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2 Introduction

Our existence has been always based on the best allocation and utilization of available
resources. The modern era of economics brought new tools and structure but at the same
time new challenges that add complexity of choice. Tackling the problem started with
first defining the value of the intrinsic physical or intangible quantity. This philosophy of
quantification is the driver of the mathematics of price and the process of pricing. After
defining such quantity it boils down to the best asset allocation based upon certain uni-
versal measures. In the language of financial mathematics the best allocation corresponds
to the optimal asset investment strategy which achieves the maximum value of the agreed
upon measure. The existence and uniqueness of an optimal strategy is a complex process
which takes different tools of pure and applied mathematics that ensure a well-defined
problem and results.

Optimal strategies are applied enormously in different arenas of finance and trade. Fi-
nancial portfolios which are included in funds of multiple functionalities use such strate-
gies to ensure a superlative allocation of wealth and efficient economics and markets.
Hedge, ETF’s and mutual funds are prime examples of such funds which together they
constitute a big chunk of the world’s assets. Financial institutions as well use these strate-
gies to manage wealth and choose good investments. Mathematical finance approaches
the questions of value into two ways. One way is by market pricing models that use
stochastic calculus, probability and economic theory to capture market forces and func-
tions. The other approach is by measuring risk of certain positions which in turn gives
us a pricing capability of the underlying assets. And in between the two faces of asset
pricing lies the problem of optimization represented in strategies or allocations.

In this paper I will compare optimal investment under two measures. First using
the basic market assumptions (Axioms) to construct risk measures which are used to
rank our investments. Second is by using the economics theory of utility to asses our
investments and prioritize them accordingly. The two approaches are used to choose the
best investments according to the optimal strategies that arise. The aim is to compare
these strategies and see the driving forces behind their differences. Using simulations and
multiple pricing models, progressive in complexity, the final result should give a picture
on the intrinsic features of the two approaches. Literature for risk and utility measures
mainly comes from mathematical finance papers published dominantly by Cherny and
Madan. other resources include books such as Stochastic Finance by Follmer and Schied
and Stochastic Calculus by Lamberton plus other supplementary papers.

Our setting is a probability space (Q,]—", (]—")teN,P)With the natural filtration in
discrete time. let X; € L*be a random variable on the probability space such that
X; :©Q — R. The Random Variable represents a particular cash flow (i.e payoff) given the
information until time ¢ and X~D with any distribution D . we define a risk measure
p :L>° — R and Utility Functional U :L* — R which will give us the benchmark for our
rating. Under No arbitrage and risk free rate r we can define our portfolio cash flow as

Xy = Nz Z ’Yt+19 )+ Bi1 By + Z %HSl

=1

where S risky assetsi price at time ¢ , g(S}) are contingent claim on asset ¢ (function
of asset i), Byis risk less asset price at time ¢, (a, 3,7) are the corresponding strategies
of all assets (Quantity of each asset) and they are predictable processes (i.e (o, 3,7)i+1
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are measurable w.r.t F; ). we choose a specific stochastic model for S and then try to
optimize p and U with the corresponding strategy i.e we need to find

sup  p(V 7)) = p(V7)
(a,B,y)€R?

and -
sup U(v;(%ﬁﬂ/)) _ U(Vt(a BT ))
(a,B,y)€R?
and then compare (o=, 57,77 )and (a*, *,7*). Then we proceed with the study of their
structure and behavior.

The main questions that I am trying to answer are 1) what is the structure of these
optimal strategies (existence, uniqueness, form and behavior)? are the two measures
optimal strategies similar? if yes, for which payoff class are they similar? if no, what are
the advantages and disadvantages of both? and which one is a better representation of
the market?.

To answer these questions, tools of stochastic analysis have to be used to derive an
optimal solution. numerical simulation under algorithms is another approach that could
be an indicator of structure which can be used preliminary. the main methodology is to
use these tools to give an idea on the general direction or founded results if possible.

3 Arbitrage Pricing and Preferences

3.1 Arbitrage Pricing

For the following lets consider one risky asset with no contingent claim for simplicity (i.e

(S, B), (o, B) € R?).

Definition 2.1.1 : A portfolio is called self-financing if V;(O‘”B) = Bis1 - By + a1 - Sy =
B+ By + oy - S holds Vit € N.

Notation 2.1.1 : lets denote the family of all predictable and self-financing strategies
as A.

Definition 2.1.2: A strategy(«, 5) € A is called an arbitrage opportunity if 3t € N
such that V.*” =0 and V*? > 0 almost surely and p(V,*” > 0) > 0. and called No
Arbitrage V(a, 8) if V*? > 0 then V,*? = 0.

In our setting, the market is efficient which means no arbitrage opportunity exists. if
such opportunities arise then the market will eliminate them instantaneously through the
dynamics of market forces.

Definition2.1.3: A probability measure ¢ is called equivalent (i.e ¢ «~ p(q(A) = 0 <
p(A) = 0) ) martingale measure (EMM) or risk neutral measure with numeraire (how
value is quoted) B (could be any process, in our case we chose B) if g—’; = Eq[%tt | Frl
Vi,ke N and k <t.

i.e the expected cash flows of the future given the information till today is today’s value
which implies a fair game (martingale) dynamic. The need for a risk neutral measure
arises due to the multiplicity of subjective risk return pricing. An investor will demand a
price that fits within his or her risk aversion which would lead to discrepancies in price.
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The neutral risk measure is a measure that takes into account every risk appetite of every
individual which leads to a consistent pricing.

Theorem 2.1.1: No Arbitrage hold if and only if d¢ equivalent martingale measure in
the market (S, B).

Proof : <= By contradiction, assume there exist an arbitrage opportunity («, ), then
Vi =0 v > 0asand p(V*? > 0) > 0=¢(V,” > 0) > 0 and q(V,*” > 0) =1

s V(@) o.f) .
= E,[-5—] > 0 and on the other hand E,| oo | =V, = 0 contradiction.

By
—>using the stochastic integral proposition in discrete time (If for every « bounded
and predictable process Gy(a, M) = >'_, a;(M; — M;_;) has zero expectation V¢ € N
then M is a martingale) . Let M = S* = f;—tt then it is enough to prove the existence of
g ~ st EgGy(a, 5%)] = 0. i, as(S7 — S7_4)

Denote the cardinality of (2 by m and for any random variable X on (2 we denote
X(w;) = Xjsuch that E[X] = >, X;q(w;). we see that the arbitrage free condition
translates into G(a,S*) ¢ RT = {X | X; > 0,0 < i < m} for every predictable
process . Thus 0 = {G(«, S*) | a € A}is a linear subspace of R™s.t § N = ¢ with
¥ ={X eR?|Xi+...+X,, =1}. using a corollary that states (let ¥} be compact
convex subset of R™and # a linear subspace of R™with 6 N Y = ¢ then dc € R™s.t
<¢,G>=0,YG € 0 and < ¢,G >> 0,VX € 9 or equivalently > 7" G;(c, S*)c; = 0 and

Cq

>, Xic; > 0) which implies ¢; > 0, Vi so we can normalize ¢ to define ¢ s.t ¢(w;) = s
then Y " Gi(o, S*)e; = 0 = E [G(a, S*)] =0

The following Definitions and Theorems deals with the properties of the Contingent
Claim Function g(.S;)

Definition 2.1.4: A contingent claim payoff g(S7) is a financial product that derives
its value from the underlying asset/s Sr, i.e it is a function of the underlying asset /s.

Definition 2.1.5: A contingent claim is replaceable if 3(«a, §) € A such that VT(a"B) =
g(St) where T maturity date of the option.

Definition 2.1.6 : A super- and sub-replicating portfolios for a contingent claim g(Sr)
are Ay = {(a,8) € A | V;™ > g(Sr)} and A_ = {(o, 8) € A| V™ < g(S7)}

Definition 2.1.7: H, is a fair price of the contingent claim g(Sr) at time ¢ if and only

if % = Eq[g(BSf) | 7] (under risk neutral measure q).

Proposition 2.1.1: if g(Sy) is replaceable then it has a unique fair price H;.
Proof: let ¢ € M risk neutral measure (M = {q : ¢ ~ p}. then Eq[ggf) | Fi] =
Eql

ye) y(ed)

o | Fil= B = %Z, since («, ) is constant we can define H; = aS; + B;.

Definition 2.1.8: A market is complete if every claim is replaceable (i.e everything
has unique price).

Theorem 2.1.2: A market is called complete if and only if 3!¢ ~ p risk neutral
measure, otherwise it is called incomplete.

This another characterization of the complete market. the existence of unique prices
are equivalent to the existence of a unique risk neutral measure which is used to price
them.
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In case the market is incomplete then there exists a range of risk neutral measures.

proof : <=By contradiction. Suppose the market is not complete and we construct

another ¢ EMM different from ¢. let 7 = {Véf) | (o, 3) € A}. we use the random
elements X as in Theorem 2.1. Then the incompleteness of the market translates into
m C R™. we define the scalar product as [X,Y] = > " X;Yig(w;) = E,[XY]. Then
3L € R™orthogonal to 7, i.e [L, X] = 0,VX € 7, if we choose X =1 = E,[L] = 0. for a
fixed parameter 6 > 1 we define gs(w;) = (1 + (suﬁﬁ)qwi) where || L || o= max;[| L; |],
so we showed we can construct different EMM for each § > 1 and gs(w;) > 0 since (1 +
Méﬁ) > 0, furthermore ¢s(2) = > (1 + m)q(wi) =q(£2) + mEq[L] =1 there-
fore g5 is EMM. Then we calculate E, [G(a, S*)] = E,[G(a, S*)] + mEq[LG(a, S*) =
E,[G(a,S*)] = 0 by the proposition (if S*is a martingale and ais a bounded and pre-
dictable process then G(«, S*) is a martingale with null expectation).

In case of incomplete market we have a range of arbitrage free derivative prices which
poses another question of which price should we choose. one way is the super replicating
price which is the price = inf{(a,5) € A, | yeh) > g(Sr)}or the sub replicating if on
the opposite direction. Also we can use entropy function between the EMM’s and take
the minimal. Another approach is to use indifference price using utility functions which
we will explore in the next section.

3.2 Preferences

Definition 2.2.1: A relation «is a preference order if we write X o« Y for X, Y € L>®we
mean Y is preferred to X and it satisfies the following axioms.

1) Completeness: VX,Y € L*then either X o« Y or ¥ o« X or both (X ~ Y
indifference)

2) Transitivity: If X o Y and Y o« Z then X «x 7.

3) Independence : If X o Y and for any Z ( independent random variable) and
A€ (0,1) then AX + (1 —=A)Zoc Y +(1—-)\)Z.

4) Continuity: If X o« Y o Z then there exists a probability e € (0,1) such that
eX+(1—-e)Zx Y. -

all of these axioms characterize the rational behavior of the economic agent which is
the underlying assumption of utility theory.

Definition 2.2.2: A preference relation is called to have Savage (Von Neumann -
Morgenstein VNM) representation if Ju : R — Rsuch that X o« Y <= E,[u(X)] <

E,[u(Y)]. we call u utility function.

Proposition 2.2.1: An investor is risk averse if the utility function w is concave.

proof: Take any two points X, Y s.t X, Y > 0, X <Y then by concavity u(AX + (1 —
AY) > (X)) + (1 =Nu(Y)) = w > dwy + (1 — Nwg,w; < w < wyVA € (0,1) ,Awhere
is the probability X happening which means we prefer a sure thing to any gamble.

Theorem 2.2.1 :If oc_satisfies its axioms and « : R — R concave (risk aversion) and
monotonically increasing = Ja Savage representation.

proof : we will skip the proof of this theorem.
So Ju hidden utility function which drives the underlying preference relation.
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In our aim of optimal strategies we define the utility functional as U(X) = infcpg, £y [u(X)]
for some set of subjective equivalent probability measures M,. From now on we will as-
sume that such minimum is attained and the robust utility maximization is reduced to the
standard utility maximization i.e U(X) = inf,ep, Ey[u(X)] = E,[u(X)]. so our Savage
preference representation will be X < Y <= E,[u(X)] =U(X) < E [u(Y)] =U(Y).

There exist multiple classes of utility functions but we will choose two main classes
which will give a good idea about utility behavior. the first class is the exponential
utility functions which are defined by:

(1—e79)
u(c) = { a a7 0

c a=20

where a represents the degree of risk preference (a > 0,a < 0,a = 0 are risk aversion,
risk seeking and risk neutral respectively).

In our case we only consider a > 0(risk aversion) which gives the rise to the Savage
representation.

The second class is the Power utility functions which are defined by:

ule) = { vl

In(¢) wv=1

where v is a constant and In(c) is the limiting case. we takev > 0 as it represents the
risk aversion property for VNM representation.

Now we will see how we can price contingent claims in incomplete markets.

Definition 2.2.3: The utility indifference price of a derivative is price(g(St)) = pr* =
inf {pr | supqg) Ep[u(Vy™ """ = g(S1))] = sup(q ) Eplu(V7)]}.

What this is basically saying is that entering the contract and receiving pr and paying
g(St)at T should be preferred by the seller of this contract than not entering it. and it
is usually less that the super replicating price.

So now we have a somewhat clear idea of complete and incomplete market character-
ization within risk neutral and utility constructions.

Finally, lets discover a nice uniting factor between the risk neutral and utility world.

Let X be a random variable then there is a unique j(X) € R such that u(j(X)) =
E,[u(X)]. where j(X) is a deterministic amount. since u is concave then by Jensen
Theorem we have E,[u(X)] < u(E,[X]) sincej(X) < E,[X] then {(X) = E,[X]) —
J(X)) > 0. where pis the risk premium the investor demands. or it is the amount the
investor is willing to pay to change j(X) to E,[X]. Lets write the Taylor expansion for
u(j(X)) around E,[X].

u(i(X)) = u( By X]) + (G(X) ~ BylX]) ' (BX]) + £ ((X) — B X" (B,[X]) + smatl

From above we have u(j(X)) = E,[u(X)]=[ u(z)p(dzx) we do 2nd order expansion
around F [X] and take expectation = [ W Epu(X)]] = Eplu(Ey[X]) + (X - EP[X/,]) :
u (Ep[X])+ (X—E,[X])*u (E,[X])+small] = Elj[u(X ] :u( [ X ])+O—I— Var(X|u (E,
by Mean Value Theorem we get (j(X) — E,[X])u (E,[X]) = %Var[X] (E[X]) =

9
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E(X) = —%Var[X]%. so the risk premium is a scaling of the quantitatively objec-
p
o (Bp[X))
. o LW BplX]) :
market scenario the utility is linear and the risk aversion is zero for all investors. Thus
the market return for a position is solely dependent on the objective risk measure in the
market. Furthermore, our Var[X] or any other measure of risk in any market scenario
could be replaced and defined by a more involved measure p and in the next chapter we
will take a closer look at these measures and how they play an important role in optimal

investments.

of the investor. In risk neutral

tive risk measure Var[X] by the risk aversion

4 (Coherent Risk Measures

4.1 Definitions, Representations and Examples

The risk measure we will talk about below are an indicator of cash requirements that
is needed for a certain cash flow or position to be risk free according to the supervisory
agency in the market.

Definition 3.1.1: A risk measure p :L>* — R is called Monetary if it satisfies the
following axioms VXY € L*:

1) Monotonicity: If X <Y = p(X) > p(Y'). i.e a better performing cash flow always
has lesser risk.

2) Cash Invariance: If m € R = p(X +m) = p(X) — m i.e the risk measure is
translated by cash amount. From cash invariance we can deduce p(m) = p(0) —m. In
our case we will assume normalization i.e p(0) = 0.

Lemma 3.1.1: Monetary risk measures are Lipschitz continuous with w.r.t the L*
norm.

proof : We can clearly see that X <Y+ || X =Y [oo= p(X)—p(Y) <[] X =Y ||cby
Monotonicity and Cash Invariance. Reversing the roles of X and Y lead to the assertion.

Definition 3.1.2: A Value at Risk V@R risk measure is defined as follows VQR,(X) =
inf{m | p(X +m < 0) < A} =inf{m | p(X <m) > A}, A € (0,1). in other words V@R
is the minimum cash requirement that we add to our position which keeps our negative
outcomes below the threshold .

Example 3.1.1: Value at Risk V@R is a Monetary risk measure. Lets check if it
satisfies the two axioms.

1) Monotonicity: Assume X <Y.we have VQR,(X) = inf{m | p(X+m < 0) < A}and
VAQR)\(Y) = inf{m | p(Y + m < 0) < A}. let my € {m | p(X + m < 0) < A}then
X+my <Y+m; = p(X+my <0) <p(Y+my <0) < A= m; € {m|p(Y+m <0) <
A= {m|p(X4+m<0) <A} C{m|pY+m <0) <A} = VAR, (X) > VAR, (Y).

2) Cash Invariance: Let VQR)(X + k) = inf{m | p(X + (m + k) < 0) < A} =
inf{m +k | p(X +(m+k) <0) <A} —k=VQR\(X) — k.

Definition 3.1.3 :A monetary risk measure is called convex if it satisfies the convexity
axiom: p(AX + (1 =2)Y) < p(X)+ (1 =X)p(Y), 0 <A< 1.

The axiom of convexity gives a precise quantification of the idea of diversification. The
risk of a diversified portfolio is always less than the two portfolios separated.

10
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Example 3.1.2 :In this example we show that the VQR is not a convex risk measure
since it does not satisfy the convexity axiom.

Consider two default-able corporate bonds with return s > r > 0 where r is the risk
free return. then our discounted return on an initial investment w on bond 7 is

X, = {—w Default

w(s—r) .
T otherwise

if the probability of default of 1st bond is py < A then

w(s—r
p(Xl—%<0):p(default):pd§)\
—~ VAR (X)__M<0
M 1+7r

Which means every position is acceptable regardless of the loss of our initial investment
w since V@R is negative. Now consider investing 3 in each bond then our portfolio payoff
isY = %, let the same default probability for each bond p; then for an appropriate s
we get that p(Y < 0) is equal to at least one of the bonds default p(Y < 0) = pa(2 — pa)-
letting pgy = 0.009 and A = 0.01 then p; < A < pg(2 — pg) which means VQR,(Y) =
T(1— %) which is close to ¥. thus VQR,(X;) < VQR,(Y') which means that the
diversified portfolio has higher risk thus V@R is not convex consequently not coherent in
general.

Definition 3.1.4: A Convex risk measure is called coherent if it satisfies the positive
homogeneity axiom : p(AX) = Ap(X),VA > 0.

The positive homogeneity axiom stresses on the fact that the risk is increase linearly
with the increase of the position we are holding. This axiom is not always true as the
relationship could be nonlinear but it is enough to assume it for our study purpose. A
very easy consequence of positive homogeneity is subadditivity p(X +Y) < p(X) + p(Y)
which is a more general characterization of diversification. We prove this consequence as
follows: p(X +Y) = p(3X +122Y) < Ap(2X) + (1 — Np(5Y) = p(X)+p(Y).

Definition 3.1.5 : A monetary risk measure p is called law invariant if X =¢ Y (in
distribution) then p(X) = p(Y).

Definition 3.1.6 : the average value at risk AVQR at level \ € (0,1] is defined by
1
AVGR,(X) = | / V@R (X)dC
0

it is also called the Expected Shortfall.

Claim 3.1.1 : AVQR is a coherent risk measure.

proof: Monotonicity and cash invariance are inherited from V@R from example3.1.1.
Lets check positive homogeneity. to do so we need to check if VQR is a positive homo-
geneous measure:

VAR (AX) = inf{m | p(AX + m < 0) < (} = inf{Im | p(AM(X +m) < 0) < (}

11
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=inf{dm | p(X +m < 0) <} = Ainf{m | p(X + m < 0) < (} = \WVQR(X)

Lastly we need to check sub additivity i.e AVQR,(X+Y) < AVQR,(X)+AVQR,(Y).
first we need to state two lemmas required for the proof.

Lemma 3.1.2: Let X be any random variable then 3Ux ~ U[0,1] (uniform random
variable on [0, 1]) such that X = F;*(Uyx) where F is the cdf of X.

Lemma 3.1.3: Let By € L*be the set of bernoulli(\), A € (0, 1) random variables and
let Ax = ]UX<>\ € B,then E[XAx] > E[XB)\] VB € B,.

Coming back to the proof, from the second definition of VQR we get V@Rc( ) =
F*(¢) then using the two lemmas we get AVAQR,(X) = 1 fo VQR(X)d( = + fo (€)d¢
1E[F (Ux)ug<n] = 1E[XAx] = Lsup{E[XAx] | B € B\},X € LOO, using that the
supremium is sub additive thus AVQR is sub additive.

Definition 3.1.7: A weighted value at risk is defined by:

WVQR,(X) = / AVQR,(X)q(dN)
A€(0,1]

Where ¢ is a probability measure.

We can clearly see that WV@R is coherent since it inherits the properties from AVQR.
WV@R is a better coherent measure since it possess nice properties for optimization and
financial aspects (considers the whole distribution of X). so we will focus solely on this
measure as nice coherent risk representative.

Remark 3.1.1 :VQR, AV@R and WV@R are all law invariant risk measures, which
can clearly seen as they depend on the distribution function F, of X.

Definition 3.1.8: An acceptance set associated with the risk measure pis defined as
A, ={X € L* | p(X) < 0}(i.e the positions for which we have non positive risk).

Theorem 3.1.1: If pis a monetary risk measure with an acceptance set A,then:

a) A,is non empty, closed w.r.t the L®norm and satisfies the two conditions: inf{m €
R|meA}>-occandif X € 4,V > X =Y cA,

b) If we start with the acceptance set A,then we can recover pfrom A,by p(X) =
inf{m € R| X +m € A,}(i.e the smallest amount of money which will make X accept-
able).

c) pis convex risk measure if and only if A,is a convex set.

d) pis positive homogeneous measure if and only if A,is a cone. Thus pis coherent risk
measure if and only if A,is a convex cone.

proof:

a) A,is non empty since it always contains all X > 0. It is closed w.r.t L*norm
because of Lemma3.1.1, it is easy to see it, take any sequence in A,, X, — X then]|
P(X) = p(X,) <] X = X o= p(X) < p(X0)+ || X = X S X = X, [laom 0 =
p(X) < 0. For the first condition it is obvious since we are considering bounded positions.
The second condition is a direct consequence of monotonicity axiom.

b) Using Cash Invariancep(X) = inf{m e R | X+m € A,} =inf{m e R| p(X+m) <
0} = inf{m € R | p(X) < m} = p(X).

c) =it X, Y € A,thenp(AX+(1-N)Y) < Ap(X)+(1-A)p(Y) < 0= AX+(1-N)Y €
A,. <=If A,is convex then let X,Y € L*and let m;, my € R such that X +m;,Y +my €

12
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A, = (MX +ma)+(1=A) (Y +my)) € A, = p(MX +m1)+ (1= A)(Y +my)) < 0 by cash
invariance = p(AMX +my)+ (1= A)(Y +m2)) = pAX + (1 =AY ) —Amy — (1 = N)mg <
0=pAX +(1=N)Y) <Amy+ (1 = XN)ma = Ap(X) + (1 = N)p(Y).

d) =Letpbe a positive homogeneous measure and X € A, then p(AX) = Ap(X) <
0 = Ap(X) € A, which means A,is a cone. <=Let A, be a cone and X € L*and let
mi €R| X +my €A, = p(AX +Amy) <0 = p(AX) < Amy. For the other inequality
direction, let m; < p(X) = X +m1 ¢ A, = AN X +mq) ¢ A, = Imy < p(AX).

So any monetary convex and coherent risk measure is characterized by a corresponding
acceptance set which carries the same information as our measure.

Definition 3.1.9: A measure o : L~ — R, is called a performance measure or accept-
ability index if it satisfies the following axioms:

1) Convexity : o(AX + (1 =A)Y) < Xo(X)+ (1 —=XN)o(Y) A€ [0,1],VX,Y € L*=.

2) Monotonicity: If X <Y =p(X) < oY) VX,Y € L™.

3) Scale Invariance: o(AX) = o(X) X € [0,1],VX € L.

4) Fatou Property: This defines a sense of continuity for the measure. if X,is a
sequence of random variables such that X,, — X in probability, | X,, |[< 1 and o(X,,) > =
then o(X) > x.

5) Law Invariance: If X =% Y meaning X and Y have the same distribution, then
o(X) = o(Y).

6) Arbitrage Consistency: If X > 0= o(X) = oc.

7) Consistency with the second order stochastic dominance: If o(X) < oY) =

(X)] < E[u(Y)] where u is utility function.

8)

EX]>0= o(X)>0
E[X]<0= oX)=0

The acceptability index is similar to the coherent risk measure with notable difference
in scale invariance. The coherent risk measures are sensitive to the scale of investment
while performance measures only care about the direction of these invesments. Now we
will link the acceptability index to our coherent risk measures.

Elu

Consistency with expectation: If

Theorem 3.1.2: A map o is called acceptability index if and only if 3(D,),cr, C P
(family of subsets in the probability measures set) such that D, C D, for z <y and

o(X) = sup{z € Ry | p,(X) <0}

where p,(X) = sup,cp, Fq[—X] (which we will prove later as representation theorem of
coherent risk measures).

So our acceptability index is basically the maximum probability subset such that the
position X is still acceptable. It measures the maximum consensus (acceptability) of the
position by the market participants using their correspondent pricing probabilities.

Definition 3.1.10: The acceptance set associated with the performance measure pat
level z is defined as follows:

Ar ={X € L | o(X) = x}

Lets compare the acceptance sets of both coherent risk measures and acceptability
indices by the following example:

13



CEU eTD Collection

Figure 1. (a) Acceptability cones associated with coherent risks.

(b) Acceptability cones associated with acceptability indices.

Example 3.1.3: Let p be a coherent risk measure with a convex cone set ) (which
we will discuss in detail later), ¢ is our acceptability index, and X € L. Let | 2 |=
2,2 = {wy,ws}Then our L*®space is two dimensional Banach space. Our corresponding

acceptance sets are:
A, ={X € L™ | p(X) < 0}

A, ={X e L>]|o(X) >z}, zeRy

Lets draw the following sets in our L space. we get:

So the performance measure p is taking each X € L*and index it with respect to
the maximum probability measure set. then the acceptance set at level x of pis taking
all the indexed {X € L* | o(X) > x}. we notice that A, C Q™* 2 € R, where
QM*is the largest probability set for which the coherent risk measure representation
holds (i.e we have a coherent risk measure which we will talk in detail later on). Our
performance measure is basically indexing the positions w.r.t the probability measures
sets which in return gives us a picture on where the particular position stands w.r.t the
market acceptance. In conclusion, the coherent risk measures can be characterized in two
levels, the first by their acceptance sets then by indexing the probability measure sets in
which our coherent risk measure holds, which in return gives a family of indexed coherent
measures (p;)zcr, that describe the families of accepted positions A,,z € Ry.

Definition 3.1.11: A finitely additive measureq is defined as g(U" | A;) = >0, q(A;),n <

oo for any disjoint subsets A;, of 2 .

Definition 3.1.12: A cadditive measure ¢ is defined as ¢(U2,A4;) = >0, q(A;)
V A;disjoint subsets of 2.

Definition 3.1.13: A Total Variation TV norm of a finitely additive measure ¢ is
defined by || g [[rv=sup{3 ", [ a(A) |, Ai € F, AN A; = ¢,i # j}.

Definition 3.1.14: A Total Variation TV norm of a ¢ additive measure ¢ is defined
by [ ¢ llrv= {5 Xuee | a(w) [}-

Theorem 3.1.3: Any convex risk measure can be represented by:

p(X) = max(E,[-X] = h(q))

qeEM;

14
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where M;is the set of all finitely additive functionals on ({2, F) with finite total varia-
tion || ¢ [|7v< cowhich are normalized by ¢(2) = 1. and h(q) = supxc,, £y[—X] is called
the penalty function for the corresponding probability measure. A,is the acceptance set
of cash flows associated with the risk measure p.

proof: First we will prove p(X) > sup,c, (Eq[—X] —h(q)) . Let Y = X + p(X) €
A, = Vq € My, h(q) = Ej[-Y] = Ef[-X] — p(X) = p(X) = E,[-X] = h(q) = p(X) =
P, (Ey [~ X] — h(g)).

Second, for a given X we need to construct gx € Misuch that p(X) < (E, [—X] —
h(gx)). Let’s prove this inequality for X € B* = {X € L™ | p(X) = 0} it is clear that
this set is convex, and by cash invariance we can extend the claim to any X € L*since
VY € L*it can be written as p(Y) = p(X + k) = p(X) — k for some k € R. Let
B={X € A,|p(X) <0} itis clear that B is an open convex set since its complement
is closed by lipschitz continuity and pis convex. Then we apply the separation argument
according to the following Theorem:

Thoerem 3.1.4: If W = L*is a vector space with two disjoint convex sets B and B*for
which one has an interior point (B in our case) then they can be separated by a continuous
non zero linear functional on L*i.e 3l such that {(X) <I(Y) VX € B*,VY € B.

Coming back to the proof and using the above Theorem we get I(X) < (V) = [(X) <
infyep((Y) = b. we claim that [(Y) > 0if Y > 0. Using monotonicity and cash invariance
we get that 1 +AY € B,YA > 0 becausel + \Y > 0= p(1+AY)<0=1+\Y €B
. Plugging it in the linear operator we get [(X) < (1 + AY) = I(1) + M(Y),VA > 0
not true if [(Y) < 0 = [(Y) > 0 . The next claim is /(1) > 0. since [ is not
identically zero then JY such that [(Y) > 0, lets assume without loss of generality
that|| Y [[<1=0<1-Y <1=11-Y)>0=1(1)>1(Y)>0=1(1) > 0. Using
the below theorem we will get our desired gy .

Theorem 3.1.5: F € L> The Integral [(F) = [ Fdg defines a one to one correspon-
dence between the set of continuous linear functionals and the set of finitely additive prob-

ability measures M; on (£, F) . Using the theorem we get that E,, [Y] = %‘V’Y € L™

Since B C A, = h(q:) = supyea, Egx[~Y] > supyep By [-Y] = supyep —% =

—ianeBll((L) = _z(%) = h(q,) > —%. Take any Y € A, = Y +€ € B,Ve > 0 =

1)
h(q.) = —%. it follows that E,, [-X]| — h(g,) = ﬁ(b —I(X))>0=pX)=pX) <
E,.[—X] — h(qy) and this proves the other direction of inequality. The representa-
tion attains its supremium since M; is weak® compact in the dual space of L* due to

Banach-Alaoglu Theorem which is:

Theorem 3.1.6: Let E be a banach space with dual E* then {{ € E ||| [ |
weak® compact for every r >0 .
And this concludes the proof of the representation.

E*S 7"} is

Theorem 3.1.7: A risk measure p is coherent if and only if 3¢9 C M; such that
p(X) = sup,cq Ey[—X], X € L>* . Moreover we can choose () as a convex set such that
the supremium is attained.

proof: To prove the result we need to prove the following corollary:

Corollary 3.1.1: For a coherent risk measure the penalty function takes on two values:

ﬁ(Q)Z{O 1€

+o00 otherwise
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In particular p(X) = max,egme= E,[—X], X € L for the convex set Q™* = {q € M, |
fi(q) = 0} and this set is the largest set for which the coherent risk measure representation
holds.

proof : Since p is coherent then A, is a cone, which means if X € A, then A\X ¢
Ap, YA > 0 = h(q) = supxea, Eg[—X] = supyxea, Ey[—AX] = Asup,xeqa, Bg[—X] =
0

Mi(q) = h(q) = {—{—oo ,Vq € M;Thus we can define the set Q™** = {q € M; | h(q) =

0} C M; as the maximal set for which the representation p(X) = max,egma= E,[—X], X €
L> holds, and YQ C Q™ the representation p(X) = sup,cq F,[—X], X € L* follows.
We have to note that the function 7i(q) is convex lower semi continuous function since it
is the supremium of an affine continuous functions on M , thus the set Q™" is convex,
and since Q™ is the preimage of closed set then it is closed as well. And since Q™" is
a subset of a compact set then it is compact and consequently the supreimum is attained.

Previously we considered Mjas the set of finitely additive functionals ¢ with finite
total variation which are normalized by ¢({2) = 1. The dual space of our positions (cash
flows) L*is a space of bounded linear functionals (L°°)* which can be identified by a set
of finitely additive functionals ¢ with finite total variation, lets call the dual I" = (L>)*.
Thus if we consider the set of probability measures M, which are cadditive then we know
that My C M; CT'. Also Vg € My, || q ||rv= 1 < oo but this set might be not closed in
[' = (L*°)* so we can’t use Theorem3.1.5 and our convex risk measure might not achieve
its supremium on the subset thus it is characterized by the general representation

p(X) = sup (E,[—X] — h(q))

qEM>

Theorem 3.1.8 : A convex risk measure p is continuous from above and law invariant
if and only if it admits the representation

p(X) = sup (WVQR,(X)—h(q))

q€M2((0,1])

Where M;((0, 1]) is the set of probability measures on (0, 1].

Corollary 3.1.2: A coherent risk measure p is continuous from above and law invari-
ant if and only if it admits the representation

p(X)= sup WVQR,(X)
q€M2((0,1])
A law invariant coherent risk measure is represented as WV @R with some choice of
probability measure. so in order to study the class of law invariant coherent risk measures
we have to only focus on WV QR as a prime example.

Definition 3.1.15: A Wang transform (or distortion function) of a cumulative density
function Fx is an increasing function W : [0, 1] — [0, 1] such that ¥(0) = 0, V(1) = 1.

and its dual is defined as U~ (z) = 1 — ¥U(1 — z). if ¥ is a concave increasing function
with the above properties then it is called a concave distortion. The distortion function

can be generally defined as:
Y 1
)= [ [ e
0 (,1]
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Now we will try to represent our WV@R law invariant coherent risk measure with
respect to this transform.

Theorem 3.1.9 : Let ¢ € M5((0,1]) and ¥ be a concave distortion of our cumulative
density function F'x defined by ¢, then

WYAR,(X) = - [ yd(¥,(Fx())
R
proof: Lets define the Tail Value a Risk as TVQR,(X) = E[-X | =X > VQR,(X)]

and we use the fact that under a rich probability space (a space which supports a random
variable with continuous distribution) TVQR,(X) = AV@RA(X) Then WVQR,(X) =

fAe (0,1] AV@R)\(X) A) = fAe 0,1] TVQR\(X)q(dA) = fxe(o 11X f —00,~ V@R (X)] yd(FX(y)q(d)\) =

fRyf )\q d)‘ d(FX< —_fRyd FX( )))

In order to study WVQR,(X) = — [ yd(¥,(Fx(y))) as a prime example of law in-
variant coherent risk measure we need to deﬁne a suitable choices of concave distortions
which will represent our risk measure perfectly.

Example 3.1.4 : A suitable choices of concave distortions are as follows:

1L U, (z) =1—(1—2)" g € Ry,z € [0,1], which define the law invariant coherent
risk measure MINVQR(X).

2. U (z) = xﬁ, q € Ry, z € [0, 1], which define the law invariant coherent risk measure

MAXV@R(X).

3. U,(z) = (1—(1—x)q+1)q711, q € Ry, z €[0,1], which define the law invariant coherent
risk measure MAXMINVQR(X).

4. U (x)=1—(1— xqfll)q“, q € Ry, x €[0,1], which define the law invariant coherent
risk measure MINMAXVQR(X).

MINMAXV@R, will be our choice of law invariant risk measure in studying optimal
strategies since it satisfies a nice limiting properties that deem useful.

4.2 Simulations

In this chapter we will test our optimal strategies under MINMAXV@QR (we will use
MINMAXV@QR and p interchangeably) which is the prime benchmark of law invariant
coherent risk measures and then analyze the results accordingly. In the following scenarios
we will use parameters in each scenario to organize our settings. we will use the input as
follows (Model type in time horizon ¢, Number of risky assets S, Number of
risk-less assets B, Number of Contingent Claims, Initial value Sy,Initial value
By, Type of Contingent Claim, Probability measure ¢, Interest rate r, Risky
asset model type in dynamics with parameters). Also the following assumptions
hold for all the scenarios:

e No arbitrage

e Liquid market

17
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e Predictable strategies

e Self-financed portfolio

e No extra costs (transaction cost,...)

e Bounded cash flows X € L>

o Risk-less assets follow the following model: B, = By(1 + r)!,Vt € N,r = constant.
e Use of all initial investment z

In the following scenarios we will get p matrix for («, 3) or (a B ) combinations.

Then we will compute the mean numerical gradient on p i.e d(a,B'y) = (gg, 32, gg’) or
dp ' dp 9 d d

Tog = (35 ) where 22 a5 = mean(FX), 52 = mean(FY) 3t = mean(FZ) , FX, FYFZ
are the gradient matrices for p. The mean numerlcal gradient is taken with respect to

one unit of o, B and 7.

421 Scenariol (t=0,1,1,1,0,1, 1, None, ¢, r , Log-normal(x,0?))

Our initial investment is z < oo. Then after initializing the prices we get Vo(a’ﬁ ) =
B1Bo + a150 = ay + B = 2.

Looking into ¢ = 1, X = V" = (1478 4+ a1e"*° then as soon as the prices are
realized we re-balance our portfolio X = (1 + )02 + ae”™7¢ | where ¢ ~ Normal(0,1).

So the question is which (aq, 81) we should use to minimize our risk measure MINMAXVQR,(X)?.
We know Sy ~ Lognormal(p, 0?). then our risk measure becomes MINMAXVQR,(X) =

oy MINMAXVQR,(S1) — f1(1+71) = —ay [ sd(1—(1 —Fgl(s)qﬁ)ﬁl) —B1(1+7). with
Fs, cdf of log-normal distribution of S; with e#*% expectation and (e+7")(e”” — 1)

variance.

We can clearly see that d(a 5 = (g—;l, aan’l) =(—(1+r), MINMAXV@QR,(Sy)) so an
optimal strategy for a; depends on the risk measure while §;depends only on the interest

rate.

To simulate our risk measure MINMAXV@QR,(S;) we need to tweak its repre-
sentation. Taking the integration where the derivative of W is bounded, we get that

1 d¥q(Fs,(s)) lfFlsqTll .
Wy(Fsy(s) = 1= (1= F, () )t = el — (= X SN i (5) where f(5) s
5, (8) 4t

the pdf of S;,= MINMAXV@R,(S,) = — fRs(l’Fsl—f) - fs,(s)ds

Fg, (s)atT

4.2.2 Results of Scenario 1

This Scenario is done by taking 100 «/s permuted with 100 £]s (10000 permutations in
total).

The first result of the simulation is done by varying the interest rate r while keeping
all other parameters fixed (= 0% = ¢ = 1).
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dp dp
RN
0.0 [ -1.0000 | -1.1175
0.1 | -1.1000 | -1.1175
0.2 | -1.2000 | -1.1175
0.3 | -1.3000 | -1.1175
0.4 | -1.4000 | -1.1175
0.5 | -1.5000 | -1.1175
0.6 | -1.6000 | -1.1175
0.7 | -1.7000 | -1.1175
0.8 | -1.8000 | -1.1175
0.9 | -1.9000 | -1.1175
1.0 | -2.0000 | -1.1175

This table shows the gradient vector (=

Op
9B

7da

=) for different 7’s. It is clear that as r

increases we get a lower risk by buying a riskless asset, especially if » > 0.2 then it is opti-
mal to buy only riskless assets. It is also important to note that _6&1 has a linear increase

with respect to r as clearly shown from the gradient (—(1+7), MINMAXVQR,(S)).

Now in the next simulation we will fix r = 02 = ¢ = 1 and vary u to see the effect.

the results are summarized in the following table.

dp dp
IR
0.0 | -2.0000 | -0.4111
0.5 | -2.0000 | -0.6778
1.0 | -2.0000 | -1.1175
1.5 | -2.0000 | -1.8424
2.0 | -2.0000 | -3.0377
2.5 | -2.0000 | -5.0083
3.0 | -2.0000 | -8.2573
3.5 | -2.0000 | -13.6139
4.0 | -2.0000 | -22.4456
4.5 | -2.0000 | -37.0065
0.0 [ -2.0000 | -61.0133

From the table above we can see that —& decreases exponentially with respect to pu.
and for p > 1.5 it is optimal to buy only rlsky assets.

Next we will vary o2over the constants y =r = ¢ = 1.

L lan | s | [ o 1o | oe || [88[ 5o |
9B Oay 961 Oay 9B Oay

0.00001 | -2.0 | -2.7182 0.01 |-2.0 | -2.6804 1.03 | -2.0 | -1.1051
0.0009 | -2.0 | -2.7148 0.011 | -2.0 | -2.3383 1.13 | -2.0 | -1.0679
0.0019 | -2.0 | -2.7110 0.22 | -2.0 | -2.0631 1.23 [ -2.0 | -1.0414
0.0029 | -2.0 | -2.7071 0.32 | -2.0 | -1.8405 1.33 | -2.0 | -1.0245
0.0039 | -2.0 | -2.7033 0.42 | -2.0 | -1.6598 1.44 1 -2.0 | -1.0168
0.0049 | -2.0 | -2.6995 0.52 | -2.0 | -1.5126 1.54 | -2.0 | -1.0179
0.0060 | -2.0 | -2.6956 0.62 | -2.0 | -1.3928 1.64 | -2.0 | -1.0275
0.0070 | -2.0 | -2.6918 0.72 | -2.0 | -1.2955 1.74 | -2.0 | -1.0458
0.0080 | -2.0 | -2.6880 0.83 | -2.0 | -1.2169 1.84 | -2.0 | -1.0731
0.0090 | -2.0 | -2.6842 0.93 | -2.0 | -1.1542 1.95 | -2.0 | -1.1099
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I E[ Z [ E[Z | [7[E] Z
0B1 Oy 0B1 Oay 9B1 Oo
2.05 | -2.0 | -1.1570 3.07 | -2.0 | -2.6314 4.08 | -2.0 | -11.7437
2.15 [ -2.0 | -1.2155 3.17 [ -2.0 | -2.9686 4.19 | -2.0 | -14.1151
2.25 | -2.0 | -1.2867 3.27 | -2.0 | -3.3712 4.29 | -2.0 | -17.0681
2.35 | -2.0 | -1.3722 3.37 | -2.0 | -3.8536 4.39 | -2.0 | -20.7628
245 | -2.0 | -1.4742 3.47 | -2.0 | -4.4337 4.49 | -2.0 | -25.4078
2.56 | -2.0 | -1.5954 3.57 | -2.0 | -5.1340 4.59 | -2.0 | -31.2761
2.66 | -2.0 | -1.7389 3.68 | -2.0 | -5.9828 4.69 | -2.0 | -38.7263
2.76 | -2.0 | -1.9088 3.78 | -2.0 | -7.0160 4.80 | -2.0 | -48.2315
2.86 | -2.0 | -2.1099 3.88 | -2.0 | -8.2792 4.90 | -2.0 | -60.4190
2.96 | -2.0 | -2.3483 3.98 | -2.0 | -9.8302 0.0 |-2.0 | -76.1234

Varying o2 gives us a very interesting results. 8872 increases then decreases in a concave
Op

fashion while 5, starts remains constant as predicted. By the results, if 02> 2.86 or

0% < 0.22 for r = 1 then it is optimal to buy only risky assets otherwise riskless asset
give better dp per unit if 2.86 > o2 > 0.22.

dpida

| | | | | 1 I | I
1] o0& 1 15 2 et 3 35 4 45 i
sigmasg

This concave behavior in the above figure is due to the fatter tail vs the leftward
shift of the log-normal distribution at higher o? which implies a higher probability for
decreasing [0, €) interval of Sjvalues which compensated by the fatter tail gives better
risk score after some o2threshold.

The last result is investigating the effect of ¢ (probability measure choice) on our risk
measure. The results are as follows:

o [E[Z [ &

e

[oJeh Jdan 081 Jole%}
0.1000 | -2.0 | -3.7456 2.1526 | -2.0 | -0.3744
0.3053 | -2.0 | -2.6965 2.3579 | -2.0 | -0.3163
0.5105 | -2.0 | -2.0179 2.5632 | -2.0 | -0.2688
0.7158 | -2.0 | -1.5528 2.7684 | -2.0 | -0.2296
0.9211 | -2.0 | -1.2204 29737 | -2.0 | -0.1969
1.1263 | -2.0 | -0.9751 3.1789 [ -2.0 | -0.1697
1.3316 | -2.0 | -0.7898 3.3842 | -2.0 | -0.1467
1.5368 | -2.0 | -0.6469 3.5895 | -2.0 [ -0.1273
1.7421 | -2.0 | -0.5349 3.7947 | -2.0 | -0.1108
1.9474 | -2.0 | -0.4459 4.0000 | -2.0 | -0.0968

In the above table we see an negative inverse relation between 8—80% and ¢ while gﬂ%
remains constant.
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Increasing g
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Looking at above Figure of plots of different ¢'s for ¥ we see that as ¢ increases
Wbecomes more concave and this explains the increasing 8% since we are giving negative
outcomes higher measure and value (severe judging).

4.2.3 Scenario 2 (t=0,1,1,1, 0, 1, 1, None, g, r , Uniform(0,b))

In this scenario we consider S; ~ U[0,b] with expectation 2 and variance % We simulate
MINMAXV@R,(S;) same as Scenario 1 for different (ay, ;) and we get the following

results.

4.2.4 Results of Scenario 2

Fixing b = ¢ = 1 and varying r we get the following result:
dp dp

5| oar |

-1.0000 | -0.1667
-1.1000 | -0.1667
-1.2000 | -0.1667
-1.3000 | -0.1667
-1.4000 | -0.1667
-1.5000 | -0.1667
-1.6000 | -0.1667
-1.7000 | -0.1667
-1.8000 | -0.1667

<

I o o e o o e et
00| = o | | Lol B | O

0.9 | -1.9000 | -0.1667

1.0 [ -2.0000 | -0.1667
This expected result is similar to the Log-normal case. The only difference is in the

constant value of a%pl = —0.1667 which is due to the choice of uniform distribution.

b o5 | o | [ a2 | se |

1 1-2.0000 | -0.1667 9 1-2.0000 [ -1.5000

2 1-2.0000 | -0.3333 10 [ -2.0000 | -1.6667

3 | -2.0000 | -0.5000 11 | -2.0000 | -1.8333

41-2.0000 | -0.6667 12 1-2.0000 | -2.0000

5 1-2.0000 | -0.8333 13 [ -2.0000 | -2.1667

6 | -2.0000 | -1.0000 14 1-2.0000 | -2.3333

7 1-2.0000 | -1.1667 15 | -2.0000 | -2.5000

8 1-2.0000 | -1.3333 16 [ -2.0000 | -2.6667
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Varying b in the above result gives us a better 88771 which is due the increasing expec-

tation and variance (higher positive values are included) of S; that gives us a better risk
score. The decreasing a%% is linear in nature which leads to demand a very high b (b > 12
for r = 1) in order to break even and consider only buying risky assets and for b < 12 an
investor should only buy riskless assets.

In the next result we check different ¢'s for b =r = 1.

Jdp Jdp dp Jdp
L 4 1o | e | [ 9 [gE[ am
0.1000 | -2.0 | -0.4518 2.1526 | -2.0 | -0.0414
0.3053 | -2.0 | -0.3642 2.3579 | -2.0 | -0.0321
0.0105 | -2.0 | -0.2911 2.5632 | -2.0 | -0.0248
0.7158 | -2.0 | -0.2312 2.7684 | -2.0 | -0.0192
0.9211 | -2.0 | -0.1827 2.9737 | -2.0 | -0.0148
1.1263 | -2.0 | -0.1437 3.1789 | -2.0 | -0.0114
1.3316 | -2.0 | -0.1127 3.3842 | -2.0 | -0.0088
1.5368 | -2.0 | -0.0880 3.50895 | -2.0 | -0.0067
1.7421 | -2.0 | -0.0686 3.7947 | -2.0 | -0.0052
1.9474 | -2.0 | -0.0533 4.0000 | -2.0 | -0.0040

This table shows similar results as Log-normal case with value differences due to the
uniform distribution choice .

4.2.5 Scenario 3 (t =0,1, 1, 1, 1, 1, 1, Call Option, ¢, r , Log-
normal(u,0?))

In this Scenario we consider shorting a call option payout g(S;) = (S1 — k) for a strike
price k. Our cash flow at time ¢ = 1 becomes X = V;**" = (14-r) 1 +a1.5 =71 (S1 — k).
We see that MINMAXVQR,(X) = — [;%(ars — (s — k)4 )d(1— (1 — Fgf(s)qul)q“) —
B1(147r) where Fyg- is the cdf of a; S1—71(S1—k),. We can split the integral into two parts
to deal with the contingent claim function. MINMAXVQR,(X) = —a; fok sd(1—(1—
Fs, (5)77)"1) — (0 =) [ sd(1— (1= F, ()77)7) =k [ d(1— (1= F, (5)77)*1) -
Bi(l+7) = 1 1

= —aq [ sd(1 = (1= Fyy(s) 1)) + 5 [ sd(L — (1 = Fs,(s)71)7°1) — 711 -
Fs,(k)a1)?t — B1(1 4 r). So we have two integrals with cutoff & , one constant depen-

dent on (; and another constant dependent on (3; and k. We can compute m

(2,20 22y = (—(1471), MINMAXVQR,(S)), [ sd(1—(1— Fg, (s)71)r+!) — k(1 —
F, (k) 71)741) =

= (—(14r), MINMAXVQR,(S), —M[NMAXV@Rq(Sllslzk)—k(l—Fsl(kz)ﬁ)q“)
SO 82’% depends on k as well as MINMAXV@QR,(S;) . Next we run our simulations ac-
cordingly by varying one parameter and keeping the rest constant to one and compare
the results.

4.2.6 Results of Scenario 3

In the first run we fix u = 0% = ¢ = k = 1 and vary r and the results are as follows:
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L I
961 OJay omn

-1.0000 | -1.1175 | 0.4674
-1.1000 | -1.1175 | 0.4674
-1.2000 | -1.1175 | 0.4674
-1.3000 | -1.1175 | 0.4674
-1.4000 | -1.1175 | 0.4674
-1.5000 | -1.1175 | 0.4674
-1.6000 | -1.1175 | 0.4674
-1.7000 | -1.1175 | 0.4674
-1.8000 | -1.1175 | 0.4674
-1.9000 | -1.1175 | 0.4674
-2.0000 | -1.1175 | 0.4674

—loo oo oooo oo
O O OO0 ]| Oy U x| WO D[ | O

This result is as expected as it depicts the no effect of r on «y,v; while 6% is the
only decreasing value. Which implies at any r > 0 it is optimal to buy only risk less
assets since a combination of optimal (ay,~;) only gives us 8—80% + a%% = —0.6501 in risk
reduction.

The next simulation is investigating the effect of pon our risk measure while keeping
all other parameters equal to one.

9p ‘ Op. 9p Op | Op
0B Oay o Oa; ~ Om

-2.0000 | -0.4111 0.0556 -0.3995
-2.0000 | -0.6778 0.1774 -0.5004
-2.0000 | -1.1175 0.4674 -0.6501
-2.0000 | -1.8424 1.0611 -0.7813
-2.0000 | -3.0377 2.1589 -0.8788
-2.0000 | -5.0083 4.0678 -0.9405
-2.0000 | -8.2573 7.2832 -0.9741
-2.0000 | -13.6139 12.6240 | -0.9899
-2.0000 | -22.4456 21.4490 | -0.9966
-2.0000 | -37.0065 36.0075 -0.999
-2.0000 | -61.0133 60.0136 | -0.9997
-2.0000 | -165.9000 | 164.9000 | -1.0000
-2.0000 | -450.8000 | 449.8000 | -1.0000

=

0| 00 =1 O O il il 09 09l N[ 19 | = S| ©
OO OO O OO OO OO Oy O O O

-2.0000 | -1225.5000 | 1224.5000 | -1.0000
. -2.0000 | -3331.2000 | 3330.2000 | -1.0000
10.0 | -2.0000 | -9055.2000 | 9054.2000 | -1.0000

In the above table we can clearly see that a combination strategy of contingent claim

payoff and stock holding climbs asymptotically to (%’1 + % — —1 as u — oo, while

88—51 = —2 when r = 1. thus it is optimal to only buy riskless assets. If r = 0 then

g_ﬁﬁ = —1 and a riskless strategy is still optimal.

The following table is concerned with varying o2 while other parameters are kept to
constant one.
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L | o | e | en |t
9p1 O
0.0100 | -2.0000 | -2.6804 | 1.6804 -1.0000
0.2726 | -2.0000 | -1.9286 | 0.9311 -0.9975
0.5353 | -2.0000 | -1.4920 | 0.5866 -0.9054
0.7979 | -2.0000 | -1.2360 | 0.4822 -0.7537
1.0605 | -2.0000 | -1.0921 | 0.4693 -0.6228
1.3232 | -2.0000 | -1.0259 | 0.5034 -0.5225
1.5858 | -2.0000 | -1.0214 | 0.5743 -0.4470
1.8484 | -2.0000 | -1.0748 | 0.6849 -0.3899
2.1111 | -2.0000 | -1.1926 | 0.8467 -0.3459
2.3737 | -2.0000 | -1.3922 | 1.0808 -0.3115
L | | o | & [ ten
2.6363 | -2.0000 | -1.7067 1.4226 -0.2841
2.8989 | -2.0000 | -2.1930 1.9311 -0.2619
3.1616 | -2.0000 | -2.9493 2.7056 -0.2437
3.4242 | -2.0000 | -4.1454 3.9168 -0.2286
3.6868 | -2.0000 | -6.0822 5.8663 -0.2159
3.9495 | -2.0000 | -9.3052 9.1000 -0.2051
4.2121 | -2.0000 | -14.8300 | 14.6342 -0.1959
4.4747 1 -2.0000 | -24.6009 | 24.4131 -0.1879
4.7374 | -2.0000 | -42.4458 | 42.2650 -0.1809
5.0000 | -2.0000 | -76.1234 | 75.9487 -0.1747

We can see a similar behavior of ;—B”l , 8‘%’1 as scenario 1 as expected. Also % follows a
Op

concave structure similar to 7. The interesting result is the combined strategy of

(c1,7y1) which exhibits a property of —1 < 88751 + 867"1 < 0 and asymptotic behavior on

both ends. As 02 — 0 %jtg—ﬁ/pl% —1 which is equal to 22 at r = 0 and 22 + 22 — 0

85 Oay o
as 02 — oo which means a riskless strategy is best regardless of o2 .

In This simulation we choose different ¢’s and keep the rest parameters equal to one.

Ip Op. Ip Op 4 Op
’ q ‘ 081 Oay ‘ o ‘ Oay + o
0.1000 | -2.0 | -3.7456 | 2.8230 -0.9226
0.3053 | -2.0 | -2.6965 | 1.8251 -0.8713
0.5105 | -2.0 | -2.0179 | 1.2070 -0.8109
0.7158 | -2.0 | -1.5528 | 0.8079 -0.7449
0.9211 | -2.0 | -1.2204 | 0.5438 -0.6765
1.1263 | -2.0 | -0.9751 | 0.3667 -0.6084
1.3316 | -2.0 | -0.7898 | 0.2471 -0.5427
1.5368 | -2.0 | -0.6469 | 0.1661 -0.4808
1.7421 | -2.0 | -0.5349 | 0.1112 -0.4237
1.9474 | -2.0 | -0.4459 | 0.0741 -0.3718
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dp Jp dp Op_

¢ 5| o | 5% |lomtom
2.1526 | -2.0] -0.3744 | 0.0491 -0.3253
2.3579 | -2.0 | -0.3163 | 0.0324 | -0.2839
2.5632 | -2.0 | -0.2688 | 0.0213 | -0.2475
2.7684 | 2.0 | -0.2296 | 0.0139 | -0.2157
29737 | -2.0 ] -0.1969 | 0.0090 | -0.1880
3.1789 | -2.0 | -0.1697 | 0.0058 | -0.1639
3.3842 | -2.0 | -0.1467 | 0.0037 | -0.1430
3.0895 | -2.0 | -0.1273 | 0.0024 | -0.1249
3.7947 | -2.0 | -0.1108 | 0.0015 | -0.1093
4.0000 | -2.0 | -0.0968 | 0.0009 | -0.0958

Varying ¢'s gives a similar result as varying ¢'s in Scenario 1. Also ap + ap exhibit
a similar behavior as varying o? in the previous simulation. The only dlﬁerence is belng
5%”1 increase and p decrease monotonlcally as q increases while p decrease and 3

increase monotonleally by varying o2

In this last simulation we will vary k to measure its effect while keeping other param-
eters equal to one.

kLo | e | s [saton
9B1 Oay o1 Aoy o
0.5 [-2.0[-1.1175 ] 0.7058 | -0.4117
1 [-2.0-1.1175 | 0.4674 | -0.6501
1.5 ]-2.0 | -1.1175 | 0.3239 | -0.7936
2 [ -2.0[-1.1175 | 0.2325 | -0.8850
25 -20[-1.1175 | 0.1714 | -0.9461
3 [ -2.0[-1.1175 | 0.1292 | -0.9883
3.51-2.0[-1.1175 | 0.0992 | -1.0183
4 [-20[-1.1175 | 0.0773 | -1.0402
4.5 1-2.0 | -1.1175 | 0.0611 | -1.0564
5 [-2.0 ] -1.1175 | 0.0488 | -1.0687
Lk lah | oe | o |seton
55 [-2.0 [ -1.1175 ] 0.0394 | -1.0781
6 |[-2.0]-1.1175 | 0.0321 | -1.0854
6.5 | -2.0 | -1.1175 | 0.0263 -1.0912
7 [ -2.0 [ -1.1175 | 0.0218 | -1.0957
7.5 1 -2.0[-1.1175 | 0.0181 -1.0994
8 [-2.0[-1.1175 | 0.0152 | -1.1023
85[-2.0[-1.1175 | 0.0128 | -1.1047
9 [-2.0]-1.1175 | 0.0108 | -1.1067
9.51-2.0[-1.1175 | 0.0092 | -1.1083
10 | -2.0 [ -1.1175 | 0.0079 | -1.1096
Looking at the above table the only variable is 823 since it is the only one dependent
on k. A (ay,71) strategy is optimal when r = 0 if & > 3.5. Asymptotically 3 ” -— 0 as
k — oo thus 6p+8p_>8p and ‘9p—>— - as k — 0 thus ap—f—%’l—)O

Remark 1: In this scenario it is optimal to buy only one contingent claim (minimum)
as it contributes positively to the risk measure.

Remark 2: Numerically for any & S0, _k as p—+oooro>—0orqg—0

+
) 8a o
.Thus our optimal strategy for ap -+ 8’) bound is dependent on k. Thusif £ =1andr =0
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then our optimal strategy is only buying riskless assets since g_éi = —1 and 66771 +92<,

o —
If k > 1 then it is dependent on the combination of o2, ;1 and q.

5 Utility Functionals Simulations

In Section 2.2 we represented our preference relation as a Savage representation X o
Y <= E,[u(X)] < E,[u(Y)] where E,[u(X)] = U(X) and E,[u(Y)] = U(Y) . The utility
functionals in this case is taken over a set of subjective probability measures Mybut
we assumed such infimum exist and the functional is reduced to the expected utility
function of the random variable over this infimum. To study the optimal strategies
under these functionals we do our simulations to similar scenarios as in the coherent
risk measure MINMAXV@QR and we choose the most prominent utility functions -
Exponential function.

(1—e=a0)
u(c):{ ! - a#0

c a=20

where a represents the degree of risk preference (a > 0,a < 0,a = 0 are risk aversion,
risk seeking and risk neutral respectively).
In our case we only consider a > O(risk aversion).

5.1 Scenario 1 (¢t = 0,1, 1, 1, 0, 1, 1, None, None, r , Log-
normal(u,0?))

We start by considering the payoff X = Vl(a’ﬁ) = a1 51 + 51(1 + r) which gives U(X) =
fﬁolo(HT) u(z) fx (x)dx where fx is the pdf of the payoff. Since ay Sy ~ Lognormal(Iin(a;)+
w,0?) then X = a1 Sy + B1(1 + r) ~ Lognormal(In(ay) + u,0?) Shifted by (1 + 7).
The parameters in this scenario are (u,o? r, 1 —v,a)and we see the effect of each on
the resulted utility functional. Similar to MINMAXV @R simulations we want to know
the gradient of alpha and beta (g—g, g—g) so we can determine the corresponding optimal
strategies.

First lets study the behavior of the utility functional with an example.

Lets fix y = a = 0? = 1 and 7 = 0.1 and run U(X) for 40 /s permuted with 40 3s
each starts from 1 to 40(1600 permutations in total). Then we plot them against U and

also plot (%, g_BUl> each in a separate graph then we get the following:

aaaaa

Figure 1: Utility Functional for p = a =0% =1 and r = 0.1

On the first plot we can clearly see that the general behavior for our utility func-
1

tional is convergence to 1 since lim(, oo U(X) = = for a > 0 (risk averse). In our
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Figure 2: Arc of optimal strategies

heta

25 26 27 28 29 30 3 32
alpha

second and third plot (%]1 and 867[3]1 leveled off to 0 . To investigate the optimal strategies

(SUP(a, 51) U(X)) we need to know the (ai, 1) on the light blue arc of the second and

third plot (when the plot first touches the zero level set). To do this we will use the U(X)

matrix and find the first entry equal to one in each non all ones column. In our case it is

equal to the following entries:

(1, Bi) (38,25) | (28,26) | (20,27) | (13,28) | (9,29)
’ (6,30) | (3,31) | (2,32) | (1,33)

and the below plot shows the arc of optimal strategies.

5.2 Results of Scenario 1

First we will vary r and hold all other parameters constant to one. we get the following
results.
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L] (o1, /1) | r [ (enB) [ r ] (o1, B1) ‘

119 23
94 24
425 99 17
57 26 70 18 108 13
14927 19 19 0 14
33 28 33 20 4 15
0.0 21 29 | [oa| | 22 21 | |os 2% 16
18 30 13 22 1417
13 31 8§ 23 718
9 32 4 2 3 19
6 33 2 95
4 34
2 35
116 21
90 22
69 23 94 16
52 24 65 17 80 13
38 25 1418 49 14
98 26 28 19 28 15
0.1 20 27 | [9°] | 18 20 | |%? 15 16
13 928 10 21 8 17
9 29 6 22 318
6 30 3 23
3 31
2 32
91 20
0 21 94 15
52 922 64 16 94 12
37 23 17 57 13
2% 24 2% 18 33 14
0.2 18 25 0611 15 19 | |10 18 15
1226 9 20 9 16
7 97 4 921 417
4 928 9 922
2 29
108 18
8019 99 14
57 20
oo 65 15
n 11 16
0.3 07| | 25 17
18 23
oo 14 18
8 19
7 25 T
12
9 97

Figure 3: Optimal Strategies for different r's

Looking at the optimal strategies for different 7’s we can clearly see when r increase
we have smaller optimal strategies as we level off very fast (smaller (’s for the same
combination of a/s). the following plot shows this relationship.
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Figure 4: Optimal Strategies for Increasing r

For the next simulation we will only plot the optimal strategies as above for the

different parameter variation.
In the next run we fix r = a = 0% = 1 and we vary pu accordingly. We get the following

results.

Increasing mu

1] 20 40 B0 80 100 120
Figure 5: Optimal Strategies for Increasing p

As we can see the relationship is similar to varying r. The higher ugives smaller
optimal strategies as we level off very fast.

Next we will vary o2 and fix r = @ = ¢ = 1. And we get the following optimal
strategies table and plot.
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o’ (a1, B1) ‘ ‘ (a1,51) o’ (041751)
32 1
29 2 11 3
26 3 93 4
23 4 85
21 5 65 6
19 6 53 7
16 7 43 8
14 8 3% 9
0.0001 0 0.2633 139 0.5264 27 10
11 10 21 11
9 11 16 12
8 12 1213
6 13 9 14
5 14 6 15
4 15 4 16
3 16 2 17
2 17
118 9
2(5) 1(1) 116 12
69 13 91 14
ol 39 14 41 15
0.7896 28 13 1.0527 1.3158
18 14 20 15 16 16
10 16 5 17
11 15 L 17
6 16
317
87 15 54 16 101 16
1.5790 30 16 1.8421 12 17 2.1053 18 17
8 17 2 18 2 18
27 17 42 17 66 17
2.3684 5 18 2.8947 (2 18) 2.6316 (2 18)
104 17
3.1579 <3 18) 34210 | (3 18 ) |[3.6842| (4 18)
30473 | (4 18) [42105| (5 18) [4476 | (6 18)
47368 | (7 18) 5.000 (9 18)

Figure 6: Table of Optimal Strategies for Increasing o2

. Increasing sigma sguared

80 100 120

Figure 7: Plot of Optimal Strategies for Increasing o2
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Figure 8: Optimal strategies for different risk aversion parameter a > 0

In this simulation we see that increasing o2 gives us bigger optimal strategies as shown
in the plot. Looking at the table above we see only the smaller values appear as well
as we increase o2. The fewer optimal strategies for high o?is due to our grid choice
which has less points at smaller values (covers less points). The behavior of the log
normal distribution with respect to p and o2 conforms with our previous two results.
As pincreases we have higher probability of high values which level off our U(X) very
fast thus the smaller valued optimal strategies. But when we increase o*the log normal
distribution gives higher probability to smaller values thus our U(X) slowly level off and
we get higher values of optimal strategies.

In the next simulation we will fix 02 = r = y = 1 while varying the risk aversion
parameter a > 0. We get the following results.

Looking at the plot we see a lower values for (aq, £;) for high a. This result is explained

from the limit of U(X) i.e lim g)—oo fﬁof(ur) (ki;az)fx (x)dx = % converges faster to %

for a higher a. Thus our U(X) levels off faster with higher a.

5.3 Scenario2 (t=0,1,1,1,0, 1, 1, None, None, r , Uniform(0,b))

In this scenario we will consider S ~ U[0,b] = X ~ U[B1(1+7), 10+ 1 (1 +7r)]. First
we will compute U(X).

a1b+p1 (1+47) 1 —e9%) 1 1 1
U(X) _ / ( € )—dZL' _ (Oélb + _(e—aa1b—a61(1+r) - e—aﬁ(l-{-r)))
B a

(4) a a1b aab
1 e—aalb—aﬁl(l—H“) e—a61(1+r) 1
= -4 — = lim U(X)=-
a a?aqb a?oqb (a1,B1)—00 (X) a
Then lets compute(%, g—g) :
oU e—aalb—aﬁl(l—l-r) 1 e—a51(1+r)
oy ao; abay aa?b

oU _ _(1 +T) e—aa1b—a51(1+r) . e—aﬁ(l-{-r))
0p abay
We see that lim(,, 8,)—00 ngi = 0 and lim,, g,)—o0 g_ﬁUl = 0 so our utility functional
U(X) level off at a very fast rate especially towards [;direction.
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5.4 Results of Scenario 2

Similar to our first scenario, we will vary one parameter and fix the others. Our expected
results should be similar to Scenario 1 for varying a and r. U(X) should exhibit the same

decreasing behavior as b increases as we can see from U(X) and (gTUl, g—gl) functions (they

decrease as b increases).

First we vary r and keep b = a = 1. Next we fix r = b =1 and vary a . And lastly we
vary b and fix a = r = 1. we get the following 3 plots of optimal strategies.
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Figure 9: Plot of Optimal Strategies Under Different Varying Parameters

The Results are in conform with our predictions and previous limiting behavior.

5.5 Scenario 3 (¢t = 0,1, 1, 1, 1, 1, 1, Call Option, None, 7 ,
Log-normal(j,0?))

In this Scenario we consider shorting a call option payout g(Sl) (S1 — k)4 for a

strike price k. Our cash flow at time ¢ = 1 becomes X = V @B = (1+ 76 +

alsl B /71(51 i k)-l,- We see that U(X) _ f (1—e —a(1+r)B1 — ZaS1+a'Y(S1 k)Jr fX(I)dI’ where fX
is the pdf of (1 + )81 + a1 51 — 11 (S1 — k)4 We can split the integral into two parts

to deal with the contingent claim function. = fgllﬁfl (1+7) 1677”)]‘)(*(95)0136 +
f;fk+51(1+r) (1_Zfaz)fxf(x)dx where fx«is the pdf of (1+7)B1 + 1Sy and fy-is the pdf
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of (1+7)B; + a1S; — 71 (S; — k). Since a1.S; ~ Lognormal(In(ay) + p, 0?) then oy S; +
B1(1 + 1) ~ Lognormal(in(cy) + p,0?) Shifted by B1(1 + r) which is fx-. And fx-is
181+ 1 (1+7) =71 (S1 — k) ~ Lognormal(In(a; —~1)+u, o) Shifted by Br(1+71)+v1k.
For fx-we choose 71 < ay = —o0 < In(ag — 1) (should always be finite).

So we have two integrals with cutoff ayk + 51(1 + ) , one dependent on 3; and oy
and another is dependent on (1, aq,7; and k. Next we run our simulations accordingly
by varying one parameter and keeping the rest constant to one and compare the results.

5.6 Results of Scenario 3
The parameters in this scenario are a, k, u, o2, 7.

First we vary r and set a = k = u = 02 = 1 . We get the following results.

r (B1,01,71) T (B1,01,71) T (B1,01,71) T (B1,a1,71)
e 50
28 29 1 24 37 1 21401 20 41 2
25 15 1 22 31 1
2925 1 26 17 1 23 15 1 2116 1
0.0 30 13 1 0.1 0.2 0.3 22 17 1
31 10 1 27 15 1 2425 1 24 10 1
39 4 ] 28 29 1 25 13 1 2% 5 1
30 4 1 26 32 1
3251 30 5 1
33 5 1
15 35 1
15 37 1
15 38 1
15 39 1
18 40 1 17 41 2 15 40 1
19 20 1 18 32 1 16 38 1 15 41 2
20 29 1 19 28 1 17 32 1 16 35 1
0-4 21 13 1 0.5 20 13 1 0.6 18 10 1 0.7 16 36 1
22 11 1 21 10 1 20 5 1 17 13 1
23 4 1 22 5 1 17 14 1
17 15 1
18 5 1
19 4 1
19 5 1
14 40 1 14 20 1 13 41 2
15 32 1 15 28 1 14 29 1
0.8 16 10 1 0.9 16 30 1 1.0 15 13 1
17 29 1 17 5 1 16 5 1

Table 2: Optimal Strategies under different r's

Next we will vary p and fix 0> =k =r = a = 1 and we get the following table.
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’ H ‘ (B1,a1,71) ‘ K ‘ (B1,a1,71) \ H ‘ (B1,a1,71)
18 34 1
22 41 1 19 34 1 13 41 2
23 41 1 20 34 1 14 29 1
0.0 24 41 1 0-5 21 34 1 1.0 15 13 1
25 23 1 22 34 1 16 5 1
23 15 1
12 25 1
1.5 13 14 1 2.0 0 2.5 0
14 7 1
3.0 0 3.5 0 4.0 0
4.5 0 5.0 0

Table 3: Optimal strategies under different u's

Next we will vary o2 and fix 4 = k =r = a = 1 and we get the following table.

CEU eTD Collection

| o> | Bua,m) | o | (Bua,m) | ot | (Buo,m) |
5 41 1
6 41 1
7 41 1 9 39 1
8 41 1 10 40 1
9 41 1 11 41 1
g jﬂ 1 10 41 1 12 41 1
4 41 1 11 41 1 13 41 1
5 41 1 12 41 1 14 41 1
6 41 1 13 41 1 15 41 1
741 1 14 41 1 17 3 1
8 40 1 15 41 1 17 41 1
9 38 1 16 41 1 18 41 1
10 41 2 17 41 1 19 41 1
11 39 1 18 41 1 20 41 1
12 37 1 19 41 1 21 41 1
13 35 1 20 41 1 22 41 1
14 33 1 21 41 1 23 41 1
15 31 1 22 41 1 24 41 1
0.2231 0.4452 23 41 1 0.6673 25 41 1
16 29 1
17 97 1 24 41 1 26 41 1
18 25 1 25 41 1 27 41 1
19 23 1 26 41 1 28 41 1
20 21 1 27 41 1 29 41 1
291 19 1 28 41 1 30 41 1
22 17 1 29 41 1 31 41 1
23 15 1 30 41 1 32 41 1
o4 13 1 31 41 1 33 41 1
25 11 1 32 41 1 34 41 1
2% 9 1 33 41 1 35 41 1
27 T 1 34 41 1 36 41 1
2% 5 1 35 41 1 37 41 1
29 3 1 36 41 1 38 41 1
37 41 1 39 41 1
38 41 1 40 41 1
39 41 1 41 41 1
40 39 1
41 41 1
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12 41 1

13 41 2

14 41 2

15 41 2

16 41 2
T 412 13 33 1

18 41 2
13 36 1

19 41 2
13 38 1

20 41 2
13 41 2

21 41 2
14 19 1

22 41 2
14 20 1

23 41 2
14 21 1

24 41 2
14 22 1

25 41 2
2% 41 2 14 23 1
0.8894 1.0000 14 25 1

27 41 2
14 27 1

28 41 2
14 28 1

29 41 2
14 29 1

30 41 1
15 11 1

31 41 1
15 12 1

32 41 1
15 13 1

33 41 1
16 4 1

34 41 1
16 5 1
35 41 1 a1 7 1

36 41 1

37 41 1

38 41 1

39 41 1

40 40 1

41 41 2

Table 5: Optimal strategies under different o>

In this simulation we will vary a and fix = k = 7 = 0? = 1 and we get the following
table.

’ a ‘ (6170‘1371) ‘ a ‘ (517a1ﬂ71) ‘ a ‘ (ﬂlaalv’yl) ‘

35



CEU eTD Collection
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1 1 2
740 1 5 4l 2
6 41 2
8 40 1
7 41 2
9 40 1
8 38 1
10 41 2
9 38 1
11 41 2
10 36 1
12 39 1
11 34 1
13 36 1
a1 12 32 1
e 5 41 2 13 30 1
R 6 39 1 14 30 1
e 7 38 1 15 30 1
R 8 36 1 16 30 1
o w1 9 34 1 17 30 1
o o1 10 31 1 18 30 1
e 11 32 1 19 30 1
Y o 12 32 1 20 30 1
13 30 1 91 30 1
23 32 1 14 29 1 92 30 1
2.0500 21 32 1 | | 25375 3.0250
e o 15 32 1 23 30 1
o 16 30 1 94 30 1
e 17 29 1 95 30 1
N 18 16 1 2% 30 1
o 19 13 1 97 30 1
o 20 12 1 98 29 1
ol 91 10 1 929 29 1
el 22 8 1 30 29 1
ol 23 6 1 31 29 1
94 4 1 32 30 1
34 32 1
33 30 1
35 32 1
34 30 1
36 32 1
35 30 1
37 32 1
36 30 1
38 30 1
37 30 1
30 41 2
38 30 1
40 41 2
N 3 ] 39 41 2
10 38 1
41 41 2
341 2 3 32 1
4 32 1 4 32 1
5 32 1 5 32 1
6 32 1 6 32 1
7 32 1 7 32 1
3.5125 8 32 1 4.0000 8 32 1
9 32 1 9 32 1
10 32 1 10 32 1
11 30 1 11 32 1
12 29 1 12 32 1
40 41 2 13 30 1

Table 7: Optimal strategies under different a’s

In the last part we fix u = a = r = 02 = 1 and vary k accordingly. We get the
following results.
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(k] Buoam) k] Bua,m) [k] (Buonm) (Br,o1,m) |
13 41 1
14 30 1
15 13 1
16 11 1
17 11 1
18 11 1
18 41 1 19 41 1
19 41 1 20 41 1
20 41 1 21 41 1
21 41 1 22 5 1
22 41 1 23 41 1
23 41 1 24 41 1
24 41 1 25 41 1
25 41 2 26 41 1
11 19 1
32 41 1 27 41 2
NEEER I S IBIEE S IR
34 41 1 28 41 1
35 41 1 29 32 1
36 41 1 30 34 1
37 41 1 31 34 1
38 41 1 32 34 1
39 41 1 33 34 1
40 41 1 34 34 1
41 41 1 35 34 1
36 34 1
37 34 1
38 34 1
39 34 1
40 34 1
41 34 1

In the above simulations we get similar results as Scenario 1. as we increase u, a ,
r and k convergence is fast and we get smaller optimal strategies for (ay, ;). On the
other hand when o?increase the convergence is slower due to the nature of the lognormal
distribution (Higher o2implies higher probabilities for low S; values). Lastly 7, stays at
1 -which is the minimum amount- throughout all simulations. This is due the negative

Table 8: Optimal strategies under different k’s

payout and optimally the minimum gives maximum expected utility.

6 Conclusion

From Chapter 3 and 4 we conclude the following remarks:

1. MINMAXVQR

(
(b

)
)
()
)

38

The surface has constant gradient for all scenarios.

In Scenario 3 the optimal asset choice for ~;is 1.

(d) In Scenario 3 the choice of our (ay,v; = 1)is capped by k.

a) The optimal strategies are determined by the Gradient of the resultant matrix.
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(e) In all Scenarios increasing r favors riskless choice while increasing p,b and k
favors picking risky assets. Similarly a decreasing ¢ gives favor to risky assets
as well.

(f) An increasing o?gives two results. In Scenario 1 as it increases it favors riskless
assets then level off and then exponentially favoring optimal strategy in risky as-
sets only. In Scenario 3 due to the offset from the contingent claim an increasing
o? favors riskless assets only.

2. U(X)

(a) The optimal strategies follow an arc in the mesh of U (X)) surface.
(b) The U(X) and its gradient varies and level off depending on the parameters.
(c) In Scenario 3 the optimal asset choice for ~;is 1.

(d) In all Scenarios increasing r , i, b, k and a gives a faster convergence and thus
small values for both a; and 8;. While an increasing o2 gives higher values for
the optimal strategies due to the nature of Log normal distribution.

We know that U(X) = inf e, E,[u(X)] as a robust representation. our utility func-

(1—e—2€)
tion is defined by u(c) = a ¢ 7&8 and if we choose the special case of a = 0
c a=
we get U(X) = inf,en, Ey[X] and taking its negative we get U(X) = —inf,en, Ey[X]
which is similar to the coherent risk measure representation p(X) = —inf,cocn, E4[X].

if we assume that My = @ then our coherent risk measure is just a special case of U(X)
specifically p(X) = —U(X) at a = 0. In our setting we chose MINMAXV@QR as a
representative of the law invariant coherent risk measure and we know that any such
measure can be represented as p(X) = sup,e s, (o,1)) WV Q@QR,(X) ( ¢ the concave distor-
tions we choose) which MINMAXV@R is an example of. so varying ¢ € @ to get the
infimum translates into varying the concave distortions ¢g. This connection between U (X)
and MINMAXV@QR serves as an indicator into the behavior of optimal strategies under
them.

Comparing the optimal strategies for both U(X) and MINMAXV@QR we see differ-
ences. First MINMAXV@QR optimal strategies depend on the cash flow distribution
only. The distribution and its parameters determine if we choose risky or riskless assets
and this is due to the semi linear structure of MINMAXV@QR (inherited from positive
homogeneity, subadditivity and translation invariance).

If we look into the optimal strategies under U(X) we see a dependence on both the
distribution parameters and risk aversion quantified by a. The dependence on both
quantities shapes theU(X) size of the optimal strategies as they control the functional
convergence. In my simulations the distribution choice with its parameters and also of
a gave no clear distinction between the preference of risky or riskless assets. It only
controlled their size (the optimal arc in U(X) domain mesh). This indifference could be
a result of inadequate mesh size which should be further investigated in more involved
simulations.

In conclusion, the optimal strategies tend to be convergence based as we follow U(X)
and as our risk aversion becomes neutral (Linearized) we cascade into a risk measure
which depend solely on the distribution. This dependence gives a clear cut binary choice
of optimal strategies as determined by the parameters.
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The next interesting steps is first to further investigate U(X) through more heavy
simulations and second to study optimal strategies for multi step models.
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A Appendix
A.1 MINMAXV@R Matlab Codes

function [tho,mbeta,malpha]<8im1 (mu,sigmasq,a,r)

alpha=linspace(1,100,100);

bsta=linspace(1,100,100);

rho=zeros(lengthialpha),length(beta));

i=1;j=1;

for a=alpha

for b=beta

poi=@(s)lognpd(s,mu,sigmasq);
cdf=@(s)logncdi(s,mu,sigmasa);
phi=@(s)s.” pdfis).*((cdi(s)." (- 1/(q+1))-1).%a);
wlogninv(1e-100,mu,sigmasea);
rholij) =1*a*integral(phiw Infl-b*(1+r);
=+

[FX,FY]=gradient(rho);
surf(beta,alpha,rho);

view(142,36);

plottitle =streat( Plot of (mu sigmasa,q,r) =/ \,num2str{mu),"\ num2str{sigmasa),’,\num2strig),’ ,\num2str(r),)'};
zlabel('rho’)ylabel('alpha’);xlabel(beta)title(plottite);mbeta=me an2(FX);malpha=me an2(FY);

end

1 =linspacs(0,1,11};
mui=linspace(0,5,11);
sigmasq1=linspace(0.0001,5,50);
q1=linspace(0.1,4,20);
y=@{xa)(1-(1-x.A (11 +a))). (@410
x=linspace(0,1,1000);
matrix1=zerosi11,3);matrix2=zeros(11,3);
matrix3=zeros(50,3);matrix4=zsros(20,3);
forg=qt

yy=ylx.a)

plotx,yy);hold on;
end
i=1;
for r=r1
mu=1,q=1;sigmasq=1;
figure();
[rha, mbeta,malphal=Sim1(mu, sigmasq,q,r);
matrix1 (i,

r=1;q
figure();

[rha, mbeta,malphal=Sim1(mu sigmasq,q,r);
matrix2(i
matrix2(i,
matrix2(i,3)=malpha;

i=is1;

end

i=1;

for sigmasq=sigmasq1

mu=1,g=1;r=1;

figure();

[rha, mbeta,malphal=Sim1(mu sigmasq,q,r);
matrix3(i, i
matrix3(i,
matrix3(i,3)=malpha;

i=is1;

end

i=1;

forg=qt

mu=1;r=1;sigmasq=1;

figure();

[rha, mbeta,malphal=Sim1(mu sigmasq,q,r);
matrix4(i,1)=q;

matrix4(i,2)=mbeta;

matrix4(i,3)=malpha;

i=is1;

end
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function [rho,mbeta,malphal=Simz(b,q.r)
alpha=linspace(1,100,100);
beta=linspace(1,100,100);
rho=zeros(lsngthialpha),length(bsta));
i=1;j=1
for Ipha
for bt=beta
pdf=@(x)unifpdf(x,0,b);
cdf=@ (x)unifedf(x,0 b);
phi=@x)x.” pdfix).*lcdfix).*-1/ig+1)}-1).Ma);
w=unifin(1e-100,0 b);
tholij) =1*at'integral(phiw b)-bt* (1+);
=+
end

i

end

[FX,FY]=gradient(rho);

surf(beta,alpha,rho);

view(142,36);

plottitle =streat( Plot of (b g ri={,num2str(b’ umz2strig),,\numzstr(r),)’);

zlabel(tho')ylabel (‘alpha);xlabel(beta) title (plotiitie);mbsta=ms an2(FX);malpha=mean2(FY);
end

ri=linspace(0,1,11);
b1=linspace(1,16,16);
q1=linspace(0.1,4,20);
matrix1=zeros(11,3);matrix2=zeros(11,3);
matrix3=zeros(20,3);

i=1;

forr=r1

b=1g=1;

figure();

[tho, mbeta,malphal<Sim2(bq,1);
matrix1(i,1)=r;
matrix1 (i, beta;
matrix1(i,3)=malpha;
i=i+1;

end

i=1;

forb=b1

r=1,9=1;

figure();

matrix2(i,3)=malpha;

i=i+1;

end

i=1;

forg=q1

b=1r=1;

figure();

[tho, mbeta,malphal<Sim2(bq,1);
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function [rho,mbeta,malpha,mgammal=5im3(mu, sigmasq,q,rk)
alpha=linspacs(1,25,25);
beta=linspace(1,25,25);
gammas=linspace(1,25,25);
rho=zeros(length(alpha),length{beta) le ngthigamma));
i =1
for a=alpha
for b=beta
forc=gamma
poi=@(x)lognpdfix,mu,sigmasa);
cdf=@(x)lognedf(x,mu,sigmasq);
phi=@{xpx."pdfix) * {edf(x).N(-1/(g+1))-1)."(q);
w=logninv(1e-100,mu,sigmasa);
rha(ijl) =1*a"integral(phiw Infj+c*intsgral(phimaxikw), Infi-b* (1+r)-c*k* (1-cdfik) A (1 /(g1 1)) AMa+1);
I=l+1;
end
=+

end

[FX,FY Fd=gradisnt(rho);
mbeta=mean2(FX);malpha=mean2(FY)mgamma=mean2(FZ);
end

CEU eTD Collection

ri=linspace(0,1,11});
mut=linspace(0,5,11);
sigmasq1=linspace(0.01,520);
g1=linspace(0.1,4,20);

K1 =linspace(0.5,10,20);

matrix1 =zeros(11,4);matrix2=zeros(11,4);
matrix3=zeros(20,4);matrix4=zer0s(20,4);
matrix5=zeros(20,4);

i=1;

for r=r1

mu=1,q=1;sigmasq=1;k=1;

[tho, mbeta,malpha,mgammal =Sim3(mu,sigmasq,q,r k);
matrix1(i,1)=r;

matrix1(i,2)=mbsta;
matrix1(i,3)=malpha;
matrix1(i,4)=mgamma;

i=is1;

end

i=1;

for mu=mu1

r=1;q=1;sigmasq=1;k=1;

[tho, mbeta,malpha,mgammal =Sim3(mu,sigmasq,qr k);
matrix2(i,1)=mu;

matrix2(i,2)=mbsta;

matrix2(i,3)=malpha;

matrix2(i,4)=mgamma;

i=is1;

end

i=1;

for sigmasq=sigmasq1

mu=1;q=1;r=1;k=3;

[tho, mbeta,malpha,mgammal =Sim3(mu,sigmasq,qr k);
matrix3(i,1)=sigmasq;

matrix3(i,2)=mbsta;

matrix3(i,3)=malpha;

matrix3(i,4)=mgamma;

i=is1;

end

i=1;

forg=qt

mu=1;r=1;sigmasq=1;k=1;

[tho, mbeta,malpha,mgammal =Sim3(mu,sigmasq,qr k);
matrix4(i,1)=aq;

matrix4(i,2)=mbsta;

matrix4(i,3)=malpha;

matrix4(i,4)=mgamma;

i=is1;

end

i=1;

for k=k1

mu=1,q=1;sigmasq=1;r=1;

[tho, mbeta,malpha,mgammal =Sim3(mu,sigmasq,qr k);
matrix5(i,1)=k;

matrix5(i,2)=mbsta;

matrix5(i,3)=malpha;

matrix5(i,4)=mgamma;

i=is1;

end
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A.2 U(X) Matlab Codes

function [UF,2] = Utility1 (mu,sigmasq,r,a)
alpha=linspace(1,120,120);
beta=linspace(1,120,120);
UF=zeros(lengthlalpha) length{beta));
i=1;j=1;

for a1 =alpha

for b1=beta

u=@(x)exp(-a’x)." lognpdf(x-b1*{1+r),mu+log(al) sigmasq).”1;
U=(1/a)"(1-integral(u,b1”(1+r) Inf);

UFGi)=Uii=j+1;

end

1

i
=

end
z=zeros();j=1;A=UF-(1/a)*ones(sizz(UF));
fori=1:120

=0

[row]<find{not(A(:i)),1);

if ise m py{row) ==
zi],1)=row;

end

figure () surf(beta,alpha U F)view(142 38);

plottitle =streat( P lot of Utility Functional{mu sigmasaq,r,al
zlabel('rho)iylabel('alpha)xlabel(beta) title(plottitls);
end

(\num2strimu),' " num2str(sigmascy),’\num2str(r) ' num2str(a), |},

shed with MATLABS R2014

ri=linspace(0,1,11);
mul=linspace(0,5,11);
sigmasq1 =linspace(0.001,2,10);
al=linspace(0.1,4,20);

=1;sigmasg=1;

[UF 2] = Utility {mu,sigmasa,r,a);
latex_table = latex(sym(z));
surfiz(:,1),2(,,2),2(:,3));hold on;
i=i+1;

end

i=1;

for mu=mu1
r=1;a=1;sigmasq=1;

[UF.2] = Utility1 (mu,sigmascy, r,a);
latex_table = latex(sym(z));
plotizi:,1),2(;,2),r};hald on;
i=i+1;

end

i=
for sigmasq=sigmasq1
mu=1a

[UF 2] = Utility1 {mu,sigmasq r,a);
latex_table = latex(sym(z));
if z~=0

plotiz(:,1),2(:,2),'9hold on;
end
i=i+1;

1;sigmasqg=1;

[UF 2] = Utility1 {mu,sigmasq r,a);
latex_table = latex(sym(z))

if z~=0

plot(zi:,1),z(,2), k};held on;

end

i=i+1;

end

ished with MATLABS A2014a
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function [UF,z] = Utility2(b,r,a)
alpha=linspace(1,120,120);
beta=linspace(1,120,120);
UF=zeros(length(alpha),length(beta));

i=tj=1;

for at =alpha

forb1=beta
u=@(x)expi-a’x)."unifpdfix,b1*(1+r),b"al+b1"(1+r)).71;
U=(1/a).* (1-integral(u,b1*(1+r), a1 "b+b1* (141)));
UF(j)=U j=j+1;

end
i=i+1

end
z=zeros();j=1A=UF-(1/a) ones(siz=(UF));
fori=1:120
iTA(1,i)~=0
[row]=findinot(A(:i)),1);
if ise mpty(row)==(

figure();surflbeta,alpha UF)view(142,36);
plottitle =streat( P lot of Utility Functional(b r,a)=(,num2str(b),, ,num2strir), num2str(a),|;
zlabel('rho')ylabel('alpha)xlabel(beta’) title(plottitle);

end

LABS R2014,

ri=linspace(0,1,11};
al=linspace(0.1,2,10};
space(0.5,20,40);

b=1;a=1;

[UF 2] = Utility2(b,r,a);
latex_table = latex(sym(z))
if z~=0
plot(zi:,1),z(,2), ) hold on;
en

i=i+1;

end

r=1;a=1;
[UF 2] = Utility2(b,r,a);
latex_table = latex(sym(z))
if z~=0
plotiz(:,1),2(:,2),'97hold an;
end

i=i+1;

end

b=1;r=1;

[UF.2] = Utility2(b,r,a);
latex_table = latex(sym(z))
if z~=0

plot(zi:,1),z(,2), k};held on;
end

i=i+1;

end
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function [UF,z] = Utility3{imu,sigmasa,r,.a k)
alpha=linspace (2,41,40);

for b1=beta

for at =alpha

forc1=1:{al-1)

ul =@ (x)({1-exp(-a™x))/a) "lognpdfix-b1*(1+r),mu+log(al) sigmasa);
u2=@(x)((1-sxp(-a"x))/a) lognpdfix-b1*(1+r)-k*c1,mu+log(al-c1),sigmasa);
U=integral{ul,b1*(1+r),b1"(1+r)}+al"k)+integral(u2,b1*(1+r}+al "k Inf);

UF(] 1 =U;l=h1;
end

I=1ij5+1;

end

z=zeros(),A=UF-(1/a)ones(size(UF));i=1;

forg=1:40

forh=1:40

it Alg,h,1)~=0

[row coll<find{not{A(g,h,J),1);

if isempty(row) ==

2(i,1)=g+1;

2[i,2)=h+1;

z(i,3)=floor(col/id0)+1;

i=is1;

end

end

end

end

3[FX1,FY 1]=gradient(rho1);[FX11,F¥11]=gradient(rho11);[FX2,F¥2]=gradient(tho2);[FX22,FY 22]=gradient(tho22);
sefigurei);surtibeta alpha,rhot);

ssurfibsta alpha,rho11) figure();surf(beta,alpha rho2)figurs();surf(beta alpha,rho22);

Published with MATLABS R2014,

i =linspace(0,1,11};
mut=linspace(0,5,11);

sigmasq1 =linspace(0.001,2,10);
al=linspace(0.1,49);
k1=linspace(1,6,6);

i=1;

forr=r1
mus=1;a=1;sigmasg=1;k=1;

[UF.2] = Utility3(mu,sigmascy,r,a,k);
latex_table = latex(sym(z))

i=i+1;

end

i=1;

for mu=mu1
r=1;a=1;sigmasg=

[UF 2] = Utility3{mu,sigmasa,r,a,k;
latex_table = latex(sym(z))
imist;

[UF 2] = Utility3(mu,sigmasdqr,a,k);
latex_table = latexisym(z))
i=i+1;

isigmasq=1;k=1;
[UF 2] = Utility3(mu,sigmasq r,ak);
lalex_table = latex(sym(z))

it

mu=1r=1;sigmasg=1;a=1;
[UF 2] = Utility3{mu,sigmascy r,ak);
latex_table = latex(sym(z))

CEU eTD Collection
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A.3 MINMAXV@R Figures

A.3.1 Scenario 1 Figures

Plot o (mu.sigmasa..0=(1.1.1 0) Plot of (mu.sigmasq.a.0=(1.1,10.1) Plot of (mu.sigmasq..0=(1.1.102)

apha apha apha

Plot of (mu siomas.a,/=(1.1,103) Plot of (mu sigmase . Plot of (mu sigmas..=(1,1,1 0.5)

&0

apha apha apha

Flot of (1w sigrmase,4,0=(1,1,1 06) Plot of (mu sigmasa,4.0=(1,1.107) Plot of (rmu.sigmasa,4.0=(1.1.108)

beta

alpha apha

Plot of (mu,siomas.a,/=(1.1,109) Plot o (mu sigmasa,.=(1,1,11)

Figure 10: Varying r

CEU eTD Collection
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Plot of rnu,sigmase a.0=(1 0.25.1.1)

apha

Plot of(mu cigmaza,

apha

Plot of (mu.sigmasa..0=(1,1 75.1.1)

2l

100" 100 a0
apha sl

Plot f (mu,siomas.a./=(1 25,1 1)

10 100

Plot f (mu siomas g

Plot of rnu,sigmas a.0~(1 075.1.1)

apha apha

Plot of (mu,sigmaze 4.0=(1,1.25.1.1) Plot o (mu sigmasq

10 100 100 100

apha apha

Flot of(mu sigmasa,.=(1 21.1) Plot of (mu.sigmasq..)=(1 226.1.1)

apha apha

Plot of rmu sigmasa g Plot of(mu sigmasa,a.0=(1 3.1.1)

Figure 11: Varying o?
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Plot of (mu sigmasa,.0=0,1.1.1)

apha

&

beta
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A.3.2 Scenario 2 Figures
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Figure 14: Varying r

51

Plot of (o,4.0=(1,1,1)




CEU eTD Collection

Plot of (o3=(11.1.1)

Plot of (0.4.0=G.11)

Plot of (b.4.0=6.1.1)

Plot of (0.4.0=6.1.1)
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