
On Relational Extensions and Successive
Approximation Operators of Rough Set

Theory

by

Alexa Gopaulsingh

Submitted to Central European University

In partial fulfillment of the requirements for the degree of Doctor of

Philosophy in Mathematics and its Applications

Supervisor: László Csirmaz

Budapest, Hungary

2016

C
E

U
eT

D
C

ol
le

ct
io

n



ii

C
E

U
eT

D
C

ol
le

ct
io

n



iii

C
E

U
eT

D
C

ol
le

ct
io

n



C
E

U
eT

D
C

ol
le

ct
io

n



I, the undersigned [Alexa Gopaulsingh], candidate for the degree of Doctor of Philosophy
in Mathematics and its Applications at the Central European University, Mathematics
and its Applications, declare herewith that the present thesis is exclusively my own work,
based on my research and contains only such external information as properly credited
in notes and bibliography. I declare that no unidentified and illegitimate use was made
of the work of others, and no part of this thesis infringes on any person’s or institution’s
copyright. I also declare that no part of this thesis has been submitted in this form to
any other institution of higher education for an academic degree.

Budapest, 15 November 2017

—————————————————
Signature

c© by Alexa Gopaulsingh, 2016

All Rights Reserved.

v

C
E

U
eT

D
C

ol
le

ct
io

n



C
E

U
eT

D
C

ol
le

ct
io

n



Acknowledgements

I would like to deeply thank all of my family. My parents, Dawne Gopaulsingh and

Ian Gopaulsingh who has always fully encouraged and supported me. My brothers

Jonathan Gopaulsingh and Adrian Gopaulsingh who gave me the very quick com-

puter which I did this thesis on. I would also like to express my gratefulness for my

grandmother Lucille Ali and my beloved late aunt, Theresa Lygeia Ali. Without you

all I would not be who I am or where I am today.

I would also like to thank the wider circle of friends and people who have helped, in

some form or another, along the way.

I am greatly indebted to my former professor , Prof. E.J. Farrell, from whom I

learnt so much. I would also like very much like to thank my country, Trinidad and

Tobago for funding me.

I am also very grateful to my current supervisor, Prof. László Csirmaz for his

wisdom and patience and for the innumerable things I learnt from him as well.

Last but not least, I would like to thank my Hungarian family. I am very grateful

for my mother-in-law, Judit Környei , who treats me like her own daughter. To my

very loving and supportive husband, Marcell, and to my wonderful and amazing lit-

tle daughter, Penni, I would like to express my deep love and thankfulness. You guys

have brought such joy and happiness into my life and I thank you very much for your

enthusiastic support and love during my research and in general.

vii

C
E

U
eT

D
C

ol
le

ct
io

n



C
E

U
eT

D
C

ol
le

ct
io

n



To Aunty Lygeia...

ix

C
E

U
eT

D
C

ol
le

ct
io

n



C
E

U
eT

D
C

ol
le

ct
io

n



Abstract

We investigate non-dual relational generalisations of rough sets and find a generalisa-

tion which satisfies many nice properties. Additionally, we work out some consequences

of relativised indistinguishability using graphs. Lastly, we consider successive double ap-

proximations, L2L1, U2U1, U2L1, L2U1 based on two equivalence relations on a set V. We

consider the case of these operators being given defined on P(V ) and ask if we can re-

construct the equivalence relations which they may be based on. Directly related to this,

is the question of when there are unique solutions to a given defined operator and the

existence of conditions which may characterise this case. We find and prove these char-

acterising conditions that equivalence relation pairs should satisfy in order to generate

unique operators.

xi

C
E

U
eT

D
C

ol
le

ct
io

n



xii

C
E

U
eT

D
C

ol
le

ct
io

n



Table of Contents

1 Introduction 1

2 Relational Extensions of Rough Sets 7

2.1 Relational Generalisations . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Pawlak’s Rough Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 List of properties satisfied by Rough Sets based

on Equivalence Relations . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Reducts, Core, Dependencies and Decision Rules . . . . . . . . . 10

2.2.3 Partial Dependencies in Knowledge Bases . . . . . . . . . . . . . 12

2.3 Standard Dual Relational Generalisation of

Rough Set Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Non-Dual Relational Generalisation of Rough

Set Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Applications of the Non-Dual Relational Generalisation . . . . . . 19

3 Relativised Indistinguishability Relations using Graphs 21

3.1 Graph-theoretic terminology . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Approximating by Relativised

Indistinguishability Relations . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Extensions of Relativised Indistinguishability

Relations in Hypergraphs . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 Indistinguishability on Real Numbers . . . . . . . . . . . . . . . . 43

3.2.3 Discussion of Vagueness in Models . . . . . . . . . . . . . . . . . 46

xiii

C
E

U
eT

D
C

ol
le

ct
io

n



4 Successive Approximations 49

4.1 Properties of Successive Approximations . . . . . . . . . . . . . . . . . . 50

4.2 Decomposing L2L1 Approximations . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Characterising Unique Solutions . . . . . . . . . . . . . . . . . . . 61

4.2.2 A Derived Preclusive Relation and a Notion of

Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.3 Seeing One Equivalence Relation through Another . . . . . . . . . 68

4.3 Decomposing U2U1 Approximations . . . . . . . . . . . . . . . . . . . . . 70

4.3.1 Characterising Unique Solutions . . . . . . . . . . . . . . . . . . . 71

4.4 Decomposing U2L1 Approximations . . . . . . . . . . . . . . . . . . . . . 71

4.4.1 Characterising Unique Solutions . . . . . . . . . . . . . . . . . . . 75

4.5 Decomposing L2U1 Approximations . . . . . . . . . . . . . . . . . . . . . 76

4.5.1 Characterising Unique Solutions . . . . . . . . . . . . . . . . . . . 77

Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Bibliography 79

xiv

C
E

U
eT

D
C

ol
le

ct
io

n



Chapter 1

Introduction

Rough Set Theory was introduced by Pawlak in the early 1980s, see [59], partially mo-

tivated by the desire to organise medical databases, see [53]. Most areas and regions of

mathematics, if used as tools for modelling real-world data, are better suited to model

data which fits precisely into some definition or categories. Exceptions to this are prob-

abilistic modelling, fuzzy modelling and modelling based on many-valued logics. Rough

set theory has been relatively recently added to this list. Hence, in hindsight it is per-

haps not so surprising that rough set theory has natural connections to probability theory

[97, 102, 109, 88], fuzzy sets [60, 90, 92, 47, 68, 26] and many-valued logics [5, 25, 6, 57, 21]

and indeed much more.

Rough set approximations explicitly takes into account that some objects under one’s

consideration may not neatly fit into the categories which one may be using. In this case,

we try to give the best categorical approximations to the objects in the form of two approx-

imations: a lower approximation and an upper approximation. Conceptually, the idea

may be viewed as this: Given an object which does not fit into the template/structures

which we can see, which is the closest structure(s) to it? Perhaps the largest structure

smaller than it or the smallest structure larger than it if these exist and we have a co-

herent notion of larger and smaller which satisfies a certain order type. This is related

to the way of viewing it in [98] where definability is given as a primitive notion and then

the notions of rough set approximations fall out naturally from it. Here, we may consider

1

C
E

U
eT

D
C

ol
le

ct
io

n



a set theoretical set-up and a definable set of sets which obey some closure operations.

Then the lower approximation of a given set is the largest definable set contained in it

and the upper approximation is the smallest definable set which it is contained in. These

approximations also very naturally relate to the topological notions of an interior and

closure of a set under some topology. Hence, this motivates many natural topological

connections and generalisations [46, 42, 89, 72, 106, 70]. Rough sets also provide an ex-

cellent modelling tool for vagueness, see [15, 13, 87, 8, 75] and relatedly there are rough

set extensions via similarity relations see [2, 1, 64, 91, 40].

Rough set formalisation usually includes a set equipped with an equivalence relation

defined on it. Elements in an equivalence class are seen as indistinguishable. Informally

speaking, under this interpretation, these elements should always ‘occur’ together. Hence,

when presented with a subset of the domain one can say that the elements whose equiv-

alence classes are contained in the set are surely in the set while elements for which their

equivalence class is only partly contained in the set, are possibly in the set (also elements

whose equivalence class are completely outside of the set are surely not contained in the

set). This motivates a modal interpretation of rough sets and thus there are many studies

in this direction, see [100, 80, 85, 51, 45].

There are different but equivalent ways to define rough set approximations which

lead to non-equivalent rough set extensions. In [96], Yao gives three of these definitions.

They are; an element based definition, a granule based definition and a subsystem based

definition. Let V be a finite set and E be an equivalence relation on V. For x ∈ V, let [x]E

be an equivalence class of x in E. Also, let σ(E) be the set containing the equivalence

classes of E and the empty set which is closed under taking unions. Then, for X ⊆ V,

the lower approximation and upper approximation of X with respect to E are denoted

by lE(X) and uE(X) respectively. For the element based definition, an element v is in

lE(X) iff all elements in its equivalence class are in X and v is in uE(X) iff at least one

of the elements in its equivalence class is in X. In the granule based definition, lE(X) is

the union of equivalence classes of elements whose equivalence classes are contained in X

while uE(X) is the union of equivalence classes which has non-empty intersection with

2

C
E

U
eT

D
C

ol
le

ct
io

n



X. In the subsystem based definition, lE(X) is the largest set in σ(E) which is contained

in X, while uE(X) is the smallest set in σ(E) which contains X. The element based

definition inspires modal extensions, the granule based definition inspires extensions in

granular computing see [54, 49, 48, 11, 81] and the subsystem definition inspires extensions

in closure systems and algebra, see [19, 18, 9, 7, 67]. In [16], Cattaneo discusses what

conditions should be met for generalised operators to rightly be considered upper and

lower approximations and he compares the tightness of different generalisations. In [28],

Düntsch showed that rough set approximations form a regular double Stone algebra.

Hence we see that the perspectives of different definitions of rough set approximations

motivates many different extensions and directions. This shows the richness of the rough

set formulation in that it has non-trivial interpretations in so many areas of mathemat-

ics. Therefore, it is conceptually very general yet has enough non-trivial content to be

useful. Thus it can provide a unifying perspective on some diverse areas of mathemat-

ics. It is also related to left and right adjoints of Galois connections, see [71]. More

generally in this direction, there has also been studies of rough sets in category theory,

see [44, 50]. This is not to say that rough set theory is without foundational issues. In

[10], Chakraborty and Banerjee discuss issues about rough sets with respect to language

dependency and the problem of the referent and the background/context within which

rough set approximations are defined.

In the above preface, we have touched upon the theoretical formulation of rough set

theory but it also has tremendous practical applications. This comes from the calculation

of reducts and decision rules for data. The data is mined to extract decision rules of

manageable size (i.e. attribute reduction) so predictions can be made. It has been

argued that rough set theory can be used to make decisions on the data in the absence

of major prior assumptions in [63]. From this perspective, it is perhaps not so surprising

that this leads to an explosion of applications. Hence rough set analysis adds to the tools

of Bayes’ Theorem and regression analysis for feature selection and pattern recognition

in data mining [?, 103, 37, 104, 79, 27, 73, 78]. Applications include in medical databases

[84, 83, 82, 35, 36, 39, 41], artificial intelligence and machine learning [52, 38, 34, 33, 86,

3

C
E

U
eT

D
C

ol
le

ct
io

n



62, 76], engineering [3, 4, 12, 66, 65] and cognitive science [56, 43, 69, 58, 101]. In fact,

it has been argued by Yao in [99] that there is an imbalance in the literature of rough

sets between the conceptual development of the theory and the practical computational

development. Here, he claims that the computational literature now far outweigh the

conceptual theoretical literature and that it would be useful for the field if this imbalance

were somewhat corrected. He started his suggestion in [99] where he gave a conceptual

example of reducts which unify three different looking reduct definitions used in the

literature. We agree that more work of this type would be helpful in organising and

making a more coherent map of the huge mass of rough set literature which is present.

Partly for this reason and partly to aid motivation, a conceptual translation or possible

interpretation of results are sometimes provided, for example in Section 4.2.3 in Chapter

4.

This thesis is separated into three main parts. The first part in Chapter 2 deals

with relational extensions. There are many such investigations in the literature, see

[100, 31, 108, 29, 105, 107, 95, 93]. In [32], they define rough set approximations outlining

the possibilities of using successor and predecessor sets. Here, we formulate non-dual

relational extensions which uses successor and predecessor sets together and work out

features of this definition and compare it to a standard definition given in the literature.

We then apply this definition to answer a question posed in [74]. At the end of this

chapter, we document a special non-dual extension of rough sets which interestingly

satisfies almost all of the usual rough set properties except for duality.

In Chapter 3, we investigate different indistinguishability notions. We extend work

from [22] which considers rough set approximations on graphs. Essentially, one can

consider a graph as a relation on the nodes and one can form an equivalence relation on

the nodes from this relation based on indistinguishability via the relation. Moreover, one

can form relativised indistinguishability equivalence relations with respect to subsets of

the nodes instead of the full node set. In [22], Chiaselotti et al formulate this setup and

here we develop some consequences of it. We compare the indistinguishability of nodes

of a graph between different relativised indistinguishability relations. Furthermore, we

4

C
E

U
eT

D
C

ol
le

ct
io

n



briefly extend the formulation to the hypergraph setting and provide an application via

a database interpretation which suggests that further studies in this direction may be

worthwhile. Lastly, we found a nice equivalence to Cantor’s Diagonal Theorem which

is related to indistinguishability and discuss the possible related effects of vagueness on

models.

In Chapter 4, we will consider approximating a set successively with two, in general

different, equivalence relations. Let V be a set and E1 and E2 be equivalence relations

on V with L1, U1 and L2, U2 being their respective upper and lower approximations.

Let X ⊆ V, we will consider the cases of X first being approximated by L1 and then L2,

denoting this operation by L2L1(X). We consider the setup of having the outputs of all

the elements of P(V ) and then the question becomes, can we decompose E1 and E2 from

it? Will it have a unique (E1, E2) solution or will other pairs of equivalence relations

produce the same output of L2L1 on P(V )? We will find that the answer is that in some

cases it does and in some cases it does not. So the next question becomes, are there

conditions which characterise pairs of equivalence relations which give unique solutions?

We will find these conditions and prove the characterisation. Next, we notice that unique

pairs give rise to a preclusive relation. In [17], Cattaneo and Ciucci found that preclusive

relations are quite useful for using rough approximations in information systems. This

will lead us to define a related notion of independence of equivalence relations from it.

Then, we will prove equivalent conditions of two of the four characterising conditions

which are more conceptual. The first version of those conditions, while less illuminating,

are easier to use in practice. This will lead us to an elegant conceptual translation of all

the conditions. Lastly, we will consider the cases of the remaining operators, U2U1, U2L1

and L2U1. We note that the L2L1 and U2U1 cases are dual to each other and similarly

for the U2L1 and L2U1 cases.

5

C
E

U
eT

D
C

ol
le

ct
io

n



6

C
E

U
eT

D
C

ol
le

ct
io

n



Chapter 2

Relational Extensions of Rough

Sets

2.1 Relational Generalisations

Given the definition of rough sets, it is natural to ask what happens if we relax the

equivalence relation to an arbitrary relation or other special relation. This has been

well studied in the literature, see [100, 31, 108, 29, 105, 107, 95, 93]. In Section 2.2

we will recall a standard relational generalisation and compare properties which special

relations satisfy under this generalisation. We will use a table similar to one in [74] and

from it, one can obtain three characterising properties of reflexive relations, symmetric

relations and transitive relations each. In [93], Yao did work which, though not directly

stated, essentially implies these three propositions using operator theory. So, here we

mention them so they can be seen directly in this simple form and also for comparison

purposes with Section 2.3. Then we give brief, direct proofs which does not use operator

terminology.

Next, we will observe that when generalising from rough sets based on equivalence

relations to general relations, in the literature one usually sees either predecessor sets

for both approximations or more commonly successor sets for both approximations. The

approximation properties with predecessor and successor sets has been combinatorically

7

C
E

U
eT

D
C

ol
le

ct
io

n



mentioned in [32] and well as [95]. In [95], Yao also groups lower and upper approxi-

mations together which uses both predecessor sets each or successor sets each or which

uses both each. He made these pairs most probably because they form dual operators as

such. In Section 2.2, we show that if we are willing to give up duality, and combine a

lower approximation which uses successor sets and an upper approximation which uses

predecessor sets, we can find a generalisation which pretty much satisfies everything else

except for duality, for pre-order (reflexive and transitive) relations. Here too, we con-

struct a table and find a characterising property of transitive relations. From comparison

between the two tables, we will see that none of the rough set generalisations along the

special relations examined in the first table, satisfies so many properties as the pre-order

generalisation of the non-dual extension in the second table. We believe that this makes

this form of generalisation, and more specially the pre-order case of it, worthy of further

consideration. In this direction, we will give two uses of this generalisation. One is that

a covering operator mentioned in [74] is a special case of this operator, which explains

why Samanta and Chakraborty noticed that it satisfied so many rough set properties and

they remarked that it should be investigated further. Here, we see the reason for that

well-behaved operator by placing it in this more general context. Lastly we, will give an

example of a logical interpretation of this operator which shows that results about it can

be nicely transferred to other areas.

2.2 Pawlak’s Rough Sets

We recall some definitions and basic notions of rough sets which can be found in [59].

Let V be a finite non-empty set and E be an equivalence relation on V . Let V/E denote

the set of equivalence classes of E. A set X ⊆ V is said to be E-exact if it is equal to a

union of some of the equivalence classes of E. If X cannot be represented in this way,

it is said to be E-inexact or E-rough or simply rough if the equivalence relation under

consideration is clear. In this case, we may approximate it with two exact sets, the lower

and upper approximations respectively as defined below:

8

C
E

U
eT

D
C

ol
le

ct
io

n



lE(X) = {x ∈ V | [x]E ⊆ X},

uE(X) = {x ∈ V | [x]E ∩X 6= ∅}. (2.1)

Equivalently, instead of a pointwise definition we may use a granule based definition:

lE(X) = ⋃{Y ∈ V/E | Y ⊆ X},

uE(X) =
⋃
{Y ∈ V/E | Y ∩X 6= ∅}. (2.2)

The pair (V,E) is known as an approximation space.

Many times, several equivalence relations are considered over on set. A knowledge

base, K = (V,E) is defined with E being a family of equivalence relation over V . If

P ⊆ E, the ⋂P is an equivalence relation as well. The intersection of all equivalence rela-

tions belonging to P is denoted by IND(P) = ⋂
P. This is known as the indiscernibility

relation over P.

For two equivalence relations E1 and E2, we say that E1 ≤ E2 iff E1 ⊆ E2. In this case

we say that E1 is finer than E2 or that E2 is coarser than E1.

We recall from [61] some definitions about different types of roughly definable and unde-

finable sets. Let V be a set then for X ⊆ V :

(i) If lE(X) 6= ∅ and uE(X) 6= V, then X is called roughly E-definable.

(ii) If lE(X) = ∅ and uE(X) 6= V, then X is called internally roughly E-undefinable.

(iii) If lE(X) 6= ∅ and uE(X) = V, then X is called externally roughly E-definable.

(iv) If lE(X) = ∅ and uE(X) = V, then X is called totally roughly E-definable.

9

C
E

U
eT

D
C

ol
le

ct
io

n



2.2.1 List of properties satisfied by Rough Sets based

on Equivalence Relations

In Pawlak’s book, see [61], he lists these properties of rough sets based on equivalence

relations which we repeat here. Let V be the domain of discourse and X, Y ⊆ V . Then,

the following holds:

1)lE(X) ⊆ X ⊆ uE(X),

2)lE(∅) = uE(∅) = ∅; lE(V ) = uE(V ) = V,

3)uE(X ∪ Y ) = uE(X) ∪ uE(Y ),

4)lE(X ∩ Y ) = lE(X) ∩ lE(Y ),

5)X ⊆ Y ⇒ lE(X) ⊆ lE(Y ),

6)X ⊆ Y ⇒ uE(X) ⊆ uE(Y ),

7)lE(X ∪ Y ) ⊇ lE(X) ∪ lE(Y ),

8)uE(X ∩ Y ) ⊇ uE(X) ∩ uE(Y ),

9)lE(−X) = −uE(X),

10)uE(−X) = −lE(X),

11)lE(lE(X)) = uE(lE(X)) = lE(X),

12)uE(uE(X)) = lE(uE(X)) = uE(X).

2.2.2 Reducts, Core, Dependencies and Decision Rules

A database can also be represented in the form of a matrix of Objects versus Attributes

with the entry corresponding to an object attribute pair being assigned the value of

that attribute which the object satisfies. From the following definition, we can form

equivalence relations on the objects for each given attribute. The set of these equivalence

relations can then be used as our knowledge base.

Definition 2.2.1. Let V be the set of objects and P be the set of attributes. Let Q ⊆ P ,

then V/Q is an equivalence relation on U induced by Q as follows: x ∼Q y iff q(x) = q(y)

for every q ∈ Q.

10

C
E

U
eT

D
C

ol
le

ct
io

n



To construct decision rules, we may fix two sets of attributes called condition attributes

and decision attributes denoted by C and D respectively. We then use these to make

predictions of the decision attributes based on the condition attributes. Decision rules

are made by recording which values of decision attributes correlate with which values of

condition attributes. As this information can be of considerable size, one of the primary

goals of rough set theory is to reduce the number of condition attributes without losing

predictive power. A minimal set of attributes which contains the same predictive power

as the full set of decision attributes is called a reduct with respect to D.

The following definition compares how much one equivalence relation is consistent with

another.

Definition 2.2.2. Let V be a finite non-empty set and let C and D be equivalence rela-

tions on V. The positive region of the partition D with respect to C is given by,

POSC(D) =
⋃

X∈D

lC(X), (2.3)

Definition 2.2.3. We say the D depends on C in a degree k, where 0 ≤ k ≤ 1, denoted

by C ⇒k D, if

k = γ(C,D) = |POSC(D)|
|V |

. (2.4)

When k = 1, we simply note that C depends totally on D i.e C ⇒ D.

Definition 2.2.4. Let IND(C) = ⋂
C∈C

V/C and IND(D) = ⋂
D∈D

V/D where, C and D are

sets of decision and condition attributes respectively. We say that C1 ⊆ C is a D-reduct

of C if C1 is a minimal subset of C such that,

γ(IND(C), IND(D)) = γ(IND(C1), IND(D)) (2.5)

where IND(C1) = ⋂
C∈C1

V/C.

Definition 2.2.5. The intersection of all D-reducts is called the D-core.

We observe that none of the elements of the core can be removed without affecting the

classification power of the attributes.

11

C
E

U
eT

D
C

ol
le

ct
io

n



2.2.3 Partial Dependencies in Knowledge Bases

Let K1 = (V,P) and K2 = (V,Q). We now give the definitions dependency of knowledge

and then partial dependency. We say that Q depends on P i.e. P ⇒ Q iff IND(P) ⊆

IND(Q).

Proposition 2.2.1. IIND(P) ≤ IIND(Q) iff P⇒ Q.

Proposition 2.2.2. POSIND(P)IND((Q)) = U iff P⇒ Q.

Otherwise, in the above case, γ(IND(P), IND(Q)) = k < 1 and then we say that P⇒k Q.

2.3 Standard Dual Relational Generalisation of

Rough Set Approximations

In the literature, for example in [94], relational extension of rough sets for an arbitrary

binary relation were investigated. In [94], Yao defined such a generalisation as follows:

Let R be a binary relation on a set V i.e. R ⊆ V × V. First, the notion of a successor

neighbourhood of an element x ∈ V, Rs(x) was defined as follows:

Rs(x) = {y ∈ V | xRy} (2.6)

This was then used to define the corresponding notion of lower and upper approximation

operators as below. We will use similar notation as in Section 1.2 but note that the

subscript here can be any relation not just an equivalence relation. For X ⊆ V we have:

lR(X) = {x | Rs(x) ⊆ X}

uR(X) = {x | Rs(x) ∩X 6= ∅} (2.7)

In the Table 2.1, we enlist the properties that different special relations may satisfy.

A similar such table was given in [74] and we use it here for comparison with the non-dual

relational generalisation examined in the following section. This is a table of properties

12

C
E

U
eT

D
C

ol
le

ct
io

n



R Rr Rs Rt Rrs Rrt Rst Rrst Rser

1. Duality of lR(X), uR(X) 3 3 3 3 3 3 3 3 3

2. lR(∅) = ∅ 5 3 5 5 3 3 5 3 3

3. ∅ = uR(∅) 3 3 3 3 3 3 3 3 3

4. lR(V ) = V 3 3 3 3 3 3 3 3 3

5. uR(V ) = V 5 3 5 5 3 3 5 3 3

6. lR(X) ⊆ X 5 3 5 5 3 3 5 3 5

7. X ⊆ uR(X) 5 3 5 5 3 3 5 3 5

8. X ⊆ Y ⇒ lR(X) ⊆ lR(Y ) 3 3 3 3 3 3 3 3 3

9. X ⊆ Y ⇒ uR(X) ⊆ uR(Y ) 3 3 3 3 3 3 3 3 3

10. uR(X ∪ Y ) = uR(X) ∪ uR(Y ) 3 3 3 3 3 3 3 3 3

11. lR(X ∩ Y ) = lR(X) ∩ lR(Y ) 3 3 3 3 3 3 3 3 3

12. lR(X ∪ Y ) ⊇ lR(X) ∪ lR(Y ) 3 3 3 3 3 3 3 3 3

13. uR(X ∩ Y ) ⊇ uR(X) ∩ uR(Y ) 3 3 3 3 3 3 3 3 3

14. lR(lR(X)) ⊆ lR(X) 5 3 5 5 3 3 5 3 5

15. lR(lR(X)) ⊇ lR(X) 5 5 5 5 5 3 5 3 5

16. uR(lR(X)) ⊆ lR(X) 5 5 5 5 5 5 5 3 5

17. uR(lR(X)) ⊇ lR(X) 5 3 5 5 3 3 5 3 5

18. uR(uR(X)) ⊆ uR(X) 5 5 5 3 5 3 3 3 5

19. uR(uR(X)) ⊇ uR(X) 5 3 5 5 3 3 5 3 5

20. lR(uR(X)) ⊆ uR(X) 5 3 5 5 3 3 5 3 5

21. uR(X) ⊆ lR(uR(X)) 5 5 5 5 5 5 5 3 5

22. X ⊆ lR(uR(X)) 5 5 3 5 3 5 3 3 5

23. uR(lR(X)) ⊆ X 5 5 3 5 3 5 3 3 5

Table 2.1: Properties satisfied by the general approximation operators for different special
relations

versus different types of relations. A box is marked with a tick if all relations of the type

corresponding to its column satisfies the property stated in its row and is marked with a

cross otherwise. Different properties follow for different special relations. Let r, s, t, be

subscripts which denote when a relation is reflexive, symmetric and transitive respectively

and their combinations denote the conjunction of these properties. Let the subscript ser

denote a serial relation i.e. a relation in which every element has a successor.

We note that if a property is satisfied by any general relation, i.e. there is a tick in

the first column, then the full row corresponding to that property is ticked. Also, if for

example, if some property is satisfied by a reflexive relation i.e. Rr ticked then we can

immediately deduce that Rrs, Rrt, and Rrst should be ticked. Similarly, for other special

relations. So, often only the first few boxes of a row needs to be figured out before the

whole row can be deduced. For example, consider the case of uR(uR(X)) ⊆ uR(X) in

13

C
E

U
eT

D
C

ol
le

ct
io

n



the 18th row and the Rt column, i.e for a transitive relation. We now briefly prove this.

Suppose that x ∈ uR(uR(X)), i.e. Rs(x)∩uR(X) 6= ∅. Let v be in this intersection. Then

v ∈ Rs(x) and Rs(v) ∩ X 6= ∅. So let t ∈ Rs(v) ∩ X. Since R is transitive then we also

have that t ∈ Rs(x). Hence, t ∈ Rs(x) ∩ X and Rs(x) ∩ X 6= ∅. Therefore, x ∈ uR(X)

and uR(uR(X)) ⊆ uR(X). It follows that boxes corresponding to Rt, Rrt, Rst and Rrst

are ticked. Counter-example cases can be made for the boxes marked with a cross. We

note that not all the rows are independent. For example, lR(lR(X)) ⊆ lR(X) in the 14th

row is a special case of lR(X) ⊆ X in the 6th row. However, we wanted to include both

sides of the idempotent equation, consisting of rows 14 and 15, so the complete picture

is easier to see. Similar considerations go for the rest of the table.

Examining Table 2.1, we observe a few things. Duality, property 1. as well as prop-

erties, 2, 3, 8-13 hold for arbitrary relations. The table also hints at the upcoming 3

propositions. In rows 6, 23 and 18, we see properties which hold for reflexive (but not

symmetric and transitive), symmetric (but not reflexive and transitive) and transitive

(but not reflexive and symmetric relations) respectively. Forming the table helps to see

what possibilities would be promising to try to see if it holds both ways and it can be seen

that not only do properties 6, 18. and 23. imply that a relation is reflexive, symmetric

and transitive respectively but that the converses hold as well. In the [93] paper, these

propositions can be deduced from examinations of algebraic operators. Here, we give

brief direct proofs of them and in the next section we will compare these results with

what can be obtained for the case of the non-dual generalisation examined.

Proposition 2.3.1. Let V be a set and R a relation on V. Then lR(X) ⊆ X for all

X ⊆ V iff R is reflexive.

Proof. ⇐ is straightforward so we prove the converse. We prove it by the contrapositive.

Suppose that R is not reflexive. Then there exists a witness x ∈ V such that (x, x) 6∈ R.

Consider the set Y = Rs(x). Now by definition x ∈ lR(Y ) but by assumption x 6∈ Y.

Hence lR(Y ) 6⊆ Y.

Remark 2.3.1 In [105], Zhu also noted the above proposition for characterising approxi-

14

C
E

U
eT

D
C

ol
le

ct
io

n



mations for reflexive relations as well as another proposition which characterises reflexive

approximations using property 5. in the Table 2.1 instead of property 4.

Proposition 2.3.2. Let V be a set and R a relation on V. Then uR(lR(X)) ⊆ X for all

X ⊆ V iff R is symmetric.

Proof. ⇐ is straightforward so we prove the converse. We prove it by the contrapositive.

Suppose that R is not symmetric. Then there exits witnesses x, y ∈ V such that (x, y) ∈ R

but (y, x) 6∈ R. Consider the set Y = Rs(y). By definition we have that y ∈ lR(Y ). Since

(x, y) ∈ R then x ∈ uR(lR(Y )) and since (y, x) 6∈ R then x is not in Y. Therefore,

uR(lR(Y )) 6⊆ Y. Hence the result.

Proposition 2.3.3. Let V be a set and R a relation on V. Then uR(uR(X)) ⊆ uR(X)

for all X ⊆ V iff R is transitive.

Proof. ⇐ is straightforward so we prove the converse. We prove it by the contrapositive.

Suppose that R is not transitive. Then there exists witnesses x, y and z ∈ V such that

(x, y), (y, z) ∈ R but (x, z) 6∈ R. Consider the set Z = {z}. Then uR(Z) contains y and

hence uR(uR(Z)) contains x but since (x, z) 6∈ R, x is not in uR(Z). Hence uR(uR(Z) 6⊆

uR(Z). The result follows.

Theorem 2.3.1. Let R be a relation on a set V. For all X ⊆ V , then

(i) lR(X) ⊆ X,

(ii) uR(lR(X)) ⊆ X and

(iii) uR(uR(X)) ⊆ uR(X).

all hold iff R is an equivalence relation.

Proof. This is an immediate corollary of Proposition 2.3.1, Proposition 2.3.2 and Propo-

sition 2.3.3.

Remark 2.3.2 We note that if we replace property (i) in the above theorem with the

property 5. from Table 2.1, namely X ⊆ uR(X), then we get a similar alternative theo-

rem.

15

C
E

U
eT

D
C

ol
le

ct
io

n



Remark 2.3.3 Sometimes even though the given relation is not an equivalence relation,

we may form an induced equivalence relation from the relation itself. The choice of

such an equivalence relation is not unique but a natural choice was mentioned in [94]

which relates elements which are indistinguishable under the given relation. That is, for

a relation R ⊆ V × V and A ⊆ V , we define:

x ∼ y iff Rs(x) = Rs(y). (2.8)

It is easy to see that ∼ is an equivalence relation. This is one way to apply the idea

of rough approximations for arbitrary relations on a set. We use the relation itself as a

source of knowledge (or attribute) about the given set and factor by indistinguishability

of the relation to give us our equivalence relation from which subsets of the domain can be

compared using the lower and upper approximation operators. In the next chapter, this

idea will be used and extended as there we not only consider indistinguishability with

respect to the full relation but we also consider different indistinguishability relations

relativised to subsets of the nodes i.e. with respect to part of the given relation.

2.4 Non-Dual Relational Generalisation of Rough

Set Approximations

Here we examine the properties of a non-dual coupling of lower and upper relational

approximations. Analogous to the definition given in equation (2.6), we now give the

definition of a predecessor neighbourhood of an element x ∈ V, Rp(x), as follows:

Rp(x) = {y ∈ U | yRx}. (2.9)

We will use the lower and upper approximation definitions as follows:

lR(X) = {x | Rs(x) ⊆ X}

uR(X) = {x | Rp(x) ∩X 6= ∅} (2.10)

To emphasize that this is a different upper approximation than the standard generali-

16

C
E

U
eT

D
C

ol
le

ct
io

n



R Rr Rs Rt Rrs Rrt Rst Rrst Rser

1. Duality of lR(X), uR(X) 5 5 3 5 3 5 3 3 5

2. lR(∅) = ∅ 5 3 5 5 3 3 5 3 3

3. ∅ = uR(∅) 3 3 3 3 3 3 3 3 3

4. lR(V ) = V 3 3 3 3 3 3 3 3 3

5. uR(V ) = V 5 3 5 5 3 3 5 3 5

6. lR(X) ⊆ X 5 3 5 5 3 3 5 3 5

7. X ⊆ uR(X) 5 3 5 5 3 3 5 3 5

8. X ⊆ Y ⇒ lR(X) ⊆ lR(Y ) 3 3 3 3 3 3 3 3 3

9. X ⊆ Y ⇒ uR(X) ⊆ uR(Y ) 3 3 3 3 3 3 3 3 3

10. uR(X ∪ Y ) = uR(X) ∪ uR(Y ) 3 3 3 3 3 3 3 3 3

11. lR(X ∩ Y ) = lR(X) ∩ lR(Y ) 3 3 3 3 3 3 3 3 3

12. lR(X ∪ Y ) ⊇ lR(X) ∪ lR(Y ) 3 3 3 3 3 3 3 3 3

13. uR(X ∩ Y ) ⊇ uR(X) ∩ uR(Y ) 3 3 3 3 3 3 3 3 3

14. lR(lR(X)) ⊆ lR(X) 5 3 5 5 3 3 5 3 5

15. lR(lR(X)) ⊇ lR(X) 5 5 5 5 5 3 5 3 5

16. uR(lR(X)) ⊆ lR(X) 5 5 5 3 5 3 5 3 5

17. uR(lR(X)) ⊇ lR(X) 5 3 5 5 3 3 5 3 5

18. uR(uR(X)) ⊆ uR(X) 5 5 5 3 5 3 3 3 5

19. uR(uR(X)) ⊇ uR(X) 5 3 5 5 3 3 5 3 5

20. lR(uR(X)) ⊆ uR(X) 5 3 5 5 3 3 5 3 5

21. lR(uR(X)) ⊇ uR(X) 5 5 5 3 5 3 3 3 5

22. X ⊆ lR(uR(X)) 3 3 3 3 3 3 3 3 3

23. uR(lR(X)) ⊆ X 3 3 3 3 3 3 3 3 3

Table 2.2: Properties satisfied by the alternative general approximation operators for
different special relations

sation, we use a different font to denote the upper approximation, uR. In this case, the

upper approximation of a set consists of all the successors of elements in that set instead

of all the predecessors of elements in that set as in the standard generalisation.

Different properties follow for different special relations. Again, let r, s, t be subscripts

which denote when a relation is reflexive, symmetric and transitive and respectively and

their combinations denote the conjunction of these properties. Also, let the subscript ser

a serial relation.

Consider Table 2.2. Like before, properties 3,4, 8-13 hold for arbitrary relations. How-

ever, here we see that duality, property 1. of the table does not hold for arbitrary relations

like it does for the standard relational generalisation. On the hand, X ⊆ lR(uR(X)) and

uR(lR(X)) ⊆ X, properties 22. and 23. respectively, does hold for arbitrary relations

unlike for the case of the standard relational generalisation. We can also see that the

17

C
E

U
eT

D
C

ol
le

ct
io

n



Rrst column, i.e. the column corresponding to an equivalence relation satisfies all of the

properties as expected. However, here there is another column of interest which we would

like to draw your attention to, namely the column corresponding to Rrt. This corresponds

to a pre-order and we observe that this satisfies all of the examined rough set properties

except the duality of the lower and upper approximation operators. This feature makes

it quite interesting and worthy of further consideration.

In Section 2.2, we mentioned characterising properties of the standard relational gener-

alisation which imply R is an equivalence relation. Here, we have characterising properties

of the non-dual relational generalisation which imply that R is a pre-order.

Proposition 2.4.1. Let V be a set and R a relation on V. Then uR(X) ⊆ lR(uR(X)) for

all X ⊆ V iff R is transitive.

Proof. ⇐ is straightforward so we prove the converse. We prove it by the contrapositive.

Suppose that R is not transitive. Then there exists witnesses x, y and z ∈ V such that

(x, y), (y, z) ∈ R but (x, z) 6∈ R. Consider the set Y = {x}. Then since (x, y) ∈ R, we

have that y ∈ uR(Y ) and since z is a successor of y but (x, z) 6∈ R then y 6∈ lR(uR(Y )).

Hence, uR(Y ) 6⊆ lR(uR(X)) and the result follows.

Theorem 2.4.1. Let R be a relation on a set V. For all X ⊆ V , then

(i) lR(X) ⊆ X and

(ii) uR(X) ⊆ lR(uR(X))

both hold iff R is a pre-order.

Proof. This is an immediate corollary of Proposition 2.3.1 and Proposition 2.4.1.

18

C
E

U
eT

D
C

ol
le

ct
io

n



2.4.1 Applications of the Non-Dual Relational Generalisation

More general context for a special operator satisfying almost all rough set

properties

An investigation suggested in [74] asked the question why a certain Ct operator defined in

that paper, satisfies so many properties of rough approximation operators based on equiv-

alence relations. Here, amongst other things, they considered covering generalisations of

rough sets and they defined the neighbourhood of an element x as all the intersection of

cover sets which contain x. That is:

Definition 2.4.1. Let C = {Ci : i ∈ I} be a covering of V . Then a neighbourhood of a

point x ∈ V is given by:

N(x) =
⋂
i∈I

{Ci ∈ C | x ∈ Ci}.

Now we recall from that paper, special lower and upper approximation operators, in their

notation, Ct and Ct, which satisfies all of their mentioned properties of approximation

operators based on equivalence relations, except duality. They mentioned that this made

this lower and upper approximation pair of operators worthy of further investigation.

Here, we show that their operator is a special case of the non-dual relational generalisation

which we examined in the previous section. First we recall their defined approximation

operators below:

Definition 2.4.2. Let V be the domain and for x ∈ V, a set D ⊆ V is said to be

definable if D = ⋃
x∈D

N(x). The collection of definable sets is denoted by, D = {D ⊆

V | D is definable}. The lower and upper approximation operators, Ct, Ct, respectively,

given in [74] are as follows:

Ct(X) =
⋃
{D ∈ D | D ⊆ X}

=
⋃
{N(x) | N(x) ⊆ X},

Ct(X) =
⋂
{D ⊆ D| X ⊆ D}

=
⋃
{N(x) | x ∈ X}.

(2.11)

19

C
E

U
eT

D
C

ol
le

ct
io

n



Next, we can see that definitions (2.11) of the lower and upper approximation operators

is of the same form as (2.10) of the non-dual generalisation if we take Rs(x) = N(x).

Observe that,

lR(X) = {x | Rs(x) ⊆ X}

=
⋃
{Rs(x) | Rs(x) ⊆ X},

uR(X) = {x | Rp(x) ∩X 6= ∅}

=
⋃
{Rs(x) | x ∈ X}.

(2.12)

We can observe that definition (2.11) looks similar to definition (2.10) with N(x) taking

the place of Rs(x). However, in general Rs(x) cannot be considered a neighbourhood of

x since we can show from Definition 2.4.1 that N(x) seen as a relation on V is reflexive

and transitive, i.e. a pre-order. When we consider the case of R being a pre-order, i.e.

Rrt, then we can set Rs(x) = N(x) as N(x) is a special case of a pre-order. Hence, we

can use Table 2.2 to see which properties hold. From the table we see that all of the

usual rough set operator properties except duality holds for Rrt. This accounts for the

observation of Samanta and Chakraborty in [74] that the operators, Ct and Ct satisfy all

of the rough set properties examined except duality. The reason is that, using the form

of approximation operators given in Equation (2.10), any pre-order would satisfy at least

those properties satisfied by Rrt in Table 2.2.

Interpreted Logical Connection

Consider the case of the pre-order relation being an implication relation on a set of propo-

sitions P say. Then, the lower approximation of a subset of P1 ⊆ P say, corresponds to the

union of maximal theories contained in P1, while the upper approximation corresponds

to the smallest theory which contains P1 i.e. its deductive closure.

20

C
E

U
eT

D
C

ol
le

ct
io

n



Chapter 3

Relativised Indistinguishability

Relations using Graphs

In this chapter we will study indistinguishability from many different perspectives. We

will mention several indistinguishability notions. Although each of these notions are

technically different because of the context in which they are used, they are nonetheless

related (behind each of them is essentially the idea in Leibniz’s Identity of Indiscernibles,

see [30]). In [22], Chiaselotti et al used rough set concepts for approximations in simple,

undirected graphs. We briefly go over their setup and results before extending it to the

case of undirected graphs with loops. In this case, we may view a graph as simply a

relation. Here, the edges can be seen as a relation given on a set of nodes. Indistin-

guishability by the relation is then defined to give an equivalence relation which is used

to compare subsets of the nodes by upper and lower approximations. The setup in [22]

goes further than this. They consider not only indistinguishability for the full relation

but indistinguishability relativised to any subset of the nodes, i.e. with respect to subsets

of the given relation.

Here, we compare the indistinguishability of vertices in a graph relativised to differ-

ent subsets. We will consider the equivalence classes of single nodes with respect to the

different relativised indistinguishability relations. Then, we examine the extremes of pos-

sibilities between the equivalence classes of two nodes such that they are always unequal

21

C
E

U
eT

D
C

ol
le

ct
io

n



for every relativised indistinguishability relation, with the exception of the equivalence

relation consisting of one class i.e. with respect to every non-empty subset of the nodes.

We see that this is possible only if the nodes are related to each other in an exactly

complementary way. That is, their neighbours partition the vertex set. Also, while it is

not possible for three nodes to be always pairwise distinguishable in this way, we will see

a construction under which three nodes are pairwise distinguishable for almost all of the

relativised relations. We will give the sharp bound for which this is possible.

Next, we list some relativised indistinguishability relation possibilities for hypergraphs

and show an application via an interpretation for a database suggesting that the hyper-

graph setting may be useful for empirical database modelling. Lastly, we notice an equiv-

alence of Cantor’s Diagonal Theorem which is connected to indistinguishability and give

a discussion of the effects that indistinguishability and vagueness may have on models.

3.1 Graph-theoretic terminology

Definition 3.1.1. A graph with possible loops G consists of a set of nodes or vertices

V (G) and a set of edges E(G) which is binary relation on V (G). It can be denoted as

G = (V (G), E(G)).

Definition 3.1.2. A subgraph H = (V (H), E(H)) of a graph G = (V (G), E(G)) is a

graph such that V (H) ⊆ V (G) and E(H) is a relation on V (H) such that E(H) ⊆ E(G).

Definition 3.1.3. Let G = (V (G), E(G)) be a graph. Then, the complement graph of G

is the graph on the same nodes as G but an edge e is in the complement graph of G iff it is

not in G.We denote this by G. That is, let Fl = V (G)×V (G) be the full cartesian product

on V (G) i.e., Fl consists of all pairs of nodes of G. Then, G = (V (G), F l−E(G)). Notice

that loopless nodes in a graph will have loops in the graph’s complement and vice versa.

We draw your attention to the difference between the notation for this and for set

complement. Let A be a set. The set-theoretic complement of A is denoted by A′.

Definition 3.1.4. A simple graph is one where identity pairs, i.e. where the co-ordinates

are the same node, are not allowed. Simple graphs are also called loopless graphs.

22

C
E

U
eT

D
C

ol
le

ct
io

n



Definition 3.1.5. Ki is the simple graph on i nodes which consists of each pair of distinct

nodes as an edge. These graphs are known as cliques or complete graphs.

Note that in the following section we will often use cliques with all the loops included.

Definition 3.1.6. A subset of the vertices of a graph is known as an independent set of

that graph iff there are no edges which consist of any two vertices of that set.

Definition 3.1.7. A bipartite graph is a graph whose vertex set can be partitioned into

two independent sets.

Definition 3.1.8. A n–partite graph is a graph whose vertex set can be partitioned into

n independent sets.

Definition 3.1.9. A complete bipartite graph is a n-partite graph which consists of all

possible edges between the two independent sets of vertices. If the size of the independent

sets are m and n, then this graph is denoted by Km,n.

Definition 3.1.10. A complete n–partite graph is a bipartite graph which consists of all

possible edges between each pair of the independent sets. If the size of the independent

sets are n1, n2, . . . nm then this graph is denoted by Kn1,n2...nm .

Definition 3.1.11. A path in a graph V (G) between two nodes x and y consists of a

sequence of edges (x, e1), (e1, e2) . . . (en, y) ∈ E(G) such that ei 6= ej for i 6= j.

Definition 3.1.12. A graph is connected if there is a path between any two vertices.

Definition 3.1.13. A component of a graph is a maximally connected subgraph.

Definition 3.1.14. Let G be a graph and let x ∈ V (G). Then NG(x) is the successor

neighbourhood of x defined by:

NG(x) = {y| xRy} = {y| (x, y) ∈ R}. (3.1)

When it is clear which graph we are referring to we may leave out the subscript.

23

C
E

U
eT

D
C

ol
le

ct
io

n



3.2 Approximating by Relativised

Indistinguishability Relations

In [22], Chiaselotti et al defined an equivalence relation , IG
A , taken with respect to a

subset A ⊆ V (G), induced on undirected loopless graphs. Here, we extended it to consider

graphs possibly with loops. For v, w ∈ V (G), we have (v, w) ∈ IG
A iffN(v)∩A = N(w)∩A.

That is, the neighbourhoods of v and w are A-indistinguishable. We also denote for

convenience IG
A as the set of the equivalence classes. The corresponding lower and upper

approximation operators are:

lIG
A

(Y ) = {v ∈ V (G) | [v]IG
A
⊆ Y },

uIG
A

(Y ) = {v ∈ V (G) | [v]IG
A
∩ Y 6= ∅}. (3.2)

When it is clear which graph we are referring to, we will write lIG
A
and uIG

A
simply as lA

and uA. We note then that the above are equivalent to the following:

lA(Y ) = {v ∈ V (G) | ∀u ∈ V (G), (NG(u) ∩ A = NG(v) ∩ A)⇒ u ∈ Y },

uA(Y ) = {v ∈ V (G) | ∃u ∈ Y : NG(u) ∩ A = NG(v) ∩ A}. (3.3)

The A-lower approximation of a set Y ⊆ V (G), contains vertices for which all A-

indistinguishable vertices from them, i.e. vertices with the same A-neighbourhood, are

contained in Y . The upper approximation of Y is the set of vertices each of which share

at least one A-connection with a vertex in Y . From the above characterisation they cal-

culated two results on the special cases of cliques (without loops) and complete graphs.

We repeat them below.

Proposition 3.2.1. Let G = Kn be the simple complete graph on n vertices. Let A and

Y be two non-empty subsets of V (G). Then,

(i) the A-lower approximation of Y is,

24

C
E

U
eT

D
C

ol
le

ct
io

n



lA(Y ) =


Y if A′ ⊆ Y

Y ∩ A otherwise.

(ii) the A-upper approximation of Y is,

uA(Y ) =


Y if Y ⊆ A

Y ∪ A′ otherwise.

(iii) Y is A-exact if and only if Y ⊆ A or Y ⊆ A′.

Proposition 3.2.2. Let Kp,q = (B1|B2) be a bipartite graph. Let A and Y be two non-

empty subsets of V = V (Kp,q) such that Y 6= V. Then, the lower and upper approximation

operators are independent of A and are as follows:

(i) the A-lower approximation of Y is,

lA(Y ) =


B1 if B1 ⊆ Y

B2 if B2 ⊆ Y

∅ otherwise.

(ii) the A-upper approximation of Y is,

uA(Y ) =


B1 if Y ⊆ B1

B2 if Y ⊆ B2

V otherwise.

(iii) Y is A-exact if and only if Y = B1 or Y = B2.

Next, we generalise the above result to the case of n-partite graphs.

Proposition 3.2.3. Let Kp1,p2,...pn = (B1|B2|, . . . Bn) be the complete n-partite graph such

that Bi = {x1, x2, . . . xpi
} where pi ≥ 1 for i = 1, 2, . . . n. Let A and Y be two non-empty

subsets of V = V (Kp1,p2,...pn). Then,

(i) the A-lower approximation of Y is,

lA(Y ) =
⋃
i

{Bi : Bi ⊆ Y }

25

C
E

U
eT

D
C

ol
le

ct
io

n



(ii) the A-upper approximation of Y is,

uA(Y ) =
⋃
i

{Bi : Bi ∩ Y 6= ∅}

(iii) Y is A-exact if and only if Y = ⋃
i∈I
Bi for some I, where I ⊆ {1, 2, . . . n}.

Proof. Straightforward generalisation of the proof given in [22].

We now consider the result for cliques with loops. This graph can be seen as more

symmetrical than a clique without loops and hence the simpler form of the following

result as compared with Proposition 3.2.1.

Proposition 3.2.4. Let G = Kn be the complete graph on n vertices with loops at each

node. Let A and Y be two non-empty subsets of V (G). Then,

(i) the A-lower approximation of Y is,

lA(Y ) =


∅ if Y 6= Kn

Kn otherwise.

(ii) the A-upper approximation of Y is,

uA(Y ) = Kn

(iii) Y is A-exact if and only if Y = Kn.

Proof. Straightforward.

Remark 3.2.1: The result in Proposition 3.2.4 looks like the result for the special case

n = 1 in Proposition 3.2.3. The reason is because in the n = 1 case for Proposition 3.2.3

we have a 1-partite graph which is a set of independent nodes. For a set of p independent

nodes, the complementary graph is the clique with loops on p nodes. Though not the

same, it can be seen that these relations result in the same distinguishing of nodes,

i.e. they each do not distinguish between any two nodes and therefore equivalence classes

induced by these relations with respect to a given subset are the same. Hence, they induce

the same lower and upper approximations. This brings us to the following observation.

26

C
E

U
eT

D
C

ol
le

ct
io

n



Proposition 3.2.5. Let G1 and G2 be two graphs. Then,

IG1
A = IG2

A ; G1 = G2.

Proof. Using the example of a p independent graph andKp as discussed above, we see that

they generate the same lower and upper approximations though they are not equal.

Prompted by the previous remark and example, we now show that in general comple-

mentary graphs generate the same lower and upper approximations.

Proposition 3.2.6. Let G and G be complement graphs. Then for any fixed A ⊆ V (G),

IG
A = IG

A .

Proof. Let A ⊆ V (G), such that A = {a1, a2 . . . an}. Suppose that x and y are in

the same equivalence class in IG
A . Then NG(x) ∩ A = NG(y) ∩ A. For G, note that

NG(x) = V (G)−NG(x) and NG(y) = V (G)−NG(y).

Let z ∈ NG(x) ∩ A. ⇒ z ∈ NG(x) and z ∈ A ⇒ z 6∈ NG(x) and z ∈ A ⇒ z 6∈

(NG(x) ∩ A) ⇒ z 6∈ (NG(y) ∩ A) by assumption ⇒ z 6∈ NG(y) since z ∈ A ⇒ z ∈ NG(y)

⇒ z ∈ NG(y)∩A since z ∈ A. Hence x and y are in the same equivalence class in IG
A and

IG
A ≤ IG

A . Similarly for the converse i.e. IG
A ≤ IG

A and we have that IG
A = IG

A .

Proposition 3.2.7. If given IG
A for all A ⊆ V (G), based on an unknown G, then two

graph solutions for it can reconstructed, where the graphs are complements of each other.

Proof. The singleton sets almost determine the whole edge relation because each node

splits the graph into two equivalence classes in the equivalence relation relativised to the

singleton set consisting of that node. The two equivalence classes partition the nodes of

the graph into those which are connected to that node and those which are not. The

problem is that we do not know which equivalence class corresponds to connections and

which to non-connections. However, we will see that if we consider a fixed node and

assume that one particular equivalence class represents the connections to it, then for all

other equivalence relations based on singletons, the connection class is determined.

Let v ∈ V and Av = {v}. Suppose that x and y are related in IG
Av
. Then either (i)

both x any y are connected to v or (ii) neither x nor y is connected to v. In the first case,

27

C
E

U
eT

D
C

ol
le

ct
io

n



we will call the equivalence class of x and y the connection class and in the second case

we will call it the non-connection class. Assume that (i) is the case. Then for any w ∈ V,

with respect to IG
Av
, either w is in the connection class or it is not. Let Aw = {w}, then if

w is connected to v, then connection class in IG
Aw

is the class which contains v while if w

is not connected to v then the non-connection equivalence class in IG
A is the class which

contains v. In this way, assuming the connection or non-connection of an equivalence class

of an equivalence relation relativised to a singleton node determines the connection class

of all the other equivalence classes based on singleton nodes. Since this information is the

neighbourhoods of the nodes, after our choice of (i), the graph is determined. It is easy to

see, if we assume option (ii) instead of (i) that the graph obtained will be the complement

of the graph determined in (i) since whether an equivalence class with respect a singleton

subset, is a connection or non-connection set here, is exactly the reverse of what it would

be if (i) were the case.

The following is essentially a restatement of the above proposition.

Corollary 3.2.1. Let G and H be (undirected)graphs on a vertex set V. If IG
A = IH

A for

all A ⊆ V (G), then either G = H or G = H.

Corollary 3.2.1 and Proposition 3.2.6 results in the following equivalence.

Theorem 3.2.1. Let G and H be (undirected) graphs on a vertex set V. Then, IG
A = IH

A

for all A ⊆ V (G) iff either G = H or G = H.

Remark 3.2.2 Prompted by this theorem, we may ask about the characterising prospects

with respect to one A ⊆ V (G), instead with respect to having all such subsets. The

following propositions will show that the number of graphs on a vertex set with equivalent

IG
A for a fixed A ⊆ V (G) is so large that it indicates the unlikeliness of finding "nice"

characterising properties for such graphs.

Proposition 3.2.8. Let G be a graph with vertex set V and A a fixed subset of G. Then

|IA| ≤ 2|A|.

Proof. The equivalence classes of IA are generated by subsets of A and so they are at

most 2|A|.

28

C
E

U
eT

D
C

ol
le

ct
io

n



Proposition 3.2.9. Let V be a set of nodes, A ⊆ V and E a fixed equivalence relation on

V such that |E| ≤ 2|A|. Then there exists (at least one) graph G on V such that IG
A = E.

Proof. Consider a fixed injection F : E → P(A). This exists since |E| ≤ 2|A|. We form a

graph, G from this as follows. To do this we start with the V nodes. If F ([e]) = Ai, let

Ai = {ai1, ai2, . . . ain}. Then, for any x ∈ [e] add an edge (x, aij) for all j = 0, 1, 2 . . . n.

For this graph, if F ([e]) = Ai we have that x, y ∈ [e] iff N(x) ∩A = N(y) ∩A = Ai. The

graph formed G, is such that IG
A = E.

Corollary 3.2.2. Let V be a set of nodes with |V | = n, A ⊆ V such that |A| = a and E

a fixed partition on V such that |E| = m and |E| ≤ 2|A|. Then, there exists m!
(

2a

m

)
2(n−a

2 )

labelled graphs on V such that IG
A = E.

Proof. We count the number of injections F : E → P(A) in the proposition above as

each injection gives rise to different A connections in the constructed graph. This is

m!
(

2a

m

)
. We can then complete the edges in the graph by forming any other connections

not including nodes from A. This gives the 2(n−a
2 ) factor.

Remark 3.2.3 Let V be a vertex set with a fixed subset A. Let two graphs, G,H on V be

related if IG
A = IH

A . The above result shows that this is a very coarse relation on the set of

graphs on the vertex set V, suggesting that it could be very difficult to find characterising

conditions of graphs which are equivalent under this relation. It is however, an open

problem to find, if they exist, "nice" graph properties to characterise graphs which are

equivalent under this relation. That is:

Open Problem: Consider undirected graphs on a finite vertex set V. Let A be a non-

empty subset of V. Find characterising condition of graphs which have equal neighbour-

hood relations when relativised to A. In other words, if G and H are graphs on V such

that IG
A = IH

A , what is the most that we can say about them?

Next, we will work out restrictions for how many relativised equivalence relations for

which two nodes of a graph can be indistinguishable.

29

C
E

U
eT

D
C

ol
le

ct
io

n



Proposition 3.2.10. Let G be a graph with vertex set V and let A,B ⊆ V . If B ⊇ A,

then IB ≤ IA. That is, IB is a finer equivalence relation than IA.

Proof. Suppose x, y ∈ V such that x ∼IB
y. Then x and y neighbourhoods restricted to

B, i.e. their B-neighbourhoods are the same. Hence, their intersection with any subset

of B, in particular the subset A, is the same. That is, x ∼IA
y.

The equivalence relation mentioned in (2.8), in the first section is a special case of this.

Corollary 3.2.3. Let G be a graph with vertex set V and A ⊂ V. Then for x, y ∈ V the

equivalence relation defined by x ∼ y iff N(x) = N(y), we have that ∼ ≤ ∼IA
.

Proof. Apply A = V in Proposition 3.2.10 to obtain the result.

When A ⊂ V we say that the nodes of V are classified or distinguished by a local

context, namely A. When A = V we say that the nodes are classified or distinguished

by a global context. It is consistent with our expectations that more information gives

us finer discrimination.

Proposition 3.2.11. Let ∼ be the equivalence relation obtained from IA when A = V.

That is, x ∼ y iff N(x) = N(y). Suppose [x], [y] ∈ IV such that [x] 6= [y]. Then, the

equivalence relation IS induced by S = (N(x) ∩N(y)) ∪ (N(x) ∪N(y))′ is the finest set-

induced equivalence relation that is of the form IA for which there exists a [z]IS
⊆ V such

that [z] ⊇ [x]IV
∪ [y]IV

is an equivalence class.

Proof. That an equivalence relation of the form IA exists for which contains an equivalence

class [z]IA
⊇ [x]IV

∪[y]IV
is always the case. We simply setA = ∅. This induced equivalence

relation contains one class which is all of V.We show that for any u, v ∈ [x]IV
∪[y]IV

, u ∼IS

v. Suppose that u and v are both in [x]IV
or [y]IV

, then they are ∼IS
related by Proposition

3.2.10. Suppose WLOG, u ∈ [x]IV
and v ∈ [y]IV

. Then NS(u) = NS(v) = S by definition

of S and u ∼IS
v. Hence, IS contains an equivalence class [z]IS

such that [z]IS
⊇ [x]IV

∪

[y]IV
.

Suppose there is a subset T ⊆ V such that |T | ≥ |S|. Then there exists a t ∈ T

such that t 6∈ (N(x) ∩ N(y)) ∪ (N(x) ∪ N(y))′(= S). Therefore, either t ∈ N(x) but

30

C
E

U
eT

D
C

ol
le

ct
io

n



t 6∈ N(y) or t ∈ N(y) but t 6∈ N(x). In either case, this implies that N(x)∩T 6= N(y)∩T

and x 6∼IT
y and thus IS is the finest such relation in which x and y are in the same

equivalence class.

The proposition below shows us that for a graph G, two vertices whose edge con-

nections are such that they are distinguishable by any subset of V (G), are in fact quite

closely related as the edge connections of one is equal to the other in the complement

graph.

Proposition 3.2.12. Let G be a graph. Let x, y ∈ V (G). Then, [x] 6= [y] for any

non-empty A ⊆ V (G) where [x], [y] ∈ IA iff NG(x) = NG(y).

Proof. Suppose that x, y ∈ V (G) are such that for any A ⊆ V (G), [x] 6= [y] where

[x], [y] ∈ IA. Then in particular for A = {a} for any fixed a ∈ G, (x, a) ∈ E(G) iff

(y, a) 6∈ E(G) iff (y, a) ∈ E(G). That is, NG(x) = NG(y).

Conversely, suppose that NG(x) = NG(y). Consider any non-empty A ⊆ V (G). Now,

[x] = [y] for [x], [y] ∈ IA iff x, y ∈ V (G) share the same connections with any subset of

A i.e are indistinguishable by any subset of A. Since A is non-empty we may consider

the equivalence class of IA induced by {a} ⊆ A for some a ∈ A. By the condition, we

have that (x, a) ∈ E(G) iff (y, a) 6∈ E(G). Hence, edge connections to this subset of A

distinguish x and y and thus [x] 6= [y] in IA.

Corollary 3.2.4. Let G be a graph. Let x, y ∈ V (G). Then, [x] 6= [y] for any non-empty

A ⊆ V (G) where [x], [y] ∈ IA iff [x] 6= [y] in IA for each singleton A ⊆ V.

Proof. Immediate from proof of the previous proposition.

Corollary 3.2.5. Let G be a graph. Let x, y, z ∈ V (G). Then it is not possible for each

pair of [x], [y] and [z] to be unequal in IA for each A ⊆ V (G).

Proof. From the proof in Proposition 3.2.10, we see that if [x] 6= [y] for all A ⊆ V then

NG(y) = NG(x). If also, [z] 6= [x] for all A ⊆ V then also NG(z) = NG(x) = NG(y). Hence

[z] = [y] in IA for all A ⊆ V.

31

C
E

U
eT

D
C

ol
le

ct
io

n



We may call pairs x, y ∈ V (G) of a graph G (globally) distinguishable if [x] 6= [y] in IV .

We say that x and y are (locally) A–distinguishable if [x] 6= [y] in IA where A ⊂ V. Notice

that for x, y ∈ V ,

locally distinguishable ⇒ globally distinguishable but,

globally distinguishable 6⇒ locally distinguishable.

Proposition 3.2.13. Let G be a graph and A, a non-empty subset of V (G). Suppose that

for some x, y ∈ V (G) that [x] 6= [y] in IA. Then, there exists an a ∈ A such that for the

singleton consisting of it, A1 = {a}, [x] 6= [y] in IA1 .

Proof. We prove this by the contrapositive. Suppose that [x] = [y] in IAi
for all Ai = {ai}

where ai ∈ A.

Let a be an arbitrary element in A. Then for A1 = {a}, [x] = [y] by the above

assumption. That is, (x, a) ∈ E(G) iff (y, a) ∈ E(G). Hence, NG(x) ∩ A = NG(y) ∩ A.

Therefore [x] = [y] in IA.

Corollary 3.2.6. Let G be a graph and A, a non-empty subset of V (G). Then if for

some x, y ∈ V (G), [x] 6= [y] in IA, then there exists a subset of B of P(V (G)) such that

[x] 6= [y] in IB1 where B1 is any element of B and |B| ≥ 1
2 |P(V (G))|.

Proof. By Proposition 3.2.13, if [x] 6= [y] in IA, then there exists an a ∈ A such that

[x] 6= [y] in IA1 where A1 = {a}. It is clear that any subset of B1 of V (G) which contains

a will be such that [x] 6= [y] in IB1 . The number of such subsets is 2|V (G)|−1 which is
1
2 |P(V (G))|. Hence, the set of subsets of P(G), B, such that [x] 6= [y] in IBi

where

BI ∈ B, is at least as large as this.

Corollary 3.2.7. Let G be a graph and let B ⊆ P(V (G)) such that |B| > 1
2 |P(V (G))|.

If for some x, y ∈ V (G), [x] = [y] in IBi
, for all Bi ∈ B, then [x] = [y] in IA for all

A ⊆ V (G).

Proof. Follows immediately from the above corollary.

32

C
E

U
eT

D
C

ol
le

ct
io

n



Remark 3.2.4 Consider a graph G on at least two nodes. By the above corollary it is

not possible that for some x, y ∈ V (G), that [x] 6= [y] in IA for only one A ⊆ V (G). If

they are unequal in an equivalence relation generated by some subset of V (G), then they

are unequal in at least half of the equivalence relations generated in this way. The same

is not true for equality. It is possible for [x] = [y] in IA for exactly one subset A of V (G).

To form such a graph, we take a special node a ∈ V (G) and for the chosen x and y nodes,

connect exactly one of {x, y} to a. For all remaining nodes we connect them to x and y

in the same way. That is, for v ∈ V (G), such that v 6= a, (x, v) ∈ E(G) iff (y, v) ∈ E(G).

In this way we can form examples of graphs which contain a pair of vertices which is in

the same equivalence class for exactly one of these relativised equivalence relations.

Remark 3.2.5 From Corollary 3.2.5. we, see that it is not possible for a graph to contain

3 nodes, each pair of which is distinguishable in all the equivalence relations generated

by subsets of the vertices. Clearly, we can find one subset based equivalence relation

such that each pair of some three vertices are related (for example let G be a graph with

V = {a, b, c, d, e} and E = {(c, b), (d, a), (e, a), (e, b)} and let A = {a, b}). Then each pair

of [c], [d], [e] ∈ IA are unequal). Hence the question becomes what is the maximum size

of a subset B of P(V (G)) such that each pair of some three vertices are unequal in each

Bi ∈ B? The next definition helps to frame that question concisely.

Definition 3.2.1. Let NE(n, k) equal the maximum size of a subset B of P(V (G))

such that it is possible that for some k unequal vertices of a graph G with |V(G)| = n,

to be such that each pair of corresponding equivalence classes in IBI
for each Bi ∈ B,

are unequal. For example we know that, NE(n, 2) = 2n − 1 since by Proposition 3.2.12

in this construction inequality holds relative to all subsets of the domain except for the

empty set.

Also let NE(G, k) be the maximum size of a subset B of P(V (G)) such that it is pos-

sible that for some k unequal vertices of G nodes, to be such that each pair of equivalence

classes in IBI
for each Bi ∈ B, are unequal.

Proposition 3.2.14. Let G be graph on n nodes where n ≥ 3. NE(n, 3) ≥ 2n−2

33

C
E

U
eT

D
C

ol
le

ct
io

n



Proof. We consider a graph construction as follows. Let x, y and z be the three nodes

who will witness NE(n, 3). Let a1, a2 ∈ V (G) be two special nodes. We form connections

between the three nodes and the two special nodes as follows. Let, (x, a1), (y, a2) ∈ E(G)

and let there be no other edges between the three nodes and the two special ones. Then

for A = {a1, a2}, NG(x) ∩ A = {a1}, NG(y) ∩ A = {a2} and NG(z) ∩ A = ∅. Hence each

pair of [x], [y] and [z] are unequal in IA. Now, any A1 ⊇ A will be such that each pair of

[x], [y] and [z] is unequal in IA1 . There are 2n−2 subsets of P(V (G)) that contain these

two nodes and hence NE(n, 3) ≥ 2n−2.

While Corollary 3.2.5. shows that all subsets cannot simultaneously distinguish between

three nodes, the following theorem shows it is possible for almost all subsets to do so.

Theorem 3.2.2. Let G be graph on n nodes where n ≥ 3. Then NE(n, 3) ≤ 2n−3.2n
3 +2

with equality holding when n is divisible by three.

Proof. We construct a maximal graph with three special nodes x, y and z which witness

the result. We begin with an observation. For each singleton node a ∈ V (G), there are 4

possibilities. Let A = {a}. Then in IA either 1) [x] = [y] = [z], 2) [x] = [y], [x] 6= [z] and

[y] 6= [z], 3) [x] = [z], [x] 6= [y] and [z] 6= [y] or 4) [y] = [z], [y] 6= [x] and [z] 6= [x].

Observation: Notice that any two nodes which satisfies any pair of the last three prop-

erties distinguishes pairwise between x, y and z.

Claim: In a maximal construction, i.e maximal for NE(n, 3), there are no nodes say,

a, such that for A = {a}, [x] = [y] = [z] in IA. Suppose there was such a node a in a

maximal graph G on n nodes. Let NE(n, 3) = m which G realizes. Since [x] = [y] = [z]

in IA where A = {a}, then either all three of x, y and z are connected to a or all three

are unconnected to a. We form a new graph G1 from G on the same n nodes by either

removing a connection from x to a in the first case or adding a connection from x to a

in the second case. For both of these cases we have now [y] = [z], [x] 6= [y] and [x] 6= [z]

in IA for G1. Hence {a} now distinguishes pairwise between x and either of y, z.

Now, consider a node b ∈ G1 such that either 2) [x] = [y], [x] 6= [z] or [y] 6= [z], 3)

[x] = [z], [x] 6= [y]. A node satisfying one of these must exist since a maximal graph

34

C
E

U
eT

D
C

ol
le

ct
io

n



contains at least one subset which distinguishes between x, y and z (that such graphs

exists is clear–check the proof of Proposition 3.2.14) and any subset which distinguishes

between these contains a minimal subset which does so and this is a pair as in the

Observation above. Since this pair satisfies two of 2), 3) 4) listed above, then one of

them satisfies one of 2) or 3). Now it is clear to see that {a, b} which does not pairwise

distinguish between x, y and z in G does so in G1. Since all of the subsets of P(V (G))

which previously distinguished between each pair of x, y and z in G still do in G1 we get

that NE(G1, 3) > NE(G, 3) with |V (G′)| = |V (G)| contradicting maximality of G and

the claim is shown.

From the above Claim, we see that each node in a maximal construction, G, is one

that satisfies either 2), 3) or 4). So we can partition the nodes of the graph into 3 sets

corresponding to nodes which satisfy 2), 3) and 4) respectively. From the observation

above, any two nodes from distinct parts of the partition distinguishes between x, y and

z. So to count the subsets of V (G) which distinguishes between these three nodes we

note that any subset besides the emptyset and the ones totally contained in one part of

the partition minus the emptyset to avoid overcounting it, will do. Let the sizes of the

partition be s, t and n − (s + t). We observe again the partition must at least have two

parts to distinguish between all three nodes. This graph can be formed for example by

letting s nodes be joined to exactly z in {x, y, z} to satisfy 2), t nodes be joined to exactly

y in {x, y, z} to satisfy 3) and n − (s + t) nodes be joined to exactly x in {x, y, z} to

satisfy 4). Here the number of subsets of P(V (G)) which distinguish the three nodes

are therefore,

NE(G, 3) = 2n − 1− ((2s − 1) + (2t − 1) + (2n−(s+t) − 1))

= 2n − (2s + 2t + 2n−(s+t)) + 2.

Hence to maximise NE(G, 3) we need to minimise (2s + 2t + 2n−(s+t)). Since 2m grows

very rapidly with m this amounts to minimising the maximum of {s, t, n− (s+ t)}. It is

clear that to do this we have to take as equal parts as possible and they would be of size
n
3 when n is divisible by three. Here, NE(n, 3) = 2n − 3.2n

3 + 2. Otherwise the value of

35

C
E

U
eT

D
C

ol
le

ct
io

n



NE(n, 3) is slightly less than this when n ≡ 1 or n ≡ 2 mod 3.

Now we can give a slight strengthening of Corollary 3.2.5

Corollary 3.2.8. Let G be a graph n nodes and let B ⊆ P(V (G)) such that |B| >

2n − 3.2n
3 + 2. Suppose that and x, y, and z are three nodes in V (G). Then, there exists

a Bi ∈ B such that at least two of x, y and z, are equivalent in IBi
.

3.2.1 Extensions of Relativised Indistinguishability

Relations in Hypergraphs

Here, we extend the setup introduced in [22] to the hypergraph setting. For recent work

in the literature on hypergraphs and rough sets, see [23], where hypergraphs are used to

connect rough sets to granular computing and [20] where connections between rough sets

and formal concept analysis are made amongst other results. In our case, we extend the

set-up in [22] to consider several other natural options for which equivalence relations

can be based on when using hypergraphs. We list some examples of these and give a

database interpretation of this setting which can be used for modelling. Depending on

one’s modelling aim, one can choose the equivalence relation best suited to define the

lower and upper approximations on. First we give some definitions.

Definition 3.2.2. A hypergraph is a pair, H = (V, E), where V is a set and E is a

collection of subsets of V. If the same subset of V cannot be selected more than once, the

E is a set and the hypergraph is said to be a simple hypergraph.

Definition 3.2.3. The degree of a vertex v ∈ V, denoted by d(v), is the number of edges

which contain v.

Definition 3.2.4. A regular hypergraph is one for which, d(x) = d(y) for all x, y ∈ V.

Definition 3.2.5. A t-regular hypergraph is a regular hypergraph with common degree

t.

Definition 3.2.6. A uniform hypergraph is one for which |e| = |f | for all e, f ∈ E .

36

C
E

U
eT

D
C

ol
le

ct
io

n



Definition 3.2.7. A t-uniform hypergraph is a uniform hypergraph with edges of t ver-

tices.

Definition 3.2.8. We observe that simple graphs can be defined as 2-uniform hypergraphs

without loops.

We define different relativised equivalence relations similar to that given in [22] for the

case of hypergraphs. Here, there are more possibilities of equivalence classes on nodes

to consider and we shall mention and compare several of these below. Now, we give the

definitions:

Definition 3.2.9. Let H = (V, E) be a hypergraph. The vertex neighbourhood of a vertex

x in a hypergraph is as follows:

N v(x) = {z ∈ V | ∃ e ∈ E : {x, z} ⊆ e}. (3.4)

This definition can be extended to give a neighbourhood of A ⊆ V in a natural way as

follows:

N v(A) =
⋃

x∈A

N v(x). (3.5)

Definition 3.2.10. Let H = (V, E) be a hypergraph. The edge neighbourhood of a vertex

x in a hypergraph is as follows:

N e(x) = {e ∈ E | x ∈ e}. (3.6)

In a similar manner to the preceding, this definition can be extended to give a neighbour-

hood of A ⊆ V in a natural way as follows:

N e(A) =
⋃

x∈A

N e(x). (3.7)

From the above definitions it can be seen that we have the information of N v(x) from

N e(x). It is clear that,

N v(x) =
⋃

e∈Ne(x)
e. (3.8)

However, N e(x) cannot be recovered from N v(x).

37

C
E

U
eT

D
C

ol
le

ct
io

n



Next we consider several ways which we can associate vertices relative to a subset A

of the vertices.

Let G be a graph and A ⊆ V and let x ∈ V . Then we define certain A-neighbourhoods

of x as follows:

1. N v
A(x) = N v(x) ∩ A

2. N e
A(x) = N e(x) ∩N e(A) = {e ∈ E | (x ∈ e) ∧ (e ∩ A 6= ∅)}

3. N t
A(x) = {e ∩ A | (x ∈ e) ∧ (e ∩ A 6= ∅)}

4. N1
A(x) = {a ∈ A | ∃ e ∈ E : (x ∈ e) ∧ (e ∩ A = {a})}

5. Nk
A(x) = {a1 ∈ A | ∃a2, . . . ak ∈ A, ∃ e ∈ E : (x ∈ e) ∧ (e ∩ A = {a1, a2...ak})}

6. N lk
A (x) = {a1 ∈ A | ∃a2, . . . ak ∈ A for j ≤ k, ∃ e ∈ E : (x ∈ e) ∧ (e ∩ A = {a1, a2...aj})}

7. N gk
A (x) = {a1 ∈ A | ∃a2, . . . ak ∈ A for j ≥ k, ∃ e ∈ E : (x ∈ e) ∧ (e ∩ A = {a1, a2...aj})}

We observe that for graphs, N1
A = N v

A which is equivalent to the neighbourhood definition

used in the previous section. The respective equivalence relations based on the above

definitions are as follows:

1.(x, y) ∈ Iv
A iff N v

A(x) = N v
A(y)

2.(x, y) ∈ Ie
A iff N e

A(x) = N e
A(y)

3.(x, y) ∈ I t
A iff N t

A(x) = N t
A(y)

4.(x, y) ∈ I1
A iff N1

A(x) = N1
A(y)

5.(x, y) ∈ Ik
A iff Nk

A(x) = Nk
A(y)

6.(x, y) ∈ I lk
A iff N lk

A (x) = N lk
A (y)

7.(x, y) ∈ Igk
A iff N gk

A (x) = N gk
A (y)

We now compare the fineness of these equivalence relations induced on the vertices.

Proposition 3.2.15. Let H = (V, E) be a hypergraph and A ⊆ V. Then, Ie
A implies all

the other defined relations. That is; (i) Ie
A ≤ Iv

A, (ii) Ie
A ≤ I1

A, (iii) Ie
A ≤ I t

A, (iv)Ie
A ≤ Ik

A,

(v) Ie
A ≤ I lkA, and (vi) Ie

A ≤ IgkA.

Proof. For (i) : Suppose that (x, y) ∈ I1
A. Then N e

A(x) = N e
A(y). Equation (23) shows

that N v
A(x) can be recovered from N e

A(x). Hence, N v
A(x) = N v

A(y) holds and (x, y) ∈ Iv
A.

38

C
E

U
eT

D
C

ol
le

ct
io

n



For (ii): Suppose that (x, y) ∈ Ie
A. Then N e

A(x) = N e
A(y). That is, each edge which

contains x also contains y. Now if a ∈ N1
A(x), then there exists an edge e ∈ E such that e

contains x and e∩A = {a}. By assumption e contains y as well and so a ∈ N1
A(y). Thus,

N1
A(x) ⊆ N1

A(y). By symmetry, the converse holds as well and hence N1
A(x) = N1

A(y)

which gives (x, y) ∈ N1
A.

Part (iii) follows immediately and parts (iv)-(vi) can be proved similarly to part

(ii).

It is interesting that apart from the very fine relation I1
A, the other comparisons between

the relations show them to be quite independent. For example, even though Iv
A = I1

A

holds in the case of graphs, no implication holds between either side in the case of general

hypergraphs. Also, even though one might initially expect that I lk
A ≤ Ik

A, this too does

not hold (of course the converse does not hold). We briefly illustrate these observations

with counterexamples.

Proposition 3.2.16. (i) Iv
A 6≤ I1

A and (ii) I1
A 6≤ Iv

A.

Proof. Consider a hypergraph, H = (V, E) such that V = {a, b, x, y, z},

E = {{x, a}, {x, b}, {y, a, b}} and A = {a, b}. Then, N v
A(x) = N v

A(y) = {a, b}. But

N1
A(x) 6= N1

A(y) since N1
A(x) = {a, b} while N1

A(y) = ∅. Hence, Iv
A 6≤ I1

A.

Also, N1
A(y) = N1

A(z) = ∅. But N v
A(y) 6= N v

A(z) since N v
A(y) = {a, b} while N v

A(z) = ∅.

Hence, N1
A 6≤ N v

A.

Proposition 3.2.17. I lk
A 6≤ Ik

A.

Proof. Consider a hypergraph, H = (V, E) such that V = {a, b, c, d, x, y} and E =

{{x, a, b}, {x, c}, {x, d}, {y, b, c}, {y, a, d}}. Let A = {a, b, c, d} and k = 2. Then, N l2
A (x) =

N l2
A (y) = {a, b, c, d}. But N2

A(x) 6= N2
A(y) since N2

A(x) = {a, b} and N2
A(y) = {a, b, c, d}.

Hence, I lk
A 6≤ Ik

A.

That no implication holds between all other of the relation pairs defined other than those

given in Proposition 3.2.15 (i.e between Ie
A and any of the other ones) can be shown with

similar counterexamples to the two preceding propositions. The above considerations

39

C
E

U
eT

D
C

ol
le

ct
io

n



indicate that Ie
A is one of the finest natural ways to identify the vertices of a hypergraph.

The other equivalence relations considered are independent ways to associate the vertices

and we may choose the one most suited to our needs/model in a given situation.

Proposition 3.2.18. Let H = (V, E) be a hypergraph. Let x, y ∈ V. Suppose that [x] = [y]

in Ie
Ax

and in Ie
Ay

where Ax = {x} and Ay = {y}. Then [x] = [y] in Ie
V .

Proof. Since x, y ∈ V and [x] = [y] in Ie
Ax
, where Ax = {x}, then if an edge contains x

then it contains y. Also, since x, y ∈ V and [x] = [y] in Ie
Ay

where Ay = {y}, then if an

edge contains y then it contains x. Hence we have that an edge contains x iff it contains

y iff x ∼Ie
V
y. Therefore, [x] = [y] in Ie

V .

Proposition 3.2.19. Let H = (V, E) be a hypergraph. Suppose that for any x, y ∈ V,

[x] 6= [y] in Ie
V . Then there exists a separating edge e such that e contains exactly one of

{x, y}. Such hypergraphs are called separating hypergraphs.

Proof. Immediate from definition.

Proposition 3.2.20. Let H = (V, E) be a hypergraph. If there exists x, y ∈ V such that

for any A ⊆ V, [x] 6= [y], where [x], [y] ∈ I t
A, then,

(i) x and y are two vertices not connected by any edge,

(ii) for any e ∈ E , e contains exactly one of {x, y}

(iii) for any v ∈ V, {v, x} is contained in at least one edge and {v, y} is not contained in

any edge, or {v, y} is contained in at least one edge and {v, x} is not contained in any

edge. That is, x and y partitions V into vertices which are connected to exactly one of

them.

Proof. Since [x] 6= [y], where [x], [y] ∈ I t
A, for any A ⊆ V, then consider the particular

case of A = {x}. The only subsets of A are {x} and ∅, so since [x] 6= [y] then the N t
A

neighbourhood of one of these nodes is {x} while for the other it is ∅. Suppose that

N t
A(y) = {{x}}. Then there exists an e ∈ E such that e ⊃ {x, y}. Using this same e

we can deduce that N t
A(x) = {{x}} = N t

A(y) which is a contradiction. So we get that

N t
A(y) = ∅ and N t

A(x) = {{x}}. That is, there is no edge which contains both x and y

40

C
E

U
eT

D
C

ol
le

ct
io

n



and there is at least one edge which contains x. By a similar argument using A = y we

have that there is at least one edge which contains y.

Now suppose that f ∈ E . Then it cannot be disjoint from both x and y because if it

were then let A1 be the set of vertices contained in f . Then, N t
A1(x) = N t

A1(y) = ∅ which

is a contradiction. Also, we know that it can’t contain both x any y from the argument

above, hence it must contain exactly one of them. That is, x and y partitions the edges

of E into two sets, namely those which contain x but not y and those which contain y

but not x.

Suppose that v ∈ V is such there exists e ∈ E which contains x, y and v or there is no

edge in E which contains v. In the first case if we take A = {v}, then N t
A(x) = N t

A(y) =

{{v}} in I t
A and in the second case N t

A(x) = N t
A(y) = ∅ both of which is a contradiction.

Hence, each v ∈ V is connected by at least one edge to exactly one of {x, y}.

Application by Database Interpretation: Empirical Model Theory

We interpret a database by first separating it into sets of Objects and Attributes. Here,

we consider an interpretation in which the attributes are nodes and the objects are edges

that consists of exactly the attributes which they satisfy. In this case, we consider binary

valued attributes, i.e. for a set of attributes, Att and a set of objects Obj, we are equipped

with a binary function v : Obj×Att→ {0, 1}. An object x ∈ Obj has an attribute, a ∈ Att

iff v(x, a) = 1 while x does not have attribute a iff v(x, a) = 0. From this we can form

a corresponding hypergraph from this database, H = (Att, Obj). That is, the attributes

Att are the vertices and the objects Obj are the edges such that each object contains all

the attributes which it satisfies. We now give definitions which can be used for empirical

modelling of attributes of a database.

If two attributes are realised by at least one object they are said to be compatible. In

the hypergraph setting which we outlined, this means that two vertices are compatible if

there is at least one edge which contains them.

Two attributes are said to be incompatible with respect to a domain of objects if no

object realises both of them, i.e no edge from the domain of objects contains those two

41

C
E

U
eT

D
C

ol
le

ct
io

n



vertices. This concept is relative to the domain of objects because if the domain of

objects is extended, then two previously determined incompatible objects may become

compatible under satisfaction from a new object in the extended domain.

Two attributes are said to be contingent if there exists two objects one of which contains

both of them and one of which contains exactly one of them. That is, two attributes are

contingent if they may be satisfied together but not necessarily so.

An attribute a implies an attribute b iff every object which satisfies attribute a satisfies

attribute b. That is, iff every edge which contains a also contains b. Here we may say a⇒ b.

If also b⇒ a, then a ⇐⇒ b and we say that attributes a and b are indistinguishable

by the object domain. Otherwise we say that the attributes are distinguishable by the

object domain.

Remark 3.2.6: We note the compatibility, contingency and distinguishability of two

attributes are preserved under extensions of the domain of objects but incompatibility,

dependency and indistinguishability may change.

Example of an Interpreted Result

Under this interpretation, we translate Proposition 3.2.20 as follows:

Proposition 3.2.21. Let H = (Att, Obj) be a simple hypergraph and consider the I t
A

equivalence relation. If there exists a, b ∈ Att which for any A ⊆ Att are never equivalent

under this relation then,

(i) a and b are incompatible attributes,

(ii) Any object x ∈ Obj, satisfies exactly one of {a, b},

(iii) For any other attribute v ∈ Att, v is compatible with either a or b but not both.

Similar translations can be made for other results of this setup.

Remark 3.2.7 Instead of examining attribute distinguishability we may alternatively

consider object distinguishability. We can consider the graph setup used in this chapter

in a special case of Kripke semantics for modal logic. Then, we can define a relation on

42

C
E

U
eT

D
C

ol
le

ct
io

n



the set of objects which models relativised distinguishability in the semantics. For basic

concepts and definitions of modal logic and Kripke semantics, see [14].

For this case, we consider transforming a model first given as a matrix of Objects

versus Attributes where Objects and Attributes are finite sets. Let O ∈ Objects and

A ∈ Attributes, then the valuation, v(A,O) = 1 iff object O satisfies attribute A and the

entry is assigned 0 otherwise (i.e. we consider here two-valued attributes). To translate

this information into a Kripke frame, we interpret the propositional variables as the

objects, use elements of the powerset of Attributes, P(Attributes) as the worlds and for

the accessibility relation R, (A1,A2) ∈ R iff A1 ⊆ A2. Now we can define a valuation or

a particular model, 〈W,R, v〉 recursively as follows:

1. If A ∈ P(Attributes), then A |= O iff there exists an A ∈ A, A |= O (i.e. v(A,O) = 1).

2. A |= ¬O iff A 6|= O.

3. A |= (O1 ∧O2) iff A |= O1 and A |= O2.

4. A |= �O iff for all B ∈ P(Attributes), if (A,B) ∈ R then B |= O.

5. A |= ♦O iff there exists B ∈ P(Attributes) such that (A,B) ∈ R and B |= O.

We say that two objects O1 and O2 are A–distinguishable iff there exists an A ∈ A such

that either v(A,O1) = 1 (equivalently, A |= O1) and v(A,O2) = 0 or v(A,O2) = 1 and

v(A,O1) = 0. Otherwise, O1 and O2 are said to be A− indistinguishable.We observe that

if A ⊆ B then,

• O1 and O2 are A–distinguishable ⇒ O1 and O2 are B–distinguishable

• O1 and O2 are B–indistinguishable ⇒ O1 and O2 are A–indistinguishable

That is, relativised distinguishability is upwards absolute and relativised indistinguisha-

bility is downwards absolute.

3.2.2 Indistinguishability on Real Numbers

Next, we found a very interesting equivalence to Cantor’s Diagonal Theorem which is

related to the topic of indistinguishability. We note that Pawlak did some work on rough

approximations of real numbers by partitioning the real numbers into intervals in [59].

43

C
E

U
eT

D
C

ol
le

ct
io

n



First we give some definitions:

Definition 3.2.11. A relation h : A→ B is well-defined if for any elements (a, b), (c, d) ∈

h, a = c implies that b = d.

Definition 3.2.12. : A relation h : A→ B is injective if for any elements (a, b), (c, d) ∈

h, b = d implies that a = b.

Definition 3.2.13. A relation h : A→ B is said to be domain-exhausted if for any a ∈A

there exists b in B such that (a, b) ∈ h.

Definition 3.2.14. : A relation h : A→ B is said to be surjective if for any b ∈ B there

exists a in A such that (a, b) ∈ h.

Definition 3.2.15. If h is a relation such that h : A → B, then the inverse relation, is

h−1, where h−1 : B → A is such that (b, a) ∈ h−1 iff (a, b) ∈ h.

Definition 3.2.16. Let h be a relation such that, h : A → B. Then for a ∈ A, h(a) =

{b ∈ B | (a, b) ∈ h}.

Definition 3.2.17. A function from sets A to B is a relation from A to B which is

domain-exhausted and well-defined.

Definition 3.2.18. A bijection is an injective and surjective function.

Definition 3.2.19. The domain of a relation h : A → B, is the set consisting of all

a ∈ A such that there exists b ∈ B such that (a, b) ∈ h.

Definition 3.2.20. The range of a relation h : A→ B, is the set consisting of all b ∈ B

such that there exists a ∈ A such that (a, b) ∈ h.

Let N denote natural numbers and R denote real numbers. Next, we state Cantor’s

Diagonal Theorem.

Theorem 3.2.3. (Cantor’s Diagonal Theorem)

There is is no bijective function, f : N→ R.

Next, we show a nice result which Cantor’s Diagonal Theorem implies.

44

C
E

U
eT

D
C

ol
le

ct
io

n



Theorem 3.2.4. If a relation h : N→ R is surjective then it is not well-defined.

Proof. Suppose that there exists a relation h : N→ R which is surjective and well-defined.

Since the relation is surjective and |R| is infinite, this means that the domain of h in N

is an infinite set since each of its elements is mapped to exactly one element of R by

well-definedness of h. Let the domain of h in N be N ′. Hence |N ′| = |N| = ω.

Since h is surjective, then for any r ∈ R, h−1(r) 6= ∅. Since the relation is well-defined,

the inverse sets are disjoint i.e. h−1(r) ∩ h−1(s) = ∅ for r 6= s. Then for each r ∈ R,

we can choose a unique element in h−1(r) by choosing least element in that set (we can

do this since h−1(r) ⊆ N). Call it hr. Let N ′′ be the subset of N ′ which is such that

N ′′ = {n ∈ N ′| ∃r ∈ R : hr = n}. Since each element of R is associated with a unique

hr, then N ′′ ⊆ N is infinite and the relation hR : R → N ′′ defined by hR(r) = hr is a

bijection. Hence |N ′′| = ω and there exists a bijection g : N→ N ′′. Also h−1
R : N ′′ → R is

a bijection. Thus we can compose relations g followed by h−1
R to get a bijection from N to

R. That is, (h−1
R )(g) : N→ R is a bijection which is a contradiction to Cantor’s Diagonal

Theorem. Hence the result is shown.

Corollary 3.2.9. Cantor’s Diagonal Theorem ⇔ Theorem 3.2.4.

Proof. Since the proof of Theorem 3.2.4 needs Cantor’s Diagonal Theorem, the "⇒"

direction is shown. The converse is immediate since from the theorem we have that

there is no well-defined, surjective relation from N→ R and so in particular, there is no

bijective function from N→ R.

Remark 3.2.8 Notice that Theorem 3.2.4 shows that not only can there be no bijective

function from N to R but there cannot even be any surjective function from N to R since

a function is well-defined.

Using the theorem, we can say that any surjective relation h from N to R induces an

indistinguishability relation on R with two elements r, s ∈ R being h-indistinguishable iff

h−1(r) ∩ h−1(s) 6= ∅. Since h is not well-defined there exists some r, s ∈ R where r 6= s

which is such that h−1(r)∩ h−1(s) 6= ∅. Hence, this relation is not the identity one. Also,

it is easy to check that this is a similarity relation (it is not an equivalence relation in

45

C
E

U
eT

D
C

ol
le

ct
io

n



general since the relation need not be injective). Therefore, we have that any surjective

relation from N to R induces a non-trivial indistinguishability relation on R and the

elements of N cannot be used to distinguish all the elements of R.

3.2.3 Discussion of Vagueness in Models

"Some people are always critical of vague statements. I tend rather to be critical of precise

statements; they are the only ones which can correctly be labeled ‘wrong’."

–Raymond Smullyan

The following is a brief discussion which is of the form of an essay rather than of precise

definitions and results (which is the format of this thesis with the exception of this section).

We apologise that our wish to discuss connections with rough sets and vagueness must also

be somewhat vague. However, we think that the ideas that will be outlined are sufficiently

interesting and nicely related to the topic to warrant their inclusion in the thesis.

Above we showed that in some sense, R has an intrinsic indistinguishability with respect to

N. We would like to imagine a thought experiment. Suppose that there are two collections. In

the first collection A, we can access all of its individual elements while in the second collection

B, we can only access equivalence classes on B with respect to some equivalence relation E on

B. What if we had no way to access or uniquely name the elements of B or rather what if

the names that we have for B are not separated by an identity relation but only a non-trivial

indistinguishability relation (notice that when we usually consider an equivalence relation a set,

we are also implicitly assuming an equivalence relation on the set at least as fine as to separate

the elements of that set). That is, some elements of B would unfortunately have to share a

name. Then if a name should appear more than once in a context we could never be sure if

it is referring to one object or more than one object. In fact, if the only way we could ever

refer to these objects is by possibly referring to any element indistinguishable from it, then it

might be a matter of faith than these objects exist in an individuated(/discrete/precise) sense

at all. Moreover, if we want to make a model which uses B, we might be, at least implicitly, be

inserting vagueness into our model. If we use the names in B then these names can be seen as a

clique of possibilities. A non-classical logic might be better suited to describe the behaviour of

the model and under the assumption of extra conditions, different extensions or precisifications

46

C
E

U
eT

D
C

ol
le

ct
io

n



may be forced. This may remind one of supervaluationism semantics and in fact the analogy

with supervaluationism and set-theoretical forcing has been observed by Toby Meadows in [55].

Another point is that the interpretation of the quantifiers, ‘there exists’ and ‘for all’ may

need to be modified for the case of modelling this type of behaviour. Here, ‘there exists’ may

need to be amended to include the possibility that we might not (sometimes in principle) be

able to use or refer to a specific realisation of what exists. For example in the Sorites paradox

or the paradox of baldness, the issue is what is the exact number of hairs which is the cut-off

point between baldness and non-baldness. We have the seemingly reasonable assumption that

someone who has n hairs is bald implies that someone who has n + 1 hairs is bald. From this

we obtain that, to say any point is the cut-off point, is to say the same of its neighbour. There

is an underlying indistinguishability structure based on a similarity relation between the hairs

with respect to baldness. Another fun example by the prominent logician Raymond Smullyan

given in [77] is as follows: Imagine that we are all immortal but there is a disease which if

caught, puts one in a deep sleep forever. There is also an antidote which if given n days after

one has caught it will allow one to be awake for 2n days before returning to a deep sleep forever.

Suppose now that your love has gotten the disease and that you have the antidote. On which

day should you awaken him/her? It is obviously true that you should awaken your partner on

some day but on any day if you just wait a little more, then you can spend twice the time with

your love. So in a sense, there exists a day that you should use the antidote however there

doesn’t exist a unique, non-arbitrary day that you should do so. This is related to the concept

of omega-incompleteness in logic. Note also, that with respect to names, it may be possible that

we may not even have a unique representation or approximation by which to refer to elements–

that is, even the existence of a unique representative for elements may only "weakly" exist as in

the manner outlined above. What we are trying to say with these illustrations is that when a

structure has a inherent vague/relatively-undefinable/continuous form and we attempt to treat

it as if it has a precise/sharp/discernible/discrete form, then we are likely to get a mismatch

of syntax and semantics. Hence, we may lose or sweep under the carpet some non-negligible

behaviour of the model.

We want to draw your attention to the fact that from the time we define a semantics, the

semantics itself brings with it implicit assumptions. For example, names and constants, though

not explicitly stated so, are usually assumed to be discrete, mutually distinguishable labels for

47

C
E

U
eT

D
C

ol
le

ct
io

n



elements of a structure. But what happens if we assume, somewhat carelessly, that we can

assign names which have an identity relation on them to elements of a model which intrinsically

have a coarser, non-trivial indistinguishability structure. The names would unknowingly make

us feel that we have more distinguishability power than we actually have and this mismatch of

labels having extra properties than the labelled, could lead to unexpected or surprising results

(especially when we can only refer to the labelled by using the labels).

We are hinting that real numbers may have such a structure with respect to assigning it

names from N (or any other structure with isomorphic distinguishability structure to N). So

perhaps it is time that we more consciously try to capture the behaviour of these collections

by using a tool which embraces non-trivial indistinguishability relations. That tool, could very

well be Rough Set Theory.

48

C
E

U
eT

D
C

ol
le

ct
io

n



Chapter 4

Successive Approximations

Successive approximations in this chapter are considered using two, generally different equiv-

alence relations. These are interesting because one can imagine a situation or model where

sets/information to be approximated is input through two different approximations before re-

turning the output. For example, say we have two equivalence relations E1 and E2 on a set

V with lower and upper approximations operators acting on its powerset P(V ), denoted by

L1, U1 and L2, U2 respectively. What if we knew the results of passing all the elements in

P(V ) through L1 and then L2, which we denote by L2L1. Could we then reconstruct E1 and

E2 from this information? This is analogous to Fourier Analysis, where decompose waves into

simpler sine and cosine waves. In this chapter, we will investigate this question and consider

the four cases of being given a defined L2L1, U2U1, U2L1, L2U1 operators. We will find that

two equivalence relations do not always produce unique such operators but that some pairs

do. We find and characterise conditions which the pairs of equivalence relations must satisfy

for them to produce a unique operator. For the L2L1 case we will show that these conditions

form a preclusive relation between pairs of equivalence relations on a set and so we can define

a related notion of independence from it. Also, in section 4.2.3 we will find a more conceptual

but equivalent version of the conditions of the uniqueness theorem. These conditions are more

illuminating in that we can easier see why these conditions work while the conditions in the

first version of the theorem are easier to use in practice.

Next, we see that in general, approximating with respect to E1 and then approximating the

result with respect to E2 gives a different result than if we had done it in the reverse order.

That is, successive approximations do not commute. We consider some properties of successive

49

C
E

U
eT

D
C

ol
le

ct
io

n



approximations below.

Proposition 4.0.1. Let V be a set and E1 and E2 be equivalence relations on V. Then for

Y ∈ P(V ), the following holds,

1. lE1(lE2(Y )) = Z 6⇒ lE2(lE1(Y )) = Z,

2. uE1(uE2(Y )) = Z 6⇒ uE2(uE1(Y )) = Z,

3. uE1(lE2(Y )) = Z 6⇒ lE2(uE1(Y )) = Z,

Proof. We give a counterexample to illustrate the proposition. Let V = {a, b, c, d} and let

E1 = {{a, b, c}, {d}} and E2 = {{a, b}, {c, d}}.

To illustrate; 1., let Y = {a, b, c}. Then lE1(lE2(Y )) = ∅ while lE2(lE1(Y )) = {a, b}.

For 2., let Y = {a}. Then uE1(uE2(Y )) = {a, b, c} while uE2(uE1(Y )) = {a, b, c, d}.

For 3., let Y = {a, b}. Then uE1(lE2(Y )) = {a, b, c} while lE2(uE1(Y )) = {a, b}.

4.1 Properties of Successive Approximations

We list some further properties of successive approximations below.

From Properties 1), 5) and 6) of lower and upper approximations in Section 2.2.1 in chap-

ter 2, we immediately get that,

(i) lE1(lE2(Y )) ⊆ lE2(Y ),uE1(uE2(Y )) ⊇ uE2(Y ),

ggluE1(lE2(Y )) ⊇ lE2(Y ) and lE1(uE2(Y )) ⊆ uE2(Y ).

If we do not know anything more about the relationship between E1 and E2 then nothing

further may be deduced. However, if for example we know that E1 ≤ E2 then the successive

approximations are constrained as follows:

Proposition 4.1.1. If E1 ≤ E2 then the following properties hold;

(ii) lE1(lE2(Y )) = lE2(Y )

(iii) lE2(lE1(Y )) ⊆ lE2(Y )

50

C
E

U
eT

D
C

ol
le

ct
io

n



(iv) uE1(uE2(Y )) ⊇ uE1(Y )

(v) uE2(uE1(Y )) = uE2(Y )

Proof. Straightforward.

Proposition 4.1.2. Let V be a finite non-empty set and let E1 and E2 be equivalence relations

on V. Let x ∈ V. Then lE1(uE2({x})) ⊆ POSE1(E2).

Corollary 4.1.1. Let V be a finite non-empty set and let E1 and E2 be equivalence relations

on V. Let X ⊆ V. Then POSE1(E2) ∩X ⊆
⋃

x∈X
lE1(uE2({x})).

Corollary 4.1.2. Let V be a finite non-empty set and let E1 and E2 be equivalence relations

on V. Then POSE1(E2) =
⋃

x∈V
lE1(uE2({x})).

aaaaaaa

Figure 4.1: Illustrates that successive approximations get more coarse when iterated.

Proposition 4.1.3. Let G be a graph with vertex set V and E an equivalence relation on V.

Let SE be the set containing equivalence classes of E and taking the closure under union. Let

F : P(V )→ SE be such that F (X) =
⋃

x∈X
[x]E and let Id : SE → P(V ) be such that Id(Y ) = Y

Then F and Id form a Galois connection.

Proof. It is clear from definitions that both F and Id are monotone. We need that for X ∈ P(V )

and Y ∈ SE , F (X) ⊆ Y iff X ⊆ Id(Y ). This is also the case because from the definition of F,

we have the X ⊆ F (X).

Remark 4.1.1. Successive approximations break the Galois structure of single approximations.

We can imagine that single approximations are a kind of sorting on the domain of a structure.

51

C
E

U
eT

D
C

ol
le

ct
io

n



We partition objects in the domain into boxes and in each box there is a special member (the

lower or upper approximation) which identifies/represents any member in its respective box.

We may say that objects are approximated by their representative.

For successive approximations, we have two different sortings of the same domain. Objects

are sorted by the first approximation and only their representative members are then sorted by

the second approximation. An object is then placed in the box that its representative member is

assigned to in the second approximation, even though the object itself may be placed differently

if the second approximation alone was used. Hence the errors ‘add’ in some sense. In Figure 4.1,

the final grouping as seen by following successive arrows, may be coarser than both the first and

second approximations used singly. An interesting problem is how to correct/minimise these

errors. It is also interesting how much of the individual approximations can be reconstructed

from knowledge of the combined approximation. In the next section we will investigate this

problem.

4.2 Decomposing L2L1 Approximations

What if we knew that a system contained exactly two successive approximations? Would we

be able to decompose them into its individual components? Before getting into what we can

do and what information can be extracted, we start with an example to illustrate this.

Notation: Let V be a finite set. Let a function representing the output of a subset of V when

acted on by a lower approximation operator L1 followed by a lower approximation operator

L2, based on the equivalence relations E1 and E2 respectively, be denoted by L2L1 where

L2L1(X) = L2(L1(X)) and L2L1 : P(V ) → P(V ). Similarly, other combinations of successive

lower and upper approximations examined will be denoted by U2U1, L2U1, U2L1 which denotes

successive upper approximations, an upper approximation followed by a lower approximation

and a lower approximation followed by an upper approximation respectively.

Sometimes when we know that the approximations are based on equivalence relations P and

Q we may use the subscripts to indicate this for example; LQLP .

Lastly, if for a defined L2L1 operator there exists a pair of equivalence relation solutions E1

and E2 which are such that the lower approximation operators L1 and L2 are based on them

52

C
E

U
eT

D
C

ol
le

ct
io

n



respectively, then we may denote this solution by the pair (E1, E2). Also, (E1, E2) can be said

to produce or generate the operators based on them.

Example 4.2.1

Let V = {a, b, c, d, e}. Let a function representing the output of a subset of V when acted on

by a lower approximation operator L1 followed by a lower approximation operator L2, which

are induced by equivalence relations E1 and E2 respectively and let L2L1 : P(V )→ P(V ) be as

follows:

L2L1({∅}) = ∅ L2L1({a, b, c, d, e}) = {a, b, c, d, e}

L2L1({a}) = ∅ L2L1({b, c, d, e}) = {e}

L2L1({b}) = ∅ L2L1({a, c, d, e}) = {c, d, e}

L2L1({c}) = ∅ L2L1({a, b, d, e}) = {e}

L2L1({d}) = ∅ L2L1({a, b, c, e}) = {a, b}

L2L1({e}) = ∅ L2L1({a, b, c, d}) = {a, b}

L2L1({a, b}) = ∅ L2L1({c, d, e}) = {e}

L2L1({a, c}) = ∅ L2L1({b, d, e}) = {e}

L2L1({a, d}) = ∅ L2L1({b, c, e}) = ∅

L2L1({a, e}) = ∅ L2L1({b, c, d}) = ∅

L2L1({b, c}) = ∅ L2L1({b, c, d}) = ∅

L2L1({b, d}) = ∅ L2L1({a, d, e}) = {e}

L2L1({b, e}) = ∅ L2L1({a, c, d}) = ∅

L2L1({c, d}) = ∅ L2L1({a, b, e}) = ∅

L2L1({c, e}) = ∅ L2L1({a, b, d}) = ∅

L2L1({d, e}) = {e} L2L1({a, b, c}) = {a, b}

We will now try to reconstruct E1 and E2. The minimal sets in the output are {e} and {a, b}.

Clearly, these are either equivalence classes of E2 or a union of two or more equivalence classes

of E2. Since {e} is a singleton it must be an equivalence class of E2. So far we have partially

reconstructed E2 and it is equal to or finer than {{a, b}, {c, d}, {e}}.

Let us consider the pre-images of these sets in L2L1 to try to reconstruct E1.Now, L2L
−1
1 ({e}) =

53

C
E

U
eT

D
C

ol
le

ct
io

n



{{d, e}, {a, d, e}, {b, d, e}, {c, d, e}, {a, b, d, e}, {b, c, d, e}}. We see that this set has a minimum

with respect to containment and it is {d, e}. Hence either {d, e} is an equivalence class of E1 or

both of {d} and {e} are equivalent classes of E1.

Similarly, L2L
−1
1 ({a, b}) = {{a, b, c}, {a, b, c, e}, {a, b, c, d}}. We, see that this set has a min-

imum which is {a, b, c} hence either this set is an equivalence class or is a union of equivalence

classes in E1. Now, L2L
−1
1 ({c, d, e}) = {{a, c, d, e}}. Hence, {a, c, d, e} also consists of a union

of equivalence classes of E1. Since we know from above that {d, e} consists of the union of one

or more equivalence classes of E1, this means that {a, c} consists of the union of one or more

equivalence classes of E1 and {b} is an equivalence class of E1. So far we have that E1 is equal

to or finer than {{a, c}, {b}, {d, e}}.

Now we consider if {a, c} ∈ E1 or both of {a} and {c} are in E1. We can rule out the latter

for suppose it was the case. Then L2L1({a, b}) would be equal to {a, b} since we already have

that {b} ∈ E1 and {a, b} is the union of equivalence classes in E2. Since this is not the case we

get that {a, c} ∈ E1. By a similar analysis of L2L1({a, c, d}) 6= {c, d} but only ∅ we get that

{d, e} ∈ E1. Hence, we have fully constructed E1 and E1 = {{a, c}, {b}, {d, e}}.

With E1 constructed we can complete the construction of E2. Recall, that we have that

{a, b} is a union of equivalence classes in E2. Suppose that {a} ∈ E2. Then L2L1({a, c}) would

be equal to {a} since {a, c} ∈ E1 but from the given list we see that it is not. Hence, {a, b} ∈ E2.

Similarly, we recall that {c, d} is a union of equivalence classes in E2. Suppose that {d} ∈ E2.

Then L2L1({d, e}) would be equal to {d, e} since {d, e} ∈ E1 but it is only equal to {e}. Hence,

{c, d} ∈ E2. We have now fully reconstructed E2 and E2 = {{a, b}, {c, d}, {e}}.

The next example shows that we cannot always uniquely decompose successive approximations.

Example 4.2.2

Let V = {a, b, c, d} and let E1 = {{a, b}, {c, d}}, E2 = {{a, c}, {b, d}} and E3 = {{a, d}, {b, c}}.

We see that L1L2(X) = L1L3(X) = ∅ for all X ∈ (P(V ) − V ) and L1L2(X) = L1L3(X) = V

when X = V. Then for all X ⊆ U, L1L2(X) = L1L3(X) even though E2 6= E3. Hence, if we are

given a double, lower successive approximation on P(V ) which outputs ∅ for all X ∈ (P(V )−V )

and V forX = V then we would be unable to say that it was uniquely produced by L1L2 or L1L3.

54

C
E

U
eT

D
C

ol
le

ct
io

n



In the following we start to build to picture of what conditions are needed for the existence of

unique solutions for double, successive approximations.

Proposition 4.2.1. Let V be a set with equivalence relations E1 and E2 on V. If for each

[x]E1 ∈ E1, [x]E1 is such that L2([x]E1) = ∅ i.e [x]E1 is either internally E2–undefinable or

totally E2–undefinable, then the corresponding approximation operator, L2L1 on P(V ) will be

such that L2L1([x]E1) = ∅.

Proof. Here, L1([x]) = ∅. Hence L2L1([x]) = L2(∅) = ∅.

Remark 4.2.1 We note that the union of E-undefinable sets is not necessarily E-undefinable.

Consider Example 4.2.2. Here, {a, b} and {c, d} are both totally E2–undefinable but their union,

{a, b, c, d} is E2–definable.

Algorithm 4.1: For Partial Decomposition of Double Successive Lower Approxima-

tions

Let V be a finite set. Given a fully defined operator L2L1 : P(V )→ P(V ), if a solution exists,

we can produce a solution (S,R), i.e. where L1 and L2 are the lower approximation operators

of equivalence relations S and R respectively, by performing the following steps:

1. Let J be the range of L2L1 i.e. the set of output sets of the given L2L1 operator. We form

the relation R to be such that for a, b ∈ V, a ∼R b ⇐⇒ (a ∈ X ⇐⇒ b ∈ X) for any X ∈ J. It

is clear that R is an equivalence relation.

2. For each Y 6= ∅ output set, find the minimum pre-image set with respect to ⊆, Ym, such that

L2L1(Ym) = Y . Collect all these minimum sets in a set K. If there is any non-empty output

set Y, such that the minimum Ym does not exist, then there is no solution to the given operator

and we return 0 signifying that no solution exists.

3. Using K, we form the relation S to be such that for a, b ∈ V, a ∼S b ⇐⇒ (a ∈ X ⇐⇒ b ∈

X) for any X ∈ K. It is clear that S is an equivalence relation.

4. Form the operator LRLS : P(V ) → P(V ) generated by (S,R). If for all X ∈ P(V ), the

given L2L1 operator is such that L2L1(X) = LRLS(X), then (S,R) is a solution proving that

55

C
E

U
eT

D
C

ol
le

ct
io

n



a solution exists (note that it is not necessarily unique). Return (S,R). Otherwise, discard S

and R and return 0 signifying that no solution exists.

We will prove the claims in step 2 and step 4 in this section. Next, we prove step 2.

Proposition 4.2.2. Let V be a set and L2L1 : P(V )→ P(V ) be a given fully defined operator

on P(V ). If for Y 6= ∅ in the range of L2L1, there does not exist a minimum set Ym, with respect

to ⊆ such that L2L1(Ym) = Y, then there is no equivalence relation pair solution to the given

operator.

Proof. Suppose to get a contradiction that a solution (E1, E2) exists and there is no minimum

set Ym such that L2L1(Ym) = Y. Since V is finite, then there exists at least two minimal sets Yk

and Yl say, such that L2L1(Ys) = Y and L2L1(Yt) = Y. Since Ys and Yt are minimal sets with

the same output after two successive lower approximations, then Ys and Yt must each be unions

of equivalence classes in E1 which contain Y. Since they are unequal, then WLOG there exists

[a]E1 ∈ E1 which is such that [a]E1 ∈ Ys but [a]E1 6∈ Yt. Since Ys is minimal, then [a]E1 ∩ Y 6= ∅

(or else L2L1(Ys) = L2L1(Ys− [a]E1) = Y ). So let x ∈ [a]E1 ∩Y. Then Yt 6⊇ x which contradicts

Yt ⊇ Y.

We now prove three lemmas on the way to proving the claim in step 4.

Lemma 4.2.1. Let V be a set and L2L1 : P(V ) → P(V ) be a given fully defined operator

on P(V ). Let R and S be equivalence relations defined on V as constructed in the previous

algorithm. If (E1, E2) is a solution of L2L1 then E2 ≤ R and E1 ≤ S.

Proof. We first prove E2 ≤ R. Now the output set of a non-empty set in P(V ) is obtained by

first applying the lower approximation L1 to it and and after applying the lower approximation,

L2 to it. Hence by definition of L2, the non-empty output sets are unions of equivalence classes

of the equivalence relation which corresponds to L2. If a is in an output set but b is not then

they cannot belong to the same equivalence class of E2 i.e. a 6∼R b implies that a 6∼E2 b. Hence

E2 ≤ R.

Similarly, the minimal pre-image, X say, of a non-empty output set which is a union of

equivalence classes in E2, has to be a union of equivalence classes in E1. For suppose it was

not. Let Y = {y ∈ X | [y]E1 6⊆ X}. By assumption, Y 6= ∅. Then L1(X) = L1(X − Y ). Hence

56

C
E

U
eT

D
C

ol
le

ct
io

n



L2L1(X) = L2L1(X − Y ) but |X − Y | < |X| contradicting minimality of X. Therefore, if a

belongs to the minimal pre-image of a non-empty output set but b does not belong to it, then a

and b cannot belong to the same equivalence class in E1 i.e. a 6∼S b which implies that a 6∼E1 b.

Hence E1 ≤ S.

Remark 4.2.3 The above shows that for any other solution, (E1, E2) of a given L2L1 operator

other than (S,R) produced by the algorithm, must be finer than (S,R), i.e. E1 ≤ S and E2 ≤ R.

Lemma 4.2.2. Let V be a finite set and L2L1 : P(V ) → P(V ) be a fully defined operator. If

there exists equivalence pair solutions to the operator (E1, E2) which is such that there exists

[x]E2 , [y]E2 ∈ E2, such that [x]E2 6= [y]E2 and uE1([x]E2) = uE1([y]E2), then there exists another

solution, (E1, H2), where H2 is an equivalence relation formed from E2 by combining [x]E2 and

[y]E2 and all other elements are as in E2. That is, [x]E2 ∪ [y]E2 = [z] ∈ H2 and if [w] ∈ E2 such

that [w] 6= [x]E2 and [w]E2 6= [y]E2 , then [w] ∈ H2.

Proof. Suppose that (E1, E2) is a solution of a given L2L1 operator and H2 is as defined

above. Now, L2L1(X) = Y iff the union of E1-equivalence classes in X contains the union

of E2-equivalence classes which is equal to Y. So, in the (E1, H2) solution, the only way that

LH2LE1(X) could be different from LE2LE1(X)(which is = L2L1(X)) is if (i) [x]E2 is con-

tained in LE2LE1(X) while [y]E2 is not contained in LE2LE1(X) or if (ii) [y]E2 is contained

in LE2LE1(X) while [x]E2 is not contained in LE2LE1(X). This is because in H2, [x]E2 and

[y]E2 always occur together in an output set if they are in it at all (recall that output sets are

unions of equivalence classes) in the equivalence class of [z] = [x]E2 ∪ [y]E2 and all the other

equivalence classes of H2 are the same as in E2. However, neither (i) nor (ii) is the case since

uE1([x]E2) = uE1([y]E2). That is, the equivalence classes of [x]E2 are contained by exactly the

same union of equivalences in E1 which contains [y]E2 . Thus, any set X which contains a union

of E1-equivalences which contains [x]E2 also must contain [y]E2 and therefore [z]H . Hence, if

(E1, E2) is a solution for the given vector, then so is (E1, H2).

Lemma 4.2.3. Let V be a finite set and L2L1 : P(V ) → P(V ) be a fully defined operator. If

there exists equivalence pair solutions to the operator (E1, E2) which is such that there exists

[x]E1 , [y]E1 ∈ E2, such that [x]E1 6= [y]E1 and uE2([x]E1) = uE2([y]E1), then there exists another

solution, (H1, E2), where H1 is an equivalence relation formed from E1 by combining [x]E2 and

57

C
E

U
eT

D
C

ol
le

ct
io

n



[y]E2 and all other elements are as in E1. That is, [x]E1 ∪ [y]E1 = [z] ∈ H1 and if [w] ∈ E2 such

that [w] 6= [x]E1 and [w]E1 6= [y]E1 , then [w] ∈ H1.

Proof. Suppose that (E1, E2) is a solution of a given L2L1 operator and H1 is as defined

above. Now, L2L1(X) = Y iff the union of E1-equivalence classes in X contains the union

of E2-equivalence classes which is equal to Y. So, in the (H1, E2) solution, the only way that

LE2LH1(X) could be different from LE2LE1(X)(which is = L2L1(X)) is if the union of equiva-

lence classes in X which is needed to contain Y, (i) contains [x]E2 but not [y]E2 or (ii) contains

[y]E2 but not [z]E2 . However, this is not the case since uE2([x]E1) = uE2([y]E1). That is, [x]E1

intersects exactly the same equivalence classes in E2 as [y]E1 . So if [x]E1 is needed to contain

an equivalence class in E2, then [y]E1 is also needed. In other words, if L2L1(X) = Y, then for

any minimal set such Ym ⊆ X such that L2L1(Ym) = Y, [x]E1 is contained in Ym iff [y]E1 is

contained in Ym iff [z] ∈ H1 is contained in Ym. Hence, if (E1, E2) is a solution for the given

vector, then so is (H1, E2).

We now have enough to be able to prove the claim in step 4 of Algorithm 4.1 (actually we prove

something stronger because we also show conditions which the solutions of the algorithm must

satisfy).

Theorem 4.2.1. Let V be a finite set and L2L1 : P(V ) → P(V ) be a fully defined operator.

If there exists equivalence pair solutions to the operator, then there exists a solution (E1, E2)

which satisfies,

(i) for each [x]E2 , [y]E2 ∈ E2, if [x]E2 6= [y]E2 then uE1([x]E2) 6= uE1([y]E2),

(ii) for each [x]E1 , [y]E1 ∈ E1, if [x]E1 6= [y]E1 then uE2([x]E1) 6= uE2([y]E1).

Furthermore, E1 = S and E2 = R where (S,R) is the solution obtained by applying Algorithm

4.1 to the given L2L1 operator.

Proof. Suppose that there exists a solution (C,D). Then, either (C,D) already satisfies condi-

tion (i) and condition (ii) or it does not. If it does, take (E1, E2) = (C,D). If it does not satisfy

condition (i) then use repeated applications of Lemma 4.2.2 until we arrive at an (C,E2) solu-

tion which does. Similarly, if (C,E2) does not satisfy condition (ii), use repeated applications

of Lemma 4.2.3 until it does. Since P(V ) is finite this will take at most finite applications of the

lemmas until we obtain a solution, (E1, E2) which satisfies the conditions of the theorem. Since

58

C
E

U
eT

D
C

ol
le

ct
io

n



there is a solution, using Proposition 4.2.2 we will at least be able to reach step 4 of Algorithm

4.1. So let S and R be the relations formed by the algorithm after step 3. Next, we will show

that E1 = S and E2 = R. Now, by Lemma 4.2.1, we have that E1 ≤ S and E2 ≤ R.

Consider the output sets of the given L2L1 operator. It is clear that these sets are unions

of equivalence classes of E2. Let [y]E2 ∈ E2 then L2L1(uE1([y]E2)) ⊇ [y]E2 .

Claim 1: L2L1(uE1([y]E2)) is the minimum set in the range of L2L1 such that it contains [y]E2

and uE1([y]E2) is the minimum set X such that L2L1(X) ⊇ [y]E2 .

To see this we first note that L2L1 is a monotone function on P(V ) since L1 and L2 are

monotone operators and L2L1 is the composition of them. Then, if we can show that uE1([y]E2)

is the minimum set X ∈ P(V ), such that L2L1(X) ⊇ [y]E2 , then L2L1(uE1([y]E2)) will be the

minimum output set which contains [y]E2 . This is true because for L2L1(X) ⊇ [y]E2 , then

L1(X) must contain each member of [y]E2 . We note that the range of L1 contains only unions

of equivalence classes of E1 (counting the emptyset as a union of zero sets). Hence for L1(X)

to contain each element of [y]E2 , it must contain each equivalence class in E1 which contains

any of these elements. In other words, it must contain uE1([y]E2). Suppose that X is such

that X 6⊇ uE1([y]E2) and L2L1(X) ⊇ [y]E2 . Then for some v ∈ [y]E2 , v is not in X and so

uE1([v]E2) 6∈ L1(X). Hence L2L1(X) 6⊇ v and so does not contain [y]E2 which is a contradiction.

Claim 2: L2L1(uE1([y]E2)) is not the minimum output set with respect to containing any other

[z]E2 6= [y]E2 .

Suppose that for some [z]E2 6= [y]E2 ∈ E2, that L2L1(uE1([y]E2)) is the minimum output set

containing [z]E2 . Then by the previous Claim, we get that L2L1(uE1([y]E2)) = L2L1(uE1([z]E2))

and that uE1([y]E2) ⊇ uE1([z]E2). But since uE1([y]E2) is the minimum set such that L2L1(X) ⊇

[y]E2 , then the stated equality also gives us that uE1([y]E2) ⊆ uE1([z]E2). Hence we have

uE1([y]E2) = uE1([z]E2) which is a contradiction to the assumption of condition (i) of the

theorem.

Now we can reconstruct E2 by relating elements which always occur together in the output

sets. That is, a ∼R b ⇐⇒ (a ∈ X ⇐⇒ b ∈ X) for each X in the range of L2L1. From the

previous proposition we have that E2 ≤ R. We claim that R ≤ E2, hence R = E2. To show

this, suppose that it is not the case. Then there exists a, b ∈ V such that a ∼R b but a 6∼E2 b.

By Claim 1, L2L1(uE1([a]E2)) is the minimum set which contains [a]E2 and since a ∼R b then

59

C
E

U
eT

D
C

ol
le

ct
io

n



it must contain b, and consequently [b]E2 as well. Similarly by Claim 1, L2L1(uE1([b]E2)) is the

minimum set which contains [b]E2 and since a ∼R b then it must contain a, and consequently

[a]E2 as well. By minimality we therefore have both L2L1(uE1([a]E2)) ⊆ L2L1(uE1([b]E2)) and

L2L1(uE1([a]E2)) ⊇ L2L1(uE1([b]E2)) which implies that L2L1(uE1([a]E2)) = L2L1(uE1([b]E2)).

This contradicts Claim 2 since [a]E2 6= [b]E2 ∈ E2. Hence, E = R and we can reconstruct E2 by

forming the equivalence relation R which was defined by using the output sets.

It remains to reconstruct E1. Next, we list the pre-images of the minimal output sets which

contain [y]E2 for each [y]E2 in E2 and by Claim 1 this exists and is equal to uE1([y]E2). This

implies that each such set is the union of some of the equivalence classes of E1. Now using this

pre-image list we relate elements of V in the following way: a ∼S b ⇐⇒ (a ∈ X ⇐⇒ b ∈ X)

for each X in the pre-image list. From the previous proposition we have that E1 ≤ S. We claim

that S ≤ E1 and hence S = E1. Suppose that it was not the case. That is, there exists a, b ∈ V

such that a ∼S b but a 6∼E1 b. Hence [a]E1 6= [b]E1 . By condition (ii) of the theorem, we know

that uE2([a]E1) 6= uE2([b]E1). So WLOG suppose that d ∈ uE2([a]E1) but d 6∈ uE2([b]E1). Since

these sets are unions of equivalence classes in E2 this implies that 1), [d]E2 ⊆ uE2([a]E1) and 2)

[d]E2 ∩ uE2([b]E1) = ∅. Now by Claim 1, uE1([d]E2) is the minimum set, X such that L2L1(X)

contains [d]E2 and so is on the output list from which the Relation S was formed. However, 1)

implies that this set contains a while 2) implies that this set does not contain b. This contradicts

a ∼S b. Hence S = E1 and we can construct E1 by constructing S. The result is shown.

Next we give, a graph-theoretic equivalence of the theorem but we first define a graph showing

the relationship between two equivalence relations on a set.

Definition 4.2.1. Let C and D be two equivalence relations on a set V. Form a bipartite graph

B(C,D) = (G,E), where the nodes G is such that G = {[u]C | [u]C ∈ C} ∪ {[u]D | [u]D ∈ D}

and the edges E are such that E = {([u]C , [v]D) | ∃ x ∈ V : x ∈ [u]C and x ∈ [v]D}. We call

this the incidence graph of the pair (C,D).

Theorem 4.2.2. Let V be a finite set and let L2L1 : P(V ) → P(V ) be a given fully defined

operator on P(V ). If there exists solutions (E1, E2) then the incidence graph of E1 and E2,

B(E1, E2), is such that there are no complete bipartite subgraphs as components other than

edges (or K2).

Proof. This is a direct translation of the previous theorem graph-theoretically. Suppose that

60

C
E

U
eT

D
C

ol
le

ct
io

n



the incidence graph of E1 and E2, B(E1, E2), contains a complete bipartite subgraph as a

component. Then the partition corresponding to E2 violates Condition (i) of the theorem and

the partition corresponding to E1 violates condition (ii) of the theorem.

Corollary 4.2.1. Let V be a finite set and L2L1 : P(V ) → P(V ) be a given defined operator.

If (E1, E2) is a unique solution for the operator then |E1| < 2|E2| and |E2| < 2|E1|.

Proof. This follows directly from the conditions since in the incidence graph of a unique solution

(E1, E2), each equivalence class in E1 is mapped to a unique non-empty subset of equivalence

classes in E2 and vice versa.

The next natural question is, without assuming conditions on the equivalence relations, are

there instances when the algorithm produces a unique solution? Example 4.2.1 is an example of

a unique decomposition of a given L2L1 operator. So this leads naturally to the next question.

What conditions result in a unique solution to a given L2L1? Can we find characterising features

of the pairs of equivalence relations which give a unique L2L1 operator?

We note that the algorithm always produces a solution for a fully defined L2L1 operator

which has at least one solution. Hence, if there is a unique solution then these pairs of equiva-

lence relations satisfy the conditions of Theorem 4.2.1. Recall that in Example 4.2.2, we were

given an L2L1 operator defined on P(V ) for V = {a, b, c, d} such that L2L1(X) = ∅ for all

X 6= V and L2L1(V ) = V. This example shows us that in addition to a solution which would

satisfy the conditions of the theorem, which applying the algorithm gives us; E1 = {{a, b, c, d}}

and E2 = {{a, b, c, d}}}, we also have solutions of the form E1 = {{a, b}, {c, d}} and E2 =

{{a, c}, {b, d}} or E1 = {{a, b}, {c, d}} and E2 = {{a, d}, {b, c}} amongst others. In Lemma

4.2.1, we showed that the solution given by the algorithm is the coarsest pair compatible with

a given defined L2L1 operator. We now try to find a condition such that after applying the

algorithm, we may deduce whether or not the (S,R) solution is unique. This leads us to the

next section.

4.2.1 Characterising Unique Solutions

Theorem 4.2.3. Let V be a finite set and let L2L1 : P(V )→ P(V ) be a fully defined operator

on P(V ). If (S,R) is returned by Algorithm 4.1, then (S,R) is the unique solution of the operator

iff the following holds:

61

C
E

U
eT

D
C

ol
le

ct
io

n



(i) For any [x]R ∈ R, there exists [z]S ∈ S such that, |[x]R ∩ [z]S | = 1.

(ii) For any [x]S ∈ S, there exists [z]R ∈ R such that, |[x]S ∩ [z]R| = 1.

Proof. We prove ⇐ direction first. So assume the conditions. We note that by Lemma 4.2.1,

any other solutions, (E1, E2) to the given L2L1 operator must be coarser than (S,R). Thus,

if there is another solution to the given L2L1 operator, (E1, E2) then at least one of E1 < S,

E2 < R must hold.

First we assume to get a contradiction that there exists a solution (E1, E2) which is such

that E1 < S. That is, E1 contains a splitting of at least one of the equivalences classes of S,

say [a]S . Hence |[a]S | ≥ 2. By assumption there exists a [z]R ∈ R such that |[a]S ∩ [z]R| = 1.

Hence there is a [z]E2 ∈ E2 such that |[a]S ∩ [z]E2 | = 1 since E2 ≤ R. Call the element in this

intersection v say. We note that [v]E2 = [z]E2 . Now as [a]S is spilt into smaller classes in E1, v

must be in one of these classes, [v]E1 . Consider the minimal pre-image of the minimal output set

of L2L1 which contains [v]R. Call this set Y(S,R). For the solution (S,R), Y(S,R) contains all of

[a]S since v ∈ [a]S . But for the solution (E1, E2), the minimal pre-image of the minimal output

set of L2L1 which contains [v]R, Y(E1,E2), is such that Y(E1,E2) = (YS − [a]s)∪ [v]E1 6= YS . Hence

the output list for (E1, S) is different from the given one which is a contradiction.

Next, suppose to get a contradiction there exists a solution (E1, E2) which is such that

E2 < R. That is, E2 contains a splitting of at least one of the equivalences classes of R, say

[a]R. Hence |[a]R| ≥ 2. By assumption there exists a [z]S ∈ S such that |[a]R ∩ [z]S | = 1.

Hence there is a [z]E1 ∈ E1 such that |[a]R ∩ [z]E1 | = 1 since E1 ≤ S. Call the element in this

intersection v say. We note that [v]E1 = [z]E1 . Now as [a]R is spilt into smaller classes in E2,

v must be in one of these classes, [v]E2 . Consider the set [a]R − [v]E2 . The minimal pre-image

of the minimal output set which contains this set in the (S,R) solution, Y(S,R) contains [v]S

since here the minimal output set which contains ([a]R − [v]E2), must contain all of [a]R which

contains v. If (E1, E2) were the solution then the minimal pre-image of the minimal output set

which contains ([a]R − [v]E2), Y(E1,E2), would not contain [vs] since ([a]R − [v]E2) ∩ [v]S = ∅.

That is, Y(E1,E2) 6= YS . Hence the output list for (E1, E2) is different from the given one which

is a contradiction.

Now we prove ⇒ direction. Suppose that (E1, E2) is the unique solution, and assume that

the condition does not hold. By Theorem 4.2.1, (E1, E2) = (S,R). Then either there exists an

[x]R ∈ R such that for all [y]S ∈ S such that [x]R ∩ [y]S 6= ∅ we have that |[x]R ∩ [y]S | ≥ 2

62

C
E

U
eT

D
C

ol
le

ct
io

n



or there exists an [x]S ∈ S such that for all [y]R ∈ R such that [x]S ∩ [y]R 6= ∅ we have that

|[x]S ∩ [y]R| ≥ 2.

We consider the first case. Suppose that [x]R has non-empty intersection with with n sets

in S. We note that n ≥ 1. Form a sequence of these sets; S1, ...Sn. Since |[x]R ∩ Si| ≥ 2 for

each i such that i = 1, ...n, let {ai1, ai2} be in [x]R ∩ Si for each i such that i = 1, ...n. We

split [x]R to form a finer E2 as follows: Let P = {ai1 | i = 1, ...n} and Q = [x]R − P be

equivalence classes in E2 and for the remaining equivalence classes in E2, let [y] ∈ E2 iff [y] ∈ R

and [y]R 6= [x]R. Now, LRLS(X) = Y iff the union of S-equivalence classes in X contains the

union of R-equivalence classes which is equal to Y. So, for the (S,E2) solution, the only way

that LE2LS(X) could be different from LRLS(X) is if there is a union of S-equivalence classes

in X which contain P but not Q or which contain Q but not P (since P and Q always occur

together as [x]R for the (S,R) solution). However, this is not the case as follows. Since P and

Q exactly spilt all of the equivalence classes of S which have non-empty intersection with [x]R,

we have that uS(P ) = uS(Q). That is, P intersects exactly the same equivalence classes of S

as Q. Therefore, P is contained by exactly the same union of equivalence classes in S as Q.

Therefore, a union of S-equivalence classes in X contains P iff it contains Q iff its contains [x]R.

Hence, LRLS(X) = LE2LS(X) for all X ∈ P(V ) and if (S,R) is a solution for the given vector,

then so is (S,E2) which is a contradiction of assumed uniqueness of (S,R).

We consider the second case. Suppose that [x]S has non-empty intersection with with n

sets in R. We note that n ≥ 1. Form a sequence of these sets; R1, . . . Rn. Since |[x]S ∩ Ri| ≥ 2

for each i such that i = 1, . . . n, let {ai1, ai2} be in [x]S ∩ Ri for each i such that i = 1, . . . n.

We split [x]S to form a finer E1 as follows: Let P = {ai1 | i = 1, . . . n} be one equivalence class

and let Q = [x]R − P be another and for any [y]S ∈ S such that [y]S 6= [x]S , let [y] ∈ E1 iff

[y] ∈ S. Again, LRLS(X) = Y iff the union of S-equivalence classes in X contains the union

of R-equivalence classes which is equal to Y. So, for the (E1, R) solution, the only way that

LRLE1(X) could be different from LRLS(X) is if (i) P is contained in LRLS(X) while Q is not

contained in LRLS(X) or (ii) Q is contained in LRLS(X) while P is not contained in LRLS(X).

Since P and Q spilt all of the equivalence classes of R which have non-empty intersection with

[x]S , this implies that uR(P ) = uR(Q). That is, P and Q intersect exactly the same equivalence

classes of R. So if P is needed to contain an equivalence class in R for the (S,R) solution, then

Q is also needed. In other words, if L2L1(X) = Y, then for any minimal set such Ym ⊆ X such

63

C
E

U
eT

D
C

ol
le

ct
io

n



that L2L1(Ym) = Y, P is contained in Ym iff Q is contained in Ym iff [x]S is contained in Ym.

Hence, LRLS(X) = LRLE1(X) for all X ∈ P(V ) and if (S,R) is a solution for the given vector,

then so is (E1, R) which is a contradiction of assumed uniqueness of (S,R).

The following theorem sums up the results of Theorem 4.2.1 and Theorem 4.2.3.

Theorem 4.2.4. Let V be a finite set and let L2L1 : P(V )→ P(V ) be a fully defined successive

approximation operator on P(V ). If (E1, E2) is a solution of the operator then it is the unique

solution iff the following holds:

(i) For each [x]E2 , [y]E2 ∈ E2, if [x]E2 6= [y]E2 then uE1([x]E2) 6= uE1([y]E2),

(ii) For each [x]E1 , [y]E1 ∈ E1, if [x]E1 6= [y]E1 then uE2([x]E1) 6= uE2([y]E1).

(iii) For any [x]E2 ∈ E2, there exists [z]E1 ∈ E1 such that, |[x]E2 ∩ [z]E1 | = 1.

(iv) For any [x]E1 ∈ E1, there exists [z]E2 ∈ E2 such that, |[x]E1 ∩ [z]E2 | = 1.

Remark 4.2.4: If an equivalence relation pair satisfies the conditions of Theorem 4.2.1, then

the L2L1 operator based on those relations would be such that if there exists other solutions

then they would be finer pairs of equivalence relations. On the other hand, if an equivalence

relation pair satisfies the conditions of Theorem 4.2.3, then the L2L1 operator based on those

relations would be such that if there exists other solutions then they would be coarser pairs

of equivalence relations. Hence, if an equivalence relation pair satisfies the conditions of both

Theorem 4.2.1 and Theorem 4.2.3, then the L2L1 operator produced by it is unique.

Corollary 4.2.2. Let V be a finite set and let L2L1 : P(V )→ P(V ) be a fully defined successive

approximation operator on P(V ). If (S,R) is the solution returned by Algorithm 4.1, is such

that it is the unique solution then following holds:

For any x ∈ V we have that;

(i) [x]S 6⊇ [x]R unless |[x]R| = 1

(ii) [x]R 6⊇ [x]S unless |[x]S | = 1,

Proof. This follows directly from the conditions in Theorem 4.2.3.

Example 4.2.1 (revisited): Consider again, the given output vector of Example 4.2.1. First

we form the (S,R) pair using Algorithm 4.1. We get that R = {{a, b}, {c, d}, {e}} and S =

64

C
E

U
eT

D
C

ol
le

ct
io

n



{{a, c}, {b}, {d, e}}. Since this is the pair produced from Algorithm 4.1, we know that it satisfies

the conditions of Theorem 4.2.1. Now we need only to check if this pair satisfies the conditions

of Theorem 4.2.3 to see if it is the only solution to do so. To keep track of which equivalence

class a set belongs to, we will index a set belonging to either S or R by S or R respectively.

Then we see that |{a, b}R ∩ {b}S | = 1, |{c, d}R ∩ {a, c}S | = 1 and |{e}R ∩ {d, e}S | = 1. This

verifies both conditions of Theorem 4.2.3 and therefore this is the unique solution of the given

operator.

Proposition 4.2.3. Let V be a finite set and L2L1 : P(V )→ P(V ) be a given defined operator.

If (E1, E2) is a unique solution such that either E1 6= Id or E2 6= Id where Id is the identity

equivalence relation on V then,

(i) E1 6≤ E2,

(ii) E2 6≤ E1.

Proof. We first observe that if E1 and E2 are unique solutions and both of them are not Id

then one of them cannot be equal Id. This is because if (E1, Id) were solutions to a given

L2L1 operator corresponding to L1 and L2 respectively then (Id,E1) would also be solutions

corresponding to L1 and L2 respectively and the solutions would not be unique. Hence, each of

E1 and E2 contains at least one equivalence class of size greater than or equal to two.

Suppose that E1 ≤ E2. Consider an e ∈ E2 such that |e| ≥ 2. Then e either contains a

f ∈ E1 such that |f | ≥ 2 or two or more singletons in E1. Then first violates the condition

of Corollary 4.2.2 and the second violates the second condition of Theorem 4.2.1. Hence the

solutions cannot be unique. Similarly, if we suppose that E2 ≤ E1.

Corollary 4.2.3. Let V be a finite set and L2L1 : P(V ) → P(V ) be a given defined operator.

If there exists a unique solution (E1, E2) such that either E1 6= Id or E2 6= Id where Id is the

identity equivalence relation on V then,

(i) k = γ(E1, E2) = |P OSE1 (E2)|
|V | < 1 or E1 6⇒ E2

(ii) k = γ(E2, E1) = |P OSE2 (E1)|
|V | < 1 or E2 6⇒ E1.

Proof. This follows immediately from definitions.

Proposition 4.2.4. Let V be a finite set and L2L1 : P(V )→ P(V ) be a given defined operator.

If there exists a unique solution (E1, E2) then,

65

C
E

U
eT

D
C

ol
le

ct
io

n



(i) for any [x]E1 ∈ E1, |POSE2([x]E1)| ≤ 1

(ii) for any [x]E2 ∈ E2, |POSE1([x]E2)| ≤ 1.

Proof. This follows from the conditions in Theorem 4.2.4 and Corollary 4.2.2 which imply that

for a unique pair solution (E1, E2), an equivalence class of one of the equivalence relations

cannot contain any elements of size greater than one of the other relation and can contain at

most one element of size exactly one of the other relation.

Corollary 4.2.4. Let V be a finite set where |V | = l and L2L1 : P(V ) → P(V ) be a given

defined operator. If there exists a unique solution (E1, E2) such that |E1| = n and |E2| = m

then,

(i) k = γ(E1, E2) = |P OSE1 (E2)|
|V | ≤ m

l

(ii) k = γ(E2, E1) = |P OSE2 (E1)|
|V | ≤ n

l .

Proof. Let (E1, E2) be the unique solution of the given L2L1 operator. This result follows

directly from the previous proposition by summing over all the elements in one member of this

pair for taking its positive region with respect to the other member of the pair.

Corollary 4.2.5. Let V be a finite set such that |V | = n and L2L1 : P(V )→ P(V ) be a given

defined operator. If there exists a unique solution (E1, E2) then,

(i) if the minimum size of an equivalence class in E1, k1 where k1 ≥ 2 then

k = γ(E1, E2) = |P OSE1 (E2)|
|V | = 0.

(ii) if the minimum size of an equivalence class in E2, k2 where k2 ≥ 2 then

k = γ(E2, E1) = |P OSE2 (E1)|
|V | = 0.

Proof. Since no member of E2 can contain any member of E1 because E1 has no singletons, we

get that |P OSE1 (E2)|
|V | = 0. Similarly for Part (ii).

Proposition 4.2.5. Let V be a finite set and L2L1 : P(V )→ P(V ) be a given defined operator.

If there exists a unique solution (E1, E2) such that |E1| = m and |E2| = n and S1 is the number

of singletons in E1 and S2 is the number of singletons in E2, then,

(i) S1 ≤ n

(ii) S2 ≤ m.

66

C
E

U
eT

D
C

ol
le

ct
io

n



Proof. We note that the conditions in Theorem 4.2.4 imply that no two singletons in E1 can be

contained by any equivalence class in E2 and vice versa. The result thus follows on application

of the pigeonhole principle between the singletons in one equivalence relation and the number

of elements in the other relation.

4.2.2 A Derived Preclusive Relation and a Notion of

Independence

Let V be a finite set and let EV be the set of all equivalence relations on V. Also, let E0
V =

EV − IdV , where IdV is the identity relation on V. From now on, where the context is clear, we

will omit the subscript. We now define a relation on E0, 6⇒E0 , as follows:

Let E1 and E2 be in E0. Let L2L1 : P(V )→ P(V ) where L1 and L2 are lower approximation

operators based on E1 and E2 respectively. Then,

E1 6⇒E0 E2 iff L2L1 is a unique approximation operator.

That is, if for no other E3 and E4 in E0 where at least one of E1 6= E3 or E2 6= E4 holds, is it the

case that the operator L2L1 = L3L4, where L3 and L4 are lower approximation operators based

on E3 and E4 respectively. For more about the connections between rough set approximations

and preclusive relations see [17, 24].

Definition 4.2.2. Let V be a set and E1, E2 ∈ E0
V . We say that E1 is E0

V –independent of E2

iff E1 6⇒E0
V
E2. Also, if ¬(E1 6⇒E0

V
E2), we simply write E1 ⇒E0

V
E2. Here, we say the E1 is

E0
V –dependent of E2 iff E1 ⇒E0

V
E2.

Proposition 4.2.6. 6⇒E0
V
is a preclusive relation.

Proof. We recall that a preclusive relation is one which is irreflexive and symmetric. Let E ∈

E0
V . Since E 6= Id, then by application of Proposition 4.2.3 (E,E) does not generate a unique

L2L1 operator and therefore E ⇒E0
V
E. Hence 6⇒E0

V
is irreflexive.

Now, suppose that E1, E2 ∈ E0
V are such that E1 6⇒E0

V
E2. Then (E1, E2) satisfies the

conditions of Theorem 4.2.4. Since together, the four conditions of the theorem are symmetric

(with conditions (i) and (ii) and conditions (iii) and (iv) being symmetric pairs), then (E2, E1)

67

C
E

U
eT

D
C

ol
le

ct
io

n



also satisfies the conditions of the theorem. Then by this theorem, we will have that E2 6⇒E0
V
E1.

Hence, 6⇒E0
V
is symmetric.

Remark 4.2.5: From the previous proposition we can see that dependency relation ⇒E0
V
is a

similarity relation.

Proposition 4.2.7. If E1 ⇒ E2 then E1 ⇒E0
V
E2.

Proof. This follows from Corollary 4.2.3.

Proposition 4.2.8. It is not the case that E1 ⇒E0
V
E2 implies that E1 ⇒ E2.

Proof. In Example 4.2.2 we see (E1, E2) does not give a corresponding unique L2L1 operator,

hence E1 ⇒E0
V
E2 but E1 6⇒ E2.

Remark 4.2.6 From Proposition 4.2.7 and Proposition 4.2.8, we see that E0
V –dependency is a

more general notion of equivalence relation dependency that ⇒ (or equivalently ≤ ). Similarly

E0
V –independence is a stricter notion of independence than 6⇒ .

Theorem 4.2.5. Let V be a finite set and E1 and E2 equivalence relations on V. Then

E1 6⇒E0
V
E2 iff the following holds:

(i) For each [x]E2 , [y]E2 ∈ E2, if [x]E2 6= [y]E2 then uE1([x]E2) 6= uE1([y]E2),

(ii) For each [x]E1 , [y]E1 ∈ E1, if [x]E1 6= [y]E1 then uE2([x]E1) 6= uE2([y]E1).

(iii) For any [x]E2 ∈ E2, there exists [z]E1 ∈ E1 such that, |[x]E2 ∩ [z]E1 | = 1.

(iv) For any [x]E1 ∈ E1, there exists [z]E2 ∈ E2 such that, |[x]E1 ∩ [z]E2 | = 1.

Proof. This follows directly from Theorem 4.2.4.

4.2.3 Seeing One Equivalence Relation through Another

We will first give a proposition which will show a more explicit symmetry between conditions

(i) and (ii) and conditions (iii) and (iv) in Theorem 4.2.4 for unique solutions.

Proposition 4.2.9. Let V be a finite set and let E1 and E2 be two equivalence relations on V.

Then,

68

C
E

U
eT

D
C

ol
le

ct
io

n



For any [x]E1 ∈ E1, ∃[z]E2 ∈ E2 such that, |[x]E1 ∩ [z]E2 | = 1 iff it is not the case that

∃Y, Z ∈ P(V ) such that [x]E1 = Y ∪ Z, Y ∩ Z = ∅ and uE2(Y ) = uE2(Z) = uE2([x]E1).

Proof. We prove⇒ first. Let [x]E1 ∈ E1 and suppose that ∃[z]E2 ∈ E2 such that, |[x]E1∩[z]E2 | =

1. Then let [x]E1 ∩ [z]E2 = t. Now for any split of [x]E1 , that is for any Y, Z ∈ P(V ) such that

[x]E2 = Y ∪Z and Y ∩Z = ∅, t is in exactly one of these sets. Thus exactly one of uE2(Y ), uE2(Z)

contains [t]E2 = [z]E2 . Hence uE2(Y ) 6= uE2(Z).

We prove the converse by the contrapositive. Let [x]E1 ∈ E1 be such that for all [z]E2 ∈ E2

whenever [x]E1∩[z]E2 6= ∅ (and clearly some such [z]E2 must exist), we have that |[x]E1∩[z]E2 | ≥

2. Suppose that [x]E1 has non-empty intersection with with n sets in E2. We note that n ≥ 1.

Form a sequence of these sets; R1, . . . Rn. Since |[x]E1 ∩Ri| ≥ 2 for each i such that i = 1, . . . n,

let {ai1, ai2} be in [x]E1 ∩ Ri for each i such that i = 1, . . . n. Let Y = {ai1 | i = 1, . . . n} and

let Z = [x]E1 − Y. Then, [x]E1 = Y ∪ Z, Y ∩ Z = ∅ and uE2(Y ) = uE2(Z) = uE2([x]E1).

Using the preceding proposition we obtain an equivalent form of Theorem 4.2.4.

Theorem 4.2.6. Let V be a finite set and E1 and E2 equivalence relations on V. Then (E1, E2)

produces a unique L2L1 : P(V )→ P(V ) operator iff the following holds:

(i) For each [x]E2 , [y]E2 ∈ E2, if [x]E2 6= [y]E2 then uE1([x]E2) 6= uE1([y]E2)

(ii) For each [x]E1 , [y]E1 ∈ E1, if [x]E1 6= [y]E1 then uE2([x]E1) 6= uE2([y]E1)

(iii) For any [x]E2 ∈ E2, if ∃Y, Z ∈ P(V ) such that [x]E2 = Y ∪ Z and Y ∩ Z = ∅

aaa then uE1(Y ) 6= uE1(Z)

(iv) For any [x]E1 ∈ E1, if ∃Y,Z ∈ P(V ) if [x]E1 = Y ∪ Z and Y ∩ Z = ∅ then

aaa uE2(Y ) 6= uE2(Z)

Conceptual Translation of the Uniqueness Theorem

The conditions of the above theorem can be viewed conceptually as follows: (i) Through the

eyes of E1, no two equivalence classes of E2 are the same; (ii) Through the eyes of E2, no

two equivalence classes of E1 are the same; (iii) No equivalence class in E2 can be broken

down into two smaller equivalence classes which are equal to it through the eyes of E1; (iv) No

equivalence class in E1 can be broken down into two smaller equivalence classes which are equal

to it through the eyes of E2. In other words we view set Vmod E1. That is, let VmodE1 be

69

C
E

U
eT

D
C

ol
le

ct
io

n



the set obtained from V after renaming the elements of V with fixed representatives of their

respective equivalence classes in E1. Similarly let VmodE2 be the set obtained from V after

renaming the elements of V with fixed representatives of their respective equivalence classes in

E2. We then have the following equivalent conceptual version of Theorem 4.2.4

Theorem 4.2.7. Let V be a finite set and E1 and E2 equivalence relations on V. Then

(E1, E2) generate a unique L2L1 operator iff the following holds:

(i) No two distinct members of E2 are equivalent in VmodE1.

(ii) No two distinct members of E1 are equivalent in VmodE2.

(iii) No member E2 can be broken down into two smaller sets which are equivalent to it in

VmodE1.

(iv) No member E1 can be broken down into two smaller sets which are equivalent to it in

VmodE2.

4.3 Decomposing U2U1 Approximations

We now investigate the case of double upper approximations. This is dually related to the case

of double lower approximations because of the relationship between upper and lower approxi-

mations by the equation, U(X) = −L(−X) (see property 10 in Section 2.1.1). The following

proposition shows that the problem of finding solutions for this case reduces to the case in the

previous section:

Proposition 4.3.1. Let V be a finite set and let U2U1 : P(V )→ P(V ) be a given fully defined

operator on P(V ). Then any solution (E1, E2), is also a solution of L2L1 : P(V ) → P(V )

operator where L2L1(X) = −U2U1(−X) for any X ∈ P(V ). Therefore, the solution (E1, E2)

for the defined U2U1 operator is a unique iff the solution for the corresponding L2L1 operator

is unique.

Proof. Recall that L2L1(X) = −U2U1(−X). Hence, if there exists a solution (E1, E2) which

corresponds to the given U2U1 operator, this solution corresponds to a solution for the L2L1

operator which is based on the same (E1, E2) by the equation L2L1(X) = −U2U1(−X). Similarly

for the converse.

70

C
E

U
eT

D
C

ol
le

ct
io

n



Algorithm: Let V be a finite set and let U2U1 : P(V )→ P(V ) be a given fully defined operator

on P(V ). To solve for a solution, change it to solving for a solution for the corresponding L2L1

operator by the equation L2L1(X) = −U2U1(−X). Then, when we want to know the L2L1

output of a set we look at the U2U1 output of its complement set and take the complement of

that. Next, use Algorithm 4.2 and the solution found will also be a solution for the initial U2U1

operator.

4.3.1 Characterising Unique Solutions

Theorem 4.3.1. Let V be a finite set and let U2U1 : P(V ) → P(V ) be a given fully defined

operator on P(V ). If (E1, E2) is a solution then, it is unique iff the following holds:

(i) for each [x]E2 , [y]E2 ∈ E2, if [x]E2 6= [y]E2 then uE1([x]E2) 6= uE1([y]E2),

(ii) for each [x]E1 , [y]E1 ∈ E1, if [x]E1 6= [y]]E1 then uE2([x]E1) 6= uE2([y]E1).

(iii) For any [x]E2 ∈ E2, there exists [z]E1 ∈ E1 such that, |[x]E2 ∩ [z]E1 | = 1.

(iv) For any [x]E1 ∈ E1, there exists [z]E2 ∈ E2 such that, |[x]E1 ∩ [z]E2 | = 1.

Proof. This follows from Proposition 4.3.1 using Theorem 4.2.4.

4.4 Decomposing U2L1 Approximations

For this case, we observe that U2L1(X) = −L2(−L1(X)) = U2(−U1(−X)). Since we cannot get

rid of the minus sign between the Ls (or Us), duality will not save us the work of further proof

here like it did in the previous section. In this section, we will see that U2L1 approximations are

tighter than L2L1 (or U2U1) approximations (see Theorem 4.4.1 and Theorem 4.4.2). For this

decomposition we will use an algorithm that is very similar to Algorithm 4.1, however notice

the difference in step 2 where it only requires the use of minimal sets with respect to ⊆ instead

of minimum sets (which may not necessarily exist).

Algorithm 4.2: For Partial Decomposition of Double Successive Lower Approxima-

tions

Let V be a finite set. Given a fully defined operator U2L1 : P(V )→ P(V ), if a solution exists,

71

C
E

U
eT

D
C

ol
le

ct
io

n



we can produce a solution (S,R), i.e. where L1 and U2 are the lower and upper approximation

operators of equivalence relations S and R respectively, by performing the following steps:

1. Let J be the range of U2L1 i.e. the set of output sets of the given U2L1 operator. We form

the relation R to be such that for a, b ∈ V, a ∼R b ⇐⇒ (a ∈ X ⇐⇒ b ∈ X) for any X ∈ J. It

is clear that R is an equivalence relation.

2. For each Y 6= ∅ output set, find the minimal pre-image sets with respect to ⊆, Ym, such that

U2L1(Ym) = Y . Collect all these minimal sets in a set K. Note that we can always find these

minimal sets since P(V ) is finite.

3. Using K, we form the relation S to be such that for a, b ∈ V, a ∼S b ⇐⇒ (a ∈ X ⇐⇒ b ∈

X) for any X ∈ K. It is clear that S is an equivalence relation.

4. Form the operator URLS : P(V ) → P(V ) generated by (S,R). If for all X ∈ P(V ), the

given U2L1 operator is such that U2L1(X) = URLS(X), then (S,R) is a solution proving that

a solution exists (note that it is not necessarily unique). Return (S,R). Otherwise, discard S

and R and return 0 signifying that no solution exists.

Again, we bring your attention to the fact that this algorithm is different from Algorithm 4.1

in step 2 where it only requires the use of minimal sets with respect to ⊆ instead of minimum

sets (which may not necessarily exist).

We will prove the claim in step 4 in this section.

Lemma 4.4.1. Let V be a set and U2L1 : P(V ) → P(V ) be a given fully defined operator on

P(V ) with L1 and E2 based on unknown E1 and E2 respectively. Let R and S be equivalence

relations defined on V as constructed in Algorithm 4.3. Then E2 ≤ R and E1 = S.

Proof. We first prove E2 ≤ R. Now the output set of a non-empty set in P(V ) is obtained by

first applying the lower approximation L1 to it and and after applying the upper approximation,

U2 to it. Hence by definition of U2, the non-empty output sets are unions of equivalence classes

of the equivalence relation which corresponds to U2. If a is in an output set but b is not in it

then they cannot belong to the same equivalence class of E2 i.e. a 6∼R b implies that a 6∼E2 b.

Hence E2 ≤ R.

72

C
E

U
eT

D
C

ol
le

ct
io

n



Now, the minimal pre-image, X say, of a non-empty output set which is a union of equivalence

classes in E2, has to be a union of equivalence classes in E1. For suppose it was not. Let

Y = {y ∈ X | [y]E1 6⊆ X}. By assumption, Y 6= ∅. Then L1(X) = L1(X−Y ). Hence U2L1(X) =

U2L1(X − Y ) but |X − Y | < |X| contradicting minimality of X. Therefore, if a belongs to the

minimal pre-image of a non-empty output set but b does not belong to it, then a and b cannot

belong to the same equivalence class in E1 i.e. a 6∼S b which implies that a 6∼E1 b. Hence

E1 ≤ S.

We now prove the converse, that S ≤ E1. For suppose it was not. That is, E1 < S. Then

there exists at least one equivalence class in S which is split into smaller equivalence classes

in E1. Call this equivalence class [a]S . Then there exists w, t ∈ V such that [w]E1 ⊂ [a]S and

[t]E1 ⊂ [a]S . Now consider the pre-images of a minimal output sets of U2L1, containing t. That

is, X such that U2L1(X) = Y where Y is the minimal output set such that t ∈ Y and for any

X1 ⊂ X, U2L1(X1) 6= Y. The following is a very useful observation.

Claim: For any v ∈ uE1([y]E2), [v]S is a minimal set such that U2L1([v]S) ⊇ [y]E2 . The above

follows because 1) U2L1([v]S) ⊇ [y]E2 since v ∈ uE1([y]E2) and 2) For any Z ⊂ [v]S , U2L1(Z) =

∅ since L1(Z) = ∅.

Now for U2L1(X) to contain t, then it must contain [t]E2 . Hence by the previous claim, X =

[t]S is such a minimal pre-image of a set containing t. If L1 is based on S, then X = [t]S = [a]S .

However, if L1 is based on E1, then X = [a]S is not such a minimal set because X = [t]E1 is

such that U2L1(X) = Y but [t]E1 ⊂ [a]S . Hence, URLS(X) 6= UE2LE1(X) for all X ∈ P(V )

which is a contradiction to (E1, E2) also being a solution for the given U2U1 operator. Thus we

have that E1 = S.

Lemma 4.4.2. Let V be a finite set and U2L1 : P(V ) → P(V ) be a fully defined operator. If

there exists equivalence pair solutions to the operator (E1, E2) which is such that there exists

[x]E2 , [y]E2 ∈ E2, such that [x]E2 6= [y]E2 and uE1([x]E2) = uE1([y]E2), then there exists another

solution, (E1, H2), where H2 is an equivalence relation formed from E2 by combining [x]E2 and

[y]E2 and all other elements are as in E2. That is, [x]E2 ∪ [y]E2 = [z] ∈ H2 and if [w] ∈ E2 such

that [w] 6= [x]E2 and [w]E2 6= [y]E2 , then [w] ∈ H2.

Proof. Suppose that (E1, E2) is a solution of a given U2L1 operator and H2 is as defined above.

Now, U2L1(X) = Y iff the union of E1-equivalence classes in X intersects the equivalence classes

73

C
E

U
eT

D
C

ol
le

ct
io

n



of E2 whose union is equal to Y. So, in the (E1, H2) solution, the only way that UH2LE1(X)

could be different from UE2LE1(X)(which is = U2L1(X)) is if there some equivalence class of E1

which either intersects [x]E2 but not [y]E2 or intersects [y]E2 but not [x]E2 . However, this is not

the case since we have that uE1([x]E2) = uE1([y]E2). Hence, UE2LE1(X) = UH2LE1(X) for all

X ∈ P(V ) and therefore if (E1, E2) is a solution to the given operator then so is (E1, H2).

Next, we prove the claim in step 4 of Algorithm 4.2.

Theorem 4.4.1. Let V be a finite set and U2L1 : P(V ) → P(V ) a fully defined operator. If

there exists an equivalence relation pair solution, then there exists a solution (E1, E2), which

satisfies,

(i) for each [x]E2 , [y]E2 ∈ E2, if [x]E2 6= [y]E2 then uE1([x]E2) 6= uE1([y]E2),

Furthermore E1 = S and E2 = R, where (S,R) is the solution obtained by applying Algorithm

4.2 to the given U2L1 operator.

Proof. Suppose that there exists a solution (C,D). Then by Lemma 4.4.1, C = S, where S is

produced by Algorithm 4.2. If (S,D) satisfies condition (i) of the theorem then take (E1, E2) =

(C,D). Otherwise, use repeated applications of Lemma 4.4.2 until we obtain a solution, (S,E2)

which satisfies the condition of the theorem. Since P(V ) is finite this occurs after a finite number

of applications of the lemma. Moreover, by Lemma 4.4.1, E2 ≤ R.

Consider the minimal sets in the output list of the given U2L1 operator. It is clear that

these sets are union of one or more equivalence classes of E2. Let [y]E2 ∈ E2 then for any

v ∈ uE1([y]E2)), U2L1([v]S) ⊇ [y]E2 (by the claim in Lemma 4.4.1).

Claim: (i) For any [y]E2 6= [z]E2 ∈ E2, there exists an output set, U2L1(X) such that it contains

at least of [y]E2 or [z]E2 both it does not contain both sets.

Suppose that [y]E2 6= [z]E2 ∈ E2. By the assumed condition of the theorem, then uE1([y]E2) 6=

uE1([z]E2). Hence either (i) there exists a ∈ V such that a ∈ uE1([y]E2) and a 6∈ uE1([z]E2)

or (ii) there exists a ∈ V such that a 6∈ uE1([y]E2) and a ∈ uE1([z]E2). Consider the first

case. This implies that [a]S ∩ [y]E2 6= ∅ while [a]S ∩ [z]E2 = ∅. Therefore, U2L1([a]S) ⊇ [y]E2

but U2L1([a]S) 6⊇ [z]E2 . Similarly, for the second case we will get that U2L1([a]S) ⊇ [z]E2 but

U2L1([a]S) 6⊇ [y]E2 and the claim is shown.

We recall that a ∼R b ⇐⇒ (a ∈ X ⇐⇒ b ∈ X) for each X in the range of the given

74

C
E

U
eT

D
C

ol
le

ct
io

n



U2L1. From the previous proposition we have that E2 ≤ R. From the above claim we see that

if [y]E2 6= [z]E2 in E2 then there is an output set that contains one of [y]E2 or [z]E2 , but not the

other. Hence, if x 6∼E2 y then x 6∼R y. That is, R ≤ E2. Therefore we have that R = E2.

4.4.1 Characterising Unique Solutions

Theorem 4.4.2. Let V be a finite set and let U2L1 : P(V )→ P(V ) be a fully defined successive

approximation operator on P(V ). If (S,R) is returned by Algorithm 4.1, then (S,R) is the unique

solution of the operator iff the following holds:

(i) For any [x]R ∈ R, there exists [z]S ∈ S such that, |[x]R ∩ [z]S | = 1.

Proof. We prove ⇐ direction first. So assume the condition holds. Then by Theorem 4.4.1 if

there is a unique solution, it is (S,R) produced by Algorithm 4.2. We note that by Lemma

4.4.1, any other solution, (E1, E2) to the given U2L1 operator must be such that E1 = S and

E2 ≤ R.

So, suppose to get a contradiction, that there exists a solution (E1, E2) which is such that

E2 < R. That is, E2 contains a splitting of at least one of the equivalences classes of R, say

[a]R. Hence |[a]R| ≥ 2. By assumption there exists a [z]S ∈ S such that |[a]R ∩ [z]S | = 1. Call

the element in this intersection v say. We note that [v]S = [z]S . Now as [a]R is spilt into smaller

classes in E2, v must be in one of these classes, [v]E2 . Now, U2L1([v]S) when U2 is based on

E2, contains [v]E2 but does not contain [a]R. This is because [v]S ∩ ([a]R − [v]E2) = ∅. That is,

UE2LS([v]S) 6⊇ [a]R but URLS([v]S) ⊇ [a]R. Hence UE2LS(X) 6= URLS(X) for all X ∈ P(V ).

This is a contradiction to (S,E2) also being a solution to the given U2L1 operator for which

(S,R) is a solution. Hence we have a contradiction and so E2 = R.

Now we prove ⇒ direction. Suppose that (E1, E2) is the unique solution, and assume that

the condition does not hold. By uniqueness, (E1, E2) = (S,R). Then, there exists an [x]R ∈ R

such that for all [y]S ∈ S such that [x]R ∩ [y]S 6= ∅ we have that |[x]R ∩ [y]S | ≥ 2.

Suppose that [x]R has non-empty intersection with with n sets in S. We note that n ≥ 1.

Form a sequence of these sets; S1, . . . Sn. Since |[x]R ∩ Si| ≥ 2 for each i such that i = 1, . . . n,

let {ai1, ai2} be in [x]R ∩ Si for each i such that i = 1, . . . n. We split [x]R to form a finer E2

as follows: Let P = {ai1 | i = 1, . . . n} and Q = [x]R − P be two equivalence classes in E2

and for the rest of E2, for any [y]R ∈ R such that [y]R 6= [x]R, let [y] ∈ E2 iff [y] ∈ R. Now,

75

C
E

U
eT

D
C

ol
le

ct
io

n



URLS(X) = Y iff the union of S-equivalence classes in X intersects equivalence classes of E2

whose union is equal to Y. So, for the (S,E2) solution, the only way that LE2LS(X) could be

different from LRLS(X) is if there is an equivalence class in S which intersects P but not Q or Q

but not P. However, this is not the case because uS(P ) = uS(Q). Hence, LRLS(X) = LE2LS(X)

for all X ∈ P(V ) and if (S,R) is a solution for the given vector, then so is (S,E2) which is a

contradiction of assumed uniqueness of (S,R).

The following result sums up the effects of Theorem 4.4.1 and Theorem 4.4.2.

Theorem 4.4.3. Let V be a finite set and let U2L1 : P(V ) → P(V ) be a given fully defined

operator on P(V ). Then there exists a unique pair of equivalence relations solution (E1, E2) iff

the following holds:

(i) for each [x]E2 , [y]E2 ∈ E2, if [x]E2 6= [y]E2 then uE1([x]E2) 6= uE1([y]E2),

(iii) For any [x]E2 ∈ E2, there exists [z]E1 ∈ E1 such that, |[x]E2 ∩ [z]E1 | = 1.

4.5 Decomposing L2U1 Approximations

For this case we observe that L2U1 is dual to the case previously investigated U2L1 operator.

Due to the duality connection between L2U1 and U2L1, the question of unique solutions of the

former reduces to the latter as the following proposition shows.

Proposition 4.5.1. Let V be a finite set and let L2U1 : P(V )→ P(V ) be a given fully defined

operator on P(V ). Then any solution (E1, E2), is also a solution of U2L1 : P(V ) → P(V )

operator where U2L1(X) = −L2U1(−X) for any X ∈ P(V ). Therefore, the solution (E1, E2)

for the defined U2U1 operator is a unique iff the solution for the corresponding U2L1 operator

is unique.

Proof. Recall that U2L1(X) = −L2U1(−X). Hence, if there exists a solution (E1, E2) which

corresponds to the given U2L1 operator, this solution corresponds to a solution for the L2U1

operator which is based on the same (E1, E2) by the equation L2U1(X) = −U2L1(−X). Similarly

for the converse.

76

C
E

U
eT

D
C

ol
le

ct
io

n



Algorithm: Let V be a finite set and let L2U1 : P(V )→ P(V ) be a given fully defined operator

on P(V ). To solve for a solution, change it to solving for a solution for the corresponding U2L1

operator by the equation U2L1(X) = −L2U1(−X). Then, when we want to know the U2L1

output of a set we look at the L2U1 output of its complement set and take the complement of

that. Next, use Algorithm 4.2 and the solution found will also be a solution for the initial L2U1

operator.

4.5.1 Characterising Unique Solutions

Theorem 4.5.1. Let V be a finite set and let L2U1 : P(V ) → P(V ) be a given fully defined

operator on P(V ). If (E1, E2) is a solution, then it is unique iff the following holds:

(i) for each [x]E2 , [y]E2 ∈ E2, if [x]E2 6= [y]E2 then uE1([x]E2) 6= uE1([y]E2),

(ii) For any [x]E2 ∈ E2, there exists [z]E1 ∈ E1 such that, |[x]E2 ∩ [z]E1 | = 1.

Proof. This follows from Proposition 4.5.1, Theorem 4.4.1 and Theorem 4.4.2.

77

C
E

U
eT

D
C

ol
le

ct
io

n



Conclusion and Future Work

In chapter 2 we found a relational generalisation which satisfies almost all of the usual rough set

properties except for duality for the pre-order case. This explains why an operator observed in

the literature in [74] is so well-behaved– namely because it is a special case of this construction.

Additionally, we found a nice interpreted logical connection for this generalisation. This may

be a stepping stone in understanding why this extension is so well-behaved. The future work

which follows from this is to develop and investigate this connection.

In chapter 3 we examined relativised indistinguishability using graphs, extending the work

in [22]. We found a characterisation theorem which describes which graphs have equivalent

relativised indistinguishability relations for all such induced relations for graphs on a given

vertex set. We then proposed the open problem of finding characterising features of graphs

which are equivalent for one (at least) non-trivial relativised indistinguishability relation for

graphs under a given vertex set. Then, we briefly extended the set-up to the hypergraph case.

Furthermore, we noticed a nice equivalence of Cantor’s theorem and discussed how this is related

to indistinguishability differences between N and R.

In chapter 4 we examined the problem of decomposing double, successive, rough approxima-

tions into single rough approximations. We found characterising conditions for equivalence pair

solutions which produce unique such operators and noticed that pairs of equivalence relations

on a set which produces unique operators form a preclusive relation. We can thus derive a re-

lated notion of independence from this. Furthermore, we found a conceptual translation for the

conditions of the uniqueness theorem in the L2L1 case. An area for future work is to continue

to find these nice conceptual translations as suggested by Yao in [99]. We note that most of the

results in chapters 2 and 3 do not require V to be a finite set however the algorithms in chapter

4 do have that requirement (for the existence of minimum or minimal sets). Hence, it is a very

interesting question how this situation looks and what analysis follows for successive rough set

approximations based on equivalence relations on an infinite set.

78

C
E

U
eT

D
C

ol
le

ct
io

n



Bibliography

[1] E. A. Abo-Tabl. A comparison of two kinds of definitions of rough approximations based

on a similarity relation. Information Sciences, 181:2587–2596, 2011.

[2] E. A. Abo-Tabl. Rough sets and topological spaces based on similarity. International

Journal of Machine Learning and Cybernetics, 4(5):451–458, 2013.

[3] T. Arciszewski and W Ziarko. Adaptive expert system for preliminary design of wind-

bracings in steel skeleton structures. Second Century of Skyscraper, Van Norstrand, pages

847–855, 1987.

[4] T. Arciszewski and W Ziarko. Inductive learning in civil engineering: rough sets approach.

Microcomputers and Civil Engineering, 5(1), 1990.

[5] A. Avron and B. Konikowska. Rough sets and 3-valued logics. Studia Logica, 90:60–92,

2008.

[6] M. Banerjee. Rough sets and 3-valued Łukasiewicz logic. Fundamenta Informaticae, 31,

1997.

[7] M. Banerjee and M. K. Chakraborty. Rough sets through algebraic logic. Fundamenta

Informaticae, 28(3-4), 1996.

[8] M. Banerjee and M. K. Chakraborty. Foundations of vagueness: a category-theoretic

approach. Electronic Notes in Theoretical Computer Science, 82:10–19, 2003.

[9] M. Banerjee and M. K. Chakraborty. Algebras from rough sets. Cognitive Technologies,

Rough-Neural Computing, pages 157–184, 2004.

[10] M. Banerjee and M. K. Chakraborty. Rough sets: Some foundational issues. Fundamenta

Informaticae, 127:1–15, 2013.

79

C
E

U
eT

D
C

ol
le

ct
io

n



[11] R. Bello, R. Falcó, and W. Pedrycz, editors. Granular Computing: At the Junction of

Rough Sets and Fuzzy Sets. Studies in Fuzziness and Soft Computing (Book 224). Springer,

2008.

[12] Rafael Bello and José Luis Verdegay. Knowledge engineering for rough sets based decision-

making models. International Journal of Intelligent Systems, 29(9):823–835, 2014.

[13] T. Bittner and J.G. Stell. Stratified rough sets and vagueness. Lecture Notes in Computer

Science, Spatial Information Theory. Foundations of Geographic Information Science,

2825:270–286, 2002.

[14] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic, volume 53 of Cambridge Tracts

in Theoretical Computer Science. Cambridge University Press, 2002.

[15] Z. Bonikowski and U. Wybraniec-Skardowska. Rough sets and vague sets. Lecture Notes

in Computer Science, 4585:122–132, 2007.

[16] G. Cattaneo. An investigation about rough set theory: Some foundational and mathemat-

ical aspects. Fundamenta Informaticae - Advances in Rough Set Theory, 108(3-4):197–221,

2011.

[17] G. Cattaneo and D. Ciucci. A quantitative analysis of preclusivity vs. similarity based

rough approximations. LNCS: Rough Sets and Current Trends in Computing, 2475:69–76,

2002.

[18] G. Cattaneo and D. Ciucci. Algebraic structures for rough sets. LNCS Transactions on

Rough Sets II, 3135:218–264, 2004.

[19] G. Cattaneo and D Ciucci. Lattices with interior and closure operators and abstract

approximation spaces. LNCS Transactions on Rough Sets X, 5656:67–116, 2009.

[20] G. Cattaneo, G. Chiaselotti, D. Ciucci, and T. Gentile. On the connection of hypergraph

theory with formal concept analysis and rough set theory. Inf. Sci., 330:342–357, 2016.

[21] M. K. Chakraborty and M. Banerjee. Rough logics : a survey with further directions. In

E. Orlowska, editor, Incomplete Information: Rough Set Analysis, volume 13 of Studies

in Fuzziness and Soft Computing, pages 579–600. Springer-Verlag, year.

80

C
E

U
eT

D
C

ol
le

ct
io

n



[22] G. Chiaselotti, D. Ciucci, and T. Gentile. Simple undirected graphs as formal contexts.

Formal Concept Analysis, pages 287–302, 2015.

[23] G. Chiaselotti, D. Ciucci, and T. Gentile. Simple graphs in granular computing. Inf. Sci.,

340-341:279–304, 2016.

[24] G. Chiaselotti, D. Ciucci, T. Gentile, and F. Infusino. Preclusivity and simple graphs.

RSFDGrC, pages 127–137, 2015.

[25] D. Ciucci and D. Dubois. Truth-functionality, rough sets and three-valued logics. 2010

40th IEEE International Symposium on Multiple-Valued Logic, pages 98–103, 2010.

[26] C. Cornelis, R. Jensen, D. Slezak, and G. Hurtado. Attribute selection with fuzzy decision

reducts. Information Sciences, 180(2):209–224, 2010.

[27] J. S. Deogun, V. V. Raghavan, and H. Sever. Rough set based classification methods and

extended decision tables. Proc. of The Int. Workshop on Rough Sets and Soft Computing,

pages 302–309, 1994.

[28] I. Düntsch. A logic for rough sets. Theoretical Computer Science, 179:427–436, 1997.

[29] T-F. Fan. Rough set analysis of relational structures. Information Sciences, 221:230–244,

2013.

[30] P. Forrest. The Identity of Indiscernibles. In Edward N. Zalta, editor, The Stanford

Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, winter 2016

edition, 2016.

[31] A. Grabowski. Relational formal characterization of rough sets. Formalized Mathematics,

21(1):55–64, 2013.

[32] J. W. Grzymala-Busse and W. Rzasa. Definability and other properties of approximations

for generalized indiscernibility relations. LNCS Transactions on Rough Sets XI, 5946:14–

39, 2010.

[33] J.W. Grzymala-Busse. Lers-a system for learning from examples based on rough sets.

Theory and Decision Library: Intelligent Decision Support, 11:3–18, 1992.

81

C
E

U
eT

D
C

ol
le

ct
io

n



[34] J.W. Grzymala-Busse, S.Y. Sedelow, and W.A. Sedelow Jr. Rough Sets and Data Min-

ing, chapter Machine Learning and Knowledge Acquisition, Rough Sets, and the English

Semantic Code. Springer US, 1997.

[35] A. Gupta, N. Kumar, and Bhatnagar V. Analysis of medical data using data mining

and formal concept analysis. World Academy of Science, Engineering and Technology,

11:61–64, 2005.

[36] A. E. Hassanien, A. Abraham, J.F. Peters, and G Schaefer. Rough sets in medical in-

formatics applications. Advances in Intelligent and Soft Computing: Applications of Soft

Computing, 58:23–30, 2009.

[37] K.Y. Hu, Y.C. Lu, and C.Y. Shi. Feature ranking in rough sets. AI Communications,

16(1):41–50, 2003.

[38] X. Hu and N. Cercone. Learning in relational databases: A rough set approach. Compu-

tational Intelligence, 11(2):323–338, 1995.

[39] X-M. Huang and Y-H. Zhang. A new application of rough set to ecg recognition. Int.

Conference on Machine Learning and Cybernetics, 3:1729–1734, 2003.

[40] J. Järvinen. Approximations and rough sets based on tolerances. LNCS Rough Sets and

Current Trends in Computing, pages 182–189, 2001.

[41] S. Kobashi, K. Kondo, and Y. Hata. Rough sets based medical image segmentation with

connectedness. Int. Forum on Multimedia and Image Processing, pages 197–202, 2004.

[42] E.F. Lashin, A.M. Kozae, A.A. Abo Khadra, and T. Medhat. Rough set theory for

topological spaces. International Journal of Approximate Reasoning, 40(1-2):35–43, 2005.

[43] M. León, G. Nápoles, R. Bello, L. Mkrtchyan, B. Depaire, and K. Vanhoof. Tackling

travel behaviour: An approach based on fuzzy cognitive maps. International Journal of

Computational Intelligence Systems, 6:1012–1039, 2013.

[44] X. Li and X. Yuan. The category rsc of i-rough sets. FSKD ’08 Proceedings of the 2008

Fifth International Conference on Fuzzy Systems and Knowledge Discovery, 1:448–452,

2008.

82

C
E

U
eT

D
C

ol
le

ct
io

n



[45] C. Liau. Modal reasoning and rough set theory. LNCS Artificial Intelligence: Methodology,

Systems, and Applications, 1480:317–330, 2006.

[46] T.Y. Lin. Topological and fuzzy rough sets. In Decision Support by Experi-

ence—Application of the Rough Sets Theory, pages 287–304. Kluwer Academic Publishers,

1992.

[47] T.Y Lin. Neighborhood systems: a qualitative theory for fuzzy and rough sets. In P.P.

Wang, editor, Advances in Machine Intelligence and Soft Computing, pages 132–155.

Department of Electrical Engineering, Duke University, Durham, North Carolina, 1997.

[48] T.Y. Lin. Granular computing: Fuzzy logic and rough sets, chapter Computing with

Words in Information/Intelligent Systems, pages 183–200. Physica-Verlag, 1999.

[49] T.Y. Lin and C. Liau. Granular computing and rough sets. Data Mining and Knowledge

Discovery Handbook, pages 535–561, 2005.

[50] J. Lu, S. Li, X. Yuang, and W. Fu. Categorical properties of m-indiscernibility spaces.

Theoretical Computer Science, 412(42):5902–5908, 2011.

[51] M. Ma and M. K. Chakraborty. Covering-based rough sets and modal logics. part i.

International Journal of Approximate Reasoning, 77:55–65, 2016.

[52] P. Mahajan, Kandwal R., and R. Vijay. Rough set approach in machine learning: A

review. International Journal of Computer Applications, 56(10):1–13, 2012.

[53] V. W. Marek. Zdzisław Pawlak, databases and rough sets. In Z. Suraj A. Skowron, editor,

Rough Sets and Intelligent Systems,, page 175–184. Springer, 2013.

[54] W. Marek and H. Rasiowa. Gradual approximating sets by means of equivalence relations.

Bulletin of Polish Academy of Sciences, Mathematics, 35:233–238, 1987.

[55] T. Meadows. Forcing for philosophical logicians. https://sites.google.com/site/

tobymeadows/papers-talks, January 2014. Accessed: 2016-10-30.

[56] G. Napoles, I. Grau, K. Vanhoof, and R. Bello. Hybrid model based on rough sets theory

and fuzzy cognitive maps for decision-making. LNCS Rough Sets and Intelligent Systems

Paradigms, 8537:169–178, 2014.

83

C
E

U
eT

D
C

ol
le

ct
io

n

https://sites.google.com/site/tobymeadows/papers-talks
https://sites.google.com/site/tobymeadows/papers-talks


[57] P. Pagliani. Rough set theory and logic-algebraic structures. Incomplete Information:

Rough Set Analysis, pages 109–190, 1998.

[58] P. Pagliani and M. K. Chakraborty. A Geometry of Approximation Rough Set Theory:

Logic, Algebra and Topology of Conceptual Patterns. Trends in Logic (Book 27). Springer,

2008.

[59] Z. Pawlak. Rough sets. International Journal of Computer and Information Sciences,

pages 341–356, 1982.

[60] Z. Pawlak. Rough sets and fuzzy sets. Fuzzy Sets and Systems, 17(1):99–102, 1985.

[61] Z. Pawlak. Rough Sets: Theoretical Aspects of Reasoning about Data, volume 9 of Theory

and Decision Library D:. Springer Netherlands, 1 edition, 1991.

[62] Z. Pawlak. AI and intelligent industrial applications: The rough set perspective. Cyber-

netics and Systems, 31(3):227–252, 2000.

[63] Z. Pawlak. Rough sets, decision algorithms and Bayes’ theorem. European Journal of

Operational Research, 136(1):181–189, 2002.

[64] Z. Pawlak and A. Skowron. Rough sets: Some extensions. Information Sciences,

177(1):28–40, 2007.

[65] G. Peters, P. Lingras, D. Slezak, and Y. Y. Yao, editors. Rough Sets: Selected Methods

and Applications in Management and Engineering. Advanced Information and Knowledge

Processing. Springer London, 2012.

[66] I. Pisica and P. Postolache. Rough set theory and its applications in electrical power

engineering. A survey. UPB Scientific Bulletin, Series C: Electrical Engineering, 72(1),

2010.

[67] L. Polkowski. Rough Sets: Mathematical Foundations. Advances in Intelligent and Soft

Computing. Physica, 1 edition, 2002.

[68] L. Polkowski and M. Semeniuk-Polkowska. Where rough sets and fuzzy sets meet. Fun-

damenta Informaticae, 142(1-4):269–284, 2015.

84

C
E

U
eT

D
C

ol
le

ct
io

n



[69] A.W Przybyszewski. The neurophysiological bases of cognitive computation using rough

set theory. LNCS Transactions on Rough Sets IX, 5390:287–317, 2008.

[70] K. Qin and Z. Pei. On the topological properties of fuzzy rough sets. Fuzzy Sets and

Systems, 151(3):601–613, 2005.

[71] M. Restrepo, C. Cornelis, and J. Gómez. Duality, conjugacy and adjointness of approx-

imation operators in covering-based rough sets. International Journal of Approximate

Reasoning, 55(1 Part 4):469–485, 2014.

[72] A. Salama and H. Abu-Donia. Generalizations of rough functions in topological spaces by

using pre-open sets. Journal of Intelligent Learning Systems and Applications, 4(2):127–

134, 2012.

[73] M. Salamó and M. López-Sánchez. Rough set based approaches to feature selection for

case-based reasoning classifiers. Pattern Recognition Letters, 32(2):280–292, 2011.

[74] P. Samanta and M. K. Chakraborty. Interface of rough set systems and modal logics: A

survey. Transactions on Rough Sets XIX, pages 114–137, 2015.

[75] A. Skowron. Rough sets and vague concepts. Fundamenta Informaticae, 64(1-4):417–431,

2004.

[76] R. Słowinski, editor. Intelligent Decision Support. Handbook of Applications and Advances

of the Rough Set Theory. Kluwer Academic Publishers, Boston, London, Dordrecht, 1992.

[77] R. M. Smullyan. A Beginner’s Guide to Mathematical Logic (Dover Books on Mathemat-

ics). Dover Publications, 2014.

[78] J Stefanowski. Rough Sets in Knowledge Discovery, chapter On Rough Set Based Ap-

proaches to Induction of Decision Rules. Physica-Verlag, Heidelberg, 1998.

[79] R.W. Swiniarski. Rough set methods in feature reduction and classification. International

Journal of Applied Mathematics and Computer Science, 11(3), 2001.

[80] H. Thiele. Generalizing the explicit concept of rough set on the basis of modal logic.

Advances in Soft Computing, Computational Intelligence in Theory and Practice, 8:93–

120, 2001.

85

C
E

U
eT

D
C

ol
le

ct
io

n



[81] B.K. Tripathy. Multi-granular computing through rough sets. Advances in Secure Com-

puting, Internet Services, and Applications, pages 1–34, 2014.

[82] B.K. Tripathy, D.P. Acharjya, and V. Cynthya. A framework for intelligent medical

diagnosis using rough set with formal concept analysis. International Journal of Artificial

Intelligence and Applications, 2(2):45–66, 2011.

[83] S. Tsumoto. Mining diagnostic rules from clinical databases using rough sets and medical

diagnostic model. Information Sciences, 162(2), 2004.

[84] S. Tsumoto. Rough sets and medical differential diagnosis. Intelligent Sysytems Reference

Library: Rough Sets and Intelligent Sysytems - Professor Zdzislaw Pawlak in Memoriam,

42:605–621, 2013.

[85] D. Vakarelov. A modal logic for similarity relations in Pawlak knowledge representation

systems. Fundamenta Informaticae, 15:61–79, 1991.

[86] S. Vluymans, L. D’eer, Y. Saeys, and C. Cornelis. Applications of fuzzy rough set theory

in machine learning: A survey. Fundamenta Informaticae, 142(1-4):53–86, 2015.

[87] P. Wasilewski and D. Slezak. Rough Computing: Theories, Technologies and Applications,

chapter Foundations of Rough Sets from Vagueness Perspective, pages 1–37. IGI Global,

2008.

[88] L. Wei and W. Zhang. Probabilistic rough sets characterized by fuzzy sets. Probabilistic

rough sets characterized by fuzzy sets, 2639, 2003.

[89] A. Wiweger. On topological rough sets. Bulletin of the Polish Academy of Sciences –

Mathematics, 37:51–62, 1988.

[90] M. Wygralak. Rough sets and fuzzy sets-some remarks on interrelations. Fuzzy Sets and

Systems, 29(2):241–243, 1989.

[91] W. Xu, Q. Wang, and X. Zhang. Multi-granulation rough sets based on tolerance relations.

Soft Computing, 17(7):1241–1252, 2013.

[92] Y. Y. Yao. A comparative study of fuzzy sets and rough sets. Information Sciences,

109(1-4), 1998.

86

C
E

U
eT

D
C

ol
le

ct
io

n



[93] Y. Y. Yao. Constructive and algebraic methods of the theory of rough sets. Journal of

Information Sciences, 109:21–47, 1998.

[94] Y. Y. Yao. Generalized rough set models. Rough Sets in Knowledge Discovery, pages

286–318, 1998.

[95] Y. Y. Yao. Relational interpretations of neighborhood operators and rough set approxi-

mation operators. Information Sciences, 111(1-4):239–259, 1998.

[96] Y. Y. Yao. On generalizing rough set theory. LNCS Rough Sets, Fuzzy Sets, Data Mining,

and Granular Computing, 2639:44–51, 2003.

[97] Y. Y Yao. Probabilistic approaches to rough sets. Expert Systems 20, pages 287–297,

2003.

[98] Y. Y. Yao. A note on definability and approximations. LNCS Transactions on 1310 Rough

Sets, 7(LNCS 4400), 2007.

[99] Y. Y. Yao. The two sides of the theory of rough sets. Knowledge-Based Systems, 80:67–77,

2015.

[100] Y. Y. Yao and T. Y. Lin. Generalization of rough sets using modal logics. Intelligent

Automation & Soft Computing, 2(2):103–119, 1996.

[101] M. Yorek and S.. Narli. Modeling of cognitive structure of uncertain scientific conceptsers

using fuzzy-rough sets and intuitionistic fuzzy sets: Example of the life concept. Inter-

national Journal of Uncertainty Fuzziness and Knowledge-Based Systems, 17(5):747–769,

year.

[102] N. Zhong, J.Z Dong, and S. Ohsuga. Data mining: a probabilistic rough set approach.

Rough Sets in Knowledge Discovery 2, pages 127–146, 1998.

[103] N. Zhong, J.Z. Dong, and S. Ohsuga. Using rough sets with heuristics for feature selection.

Journal of Intelligent Information Systems, 16:199–214, 2001.

[104] L. Zhou and F. Jiang. A rough set approach to feature selection based on relative decision

entropy. LNCS Rough Sets and Knowledge Technology, 6954:110–119, 2011.

87

C
E

U
eT

D
C

ol
le

ct
io

n



[105] W. Zhu. Generalized rough sets based on relations. Information Sciences, 177(22):4997–

5011, 2007.

[106] W. Zhu. Topological approaches to covering rough sets. Information Sciences,

177(6):1499–1508, 2007.

[107] W. Zhu. Relationship between generalized rough sets based on binary relation and cov-

ering. Information Sciences, 179(3):210–225, 2009.

[108] W. Zhu and F. Wang. Relationships among three types of covering rough sets. Granular

Computing, 2006 IEEE International Conference, pages 43–48, 2006.

[109] W. Ziarko. Probabilistic rough sets. Rough Sets, Fuzzy Sets, Data Mining, and Granular

Computing, Proceedings of RSFDGrC’05, LNAI 3641, pages 283–293., 2005.

88

C
E

U
eT

D
C

ol
le

ct
io

n


	1 Introduction
	2 Relational Extensions of Rough Sets
	2.1 Relational Generalisations
	2.2 Pawlak's Rough Sets
	2.2.1 List of properties satisfied by Rough Sets based  on Equivalence Relations
	2.2.2  Reducts, Core, Dependencies and Decision Rules
	2.2.3  Partial Dependencies in Knowledge Bases

	2.3 Standard Dual Relational Generalisation of  Rough Set Approximations
	2.4 Non-Dual Relational Generalisation of Rough Set Approximations
	2.4.1 Applications of the Non-Dual Relational Generalisation


	3 Relativised Indistinguishability Relations using Graphs
	3.1 Graph-theoretic terminology
	3.2 Approximating by Relativised  Indistinguishability Relations
	3.2.1 Extensions of Relativised Indistinguishability  Relations in Hypergraphs
	3.2.2 Indistinguishability on Real Numbers
	3.2.3 Discussion of Vagueness in Models


	4 Successive Approximations
	4.1 Properties of Successive Approximations
	4.2 Decomposing L2L1 Approximations
	4.2.1 Characterising Unique Solutions
	4.2.2 A Derived Preclusive Relation and a Notion of  Independence
	4.2.3 Seeing One Equivalence Relation through Another

	4.3 Decomposing U2U1 Approximations
	4.3.1 Characterising Unique Solutions

	4.4 Decomposing U2L1 Approximations
	4.4.1 Characterising Unique Solutions

	4.5 Decomposing L2U1 Approximations
	4.5.1 Characterising Unique Solutions

	Conclusions and Future Work

	Bibliography

