CEU eTD Collection

Mathematics and its Applications

Central European University

The chip-firing game on complete and

complete bipartite graphs

Natalia Bila
MS

supervisor: Pal Hegedus

> CEU CENTRAL

TN : EUROPEAN
: UNIVERSITY

Budapest, Hungary
2017

CEU eTD Collection

Acknowledgements

I would like to express my thankfulness to my supervisor, Pal Hegedus. I am very
grateful to him for introducing me this topic. I also appreciate his wisdom and patience,
his guidance in my writing which helped me to produce this thesis.

I also would like to express gratitude to my friend and my classmate Hailemariam for

his support and faith in me which helped me to accomplish this thesis.

CEU eTD Collection

Contents

(1 Physical approach of the game|

(1.1 'T'ne Abelian Sandpile Modelf

2 Chip-firing game on undirected graphs|

2.1 The chip-firing game| L
(2.2 'The finitness of the game|.

[3 Chip-firing game on complete and complete bipartite graphs|

[3.1 'T'he chip-firing game on complete graph|

[3.1.1 Computational time of the game|

[3.2 Chip-firing game on complete bipartite graph|

[A° Python code for chip-firing game on complete graph|

(B Python code for chip-firing game on complete bipartite graph|

14

16
16
20
24

34

43

CEU eTD Collection

Introduction

The chip-firing game is quite new topic in the combinatorics. First appearance of it
was made in the second half of 20th century. Quite astonishing is that discovering of this
concept were made separately by different scientists in the different scientific areas. There
are three approaches: physical, through probabilistic abacus |?| and combinatorics.

The aim of the given thesis is to get acquainted with the first and last approach. Also
we concentrate more on the last approach where we try to investigate finiteness of the
game on the complete graph and the complete bipartite graph. The results for complete
graph is already known. We try to check efficiency of using the criteria for checking the
finiteness of the game. Also we compare computational time for checking criteria and for
the playing the game with a given initial configuration. For the complete bipartite graph
we propose two criteria. One is based on similar ideas as in [I1I] and another one uses
a little bit different thought. In addition we make simulations and we record computing

time for the three methods (playing the game, criteria one and criteria two).

In the first chapter we are acquainted with the self-organized criticality and the major
representative of it the Abelian Sandpile model. Here we will show what is achieved in

this area and we will give an example of the Bak, Tag and Wiesenfeld sandpile model.

In the second chapter we are doing the review of the chip-firing game on undirected
graphs. We will list the main theory and the theorems about this topic. Also we will

make some additions in the proofs for the theorem [2.1

In the third chapter we analyse the chip-firing game on complete graphs. We make
simulations of the game with different size of vertex set and the different configurations.
Also we measure the running time for playing the game and for the checking criteria. We
build histograms which depict proportion of finite and infinite games in a fixed number

of trials for different number of chips for the particular graph.

Also we introduce the game on complete bipartite graph. We introduce some theorems
on the finiteness of the game on this graph. We propose two criteria for making the
decision if a given initial configuration lead us to the termination of the game. One of
them uses the similar ideas proposed in [II] and another one is based on a little bit
different approach. We will compare these three methods (third method is simply play

the game) in the time efficiency.

CEU eTD Collection

In the appendix will be given the code in Python with its descriptions for playing the
chip-firing game and checking criteria on the both types of graphs.

CEU eTD Collection

Chapter 1
Physical approach of the game

The scientific investigation of self-organize phenomena is relatively new. It has been
around for 30 years since it first emergence in the article of Per Bak, Chao Tang, and Kurt
Wiesenfeld [I]. Self-organized criticality (SOC) is one of the most important discoveries
in statistical physics in the end of 20th century. In physics, SOC is a property of dynamic
systems the macroscopic behaviour of which is spatial and/or temporal scale-invariant
and their structure arise without impact from outside, just internal organization of itself
to criticality. When the critical point is reached, the stress in a local part is distributed
to their neighbours. This action can lead those neighbours to the critical threshold and
the process can be repeated.

These systems exhibit complexity as there is no scale which would describe its devel-
opment. Large dynamical systems have propensity to organize themselves spontaneously
into a critical state. Self-organization can expand, display interim state or maintain a sta-
ble configuration. The systems show some simple statistical properties which are defined

by power laws [2]. Example [2],

F(s)=A-s¢

where F' - number of events, S - size of event, A - some constant, a describes some
statistical traits of SOC state.

Some dynamical systems may have the same exponent in the power law function, but
they can have totally different microscopic structure.

Even if a system shows power law features it does not mean that it possesses SOC
behaviour. The same logic that each healthy born dog has 4 legs, but not every creature
with 4 legs is a dog.

There is no consolidate mathematical formalism which can help to recognize if the
system exhibits SOC behavior or not. There are well-known mathematical models which

seem to have a SOC behavior: Bak-Tang-Wiesenfeld sandpile, Curie-Weiss model [3],

CEU eTD Collection

earthquake model and others.
The concept of self-organized criticality is interdisciplinary. It is used to explain com-

plex behavior of different physical, biological, chemical, social, economic [4] systems.

1.1 The Abelian Sandpile Model

The ASM was introduced as one of the simplest models which exhibits SOC behaviour.

The definition of sandpile model is following [5,6]. Consider directed graph G = (V, E)
where the number of vertices is equal n. We define a variable z; on each vertex which can
be assigned a non-negative integer value and is called the hight of the sandpile. Also, we
define a so-called threshold value z; € N.

An allowed configuration of the sandpile is a tuple of integer heights z;, ¢ = 1...n. We
call an allowed configuration stable if z; < z; Vi € V.

An evolution of sandpile model is defined by the toppling matriz A and follows the

next rules:

1 Adding a grain. We randomly pick a site and add a grain of sand there. Probability

of choosing the site ¢ is equal to some given value p; and the sum Zpi = 1. The
i=1
height value of a node v; is increased by 1 and the heights of other nodes remain

the same.

2 Toppling. If on a some site we have that z; > Z; then the process called toppling
happens. The site ¢ looses some part of grains and the other sites receive some
amount of grain. The law by which it happens is described by the toppling matrix

A. The configuration z is updating using the next rule after toppling at site i:

Zj = Zj — Aij VJ eV (11)

In the case the toppling on a site ¢ evoke unstable configuration on the other sites then
they are also toppled simultaneously. This procedure continues until for a configuration
z the following becomes true z; < z; Vi € V.

And now we define toppling matriz: chapter

bi =Y Ai; > 0,Vi. (1.2¢)
J

We can use a vector notation for the tuple of elements A; = {A;;};=1.,. Then the
formula (1.1)) can be rewritten as following: z — z — A; This formula shows that if we

6

CEU eTD Collection

have toppling on the site ¢ then the hight of the z; decreases and the hight of other nodes
increase.
Now, we take a closer look to the original Bak-Tang-Wiesenfeld sandpile model. We

consider this model on the two-dimensional plane surface.
Ajj+4, ifi=y

Ajj=qA

A

1, if ¢ and j are adjacent (1.3)

ij
ijs otherwise.
We have two types of a cell on the border. One of them is a corner cell. It has only
two neighbours. So if it fires, it keeps only two grains of sand in the pile and another two
are lost. Another type of the border cell is a cell which has three neighbours. So, only
one grain is lost, the other three are kept in the system.
An example of sandpile model is shown on the Figure Here we have 3 x 3 grid.

After adding one chip on one site we get 2 topples.

[N N Dy S O)
o |w = |
palpa = o
W | ha | s | pa
o |w = |
palpa (= o
b | |

3
0
3
3

| |
| |
o | w |k | b
papa = o
= |w o
L L | = | L
o | w |k | b
palpa (= o

Figure 1.1: Sandpile model on 3 x 3 grid

If we have unstable configuration, meaning there exist a vertex i such that z; > z;,
then we have a toppling and the new obtained configuration is ¢,z = z — A,. The ¢, stands
for the toppling operator.

The set of consecutive toppling is called an avalanche.

The order in which the topplings happen does not matter. The stable configuration
which obtained after firing overloaded vertices does not depend on firing interim nodes.
This is the reason why this model is called Abelian Sandpile model. In mathematical

notation this can be written as: if z is such that z; > 2; and z; > Z; then
tith = tjtiZ

Let us consider unstable configuration with two overloaded sides i and j. We start
toppling at site ¢ by the rule and after the toppling the site j we obtain z — z — (A; +
A;). The last expression is symmetric under exchange of i and j. We get the same final
configuration regardless of the order of topplings ¢ and j. The same logic are used when
we have more than two topplings. We also obtain the same final configuration if toppling

at site ¢ is followed by addition a particle in configuration j.

CEU eTD Collection

Chapter 2
Chip-firing game on undirected graphs

In 1986 J. Spencer was studying a certain problem and he used a so-called "balancing
game" for its solution. At the beginning we have a pile of N chips in the middle of an
infinite line. We divide this pile into two parts of equal sizes | N/2| and put one part to
the left side and another part to the right side. In case we have an odd number of chips,
we leave one chip in the middle and do the same procedure as above for the even case.
Then we continue with this procedure. It was proven by Spencer that this process is well
approximated by the "Galton process" for the first N steps.

Taking this fact in consideration, further extension and investigation of this problem
were made by E. Tardos et al [7]. They modified the game allowing only to move one chip
at a time either to the left or to the right. They described the precise number of steps
needed to terminate the game.

Later Bjorner et al [8] studied this game on simple graphs. They called it chip-
firtng game. The game starts with setting some amount of chips on each vertex. If a
vertex contains more chips than its degree, then it distributes a one chip to each of its
neighbours. This game continues until all nodes are loaded with fewer number of chips
than their degree. If we get repetition of some configuration then this game is infinite,

this will be described later.

2.1 The chip-firing game

We introduce chip-firing game in mathematical notations. Let G be a simple graph with
finite number of nodes {vy, vo, ..., v, } (we will use the notions vertex and node interchange-

ably throughout this thesis). We define configuration as a function:
¢:V(G) = NU{0}

which assigns the number of chips for each vertex.
We put ¢(v;) = ¢; chips on node v; for each ¢ € {1,2,...,n} and the sum), ¢(v;) = N.

CEU eTD Collection

That will be called an initial configuration of the game. We say that a vertex is ready if
it is loaded with a pile of chips of size equal or bigger than the number of its neighbours.
The ready node gives a chip to each adjacent node. We call this procedure firing. The
game can be either finite or infinite. It stops if each node in the graph has fewer chips
than its degree. We denote the degree of a vertex v; in usual notations d(v;). We represent
an initial configuration as ag = (¢(v1), d(v2), ..., (v,)). Each subsequent configuration

we denote oy, which was obtained from «y_; by firing some overloaded node v; in voy_;.

ag_1(1), if v; not adjacent with v;;
(i) = § ap_1(i) + 1, if v; adjacent with v;;

Ckkfl(’i) — d(?}i), if U; = Vj.

We call the sequence of configurations (g, a1, ...) as a fired sequence, it is accompanied
by a corresponding fired vertex sequence. By legal step, we mean firing one overloaded
node at a time and distribute one chip to each of its neighbours. Sometimes firing sequence
is also called legal game.

The next theorem is of a great importance in the theory of chip-firing games. It was

introduced and proved by Bjorner, Lovéasz, Shor in their article [§].

Theorem 2.1 [8/ Given a connected graph and initial distribution of chips, either every
legal game can be continued indefinitely, or every legal game terminates after the same
number of moves with the same final configuration. The number of times a given node s

fired is the same in every legal game.

In order to proove this theorem we need to define the theory of a language £ and some
properties of it which were introduced in [§].

The language L is a set of fired vertex sequences of all legal games. Consider a finite
set V and a language £ over V is a set of finite words which are formed from the elements
of V. If we delete some letters of a word « in any order, we obtain a subword of this word.
For example, if we have a string abbdabbd then ada is a subword.

Also, we define the length and the score of the word. The former we denote by |«|
and the latter as [a]. By the score of the word we mean a vector s. Each entry s; of it
shows the number of occurrence of the letter ¢ in the given word. The following three
properties of the languages were introduced in [§], these hold for the language of fired

vertex sequence:

o L is left-hereditary, if whenever word a belongs to £ then all the beginnings of it
belongs to this language. If for example we have a word badddba in £ then badd € L.

So if our fired vertex sequence is legal then every prefix subsequence of it is legal;

CEU eTD Collection

e L is locally free if the next statement is true:
Let o € £ and z # y, two elements of the set V' such that ax and ay belong to L.
Then azy € L. In terms of fired vertices this means if two nodes are ready then we

can fire the first one and after it we still can fire second one.

e L is permutable if the following holds:
Whenever o and 8 € L, they have the same score and ax € L then it is also true
Bx € L. In the language of fired vertex sequences it means that it does not matter
in which order we fire the nodes as long as every step is legal. What only matters
is the number of times each node has fired in the fired sequence. For example, let
o = abcbaca and [= bacbaca , if abcbacab € L then bacbacab € L

These three properties lead to the so-called "strong" exchange property, which is a strong
version of the exchange property in greedoids theory [8, [Q].

Strong exchange property:
If two words « and 3 belong to £ then there exists a subword o’ of the word « such that

a string fa/ € L and the score of this new word is a point-wise maximum of o and /.

We call the word basic if it is not a prefix of any other word in £. Two words o and (8
are equivalent if for any string v, ay € L if and only if 8y € L. The equivalence classes
of such words are called flats. A subfiat of the flat f is a flat ¢ such that every word in ¢

can be extended to some word in f.

Lemma 2.2 Let £ a left-hereditary, locally free and permutable language. Then the fol-
lowing hold:

1. Language L has the strong exchange property. And, conversely, if the language has

the strong exchange property then it is permutable and locally free;
2. If L has a basic word, then all basic words have the same length;
3. If a and B are basic words then they have the same scores [a] = [5];
4. If the language is finite and o, B € L, then [a] < [B] if and only if the flat of « is a
subflat of the flat 5. And hence the same score [a] = [B] iff a ~ p.
Proof.

1. = Here we use the notion of /;-norm. |z|; = >""_, |z,|, where x = (21,22, ..., z,).
The proof will be based on induction by |[a] V [8]|;. Let assume that the strong
exchange property for |[a]|; < |[a] V [5]]1 is satisfied (where V indicates point-wise

maximum).

10

CEU eTD Collection

Let pick o’ such that it consists of those letters ¢ € £ which have the score [a]; > [§];.

The number of occurrence of these letters in o/ equal [a]; — [S];.

The fact that [Ba’] = [a] V [5] is straightforward. If for some letter = we have
[, < [Blz, we don’t include it in [o/], so for this letter in the score vector we have
an entry from the [5] vector. If [, > [f]. then o includes precisely [a], — [f]z
number of times letter z. Adding up [a], — [B]. + [5]. we get that the score for z in

pa’ equal [a,.
It will be shown that [Sa/] € L.

We pick a” to be the longest beginning of the word o’ such that Sa” € L. We prove
by contradiction assuming that o # o’. Let x be the first letter after o”. It means
that the number of it occurrence in « is strictly bigger than in [5a”]. So we take
prefix a; of the word « such the next letter after it in « is . Now the total number

of z in oy is the same as in the Sa”.

The score vector of oy is point-wise less or equal the score vector of Sa”. Assume
that it is not true and we have a letter y in oy such that [aq], > [8a”],. It means that
letter y occur in o some number of times before marked x. As we have matching
of letters between o/ and o till the end of the last one then a” have the same score
for y. So the number of y in 5o is at least the same quantity as it in «;;. We have

contradiction, so no such y exist in «;.

As [oq] < [Ba”], we have that the point-wise maximum of this two vectors equal to
vector [fa]. As the [; norm of [fa”] is less than I; norm of [$a/] then by induction
it is applicable strong exchange property. We find subword ~ of fa” such that
o' belongs to our language £ and the score of it equal the score of Sa”. There
is no x inside 7y, because [a1], = [fa”].. As ajz and oy belong to £ then by
local free property a;yxr € L. As the score vectors of a1y and Sa” are equal and
ar1yr € L then by permutable property Sa” also belongs to the language. But this

is contradiction to our choice of o”.

< Consider a language £ with strong exchange property.

Let a = vy and 8 = v, where ~ is some word in £ and x # y, such that both of
them belong to £. As strong exchange property is applicable in this language then
there exists subword o’ of « such that Sa/ € L. We now find point-wise maximum
of the a, 8 words. has more letters z than o and « has more letters y than 5. So
we can conclude that [fa/], = [5], and [Ba/], = [@],. The score for other letters are
the same in the both words. We put in o/ those letters z from « which are preceded
by at least [3], occurrences of z.That is true only for last letter y in . Then in o/
we can only have one letter y. So we showed that if v and vy, # vy, belong to £
then vry € L. That is locally free property.

11

CEU eTD Collection

For the permutable property, let assume that [az] € L, 8 € L, [a] = [f]. By
contradiction, let Sz ¢ L. Applying the strong exchange property for 8, we can
find o' such that the score of the word [Ba/] = [a] V []. We have o = x, as only
for x we have [ax], > [f], (for other letters the score of both words are equal) and
[ax], — [B], = 1. This imply that Sz = fa’ € L. We get a contradiction with our
assumption, that is why if [ax] € L, f € L, [a] = [5] then Sz is also in L. So the
permutable property is satisfied.

2. We prove 2, 3 in one item. Let assume that we have two basic words a and § with
different length, |a| < |3]|. We apply strong exchange property: we find o/ € £ such
that Sa/ € L. o is not empty string as « is not a subword of 3, as basic word. But
then (3 is a proper prefix of Sa’. So basic words should have the same length.

The same if we have basic words of the same length, but with different scores. Then
again o is not an empty string. And with the same logic as above, 5 can’t be a
basic word. So [a] = [f].

4. Let us assume that [a] < [5]. Using strong exchange property we can find a subword
~ of 8 such that the score of ay € L equal to the score of 3. By permutable property
whenever ayz belongs to £ then Sz € £. Which means by the definition that «
and [are equivalent, so they belong to the same equivalence class. This is shows
that any word in a flat defined by «, we call it f, can be extended to a word in a
flat defined by g, we name it ¢g. That is why f is a subflat of g.

In other way, let « defines subflat f of the flat g which is defined by 3. Let ay be an
extension of « in the equivalence class g. Let ayd be an extension of ay to a basic
word (as language is finite, there exist basic words). Then 5§ € « by the definition
of equivalent words. It has the same length as a~d, so it is also a basic word. But
this means that [ayd] = [80] and [o] < [5].

Proposition 2.3 .

1. The fired vertex sequences of legal games constitute a language which is left-hereditary

permutable and locally free;

2. If the language s finite then two legal games lead to the same configuration iff they

have the same score vector.

12

CEU eTD Collection

Proof.

1. Tt is obvious that the language is left-hereditary, every fired vertex subsequence is a
fired vertex sequence. For the locally free property if we have two overloaded nodes
after playing game « then after firing the first one, let it be x, the second one y will
have the same, or bigger by one, number of chips. So it still has to fire. That means
axy a legal game and it belongs to the language. For the permutable property we
have if two legal games «a, 3 have the same score then they are equivalent. So for

the fired vertex sequence 7 if ay is a legal game then [is also a legal game.

2. = Two legal games «, 5 lead to the same configuration. We continue the game «
with a game ~, if it is a legal game then so is a game 7. Which means this games
are equivalent and by the Lemma [2.2
< When the games have the same score then they lead to the same configuration

as it was proved in first item.

O
Proof of theorem

Proof. If the game is finite then it has basic words which are of the same length and

the same score, and they lead to the same final configuration. 0

2.2 The finitness of the game

We are interested what can we say about the duration of the game. Can we reach the
configuration where is no node which is ready to fire? Firstly, we familiarize ourselves
with the theory of the finiteness of the chip-firing game depending on number of chips
loaded on a graph at the beginning of the game. Here we are consider simple connected
graph G with n vertices and m edges. The game will be played with N chips.

The following lemmas and theorem, as well as their proofs, were introduced by Bjorner
et al [8] and Tardos [10].

Lemma 2.4 In the infinite chip-firing game every vertex fires infinitely often.

Proof. As the game is infinite then there is a vertex v which fires infinitely often.
Consider the neighbour u of it. Whenever v is firing, vertex u receives a chip. In our
game we have only N chips on the nodes of a graph which are redistributed between the
nodes at each step. So at some moment the vertex u should fire as it can’t accumulate
more than N chips and this will happen infinitely often. As the graph is connected then

every vertex will fire infinitely often. 0

Lemma 2.5 The chip-firing game is finite if it has a vertex which is not fired at all.

13

CEU eTD Collection

Proof. [10] It will be shown that if all nodes have fired during some period of the game
then this game is played indefinitely. We consider a vertex v which has been inactive as
long as possible. Then each neighbour of it have fired and this node have received at least

as many chips as its degree. Then this node can fire again. U

Theorem 2.6 [§/
1. If N < m then the game s finite;

2. If m < N <2-m —n then there exists an initial configuration guaranteeing finite

termination and also one guaranteeing infinite game;

3. If N > 2-m — n then the game is infinite.

14

CEU eTD Collection

Chapter 3

Chip-firing game on complete and

complete bipartite graphs

3.1 The chip-firing game on complete graph

We consider the game on complete graph K,,. If we put on the nodes of a graph less

than (Z) chips, the game will be finite by theorem And of cause it will be infinite

n
if we have more than 2 -) —n=n?2-2-n.

We call an initial configuration finite if it leads to termination of the game. And we

call it infinite in the opposite case.

Theorem 3.1 [71] Let a = (0,1,2,...,n—1) be a configuration on K,. If a configuration
B can reach an equivalent configuration o of « by firing a sequence of vertices, then [is

an equivalent configuration of a.

Proof. [I1I] Let us assume that § reaches configuration o/ after firing the sequence of
configurations (3, ag, a1, ..., ag, @’). As graph vertex and edge symmetric we assume that
we reach configuration o’ by firing vertex v;. Each node received one chip after firing
vy, so ¢; > 0,7 = 2,..,n. As o equivalent to o we must have one node with 0 chips.
This means on vertex vy there is no chips. In other words /(1) = 0 and ax(1) =n — 1.
For other vertices we have ay(i) = o/(i) — 1,7 = 2,...,n. This shows that o and « are
equivalent. Using the same logic for each configuration in the sequence we obtain that all
B, g, aq, ..., a1 are equivalent to «. This finishes the proof.]

Next criteria is applicable to claim if initial configuration is in finite for case when
n
N =
2

15

CEU eTD Collection

Theorem 3.2 [T1] A chip-firing game on K, with initial configuration o and N = (Z >

is infinite iff « = (0,1,2,....,n — 1)

Proof. <« Let us numerate nodes as vy, vs, ..., v,. Each node has the number of chips
accordingly to its index in (0, 1,2,...,n — 1). The node v, with n — 1 chips fires as degree
of every node in G equals n — 1. Each node, except v, receives 1 chip and the fired node
finishes with 0 chips. Then v,_; obtained 1 chip and now it has n — 1 chips, so it fires.
We continue this process, and, after firing vy, node v, storage n — 1 chips, as n — 1 nodes
fired before. This implies that each node has fired. By the lemma [2.5] the configuration
« is infinite.

= [II] Consider configuration ag = (¢1, ¢s, ..., ¢,) be an infinite on a complete graph
with n nodes, such the sum of all chips is equal @ We order the number of chips from
the smallest one to the biggest one, we renumbering indexes in such way that the node v,
will receive the smallest number of chips and the node v,, the biggest, ¢; < ¢ < ...c,(we
can do so, as graph is symmetric). As ag is an infinite configuration then vertex v, has
more than or equal to n — 1 number of chips.

The game is played using two rules:

1. We firstly fire the node with maximum number of chips;

2. In case of having several nodes with maximum number of chips, pick a node with

maximum index.

It will be proven that ¢; = 0.

By contradiction, let us assume that ¢; > 0. As the configuration «y is infinite then
we have fired sequence (o, aq, ..., oy, ...) with fired vertex sequence (vj,,Viy, ..., Vi, ...)-
Let v;, = vy and v;; # v1,j < k. Then, as amount of chips on this vertex is the
smallest one, k& > n, as each vertex has fired at least once before vertex v, fires. Now
we make a little change in the game, we take off one chip from vertex v;. The new
configuration will be denoted as o). We play the game firing along the sequence of
vertices v;,, Vj,, ..., V;,_,. Lhe correspondent fired sequence of configurations is denoted as
af, ... As k—1 > n — 1 then after firing a vertex in configuration a;_» in a
following configuration «aj_; vertex v; has at least n — 1 chips. So it can be fired. This

shows that every vertex is fired and configuration « is infinite by Lemma

As we play using two rules of maximum number of chips and maximum subscript

n
But we have that sum of the chips equals 5)~ 1. By the Theorem [2.6] o is finite

configuration. But this is a contradiction. So ¢; should be 0.

then v;, = v,. After firing a node v, in configuration o each of the other vertices

receives a chip. But we know that acquired configuration also infinite that is why it

16

CEU eTD Collection

should have one vertex with 0 chips as it was shown above. This implies that a;(n) =
¢n = 0 and then ayg(n) = ¢, = n — 1. By the same logic we have that v;, = v,_; and
az(n —1) = 0 & ap(n — 1) = n — 1. Continue till the configuration a,,_; where we get
that a,—1(2) = 0 & ap(2) = 1. Now we can summarize it as o = (0, 1,2,...n) O

Next Lemma shows that we can reach configuration where we have a bound on a size
n n
of a chips pile on a node in the case < 5 < N <2 (5) — n. This idea will be used

in the criteria for finiteness of the game on complete graphs.

Lemma 3.3 [T1] Let « be an initial configuration of K, with N chips, (Z) < N <

n
2 - (2 —n. Then by firing some sequence of vertices starting at o, we can reach a

configuration 5 such that f(i) < 2-n — 3 for each vertex v; € V(K,).

Proof. [I1I] The idea of proof is that we consider another configuration o’ such that on
each node we have k chips if in « it has either 2 - k£ or 2 - k + 1 chips. So if it two times

less than in initial configuration then upper bound for the quantity of chips in the game

n
is 5)~ 5. By the 2.6 the game with o configuration is finite. Consider a sequence

of firing nodes vy, vy, ..., v, in o' such that after firing all of them the game terminates. If

we return to the initial game then let us fire the same sequence of nodes, but doubling

the number of firings of each, meaning v}, vy, vy, vy, ..., v, v;,. Let the corresponding fire

sequence be (a, ...,). Then the last configuration is the one we have searched for. In the
game, with o/ as starting arrangement, in the end each node has ¢(v;) <n—2,i=1,...,n
chips then going backward, doubling the number of chips or doubling and adding 1, in 3
we get ¢(v;) < 2-n—4or ¢(v;) <2-n— 3. This finishes the proof. O

n-(n—1)
2

configuration where nodes can fire no more than twice. Order ¢(v;),i = 1,...,n in the

We consider now that amount of chips belongs to (,n?> —2-n) and we are in
descending order and renumbering indexes from 1 to n. We separate a sequence of vertices
U1, Vg, ..., Uy, in blocks by the following rule. When we have that ¢(v;) — ¢(vi+1) > 2 then
we make a separation point and v; becomes the end of one block and v;,; becomes the
beginning of another. Let assume that we have k£ blocks. We denote the beginning node of
each block as v, ¢ = 1, ..., k. Denote the amount of chips on these nodes by ¢}, i =1, ..., k.

The number of vertices in each block ¢ will be represented by the s;.

el !
L el L efurl []

S1 Sa Sk

Property 3.1 [I1l] If we have a vertex that can fire at least three times, then the game

18 infinite.

17

CEU eTD Collection

The next theorem shows criteria by which we can determine the finiteness of the game

without actually playing it. We take in consideration simple, complete graphs with initial

configuration oy = (¢(v1), ¢(v2), ..., ¢(v,)), and amount of chips in range Z < N <

2. <Z — n. We arrange chips in the descending order ¢(vy) > ¢(ve) > ... > ¢(v,,) and

« is separated in k blocks by the above procedure. The amount of chips on the vertex is
bounded by amount of 2-n — 3 chips. The number of vertices in each block is s;, i = 1..k

and amount of chips on first vertex of each block is ¢}, i =1, ..., k.

Theorem 3.4 [11] A chip-firing game with initial configuration g is finite if and only if
i—1 j—1

there exists two integers i,j € {1,2,....,k}. j < i <k such that C;H—ZSI)—I—ZSC <n-—1,

b=1 c=1
i1 j—1
c;+§ Sb+E Se—n<n-—1
b=1 c=1

Proof. = We assume that the game is finite. We know that any node can’t fire
more than twice with the written above conditions. We consider two sets with blocks
of nodes. First set, which we denote H;, consists of such blocks whose vertices have
fired al least once. Second set Hs includes blocks with nodes which have fired twice.
Hy = {b1,bg,....;0;_1}, Hy = {b1,ba,...,0;_1}. It is obvious that j < ¢ as if nodes fired
twice then they had a first firing, conversely is not true. As the game is finite then there
is a vertex which didn’t fire at all by Lemma and in our case at least the last block

shouldn’t fire. Then starting from the block b; there is no firing at all and there is no more
i1 j—1

then one firing starting from the block ;. It could be written as ¢} +Z Sﬁ—z Se<n—1

b=1 c=1
andc +Zsb+Zsc—n<n—1

= Let i j € {1 2 ., k} be two minimal integers such that the next inequalities are

i—1 j—1 i—1 j—1
satisfied 7 < i < k, cf+Zsb+Zsc <n-—1, c;+Zsb+Zsc—n<n—1. These
b=1 c=1 b=1 c=1

inequalities show that the vertex v; can’t fire at all and v} can’t fire twice. If j = 1, this
means no node has fired twice. In this case, as k can’t be more than n, we have less than
n firings and by Lemma the game with initial configuration «q is finite. In another
case, when j #£ 1, we have that if inequality of not firing at all is satisfied for ¢ then it is
also satisfied for the last block k.

By the initial ordering ¢} < cj and by the conditions of theorem ¢ < ¢;+2-n—3. From

i1 j—1
here we derive that 0 < ¢j—cj < 2-n—3. Substituting —c; by —n—i—l—i—z SH-Z S, in the
b=1 c=1

18

CEU eTD Collection

i—1 j—1 i—1 J—1

last inequality we get cl+z sb—i-z Se.—n+1<2n—-3or cl—i-z Sb+z S.—2-n < 2n—1.
c 1 b=1 c=1
The last one shows that node cf can’t fire more than twice. So, no one of the vertices

/

i, v} is firing at this moment. This shows that ay is finite. [l

(AN

3.1.1 Computational time of the game

In this section we compare computational time for playing the game and the time for
checking inequalities in order to determine if the game terminates.

The code of the program given in the Appendix A. Firstly, let us describe how the
game is played. When the program starts it asks to enter the number of vertices n. The
input should be an integer. Next, it is asked if you would like to see visualisation of the
process. But here we have restrictions, the game can be shown only for the graphs with
no more than 40 nodes. The number of chips which is put on the nodes in the graph
can be generated by a program or it can also be set manually. It is also possible either

randomly set a configuration of chips on the nodes or to do it manually.

In the game we find nodes with the number of chips equal or more than their degrees.
We put them in the list named by "overload nodes". It takes O(n) time to finish this
procedure. After that we are going through the newly formed list and we are making
firings. After firing the node we delete it from the list. If further we still have firing nodes
we add them to the list and repeat this procedure. We fire a node while it possible at
once. But if we fired n or more times the nodes the program stops and we are saying
that the game is infinite. If we fired less than n times and the list of overloaded nodes is
empty, then we print the game is finite. It also takes O(n) time to compute this part of
a program. We can conclude that overall it takes O(n?) time to play the game.

We played the game for the graph with 300 and 600 nodes Figure [3.1] For each

type of a graph we went through different number of chips in the game starting with a
n n
lower bound 5 and ending with an upper bound 2 - 5 |~ n. For each amount of

chips we made 200 trials and the peaks on plots show their averages. Also we included
error bars.

The plot shows that when the number of chips increasing then the time for deciding
if the game finite or not also increasing gradually for checking criteria. If we look at the
graph for the playing the game on the plots [3.1] we see that it is strictly increasing
to some point and then it starts to decrease. The reason of it is the following. When we
encounter an infinite game with the small amount of chips in the game, we have more
firings of nodes one in a time, but with increased number of chips we have more nodes

which can fire twice and more in a time. As in our algorithm we fire the node at once as

19

CEU eTD Collection

computing time in seconds

—0.05

many times as possible then we use less time to figure out that we have n or more firings,

so the game is infinite.

0.35

— game time
— checking inequalities time

030

0.20

015

0.10

0.00

4pooo 45000 50000 55000 50000 65000
ameount of chips in the game

Figure 3.1: Time for playing game and checking criteria with n = 300

Now, we analyse the computational time of checking criteria for making conclusion
of the finiteness of the game Figure [3.1] Firstly, we are firing nodes till we bound
amount of chips on nodes by 2-n — 3. The while loop runs less than 7 times and inside
this loop we are going through each node and we add a chip on each node. Partition
nodes into the blocks takes also O(n) time. In the for loop we are going through the list
which contains the number of vertices in each block. This for loop includes another nested
for loop. The former loop looks for the number of block which doesn’t fire at all and the
latter looks for the number of block which does not fire twice. This takes less than n?
steps. So, overall to find these two numbers which satisfy the inequalities or show that
there no such it takes O(n?) steps.

So, the running time of two methods are virtually equivalent and the way how we
implement them into the program code will give difference in computing time. We can
see this in the simulation of the game on complete graph with n = 600 nodes. Here we
can see that the time performance for some number of chips is better for the first method
and for another number of chips it is better for the second method

20

70000

CEU eTD Collection

Relative frequency

Relative frequency of finite and infinite games

070

o6s

00.0 35500 45592.0 46334.0 47076.0 47815.0 45560.0 433020 50044.0 50706.0 51520.0 SZ270.0 53012.0 537540 59496.0 55236.0 55900.0 56722.0 57464.0 S5200.0 55995.0 59690.0 504320 E1174.0 519150 B2655.0 G3400.0 G4142.0 G1604.0 B5620.0 B5360.0 BTLLO.0
Number of chips

Figure 3.2: Bar chart for ratio of finite and infinite games for n = 300

21

CEU eTD Collection

Relative frequency

computing time in seconds

16

14

12

10

0.8

06

04

02

0.0

115
110
105
100
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50
0.45
040
0.35
0.30
0.25
0.20
0.15
0.10

0.05

0.00
179700.0 182685.0 185670.0 188655.0 1916400 1946250 197610.0 2005950 2035800 206565.0 209550.0 2125350 215520.0 218505.0 221490.0

— game time
= criteria 2 time

150000 200000 220000 240000 260000
amount of chips in the game

Figure 3.3: Time for playing game and checking criteria with n = 600

Relative frequency of finite and infinite games

B Infinite game | |
HEl Finite game

Mumber of chips

Figure 3.4: Bar chart for ratio of finite and infinite games for n = 600

22

CEU eTD Collection

— game time
= criteria 2 time

0.65

=
@
=l

=)
n

=
o
=

computing time in seconds

=
=

0.40

0.35
265000 270000 275000 280000 285000 290000 295000 300000

amount of chips in the game

Figure 3.5: Time for playing game and checking criteria with n = 600

3.2 Chip-firing game on complete bipartite graph

Complete bipartite graph is a graph whose vertices can be separate in two disjoint
sets, each node of the one set is connected to every node in the other set, but not inside

its own set. The usual notation for it is K,,,

Figure 3.6: Complete bipartite graph K, ,, m = 3,n = 2

We consider the chip-firing game on this graph. The number of chips lays in the

interval m-n < N <2-mn — (m+ n).

23

305000

CEU eTD Collection

Lemma 3.5 Let G be a complete bipartite graph with two sets of nodes A and B. Let the
size of A be m and the size of B be n. If either the set A has fired m and more times or

the set B has fired n and more times then the game is infinite.

Proof. Let assume that nodes in the set A has fired m times. This means that each node
has received at least m chips. Then each node from the set B can fire. They distribute n
chips to each node in the set A. Then all vertices in the set A are overloaded and can be
fired. By the Lemma the game is infinite. O

Theorem 3.6 Let G be a complete bipartite graph with two node sets A and B of size m
and n respectively. Let a be an initial configuration of chips on the vertices of the graph
G. Then the game with this configuration is finite iff we can find such i, j € NU{0} that
after adding i (i < n) chips to each node of the set A and j, (j < m) chips to each node
of the set B we get exactly j firings in the set A and exactly @ firings in the set B.

Proof. = Let assume there exist such ¢, 7 that after adding ¢ chips to each node in the
set A and j chips to each node of the set B, we have exactly j firings from the set A and
exactly ¢ firings from the set B.

If © > m or 5 > n then we have m or more firings from the set B and n or more firings
from the set A. And by the Lemma the game is infinite.

Let us assume the case when ¢ < m and 7 < n. In the set B we have less than m
firings and in the set A we have less than n firings. So, by the Lemma the game is
finite.

< Let us assume that the chip-firing game with a given initial configuration is finite.
Then by the Lemma, [3.5] there are a node in A and a node in B which didn’t fire. This
means that the set A has to have no more than n — 1 firings and the set B has to have no
more than m — 1 firings. Let assume that during the game the set A has got ¢ chips for
each of its nodes and the set B has fired [times. Suppose that ¢ # [. It follows that either
some amount of chips has been lost during the game or it has appeared from outside the
graph. As we play the game where the number of chips in the graph is fixed and it doesn’t
change during the game. So, from here we derive that ¢ = [for the set A. By the same
logic we prove that 7 = k for the set B, where k is how many firings was from the set A.

This concludes the proof of the theorem. [l

Lemma 3.7 Let a be an initial configuration of K,,, with N chips in the interval mn <
N < 2-mn — (m+mn). Let denote the one verter set as A and the other vertex set as
B with the sizes m and n respectively. After firing some sequence of nodes starting at
configuration o, we can reach a configuration 3 such that ¢; < 2-n — 1 for the nodes in
the set A and ¢; < 2-m — 1 for the nodes in the set B of the graph K,,,.

24

CEU eTD Collection

Proof. Consider a configuration o’ on K,,,. Here ¢; = k for the vertex v; in the set A
if in the configuration o we have ¢; =2-korc¢; =2-k+ 1, k € N. Consider the same
for the vertex v; in the set B. The sum of chips is less than mn. By the Theorem [2.6]
the game is finite. Let W be the fired vertex sequence with which the game terminates
having « as initial configuration. We double the number of firings in the W sequence and

denote it as U. Then, after firing the last vertex in U, we obtain a desired configuration

B. O

Theorem 3.8 Let G be a complete bipartite graph with two sets of nodes A and B of the
sizes m and n respectively. Let the configuration o be such that every node of the set A
18 less than 2-n — 1 and every node of the set B is less than 2-m — 1. The game with an
initial configuration « is finite if and only if there exist numbers i, j, k,l € NU{0} which

satisfy the following inequalities:

All+1]+i+j5<2-n

Ak+1l+i+j<n

[k +1] j (3.1)
Blj+1+l+k<2-m

Bli+1]+1l+k<m

Proof. <« Let us assume that the game is finite. We define two sets A; and A, as follows:
the set A; consists of nodes in the vertex set A that fire at least once and the set A, consists
of those nodes which fire twice. Equivalently, we define two sets B; and B; for the vertex
set B. We denote vertices which belong to the set A as vy, vs, ..., v, and the vertices of the
set B as v,41, Uma2, ...U,. We consider that the chips on the vertices of the set A and B
are ordered in the descending order. Assume that A; = {vy,...,vx} and As = {vy,...,u}.
For the set B we assume that By = {Uy41, ..Ut} and By = {vy41, ...0p4;. It is obvious
that [< k and 57 < ¢. As the game is finite then by the Lemma k< m and i < n.
The termination of the game means that the vertex vy, does not fire at all and the
vertex v;; can not fire twice. The same for the nodes of the set B, v;1; and v;;. We
can represent these reasoning by the inequalities . = Now, let assume that we have
minimal integers ¢, 7,k,l such that 7 < i < n and [< k < m and the inequalities
are true. Since A[k + 1] +i+4 7 < n then Ajm + 1] + i+ j < n. By the above
consideration and the bound condition of number of chips on the nodes, we have that
Alm| < A[1] <2-n — 1+ A[m] or equivalently 0 < A[1] — Alm| < 2-n — 1. Substituting
—A[m] with the not greater value i +j —n, we get A[l]+i+j —n < 2-n— 1. Putting it
differently A[1]+i+ j —2-n < n — 1. This means that the node v; is not firing at this
moment. Also nodes v, and v; are not firing at this moment. By the same logic it can be
shown that v, is not firing at this moment.

Hence, no vertex can be fired and the game terminates. O

25

CEU eTD Collection

computing time in seconds

We will refer to the Theorem [B.6] as the first criteria of finiteness and to the Theorem
3.8 as the second criteria.

We made simulations and checked criteria for the bipartite graph with m = 10 and
n = 20. We put on the graph an amount of chips which belongs to the interval m -n <
N <2-mn—(m+n). We checked 20 different values of the number of chips starting from
the beginning of the interval and finishing in the middle of interval. We didn’t include
here the second half of the interval. The reason of this is that probability of appearance
of finite game is too small. That is why using 200 trials (we tried also more trials, 1000
and greater, but there is no much difference in it) for each value of the number of chips
couldn’t show the finite case in the second half of the interval. The Figure [3.7| shows
that with the grows of the number of chips the running times of all three methods almost
equal. In these trials the most steady and quick was the first criteria. If the number
of chips is increased then there is no big difference between these three methods for the

graph of given above size.

0.025

— game time
— criteria 1 time
— criteria 2 time

0.020

0.015

0010

0005

0.000

-0.005

200 220 240 260 280 300 320 340 350
amount of chips in the game

Figure 3.7: Computational time for playing the game and checking two criteria m =
10, n =20

When we increase the number of nodes in a bipartite graph (we simulated for the
m = 40 and n = 60, see Figure , the first criteria and playing a game have almost the
same time tender for making a decision if the game finite or not. We see at the Figure 3.9
that computing time of the second criteria is substantially different from other methods.

The graph of it grows to some point and then it slowly decreases.

26

380

CEU eTD Collection

Relative frequency

115 Relative frequency of finite and infinite games

110 mm Infinite game [
105 B Finite game |
100 1
095
0.90
0.85
0.80
075
0.70
0.65
0.60
055
050
0.45
0.40
0.35
0.30
0.25
0.20
015
010
0.05

0.00
2000 209.0 2180 227.0 236.0 2450 2540 2630 2720 2810 2900 2990 308.0 317.0 326.0 3350 3440 3530 3820
Number of chips

Figure 3.8: Bar chart with ratio of number of finite and infinite games m = 10, n = 20

This method works more slowly compare to others as it involves four loops in its
algorithm (see def second criteria in Appendix B). Firstly, we need actually to play the
game till we obtain a configuration in which all nodes have bounded number of chips on
each of them. More precisely, for the set A we should have no more than 2 -n — 1 chips
and for the set B we should have no more than 2 -m — 1 chips. And then we go through
four loops. One loop has the length no more than the half of the size of the set A and
another loop - no more than the half of the set B. Two others loops can have length up to
the size of a set of a nodes. So, the running time of the algorithm is roughly O(m? - n?).

We observe a growth of the line till some moment for the second criteria and than the
line start to decrease. The reason of it is the following. With the growth of the number
of chips in the game the number of nodes which can fire at least once at the beginning is
increased. So the loop goes through more narrow interval of integers. This explains only
downward characteristic of the plot. Why do we have an increasing part at the graph?
The answer for it is that we encounter more infinite games while the range of integers
which the loops go through is still wide. Put it differently, we do not have many nodes

which fire at least once from the beginning.

27

CEU eTD Collection

Relative frequency

computing time in seconds

15

10

05

0o

2000

— game time
= criteria 1 time
— criteria 2 time

3000 3500 4000

amount of chips in the game

Figure 3.9: Computational time for playing the game and checking two criteria m =
40, n =60

115
110
105
100
095
090
n.85
0.80
0.75
0.70
0.65
0.60
055
0.50
045
0.40
0.35
0.30
0.25
0.20
0.15
0.10

0.05

Relative frequency of finite and infinite games

B Infinite game | |
Il Finite game

n.oo
2400.0 2516.0 2632.0 27480 2864.0 2980.0 3096.0 3212.0 33280 34440 3560.0 3676.0 3792.0 3908.0 4024.0 4140.0 4256.0 4372.0 4488.0 4804.0

Number of chips

28

Figure 3.10: Bar chart with ratio of number of finite and infinite games m = 40, n = 60

CEU eTD Collection

Further investigation showed that with a growth of the size of the vertex set the playing

of the game outperform the first criteria.

08

— game time
— criteria 1 time

06 -

=)
=

computing time in seconds
=
=

00F

-0.2
8000

Figure 3.11: Computational time for playing the game and checking first criteria m =

80, n =100

L
8500

%00
ameount of chips in the game

29

I
10000

!
10500

11000

CEU eTD Collection

Conclusion

In this thesis we studied the chip-firing game. We have shown two approaches of defining
this game. The main focus was made on playing this game on complete and complete

bipartite graphs. We can summarize key ideas as the following:

1. We showed that for the complete graph in some cases it is computationally more

efficient to use criterion and in some cases it is better just to play the game;

2. We proposed two criteria for checking the finiteness of the game on the complete

bipartite graph with a given configuration;
3. We gave necessary condition for the game to be finite on complete bipartite graph;

4. We came to conclusion that with a the size of vertex set greater than around 150 in

the complete bipartite graph to play the game shows the best time performance;

5. We created two program codes for complete graph and complete bipartite graph
which can help not only get the answer if the game finite or not, but also they help

to visualise the process if the number of nodes is small.

30

CEU eTD Collection

Bibliography

1]

2]
3]

4]

[5]

[6]

|7l

18]

19]

[10]

[11]

P. Bak, C. Tang, and K. Wiesenfeld. Self-organized criticality: An explanation of
1/f noise. Phys. Rev. Lett., 59:381, 1987.

Vladyslav A. Golyk. Self-organized criticality.

Raphagl Cerf and Matthias Gorny. A curie-weiss model of self-organized criticality.
Ann. Probab, 44(1):444-478, 2016.

C. Correia Ramos, Nuno Martins, Ricardo Severino and J. Sousa Ramos. A
curie-weiss model of self-organized criticality. 2006.

D. Dhar. Self-organized critical state of sandpile automaton models. Phys. Rev. Lett.,
1990.

D. Dhar. Theoretical studies of self-organized criticality. Physica A: Statistical Me-
chanics and its Applications, 2006.

R. Anderson, L. Lovasz, P. Shor, J. Spencer, E. Tardos, S. Winogra. Disks, balls,
and walls: analysis of a combinatorial game, amer. mat. Amer. Math. Monthly,
96(6):481-493, 1989.

A. Bjorner, L. Lovasz, P. W. Shor. Chip-firing games on graphs. EUROPEAN J.
COMBIN, 12:283-291, 1991.

B. Korte and L. Lovasz. Structural properties of greedoids. Combinatorica 3, pages
359 — 374, 1983.

G. Tardos. Polynomial bound for a chip firing game on graphs. SIAM J. Discrete
Math., 1(3):397-398, 1988.

Zhuang, W., Yang, W., Zhang, L.. Properties of chip-firing games on complete graphs.
Bulletin of the Malaysian Mathematical Sciences Society, 38(4):1463-1469, 2015.

31

CEU eTD Collection

Appendix A

Python code for chip-firing game on
complete graph

import networkx as nx

import matplotlib.pyplot as plt
import random

import operator as op

from functools import reduce
import time

import sys

def nCr(n,r): #function for computing combination
r = min(r, n-r)
if r =— 0: return 1
numer = reduce(op.mul, range(n, n-r, —1))
denom = reduce(op.mul, range(l, r+1))

return numer//denom

def set up_ of chips(N_chips,G,n):
#here we randomly assign number of chips to
#each wvertex of the graph

r = [random.random () for i in range(n)|

s = sum(r)

32

CEU eTD Collection

r = [i/s for i in r|
r = [round(i*N_chips) for i in r]
if sum(r)>N_chips:
difference = sum(r) — N _chips
for i in range(len(r)):
if r|i|>difference:

r|[i]-=difference
break
elif sum(r)<N_chips:
difference = N_chips — sum(r)

r[—1]+=difference
for i in range(n):
G.node[i]|[| ’chips’| = r[i]
return G
nimnn
Here we sort vertices by the number of chips in descending order.
We are separating vertices in the blocks.
The difference number of chips between two neighbouring nodes 1s
no more than 1 chip.
Difference in chips between the last wverter of one block
and the first vertexr of another block is two or more chips.
We are forming a list with the number of chips on the first vertex

of each block and a list with number of wvertices in each block.

mimn

def partition (chips):
sorted config = sorted(chips.items(),
key=lambda x: x[1]|, reverse=True)
large chips = |sorted config|[0]]|1]]
number of vert = |[]
a — 0
for i in range(n—1):
if sorted config[i][1] —sorted config|[i+1][1]>=2:
large chips.append(sorted config[i+1][1])

b = i+1
number of vert.append(b—a)
a = 1+1

number of vert.append(n—a)

return number of vert, large chips, sorted config

33

CEU eTD Collection

#Here we are trying to determine if game is finite by

#the criteria for complete graphs.
def check inequalities(chips,n):

while not all (x<=2xn—3 for x in chips.values()):
for i in chips.items ():
if i[l]>2%n-3:
chips[i[0]] —=n—1
break
for j in chips.items ():
if jlo]'=i[0]:
chips[j|0]] +=1

temp = partition (chips)
number of vert = temp|0]

large chips block = temp|1]

for j in range(len(number of vert)):
for i in range(j,len(number_ of vert)):
a = sum(number of vert|[:i])
b = sum(number of vert[:j])
if (large_chips_ block|[i] + a + b < n—1)
and (large chips_block[j] + a + b — n < n—1):
return True,i,j,chips

return False

mnimnn

Here we are coloring nodes in the graph after firing or in the case
of the initial configuration. If the number of chips on the a node

1s bigger than its degree than we color a node in blue.

We color a node with this condition and with mazimal number of chips
in red. This node is going to fire at this moment. Other nodes we

color in green.

mmnn

def node color 1(G, node):

34

CEU eTD Collection

for i in G.nodes ():

if (G.node[i]| chips’] »>= G.degree(i)) and (i!=node):

G.node|i|| color’| = *#87cefa’

elif (G.node|i|| ’chips’| >= G.degree(i)) and (i = node):
G.node[i][’color’| = "r’

else:
G.node|i || 'color’| = g’

return G

nimnn

Here we are coloring the neighbours of a firing node in yellow.
By this we emphasize nodes which receives a chip

after the firing a node.

mmn

def node color 2(G, node):
for i in G.nodes ():

if i in G.neighbors(node):
G.node[i][’color’| = "y’

return G

nimnn

Here we are playing chip—firing game as following , we are firing

a given node. We have a list which contains information of

the number of chips on the graph. After firing some node v, we
rewrite this list, adding 1 to a neighbours of a firing node and
subtracting n — 1 chips from v. We fire a given node at once

as much as it possible. Also we can picture this process in case
if we put True for an argument of parameter wvisual. We are drawing

a graph only when we have no more than 40 nodes.

mmnn

def chip firing visual(G, node, visual = False, xarg):

35

CEU eTD Collection

condition = (visual = True) and (len(G) <= 40)
node_color_1(G, node)
if condition:
posit=nx.shell layout (G)
plotting (G, posit)

node color 2(G, node)

if condition :

plotting (G, posit)

times = int(G.node[node]|| ’chips’]//G.degree(node))
for i in G.neighbors(node):

G.node|i || *chips’| += times
G.node|node || "chips ’|-=G. degree (node) * times

node color 1(G, node)
if condition:

plotting (G, posit)
return G
#This function 1s responsible for drawing a graph.

def plotting (G, posit):
node labels = nx.get node attributes (G, chips’)
nx.draw (G, pos = posit, with labels = True, \
labels = node labels, \
node_size=[(v + 1) * 200 for v in node_labels.values()],\

node color = [G.node[node|| ’color’| for node in G.nodes ()])

plt . pause (1.5)
plt . clf ()

return

#This function searches for overloaded nodes and

makes list of number of chips in the descending order.

36

CEU eTD Collection

def maximum(chips):
overload nodes = []
for i in chips.items ():
if G.degree(i[0])<=G.node[i[O0]]["chips"]:
overload mnodes.append(1i)
max = sorted(overload nodes, key = lambda x:\
x[1],reverse=True)

return max

nimnn

This function take a graph with initial chips arrangement
on nodes. We are finding nodes which are ready to fire

from the beginning of the game and write them in the list
overload nodes. When we exhaust this list we are creating

a new one if there still nodes which can fire and if we fire
no more than n — 1 times.

nnn

def game (G, visual = False):

count = 0
chips=nx.get node attributes(G, 'chips’)

overload mnodes = maximum(chips)

if overload nodes:
node = overload _nodes |[0][0]
count += int (overload nodes|[0][1]//(n—1))
G = chip_ firing visual (G,node, visual)

overload nodes = overload nodes|[1:]
if not overload nodes:

overload nodes = maximum(chips)
while overload nodes:

node = overload nodes|[0][0]
count += int(overload nodes|[0]|[1]|//(n—1))

37

CEU eTD Collection

G = chip_ firing visual (G, node, visual)

if count >= n:

return ("infinite _game")

if overload nodes|[1:]:

overload nodes = overload nodes|[1:]
else:

chips=nx.get node attributes (G, chips’)

overload nodes = maximum(chips)

if not overload nodes:

return ("finite _game")

else:
return ("nothing_to_fire")

def input data(input parameter):
while True:

if input parameter — ’y

input _parameter = True

break
elif input parameter =— ’'n’:
input parameter = False
break
else:
input parameter = input("Try_again ...only_\

[y/n]_or_Enter_to_quit:")

if not input parameter:

Al el el el Al el A el e d A d d el et

sys.exit ()

return input parameter

mnnn

This s the body of the program.

It takes an input the size of the graph as integer and
give the option to show or not the game visually.

We are consider only those quantities of amount of chips
where we can’t say immediately if the game finite or not.

A program can manually or randomly assign number of chips

38

CEU eTD Collection

for the game. You can also choose either manually or randomly

assign amount of chips on each node.

mmnn

n = int (input ("How_many_nodes_in_a_complete_graph?_"))
visualisation = input("Do_you_need_visualisation ,_|y/n|?_")
visualisation = input data(visualisation)

automatically = input(’Do_you_want_automatically_assign_\

number_of_chips_|[y/n]|?_")
automatically = input_data(automatically)

lower _bound = int (nCr(n,2)) #lower bound
upper _bound = 2xlower bound — n #upper bound

print ('lower bound_—_upper bound’,(lower bound, upper bound))

if automatically:
N chips = random.randint (lower bound, upper bound)
print ("N _chips_=_", N _chips)
else:
N chips = int (input("Type_the_number_of_chips_as_positive_\
uuuuuuuu integer_the_above_range_=_"))
G = nx.complete graph(n)

n
m = nx.number of edges(G)

configuration = input(’Do_you_want_automatically_arrange_\
chips_on_each_node_|y/n|?7_")
configuration = input data(configuration)

if configuration:
set _up_of chips(N_chips,G,n)
else:
for i in G.nodes ():
G.node[i]|["chips"]| = int (input("number_of_chips_\
on_the_node_{}_:_".format(i)))

el Nl Nl et d d Nk ol d d Nk ol d Nd e d

39

CEU eTD Collection

chips=nx.get node attributes (G, ’chips’)

check
print (
print (ga

_inequalities (chips ,n)

)
game (G, visual = visualisation))

40

CEU eTD Collection

Appendix B

Python code for chip-firing game on
complete bipartite graph

nimnn

Here we use the following function from the first Appendiz:
set_up_of chips, node color_ 1, node color_2, chip_ firing visual,

plotting , maximum.

mmnn

import networkx as nx
import matplotlib.pyplot as plt
import random

import sys

mimnn

This function cleans the file if such exists and create a new one
if not.

mmnn

def file cleaning(file name):

file = open("{}.txt".format (file name),’'w’)
file.close ()

return

mimnn

This function check the first criteria of finiteness for the

complete bipartite graph:

mmnn

41

CEU eTD Collection

def first_criteria(G):

mnimnn

We take attributes of nodes. This is a dictionary. The keys of it
are the number of a node and the values are the numbers of chips

on these mnodes.

mimnn

chips = nx.get node attributes(G, "chips’)

nmnn

We form the list of wvalues. Then we divide it into two sublists.
The first one consists of the nodes of a set A and the second one

consists of the nodes of a set B. Then we sort it in the descending

order.

mnn
set A = sorted(list (chips.values())[:m], reverse = True)
set B = sorted(list (chips.values())[m:], reverse = True)

nimnn

Here we find a one node from each set with the minimal number of

chips on 1it.
mnimnn

min_ A = set A[—1]
min_ B = set_B|[—1]

mmnn

Here we are searching how many nodes of a set A have the number of

chips greater than n.

nmnn

for x in range(m):
if set_A[x] < n:
break

nimnn

Here we are searching how many nodes of a set B have the number of

chips greater than m.

nmnn

42

CEU eTD Collection

for y in range(n):
if set_ Bly] < m:

break
if x = 0:
x = 1
if y — 0:
y = 1

nmnn

In these loops we are searching for the integers i,7. The number
of firings from the set B and the set A respectively. The number
of firings i from the set B can not be less than the number of

nodes ready to fire from the starting configuration. Also it can
not be greater than the difference between the size of the set B
and the minimal number of chips from the set A. By the same logic

we put the bounds for the 7.

mimnn

for i in range(y—1,n—min A):

for j in range(x—1,mmin B):

nmnn

Here we add i chips on each node of the initial configuration
for the set A and j chips for the set B.
mnnn
set A check = list (map(lambda x: x + i, set_A))
set B check = list (map(lambda x: x + j, set B))
k =0
1 =0
mninn
Here we are checking how many nodes ready to fire in the set A
after adding some number of chips.

nimnn

for p in set A check:

if p<n:
break

else:
temp = p//n
k +=temp

43

CEU eTD Collection

#Here k is a number of firings from the set A.

for q in set B check:
if gq<m:
break
else:
temp = q/ /m
1 f=temp

#Here 1| is a number of firings from the set
if (k= j) and (1 = i):
return True, (j,i)

return False

nmnn

Here we are playing game firing firstly all overloaded
nodes from the one set and then all nodes from the other
set. We are doing this interchangeably.
mnimnn
def game(G, visual = False):

count firing A =0

count firing B = 0

chips=nx.get node attributes (G, chips’)

overload mnodes = maximum(chips)

while overload nodes:
node = overload nodes|[0][0]
G = chip_ firing visual (G, node, visual)
if node in bottom nodes:
count firing A += int(overload nodes|[0]|[1]//n)

overload nodes = [t for t in overload nodes|[1:] \
if t[0] <m)|

else:
count_firing B += int (overload nodes|[0]|[1]//m)
overload nodes = [t for t in overload nodes|[1:] \

if t[0]>=m)|

44

CEU eTD Collection

if not overload nodes:

overload nodes = maximum(chips)

if (count firing A >= m) or (count firing B >= n):

return ("infinite _game")

return ("finite _game")
nimnn
In the second criteria we firstly arriving to the configuration
where the number of chips on each node in the set A is less
or equal than 2%xn — 1 and in the set B 1s less or equal

than 2«m — 1.

Then we figure out the numbers a,b,c, d which represent how many
nodes are ready to fire at least one time from the set A and
the set B and how many nodes are ready to fire twice from
the set A and the set B respectively.
nimnn
def second_criteria(G):
chips = nx.get node attributes(G, 'chips’)
while not (all(x<—2xn—1 for x in list (chips.values ())[:m]) \
and all (x<=2xn—1 for x in list (chips.values())[m:])):
for i in chips.items ():
if (i[l]>2*n—1) and (i[0]<m):
G.node[i[0]][| "chips '|-=G.degree(i|[0])
break
elif (i[1]>2*m—1) and (i[0]>=m):
G.node[i[0]][| "chips '|-=G.degree(i|[0])
break
for j in G.neighbors(i[0]):
G.node|j || 'chips’]+= 1

chips = nx.get node_ attributes(G, 'chips’)

set A = sorted(list (chips.items ())[:m], key = lambda x: x[1], \

(
reverse = True)
set B = sorted(list (chips.items())[m:], key = lambda x: x[1], \
)

reverse — True

45

CEU eTD Collection

for a in range(m):
if set_Afa][l] <n:
break
for ¢ in range(m):
if set_Ac|[1] < 2*n:
break
for b in range(n):
if set_B[b][1] <m:
break
for d in range(n):
if set_ B[d]|[1] <2xm:
break

#1l counts the nodes which can fire twice in the set A
for | in range(c,int(m/2)+1):

#as we can fire from the set B to set A no more than m—1 times

nimnn

k counts the nodes which fire at least once and this number

can not be less than 1.

mimnn

for k in range(max([a,l]) ,m-1):
for j in range(d,int(n/2) + 1):

nnn

as we can fire from the set A to set B mo more than n—1 times.

Here we count nodes which fired 2 times

nmnn

for i in range(max(|b,j]),n—j):
cond_1 = set_A[l]|[1]+ 1 + j < 2#n
cond_2 = set_A[k|[1]+ 1 + j < n
cond_3 = set_BJ[j][1]+ 1 + k < 2xm
cond_4 = set_B|i|[l]+ 1 + k <m
if cond 1 and cond 2 and cond 3 and cond 4:

46

CEU eTD Collection

return True, (k,1,i,j)

return False

mmnn

This function assign for the given parameter True or False
depending on input. If input is not 'y’ or ’'n’ then it gives
an opportunity to re—enter it again or just leave the program.

nimnn

def input data(input_ parameter):

while True:

Y0

if input parameter — ’y
input _parameter = True
break

elif input parameter — 'n’:
input parameter = False
break

else:

input parameter = input("Try_again...only_|y/n]_\
uuuuuuuuuuuuuuuu or_Enter_to_quit:")
if not input parameter:
sys.exit ()

return input parameter

nimnn

We assign number of nodes in the bottom and upper sets

of a graph. Also we are asked if we need the visualisation
of the game. We can automatically assign number of chips or
do 1t manually. We can automatically set up a configuration

or also do it manually.

nimnn

m = int (input ("How_many_nodes_in_a_bottom_set_of_a_\
complete_bipartite_graph?_"))

number of nodes in the bottom set

n = int (input ("How_many_nodes_in_a_upper_set _of_a_\
complete_bipartite_graph?_"))

number of nodes in the upper set

47

CEU eTD Collection

G = nx.complete bipartite graph(m, n)

bottom nodes, top nodes = nx.bipartite.sets (G)

number of edges = mxn

visualisation = input("Do_you_need_visualisation ,_|y/n|?_")
visualisation = input_ data(visualisation)
automatically = input(’Do_you_want_automatically _assign_\

number_of_chips_[y/n]?_")

automatically = input_data(automatically)

mimn

number of chips for game be possibly infinite or finite

the interval

mimnn

lower bound = number_ of edges
upper _bound = 2xlower bound — (mfn)

print (lower bound ,upper bound)

if automatically:
N chips = random.randint (lower bound, upper bound)
print ("N _chips_=_", N _chips)

else:
N chips = int (input("Type_the_number_of_chips_as_\

—e_.positive_integer_in_the_above_range_=_"))

configuration = input(’Do_you_want_automatically _\
arrange_chips_on_each_node_|y/n|?_")

configuration = input data(configuration)

if configuration:

set _up_ of chips(N_chips,G,n+m)
else:

for i in G.nodes():

if i[0] <m:

G.node[i||"chips"| = int (input("number_of_chips_\

48

CEU eTD Collection

el el el d ol Nl el d el Nk

on_the_node_{},_set _A:_" . format(i)))

G.node[i]|["chips"] = int (input("number_of_chips_\
on_the_node_{},_set _B:_".format(i)))

el el el ol ol Nl Nl d d el

lower bound — number of edges
upper_bound = 2xlower_bound — (mfn)
print ((lower bound ,upper_ bound))

#Here we check two criteria and the game on finiteness.
first criteria(list(chips.values()))
second criteria (G)

print (game (G, visual = visualisation))

49

	Physical approach of the game
	The Abelian Sandpile Model

	Chip-firing game on undirected graphs
	The chip-firing game
	The finitness of the game

	Chip-firing game on complete and complete bipartite graphs
	The chip-firing game on complete graph
	Computational time of the game

	Chip-firing game on complete bipartite graph

	Python code for chip-firing game on complete graph
	Python code for chip-firing game on complete bipartite graph

