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“The richest people in the world look for and build networks;

everyone else just looks for work.”

Robert Kiyosaki
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Abstract

Spreading is one of the most important dynamic processes on complex networks as it is the

basis of a broad range of phenomena from epidemic contagion to diffusion of innovations.

The speed and the behaviour of spreading models depend on a number of factors. One

of such factors, the topology of the underlying network, has been shown to influence the

spreading process. In the current thesis we investigate both mathematically and numerically,

how the changes in topological structure of the networks, such as appearance of new cycles

by introducing extra edges or paths, which are so-called ’bridges’, influence the model of

non-Poissonian SI spreading on deterministic, random and temporal networks.

The structure of the thesis is the following. In Chapter 1 we present the historical overview

and main developments in the subject. In Chapter 2 we study the SI spreading with transmis-

sion times following power-law distribution with infinite expectation. We derive the results

both for general graphs and for specific models of random graphs. We study how the intro-

duction of just one extra edge to a tree severely accelerates SI spreading on it. In Chapter 3

we study how the introduction of bridges influences the speed of the SI spreading on the real

dataset of mobile phone calls. We derive that the introduction of topological bridges boosts

spreading and define a model which replicates this phenomenon and compare results of this

model on various theoretical networks. We finish the thesis with the discussion.
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CHAPTER 1

Introduction

1.1 Networks as complex systems

Complex systems consist of interacting units on which processes take place. The constituents

are represented by vertices and the interactions by edges of a graph. With reference to com-

plex systems often the following names are used: graph → network, vertex → node and edge

→ link. Complex systems are abundant in nature and society and so are complex networks.

Nodes in the networks represent people, vehicles, computers, braincells and links represent

their connections or interactions. We can find examples of networks everywhere, starting

from the macroscopic networks of social interactions, computer networks and transportation

networks around the globe, up to microscopic networks of protein-protein interactions in the

living species or networks of neurons in the brain. These networks are dynamic in their nature

and spreading is one of the examples of the dynamic processes that run in these networks. It

can be the spreading of a computer virus in the computer networks [58], disease over a flight

network [16] or innovation in the online social network [36].

Traditionally the study of networks has been the territory of graph theory, that has

emerged from the works of Leonhard Euler around 200 years ago. While initially small or

regular graphs were in the focus, since the late 1950s large scale networks with no determin-

istic design principles have been described as random graphs. Large random graphs were

first studied in detail by the Hungarian mathematicians Paul Erdős and Alfréd Rényi [23].

According to their model, one starts with N nodes and connects every pair of nodes with

probability p, creating a graph with approximately pN(N −1)/2 edges distributed randomly.

While the approximation character of this model was clear from the beginning, it dominated

the representation of complex networks for decades. The drastically increasing amount of
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2 1. Introduction

data on complex systems had such an effect that interest shifted to more realistic models.

Our intuition clearly indicates that complex systems must display some organizing principles,

which should be at some level encoded in their topology. As the topology of these networks

indeed deviates from that of a perfectly random graph, tools and measures had to be devel-

oped to describe the underlying organizing principles in quantitative terms [4, 52]. Simple

models were invented, like the Barabási-Albert or the Watts-Strogatz models, in order to cap-

ture important quantitative features of empirical networks [52]. Even those features that are

vaguely defined, such as community structure, can be replicated in the network models [45].

Networks are not static in several senses. They usually result from dynamic, non-

stationary processes, like growth in the number of nodes. Even in the stationary case, when

the number of nodes remains constant, rewiring, death and birth processes may take place.

Moreover, the function of a network is usually also dynamic. In all of the above mentioned

examples the networks represent only the scaffold of the systems, where dynamic processes

take place. These processes are random because of the topology and because of intrinsic

stochasticity in their dynamics. Such processes include traffic (both internet and vehicular),

chemical reactions, communication, and all kinds of spreading phenomena.

1.2 The development of spreading models

Spreading is one of the most important dynamic processes on complex networks [57,70] as it is

the basis of a broad range of phenomena from epidemic contagion to diffusion of innovations.

One of the original, and still primary, reasons for studying networks is to understand the

mechanisms by which diseases, information, computer viruses, rumors, innovations spread

over them [52].

The spreading problem initially came from epidemiology and had no relation to networks

at all. Therefore, we at the beginning use the language of ’people’ for the nodes in the network

and ’infections’ that pass between them. Spreading processes can be described by different

states a person can stay in. The simplest one is a two-state SI model, when a particular

person is either in susceptible (S) or in infected (I) state, meaning that once a person caught

an infection, there is no cure of it. More complicated case is a three state SIR model, when we

add a recovered (R) state, meaning that a person can recover from an infection and becomes

insusceptible to the infection. Among other well-studied models one can mention SIS model,

when a recovered person can become susceptible again and the SIRS model, when a recovered
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1.2. The development of spreading models 3

person becomes susceptible only after some time period.

The simplest approach to the modelling of the spreading process makes no reference to

the topology of peoples’ interactions, considering a population, where every person could in

principle have contact with anyone else with equal chance. This assumption is called the

mean-field approximation. In order to give a brief introduction to the mathematical models,

consider the SI model under this approximation. Let s(t) be a fraction of individuals who

are susceptible at time t and let x(t) be a fraction of people who are infected. Suppose β is

the rate of the infection spread of an individual per unit time. The infection can be passed

from an infected to a susceptible person, and since there are at each time s(t)x(t) such pairs

of people, then the total rate of spreading in the system is βs(t)x(t). Since the system has

finite size, then we have at each time s(t) = 1 − x(t) and the process is described by the

following system of equations:
dx

dt
= βx(1− x), (1.1)

s+ x = 1

The differential equation (1.1) occurs in many places in biology, physics, and elsewhere, and

is called the logistic growth equation. It can be solved using standard methods to give

x(t) =
x0e

βt

1− x0 + x0eβt
.

In reality the structure of networks is far from the mean-field, or the complete graph

assumption. Fortunately, the above models can be redefined in consideration of network

structure. Consider again for simplicity the SI model on a connected network of n vertices.

Let si(t) be the probability for a vertex i to be susceptible at time t and let xi(t) = 1− si(t)
be the probability for a vertex i to be infected. Denote A = (Aij)i,j=1..n the adjacency

matrix and β the transmission rate. In order to catch an infection between times t and

t+ dt, the vertex i must be susceptible in the first place and must have an infected neighbor

that transmits the infection with probability βdt. Then the describing system of differential

equations is
dxi
dt

= βsi
∑
j

Aijxj ,

si(t) + xi(t) = 1.

Despite the fact this model is the simplest one, it cannot be solved for arbitrary graphs in

an exact way [51]. Therefore, when studying the spreading processes one should use various

kinds of approximations, develop mean-field theories or operate with infinite graphs.
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4 1. Introduction

Spreading is a stochastic process. The usual approach, e.g. for simulations, is that one

takes the static network and assumes that transmission of a disease is governed by the Poisson

process. That means we take a network on N nodes and assume that transmission happens

at random times that are exponentially distributed. This approach heavily relies on the

memoryless property of exponential distribution and thus the process is itself Markovian [68].

However, it has been shown empirically that spreading models with this Poissonian ap-

proach again produce results far from reality [69]. Complex systems are characterized by all

kinds of inhomogeneities. The network itself is very inhomogeneous: the degrees, the activity

of the constituents, the inter-event times have all broad distributions, which, together with

various types of correlations do much impact on spreading in the network. The topological

inhomogeneities are captured by the complex network models. [30, 56].

1.3 Studies of spreading on temporal networks

The underlying complex network is that of human interactions, however, this ”Social Con-

nectome” cannot be characterized by a static graph. The links may be active for some, often

only short period and then inactive for the rest of the time [8]. An adequate framework to

describe this situation is that of temporal networks [30].

A temporal network can be represented by a set of N nodes between which a complete

trace of all interaction events E occurring within the time interval [0, T ] is known. Each such

event can be represented by a quadruplet e = (u, v, t, δt), where the event connecting nodes

u and v begins at t and the interaction lasts until t+ δt.

Recently large datasets on communication have been made available, where not only the

participants are recorded but also the time stamps and durations of the communications,

sometimes together with some additional information called metadata (like gender or age).

One standard approach to analyze these data is to aggregate time stamps over time and

construct a weighted static network on which at most inhomogeneous Poisson processes are

assumed. However, the empirical data shows that human interactions are bursty and dynamic

of spreading differs from earlier expectations. The failure of Poissonian approximation was

first shown in [69], where the empirical study of email activity patterns has been provided.

Recent empirical studies stimulate us to argue that inter-event communication times can be

described more precisely with heavy-tailed or power law distributions [30].

The strategy of studying the effects of different kinds of inhomogeneities on spreading on
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1.4. Mathematical studies of spreading 5

temporal networks is to compare the results obtained from empirical case with those reference

networks [39]. The latter are obtained by randomizing the initial temporal one, preserving

some properties of the original network. For example, the network obtained by randomizing

the times of each contact is such an example. This randomization preserves the number of

contacts on each link and the structure of the aggregated network, whereas it destroys the

temporal structure of the contact sequence on each link.

Thus, the main question is: how does the temporal structure affect the spreading on

temporal networks [48]? The SI model was numerically simulated on the temporal network

of phone calls between people, consisting of 4.5 million nodes and 9 million links. The au-

thors showed that epidemic spreading slows down on temporal network compared to different

randomized ones [39]. Another simulation for SIS model on artificial temporal network data

led to similar results [50]. On the other hand, in a version of the SI model, in which multiple

infection attempts within a short time is necessary for a susceptible individual to be infected,

the epidemic spreading is facilitated by empirical temporal structure compared to random-

ized reference data. The SIR model has been simulated on a temporal network of 20 million

nodes with fixed recovery time [50]. The authors conclude, regarding to the bursty nature of

contacts, that global outbreak in this model is suppressed on this type of temporal structure.

Empirical studies have shown that, in addition to the non-trivial distribution of events,

there are dependencies between them [37,38]. It has been shown for SIR model that temporal

correlation of events occurring on links tends to enhance the spreading process [50]. Corre-

lations may occur in one time series on a link or there can be dependencies between events

of different links resulting, e.g., in overrepresented patterns called temporal motifs [44]. The

importance of correlations also has been noted in modeling of epidemic spreading on network

of sexual contacts in Internet-mediated prostitution [30]. Recently such dependencies have

become particularly interesting and simple queuing type models could shed light on how they

influence the characteristic quantities of the process even on a single link [65]. Their effect

on temporal networks remains to be shown.

1.4 Mathematical studies of spreading

It has been already mentioned that networks can be modeled as finite random graphs. The

geometric structure of sparse random finite graphs (Erdős-Rényi graphs, d-regular random

graphs, configuration models, preferential attachment models) is most often understood via
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6 1. Introduction

passing to an infinite limiting random graph, e.g., a branching process tree. Taking this

limit is done either via the Benjamini-Schramm local weak limit [6,11,12], or by exploration

processes [17, 60, 66], where generating function methods and martingale techniques can be

successfully applied.

On the other hand, the spreading phenomena can be modeled as a stochastic process.

The limits of stochastic processes on finite graphs can be taken: the classical examples are

thermodynamic limits from boxes of the Zd lattice. Understanding a stochastic process is

often simpler on the infinite graph, and the behavior of the finite graphs may be deduced

from that. However, it is usually not clear without a careful study whether the behavior of

a given stochastic process is determined by the local structure of the graph (such as degree

distribution, local clustering effects, etc), or also influenced by some global structure that is

lost in the above limiting procedures (such as bipartiteness).

An interesting example is bootstrap percolation, which is a dynamic percolation model

where occupation probability depends on the number of already occupied neighbors. This is

a spreading model similar to SI, more relevant to the spreading of innovation than to epi-

demics. On d-regular random graphs, despite the non-trivial geometry, a differential equation

technique (analogous to the one we sketched above) was applied successfully in [7] to find

that the initial critical density for complete occupation is basically the same as on d-regular

trees [18].

The first passage percolation problem is a mathematical analogue of the notion of the SI

epidemic spreading on networks. It has been shown that the behavior of the first passage

percolation on sparse random graphs is universal across a lot of models [13]. The model

of the first passage percolation has also been studied on different types of static regular

structures, such as the hypercube and the complete graph [22, 25]. In these models one is

mainly interested in obtaining a limit law for the length of shortest weighted paths between

two random vertices, which can be translated into spreading from one source. The more

sophisticated approach is to use the general type branching process [14]. This approach

allows to study the spreading processes in full generality, such that there is no assumption

on the transmission times of the disease. There the locally tree-like property of the network

plays a crucial role. In general, this approach to studying the spreading processes fail when

topology includes cycles.

In a number of works the influence of the topological properties on the spreading models

is studied [20, 27, 67]. In these works the authors mainly provide the evidence to extend
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1.4. Mathematical studies of spreading 7

the usual phenomenon that ”conductance determines mixing time of random walk” to SI,

SIS, etc. models, and from Markovian to non-Markovian dynamics. The topological measure

used by the authors is conductance, or equivalently, spectral gap. In our work adding a single

edge does not significantly change conductance, but we show that the speed is significantly

changed.

In the current thesis we investigate both mathematically and numerically, how the ap-

pearance of new cycles by introducing extra edges or paths, which are so-called ’bridges’,

influences the model of SI spreading on various networks. The structure of the thesis is

the following. In Chapter 2 we study the SI spreading with transmission times following

power-law distribution with infinite expectation. We derive the results both for deterministic

graphs and for specific models of random graphs. We study how the introduction of just one

extra edge to a tree severely accelerates SI spreading on it. In Chapter 3 we study how the

introduction of bridges influences the speed of the SI spreading on the real dataset of mobile

phone calls. We derive that the introduction of topological bridges boosts the spreading

and define a model which replicates this phenomenon and compare results of this model on

various theoretical networks.
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8 1. Introduction
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CHAPTER 2

The role of extra edges in speeding up

spreading on graphs

2.1 Motivation

In the current Chapter we analyze the behavior of SI spreading on tree-like networks, where

transmission times have power-law distribution with infinite expectation, which means the

assumption that the transmission time of an infection from an infected vertex to a susceptible

one through an edge connecting them is a random variable ξ with tail distribution P(ξ > t) ∼
t−α, where 0 < α < 1.

The main motivation of this research comes from the question, posed in the work of J.

Kertesz and D.X. Horvath [31]. The authors considered computer simulations of SI spreading

model on a graph with n vertices and the distinguished root vertex s, which acts as the

initiator. In computer simulations, the behavior of the SI spreading with one initiator s is

analyzed by assigning i.i.d. random passage times to each edge of the graph and performing a

realization of these times, then calculating shortest weighted paths between the root vertex s

and each of other vertices in the graph. Such procedure is also called a run and the outcome

of the run is recorded as the spreading curve, which is the collection of points (Tk, k/n) joined

by lines in consecutive order, where Tk is the time when k vertices are infected in the process

and where 1 6 k 6 n. After performing M runs of simulations, the statistical average of

all collected spreading curves is taken over the first coordinate, thus obtaining the average

spreading curve, which is the set of points

(〈Tk〉 , k/n) ,

joined by lines in consecutive order, where 〈Tk〉 = 1
M

∑M
i=1 T

(i)
k and T

(i)
k denotes the time to

9
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10 2. The role of extra edges in speeding up spreading on graphs

infect k vertices in the i’th spreading curve. The curve represents the increasing function and

reflects the typical spreading behavior in the simulation.

In the paper [31] the authors have found the presence of ”uncontrolled (horizontal) jumps”

in the average spreading curves of the computer simulated model of SI spreading on the

networks of trees – large distances between two consecutive points of the average spreading

curve that do not decrease with increasing the number of runs. The jump is represented by

the following difference

1

M

(
M∑
i=1

T
(i)
k+1 −

M∑
i=1

T
(i)
k

)
,

for some k < n. The uncontrolled jumps are explained by the presence of so-called temporal

”bottlenecks”, which are large passage times that occur on some particular edges. In the

current work we investigate the time when the first jump appears. Indeed, it is clear that if

the theoretical expectation E(Tk) is infinite, then by the Law of Large Numbers (LLN), for

any K > 0 there exists m > 0, such that for all M > m we have∑M
i=1 T

(i)
k

M
> K.

Therefore, the first jump on the curve is expected for such k for which E(Tk) < ∞ and

E(Tk+1) = ∞. The next jump occurs as if we started the process anew after the first

bottleneck, without the already infected part of the graph. This (and all the later jumps)

can also be investigated with the current method.

J. Kertesz and D.X. Horvath have made a similar hypothesis, based on the calculation

of the expected first infection time, which is the time when a first neighbor of the root s is

infected (notionally it is the second infection in the system, but we let the infection of the

root happen at the beginning of the observation, i.e. at t = 0). Denote the degree of s as ds,

then the expected time of the first infection is defined as

E(T2) = E(min{X1, . . . , Xds}),

where X1, . . . , Xds are the random passage times attached to the edges, incident to s. The

authors have considered the passage times having power-law distribution ξ and have shown,

that when the parameter α < 1/ds, the E(T2) is infinite, and, thus, there should be a jump

in the beginning of the curve.

In the current work we study the case of SI spreading with i.i.d. passage times having

power-law distribution with α ∈ (1/2, 1), and show that the spreading curve has no un-

controlled jumps whenever the process has two edges to pass the infection. Consider the
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2.1. Motivation 11

simulation of the SI process on a cycle Cn with n = 1000 vertices and power-law passage

times ξ having tail P(ξ > t) ∼ t−α with α = 0.8. We observe no jumps after averaging over

M = 1000 runs (see Figure 2.1). In Section 2.3.1 we find that in the case of a cycle

E(Tk) � k1/α,

where α ∈ (1/2, 1) and 1 6 k 6 n.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000 12000 14000 16000

k
/
n

〈Tk〉

Cn

Figure 2.1: Simulation of SI spreading with power-law weights ξ with tail P(ξ > t) ∼ t−α

with α = 0.8 on the cycle Cn with n = 1000 vertices.

The reason is that at each time the process on the cycle has two active edges that transmit

an infection and for α 6 1/2 it is easy to see that the expected first infection time is the

minimum of two i.i.d. weights and, thus, E(T2) =∞, therefore, α = 1/2 is a threshold.

A very different graph that exhibits a similar behavior is the star graph: an infected root

with n neighbors. Here, for for α > 1/2 the expected time to infect n − 1 neighbors of the

root is also of order n1/α, which we establish in the Section 2.3.2. In this case the slow-down

comes from the old edges, since for ξ having power-law distribution we have

P(ξ > t+ s | ξ > s) > P(ξ > t),

for almost all s.

Motivated by these two “extreme” constructions, in Section 2.4 we derive that for any

finite connected graph G with the root s there exists a number κ(G, s), such that the average

spreading curve of the SI process with power-law passage times with α ∈ (1/2, 1) has no un-

controlled jumps before κ(G, s) vertices are infected. The number κ(G, s) identifies the place
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12 2. The role of extra edges in speeding up spreading on graphs

where the first temporal bottleneck appears and we show it has graph-theoretical meaning:

κ(G, s) = min
e∈E(G)

|C(s,G\e)|,

where |C(s,G\e)| is the size of the connected component of the root s after deleting the edge

e. The following general result is proven in Section 2.4.

Theorem 2.1.1. Consider the graph G with the root s on n vertices and the SI spreading

process T = (Tj)
n
j=1 with power-law weights with α ∈ (1/2, 1). Then there exists the number

κ(G, s) such that for each k, where 1 6 k 6 κ(G, s), the expected time to infect k vertices is

bounded by

E(Tk) 6 Ck
1/α,

and for k > κ(G, s), the expectation E(Tk) =∞.

We have performed the simulation of the same SI spreading process with power-law pas-

sage times with α = 0.8 on the critical Galton-Watson (CGW) tree with N = 1000 vertices

and one initially infected root s and found that the jumps start to occur almost from the

beginning of the process (see Figure 2.2). However, if we perform the same simulation on

the same tree with an extra edge attached to the root and a randomly picked vertex, we

observe there appear no jumps up to substantial fraction of the total size of the tree. This

phenomenon is explained with mathematical rigor in the following theorem in Section 2.2.4.

0
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0 500000 1× 106 1.5× 106 2× 106 2.5× 106 3× 106

k
/
n

〈Tk〉

T+e
T

Figure 2.2: Simulation of SI spreading with power-law weights with α = 0.8 on the critical

Galton-Watson tree T with n = 1000 vertices and the tree, denoted as T e, which is the same

tree T with extra edge attached to the root and a uniformly chosen vertex.
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2.2. Basic definitions and technical lemmas 13

Theorem 2.1.2. Consider the CGW tree T N with one root s conditioned to have height at

least N > 0 and the SI spreading process with power-law weights with α ∈ (1/2, 1). Denote as

T N+e the tree T N with an extra edge attached to the root and one of the vertices of T N chosen

uniformly at random, and |T N | denotes the number of vertices in T N . Then as N →∞,

• the sequence of r.v. κ(T N , s) is tight;

• for any ε > 0 there exists δ > 0, such that

P
(κ(T N+e, s)
|T N+e|

> δ
)
> 1− ε.

The first statement of theorem says that w.h.p. there is an uncontrolled jump on the

average spreading curve of the SI spreading on the CGW tree slightly after the beginning

of the process. The second statement says that addition of just one more edge eliminates

uncontrolled jumps on the average spreading curve up to a positive fraction of the graph and

this fraction is occupied in finite expected time. This phenomenon we call the smoothing

of the spreading curve, meaning that the small change in the graph structure eliminates

uncontrolled jumps up to a comparatively large part of the average spreading curve.

2.2 Basic definitions and technical lemmas

In the following Section we establish some theoretical notions that are further used in the

Chapter.

2.2.1 Graph-theoretic notions

In the following Chapter we always consider simple rooted graphs G = (V,E, s) on n vertices

with m edges and call the root of the graph G the distinguished vertex s ∈ V . We denote

the set of vertices of graph G as V or V (G) and the set of edges as E or E(G). Denote

|G| to be the total size of the vertex set, or |G| = |V |. Let s, t ∈ V , then define a (simple)

path between vertices s and t of length ` as the sequence of vertices (v0, v1, . . . , v`), such that

v0 = s, v` = t and each vi 6= vj , for 0 6 i 6= j 6 `. We denote the path between s and t

as (s, t)-path. Define the graph distance d(s, t) between vertices s and t as the length of the

shortest (s, t)-path.

Define the weight of an edge e ∈ E as the value of function ξ(e), where ξ : E → R+. The

function ξ is called a weight function or, simply, weights. In the following Chapter we consider

weighted rooted graphs, where the weights are represented by i.i.d. random variables.

C
E

U
eT

D
C

ol
le

ct
io

n



14 2. The role of extra edges in speeding up spreading on graphs

The graph H = (V ′, E′, s) obtained by selecting the vertex subset V ′ ⊂ V along with the

edges E′ ⊂ E connecting them and the same root s is called an induced rooted subgraph of G

and denoted as H @ G. We call graph G a cycle if it is a path (v0, . . . , v`), such that v0 = v`.

We call the graph T a tree if it is a connected graph without cycles. It is easy to see that if

T = (V,E) is a tree on n vertices, then |E| = n− 1.

2.2.2 Functional notions

Let f and g be positive real-valued functions. Denote f ∼ g as x → ∞, if f(x)/g(x) → 1;

f = o(g) as x → ∞, if f(x)/g(x) → 0, and f = O(g) as x → ∞, if |f(x)| 6 M |g(x)| for

all x > x0 for some x0. We say f(x) � g(x) for all x, if there exist independent non-zero

constants c and C, such that cg(x) 6 f(x) 6 Cg(x) for all x.

Let γ(s, x) denote the lower incomplete Gamma function,

γ(s, x) =

x∫
0

ts−1e−tdt,

and Γ(s, x) denote the upper incomplete Gamma function,

Γ(s, x) =

∞∫
x

ts−1e−tdt.

The following Lemmas show the asymptotic behaviour of γ(s, x) and Γ(s, x) [54].

Lemma 2.2.1. Let γ(s, x) be a lower incomplete Gamma function. Then as x→ 0,

γ(s, x)

xs
→ 1

s
.

Lemma 2.2.2. Let Γ(s, x) be an upper incomplete Gamma function. Then as x→∞,

Γ(s, x)

xs−1e−x
→ 1.

We also use a well-known lemma from analysis.

Lemma 2.2.3. Let f(x) be a positive continuous monotonically increasing function. Then,

n∑
k=1

f(k) 6

n+1∫
1

f(x)dx.

When f(x) is positive continuous monotonically decreasing, then

n∑
k=1

f(k) 6

n∫
0

f(x)dx.
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2.2. Basic definitions and technical lemmas 15

Denote as (bn)∞n=1 the positive sequence that satisfies the following recurrence relation for

some C > 0 and 0 < α < 1:

bn+1 6 bn + Cb1−αn , (2.1)

with the initial condition

b1 = d = (αC)1/α. (2.2)

The following lemma presents an upper bound on the sequence (bn)∞n=1.

Lemma 2.2.4. Consider the sequence (bn)∞n=1 defined in (2.1), (2.2). Then,

bn 6 dn
1/α,

where d = (αC)1/α.

Proof. We prove the statement by induction. By definition, the statement holds for b1 := d.

Suppose the statement holds for some n > 1 and for any k, where 1 6 k 6 n, we have

bk 6 dk1/α. Then prove the statement for n+ 1. We can rewrite (2.1) as

bn+1 − bn 6 Cb1−αn .

Making a telescopic sum, we have

bn+1 − b1 6
n∑
k=1

Cb1−αk .

Then by the induction hypothesis,

bn+1 − b1 6
n∑
k=1

Cd1−αk1/α−1,

and by Lemma 2.2.3 we may bound the sum with an integral and obtain:

bn+1 − b1 6
n+1∫
1

Cd1−αx1/α−1dx = αCd1−α
(

(n+ 1)1/α − 1
)

= d
(

(n+ 1)1/α − 1
)
.

(2.3)

Since b1 is equal to d, then we can add it to both parts of (2.3) and have

bn+1 6 d(n+ 1)1/α.

This finishes proof of the Lemma.
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16 2. The role of extra edges in speeding up spreading on graphs

2.2.3 Probabilistic notions

Denote random variables with small Greek letters ξ, η, . . . and denote a cdf of an absolutely

continuous random variable ξ as F (t) := P(ξ < t) and a pdf as p(t). We use the letter µ to

denote the expected value of ξ and σ2 for the variance V ar(ξ). We say a random variable ξ

has power-law distribution pow(tmin, α), where tmin, α > 0, if the density function of ξ is the

following:

p(t) =


tαminα

1
tα+1 , if tmin 6 t;

0, otherwise.

(2.4)

Further in the chapter we refer to a power-law distributed random variable as the one with

tmin = 1, or having tail distribution P(ξ > t) = t−α, when t > 1.

Two random variables X and Y are coupled when they are defined on the same probability

space and they have the correct marginal distributions. Formally speaking, random variables

(X̂1, X̂2) are a coupling of the random variables (X1, X2) when (X̂1, X̂2) are defined on the

same probability space, and are such that the marginal distribution of X̂i is the same as the

distribution of Xi for i = 1, 2, i.e., for all measurable subsets E of R,

P(X̂i ∈ E) = P(Xi ∈ E).

Let X and Y be two discrete random variables with

P(X = x) = px, P(Y = y) = qy, x ∈ X , y ∈ Y,

where (px)x∈X and (qy)y∈Y are any two probability mass functions on two subsets X and Y
of the same space. Define the total variation distance dTV (p, q) between measures p and q in

the following way:

dTV (p, q) =
1

2

∑
x

|px − qx|.

The main result linking the total variation distance of two discrete random variables and

a coupling of them is the following theorem, named after Strassen (see [63] for the original

version; we use the formulation as in [66], p.59).

Theorem 2.2.5. For any two discrete random variables X and Y with measures p and q,

there exists a coupling (X̂, Ŷ ) of X and Y , such that

P(X̂ 6= Ŷ ) = dTV (p, q),

while for any coupling (X̂, Ŷ ) of X and Y ,

P(X̂ 6= Ŷ ) > dTV (p, q).
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2.2. Basic definitions and technical lemmas 17

Let X and Y be two random variables, not necessarily defined on the same probability

space. The random variable Y stochastically dominates the random variable X, which is

denoted as X � Y , if for every x ∈ R, the following inequality holds:

P(X > x) 6 P(Y > x).

By definition, the stochastic domination X � Y implies E(X) 6 E(Y ). We also make use of

the following theorem [47].

Theorem 2.2.6. The real random variable X stochastically dominates Y if and only if there

is a coupling (X̂, Ŷ ) of X and Y , such that

P(X̂ > Ŷ ) = 1.

The following lemma is technical and is used in the proof of Theorem 2.4.5.

Lemma 2.2.7. Let X and Y be i.i.d. power-law distributed random variables with α ∈
(1/2, 1). Then, for any t > 1:

E(min{X,Y − t}|Y > t) � t1−α,

with the constant factors depending on α.

Proof. The conditional tail distribution of the minimum of considered random variables is

the following:

P
(
min{X,Y − t} > s|Y > t

)
=

P(X > s, Y − t > s, Y > t)

P(Y > t)
=

=


t−α

(s
t

(
1 +

s

t

))−α
, if s > 1;(

1 +
s

t

)−α
, if 0 < s < 1.

Then using the substitution u =
s

t
we write the expected value as follows:

E(min{X,Y − t}|Y > t) =

∞∫
0

P
(
min{X,Y − t} > s|Y > t

)
ds =

=

1∫
0

(
1 +

s

t

)−α
ds+ t−α

∞∫
1

(s
t

(
1 +

s

t

))−α
ds =

= t

1/t∫
0

(1 + u)−αdu+ t1−α
∞∫

1/t

(u (1 + u))−α du =

= (I) + (II).
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18 2. The role of extra edges in speeding up spreading on graphs

Let us calculate both integrals separately. The first integral (I) is straightforward to compute:

(I) = t
1

1− α

[(
1 +

1

t

)1−α
− 1

]
:= f(t).

Using the L’Hospital rule it is straightforward to show that there exists C1 > 0, such that

f(t) � C1 (2.5)

Calculate the second integral (II). By splitting the interval of integration into two parts we

obtain

t1−α
∞∫

1/t

(u (1 + u))−α du = t1−α

 1∫
1/t

(u (1 + u))−α du+

∞∫
1

(u (1 + u))−α du

 . (2.6)

The first integral on the r.h.s. of (2.6) can be bounded in the following way:

1√
2

1∫
1/t

u−αdu 6

1∫
1/t

(u (1 + u))−α du 6

1∫
1/t

u−αdu,

or, equivalently,

1∫
1/t

(u (1 + u))−α du �
1∫

1/t

u−αdu =
1

1− α
(
1− tα−1

)
.

The second integral on the r.h.s. of (2.6) can be bounded in the following way:

∞∫
1

(1 + u)−2αdu 6

∞∫
1

(u (1 + u))−α du 6

∞∫
1

u−2αdu,

or, equivalently,
∞∫

1

(u (1 + u))−α du �
∞∫

1

u−2αdu =
1

2α− 1
.

Hence, the second integral (II) is bounded in the following way:

t1−α
∞∫

1/t

(u (1 + u))−α du � t1−α
(

1

2α− 1
+

1

1− α
(
1− tα−1

))
.

Summarizing the above calculations we obtain

E(min{X,Y − t}|Y > t) � t 1

1− α

[(
1 +

1

t

)1−α
− 1

]
+ t1−α

1

2α− 1
+
t1−α − 1

1− α . (2.7)

Using (2.5) we write the following upper bound:

E(min{X,Y − t}|Y > t) � 1 + t1−α
(

1

2α− 1
+

1

1− α

)
− 1

1− α
� t1−α,

with the constant factors depending on α. This finishes proof of the lemma.
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2.2. Basic definitions and technical lemmas 19

Consider the sequence of i.i.d. power-law distributed random variables X1, X2, . . . with

0 < α < 1. Then the following limit theorem holds for their sum (see [21], p.138-142).

Theorem 2.2.8. Let X1, X2, . . . , Xn are i.i.d. random variables such that P(X1 > x) ∼ cx−α

with 0 < α < 2 and c > 0. Denote Sn = X1 + · · ·+Xk and let

ak = k1/α, bk = ck, if 1 < α < 2;

ak = k1/α, bk = 0, if 0 < α < 1.

Then as k →∞:
Sk − bk
ak

d−→ Y,

where Y has a nondegenerate distribution.

In the framework of the thesis we do not consider the case α = 1, thus it was omited from

the theorem. Along with the Theorem 2.2.8 the local limit analogue holds [62].

Theorem 2.2.9. Let X1, X2, . . . be the sequence of i.i.d. random variables such that P(X1 > x)

∼ x−α with 0 < α < 2 and c > 0. Denote Sn = X1+· · ·+Xk and Y be the limiting distribution

of (Sk − bk)/ak. Then for any x ∈ supp(Y ) and h > 0

P
(Sk − bk

ak
∈ (x, x+ h)

)
= P

(
Y ∈ (x, x+ h)

)
+ o(1)

(
h+

1

ak

)
, (2.8)

where o(1) is given for k →∞ and uniform in h.

The limiting distribution Y is called stable law and it has the same parameter α as X1.

The stable law is only given via a characteristic function ( [21], p.141) and it is impossible to

write its density in most cases. However, it is known that the random variable Y is supported

on (0,∞) and by the following lemma has continuous density (see [24], p.657).

Lemma 2.2.10. The stable law Y is absolutely continuous on (0,∞), and therefore, has

density fY (t).

The following lemma describes the approximation of the tail behaviour of the distribution

Y for any 0 < α < 2 [24].

Lemma 2.2.11. Let Y be the stable law with parameter 0 < α < 2. Then as t → ∞ the

probability density function of Y is

fY (t) � t−α−1.

The particular example of the stable law Y with the exponent α = 1/2 can be expressed

by the following density (see [21], p.141, Eq.(3.7.12)):

pY (y) =
1√
2π
y−3/2e

− 1
2y . (2.9)
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20 2. The role of extra edges in speeding up spreading on graphs

2.2.4 Critical Galton-Watson trees

A Galton-Watson process is usually defined as a process 〈Zn : n > 0〉 of evolution of a system

of particles. The process starts with one particle, or Z0 = 1. Then this particle splits into k

offspring particles with probability pk and they constitute the generation Z1. Then each of

these offsprings (should there be any) also has children with the same offspring distribution

〈pk : k > 0〉, independently of each other and of their parent. The process continues forever

or until there are no children born.

In order to give a formal definition, let ξ
(j)
1 , ξ

(j)
2 , . . . , where j ∈ N denote i.i.d. non-negative

integer distributed random variables with distribution ξ, where P(ξ = k) = pk. Define the

Galton-Watson process 〈Zn : n > 0〉 as the Markov process on the non-negative integers with

the following recursion:

Zn+1 :=

Zn∑
i=1

ξ
(n+1)
i .

The quantity Zn, where n > 0, is called a n’th generation of the process and we assume

〈pk : k > 0〉 is not degenerate to avoid trivial cases. The process is called critical if E(ξ) = 1.

For each Galton-Watson process one can define a genealogical tree where vertices are

associated with the particles at each generation and there is an edge between two particles if

one is the parent of the other. These geneological trees are called as Galton-Watson (GW)

trees. These trees can be viewed as rooted labeled trees. The root of the tree T corresponds to

the particle in k’th generation, and it is denoted by < 0 >. A generic particle of the generation

Zk is indexed as < 0, l1, . . . , lk >, where lr > 1, 1 6 r 6 k. The particles < 0, l1, . . . , lk−1, j >,

where j = 1, 2, . . . , denote the children of the particle < 0, l1, . . . , lk−1 > in generation k− 1.

Of course not for all j does < 0, l1, . . . , lk−1, j > correspond to an actual vertex of T . Let

N(0, l1, . . . , lk−1) be the number of children of < 0, l1, . . . , lk−1 > in the branching process.

Then < 0, l1, . . . , lk−1, j > is a vertex of T for 1 6 j 6 N(0, l1, . . . , lk−1).

Denote the set of all GW trees as 〈GW 〉 and a randomly chosen GW tree as T . Let

the root of the tree T be the particle in generation Z0. A critical GW (CGW) tree is the

genealogical tree of a critical GW process. The size of T is defined as the number of vertices

it contains and is denoted as |T |. It is well known that a CGW tree is almost surely finite

(e.g. Theorem 3.1, p.84, [66]) and the following theorem provides a bound on the size of a

CGW tree [43].

Theorem 2.2.12. Let T be a CGW tree with integer offspring distribution ξ, such that
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2.2. Basic definitions and technical lemmas 21

V ar(ξ) := σ2 <∞. Then for n→∞,

P(|T | = n) =
1√
2πσ

n−3/2(1 + o(1)).

The height H(T ) of a GW tree T is the length of the longest path from the root in the

tree or the maximum N , such that (ZN > 0). The following limit theorem about the height

of the tree T holds [42].

Theorem 2.2.13. Let T be a CGW tree with offspring distribution ξ, such that V ar(ξ) :=

σ2 <∞. Then we have,

lim
N→∞

NP(H(T ) > N) = lim
N→∞

NP(ZN > 0) =
2

σ2
.

The following theorem provides an upper bound on the probability of having a tree of

height at least N conditioned on the exact size of this tree [3], [43].

Theorem 2.2.14. Let T be a CGW tree with offspring distribution ξ, such that V ar(ξ) :=

σ2 <∞. Then there exist positive constants C and c, such that

P(H(T ) > x
∣∣|T | = n) 6 Ce−cx

2/n.

We consider the set of GW trees conditioned on ZN > 0, where N > 0, as the subset of

trees 〈GW 〉 with height at least N . Denote this set of conditioned GW trees as 〈GW
∣∣ZN > 0〉.

The expected limit size of the k’th generation in such trees is given in the following Theorem

[49].

Theorem 2.2.15. Let T be a critical GW tree with offspring distribution ξ, such that

V ar(ξ) := σ2 <∞. Then we have:

lim
N→∞

E(Zk|ZN > 0) = 1 + kσ2.

Kesten in [41] proved that the conditional distribution of trees, conditioned on ZN > 0,

converges in distribution to an infinite CGW tree T ∞ ∈ 〈GW∞〉, where 〈GW∞〉 is the set

of infinite CGW trees which are the geneological trees of a critical Galton-Watson process

conditioned on non-extinction. The infinite tree has the following construction. The tree

T ∞ has two types of vertices: normal and special, with root being special. Normal vertices

have offsprings according to independent copies of ξ, while special nodes have a number of

offsprings according to the size-biased distribution ξ̂, where

P(ξ̂ = k) := kpk,
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22 2. The role of extra edges in speeding up spreading on graphs

and k = 0, 1, 2, . . . . Every offspring of a normal vertex is normal. When a special vertex

produces a number of offsprings, one of its children is selected uniformly at random and

becomes special, while all other children are normal.

An alternative construction of the tree T ∞ is to start by taking an infinite path γ of

special vertices from the root, which is called a spine, and then attach ν = ξ̂− 1 independent

CGW trees at each node of the spine. Since each CGW tree is a.s. finite, it follows that T ∞

a.s. has exactly one infinite path from the root, viz. the spine.

2.2.5 SI spreading process

We define the SI spreading process T = (Tk)
n
k=1 as a stochastic process on the finite rooted

graph G = (V,E, s) on n vertices, where to each e ∈ E we attach an i.i.d. random weight

ξ(e) with distribution ξ. By definition, each vertex v ∈ V may be in one of the following two

states: susceptible (S) or infected (I). The edge e ∈ E is called active if one of the end vertices

is in the infected state I and the other is susceptible S; occupied, if both vertices are in the

infected state I; and unoccupied otherwise. An infection is transmitted along the active edges

from infected vertices to susceptible ones. The weight ξ(e) of an edge e = (u, v) is a passage

time of an infection.

Another view on the SI process is the following. Consider ξ(e) as a length of an edge

e ∈ E. Then we can think of transmission of an infection as a flow from infected vertices

to susceptible ones through edges of lengths ξ. The process starts at time t = 0 with all

vertices being in the state S and the root s is turned into the infected state I and along with

time t the infection is transmitted along the active edges at rate 1. The process runs until

all vertices turn into infected state.

We refer to this process as an SI process on the graph G with weights having distribution

ξ.

2.3 Examples

In the following subsections we consider two major extreme constructions defined in Sec-

tion 2.1 and present a bound on the expected time to infect k vertices in the SI process with

weights having power-law distribution pow(α) with α ∈ (1/2, 1).
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2.3. Examples 23

2.3.1 Spreading on a cycle

Consider the example of SI spreading with power-law weights on the graph of a cycle Cn

with n vertices. The spreading on a cycle can be well approximated by the graph of the

doubly infinite line, denoted as G = (V,E, s), which is defined by the vertex set of integers

V = {0,±1,±2, . . . } with the root s = 0 and for each i, j ∈ G the pair (i, j) ∈ E iff |i−j| = 1.

We consider the SI spreading process T = (Tk)
∞
k=1 with power-law distributed random weights

Xi with α ∈ (1/2, 1), where i is a label of the larger vertex if one of the endpoints of the edge

is positive, and is the label of a smaller vertex otherwise.

Theorem 2.3.1. Let G be the graph of the doubly infinite line with root at 0. Then in the

SI spreading process (Tk)
∞
k=1 on G with power-law weights α ∈ (1/2, 1) the expected time to

infect k vertices is bounded:

E(Tk) � k1/α,

where constant factors depend on α.

Proof. Let Sk =
k∑
i=1

Xi and S∗k =
−k∑
i=−1

Xi. Note that,

min{Sk/2, S∗k/2} 6 Tk 6 min{Sk, S∗k}.

Then it is enough to prove that E(min{Sk, S∗k}) � k1/α. By Theorem 2.2.8 the sum Sk as

k →∞ is in the domain of attraction of the stable law Y with the same parameter α:

P(Sk/k
1/α > t) −−−→

k→∞
P(Y > t).

Denote Sk = Sk/k
1/α. The convergence is given via the convergence of characteristic func-

tions, where the limit characteristic function is given by [59]:

φY (t) = lim
k→∞

φSk(t) = exp(−C1|t|α), (2.10)

where C1 > 0 is constant that depends on α. Hence, in the bounded interval |t| < 1 the

convergence in (2.10) is uniform in t, thus we can write

φSk(t) = exp(−C1|t|α(1 + o(1))),

where o(1)→ 0 as k →∞ uniformly in |t| < 1. Using the relation between the tail distribution

and the characteristic function, given by the following inequality ( [21], Eq. (3.3.1)):

P(|X| > 2/u) 6
1

u

u∫
−u

(1− φX(t))dt,

C
E

U
eT

D
C

ol
le

ct
io

n



24 2. The role of extra edges in speeding up spreading on graphs

where X is a random variable with characteristic function φX(t), we derive that when t is

sufficiently large then for all k,

P(Sk > t) 6 t

2/t∫
−2/t

1− exp(−C2|x|α)dx < t

2/t∫
−2/t

C2|x|αdx = C3t
−α, (2.11)

where C3 > 0 is constant that depends on α. Thus we have for sufficiently large t:

P(min{Sk, S∗k}/k1/α > t) 6 C4t
−2α,

where C4 > 0 is constant that depends on α. Since Sk is positive then we can find a random

variable Z with power-law tail with exponent 2α such that |min{Sk, S∗k}/k1/α| < Z a.s. for

all k > 0, and thus by Dominated Convergence Theorem for α > 1/2 we have convergence of

expectations

E(min{Sk, S∗k}/k1/α) −−−→
k→∞

E(min{Y, Y ∗}).

where Y, Y ∗ are stable with parameter α. The minimum of Y, Y ∗ has power-law tail with

exponent 2α thus has finite expectation and we have:

E(min{Sk, S∗k}/k1/α) � 1,

for all k > 0, which implies the statement of the theorem.

2.3.2 Spreading on a star

Consider the example of the SI spreading process with power-law weights on the n-star.

The graph STn of the n-star is defined as the distinguished root vertex 0 and vertices

{1, 2, . . . , n − 1} attached to it. We consider the SI spreading process T = (Tk)
n
k=1 with

power-law distributed random weights with α ∈ (1/2, 1), denoted as X1, X2, . . . , Xn−1. The

bound on the expected value E(Tk), where k ∈ {1, . . . , n − 1}, is given by the following

Theorem.

Theorem 2.3.2. Let STn be the graph of the n-star, where n > 2. Then in the SI spreading

process T = (Tk)
n
k=1 on STn with weights having power-law distribution with α ∈ (1/2, 1) the

expected time to infect k vertices is bounded for k < n− 2,

E(Tk) 6 Ck
1/α,

where C > 0 is constant that depends on α, and for k = n− 2,

E(Tk) � k1/α.
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2.4. General deterministic graphs 25

Proof. Denote Xn−1
(k) the k’th order statistic of X1, . . . , Xn−1, then we have Tk = Xn−1

(k) and

it is obvious that

Xn−1
(k) � X

k+1
(k) ,

for k 6 n− 2. Then, it is straightforward to calculate the tail distribution of Xk+1
(k) :

P(Xk+1
(k) > t) = 1− P(Xk+1

(k) < t) = 1− (k + 1)P(X1, . . . , Xk < t,Xk+1 > t)− P(X1, . . . , Xk+1 < t) =

= 1− (k + 1)(1− t−α)kt−α − (1− t−α)k+1.

(2.12)

Using for t > k1/α the bound (1 − t−α)k ∼ exp(−kt−α) > 1 − kt−α, and for t < k1/α the

bound P(Xk+1
(k) > t) 6 1, and plugging them into (2.12), we obtain the following upper bound

on the expectation:

E(Xk+1
(k) ) 6

k1/α∫
0

dt+ C1(k + 1)k

∞∫
k1/α

t−2αdt =

= k1/α +
1

2α− 1

k + 1

k
k1/α 6 C2k

1/α.

Hence, we have the first statement of the theorem. In order to prove the second, we need to

obtain the lower bound using for t > k1/α the bound exp(−kt−α) < 1− kt−α + 1
2k

2t−2α, and

for t < k1/α the bound P(Xk+1
(k) > t) > 0:

E(Xk+1
(k) ) > (k2 − 1)

∞∫
k1/α

t−2αdt− 1

2
(k + 1)k2

∞∫
k1/α

t−3αdt =

=
1

2α− 1

k2 − 1

k2
k1/α − 1

3α− 1

(k + 1)k2

2k3
k1/α > C3k

1/α,

where C3 > 0 is constant that depends on α. Thus,

E(Xk+1
(k) ) � k1/α,

which finishes proof of the theorem.

2.4 General deterministic graphs

Consider the connected rooted graph G = (V,E, s) with n vertices and m edges and the

distinguished root vertex s ∈ V . Denote the i.i.d. random weight attached to the edge e ∈ E
as Xe, where Xe is defined on the probability space Ω = (R+,F ,P). Denote as P (s, t) the

shortest weighted (s, t)-path and as |P (s, t)| the total weight of such (s, t)-path. Let Gk be

the set of subtrees of G on k vertices with the same root s.
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26 2. The role of extra edges in speeding up spreading on graphs

Then we can define the probability space Ω =
m∏
i=1

(R+,F ,P) = (Rm+ ,Fm,Pm) of all possible

random assignments of weights to edges of the graph G with the product measure Pm(dω) =

P (dω1)× · · · × P (dωm).

We can define the SI spreading process on the graph G as a stochastic process T = {Tk :

k ∈ {1, . . . , n}}, where Tk is the random time to infect k vertices, defined as the minimum

over Hk ∈ Gk of the maximum over vertices t ∈ V (Hk) of the total weight of the shortest

weighted (s, t)-path. In symbols,

Tk = min
Hk⊂Gk

max
t∈V (Hk)

|P (s, t)|.

The process T is defined on the space Ω, equipped with natural filtration F = {Fk : k ∈
{1, . . . , n}}. Denote the sample sequence T (ω) = {Tk(ω) : k ∈ {1, . . . , n}}, where ω ∈ Ω.

Remember, an occupied edge is an edge with both ends in the infected state I. Each sample

sequence T (ω), ω ∈ Ω, defines an order εT (ω) = (eε1, e
ε
2, . . . , e

ε
m) on the edge set, in which they

are occupied by the process. It may happen that at some Tk(ω) two or more edges incident to

a newly infected vertex become occupied at the same time. In this case we assume that first

the edge on the shortest (weighted) path to the root is occupied, and the rest are occupied

with respect to some fixed generic order ε on the edge set to eliminate ambiguity. Given

T (ω), one can also define the FPP tree G(Tk(ω)) for each k 6 n as the subtree from Gk that

consists of those edges that successfully passed the infection, i.e., the occupied edges on the

shortest paths between the root s and the infected vertices. It may happen that some vertex

has two or more shortest paths with equal total weight, but since the system is finite, this

event happens with zero probability.

In the current framework, for each ω ∈ Ω the spreading curve is defined as the set of

pairs (Tk(ω), k/n), where 1 6 k 6 n, and the average spreading curve is the set of pairs

{(E(Tk), k/n) : 1 6 k 6 n}. Our goal is to mathematically define the position of the first

temporal bottleneck, responsible for the jump on the average spreading curve. We restrict

ourselves to consideration of power-law distributed weights with α ∈ (1/2, 1), however some

lemmas consider general weights.

First temporal bottlenecks. Remember we call an edge active at time t if one of its

incident vertices is in state S and the other is in state I. In other words, an active edge

is an edge that currently transmits an infection. Let ω ∈ Ω and the front of the epidemic

F (Tk(ω)) be the set of edges, that are active at time Tk(ω), where k ∈ {1, . . . , n}, in the

sample sequence T (ω). Define κ(G, s) to be the maximal number of vertices k such that for
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2.4. General deterministic graphs 27

each sample sequence T (ω) and for each j < k, the front F (Tj(ω)) has at least two active

edges. In other words, it is the minimal k such that there exists ω ∈ Ω with F (Tk(ω)) having

one or zero active edge. We say the active edge e is old and has age τ > 0 at time t, if the

edge has become active at time t − τ . If τ = 0, then an edge is called new. We now prove

that if there is a sample sequence T (ω) and a number i, for which the front of the epidemics

F (Ti(ω)) has one active edge, then there is a big jump at this point on the average spreading

curve.

Lemma 2.4.1. Let G be a finite rooted graph and let T be the SI spreading process with

weights having absolutely continuous distribution ξ, such that E(ξ) = ∞. Let there exist

ω0 ∈ Ω, the sample sequence T (ω0) and a number i ∈ N, such that the front F (Ti(ω0)) has

one active edge. Then for each j, where i+ 1 6 j 6 n, the expected passage time is

E(Tj) =∞.

Proof. The sample sequence T (ω0) defines the order of occupation of the edge set εT (ω) =

(eε1, e
ε
2, . . . , e

ε
m). Since all edge weights have absolutely continuous distribution and the num-

ber of edges is finite, there exists a subset A(ω0) with positive measure of sample sequences

with the same order of occupation of edges as in εT (ω). More precisely, there exists a small

ε > 0 such that the set:

A(ω0) = {ω : |Xeεj
(ω)−Xeεj

(ω0)| < ε},

which has positive measure for any ε > 0 since the state space is finite, has the property that

the order of occupation of the edges is the same for all ω ∈ A(ω0) as in εT (ω0). For this, one

can take ε to be smaller than half of the minimum of all the absolute differences between the

edge weights of different edges (which is almost surely positive).

Then, since the front F (Ti(ω0)) has one active edge, then for each ω ∈ A(ω0), the front

F (Ti(ω)) also has one active edge. Therefore, we have

E(Ti+1 − Ti | A(ω0)) = E(X) =∞,

and by the law of total expectation

E(Ti+1) = E(Ti+1 − Ti) + E(Ti) > E(Ti+1 − Ti | A(ω0))P(A(ω0)) =∞.

Since for all j, where i + 1 < j < n we have Tj � Tj+1, then we have E(Tj+1) = ∞, which

finishes the proof of the lemma.
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28 2. The role of extra edges in speeding up spreading on graphs

There exists a combinatorial description of κ(G, s), which is given in the following Lemma.

Lemma 2.4.2. Let G be a finite rooted graph with root s and let T be the SI spreading

process on G with weights having absolutely continuous distribution ξ, such that E(ξ) = ∞.

Then,

κ(G, s) = min
e∈E(G)

|C(s,G\e)|,

where |C(s,G\e)| is the size of the connected component of vertex s in the graph G without

edge e.

Proof. Suppose that there exists ω ∈ Ω and the number k, where 0 < k < n, such that

F (Tk(ω)) has one active edge e ∈ E. Then at time Tk(ω) we can divide vertices of G into

two classes: infected (in state I) and susceptible (in state S). In the induced subgraph on

infected vertices all edges are occupied, and in the subgraph on susceptible vertices all edges

are unoccupied, and there exists only one edge e between these two subgraphs. Hence, the

active edge e is a cut edge, and, by definition, the size of the infected subgraph equals to

k = |C(s,G\e)|. Since κ(G, s) is defined as the minimum of such k, hence

κ(G, s) = min
e∈E(G)

|C(s,G\e)|.

This finishes the proof of the Lemma.

Delayed process T . Fix an arbitrary order on the edge set ε = (eε1, e
ε
2, . . . , e

ε
m). Define

the process T = {T k : k ∈ {1, . . . , n}}, coupled with the original process T as follows. Start

with all vertices in the susceptible state S and let the root s be infected (in the state I).

Then choose the two active edges incident to s with smallest indices in order ε and spread

the infection through them. At the time when one of these edges becomes occupied, choose

the next active edge from E with the smallest index in ε and repeat the procedure. If both

active edges share one susceptible vertex, then when one edge gets occupied, choose two new

active edges with smallest indices in ε. The process runs until there are no more new active

edges to take and the remaining times are assumed to be infinite.

Obviously, for each k < κ(G, s) and each ω ∈ Ω the front F (T k(ω)) has two active edges,

since the delayed process can be turned into a particular realization of an original process

with ε order of edge occupation.

The process T stochastically dominates the process T , which is proved in the following

lemma.
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2.4. General deterministic graphs 29

Lemma 2.4.3. Let G = (V,E, s) be a finite rooted graph with |V | = n and |E| = m and

let T be the SI spreading process on G with positive weights having arbitrary distribution ξ.

Then the delayed process T stochastically dominates the process T .

Proof. Consider an ω ∈ Ω. Then the sample sequence of the delayed process T k(ω) induces

the FPP tree G(T k(ω)) and we have

T k(ω) = max
t∈V (G(Tk(ω)))

|P (s, t)|.

On the other hand, the original process is given by the minimum over all possible subtrees

on k vertices:

Tk(ω) = min
Hk∈Gk

max
t∈V (Hk)

|P (s, t)|.

Therefore, we have T (ω) 6 T (ω) and, therefore, T � T .

The delayed process runs slower than the original one, but next we define the Q process,

which is even slower, but is necessary to achieve our final statement.

Process Q. Define the process Q = {Qk : k ∈ {1, . . . , n}} to be the process in which at

each time Qk there are two active edges with weights X and Y in the front: one of them is

always old, with the age of the process, and an other is new. In symbols, let

Q1 = 0,

Q2 = min{X,Y },

Qk+1 = Qk + min{X,Y −Qk|Qk, Y > Qk},

(2.13)

where the unconditional X,Y are are i.i.d. edge weights. The process Q qualitatively con-

stitutes the worst scenario the infection can spread on Z, having an ever old edge Y and

spreading only along new edges X in one direction. The following lemma provides a bound

on the expected time to infect k vertices in the process Q.

Lemma 2.4.4. Consider the process Qk defined above in (2.13) with X,Y ∼ pow(α). Then,

for α ∈ (1/2, 1) and for each k, where k > 1, we have

E(Qk) 6 dk
1/α.

where d > 0 is a constant that depends on α.

Proof. Using the law of total expectation, Lemma 2.2.7 and Jensen’s inequality we have that

E(Qk+1) = E(Qk + min{X,Y −Qk}) = E(Qk) + E
(
E(min{X,Y −Qk}|Qk)

)
6

6 E(Qk) + CE(Q1−α
k ) 6

6 E(Qk) + CE(Qk)
1−α.
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30 2. The role of extra edges in speeding up spreading on graphs

Then immediately we have E(Qk) 6 bk, where bk is defined with a recursion

bk+1 = bk + Cb1−αk ,

b1 = E(Q1) =
2α

2α− 1
6 (αC)1/α := d.

By Lemma 2.2.4 this sequence is bounded and we have for any k > 1:

E(Qk) 6 dk
1/α.

This finishes the proof of the lemma.

Define the random variable Xs, where s > 0, with the following probability measure:

P(Xs > t) := P(X − s > t|X > s).

We call the random variable X to have a shifted power-law distribution shiftpow(α) with

α > 0, if P(X > t) = (t + 1)−α, when t > 0, and P(X > t) = 1 otherwise. Note that for

any s > 0, if the random variable X ∼ shiftpow(α) with α > 0, then Xs
d
= (s + 1)X and

therefore, for any s1 < s2:

Xs1 � Xs2 . (2.14)

In other words, if we consider the SI spreading with shifted power-law weights, then the older

edges dominate the newer ones. We prove now the main theorem of this section.

Theorem 2.4.5. Let G = (V,E, s) be a connected rooted graph with root s and |V | = n. Let

T be the SI spreading process on G with power-law weights with α ∈ (1/2, 1). Then for each

k, where 1 6 k 6 κ(G, s), the expected time to infect k vertices is bounded by

E(Tk) 6 Ck
1/α,

where C > 0 is a constant, that depends on α.

Proof. Let a random variable X ∼ pow(α), then (X − 1) ∼ shiftpow(α). Define T (X−1)

to be the coupled to T SI spreading process with shifted power-law weights with the same

parameter α as in T . The shift in weights is deterministic, hence by time Tk, the process

with shifted weights is faster than the original process by the cumulative shift of not more

than k − 1:

Tk − T (X−1)
k 6 k − 1,
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2.5. Critical Galton-Watson tree with an extra edge 31

and equality holds only if the spreading happens along a path of length k − 1 in the graph.

The cumulative shift depends on the shape of the FPP tree given by the process at time Tk

and can therefore be non-deterministic.

Since for X,Y ∼ shiftpow(α), then by Lemma 2.4.3 the delayed process T
(X−1)

with the

same weights dominates the process T (X−1), and we have for any k 6 κ(G, s):

Tk � T (X−1)
k + (k − 1).

Now consider the process Q with shifted power-law weights denoted as Q(X−1). Since old

edges dominate newer ones, the process Q(X−1) dominates the process T
(X−1)

, hence we have

Tk � Q(X−1)
k + (k − 1). (2.15)

Since the shift is negative, then we have Q(X−1) � Q. Hence, we have for each k, where

1 6 k 6 κ(G, s),

Tk � Qk + (k − 1).

By Lemma 2.4.4 we have

E(Tk) 6 dk
1/α + (k − 1) 6 (d+ 1)k1/α,

which finishes the proof of the theorem.

Based on Theorem 2.4.5 we can equivalently define the number κ(G, s) to be the maximal

number of vertices k in the SI spreading process with power-law weights with α ∈ (1/2, 1),

such that the expected time to infect k vertices is finite. From the statement of Lemma 2.4.2

we have the following corollary.

Corollary 2.4.6. Let G be a finite 2-edge-connected rooted graph with root s and let T be

the SI spreading process on G with power-law weights, where 1/2 < α < 1. Then for each

k 6 n,

E(Tk) 6 Ck
1/α.

2.5 Critical Galton-Watson tree with an extra edge

The appearance of jumps on the average spreading curve of the SI process on deterministic

graphs is described by Theorem 2.4.5. It has been shown that any rooted graph has a specific

number of vertices that can be infected in finite time in expectation. We apply this result
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32 2. The role of extra edges in speeding up spreading on graphs

to random graph models. In the current section we prove that w.h.p. the average spreading

curve of the SI process with power-law weights with α ∈ (1/2, 1) on a large critical Galton-

Watson tree T has a jump shortly after the beginning of the process, but addition of just one

extra edge e between the root and a random vertex in T eliminates jumps up to occupying

a positive fraction of vertices.

We consider the case of a critical Galton-Watson (CGW) tree with integer offspring

distribution ξ, such that V ar(ξ) = σ2 <∞. First we establish some technical lemmas.

2.5.1 Technical lemmas

Denote as T a CGW tree with a respective process denoted as Z and let T ∞ be an infinite

CGW tree with the same offspring distribution ξ. We write as (T [k] = T ) and (T ∞[k] = T )

the event that the first k generations of the tree T and T ∞ respectively match the first k

generations of a given tree T . Denote as #Tk the size of k’th generation in the tree T . The

following lemma holds for trees T and T ∞ [41].

Lemma 2.5.1. Let T be a CGW tree with offspring distribution ξ. Then, for any rooted

vertex-labeled tree T of at least k generations:

lim
N→∞

P(T [k] = T |ZN > 0) = #Tk · P(T [k] = T ).

Then

P(T ∞[k] = T ) = #Tk · P(T [k] = T ).

It is natural that as N → ∞ the conditioned tree T N := (T |ZN > 0) and T ∞ w.h.p.

start to look similar. The question now is how large (as a function of N) that similar part

is. The following lemma derives an exact result on this.

Lemma 2.5.2. Let T N be a CGW tree conditioned on ZN > 0 and T ∞ be an infinite critical

GW tree. Then, as N →∞, for any ε > 0 there exist δ > 0 and a coupling between T N and

T ∞, such that

P(T N [δN ] 6= T ∞[δN ]) < ε.

Proof. In order to prove the statement of the theorem we show that the conditioned measure

is close to the infinite measure in total variation distance. Consider a rooted tree T with

height k, where k 6 δN and δ > 0 is small. Then by Bayes’ formula we can write

P(T [k] = T |ZN > 0) =
P(ZN > 0|T [k] = T )

P(ZN > 0)
P(T [k] = T ) =

=
P(Z

(1)
N−k > 0 ∪ · · · ∪ Z(#Tk)

N−k > 0)

P(ZN > 0)
P(T [k] = T ),

(2.16)
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2.5. Critical Galton-Watson tree with an extra edge 33

where Z
(i)
N−k denotes the (N − k)’th generation in the copy of the CGW process Z(i), started

from a vertex at level k. By Theorem 2.2.13, for a large N there exists ε0 > 0 such that,

2

σ2N
(1− ε0) < P(ZN > 0) <

2

σ2N
(1 + ε0). (2.17)

We have that when N − k is large enough, the analogue of (2.17) is valid for each Z
(i)
N−k with

another ε1 > 0:

2

σ2(N − k)
(1− ε1) < P(Z

(i)
N−k > 0) <

2

σ2(N − k)
(1 + ε1), (2.18)

where 1 6 i 6 #Tk. In order to simplify the further calculations we take common ε2 :=

max(ε0, ε1) instead of ε0 and ε1 in (2.17) and (2.18). Now we obtain an upper bound on

P(T [k] = T |ZN > 0) using the union bound on the right-hand side of (2.16) and together

with (2.17) and (2.18):

P(T [k] = T |ZN > 0) 6
#TkP(ZN−k > 0)

P(ZN > 0)
P(T [k] = T ) 6

6
N

(N − k)
#TkP(T [k] = T )

1 + ε2

1− ε2
.

(2.19)

Therefore, we can write that for small enough k there exists ε3 > 0, such that

P(T [k] = T |ZN > 0) 6
N

(N − k)
#TkP(T [k] = T )(1 + ε3). (2.20)

In order to obtain a lower bound on P(T [k] = T |ZN > 0) we rewrite (2.16) using (2.20) as

follows:

P(T [k] = T |ZN > 0) =
1

P(ZN > 0)

(
1− P(Z

(1)
N−k = 0 ∩ · · · ∩ Z(#Tk)

N−k = 0)
)
P(T [k] = T ) =

=
1

P(ZN > 0)

(
1− (1− P(ZN−k > 0))#Tk

)
P(T [k] = T ) >

>
1

P(ZN > 0)

(
1−

(
1− 2(1− ε1)

σ2(N − k)

)#Tk
)
P(T [k] = T ).

(2.21)

Since for any x, where 0 < x, we have:

1− x < exp(−x) < 1− x+ x2/2,

therefore for n > 1:

1− (1− x)n > 1− exp(−nx) > nx− (nx)2

2
. (2.22)

We rewrite (2.21) using (2.22) for x = P(ZN−k > 0) and n = #Tk as follows:

P(T [k] = T |ZN > 0) >
P(T [k] = T )

P(ZN > 0)

(
1−

(
1− 2(1− ε1)

σ2(N − k)

)#Tk
)
P(T [k] = T ) =

=
P(T [k] = T )

P(ZN > 0)

(
#TkP(ZN−k > 0)− 1

2
(#TkP(ZN−k > 0))2

)
.

(2.23)
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34 2. The role of extra edges in speeding up spreading on graphs

Using (2.20) we can further write:

P(T [k] = T |ZN > 0) >
P(T [k] = T )

P(ZN > 0)

(
2#Tk(1− ε2)

σ2(N − k)
− 1

2

(
2#Tk(1− ε2)

σ2(N − k)

)2
)
, (2.24)

and then by (2.19) we obtain

P(T [k] = T |ZN > 0) > P(T [k] = T )
σ2N

2(1 + ε2)

(
2#Tk(1− ε2)

σ2(N − k)
− 1

2

(
2#Tk(1− ε2)

σ2(N − k)

)2
)
>

> P(T [k] = T )#Tk

(
N

N − k
1− ε2

1 + ε2
−#Tk

N

(N − k)2

)
.

(2.25)

Therefore, we can write that for small enough k there exists ε4 > 0 and a bounded Cε > 0

which is uniquely defined by ε4, such that

P(T [k] = T |ZN > 0) > P(T [k] = T )#Tk

(
N

N − k −#Tk
CεN

(N − k)2

)
(1− ε4). (2.26)

Combining the (2.20) and (2.26), and choosing ε5 := max{ε3, ε4}, we obtain the following

bounds on the probability P(T [k] = T |ZN > 0):(
N

N − k −#Tk
CεN

(N − k)2

)
(1− ε5) 6

P(T [k] = T |ZN > 0)

#TkP(T [k] = T )
6

N

(N − k)
(1 + ε5). (2.27)

Now we bound the total variation distance between conditioned and infinite measures.

Denote the conditioned measure as PN (·) := P(· | ZN > 0). From the upper bound in (2.27)

we obtain that when k is small enough, the following inequality holds:

PN (T [k] = T )− P(T ∞[k] = T ) 6

(
N

N − k (1 + ε5)− 1

)
#TkP(T [k] = T ) =

=

((
N

N − k − 1

)
+

N

N − kε5

)
#TkP(T [k] = T ),

and, on the other hand, from the lower bound in (2.27) we obtain

P(T ∞[k] = T )− PN (T [k] = T ) 6

(
1− N

N − k (1− ε5) + #Tk
CεN

(N − k)2
(1− ε5)

)
·

·#TkP(T [k] = T ) =

=

((
1− N

N − k

)
+

N

N − kε5 + #Tk
CεN

(N − k)2
(1− ε5)

)
·

·#TkP(T [k] = T ).

Comparing both bounds we see that all summands are positive, except of
(

1− N
N−k

)
, thus

we can inverse the sign and derive the bound for an absolute value:

P(T ∞[k] = T )− PN (T [k] = T ) 6

((
N

N − k − 1

)
+ ε5

N

N − k + #Tk
CεN

(N − k)2
(1− ε5)

)
·

·#TkP(T [k] = T ).
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2.5. Critical Galton-Watson tree with an extra edge 35

Summing those bounds over all trees we get:

∑
T

∣∣∣PN (T [k] = T )− P(T ∞[k] = T )
∣∣∣ 6∑

T

((
N

N − k − 1

)
+ ε5

N

N − k + #Tk
CεN

(N − k)2
(1− ε5)

)
·

·#TkP(T [k] = T ).

(2.28)

Letting k be equal to δN we further rewrite (2.29):

∑
T

∣∣∣PN (T [δN ] = T )− P(T ∞[δN ] = T )
∣∣∣ 6∑

T

(
δ

1− δ +
ε5

1− δ +
Cε#Tk
N

1− ε5

(1− δ)2

)
·

·#TkP(T [k] = T ).

(2.29)

Since we have a measure on the set of infinite trees, then

∑
T

P(T ∞[k] = T ) =
∑
T

#TkP(T [k] = T ) = 1,

and from Theorem 2.2.15 we have

∑
T

(#Tk)
2P(T [k] = T ) = 1 + kσ2.

Therefore we can rewrite (2.29) for k = δN , when δ > 0 is small, and obtain

∑
T

∣∣∣PN (T [δN ] = T )− P(T ∞[δN ] = T )
∣∣∣ 6 δ

1− δ +
ε5

1− δ + C ′εδ
1− ε5

(1− δ)2
+
Cε
N

1− ε5

(1− δ)2
,

where C ′ε = Cεσ
2. Hence, for any ε6 > 0 we can find large N and small δ > 0, such that

∑
T

∣∣∣PN (T [δN ] = T )− P(T ∞[δN ] = T )
∣∣∣ 6 ε6. (2.30)

Denote the projection of measures PN and P∞ onto the trees with common first δN layers

T [δN ] as PN�δN and P∞�δN respectively. Then, by definition of the total variation distance

and (2.30) we have

dTV (PN�δN ,P∞�δN ) 6
1

2
ε6.

Hence by Theorem 2.2.5 there exists a coupling of random variables T [δN ] and T ∞[δN ],

such that the difference between them is small in total variation distance. This finishes the

proof of the lemma.

We now turn to the tree with an extra edge. Consider a rooted tree T with root s on

n vertices and consider the SI spreading process T = (Tj)
n
j=1 on this tree with power-law
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36 2. The role of extra edges in speeding up spreading on graphs

weights with α ∈ (1/2, 1). Let the degree of the root be equal to ds. Denote subtrees hanging

from the root as T0, . . . , Tds . Then, by Lemma 2.4.2,

κ(T , s) = |T | −max{|Ti| : 0 6 i 6 ds}. (2.31)

Now add an extra edge e between s and a randomly chosen vertex in the tree. Then,

we obtain a graph, denoted as T+e, which consists of a cycle Ck of length k with N rooted

trees T0, T1, . . . , TN , where N > ds a.s., attached to it by edges e0, e1, . . . , eN (see Figure2.3).

Then, by Lemma 2.4.2, we have

κ(T+e, s) = |T+e| −max{|Ti| : 0 6 i 6 N}. (2.32)

This fact is used in the following Section.

Ck

bc

bc
bc

bc
bc

bc
bc

bc

bc

bc
bc

bc

bc bc

bc bc

T0

T1

T2

T3TN

e0
e1

e2

e3

eN

s

Figure 2.3: Schematic structure of a graph T+e of a tree T with an extra edge e: a cycle Ck

with hanging trees T0, T1, . . . , TN .

2.5.2 Main Theorem

The following theorem shows that in the critical Galton-Watson tree w.h.p. there is a large

jump on the average spreading curve near the beginning, but one extra edge lets the process

to infect a non-zero fraction of the tree without large jumps.

Theorem 2.5.3. Consider the CGW tree T N conditioned on ZN > 0 and the SI spreading

process with power-law weights with α ∈ (1/2, 1). Denote as T N+e the tree T N with an extra

edge attached to a root and one of the vertices of T N uniformly at random, and |T N | denotes

the number of vertices in T N . Then as N →∞,
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2.5. Critical Galton-Watson tree with an extra edge 37

1. the sequence of r.v. κ(T N , s) is tight;

2. for any ε > 0 there exists δ > 0, such that

P
(κ(T N+e, s)
|T N+e|

> δ
)
> 1− ε.

Proof. 1) Consider first the infinite CGW tree T ∞. Following the construction of T ∞ we

denote the spine as γ and label the unconditioned CGW trees attached to the root as

t1, t2, . . . , tν , and the rest of the tree as t0.

Let n := δN , where δ > 0 is given. The number of the unconditioned trees ν is represented

by shifted size-biased i.i.d. random variables

ν = ξ̂ − 1.

Let µ := Eν, then it is straightforward to show that µ = σ2 <∞. By Markov inequality for

any given C1 > 0

P(ν > C1) <
σ2

C1
.

Hence, for any ε1 > 0 there exists C1 > 0, such that

P(ν < C1) > 1− ε1.

Then, using the law of total probability we bound the total size of these trees in the following

way:

P
( ν∑
i=1

|ti| > C1K
)

= P
( ν∑
i=1

|ti| > C1K
∣∣ ν < C1

)
P(ν < C1)+

+ P
( ν∑
i=1

|ti| > C1K
∣∣ ν > C1

)
P(ν > C1) <

< P
( C1∑
i=1

|ti| > C1K
)

+ ε1.

(2.33)

It remains to show that the total size of C1 trees is bounded. Using the union bound we can

write:

P
( C1∑
i=1

|ti| > C1K
)
< P(at least one |ti| > K) 6

< C1P(|ti| > K),

(2.34)

where by Theorem 2.2.12 and Lemma 2.2.3 we derive that for large K,

P(|t1| > K) 6 C2

∑
k=K+1

k−3/2 6 C2

∞∫
K

x−3/2dx =

=
C3√
K
,

(2.35)
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38 2. The role of extra edges in speeding up spreading on graphs

where C3 > 0 is constant that depends on ξ. Hence, for any ε2 > 0 and given C1 > 0 there

exists large K, such that

P
( ν∑
i=1

|ti| < C1K
)
> 1− ε2. (2.36)

Since the total size of trees ti, where i > 1, is bounded, then it follows that their height is

bounded too. Then by Lemma 2.5.2, for large N and any ε3 > 0 we can find δ > 0 and

a coupling of T N and T ∞, such that the tree T N [n] is same as T ∞[n] with probability at

least (1 − ε3), hence by (2.36) for any ε4 > 0 and large N there exists K such that in the

conditioned tree T N :

P(
ν∑
i=1

|ti| < C1K) > 1− ε4. (2.37)

In order to prove the statement of the theorem, we need to show that the size of t0 is the

largest among ti, where 0 6 i 6 ν. Thus, we show that the size of the tree |T N | is of order

N2 w.h.p. By Bayes’ formula:

P(|T N | = M) = P(|T | = M | ZN > 0) =
P(ZN > 0 | |T | = M)

P(ZN > 0)
P(|T | = M),

where T denotes the CGW tree. Since the condition ZN > 0 implies that there exists at least

one vertex at each distance k from the root for k 6 N , then

P(|T N | = k) = 0. (2.38)

The event (ZN > 0 | |T | = M) is equivalent to the event (H(T ) > N | |T | = M), hence by

Theorem 2.2.12, Theorem 2.2.13 and Theorem 2.2.14, for large N and for any M > N , we

have the following inequality holds:

P(|T N | = M) < C4e
−c1N

2

M NM−3/2, (2.39)

where c1, C4 > 0 are constants that depend on ξ and N . Prove that the probability of having

small T N is small. Let h1 > 0, then by (2.38) and (2.39) we have

P(|T N | < h1N
2) < C4

∑
m<h1N2

e−c1
N2

m Nm−3/2,

and, by Lemma 2.2.3, the sum can be bounded with an integral:

P(|T N | < h1N
2) < C4

h1N2∫
N

e−c1
N2

m Nm−3/2dm =
C4

N2

h1∫
1/N

e−c1/xx−3/2dx =

=
C4√
c1

c1/h1∫
c1N

e−yy−1/2dy <
C4√
c1

c1/h1∫
∞

e−yy−1/2dy <

<
C4√
c1

Γ

(
1/2,

c1

h1

)
,
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2.5. Critical Galton-Watson tree with an extra edge 39

By Lemma 2.2.2, as h1 → 0,

P(|T N | < h1N
2) < C4h

−1/2
1 e−c1/h1 , (2.40)

which gives us that for any ε5 > 0 there exists h1 > 0, such that

P(|T N | > h1N
2) > 1− ε5. (2.41)

Since by (2.36) the total size of trees ti, where i > 1, is bounded with the absolute constant

w.h.p. then for large enough N the size of t0 has the same order of magnitude as |T N | w.h.p.

Hence we can apply formula (2.31), where Ti = ti for i > 0 and derive that for any ε6 > 0

there exists L > 0 and for any large enough N :

P(κ(T N , s) < L) > 1− ε6.

2) In the following part we follow a similar line to prove the statement. First consider

the infinite tree T ∞. Denote as γk, where k > 1, the initial part of γ between the root and

the vertex at depth k inclusive. Following the construction of T ∞ label the unconditioned

trees attached to γk in the breadth-first order as t1, t2, . . . , tν1 , . . . , tνk . Denote the number

of unconditioned trees t1, . . . , tνk as Sk =
k∑
i=1

νi, where νi = ξ̂i − 1 is the shifted size-biased

version of the offspring distribution ξ.

Let n := δN and n′ := δ2N . Consider Sn′ unconditioned trees t1, . . . , tνn′ that hang off

γn′ and let t0 := T ∞\
(
γn′ ∪ t1 ∪ · · · ∪ tνn′

)
. We show that ti, where 1 6 i 6 νn′ do not

go deeper than n’th generation in T ∞ w.h.p. or, in other words, they have height at most

(n− n′). Indeed by Theorem 2.2.13 for any ε′1 > 0 and small δ > 0 there exists large enough

N such that

P(H(t1) > n− n′) = P(H(t1) > (1− δ)δN) <
2

σ2(1− δ)δN (1 + ε′1).

We will now prove that the number of unconditioned trees Sn′ is bounded with linear function

in n′ w.h.p. Remember that µ = E(ν) < ∞, then by the LLN for any ε′2 > 0 we can find

such K ′1 > 0 such that

P(Sn′ < K ′1µn
′) > 1− ε′2.

Hence, using the law of total probability we have

P
(
∃i ∈ {1, . . . , νn′} : H(ti) > n− n′

)
< P

(
∃i ∈ {1, . . . ,K ′1µn′} : H(ti) > n− n′

)
+ ε′2.

Using the union bound we can show that

P
(
∃i ∈ {1, . . . ,K ′1µn′} : H(ti) > n− n′

)
<

2K ′1µδ
σ2(1− δ)(1 + ε′1) < C ′1

δ

1− δ (1 + ε′1).
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40 2. The role of extra edges in speeding up spreading on graphs

Thus, for any ε′3 > 0 there exists δ > 0 small enough, such that

P
(
H(ti) < n− n′ ∀i ∈ {1, . . . , νn′}

)
> 1− ε′3.

We now prove that the total size of Sn′ unconditioned trees is of order n′2 with high proba-

bility. Using the law of total probability we can write

P(

Sn′∑
i=1

|ti| > K ′2n
′2) = P(

Sn′∑
i=1

|ti| > K ′2n
′2 | Sn′ < K ′1µn

′)P(Sn′ < K ′1µn
′)+

+ P(

Sn′∑
i=1

|ti| > K ′2n
′2 | Sn′ > K ′1µn

′)P(Sn′ > K ′1µn
′) 6

< P(

K′
1µn

′∑
i=1

|ti| > K ′2n
′2) + ε′2.

(2.42)

Thus, for an upper bound it remains to show that the size of K ′1µn
′ trees has order at most

K ′2n
′2 with high probability. By Theorem 2.2.12 the tail distribution of |ti| can be bounded

below as follows:

P(|t1| > x) > C ′2

∞∑
n=x

n−3/2 >

> C ′2

∞∫
x

z−3/2dz = C ′3x
−1/2.

Combining it with (2.35) we obtain that |t1| has power-law tail and then by Theorem 2.2.8

the size |t1| belongs to the domain of attraction of the stable law Y with α = 1/2 that has

the following density:

pY (y) =
1√
2π
y−3/2e

− 1
2y . (2.43)

Hence for large enough K ′2 > 0 and large N we have

P
(K′

1µn
′∑

i=1

|ti| > K ′2n
′2
)
∼ P

(
Y >

K ′2
(K ′1µ)2

)
=

1√
2π

∞∫
K′

2/(K
′
1µ)2

y−3/2e
1
2y dy =

=
1√
2π

(K′
1µ)2/2K′

2∫
0

z−1/2e−zdz =
1√
2π
γ

(
1/2,

(K ′1µ)2

2K ′2

)
.

Then, by Lemma 2.2.1, we have that for large K ′2 > 0:

P
(K′

1µn
′∑

i=1

|ti| > K ′2n
′2
)
∼ K ′1µ

2
√
πK ′2

.
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2.5. Critical Galton-Watson tree with an extra edge 41

Therefore, for any ε′4 > 0 we can find large K ′2 > 0 such that

P
(Sn′∑
i=1

|ti| < K ′2n
′2
)
> 1− ε′4. (2.44)

The lower bound is given as follows. By the LLN for any ε′5 > 0 we can find small k′2 > 0

such that

P(Sn′ > k′1µn
′) > 1− ε′5,

and using the law of total probability as before we can write for small enough k′2 > 0 and

large N :

P(

Sn′∑
i=1

|ti| < k′2n
′2) < ε′5 + P(

k′1µn
′∑

i=1

|ti| < k′2n
′2). (2.45)

Thus, it remains to show that the size of k′1µn
′ trees has order at least k′2n

′2 with high

probability. Since all |ti| are i.i.d. and belong to the domain of attraction of the stable law

Y from (2.43) then we have for large N :

P
(k′1µn′∑
i=1

|ti| < k′2n
′2
)
∼ P

(
Y <

k′2
(k′1µ)2

)
=

1√
2π

k′2/(k
′
1µ)2∫

0

y−3/2e
1
2y dy =

=
1√
2π

∞∫
(k′1µ)2/2k′2

z−1/2e−zdz =
1√
2π

Γ

(
1/2,

(k′1µ)2

2k′2

)
.

Then, by Lemma 2.2.2, we have that for small k′2 > 0:

P
(k′1µn′∑
i=1

|ti| < k′2n
′2
)
∼

√
k′2√

πk′1µ
exp(−(k′1µ)2

2k′2
).

Therefore, for any ε′6 > 0 we can find small enough k′2 > 0 such that

P
(Sn′∑
i=1

|ti| > k′2n
′2
)
> 1− ε′6. (2.46)

By Lemma 2.5.2, for large N and any ε′7 > 0 we can find δ > 0 and a coupling of T N and T ∞,

such that the tree T N [n] is same to T ∞[n] with probability at least (1 − ε′7). There exists

an image of γn in T N , and all trees that hang off γn′ do not go deeper than generation Zn

w.h.p. Hence for any ε′8 > 0 and large N there exist k′2,K
′
2 > 0 such that in the conditioned

tree T N :

P
( 1

n′2

Sn′∑
i=1

|ti| ∈ [k′2,K
′
2]
)
> 1− ε′8. (2.47)
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42 2. The role of extra edges in speeding up spreading on graphs

Now we are ready to prove that the extra edge is attached to the subtree t0 in T N w.h.p.

The probability of the edge e to be attached to a vertex in the tree t0 can be bounded as

follows:

P(e ∈ t0) > P
(
e ∈ t0

∣∣∣ |T N+e\t0||T N+e|
< δ′

)
P
( |T N+e\t0|
|T N+e|

< δ′
)
. (2.48)

Since the attachment is uniform, then it automatically follows:

P
(
e ∈ t0

∣∣∣ |T N+e\t0||T N+e|
< δ′

)
> 1− δ′.

Using (2.41) and (2.47) we have

P
( |T N+e\t0|
|T N+e|

<
K ′2δ

4

h1

)
> 1− ε′6 − ε′8,

and since δ can be chosen to be small enough, we have that for any ε′9 > 0 there exist δ′ > 0

and large N such that

P(e ∈ t0) > 1− ε′9.

Now since the statement of the theorem about the fraction of κ(T N+e, s) and |T N+e|, the larger

volume of the tree can decrease this fraction, thus we need to prove that the probability to

have a very large tree T N in N2 scale is also small. Consider a large H1 > 0, then by (2.39)

we have:

P(|T N+e| > H1N
2) < C2

∑
m>H1N2

e−c1
N2

m Nm−3/2

< C2

∞∫
H1N2

e−c1
N2

m Nm−3/2dm = C2

∞∫
H1

e−
c1
x x−3/2dx =

=
C2√
c1

c1/H1∫
0

e−yy−1/2dy =
C2√
c1
γ

(
1/2,

c1

H1

)

and, by Lemma 2.2.1, for large H1 we have

P(|T N+e| > H1N
2) < C2H

−1/2
1 .

Hence, for any ε′10 > 0 we can find H1 > 0, such that

P(|T N+e| < H1N
2) > 1− ε′10. (2.49)

We have proven that all the trees t1, . . . , tνn′ are short enough and have small total volume

comparative to the total size of the tree T N+e w.h.p. Now use the formula (2.32) for κ(T N+e, s).

C
E

U
eT

D
C

ol
le

ct
io

n



2.6. Critical versus near-critical Erdős-Rényi graphs and heuristics 43

In this case, if the other endpoint of e is in t0, then the largest subtree is in t0 w.h.p. then if we

cut off the whole t0 we have the lower bound on κ(T N+e, s) > |T N+e| − |t0| = |γn′ |+∑S′
n
i=1 |ti| >∑S′

n
i=1 |ti| given in (2.46) and the volume of the whole graph is bounded above in (2.49).

Combining those bounds we obtain

P
(κ(T N+e, s)
|T N+e|

>
k′2δ

4

H1

)
> 1− ε′8 − ε′10.

Hence, choosing δ small enough we have that for any ε′11 > 0 we can find small enough δ′′ > 0

and large N such that

P
(κ(T N+e, s)
|T N+e|

> δ′′
)
> 1− ε′11.

This finishes proof of the theorem.

2.6 Critical versus near-critical Erdős-Rényi graphs and heuris-

tics

Another model of random graphs where our results may be applied and the same smoothing

phenomenon may be observed is the largest cluster of critical versus near-critical Erdős-Rényi

graphs. We are presenting here the main ideas on a slightly heuristic level, and are planning

to work out the details in the forthcoming paper version of this chapter of the thesis.

Let us consider the Erdős-Rényi graph G(n, p) in its critical window for the emergence of

a giant cluster, at p = pn(λ) = 1/n + λ/n4/3, with λ ∈ (−∞,∞). We will use the standard

monotone coupling of these random graphs.

The cluster of a typical vertex in G(n, pn(λ)) in the critical case λ = 0 is locally a GW

tree with Poisson offspring distribution with mean 1. As we are raising λ, extra edges appear

in the standard coupling. Since the sizes of the largest clusters above the critical point are

of order n2/3, the number of extra edges in each such component is approximately Poisson

(Θ(λ)), while, of course, the extra edges also merge some of these components. That is,

the large scale structure of large critical versus near-critical clusters resembles but does not

exactly coincide with our first example: a critical random tree conditioned to be large, plus

a constant number of random edges.

To make this picture more precise, the probability that the largest cluster of G(n, pn(λ))

is a tree converges to some t(λ) > 0, which decays rapidly as λ→∞ (see [34]). This means

that, for λ = 0, with a decent positive probability the SI spreading will encounter bottlenecks
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44 2. The role of extra edges in speeding up spreading on graphs

everywhere during the process, and, because of these bottlenecks at random locations, the

averaged spreading curve will not converge and will produce jumps. However, at large λ > 0,

a typical largest cluster will have one or more extra edges, hence, on a typical realization of

the cluster, we expect to see the smoothing effect.

In order to apply our Theorem 2.4.5, we need to prove that for the largest connected

cluster C(n) of Gp(n, pn(λ)) the κ(C(n), s) is typically positive for these clusters. Of course, in

this case we have to choose the root from the 2-core - the maximum induced subgraph of C(n)

which has minimum degree two. As before, this will be clear once we know that the cluster,

having a volume of order n2/3,

• has a diameter of order n1/3,

• the extra edges are located quite randomly, so that the cycles created have length of

order n1/3, and

• the subgraphs hanging off from such a large cycle are random enough, with a critical

GW-like structure, so that at least two of them have volume of order n2/3.

This structural result is essentially provided by [1,2], where the scaling limit of large near-

critical clusters as metric spaces is described, built on the classical work of Aldous [5]. The

properties we are aiming at are probably most apparent from Procedure 1 in [2], p.9, which

constructs the scaling limit of a large cluster conditioned to have volume cn2/3 and k ≥ 0

extra edges roughly as follows; the structure is basically independent of c. For k ≥ 2, the first

one takes a 3-regular graph on 2(k − 1) vertices, from a certain distribution; for k = 0, the

graph is just a single vertex; for k = 1, the graph is a “lollipop”: two vertices with an edge

between them and a loop at one of the vertices. Then one replaces each edge of the graph by

a copy of Aldous’ Brownian Continuum Random Tree, independent from being conditioned

to have total scaled volume c. Finally, one chooses the points where the neighbouring trees

are glued to each other in an appropriate way. Since a positive distance in the scaling limit

corresponds to a discrete distance of order n1/3, for k ≥ 1 our requirements above are easily

seen to be satisfied.

The following results from our numerical simulations show that, even at a moderately

off-critical value λ = 1, we practically always see the smoothing effect (see Figure 2.4).
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Figure 2.4: Simulation of SI spreading with power-law inter-event times with α = 0.8 on

the Erdős-Rényi graph (ER) with n = 20000 vertices. (a) The critical ER graph with λ = 0.

(b) The above critical ER graph with λ = 1.
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CHAPTER 3

The role of bridges in spreading on

temporal networks

3.1 Introduction

Recently much effort has been made to understand the main governing factors of spreading on

networks [19,31,39]. Topological aspects like community structure [26] and temporal activity

patterns like burstiness [9] severly influence the speed of spreading [32,39,50].

Different approaches have been applied to tackle this problem. One direction is to treat

related models analytically and by numerical simulations [19, 31, 32, 35, 46, 69]. Another

possibility is to use empirical data about the temporal networks and define an SI spreading

process with those data. Such data include email logs [53,69] records of face to face encounters

[61] or mobile call billing information [39,50].

Mobile call records provide detailed insight into the dynamics of human interactions and

can especially well be applied to study the different aspects of communications processes [15].

It was shown [55] that in mobile call networks subscribers from a city can be considered as a

kind of community. We decided therefore to study how the communication and the spreading

of information are structured in cities. In this Chapter we use time stamped mobile call data

from a service provider of a European country for simulating the SI process on the real

communication networks.

3.2 Basic notions

Throughout this Chapter we use the notion of networks, which is in a sense another name of

graphs, used in computer science. Instead of the word ”vertex” we use the word ”node” and

47
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48 3. The role of bridges in spreading on temporal networks

edges are called sometimes ”links”. We use the notion of temporal networks as introduced

in [56]. A temporal network G = (V, E) is defined as a set of nodes V between which a

complete trace of all interaction events E occurring within the time interval [0, T ] is known.

Each such event ε ∈ E can be represented by a quadruplet ε = (u, v, t, δt), where the event

connecting nodes u and v begins at t and the interaction is completed in time δt. As an

example, δt may correspond to the duration of a phone conversation or flight time in an air

transport network. Broadly, we define δt such that if an event e transmits something from

u to v, the recipient can ”make use” of it only after the time δt has elapsed. However, in

some cases, events can be approximated as instantaneous, so that δt = 0 and they can be

represented with triplets ε = (u, v, t), as in [29]. In the current study we further use the latter

notion.

The underlying or aggregate network Γ = (V,E) of a temporal network is defined as the

set of nodes V (Γ) = V and there exists a link between two nodes u, v ∈ V (Γ) if there is at

least one interaction (u, v, t) ∈ E . Thus, for each link e = (u, v) ∈ E(Γ) one can project

all interactions (u, v, t) ∈ E onto e and have all the information about the communication

between nodes u and v directly on e. The collection of interactions on each link is called

interaction pattern. The interaction pattern is homogeneous if the interaction events are

uncorrelated in time and a bursty pattern is the pattern with significantly enhanced levels of

activity followed by long periods of inactivity [28].

For any edge (u, v) ∈ E(Γ), the time ∆t = t2 − t1 between two consecutive interactions

(u, v, t1) and (u, v, t2), where t1 < t2, is called an inter-event time. Once we have all inter-

event times for edge e, we can define the inter-event time distribution P(∆t) for edge e. It is

commonly used (see e.g. [28,39]) that homogeneous interaction patterns are modeled by the

exponential inter-event time distribution P(ξ > t) ∼ e−λt, where λ > 0, and bursty patterns

are modelled by power-law tailed inter-event time distributions P(ξ > t) ∼ t−α, where α > 0.

The average inter-event time is the average of the inter-event times over the whole network.

The average inter-event time gives an approximation of the common pattern of interactions in

the network. We denote the mean of the inter-event distribution as µ and standard deviation

as σ. The burstiness coefficient B measures how bursty the interaction is in the network and

it can be described in terms of inter-event time distribution:

B =
σ − µ
σ + µ

.

When B ∼ 1 the interaction follows a bursty pattern, when B ∼ 0 the pattern is homogeneous

and resembles the one produced by the Poisson process and when B ∼ −1 the interaction is
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3.2. Basic notions 49

regular (periodic) [28].

The underlying network Γ may be disconnected and consist of several subnetworks, or

components, without links between them. We call the largest connected component LCC(Γ)

the component with the largest size. The quantity P∞ denotes the proportion of nodes in

LCC(Γ) over the total size of the network.

We define the deterministic SI spreading process on the temporal network G as a dynamic

process on the underlying network Γ. Let us recall its definition. Each node is labelled by one

of two states: susceptible (S, non-informed) or infected (I, informed). Suppose that at time

t = 0 all nodes are in the susceptible state and one node, the initiator, chosen at random,

turns into the infected state. The infection is passed with time t through links from infected

nodes to susceptible ones instantaneously at the first time when an interaction takes place

between these two nodes. The process runs until the connected component of the initiator

becomes infected. Thus, in order to avoid uncertainties in the results we always consider

spreading on the LCC(Γ). One can define a spreading curve N(t) as the ratio of nodes

infected in the process by time t to the size of the LCC(Γ). To obtain statistics, we perform

in our simulations M runs of SI spreading process with random initiators from the LCC(Γ).

The average spreading curve is then defined as the average curve 〈N(t)〉:

〈N(t)〉 =

M∑
i=1

Ni(t)

M
.

The characteristic time of the SI spreading on G is defined as the time τ , such that 〈N(τ)〉 =

1/2.

In the modeling Section we consider several network models. Three of them are basic net-

work models: the Erdős-Rényi, the Barabási-Albert and the regular lattice model with next

nearest neighbour interactions (NNN) and one is a model designed to reflect the community

structure of the society. Let us describe them briefly here.

Two-dimensional regular lattice with NNN (Z) is widely used in theoretical studies

of various physical models (see e.g. [64, 73]). The infinite square lattice with next nearest

neighbour interactions (NNN) is defined as the infinite regular two-dimensional grid of nodes

[i, j], where i, j ∈ Z, and nodes [i1, j1] and [i2, j2] are connected with an edge, if |i1 −
i2| + |j1 − j2| = 1 or |i1 − i2| + |j1 − j2| = 2. The two-dimensional finite square lattice

with NNN (Z2) is defined as an induced sub-network of an infinite lattice on n2 nodes

V (Z2) = {[i, j] : 1 6 i, j 6 n}.

C
E

U
eT

D
C

ol
le

ct
io

n



50 3. The role of bridges in spreading on temporal networks

Erdős-Rényi random graph model (ER) is considered to be the first and mathemat-

ically simplest model of random graphs [23]. The model ER is constructed from an empty

graph on n vertices by adding each possible edge with probability p.

Barabási-Albert network (BA) is a network model designed to model the preferential

attachment of nodes [10]. The network BA starts with an initial connected network of m0

nodes, where m0 > 0. New nodes are added to the network one at a time. Each new node is

connected to m 6 m0 existing nodes with a probability that is proportional to the number

of links that the existing nodes already have. Formally, the probability pi that the new node

is connected to node i is

pi =
ki∑
j kj

,

where ki is the degree of node i and the sum is made over all existing nodes j.

The model of Kumpula et.al. (K) was proposed in [45] as a model of social networks

with community structure. Denote ξ to be the weight of links. The model starts with an

empty network on n nodes and at each step the links are generated in the following two

ways. If a node u has non-zero degree, we choose one of its neighbours v with probability

proportional to the weight of the outgoing link ξ(u, v). Then, if v has neighbours apart from

u, say w, we choose it with probability proportional to the weight of its link ξ(v, w). If there

is no link between u and w we create it with probability p∆ and attach initial weight δ0,

otherwise we add δ to the weights of all these three links. This mechanism is called local

attachment (LA). Under the second mechanism, the node u creates a link with a random

node v with weight δ0 with some constant probability pr, or with probability 1 if u has zero

degree. This mechanism is called global attachment (GA). Finally any node can be replaced

by a zero degree node with constant probability pd, which is called node deletion (ND).

These three mechanisms, i.e., LA, GA, and ND, are applied to all nodes at each step i and

the network reaches a statistically stationary state after a sufficient number of steps D. We

consider an unweighted version of this network, meaning that when using the network for

the SI process we disregard the weights. The probability p∆ is directly related to the average

degree of the network.

The average degree of Γ is the average of node degrees over the node set. The network Γ on

n nodes has a small-world property, if the diameter of network is at most of size O(log n) [71].

The network Γ is said to have community structure, if there is a partition of a node set into

subsets with a high concentration of edges within subsets and low concentration of edges

between them [26]. We say that network model Γ with n nodes and m links has non-zero
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3.3. Data and analysis 51

percolation threshold if deleting a sufficient proportion p of links, where p < 1, leaves the size

of LCC(Γ) to be of size o(n) in the limit of n → ∞ [40]. The important properties of all

four above models are summarized in the Table 3.1. Degree distributions of networks Z2,

ER and BA are known, when the degree distribution of network K can be well described by

the log-normal distribution and it is stable with respect to the size of the network.

Degree

distribution
Small-world

Percolation

threshold
Communities

Z2 Constant - + -

ER Poisson + + -

BA Power − law + - -

K Log − normal + + +

Table 3.1: Main properties of the considered network models.

3.3 Data and analysis

The dataset contains records of mobile phone calls (MPC) of one service provider of one

European country. The call records contain the caller and callee’s hashed codes, the starting

time of the call and it’s duration. The dataset spans over a five-month period from August

to December of 2007 and contains 2, 271, 071, 378 call records between 53, 955, 465 users.

Among these users 9, 769, 376 users have active contracts with the service provider during

the observed period and we call them as company users. The rest of the users are called

non-company users. Company users may have additional information about their location,

given by the ZIP code stated in the contract. The number of company users with the ZIP

code is 6, 272, 586, others have no declared ZIP code. The data contains two types of calls:

1) between two company users and 2) the calls between a company user and a non-company

user. Since the data comes from one service provider, we have no information about the

intitiated calls or geographical information for non-company users.

The MPC data generates a temporal network G with the node set of users and the set of

events E of calls users. We call the nodes representing company users with known ZIP code

as white nodes, the nodes representing company users without ZIP code as grey nodes and

the nodes of non-company users as black nodes. We consider an SI spreading process on this

network. It may happen that the data span is not enough to infect the whole network, thus,
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52 3. The role of bridges in spreading on temporal networks
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Figure 3.1: Schematic structure of networks Gw and G. White nodes are denoted as Vw,

grey nodes as Vg and black nodes as Vb.

periodic boundary conditions in time are applied for the data - when the process reaches

the end of the data time span it immediately proceeds again from the beginning of the time

span. Since the dataset is large enough, the burstiness coefficient is not much affected by this

conditioning. We assume that when a call takes place, spreading can go in both directions,

from a callee to a caller or vice versa, thus, for the purpose of current research, the network is

considered undirected. Since there is no data about calls between non-company users, there

are no links between nodes representing these users.

In the current research we consider sub-networks of cities defined as follows. For each city

the network Gw = (Vw, Ew) is defined as the set of white nodes Vw with ZIP code matching

one of ZIP codes of the city with the edge set Ew of calls between those users. The network

Gw is an induced sub-network of Γ. The network G = (V,E) is defined as an extension of

network Gw with the set of grey nodes Vg and black nodes Vb, that have links to the nodes

Vw. Along with the grey and black vertices we add edges connecting Vg and Vb to Vw. Clearly,

Gw ⊂ G and V (G) = Vw∪Vg ∪Vb and by construction there are no edges within and between

vertices from Vg and Vb in G. Schematically the networks Gw and G can be represented in

Figure 3.1.

The grey and black nodes of degree k > 2 in the network G can be considered as bridges

between white nodes. We compare the spreading on the set of white nodes without bridges

(in Gw) and with bridges (in G). Therefore, we perform the modification of each network G

by removing all grey and black nodes of degree 1. Then we consider the largest connected

component LCC(Gw) in the network Gw and LCC(G) in the network G. We denote as 〈kw〉
the average degree of white nodes.
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Figure 3.2: Average spreading curves 〈Nw(t)〉 (dark blue) for 10 typical networks of cities

Gw with average degree 〈kw〉 = 4 ± 0.2. Respective average spreading curves 〈N(t)〉 for

networks of same cities G are also given in dark grey. The inset illustrates the definition of

the characteristic time τ .

We study the behaviour of SI spreading on each network Gw and G using the average

spreading curves 〈Nw(t)〉 and 〈N(t)〉. At each run i, where i = 1, . . . ,M , the initiator is chosen

from the set of white nodes of LCC(Gw) or LCC(G) with degree at least 2 to avoid slowdown

related to possible bottlenecks at the very beginning of the process. The characteristic time

of SI spreading on networks Gw and G are denoted as τw and τ correspondingly. The sample

of average spreading curves for cities with 〈kw〉 = 4 ± 0.2 is given in Figure 3.2 along with

the illustration of the notion of characteristic time.

3.4 Empirical results

We consider the sample of N ' 300 cities with the population between 10,000 and 300,000

people. Cities of smaller population are not considered because of small size of produced

networks, and cities with larger population are underrepresented in the data. For each city

i, where i = 1, . . . , N , we construct networks Gw(i) and G(i). The size of networks G is

proportional to the number of white nodes (see Figure 3.4, (a)), however, the dependence

of the size on the population of cities is vague (see Figure 3.4, (b)), which is explained by

differences in the coverage of the company in different cities. Thus, it follows from the data

that the number of bridges, or the total number of grey and black nodes |Vg| + |Vb|, is also
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54 3. The role of bridges in spreading on temporal networks

proportional to the size of the networks G, such that

|Vg|+ |Vb| ' 5|Vw|, (3.1)

which is further used in Section 3.5.
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Figure 3.3: The inter-event time distributions of three cities of different sizes of Vw. A

small sized city has |LCC(Gw)| ∼ 103, a medium sized city has |LCC(Gw)| ∼ 104 and a

large size city has |LCC(Gw)| ∼ 105.

The average inter-event time for each city i, where 1 6 i 6 N , is denoted as µi and the

corresponding standard deviation is denoted as σi. These values are very similar for all cities

and µi ∈ (0.04, 0.08) and σi ∈ (0.1, 0.2) for almost all cities i. The burstiness coefficients

Bi belong to the interval (0.41, 0.46), indicating the bursty interaction patterns in all cities.

The tail distributions P>(t/µ) =
∞∫
t

p(s/µ)ds of inter-event times in the cities are found to be

similar for cities of different population size (see Figure 3.3), which is explained by the fact

that people follow same patterns of calls irrespective of the size of their community.

We find the largest connected components LCC(Gw) and LCC(G) in each network Gw

and G correspondingly. It is observed that there is no proper relation between population and

the number of company users and cities with large population may produce sparse networks

regardless of their population size.

We perform M = 100 runs of SI spreading process on each of the networks Gw and G and

observe that the cities with similar average degrees 〈kw〉 have similar degree distributions. In

Figure 3.5, (a), a sample of tail distributions of node degrees P>(k) =
∑∞

k p(s)ds is presented.

It is also seen that spreading curves have the same shape for the cities with similar average

degrees. The sample of average spreading curves for the same cities with 〈kw〉 = 3 ± 0.2 is

given in Figure 3.5, (b), along with the illustration of the notion of characteristic time.

In agreement with our expectations we see a radical decrease of the characteristic times,
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Figure 3.4: (a) Dependence between the size of the network G and the number of white nodes

|Vw| for each city. (b) The relationship between the size of the network G and the population

for each city. The linear trend is vague, which represents the difference in coverage proportion

of the company in each city.

when we switch from Gw to G (Figure 3.6). Remember that P∞ is the relative size of

the LCC(Gw) to the total size of Gw. Then on the insets of Figure 3.6 we see that the

dependence of 〈kw〉 over the P∞ shows the typical percolation behaviour. We observe when

P∞ < 20%, the networks show scattered results in characteristic time (see Figure 3.6, (a)),

thus we perform a truncation of those cities and present the results in Figure 3.6, (b).

We find a clear power-law dependence of the characteristic time τw on the average degree

〈kw〉 in networks Gw (see Figure 3.6, blue plots). At first sight it is surprising that 〈kw〉 and

not the size of the LCC(Gw) controls the process. This may be explained by the small size

effect of networks Gw, since most sizes of LCC(Gw) belong to the interval [102, 104].

The introduction of bridges of grey and black nodes drastically decreases the characteristic

time (see Figure 3.6, red plots). However, the dependence of the characteristic time τ on the

average degree 〈kw〉 in networks G is less apparent. The reason the characteristic time is so

much decreased (τ ∈ [0.5; 1.5]) is that spreading curves start to look almost the same for all

values of 〈kw〉, thus smearing the effect of the topology of the underlying network. In the

next section we model this effect on the null network models.
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Figure 3.5: (a) Tail distributions of node degrees and (b) average spreading curves 〈Nw(t)〉
(dark blue) for 6 typical networks of cities Gw with average degree 〈kw〉 = 3± 0.2 are given.

Respective average spreading curves 〈N(t)〉 for networks G of same cities are also given in

dark grey in (b). The inset of (b) illustrates the definition of the characteristic time τ .

3.5 Modeling

3.5.1 Model

We construct a simple model of networks Gw and G that replicates the observed behaviour of

the SI spreading process. Our model is based on the observation that considered networks Gw

only give a partial insight into the whole network of calls in the city, thus not all connections

between nodes are revealed. We also note from the data that the number of white nodes is

proportional to the total number of bridges, which is given by (3.1).

Let us describe the model. Consider a network G = (V ,E) on n nodes represented by a

model with a parameter pd responsible for the average degree. We define a diluted network

G
p
w as the initial network G with each link being deleted with probability p, where 0 6 p 6 1.

Let the nodes of the network G
p
w be white nodes. For each G

p
w we define network G

p
by adding

the set of bridge nodes B to G
p
w and connecting each bridge node with exactly two white

nodes at random. We model the interaction patterns by attaching i.i.d. random variables ξi

to the links, which represent the inter-event times. We consider two types of inter-event time

distributions: 1) the power-law distribution pow(tmin, α) with the following density function:

ppow(t) =


tαminα

1
tα+1 , if tmin 6 t;

0, otherwise,
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Figure 3.6: The characteristic times τw (blue dots) and τ (red dots) relative to average

degree of white nodes 〈kw〉 in the networks Gw and G. The insets show the dependence of

P∞ on the average degree of white nodes 〈kw〉. (a) The whole sample of cities is plotted, with

large scattering around 〈kw〉 ∼ 1. In this case the networks become very sparse and the size

of LCC is comparatively small. (b) The same plot is obtained by deleting those cities with

P∞ < 20%, which gives clearer results.

and 2) the shifted exponential distribution exp(tmin, λ) with the following density function:

pexp(t) =


1

λ−tmin exp
(
− t−tmin
λ−tmin

)
, if tmin 6 t;

0, otherwise,

The distribution exp(tmin, λ) is defined such that it has the same support as pow(tmin, α).

3.5.2 Simulation

The simulation is performed on networks G
p
w and G

p
constructed from a network G, given

by four network models defined earlier: 1) Finite square lattice with NNN (Z2); 2) Erdős-

Rényi model (ER); 3) Barabási-Albert model (BA); 4) the model of Kumpula et.al. (K).

Each considered network model has n = 5000 nodes (network Z2 has 4900 nodes) and the

parameters of these models are tuned in such a way that the average degree d in the original

G is around 12. The link deletion probability p goes from 0 to 1 with increment 0.05. The

number of bridges added to each network is 5|Vw|, which is obtained from the data.

We perform two sets of spreading runs, with M = 100 runs in each set, and in each run

the starting node is chosen at random from the set of white nodes in LCC(G
p
w) of degree

greater or equal to two. The first set of runs has power-law inter-event times distribution on

edges with tmin = 0.008 and α = 1.2, and the second set has shifted exponential distribution
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58 3. The role of bridges in spreading on temporal networks

with the same tmin and the parameter λ is chosen in the way that two distributions have

same mean µ.

The results are presented in Figure 3.7. All four network models show faster spreading

with bursty interaction patterns modeled by the power-law inter-event times (τw(pow) and

τ(pow)) compared to the process with shifted exponential inter-event times (τw(exp) and

τ(exp)), which was also captured in [35]. The introduction of bridges decreases characteristic

time in all models, which agrees with the empirical results in Section 3.4. It is observable

that the large diameter and regularity in the structure of the underlying network influence

much the speed of spreading.

Following the observation of bursty activity patterns, in Figure 3.8 we show the compar-

ison between the characteristic times τw and τ for four considered models with power-law

inter-event times. We observe that BA model is the fastest in terms of characteristic time,

which is explained by the presence of large degree nodes and since the percolation threshold

is zero, these nodes remain in the diluted network as well. It is known that the presence

of a community structure slows down spreading (see e.g. [72]). Therefore, in the model K

spreading is slower than ER when 〈kw〉 is large. In the diluted network with small average

degree 〈kw〉 the LCC has no apparent community structure, but since it has more of large

degree nodes, it overtakes ER in the spreading speed. The model Z2 is the slowest due to

its regular structure and large diameter. The introduction of bridges smears the topology of

initial networks and thus spreading results in almost the same behaviour for all four models.
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Figure 3.7: Characteristic times τw and τ relative to average degree of white nodes 〈kw〉 in

the simulated networks G
p
w and G

p
with four different initial networks G. Each network has

5000 nodes and 25000 bridges are added with both power-law (•) and shifted exponential inter-

event times (×) are considered. The following models are considered: (a) Square lattice with

NNN interactions; (b) Erdős-Rényi network; (c) The Barabási-Albert network; (d) Network

of Kumpula et.al. The data are plotted only for those values of 〈k〉 when the LCC(G
p
w) exists

and the results show that the process with shifted exponential inter-event times is slower on

each model. The introduction of bridges decreases the characteristic time and the decrease

depends on the initial topology of the network.
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Figure 3.8: Comparison of characteristic times τw and τ relative to average degree of white

nodes 〈kw〉 in the simulated networks G
p
w and G

p
with four different initial networks G. Each

network has 5000 nodes and 25000 bridges are added and power-law distributed inter-event

times are used. The data are shown only for those values of 〈k〉 when the LCC(G
p
w) exists and

the results suppose that the degree distribution, or mainly the presence of large degree nodes,

is a key factor governing the speed of spreading in these models. However, if these nodes

belong to communities, a slowdown takes place when the average degree of a network is large.

The introduction of bridges decrease characteristic time and smears topological differences.
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CHAPTER 4

Discussion

In the last Chapter we have studied the role of bridges in the SI spreading on real and

simulated networks. We have confirmed that the introduction of sufficient number of bridges

decreases the characteristic time of the process, thus making spreading faster. The effect of

bridges is more vivid when the network has a low average degree. In this case the LCC has

a low number of cycles and the network locally has the structure of a tree. In Chapter 2 we

have derived that the addition of one bridge to a tree drastically increases the average time

to infect k nodes in the SI process. The real networks in our dataset show similar effect after

introducing a sufficient number of bridges.

We have constructed a simple model that replicates the observed effect of bridges. Basing

on this model, we have found evidence that the topology of the underlying network has effect

in spreading. According to our expectations the presence of large degree nodes and absence of

communities increases the speed of SI spreading. When the average degree of the network is

less than one, it falls apart into a number of disconnected components, each of which having

a tree-like structure. The introduction of bridges makes this network connected, but topology

becomes homogeneous irrespective of original topology and spreading curves look almost the

same for different network models.

In the Chapter 2 we have shown how the addition of one edge can drastically increase

the average speed of spreading. Moreover, the more extra edges one adds, the more speed-up

one can obtain. However, the speed-up can be achieved if these extra edges introduce large

cycles into the structure of network, because it is more probable that the short cycles be

contained inside the communities, which can cause a slowdown of spreading. From the proof

of Theorem 2.3.2 we can derive that large degree nodes are also important in speeding up

the process, since on an n-star the first n/2 vertices get occupied in O(log(n)) time.
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62 4. Discussion

In the Chapter 2 we have studied the case of smoothing when α ∈ (1/2, 1). We acknowl-

edge that the analogous result can be derived for any α ∈ (1/(d+ 1), 1/d], where d > 1. It is

straightforward to show the analogue of Lemma 2.2.7 for one new and d − 1 old edges and

obtain

E(min(X,Y1 − t, . . . , Yd−1 − t)|Y1, . . . , Yd−1 > t) 6 Cdt
1−α.

Then, by dominating the original process with a delayed process that has d active edges in

the front of epidemic and by constructing the appropriate process Q we can prove that the

expected time to infect k vertices is bounded for the case of k < κd(G, s), where κd(G, s) is

a uniquely defined number for any rooted graph G. However, this means we would approx-

imate the original process by spreading on the d infinite rays that have common root. This

construction is more complex and it is hard to find an example of tree-like graphs where such

κd(G, s) is not tight.
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