
online appendix.

Several regularities stand out. The own effects (how newcomer’s share in group
s affects incumbent wages in group s are stronger than the cross effects. The own
effects increase with skill level of the ex-foreign coworkers. Consistent with the
expectations, the estimates for all firms are lower than the estimates for larger firms,
and not always significant in the employee-employer fixed effects models. The
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Table 4.16 Spillover effects estimated with worker and firm fixed effects,
2005-2009

Lowa Middling High Low Middling High

All firms Firms employing > 50 workers

Estimates with worker fixed effects
Low 0.031∗∗∗ 0.014∗∗ 0.012∗∗ 0.041∗∗ 0.038∗∗∗ 0.011

(3.9) (2.9) (2.7) (3.0) (3.5) (1.6)
Middling 0.024∗∗∗ 0.053∗∗∗ 0.035∗∗∗ 0.034∗∗∗ 0.090∗∗∗ 0.045∗∗∗

(7.3) (15.3) (14.6) (7.4) (12.3) (11.2)
High 0.017∗∗∗ 0.035∗∗∗ 0.085∗∗∗ 0.034∗∗∗ 0.063∗∗∗ 0.112∗∗∗

(2.3) (7.3) (12.6) (3.7) (5.4) (9.3)

Estimates with worker and firm fixed effects
Low 0.018∗∗ 0.005 0.004 0.036∗∗ 0.036∗∗∗ 0.015∗

(2.7) (1.3) (1.1) (2.9) (3.7) (2.3)
Middling 0.009∗∗ 0.019∗∗∗ 0.008∗∗∗ 0.020∗∗∗ 0.056∗∗∗ 0.018∗∗∗

(3.0) (5.8) (3.5) (4.5) (7.8) (4.9)
High 0.016∗∗ 0.007∗ 0.007 0.037∗∗∗ 0.029∗∗ 0.053∗∗∗

(2.6) (1.8) (1.2) (4.2) (2.6) (4.9)

a Significant at the 0.1 (*), 0.05 (**), 0.01 (***) level. t-values in brackets. Denoting the columns of the table
with s′ and the rows with s, the coefficients measure the effect of the share within skill group s′ of workers
with foreign work experience on the log wage of domestic workers within skill group s who had no foreign
work experience between January 2003 and the month of observation. The equations were estimated row by
row, with Stata’s xtreg and reg2hdfe models and controlled for gender, age, age squared, Budapest dummy, log
regional unemployment rate, receipt of care allowance and/or disability payment, log monthly expenditures
on health services and medicine, job tenure, occupation, log firm size, log capital-labour ratio, the share of
exports in sales revenues, and sector-year interactions.

parameters estimated with both worker and firm fixed effects are markedly lower,
suggesting that the share of ex-MNE workers is higher in high-wage firms.

The within-firm (2FE) impacts seem rather weak in view of the relevant ranges
of newcomer’s shares. The share of ex-foreign workers is zero for 37 per cent of
the person months observed in 2005–2009, and for the rest of the cases the mean
share is 13.6 per cent with a standard deviation of 11.7 per cent. Therefore, the
wage effects of moving from zero share to mean share, or, shifting the share by
one standard deviation are small. Thus, for instance, taking the one of the highest
parameter estimates in the bottom panel of Table 4.16 (last column in the last row),
we find that a one standard deviation difference in the share of high skilled ex-
foreign employees shifts the wages of high skilled incumbents up by only slightly
more than a half per cent.

In evaluating the cross effects one should take into account the relevant range
in the share of ex-MNE workers. While a jump from zero to 50 or 100 per cent
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in the share of ex-foreign workers within the medium skilled category is beyond
the realm of reality, which renders the spillover effect to be weak, this can easily
happen in the high skilled category. Domestic firms employing 50 workers have 7
high skilled workers on average. Hiring two managers or professionals with foreign
sector experience can increase the ex-foreign share from zero to almost 30 per
cent overnight, which implies a 0.6 per cent wage growth for the medium skilled
incumbents and 1.6 per cent for their high skilled counterparts.

The estimated spillover effects might seem economically insignificant but, in
fact, they are stronger rather than weaker than those found in the literature. Aitken
and Harrison (1999) show that foreign ownership is associated with higher wages
in Mexico and Venezuela but they do not find evidence of wage spillovers lead-
ing to higher wages for domestic firms. Keller and Yeaple (2009) detect significant
worker-level wage spillovers only in high-skill-intensive industries in US manufac-
turing. The study of Poole (2013) based on Brazilian data – that is closest to ours
in terms of approach, sample characteristics and industry coverage – estimates that
at the average wage for a typical domestic worker, a 10 percentage point increase
in the share of former MNE workers in his establishment increases wages by 23
$ per year, a little more than the price of one Starbucks espresso a month in Rio
de Janeiro. The comparable estimate for skilled domestic workers in our sample
is 0.53 per cent of the skilled average wage, the equivalent of about 69 $ a year,
which can buy about four cups of Starbucks espresso a month in Budapest.

4.3.6 Conclusion

In all of the models presented in the study we have found contemporaneous and
lagged residual wage gaps between foreign and domestic employees, unexplained
by observed and unobserved attributes of the compared workers.

The raw 0.5-0.7 log point contemporaneous wage differential between domestic
and foreign workers was halved once we have controlled for firm and worker at-
tributes, and went down to a mere 13% for the entire sample, and 23% for skilled
workers, when we have introduced worker fixed effects. The gap virtually disap-
peared if we have also controlled for firm fixed effects (1% for the entire sample
and 2% for skilled workers), suggesting that the vast majority of the wage gap
is caused by the non-random selection of ownerships, rather than by the actual
changes in ownerships. The fixed effects approach has one limitation though: most
firms and many employees have not changed owner or moved across sectors, and
with that a large part of the sample has played no role in the identification of the
wage gap. In order to utilize that part of the data as well, we have carried out an
analysis on ‘newly established’ firms and have compared pre- and in-the-process
wage differences. The 0.3 log point wage gap suggested that only part of the pre-
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existing wage gap between foreign and domestic incumbents may be attributed to
quality differences between workers and to their non-random assignments.

Lagged wage effects have been identified from comparing domestic workers
coming from domestic firms versus foreign firms. The non-random separation of
workers from firms have been controlled by focusing on collapsing firms. The 4%
and 12% gaps for the average skilled and the high-skilled people, respectively,
suggested that workers accumulate reasonable general skills at foreign employers,
which they can transfer when moving across sectors.

We have also found evidence that the presence of ex-foreign coworkers raised
the wages of incumbent domestic workers. One standard deviation increase in the
fraction of high skilled ex-foreign workers was associated with 0.5% raise in the
annual wages of high skilled co-workers. Even though this spillover effect seems
economically insignificant, it is much higher what other studies usually find.

The results cast doubt on some censorious explanations of the foreign-domestic
wage gap. The existence of a residual gap calls into question that the wage differ-
ence simply reflects the crowding of high productivity workers in foreign firms.
The post-separation gains reprehend the hypothesis that the gap is purely firm-
specific i.e., vanishes without a trace when a worker leaves the foreign sector.

It seems that the residual gains rather stem from the matching of better-than-
average workers and modern technologies, and the resulting gains are portable and
transferable to some extent. High skilled MNE workers earn more than their do-
mestic counterparts. Their earnings rise faster with tenure and/or experience. They
lose a part of their wage advantage after leaving the foreign sector but, even so, they
earn more than their domestic colleagues with no MNE experience. Their presence
in a domestic firm exerts positive influence on the wages of incumbent co-workers.
The gaps are larger and the spillover effects are stronger in the tertiary sector where
FDI brought previously unknown technologies and corporate culture. The finding
of much narrower gaps and weaker effects in the case of unskilled and medium
skilled workers yields further support to a ‘knowledge transfer’ explanation of the
results.
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Appendix A – Supplementary Tables

Table A.1 Descriptive statistics for the estimation sample of (4.2)

Variablea Mean Var Min Max

Male .583 0 1
Age 38.49 11.0 7 82
Low skilled .147
Middling .602 0 1
High skilled .251 0 1
Months of non-employment in 2003–
2011

31.1 29.2 0 108

Log health expenditures/national av-
erage wage

−2.08 1.8 −12.08 7.14

Receives disability pension/payment .013 0 1
Receives care benefit .012 0 1
Log regional unemployment rate −2.59 .390 −3.32 −1.73
Central Hungary including Budapest .307 0 1
Tenure is unobserved .386 0 1
Tenure (months) 12.87 18.6 0 108
Top manager .037
Other manager .075 0 1
Professional .073 0 1
Other white collar .206 0 1
Skilled blue collar .356 0 1
Assembler, machine operator .169 0 1
Elementary occupation .101 0 1
Unspecified occupation .020 0 1
Agriculture .044
Manufacturing .362 0 1
Construction .066 0 1
Trade .188 0 1
Finance .035 0 1
Energy .023 0 1
Services .281 0 1
Foreign .326
Domestic .616 0 1
Public sector .046 0 1
Other, unspecified .012 0 1
Firm size (log) 4.94 2.25 −.693 10.88
Fixed assets per worker (log) 7.78 1.86 −5.01 17.59
Share of exports in sales revenues .212 .349 0 1

a Each variable covers 92,663,887 person months. The spells belong to workers employed at least
once in a firm, the size of which exceeded the 10 workers limit at least once in 2003–2011. Note
that other samples used in the paper have been drawn from this source file.
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Table A.2 Pooled OLS results for (4.2). Entire sample, 2003–2011

Coefficienta t-value Betab

Majority owner
Foreign .2762 265.5
Other .0266 17.6

Personal characteristics
Male .2236 271.9
Age .0350 139.3 .5179
Age squared −.0003 −119.4 −.4589
Months spent non-employed
in 2003–2011 −.0034 −263.2 −.1347
Receipt of disability payment −.3057 −99.5
Receipt of care allowance −.3615 −101.2
Health expenditures −.0159 −113.3 −.0386

Highest occupational status in 2003–2011
Middling .0274 25.7
High .2260 137.1

Job characteristics
Tenure .0006 36.2 .0167
Tenure is unobserved .0997 112.5 .0647
Manager −.0342 −3.9
Professional .0496 5.6
Other white collar −.2600 −30.0
Skilled blue collar −.5522 −63.7
Assembler, machine operator −.5589 −64.2
Labourer in elementary occupation −.7082 −81.5
Unspecified −1.2561 −132.9
Regional unemployment rate (log) −.0753 −59.4 −.0392
Budapest .1171 107.8

Firm characteristics
Firm size (log) .0511 247.0 .1535
Capital-labour ratio (log) .0392 195.6 .0977
Exports/sales revenues .1095 78.8 .0510
Constant −1.7556 161.0
R2 0.4933
F(87,1758833) 21,949.87
Number of observations 92,118,857

a Dependent variable: log daily earnings. For the exact definition of the variables see the Data
Appendix B. The data relate to 1,762,812 workers in 218,572 firms. The data comprise workers
ever employed in a firm employing more than 10 workers. The coefficients of 63 sector-year
dummies are not shown. The standard errors are adjusted for clustering by persons.

b Effect of a one standard deviation difference in the respective continuous variable.
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Appendix B – Data Appendix

Starting Sample. 50 per cent random sample drawn from Social Security Num-
bers (SSN, Hungarian TAJ) valid on January 1, 2003. SSN holders aged 5–74 were
retained. Data held by the Pension Directorate (ONYF), the Tax Office (NAV),
the Health Insurance Fund (OEP), the Office of Education (OH), and the Public
Employment Service (NMH) were merged and anonymized by the National Infor-
mation Service (NISZ). The original data consisted of payment records with start
and end dates, a type-of-payment code and amounts received by the person. Em-
ployers were identified by ONYF and their annual financial data were provided by
NAV. The data was transformed to a fixed format monthly panel data set by the
Databank of the Institute of Economics of the Hungarian Academy of Sciences.
The costs of building the data base were financed by the Hungarian Academy of
Sciences.

Estimation Sample. Workers employed with a labour contract at least once in a
foreign or domestic private enterprise the maximum employment level of which
exceeded the 10 workers limit at least once in 2003–2011. We removed workers
and firms with less than two data points, zero wages and missing covariates. 98.5
per cent of the workers belong to a single connected group.20

Wage. The daily wage figure used in the paper was calculated as monthly earn-
ings divided by the number of days covered by pension insurance (‘working days’
henceforth) in the given month. Multiple payments made by the same employer
to the same person in a month were summed up. Working days belonging to these
payments were also summed up but capped at 30 or 31 days. In the case of multiple
job holders the wage figure belongs to the highest paying job. We normalized the
wage figures by dividing them with the national average wage in the given month,
as measured in the starting sample. Source: ONYF.

Skill Levels. Skill levels are inferred from the ‘highest’ occupational status held
by the person in 2003–2011. The classification is based on one-digit occupational
codes: 1 Top managers, 2 Other managers, 3 Professionals, 4 Other white collars,
5 Skilled blue collars, 6 Assemblers and machine operators, 7 Elementary occu-
pations. Persons employed in occupations 1–3 at least once are classified as high
20 “When a group of persons and firms is connected, the group contains all the workers who ever worked for

any of the firms in the group and all the firms at which any of the workers were ever employed. In contrast,
when a group of persons and firms is not connected to a second group, no firm in the first group has ever
employed a person in the second group, nor has any person in the first group ever been employed by a firm in
the second group. From an economic perspective, connected groups of workers and firms show the realized
mobility network in the economy. From a statistical perspective, connected groups of workers and firms
block-diagonalize the normal equations and permit the precise statement of identification restrictions on the
person and firm effects.” (Abowd et al., 2006a).
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skilled. Persons never employed outside occupations 6 and 7 are classified as low
skilled. Other persons are classified as medium skilled. Source: ONYF.

Total Time Spent Non-employed. The number of months out of employment in
2003–2011. Source: ONYF.

Disability Payment. Dummy variable, with 1 standing for any kind of transfer
(pension or allowance) received on the basis of permanent disability (rokkant-
nyugdı́j, rokkantsági járadék). Monthly data. Source: ONYF.

Care Allowances. Dummy variable, with 1 standing for any kind of benefits re-
ceived by the observed person on the basis of raising children (tgyás, gyed, gyes,
gyet) or taking care of relatives (ápolási segély). Monthly data. Sources: OEP,
ONYF.

Health Expenditures. Expenditures and costs registered by the National Health
Insurance Fund (OEP). The items include total amount paid for OEP-supported
medicine and the costs of OEP-supported services/treatment provided by district
doctors, specialists and hospitals. We normalized the nominal figures by dividing
them with the national average wage in the given month, as measured in the starting
sample. Annual data. Source: OEP.

Unemployment Rate. Seasonally adjusted ILO-OECD unemployment rate in the
given month and NUTS-2 region. The worker’s region is identified on the basis of
his/her postal code in 2003. Source: the author’s calculation using the Labor Force
Survey.

Foreign-owned Firm, MNE. Dummy variable set to 1 for firms majority owned
by one or more foreign owners. Ownership shares are measured as fractions of
subscribed capital. Source: NAV.

Firm Size. Average number of employees. Annual data. Source: NAV.

Export Share. Ratio of export revenues to sales revenues. Annual data. Source:
NAV.

Capital-labour Ratio. Net value of fixed assets per worker. Annual data. Source:
NAV.

Industry, Sector. NACE 2 and NACE1, respectively. Source: NAV.
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