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C
E

U
eT

D
C

ol
le

ct
io

n



C
E

U
eT

D
C

ol
le

ct
io

n



ACKNOWLEDGEMENTS

First and foremost I would like to thank my supervisor Gábor Ivanyos and my
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Gómez-Torrecillas, Francisco Javier Lobillo, Gabriel Navarro, Till Mitzow, Márton
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ABSTRACT

In this thesis we consider the following algorithmic problem. Let K be a field
and let A be an algebra over K which is given by structure constants and is iso-
morphic to Mn(K), the algebra of n× n matrices over K. The task is to find an
explicit isomorphism between A and Mn(K). We propose a polynomial time
algorithm for the case where K = Fq(t), the field of rational functions over a
finite field. Using an oracle for integer factorization, we provide an algorithm
for K = Q(

√
d) and n = 2. This algorithm reduces the original problem to

finding nontrivial zeros of quadratic forms in several variables over Q. Since
the reduction procedure works over every field of characteristic different from
2, we concern ourselves with finding nontrivial zeros of quadratic forms over
Fq(t), where q is odd. We propose a polynomial time algorithm for finding non-
trivial zeros of quadratic forms over Fq(t). We apply the algorithm to compute
the Witt decomposition of a quadratic form and decide equivalence of quadratic
forms. Also, in the case two quadratic forms are equivalent, we provide a tran-
sition matrix. Finally, the algorithm is applied to compute an explicit isomor-
phism in the case A ∼= M2(L), where L is a quadratic extension of Fq(t) (where
q is odd).

Besides these results, we also obtained some minor results as well (such as
lattice reduction over the field of formal Laurent-series) and we have imple-
mented two of our main algorithms.
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PREFACE

Finite dimensional associative algebras arise in various branches of mathemat-
ics, including number theory, group theory, topology and algebraic geometry.
Computing the structure of algebras is an important task which can be applied
for example to computing irreducible representations of finite groups ( by com-
puting the Wedderburn decomposition of the underlying group algebra). An
algebra can be considered as an input of an algorithm in many ways. In this
thesis we always consider them given as a collection of structure constants, i.e.,
by a vector space basis and a multiplication table of the basis elements. Several
natural questions arise. How can we compute the radical of an algebra? Can
we compute the minimal left ideals of its semisimple part? Can we compute an
explicit isomorphism between simple algebras? The answer is highly depen-
dent on the ground field over which the algebra is considered. As it turns out,
computationally the most difficult part is computing an isomorphism between
simple algebras which are known apriori to be isomorphic. By the general the-
ory of central simple algebras this reduces to the following problem, called the
explicit isomorphism problem:

Problem 1 (Explicit isomorphism problem). Let K be a field, and let A be an al-
gebra over K given by structure constants. Suppose that A ∼= Mn(K). Compute an
isomorphism between A and Mn(K).

This problem is interesting on its own as well, however, it has various appli-
cations in different areas of mathematics. Here we give three examples (the first
two are quite recent applications).

Example 1. Let E be an elliptic curve defined over K, where K is an algebraic
number field (for an introduction to the arithmetic theory of elliptic curves the
reader is referred to [65]). Then by the Mordell-Weil theorem, E(K), the group
of K-rational points, is a finitely generated abelian group. It is a natural ques-
tion, that, given a curve, how can one compute generators for E(K)? This is
a question of high importance in algorithmic number theory, and is related to
the Birch–Swinnerton-Dyer conjecture (which postulates a relation between the
rank of E(K) and the vanishing of a certain L-function at s = 1). It is known
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that the factor groups E(K)/nE(K) are finite (this is usually called the weak
Mordell-Weil theorem). Via the descent theorem (which is the standard way
of proving the Mordell-Weil theorem) one can see that it is sufficient to have
an algorithm for finding generators of the finite groups E(K)/nE(K) (for all n).
However, as of today, no such procedure is known. On the other hand, there is
the following exact sequence:

0→ E(K)/nE(K)→ S(n)(E/K)→X(E/K)[n]→ 0

where S(n)(E/K) is the n-Selmer group of E and X(E/K)[n] is the n-torison
of the Tate-Shafarevich group of E. It is known (see [65, Chapter X, Theorem
4.2.]) that the n-Selmer group of an elliptic curve defined over K is finite. Now
we have that the group E(K)/nE(K) is embedded in a finite group. However,
computing the Selmer-group is a difficult task. There is a technique, called n-
descent, which reduces the question of finding generators to finding rational
points on homogeneous spaces associated to the elliptic curve. If n = 2, then
this is an efficient way for computing E(K)/nE(K), as in this case, homoge-
neous spaces satisfy the local-global principle. For further details see [65, Chap-
ter X].

Higher descents are more complicated. An important series of papers in this
field is [11], [12], [13]. They represent the elements of the n-Selmer group by pro-
jective curves of degree n in Pn−1 via the following method. The n-Selmer group
is a subgroup of the cohomology group H1(K, E[n]) (where E[n] denotes the n-
torsion subgroup of E(K)). The obstruction map Ob is a map from H1(K, E[n])
to the Brauer group of K which has the property that it maps an element of the
n-Selmer group to Mn(K) (it is in the ’kernel’ of this map). Let ξ ∈ H1(K, E[n]).
Then in [13] the authors can compute structure constants for the central simple
algebra Ob(ξ). From an explicit isomorphism between Ob(ξ) and Mn(K) they
can compute equations for the curve ξ. Their algorithm is effective in the case
when n = 3 and K = Q. They note that one of the key obstacles for making
the algorithm effective in the general case lies in solving the explicit isomor-
phism problem for number fields. Due to this connection, one of the authors
of [11], [12], [13] (John Cremona) invited the paper [38] to be submitted to the
journal Foundations of Computational Mathematics ( [38] includes a large part
of this thesis).

Example 2. Let Fq be the finite field with q elements. Let Fq(t) be the field of
rational functions over Fq. Suppose that σ is an automorphism of Fq(t). Let
R = Fq(t)[x, σ] denote the ring of Ore polynomials, i.e., the usual polynomial
ring (with variable x) over Fq(t) where multiplication is induced by the rela-
tion xr = σ(r)x (r ∈ Fq(t)). As in the case of ordinary polynomials, one may
consider the problem of factorization into irreducible polynomials. This ques-
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tion is equivalent to the problem of computing the structure of an algebra over
a finite extension of Fq(t). As it turns out, the hardest part is when an algebra
is simple. Therefore, this problem reduces to solving the explicit isomorphism
problem when K is a finite extension of Fq(t). The factorization problem of Ore
polynomials has several applications. A recent application is the construction
of certain convolutional codes [27].
Example 3. Let K be a field and let L be a finite Galois extension of K. Let NL|K
denote the norm map from L to K. Then an equation of the type NL|K(x) = a,
where a ∈ K is called a norm equation. Solving norm equations (a is given,
x is unknown) is a classical problem in computational number theory. Many
fundamental results originate from the research of the Number Theory School
of Debrecen, through the work of Győry [6], Pethő, Bérczes [2], Gaál ( [23]) and
many more (this list is just an excerpt of their work, it is far from a complete
list). They mostly consider the case where a is an algebraic integer and look
for integral solutions. This is a more complicated matter as one cannot say that
if the norm equation NL|K(x) = a is solvable (here a is an algebraic integer),
then there exists an integral solution as well. We give an example which can be
found in the introduction of [64]. Let K = Q, L = Q(

√
34) and a = −1. Then

NL|K(x) = a has no integral solution as the fundamental unit in L has norm 1.

On the other hand x =
√

34+5
3 has norm −1. Besides norm equations being of

theoretical interest, they can also be used for cryptographic purposes [3].
The first algorithm for solving norm equations in the case K = Q was pro-

posed by Fincke [21] in his Thesis. This algorithm was later extended to number
fields by Fieker, Jurk and Pohst [20]. A different approach is due to Simon [64].
Simon proves that if S is a suitably large set of primes then if S-unit is a norm in
K then it is the norm of an S-unit in L. The question of solving norm equations
over global function fields is considered in [23].

The relation of norm equations to central simple algebras is a classical result:
a cyclic algebra is isomorphic to a full matrix algebra if and only if a certain
norm equation is solvable. Moreover, from an explicit isomorphism (between
the cyclic algebra and the full matrix algebra) a solution to the norm equation
can be retrieved. Thus an algorithm for the explicit isomorphism problem can
be used to solve norm equations. It is an intriguing research problem how this
approach compares to the algorithms from [20] and [64]. Thus besides obtaining
new algorithms and theoretical results, implementations of existing algorithms
is also an important task.

In this thesis we are concerned with the explicit isomorphism problem over
global fields (i.e., finite extensions of Q or Fq(t)). When considering algorithms,
we restrict ourselves to algorithms (possibly randomized) which run in polyno-
mial time (meaning the running time of the algorithm can be bounded by a
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suitably large constant power of the size of the input) which is sometimes al-
lowed to call oracles for certain tasks. We have the following two definitions
which were introduced by Rónyai in [59]:

Definition 4. An f-algorithm is a deterministic polynomial time algorithm which is
allowed to call oracles for factoring polynomials over finite fields. The cost of the call is
the size of the input.

Definition 5. An ff-algorithm is a deterministic polynomial time algorithm which is
allowed to call oracles for factoring integers and polynomials over finite fields. In both
cases, the cost of the call is the size of the input.

First we give a brief overview of the known results, then we list the new
results of the thesis.

We start with the case where K is an algebraic number field. Let A be an
algebra isomorphic to Mn(K), which is given by structure constants. Then the
ff-algorithm from [33] solves the explicit isomorphism problem in polynomial
time if three parameters are bounded: the dimension of A over K, the degree of
K over Q and the discriminant of K. The algorithm was improved in [35], but
the boundedness assumptions were not relaxed.

When K is a finite extension of Fq(t), then only the case whereA ∼= M2(Fq(t))
was known. More precisely, in [11] the authors propose a randomized polyno-
mial time algorithm for finding nontrivial zeros of quadratic forms in 3 variables
(which is the same as the aforementioned explicit isomorphism problem in the
n = 2 case).

Now we turn our attention to the novel results in this thesis. We propose
a polynomial time f-algorithm for solving the explicit isomorphism problem if
A ∼= Mn(Fq(t)). Note that we do not assume n to be bounded.

We propose an algorithm for the explicit isomorphism problem in the case
where A ∼= M2(Q(

√
d)). The algorithm is randomized and runs in polynomial

time if one is allowed to call an oracle for factoring integers. This provides an ef-
ficient algorithm for infinitely many cases of the explicit isomorphism problem
over number fields, which was not known before.

The method of the algorithm is reducing the explicit isomorphism problem
over Q(

√
d) to finding nontrivial zeros of quadratic forms in several variables

over Q. The reduction procedure works over every field of characteristic differ-
ent from 2. This motivated us to search for an algorithm which finds a nontriv-
ial zero of a quadratic form in several variables over Fq(t) (where q is an odd
prime power). Such an algorithm was only known in the case where the num-
ber of variables is at most 3. We provide an algorithm for finding a nontrivial
zero of a quadratic form in four variables. Then we use that algorithm to find
a nontrivial zero of a quadratic form in five variables. As a quadratic form in 5
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variables is always isotropic, this already provides an algorithm which works
for any number of variables. We apply these results to decide equivalence of
quadratic forms, and in the case they are isometric, we also output a transition
matrix. All these algorithms are randomized and run in polynomial time.

The thesis is divided into seven chapters and an Appendix. The first two
chapters are introductory and do not contain any new results. The first chapter
contains all the necessary theoretical notions and theorems which are used in
later chapters. Some results which are more specific and are not part of gen-
eral knowledge, are not introduced here but in later chapters, where they are
applied (for example a formula on the number of irreducible polynomials in a
given residue class). The second chapter is restricted to algorithmic problems.
Here we establish the computational model we are working with and describe
important algorithms related to the explicit isomorphism problem. In the first
two chapters we omitted proofs in most cases. We give however references
where the reader can look up the proofs.

The third chapter is mostly based on the paper [38]. In the first section we
recall Lenstra’s algorithm for finding a reduced basis of an Fq[t]-lattice in Fq[t]n.
In later sections we describe and analyze our algorithm for the explicit isomor-
phism problem over Fq(t). In the final section we extend Lenstra’s lattice reduc-
tion algorithm to vector spaces over Fq((

1
t )) (the field of formal Laurent-series

over Fq in 1
t ) and use it to find a nontrivial lattice point in a parallelepiped. This

is a result which is not incorporated in the paper [38].
The fourth chapter is based on the paper [39]. In the first section we prove

lemmas concerning the isotropy of quadratic forms over Fq(t) and their comple-
tions. In the proceeding sections we propose an algorithm for finding isotropic
vectors of quadratric forms over Fq(t) and apply our algorithms to find an ex-
plicit isometry between quadratic forms.

The fifth chapter describes the reduction procedure of [42] (and [43]) for ar-
bitrary fields of characteristic different from 2. Let K be a field whose charac-
teristic is different from 2. Let L be a quadratic extension of K. Let A ∼= M2(L)
be given by structure constants. Then we show that finding an explicit iso-
morphism between A and M2(L) can be reduced to finding nontrivial zeros of
quadratic forms over K. Finally, using the algorithm from [63] and our algo-
rithm from Chapter 4, we solve the explicit isomorphism problem for quadratic
extensions of Q and Fq(t). We note that this general framework could also be
useful for other fields as well.

The sixth chapter is devoted to implementations of our algorithms. We im-
plemented some of the main algorithms from Chapters 4 (the algorithm which
finds a nontrivial zero of a quadratic form in four variables) and 5 (the case
where K = Q) in the computational algebra system MAGMA [47]. We discuss
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the implementations in detail and give a brief description of experimental re-
sults.

The seventh chapter contains open problems. Several natural questions arose
which could be new directions for future research.

The Appendix contains the program codes.
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CHAPTER 1

PRELIMINARIES

This chapter contains all the necessary notions and theorems which are needed
in later chapters. We stick to theoretical results. Most of the chapter is based
on [50].

1.1 Semisimple algebras

Throughout the section K will be a field and A a finite-dimensional associative
algebra over K. First we would like to state structural results about algebras.

We define elements of special types:

Definition 6. A pair of elements a, b ∈ A is a pair of zero divisors if ab = 0. An
element x ∈ A is nilpotent if there exists a positive integer k such that xk = 0. An
element x is strongly nilpotent if for every y ∈ A, xy is nilpotent. An element e ∈ A
is an idempotent if e2 = e. Two idempotents e and f are orthogonal if e f = f e = 0.
An idempotent e is primitive if it cannot be written as sum of two orthogonal nonzero
idempotents.

Definition 7. The intersection of all the maximal left ideals ofA is called the radical of
A. It is denoted by Rad(A).

Proposition 8. 1. Rad(A) is an ideal of A

2. Rad(A) is the set of strongly nilpotent elements.

Remark 9. There are several other characterizations of the radical, however we
only need these two facts later.

Definition 10. An algebra A is semisimple if Rad(A) = 0.

1
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2 Chapter 1. Preliminaries

It is easy to see that the factor A/Rad(A) is always semisimple. Semisimple
algebras admit the following well-known structure theorem due Wedderburn
and Artin:

Definition 11. A finite dimensional algebra D over K is a division algebra if every
nonzero element in D has a multiplicative inverse.

Theorem 12. Let K be a field, and A a finite dimensional semisimple algebra over K.
Then A is expressible as a direct sum:

A = A1 ⊕ · · · ⊕ Ak , (1.1)

where the Ai are exactly the minimal nonzero ideals of A. Moreover, Ai is isomorphic
to Mni(Di) where Di is a division algebra over K.

Remark 13. We did not assume that an algebra contains a multiplicative identity
element. However, one can show that a finite dimensional semisimple algebra
always contains an identity element (see [55, Proposition 2.1.]).

1.2 Central simple algebras

The theory of central simple algebras over fields is vast. In this section we
would only like to recall some basic facts about them which are necessary for
the upcoming chapters. All the results stated here can be found in [50, Chapter
12].

First we define the center of an algebra.

Definition 14. LetA be an algebra over a field K. Then Z(A), the center ofA, consists
of those elements which commute with every element of the algebra.

Note that the identity element 1 is always contained in Z(A). Moreover, K · 1
is also contained in the center of A. Identifying K with K · 1, we may assume
that K ⊆ Z(A).

Definition 15. An algebra A over the field K is simple if it contains no proper two-
sided ideals.

The center of a simple algebra is always a field. This motivates the following
definition.

Definition 16. Let K be a field and let A be a simple algebra over K. Then A is a
central simple algebra over K if Z(A) = K.
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1.2. Central simple algebras 3

Recall that K ⊆ Z(A), whence A is a central simple K-algebra if its center is
equal to K.

Now we define the Brauer group of a field. The first observation is that the
tensor product of central simple algebras is also a central simple algebra over
K.

Proposition 17. Let A and B be central simple algebras over K. Then A⊗K B is also
a central simple algebra over K.

Definition 18. We call two central simple K-algebras A and B Brauer equivalent (or
simply equivalent) if there exist integers m, l such that A⊗Mm(K) ∼= B ⊗Ml(K).

Another way to formulate Brauer equivalence is the following. A central
simple algebra is isomorphic to Mn(D) where D is a division algebra over the
field K. Furthermore, ifA ∼= Mn(D) andA ∼= Mm(D′) then m = n andD ∼= D′.
Hence one can associate to any central simple algebra a unique division ring.
Two central simple K-algebrasA and B are Brauer equivalent if their associated
division rings are isomorphic.

Proposition 19. Equivalence classes of central simple algebras form a group with the
group operation being the tensor product. The identity element is the equivalence class
of K. The inverse of a central simple algebraA isAop which is its opposite algebra (i.e.,
it is the same as an abelian group but multiplication is reversed). This group is called
the Brauer group of K, and is denoted by Br(K).

Determining the Brauer group of a field is usually an extremely difficult
task. The Brauer group of an algebraically closed field is always trivial. The
Brauer group of a finite field is also trivial by a theorem of Wedderburn. A
result of Frobenius implies that the Brauer group of the reals is the group with
2 elements generated by Hamilton’s quaternions.

If A is a central simple algebra over K, L is a field extension of K then
A ⊗K L is a central simple L-algebra. A field L is called a splitting field for
A if A ⊗K L ∼= Mn(L) for some integer n. It is easy to see that those central
simple algebras which are split by L form a subgroup of the Brauer group of K
(actually it is isomorphic to a certain cohomology group). Every central simple
algebra admits a splitting field, furthermore:

Proposition 20. Let A be a central simple algebra over the field K. Then there exists a
separable Galois extension L of K which splits A.

We conclude the section with the classification of automorphisms of central
simple algebras which is due to Noether and Skolem:
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4 Chapter 1. Preliminaries

Theorem 21 (Noether-Skolem). Let A be a central simple algebra over K. Then for
every K-algebra automorphism σ there exists an invertible element y ∈ A such that
σ(x) = y−1xy. Moreover, if B is simple subalgebra of A then any algebra homomor-
phism from B to A can be extended to an automorphism of A.

1.3 Maximal orders

Maximal orders in finite dimensional semisimple algebras are non-commutative
analogues of the ring of integers in algebraic number fields. We discuss some
basic properties of maximal orders which we need later in Chapter 3. This sec-
tion is based on [53, Chapter 2]. Throughout the section let R be an integral
domain with quotient field K and let A be an algebra over the field K.

Definition 22. Let V be a finite dimensional vector space over K. A finitely generated
R-submodule of V is a full R-lattice if KM = {∑ αimi(finite sum)| αi ∈ K, mi ∈ M}
is equal to V.

Definition 23. A subring Λ of A including the identity element of A is an R-order
if it is also a full R-lattice. An order is called maximal if it is maximal with respect to
inclusion.

Example 24. • In Mn(Q) the subring Mn(Z) is a maximal Z-order

• Let K be an algebraic number field. Then the ring of integers OK is the
only maximal Z-order inside K.

• Let G be a finite group and let Q[G] be the group algebra over the rationals.
Then Z[G] is a Z-order (but not necessarily maximal).

If L is a full R-lattice inA, then Ol(L) = {a ∈ A : aL ≤ L} is always an order
in A called the left order of L. Every semisimple algebra contains a maximal
order. However, the usual proof uses Zorn’s lemma, hence is ineffective. An
algorithm for computing maximal orders in semisimple algebras over Q was
proposed in [34].

Let R be a principal ideal domain with quotient field K. Next we characterize
maximal orders in Mn(K). The first statement is a rephrasing of [53, Theorem
21.6].

Proposition 25. Let R be a principal ideal domain with quotient field K. Let A =
HomK(V, V) where V is a vector space of dimension n over K. Let L be any full
R-lattice in V. Then HomR(L, L), identified with the subring

Ol(L) = {a ∈ A : aL ≤ L}

of A, is a maximal R-order in A, and all maximal orders are of this form.
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1.4. Quaternion algebras 5

Remark 26. This proposition also holds if R is a Dedekind domain (an integral
domain where every nonzero proper ideal is the product of prime ideals).

In terms of matrices, the second statement of the theorem gives the follow-
ing.

Corollary 27. Let R be a principal ideal domain with quotient field K. Assume that Λ
is a maximal R-order in Mn(K). Then there exists an invertible matrix P ∈ Mn(K)
such that Λ = PMn(R)P−1.

Proof. The theorem with with V = Kn gives that every maximal R-order in
Mn(K) is O(L) for a full R-lattice L in Kn. Let P be a matrix whose columns are
an R-basis of L.

Remark 28. This corollary does not hold in general for Dedekind domains. In
fact, if R has class number c > 1, then there exist at least c maximal orders in
Mn(K) which are pairwise non-conjugates.

We conclude the section by introducing the concept of localization of orders:

Definition 29. Let R be an integral domain with quotient field K. LetA be a semisim-
ple algebra over K. Denote by RP the localization of R at the prime ideal P (embedded
in K). Let Λ be an R-order in A. Then the localization of Λ at P is ΛP = RPΛ.

Computationally, the following statement is of high importance:

Proposition 30. Let R be an integral domain with quotient field K. LetA be a semisim-
ple algebra over K. Suppose that Λ is an R-order inA. Then Λ is a maximal R-order if
and only if ΛP is maximal RP order for every prime ideal P of R.

1.4 Quaternion algebras

The dimension of every central simple algebra is a square [50, Chapter 12],
hence every nontrivial central simple algebra has dimension at least 4. Four di-
mensional central simple algebras are called quaternion algebras. In this section
we give a short introduction to quaternion algebras (over fields whose charac-
teristic is different from 2) and their relations with ternary quadratic forms. This
is based on [66, Chapter I].

A quaternion algebra has a special special K-basis as stated below:

Proposition 31. Let char(K) 6= 2 and let H be a quaternion algebra over K. Then H
has a K-basis 1, u, v, uv such that uv = −vu and u2 and v2 are nonzero and are in the
center ofH. We call the basis 1, u, v, uv a quaternion basis ofH.

C
E

U
eT

D
C

ol
le

ct
io

n



6 Chapter 1. Preliminaries

Remark 32. This result is well known, a proof can be found in [66]. There is a
similar presentation if char(K) = 2, however we do not need that later on.

From now on we assume that char(K) 6= 2. Since the center of H is K, we
have that u2 ∈ K and v2 ∈ K. This motivates the following notation:

Definition 33. LetH be a quaternion algebra over K with quaternion basis 1, u, v, uv.
Let u2 = α and v2 = β. Note that α and β are in K∗. Then we denote H byHK(α, β).

HK(α, β) is well-defined, i.e. all quaternion algebras which have a quater-
nion basis 1, u, v, uv such that u2 = α and v2 = β are isomorphic.

The Wedderburn-Artin theorem implies that every quaternion algebra is ei-
ther isomorphic to M2(K) or it is a division algebra over K. There is a nice
criterion which tells us when a quaternion algebra is split (i.e., is isomorphic to
M2(K)). First we recall some definitions.

Definition 34. LetH be a quaternion algebra over K, with quaternion basis 1, u, v, uv.
Let s = λ1 + λ2u + λ3v + λ4uv. Then let σ(s) = λ1 − λ2u − λ3v − λ4uv be the
conjugate of s. The map σ is a K-linear map with the following properties:

1. For every x, y ∈ H, σ(xy) = σ(y)σ(x),

2. For every x ∈ H, σ(σ(x)) = x

3. σ fixes every element of the center ofH.

Maps with these properties are called involutions of the first kind.
We call tr s = s + σ(s) the trace of s and N(s) = sσ(s) the norm of s. Note

that both tr s and N(s) are in K. We call an element x ∈ H traceless if tr x = 0.
The trace and norm defined this way coincides with the usual reduced trace
and norm which can be defined in the following way. Every central simple
K-algebra A of dimension n2 can be embedded into Mn(K), where K denotes
the algebraic closure of K. The reduced trace of an element A is the trace of the
image of that elemenet via the embedding, the reduced norm is the determinant.
The Noether-Skolem theorem guarantees that the reduced norm and trace are
well-defined. For a more detailed discussion of reduced norms and traces, the
reader is referred to [53, Section 9].

Proposition 35. The following statements are equivalent:

1. HK(α, β) ∼= M2(K),

2. There exists a nonzero element s ∈ HK(α, β) such that N(s) = 0,

3. The quadratic form x2
1 − αx2

2 − βx2
3 + αβx2

4 has a nontrivial zero over K,
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1.4. Quaternion algebras 7

4. There exists a nonzero element s ∈ HK(α, β) such that tr s = 0 and N(s) = 0,

5. The quadratic form αx2 + βy2 − z2 has a nontrivial zero over K.

If we write out condition (2) in terms of the quaternion basis we obtain (3).
Condition (4), if written out would give the equation αx2 + βy2 − αβz2 = 0
(since every traceless element is the linear combination of u, v and uv). By a
change of variables we arrive at (5) . Details can be found in [66] (or [8], [56]).
Note that this shows that there is a strong connection between quaternion alge-
bras and quadratic forms in three variables over K.

We recall some facts about cyclic algebras, which are higher dimensional
analogues of quaternion algebras. This is based on [50][Chapter 15].

Definition 36. A central simple algebra A over the field K is called cyclic if there is
a maximal subfield L of A such that L is a cyclic extension of K (i.e. L|K is a Galois
extension whose Galois group is cyclic).

Observe that quaternion algebras are also cylic algebras. Indeed, the quater-
nion algebra HK(α, β) either contains the subfield K(

√
α) if α is not a square

in K, or is a full matrix algebra (if α is a square) which is naturally cyclic. The
next proposition states that cyclic algebras admit a presentation similar to the
presentation of quaternion algebras:

Proposition 37. Let L be a cyclic extension of K and let σ be a generator of the Galois
group of the extension. Let A be an algebra containing L as a maximal subfield. Then
there exists an invertible element u ∈ A such that:

1. A = ⊕n
i=1uiL,

2. u−1du = σ(d) for all d ∈ L,

3. un = a for some a ∈ K.

We use the notation A = (L, σ, a).

We conclude the section with a proposition similar to Proposition 35 for
cyclic algebras. This is important to us because it establishes a connection be-
tween cyclic algebras and norm equations.

Proposition 38. The cyclic algebra A = (L, σ, a) is isomorphic to Mn(K) if and only
if a is in the image of the norm map NL|K : L→ K.
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8 Chapter 1. Preliminaries

1.5 Quadratic forms and Quadratic spaces

This section is based on Chapter I of [45]. Here F will denote a field such that
char F 6= 2.

A quadratic form over F is a homogeneous polynomial Q of degree two in n
variables (say, x1, . . . , xn) for some n. Two quadratic forms are called equivalent
if they can be obtained from each other by a homogeneous linear change of the
variables. By such a change we mean that each variable xj is substituted by
the polynomial ∑n

i=1 bijxi (j = 1, . . . , n). The n× n matrix B = (bij) over F has
to be invertible as otherwise there is no appropriate substitution in the reverse
direction. The matrix of Q is the (unique) symmetric n by n matrix A = (aij)
with Q(x1, . . . , xn) = ∑n

i=1 ∑n
j=1 ai,jxixj. We will also refer to this as the Gram

matrix of the quadratic form. The determinant of a quadratic form is the deter-
minant of its matrix. We call Q regular if its matrix has nonzero determinant
and diagonal if its matrix is diagonal. We say that Q is isotropic if the equation
Q(x1, . . . , xn) = 0 admits a nontrivial solution and anisotropic otherwise. Two
quadratic forms with Gram matrices A1 resp. A2 are then equivalent if and only
if there exists an invertible n by n matrix B ∈ Mn(F), such that A2 = BT A1B
(or, equivalently, A1 = B−1T A2B−1). Here B is just the matrix of the change of
variables defined above. We will use the term transition matrix for such a B. Two
regular unary quadratic forms ax2 and bx2 are equivalent if and only if a/b is
a square in F∗. In other words, equivalence classes of regular unary quadratic
forms correspond to the elements of the factor group F∗/(F∗)2.

Every quadratic form is equivalent to a diagonal one, see the discussion of
Gram–Schmidt-orthogonalization in the context of quadratic spaces below and
in Subsection 4.1.1. A regular diagonal quadratic form Q(x1, x2) = a1x2

1 + a2x2
2

is isotropic if and only if −a2/a1 is a square in F∗. Binary quadratic forms that
are regular and isotropic at the same time are called hyperbolic. If (β1, β2) is
a nontrivial zero of Q then γ = 2(a1β2

1 − a2β2
2) is nonzero and the substition

x1 ← β1x1 +
β1
γ x2, x2 ← β2x1 − β2

γ x2 provides an equivalence of Q with the
form x1x2. Another, diagonal standard hyperbolic form is x2

1− x2
2. The standard

forms x1x2 and x2
1 − x2

2 are equivalent via the substitution x1 ← 1
2 x1 +

1
2 x2,

x2 ← 1
2 x1 − 1

2 x2 (the inverse of this substitution is x1 ← x1 + x2, x2 ← x1 − x2).
Now we introduce the notion of quadratic spaces. This offers a coordinate-free

approach to quadratic forms. A quadratic space over F is a pair (V, h) consist-
ing of a vector space V over F and a symmetric bilinear function h : V × V →
F. Throughout this section all vector spaces will be finite dimensional. To a
quadratic form Q having Gram matrix A one can associate the bilinear function
h(u, v) = uT Av on Fn. Conversely, if (V, h) is an n-dimensional quadratic space
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1.5. Quadratic forms and Quadratic spaces 9

then for any basis v1, . . . , vn we can define its Gram matrix A = (aij) with re-
spect to the given basis by putting aij = h(vi, vj). Then Q(x1, . . . , xn) = xT Ax
is a quadratic form where x stands for the column vector (x1, . . . , xn)T of vari-
ables. The quadratic form obtained from h using another basis will be a form
equivalent to Q. Let (V, h) and (V′, h′) be quadratic spaces. Then a linear bijec-
tion φ : V → V′ is an isometry if h′(φ(v1), φ(v2)) = h(v1, v2) for every v1, v2 ∈ V.
We say that (V, h) and (V′, h′) are isometric if there is an isometry φ : V → V′.
Equivalent quadratic forms give isometric quadratic spaces and to isometric
quadratic spaces equivalent quadratic forms are associated. Moreover, the fol-
lowing holds. Let (V, h) and (V′, h′) be quadratic spaces. Let v1, . . . , vn be a
basis of V and let v′1, . . . , v′n be a basis of V′. Suppose that φ is an isometry be-
tween V and V′. Then φ(vi) = ∑n

j=1 bijv′j where bij ∈ F. Let A be the Gram
matrix of h in the basis v1, . . . , vn and let A′ be the Gram matrix of h′ in the basis
v′1, . . . , v′n. If B ∈ Mn(F) is equal to the matrix (bij) then A = BT A′B.

Let (V, h) be a quadratic space. We say that two vectors u and v from V are
orthogonal if h(u, v) = 0. An orthogonal basis is a basis consisting of pairwise
orthogonal vectors. The well-known Gram–Schmidt-orthogonalization proce-
dure provides an algorithm for constructing orthogonal bases (we will discuss
some details in the context of quadratic spaces over Fq(t) in Subsection 4.1.1).
With respect to an orthogonal basis, the Gram matrix is diagonal. Therefore the
Gram–Schmidt-procedure gives a way of computing diagonal forms equivalent
to given quadratic forms. The orthogonal complement of a subspace U ≤ V is the
subspace

U⊥ = {v : h(u, v) = 0 for every u ∈ U}.

The subspace V⊥ is called the radical of (V, h). (V, h) is called regular if its
radical is zero. A quadratic space is regular if and only if at least one of, or
equivalently, each of the quadratic forms associated to it using various bases is
regular.

The orthogonal sum of (V, h) and (V′, h′) is the quadratic space (V ⊕ V′, h⊕
h′) where

h⊕ h′((v1, v′1), (v2, v′2)) = h(v1, v2) + h′(v′1, v′2)

(here v1, v2 ∈ V and v′1, v′2 ∈ V′). The inner version of this is a decomposition of
V into the direct sum of two subspaces V and V′ with V ≤ V′⊥ and V′ ≤ V⊥.
An orthogonal basis gives a decomposition into the orthogonal sum of one-
dimensional quadratic spaces.

A nonzero vector in a quadratic space is called isotropic if it is orthogonal
to itself. Isotropic vectors correspond to nontrivial zeros of quadratic forms.
A quadratic space is isotropic if it admits isotropic vectors and anisotropic oth-
erwise. A quadratic space (V, h) is totally isotropic if h is identically zero on
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10 Chapter 1. Preliminaries

V × V. This is equivalent to that every (nonzero) vector in V is isotropic (note
that char F 6= 2). Every subspace U ≤ V in a quadratic space (V, h) is also a
quadratic space with the restriction of h to U. A subspace of V is called isotropic,
anisotropic, totally isotropy, etc. if it is isotropic, anisotropic, totally isotropic as
a quadratic space with the restriction of h. A quadratic space can be decom-
posed as an orthogonal sum of a totally isotropic subspace (this is necessarily
the radical of the whole space) and a regular space (this can actually be any of
the direct complements of the radical). A two-dimensional quadratic space is
called a hyperbolic plane if it is regular and isotropic. Such spaces correspond to
hyperbolic binary forms.

Theorem 39 (Witt). Let (V, h) be a quadratic space over F. Then V can be decomposed
as the orthogonal sum of V0, a totally isotropic space, Vh, which is an orthogonal sum
of hyperbolic planes, and an anisotropic space Va. Such a decomposition is called a Witt
decomposition of (V, h) and the number 1

2 dim(Vh) is called the Witt index of (V, h).
Here V0 is the radical. The Witt index and the isometry class of the anisotropic part
Va do not depend on the particular Witt decomposition. In turn, two quadratic spaces
are isometric if and only if their radical have the same dimension, their Witt indices
coincide and their anisotropic parts are isometric.

A proof of this theorem can be found in [45, Chapter I, Theorem 4.1.]. There
is another interpretation of the Witt index concerning totally isotropic subspaces.

Proposition 40. Let (V, h) be a regular quadratic space with Witt index m. Then the
dimension of every maximal totally isotropic subspace is m.

The proof of this proposition can be found in [45, Chapter I, Corollary 4.4.].
By the following fact, the Witt decomposition has implications to equivalence
of quadratic forms.

Proposition 41. Two regular quadratic spaces (V, h) and (V′, h′) having the same
dimension are isometric if and only if the orthogonal sum of (V, h) and (V′,−h′) can
be decomposed as an orthogonal sum of hyperbolic planes.

The proof of this proposition can be found in [24, Proposition 2.46.].
Thus deciding isotropy of quadratic spaces (or, equivalently, deciding equiv-

alence of quadratic forms) can be reduced to computing Witt decompostions. In
Chapter 5 we will show that such a reduction exists even for computing isome-
tries (and for computing transition matrices) explicitly.

1.6 Lattices

The use of lattices in number theory is an extremely powerful tool. One of the
first results which was proven in such a way is probably Minkowski’s proof of
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1.6. Lattices 11

the finiteness of the ideal class group of a number field. These techniques are
also extremely useful algorithmically, one of the most important examples being
the LLL-algorithm which has various applications (for example factorization of
polynomials with rational coefficients) [46].

Here we recall some of the basic notions and introduce the concept of a re-
duced basis for integer lattices and lattices over Fq[t].

First we consider Z-lattices. We recall the definition of a full lattice. L is a
full Z-lattice if L = {α1b1 + · · · + αmbm| αi ∈ Z} where b1, . . . , bm is a basis
(over R) in Rm.

An important algorithmic question in the theory of Z-lattices is the follow-
ing. Given a lattice L by a basis (i.e. linearly independent (over R) generators
of L as an abelian group) can one compute a shortest vector in L (in terms of
the usual euclidean norm). This task is NP-hard, which was proven by Ajtai [1].
One of the reasons why this is difficult is the following. It may happen that a
short vector, when expressed as a Z-linear combination of the given basis, has
large coefficients. A good way to avoid, or at least decrease, this phenomenon
is to compute another basis where the size of the coefficients can be controlled.
We prove the following lemma:

Lemma 42. Let Γ be a full lattice in Rm. Suppose that we have a basis b1, . . . , bm of Γ
over Z such that

|b1| · |b2| · · · |bm| ≤ cm · det(Γ) (1.2)

holds for a real number cm > 0. Suppose that

c =
m

∑
i=1

γibi ∈ Γ, γi ∈ Z.

Then we have |γi| ≤ cm
|c|
|bi|

for i = 1, . . . , m.

Proof. From Cramer’s rule we obtain

|γi| =
|det(b1, b2, . . . , bi−1, c, bi+1, . . . , bm)|

det(Γ)
≤ |b1| · · · |bi−1| · |c| · |bi+1| . . . |bm|

det(Γ)
=

=
|c|
|bi|
· |b1| · · · |bi−1| · |bi| · |bi+1| · · · |bm|

det(Γ)
≤ |c||bi|

· cm ·
det(Γ)
det(Γ)

= cm ·
|c|
|bi|

.

We remark that the LLL algorithm gives a basis with cm = 2m(m−1)/4 in
formula (1.2), see [46].

Now we turn our attention to Fq[t]-lattices.
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12 Chapter 1. Preliminaries

Definition 43. Let f , g ∈ Fq[t]. Then we set | f
g | = deg( f ) − deg(g). We will

refer to |.| as the valuation (or degree) of an element of Fq(t). We set |0| = −∞.
Let v = (v1, . . . , vm)T ∈ Fq(t)m. Then the valuation (or degree) of the vector v is
|v| = max(|v1|, . . . , |vm|).
Definition 44. L is a full lattice in Fq(t)m if L = {α1b1 + · · ·+ αmbm| αi ∈ Fq[t]}
where b1, . . . , bm is a basis (over Fq(t)) in Fq(t)m.

Definition 45. Let b1, b2, . . . , bm ∈ Fq(t)m. Then the orthogonality defect denoted
by OD(b1, . . . , bm) is defined as OD(b1, . . . , bm) = ∑m

i=1 |bi| − |det(B)| where B is
the matrix whose columns are the bi (i = 1, . . . , m).

The following lemma is from [44]. However, there it is stated in a slightly
weaker form than we need it in this thesis. So we state and prove the lemma
here as well. The proof is also from [44].

Lemma 46. Let b1, b2, . . . , bm ∈ Fq(t)m be linearly independent and a = ∑m
i=1 αibi

where αi ∈ Fq[t]. Then the following holds for every i:

|αi| ≤ |a|+ OD(b1, . . . , bm)− |bi| (1.3)

Proof. Consider the αi as unknowns. Then we have m linear equations and m
variables so we can use Cramer’s rule. Note that {bi}m

i=1 is a basis so the deter-
minant of the coefficient matrix B is non-zero. By Cramer’s rule αi is equal to the
quotient of two determinants. In other words αi multiplied by the determinant
of the lattice is equal to the determinant where the ith column of B is switched
to a. Since these two sides are equal, their valuations are equal also (on both
sides we have elements from Fq(t)). Note that the valuation of a determinant
can be bounded from above by the sum of the valuations of its columns. To
formalize this last sentence:

|αi|+ |det(B)| ≤ |b1|+ |b2|+ · · ·+ |bi−1|+ |bi+1|+ · · ·+ |bm|+ |a|

=
m

∑
i=1
|bi| − |bi|+ |a|.

After rearranging we obtain the result.

An implication of this lemma is the following. If we have a vector with small
valuation, then the coefficients corresponding to a basis are also small, if the
orthogonality defect of the basis is small. This also suggests that an ideal basis
is one whose orthogonality defect is 0. This motivates the following definition.

Definition 47. A basis b1, b2, . . . , bm ∈ Fq(t)m is called reduced if the orthogonality
defect OD(b1, . . . , bm) = 0.

These are the basic notions which we need later for our algorithms. Algo-
rithmic results concerning finding a reduced basis will be stated in Chapter 3.
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1.7. Valuations and the local-global principle 13

1.7 Valuations and the local-global principle

In this section we recall some basic facts about valuations, local and global fields
and introduce the local-global principle. This section is based on [48, Chapter
2].

Definition 48. Let K be a field. An exponential valuation is a function v : K →
R∪∞ with the following properties:

1. v(x) = ∞ ⇐⇒ x = 0

2. v(xy) = v(x) + v(y)

3. v(x + y) ≥ min(v(x), v(y))

where for every a ∈ R, a < ∞, a + ∞ = ∞ and ∞ + ∞ = ∞. A valuation is called
discrete if its image in R is a discrete subgroup.

Sometimes an exponential valuation is just called valuation in the literature.
However, we would like to distinguish this notion from the valuation defined
in Definition 43, which is actually the negative of an exponential valuation. The
reason we distinguish these two notions is that in terms of lattices we follow the
terminology of [44] which is computationally more natural.

A related notion is an absolute value on a given field:

Definition 49. Let K be a field. An absolute value is a function ‖.‖ : K → R with the
following properties:

1. ‖x‖ = 0 ⇐⇒ x = 0

2. ‖xy‖ = ‖x‖‖y‖

3. ‖x + y‖ ≤ ‖x‖+ ‖y‖.

An absolute value is non-archimedean if the following stronger version of (3) holds:

‖x + y‖ ≤ max(‖x‖, ‖y‖).

Two absolute values ‖.‖1 and ‖.‖2 are called equivalent if ‖.‖2 = ‖.‖r
1 for some

r > 0 real number.

It is easy to see that if v is an exponential valuation than s−v (where s > 1 is
a real number) is an absolute value (by the convention that s−∞ = 0). However,
not all absolute values arise this way (such an absolute value is always non-
archimedean). We give certain important examples of absolute values and then
state two theorems that classify absolute values on Q and Fq(t) respectively (up
to equivalence).
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14 Chapter 1. Preliminaries

Example 50. • Let K = Q. Then every a
b ∈ Q, with a, b being integers satis-

fying (a, b) = 1, can be written in the form a
b = pk a′

b′ where p is a prime
number, k is an integer and neither a′ nor b′ is divisible by p. The the p-
adic absolute value defined on Q is given by ‖ a

b‖ = p−k. This absolute value
comes from the exponential valuation defined by v( a

b ) = k.

• Let K = Fq(t). Then the same construction as above is valid by replacing
the prime number p with a monic irreducible polynomial f ∈ Fq[t].

• There is another important exponential valuation on Fq(t) defined by the
following relation: let f

g ∈ Fq(t) (here f , g ∈ Fq[t]), then v∞( f
g ) = deg(g)−

deg( f ) where deg( f ) denotes the degree of the polynomial f . Note that
the degree of the zero polynomial is defined to be −∞. This is called the
valuation at infinity. Hence the corresponding absolute value is defined
as ‖ f

g‖∞ = qdeg( f )−deg(g).

Theorem 51 (Ostrowski). Any absolute value on Q is equivalent to exactly one of the
following three:

1. The trivial absolute value, i.e., ‖x‖ = 1 for all 0 6= x ∈ Q,

2. A p-adic absolute value for some prime number p,

3. The usual absolute value, i.e. ‖x‖ = x if x ≥ 0 and ‖x‖ = −x if x < 0.

The next statement is the polynomial analogue of Ostrowski’s theorem ( [24,
Theorem 3.15, (ii)]):

Theorem 52. Any absolute value on Fq(t) is equivalent to exactly one of the following
three:

1. The trivial absolute value, i.e. ‖x‖ = 1 for all 0 6= x ∈ Fq(t),

2. A f -adic absolute value for some monic irreducible polynomial f ,

3. The absolute value ‖.‖∞.

Let K = Q or K = Fq(t). A nontrivial absolute value makes these fields a
metric space. However, neither or of them is complete (i.e., not every Cauchy se-
quence is convergent) with respect to a nontrivial absolute value. We may com-
plete them with the following standard procedure. We consider two Cauchy se-
quences equivalent if their difference converges to zero. We may define addition
and multiplication naturally on the equivalence classes of Cauchy sequences. If
we complete Q with respect to the usual absolute value, we obtain the field of
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1.7. Valuations and the local-global principle 15

real numbers R. The completion of Q with respect to a p-adic absolute is the
field of p-adic numbers Qp. If we complete Fq(t) with respect to ‖ − ‖∞, we get
the field Fq((

1
t )), the field of formal Laurent-series in 1

t . For a monic irreducible
polynomial f , the completion is just the field of formal Laurent series in f . This
justifies the terminology for ‖.‖∞.

We recall some definitions about complete valued fields.
Let K be a field equipped with a non-archimedean absolute value. Then

the elements whose absolute value is at most 1 form a subring O, called the
valuation ring of K. This has a maximal ideal P, consisting of those elements
whose absolute value is strictly smaller than 1. The factor O/P is a field, called
the residue field of K and is denoted by k.

If K is equipped with a discrete exponential valuation, then the ring O is a
principal ideal domain and P is the unique maximal ideal of O. The generator
π of the ideal P is called the prime element of K. A polynomial f (x) ∈ O[x] is
called primitive if not every coefficient of f is divisible by π.

The next statement shows a close relation between decomposing polynomi-
als with coefficients from O to decomposing polynomials over k. This is ex-
tremely useful, as in a lot of cases (all the cases considered later) the residue
field is a finite field.

Lemma 53 (Hensel). Let K be a complete valued field, O its valuation ring and P the
unique maximal ideal in O. If a primitive polynomial f (x) ∈ O[x] admits modulo P a
factorization

f (x) ≡ g(x)h(x) mod O

into relatively prime polynomials g, h ∈ κ[x] then f (x) admits a factorization

f (x) = g(x)h(x)

into polynomials g, h ∈ O[x] such that deg(g) = deg(g) and

g(x) ≡ g(x) mod P, h(x) ≡ h(x) mod P

We will use this fact later on.
Now we would like to describe a principle for finding zeros of multivariate

polynomials over Z or Fq[t].
Let F = Q or F = Fq(t). If f ∈ F[x1, . . . , xn], we may look at the equation

f (x1, . . . , xn) = 0. A natural way to show that the equation is not solvable
is to show that it is not solvable in a certain completion of F. What happens
however if the equation f (x1, . . . , xn) = 0 is solvable in every completion? Can
we conclude that it is also solvable in Fn? The first result in this direction is due
to Hasse:
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16 Chapter 1. Preliminaries

Theorem 54. A non-degenerate quadratic form over Q is isotropic over Q if and only
if it is isotropic over every completion of Q.

In other words the answer to the previous question is in the affirmative for
homogeneous polynomials of degree 2. A similar result for F = Fq(t) (where q
is odd) is due to Rauter, a doctoral student of Hasse. This principle is called the
local-global principle.

It is to be noted that the local-global principle holds also for quadratic forms
over global fields (finite extensions of Q and Fq(t)). Another important case
where a local-global principle is valid is the splitting of central simple algebras
over algebraic number fields:

Theorem 55 (Albert-Brauer-Hasse-Noether). Let K be an algebraic number field
and A a central simple algebra of degree d (i.e., of dimension d2) over K. Denote by Kv
the completion of K with respect to the valuation v. If for every v

A⊗K Kv ∼= Md(Kv),

then A ∼= Md(K).

This statement has a similar flavour as the Hasse-Minkowski theorem but it
concerns isomorphisms of central simple algebras, not zeros of homogeneous
polynomials. However, the splitting of a central simple algebra can always be
associated to the existence of a nontrivial zero of a homogeneous polynomial
(a statement similar to Propositions 35 and 38 is true for higher dimensional
central simple algebras as well).

Unfortunately, the local-global principle does not hold in general. The small-
est degree counterexample is due to Selmer:

Example 56 (Selmer). The equation 3x3 + 4y3 + 5z3 = 0 is solvable in every
completion of Q but has no rational solution.

Understanding the failure of the local-global principle for higher degree
forms is an important research problem in modern number theory.
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CHAPTER 2

COMPUTING THE STRUCTURE OF
ALGEBRAS

In this chapter we give a brief overview of some of the most important known
algorithms for computing the structure of algebras over finite fields and global
fields. In the first section we define the computational model we will be work-
ing with. In the rest of the chapter we give a brief summary of certain algo-
rithms which are relevant to the topic.

2.1 The computational model

We specify the way we consider an algebra.

Definition 57. Let A be an algebra over K. Let a1, . . . , al be a K-basis of A. Then
every aiaj can be expressed as the linear combination of the ai:

aiaj =
l

∑
k=1

γi,j,kak (2.1)

The γi,j,k are called structure constants.

We consider an algebra to be given as a collection of structure constants.
Example 58. Let G = Z/3Z be the cyclic group with 3 elements. Let g be the
generator of G. Let Q[G] denote the group algebra of G over the rationals. This
is an associative algebra with the Q-basis 1, g, g2. Then the structure constant
representation is given by the Cayley-table of the group.

The following proposition says that a structure constant representation can
be thought of as a representation by matrices.

17
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18 Chapter 2. Computing the structure of algebras

Proposition 59. Let A be an algebra over the field K such that dimKA = n. Then A
is isomorphic to a subalgebra of Mn+1(K).

Proof. We shall use the regular representation. Multiplication from the left by
an element x is a K-linear transformation from A to itself. Hence it can be rep-
resented by an n × n matrix. This is injective if A has an identity element. If
not then we adjoin one to A in the following way. Let A∗ denote the set of
pairs (a, λ) where a ∈ A and λ ∈ K. Addition and multiplication is defined as
follows:

(a1, λ1) + (a2, λ2) = (a1 + a2, λ1 + λ2)

(a1, λ1)(a2, λ2) = (a1a2 + λ1a2 + λ2a1, λ1λ2)

Note thatA naturally injects intoA∗ and (0, 1) is the identity element ofA∗.
This proves our claim.

Remark 60. The previous construction of A∗ is called the Dorroh extension.

We also would like to remark that from a representation by matrices, a struc-
ture constant representation can be obtained. Indeed, we multiply two matrices
and express it as a linear combination of the basis elements. This can be accom-
plished by solving a system of linear equations (if dimK(A) = n, then we have
n equations and n variables). The coefficients in the linear combination are the
structure constants (this is the definition of structure constants).

Now as we have established our computational model we are ready to state
our goals. Assume an algebra A over a field K is given by structure constants:

1. Compute the radical of A,

2. Compute the Wedderburn decomposition of A/Rad(A) (i.e., its minimal
ideals),

3. Compute an explicit isomorphism between its simple componentsAi and
Mn(Di).

Naturally, we have to specify what kind of fields we are working with. In
this thesis we are concerned with finite fields, algebraic number fields and finite
(separable) extensions of Fq(t), the field of rational functions over the finite field
Fq.
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2.2. Computing the radical 19

2.2 Computing the radical

In this section we sketch the algorithm from [10] for computing the radical.
We assume that A is a subalgebra of a full matrix algebra over the field K. By
Proposition 59 and the discussion succeeding it, this is equivalent to A being
given by structure constants. Throughout the section K will denote either an
algebraic number field, a finite field or Fq(t). Also let dimKA = n.

For any x ∈ A let tr x denote the trace of x (note that x is matrix and the
trace function is invariant under conjugation) and let χ(x, t) = ∑n

i=1(−1)iai,xti

be the characteristic polynomial of x. We define the setA1 ⊆ A in the following
way. An element x is in A1 if tr x = 0 and for every y ∈ A we have that
tr xy = 0. Since the map y 7→ tr xy is linear, computing a basis for A1 boils
down to solving a system of linear equations over K. Therefore computing a
basis for A1 can be accomplished in polynomial time.

It is easy to see thatA1 is an ideal ofA. AlsoA1 contains the radical ofA by
Proposition 8. In addition, one has that Rad(A) = Rad(A1).

We have the following structural result:

Lemma 61. Let a be a matrix with entries from K. If tr aj = 0 for every positive integer
j then the following hold:

1. If char K = 0 then a is nilpotent,

2. if char K = p then the multiplicities of nonzero eigenvalues (in the characteristic
polynomial) of a are divisible by p,

3. every element in A1 has this property.

Proof. The third statement is trivial by the definition of A1. Now let λ1, . . . , λr
be the nonzero eigenvalues of a with multiplicities m1, . . . , mr. Then the condi-
tion that tr as = 0 translates into the following equation:

r

∑
i=1

miλ
s
i = 0. (2.2)

Consider the r× r matrix M with the entry λs
j at the (s, j) position. Since M

is a Vandermonde matrix, and the λi are distinct, M is non-singular. However,
the vector (m1, . . . , mr) is in its nullspace. Hence if char K = 0 all the mi are
zero. This means that a has no nonzero eigenvalues (over the algebraic closure
of K), so it is nilpotent. If char K = p then all the mi are divisible by p.

An immediate consequence of this result is that if char K = 0 then A1 =
Rad(A). This means that in zero characteristic we already know how to com-
pute the radical in polynomial time.
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20 Chapter 2. Computing the structure of algebras

From now on we assume that char K = p. Our goal is to define a descend-
ing chain of subalgebras A1 ⊇ · · · ⊇ Aj = Rad(A) which are effectively com-
putable. First we introduce a notation:

Definition 62. Let x ∈ A. Then we define the modified characteristic polynomial to be
χ(x, t) = det(tx + I), where I is the identity matrix. Let χ(x, t) = ∑n

i=0 C(i, x)ti. In
other other words we denote by C(i, x) the ith coefficient of the modified characteristic
polynomial.

Now we define the Ai in the following way. A0 = A. Suppose we have
already defined Ai−1. Then we define Ai to consist of those elements x ∈ Ai−1
for which C(pi−1, x) = 0 and C(pi−1, xy) = 0 for every y ∈ Ai−1. Note that this
coincides with our definition of A1 if we choose i = 1. We have the following
theorem:

Theorem 63. The following statements hold for i ≥ 1:

1. Each Ai is an ideal in Ai−1

2. The multiplicities of nonzero eigenvalues of elements of Ai are multiples of pi

3. For x, y ∈ Ai we have that C(pi, x + y) = C(pi, x) + C(pi, y) and C(k, x) = 0
for all k not divisible by pi.

Remark 64. An immediate consequence of this is that if i > logp n then Ai =

Rad(A). Indeed, since then all the elements of Ai are nilpotent and the radical
of A is contained in Ai.

The proof of Theorem 63 can be found in [10]. Now we show how one can
compute Ai from Ai−1 in deterministic polynomial time. Note that by the pre-
vious remark this is the only thing we have to show since the number of rounds
is O(log n).

Observe that C(pi, λx) = λpi
C(pi, x) where Λ ∈ K. Hence the function

C is semilinear. Hence checking whether a ∈ Ai it is enough to check that
C(pi−1, abl) = 0 where b1, . . . , bk is a basis of Ai−1. Therefore, by the third
statement of Theorem 63, checking the properties of being in Ai boils down
to solving a system of semilinear equations over K. If K is a finite field of char-
acteristic p, then the map λ 7→ λp is an automorphism, hence solving a system
of of semilinear equations boils down to solving a system of linear equations.
When K = Fq(t) than a method for solving a system of semilinear equations
is described in the paper [36] (solving a sytem of semilinear equations can be
reduced to solving a system of linear equations over the subfield Fq(t)pj

). If
char K = 0, then we have already established that A1 = Rad(A).
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2.3. Computing the Wedderburn decomposition 21

The second statement of Theorem 63 shows that for large enough i we have
thatAi is equal to the radical and the third statement gives us a way to compute
Ai from Ai−1.

2.3 Computing the Wedderburn decomposition

Assume now that A is a semisimple algebra over K. Our goal is to compute
the minimal ideals of A. This question is closely related to factoring univariate
polynomials over K. Indeed, consider a squarefree polynomial f ∈ K[x]. Then
A = K[x]/( f ) is a semisimple algebra (it does not even contain any nilpotent el-
ements as f was square-free). Computing the minimal ideals of A is equivalent
to computing the irreducible factors of f . Hence a natural question would be
the following. Can computing the Wedderburn decomposition ofA be reduced
to factoring polynomials over (finite extensions of) K. By reduction we mean a
polynomial time reduction (possibly randomized).

First we sketch such an algorithm in the case of finite fields. Afterwards
we outline how one has to modify the algorithm in the case of number fields.
Finally we state a result of Ivanyos, Rónyai and Szánto [36], which deals with
the case of K = Fq(t) (actually they even consider the field of rational functions
in several variables).

Theorem 65. Let A be a finite dimensional semisimple algebra over Fq. Then there
exists a randomized polynomial time algorithm for computing the minimal ideals of A.

Remark 66. Note that polynomials over Fq can be factored in polynomial time
by a randomized algorithm [4].

Proof. This is an outline of the proof, which can be found in [22]. Let Z(A)
denote the center of A. Let A = A1 ⊕ · · · ⊕ Ak where the Ai are the minimal
ideals. Observe that

Z(A) = Z(A1)⊕ · · · ⊕ Z(Ak) (2.3)

and that Z(Ai)A = Ai. The center of an algebra can be computed efficiently.
Indeed, let b1, . . . , bn be a basis of A. Then a ∈ A is in the center of A if
abi − bia = 0 for every i. Therefore finding such an a is equivalent to solving a
system of homogeneous linear equations (note that the maps a 7→ abi − bia are
linear and we have to compute the intersection of their kernels). Hence we may
assume that A is commutative.

We describe a method which decomposes A into the direct sum of smaller
ideals A = I ⊕ J unless k = 1. We iterate this cutting procedure until the
Wedderburn decomposition is found. Assume that a1, . . . , an is a basis of A.
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22 Chapter 2. Computing the structure of algebras

Assume that the subalgebra generated by 1, a1, . . . , ai is a field Ki. We set K0 =
Fq. If i = n then A is a field and we are done. If i < n then let f be the minimal
polynomial of ai+1 over Ki. The polynomial f can be calculated in polynomial
time. If f is irreducible then Ki(ai+1) is a field. If not, then f = gh (g, h ∈ Ki[t])
where gcd(g, h) = 1.

Then there exists g′, h′ ∈ Ki[t] such that gg′ + hh′ = 1. Finally I = Ag(ai+1)
and J = Ah(ai+1) will be suitable.

Now we turn our attention to the case K = Q. If we look at the previous
proof closely, than we see that this cutting procedure works in exactly the same
fashion as in the case of finite fields, only we need to factor polynomials with
rational coefficients. However, when we iterate the cutting procedure it may
happen that the size of the basis of the ideals grows rapidly. Therefore the bit
complexity may not be polynomial. This phenomenon is amended by the fol-
lowing lemma from [22]:

Lemma 67. Suppose that I is an ideal ofA given by the basis c1, . . . , ck. Let a1, . . . , an
be the basis of A. Let ci = ∑n

j=1 λi,jaj. Assume that all the numerators and denomina-
tors of the λi,j is bounded by N. Also if γi,j,k are the structure constants for the basis
a1, . . . , an, then

∣∣γi,j,k
∣∣ ≤ K. Then there exists a polynomial p(x, y) and a polynomial

time algorithm (polynomial in n, N and K) which computes a new basis of I with size
bounded by p(n, K).

The previous cutting procedure combined with these reduction steps yields
a polynomial time algorithm for this problem. In addition this idea extends
naturally to algebraic number fields.

Finally we conclude our chapter by stating a result of [36]:

Theorem 68. Let K be a finite extension of Fq(t) and let A be a semisimple algebra
over K. Then there exists a deterministic polynomial time reduction from computing
the minimal ideals of A to factoring polynomials over finite fields.

Remark 69. An alternative approach (when K is either an algebraic number field
or a finite extension of Fq(t)) is the following. One may assume that A is an n-
dimensional commutative and separable algebra over the field K (a semisimple
algebra A over K is separable if for every field extension L of K, A ⊗K L is a
semisimple L-algebra). As discussed in Section 1.4, A can be embedded into
Mn(K), where K is the algebraic closure of K. An element a ∈ A is called a
splitting element if it has n distinct eigenvalues (as a matrix in Mn(K)). Let f
be the minimal polynomial of a. Then one has that A ∼= K[x]/( f (x)). Therefore
finding the Wedderburn decomposition of A reduces to factoring f . A splitting
element can be found by a randomized algorithm if the ground field K is large
enough ( [18]), as most elements are splitting elements. This method was can be
derandomized by a textbook method which is described for example in [29].
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2.4. Simple algebras 23

2.4 Simple algebras

Now we assume thatA ∼= Mn(K), whereA is given by structure constants. Our
goal is to compute an explicit isomorphism between A and Mn(K). This is the
main question that motivated all the new results in this thesis.

We start with some general observations for arbitrary fields. Then we con-
tinue by a short survey on the current situation of the problem for various fields.

We recall some facts about idempotent matrices. If e is a nontrivial idem-
potent (i.e., not equal to 0 or 1), then its minimal polynomial is x2 − x. This
has 2 distinct roots over every field, namely 0 and 1. Hence e is diagonalizable
and its diagonal form contains 0-s and 1-s in the diagonal. An idempotent is
primitive if and only if its diagonal entries are 0-s except for one. Naturally, the
rank of an idempotent is the number of 1-s in the diagonal. If e is an idempo-
tent of rank k, then e can be decomposed into the sum of k pairwise orthogonal
(eiej = ejei = δijei) primitive idempotents. The characteristic polynomial of e is
then (x− 1)kxn−k.

Proposition 70. Let A ∼= Mn(K) and let e be a primitive idempotent in A. Let
V = Ae. Then dimKV = n and the left action of A on V provides an isomorphism
between A and Mn(K).

Proof. Let V′ be the K vector space of matrices in Mn(K) which contains nonzero
element only in the first column. Since e is a primitive idempotent it is a conju-
gate of 

1 0 · · · 0
0 0 · · · 0
...

... . . . ...
0 0 · · · 0


Hence the vector spaces V and V′ are conjugates, thus have the same dimen-

sion. The second part of the claim is trivial.

A consequence of the previous proposition is that it suffices to find a prim-
itive idempotent in A. Actually, if one already has an element r ∈ A of rank 1
then a primitive idempotent can be computed efficiently. Indeed, since a right
identity element of the left ideal Ar is a primitive idempotent which can be
computed by solving a system of linear equations. Assume now that we have
a zero divisor r in A of rank k. Then, in a similar fashion, we can compute an
idempotent of rank k.

Proposition 71. Let e be an idempotent of rank k in A ∼= Mn(K). Then eAe ∼=
Mk(K).
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24 Chapter 2. Computing the structure of algebras

Proof. There exists an invertible matrix f such that

f−1e f =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

... . . . ...
0 · · · 0 0 0


where the number of 1-s is exactly k. Naturally, eAe is isomorphic to f−1eAe f .
Also since A is isomorphic to fA f−1 we have that eAe ∼= f−1e fA f−1e f . Hence
eAe is isomorphic to

1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

... . . . ...
0 · · · 0 0 0

Mn(K)


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

... . . . ...
0 · · · 0 0 0


which is isomorphic to Mk(K).

The proposition above immediately suggests the following. If we are able to
compute zero divisors then we can compute primitive idempotents as well. In-
deed, one first constructs an idempotent of some rank k. Then one reduces the
problem to finding a primitive idempotent to a full matrix algebra of smaller
dimension. This idea works for finite fields as we will see later in this chapter.
However, for number fields and function fields, the size of structure constants
obtained by this operation may blow up. Therefore this idea usually only works
if n is assumed to be bounded.

Now we turn our attention to finite fields. The result by Rónyai [57] shows
that there exists a randomized polynomial time algorithm which solves the
problem. Actually we can say little bit more about the complexity. Recall the
following definition:

Definition 72. An f-algorithm is a deterministic algorithm which is allowed to call
oracles for factoring polynomials over finite fields. The cost of the call is the size of the
input.

Theorem 73. Let A ∼= Mn(Fq) be given by structure constants. Then there exists a
polynomial time f-algorithm which finds a zero divisor in A.

Remark 74. In the case of finite fields we can compute a primitive idempotent
from a zero divisor using the previous procedure.
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2.4. Simple algebras 25

We sketch the main ideas of the algorithm. First, it computes a maximal
subfield F of A (or returns a zero divisor). Then the Frobenius automorphism
of F extends to an Fq-algebra automorphism of A, thus by the Noether-Skolem
theorem the Frobenius automorphism can be obtained by conjugation via an
element c ∈ A. Therefore we obtain a cyclic algebra presentation of A. Finding
a zero divisor in a cyclic algebra reduces to solving a norm equation (which in
the case of finite fields can reduced to factoring a suitable polynomial).

For bounded n there is an improvement of this result [32]. That algorithm
is deterministic but its complexity is exponential in n (it runs in polynomial
time however, if we restrict that the prime divisors of n are bounded by some
constant).

Now we turn our attention to the case where K = Q. The first interesting
result in this topic is unfortunately a negative one [56]:

Theorem 75. Assume thatA ∼= M2(Q) is given by structure constants. Then there is
a randomized polynomial time reduction from factoring square-free integers to finding
a zero divisor in A.

Note that there is no current polynomial time algorithm for factoring inte-
gers (unless we consider quantum computers as well). However, one may ask
the following question. Do the two tasks have the same complexity, i.e. what
can we do if we are allowed to call an oracle for factoring integers. Recall the
following definition:

Definition 76. An ff-algorithm is a deterministic algorithm which is allowed to call
oracles for factoring integers and polynomials over finite fields. Th cost of the call is the
size of the input.

The first positive result was given by Ivanyos and Szántó [37]:

Theorem 77. Let A ∼= M2(Q) be given by structure constants. Then there exists a
polynomial time ff-algorithm which finds a zero divisor in A.

The algorithm uses the following extremely important result by Ivanyos and
Rónyai [34]:

Theorem 78. Let A be a semisimple algebra over Q. Then there exists a polynomial
time ff-algorithm which finds a maximal order in A.

Then Ivanyos and Szántó use lattice reduction for indefinite forms to com-
pute zero divisors. This paper introduced LLL-type algorithms to this topic
which became a fruitful contribution. A different algorithm for the same task
was proposed by Cremona and Rusin [15].
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26 Chapter 2. Computing the structure of algebras

Then de Graaf et al. [28] and Pilnikova [51] solved the cases where n = 3
and n = 4 respectively using norm equation solvers. However, the complexity
of solving norm equations is not yet fully known. For instance it is not known
whether norm equations over higher degree number fields can be solved by
polynomial time ff-algorithms.

Here we give a brief summary of the result of Ivanyos, Rónyai and Schicho
[33] which generalizes all the previous results. First we state the result and then
we go into details:

Theorem 79. Let K be an algebraic number field, with discriminant D and degree
d over Q. Let A ∼= Mn(K) be given by structure constants. Then there exists an
ff-algorithm which computes an explicit isomorphism between A and Mn(K). The
running time of the algorithm is exponential in d,n and log D and polynomial in the
size of the structure constants.

This algorithm solves the explicit isomorphism problem in polynomial time
if we assume d, n and D to be bounded. We describe the algorithm in the case
where K = Q. The idea is similar for any number field but it is fairly more
technical. The following is the main structural result:

Theorem 80. Let A be a Q-subalgebra of Mn(R) isomorphic to Mn(Q). Let Λ be a
maximal Z-order in A. Then there exists an element C ∈ Λ which has rank 1 as a
matrix, and whose Frobenius norm ‖C‖ is less than n.

Remark 81. The Frobenius norm of X ∈ Mn(R) is ‖X‖ =
√

tr XTX. Let A be an
algebra isomorphic to Mn(Q). We may define the Frobenius norm of an element
of A by embedding A into Mn(R) and assigning to each element its Frobenius
norm as a real matrix.

Proof. We sketch the proof here (a more detailed version can be found in [33]).
Observe that every maximal Z-order Λ of A is a conjugate (by an invertible

matrix P ∈ Mn(R)) of Mn(Z). This follows from Corollary 27 (every maximal
Z-order of Mn(Q) is a conjugate of Mn(Z) since Z is a principal ideal domain)
and the Noether-Skolem theorem. Let Λ′ = Mn(Z). Then we have that

Λ = PΛ′P−1.

for some P ∈ Mn(R). Let Q = P/(|det P|)1/n. Then we have Λ = QΛ′Q−1,
where the determinant of Q is 1.

Let ρ be the set of all integer matrices which have 0 everywhere except in the
first column. Observe that ρ is a lattice of determinant 1 in the vector space S of
all real matrices having nonzeros only in the first column. The lattice L = Qρ
will be a lattice in S, with determinant 1 (as the determinant of Q is equal to 1).
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2.4. Simple algebras 27

The key idea of the proof is the application of Minkowski’s theorem on lat-
tice points in convex bodies to L in S. The volume of the ball of radius

√
n in S

centered at the zero matrix is more than 2n, as it contains 2n internally disjoint
copies of the n-dimensional unit cube, and more. Hence there exists an element
B ∈ ρ such that QB is a nonzero matrix whose length is less than

√
n. Since B

was of rank 1 so is QB (as it is nonzero).
Observe that by a ”transpose” of this argument (with Q−1 in the place of Q),

there exists a nonzero integer matrix B′, which is zero everywhere except in the
first row, B′Q−1 is nonzero, and has Frobenius norm less than

√
n.

Now consider
C = PBB′P−1 = QBB′Q−1.

C is in Λ because BB′ ∈ Mn(Z). It has length less than n because the Frobenius
norm is submultiplicative. Obviously, C has rank at most 1, as B and B′ are
of rank 1. Finally, from the shape of B and B′ we see, that BB′ 6= 0, hence
rank BB′ = rank C = 1. This finishes the proof.

We may interpret the result in the following way. Every maximal order con-
tains a short vector which is a rank 1 element. How can we turn this observation
into an algorithm? We compute a maximal order in A. Then we embed A into
Mn(R) in order to obtain a norm on A. We scan through all the short vectors to
find a rank 1 element. In order to make this efficient we need lattice reduction
techniques. Since our lattice vectors may have nonrational coordinates we use
an approximate version of the LLL-algorithm. We also need the following ob-
servation from [33], that too short vectors in a maximal order are automatically
zero divisors:

Lemma 82. Let X ∈ Mn(R) be a matrix such that det X is an integer, and ‖X‖ <√
n. Then X is a singular matrix.

Now we outline the algorithm:

1. Compute a maximal order Λ in A using the Ivanyos-Rónyai algorithm
[34]

2. Compute an embedding of A into Mn(R). One can use the randomized
polynomial time algorithm of [18] or its derandomiezd version [29] (this
is a slightly modified version of the procedure described at the end of
Section 2.3, as we need an embedding into Mn(R), not Mn(C)). This way
we have a Euclidean norm on A: for X ∈ A we put ‖X‖ =

√
tr XTX.

Thus Λ can be viewed as a full lattice in Rm, where m = n2. The length |c|
of a lattice vector c is just the Frobenius norm of c as a matrix.
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28 Chapter 2. Computing the structure of algebras

3. Compute a rational approximation B0 of the lattice basis of Λ and then
compute a reduced basis b1, . . . , bm of the lattice Λ ⊂ Rm by applying the
LLL algorithm to the rational approximation B0.

4. If there exists an i such that |bi| <
√

n, then by Lemma 82 bi is a zero
divisor. If bi has rank 1 then we output bi. If bi has rank k > 1, then
we proceed as described at the beginning of the section (we reduce to the
explicit isomorphism problem of Mk(Q)).

5. At this point we know that |bi| ≥
√

n holds for every i. Scan through
all integral linear combinations C′ = ∑m

i=1 γibi, where the γi are integers,
|γi| ≤ cm

n
|bi|
≤ cm

√
n (this is the point where we use that b1, . . . , bm is

a reduced basis) until a C is found with rank C = 1 (checking whether
an element has rank one can be accomplished in polynomial time via the
method described at the beginning of the section). The existence of such a
C is guaranteed by Theorem 80. Output this C.

The discussion of the running time of this algorithm can be found in [33].
The reason we discussed this algorithm in slightly more detail than the previous
one, is that this result is the starting point for the next chapter which is devoted
to solving the explicit isomorphism problem in the case K = Fq(t). We conclude
by saying that there is an improvement of the result from [33] due to Ivanyos,
Lelkes and Rónyai [35]. However, the general question for arbitrary n, d and D
remains open.
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CHAPTER 3

COMPUTING EXPLICIT
ISOMORPHISMS WITH FULL MATRIX
ALGEBRAS OVER Fq(t)

In the previous chapter we outlined an algorithm for computing the radical
of an algebra over Fq(t) and referred to [36] where the authors compute the
Wedderburn decomposition of a semisimple algebra over Fq(t). In this section
we deal with the following problem. Let A ∼= Mn(Fq(t)) be given by structure
constants. Compute an explicit isomorphism betweenA and Mn(Fq(t)). As we
have seen in the previous chapter, this task is equivalent to finding a primitive
idempotent in A. This chapter is based on [38].

The starting point of this result is the paper from Ivanyos, Rónyai and Schi-
cho on splitting full matrix algebras over the rational numbers [33]. In that
paper, which was outlined in the previous chapter, the authors describe an algo-
rithm for finding a primitive idempotent in a full matrix algebra over Q which
is given by structure constants. They compute a maximal order and then em-
bed the algebra into Mn(R) using the splitting element method from Eberly [18]
which gives a way to define a norm on the original algebra. They show that ev-
ery maximal order contains a rather small rank 1 element. Finally, using lattice
reduction techniques they scan through all the small elements. This scanning
part is rather time consuming and that is why the running time is exponential
in n, the degree of the matrix algebra.

When started research in the problem our initial goal was to imitate this
process. Which means computing a maximal order and scanning through short
vectors using lattice reduction. However, as it turns out, stronger structural re-
sults simplify matters considerably. One can show that short vectors in a maxi-
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30 Chapter 3. Computing explicit isomorphisms with full matrix algebras

mal order form a finite ring which contains a primitive idempotent from A. So
instead of scanning through all the elements we can compute its structure using
the algorithm from [57] and use this to our advantage. The main result of this
chapter is the following:

Theorem 83. Let A be isomorphic to Mn(Fq(t)), and given by structure constants.
Then there exists a polynomial (in n and in the size of the structure constants) time
f-algorithm which finds an explicit isomorphism between A and Mn(Fq(t)).

Again, lattices this time over Fq(t), play an important role in our algorithm.
For the purpose of computing an explicit isomorphism we only need a slight
extension of Lenstra’s original reduction algorithm [44]. However, his results
can be generalized further. We give such a generalization in the last section and
also provide an application for this result.

The structure of this chapter is as follows. In the first section we describe
Lenstra’s lattice reduction algorithm ( [44]) and extend it slightly to lattices in
Fq(t)m. In Section 2 we propose an algorithm which finds a maximal order in
an algebra A ∼= Mn(Fq(t)). In Section 3 we prove our main structural theorem
and give a description of our algorithm together with its complexity analysis.
In the final section we extend Lenstra’s algorithm to lattices in Fq((1/t))m. We
apply it to find lattice vectors in parallelepipeds.

3.1 Lattice reduction

Let L be a lattice in Fq(t)m generated by b1, . . . , bm ∈ Fq[t]m. Recall (Section
1.6.), that the orthogonality defect of a basis b1, . . . , bm ∈ Fq[t]m is defined as
OD(b1, . . . , bm) = ∑m

i=1 |bi| − det(L) and that a basis is reduced, if its orthogo-
nality defect is 0. Lenstra ( [44]) proposed an algorithm which finds a reduced
basis in a lattice given by another lattice basis. Now we outline this algorithm:

Theorem 84. Let L be a lattice in Fq(t)m given by the basis b1, . . . , bm where bi ∈
Fq[t]m. Assume that |bi| < B for all i. Then there exists an algorithm which takes
O(Bm3(OD(b1, . . . , bm) + 1)) arithmetic operations in Fq and returns a reduced ba-
sis of L.

Proof. Denote by bij the jth coordinate of bi. Let us assume that an integer k ∈
{0, 1, . . . , m} is given (with the convention |b0| = −∞) such that the following
hold:

1. |bi| ≤ |bj| for 1 ≤ i < j ≤ k,

2. |bk| ≤ |bj| for k < j ≤ m,
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3.1. Lattice reduction 31

3. |bii| ≥ |bij| for 1 ≤ i ≤ k and i < j ≤ m,

4. |bii| > |bij| for 1 ≤ j < i ≤ k.

Initially these conditions are satisfied for k = 0. If k = m then the basis
b1, . . . , bm is reduced (one has the terms of largest valuation in the diagonal
of the matrix of the lattice, and all other expansion terms have strictly smaller
valuation). Suppose that k < m. Renumber bk+1, . . . , bm in a way that the min-
imum of |bk+1|, . . . , |bm| becomes |bk+1| (i.e. the one with the smallest index
should be the shortest). Let aij be the coefficient of t|bi| in bij for 1 ≤ i ≤ k + 1
and 1 ≤ j ≤ k. It follows from the third and fourth condition on k that aii 6= 0
for 1 ≤ i ≤ k and that aij = 0 for 1 ≤ j < i ≤ k. This implies that a solution
(r1, . . . , rm) ∈ Fm

q of the following triangular system of linear equations exists:

k

∑
i=1

aijri = a(k+1)j for 1 ≤ j ≤ k. (3.1)

We put b∗k+1 = bk+1 − ∑k
i=1 ribit|bk+1|−|bi|. Then |b∗k+1| ≤ |bk+1| and the first

two conditions imply that b∗k+1 ∈ Fq[t]m. Furthermore equation (3.1) implies
that |b∗k+1i| < |bk+1| for 1 ≤ i ≤ k. We distinguish two cases. If |b∗k+1| = |bk+1|
then we replace bk+1 by b∗k+1, we permute the coordinates of b1, . . . , bm in such
a way that |bk+1,k+1| = |bk+1| (this does not affect the first k coordinates), and
finally we replace k by k+ 1. If |b∗k+1| < |bk+1| then we replace bk+1 by b∗k+1 and
we replace k by the largest index l ∈ {0, 1, . . . , k} such that |bl| ≤ |bk+1|. Now
all 4 four conditions are satisfied and we proceed are algorithm from here. Now
we prove the bound on the running time of the algorithm. Let S = ∑m

i=1 |bi|.
Then while passing through the main loop S either remains unaltered (first case)
or decreases by 1 (second case). Since the value of k is increased by 1 in the
first case, a particular value of S can only occur at most (n + 1) times. On the
other hand S can have at most OD(b1, . . . , bm)+1 values, whence the number
of passes through the main loop is O(m(OD(b1, . . . , bm) + 1)). The result now
follows from the fact that solving the system of linear equations (3.1) takes O(k2)
operations in Fq, while computing b∗k+1 takes O(mkB) operations in Fq.

This result can be extended to find a reduced basis of an arbitrary full lattice
in Fq(t)m. Let us assume that we have a basis b1, b2, . . . , bm in Fq(t)m. Let L be
the Fq[t]-lattice generated by these vectors and let B be the matrix with columns
b1, . . . , bm. Let γ be the least common multiple of all the denominators of the
entries of B. We consider the lattice L′ generated by γb1, . . . , γbm. Note that
L′ ∈ Fq[t]m. So using Lenstra’s algorithm one can find a reduced basis c1, . . . , cm

in L′. Note that |det L′| = |det L|+ m|γ|. This implies that choosing b′i =
1
γ ci
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32 Chapter 3. Computing explicit isomorphisms with full matrix algebras

we get a reduced basis of L. Since the orthogonality defect of b1, . . . , bm is the
same as the orthogonality defect of γb1, . . . , γbm, we obtain the following:

Corollary 85. Let b1, b2, . . . , bm be a basis in Fq(t)m and let L be the Fq[t]-lattice they
generate. Let γ be the least common multiple of all the denominators for the entries of
b1, b2, . . . , bm. Let M = |γ|+max1≤i≤m(|bi|) and let M′ = max(M, 1). Then there
exists an algorithm which takes O(m3M′(OD(b1, . . . , bm)+ 1)) arithmetic operations
in Fq and returns a reduced basis of L.

Given an integer k, the set of elements of the lattice whose valuation is
smaller than k is a finite dimensional Fq-vector space (this is a consequence
of Lemma 46), and a basis of this vector space can also be computed efficiently.

The algorithm of Corollary 85 finds a reduced basis of a lattice which is given
by a basis. However, one can ask the following question: what happens if the
lattice is only given by an Fq[t]-module generating system? In such situations
an algorithm by Paulus [49, Algorithm 3.1.] is applicable. It finds a reduced
basis of a lattice in Fq(t)m given by a system of generators. We shall make use
of the fact that the valuations of the reduced basis obtained by Paulus’ algorithm
will not be greater than those of the given generators.

3.2 Maximal orders over Fq[t]

3.2.1 Preliminaries

In this subsection we assume that R is a principal ideal domain with quotient
field K and A is a central simple algebra isomorphic to Mn(K). Recall that an
R-order in A is a full R-lattice which is at the same time a subring of A contain-
ing the identity element. Maximal orders are orders maximal with respect to
inclusion. Recall also that in this specialized setting every maximal order is the
conjugate of the standard maximal order Mn(R) (Corollary 27).

Our eventual aim is to construct a maximal R-order in Mn(K). We will con-
struct an initial order Λ0 in a rather straightforward way and iteratively enlarge
it. Strictly speaking, our initial object Λ0 will not be an order. We say that an
R-subalgebra Λ of A is an almost R-order in A if it is a full R-lattice in A. Thus
orders are almost orders containing the identity element of A. It turns out that
if Λ0 is an almost R-order, then the R-lattice generated by Λ0 and the identity
element of A is an R-order.

Discriminants enable us to control the depth of chains of (almost) orders
and will also be useful in representing orders efficiently. The reduced trace, tr a,
of an element a of an A is simply the trace of a as an n by n matrix (this is
well defined by the Noether-Skolem theorem, see Section 1.4 in this thesis). To
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3.2. Maximal orders over Fq[t] 33

compute reduced traces efficiently, it is not necessary to know an isomorphism
A ∼= Mn(K). If n is not divisible by the characteristic of K, then tr a is 1

n times
the trace of the image of a under the regular representation of a. In general,
the reduced trace can be computed by taking an appropriate coefficient of the
nth root of the characteristic polynomial of the regular representation. This is
because the regular representation of A decomposes as a direct sum of n copies
of the standard n-dimensional (irreducible) representation.

The bilinear trace form on A is the symmetric bilinear function (a, b) 7→ tr ab.
As the matrix corresponding to an element of an almost R-order Λ is similar to
a matrix with entries of R, the reduced trace of any element of Λ is from R. The
discriminant d(Λ) can be defined as the principal ideal of R generated by the

determinant of the Gram matrix
(
tr bibj

)n2

i,j=1 where b1, . . . , bn2 are an R-basis for
Λ. It is nonzero and independent of the choice of the basis. We can loosely think
of d(Λ) as an element of R, defined up to a unit of R. As the bilinear trace form
is non-degenerate, we have the following (see [53, Exercise 10.3]).

Proposition 86. Let Λ and Γ be almost R-orders in A such that Λ ⊆ Γ. Then
d(Γ)|d(Λ) and Λ = Γ if and only if d(Γ) = d(Λ).

The following statement gives an R-lattice as an upper bound for R-orders
containing a given almost order. An extension to more general rings R is used
in the proof of [53, Theorem 10.3]. For orders over principal ideal domains it is
stated explicitly in [34, Proposition 2.2]. As we need a slight generalization to
almost orders, we give a proof for completeness.

Proposition 87. Let Λ and Γ be almost R-orders inA such that Λ ⊆ Γ. Then Γ ⊆ 1
d Λ

where d = d(Λ).

Proof. Let b1, . . . , bn2 be an R-basis for Λ. Then an element a ∈ Γ can be written
as a = ∑n2

i=1 αibi with αi ∈ K (i = 1, . . . , n2). For j = 1, . . . , n2 put β j = tr abj.
Then the elements β j are in R because the elements abj are in the almost order
Γ which is contained in an R-order and hence have reduced trace from R. By
linearity, we have ∑i αitr bibj = β j. Cramer’s rule gives that each αi is a quotient
of an element of R and d, which means that a ∈ 1

d Λ.

An algorithmic consequence is that it is possible to represent R-orders con-
taining a given almost order Λ as submodules of the factor module 1

d Λ/Λ.
This will be particularly useful when R = Fq[t], in which case this factor is
an n2 deg d-dimensional vector space over Fq.

Our algorithm for computing maximal orders is an adaptation of the method
proposed by Ivanyos and Rónyai for the case R = Z in [34]. The method is
discussed in the context of global fields in the Ph. D. thesis of Ivanyos [31]. For
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34 Chapter 3. Computing explicit isomorphisms with full matrix algebras

completeness, we include proofs of statements that are not rigorously proved
for general principal ideal rings in [34].

Let M be a full R-lattice in A. Then the left order of M is defined by

Ol(M) = {a ∈ A| aM ⊆ M}.

The set Ol(M) is known to be an R-order of A, see [53, Chapter 8]. It actu-
ally follows from the fact that Ol(M) is isomorphic to the intersection of two R-
algebras: the image ofA under the left regular representation and HomR(M, M)
(embedded into HomK(A,A)).

The next two lemmas will be important tools for the algorithm which finds
maximal orders. The first one reduces the question of enlarging an order over
R to a similar task for Rπ-orders where π is a prime element of R. Here Rπ ≤ K
denotes the localization of R at the prime ideal Rπ, that is, Rπ = { α

β : α, β ∈
R with π 6 |β}. If Γ is an R-order in A, then Γπ = RπΓ is an Rπ-order.

Lemma 88. Let π be a prime element of R and Γ be an R-order in A. Suppose that J
is an ideal of Γπ such that J ≥ πΓπ and Ol(J) > Γπ. Put I = Γ ∩ J. Then we have
I ≥ πΓ and Ol(I) > Γ.

This lemma is stated for R = Z in [34, Lemma 2.7 ]. The proof goes through
for any principal domain R. We include it for completeness.

Proof. Clearly I ≥ πΓ and I is an ideal of Γ. We also have J = Rπ I. Let
a ∈ Ol(J)\Γπ. Let a1, a2, . . . , as be a generating set of I as an R-module. Then
these elements generate J as an Rπ-module whence for i = 1, . . . , s we have

aai =
αi1

βi1
a1 + · · ·+

αit

βit
as, (3.2)

where αij, βij ∈ R and π does not divide βij. Now put β = ∏i,j βij. Then βaai
is in I (i = 1, . . . , s), whence βaI ≤ I and consequently βa ∈ Ol(I). Finally we
observe that βa is not in Γ since β is not divisible by π and therefore βa ∈ Γ
would imply a ∈ Γπ. The proof is complete.

The next simple statement is stated in [34, Proposition 2.8] for R = Z. It
enables us to use Λ in place of Λπ in computations regarding sufficiently large
one or two-sided ideals of Λπ.

Proposition 89. Let Λ be an R-order in A and π be a prime of R. Then the map
Φ : x 7→ x + πΛπ(x ∈ Λ) induces an isomorphism of rings Λ/πΛ ∼= Λπ/πΛπ.

Proof. Clearly Φ : Λ → Λπ/πΛπ is an epimorphism of rings. It is straightfor-
ward to check that its kernel is πΛ.
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3.2. Maximal orders over Fq[t] 35

Now we quote some further theorems and definitions from [34]. The next
statement is [34, Proposition 3.1].

Proposition 90. Let Λπ be an Rπ-order in A. Then Λπ = Λπ/πΛπ is an algebra
with identity element over the residue class field Rπ = Rπ/πRπ (which is also iso-
morphic to R/πR) and dimKA = dimRπ

Λπ. If Φ : Λπ → Λπ is the canonical
epimorphism, then πΛπ ⊆ Rad(Λπ) = Φ−1Rad(Λπ) and Φ induces a ring isomor-
phism Λπ/Rad(Λπ) ∼= Λπ/Rad(Λπ).

Now we introduce the important concept of extremal orders:

Definition 91. Let Λπ and Γπ be Rπ-orders inA. We say that Γπ radically contains
Λπ if and only if Γπ ⊇ Λπ and Rad(Γπ) ⊇ Rad(Λπ). This is a partial ordering on
the set of Rπ-orders. Orders maximal with respect to this partial ordering are called
extremal.

The next statement is [34, Proposition 4.1].

Proposition 92. An Rπ-order Λπ ofA is extremal if and only if Λπ = Ol(Rad(Λπ)).

Finally, we quote [34, Proposition 4.5].

Proposition 93. Let Λπ ⊂ Γπ be Rπ-orders in A. Suppose that Λπ is extremal and
Γπ is minimal among the Rπ-orders properly containing Λπ. Then there exists a two-
sided ideal I of Λπ minimal among those containing Rad(Λπ) such that Ol(I) ⊇ Γπ

3.2.2 The algorithm

We start with a high-level description of the algorithm over a general principal
ideal domain R. Let R be a principal ideal domain, K its field of fractions. Sup-
pose that an algebra A, isomorphic to Mn(K) is given by structure constants
γk

ij (i, j, k = 1, . . . , n2) from K with respect to a basis a1, . . . , an2 . We assume that
these structure constants are represented as fractions of pairs of elements from
R. Let δ be a common multiple (e.g., the product or the l. c. m.) of the denom-
inators. Then a′i = δai (i = 1, . . . , n2) will be a basis with structure constants
δγk

ij ∈ R. Therefore the R-submodule Λ0 of A with basis a′1, . . . , a′n2 is an almost
R-order.

We shall compute the discriminant d = d(Λ0). Let S = {π1, . . . , πr} be
the set of the prime factors of d. Observe that the discriminant of any R-order
conjugate to Mn(R) is 1. This also holds for Rπ-orders for any prime element π.
Therefore, by Corollary 27 and by Proposition 86, Λ0π is a maximal Rπ-order
for any prime π not in S.
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36 Chapter 3. Computing explicit isomorphisms with full matrix algebras

Starting with the order Λ obtained by taking the R-module generated by Λ0
and the identity element, for each prime in S we test constructively whether Λπ

is a maximal Rπ order using the two tests described below. By constructiveness
we mean that in the ”no” case we construct an R-order Γ ) Λ. If any of the
tests finds such a Γ, then we proceed with Γ in place of Λ. Otherwise, if Λπ

passes the tests for every π ∈ S then we conclude that Λ is already maximal. By
Proposition 86 the number of such rounds is at most the number of the prime
divisors of d, counted with multiplicities.

The first test is used to constructively decide whether Λπ is an extremal Rπ-
order by checking if Ol(Rad(Λπ)) = Λπ (Proposition 92). To this end, we com-
pute the ideal I = Rad(Λπ) ∩Λ. By Lemma 88, Λ passes the test if and only if
Ol(I) = Λ. Otherwise Γ = Ol(I) is an order strictly containing Λ. To compute
I, we work with the n2-dimensional R/πR-algebra B = Λ/πΛ. From Propo-
sitions 89 and 90 we infer that I is the inverse image of Rad(B) with respect to
the canonical map Λ→ B.

If Λπ passes the first test, then we proceed with the test of Proposition 93:
if there exists an ideal J of Λπ minimal among the two-sided ideals properly
containing Rad(Λπ) such that Ol(J) > Λπ, then we construct an R-order Γ that
properly contains Λ. Like for the first test, we can work in the R/πR-algebra
B = Λ/πΛ. Let J1, . . . , Jm denote the minimal two-sided ideals of B which
contain Rad(B). We have m ≤ n2. Let Ii denote the inverse image of Ji with
respect to the map Λ → B. As in the first case we obtain, that we have to
compute the rings Ol(Ii) for i = 1, . . . , m. We can stop when Λ < Ol(Ii) is
detected, because then we have an order properly containing Λ.

3.2.3 The case R = Fq[t]

We continue with details of the key ingredients of an efficient algorithm for
R = Fq[t] following the lines above. These will give an f -algorithm whose
running time is polynomial in the size of the input. The input is an array of
n6 structure constants represented as fractions of polynomials. We assume that
the numerators are of degree at most dN and the denominators are of degree at
most dD. Thus the size of the input is around n6(dD + dN) log q.

The l. c. m. of the denominators and hence a basis for the initial almost order
Λ0 can be computed in polynomial time. The degree of this common denomi-
nator is at most n6dD, whence Λ0 will have a basis a′1, . . . , a′n2 , where each a′j is
aj, multiplied by a polynomial of degree at most n6dD. The structure constants
for the basis a′1, . . . , a′n2 are polynomials of degree at most n6dD + dN. The dis-
criminant d = d(Λ0) can be efficiently computed in a direct way following the
definition. The entries of the matrices for the images of a′j at the regular repre-
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3.2. Maximal orders over Fq[t] 37

sentation, written in terms of the basis a′1, . . . , a′n2 are just structure constants for
the basis a′1, . . . , a′n2 . Therefore these entries are polynomials of degree bounded
by n6dD + dN and hence the entries of the Gram matrix of the bilinear trace form
are polynomials of degree 2n6dD + 2dN. To compute d(Λ0), let n = prk where
p is the characteristic of Fq and k is relatively prime to p. Then the character-
istic polynomial of a′ia

′
j (in the regular representation), is the nth power of the

characteristic polynomial of a′ia
′
j as an n by n matrix. Therefore it is of the form

(Xn − (tr a′ia
′
j)Xn−1 + · · · )n = (Xnk − k(tr a′ia

′
j)Xnk−1 + · · · )pr

= Xn2 − (ktr a′ia
′
j)

pr
Xn2−pr

+ · · · .

It follows that d(Λ0) is a polynomial D0 of degree at most 2n8dD + 2n2dN.
By Proposition 87, we have Λ ≤ 1

D0
Λ0 for any Fq[t]-order Λ ≥ Λ0. There-

fore we can represent Λ as the Fq[t]-submodule Λ/Λ0 of the factor module
1

D0
Λ0/Λ0. This factor module is an n2 deg D0-dimensional vector space over

the field Fq. In fact, the elements tk

D0
a′i + Λ0 (i = 1, . . . , n2, k = 0, . . . , deg D0 − 1

form an Fq-basis) and we represent Λ/Λ0 by an Fq-basis written in terms of this
basis. Notice that the ideals I whose left order Ol(I) we compute throughout
the algorithm are all (left) Λ0-submodules of 1

D0
Λ0 containing D0Λ0. Observe

next that the multiplication ofA induces an Fq-bilinear map µ from 1
D0

Λ0/Λ0×
I/D0 I to 1

D0
I/I. For a ∈ 1

D0
Λ and b ∈ I, one can set

µ(a + Λ0, b + D0 I) = ab + I.

This is well defined as ( 1
D0

Λ0)(D0 I) = Λ0 I ⊆ I. Taking an Fq-basis b1, . . . , bs

of I/D0 I, the factor Ol(I)/Λ0 can be computed as the intersection of the ker-
nels of the linear maps µ(·, bi) (i = 1, . . . , s). As the dimensions are bounded
by polynomials in n and in the degree of D0, for every I possibly occurring in
the algorithm, Ol(I) is computable in polynomial time. Given an intermediate
order Λ, we can compute the candidate ideals I by computing the radical of
B = Λ/gΛ for the irreducible factors g of D0 and the minimal two-sided ideals
of B containing the radical and finally by taking inverse images of these at the
map Λ → B. As B is an n2 deg g-dimensional vector space over Fq, its radical
and the minimal two-sided ideals containing it can be computed in time poly-
nomial in the input size using for example the deterministic method [57]. The
minimal two-sided ideals containing the radical, that is, the simple components
of B/Rad(B) can be found by the deterministic f -algorithm [22].
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38 Chapter 3. Computing explicit isomorphisms with full matrix algebras

For αik ∈ Fq (i = 1, . . . , n2, k = 0, . . . , deg D0 − 1), the combination

n2

∑
i=1

deg D0−1

∑
k=0

αik
tk

D0
a′i

of a′1, . . . , a′n2 has coefficients whose numerators and denominators are polyno-
mials of degree at most deg D0 ≤ 2n8dD + 2n2dN. Together with a′1, . . . , a′n2 ,
such representatives for an Fq-basis of Λ/Λ0 give a system of generators over
Fq[t] for Λ. When Λ turns out to be maximal, then we can use the lattice reduc-
tion algorithm by Paulus [49] to obtain a basis for Λ consisting of combinations
of a′1, . . . , a′n2 with coefficients having numerators and denominators also of de-
gree at most deg D0 ≤ 2n8dD + 2n2dN. (Here we make use of the nature of the
reduction algorithm: it never increases the maximum degree of the coordinates
of the intermediate generators.) This gives us the following theorem:

Theorem 94. Let A be isomorphic to Mn(Fq(t)) given by structure constants having
numerators and denominators of degree at most dC ≥ 1. A maximal Fq[t]-order Λ can
be constructed by an f-algorithm running in time (n + dC + log q)O(1). The output
of the algorithm is an Fq[t]-basis for Λ whose elements are linear combinations in the
original basis of A with coefficients which are ratios of polynomials of degree at most
(2n8 + n6 + 2n2)dC.

Notice that ∑d
j=0 αjtj = td ∑d

j=0 αd−j
1
tj . Therefore a fraction of two polynomi-

als in t of degree at most d can also be written as a fraction of two polynomials
in 1

t also of degree at most d. Therefore Theorem 94 gives the following.

Corollary 95. Let A and dC be as in Theorem 94. Then a maximal Fq[
1
t ]-order ∆ can

be constructed by an f-algorithm running in time (n + dC + log q)O(1). The output
of the algorithm is an Fq[

1
t ]-basis for ∆ whose elements are linear combinations in the

original basis of A with coefficients which are ratios of polynomials (in t) of degree at
most (2n8 + n6 + 2n2)dC.

We remark that later on we will actually need an Fq[
1
t ]( 1

t )
-basis for a maximal

Fq[
1
t ]( 1

t )
-order. Obviously, for this an Fq[

1
t ]-basis for an Fq[

1
t ]-order ∆ whose

localization at the the prime 1
t is maximal, will do. Therefore it will be actually

sufficient to apply the main steps of the order increasing algorithm only for the
prime 1

t of Fq[
1
t ].

3.3 Finding a rank 1 idempotent in A
Let R ⊆ Fq(t) be the set of rational functions having degree at most 0 (note that
the 0 polynomial has degree−∞ hence it also belongs to R). Thus, if f , g ∈ Fq[t],
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3.3. Finding a rank 1 idempotent in A 39

g 6= 0, then f
g ∈ R iff deg f ≤ deg g. It is easy to see that R is a subring of Fq(t).

Actually R is the valuation ring for the exponential valuation −deg of Fq(t).
An alternative view is that R = Fq[

1
t ]( 1

t )
, the localization of the ring Fq[

1
t ] at the

prime ideal (1
t ). (In fact, one readily verifies that the elements of R are precisely

the functions of the form f (1
t )/g(1

t ), where f , g are univariate polynomials over
Fq and the constant term of g is not 0.) Thus R is a discrete valuation ring, and
as such, a principal ideal ring.

The following theorem is the main structural result. It identifies a finite sub-
algebra C of modest size in A, which contains a primitive idempotent of A.

Theorem 96. Let A ∼= Mn(Fq(t)) and let Λ be a maximal Fq[t]-order in A. Also,
let R be the subring of Fq(t) discussed above, that is, the set of rational functions of
degree at most zero. Let ∆ be a maximal R-order in A. Let b1, . . . , bn2 be an Fq[t]-basis
of Λ, and for j = 1, . . . , n2 let dj be the smallest integer such that 1

tdj
bj ∈ ∆. Let

dmin = min{dj : 1 ≤ j ≤ n2}, dmax = max{dj : 1 ≤ j ≤ n2}. Then

(i) For every element a ∈ Λ ∩ ∆ we have a = ∑ αibi, where the αi are polynomials
in Fq[t] of degree at most n2dmax − dmin.

(ii) Λ ∩ ∆ contains a primitive idempotent of A.

Proof. Let φ : A → Mn(Fq(t)) be an algebra isomorphism such that φ(∆) =
Mn(R). (Such a φ exists by Corollary 27.) We show that the Fq[t]-lattice φ(Λ) in
Mn(Fq(t)) (the latter considered as Fq(t)n2

) has determinant 1. To see this, let B
be the matrix whose columns form an Fq[t]-basis for the Fq[t] lattice φ(Λ)v ⊂
Fq(t)n where v is a nonzero vector from Fq(t)n. Then φ(Λ) = BMn(Fq[t])B−1.
The claim on the determinant follows from that the standard lattice Fq[t]n

2
has

determinant one and from that the conjugation X 7→ BXB−1, considered as
an Fq(t)-linear transformation on Fq(t)n2

, has determinant one. For the latter,
notice that multiplication by B−1 from the right is similar to a block diagonal
matrix consisting of n copies of B−1, and hence has determinant (det B−1)n,
while multiplication by B from the left has determinant (det B)n.

Let C = Λ ∩ ∆. As ∆ = φ−1(Mn(R)), C can be characterized as the set of the
elements a of Λ such that φ(a) has no entries of positive degree. As both ∆ and
Λ are Fq-algebras, so is C.

Notice that for 0 6= a ∈ A the degree of φ(a) ∈ Mn(Fq(t)) (the maximum
of the degrees of the entries of the matrix φ(a)) is just the minimal (possibly
negative) integer r such that 1

tr φ(a) ∈ Mn(R), or, equivalently, t−ra ∈ ∆. It
follows that the degrees of the entries of φ(bj) are bounded by dmax and hence
the orthogonality defect of the basis φ(b1), . . . , φ(bn2) for φ(Λ) is at most n2dmax,

C
E

U
eT

D
C

ol
le

ct
io

n



40 Chapter 3. Computing explicit isomorphisms with full matrix algebras

because |det φ(Λ)| = 0. Therefore, for a = ∑n2

j=1 αjbj ∈ C Lemma 46 gives that
αj has degree at most n2dmax − dmin, showing statement (i).

To establish statement (ii), consider an invertible matrix B ∈ Mn(Fq(t)) for
which φ(Λ) = B−1Mn(Fq[t])B. Let us consider the lattice L1 = B−1Fq[t]n in
Fq(t)n. The determinant of L1 is obviously det B−1. Let us denote by δ be the
degree of det B. Let B−1u1, . . . , B−1un, with ui ∈ Fq[t]n, be an Fq[t]-basis of or-
thogonality defect zero for L1. One can obtain such a basis by lattice basis reduc-
tion. Similarly, let L2 = BTFq[t]. Then L2 is an Fq[t]-lattice having determinant
det B. Let BTu′1, . . . , BTu′n, with u′i ∈ Fq[t]n, be a basis of defect zero for L2. Now
we define a graph. We connect ui with u′j with an edge if u′j

Tui 6= 0. This defines
a bipartite graph having these 2n vectors as vertices satisfying Hall’s criterion
for having a perfect matching. (A set of s vectors from u1, . . . , un having less
than s neighbors would span a subspace of dimension s having an orthocom-
plement having dimension larger than n− s.) By changing the order of u′js we

arrange that u′i
Tui 6= 0 (i = 1, . . . , n). We have

n

∑
j=1

(|B−1uj|+ |BTu′j|) =
n

∑
j=1
|B−1uj|+

n

∑
j=1
|BTu′j| = −δ + δ = 0,

whence there exists at least one index i, such that the maximum degree of the
coordinates of B−1ui and the maximum degree of the coordinates of BTu′i add
up to at most zero. Let i be such an index and let S resp. S′ be the matrix
whose first column is ui resp. u′i, and whose remaining entries are zero. Now
Z = B−1SS′TB is a matrix whose entries are of degree at most zero. Also, Z ∈
φ(Λ). Therefore φ−1(Z) is in C. Furthermore, Z has rank one as it is similar to
SS′T = uiu′i

T. Also, as (uiu′i
T)2 = µuiu′i

T where µ = u′i
Tui 6= 0. It follows that

the minimal polynomial of Z over Fq(t) as well as that of φ−1(Z) is X2 − µX
with a nonzero µ ∈ Fq(t). As φ−1(Z) ∈ Λ ∩ ∆, we have µ ∈ Fq[t] ∩ R = Fq.
Now e = 1

µ φ−1(Z) is an idempotent in C such that φ(e) has rank one.

Remark 97. We give an example of a C which is not isomorphic to a full matrix
algebra over Fq(t). Let Λ = B−1M2(Fq[t])B where B is the following matrix:(1

t 0
0 t

)
.

Let Γ = M2(R), i.e. those matrices whose degree is at most 0. Then C = Γ ∩Λ
is generated as an Fq vector space by the following matrices:(

1 0
0 0

)
,
(

0 0
1 0

)
,
(

0 0
1
t 0

)
,
(

0 0
1
t2 0

)
,
(

0 0
0 1

)
.
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3.3. Finding a rank 1 idempotent in A 41

Note that C has dimension 5 over Fq, hence it cannot be isomorphic to M2(Fq).
As a matter of fact, it is not even semisimple. The radical of C consists of those
matrices whose diagonal entries are 0. Finally, note that C/Rad C ∼= Fq ⊕Fq.

For finding a primitive idempotent of A inside C we can use the method
described in the proof of the following lemma.

Lemma 98. Let C be the finite Fq-algebra from Theorem 96, and let e1, . . . , er be a
complete system of orthogonal primitive idempotents in C. Then there exists an i such
that ei is a rank 1 idempotent in A.

Having a basis of C at hand (a subset of A), one can find such an idempotent by a
polynomial time f -algorithm.

Proof. We note first, that the identity element of A is in C, hence C has idem-
potents. Let x ∈ C be an element which is a rank 1 idempotent in A. By Theo-
rem 96 such an x exists. Next observe that there exists an index i, for which eix
is not in the radical of C. For, otherwise ∑r

i=1 eix = x would be in the radical of
C, which is impossible, as x is not nilpotent. Let us denote this primitive idem-
potent ei by e. Since ex is not in the radical of C, the right ideal exC it generates
in C contains a nonzero idempotent f . Indeed, we can consider this right ideal
as an Fq-algebra which is not nilpotent. Hence if we factor out its radical, then
we have a nonzero idempotent there ( [17, Corollary 2.2.5]), which can be lifted
to an idempotent in exC ( [17, Corollary 3.1.2]). Write f = exy with a suitable
y ∈ C. We have e f = e(exy) = e2xy = exy = f . We verify now that both f e and
e− f e are idempotent elements:

( f e)2 = f e f e = f (e f )e = f f e = f e

and

(e− f e)2 = e2 + ( f e)2 − e f e− f ee = e + f e− f e− f e = e− f e.

Furthermore, they are orthogonal:

f e(e− f e) = ( f ee)− ( f e)2 = f e− ( f e)2 = 0

and
(e− f e) f e = (e f )e− ( f e)2 = f e− ( f e)2 = 0.

Since e is a primitive idempotent, one has either f e = 0 or f e = e. We show that
the first case cannot happen. If f e = 0 then f e f = 0. However, f e f = f 2 = f
which is not zero. This implies that f e = e, and e = exye. Since x had rank 1 in
A, e also has rank 1 in A.
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42 Chapter 3. Computing explicit isomorphisms with full matrix algebras

As for the computational part of the statement, first one has to compute a
Wedderburn-Malcev complement in C: a subalgebra B of C which is isomor-
phic to C/Rad(C). This can be done in deterministic polynomial time using the
algorithm of [30, Theorem 3.1]. Then we can use for example the polynomial
time f -algorithms of [22] and [57] to compute a complete system of primitive
idempotents in B. To calculate ranks, we can use the fact that for a ∈ A the left
ideal aA has dimension rn over Fq(t) where r is the rank of a (considered as an
n by n matrix).

We prove a bound on dmin and dmax in the case when Λ and ∆ are the max-
imal orders constructed in Theorem 94 and Corollary 95, respectively. Λ is an
Fq[t]-order and ∆ is viewed as an R-order here.

Lemma 99. For the pair of maximal orders as above, we have dmax ≤ (2n8 + 2n6 +
2n2)dC and dmin ≥ −2(2n8 + n6 + 2n2)dC

Proof. For short, we write L = (2n8 + n6 + 2n2)dC. Let a1, . . . , an2 be the input
basis of A we use in the algorithms of Theorem 94 and Corollary 95. We know
that the numerators and denominators of the structure constants forA are poly-
nomials of degree at most dC. Let g∗(1/t) be the smallest common denominator
of the structure constants when written as rational functions in 1

t . The degree
of g∗ is at most n6dC. We know that the g∗(1/t)ai are in the starting almost
Fq[

1
t ]-order ∆0, hence they are also in ∆. Also, one can then write

g∗
(

1
t

)
=

1
t`

h
(

1
t

)
where h(y) ∈ Fq[y] and h(0) 6= 0. We have here ` ≤ n6dC. We claim that

1
tn6dC

ai ∈ ∆ hold for every i. Indeed

1
tn6dC

ai =

1
tn6dC−`

h(1
t )
· g∗

(
1
t

)
ai.

Here the first factor is in R, the second is in ∆, thus giving the claim.
We know from Theorem 94 that every basis element bj of Λ is a linear com-

bination of the ai with coefficients αi ∈ Fq(t), and the numerator as well as
the denominator of αi has degree at most L. We claim now that 1

tn6dC+L
bj ∈ ∆.

Indeed, we have
1

tn6dC+L
αiai =

(
1

tn6dC
ai

)
·
(

1
tL αi

)
.

The first factor is in ∆, the second is in R and the upper bound follows.
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3.3. Finding a rank 1 idempotent in A 43

As for dmin, we observe that the coefficients for the elements of Λ in the
basis {ai} are rational functions of degree at least −L (Theorem 94). Similarly,
by Corollary 95 the coefficients for the elements of ∆ in the basis {ai} are rational
functions of degree at most L. It follows that for d < −2L the element 1

td bj can
not be in ∆, as the coefficient 1

td αi has degree at least L + 1.

Now we turn to the algorithmic task of finding (an Fq-basis of) C.

Lemma 100. Let b1, . . . , bn2 be the Fq[t]-basis of Λ constructed by the algorithm of
Theorem 94, and let u1, . . . , un2 be the R-basis of ∆ constructed by the method of Corol-
lary 95. From these data we can construct an Fq-basis of C in deterministic polynomial
time.

Proof. We consider the elements of A as vectors in the basis u1, . . . , un2 . This
way the elements of A can be viewed as vectors from Fq(t)n2

in the usual way:
an element a ∈ A with a = ∑n2

j=1 αjuj is represented by the vector

(α1, . . . , αn2)T ∈ Fq(t)n2
.

Observe, that a vector as above represents an element of ∆ iff |αi| ≤ 0 holds for
every i. Consider now the vectors b′i ∈ Fq(t)n2

representing the basis elements
bi of Λ. They generate a full Fq[t]-lattice (corresponding to Λ) in Fq(t)n2

. We
next compute a reduced basis c1, . . . , cn2 of this lattice. An element

a =
n2

∑
i=1

βici with βi ∈ Fq[t] for i = 1, . . . , n2

represents an element of C = Λ ∩ ∆ iff |a| ≤ 0. We claim that this latter condi-
tion is equivalent to the set of inequalities

|βici| = |βi|+ |ci| ≤ 0, i = 1, . . . , n2.

Indeed, as the {ci} is a reduced Fq[t]-basis, from Lemma 46 we obtain that

|βi| ≤ |a|+ OD(c1, . . . , cn2)− |ci| = |a| − |ci| (3.3)

for every i, hence if |a| ≤ 0 then |βici| ≤ 0 for every i. Conversely, |βici| ≤ 0 for
every i obviously implies that |a| ≤ 0. We conclude that the elements tjci such
that 1 ≤ i ≤ n2 and j is a natural number with j + |ci| ≤ 0 form an Fq-basis
of C. Theorem 96 and Lemma 99 provide a polynomial upper bound for the
dimension of C over Fq, and hence on the number of such elements tjci.1

1A polynomial bound for the dimension of C follows also simply from the polynomiality of
the algorithm described here.
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44 Chapter 3. Computing explicit isomorphisms with full matrix algebras

The algorithmic subtasks involved here: change of basis from the input basis
to the basis {ui}, and the lattice basis reduction both can be done in determin-
istic polynomial time, hence from Λ and ∆ we obtain C in polynomial time.

The main steps of our algorithm for finding a rank 1 idempotent element
e ∈ A are as follows.

1. Construct a maximal Fq[t]-order Λ and a maximal R-order ∆, by the f-
polynomial time algorithms of Theorem 94, and Corollary 95, respectively.

2. Compute an Fq-basis of the finite algebra C = Λ∩∆ using the polynomial
time algorithm of Lemma 100.

3. With the polynomial time f-algorithm of Lemma 98 find a complete system
e1, . . . , er of orthogonal primitive idempotents in C, and then select an ei
among them which has rank 1 in A. Finally output this element e = ei.

Proof of Theorem 83. The correctness and the timing for the first Step follows
immediately from Theorem 94, and Corollary 95. These, and Lemma 99 im-
ply that C admits polynomial size description. Then Lemma 100 settles Step 2.
Correctness and polynomiality for the last step is provided by Lemma 98. �

3.4 Lattices in Fq((
1
t ))

m

In this section we propose an algorithm for finding a reduced basis of a lattice
in Fq((

1
t ))

m and give a simple application of this result.
The field Fq((

1
t )) is an analogue of R so as one sometimes considers Z-

lattices in Rm it may be worthwile to look at lattices in Fq((
1
t ))

m. As we will
see later it is quite straightforward to generalize Lenstra’s reduction algorithm
to this setting.

First we restate some of the definitions and propositions. Note that the val-
uation |.| we defined naturally generalizes to vectors in Fq((

1
t ))

m. Indeed we
define the degree of an h = ∑−∞

i=n aiti (where an 6= 0) to be n. The degree of a
vector is just the largest degree among its components. Therefore the notion of
orthogonality defect also makes sense in this setting.

Definition 101. A basis b1, b2, . . . , bm ∈ Fq((
1
t ))

m is called reduced if the orthogo-
nality defect OD(b1, . . . , bm) = 0.
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Lemma 102. Let b1, b2, . . . , bm ∈ Fq((
1
t ))

m be linearly independent and assume that
x = ∑m

i=1 ribi where ri ∈ Fq[t]. Then the following holds for every i:

|ri| ≤ |x|+ OD(b1, . . . , bm)− |bi| (3.4)

The proof of this lemma is essentially the same as the proof of Lemma 46.
Now we show how to apply Lenstra’s algorithm (the algorithm described

in Section 3.1, or [44, Algorithm 1.7]) to find a reduced basis of a full lattice in
Fq((

1
t ))

m.
Assume that we have a basis b1, b2, . . . , bm in Fq((

1
t ))

m. Let L be the Fq[t]-
lattice they generate. We propose an algorithm which transforms this basis into
a reduced one.

Observe that we have a lower bound on the valuation of the shortest nonzero
vector in L. Indeed, if one applies Lemma 102 (considering that |ri| ≥ 0), one
gets that c = min{|bi|} −OD(b1, . . . , bm) will be such a bound.

Let L′ be an Fq[t]-lattice in Fq[t]m given by a basis c1, . . . , cm. Lenstra’s al-
gorithm transforms this basis into a reduced basis c′1, . . . , c′m. Now let us ob-
serve certain things about this algorithm. An inspection of the steps of the al-
gorithm reveals that during the computation none of the |ci|-s increase. Put
M = max{|ci|} ≥ max{|c′i|}. Then there are polynomials rij ∈ Fq[t] such that:

c′i =
m

∑
j=1

rijcj for i = 1, . . . , m (3.5)

Due to Lemma 102 one has that |rij| ≤ M + OD(c1, . . . , cm)−min{|ci|}.
Now consider our original lattice L ⊂ Fq((

1
t ))

m. From the original input
basis b1, b2, . . . , bm we create a new basis c1, . . . , cm ∈ Fq[t]m in the following
way. From each coordinate we omit each term of degree smaller than

K = min(m min{|bi|} − (m− 1)max{|bi|} −OD(b1, . . . , bm)− 1,
c−max{|bi|} −OD(b1, . . . , bm) + min{|bi|} − 1)

Then we multiply each basis element with t−K. Let L′ be the Fq[t]-lattice
they generate. Observe that this new basis c1, . . . , cm consists of vectors from
Fq[t]m. Now let us apply Lenstra’s algorithm with this basis. Let c′i and rij be
the same as in the previous discussion. We prove the following proposition:

Proposition 103. Let b′i = ∑m
j=1 rijbj for i = 1, . . . , m. Then b′1, . . . , b′m is a reduced

basis.

Proof. Let bij = dij + εij where εij is the sum of the terms of bij with degree
smaller than K. Let di = (di1, . . . , dim). Let d′i = ∑m

j=1 rijdj, for i = 1, . . . , m.
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46 Chapter 3. Computing explicit isomorphisms with full matrix algebras

Note that ci = t−Kdi and so c′i = t−Kd′i. Hence d′1, . . . , d′m is also a basis of
orthogonality defect zero. Let L′′ be the lattice generated by the di.

We show that OD(d1, . . . , dm) = OD(b1, . . . , bm). For this to be true one
only has to prove that the determinant of the lattice L and L′′ have the same
valuation, since |di| = |bi|. Observe that the following holds:

K < |det(L)| − (m− 1)max{|bi|}.
Indeed, K was chosen in a way such that

K < m min{|bi|} − (m− 1)max{|bi|} −OD(b1, . . . , bm)

and

OD(b1, . . . , bm) =
m

∑
i=1
|bi| − det(L) ≥ m min{|bi|} − det(L).

By rearranging one gets the desired inequality. If we omit the terms of de-
gree smaller than |det(L)| − (m− 1)max{|bi|} than the valuation of the deter-
minant of the lattice does not change since even if we multiply such a small term
with m− 1 entries of maximal degree its valuation will be still smaller than the
valuation of the determinant hence will not change its valuation. This proves
that |det(L)| = |det(L′)|.

Clearly OD(c1, . . . , cm) = OD(d1, . . . , dm) = OD(b1, . . . , bm). Due to the
discussion at the beginning of the proof one has that

|rij| ≤ max{|bi|}+ OD(b1, . . . , bm)−min{|bi|}.
Indeed, max{|bi|} − min{|bi|} = max{|ci|} − min{|ci|} (omitting terms

does not change the valuations and multiplying by tK does not change the dif-
ference between maximum and minimum). Therefore

|rijεkl| = |rij|+ |εkl| ≤ max{|bi|}+OD(b1, . . . , bm)−min{|bi|}+ K < c. (3.6)

Let ei = (εi1, . . . , εim). We have that bi = di + ei. This implies that

b′i =
m

∑
j=1

rijdj +
m

∑
j=1

rijej = d′i +
m

∑
j=1

rijej.

Equation 3.6 implies that |∑m
j=1 rijej| < c. Note that every vector in L′′ has

valuation at least c since

min{|di|} −OD(d1, . . . , dm) = min{|bi|} −OD(b1, . . . , bm) = c.

Thus |b′i| = |d′i| which implies that OD(b′1, . . . , b′m) = OD(d′1, . . . , d′m) = 0 as
we have already shown that det(L) = det(L′′). This proves our claim.
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Now we have the following theorem:

Theorem 104. Let b1, b2, . . . , bm be a basis in Fq((
1
t ))

m and let L be the Fq[t]-
lattice they generate. Let B = max1≤i≤m(|bi|). There exists an algorithm which takes
O(m3B(OD(b1, . . . , bm) + 1)) arithmetic operations in Fq and returns a reduced ba-
sis of L.

Proof. Correctness follows from the previous discussion and Proposition 103.
The estimate on the running time follows from the discussion on the running
time of Lenstra’s original algorithm (see Section 3.1).

Let now b1, . . . , bm be a reduced basis of a lattice L ordered in a way that
|b1| ≤ |b2|, · · · ≤ |bm|. Then observe that b1 is a shortest vector in L. Indeed, let
x ∈ Fq((

1
t ))

m be a nonzero vector and let x = ∑m
i=1 αibi. Assume that αi 6= 0 for

some i (such an i exists since x is nonzero). Then by Lemma 102 we have that:

|x| ≥ |αi|+ |bi| ≥ |b1|

Note that αi ∈ Fq[t], hence its valuation is nonnegative.
Therefore Lenstra’s algorithm may be interpreted as finding a lattice point

in a cube centered around the origin. We would like to apply it to slightly more
general object:

Definition 105. Let g1, . . . , gm be linearly independent vectors in Fq((
1
t ))

m. Then
the Fq[[

1
t ]]-module generated by g1, . . . , gm in Fq((

1
t ))

m is called the parallelepiped
generated by g1, . . . , gm.

Assume that we have an Fq[t]-lattice L in Fq((
1
t ))

m. Also assume that a
parallelepiped P is given by linearly independent generators g1, . . . , gm. We
are interested in the following problem: compute a nonzero element from the
intersection L ∩ P or conclude that it is trivial (i.e., it only contains the zero
vector).

This can be solved in the following way. Write the bi as a linear combination
of the gi:

bi =
m

∑
j=1

αijgj

Let ci = (αi1, αi2, . . . , αim). Consider the lattice L′ generated by c1, . . . , cm
in Fq((

1
t ))

m. Find a shortest vector in L′ using the algorithm from Theorem
104. Let this vector be x. If |x| ≤ 0 then x ∈ P since this means that it can be
expressed as a linear combination of the gi where every coefficient has negative
or zero valuation. If |x| > 0 then the intersection L∩ P is trivial since if y ∈ L∩ P
than every coefficient of y in the basis g1, . . . , gm has negative or zero valuation,
hence its valuation in L′ cannot be positive.
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CHAPTER 4

EXPLICIT EQUIVALENCE OF
QUADRATIC FORMS OVER Fq(t)

In this chapter we consider algorithmic questions concerning quadratic forms
over Fq(t) where q denotes an odd prime power. The main focus is on the
problem of finding a nontrivial zero of a quadratic form. The complexity of the
problem of finding nontrivial zeros of quadratic forms in three variables has
already been considered in ( [14], [38]). However the same problem concerning
quadratic forms of higher dimensions remained open.

Similarly, in the the case of quadratic forms over Q the algorithmic problem
of finding nontrivial zeros of 3-dimensional forms was considered in several
papers ( [15], [37]) and afterwards Simon and Castel proposed an algorithm for
finding nontrivial zeros of quadratic forms of higher dimensions ( [63], [8]). The
algorithms for the low-dimensional cases (dimension 3 and 4) run in polyno-
mial time if one is allowed to call oracles for integer factorization. Surprisingly,
the case where the quadratic form is of dimension at least 5, Castel’s algorithm
runs in polynomial time without the use of oracles (this is however, dependent
on the Generalized Riemann Hypothesis). Note that (by the classical Hasse-
Minkowski theorem) a 5-dimensional quadratic form over Q is always isotropic
if it is indefinite.

Here we consider the question of isotropy of quadratic forms in 4 or more
variables over Fq(t). The main idea of the algorithm is to split the form into two
forms and find a common value they both represent. Here we apply two impor-
tant facts. There is an effective bound on the number of irreducible polynomials
in an arithmetic progression of a given degree. An asymptotic formula (which
is effective for large q) was proven by Kornblum [41], but for our purposes, we
apply a version with a much better error term, due to Rhin [54, Chapter 2, Sec-
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tion 6, Theorem 4]. However, that statement is slightly more general, hence we
cite a specialized version from [68]. A short survey on the history of this re-
sult can be found in [19, Section 5.3.]. The other fact we use is the local-global
principle for quadratic forms over Fq(t) due to Rauter [52].

Finally we solve these two equations separately using the algorithm from
[14] (and our Algorithm 1 in the 5-variable case). In the 4-dimensional case
we are also able to detect if a quadratic form is anisotropic (a 5-dimensional
form over Fq(t) is always isotropic). The algorithms are randomized and run
in polynomial time. We also give several applications of these algorithms. Most
importantly, we propose an algorithm which computes a transition matrix of
two equivalent quadratic forms.

The chapter is structured as follows. The first section contains the neces-
sary theoretical results concerning quadratic forms over Fq(t). For a brief in-
troduction to quadratic forms over fields (whose characteristic is different from
2) we refer to Section 1.5 of this thesis. The second section contains the crucial
ingredients of our algorithms. In the third section we describe the steps of our
main algorithms together with their complexity analyses over Fq(t). In the final
section we propose an algorithm for computing isometries between quadratic
spaces using our main algorithms.

4.1 Quadratic forms over Fq(t)

In this section we recall some basic facts about quadratic forms over Fq(t) (and
over its completions) where q is an odd prime power. The main focus is on the
question of isotropy of such forms. We start with two easy but useful facts con-
cerning quadratic forms over finite fields. The first one was already established
earlier in Section 2.1.

Fact 106. (a) Let a1x2
1 + a2x2

2 be a non-degenerate quadratic form over a field F.
Then it is isotropic if and only if −a1a2 is a square in F.

(b) Every non-degenerate quadratic form over Fq with at least three variables is
isotropic.

Remark 107. If F = Fq (q is an odd prime power) then one can check easily if an

element s 6= 0 in F is a square or not. Indeed, compute s
q−1

2 and check whether
it is 1 or -1. Hence due to Fact 106 there is a deterministic polynomial time
algorithm for checking whether a1x2

1 + a2x2
2 = 0 is solvable over Fq or not.

Now we turn our attention to quadratic forms over Fq(t) and their comple-
tions. The first lemma deals with quadratic forms in three variables:
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4.1. Quadratic forms over Fq(t) 51

Lemma 108. Let a1, a2, a3 ∈ Fq[t] be nonzero polynomials. Let f be a monic irre-
ducible polynomial. Let Fq(t)( f ) denote the f -adic completion of Fq(t). Let v f (ai)
denote the multiplicity of f in the prime decomposition of ai. Then the following hold:

1. If v f (a1) ≡ v f (a2) ≡ v f (a3) (mod 2) then the equation a1x2
1 + a2x2

2 + a3x2
3 = 0

is solvable in Fq(t)( f ).

2. Assume that not all the v f (ai) have the same parity. Also suppose that v f (ai) ≡
v f (aj) (mod 2). Then the equation a1x2

1 + a2x2
2 + a3x2

3 = 0 is solvable in
Fq(t)( f ) if and only if − f−v f (aiaj)aiaj is a square modulo f .

Proof. First assume that all v f (ai) have the same parity. By a change of variables
(replacing ai by ai/ f ki for suitable ki) we may assume that either v f (ai) = 0 for
all i or v f (ai) = 1. In the second case we can divide the equation by f so we
may assume that none of the ai are divisible by f . We obtain an equivalent form
whose coefficients are units in Fq(t)( f ). An equation a1x2

1 + a2x2
2 + a3x2

3 = 0
where all ai are units in Fq(t)( f ) is solvable by [45, Chapter VI, Corollary 2.5.].

Now we turn to the second claim. By a change of variables we may assume
that all the ai are square-free. This results in two cases. Either f divides exactly
one of the ai or f divides exactly two of the ai. First we consider the case where
f divides exactly one, say a1 (hence now v f (a2) = v f (a3) = 0 and v f (a1) = 1).

The necessity of −a2a3 being a square modulo f is trivial since otherwise
the equation a1x2

1 + a2x2
2 + a3x2

3 = 0 is not solvable modulo f (one may assume
the existence of a solution from the valuation ring where at least one value is a
unit). Now assume that −a2a3 is a square modulo f . This implies that − a2

a3
is

a square as well. Note that − a2
a3

is a unit in Fq(t)( f ). Hence by Hensel’s lemma
− a2

a3
is a square in Fq(t)( f ) (since q is odd). Now solvability follows from Fact

106.
Now let us consider the case where f divides exactly two coefficients, say a2

and a3. We apply the following change of variables: x2 ← x2/ f and x3 ← x3/ f .
Now we have the equivalent equation a1x2

1 + a2(x2/ f )2 + a3(x3/ f )2 = 0. We
multiply this equation by f and get the equation f a1x2

1 + a2/ f x2
2 + a3/ f x2

3 = 0.
This equation is solvable in Fq(t)( f ) if and only if −a2a3

f 2 is a square modulo f by
the previous point, since f only divides one of the coefficients. This is what we
wanted to prove.

The previous lemma characterized solvability at a finite prime. The next one
considers the question of solvability at infinity.

Lemma 109. Let a1, a2, a3 ∈ Fq[t] be nonzero polynomials. Then the following hold:
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52 Chapter 4. Explicit equivalence of quadratic forms over Fq(t)

1. If the degrees of the ai all have the same parity then the equation a1x2
1 + a2x2

2 +

a3x2
3 = 0 admits a nontrivial solution in Fq((

1
t )).

2. Assume that not all of the degrees of the ai have the same parity. Also assume
that deg(ai) ≡ deg(aj) (mod 2). Let ci and cj be the leading coefficients of ai
and aj respectively. Then the equation a1x2

1 + a2x2
2 + a3x2

3 = 0 has a nontrivial
solution in Fq((

1
t )) if and only if −cicj is a square in Fq.

Proof. Let u = 1/t and di = deg(ai). Substitute xi ← yiudi . The coefficient of
y2

i becomes a′i = u2di ai. Notice that a′i = udi bi where bi is a polynomial in u with
nonzero constant term ci. It follows that vu(a′i) = di and the residue of u−di ai
modulo u is ci. Thus both statements follow from Lemma 108 applied to f = u
in Fq[u].

Remark 110. A form in four variables is always isotropic at infinity if three of its
coefficients have the same degree parity. Indeed, let ai be the coefficient whose
degree parity is different. Then setting xi = 0 and applying Lemma 109, (1)
implies the desired result.

The next lemmas deal with local solvability of quadratic forms in 4 variables.

Lemma 111. Let a1, a2, a3, a4 ∈ Fq[t] be square-free polynomials. Let f ∈ Fq[t] be a
monic irreducible dividing exactly two of the coefficients, ai and aj. Let the other two
coefficients be ak and al. Then the equation a1x2

1 + a2x2
2 + a3x2

3 + a4x2
4 = 0 is solvable

in Fq(t)( f ) if and only if at least one of the two conditions holds:

1. −akal is a square modulo f

2. −(ai/ f )(aj/ f ) is a square modulo f

Proof. First we prove that if any of these conditions hold, the equation is locally
solvable at f . If the first condition holds we apply Lemma 108 to show the
existence of a nontrivial solution with xi = 0. If the second condition holds
we apply the following change of variables: xi ← xi/ f , xj ← xj/ f . With these
variables we have the following equation:

ai(xi/ f )2 + aj(xj/ f )2 + akx2
k + alx2

l = 0

By multiplying this equation by f we get an equation where the coefficients of
xi and xj are not divisible by f and the the other two are. Now applying Lemma
108 again proves the result.

Now we prove the reverse direction. If the equation a1x2
1 + a2x2

2 + a3x2
3 +

a4x2
4 = 0 has a solution in Fq(t)( f ) then it has a solution in the valuation ring of
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4.1. Quadratic forms over Fq(t) 53

Fq(t)( f ). We denote this ring by O. Let u1, u2, u3, u4 ∈ O be a solution satisfying
that not all of them are divisible by f . Let us consider the equation modulo f :

a1u2
1 + a2u2

2 + a3u2
3 + a4u2

4 ≡ 0 (mod f ) (4.1)

The rest of the proof is divided into subcases depending on how many of
u1, u2, u3, u4 are divisible by f .

If none are divisible by f then we get that aku2
k + alu2

l ≡ 0 (mod f ). Therefore
−akal is a square modulo f .

Assume that f divides exactly one of the ur. If r = i or r = j we again have
that aku2

k + alu2
l ≡ 0 (mod f ), so −akal is again a square modulo f . Observe that

r cannot be k or l since then equation 4.1 would not be satisfied.
Now consider the case where f divides exactly two of the ur. If f divides ui

and uj we have again that aku2
k + alu2

l ≡ 0 (mod f ). The next subcase is when
f divides exactly one of ui and uj, and exactly one of uk and ul. Assume that
ui and uk are the ones divisible by f . This cannot happen since then aiu2

i +
aju2

j + aku2
k + alu2

l ≡ alu2
l (mod f ) and hence the left-hand side of equation 4.1

would not be divisible by f . Finally assume that uk and ul are divisible by f .
Let u′k := uk/ f and u′l := ul/ f . We have that a1u2

1 + a2u2
2 + a3u2

3 + a4u2
4 = 0.

We divide this equation by f and obtain the equation (ai/ f )u2
i + (aj/ f )u2

j +

f aku′2k + f alu′2l = 0. We have already seen that this implies that −(ai/ f )(aj/ f )
is a square modulo f .

Now suppose that three of the ur are divisible by f . Observe that uk and ul
must be divisible by f since otherwise (1) would not be satisfied. Assume that
ui is not divisible by f . However, this cannot happen, because a1u2

1 + a2u2
2 +

a3u2
3 + a4u2

4 ≡ aiu2
i 6≡ 0 (mod f 2).

The next lemma is the version of Lemma 111 at infinity.

Lemma 112. Let a1, a2, a3, a4 ∈ Fq[t] be square-free polynomials. Assume that ai and
aj are of even degree and the other two, ak and al are of odd degree. Let cm be the leading
coefficient of am for m = 1, . . . , 4. Then the quadratic form a1x2

1 + a2x2
2 + a3x2

3 + a4x2
4

is anisotropic in Fq((
1
t )) if and only if −cicj and −ckcl are both non-squares in Fq.

Proof. Let u = 1/t. First we do the following change of variables. We substitute

xr ← xrtd
−deg(ar)

2 e (r = 1, 2, 3, 4). By this substituion we obtain new coefficients
a′r ∈ Fq[u]. Observe that the u does not divide a′i and a′j and the multiplicity of u
in a′k and a′l is 1. The remainder of a′i modulo u is ci, the remainder of a′j modulo
u is cj. The remainder of a′k/u modulo u is ck and the remainder a′l/u modulo u
is cl. Hence we may apply Lemma 111 with f = u in Fq[u].
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54 Chapter 4. Explicit equivalence of quadratic forms over Fq(t)

Remark 113. If q ≡ 1 (mod 4) then the lemma says that anisotropy occurs if and
only if exactly one of ci and cj is a square and the same holds for ck and cl. If
q ≡ 3 (mod 4) then the lemma says that anisotropy occurs if and only ci and cj
are either both squares or both non-squares and the same holds for ck and cl.
The reason for this is that −1 is a square in Fq if and only if q ≡ 1 (mod 4).

We also have the following well-known fact [45, Chapter VI, Theorem 2.2]:

Fact 114. Let K be a complete field with respect to a discrete valuation whose residue
field is a finite field with odd characteristic. Then every non-degenerate quadratic form
over K in 5 variables is isotropic.

We state a variant of the Hasse-Minkowski theorem over Fq(t) [45, Chapter
VI, 3.1]. It was proven by Hasse’s doctoral student Herbert Rauter in 1926 [52].

Theorem 115. A non-degenerate quadratic form over Fq(t) is isotropic over Fq(t) if
and only if it is isotropic over every completion of Fq(t).

For ternary quadratic forms there exists a slightly stronger version of this
theorem which is a consequence of the product formula for quaternion algebras
or Hilbert’s reciprocity law [45, Chapter IX, Theorem 4.6]:

Fact 116. Let a1x2
1 + a2x2

2 + a3x2
3 be a non-degenerate quadratic form over Fq(t). Then

if it is isotropic in every completion except maybe one then it is isotropic over Fq(t).

There is a useful fact about local isotropy of a quadratic form [45, Chapter
VI, Corollary 2.5]:

Fact 117. Let Q(x1, . . . , xn) = a1x2
1 + · · · + anx2

n (n ≥ 3) be a non-degenerate
quadratic form over Fq(t) where ai ∈ Fq[t]. If f ∈ Fq[t] is a monic irreducible not
dividing a1 · · · an then Q is isotropic in the f -adic completion.

We finish the subsection with a formula on the number of monic irreducible
polynomials of given degree in a residue class ( [68, Theorem 5.1.]):

Fact 118. Let a, m ∈ Fq[t] be such that deg(m) > 0 and the gcd(a, m) = 1. Let N be
a positive integer and let

SN(a, m) = #{ f ∈ Fq[t] monic irreducible | f ≡ a (mod m), deg( f ) = N}.
Let M = deg(m) and let Φ(m) denote the number of polynomials in Fq[t] relative
prime to m whose degree is smaller than M. Then we have the following inequality:

|SN(a, m)− qN

Φ(m)N
| ≤ 1

N
(M + 1)q

N
2 .

As indicated in the Introduction, this fact is an extremely effective bound
on the number of irreducible polynomials of a given degree in an arithmetic
progression. A similar error term for prime numbers from an arithmetic pro-
gression (in a given interval) is not known.
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4.1. Quadratic forms over Fq(t) 55

4.1.1 Gram-Schmidt orthogonalization

We propose a version of the Gram–Schmidt orthogonalizition procedure and
prove a bound on the size of its output over Fq(t).

Lemma 119. Let (V, h) be an n-dimensional quadratic space over Fq(t). We assume
that h is given by its Gram-matrix with respect to a basis v1, v2, . . . , vn whose entries
are represented as fractions of polynomials. Suppose that all the numerators occurring
in the Gram matrix have degree at most ∆ while the degrees of the denominators are
bounded by ∆′. Then there is a deterministic polynomial time algorithm which finds an
orthogonal basis w1, . . . , wn with respect to h such that the maximum of the degrees of
the numerators and the denominators of the h(wi, wi) is O(n(∆ + ∆′)).

Proof. We may assume that h is regular. Indeed, we can compute the radical of
V by solving a system of linear equations and then continue in a direct comple-
ment of it. It is easy to select a basis for this direct complement as a subset of
the original basis.

We find an anisotropic vector v′1 in the following way. If one of the vi is
anisotropic then we choose v′1 := vi. If all of them are isotropic then there must
be an index i such that h(vi, v1) 6= 0 (otherwise h would not be regular). Since q
is odd v′1 := vi + v1 will suffice.

Afterwards, we transform the basis v1, . . . , vn into a basis v′1, . . . , v′n which
has the property that for every k, the subspace generated by v′1, . . . , v′k is regular.
We start with v′1 which is already anisotropic. Then we proceed inductively. We
choose v′k+1 in the following way. If some j between k+ 1 and n has the property
that the subspace spanned by v′1, . . . , v′k and vj is regular then we choose v′k+1 :=
vj where j is the smallest such index. Otherwise we claim that there exists an
index j between k + 1 and n, that v′k+1 = vk+1 + vj is suitable. Note that if this
is true then this can be checked in polynomial time. Indeed, the cost of the
computation is dominated by that of computing O(n) determinants (those of
the Gram matrices of the restriction of h to the subspace spanned by v′1, . . . , v′k
together with the candidate v′k+1).

Now we prove the claim. Let U be now the subspace generated by v′1, . . . , v′k
and let φU be the orthogonal projection onto the subspace U. (Note that by
our assumptions U is a regular subspace and hence V can be decomposed as
the orthogonal sum of the subspaces U and U⊥.) Let v∗ = v − φU(v), so v∗

is in the orthogonal complement of U. We have to prove that if neither vj is
a suitable choice for v′k+1 then there exists a j such that vk+1 + vj is suitable.
Note that if vk+1 is not a suitable choice then the subspace generated by U and
v∗k+1 is not regular (they generate the same subspace as U and vk+1) hence v∗k+1
is isotropic (U was regular). If for any j between k + 1 and n, the vector v∗j is
anisotropic, we can choose v′k+1 = v∗j . Otherwise there must be a j between k+ 1
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56 Chapter 4. Explicit equivalence of quadratic forms over Fq(t)

and n such that h(v∗k+1, v∗j ) 6= 0 since h is regular. This implies that v∗k+1 + v∗j
is anisotropic since h(v∗k+1 + v∗j , v∗k+1 + v∗j ) = 2h(v∗k+1, v∗j ) 6= 0. Observe that
v∗k+1 + v∗j = (vk+1 + vj)

∗ so (vk+1 + vj)
∗ is anisotropic. This implies that the

subspace generated by U and vk+1 + vj is regular.
Now we compute an orthogonal basis w1, . . . , wn from the starting basis

v′1, . . . , v′n. We start with w1 := v′1. Let wk := v′k − uk where uk is the unique vec-
tor from the subspace generated by v′1, . . . , v′k−1 with the property that h(ui, v′j) =
h(v′i, v′j) for every j between 1 and k (uniqueness comes from the fact that the
vectors v′1, . . . , v′k−1 span a regular subspace).

Finding wk is solving a system of k linear equations with k variables. Since
the coefficient matrix of the system is non-singular (we chose v′1, . . . , v′k in this
way) Cramer’s rule applies. The same bounds on degrees apply to the Gram-
matrix obtained from the v′i as the original Gram-matrix obtained from the vi,
since the transition matrix T ∈ GLn(Fq). Hence Cramer’s rule gives us the
bounds on the wi as claimed.

4.1.2 Effective isotropy of binary and ternary quadratic forms
over Fq(t)

We can efficiently diagonalize regular quadratic forms over Fq(t) using the
version of the Gram–Schmidt-orthoginalization procedure discussed in Subsec-
tion 4.1.1. Then a binary form can be made equivalent to b(x2

1 − ax2
2) for some

a, b ∈ Fq(t). The coefficient a is represented as the product of a scalar from Fq
with the quotient of two monic polynomials. We can use the Euclidean algo-
rithm to make the quotient reduced. Then testing whether a is a square can be
done in deterministic polynomial time by computing the squarefree factoriza-
tion of the two monic polynomials and by computing the q−1

2 th power of the
scalar. If a is a square then a square root of it can be computed by a random-
ized polynomial time method, the essential part of this is computing a square
root of the scalar constituent ( [4], [62]). Using this square root, linear substi-
tutions ”standardizing” hyperbolic forms (making them equivalent to x2

1 − x2
2

or to x1x2, whichever is more desirable) can be computed as discussed in Sec-
tion 1.5.

Nontrivial zeros of isotropic ternary quadratic forms can be computed in
randomized polynomial time using the method of of Cremona and van Hoeij
from [14]. Through the connection with quaternion algebras described in Sec-
tion 1.5, the paper [38] offers an alternative approach. Here we cite the explicit
bound on the size of a solution from [14, Section 1].
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4.2. Minimization and splitting 57

Fact 120. Let Q(x1, x2, x3) = a1x2
1 + a2x2

2 + a3x2
3 where ai ∈ Fq[t]. Then there is

a randomized polynomial time algorithm which decides if Q is isotropic and if it is,
then computes a nonzero solution (b1, b2, b3) to Q(x1, x2, x3) = 0 with polynomials
b1, b2, b3 ∈ Fq[t] having the following degree bounds:

1. deg(b1) ≤ deg(a2a3)/2

2. deg(b2) ≤ deg(a3a1)/2

3. deg(b3) ≤ deg(a1a2)/2

4.2 Minimization and splitting

In this section we describe the key ingredients needed for our algorithms for
finding nontrivial zeros in 4 or 5 variables. First we do some basic minimization
to the quadratic form. Then we split the form Q(x1, . . . , xn) (where n = 4 or n =
5) into two forms and show the existence of a certain value they both represent
assuming the original form is isotropic. The section is divided in two parts. The
first deals with quadratic forms in 4 variables, the second with quadratic forms
in 5 variables.

4.2.1 The quaternary case

We consider a quadratic form Q(x1, x2, x3, x4) = a1x2
1 + a2x2

2 + a3x2
3 + a4x2

4. We
assume that all the ai are in Fq[t] and are nonzero.

We now give a simple algorithm which minimizes Q in a certain way. We
start with definitions:

Definition 121. We call a polynomial h ∈ Fq[t] cube-free if there do not exist any
monic irreducible f ∈ Fq[t] such that f 3 divides h.

Our goal is to replace Q with another quadratic form Q′ which is isotropic if
and only if Q was isotropic and which has the property that from a nontrivial
zero of Q′ a nontrivial zero of Q can be retrieved in polynomial time. For in-
stance if we apply a linear change of variables to Q (i.e. we replace Q with an
explicitly equivalent form), then this will be the case. However, we may further
relax the notion of equivalence by allowing to multiply the quadratic form with
a nonzero element from Fq(t).

Definition 122. Let Q and Q′ be diagonal quadratic forms in n variables. We call Q
and Q′ projectively equivalent if Q′ can be obtained from Q using the following two
operations:
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58 Chapter 4. Explicit equivalence of quadratic forms over Fq(t)

1. multiplication of Q by a nonzero g ∈ Fq(t)

2. linear change of variables

We call these two operations projective substitutions.

Definition 123. We call a diagonal quaternary quadratic form Q(x1, x2, x3, x4) =
a1x2

1 + a2x2
2 + a3x2

3 + a4x2
4 minimized if it satisfies the following four properties:

1. All the ai are square-free,

2. The determinant of Q is cube-free,

3. If a monic irreducible f does not divide ai and aj (two of the coefficients), but
divides the other two, then −aiaj is a square modulo f ,

4. The number of square leading coefficients among the ai is at least the number of
non-square leading coefficients among the ai.

Remark 124. By Lemma 108 and Lemma 111, a minimized quadratic form is
locally isotropic at any finite prime.

Lemma 125. There is a randomized algorithm running in polynomial time which either
shows that Q is anisotropic at a finite prime or returns the following data:

1. a minimized diagonal quadratic form Q′ which is projectively equivalent to Q,

2. a projective substitution which turns Q into Q′.

Proof. We factor each ai. If for a monic irreducible polynomial f , f 2k (where
k ≥ 1 ) divides ai then we substitute xi ← xi

f k . By iterating this process through
the list of primes dividing the ai we obtain a new equivalent diagonal quadratic
form where all the coefficients are square-free polynomials.

Let f be a monic irreducible polynomial in Fq[t] dividing the determinant
of Q. If every ai is divisible by f then we divide Q by f . Now let us assume
that a1 is the only coefficient not divisible by f . Then we make the following
substitution: x1 ← f x1. The form obtained this way is still diagonal, and every
coefficient is divisible by f . Moreover, f 2 divides exactly one of the coefficients.
Divide the form by f . Then the multiplicity of f in the determinant of the new
form is exactly 1. If we do this for all monic irreducibles f , whose third power
divides the determinant of Q, we obtain a new form whose determinant is cube-
free.

Let us assume that each ai is square-free and that there exists a monic irre-
ducible f which divides exactly two of the ai. We may assume that f divides a1
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4.2. Minimization and splitting 59

and a2 but does not divide the other two coefficients. If −a3a4 is a square mod-
ulo f we do nothing. If not, we do a change of variables x1 ← x1/ f , x2 ← x2/ f .
If − a1

f
a2
f is not a square modulo f then we can conclude that Q is anisotropic in

the f -adic completion by Lemma 111. Otherwise we continue with the equiv-
alent quadratic form Q′(x1, x2, x3, x4) = a1

f x2
1 +

a2
f x2

2 + f a3x2
3 + f a4x2

4. This is
locally isotropic at f due to Lemma 111.

If the third condition is not satisfied then we multiply the quadratic form by
a non-square element from Fq.

Now we consider the running time of the algorithm. First we need to factor
the determinant. There are factorisation algorithms which are randomized and
run in polynomial time ( [4], [7]). We might need a non-square element from
Fq. Such an element can be found by a randomized algorithm which runs in
polynomial time. The rest of the algorithm runs in deterministic polynomial
time (see Remark 1).

The next lemma is the key observation for our main algorithm.

Lemma 126. Assume that a1x2
1 + a2x2

2 + a3x2
3 + a4x2

4 is an isotropic minimized quadratic
form with the property that aix2

i + ajx2
j is anisotropic for every i 6= j. We define

D = a1a2a3a4. Then there exists a permutation σ ∈ S4, an ε ∈ {0, 1} and a
residue class b modulo D such that for every monic irreducible a ∈ Fq[t] satisfying
a ≡ b (mod D) and deg(a) ≡ ε (mod 2), the following equations are both solvable:

aσ(1)x
2
σ(1) + aσ(2)x

2
σ(2) = f1 · · · fkg1 · · · gla (4.2)

− aσ(3)x
2
σ(3) − aσ(4)x

2
σ(4) = f1 · · · fkg1 · · · gla (4.3)

Here f1, . . . , fk are the monic irreducible polynomials dividing both aσ(1) and aσ(2).
Also g1, . . . , gl are the monic irreducibles dividing both aσ(3) and aσ(4). In addition,
b, σ and ε can be found by a randomized polynomial time algorithm.

Remark 127. The meaning of this lemma is that if we split the original quaternary
form in an appropriate way into two binary quadratic forms then we can find
this type of common value they both represent.

Proof. First we show that with an arbitrary splitting into equations 4.2 and 4.3
we can guarantee local solvability (of equations 4.2 and 4.3) everywhere (by
choosing a in a suitable way) except at infinity and at a. Then we choose σ and
ε in a way that local solvability is satisfied at infinity as well. Finally, Fact 116
shows local solvability everywhere (that is at a as well).

For the first part we assume that σ is the identity (this simplifies notation).

C
E

U
eT

D
C

ol
le

ct
io

n



60 Chapter 4. Explicit equivalence of quadratic forms over Fq(t)

Since a1x2
1 + a2x2

2 or a3x2
3 + a4x2

4 are anisotropic over Fq[t] the question whether
equation 4.2 or 4.3 is solvable is equivalent to the following quadratic forms be-
ing isotropic over Fq(t):

a1x2
1 + a2x2

2 − f1 · · · fkg1 · · · glaz2 (4.4)

− a3x2
3 − a4x2

4 − f1 · · · fkg1 · · · glaz2 (4.5)

Due to the local-global principle (Theorem 115) the quadratic forms 4.4 and
4.5 are isotropic over Fq(t) if they are isotropic locally everywhere. Hence equa-
tions 4.2 and 4.3 are solvable if and only if they are solvable locally everywhere.

Now we go through the set of primes excluding a and infinity. We check
local solvability at every one of them. We have 4 subcases for equation 4.2: the
primes fi; the primes gj; primes dividing exactly one of a1 and a2; remaining
primes. The list is similar for equation 4.3. First we show that 4.2 is solvable at
all these primes.
Solvability at the fi

Equation 4.2 is solvable at any fi since we can divide by fi and obtain a
quadratic form whose determinant is not divisible by fi. By Fact 117 this is
solvable at fi.
Solvability at a prime g which divides exactly one of a1 and a2

We may assume that g divides a1. Due to Lemma 108 equation 4.2 is solvable
in the g-adic completion if a2 f1 · · · fkg1 · · · gla is a square modulo g (meaning in
the finite field Fq[t]/(g)). Since ( a2 f1··· fkg1···gl

g ) is fixed this gives the condition

on a that ( a
g ) = ( a2 f1··· fkg1···gl

g ). This can be thought of as a congruence condition
on a modulo g (this gives a condition whether a should be a square element
modulo g or not). Due to the Chinese Remainder Theorem these congruence
conditions on a can be satisfied simultaneously. This implies that a has to be in
one of certain residue classes modulo the product of these primes. We choose a
to be in one of these residue classes.
Solvability at the gi

Now consider equation 4.2 modulo the gi. Note that due to minimization
neither a1 nor a2 are divisible by the gi. Hence equation 4.2 has a solution in the
gi-adic completion if and only if −a1a2 is a square modulo gi. This is satisfied
since we have a minimized quadratic form (condition 3 of Definition 123).
Solvability at the remaining primes

Solvability at these primes is satisfied by Fact 117.
Note that solvability of 4.2 holds independently of the choice of a except

for primes dividing exactly one of a1 and a2. Thus, in the analogous case of
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4.2. Minimization and splitting 61

the solvability of 4.3 we have only to consider the case of primes which divide
exactly one of a3 and a4. These impose congruence conditions again on a. A
problem can occur if these congruence conditions are contradictory. We show
that this cannot happen. Assume that a monic irreducible polynomial g divides
one of a1, a2 and one of a3, a4, say a1 and a3. By the previous discussion we
have that in this case−a2a f1 · · · fkg1 · · · gl should be a square modulo g and that
a4a f1 · · · fkg1 · · · gl should be a square modulo g. These can always be satisfied
by choosing a to be in a suitable residue class modulo g except if −a2a4 is not a
square modulo g. However, this cannot happen since our form was minimized
(condition 3 of Definition 123).

Now we have proven that for any splitting, equations 4.2 and 4.3 are solvable
locally everywhere for suitable primes a except maybe at a or at infinity. We
now choose σ and the parity of the degree of a in a way that both 4.2 and 4.3 are
solvable at infinity. Then, by Fact 116, 4.2 and 4.3 will be solvable at a as well.

First assume that all ai have odd degrees. Then we can pick σ arbitrarily and
we choose a in a way that f1 · · · fkg1 · · · gla has odd degree. Then both equations
are solvable in Fq((

1
t )) by Lemma 109, (1).

Next assume that one coefficient is of even degree and all the others are of
odd degree. Pick σ in a way that aσ(1) is of even degree and the leading coeffi-
cient of aσ(2) is a square in Fq. This can be achieved since we have a minimized
quadratic form (here we use the fourth condition of Definition 123). Choose a
in a way that f1 · · · fkg1 · · · gla has odd degree. Then equation 4.3 is solvable in
Fq((

1
t )) due to the same reason as before. Equation 4.2 is also solvable due to

Lemma 109, (2).
Now assume that there are two odd degree coefficients and two even degree

ones among the ai. We have that at least two of the ai has a leading coefficient
which is a square (again due to the fact that the form is minimized). We choose
σ in such a way that in equations 4.2 and 4.3 one coefficient is of odd degree
and the other is of even degree. Assume aσ(1) and −aσ(3) are of odd degree.
Let the leading coefficient of ai be ci. If cσ(1) and −cσ(3) are both squares then
we pick a in a way that f1 · · · fkg1 · · · gla has odd degree. If cσ(2) and −cσ(4) are
both squares we pick a in such a way that f1 · · · fkg1 · · · gla has even degree. It
may occur that cσ(1), cσ(2),−cσ(3),−cσ(4) are all squares. In this case there is no
degree constraint on a. In these two cases both equations are solvable at infinity
by Lemma 109. The only problem occurs if cσ(1) and−cσ(3) are not both squares
and the same holds for cσ(2) and −cσ(4).

We distinguish two cases depending on whether q ≡ 1 (mod 4) or q ≡
3 (mod 4). First suppose that q ≡ 1 (mod 4). In this case -1 is square element in
Fq. If neither cσ(1) nor cσ(3) is a square in Fq then cσ(2) and cσ(4) must be both
squares (we use the fourth condition of Definition 123). Therefore, −cσ(4) is a
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62 Chapter 4. Explicit equivalence of quadratic forms over Fq(t)

square since -1 is a square and we have a contradiction (we assumed that one of
cσ(2) and −cσ(4) is not a square). If neither cσ(2) nor cσ(4) is a square in Fq then
cσ(1) and cσ(3) must be both squares which is again, a contradiction. The only
problem occurs if exactly one of cσ(1) and cσ(3) is a square and the same is true
for cσ(2) and cσ(4). However, in this case, the form a1x2

1 + a2x2
2 + a3x2

3 + a4x2
4 is

anisotropic by Remark 113.
Suppose that q ≡ 3 (mod 4). Note that in this case -1 is not a square in Fq. If

cσ(1) and −cσ(3) are non-squares then we have that cσ(3) is a square (since -1 is
not a square). Then let σ′ = σ ◦ (13) (i.e. swap aσ(1) with aσ(3)). Now cσ′(1) is a
square and so is −cσ′(3), hence again we choose a in a way that f1 · · · fkg1 · · · gla
has odd degree and equations 4.2 and 4.3 are solvable at infinity due to Lemma
109. If cσ(2) and−cσ(4) are non-squares then the situation is essentially the same
(let σ′ = σ ◦ (24) and choose a in a way that f1 · · · fkg1 · · · gla has even degree).
If exactly one of cσ(1) and −cσ(3) is a square and the same holds for cσ(2) and
−cσ(4) then the form a1x2

1 + a2x2
2 + a3x2

3 + a4x2
4 is anisotropic by Remark 113.

Indeed, cσ(1) and cσ(3) are either both squares or both non-squares and the same
holds for cσ(2) and cσ(4).

The cases where there is 1 odd degree one or no odd degree ones amongst
the ai are esentially the same when there are three odd degree ones, or all are of
odd degree.

This shows that choosing σ in this way equations 4.2 and 4.3 are solvable
locally everywhere, except maybe at a, hence are solvable over Fq(t) as well by
Fact 116.

We conclude by verifying that b, σ and ε can be found by a polynomial time
algorithm. The computation of a residue class b involves finding non-square
elements in finite fields and Chinese remaindering. Both can be accomplished
in polynomial time, the first using randomization. Choosing σ and ε can be
achieved in constant time (by looking at the parity of the degrees of the ai).

Remark 128. As seen in the proof there is not just one residue class b modulo
D that would satisfy the necessary conditions. Assume that D is divisible by k
different monic irreducible polynomials. Then qdeg(D)/3k is a lower bound on
the number of appropriate residue classes. Indeed, since modulo each prime
half of the nonzero residue classes are squares. However, we will not use this
fact later on.

4.2.2 The 5-variable case

We consider a quadratic form Q(x1, x2, x3, x4, x5) = a1x2
1 + a2x2

2 + a3x2
3 + a4x2

4 +
a5x2

5, where the ai ∈ Fq[t] are nonzero polynomials.
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4.2. Minimization and splitting 63

Lemma 129. There exists a randomized polynomial time algorithm that returns a pro-
jectively equivalent diagonal quadratic form Q′ whose coefficients are square-free poly-
nomials and whose determinant is cube-free, and a projective substitution which trans-
forms Q into Q′.

Proof. Making the coefficients of Q′ square-free is done a similar fashion as in
Lemma 125. If every coefficient is divisible by a monic irreducible f we divide
Q by f . If at most 2 coefficients are not divisible by f we do the same trick
as in Lemma 125. To implement this for every irreducible polynomial f , we
need to factor the determinant. This can be achieved in polynomial time by a
randomized algorithm [4]. All the other steps run in deterministic polynomial
time.

Now we prove a Lemma similar to Lemma 126.

Lemma 130. Let Q(x1, x2, x3, x4, x5) = a1x2
1 + a2x2

2 + a3x2
3 + a4x2

4 + a5x2
5, where

D = a1a2a3a4a5 is cube-free and all the ai are square-free polynomials from Fq[t].
Suppose, aix2

i + ajx2
j + akx2

k is anisotropic for every 1 ≤ i < j < k ≤ 5. Then there
exists a permutation σ ∈ S5, an ε ∈ {0, 1} and a residue class b modulo D such that for
every monic irreducible a ∈ Fq[t] satisfying a ≡ b (mod D) and deg(a) ≡ ε (mod 2)
the following equations are both solvable:

aσ(1)x
2
σ(1) + aσ(2)x

2
σ(2) = f1 · · · fka (4.6)

− aσ(3)x
2
σ(3) − aσ(4)x

2
σ(4) − aσ(5)x

2
σ(5) = f1 · · · fka (4.7)

Here f1, . . . , fk are the monic irreducible polynomials dividing both aσ(1) and aσ(2).
In addition, b, σ and ε can be found by a randomized polynomial time algorithm.

Remark 131. Assuming that aix2
i + ajx2

j + akx2
k is anisotropic for every i, j, k al-

lows us to consider the solvability of equations 4.6 and 4.7 as the isotropy
of the quadratic forms aσ(1)x2

σ(1) + aσ(2)x2
σ(2) − f1 · · · fkaz2 and −aσ(3)x2

σ(3) −
aσ(4)x2

σ(4) − aσ(5)x2
σ(5) − f1 · · · fkaz2 hence we can use our lemmas and theorems

from the previous sections.

Proof. First we show that for any σ ∈ S5 equation 4.6 is solvable for suitable
a at any prime except maybe at infinity and at a. Also if a is suitably chosen
then equation 4.7 is solvable everywhere except maybe at infinity. In order to
simplify notation we can assume that σ is the identity.

First consider equation 4.6. It is solvable at any of the fi since a1 and a2 are
square-free (Lemma 108). It is solvable at any prime not dividing a1a2 f1 · · · fka
by Fact 117. Let g be a prime that divides a1 but not a2. In order to ensure that
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64 Chapter 4. Explicit equivalence of quadratic forms over Fq(t)

4.6 is solvable in the g-adic completion −a2a f1 · · · fk has to be a square modulo
g. This imposes a congruence condition on a. The situation is the same when
looking at a prime dividing a2 but not a1.

Now consider equation 4.7. Again if a prime does not divide any of the
coefficients then the equation is locally solvable at that prime. The equation is
solvable at every fi (using (1) of Lemma 108 with z = 0) since none of the fi
divide a3, a4, a5. Similarly it is also solvable at a (we choose a to differ from the
primes occurring in a3a4a5). If a prime g divides exactly one of a3, a4, a5 then
similarly the equation is locally solvable at that prime. Finally consider the case
where a prime h divides exactly two out of a3, a4, a5 (say a3 and a4). This gives a
congruence condition on a. Specifically, −a f1 · · · fka5 has to be a square modulo
h. Note that since for every prime f , f 3 does not divide the determinant of the
original quadratic form, the congruence conditions on a coming from equations
4.6 and 4.7 cannot be contradictory.

Now we choose σ and ε in a way that both 4.6 and 4.7 become solvable at
infinity at the cost of possibly restricting the parity of the degree of a. Then by
Fact 116 equation 4.6 will become solvable at a as well. Finally by the local-
global principle (Theorem 115) both equations are solvable over Fq[t].

First if all ai have odd degree then σ can be chosen arbitrarily and we choose
a in a way that f1 · · · fka has odd degree. This way both equations are solvable
at infinity by Lemma 109, (1).

Now consider the case where one coefficient has even degree and the others
are of odd degree. Then we choose σ in a way that aσ(3) has even degree (and the
others are of odd degree). We choose a in a way that f1 · · · fka has an odd degree.
Due to Lemma 109 both equations are solvable at infinity (with xσ(3) = 0).

Finally assume that there are two ai-s with even degree. We choose σ in a
way that aσ(1) and aσ(2) are of even degree. We choose a in such a way that
f1 · · · fka has even degree. Now equations 4.6 and 4.7 are solvable at infinity.
The remaining cases are essentially the same, we systematically swap ”odd”
and ”even” in the preceding arguments.

Note that b, σ and ε can be found in polynomial time (using randomization)
by the same reasoning as described at the end of the proof of Lemma 126.
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4.3 The main algorithms

In this section we describe two algorithms. One for solving a quadratic equation
in 4 variables and one for 5 variables. The algorithms are similar, however the
second uses the first algorithm. The idea of the algorithms is the following. Split
the original equation into two and find a common value they both represent and
then solve the two equations.

The input of the first algorithm is a diagonal quadratic form defined as
Q(x1, x2, x3, x4) = a1x2

1 + a2x2
2 + a3x2

3 + a4x2
4 where all ai are in Fq[t].

Algorithm 1 (Quaternary case). 1. Minimize Q using the algorithm from Lemma
125. Minimization either yields that Q is anisotropic (then stop) or returns
a new projectively equivalent quadratic form. Let the new minimized form be
Q′(x1, x2, x3, x4) = b1x2

1 + b2x2
2 + b3x2

3 + b4x2
4. If b1, b2, b3, b4 ∈ Fq then re-

turn a nontrivial zero of Q′ using the algorithm of [69].

2. Check solvability at infinity (Remark 110 and Lemma 112). Check if bix2
i + bjx2

j
is isotropic for every pair i 6= j. If it is for a pair (i, j) then return a solution.

3. Split the quadratic form into equations 4.2 and 4.3 (i.e. find a suitable permuta-
tion σ ∈ S4) as discussed in Lemma 126.

4. List the congruence conditions on a (as described in Lemma 126) and solve this
system of linear congruences. Obtain a residue class b modulo b1b2b3b4 as a
result.

5. Let d be the degree of b1b2b3b4 and let N = 4d or N = 4d + 1 (depending on the
degree parity ε we need by Lemma 126). Pick a random polynomial f of degree N
of the residue class b modulo b1b2b3b4 and check whether it is irreducible. If f is
irreducible, then proceed. If not, then repeat this step.

6. Solve equations 4.2 and 4.3 using the method of [14].

7. By subtracting equation 4.3 from equation 4.2 find a nontrivial zero of Q′.

8. Return a nontrivial zero of Q using the reverse substitutions of the substitutions
obtained by the algorithm from Lemma 125.

The input of the second algorithm is a diagonal quadratic form defined as
Q(x1, x2, x3, x4, x5) = a1x2

1 + a2x2
2 + a3x2

3 + a4x2
4 + a5x2

5 where all ai are nonzero
polynomials in Fq[t].
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Algorithm 2. 1. Minimize Q using the algorithm from Lemma 129. Lemma 129
implies that minimization returns a new projectively equivalent diagonal quadratic
form Q′(x1, x2, x3, x4, x5) = b1x2

1 + b2x2
2 + b3x2

3 + b4x2
4 + b5x2

5 whose determi-
nant is cube-free and whose coefficients are square-free. If b1, b2, b3, b4, b5 ∈ Fq
then return a nontrivial zero of Q′ using the algorithm of [69].

2. Split the quadratic form into equations 4.6 and 4.7 (i.e pick σ ∈ S5) as discussed
in the proof of Lemma 130. Check if the quadratic forms on the left-hand side
of equations of 4.6 and 4.7 are isotropic or not. If one of them is then return a
nontrivial solution. Use the algorithm from [14].

3. List the congruence conditions on a (as described in Lemma 130) and solve this
system of linear congruences. Obtain a residue class b modulo b1b2b3b4b5 as a
result.

4. Let d be the degree of b1b2b3b4b5 and let N = 4d or N = 4d + 1 (according to
degree parity ε we need by Lemma 130). Pick a random polynomial f of degree N
of the residue class b modulo b1b2b3b4b5 and check whether it is irreducible. If f
is irreducible, then proceed. If not, then repeat this step.

5. Solve equations 4.6 and 4.7 using the method of [14] and Algorithm 1.

6. By subtracting equation 4.7 from equation 4.6 find a nontrivial zero of Q′.

7. Return a nontrivial zero of Q using the reverse substitutions of the substitutions
obtained by the algorithm from Lemma 129.

Theorem 132. Algorithm 1 and Algorithm 2 are randomized algorithms (of Las Vegas
type) which run in polynomial time in the size of the quadratic form (the largest degree
of the coefficients) and in log q. Let D be the determinant of the quadratic form. Let
d = deg(D). Then both algorithms return a solution of size O(d) (Algorithm 1 also
detects if the form is isotropic or not), that is an array of 4 (or 5) polynomials of degree
O(d).

Proof. The correctness of the algorithms follows from Lemmas 126 and 130. We
start analyzing the running times of the algorithms. First we deal with Algo-
rithm 1. We consider its running time step by step. The first part of Step 1 runs
in polynomial time (is however randomized) as proven in Lemma 125. The sec-
ond part of Step 1 is deterministic and runs in polynomial time (see [69]). From
now on we suppose that the determinant of the minimized form has degree
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at least 1. The first part of Step 2 can be executed in deterministic polynomial
time (using Fact 106 combined with Lemma 109 and 112). The second part is
checking whether a polynomial is a square due to Fact 106. This can be done in
polynomial time by computing the square-free factorization of the polynomial
( [70]) and checking whether the leading coefficient is a square or not (Remark
107). Step 3 runs in deterministic polynomial time since we only need to check
whether certain leading coefficients are squares in Fq or not. In Step 4 in order to
obtain congruence conditions we may have to present a non-square element in
a finite field (an extension of Fq which has degree smaller than the determinant
of Q′). This can be done by a randomized algorithm which runs in polynomial
time. Note that the probability that a nonzero element in a finite field (whose
characteristic is odd) is a square is 1/2. In the other part of Step 4 we have to
solve a system of linear congruences. This can be done in deterministic polyno-
mial time by Chinese remaindering.

Step 5 needs more explanation. After solving the linear congruences we
obtain a residue class b modulo D (Lemma 126). By Fact 118 we have that (note
that d ≥ 1): ∣∣∣∣SN(b, D)− qN

Φ(D)N

∣∣∣∣ ≤ 1
N
(d + 1)q

N
2 .

We choose the degree of a to be N = 4d or N = 4d + 1 (depending on the
parity we need for the degree of a which is discussed in the proof of Lemma
126). We give an estimate on the probability that a polynomial in this given
residue class is irreducible. We have the following:

SN(b, D)

qN−d ≥ qN

qN−dΦ(D)N
− (d + 1)q

N
2

NqN−d ≥ 1
N
− d + 1

Nq
N
2 −d
≥ 1

N
− d + 1

Nqd ≥
1

3N
.

Here we used the fact that d+1
qd ≤ 2/3 since q ≥ 3 and the function d+1

qd is

decreasing (as a function of d). We also used that qd ≥ Φ(D).
We pick a uniform random monic element a from the residue class b modulo

D. This can be done in the following way. We pick a random polynomial r(t) ∈
Fq[t] of degree N − d whose leading coefficient is the inverse of the leading
coefficient of D. We consider the polynomial r′ := rD + b. Then r′ has degree
N, is monic and is congruent to b modulo D.

The probability that a is irreducible is at least 1/3N by the previous calcu-
lation. Irreducibility can be checked in deterministic polynomial time [4]. This
means that the probability that we do not obtain an irreducible polynomial af-
ter 3N tries is smaller than 1/2. Hence this step runs in polynomial time (it is,
however, randomized).
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The last two steps use the algorithm from [14]. This algorithm is randomized
and runs in polynomial time.

The discussion for Algorithm 2 is similar.
Now we turn to the question of the size of solutions. First we consider Algo-

rithm 1. The previous discussion shows that N (the degree of a) can be chosen
to be of size O(d) . Finally when solving equations 4.2 and 4.3 we use the al-
gorithm from [14]. By Fact 120 we obtain that the solution for 4.2 and 4.3 have
size O(d). In the case of Algorithm 2 the same reasoning is valid, except that we
have to use Algorithm 1 for solving 4.7.

Remark 133. Due to Fact 114 and Theorem 115 we have that every quadratic
form in 5 or more variables is isotropic over Fq(t). Hence Algorithm naturally
works for diagonal quadratic forms in more than 5 variables. Indeed, we set
some variables to zero and use Algorithm 2.

Corollary 134. Assume that Q is a regular quadratic form (not necessarily diagonal)
in either 4 or 5 variables. Let D be the determinant of Q. Let d1 be the largest degree
of all numerators of entries of the Gram-matrix of Q. Let d2 be the largest degree of all
denominators of entries of the Gram-matrix of Q. Then there is randomized polynomial
time algorithm which finds a nontrivial zero of Q of size O(d1 + d2).

Proof. First we diagonalize Q using Lemma 119. As a result we obtain a quadratic
form with determinant D′. The degree of the numerator and the denominator
of D′ are both of size O(d1 + d2). By clearing the denominators we obtain a
quadratic form Q′′ with polynomial coefficients and of determinant O(d1 + d2).
Using Algorithm 1 or 2 (depending on the dimension) we find an isotropic vec-
tor. By Theorem 132 the size of the solution vector is O(d1 + d2).

Remark 135. Corollary 134 can be extended to higher dimensions as well. We
diagonalize the quadratic form and then set all xi to zero except 5. Then ap-
ply Algorithm 2. Due to diagonalization the size of the solution in this case is
O(n(d1 + d2)).

4.4 Equivalence of quadratic forms

In this section we use the algorithms from the previous sections to compute
the following: the Witt decomposition of a quadratic form, a maximal totally
isotropic subspace and the transition matrix for two equivalent quadratic forms.
We use a presentation in the context of quadratic spaces. We assume that a
quadratic space is input by the Gram matrix with respect to a basis.
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4.4. Equivalence of quadratic forms 69

Theorem 136. Let (V, h) be a regular quadratic space, V = Fq(t)n. There exists a
randomized polynomial time algorithm which finds a Witt decomposition of (V, h).

Proof. First we find an orthogonal basis using Lemma 119. This basis can be
used to decompose the space into the orthogonal sum of subspaces of dimen-
sion 5 and possibly one quadratic form of dimension at most 4 (division with
remainder), each with an already computed orthogonal basis. In every 5 dimen-
sional subspace we find an isotropic vector using Algorithm 2. Then we find a
hyperbolic plane in each of these subspaces. The subspace generated by this
isotropic vector and one of the basis elements from the orthogonal basis of the
subspace will be suitable (otherwise h would not be regular restricted to this
subspace). We compute its orthogonal complement inside this 5 dimensional
subspace. These are all of dimension 3. We find an orthogonal basis in each of
these 3 dimensional subspaces using Lemma 119. For their direct sum we again
have an orthogonal basis and we iterate the process (we again group by 5 and
find hyperbolic planes). We have that V is the orthogonal sum of hyperbolic
planes and a subspace of dimension at most 4. Using Algorithm 1 for the qua-
ternary case, the algorithm from [14] for the ternary case, and the method of
Subsection 4.1.2 if the dimension is 2, we either conclude that it is anisotropic
or find a decomposition into hyperbolic planes and anisotropic part.

Now consider the running time of the algorithm. Assume that h was given
by a Gram-matrix where the maximum degree of the numerators is ∆ and the
maximum degree of the denominators is ∆′. Diagonalization is done in poly-
nomial time via Lemma 119. Also, it produces a diagonal Gram-matrix where
every numerator and denominator has degree at most n(∆ + ∆′). Afterwards
we only diagonalize in dimension at most 5. Hence in each step the degrees
only grow by a constant factor by Corollary 134. The number of iterations is
O(log n) so the algorithm will run in polynomial time (is however randomized
since Algorithm 1 and 2 are randomized).

Corollary 137. Let h be a regular bilinear form on the vector space V = Fq(t)n. Then
there exists a randomized polynomial time algorithm which finds a maximal totally
isotropic subspace for h.

Proof. We compute the Witt decomposition of h using Theorem 136. Then we
take an isotropic vector from each hyperbolic plane. They generate a maximal
totally isotropic subspace [45, Chapter I, Corollary 4.4.].

Here we only considered regular bilinear forms. Now we deal with the case
where h is not regular.

Corollary 138. Let (V, h) be a quadratic space. There exists a randomized polynomial
time algorithm which finds a Witt decomposition of h.
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70 Chapter 4. Explicit equivalence of quadratic forms over Fq(t)

Proof. The radical of V can be computed by solving a system of linear equa-
tions. Then h restricted to a direct complement of the radical is regular, thus
Theorem 136 applies.

We conclude the section by proposing an algorithm for explicit equivalence
of quadratic forms. For simplicity we restrict our attention to regular bilinear
forms.

Theorem 139. Let (V1, h1) and (V2, h2) be regular quadratic forms over Fq(t). Then
there exists a randomized polynomial time algorithm which decides whether they are
isometric, and, in case they are, computes an isometry between them.

Proof. The quadratic spaces (V1, h1) and (V2, h2) are equivalent if and only if the
orthogonal sum of (V1, h1) and (V2,−h2) can be decomposed into the orthogo-
nal sum of hyperbolic planes ( [45, Chapter I, Section 4]). Hence the question of
deciding isometry can be solved using Theorem 136. We turn our attention to
the second part of the theorem, to computing an isometry.

First we consider the case of quadratic spaces whose Witt decomposition
consist only of the orthogonal sum of hyperbolic planes (i.e., hyperbolic spaces).
As shown in Section 1.5, we can transform each of the corresponding binary
forms into the standard diagonal form, x2

1− x2
2. This results in new bases for the

two spaces in which h1 and h2 have block diagonal matrices with 2× 2 diagonal
blocks (

1 0
0 −1

)
.

The linear extension of an approriate bijection between these bases is an isom-
etry. We can efficiently compute the matrix of this map in terms of the original
bases.

Assume now that (V1, h1) and (V2, h2) are isometric anisotropic quadratic
spaces. Isometry implies that (V1 ⊕ V2, h1 ⊕−h2) is the orthogonal sum of hy-
perbolic planes. We find a basis of V1⊕V2 in which the Gram matrix of h1⊕−h2
is of a block diagonal form like above. Then the substitution described in Sec-
tion 1.5 for equivalence of the two standard binary hyperbolic forms x2

1 − x2
2

and x1x2 can be used to construct a new basis b1, b2, . . . , b2n in which the Gram
matrix becomes block diagonal with blocks(

0 1
2

1
2 0

)
.

(Here n is the common dimension of V1 and V2.) Every bi can be uniquely writ-
ten in the form bi = ui + vi where ui ∈ V1 and vi ∈ V2. These can be found
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4.4. Equivalence of quadratic forms 71

by orthogonal projection. We claim that the vectors u1, u3 . . . , u2n−1 are linerly
independent. To see this, assume that

λ1u1 + λ3u3 + . . . + λ2n−1u2n−1 = 0

for some λ1, . . . , λ2n−1 not all zero. Then the vector b = λ1b1 + λ3b3 + . . . +
λ2n−1b2n−1 is nonzero as the bi are linearly independent. The orthogonal pro-
jection of b to V1 is zero, whence b is a nonzero vector from V2. The vector
b, as a member of the totally isotropic subspace spanned by b1, b3, . . . , b2n−1,
must be isotropic. This however contradicts to the anisotropy of (V2,−h2).
Therefore u1, u3, . . . , u2n−1 is a basis of V1. By symmetry, v1, v3, . . . , v2n−1 is a
basis of V2. Now we prove that the Gram matrix of the quadratic form h1
in the basis u1, u3 . . . , u2n−1 is the same as the Gram matrix of h2 in the basis
v1, v3, . . . , v2n−1. Observe that since the Gram matrix of h1 ⊕−h2 had zeros in
the diagonal h1(ui, ui) = h2(vi, vi). Since we chose only the odd indices (i.e there
are no two indices which differ by 1) we also have that h1(ui, uj) = h2(vi, vj).
Thus the linar extension of the map ui → vi (i = 1, 3, . . . , 2n− 1) is an isometry
between V1 and V2. One only has to compute the matrix of this map in terms of
the original bases for V1 and V2.

In order to find isometries of possibly isotropic quadratic spaces we first
compute their Witt decomposition. Then by [45, Chapter I, Section 4] we know
that they are isometric if and only if their hyperbolic and anisotropic parts are
isometric respectively. An isometry can be found by taking the direct sum of
a pair of isometries between the respective parts. Again, one can finish with
computing the matrix of this direct sum map in terms of the original bases for
V1 and V2.

Remark 140. Theorem 139 can be extended to degenerate quadratic spaces (using
Corollary 138). Also, the proof actually shows existence of a reduction from
computing isometries to three instances of computing Witt decompositions of
quadratic spaces over an arbitrary field of characteristic different from 2.
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CHAPTER 5

SPLITTING QUATERNION ALGEBRAS
OVER QUADRATIC EXTENSIONS

In this chapter we describe an algorithm for solving the explicit isomorphism
problem in the case where A ∼= M2(L), where L is a quadratic extension of
either Q or Fq(t), where q is odd. This chapter is based on the conference paper
[43], which was later improved in [42]. The case K = Fq(t) is considered in the
last section of [39].

In this thesis, we present these results in a slightly more general framework.
Let K be a field such that char K 6= 2. Let L be a quadratic extension of K.
Then there exists a polynomial time reduction from finding zero divisors in
A ∼= M2(L) to finding nontrivial zeros of quadratic forms over K in several
variables. As we have seen in Proposition 35, this can be rephrased as follows.
The task of finding a nontrivial zero of a ternary quadratic form over L can be
reduced to finding nontrivial zeros of quadratic forms in several variables over
K. In other words the case of ternary quadratic forms over a bigger field L can
be reduced to computing zeros of quadratic forms over K, however the dimen-
sion of the form increases. Fortunately, in the case where K = Q or K = Fq(t)
there exist algorithms for computing nontrivial zeros of quadratic forms of ar-
bitrary dimension. If K = Q, then the algorithms are due to Simon and Castel
( [63], [8]). The low dimensional cases (i.e. where the dimension is 3 or 4) are
randomized algorithms which run in polynomial time if one is allowed to call
an oracle for factoring integers. Note that there is a randomized polynomial
time reduction from computing isotropic vectors for ternary quadratic forms to
factoring square-free integers [56] (and finding nontrivial zeros of quaternary
quadratic forms is at least as hard as finding nontrivial zeros of ternary quadar-
tic forms [8, Section 1.2]). Surprisingly, if the dimension of a quadratic form is at

73

C
E

U
eT

D
C

ol
le

ct
io

n



74 Chapter 5. Splitting quaternion algebras over quadratic extensions

least 5, Castel’s algorithm [8] runs in polynomial time without the use of oracles
assuming the Generalized Riemann Hypothesis (or GRH for short). Simon [63]
also proposes an algorithm for higher dimensional quadratic forms but it uses
oracles for integer factorisation. However its complexity analysis does not rely
on GRH. The case where K = Fq(t) is considered in Chapter 4.

The chapter is divided into three sections. In the first we recall all the known
algorithmic results concerning finding nontrivial zeros of quadratic forms over
Q and Fq(t). In the second we describe the general procedure, which reduces
finding zero divisors in L to finding nontrivial zeros of quadratic forms over
K in several variables. In the third section we consider the complexity of the
algorithm described in the second section when K = Q or K = Fq(t).

5.1 Known algorithmic results

Assume a quaternion algebraH over a field K (whose characteristic is different
from 2) is given by a structure constant representation. We start by describing
an algorithm for finding a quaternion basis of H, i.e. a K-basis 1, u, v, uv of H
such that u2, v2 ∈ K and uv = −vu. This algorithm is from [58].

Let u0 ∈ H be an element which is not in the center of H. Note that from
a structure constant representation the center of an algebra can be computed
efficiently (see Section 2.3).

It is known that the degree of the minimal polynomial of u0 is exactly 2
( [66, Section 1.1]). Hence there exists λ, µ ∈ K such that u2

0 + λu0 + µ = 0. We
rewrite the equation in the following form: (u0 +

λ
2 )

2 − λ2

4 + µ = 0. Therefore
u = u0 +

λ
2 is an element whose square is in the center of H, despite the fact

that u is not. If u2 = 0 then we have found a zero divisor in H, hence H is a
full matrix algebra over K. By the general procedure described in Chapter 2,
an explicit isomorphism between H and M2(K) can be computed (from which
a quaternion representation is trivial to find). From now on we assume that
u2 = a 6= 0.

Now look at the map σ : H → H, w 7→ uw + wu. First of all this is a K-linear
map which is not the zero map, since 2u2 and 2u lie in the image. By previous
assumptions, neither 2u2 nor 2u is zero, furthermore, they are linearly indepen-
dent over K. Thus we have shown that the image of σ has dimension at least 2
over K. Observe that every element in the image of σ commutes with u. Indeed,
u(uw + wu) = uuv + uwu = wa + uwu = (uw + wu)u. Thus the dimension of
the image is at most 2 (for example by the double centralizer theorem, see [50]).
Putting these facts together we obtain that the image of σ is of dimension 2 over
K. Therefore the kernel of σ is also a two dimensional vector space over K. Let
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5.1. Known algorithmic results 75

v be in the kernel of σ, i.e. uv + vu = 0. Since char K 6= 2 and u is invertible, v
must be non-central.

Observe that v2 commutes with u. Indeed, uv2 = (uv)v = −(vu)v =
−v(uv) = v(vu) = v2u. Therefore v2 is the K-linear combination of 1 and u.
However, since v is not in the center ofH, v2 is also a K-linear combination of 1
and v. Since uv = −vu this can only happen if v2 is in K. Let v2 = b. Since v was
an arbitrary element of the kernel of σ, a suitable v can be found by computing
the kernel of σ, which boils down to solving a system of homogeneous linear
equations over K. Again, if b = 0 we already have a zero divisor. Suppose that
b 6= 0. Finally, it is easy to see that 1, u, v, uv are linearly independent, therefore
this is a quaternion basis ofH.

Now we list some known algorithmic results about quadratic forms over
Q. We start with ternary forms. In the introduction of this chapter we already
mentioned that this task is in a sense at least as hard as factoring integers (as
proven by Rónyai in [56]). Ivanyos and Szántó [37] proposed a polynomial
time ff-algorithm to solve this problem. They construct a maximal order in the
quaternion algebra (using the algorithm from [34]) and use lattice reduction
to find a zero divisor. Cremona and Rusin gave a different algorithm [15] for
the same task. They proposed an algorithm which finds nontrivial solutions of
homogeneous quadratic equations in three variables (these two tasks are essen-
tially the same as seen in Section 1.4). Now we state the results of Simon and
Castel for quadratic forms of higher dimension:

Fact 141 (Simon [63]). There is a randomized algorithm which finds a nontrivial zero
of a quadratic form over Q in dimension 4 (or higher) if one exists, or concludes that the
form is anisotropic. The running time is polynomial if one is allowed to call oracles for
factoring integers.

This task is also at least as hard as factoring integers since quadratic forms in
dimension 4 with square discriminant correspond to quadratic forms of dimen-
sion 3 (see [8, Section 1.2]). Castel [8] improved these algorithms and obtained
an algorithm which works in dimension 5 (and above) and does not depend on
factoring integers:

Fact 142 (Castel [8]). Assuming GRH, there is a randomized polynomial time algo-
rithm which finds an isotropic vector for an indefinite quadratic form (over Q) in di-
mension 5 (or more).

All the algorithms we use in the K = Fq(t) case in this chapter are described
in Chapter 4.
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76 Chapter 5. Splitting quaternion algebras over quadratic extensions

5.2 The general algorithm

Let K be a field such that char K 6= 2. Let L be a quadratic extension of K, i.e.
L = K(

√
d), where d ∈ K and d is not a square in K. We consider the problem

of finding a zero divisor in a central simple L-algebraA, which is isomorphic to
M2(L) and is given by structure constants. We show how this problem can be
reduced (in polynomial time) to computing nontrivial zeros of quadratic forms
in several variables over K.

First we construct a subalgebra B in A which is a quaternion algebra over
K. Then, with this information at our hands, we construct a zero divisor. We
outline the main steps of the algorithm:

Algorithm 3.

• Find an element u ∈ A such that tr u = 0 (recall that the trace of an element is
the sum of the element and its conjugate, for deatils see Section 1.4) and u2 ∈ K
and u 6= 0. If u2 = r2, where r ∈ K, then return the zero divisor u− r.

• Find a nonzero element v such that uv = −vu and v2 ∈ K. If v2 = r2 such that
r ∈ K, then return the zero divisor v− r.

• Let B be the K-subspace generated by 1, u, v, uv. B is a quaternion algebra over
K. If B ∼= M2(K) then find a zero divisor in B.

• If B is a division algebra then find an element s ∈ B such that s2 = d. Return
the zero divisor s−

√
d.

The key to each step is finding a nontrivial zero of a quadratic form in sev-
eral variables. First observe that taking square roots is essentially the same as
finding a nontrivial zero of a quadratic form in 2 variables. In Step 1 we solve
a homogeneous quadratic equation in 6 variables, in Step 2 and 3 an equation
in 3 variables and finally in Step 4 an equation in 4 variables. Now we proceed
step by step.

Proposition 143. LetA ∼= M2(K(
√

d)) be given by structure constants. Then finding
a traceless nonzero l ∈ A (i.e., tr l = 0), such that l2 ∈ K can reduced to finding
a nontrivial zero of a certain quadratic form in 6 variables over K. Morevover, the
existence of such an l is equivalent to the form being isotropic over K.

Proof. First we construct a quaternion basis 1, w, w′, ww′ of A. We have the
following:

w2 = r1 + t1
√

d, w′2 = r2 + t2
√

d
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5.2. The general algorithm 77

Every traceless element is in the K(
√

d)-subspace generated by w, w′ and
ww′. The condition l2 ∈ K gives the following equation (s1, . . . , s6 ∈ K):

((s1 + s2
√

d)w + (s3 + s4
√

d)w′ + (s5 + s6
√

d)ww′)2 ∈ K

If we expand this we obtain:

((s1 + s2
√

d)w + (s3 + s4
√

d)w′ + (s5 + s6
√

d)ww′)2 =

(s2
1 + ds2

2 + 2s1s2
√

d)(r1 + t1
√

d) + (s2
3 + ds2

4 + 2s3s4
√

d)(r2 + t2
√

d)−
(s2

5 + ds2
6 + 2s5s6

√
d)(r1 + t1

√
d)(r2 + t2

√
d)

The coefficient of
√

d has to be zero:

t1s2
1 + t1ds2

2 + 2r1s1s2 + t2s2
3 + t2ds2

4 + 2r2s3s4 − (r1t2 + t1r2)s2
5 − (5.1)

(r1t2 + t1r2)ds2
6 − 2(r1r2 + t1t2d)s5s6 = 0 (5.2)

The left hand side of this equation is a quadratic form in 6 variables which is
isotropic over K if and only if there exists an l ∈ A such that tr l = 0 and l2 ∈ K.
Remark 144. If K = Q, one can actually show that the left-hand side of equation
5.1 is an indefinite quadratic form, hence it is always isotropic. This implies
that every quaternion algebra over Q(

√
d) contains a traceless element whose

square is in Q.

We proceed to the next step:

Proposition 145. Let B = HK(
√

d)(a, b + c
√

d) given by: u2 = a, v2 = b + c
√

d,
where a, b, c ∈ K, c 6= 0. Then finding a nonzero element v′ such that uv′ + v′u = 0
and v′2 ∈ K is equivalent to finding a zero divisor in the quaternion algebraHK((

b
c )

2−
d, a).

Remark 146. Finding a zero divisor in a quaternion algebra over K is equivalent
to finding a nontrivial zero of a quadratic form in three variables over K by
Proposition 35. The reason we stated it this way (and not as a reduction to
finding isotropic vectors of quadratic forms) is the following. The quaternion
algebra HK((

b
c )

2 − d, a) is split if and only if the quaternion algebra HK(b2 −
cd2, a) is split. Note that this means that HK(NL|K(b + c

√
d), a) is split where

NL|K is the norm map from L to K. A similar statement can be found in ( [16, Part
II, Theorem 7]) in a slightly more general context. Basically, this says that the
existence a quaternion subalgebra over a smaller field K is equivalent to the
splitting of a different quaternion algebra over K.
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78 Chapter 5. Splitting quaternion algebras over quadratic extensions

The reason we emphasize this here, is that we believe that this step could
be generalized to field extension of degree greater than 2 in a similar fashion.
However, this statement is somewhat stronger than just a pure existential theo-
rem, since if we find a zero divisor inHK((

b
c )

2− d, a) then we also can compute
a quaternion subalgebra over K in B (not just conclude that it exists).

Proof. Since v′ anticommutes with u (i.e. uv′ + v′u = 0) it must be a K(
√

d)-
linear combination of v and uv. This implies we have to search for s1, s2, s3, s4 ∈
K such that:

((s1 + s2
√

d)v + (s3 + s4
√

d)uv)2 ∈ K

Expanding this expression we obtain the following:

((s1 + s2
√

d)v + (s3 + s4
√

d)uv)2 =

(s2
1 + s2

2d + 2s1s2
√

d)(b + c
√

d)− (s2
3 + s2

4d + 2s3s4
√

d)a(b + c
√

d)

The coefficient of
√

d has to be zero, which implies the following equation:

c(s2
1 + s2

2d) + 2bs1s2 − ac(s2
3 + s2

4d)− 2abs3s4 = 0

First we divide by c. Note that c is nonzero. Let f = b/c.

s2
1 + s2

2d + 2 f s1s2 − a(s2
3 + s2

4d)− 2a f s3s4 = 0 (5.3)

In order to diagonalize the left hand side of equation 5.3, consider the fol-
lowing change of variables: x := s1 + f s2, y := s2,z := s3 + s4 f , w := s4. Note
that the transition matrix of this change is an upper triangular matrix with 1-s
in the diagonal so it has determinant 1 (this means that we obtain a quadratic
form on the left hand-side of the equation which is equivalent to the original
one). In terms of these new variables the equation takes the following form:

x2 + (d− f 2)y2 − az2 − a(d− f 2)w2 = 0.

Finding a solution of this is equivalent to finding a zero divisor in the quater-
nion algebraHK( f 2 − d, a) by Proposition 35.

We have the following lemma:

Lemma 147. Let A ∼= M2(K(
√

d)). Let l ∈ A be such that l2 ∈ K and l is not in
the center of A and l2 is not a square in K. Then there exists an element l′ such that
l′2 ∈ K and ll′ + l′l = 0.
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5.3. Complexity analysis over Q and Fq(t) 79

Proof. There exists a subalgebra A0 in A which is isomorphic to M2(K). In
this subalgebra there is an element l0 for which l and l0 have the same minimal
polynomial over K(

√
d). Moreover, there exists an m ∈ A such that l = m−1l0m

( [66, Theorem 2.1.]). There exists a nonzero l′0 ∈ A0 such that l0l′0 + l′0l0 = 0. Let
l′ = m−1l′0m. We have that l′2 = m−1l′0mm−1l0m = m−1l2

0m = l2
0 , hence l′2 ∈ K.

Since conjugation by m is an automorphism we have that ll′ + l′l = m−1(l0l′0 +
l′0l0)m = m−10m = 0. Thus we have proven the existence of a suitable element
l′.

Now let us take a look at Algorithm 3. We showed in Proposition 143 that
Step 1 can be reduced to finding a nontrivial zero of a quadratic form in 6 vari-
ables. In Proposition 145 we showed that Step 2 is equivalent to finding a non-
trivial zero of a quadratic form in 3 variables. Lemma 147 shows that Step 2
always returns a solution assuming A ∼= M2(K(

√
d)). The second part of Step

3 is finding an isotropic vector for a quadratic form in 3 variables over K by
Proposition 35. Finally, we show how to reduce tha last step to finding a non-
trivial zero of a quadratic form in 4 variables:

Proposition 148. Let A ∼= M2(K(
√

d)) and let H be a subalgebra of A which is
quaternion algebra over K. Moreover, assume that H is a division algebra. Then H
contains an element u which is not in the center of A and s2 = d. Such an element u
can be constructed by finding a nontrivial zero of a quadratic form in 4 variables.

Proof. The existence of such an s follows from the fact thatH is split by K(
√

d)
(asA ∼= K(

√
d)⊗KH)) and therefore contains K(

√
d) as a subfield [66, Theorem

1.2.8].
Now let 1, u, v, uv be a quaternion basis of H with u2 = a, v2 = b. Every

non-central element whose trace is zero (in H) is a K-linear combination of u, v
and uv. Hence finding an element s such that s2 = d is equivalent to solving the
following equation:

ax2
1 + bx2

2 − abx2
3 = d (5.4)

SinceH is a division algebra, the quadratic form ax2
1 + bx2

2− abx2
3 is anisotropic.

Thus solving equation 5.4 is equivalent to finding a nontrivial zero of the quadratic
form ax2

1 + bx2
2 − abx2

3 − dx2
4.

5.3 Complexity analysis over Q and Fq(t)

Theorem 149. Let A ∼= M2(Q(
√

d)) be given by structure constants, where d is a
square -free integer. Then there exists an randomized algorithm running in polynomial
time, if one is allowed to call an oracle for factoring integers, which finds a zero divisor
in A.
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80 Chapter 5. Splitting quaternion algebras over quadratic extensions

Proof. First we compute a quaternion basis of A. This can be done in poly-
nomial time by the algorithm described at the beginning of Section 5.1 (see
also [58]). Now we go through the steps of Algorithm 3.

Proposition 143 implies that the first part of the first step can be executed in
polynomial time if one is allowed to call oracles for integer factorization using
the algorithm from [63]. Actually, this step can also be carried out without the
use of oracles, using Castel’s algorithm [8], but the running time of that algo-
rithm is only polynomial if GRH holds. Checking that a rational number is a
square can also be achieved in polynomial time. The second step can be com-
pleted via the algorithm from [15] or [33] (this is a consequence of Proposition
145). They are both ff-algorithms which run in polynomial time. However, an
ff-algorithm can be made into a randomized polynomial time algorithm using
oracles for integer factorization by applying Berlekamp’s algorithm [4] for fac-
toring polynomials over finite fields. The same is true for step 4. The final step
involves finding a nontrivial zero of a quadratic form in 4 variables by Propo-
sition 148. Here we invoke again the algorithm of Simon [63] which runs in
polynomial time if one is allowed to call oracles for factoring integers.

Theorem 150. Let A ∼= M2(Fq(t)(
√

d)) be given by structure constants where
d ∈ Fq[t] is a square-free polynomial. Then there exists a randomized polynomial
time algorithm which finds a zero divisor in A.

Proof. The proof is similar to the proof of Theorem 149. The only difference
is that we use the algorithms from the previous chapter for finding nontriv-
ial zeros of 4 and 6-variable quadratic forms, and the algorithm from [11] for
3-variable quadratic forms (or the algorithm from Chapter 3). Also note that
computing square roots in this setting (which one may need in Step 1) can be
done in polynomial time [62].
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CHAPTER 6

IMPLEMENTATIONS AND
COMPUTATIONAL EXPERIMENTS

In this chapter we consider implementations for Algorithm 1 and Algorithm 3.
We implemented both algorithms in the computational algebra system MAGMA
[47].

This chapter is divided into two sections, one for each algorithm. In both
sections we consider the running times of the algorithms for various types of
inputs and discuss the most important steps of implementation. Our goal with
this chapter is to illustrate that both algorithms are easy to implement and per-
form well in practice. However, we also address some theoretical questions via
computation (for example what percentage of quaternion algebras splits over a
quadratic extension of Q). Codes of both algorithms can be found in the Ap-
pendix of this thesis.

6.1 Finding nontrivial zeros of quadratic forms in
four variables over Fq(t)

We start with the implementation. The main function’s input are four polyno-
mials a1, a2, a3, a4, defined over a finite field. It either outputs that the equation
a1x2

1 + a2x2
2 + a3x2

3 + a4x2
4 = 0 has no solutions, or returns the following data:

the minimization b1, b2, b3, b4 of a1, a2, a3, a4 (see Lemma 125) and a nonzero so-
lution vector to the equation b1x2

1 + b2x2
2 + b3x2

3 + b4x2
4 = 0. From a solution

vector for the minimized equation it is easy to compute a nonzero solution to
the original equation a1x2

1 + a2x2
2 + a3x2

3 + a4x2
4 = 0.

There are four major auxiliary functions. The function ”minimization” ei-
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82 Chapter 6. Implementations and Computational experiments

ther detects anisotropy at a finite prime or returns a minimized quadratic form
(future improvement could be a function that also returns the transition matrix
of the minimization). The function ”infinity” checks isotropy at infinity. The
running time of both functions is quite fast. The only computational challenge
is the factorization of the determinant of the quadratic form. Using these two
functions one can already decide whether the quadratic form is isotropic or not.
Computational experiments suggest that a quaternary quadratic form chosen at
random should be isotropic. This also follows from the lemmas in Section 4.1.

The third major function is ”splitting”. This function returns a sequence con-
sisting of the following: the splitting defined in Lemma 126, an indicator on the
degree of the polynomial a (using the terminology of Lemma 126, this is the
degree parity of f1 · · · fkg1 · · · gla) and the leading coefficient of a. The func-
tion ”solving” returns a nontrivial zero of a minimized quadratic form. This is
the most time consuming part of the algorithm as it uses a built-in algorithm for
finding a nontrivial zero of two ternary quadratic forms (based on the algorithm
from [14]). This function also contains a step for generating an irreducible poly-
nomial of a certain residue class (not a built-in MAGMA function). This per-
forms surprisingly well (even for large finite fields). We use the degree bounds
from Theorem 132. For technical reasons this step is not a separate function,
however, it can easily made into one. Also, a function generating an irreducible
polynomial from a residue class, may be of independent interest.

We provide some remarks on the running time of the algorithm. Checking
whether a given quadratic form in four variables is isotropic usually takes less
then one second if the coefficient polynomials are randomly chosen polynomi-
als of degree at most 100 and the cardinality of the finite field is a 7 digit decimal
number. Actually, the dominant parameter here is not the size of the finite field,
but the size of the characteristic of the finite field. The reason is that the hardest
computational task here is the factorization of the determinant.

Finding a nontrivial zero of an isotropic form takes more time. However,
computational experiments show that the most time consuming part is the so-
lution of the two ternary forms. If the degree of the inputs was at most D, then
the degree of the output was at most 9D (assuming the input is minimized).
This is the first step in implementing the algorithms from Chapter 4, as all other
algorithms there are based on Algorithm 1. Implementing those algorithms
could be a goal for a future project.

We conclude by a table of running times (Table 6.1). In each row, we have the
following data: the degree of the input polynomials (which are minimized), the
size of the finite field, the degree of the solution vector (i.e., the largest degree
among the components of the solution vector) and the running time in seconds.
The input polynomials were chosen at random (the degrees of the input poly-
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Table 6.1. Running times of Algorithm 1

deg a1 deg a2 deg a3 deg a4 Degree of the solution q Running time
29 29 29 29 246 1009694033 400,767
9 9 9 9 76 1009694033 17,190
9 9 9 9 76 38 10,420
70 71 67 63 574 3 82,600
47 44 44 50 391 3 33,603
29 29 29 29 246 1009694033 403,450
99 99 99 99 no solution 3 0,062
101 101 101 101 839 3 410,969

nomials were not chosen randomly, just their coefficients).

6.2 Finding zero divisors in quaternion algebras over
Q(
√

d)

First, we comment on the implementation, which is based on Algorithm 3. Note
that a key ingredient of Algorithm 3 is finding nontrivial zeros of quadratic
forms in several variables over Q. This task is accomplished by the MAGMA-
function ”IsotropicSubspace” which is based on the algorithms from [63].

The input of the main function is 5 integers d, a1, a2, a3, a4: d defines the
quadratic field, a1, a2, a3, a4 define the quaternion algebra H = H

Q(
√

d)(a1 +

a2
√

d, a3 + a4
√

d). First, one finds an element u ∈ H such that u2 ∈ Q. This
is is not a separate function, but is incorporated in the main function for cer-
tain technical reasons. However, it may be of independent interest. Recall that
such an element always exists (even if H is a division algebra). Finding an ele-
ment v which anticommutes with u, and v2 ∈ Q, is implemented as a separate
function entitled ”anticommute”. Several small auxiliary functions were also
implemented. For instance a function, which finds a zero divisor in a quater-
nion algebra over Q (it returns a zero divisor in terms of the quaternion basis),
and a function which finds an anticommuting element for a traceless element
(an element whose trace is zero). The algorithms used here are not novel, but it
seems they have not yet been implemented into MAGMA.

One can easily verify the correctness of the calculation in the following way.
First, MAGMA has a built-in function ”IsMatrixRing” (based on the paper [67]),
which decides whether a quaternion algebra splits or not. However, this func-
tion does not return a zero divisor if the quaternion algebra splits (its output
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84 Chapter 6. Implementations and Computational experiments

is either ”true” or ”false”). If Algorithm 3 outputs an element claiming to be a
zero divisor then this claim can be checked by applying the built-in MAGMA
function ”Norm” to it. If it returns zero, then we have indeed found a zero divi-
sor (by computing the trace of the element, a zero divisor pair can also be found
instantly).

Now we share some remarks about the running time. Algorithm 3 decides
whetherH splits or not. However, computational experiments have shown that
deciding splitting can be accomplished faster via the function ”IsMatrixRing”.
The reason for this is pretty simple. Algorithm 3 always finds an element whose
square is rational, hence it always has to find a nontrivial zero of a quadratic
form in 6 variables. Then it still needs to solve quadratic equations in 3 and
4 variables and it may happen that the ternary equation is solvable and only
the equation in 4 variables is not. So if we are only interested in splitting, then
”IsMatrixRing” is more efficient. However, the data Algorithm 3 computes is
far from irrelevant. Computing a zero divisor ifH is split seems to be quite fast
if d is around 230 (the running time is around 1 second).

Some questions arose while experimenting with this algorithm. Assume that
H is a division quaternion algebra over Q(

√
d) which contains a quaternion

subalgebra over Q. Does Algorithm 3 compute such a quaternion subalgebra
of H over Q? This is not apriori clear, since we only proved this claim if H is a
full matrix algebra. We will show that this is indeed true for division algebras
as well. However, our proof is not as elementary as the proof of Lemma 147.

The other natural question is, if the isomorphism class of the quaternion
subalgebra is unique or not. IfH is split then the answer to this is negative. We
give an example for a division algebra for which the answer is negative as well.

We start with a definition.

Definition 151. Let K be a field, and let L be a quadratic separable extension of K. Let
τ be the non-trivial automorphism of L fixing K. Let A be an algebra over L. Then σ is
an involution of the second kind if the following hold:

1. σ(x + y) = σ(x) + σ(y) for all x, y ∈ A,

2. σ(xy) = σ(y)σ(x) for all x, y ∈ A,

3. σ(σ(x)) = x for all x ∈ A,

4. σ restricted to L is τ.

LetH be a quaternion algebra over Q(
√

d). IfH has a quaternion subalgebra
over Q with quaternion basis 1, u, v, uv then an involution σ of the second kind
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can be constructed onH as follows:

x = (λ1 + µ1
√

d) + (λ2 + µ2
√

d)u + (λ3 + µ3
√

d)v + (λ4 + µ4
√

d)uv (6.1)

σ : x 7→ (λ1 − µ1
√

d)− (λ2 − µ2
√

d)u + (λ3 − µ3
√

d)v + (λ4 − µ4
√

d)uv (6.2)

The converse is also true [40, Chapter I, Proposition 2.22], meaning that H
has a rational quaternion subalgebra if it possesses an involution of the second
kind (one composes this involution with the usual quaternion conjugation and
considers the elements fixed under this map).

There is a theorem characterizing the existence of an involution of the sec-
ond kind (special case of [40, Theorem 3.1]). The theorem uses the notion of
corestriction of central simple algebras. We do not define the corestriction of an
algebra here (for a definition see [40, Chapter I, Section 3B] where it is called the
norm of an algebra), as we do not use it later on. The only thing we use here
is that it is a map which maps a central simple algebra over Q(

√
d) to a central

simple algebra over Q.

Fact 152. Let H be a quaternion algebra over Q(
√

d). Then H contains a subalgebra
B which is a quaternion algebra over Q if and only if Cor

Q(
√

d)|Q(H) (the corestriction

ofH with respect to the field extension Q(
√

d)|Q) splits.

We also need the following fact, called the projection formula [16, Part II,
Theorem 7]:

Fact 153. LetH
Q(
√

d)(a, b+ c
√

d) be a quaternion algebra over Q(
√

d) where a, b, c ∈
Q. Then Cor

Q(
√

d)|Q(H) is Brauer equivalent toHQ(a, b2 − c2d).

Now we are ready to prove the following:

Proposition 154. LetH be a quaternion algebra over Q(
√

d) which contains a quater-
nion subalgebra over Q. Let s ∈ H such that s2 ∈ Q. Then there exists an element r
such that sr + rs = 0 and r2 ∈ Q.

Remark 155. Proposition 154 implies that Algorithm 3 computes a quaternion
subalgebra over Q even if H is division algebra containing a quaternion subal-
gebra over Q.

Proof. Let s2 = a, where a ∈ Q. Let s′ ∈ H be such that ss′ + s′s = 0 and
s′2 = b + c

√
d. We have thatH ∼= H

Q(
√

d)(a, b + c
√

d). Proposition 145 says that

a suitable r exists if and only if HQ(a, b2 − c2d) splits. So if we show that this is
indeed the case then we are done. By Fact 152 we have that Cor

Q(
√

d)|Q(H) splits
since H contains a quaternion subalgebra over Q. By the projection formula
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86 Chapter 6. Implementations and Computational experiments

Table 6.2. Running times of Algorithm 3, where d defines the
quadratic field, and the columns ai contain the number of digits of
ai

d a1 a2 a3 a4 Running time
5 2 2 6 4 0,25
5 5 3 2 3 0,12
223303 16 9 2 3 1,20
645945847 3 3 25 16 1,23
18050605201 28 17 2 3 5,66
6759916343 27 16 2 3 72,94
4985824399 26 15 2 3 3,10
92641259 23 14 2 3 10,82

(Fact 153) we have that Cor
Q(
√

d)|Q(H) is Brauer equivalent to HQ(a, b2 − c2d),
hence HQ(a, b2 − c2d) splits. This proves the existence of a suitable element
r.

Proposition 154 also implies that Algorithm 3 can be used do decide if H
contains a quaternion subalgebra over Q or not.

The reason that these statements are located in this chapter and not in the
previous one, is that it was discovered while computing with the implementa-
tion of Algorithm 3. The same holds for the next example:

Example 156. LetH = H
Q(
√

5)(7, 11). One can check thatH is a division algebra.
Clearly it contains the rational quaternion algebra HQ(7, 11). Let 1, u, v, uv be a
quaternion basis ofH for which u2 = 7 and v2 = 11. Let s = (11 +

√
5)u + (1 +√

5)uv. Then s2 = 420. However,HQ(7, 11) is not split by Q(
√

420) (this can be
verified using the MAGMA function ”IsMatrixRing”) hence it does not contain
an element whose square is 420. Proposition 154 then implies that H contains
two non-isomorphic rational quaternion subalgebras.

We conclude by a table containing running times of Algorithm 3 (Table 6.2).
Each row consists of the following data: d, which defines the quadratic field, the
number of digits (decimal digits) of a1, a2, a3, a4, which define the quaternion
algebraH

Q(
√

d)(a1 + a2
√

d, a3 + a4
√

d) and the running time of the algorithm in
seconds. As a random quaternion algebra is almost certainly a division algebra,
the parameters are not chosen at random. We chose a split quaternion algebra
and computed a different quaternion basis of that algebra. So in all cases the
quaternion algebra splits.
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CHAPTER 7

PROBLEMS FOR FURTHER RESEARCH

We would like to conclude this dissertation with some open problems which
naturally arose during our research.

Problem 2. Is the statement of Theorem 96 valid for finite extensions K of Fq(t). More
precisely, is it true that the intersection of a maximal Fq[t] order and a maximal R-order
(here R consists of those elements of K whose degree is at most 0) is a finite dimensional
Fq-algebra which contains a primitive idempotent? Finiteness is true, this follows from
lattice reduction techniques. However, it is not clear whether it contains any zero divi-
sors at all. If this would be true (it is known to be true in certain special cases, when the
ring of integers of K is a unique factorization domain) in general, then one could derive
an algorithm for general function fields as well. Moreover, this statement is also of pure
theoretical interest.

Problem 3. In Chapter 3 we introduced Fq[t]-lattices in Fq((
1
t ))

m and proposed an
algorithm for finding a reduced basis. We gave an application of this algorithm which
finds a lattice point inside a parallelepiped. In 2012, Chonoles [9] proved a function field
analogue of Minkowski’s convex body theorem. It roughly says that if a set is closed un-
der subtraction and has large enough volume (larger than the determinant of the lattice)
than it contains a lattice point. Chonoles’s proof is not effective. It would be interesting
to provide an algorithm for finding such a lattice point in certain different cases. An-
other alternative improvement of our result could be to consider parallelepipeds not to
be given by generators but by some separation oracle.

Problem 4. Give an algorithm for finding nontrivial zeros of quadratic forms in several
variables over quadratic extensions of Q or Fq(t). The first step in this direction is
naturally the ternary case which is resolved in Chapter 5. A similar approach to that
of Chapter 4 could be applied, however, in the case of quadratic extensions, unique
factorization is no longer necessarily true. On the other hand, the local-global principle
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88 Chapter 7. Problems for further research

is still valid. Also note that resolving this question would immediately solve the explicit
isomorphism problem for quaternion algebras over degree 4 extensions of Q or Fq(t)
applying the procedure from Chapter 5.

Problem 5. The algorithms from Chapter 4 are probabilistic. Is there an f-algorithm
(which is by definition deterministic but uses oracles for factoring polynomials over
finite fields) which finds nontrivial zeros of quadratic forms in several variables. Such
an algorithm exists for ternary quadratic forms ( [11], [38]).

Problem 6. Assume that K is a global field of characteristic different from 2 (i.e., a finite
extension of Q or Fq(t), where q is odd). Let H be a quaternion algebra over K. Find a
quaternion subalgebra ofH over Q or Fq(t). This is an easier problem than the general
explicit isomorphism problem for global fields. However, as in the quadratic case, this
could be a first step. As indicated in Chapter 5, this may be achieved by generalizing
the algorithm from Chapter 5. Also, a slightly more conceptual version of Algorithm
3 could be of independent interest (by more conceptual we mean an algorithm whose
validity does not require much calculation). It is even interesting how one can find an
element in H whose square is rational (or at least its minimal polynomial has rational
coefficients).

Problem 7. Generalize our algorithms to finding nontrivial zeros of quadratic forms
in characteristic 2. The algorithm from Chapter 3 solves the case of ternary equations.
Also the explicit isomorphism problem for quadratic extensions of Fq(t), where q is now
even, is interesting.

These problems are all somewhat related to solving the explicit isomorphism
problem for global fields. It seems that global fields of positive characteristics
are easier to handle than number fields. However, there might exist a univer-
sal approach. Stating a conjecture is probably too early at this stage but we
believe that the function field case could be resolved by a polynomial time al-
gorithm. In the case of number fields, we believe that there exist ff-algorithms
which run in polynomial time in the degree and discriminant of the number
field. Note that we left out a parameter , namely the dimension of the matrix
algebra. We believe that finding an algorithm which is polynomial in the di-
mension of the matrix algebra should be considerably more difficult (probably
even intractable). However, these are only beliefs of the author, which do not
yet have a solid foundation.
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[3] A. Bérczes, J. Ködmön, A. Pethő: A one-way function based on norm
equations, Periodica Mathematica Hungarica 49 (2004), pp.1-13.

[4] E.R. Berlekamp: Factoring polynomials over finite fields; Bell System
Technical Journal 46 (1967), pp. 1853-1859.

[5] J. Buchmann: Reducing lattice bases by means of approximations, in:
Algorithmic number theory, LNCS 877, Springer-Verlag (1994), pp. 160-
168.

[6] Y. Bugeaud, K. Győry: Bounds for the solutions of Thue–Mahler equa-
tions and norm form equations; Acta Arithmetica 74 (1996), pp. 273-292.

[7] D.G. Cantor, H. Zassenhaus: A new algorithm for factoring polynomials
over finite fields; Mathematics of Computation 36 (1981), pp. 587-592.

[8] P. Castel: Un algorithme de résolution des équations quadratiques en
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[27] J. Gómez-Torrecillas, F. J. Lobillo, G. Navarro: A New Perspective of
Cyclicity in Convolutional Codes; IEEE Transactions on Information
Theory 62 (2016), pp. 2702-2706.

[28] W. A. de Graaf, M. Harrison, J. Pı́lnikova, J. Schicho: A Lie algebra
method for rational parametrization of Severi-Brauer surfaces; Journal
of Algebra 303(2006), pp. 514-529.

[29] W. A. de Graaf, G. Ivanyos: Finding maximal tori and splitting elements
in matrix algebras; Interaction between Ring Theory and Representa-
tions of Algebras, Lecture Notes in Pure and Applied Mathematics 210
(1998), pp. 95-105.

[30] W. A. de Graaf, G. Ivanyos, A. Küronya, L. Rónyai: Computing Levi de-
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PROGRAM CODE FOR ALGORITHM 1

i s square := funct ion ( f ) ;
F := F i n i t e F i e l d ( 3 ) ;
P<x>:= PolynomialRing ( F ) ;
L := F a c t o r i s a t i o n ( f ) ;
s : = 0 ;
i f ( IsSquare ( LeadingCoef f i c i en t ( f ) ) eq f a l s e ) then
return 0 ;
end i f ;
i f ( Degree ( f ) ne 0 ) then
f o r i :=1 to #L do
i f ( L [ i ] [ 2 ] mod 2 eq 1) then
s : = 1 ;
end i f ;
end f o r ;
i f ( s eq 1) then return 0 ;
e l s e re turn 1 ;
end i f ;
end i f ;
i f ( Degree ( f ) eq 0) then
i f ( IsSquare ( LeadingCoef f i c i en t ( f ) ) ) then return 1 ;
e l s e re turn 0 ;
end i f ;
end i f ;
end funct ion ;

square f ree := funct ion ( c ) ;
F := F i n i t e F i e l d ( 3 ) ;
P<x>:= PolynomialRing ( F ) ;
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96 Appendix . Program code for Algorithm 1

Q:= F a c t o r i z a t i o n ( c ) ;
S : = [ ] ;
f o r i :=1 to #Q do
S [ i ] : =Q[ i ] [ 2 ] ;
end f o r ;
T : = [ ] ;
f o r i :=1 to #S do
T [ i ] : = S [ i ] mod 2 ;
end f o r ;
U: = [ ] ;
f o r i :=1 to #Q do
U[ i ] : =Q[ i ] [ 1 ] ;
end f o r ;
M: = [ ] ;
f o r i :=1 to #Q do

M[ i ]:=<U[ i ] , T [ i ]> ;
end f o r ;
re turn Facpol (M) ;
end funct ion ;
F := F i n i t e F i e l d ( 3 ) ;
P<x>:= PolynomialRing ( F ) ;

minimization := funct ion ( a1 , a2 , a3 , a4 ) ;
F := F i n i t e F i e l d ( 3 ) ;
P<x>:= PolynomialRing ( F ) ;
b1 := square f ree ( a1 ) ;
b2 := square f ree ( a2 ) ;
b3 := square f ree ( a3 ) ;
b4 := square f ree ( a4 ) ;
S : = [ P | ] ;
B : = [ ] ;
B [ 1 ] : = b1 ;
B [ 2 ] : = b2 ;
B [ 3 ] : = b3 ;
B [ 4 ] : = b4 ;
L1 : = [ ] ;
L1 := F a c t o r i s a t i o n ( b1∗b2∗b3∗b4 ) ;
f o r i :=1 to #L1 do
i f ( L1 [ i ] [ 2 ] eq 2) then
i f ( b1 mod L1 [ i ] [ 1 ] eq 0) then S [ 1 ] : = 1 ;
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e l s e
S [ 1 ] : = 0 ;
end i f ;
i f ( b2 mod L1 [ i ] [ 1 ] eq 0) then S [ 2 ] : = 1 ;
e l s e
S [ 2 ] : = 0 ;
end i f ;
i f ( b3 mod L1 [ i ] [ 1 ] eq 0) then S [ 3 ] : = 1 ;
e l s e
S [ 3 ] : = 0 ;
end i f ;
i f ( b4 mod L1 [ i ] [ 1 ] eq 0) then S [ 4 ] : = 1 ;
e l s e
S [ 4 ] : = 0 ;
end i f ;
k : = 0 ;
s : = 1 ;
while ( k eq 0) do
i f ( S [ s ] eq 0) then s := s +1;
e l s e k : = 1 ;
end i f ;
end while ;
s2 := s +1;
while ( k eq 1) do
i f ( S [ s2 ] eq 0) then s2 := s2 +1;
e l s e k : = 2 ;
end i f ;
end while ;
l : = 0 ;
r : = 1 ;
while ( l eq 0) do
i f ( S [ r ] eq 1) then r := r +1;
e l s e l : = 1 ;
end i f ;
end while ;
r2 := r +1;
while ( l eq 1) do
i f ( S [ r2 ] eq 1) then r2 := r2 +1;
e l s e l : = 2 ;
end i f ;
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end while ;

b a j : = 0 ;
i f ( JacobiSymbol(−B [ r ]∗B [ r2 ] , L1 [ i ] [ 1 ] ) eq −1) then b a j : = 1 ;
end i f ;
i f ( b a j eq 1) then
f :=−B [ s ]∗B [ s2 ] div L1 [ i ] [ 1 ] ˆ 2 ;
i f ( JacobiSymbol ( f , L1 [ i ] [ 1 ] ) eq −1) then b a j : = 2 ;
end i f ;
end i f ;
LL : = [ P | ] ;
LL : = [ 0 , 0 , 0 , 0 ] ;
i f ( b a j eq 2) then return LL ;
end i f ;
i f ( b a j eq 1) then
B [ r ] : = L1 [ i ] [ 1 ] ∗B [ r ] ;
B [ r2 ] : = L1 [ i ] [ 1 ] ∗B [ r2 ] ;
B [ s ] : = B [ s ] div L1 [ i ] [ 1 ] ;
B [ s2 ] : = B [ s2 ] div L1 [ i ] [ 1 ] ;
end i f ;
end i f ;
i f ( L1 [ i ] [ 2 ] eq 3) then
S2 : = [ P | ] ;
i f ( b1 mod L1 [ i ] [ 1 ] eq 0) then S2 [ 1 ] : = 1 ;
e l s e
S2 [ 1 ] : = 0 ;
end i f ;
i f ( b2 mod L1 [ i ] [ 1 ] eq 0) then S2 [ 2 ] : = 1 ;
e l s e
S2 [ 2 ] : = 0 ;
end i f ;
i f ( b3 mod L1 [ i ] [ 1 ] eq 0) then S2 [ 3 ] : = 1 ;
e l s e
S [ 3 ] : = 0 ;
end i f ;
i f ( b4 mod L1 [ i ] [ 1 ] eq 0) then S2 [ 4 ] : = 1 ;
e l s e
S2 [ 4 ] : = 0 ;
end i f ;
seged : = 0 ;
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k2 : = 1 ;
while ( seged eq 0) do
i f ( S2 [ k2 ] eq 1) then k2 := k2 +1;
e l s e seged : = 1 ;
end i f ;
end while ;
f o r j :=1 to 4 do
i f ( S2 [ j ] eq 1) then B [ j ] : = B [ j ] div L1 [ i ] [ 1 ] ;
e l s e B [ j ] : = B [ j ]∗L1 [ i ] [ 1 ] ;
end i f ;
end f o r ;
end i f ;
i f ( L1 [ i ] [ 2 ] eq 4) then
f o r j 2 :=1 to 4 do
B [ j 2 ] : = B [ j 2 ] div L1 [ i ] [ 1 ] ;
end f o r ;
end i f ;
end f o r ;
re turn B ;
end funct ion ;

i n f i n i t y := funct ion ( a1 , a2 , a3 , a4 ) ;
F := F i n i t e F i e l d ( 3 ) ;
P<x>:= PolynomialRing ( F ) ;
A: = [ ] ;
A[ 1 ] : = a1 ;
A[ 2 ] : = a2 ;
A[ 3 ] : = a3 ;
A[ 4 ] : = a4 ;
S : = [ ] ;
f o r i :=1 to 4 do
S [ i ] : = LeadingTerm (A[ i ] ) ;
end f o r ;
k : = 0 ;
f o r j :=1 to 4 do
i f ( Degree ( S [ j ] ) mod 2 eq 0) then
k := k +1;
end i f ;
end f o r ;
i f ( k eq 2) then
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r : = 0 ;
l : = 1 ;
while ( r eq 0) do
i f ( Degree ( S [ l ] ) mod 2 eq 0) then
r := l ;
e l s e l := l +1;
end i f ;
end while ;
r2 : = 0 ;
l 2 := l +1;
while ( r2 eq 0) do
i f ( Degree ( S [ l 2 ] ) mod 2 eq 0) then
r2 := l 2 ;
e l s e l 2 := l 2 +1;
end i f ;
end while ;
s : = 0 ;
m: = 1 ;
while ( s eq 0) do
i f ( Degree ( S [m] ) mod 2 eq 1) then
s :=m;
e l s e m:=m+1;
end i f ;
end while ;
s2 : = 0 ;
m2:=m+1;
while ( s2 eq 0) do
i f ( Degree ( S [m2] ) mod 2 eq 1) then
s2 :=m2;
e l s e m2:=m2+1;
end i f ;
end while ;

b a j : = 0 ;
C : = [ ] ;
f o r i 2 :=1 to 4 do
C[ i 2 ] : = LeadingCoef f i c i en t (A[ i 2 ] ) ;
end f o r ;
i f ( IsSquare(−C[ r ]∗C[ r2 ] ) ) then return 1 ;
e l s e b a j := b a j +1;
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end i f ;
i f ( IsSquare(−C[ s ]∗C[ s2 ] ) ) then return 1 ;
e l s e b a j := b a j +1;
end i f ;
i f ( b a j eq 2) then return 0 ;
end i f ;
e l s e re turn 1 ;
end i f ;
end funct ion ;

check := funct ion ( a1 , a2 , a3 , a4 ) ;
F := F i n i t e F i e l d ( 3 ) ;
P<x>:= PolynomialRing ( F ) ;
A: = [ ] ;
A[ 5 ] : = x ;
A[ 1 ] : = a1 ;
A[ 2 ] : = a2 ;
A[ 3 ] : = a3 ;
A[ 4 ] : = a4 ;
s : = 0 ;
r : = 0 ;
f o r i :=1 to 3 do
f o r j := i +1 to 4 do

m:=−A[ i ]∗A[ j ] ;
i f ( i s square (m) eq 1) then
s := i ;
r := j ;
re turn r , s ,m,−A[ r ]∗A[ s ] ;
end i f ;
end f o r ;
end f o r ;
i f ( s eq 0) then
return 0 ;
end i f ;
end funct ion ;

s p l i t t i n g := funct ion ( a1 , a2 , a3 , a4 ) ;
F := F i n i t e F i e l d ( 3 ) ;
P<x>:= PolynomialRing ( F ) ;
B : = [ P | ] ;
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A: = [ P | ] ;
S : = [ P | ] ;
A[ 1 ] : = a1 ;
A[ 2 ] : = a2 ;
A[ 3 ] : = a3 ;
A[ 4 ] : = a4 ;
s : = 0 ;
f o r i :=1 to 4 do
i f ( Degree (A[ i ] ) mod 2 eq 1) then
s := s +1;
end i f ;
end f o r ;
case s :
when 0 :
B [ 1 ] : =A[ 1 ] ;
B [ 2 ] : =A[ 2 ] ;
B[3]:=−A[ 3 ] ;
B[4]:=−A[ 4 ] ;
B [ 5 ] : = 0 ;
B [ 6 ] : = 1 ;
when 1 :
h : = 0 ;
j : = 1 ;
while ( h eq 0) do
i f ( Degree (A[ j ] ) mod 2 eq 1) then h := j ;
e l s e j := j +1 ;
end i f ;
end while ;

S [ 1 ] : = 0 ;
k1 : = 1 ;
while ( S [ 1 ] eq 0) do
i f ( ( Degree (A[ k1 ] ) mod 2 eq 0 ) ) then S [ 1 ] : =A[ k1 ] ;
e l s e k1 := k1 +1;
end i f ;
end while ;
S [ 2 ] : = 0 ;
k2 := k1 +1;
while ( S [ 2 ] eq 0) do
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i f ( ( Degree (A[ k2 ] ) mod 2 eq 0 ) ) then S [ 2 ] : =A[ k2 ] ;
e l s e k2 := k2 +1;
end i f ;
end while ;
S [ 3 ] : = 0 ;
k3 := k2 +1;
while ( S [ 3 ] eq 0) do
i f ( ( Degree (A[ k3 ] ) mod 2 eq 0 ) ) then S [ 3 ] : =A[ k3 ] ;
e l s e k3 := k3 +1;
end i f ;
end while ;
B [ 1 ] : =A[ h ] ;
B [ 2 ] : = S [ 1 ] ;
B[3]:=−S [ 2 ] ;
B[4]:=−S [ 3 ] ;
B [ 5 ] : = 0 ;
B [ 6 ] : = LeadingCoef f i c i en t ( S [ 1 ] ) ;
when 2 :
L1 : = [ ] ;
L2 : = [ ] ;
l 1 : = 1 ;
l 2 : = 1 ;
f o r l :=1 to 4 do
i f ( Degree (A[ l ] ) mod 2 eq 0 ) then
L1 [ l 1 ] : =A[ l ] ;
l 1 := l 1 +1;
e l s e
L2 [ l 2 ] : =A[ l ] ;
l 2 := l 2 +1;
end i f ;
end f o r ;
B [ 1 ] : = L1 [ 1 ] ;
B [ 2 ] : = L2 [ 1 ] ;
B[3]:=−L1 [ 2 ] ;
B[4]:=−L2 [ 2 ] ;
C : = [ ] ;
f o r m:=1 to 4 do
C[m] : = LeadingCoef f i c i en t ( B [m] ) ;
end f o r ;
i f ( IsSquare (C[ 1 ]∗C [ 3 ] ) ) then
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B [ 5 ] : = 0 ;
B [ 6 ] : =C [ 1 ] ;
e l s e
B [ 5 ] : = 1 ;
B [ 6 ] : =C [ 2 ] ;
end i f ;
when 3 :
h2 : = 0 ;
j 2 : = 1 ;
while ( h2 eq 0) do
i f ( Degree (A[ j 2 ] ) mod 2 eq 0) then h2 := j 2 ;
e l s e j 2 := j 2 +1;
end i f ;
end while ;

T : = [ P | ] ;
T [ 1 ] : = 0 ;
k12 : = 1 ;
while ( T [ 1 ] eq 0) do
i f ( ( Degree (A[ k12 ] ) mod 2 eq 1 ) ) then T [ 1 ] : =A[ k12 ] ;
e l s e k12 := k12 +1;
end i f ;
end while ;
T [ 2 ] : = 0 ;
k22 := k12 +1;
while ( T [ 2 ] eq 0) do
i f ( ( Degree (A[ k22 ] ) mod 2 eq 1 ) ) then T [ 2 ] : =A[ k22 ] ;
e l s e k22 := k22 +1;
end i f ;
end while ;
T [ 3 ] : = 0 ;
k32 := k22 +1;
while ( T [ 3 ] eq 0) do
i f ( ( Degree (A[ k32 ] ) mod 2 eq 1 ) ) then T [ 3 ] : =A[ k32 ] ;
e l s e k32 := k32 +1;
end i f ;
end while ;
B [ 1 ] : =A[ h2 ] ;
B [ 2 ] : = T [ 1 ] ;
B[3]:=−T [ 2 ] ;
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B[4]:=−T [ 3 ] ;
B [ 5 ] : = 1 ;
B [ 6 ] : = LeadingCoef f i c i en t ( T [ 1 ] ) ;
when 4 :
B [ 1 ] : =A[ 1 ] ;
B [ 2 ] : =A[ 2 ] ;
B[3]:=−A[ 3 ] ;
B[4]:=−A[ 4 ] ;
B [ 5 ] : = 1 ;
B [ 6 ] : = 1 ;
end case ;
re turn B ;
end funct ion ;

randompoli := funct ion ( d ) ;
F := F i n i t e F i e l d ( 3 ) ;
P<x>:= PolynomialRing ( F ) ;
L : = [ ] ;
f o r i := 1 to d do
L [ i ] : =Random( F ) ;
end f o r ;
re turn Polynomial ( L ) ;
end funct ion ;

so lv ing := funct ion ( a1 , a2 , a3 , a4 ) ;
F := F i n i t e F i e l d ( 3 ) ;
P<x>:= PolynomialRing ( F ) ;
A:= s p l i t t i n g ( a1 , a2 , a3 , a4 ) ;
gcd1 := GreatestCommonDivisor (A[ 1 ] ,A[ 2 ] ) ;
gcd2 := GreatestCommonDivisor (A[ 3 ] ,A[ 4 ] ) ;
L1 := F a c t o r i z a t i o n ( gcd1 ) ;
L2 := F a c t o r i z a t i o n ( gcd2 ) ;
M1: = [ ] ;
j : = 1 ;
f o r i :=1 to #L1 do
M1[ i ] : = L1 [ i ] [ 1 ] ;
end f o r ;
M2: = [ ] ;
f o r i 2 :=1 to #L2 do
M2[ i 2 ] : = L2 [ i 2 ] [ 1 ] ;
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end f o r ;

a12 :=A[ 1 ] div gcd1 ;
a22 :=A[ 2 ] div gcd1 ;
A12 := F a c t o r i s a t i o n ( a12 ) ;
A22 := F a c t o r i s a t i o n ( a22 ) ;

a32 :=A[ 3 ] div gcd2 ;
a42 :=A[ 4 ] div gcd2 ;
A32 := F a c t o r i s a t i o n ( a32 ) ;
A42 := F a c t o r i s a t i o n ( a42 ) ;

Prod1 := I d e n t i t y ( P ) ;
f o r s :=1 to #M1 do
Prod1 := Prod1∗M1[ s ] ;
end f o r ;
Prod2 := I d e n t i t y ( P ) ;
f o r s2 :=1 to #M2 do
Prod2 := Prod2∗M2[ s2 ] ;
end f o r ;
Prod := Prod1∗Prod2 ;
I1 : = [ ] ;
f o r o1 :=1 to #A12 do
I1 [ o1 ]:=<A12 [ o1 ] [ 1 ] , JacobiSymbol (A[ 2 ]∗ Prod , A12 [ o1 ] [ 1 ] ) > ;
end f o r ;

I2 : = [ ] ;
f o r o2 :=1 to #A22 do
I2 [ o2 ]:=<A22 [ o2 ] [ 1 ] , JacobiSymbol (A[ 1 ]∗ Prod , A22 [ o2 ] [ 1 ] ) > ;
end f o r ;

I3 : = [ ] ;
f o r o3 :=1 to #A32 do
I3 [ o3 ]:=<A32 [ o3 ] [ 1 ] , JacobiSymbol (A[ 4 ]∗ Prod , A32 [ o3 ] [ 1 ] ) > ;
end f o r ;

I4 : = [ ] ;
f o r o4 :=1 to #A42 do
I4 [ o4 ]:=<A42 [ o4 ] [ 1 ] , JacobiSymbol (A[ 3 ]∗ Prod , A42 [ o4 ] [ 1 ] ) > ;
end f o r ;

C
E

U
eT

D
C

ol
le

ct
io

n



107

I := I1 c a t I2 c a t I3 c a t I4 ;

J : = [ Cartes ianProduct ( P , P ) | ] ;
J [1] := <0 ,0 > ;
f o r p:=1 to # I do
i f ( I [ p ] [ 2 ] eq 1) then
J [ p]:=< I [ p ] [ 1 ] , 1 > ;
e l s e
seged : = 0 ;
while ( seged eq 0) do
g := randompoli ( Degree ( I [ p ] [ 1 ] ) ) ;
i f ( JacobiSymbol ( g , I [ p ] [ 1 ] ) eq −1) then
seged : = 1 ;
J [ p]:=< I [ p ] [ 1 ] , g>;
end i f ;
end while ;
end i f ;
end f o r ;
J1 : = [ ] ;
J2 : = [ ] ;
f o r w:=1 to # J do
J1 [w] : = J [w] [ 2 ] ;
J2 [w] : = J [w] [ 1 ] ;
end f o r ;
f o r p1 :=1 to # J2 do
f o r p2 := p1+1 to # J2 do
i f ( J2 [ p1 ] eq J2 [ p2 ] ) then
J2 [ p2 ] : = 1 ;
end i f ;
end f o r ;
end f o r ;
f o r p3 :=1 to # J2 do
i f ( J2 [ p3 ] eq 1) then
Remove ( J2 , p3 ) ;
Remove ( J1 , p3 ) ;
end i f ;
end f o r ;

remainder := ChineseRemainderTheorem ( J1 , J2 ) ;
D: = 1 ;
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f o r w2:=1 to # J2 do
D:=D∗ J2 [w2 ] ;
end f o r ;

ind := Degree ( Prod ) mod 2 ;
i f (A[ 5 ] eq ind ) then
dd:= 3∗Degree (D) ;
e l s e dd:=3∗Degree (D) + 1 ;
end i f ;
Q: = [ ] ;
Q[ dd+1] :=A[ 6 ] ;
repeat
f o r v :=1 to dd do
Q[ v ] : = Random( F ) ;
end f o r ;
q :=P ! Q;
a :=D∗q+remainder ;
u n t i l I s I r r e d u c i b l e ( a ) eq true ;

K<x>:= F i e l d O f F r a c t i o n s ( P ) ;
P2<x1 , x2 , x3>:= P r o j e c t i v e S p a c e (K , 2 ) ;
f f 1 := Conic ( P2 ,A[ 1 ]∗ x1 ˆ2+A[ 2 ]∗ x2ˆ2−a∗Prod∗x3 ˆ 2 ) ;
f f 2 := Conic ( P2 ,A[ 3 ]∗ x1 ˆ2+A[ 4 ]∗ x2ˆ2−a∗Prod∗x3 ˆ 2 ) ;
CC1:= Coordinates ( Rat iona lPo in t ( f f 1 ) ) ;
CC2:= Coordinates ( Rat iona lPo in t ( f f 2 ) ) ;
zero :=A[ 1 ]∗CC1[ 1 ] ˆ 2 +A[ 2 ]∗CC1[2]ˆ2−A[ 3 ]∗CC2[1]ˆ2−A[ 4 ]∗CC2 [ 2 ] ˆ 2 ;
AA: = [A[ 1 ] ,A[2] ,−A[3] ,−A[ 4 ] ] ;
re turn zero ,AA, CC1 [ 1 ] , CC1 [ 2 ] , CC2 [ 1 ] , CC2 [ 2 ] ;
end funct ion ;

main := funct ion ( a1 , a2 , a3 , a4 ) ;
i f ( minimization ( a1 , a2 , a3 , a4 ) eq [ 0 , 0 , 0 , 0 ] ) then return ”no s o l u t i o n s ” ;
e l s e
A:= minimization ( a1 , a2 , a3 , a4 ) ;
end i f ;
i f ( i n f i n i t y (A[ 1 ] ,A[ 2 ] ,A[ 3 ] ,A[ 4 ] ) eq 0) then return ”no s o l u t i o n s ” ;
e l s e
i f ( check (A[ 1 ] ,A[ 2 ] ,A[ 3 ] ,A[ 4 ] ) eq 0) then
return solv ing (A[ 1 ] ,A[ 2 ] ,A[ 3 ] ,A[ 4 ] ) ;
e l s e
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return check (A[ 1 ] ,A[ 2 ] ,A[ 3 ] ,A[ 4 ] ) ;
end i f ;
end i f ;
re turn A;
end funct ion ;

main2 := funct ion ( a , c ) ;
s : = 0 ;
f o r i :=1 to c do
a1 := randompoli ( a ) ;
a2 := randompoli ( a ) ;
a3 := randompoli ( a ) ;
a4 := randompoli ( a ) ;
i f ( minimization ( a1 , a2 , a3 , a4 ) eq [ 0 , 0 , 0 , 0 ] ) then s := s +1;
e l s e
A:= minimization ( a1 , a2 , a3 , a4 ) ;
end i f ;
i f ( i n f i n i t y (A[ 1 ] ,A[ 2 ] ,A[ 3 ] ,A[ 4 ] ) eq 0) then s := s +1;
end i f ;
end f o r ;
re turn s ;
end funct ion ;
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PROGRAM CODE FOR ALGORITHM 3

antikomm := funct ion (D, u , v ,w) ;
Q:= R a t i o n a l s ( ) ;
K<z>:= Quadrat icFie ld (D) ;
A<i , j >:= QuaternionAlgebra<K | u , v+w∗z>;
P := PolynomialRing (Q, 4 ) ;
a :=P . 1 ;
b :=P . 2 ;
c :=P . 3 ;
d:=P . 4 ;
g :=w∗a ˆ2+w∗D∗bˆ2+2∗v∗a∗b−u∗w∗cˆ2−u∗w∗D∗dˆ2−2∗u∗v∗c∗d ;
V:= IsotropicSubspace ( g ) ;
H:= Generators (V ) ;
I := SetToSequence (H) ;
r := Dimension (V ) ;
i f ( r ne 0) then
s := E l t s e q ( I [ 1 ] ) ;
q : = [ ] ;
q [ 1 ] : = s [1 ]+ s [ 2 ]∗ z ;
q [ 2 ] : = s [3 ]+ s [ 4 ]∗ z ;
re turn q ;
e l s e
q2 : = [ ] ;
q2 [ 1 ] : = 0 ;
q2 [ 2 ] : = 0 ;
re turn q2 ;
end i f ;
end funct ion ;
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zerodiv := funct ion ( a , b ) ;
Q:= R a t i o n a l F i e l d ( ) ;
H<i , j , k>:= QuaternionAlgebra<Q| a , b>;
P := PolynomialRing (Q, 3 ) ;
x :=P . 1 ;
y :=P . 2 ;
z :=P . 3 ;
g := a∗x ˆ2+b∗yˆ2−a∗b∗z ˆ 2 ;
V:= Isot ropicSubspace ( g ) ;
i f ( Dimension (V) ne 0) then

H:= Generators (V ) ;
I := SetToSequence (H) ;
s := E l t s e q ( I [ 1 ] ) ;
r := s [ 1 ]∗ i +s [ 2 ]∗ j +s [ 3 ]∗ k ;
re turn s ;
e l s e
s2 : = [ ] ;
s2 [ 1 ] : = 0 ;
s2 [ 2 ] : = 0 ;
s2 [ 3 ] : = 0 ;
re turn s2 ;
end i f ;
end funct ion ;

baz is := funct ion (D, u , v ,w, t , a , b , c ) ;
Q:= R a t i o n a l s ( ) ;
K<z>:= Quadrat icFie ld (D) ;
A<i , j , k>:= QuaternionAlgebra< K | u+v∗z ,w+ t ∗z>;
r := a∗ i +b∗ j +c∗k ;
S := Coordinates ( r ∗ i + i ∗ r ) ;
T := Coordinates ( r ∗ j + j ∗ r ) ;
R:= Coordinates ( r ∗k+k∗ r ) ;
M: = [ ] ;
M[ 1 ] : = Vector ( S ) ;
M[ 2 ] : = Vector ( T ) ;
M[ 3 ] : = Vector (R ) ;
N:= Matrix (M) ;
U:= NullSpace (N) ;
V:= Bas i s (U) ;
P := E l t s e q (V [ 1 ] ) ;
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r1 :=P [ 1 ]∗ i +P [ 2 ]∗ j +P [ 3 ]∗ k ;
re turn P ;
end funct ion ;

r a t i o n a l := funct ion (D, u , v ,w, t ) ;
Q:= R a t i o n a l s ( ) ;
K<z>:= Quadrat icFie ld (D) ;
A<i , j , k>:= QuaternionAlgebra< K | u+v∗z ,w+ t ∗z>;
i f ( IsMatrixRing (A) eq f a l s e ) then return ” d i v i s i o n algebra ” ;
e l s e
P:= PolynomialRing (Q, 6 ) ;
a :=P . 1 ;
b :=P . 2 ;
c :=P . 3 ;
d:=P . 4 ;
e :=P . 5 ;
f :=P . 6 ;
g := v∗a ˆ2+v∗D∗bˆ2+2∗u∗a∗b+ t ∗c ˆ2+ t ∗D∗dˆ2+2∗w∗c∗d−u∗ t ∗eˆ2−v∗w∗eˆ2−u∗ t ∗D∗ f ˆ2−v∗w∗D∗ f ˆ2−2∗u∗w∗e∗ f−2∗v∗ t ∗D∗e∗ f ;
V:= Isot ropicSubspace ( g ) ;
H:= Generators (V ) ;
I := SetToSequence (H) ;
s := E l t s e q ( I [ 1 ] ) ;
q : = ( s [1 ]+ s [ 2 ]∗ z )∗ i +( s [ 3 ] + s [ 4 ]∗ z )∗ j +( s [5 ]+ s [ 6 ]∗ z )∗ i ∗ j ;
i f ( q ˆ2 eq 0) then
return q ;
e l s e
S := Coordinates ( q ) ;
R:= baz is (D, u , v ,w, t , s [1 ] + s [ 2 ]∗ z , s [ 3 ]+ s [ 4 ]∗ z , s [ 5 ]+ s [ 6 ]∗ z ) ;
W:=R[ 1 ]∗ i +R[ 2 ]∗ j +R[ 3 ]∗ k ;
T : = [ ] ;
T [ 1 ] : = Trace ( q ˆ 2 ) / 2 ;
T [ 2 ] : = Trace (Wˆ 2 ) / 2 ;
O: = [ ] ;
O[ 1 ] : = Trace ( T [ 1 ] , R a t i o n a l F i e l d ( ) ) / 2 ;
O[ 2 ] : = Trace ( ( T[2 ]+ Conjugate ( T [ 2 ] ) ) / 2 , R a t i o n a l F i e l d ( ) ) / 2 ;
O[ 3 ] : = Trace (1/ z ∗ (T[2]−Conjugate ( T [ 2 ] ) ) / 2 , R a t i o n a l F i e l d ( ) ) / 2 ;
seged := antikomm (D,O[ 1 ] ,O[ 2 ] ,O[ 3 ] ) ;
s e g e d l i s t a : = [ ] ;
s e g e d l i s t a [ 1 ] : = 0 ;
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s e g e d l i s t a [ 2 ] : = 0 ;
i f ( seged eq s e g e d l i s t a ) then
return ” d i v i s i o n algebra ” ;
end i f ;
q2 := seged [ 1 ]∗W+seged [ 2 ]∗q∗W;
i f ( q2 ˆ2 eq 0) then
return q2 ;
e l s e
szam1 :=T [ 1 ] ;
szam2 := Trace ( q2 ˆ 2 ) / 2 ;
szam11 := Trace ( ( szam1 )/2 , R a t i o n a l F i e l d ( ) ) ;
szam22 := Trace ( ( szam2 )/2 , R a t i o n a l F i e l d ( ) ) ;
s e g e d l i s t a 2 := zerodiv ( szam11 , szam22 ) ;
n u l l i s t a : = [ ] ;
n u l l i s t a [ 1 ] : = 0 ;
n u l l i s t a [ 2 ] : = 0 ;
n u l l i s t a [ 3 ] : = 0 ;
i f ( s e g e d l i s t a 2 ne n u l l i s t a ) then
return s e g e d l i s t a 2 [ 1 ]∗q+ s e g e d l i s t a 2 [ 2 ]∗ q2+ s e g e d l i s t a 2 [ 3 ]∗q∗q2 , ” n u l l o s z t o ” ;
end i f ;
P2 := PolynomialRing (Q, 4 ) ;
a1 := P2 . 1 ;
b1 := P2 . 2 ;
c1 := P2 . 3 ;
d1 := P2 . 4 ;
pol := szam11∗a1 ˆ2+ szam22∗b1ˆ2−szam11∗szam22∗ c1ˆ2−D∗d1 ˆ 2 ;
V2:= Isot ropicSubspace ( pol ) ;
i f ( Dimension ( V2 ) eq 0) then
return ” d i v i s i o n algebra ” ;
end i f ;
H2:= Generators ( V2 ) ;
I2 := SetToSequence (H2 ) ;
S2 := E l t s e q ( I2 [ 1 ] ) ;
r2 : = ( S2 [ 1 ] / S2 [ 4 ] ) ∗ q+( S2 [2 ]/ S2 [ 4 ] ) ∗ q2 +( S2 [ 3 ] / S2 [ 4 ] ) ∗ q∗q2−z ;
re turn r2 ;
end i f ;
end i f ;
end i f ;
end funct ion ;
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