
Mathematics and its Applications

Central European University

The chip-�ring game on complete and

complete bipartite graphs

Natalia Bila

MS

supervisor: Pal Hegedus

Budapest, Hungary

2017

C
E

U
eT

D
C

ol
le

ct
io

n

Acknowledgements

I would like to express my thankfulness to my supervisor, Pal Hegedus. I am very

grateful to him for introducing me this topic. I also appreciate his wisdom and patience,

his guidance in my writing which helped me to produce this thesis.

I also would like to express gratitude to my friend and my classmate Hailemariam for

his support and faith in me which helped me to accomplish this thesis.

1

C
E

U
eT

D
C

ol
le

ct
io

n

Contents

1 Physical approach of the game 5

1.1 The Abelian Sandpile Model . 6

2 Chip-�ring game on undirected graphs 9

2.1 The chip-�ring game . 9

2.2 The �nitness of the game . 14

3 Chip-�ring game on complete and complete bipartite graphs 16

3.1 The chip-�ring game on complete graph 16

3.1.1 Computational time of the game 20

3.2 Chip-�ring game on complete bipartite graph 24

A Python code for chip-�ring game on complete graph 34

B Python code for chip-�ring game on complete bipartite graph 43

2

C
E

U
eT

D
C

ol
le

ct
io

n

Introduction

The chip-�ring game is quite new topic in the combinatorics. First appearance of it

was made in the second half of 20th century. Quite astonishing is that discovering of this

concept were made separately by di�erent scientists in the di�erent scienti�c areas. There

are three approaches: physical, through probabilistic abacus [?] and combinatorics.

The aim of the given thesis is to get acquainted with the �rst and last approach. Also

we concentrate more on the last approach where we try to investigate �niteness of the

game on the complete graph and the complete bipartite graph. The results for complete

graph is already known. We try to check e�ciency of using the criteria for checking the

�niteness of the game. Also we compare computational time for checking criteria and for

the playing the game with a given initial con�guration. For the complete bipartite graph

we propose two criteria. One is based on similar ideas as in [11] and another one uses

a little bit di�erent thought. In addition we make simulations and we record computing

time for the three methods (playing the game, criteria one and criteria two).

In the �rst chapter we are acquainted with the self-organized criticality and the major

representative of it the Abelian Sandpile model. Here we will show what is achieved in

this area and we will give an example of the Bak, Tag and Wiesenfeld sandpile model.

In the second chapter we are doing the review of the chip-�ring game on undirected

graphs. We will list the main theory and the theorems about this topic. Also we will

make some additions in the proofs for the theorem 2.1.

In the third chapter we analyse the chip-�ring game on complete graphs. We make

simulations of the game with di�erent size of vertex set and the di�erent con�gurations.

Also we measure the running time for playing the game and for the checking criteria. We

build histograms which depict proportion of �nite and in�nite games in a �xed number

of trials for di�erent number of chips for the particular graph.

Also we introduce the game on complete bipartite graph. We introduce some theorems

on the �niteness of the game on this graph. We propose two criteria for making the

decision if a given initial con�guration lead us to the termination of the game. One of

them uses the similar ideas proposed in [11] and another one is based on a little bit

di�erent approach. We will compare these three methods (third method is simply play

the game) in the time e�ciency.

3

C
E

U
eT

D
C

ol
le

ct
io

n

In the appendix will be given the code in Python with its descriptions for playing the

chip-�ring game and checking criteria on the both types of graphs.

4

C
E

U
eT

D
C

ol
le

ct
io

n

Chapter 1

Physical approach of the game

The scienti�c investigation of self-organize phenomena is relatively new. It has been

around for 30 years since it �rst emergence in the article of Per Bak, Chao Tang, and Kurt

Wiesenfeld [1]. Self-organized criticality (SOC) is one of the most important discoveries

in statistical physics in the end of 20th century. In physics, SOC is a property of dynamic

systems the macroscopic behaviour of which is spatial and/or temporal scale-invariant

and their structure arise without impact from outside, just internal organization of itself

to criticality. When the critical point is reached, the stress in a local part is distributed

to their neighbours. This action can lead those neighbours to the critical threshold and

the process can be repeated.

These systems exhibit complexity as there is no scale which would describe its devel-

opment. Large dynamical systems have propensity to organize themselves spontaneously

into a critical state. Self-organization can expand, display interim state or maintain a sta-

ble con�guration. The systems show some simple statistical properties which are de�ned

by power laws [2]. Example [2],

F (s) = A · s−α

where F - number of events, S - size of event, A - some constant, α describes some

statistical traits of SOC state.

Some dynamical systems may have the same exponent in the power law function, but

they can have totally di�erent microscopic structure.

Even if a system shows power law features it does not mean that it possesses SOC

behaviour. The same logic that each healthy born dog has 4 legs, but not every creature

with 4 legs is a dog.

There is no consolidate mathematical formalism which can help to recognize if the

system exhibits SOC behavior or not. There are well-known mathematical models which

seem to have a SOC behavior: Bak-Tang-Wiesenfeld sandpile, Curie�Weiss model [3],

5

C
E

U
eT

D
C

ol
le

ct
io

n

earthquake model and others.

The concept of self-organized criticality is interdisciplinary. It is used to explain com-

plex behavior of di�erent physical, biological, chemical, social, economic [4] systems.

1.1 The Abelian Sandpile Model

The ASM was introduced as one of the simplest models which exhibits SOC behaviour.

The de�nition of sandpile model is following [5, 6]. Consider directed graph G = (V,E)

where the number of vertices is equal n. We de�ne a variable zi on each vertex which can

be assigned a non-negative integer value and is called the hight of the sandpile. Also, we

de�ne a so-called threshold value z̄i ∈ N.

An allowed con�guration of the sandpile is a tuple of integer heights zi, i = 1...n. We

call an allowed con�guration stable if zi < z̄i ∀i ∈ V .

An evolution of sandpile model is de�ned by the toppling matrix ∆ and follows the

next rules:

1 Adding a grain. We randomly pick a site and add a grain of sand there. Probability

of choosing the site i is equal to some given value pi and the sum
n∑
i=1

pi = 1. The

height value of a node vi is increased by 1 and the heights of other nodes remain

the same.

2 Toppling. If on a some site we have that zi ≥ z̄i then the process called toppling

happens. The site i looses some part of grains and the other sites receive some

amount of grain. The law by which it happens is described by the toppling matrix

∆. The con�guration z is updating using the next rule after toppling at site i:

zj → zj −∆ij ∀j ∈ V (1.1)

In the case the toppling on a site i evoke unstable con�guration on the other sites then

they are also toppled simultaneously. This procedure continues until for a con�guration

z the following becomes true zi < z̄i ∀i ∈ V .

And now we de�ne toppling matrix : chapter

∆ii > 0, ∀i ∈ V (1.2a)

∆ij ≤ 0, ∀i 6= j (1.2b)

bi :=
∑
j

∆ij ≥ 0,∀i. (1.2c)

We can use a vector notation for the tuple of elements ∆̄i = {∆ij}j=1..n. Then the

formula (1.1) can be rewritten as following: z → z − ∆̄i This formula shows that if we

6

C
E

U
eT

D
C

ol
le

ct
io

n

have toppling on the site i then the hight of the zi decreases and the hight of other nodes

increase.

Now, we take a closer look to the original Bak-Tang-Wiesenfeld sandpile model. We

consider this model on the two-dimensional plane surface.

∆ij =


∆ij + 4, if i = j

∆ij − 1, if i and j are adjacent

∆ij, otherwise.

(1.3)

We have two types of a cell on the border. One of them is a corner cell. It has only

two neighbours. So if it �res, it keeps only two grains of sand in the pile and another two

are lost. Another type of the border cell is a cell which has three neighbours. So, only

one grain is lost, the other three are kept in the system.

An example of sandpile model is shown on the Figure 3.9. Here we have 3 × 3 grid.

After adding one chip on one site we get 2 topples.

Figure 1.1: Sandpile model on 3× 3 grid

If we have unstable con�guration, meaning there exist a vertex i such that zi ≥ z̄i,

then we have a toppling and the new obtained con�guration is tiz = z−∆̄i. The ti stands

for the toppling operator.

The set of consecutive toppling is called an avalanche.

The order in which the topplings happen does not matter. The stable con�guration

which obtained after �ring overloaded vertices does not depend on �ring interim nodes.

This is the reason why this model is called Abelian Sandpile model. In mathematical

notation this can be written as: if z is such that zi > z̄i and zj > z̄j then

titjz = tjtiz

Let us consider unstable con�guration with two overloaded sides i and j. We start

toppling at site i by the rule 1.1 and after the toppling the site j we obtain z → z− (∆̄i+

∆̄j). The last expression is symmetric under exchange of i and j. We get the same �nal

con�guration regardless of the order of topplings i and j. The same logic are used when

we have more than two topplings. We also obtain the same �nal con�guration if toppling

at site i is followed by addition a particle in con�guration j.

7

C
E

U
eT

D
C

ol
le

ct
io

n

Chapter 2

Chip-�ring game on undirected graphs

In 1986 J. Spencer was studying a certain problem and he used a so-called "balancing

game" for its solution. At the beginning we have a pile of N chips in the middle of an

in�nite line. We divide this pile into two parts of equal sizes bN/2c and put one part to

the left side and another part to the right side. In case we have an odd number of chips,

we leave one chip in the middle and do the same procedure as above for the even case.

Then we continue with this procedure. It was proven by Spencer that this process is well

approximated by the "Galton process" for the �rst N steps.

Taking this fact in consideration, further extension and investigation of this problem

were made by E. Tardos et al [7]. They modi�ed the game allowing only to move one chip

at a time either to the left or to the right. They described the precise number of steps

needed to terminate the game.

Later Björner et al [8] studied this game on simple graphs. They called it chip-

�ring game. The game starts with setting some amount of chips on each vertex. If a

vertex contains more chips than its degree, then it distributes a one chip to each of its

neighbours. This game continues until all nodes are loaded with fewer number of chips

than their degree. If we get repetition of some con�guration then this game is in�nite,

this will be described later.

2.1 The chip-�ring game

We introduce chip-�ring game in mathematical notations. Let G be a simple graph with

�nite number of nodes {v1, v2, ..., vn} (we will use the notions vertex and node interchange-

ably throughout this thesis). We de�ne con�guration as a function:

φ : V (G)→ N ∪ {0}

which assigns the number of chips for each vertex.

We put φ(vi) = ci chips on node vi for each i ∈ {1, 2, ..., n} and the sum
∑

i φ(vi) = N .

8

C
E

U
eT

D
C

ol
le

ct
io

n

That will be called an initial con�guration of the game. We say that a vertex is ready if

it is loaded with a pile of chips of size equal or bigger than the number of its neighbours.

The ready node gives a chip to each adjacent node. We call this procedure �ring. The

game can be either �nite or in�nite. It stops if each node in the graph has fewer chips

than its degree. We denote the degree of a vertex vi in usual notations d(vi). We represent

an initial con�guration as α0 = (φ(v1), φ(v2), ..., φ(vn)). Each subsequent con�guration

we denote αk which was obtained from αk−1 by �ring some overloaded node vj in vαk−1.

αk(i) =


αk−1(i), if vi not adjacent with vj;

αk−1(i) + 1, if vi adjacent with vj;

αk−1(i)− d(vi), if vi = vj.

We call the sequence of con�gurations (α0, α1, ...) as a �red sequence, it is accompanied

by a corresponding �red vertex sequence. By legal step, we mean �ring one overloaded

node at a time and distribute one chip to each of its neighbours. Sometimes �ring sequence

is also called legal game.

The next theorem is of a great importance in the theory of chip-�ring games. It was

introduced and proved by Björner, Lovász, Shor in their article [8].

Theorem 2.1 [8] Given a connected graph and initial distribution of chips, either every

legal game can be continued inde�nitely, or every legal game terminates after the same

number of moves with the same �nal con�guration. The number of times a given node is

�red is the same in every legal game.

In order to proove this theorem we need to de�ne the theory of a language L and some

properties of it which were introduced in [8].

The language L is a set of �red vertex sequences of all legal games. Consider a �nite

set V and a language L over V is a set of �nite words which are formed from the elements

of V . If we delete some letters of a word α in any order, we obtain a subword of this word.

For example, if we have a string abbdabbd then ada is a subword.

Also, we de�ne the length and the score of the word. The former we denote by |α|
and the latter as [α]. By the score of the word we mean a vector s. Each entry si of it

shows the number of occurrence of the letter i in the given word. The following three

properties of the languages were introduced in [8], these hold for the language of �red

vertex sequence:

• L is left-hereditary, if whenever word α belongs to L then all the beginnings of it

belongs to this language. If for example we have a word badddba in L then badd ∈ L.
So if our �red vertex sequence is legal then every pre�x subsequence of it is legal;

9

C
E

U
eT

D
C

ol
le

ct
io

n

• L is locally free if the next statement is true:

Let α ∈ L and x 6= y, two elements of the set V such that αx and αy belong to L.
Then αxy ∈ L. In terms of �red vertices this means if two nodes are ready then we

can �re the �rst one and after it we still can �re second one.

• L is permutable if the following holds:

Whenever α and β ∈ L, they have the same score and αx ∈ L then it is also true

βx ∈ L. In the language of �red vertex sequences it means that it does not matter

in which order we �re the nodes as long as every step is legal. What only matters

is the number of times each node has �red in the �red sequence. For example, let

α = abcbaca and β = bacbaca , if abcbacab ∈ L then bacbacab ∈ L

These three properties lead to the so-called "strong" exchange property, which is a strong

version of the exchange property in greedoids theory [8, 9].

Strong exchange property:

If two words α and β belong to L then there exists a subword α′ of the word α such that

a string βα′ ∈ L and the score of this new word is a point-wise maximum of α and β.

We call the word basic if it is not a pre�x of any other word in L. Two words α and β

are equivalent if for any string γ, αγ ∈ L if and only if βγ ∈ L. The equivalence classes

of such words are called �ats. A sub�at of the �at f is a �at g such that every word in g

can be extended to some word in f .

Lemma 2.2 Let L a left-hereditary, locally free and permutable language. Then the fol-

lowing hold:

1. Language L has the strong exchange property. And, conversely, if the language has

the strong exchange property then it is permutable and locally free;

2. If L has a basic word, then all basic words have the same length;

3. If α and β are basic words then they have the same scores [α] = [β];

4. If the language is �nite and α, β ∈ L, then [α] ≤ [β] if and only if the �at of α is a

sub�at of the �at β. And hence the same score [α] = [β] i� α ∼ β.

Proof.

1. ⇒ Here we use the notion of l1-norm. |x|1 =
∑n

r=1 |xr|, where x = (x1, x2, ..., xr).

The proof will be based on induction by |[α] ∨ [β]|1. Let assume that the strong

exchange property for |[a]|1 < |[α] ∨ [β]|1 is satis�ed (where ∨ indicates point-wise

maximum).

10

C
E

U
eT

D
C

ol
le

ct
io

n

Let pick α′ such that it consists of those letters i ∈ L which have the score [α]i > [β]i.

The number of occurrence of these letters in α′ equal [α]i − [β]i.

The fact that [βα′] = [α] ∨ [β] is straightforward. If for some letter x we have

[α]x < [β]x, we don't include it in [α′], so for this letter in the score vector we have

an entry from the [β] vector. If [α]x > [β]x then α′ includes precisely [α]x − [β]x

number of times letter x. Adding up [α]x− [β]x + [β]x we get that the score for x in

βα′ equal [α]x.

It will be shown that [βα′] ∈ L.

We pick α” to be the longest beginning of the word α′ such that βα′′ ∈ L. We prove

by contradiction assuming that α′′ 6= α′. Let x be the �rst letter after α′′. It means

that the number of it occurrence in α is strictly bigger than in [βα′′]. So we take

pre�x α1 of the word α such the next letter after it in α is x. Now the total number

of x in α1 is the same as in the βα′′.

The score vector of α1 is point-wise less or equal the score vector of βα′′. Assume

that it is not true and we have a letter y in α1 such that [α1]y > [βα′′]y. It means that

letter y occur in α′ some number of times before marked x. As we have matching

of letters between α′ and α′′ till the end of the last one then α” have the same score

for y. So the number of y in βα′′ is at least the same quantity as it in α1. We have

contradiction, so no such y exist in α1.

As [α1] ≤ [βα′′], we have that the point-wise maximum of this two vectors equal to

vector [βα′′]. As the l1 norm of [βα′′] is less than l1 norm of [βα′] then by induction

it is applicable strong exchange property. We �nd subword γ of βα′′ such that

α′β belongs to our language L and the score of it equal the score of βα′′. There

is no x inside γ, because [α1]x = [βα′′]x. As α1x and α1γ belong to L then by

local free property α1γx ∈ L. As the score vectors of α1γ and βα” are equal and

α1γx ∈ L then by permutable property βα”γ also belongs to the language. But this

is contradiction to our choice of α”.

⇐ Consider a language L with strong exchange property.

Let α = γy and β = γx, where γ is some word in L and x 6= y, such that both of

them belong to L. As strong exchange property is applicable in this language then

there exists subword α′ of α such that βα′ ∈ L. We now �nd point-wise maximum

of the α, β words. β has more letters x than α and α has more letters y than β. So

we can conclude that [βα′]x = [β]x and [βα′]y = [α]y. The score for other letters are

the same in the both words. We put in α′ those letters z from α which are preceded

by at least [β]z occurrences of z.That is true only for last letter y in α. Then in α′

we can only have one letter y. So we showed that if γx and γy, x 6= y, belong to L
then γxy ∈ L. That is locally free property.

11

C
E

U
eT

D
C

ol
le

ct
io

n

For the permutable property, let assume that [αx] ∈ L, β ∈ L, [α] = [β]. By

contradiction, let βx /∈ L. Applying the strong exchange property for β, we can

�nd α′ such that the score of the word [βα′] = [α] ∨ [β]. We have α′ = x, as only

for x we have [αx]x > [β]x (for other letters the score of both words are equal) and

[αx]x − [β]x = 1. This imply that βx = βα′ ∈ L. We get a contradiction with our

assumption, that is why if [αx] ∈ L, β ∈ L, [α] = [β] then βx is also in L. So the

permutable property is satis�ed.

2. We prove 2, 3 in one item. Let assume that we have two basic words α and β with

di�erent length, |α| < |β|. We apply strong exchange property: we �nd α′ ∈ L such

that βα′ ∈ L. α′ is not empty string as α is not a subword of β, as basic word. But

then β is a proper pre�x of βα′. So basic words should have the same length.

The same if we have basic words of the same length, but with di�erent scores. Then

again α′ is not an empty string. And with the same logic as above, β can't be a

basic word. So [α] = [β].

3. -

4. Let us assume that [α] ≤ [β]. Using strong exchange property we can �nd a subword

γ of β such that the score of αγ ∈ L equal to the score of β. By permutable property

whenever αγx belongs to L then βx ∈ L. Which means by the de�nition that α

and β are equivalent, so they belong to the same equivalence class. This is shows

that any word in a �at de�ned by α, we call it f , can be extended to a word in a

�at de�ned by β, we name it g. That is why f is a sub�at of g.

In other way, let α de�nes sub�at f of the �at g which is de�ned by β. Let αγ be an

extension of α in the equivalence class g. Let αγδ be an extension of αγ to a basic

word (as language is �nite, there exist basic words). Then βδ ∈ α by the de�nition

of equivalent words. It has the same length as αγδ, so it is also a basic word. But

this means that [αγδ] = [βδ] and [α] ≤ [β].

�

Proposition 2.3 .

1. The �red vertex sequences of legal games constitute a language which is left-hereditary

permutable and locally free;

2. If the language is �nite then two legal games lead to the same con�guration i� they

have the same score vector.

12

C
E

U
eT

D
C

ol
le

ct
io

n

Proof.

1. It is obvious that the language is left-hereditary, every �red vertex subsequence is a

�red vertex sequence. For the locally free property if we have two overloaded nodes

after playing game α then after �ring the �rst one, let it be x, the second one y will

have the same, or bigger by one, number of chips. So it still has to �re. That means

αxy a legal game and it belongs to the language. For the permutable property we

have if two legal games α, β have the same score then they are equivalent. So for

the �red vertex sequence γ if αγ is a legal game then βγ is also a legal game.

2. ⇒ Two legal games α, β lead to the same con�guration. We continue the game α

with a game γ, if it is a legal game then so is a game βγ. Which means this games

are equivalent and by the Lemma 2.2

⇐ When the games have the same score then they lead to the same con�guration

as it was proved in �rst item.

�

Proof of theorem 2.1

Proof. If the game is �nite then it has basic words which are of the same length and

the same score, and they lead to the same �nal con�guration. �

2.2 The �nitness of the game

We are interested what can we say about the duration of the game. Can we reach the

con�guration where is no node which is ready to �re? Firstly, we familiarize ourselves

with the theory of the �niteness of the chip-�ring game depending on number of chips

loaded on a graph at the beginning of the game. Here we are consider simple connected

graph G with n vertices and m edges. The game will be played with N chips.

The following lemmas and theorem, as well as their proofs, were introduced by Björner

et al [8] and Tardos [10].

Lemma 2.4 In the in�nite chip-�ring game every vertex �res in�nitely often.

Proof. As the game is in�nite then there is a vertex v which �res in�nitely often.

Consider the neighbour u of it. Whenever v is �ring, vertex u receives a chip. In our

game we have only N chips on the nodes of a graph which are redistributed between the

nodes at each step. So at some moment the vertex u should �re as it can't accumulate

more than N chips and this will happen in�nitely often. As the graph is connected then

every vertex will �re in�nitely often. �

Lemma 2.5 The chip-�ring game is �nite if it has a vertex which is not �red at all.

13

C
E

U
eT

D
C

ol
le

ct
io

n

Proof. [10] It will be shown that if all nodes have �red during some period of the game

then this game is played inde�nitely. We consider a vertex v which has been inactive as

long as possible. Then each neighbour of it have �red and this node have received at least

as many chips as its degree. Then this node can �re again. �

Theorem 2.6 [8]

1. If N < m then the game is �nite;

2. If m ≤ N ≤ 2 ·m − n then there exists an initial con�guration guaranteeing �nite

termination and also one guaranteeing in�nite game;

3. If N > 2 ·m− n then the game is in�nite.

14

C
E

U
eT

D
C

ol
le

ct
io

n

Chapter 3

Chip-�ring game on complete and

complete bipartite graphs

3.1 The chip-�ring game on complete graph

We consider the game on complete graph Kn. If we put on the nodes of a graph less

than

(
n

2

)
chips, the game will be �nite by theorem 2.6. And of cause it will be in�nite

if we have more than 2 ·

(
n

2

)
− n = n2 − 2 · n.

We call an initial con�guration �nite if it leads to termination of the game. And we

call it in�nite in the opposite case.

Theorem 3.1 [11] Let α = (0, 1, 2, ..., n−1) be a con�guration on Kn. If a con�guration

β can reach an equivalent con�guration α′ of α by �ring a sequence of vertices, then β is

an equivalent con�guration of α.

Proof. [11] Let us assume that β reaches con�guration α′ after �ring the sequence of

con�gurations (β, α0, α1, ..., αk, α
′). As graph vertex and edge symmetric we assume that

we reach con�guration α′ by �ring vertex v1. Each node received one chip after �ring

v1, so ci > 0, i = 2, .., n. As α′ equivalent to α we must have one node with 0 chips.

This means on vertex v1 there is no chips. In other words α′(1) = 0 and αk(1) = n − 1.

For other vertices we have αk(i) = α′(i) − 1, i = 2, ..., n. This shows that αk and α are

equivalent. Using the same logic for each con�guration in the sequence we obtain that all

β, α0, α1, ..., αk−1 are equivalent to α. This �nishes the proof. �

Next criteria is applicable to claim if initial con�guration is infinite for case when

N =

(
n

2

)

15

C
E

U
eT

D
C

ol
le

ct
io

n

Theorem 3.2 [11] A chip-�ring game on Kn with initial con�guration α and N =

(
n

2

)
is in�nite i� α ∼= (0, 1, 2, ..., n− 1)

Proof. ⇐ Let us numerate nodes as v1, v2, ..., vn. Each node has the number of chips

accordingly to its index in (0, 1, 2, ..., n− 1). The node vn with n− 1 chips �res as degree

of every node in G equals n− 1. Each node, except vn, receives 1 chip and the �red node

�nishes with 0 chips. Then vn−1 obtained 1 chip and now it has n − 1 chips, so it �res.

We continue this process, and, after �ring v2, node v1 storage n− 1 chips, as n− 1 nodes

�red before. This implies that each node has �red. By the lemma 2.5, the con�guration

α is in�nite.

⇒ [11] Consider con�guration α0 = (c1, c2, ..., cn) be an in�nite on a complete graph

with n nodes, such the sum of all chips is equal n·(n−1)
2

. We order the number of chips from

the smallest one to the biggest one, we renumbering indexes in such way that the node v1

will receive the smallest number of chips and the node vn the biggest, c1 ≤ c2 ≤ ...cn(we

can do so, as graph is symmetric). As α0 is an in�nite con�guration then vertex vn has

more than or equal to n− 1 number of chips.

The game is played using two rules:

1. We �rstly �re the node with maximum number of chips;

2. In case of having several nodes with maximum number of chips, pick a node with

maximum index.

It will be proven that c1 = 0.

By contradiction, let us assume that c1 > 0. As the con�guration α0 is in�nite then

we have �red sequence (α0, α1, ..., αk, ...) with �red vertex sequence (vi1 , vi2 , ..., vik , ...).

Let vik = v1 and vij 6= v1, j < k. Then, as amount of chips on this vertex is the

smallest one, k ≥ n, as each vertex has �red at least once before vertex v1 �res. Now

we make a little change in the game, we take o� one chip from vertex v1. The new

con�guration will be denoted as α′0. We play the game �ring along the sequence of

vertices vi1 , vi2 , ..., vik−1
. The correspondent �red sequence of con�gurations is denoted as

α′0, α
′
1, ..., α

′
k−1. As k − 1 ≥ n − 1 then after �ring a vertex in con�guration αk−2 in a

following con�guration αk−1 vertex v1 has at least n − 1 chips. So it can be �red. This

shows that every vertex is �red and con�guration α0 is in�nite by Lemma 2.5.

But we have that sum of the chips equals

(
n

2

)
− 1. By the Theorem 2.6, α′0 is �nite

con�guration. But this is a contradiction. So c1 should be 0.

As we play using two rules of maximum number of chips and maximum subscript

then vi1 = vn. After �ring a node vn in con�guration α0 each of the other vertices

receives a chip. But we know that acquired con�guration also in�nite that is why it

16

C
E

U
eT

D
C

ol
le

ct
io

n

should have one vertex with 0 chips as it was shown above. This implies that α1(n) =

cn = 0 and then α0(n) = cn = n − 1. By the same logic we have that vi2 = vn−1 and

α2(n − 1) = 0 & α0(n − 1) = n − 1. Continue till the con�guration αn−1 where we get

that αn−1(2) = 0 & α0(2) = 1. Now we can summarize it as α0 = (0, 1, 2, ...n) �

Next Lemma shows that we can reach con�guration where we have a bound on a size

of a chips pile on a node in the case

(
n

2

)
≤ N ≤ 2 ·

(
n

2

)
− n. This idea will be used

in the criteria for �niteness of the game on complete graphs.

Lemma 3.3 [11] Let α be an initial con�guration of Kn with N chips,

(
n

2

)
≤ N ≤

2 ·

(
n

2

)
− n. Then by �ring some sequence of vertices starting at α, we can reach a

con�guration β such that β(i) ≤ 2 · n− 3 for each vertex vi ∈ V (Kn).

Proof. [11] The idea of proof is that we consider another con�guration α′ such that on

each node we have k chips if in α it has either 2 · k or 2 · k + 1 chips. So if it two times

less than in initial con�guration then upper bound for the quantity of chips in the game

is

(
n

2

)
− n

2
. By the 2.6 the game with α′ con�guration is �nite. Consider a sequence

of �ring nodes v′1, v
′
2, ..., v

′
p in α

′ such that after �ring all of them the game terminates. If

we return to the initial game then let us �re the same sequence of nodes, but doubling

the number of �rings of each, meaning v′1, v
′
1, v
′
2, v
′
2, ..., v

′
p, v
′
p. Let the corresponding �re

sequence be (α, ..., β). Then the last con�guration is the one we have searched for. In the

game, with α′ as starting arrangement, in the end each node has φ(vi) ≤ n−2, i = 1, ..., n

chips then going backward, doubling the number of chips or doubling and adding 1, in β

we get φ(vi) ≤ 2 · n− 4 or φ(vi) ≤ 2 · n− 3. This �nishes the proof. �

We consider now that amount of chips belongs to (n·(n−1)
2

, n2 − 2 · n) and we are in

con�guration where nodes can �re no more than twice. Order φ(vi), i = 1, ..., n in the

descending order and renumbering indexes from 1 to n. We separate a sequence of vertices

v1, v2, ..., vn in blocks by the following rule. When we have that φ(vi)− φ(vi+1) ≥ 2 then

we make a separation point and vi becomes the end of one block and vi+1 becomes the

beginning of another. Let assume that we have k blocks. We denote the beginning node of

each block as v′i, i = 1, ..., k. Denote the amount of chips on these nodes by c∗i , i = 1, ..., k.

The number of vertices in each block i will be represented by the si.

Property 3.1 [11] If we have a vertex that can �re at least three times, then the game

is in�nite.

17

C
E

U
eT

D
C

ol
le

ct
io

n

The next theorem shows criteria by which we can determine the �niteness of the game

without actually playing it. We take in consideration simple, complete graphs with initial

con�guration α0 = (φ(v1), φ(v2), ..., φ(vn)), and amount of chips in range

(
n

2

)
≤ N ≤

2 ·

(
n

2

)
− n. We arrange chips in the descending order φ(v1) ≥ φ(v2) ≥ ... ≥ φ(vn) and

α0 is separated in k blocks by the above procedure. The amount of chips on the vertex is

bounded by amount of 2 ·n− 3 chips. The number of vertices in each block is si, i = 1..k

and amount of chips on �rst vertex of each block is c∗i , i = 1, ..., k.

Theorem 3.4 [11] A chip-�ring game with initial con�guration α0 is �nite if and only if

there exists two integers i, j ∈ {1, 2, ..., k}. j ≤ i ≤ k such that c∗i +
i−1∑
b=1

sb+

j−1∑
c=1

sc < n−1,

c∗j +
i−1∑
b=1

sb +

j−1∑
c=1

sc − n < n− 1

Proof. ⇒ We assume that the game is �nite. We know that any node can't �re

more than twice with the written above conditions. We consider two sets with blocks

of nodes. First set, which we denote H1, consists of such blocks whose vertices have

�red al least once. Second set H2 includes blocks with nodes which have �red twice.

H1 = {b1, b2, ..., bi−1}, H2 = {b1, b2, ..., bj−1}. It is obvious that j ≤ i as if nodes �red

twice then they had a �rst �ring, conversely is not true. As the game is �nite then there

is a vertex which didn't �re at all by Lemma 2.5 and in our case at least the last block

shouldn't �re. Then starting from the block bi there is no �ring at all and there is no more

then one �ring starting from the block bj. It could be written as c∗i +
i−1∑
b=1

sb+

j−1∑
c=1

sc < n−1

and c∗j +
i−1∑
b=1

sb +

j−1∑
c=1

sc − n < n− 1

⇐ Let i, j ∈ {1, 2, ..., k} be two minimal integers such that the next inequalities are

satis�ed j ≤ i ≤ k, c∗i +
i−1∑
b=1

sb +

j−1∑
c=1

sc < n − 1, c∗j +
i−1∑
b=1

sb +

j−1∑
c=1

sc − n < n − 1. These

inequalities show that the vertex v′i can't �re at all and v′j can't �re twice. If j = 1, this

means no node has �red twice. In this case, as k can't be more than n, we have less than

n �rings and by Lemma 2.5 the game with initial con�guration α0 is �nite. In another

case, when j 6= 1, we have that if inequality of not �ring at all is satis�ed for i then it is

also satis�ed for the last block k.

By the initial ordering c∗1 ≤ c∗k and by the conditions of theorem c∗1 ≤ c∗k+2·n−3. From

here we derive that 0 ≤ c∗1−c∗k ≤ 2·n−3. Substituting −c∗k by −n+1+
i−1∑
b=1

sb+

j−1∑
c=1

sc in the

18

C
E

U
eT

D
C

ol
le

ct
io

n

last inequality we get c∗1+
i−1∑
b=1

sb+

j−1∑
c=1

sc−n+1 ≤ 2·n−3 or c∗1+
i−1∑
b=1

sb+

j−1∑
c=1

sc−2·n ≤ 2n−1.

The last one shows that node c∗i can't �re more than twice. So, no one of the vertices

v′1, v
′
i, v
′
j is �ring at this moment. This shows that α0 is �nite. �

3.1.1 Computational time of the game

In this section we compare computational time for playing the game and the time for

checking inequalities in order to determine if the game terminates.

The code of the program given in the Appendix A. Firstly, let us describe how the

game is played. When the program starts it asks to enter the number of vertices n. The

input should be an integer. Next, it is asked if you would like to see visualisation of the

process. But here we have restrictions, the game can be shown only for the graphs with

no more than 40 nodes. The number of chips which is put on the nodes in the graph

can be generated by a program or it can also be set manually. It is also possible either

randomly set a con�guration of chips on the nodes or to do it manually.

In the game we �nd nodes with the number of chips equal or more than their degrees.

We put them in the list named by "overload nodes". It takes O(n) time to �nish this

procedure. After that we are going through the newly formed list and we are making

�rings. After �ring the node we delete it from the list. If further we still have �ring nodes

we add them to the list and repeat this procedure. We �re a node while it possible at

once. But if we �red n or more times the nodes the program stops and we are saying

that the game is in�nite. If we �red less than n times and the list of overloaded nodes is

empty, then we print the game is �nite. It also takes O(n) time to compute this part of

a program. We can conclude that overall it takes O(n2) time to play the game.

We played the game for the graph with 300 and 600 nodes Figure 3.1, 3.3. For each

type of a graph we went through di�erent number of chips in the game starting with a

lower bound

(
n

2

)
and ending with an upper bound 2 ·

(
n

2

)
− n. For each amount of

chips we made 200 trials and the peaks on plots show their averages. Also we included

error bars.

The plot shows that when the number of chips increasing then the time for deciding

if the game �nite or not also increasing gradually for checking criteria. If we look at the

graph for the playing the game on the plots 3.1, 3.3 we see that it is strictly increasing

to some point and then it starts to decrease. The reason of it is the following. When we

encounter an in�nite game with the small amount of chips in the game, we have more

�rings of nodes one in a time, but with increased number of chips we have more nodes

which can �re twice and more in a time. As in our algorithm we �re the node at once as

19

C
E

U
eT

D
C

ol
le

ct
io

n

many times as possible then we use less time to �gure out that we have n or more �rings,

so the game is in�nite.

Figure 3.1: Time for playing game and checking criteria with n = 300

Now, we analyse the computational time of checking criteria for making conclusion

of the �niteness of the game Figure 3.1, 3.3. Firstly, we are �ring nodes till we bound

amount of chips on nodes by 2 · n− 3. The while loop runs less than n
2
times and inside

this loop we are going through each node and we add a chip on each node. Partition

nodes into the blocks takes also O(n) time. In the for loop we are going through the list

which contains the number of vertices in each block. This for loop includes another nested

for loop. The former loop looks for the number of block which doesn't �re at all and the

latter looks for the number of block which does not �re twice. This takes less than n2

steps. So, overall to �nd these two numbers which satisfy the inequalities or show that

there no such it takes O(n2) steps.

So, the running time of two methods are virtually equivalent and the way how we

implement them into the program code will give di�erence in computing time. We can

see this in the simulation of the game on complete graph with n = 600 nodes. Here we

can see that the time performance for some number of chips is better for the �rst method

and for another number of chips it is better for the second method 3.3, 3.5.

20

C
E

U
eT

D
C

ol
le

ct
io

n

Figure 3.2: Bar chart for ratio of �nite and in�nite games for n = 300

21

C
E

U
eT

D
C

ol
le

ct
io

n

Figure 3.3: Time for playing game and checking criteria with n = 600

Figure 3.4: Bar chart for ratio of �nite and in�nite games for n = 600

22

C
E

U
eT

D
C

ol
le

ct
io

n

Figure 3.5: Time for playing game and checking criteria with n = 600

3.2 Chip-�ring game on complete bipartite graph

Complete bipartite graph is a graph whose vertices can be separate in two disjoint

sets, each node of the one set is connected to every node in the other set, but not inside

its own set. The usual notation for it is Knm

Figure 3.6: Complete bipartite graph Km,n, m = 3, n = 2

We consider the chip-�ring game on this graph. The number of chips lays in the

interval m · n ≤ N ≤ 2 ·mn− (m+ n).

23

C
E

U
eT

D
C

ol
le

ct
io

n

Lemma 3.5 Let G be a complete bipartite graph with two sets of nodes A and B. Let the

size of A be m and the size of B be n. If either the set A has �red m and more times or

the set B has �red n and more times then the game is in�nite.

Proof. Let assume that nodes in the set A has �redm times. This means that each node

has received at least m chips. Then each node from the set B can �re. They distribute n

chips to each node in the set A. Then all vertices in the set A are overloaded and can be

�red. By the Lemma 2.5 the game is in�nite. �

Theorem 3.6 Let G be a complete bipartite graph with two node sets A and B of size m

and n respectively. Let α be an initial con�guration of chips on the vertices of the graph

G. Then the game with this con�guration is �nite i� we can �nd such i, j ∈ N∪ {0} that
after adding i (i < n) chips to each node of the set A and j, (j < m) chips to each node

of the set B we get exactly j �rings in the set A and exactly i �rings in the set B.

Proof. ⇒ Let assume there exist such i, j that after adding i chips to each node in the

set A and j chips to each node of the set B, we have exactly j �rings from the set A and

exactly i �rings from the set B.

If i ≥ m or j ≥ n then we have m or more �rings from the set B and n or more �rings

from the set A. And by the Lemma 3.5, the game is in�nite.

Let us assume the case when i < m and j < n. In the set B we have less than m

�rings and in the set A we have less than n �rings. So, by the Lemma 3.5 the game is

�nite.

⇐ Let us assume that the chip-�ring game with a given initial con�guration is �nite.

Then by the Lemma 3.5 there are a node in A and a node in B which didn't �re. This

means that the set A has to have no more than n− 1 �rings and the set B has to have no

more than m − 1 �rings. Let assume that during the game the set A has got i chips for

each of its nodes and the set B has �red l times. Suppose that i 6= l. It follows that either

some amount of chips has been lost during the game or it has appeared from outside the

graph. As we play the game where the number of chips in the graph is �xed and it doesn't

change during the game. So, from here we derive that i = l for the set A. By the same

logic we prove that j = k for the set B, where k is how many �rings was from the set A.

This concludes the proof of the theorem. �

Lemma 3.7 Let α be an initial con�guration of Kmn with N chips in the interval mn ≤
N ≤ 2 · mn − (m + n). Let denote the one vertex set as A and the other vertex set as

B with the sizes m and n respectively. After �ring some sequence of nodes starting at

con�guration α, we can reach a con�guration β such that ci ≤ 2 · n − 1 for the nodes in

the set A and ci ≤ 2 ·m− 1 for the nodes in the set B of the graph Knm.

24

C
E

U
eT

D
C

ol
le

ct
io

n

Proof. Consider a con�guration α′ on Knm. Here ci = k for the vertex vi in the set A

if in the con�guration α we have ci = 2 · k or ci = 2 · k + 1, k ∈ N. Consider the same

for the vertex vj in the set B. The sum of chips is less than mn. By the Theorem 2.6,

the game is �nite. Let W be the �red vertex sequence with which the game terminates

having α as initial con�guration. We double the number of �rings in the W sequence and

denote it as U. Then, after �ring the last vertex in U, we obtain a desired con�guration

β. �

Theorem 3.8 Let G be a complete bipartite graph with two sets of nodes A and B of the

sizes m and n respectively. Let the con�guration α be such that every node of the set A

is less than 2 · n− 1 and every node of the set B is less than 2 ·m− 1. The game with an

initial con�guration α is �nite if and only if there exist numbers i, j, k, l ∈ N∪ {0} which
satisfy the following inequalities:

A[l + 1] + i+ j < 2 · n

A[k + 1] + i+ j < n

B[j + 1] + l + k < 2 ·m

B[i+ 1] + l + k < m

(3.1)

Proof. ⇐ Let us assume that the game is �nite. We de�ne two sets A1 and A2 as follows:

the set A1 consists of nodes in the vertex set A that �re at least once and the set A2 consists

of those nodes which �re twice. Equivalently, we de�ne two sets B1 and B2 for the vertex

set B. We denote vertices which belong to the set A as v1, v2, ..., vm and the vertices of the

set B as vm+1, vm+2, ...vn. We consider that the chips on the vertices of the set A and B

are ordered in the descending order. Assume that A1 = {v1, ..., vk} and A2 = {v1, ..., vl}.
For the set B we assume that B1 = {vm+1, ...vm+i} and B2 = {vm+1, ...vm+j. It is obvious

that l ≤ k and j ≤ i. As the game is �nite then by the Lemma 3.5 k < m and i < n.

The termination of the game means that the vertex vk+1 does not �re at all and the

vertex vl+1 can not �re twice. The same for the nodes of the set B, vi+1 and vj+1. We

can represent these reasoning by the inequalities (3.1). ⇒ Now, let assume that we have

minimal integers i, j, k, l such that j ≤ i ≤ n and l ≤ k ≤ m and the inequalities

3.1 are true. Since A[k + 1] + i + j < n then A[m + 1] + i + j < n. By the above

consideration and the bound condition of number of chips on the nodes, we have that

A[m] ≤ A[1] ≤ 2 · n− 1 +A[m] or equivalently 0 ≤ A[1]−A[m] ≤ 2 · n− 1. Substituting

−A[m] with the not greater value i+ j− n, we get A[1] + i+ j− n ≤ 2 · n− 1. Putting it

di�erently A[1] + i + j − 2 · n ≤ n− 1. This means that the node v1 is not �ring at this

moment. Also nodes vk and vl are not �ring at this moment. By the same logic it can be

shown that vm+1 is not �ring at this moment.

Hence, no vertex can be �red and the game terminates. �

25

C
E

U
eT

D
C

ol
le

ct
io

n

We will refer to the Theorem 3.6 as the �rst criteria of �niteness and to the Theorem

3.8 as the second criteria.

We made simulations and checked criteria for the bipartite graph with m = 10 and

n = 20. We put on the graph an amount of chips which belongs to the interval m · n ≤
N ≤ 2 ·mn− (m+n). We checked 20 di�erent values of the number of chips starting from

the beginning of the interval and �nishing in the middle of interval. We didn't include

here the second half of the interval. The reason of this is that probability of appearance

of �nite game is too small. That is why using 200 trials (we tried also more trials, 1000

and greater, but there is no much di�erence in it) for each value of the number of chips

couldn't show the �nite case in the second half of the interval. The Figure 3.7 shows

that with the grows of the number of chips the running times of all three methods almost

equal. In these trials the most steady and quick was the �rst criteria. If the number

of chips is increased then there is no big di�erence between these three methods for the

graph of given above size.

Figure 3.7: Computational time for playing the game and checking two criteria m =
10, n = 20

When we increase the number of nodes in a bipartite graph (we simulated for the

m = 40 and n = 60, see Figure 3.9), the �rst criteria and playing a game have almost the

same time tender for making a decision if the game �nite or not. We see at the Figure 3.9

that computing time of the second criteria is substantially di�erent from other methods.

The graph of it grows to some point and then it slowly decreases.

26

C
E

U
eT

D
C

ol
le

ct
io

n

Figure 3.8: Bar chart with ratio of number of �nite and in�nite games m = 10, n = 20

This method works more slowly compare to others as it involves four loops in its

algorithm (see def second_ criteria in Appendix B). Firstly, we need actually to play the

game till we obtain a con�guration in which all nodes have bounded number of chips on

each of them. More precisely, for the set A we should have no more than 2 · n − 1 chips

and for the set B we should have no more than 2 ·m− 1 chips. And then we go through

four loops. One loop has the length no more than the half of the size of the set A and

another loop - no more than the half of the set B. Two others loops can have length up to

the size of a set of a nodes. So, the running time of the algorithm is roughly O(m2 · n2).

We observe a growth of the line till some moment for the second criteria and than the

line start to decrease. The reason of it is the following. With the growth of the number

of chips in the game the number of nodes which can �re at least once at the beginning is

increased. So the loop goes through more narrow interval of integers. This explains only

downward characteristic of the plot. Why do we have an increasing part at the graph?

The answer for it is that we encounter more in�nite games while the range of integers

which the loops go through is still wide. Put it di�erently, we do not have many nodes

which �re at least once from the beginning.

27

C
E

U
eT

D
C

ol
le

ct
io

n

Figure 3.9: Computational time for playing the game and checking two criteria m =
40, n = 60

Figure 3.10: Bar chart with ratio of number of �nite and in�nite games m = 40, n = 60

28

C
E

U
eT

D
C

ol
le

ct
io

n

Further investigation showed that with a growth of the size of the vertex set the playing

of the game outperform the �rst criteria.

Figure 3.11: Computational time for playing the game and checking �rst criteria m =
80, n = 100

29

C
E

U
eT

D
C

ol
le

ct
io

n

Conclusion

In this thesis we studied the chip-�ring game. We have shown two approaches of de�ning

this game. The main focus was made on playing this game on complete and complete

bipartite graphs. We can summarize key ideas as the following:

1. We showed that for the complete graph in some cases it is computationally more

e�cient to use criterion 3.4 and in some cases it is better just to play the game;

2. We proposed two criteria for checking the �niteness of the game on the complete

bipartite graph with a given con�guration;

3. We gave necessary condition for the game to be �nite on complete bipartite graph;

4. We came to conclusion that with a the size of vertex set greater than around 150 in

the complete bipartite graph to play the game shows the best time performance;

5. We created two program codes for complete graph and complete bipartite graph

which can help not only get the answer if the game �nite or not, but also they help

to visualise the process if the number of nodes is small.

30

C
E

U
eT

D
C

ol
le

ct
io

n

Bibliography

[1] P. Bak, C. Tang, and K. Wiesenfeld. Self-organized criticality: An explanation of
1/f noise. Phys. Rev. Lett., 59:381, 1987.

[2] Vladyslav A. Golyk. Self-organized criticality.

[3] Raphaël Cerf and Matthias Gorny. A curie�weiss model of self-organized criticality.
Ann. Probab, 44(1):444�478, 2016.

[4] C. Correia Ramos, Nuno Martins, Ricardo Severino and J. Sousa Ramos. A
curie�weiss model of self-organized criticality. 2006.

[5] D. Dhar. Self-organized critical state of sandpile automaton models. Phys. Rev. Lett.,
1990.

[6] D. Dhar. Theoretical studies of self-organized criticality. Physica A: Statistical Me-
chanics and its Applications, 2006.

[7] R. Anderson, L. Lovasz, P. Shor, J. Spencer, E. Tardos, S. Winogra. Disks, balls,
and walls: analysis of a combinatorial game, amer. mat. Amer. Math. Monthly,
96(6):481�493, 1989.

[8] A. Björner, L. Lovász, P. W. Shor. Chip-�ring games on graphs. EUROPEAN J.
COMBIN, 12:283�291, 1991.

[9] B. Korte and L. Lovász. Structural properties of greedoids. Combinatorica 3, pages
359 � 374, 1983.

[10] G. Tardos. Polynomial bound for a chip �ring game on graphs. SIAM J. Discrete
Math., 1(3):397�398, 1988.

[11] Zhuang, W., Yang, W., Zhang, L. Properties of chip-�ring games on complete graphs.
Bulletin of the Malaysian Mathematical Sciences Society, 38(4):1463�1469, 2015.

31

C
E

U
eT

D
C

ol
le

ct
io

n

Appendix A

Python code for chip-�ring game on

complete graph

import networkx as nx

import matp lo t l i b . pyplot as p l t

import random

import operator as op

from f un c t o o l s import reduce

import time

import sys

def nCr (n , r) : #func t i on f o r computing combination

r = min(r , n−r)
i f r == 0 : return 1

numer = reduce (op . mul , range (n , n−r , −1))
denom = reduce (op . mul , range (1 , r +1))

return numer//denom

def set_up_of_chips (N_chips ,G, n) :

#here we randomly as s i gn number o f ch i p s to

#each v e r t e x o f the graph

r = [random . random () for i in range (n)]

s = sum(r)

32

C
E

U
eT

D
C

ol
le

ct
io

n

r = [i / s for i in r]

r = [round(i ∗N_chips) for i in r]

i f sum(r)>N_chips :

d i f f e r e n c e = sum(r) − N_chips

for i in range (len (r)) :

i f r [i]> d i f f e r e n c e :

r [i]−=d i f f e r e n c e

break

e l i f sum(r)<N_chips :

d i f f e r e n c e = N_chips − sum(r)

r [−1]+= d i f f e r e n c e

for i in range (n) :

G. node [i] [' ch ip s '] = r [i]

return G

"""

Here we so r t v e r t i c e s by the number o f ch ip s in descending order .

We are s epa ra t i n g v e r t i c e s in the b l o c k s .

The d i f f e r e n c e number o f ch ip s between two ne ighbour ing nodes i s

no more than 1 ch ip .

D i f f e r ence in ch ip s between the l a s t v e r t e x o f one b l o c k

and the f i r s t v e r t e x o f another b l o c k i s two or more ch ip s .

We are forming a l i s t wi th the number o f ch ip s on the f i r s t v e r t e x

o f each b l o c k and a l i s t wi th number o f v e r t i c e s in each b l o c k .

"""

def pa r t i t i o n (ch ips) :

so r ted_conf ig = sorted (ch ips . i tems () ,

key=lambda x : x [1] , r e v e r s e=True)

la rge_ch ips = [sor ted_conf ig [0] [1]]

number_of_vert = []

a = 0

for i in range (n−1):

i f so r ted_conf ig [i] [1] − so r ted_conf ig [i +1][1] >=2:

la rge_ch ips . append (sor ted_conf ig [i +1] [1])

b = i+1

number_of_vert . append (b−a)
a = i+1

number_of_vert . append (n−a)
return number_of_vert , large_chips , so r ted_con f ig

33

C
E

U
eT

D
C

ol
le

ct
io

n

#Here we are t r y i n g to determine i f game i s f i n i t e by

#the c r i t e r i a f o r complete graphs .

def ch e ck_ inequa l i t i e s (chips , n) :

while not a l l (x<=2∗n−3 for x in ch ips . va lue s ()) :

for i in ch ips . i tems () :

i f i [1] >2∗n−3:
ch ips [i [0]]−=n−1
break

for j in ch ips . i tems () :

i f j [0] != i [0] :

ch ips [j [0]] +=1

temp = pa r t i t i o n (ch ips)

number_of_vert = temp [0]

large_chips_block = temp [1]

for j in range (len (number_of_vert)) :

for i in range (j , len (number_of_vert)) :

a = sum(number_of_vert [: i])

b = sum(number_of_vert [: j])

i f (large_chips_block [i] + a + b < n−1)
and (large_chips_block [j] + a + b − n < n−1):

return True , i , j , ch ip s

return False

"""

Here we are c o l o r i n g nodes in the graph a f t e r f i r i n g or in the case

o f the i n i t i a l c on f i g u r a t i on . I f the number o f ch ip s on the a node

i s b i g g e r than i t s degree than we co l o r a node in b l u e .

We co l o r a node wi th t h i s cond i t i on and wi th maximal number o f ch i p s

in red . This node i s going to f i r e at t h i s moment . Other nodes we

co l o r in green .

"""

def node_color_1 (G, node) :

34

C
E

U
eT

D
C

ol
le

ct
io

n

for i in G. nodes () :

i f (G. node [i] [' ch ip s '] >= G. degree (i)) and (i !=node) :

G. node [i] [' c o l o r '] = '#87c e f a '

e l i f (G. node [i] [' ch ip s '] >= G. degree (i)) and (i == node) :

G. node [i] [' c o l o r '] = ' r '

else :

G. node [i] [' c o l o r '] = ' g '

return G

"""

Here we are c o l o r i n g the ne ighbours o f a f i r i n g node in ye l l ow .

By t h i s we emphasize nodes which r e c e i v e s a ch ip

a f t e r the f i r i n g a node .

"""

def node_color_2 (G, node) :

for i in G. nodes () :

i f i in G. ne ighbors (node) :

G. node [i] [' c o l o r '] = ' y '

return G

"""

Here we are p l a y ing chip−f i r i n g game as f o l l ow in g , we are f i r i n g

a g iven node . We have a l i s t which conta ins in format ion o f

the number o f ch ip s on the graph . Af ter f i r i n g some node v , we

r ewr i t e t h i s l i s t , adding 1 to a ne ighbours o f a f i r i n g node and

s u b t r a c t i n g n − 1 ch ip s from v . We f i r e a g iven node at once

as much as i t p o s s i b l e . Also we can p i c t u r e t h i s proces s in case

i f we put True f o r an argument o f parameter v i s u a l . We are drawing

a graph only when we have no more than 40 nodes .

"""

def ch ip_f i r i ng_v i sua l (G, node , v i s u a l = False , ∗arg) :

35

C
E

U
eT

D
C

ol
le

ct
io

n

cond i t i on = (v i s u a l == True) and (len (G) <= 40)

node_color_1 (G, node)

i f cond i t i on :

p o s i t=nx . she l l_ layout (G)

p l o t t i n g (G, po s i t)

node_color_2 (G, node)

i f cond i t i on :

p l o t t i n g (G, po s i t)

t imes = int (G. node [node] [' ch ip s '] //G. degree (node))

for i in G. ne ighbors (node) :

G. node [i] [' ch ip s '] += times

G. node [node] [' ch ip s ']−=G. degree (node)∗ t imes

node_color_1 (G, node)

i f cond i t i on :

p l o t t i n g (G, po s i t)

return G

#This f unc t i on i s r e s p on s i b l e f o r drawing a graph .

def p l o t t i n g (G, po s i t) :

node_labels = nx . get_node_attr ibutes (G, ' ch ips ')

nx . draw (G, pos = pos i t , with_labe l s = True , \

l a b e l s = node_labels , \

node_size =[(v + 1) ∗ 200 for v in node_labels . va lue s ()] , \

node_color = [G. node [node] [' c o l o r '] for node in G. nodes ()])

p l t . pause (1 . 5)

p l t . c l f ()

return

#This f unc t i on searches f o r over loaded nodes and

makes l i s t o f number o f ch ips in the descending order .

36

C
E

U
eT

D
C

ol
le

ct
io

n

def maximum(ch ips) :

overload_nodes = []

for i in ch ips . i tems () :

i f G. degree (i [0])<=G. node [i [0]] [" ch ips "] :

overload_nodes . append (i)

max_ = sorted (overload_nodes , key = lambda x : \

x [1] , r e v e r s e=True)

return max_

"""

This f unc t i on take a graph wi th i n i t i a l ch i p s arrangement

on nodes . We are f i n d i n g nodes which are ready to f i r e

from the beg inn ing o f the game and wr i t e them in the l i s t

overload_nodes . When we exhaus t t h i s l i s t we are c r ea t i n g

a new one i f t h e r e s t i l l nodes which can f i r e and i f we f i r e

no more than n − 1 t imes .

"""

def game(G, v i s u a l = Fal se) :

count = 0

ch ips=nx . get_node_attr ibutes (G, ' ch ips ')

overload_nodes = maximum(ch ips)

i f overload_nodes :

node = overload_nodes [0] [0]

count += int (overload_nodes [0] [1] / / (n−1))
G = ch ip_f i r i ng_v i sua l (G, node , v i s u a l)

overload_nodes = overload_nodes [1 :]

i f not overload_nodes :

overload_nodes = maximum(ch ips)

while overload_nodes :

node = overload_nodes [0] [0]

count += int (overload_nodes [0] [1] / / (n−1))

37

C
E

U
eT

D
C

ol
le

ct
io

n

G = ch ip_f i r i ng_v i sua l (G, node , v i s u a l)

i f count >= n :

return (" i n f i n i t e game")

i f overload_nodes [1 :] :

overload_nodes = overload_nodes [1 :]

else :

ch ip s=nx . get_node_attr ibutes (G, ' ch ips ')

overload_nodes = maximum(ch ips)

i f not overload_nodes :

return (" f i n i t e game")

else :

return (" nothing to f i r e ")

def input_data (input_parameter) :

while True :

i f input_parameter == 'y ' :

input_parameter = True

break

e l i f input_parameter == 'n ' :

input_parameter = False

break

else :

input_parameter = input ("Try again . . . only \

 [y/n] or Enter to qu i t : ")

i f not input_parameter :

sys . e x i t ()

return input_parameter

"""

This i s the body o f the program .

I t t a k e s an input the s i z e o f the graph as i n t e g e r and

g i v e the opt ion to show or not the game v i s u a l l y .

We are cons ider on ly those q u a n t i t i e s o f amount o f ch ip s

where we can ' t say immediate ly i f the game f i n i t e or not .

A program can manually or randomly as s i gn number o f ch ip s

38

C
E

U
eT

D
C

ol
le

ct
io

n

f o r the game . You can a l s o choose e i t h e r manually or randomly

as s i gn amount o f ch i p s on each node .

"""

n = int (input ("How many nodes in a complete graph? "))

v i s u a l i s a t i o n = input ("Do you need v i s u a l i s a t i o n , [y/n] ? ")

v i s u a l i s a t i o n = input_data (v i s u a l i s a t i o n)

automat i ca l l y = input ('Do you want automat i ca l l y a s s i gn \

number o f ch ips [y/n] ? ')

automat i ca l l y = input_data (automat i ca l l y)

lower_bound = int (nCr (n , 2)) #lower bound

upper_bound = 2∗ lower_bound − n #upper bound

print (' lower_bound − upper_bound ' , (lower_bound , upper_bound))

i f automat i ca l l y :

N_chips = random . randint (lower_bound , upper_bound)

print ("N_chips = " , N_chips)

else :

N_chips = int (input ("Type the number o f ch ips as p o s i t i v e \

 i n t e g e r the above range = "))

G = nx . complete_graph (n)

m = nx . number_of_edges (G)

c on f i gu r a t i on = input ('Do you want automat i ca l l y arrange \

ch ips on each node [y/n] ? ')

c on f i gu r a t i on = input_data (c on f i gu r a t i on)

i f c on f i gu r a t i on :

set_up_of_chips (N_chips ,G, n)

else :

for i in G. nodes () :

G. node [i] [" ch ips "] = int (input ("number o f ch ips \

 on the node {} : " . format (i)))

39

C
E

U
eT

D
C

ol
le

ct
io

n

ch ips=nx . get_node_attr ibutes (G, ' ch ips ')

ch e ck_ inequa l i t i e s (chips , n)

print ()

print (game(G, v i s u a l = v i s u a l i s a t i o n))

40

C
E

U
eT

D
C

ol
le

ct
io

n

Appendix B

Python code for chip-�ring game on

complete bipartite graph

"""

Here we use the f o l l ow i n g func t i on from the f i r s t Appendix :

set_up_of_chips , node_color_1 , node_color_2 , ch ip_f i r ing_v i sua l ,

p l o t t i n g , maximum.

"""

import networkx as nx

import matp lo t l i b . pyplot as p l t

import random

import sys

"""

This f unc t i on c l eans the f i l e i f such e x i s t s and c r ea t e a new one

i f not .

"""

def f i l e_ c l e a n i n g (f i le_name) :

f i l e = open(" {} . txt " . format (f i le_name) , 'w ')

f i l e . c l o s e ()

return

"""

This f unc t i on check the f i r s t c r i t e r i a o f f i n i t e n e s s f o r the

complete b i p a r t i t e graph :

"""

41

C
E

U
eT

D
C

ol
le

ct
io

n

def f i r s t _ c r i t e r i a (G) :

"""

We take a t t r i b u t e s o f nodes . This i s a d i c t i ona r y . The keys o f i t

are the number o f a node and the va l u e s are the numbers o f ch ip s

on the s e nodes .

"""

ch ips = nx . get_node_attr ibutes (G, ' ch ips ')

"""

We form the l i s t o f v a l u e s . Then we d i v i d e i t i n t o two s u b l i s t s .

The f i r s t one c on s i s t s o f the nodes o f a s e t A and the second one

c on s i s t s o f the nodes o f a s e t B. Then we so r t i t in the descending

order .

"""

set_A = sorted (l i s t (ch ips . va lue s ()) [:m] , r e v e r s e = True)

set_B = sorted (l i s t (ch ips . va lue s ()) [m:] , r e v e r s e = True)

"""

Here we f i nd a one node from each s e t wi th the minimal number o f

ch i p s on i t .

"""

min_A = set_A[−1]

min_B = set_B[−1]

"""

Here we are search ing how many nodes o f a s e t A have the number o f

ch i p s g r ea t e r than n .

"""

for x in range (m) :

i f set_A [x] < n :

break

"""

Here we are search ing how many nodes o f a s e t B have the number o f

ch i p s g r ea t e r than m.

"""

42

C
E

U
eT

D
C

ol
le

ct
io

n

for y in range (n) :

i f set_B [y] < m:

break

i f x == 0 :

x = 1

i f y == 0 :

y = 1

"""

In th e s e l oops we are search ing f o r the i n t e g e r s i , j . The number

o f f i r i n g s from the s e t B and the s e t A r e s p e c t i v e l y . The number

o f f i r i n g s i from the s e t B can not be l e s s than the number o f

nodes ready to f i r e from the s t a r t i n g con f i g u r a t i on . Also i t can

not be g r ea t e r than the d i f f e r e n c e between the s i z e o f the s e t B

and the minimal number o f ch ip s from the s e t A. By the same l o g i c

we put the bounds f o r the j .

"""

for i in range (y−1,n−min_A) :

for j in range (x−1,m−min_B) :

"""

Here we add i ch ip s on each node o f the i n i t i a l c on f i g u r a t i on

f o r the s e t A and j ch ip s f o r the s e t B.

"""

set_A_check = l i s t (map(lambda x : x + i , set_A))

set_B_check = l i s t (map(lambda x : x + j , set_B))

k = 0

l = 0

"""

Here we are check ing how many nodes ready to f i r e in the s e t A

a f t e r adding some number o f ch ip s .

"""

for p in set_A_check :

i f p<n :

break

else :

temp = p//n

k +=temp

43

C
E

U
eT

D
C

ol
le

ct
io

n

#Here k i s a number o f f i r i n g s from the s e t A.

for q in set_B_check :

i f q<m:

break

else :

temp = q//m

l +=temp

#Here l i s a number o f f i r i n g s from the s e t .

i f (k == j) and (l == i) :

return True , (j , i)

return False

"""

Here we are p l a y ing game f i r i n g f i r s t l y a l l over loaded

nodes from the one s e t and then a l l nodes from the o ther

s e t . We are doing t h i s i n t e r changeab l y .

"""

def game(G, v i s u a l = Fal se) :

count_firing_A = 0

count_firing_B = 0

ch ips=nx . get_node_attr ibutes (G, ' ch ips ')

overload_nodes = maximum(ch ips)

while overload_nodes :

node = overload_nodes [0] [0]

G = ch ip_f i r i ng_v i sua l (G, node , v i s u a l)

i f node in bottom_nodes :

count_firing_A += int (overload_nodes [0] [1] / / n)

overload_nodes = [t for t in overload_nodes [1 :] \

i f t [0] <m]

else :

count_firing_B += int (overload_nodes [0] [1] / /m)

overload_nodes = [t for t in overload_nodes [1 :] \

i f t [0]>=m]

44

C
E

U
eT

D
C

ol
le

ct
io

n

i f not overload_nodes :

overload_nodes = maximum(ch ips)

i f (count_firing_A >= m) or (count_firing_B >= n) :

return (" i n f i n i t e game")

return (" f i n i t e game")

"""

In the second c r i t e r i a we f i r s t l y a r r i v i n g to the con f i g u r a t i on

where the number o f ch i p s on each node in the s e t A i s l e s s

or equa l than 2∗n − 1 and in the s e t B i s l e s s or equa l

than 2∗m − 1 .

Then we f i g u r e out the numbers a , b , c , d which r ep re s en t how many

nodes are ready to f i r e at l e a s t one time from the s e t A and

the s e t B and how many nodes are ready to f i r e tw ice from

the s e t A and the s e t B r e s p e c t i v e l y .

"""

def s e cond_cr i t e r i a (G) :

ch ips = nx . get_node_attr ibutes (G, ' ch ips ')

while not (a l l (x<=2∗n−1 for x in l i s t (ch ips . va lue s ()) [:m]) \

and a l l (x<=2∗m−1 for x in l i s t (ch ips . va lue s ()) [m:])) :

for i in ch ips . i tems () :

i f (i [1] >2∗n−1) and (i [0] <m) :

G. node [i [0]] [' ch ip s ']−=G. degree (i [0])

break

e l i f (i [1] >2∗m−1) and (i [0]>=m) :

G. node [i [0]] [' ch ip s ']−=G. degree (i [0])

break

for j in G. ne ighbors (i [0]) :

G. node [j] [' ch ip s ']+= 1

ch ips = nx . get_node_attr ibutes (G, ' ch ips ')

set_A = sorted (l i s t (ch ips . i tems ()) [:m] , key = lambda x : x [1] , \

r e v e r s e = True)

set_B = sorted (l i s t (ch ips . i tems ()) [m:] , key = lambda x : x [1] , \

r e v e r s e = True)

45

C
E

U
eT

D
C

ol
le

ct
io

n

for a in range (m) :

i f set_A [a] [1] <n :

break

for c in range (m) :

i f set_A [c] [1] < 2∗n :
break

for b in range (n) :

i f set_B [b] [1] <m:

break

for d in range (n) :

i f set_B [d] [1] <2∗m:

break

#l counts the nodes which can f i r e tw ice in the s e t A

for l in range (c , int (m/2)+1):

#as we can f i r e from the s e t B to s e t A no more than m−1 t imes

"""

k counts the nodes which f i r e at l e a s t once and t h i s number

can not be l e s s than l .

"""

for k in range (max([a , l]) ,m−l) :
for j in range (d , int (n/2) + 1) :

"""

as we can f i r e from the s e t A to s e t B no more than n−1 t imes .

Here we count nodes which f i r e d 2 t imes

"""

for i in range (max([b , j]) , n−j) :
cond_1 = set_A [l] [1]+ i + j < 2∗n
cond_2 = set_A [k] [1]+ i + j < n

cond_3 = set_B [j] [1]+ l + k < 2∗m
cond_4 = set_B [i] [1]+ l + k < m

i f cond_1 and cond_2 and cond_3 and cond_4 :

46

C
E

U
eT

D
C

ol
le

ct
io

n

return True , (k , l , i , j)

return False

"""

This f unc t i on as s i gn f o r the g iven parameter True or Fa lse

depending on input . I f input i s not ' y ' or 'n ' then i t g i v e s

an oppor tun i t y to re−en ter i t again or j u s t l e a v e the program .

"""

def input_data (input_parameter) :

while True :

i f input_parameter == 'y ' :

input_parameter = True

break

e l i f input_parameter == 'n ' :

input_parameter = False

break

else :

input_parameter = input ("Try again . . . only [y/n] \

 or Enter to qu i t : ")

i f not input_parameter :

sys . e x i t ()

return input_parameter

"""

We as s i gn number o f nodes in the bottom and upper s e t s

o f a graph . Also we are asked i f we need the v i s u a l i s a t i o n

o f the game . We can au t oma t i c a l l y a s s i gn number o f ch ip s or

do i t manually . We can au t oma t i c a l l y s e t up a con f i g u r a t i on

or a l s o do i t manually .

"""

m = int (input ("How many nodes in a bottom s e t o f a \

complete b i p a r t i t e graph? "))

number o f nodes in the bottom s e t

n = int (input ("How many nodes in a upper s e t o f a \

complete b i p a r t i t e graph? "))

number o f nodes in the upper s e t

47

C
E

U
eT

D
C

ol
le

ct
io

n

G = nx . complete_bipart ite_graph (m, n)

bottom_nodes , top_nodes = nx . b i p a r t i t e . s e t s (G)

number_of_edges = m∗n

v i s u a l i s a t i o n = input ("Do you need v i s u a l i s a t i o n , [y/n] ? ")

v i s u a l i s a t i o n = input_data (v i s u a l i s a t i o n)

automat i ca l l y = input ('Do you want automat i ca l l y a s s i gn \

number o f ch ips [y/n] ? ')

automat i ca l l y = input_data (automat i ca l l y)

"""

number o f ch i p s f o r game be p o s s i b l y i n f i n i t e or f i n i t e

the i n t e r v a l

"""

lower_bound = number_of_edges

upper_bound = 2∗ lower_bound − (m+n)

print (lower_bound , upper_bound)

i f automat i ca l l y :

N_chips = random . randint (lower_bound , upper_bound)

print ("N_chips = " , N_chips)

else :

N_chips = int (input ("Type the number o f ch ips as \

 p o s i t i v e i n t e g e r in the above range = "))

c on f i gu r a t i on = input ('Do you want automat i ca l l y \

arrange ch ips on each node [y/n] ? ')

c on f i gu r a t i on = input_data (c on f i gu r a t i on)

i f c on f i gu r a t i on :

set_up_of_chips (N_chips ,G, n+m)

else :

for i in G. nodes () :

i f i [0] <m:

G. node [i] [" ch ips "] = int (input ("number o f ch ips \

48

C
E

U
eT

D
C

ol
le

ct
io

n

 on the node {} , s e t A: " . format (i)))

else :

G. node [i] [" ch ips "] = int (input ("number o f ch ips \

 on the node {} , s e t B: " . format (i)))

lower_bound = number_of_edges

upper_bound = 2∗ lower_bound − (m+n)

print ((lower_bound , upper_bound))

#Here we check two c r i t e r i a and the game on f i n i t e n e s s .

f i r s t _ c r i t e r i a (l i s t (ch ips . va lue s ()))

s e cond_cr i t e r i a (G)

print (game(G, v i s u a l = v i s u a l i s a t i o n))

49

C
E

U
eT

D
C

ol
le

ct
io

n

	Physical approach of the game
	The Abelian Sandpile Model

	Chip-firing game on undirected graphs
	The chip-firing game
	The finitness of the game

	Chip-firing game on complete and complete bipartite graphs
	The chip-firing game on complete graph
	Computational time of the game

	Chip-firing game on complete bipartite graph

	Python code for chip-firing game on complete graph
	Python code for chip-firing game on complete bipartite graph

