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2 Introduction

Our existence has been always based on the best allocation and utilization of available
resources. The modern era of economics brought new tools and structure but at the same
time new challenges that add complexity of choice. Tackling the problem started with
�rst de�ning the value of the intrinsic physical or intangible quantity. This philosophy of
quanti�cation is the driver of the mathematics of price and the process of pricing. After
de�ning such quantity it boils down to the best asset allocation based upon certain uni-
versal measures. In the language of �nancial mathematics the best allocation corresponds
to the optimal asset investment strategy which achieves the maximum value of the agreed
upon measure. The existence and uniqueness of an optimal strategy is a complex process
which takes di�erent tools of pure and applied mathematics that ensure a well-de�ned
problem and results.

Optimal strategies are applied enormously in di�erent arenas of �nance and trade. Fi-
nancial portfolios which are included in funds of multiple functionalities use such strate-
gies to ensure a superlative allocation of wealth and e�cient economics and markets.
Hedge, ETF's and mutual funds are prime examples of such funds which together they
constitute a big chunk of the world's assets. Financial institutions as well use these strate-
gies to manage wealth and choose good investments. Mathematical �nance approaches
the questions of value into two ways. One way is by market pricing models that use
stochastic calculus, probability and economic theory to capture market forces and func-
tions. The other approach is by measuring risk of certain positions which in turn gives
us a pricing capability of the underlying assets. And in between the two faces of asset
pricing lies the problem of optimization represented in strategies or allocations.

In this paper I will compare optimal investment under two measures. First using
the basic market assumptions (Axioms) to construct risk measures which are used to
rank our investments. Second is by using the economics theory of utility to asses our
investments and prioritize them accordingly. The two approaches are used to choose the
best investments according to the optimal strategies that arise. The aim is to compare
these strategies and see the driving forces behind their di�erences. Using simulations and
multiple pricing models, progressive in complexity, the �nal result should give a picture
on the intrinsic features of the two approaches. Literature for risk and utility measures
mainly comes from mathematical �nance papers published dominantly by Cherny and
Madan. other resources include books such as Stochastic Finance by Follmer and Schied
and Stochastic Calculus by Lamberton plus other supplementary papers.

Our setting is a probability space
(
Ω,F , (F)t∈N , P

)
with the natural �ltration in

discrete time. let Xt ∈ L∞be a random variable on the probability space such that
Xt :Ω→ R. The Random Variable represents a particular cash �ow (i.e payo�) given the
information until time t and X:D with any distribution D . we de�ne a risk measure
ρ :L∞ → R and Utility Functional U :L∞ → R which will give us the benchmark for our
rating. Under No arbitrage and risk free rate r we can de�ne our portfolio cash �ow as

Xt = V
(α,β,γ)
t =

n∑
i=1

γit+1g(Sit) + βt+1Bt +
n∑
i=1

αit+1S
i
t

where Sit risky assetsi price at time t , g(Sit) are contingent claim on asset i (function
of asset i), Btis risk less asset price at time t, (α, β, γ) are the corresponding strategies
of all assets (Quantity of each asset) and they are predictable processes (i.e (α, β, γ)t+1
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are measurable w.r.t Ft ). we choose a speci�c stochastic model for S and then try to
optimize ρ and U with the corresponding strategy i.e we need to �nd

sup
(α,β,γ)∈Rd

ρ(V
(α,β,γ)
t ) = ρ(V

(α∗,β∗,γ∗)
t )

and
sup

(α,β,γ)∈Rd
U(V

(α,β,γ)
t ) = U(V

(α−,β−,γ−)
t )

and then compare (α−, β−, γ−)and (α∗, β∗, γ∗). Then we proceed with the study of their
structure and behavior.

The main questions that I am trying to answer are 1) what is the structure of these
optimal strategies (existence, uniqueness, form and behavior)? are the two measures
optimal strategies similar? if yes, for which payo� class are they similar? if no, what are
the advantages and disadvantages of both? and which one is a better representation of
the market?.

To answer these questions, tools of stochastic analysis have to be used to derive an
optimal solution. numerical simulation under algorithms is another approach that could
be an indicator of structure which can be used preliminary. the main methodology is to
use these tools to give an idea on the general direction or founded results if possible.

3 Arbitrage Pricing and Preferences

3.1 Arbitrage Pricing

For the following lets consider one risky asset with no contingent claim for simplicity (i.e
(S,B), (α, β) ∈ R2).

Definition 2.1.1 : A portfolio is called self-�nancing if V
(α,β)
t = βt+1 ·Bt + αt+1 · St =

βt ·Bt + αt · St holds ∀t ∈ N .

Notation 2.1.1 : lets denote the family of all predictable and self-�nancing strategies
as A.

Definition 2.1.2: A strategy(α, β) ∈ A is called an arbitrage opportunity if ∃t ∈ N
such that V

(α,β)
0 = 0 and V

(α,β)
t ≥ 0 almost surely and p(V

(α,β)
t > 0) > 0. and called No

Arbitrage ∀(α, β) if V
(α,β)
t ≥ 0 then V

(α,β)
t = 0.

In our setting, the market is e�cient which means no arbitrage opportunity exists. if
such opportunities arise then the market will eliminate them instantaneously through the
dynamics of market forces.

Definition2.1.3: A probability measure q is called equivalent (i.e q v p(q(A) = 0⇐⇒
p(A) = 0) ) martingale measure (EMM) or risk neutral measure with numeraire (how
value is quoted) B (could be any process, in our case we chose B) if Sk

Bk
= Eq[

St
Bt
| Fk]

∀t, k ∈ N and k < t .

i.e the expected cash �ows of the future given the information till today is today's value
which implies a fair game (martingale) dynamic. The need for a risk neutral measure
arises due to the multiplicity of subjective risk return pricing. An investor will demand a
price that �ts within his or her risk aversion which would lead to discrepancies in price.
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The neutral risk measure is a measure that takes into account every risk appetite of every
individual which leads to a consistent pricing.

Theorem 2.1.1: No Arbitrage hold if and only if ∃q equivalent martingale measure in
the market (S,B).

Proof : ⇐= By contradiction, assume there exist an arbitrage opportunity (α, β), then

V
(α,β)

0 = 0 ,V
(α,β)
t ≥ 0 a.s and p(V

(α,β)
t > 0) > 0⇒q(V (α,β)

t > 0) > 0 and q(V
(α,β)
t ≥ 0) = 1

⇒ Eq[
V

(α,β)
t

Bt
] > 0 and on the other hand Eq[

V
(α,β)
t

Bt
] = V

(α,β)
0 = 0 contradiction.

=⇒using the stochastic integral proposition in discrete time (If for every α bounded
and predictable process Gt(α,M) =

∑t
i=1 αi(Mi −Mi−1) has zero expectation ∀t ∈ N

then M is a martingale) . Let M = S∗ = St
Bt

then it is enough to prove the existence of

q ∼ ps.t Eq[Gt(α, S
∗)] = 0.

∑t
i=1 αi(S

∗
i − S∗i−1)

Denote the cardinality of Ω by m and for any random variable X on Ω we denote
X(ωi) = Xisuch that E[X] =

∑m
i=1Xiq(ωi). we see that the arbitrage free condition

translates into G(α, S∗) /∈ Rm
+ = {X | Xi ≥ 0, 0 ≤ i ≤ m} for every predictable

process α. Thus θ = {G(α, S∗) | α ∈ A}is a linear subspace of Rms.t θ ∩ ϑ = φ with
ϑ = {X ∈ Rm

+ | X1 + . . . + Xm = 1}. using a corollary that states (let ϑ be compact
convex subset of Rmand θ a linear subspace of Rmwith θ ∩ ϑ = φ then ∃c ∈ Rms.t
< c,G >= 0,∀G ∈ θ and < c,G >> 0,∀X ∈ ϑ or equivalently

∑m
i=1Gi(α, S

∗)ci = 0 and∑m
i=1Xici > 0) which implies ci > 0,∀i so we can normalize c to de�ne q s.t q(ωi) = ci∑m

j=1 cj

then
∑m

i=1Gi(α, S
∗)ci = 0 ⇒ Eq[G(α, S∗)] = 0.

The following De�nitions and Theorems deals with the properties of the Contingent
Claim Function g(St)

Definition 2.1.4: A contingent claim payo� g(ST ) is a �nancial product that derives
its value from the underlying asset/s ST , i.e it is a function of the underlying asset/s.

Definition 2.1.5: A contingent claim is replaceable if ∃(α, β) ∈ A such that V
(α,β)
T =

g(ST ) where T maturity date of the option.

Definition 2.1.6 : A super- and sub-replicating portfolios for a contingent claim g(ST )

are A+ = {(α, β) ∈ A | V (α,β)
T ≥ g(ST )} and A− = {(α, β) ∈ A | V (α,β)

T ≤ g(ST )}

Definition 2.1.7: Ht is a fair price of the contingent claim g(ST ) at time t if and only

if Ht
Bt

= Eq[
g(ST )
BT
| Ft] (under risk neutral measure q).

Proposition 2.1.1: if g(ST ) is replaceable then it has a unique fair price Ht.

Proof : let q ∈ M risk neutral measure (M = {q : q ∼ p}. then Eq[
g(ST )
BT
| Ft] =

Eq[
V

(α,β)
T

BT
| Ft]= V

(α,β)
t

Bt
= Ht

Bt
, since (α, β) is constant we can de�ne Ht = αSt + βBt.

Definition 2.1.8: A market is complete if every claim is replaceable (i.e everything
has unique price).

Theorem 2.1.2: A market is called complete if and only if ∃!q ∼ p risk neutral
measure, otherwise it is called incomplete.

This another characterization of the complete market. the existence of unique prices
are equivalent to the existence of a unique risk neutral measure which is used to price
them.
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In case the market is incomplete then there exists a range of risk neutral measures.

proof : ⇐=By contradiction. Suppose the market is not complete and we construct

another q
′
EMM di�erent from q. let π = {V

(α,β)
T

BT
| (α, β) ∈ A}. we use the random

elements X as in Theorem 2.1. Then the incompleteness of the market translates into
π ⊂ Rm. we de�ne the scalar product as [X, Y ] =

∑m
i=1 XiYiq(ωi) = Eq[XY ]. Then

∃L ∈ Rmorthogonal to π, i.e [L,X] = 0,∀X ∈ π, if we choose X = 1⇒ Eq[L] = 0. for a
�xed parameter δ > 1 we de�ne qδ(ωi) = (1 + Li

δ‖L‖∞ )q(ωi) where ‖ L ‖∞= maxi[| Li |],
so we showed we can construct di�erent EMM for each δ > 1 and qδ(ωi) > 0 since (1 +
Li

δ‖L‖∞ ) > 0, furthermore qδ(Ω) =
∑m

i=1(1 + Li
δ‖L‖∞ )q(ωi) = q(Ω) + 1

δ‖L‖∞Eq[L] = 1 there-

fore qδ is EMM. Then we calculate Eqδ [G(α, S∗)] = Eq[G(α, S∗)] + 1
δ‖L‖∞Eq[LG(α, S∗)] =

Eq[G(α, S∗)] = 0 by the proposition (if S∗is a martingale and αis a bounded and pre-
dictable process then G(α, S∗) is a martingale with null expectation).

In case of incomplete market we have a range of arbitrage free derivative prices which
poses another question of which price should we choose. one way is the super replicating

price which is the price = inf{(α, β) ∈ A+ | V (α,β)
t ≥ g(ST )}or the sub replicating if on

the opposite direction. Also we can use entropy function between the EMM's and take
the minimal. Another approach is to use indi�erence price using utility functions which
we will explore in the next section.

3.2 Preferences

Definition 2.2.1: A relation ∝is a preference order if we write X ∝ Y for X, Y ∈ L∞we
mean Y is preferred to X and it satis�es the following axioms.

1) Completeness: ∀X, Y ∈ L∞then either X ∝ Y or Y ∝ X or both (X ∼ Y
indi�erence)

2) Transitivity: If X ∝
_

Y and Y ∝
_

Z then X ∝
_

Z .
3) Independence : If X ∝

_

Y and for any Z ( independent random variable) and
λ ∈ (0, 1) then λX + (1− λ)Z ∝

_

λY + (1− λ)Z.
4) Continuity: If X ∝

_

Y ∝
_

Z then there exists a probability ε ∈ (0, 1) such that
εX + (1− ε)Z ∝

_

Y .
all of these axioms characterize the rational behavior of the economic agent which is

the underlying assumption of utility theory.

Definition 2.2.2: A preference relation is called to have Savage (Von Neumann -
Morgenstein VNM) representation if ∃u : R −→ Rsuch that X ∝

_

Y ⇐⇒ Ep[u(X)] ≤
Ep[u(Y )]. we call u utility function.

Proposition 2.2.1: An investor is risk averse if the utility function u is concave.

proof : Take any two points X, Y s.t X, Y > 0, X < Y then by concavity u(λX + (1−
λ)Y ) ≥ λu(X) + (1− λ)u(Y ))⇒ w ≥ λw1 + (1− λ)w2, w1 ≤ w ≤ w2∀λ ∈ (0, 1) ,λwhere
is the probability X happening which means we prefer a sure thing to any gamble.

Theorem 2.2.1 :If ∝
_

satis�es its axioms and u : R −→ R concave (risk aversion) and
monotonically increasing =⇒ ∃a Savage representation.
proof : we will skip the proof of this theorem.
So ∃u hidden utility function which drives the underlying preference relation.
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In our aim of optimal strategies we de�ne the utility functional as U(X) = infq∈M0 Eq[u(X)]
for some set of subjective equivalent probability measures M0. From now on we will as-
sume that such minimum is attained and the robust utility maximization is reduced to the
standard utility maximization i.e U(X) = infq∈M0 Eq[u(X)] = Ep[u(X)]. so our Savage
preference representation will be X ∝

_

Y ⇐⇒ Ep[u(X)] = U(X) ≤ Ep[u(Y )] = U(Y ).

There exist multiple classes of utility functions but we will choose two main classes
which will give a good idea about utility behavior. the �rst class is the exponential
utility functions which are de�ned by:

u(c) =

{
(1−e−ac)

a
a 6= 0

c a = 0

where a represents the degree of risk preference (a > 0, a < 0, a = 0 are risk aversion,
risk seeking and risk neutral respectively).

In our case we only consider a > 0(risk aversion) which gives the rise to the Savage
representation.

The second class is the Power utility functions which are de�ned by:

u(c) =

{
c1−v−1

1−v v 6= 1

ln(c) v = 1

where v is a constant and ln(c) is the limiting case. we takev > 0 as it represents the
risk aversion property for VNM representation.

Now we will see how we can price contingent claims in incomplete markets.

Definition 2.2.3: The utility indi�erence price of a derivative is price(g(ST )) = pr∗ =

inf{pr | sup(α,β) Ep[u(V
(α,β)+pr
T − g(ST ))] ≥ sup(α,β) Ep[u(V

(α,β)
T )]}.

What this is basically saying is that entering the contract and receiving pr and paying
g(ST )at T should be preferred by the seller of this contract than not entering it. and it
is usually less that the super replicating price.

So now we have a somewhat clear idea of complete and incomplete market character-
ization within risk neutral and utility constructions.

Finally, lets discover a nice uniting factor between the risk neutral and utility world.

Let X be a random variable then there is a unique j(X) ∈ R such that u(j(X)) =
Ep[u(X)]. where j(X) is a deterministic amount. since u is concave then by Jensen
Theorem we have Ep[u(X)] ≤ u(Ep[X]) sincej(X) ≤ Ep[X] then ξ(X) = Ep[X]) −
j(X)) ≥ 0. where ρis the risk premium the investor demands. or it is the amount the
investor is willing to pay to change j(X) to Ep[X]. Lets write the Taylor expansion for
u(j(X)) around Ep[X].

u(j(X)) = u(Ep[X]) + (j(X)−Ep[X]) · u′(Ep[X]) +
1

2
(j(X)−Ep[X])2u

′′
(Ep[X]) + small

From above we have u(j(X)) = Ep[u(X)]=
∫
u(x)p(dx) we do 2nd order expansion

around Ep[X] and take expectation =⇒ Ep[Ep[u(X)]] = Ep[u(Ep[X]) + (X − Ep[X]) ·
u
′
(Ep[X])+1

2
(X−Ep[X])2u

′′
(Ep[X])+small] =⇒ Ep[u(X)] = u(Ep[X])+0+1

2
V ar[X]u

′′
(Ep[X])

by Mean Value Theorem we get (j(X) − Ep[X])u
′
(Ep[X]) = −1

2
V ar[X]u

′′
(Ep[X]) =⇒
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ξ(X) = −1
2
V ar[X]u

′′
(Ep[X])

u′ (Ep[X])
. so the risk premium is a scaling of the quantitatively objec-

tive risk measure V ar[X] by the risk aversion u
′′

(Ep[X])

u′ (Ep[X])
of the investor. In risk neutral

market scenario the utility is linear and the risk aversion is zero for all investors. Thus
the market return for a position is solely dependent on the objective risk measure in the
market. Furthermore, our V ar[X] or any other measure of risk in any market scenario
could be replaced and de�ned by a more involved measure ρ and in the next chapter we
will take a closer look at these measures and how they play an important role in optimal
investments.

4 Coherent Risk Measures

4.1 De�nitions, Representations and Examples

The risk measure we will talk about below are an indicator of cash requirements that
is needed for a certain cash �ow or position to be risk free according to the supervisory
agency in the market.

Definition 3.1.1: A risk measure ρ :L∞ → R is called Monetary if it satis�es the
following axioms ∀X, Y ∈ L∞:

1) Monotonicity: If X ≤ Y =⇒ ρ(X) ≥ ρ(Y ). i.e a better performing cash �ow always
has lesser risk.

2) Cash Invariance: If m ∈ R =⇒ ρ(X + m) = ρ(X) − m i.e the risk measure is
translated by cash amount. From cash invariance we can deduce ρ(m) = ρ(0) −m. In
our case we will assume normalization i.e ρ(0) = 0.

Lemma 3.1.1: Monetary risk measures are Lipschitz continuous with w.r.t the L∞

norm.

proof : We can clearly see that X ≤ Y+ ‖ X−Y ‖∞=⇒ ρ(X)−ρ(Y ) ≤‖ X−Y ‖∞by
Monotonicity and Cash Invariance. Reversing the roles of X and Y lead to the assertion.

Definition 3.1.2: A Value at Risk V@R risk measure is de�ned as follows V@Rλ(X) =
inf{m | p(X + m < 0) ≤ λ} = inf{m | p(X ≤ m) ≥ λ}, λ ∈ (0, 1). in other words V@R
is the minimum cash requirement that we add to our position which keeps our negative
outcomes below the threshold λ.

Example 3.1.1: Value at Risk V@R is a Monetary risk measure. Lets check if it
satis�es the two axioms.

1) Monotonicity: Assume X ≤ Y. we have V@Rλ(X) = inf{m | p(X+m < 0) ≤ λ}and
V@Rλ(Y ) = inf{m | p(Y + m < 0) ≤ λ}. let m1 ∈ {m | p(X + m < 0) ≤ λ}then
X+m1 ≤ Y +m1 =⇒ p(X+m1 < 0) ≤ p(Y +m1 < 0) ≤ λ =⇒ m1 ∈ {m | p(Y +m < 0) ≤
λ} =⇒ {m | p(X+m < 0) ≤ λ} ⊆ {m | p(Y +m < 0) ≤ λ} =⇒ V@Rλ(X) ≥ V@Rλ(Y ).

2) Cash Invariance: Let V@Rλ(X + k) = inf{m | p(X + (m + k) < 0) ≤ λ} =
inf{m+ k | p(X + (m+ k) < 0) ≤ λ} − k = V@Rλ(X)− k.

Definition 3.1.3 :A monetary risk measure is called convex if it satis�es the convexity
axiom: ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ), 0 ≤ λ ≤ 1.

The axiom of convexity gives a precise quanti�cation of the idea of diversi�cation. The
risk of a diversi�ed portfolio is always less than the two portfolios separated.
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Example 3.1.2 :In this example we show that the V@R is not a convex risk measure
since it does not satisfy the convexity axiom.

Consider two default-able corporate bonds with return s > r ≥ 0 where r is the risk
free return. then our discounted return on an initial investment w on bond i is

Xi =

{
−w Default
w(s−r)

1+r
otherwise

if the probability of default of 1st bond is pd ≤ λ then

p(X1 −
w(s− r)

1 + r
< 0) = p(default) = pd ≤ λ

⇒ V@Rλ(X1) = −w(s− r)
1 + r

< 0

Which means every position is acceptable regardless of the loss of our initial investment
w since V@R is negative. Now consider investing w

2
in each bond then our portfolio payo�

is Y = X1+X2

2
, let the same default probability for each bond pd then for an appropriate s

we get that p(Y < 0) is equal to at least one of the bonds default p(Y < 0) = pd(2− pd).
letting pd = 0.009 and λ = 0.01 then pd < λ < pd(2 − pd) which means V@Rλ(Y ) =
w
2
(1 − w(s−r)

1+r
) which is close to w

2
. thus V@Rλ(X1) < V@Rλ(Y ) which means that the

diversi�ed portfolio has higher risk thus V@R is not convex consequently not coherent in
general.

Definition 3.1.4: A Convex risk measure is called coherent if it satis�es the positive
homogeneity axiom : ρ(λX) = λρ(X),∀λ ≥ 0.

The positive homogeneity axiom stresses on the fact that the risk is increase linearly
with the increase of the position we are holding. This axiom is not always true as the
relationship could be nonlinear but it is enough to assume it for our study purpose. A
very easy consequence of positive homogeneity is subadditivity ρ(X + Y ) ≤ ρ(X) + ρ(Y )
which is a more general characterization of diversi�cation. We prove this consequence as
follows: ρ(X + Y ) = ρ(λ

λ
X + 1−λ

1−λY ) ≤ λρ( 1
λ
X) + (1− λ)ρ( 1

1−λY ) = ρ(X)+ρ(Y ).

Definition 3.1.5 : A monetary risk measure ρ is called law invariant if X =d Y (in
distribution) then ρ(X) = ρ(Y ).

Definition 3.1.6 : the average value at risk AV@R at level λ ∈ (0, 1] is de�ned by

AV@Rλ(X) =
1

λ

∫ λ

0

V@Rζ(X)dζ

it is also called the Expected Shortfall.

Claim 3.1.1 : AV@R is a coherent risk measure.

proof : Monotonicity and cash invariance are inherited from V@R from example3.1.1.
Lets check positive homogeneity. to do so we need to check if V@R is a positive homo-
geneous measure:

V@Rζ(λX) = inf{m | p(λX +m < 0) ≤ ζ} = inf{λm | p(λ(X +m) < 0) ≤ ζ}
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= inf{λm | p(X +m < 0) ≤ ζ} = λ inf{m | p(X +m < 0) ≤ ζ} = λV@Rζ(X)

Lastly we need to check sub additivity i.e AV@Rλ(X+Y ) ≤ AV@Rλ(X)+AV@Rλ(Y ).
�rst we need to state two lemmas required for the proof.
Lemma 3.1.2: Let X be any random variable then ∃UX ∼ U [0, 1] (uniform random

variable on [0, 1]) such that X = F−1
X (UX) where F is the cdf of X.

Lemma 3.1.3: Let Bλ ∈ L∞be the set of bernoulli(λ), λ ∈ (0, 1) random variables and
let AX = IUX≤λ ∈ Bλthen E[XAX ] ≥ E[XBλ] ∀B ∈ Bλ.

Coming back to the proof, from the second de�nition of V@R we get V@Rζ(X) =

F−1
X (ζ) then using the two lemmas we get AV@Rλ(X) = 1

λ

∫ λ
0
V@Rζ(X)dζ = 1

λ

∫ λ
0
F−1
X (ζ)dζ =

1
λ
E[F−1

X (UX)IUX≤λ] = 1
λ
E[XAX ] = 1

λ
sup{E[XAX ] | B ∈ Bλ}, X ∈ L∞, using that the

supremium is sub additive thus AV@R is sub additive.

Definition 3.1.7: A weighted value at risk is de�ned by:

WV@Rq(X) =

∫
λ∈(0,1]

AV@Rλ(X)q(dλ)

Where q is a probability measure.
We can clearly see that WV@R is coherent since it inherits the properties from AV@R.

WV@R is a better coherent measure since it possess nice properties for optimization and
�nancial aspects (considers the whole distribution of X). so we will focus solely on this
measure as nice coherent risk representative.

Remark 3.1.1 :V@R, AV@R and WV@R are all law invariant risk measures, which
can clearly seen as they depend on the distribution function Fx of X.

Definition 3.1.8: An acceptance set associated with the risk measure ρis de�ned as
Aρ = {X ∈ L∞ | ρ(X) ≤ 0}(i.e the positions for which we have non positive risk).

Theorem 3.1.1: If ρis a monetary risk measure with an acceptance set Aρthen:

a) Aρis non empty, closed w.r.t the L∞norm and satis�es the two conditions: inf{m ∈
R | m ∈ Aρ} > −∞and if X ∈ Aρ, Y ≥ X ⇒ Y ∈ Aρ.

b) If we start with the acceptance set Aρthen we can recover ρfrom Aρby ρ(X) =
inf{m ∈ R | X + m ∈ Aρ}(i.e the smallest amount of money which will make X accept-
able).

c) ρis convex risk measure if and only if Aρis a convex set.
d) ρis positive homogeneous measure if and only if Aρis a cone. Thus ρis coherent risk

measure if and only if Aρis a convex cone.

proof :
a) Aρis non empty since it always contains all X ≥ 0. It is closed w.r.t L∞norm

because of Lemma3.1.1, it is easy to see it, take any sequence in Aρ, Xn → X then|
ρ(X) − ρ(Xn) |≤‖ X −Xn ‖∞⇒ ρ(X) ≤ ρ(Xn)+ ‖ X −Xn ‖∞≤‖ X −Xn ‖∞→ 0 =⇒
ρ(X) ≤ 0. For the �rst condition it is obvious since we are considering bounded positions.
The second condition is a direct consequence of monotonicity axiom.

b) Using Cash Invarianceρ(X) = inf{m ∈ R | X+m ∈ Aρ} = inf{m ∈ R | ρ(X+m) ≤
0} = inf{m ∈ R | ρ(X) ≤ m} = ρ(X).

c) =⇒ifX, Y ∈ Aρthenρ(λX+(1−λ)Y ) ≤ λρ(X)+(1−λ)ρ(Y ) ≤ 0⇒ λX+(1−λ)Y ∈
Aρ. ⇐=If Aρis convex then let X, Y ∈ L∞and let m1,m2 ∈ R such that X+m1, Y +m2 ∈
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Aρ ⇒ (λ(X+m1)+(1−λ)(Y +m2)) ∈ Aρ ⇒ ρ(λ(X+m1)+(1−λ)(Y +m2)) ≤ 0 by cash
invariance ⇒ ρ(λ(X +m1) + (1−λ)(Y +m2)) = ρ(λX + (1−λ)Y )−λm1− (1−λ)m2 ≤
0⇒ ρ(λX + (1− λ)Y ) ≤ λm1 + (1− λ)m2 = λρ(X) + (1− λ)ρ(Y ).

d) =⇒Letρbe a positive homogeneous measure and X ∈ Aρ then ρ(λX) = λρ(X) ≤
0 ⇒ λρ(X) ∈ Aρ which means Aρis a cone. ⇐=Let Aρ be a cone and X ∈ L∞and let
m1 ∈ R | X + m1 ∈ Aρ ⇒ ρ(λX + λm1) ≤ 0 ⇒ ρ(λX) ≤ λm1. For the other inequality
direction, let m1 < ρ(X)⇒ X +m1 /∈ Aρ ⇒ λ(X +m1) /∈ Aρ ⇒ λm1 < ρ(λX).

So any monetary convex and coherent risk measure is characterized by a corresponding
acceptance set which carries the same information as our measure.

Definition 3.1.9: A measure % : L∞ → R+is called a performance measure or accept-
ability index if it satis�es the following axioms:

1) Convexity : %(λX + (1− λ)Y ) ≤ λ%(X) + (1− λ)%(Y ) λ ∈ [0, 1],∀X, Y ∈ L∞.
2) Monotonicity: If X ≤ Y ⇒%(X) ≤ %(Y ) ∀X, Y ∈ L∞.
3) Scale Invariance: %(λX) = %(X) λ ∈ [0, 1],∀X ∈ L∞.
4) Fatou Property: This de�nes a sense of continuity for the measure. if Xnis a

sequence of random variables such that Xn → X in probability, | Xn |≤ 1 and %(Xn) ≥ x
then %(X) ≥ x.

5) Law Invariance: If X =d Y meaning X and Y have the same distribution, then
%(X) = %(Y ).

6) Arbitrage Consistency: If X ≥ 0⇒ %(X) =∞.
7) Consistency with the second order stochastic dominance: If %(X) ≤ %(Y ) ⇒

E[u(X)] ≤ E[u(Y )] where u is utility function.

8) Consistency with expectation: If

{
E[X] > 0⇒ %(X) > 0

E[X] < 0⇒ %(X) = 0

The acceptability index is similar to the coherent risk measure with notable di�erence
in scale invariance. The coherent risk measures are sensitive to the scale of investment
while performance measures only care about the direction of these invesments. Now we
will link the acceptability index to our coherent risk measures.

Theorem 3.1.2: A map % is called acceptability index if and only if ∃(Dx)x∈R+ ⊆ P
(family of subsets in the probability measures set) such that Dx ⊆ Dy for x ≤ y and

%(X) = sup{x ∈ R+ | ρx(X) ≤ 0}

where ρx(X) = supq∈Dx Eq[−X] (which we will prove later as representation theorem of
coherent risk measures).

So our acceptability index is basically the maximum probability subset such that the
position X is still acceptable. It measures the maximum consensus (acceptability) of the
position by the market participants using their correspondent pricing probabilities.

Definition 3.1.10: The acceptance set associated with the performance measure %at
level x is de�ned as follows:

Ax = {X ∈ L∞ | %(X) ≥ x}

Lets compare the acceptance sets of both coherent risk measures and acceptability
indices by the following example:
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Example 3.1.3: Let ρ be a coherent risk measure with a convex cone set Q (which
we will discuss in detail later), % is our acceptability index, and X ∈ L∞. Let | Ω |=
2, Ω = {ω1, ω2}Then our L∞space is two dimensional Banach space. Our corresponding
acceptance sets are:

Aρ = {X ∈ L∞ | ρ(X) ≤ 0}

Ax = {X ∈ L∞ | %(X) ≥ x}, x ∈ R+

Lets draw the following sets in our L∞ space. we get:
So the performance measure % is taking each X ∈ L∞and index it with respect to

the maximum probability measure set. then the acceptance set at level x of %is taking
all the indexed {X ∈ L∞ | %(X) ≥ x}. we notice that Ax ⊆ Qmax, x ∈ R+ where
Qmaxis the largest probability set for which the coherent risk measure representation
holds (i.e we have a coherent risk measure which we will talk in detail later on). Our
performance measure is basically indexing the positions w.r.t the probability measures
sets which in return gives us a picture on where the particular position stands w.r.t the
market acceptance. In conclusion, the coherent risk measures can be characterized in two
levels, the �rst by their acceptance sets then by indexing the probability measure sets in
which our coherent risk measure holds, which in return gives a family of indexed coherent
measures (ρx)x∈R+that describe the families of accepted positions Ax, x ∈ R+.

Definition 3.1.11: A �nitely additive measureq is de�ned as q(∪ni=1Ai) =
∑n

i=1 q(Ai), n <
∞ for any disjoint subsets Ai′s of Ω .

Definition 3.1.12: A σadditive measure q is de�ned as q(∪∞i=1Ai) =
∑∞

i=1 q(Ai)
∀Aidisjoint subsets of Ω.

Definition 3.1.13: A Total Variation TV norm of a �nitely additive measure q is
de�ned by ‖ q ‖TV = sup{

∑n
i=1 | q(Ai) |, Ai ∈ F , Ai ∩ Aj = φ, i 6= j}.

Definition 3.1.14: A Total Variation TV norm of a σ additive measure q is de�ned
by ‖ q ‖TV = {1

2

∑
ω∈Ω | q(ω) |}.

Theorem 3.1.3: Any convex risk measure can be represented by:

ρ(X) = max
q∈M1

(Eq[−X]− ~(q))
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where M1is the set of all �nitely additive functionals on (Ω,F) with �nite total varia-
tion ‖ q ‖TV<∞which are normalized by q(Ω) = 1. and ~(q) = supX∈Aρ Eq[−X] is called
the penalty function for the corresponding probability measure. Aρis the acceptance set
of cash �ows associated with the risk measure ρ.

proof : First we will prove ρ(X) ≥ supq∈M1
(Eq[−X] − ~(q)) . Let Y = X + ρ(X) ∈

Aρ ⇒ ∀q ∈ M1, ~(q) ≥ Eq[−Y ] = Eq[−X] − ρ(X) ⇒ ρ(X) ≥ Eq[−X] − ~(q) ⇒ ρ(X) ≥
supq∈M1

(Eq[−X]− ~(q)).
Second, for a given X we need to construct qX ∈ M1such that ρ(X) ≤ (EqX [−X] −

~(qX)). Let's prove this inequality for X ∈ B∗ = {X ∈ L∞ | ρ(X) = 0} it is clear that
this set is convex, and by cash invariance we can extend the claim to any X ∈ L∞since
∀Y ∈ L∞it can be written as ρ(Y ) = ρ(X + k) = ρ(X) − k for some k ∈ R. Let
B = {X ∈ Aρ | ρ(X) < 0} it is clear that B is an open convex set since its complement
is closed by lipschitz continuity and ρis convex. Then we apply the separation argument
according to the following Theorem:

Thoerem 3.1.4: IfW = L∞is a vector space with two disjoint convex sets B and B∗for
which one has an interior point (B in our case) then they can be separated by a continuous
non zero linear functional on L∞i.e ∃l such that l(X) ≤ l(Y ) ∀X ∈ B∗,∀Y ∈ B.

Coming back to the proof and using the above Theorem we get l(X) ≤ l(Y )⇒ l(X) ≤
infY ∈B l(Y ) = b. we claim that l(Y ) ≥ 0 if Y ≥ 0. Using monotonicity and cash invariance
we get that 1 + λY ∈ B, ∀λ > 0 because1 + λY > 0 ⇒ ρ(1 + λY ) < 0 ⇒ 1 + λY ∈ B
. Plugging it in the linear operator we get l(X) ≤ l(1 + λY ) = l(1) + λl(Y ),∀λ > 0
not true if l(Y ) < 0 ⇒ l(Y ) ≥ 0 . The next claim is l(1) > 0. since l is not
identically zero then ∃Y such that l(Y ) > 0 , lets assume without loss of generality
that‖ Y ‖∞< 1⇒ 0 < 1− Y ≤ 1⇒ l(1− Y ) ≥ 0⇒ l(1) ≥ l(Y ) > 0⇒ l(1) > 0 . Using
the below theorem we will get our desired qX .

Theorem 3 .1 .5 : F ∈ L∞ The Integral l(F ) =
∫
Fdq de�nes a one to one correspon-

dence between the set of continuous linear functionals and the set of �nitely additive prob-

ability measures M1 on (Ω,F) . Using the theorem we get that EqX [Y ] = l(Y )
l(1)
∀Y ∈ L∞

. Since B ⊂ Aρ ⇒ ~(qx) = supY ∈Aρ EqX [−Y ] ≥ supY ∈B EqX [−Y ] = supY ∈B −
l(Y )
l(1)

=

− infY ∈B
l(Y )
l(1)

= − b
l(1)
⇒ ~(qx) ≥ − b

l(1)
. Take any Y ∈ Aρ ⇒ Y + ε ∈ B, ∀ε > 0 ⇒

~(qx) = − b
l(1)

. it follows that EqX [−X]− ~(qx) = 1
l(1)

(b− l(X)) ≥ 0 = ρ(X) ⇒ ρ(X) ≤
EqX [−X] − ~(qx) and this proves the other direction of inequality. The representa-
tion attains its supremium since M1 is weak∗ compact in the dual space of L∞ due to
Banach-Alaoglu Theorem which is:

Theorem 3.1.6: Let E be a banach space with dual E∗ then {l ∈ E |‖ l ‖E∗≤ r} is
weak∗ compact for every r ≥ 0 .

And this concludes the proof of the representation.

Theorem 3.1.7: A risk measure ρ is coherent if and only if ∃Q ⊆ M1 such that
ρ(X) = supq∈QEq[−X], X ∈ L∞ . Moreover we can choose Q as a convex set such that
the supremium is attained.

proof : To prove the result we need to prove the following corollary:

Corollary 3.1.1: For a coherent risk measure the penalty function takes on two values:

~(q) =

{
0 q ∈ Q
+∞ otherwise
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In particular ρ(X) = maxq∈Qmax Eq[−X], X ∈ L∞ for the convex set Qmax = {q ∈ M1 |
~(q) = 0} and this set is the largest set for which the coherent risk measure representation
holds.

proof : Since ρ is coherent then Aρ is a cone, which means if X ∈ Aρ then λX ∈
Aρ,∀λ > 0 ⇒ ~(q) = supX∈Aρ Eq[−X] = supλX∈Aρ Eq[−λX] = λ supλX∈Aρ Eq[−X] =

λ~(q)⇒ ~(q) =

{
0

+∞
, ∀q ∈ M1Thus we can de�ne the set Qmax = {q ∈ M1 | ~(q) =

0} ⊆M1 as the maximal set for which the representation ρ(X) = maxq∈Qmax Eq[−X], X ∈
L∞ holds, and ∀Q ⊂ Qmax the representation ρ(X) = supq∈QEq[−X], X ∈ L∞ follows.
We have to note that the function ~(q) is convex lower semi continuous function since it
is the supremium of an a�ne continuous functions on M1 , thus the set Q

max is convex,
and since Qmax is the preimage of closed set then it is closed as well. And since Qmax is
a subset of a compact set then it is compact and consequently the supreimum is attained.

Previously we considered M1as the set of �nitely additive functionals q with �nite
total variation which are normalized by q(Ω) = 1. The dual space of our positions (cash
�ows) L∞is a space of bounded linear functionals (L∞)∗ which can be identi�ed by a set
of �nitely additive functionals q with �nite total variation, lets call the dual Γ = (L∞)∗.
Thus if we consider the set of probability measures M2 which are σadditive then we know
that M2 ⊆ M1 ⊆ Γ. Also ∀q ∈ M2, ‖ q ‖TV = 1 < ∞ but this set might be not closed in
Γ = (L∞)∗ so we can't use Theorem3.1.5 and our convex risk measure might not achieve
its supremium on the subset thus it is characterized by the general representation

ρ(X) = sup
q∈M2

(Eq[−X]− ~(q))

Theorem 3.1.8 : A convex risk measure ρ is continuous from above and law invariant
if and only if it admits the representation

ρ(X) = sup
q∈M2((0,1])

(WV@Rq(X)− ~(q))

Where M2((0, 1]) is the set of probability measures on (0, 1].

Corollary 3.1.2: A coherent risk measure ρ is continuous from above and law invari-
ant if and only if it admits the representation

ρ(X) = sup
q∈M2((0,1])

WV@Rq(X)

A law invariant coherent risk measure is represented as WV@R with some choice of
probability measure. so in order to study the class of law invariant coherent risk measures
we have to only focus on WV@R as a prime example.

Definition 3.1.15: A Wang transform (or distortion function) of a cumulative density
function FX is an increasing function Ψ : [0, 1] → [0, 1] such that Ψ(0) = 0,Ψ(1) = 1.
and its dual is de�ned as Ψ∼(x) = 1 − Ψ(1 − x). if Ψ is a concave increasing function
with the above properties then it is called a concave distortion. The distortion function
can be generally de�ned as:

Ψq(y) =

∫ y

0

∫
(z,1]

1

λ
q(dλ)dz
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Now we will try to represent our WV@R law invariant coherent risk measure with
respect to this transform.

Theorem 3.1.9 : Let q ∈M2((0, 1]) and Ψ be a concave distortion of our cumulative
density function FX de�ned by q, then

WV@Rq(X) = −
∫
R
yd(Ψq(FX(y)))

proof : Lets de�ne the Tail Value a Risk as TV@Rλ(X) = E[−X | −X ≥ V@Rλ(X)]
and we use the fact that under a rich probability space (a space which supports a random
variable with continuous distribution) TV@Rλ(X) = AV@Rλ(X). Then WV@Rq(X) =∫
λ∈(0,1]

AV@Rλ(X)q(dλ) =
∫
λ∈(0,1]

TV@Rλ(X)q(dλ) = −
∫
λ∈(0,1]

1
λ

∫
(−∞,−V@Rλ(X)]

yd(FX(y)q(dλ) =

−
∫
R y
∫

(F (y),1]
1
λ
q(dλ)d(FX(y)) = −

∫
R yd(Ψq(FX(y))).

In order to study WV@Rq(X) = −
∫
R yd(Ψq(FX(y))) as a prime example of law in-

variant coherent risk measure we need to de�ne a suitable choices of concave distortions
which will represent our risk measure perfectly.

Example 3.1.4 : A suitable choices of concave distortions are as follows:

1. Ψq(x) = 1 − (1 − x)q+1, q ∈ R+, x ∈ [0, 1], which de�ne the law invariant coherent
risk measure MINV@R(X).

2. Ψq(x) = x
1
q+1 , q ∈ R+, x ∈ [0, 1], which de�ne the law invariant coherent risk measure

MAXV@R(X).

3. Ψq(x) = (1−(1−x)q+1)
1
q+1 , q ∈ R+, x ∈ [0, 1], which de�ne the law invariant coherent

risk measure MAXMINV@R(X).

4. Ψq(x) = 1− (1−x
1
q+1 )q+1, q ∈ R+, x ∈ [0, 1], which de�ne the law invariant coherent

risk measure MINMAXV@R(X).

MINMAXV@R will be our choice of law invariant risk measure in studying optimal
strategies since it satis�es a nice limiting properties that deem useful.

4.2 Simulations

In this chapter we will test our optimal strategies under MINMAXV@R (we will use
MINMAXV@R and ρ interchangeably) which is the prime benchmark of law invariant
coherent risk measures and then analyze the results accordingly. In the following scenarios
we will use parameters in each scenario to organize our settings. we will use the input as
follows (Model type in time horizon t, Number of risky assets S, Number of
risk-less assets B, Number of Contingent Claims, Initial value S0,Initial value
B0, Type of Contingent Claim, Probability measure q, Interest rate r, Risky
asset model type in dynamics with parameters) . Also the following assumptions
hold for all the scenarios:

• No arbitrage

• Liquid market
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• Predictable strategies

• Self-�nanced portfolio

• No extra costs (transaction cost,...)

• Bounded cash �ows X ∈ L∞

• Risk-less assets follow the following model: Bt = B0(1 + r)t,∀t ∈ N, r = constant.

• Use of all initial investment z

In the following scenarios we will get ρ matrix for (α, β) or (α, β, γ) combinations.

Then we will compute the mean numerical gradient on ρ i.e dρ
d(α,β,γ)

′

= ( ∂ρ
∂β
, ∂ρ
∂α
, ∂ρ
∂γ

) or

dρ
d(α,β)

′

= ( ∂ρ
∂β
, ∂ρ
∂α

) where ∂ρ
∂β

= mean(FX), ∂ρ
∂α

= mean(FY ) ∂ρ
∂γ

= mean(FZ) , FX, FY FZ

are the gradient matrices for ρ. The mean numerical gradient is taken with respect to
one unit of α , β and γ.

4.2.1 Scenario 1 (t = 0, 1 , 1, 1, 0, 1, 1, None, q, r , Log-normal(µ,σ2))

Our initial investment is z < ∞. Then after initializing the prices we get V
(α,β)

0 =
β1B0 + α1S0 = α1 + β1 = z.

Looking into t = 1, X = V
(α,β)

1 = (1 + r)β1 + α1e
µ+σε then as soon as the prices are

realized we re-balance our portfolio X = (1 + r)β2 + α2e
µ+σε , where ε ∼ Normal(0, 1).

So the question is which (α1, β1) we should use to minimize our risk measureMINMAXV@Rq(X)?.
We know S1 ∼ Lognormal(µ, σ2). then our risk measure becomesMINMAXV@Rq(X) =

α1MINMAXV@Rq(S1)−β1(1+r) = −α1

∫
R sd(1− (1−FS1(s)

1
q+1 )q+1)−β1(1+r). with

FS1 cdf of log-normal distribution of S1 with eµ+σ2

2 expectation and (e2µ+σ2
)(eσ

2 − 1)
variance.

We can clearly see that dρ
d(α,β)

= ( ∂ρ
∂β1
, ∂ρ
∂α1

) = (−(1 + r), MINMAXV@Rq(S1)) so an

optimal strategy for α1 depends on the risk measure while β1depends only on the interest
rate.

To simulate our risk measure MINMAXV@Rq(S1) we need to tweak its repre-
sentation. Taking the integration where the derivative of Ψ is bounded, we get that

Ψq(FS1(s)) = 1− (1− FS1(s)
1
q+1 )q+1 ⇒ dΨq(FS1 (s))

ds
= (

1−FS1 (s)
1
q+1

FS1 (s)
1
q+1

)q· fS1(s) where fS1(s) is

the pdf of S1,⇒MINMAXV@Rq(S1) = −
∫
R s(

1−FS1 (s)
1
q+1

FS1 (s)
1
q+1

)q· fS1(s)ds.

4.2.2 Results of Scenario 1

This Scenario is done by taking 100 α′1s permuted with 100 β′1s (10000 permutations in
total).

The �rst result of the simulation is done by varying the interest rate r while keeping
all other parameters �xed (µ = σ2 = q = 1).
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r ∂ρ
∂β1

∂ρ
∂α1

0.0 -1.0000 -1.1175
0.1 -1.1000 -1.1175
0.2 -1.2000 -1.1175
0.3 -1.3000 -1.1175
0.4 -1.4000 -1.1175
0.5 -1.5000 -1.1175
0.6 -1.6000 -1.1175
0.7 -1.7000 -1.1175
0.8 -1.8000 -1.1175
0.9 -1.9000 -1.1175
1.0 -2.0000 -1.1175

This table shows the gradient vector ( ∂ρ
∂β1

, ∂ρ
∂α1

) for di�erent r′s. It is clear that as r
increases we get a lower risk by buying a riskless asset, especially if r ≥ 0.2 then it is opti-
mal to buy only riskless assets. It is also important to note that ∂ρ

∂β1
has a linear increase

with respect to r as clearly shown from the gradient (−(1 + r), MINMAXV@Rq(S1)).

Now in the next simulation we will �x r = σ2 = q = 1 and vary µ to see the e�ect.
the results are summarized in the following table.

µ ∂ρ
∂β1

∂ρ
∂α1

0.0 -2.0000 -0.4111
0.5 -2.0000 -0.6778
1.0 -2.0000 -1.1175
1.5 -2.0000 -1.8424
2.0 -2.0000 -3.0377
2.5 -2.0000 -5.0083
3.0 -2.0000 -8.2573
3.5 -2.0000 -13.6139
4.0 -2.0000 -22.4456
4.5 -2.0000 -37.0065
5.0 -2.0000 -61.0133

From the table above we can see that ∂ρ
∂α1

decreases exponentially with respect to µ.
and for µ > 1.5 it is optimal to buy only risky assets.

Next we will vary σ2over the constants µ = r = q = 1.

σ2 ∂ρ
∂β1

∂ρ
∂α1

0.00001 -2.0 -2.7182
0.0009 -2.0 -2.7148
0.0019 -2.0 -2.7110
0.0029 -2.0 -2.7071
0.0039 -2.0 -2.7033
0.0049 -2.0 -2.6995
0.0060 -2.0 -2.6956
0.0070 -2.0 -2.6918
0.0080 -2.0 -2.6880
0.0090 -2.0 -2.6842

σ2 ∂ρ
∂β1

∂ρ
∂α1

0.01 -2.0 -2.6804
0.011 -2.0 -2.3383
0.22 -2.0 -2.0631
0.32 -2.0 -1.8405
0.42 -2.0 -1.6598
0.52 -2.0 -1.5126
0.62 -2.0 -1.3928
0.72 -2.0 -1.2955
0.83 -2.0 -1.2169
0.93 -2.0 -1.1542

σ2 ∂ρ
∂β1

∂ρ
∂α1

1.03 -2.0 -1.1051
1.13 -2.0 -1.0679
1.23 -2.0 -1.0414
1.33 -2.0 -1.0245
1.44 -2.0 -1.0168
1.54 -2.0 -1.0179
1.64 -2.0 -1.0275
1.74 -2.0 -1.0458
1.84 -2.0 -1.0731
1.95 -2.0 -1.1099
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σ2 ∂ρ
∂β1

∂ρ
∂α1

2.05 -2.0 -1.1570
2.15 -2.0 -1.2155
2.25 -2.0 -1.2867
2.35 -2.0 -1.3722
2.45 -2.0 -1.4742
2.56 -2.0 -1.5954
2.66 -2.0 -1.7389
2.76 -2.0 -1.9088
2.86 -2.0 -2.1099
2.96 -2.0 -2.3483

σ2 ∂ρ
∂β1

∂ρ
∂α1

3.07 -2.0 -2.6314
3.17 -2.0 -2.9686
3.27 -2.0 -3.3712
3.37 -2.0 -3.8536
3.47 -2.0 -4.4337
3.57 -2.0 -5.1340
3.68 -2.0 -5.9828
3.78 -2.0 -7.0160
3.88 -2.0 -8.2792
3.98 -2.0 -9.8302

σ2 ∂ρ
∂β1

∂ρ
∂α1

4.08 -2.0 -11.7437
4.19 -2.0 -14.1151
4.29 -2.0 -17.0681
4.39 -2.0 -20.7628
4.49 -2.0 -25.4078
4.59 -2.0 -31.2761
4.69 -2.0 -38.7263
4.80 -2.0 -48.2315
4.90 -2.0 -60.4190
5.0 -2.0 -76.1234

Varying σ2 gives us a very interesting results. ∂ρ
∂α1

increases then decreases in a concave

fashion while ∂ρ
∂β1

starts remains constant as predicted. By the results, if σ2≥ 2.86 or

σ2 ≤ 0.22 for r = 1 then it is optimal to buy only risky assets otherwise riskless asset
give better dρ per unit if 2.86 > σ2 > 0.22.

This concave behavior in the above �gure is due to the fatter tail vs the leftward
shift of the log-normal distribution at higher σ2 which implies a higher probability for
decreasing [0, ε) interval of S1values which compensated by the fatter tail gives better
risk score after some σ2threshold.

The last result is investigating the e�ect of q (probability measure choice) on our risk
measure. The results are as follows:

q ∂ρ
∂β1

∂ρ
∂α1

0.1000 -2.0 -3.7456
0.3053 -2.0 -2.6965
0.5105 -2.0 -2.0179
0.7158 -2.0 -1.5528
0.9211 -2.0 -1.2204
1.1263 -2.0 -0.9751
1.3316 -2.0 -0.7898
1.5368 -2.0 -0.6469
1.7421 -2.0 -0.5349
1.9474 -2.0 -0.4459

q ∂ρ
∂β1

∂ρ
∂α1

2.1526 -2.0 -0.3744
2.3579 -2.0 -0.3163
2.5632 -2.0 -0.2688
2.7684 -2.0 -0.2296
2.9737 -2.0 -0.1969
3.1789 -2.0 -0.1697
3.3842 -2.0 -0.1467
3.5895 -2.0 -0.1273
3.7947 -2.0 -0.1108
4.0000 -2.0 -0.0968

In the above table we see an negative inverse relation between ∂ρ
∂α1

and q while ∂ρ
∂β1

remains constant.
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Looking at above Figure of plots of di�erent q′s for Ψ we see that as q increases
Ψbecomes more concave and this explains the increasing ∂ρ

∂α1
since we are giving negative

outcomes higher measure and value (severe judging).

4.2.3 Scenario 2 (t = 0, 1 , 1, 1, 0, 1, 1, None, q, r , Uniform(0,b))

In this scenario we consider S1 ∼ U [0, b] with expectation b
2
and variance b2

12
. We simulate

MINMAXV@Rq(S1) same as Scenario 1 for di�erent (α1, β1) and we get the following
results.

4.2.4 Results of Scenario 2

Fixing b = q = 1 and varying r we get the following result:

r ∂ρ
∂β1

∂ρ
∂α1

0.0 -1.0000 -0.1667
0.1 -1.1000 -0.1667
0.2 -1.2000 -0.1667
0.3 -1.3000 -0.1667
0.4 -1.4000 -0.1667
0.5 -1.5000 -0.1667
0.6 -1.6000 -0.1667
0.7 -1.7000 -0.1667
0.8 -1.8000 -0.1667
0.9 -1.9000 -0.1667
1.0 -2.0000 -0.1667

This expected result is similar to the Log-normal case. The only di�erence is in the
constant value of ∂ρ

∂α1
= −0.1667 which is due to the choice of uniform distribution.

b ∂ρ
∂β1

∂ρ
∂α1

1 -2.0000 -0.1667
2 -2.0000 -0.3333
3 -2.0000 -0.5000
4 -2.0000 -0.6667
5 -2.0000 -0.8333
6 -2.0000 -1.0000
7 -2.0000 -1.1667
8 -2.0000 -1.3333

b ∂ρ
∂β1

∂ρ
∂α1

9 -2.0000 -1.5000
10 -2.0000 -1.6667
11 -2.0000 -1.8333
12 -2.0000 -2.0000
13 -2.0000 -2.1667
14 -2.0000 -2.3333
15 -2.0000 -2.5000
16 -2.0000 -2.6667

21

C
E

U
eT

D
C

ol
le

ct
io

n



Varying b in the above result gives us a better ∂ρ
∂α1

which is due the increasing expec-

tation and variance (higher positive values are included) of S1 that gives us a better risk
score. The decreasing ∂ρ

∂α1
is linear in nature which leads to demand a very high b (b ≥ 12

for r = 1) in order to break even and consider only buying risky assets and for b < 12 an
investor should only buy riskless assets.

In the next result we check di�erent q′s for b = r = 1.

q ∂ρ
∂β1

∂ρ
∂α1

0.1000 -2.0 -0.4518
0.3053 -2.0 -0.3642
0.5105 -2.0 -0.2911
0.7158 -2.0 -0.2312
0.9211 -2.0 -0.1827
1.1263 -2.0 -0.1437
1.3316 -2.0 -0.1127
1.5368 -2.0 -0.0880
1.7421 -2.0 -0.0686
1.9474 -2.0 -0.0533

q ∂ρ
∂β1

∂ρ
∂α1

2.1526 -2.0 -0.0414
2.3579 -2.0 -0.0321
2.5632 -2.0 -0.0248
2.7684 -2.0 -0.0192
2.9737 -2.0 -0.0148
3.1789 -2.0 -0.0114
3.3842 -2.0 -0.0088
3.5895 -2.0 -0.0067
3.7947 -2.0 -0.0052
4.0000 -2.0 -0.0040

This table shows similar results as Log-normal case with value di�erences due to the
uniform distribution choice .

4.2.5 Scenario 3 (t = 0, 1 , 1, 1, 1, 1, 1, Call Option, q, r , Log-
normal(µ,σ2))

In this Scenario we consider shorting a call option payout g(S1) = (S1 − k)+ for a strike

price k. Our cash �ow at time t = 1 becomes X = V
(α,β,γ)

1 = (1+r)β1+α1S1−γ1(S1−k)+.

We see that MINMAXV@Rq(X) = −
∫∞

0
(α1s− γ1(s− k)+)d(1− (1−FS∗1 (s)

1
q+1 )q+1)−

β1(1+r) where FS∗1 is the cdf of α1S1−γ1(S1−k)+. We can split the integral into two parts

to deal with the contingent claim function. MINMAXV@Rq(X) = −α1

∫ k
0
sd(1− (1−

FS1(s)
1
q+1 )q+1)−(α1−γ1)

∫∞
k
sd(1−(1−FS1(s)

1
q+1 )q+1)−γ1k

∫∞
k
d(1−(1−FS1(s)

1
q+1 )q+1)−

β1(1 + r) =

= −α1

∫∞
0
sd(1 − (1 − FS1(s)

1
q+1 )q+1) + γ1

∫∞
k
sd(1 − (1 − FS1(s)

1
q+1 )q+1) − γ1k(1 −

FS1(k)
1
q+1 )q+1 − β1(1 + r). So we have two integrals with cuto� k , one constant depen-

dent on β1 and another constant dependent on β1 and k. We can compute dρ
d(α1,β1,γ1)

=

( ∂ρ
∂β1
, ∂ρ
∂α1

, ∂ρ
∂γ1

) = (−(1 + r), MINMAXV@Rq(S1),
∫∞
k
sd(1− (1−FS1(s)

1
q+1 )q+1)− k(1−

FS1(k)
1
q+1 )q+1) =

= (−(1+r),MINMAXV@Rq(S1),−MINMAXV@Rq(S11S1≥k)−k(1−FS1(k)
1
q+1 )q+1)

so ∂ρ
∂γ1

depends on k as well as MINMAXV@Rq(S1) . Next we run our simulations ac-
cordingly by varying one parameter and keeping the rest constant to one and compare
the results.

4.2.6 Results of Scenario 3

In the �rst run we �x µ = σ2 = q = k = 1 and vary r and the results are as follows:

22

C
E

U
eT

D
C

ol
le

ct
io

n



r ∂ρ
∂β1

∂ρ
∂α1

∂ρ
∂γ1

0.0 -1.0000 -1.1175 0.4674
0.1 -1.1000 -1.1175 0.4674
0.2 -1.2000 -1.1175 0.4674
0.3 -1.3000 -1.1175 0.4674
0.4 -1.4000 -1.1175 0.4674
0.5 -1.5000 -1.1175 0.4674
0.6 -1.6000 -1.1175 0.4674
0.7 -1.7000 -1.1175 0.4674
0.8 -1.8000 -1.1175 0.4674
0.9 -1.9000 -1.1175 0.4674
1.0 -2.0000 -1.1175 0.4674

This result is as expected as it depicts the no e�ect of r on α1, γ1 while ∂ρ
∂β1

is the
only decreasing value. Which implies at any r ≥ 0 it is optimal to buy only risk less
assets since a combination of optimal (α1, γ1) only gives us ∂ρ

∂α1
+ ∂ρ

∂γ1
= −0.6501 in risk

reduction.

The next simulation is investigating the e�ect of µon our risk measure while keeping
all other parameters equal to one.

µ ∂ρ
∂β1

∂ρ
∂α1

∂ρ
∂γ1

∂ρ
∂α1

+ ∂ρ
∂γ1

0.0 -2.0000 -0.4111 0.0556 -0.3555
0.5 -2.0000 -0.6778 0.1774 -0.5004
1.0 -2.0000 -1.1175 0.4674 -0.6501
1.5 -2.0000 -1.8424 1.0611 -0.7813
2.0 -2.0000 -3.0377 2.1589 -0.8788
2.5 -2.0000 -5.0083 4.0678 -0.9405
3.0 -2.0000 -8.2573 7.2832 -0.9741
3.5 -2.0000 -13.6139 12.6240 -0.9899
4.0 -2.0000 -22.4456 21.4490 -0.9966
4.5 -2.0000 -37.0065 36.0075 -0.999
5.0 -2.0000 -61.0133 60.0136 -0.9997
6.0 -2.0000 -165.9000 164.9000 -1.0000
7.0 -2.0000 -450.8000 449.8000 -1.0000
8.0 -2.0000 -1225.5000 1224.5000 -1.0000
9.0 -2.0000 -3331.2000 3330.2000 -1.0000
10.0 -2.0000 -9055.2000 9054.2000 -1.0000

In the above table we can clearly see that a combination strategy of contingent claim
payo� and stock holding climbs asymptotically to ∂ρ

∂α1
+ ∂ρ

∂γ1
→ −1 as µ → ∞, while

∂ρ
∂β1

= −2 when r = 1. thus it is optimal to only buy riskless assets. If r = 0 then
∂ρ
∂β1

= −1 and a riskless strategy is still optimal.

The following table is concerned with varying σ2 while other parameters are kept to
constant one.
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σ2 ∂ρ
∂β1

∂ρ
∂α1

∂ρ
∂γ1

∂ρ
∂α1

+ ∂ρ
∂γ1

0.0100 -2.0000 -2.6804 1.6804 -1.0000
0.2726 -2.0000 -1.9286 0.9311 -0.9975
0.5353 -2.0000 -1.4920 0.5866 -0.9054
0.7979 -2.0000 -1.2360 0.4822 -0.7537
1.0605 -2.0000 -1.0921 0.4693 -0.6228
1.3232 -2.0000 -1.0259 0.5034 -0.5225
1.5858 -2.0000 -1.0214 0.5743 -0.4470
1.8484 -2.0000 -1.0748 0.6849 -0.3899
2.1111 -2.0000 -1.1926 0.8467 -0.3459
2.3737 -2.0000 -1.3922 1.0808 -0.3115

σ2 ∂ρ
∂β1

∂ρ
∂α1

∂ρ
∂γ1

∂ρ
∂α1

+ ∂ρ
∂γ1

2.6363 -2.0000 -1.7067 1.4226 -0.2841
2.8989 -2.0000 -2.1930 1.9311 -0.2619
3.1616 -2.0000 -2.9493 2.7056 -0.2437
3.4242 -2.0000 -4.1454 3.9168 -0.2286
3.6868 -2.0000 -6.0822 5.8663 -0.2159
3.9495 -2.0000 -9.3052 9.1000 -0.2051
4.2121 -2.0000 -14.8300 14.6342 -0.1959
4.4747 -2.0000 -24.6009 24.4131 -0.1879
4.7374 -2.0000 -42.4458 42.2650 -0.1809
5.0000 -2.0000 -76.1234 75.9487 -0.1747

We can see a similar behavior of ∂ρ
∂β1

, ∂ρ
∂α1

as scenario 1 as expected. Also ∂ρ
∂γ1

follows a

concave structure similar to ∂ρ
∂α1

. The interesting result is the combined strategy of

(α1, γ1) which exhibits a property of −1 < ∂ρ
∂α1

+ ∂ρ
∂γ1

< 0 and asymptotic behavior on

both ends. As σ2 → 0 ∂ρ
∂α1

+ ∂ρ
∂γ1
→ −1 which is equal to ∂ρ

∂β1
at r = 0 and ∂ρ

∂α1
+ ∂ρ

∂γ1
→ 0

as σ2 →∞ which means a riskless strategy is best regardless of σ2 .

In This simulation we choose di�erent q′s and keep the rest parameters equal to one.

q ∂ρ
∂β1

∂ρ
∂α1

∂ρ
∂γ1

∂ρ
∂α1

+ ∂ρ
∂γ1

0.1000 -2.0 -3.7456 2.8230 -0.9226
0.3053 -2.0 -2.6965 1.8251 -0.8713
0.5105 -2.0 -2.0179 1.2070 -0.8109
0.7158 -2.0 -1.5528 0.8079 -0.7449
0.9211 -2.0 -1.2204 0.5438 -0.6765
1.1263 -2.0 -0.9751 0.3667 -0.6084
1.3316 -2.0 -0.7898 0.2471 -0.5427
1.5368 -2.0 -0.6469 0.1661 -0.4808
1.7421 -2.0 -0.5349 0.1112 -0.4237
1.9474 -2.0 -0.4459 0.0741 -0.3718
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q ∂ρ
∂β1

∂ρ
∂α1

∂ρ
∂γ1

∂ρ
∂α1

+ ∂ρ
∂γ1

2.1526 -2.0 -0.3744 0.0491 -0.3253
2.3579 -2.0 -0.3163 0.0324 -0.2839
2.5632 -2.0 -0.2688 0.0213 -0.2475
2.7684 -2.0 -0.2296 0.0139 -0.2157
2.9737 -2.0 -0.1969 0.0090 -0.1880
3.1789 -2.0 -0.1697 0.0058 -0.1639
3.3842 -2.0 -0.1467 0.0037 -0.1430
3.5895 -2.0 -0.1273 0.0024 -0.1249
3.7947 -2.0 -0.1108 0.0015 -0.1093
4.0000 -2.0 -0.0968 0.0009 -0.0958

Varying q′s gives a similar result as varying q′s in Scenario 1. Also ∂ρ
∂α1

+ ∂ρ
∂γ1

exhibit

a similar behavior as varying σ2 in the previous simulation. The only di�erence is being
∂ρ
∂γ1

increase and ∂ρ
∂α1

decrease monotonically as q increases while ∂ρ
∂γ1

decrease and ∂ρ
∂α1

increase monotonically by varying σ2.

In this last simulation we will vary k to measure its e�ect while keeping other param-
eters equal to one.

k ∂ρ
∂β1

∂ρ
∂α1

∂ρ
∂γ1

∂ρ
∂α1

+ ∂ρ
∂γ1

0.5 -2.0 -1.1175 0.7058 -0.4117
1 -2.0 -1.1175 0.4674 -0.6501
1.5 -2.0 -1.1175 0.3239 -0.7936
2 -2.0 -1.1175 0.2325 -0.8850
2.5 -2.0 -1.1175 0.1714 -0.9461
3 -2.0 -1.1175 0.1292 -0.9883
3.5 -2.0 -1.1175 0.0992 -1.0183
4 -2.0 -1.1175 0.0773 -1.0402
4.5 -2.0 -1.1175 0.0611 -1.0564
5 -2.0 -1.1175 0.0488 -1.0687

k ∂ρ
∂β1

∂ρ
∂α1

∂ρ
∂γ1

∂ρ
∂α1

+ ∂ρ
∂γ1

5.5 -2.0 -1.1175 0.0394 -1.0781
6 -2.0 -1.1175 0.0321 -1.0854
6.5 -2.0 -1.1175 0.0263 -1.0912
7 -2.0 -1.1175 0.0218 -1.0957
7.5 -2.0 -1.1175 0.0181 -1.0994
8 -2.0 -1.1175 0.0152 -1.1023
8.5 -2.0 -1.1175 0.0128 -1.1047
9 -2.0 -1.1175 0.0108 -1.1067
9.5 -2.0 -1.1175 0.0092 -1.1083
10 -2.0 -1.1175 0.0079 -1.1096

Looking at the above table the only variable is ∂ρ
∂γ1

since it is the only one dependent

on k. A (α1, γ1) strategy is optimal when r = 0 if k ≥ 3.5. Asymptotically ∂ρ
∂γ1
→ 0 as

k →∞ thus ∂ρ
∂α1

+ ∂ρ
∂γ1
→ ∂ρ

∂α1
and ∂ρ

∂γ1
→ − ∂ρ

∂α1
as k → 0 thus ∂ρ

∂α1
+ ∂ρ

∂γ1
→ 0.

Remark 1: In this scenario it is optimal to buy only one contingent claim (minimum)
as it contributes positively to the risk measure.

Remark 2: Numerically for any k , ∂ρ
∂α1

+ ∂ρ
∂γ1
→ −k as µ → ∞ or σ2 → 0 or q → 0

.Thus our optimal strategy for ∂ρ
∂α1

+ ∂ρ
∂γ1

bound is dependent on k. Thus if k = 1 and r = 0
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then our optimal strategy is only buying riskless assets since ∂ρ
∂β1

= −1 and ∂ρ
∂α1

+ ∂ρ
∂γ1
≤ 1.

If k > 1 then it is dependent on the combination of σ2, µ and q.

5 Utility Functionals Simulations

In Section 2.2 we represented our preference relation as a Savage representation X ∝
_

Y ⇐⇒ Ep[u(X)] ≤ Ep[u(Y )] where Ep[u(X)] = U(X) and Ep[u(Y )] = U(Y ) . The utility
functionals in this case is taken over a set of subjective probability measures M0but
we assumed such in�mum exist and the functional is reduced to the expected utility
function of the random variable over this in�mum. To study the optimal strategies
under these functionals we do our simulations to similar scenarios as in the coherent
risk measure MINMAXV@R and we choose the most prominent utility functions -
Exponential function.

u(c) =

{
(1−e−ac)

a
a 6= 0

c a = 0

where a represents the degree of risk preference (a > 0, a < 0, a = 0 are risk aversion,
risk seeking and risk neutral respectively).

In our case we only consider a > 0(risk aversion).

5.1 Scenario 1 (t = 0, 1 , 1, 1, 0, 1, 1, None, None, r , Log-
normal(µ,σ2))

We start by considering the payo� X = V
(α,β)

1 = α1S1 + β1(1 + r) which gives U(X) =∫∞
β1(1+r)

u(x)fX(x)dx where fX is the pdf of the payo�. Since α1S1 ∼ Lognormal(ln(α1)+

µ, σ2) then X = α1S1 + β1(1 + r) ∼ Lognormal(ln(α1) + µ, σ2) Shifted by β1(1 + r).
The parameters in this scenario are (µ, σ2, r, 1− ν, a)and we see the e�ect of each on
the resulted utility functional. Similar to MINMAXV@R simulations we want to know
the gradient of alpha and beta (∂U

∂α
, ∂U
∂β

) so we can determine the corresponding optimal
strategies.

First lets study the behavior of the utility functional with an example.

Lets �x µ = a = σ2 = 1 and r = 0.1 and run U(X) for 40 α′1s permuted with 40 β′1s
each starts from 1 to 40(1600 permutations in total). Then we plot them against U and
also plot ( ∂U

∂α1
, ∂U
∂β1

) each in a separate graph then we get the following:

Figure 1: Utility Functional for µ = a = σ2 = 1 and r = 0.1

On the �rst plot we can clearly see that the general behavior for our utility func-
tional is convergence to 1 since lim(α,β)→∞ U(X) = 1

a
for a > 0 (risk averse). In our
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Figure 2: Arc of optimal strategies

second and third plot ∂U
∂α1

and ∂U
∂β1

leveled o� to 0 . To investigate the optimal strategies

(sup(α1,β1) U(X)) we need to know the (α1, β1) on the light blue arc of the second and
third plot (when the plot �rst touches the zero level set). To do this we will use the U(X)
matrix and �nd the �rst entry equal to one in each non all ones column. In our case it is
equal to the following entries:

(α1, β1)
(38, 25) (28, 26) (20, 27) (13, 28) (9, 29)
(6, 30) (3, 31) (2, 32) (1, 33)

and the below plot shows the arc of optimal strategies.

5.2 Results of Scenario 1

First we will vary r and hold all other parameters constant to one. we get the following
results.
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r (α1, β1) r (α1, β1) r (α1, β1)

0.0



119 23
94 24
74 25
57 26
44 27
33 28
24 29
18 30
13 31
9 32
6 33
4 34
2 35



0.4



99 17
70 18
49 19
33 20
22 21
13 22
8 23
4 24
2 25


0.8



108 13
70 14
44 15
26 16
14 17
7 18
3 19



0.1



116 21
90 22
69 23
52 24
38 25
28 26
20 27
13 28
9 29
6 30
3 31
2 32



0.5



94 16
65 17
44 18
28 19
18 20
10 21
6 22
3 23


0.9


80 13
49 14
28 15
15 16
8 17
3 18



0.2



94 20
70 21
52 22
37 23
26 24
18 25
12 26
7 27
4 28
2 29


0.6



94 15
64 16
41 17
26 18
15 19
9 20
4 21
2 22


1.0


94 12
57 13
33 14
18 15
9 16
4 17



0.3



108 18
80 19
57 20
40 21
28 22
18 23
12 24
7 25
4 26
2 27


0.7



99 14
65 15
41 16
25 17
14 18
8 19
4 20



Figure 3: Optimal Strategies for di�erent r′s

Looking at the optimal strategies for di�erent r′s we can clearly see when r increase
we have smaller optimal strategies as we level o� very fast (smaller β′s for the same
combination of α′s). the following plot shows this relationship.
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Figure 4: Optimal Strategies for Increasing r

For the next simulation we will only plot the optimal strategies as above for the
di�erent parameter variation.

In the next run we �x r = a = σ2 = 1 and we vary µ accordingly. We get the following
results.

Figure 5: Optimal Strategies for Increasing µ

As we can see the relationship is similar to varying r. The higher µgives smaller
optimal strategies as we level o� very fast.

Next we will vary σ2 and �x r = a = µ = 1. And we get the following optimal
strategies table and plot.
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σ2 (α1, β1) σ2 (α1, β1) σ2 (α1, β1)

0.0001 0 0.2633



32 1
29 2
26 3
23 4
21 5
19 6
16 7
14 8
13 9
11 10
9 11
8 12
6 13
5 14
4 15
3 16
2 17



0.5264



111 3
93 4
78 5
65 6
53 7
43 8
35 9
27 10
21 11
16 12
12 13
9 14
6 15
4 16
2 17



0.7896



118 9
85 10
60 11
41 12
28 13
18 14
11 15
6 16
3 17


1.0527


116 12
69 13
39 14
20 15
10 16
4 17

 1.3158


91 14
41 15
16 16
5 17



1.5790

 87 15
30 16
8 17

 1.8421

 54 16
12 17
2 18

 2.1053

 101 16
18 17
2 18


2.3684

(
27 17
2 18

)
2.8947

(
42 17
2 18

)
2.6316

(
66 17
2 18

)
3.1579

(
104 17
3 18

)
3.4210

(
3 18

)
3.6842

(
4 18

)
3.9473

(
4 18

)
4.2105

(
5 18

)
4.4736

(
6 18

)
4.7368

(
7 18

)
5.000

(
9 18

)
Figure 6: Table of Optimal Strategies for Increasing σ2

Figure 7: Plot of Optimal Strategies for Increasing σ2
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Figure 8: Optimal strategies for di�erent risk aversion parameter a > 0

In this simulation we see that increasing σ2 gives us bigger optimal strategies as shown
in the plot. Looking at the table above we see only the smaller values appear as well
as we increase σ2. The fewer optimal strategies for high σ2is due to our grid choice
which has less points at smaller values (covers less points). The behavior of the log
normal distribution with respect to µ and σ2 conforms with our previous two results.
As µincreases we have higher probability of high values which level o� our U(X) very
fast thus the smaller valued optimal strategies. But when we increase σ2the log normal
distribution gives higher probability to smaller values thus our U(X) slowly level o� and
we get higher values of optimal strategies.

In the next simulation we will �x σ2 = r = µ = 1 while varying the risk aversion
parameter a > 0. We get the following results.

Looking at the plot we see a lower values for (α1, β1) for high a. This result is explained

from the limit of U(X) i.e lim(α,β)→∞
∫∞
β1(1+r)

(1−e−ax)
a

fX(x)dx = 1
a
converges faster to 1

a

for a higher a. Thus our U(X) levels o� faster with higher a.

5.3 Scenario 2 (t = 0, 1 , 1, 1, 0, 1, 1, None, None, r , Uniform(0,b))

In this scenario we will consider S1 ∼ U [0, b] =⇒ X ∼ U [β1(1 + r), α1b+β1(1 + r)]. First
we will compute U(X).

U(X) =

∫ α1b+β1(1+r)

β1(1+r)

(1− e−ax)
a

1

α1b
dx =

1

aα1b
(α1b+

1

a
(e−aα1b−aβ1(1+r) − e−aβ(1+r)))

=
1

a
+
e−aα1b−aβ1(1+r)

a2α1b
− e−aβ1(1+r)

a2α1b
⇒ lim

(α1,β1)→∞
U(X) =

1

a

Then lets compute( ∂U
∂α1

, ∂U
∂β1

) .

∂U

∂α1

= −e
−aα1b−aβ1(1+r)

aα1

(
1

abα1

− 1) +
e−aβ1(1+r)

a2α2
1b

∂U

∂β1

=
−(1 + r)

abα1

(e−aα1b−aβ1(1+r) − e−aβ(1+r))

We see that lim(α1,β1)→∞
∂U
∂α1

= 0 and lim(α1,β1)→∞
∂U
∂β1

= 0 so our utility functional

U(X) level o� at a very fast rate especially towards β1direction.
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5.4 Results of Scenario 2

Similar to our �rst scenario, we will vary one parameter and �x the others. Our expected
results should be similar to Scenario 1 for varying a and r. U(X) should exhibit the same
decreasing behavior as b increases as we can see from U(X) and ( ∂U

∂α1
, ∂U
∂β1

) functions (they

decrease as b increases).

First we vary r and keep b = a = 1. Next we �x r = b = 1 and vary a . And lastly we
vary b and �x a = r = 1. we get the following 3 plots of optimal strategies.

Figure 9: Plot of Optimal Strategies Under Di�erent Varying Parameters

The Results are in conform with our predictions and previous limiting behavior.

5.5 Scenario 3 (t = 0, 1 , 1, 1, 1, 1, 1, Call Option, None, r ,
Log-normal(µ,σ2))

In this Scenario we consider shorting a call option payout g(S1) = (S1 − k)+ for a

strike price k. Our cash �ow at time t = 1 becomes X = V
(α,β,γ)

1 = (1 + r)β1 +

α1S1 − γ1(S1 − k)+. We see that U(X) =
∫ (1−e−a(1+r)β1−aαS1+aγ(S1−k)+ )

a
fX(x)dx where fX

is the pdf of (1 + r)β1 + α1S1 − γ1(S1 − k)+. We can split the integral into two parts

to deal with the contingent claim function. U(X) =
∫ α1k+β1(1+r)

β1(1+r)
(1−e−ax)

a
fX∗(x)dx +∫∞

α1k+β1(1+r)
(1−e−ax)

a
fX−(x)dx where fX∗ is the pdf of (1 + r)β1 + α1S1 and fX− is the pdf
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of (1 + r)β1 + α1S1 − γ1(S1 − k). Since α1S1 ∼ Lognormal(ln(α1) + µ, σ2) then α1S1 +
β1(1 + r) ∼ Lognormal(ln(α1) + µ, σ2) Shifted by β1(1 + r) which is fX∗ . And fX− is
α1S1 +β1(1+r)−γ1(S1−k) ∼ Lognormal(ln(α1−γ1)+µ, σ2) Shifted by β1(1+r)+γ1k.
For fX−we choose γ1 < α1 ⇒ −∞ < ln(α1 − γ1) (should always be �nite).

So we have two integrals with cuto� α1k + β1(1 + r) , one dependent on β1 and α1

and another is dependent on β1, α1, γ1 and k. Next we run our simulations accordingly
by varying one parameter and keeping the rest constant to one and compare the results.

5.6 Results of Scenario 3

The parameters in this scenario are a, k, µ, σ2, r.

First we vary r and set a = k = µ = σ2 = 1 . We get the following results.

r (β1, α1, γ1) r (β1, α1, γ1) r (β1, α1, γ1) r (β1, α1, γ1)

0.0



26 41 2
27 32 1
28 29 1
29 25 1
30 13 1
31 10 1
32 4 1
32 5 1
33 5 1


0.1



23 40 1
24 37 1
25 15 1
26 17 1
27 15 1
28 29 1
30 4 1
30 5 1


0.2


21 40 1
22 31 1
23 15 1
24 25 1
25 13 1
26 32 1

 0.3


20 41 2
21 16 1
22 17 1
24 10 1
25 5 1



0.4


18 40 1
19 20 1
20 29 1
21 13 1
22 11 1
23 4 1

 0.5


17 41 2
18 32 1
19 28 1
20 13 1
21 10 1
22 5 1

 0.6


16 38 1
17 32 1
18 10 1
20 5 1

 0.7



15 35 1
15 37 1
15 38 1
15 39 1
15 40 1
15 41 2
16 35 1
16 36 1
17 13 1
17 14 1
17 15 1
18 5 1
19 4 1
19 5 1


0.8


14 40 1
15 32 1
16 10 1
17 29 1

 0.9


14 20 1
15 28 1
16 30 1
17 5 1

 1.0


13 41 2
14 29 1
15 13 1
16 5 1


Table 2: Optimal Strategies under di�erent r′s

Next we will vary µ and �x σ2 = k = r = a = 1 and we get the following table.
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µ (β1, α1, γ1) µ (β1, α1, γ1) µ (β1, α1, γ1)

0.0


22 41 1
23 41 1
24 41 1
25 23 1

 0.5


18 34 1
19 34 1
20 34 1
21 34 1
22 34 1
23 15 1

 1.0


13 41 2
14 29 1
15 13 1
16 5 1



1.5

 12 25 1
13 14 1
14 7 1

 2.0 0 2.5 0

3.0 0 3.5 0 4.0 0
4.5 0 5.0 0

Table 3: Optimal strategies under di�erent µ′s

Next we will vary σ2 and �x µ = k = r = a = 1 and we get the following table.

σ2 (β1, α1, γ1) σ2 (β1, α1, γ1) σ2 (β1, α1, γ1)

0.2231



2 41 1
3 41 1
4 41 1
5 41 1
6 41 1
7 41 1
8 40 1
9 38 1
10 41 2
11 39 1
12 37 1
13 35 1
14 33 1
15 31 1
16 29 1
17 27 1
18 25 1
19 23 1
20 21 1
21 19 1
22 17 1
23 15 1
24 13 1
25 11 1
26 9 1
27 7 1
28 5 1
29 3 1



0.4452



5 41 1
6 41 1
7 41 1
8 41 1
9 41 1
10 41 1
11 41 1
12 41 1
13 41 1
14 41 1
15 41 1
16 41 1
17 41 1
18 41 1
19 41 1
20 41 1
21 41 1
22 41 1
23 41 1
24 41 1
25 41 1
26 41 1
27 41 1
28 41 1
29 41 1
30 41 1
31 41 1
32 41 1
33 41 1
34 41 1
35 41 1
36 41 1
37 41 1
38 41 1
39 41 1
40 39 1
41 41 1



0.6673



9 39 1
10 40 1
11 41 1
12 41 1
13 41 1
14 41 1
15 41 1
17 3 1
17 41 1
18 41 1
19 41 1
20 41 1
21 41 1
22 41 1
23 41 1
24 41 1
25 41 1
26 41 1
27 41 1
28 41 1
29 41 1
30 41 1
31 41 1
32 41 1
33 41 1
34 41 1
35 41 1
36 41 1
37 41 1
38 41 1
39 41 1
40 41 1
41 41 1


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0.8894



12 41 1
13 41 2
14 41 2
15 41 2
16 41 2
17 41 2
18 41 2
19 41 2
20 41 2
21 41 2
22 41 2
23 41 2
24 41 2
25 41 2
26 41 2
27 41 2
28 41 2
29 41 2
30 41 1
31 41 1
32 41 1
33 41 1
34 41 1
35 41 1
36 41 1
37 41 1
38 41 1
39 41 1
40 40 1
41 41 2



1.0000



13 33 1
13 36 1
13 38 1
13 41 2
14 19 1
14 20 1
14 21 1
14 22 1
14 23 1
14 25 1
14 27 1
14 28 1
14 29 1
15 11 1
15 12 1
15 13 1
16 4 1
16 5 1
41 7 1



Table 5: Optimal strategies under di�erent σ2

In this simulation we will vary a and �x µ = k = r = σ2 = 1 and we get the following
table.

a (β1, α1, γ1) a (β1, α1, γ1) a (β1, α1, γ1)
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0.5875



24 41 2
25 32 1
26 30 1
27 30 1
28 30 1
29 30 1
30 30 1
31 30 1
32 30 1
33 30 1
34 30 1
35 30 1
40 41 2



1.0750



12 41 2
13 31 1
14 31 1
15 28 1
16 27 1
17 27 1
18 25 1
19 17 1
20 17 1
21 17 1
22 17 1
23 13 1
24 13 1
25 11 1
26 9 1
27 7 1
28 5 1
37 41 2
38 41 2
39 41 2
40 41 2
41 41 2



1.5625



8 39 1
9 39 1
10 36 1
11 34 1
12 32 1
13 31 1
14 29 1
15 27 1
16 25 1
17 23 1
18 20 1
19 17 1
20 17 1
21 15 1
22 13 1
23 11 1
24 9 1
25 7 1
26 5 1
27 3 1
40 41 2
41 39 1


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2.0500



7 40 1
8 40 1
9 40 1
10 41 2
11 41 2
12 39 1
13 36 1
14 32 1
15 31 1
16 32 1
17 32 1
18 32 1
19 32 1
20 32 1
21 32 1
22 32 1
23 32 1
24 32 1
25 32 1
26 32 1
27 32 1
28 32 1
29 32 1
30 32 1
31 32 1
32 32 1
33 32 1
34 32 1
35 32 1
36 32 1
37 32 1
38 30 1
39 41 2
40 41 2
41 39 1



2.5375



5 41 2
6 39 1
7 38 1
8 36 1
9 34 1
10 31 1
11 32 1
12 32 1
13 30 1
14 29 1
15 32 1
16 30 1
17 29 1
18 16 1
19 13 1
20 12 1
21 10 1
22 8 1
23 6 1
24 4 1



3.0250



4 41 2
5 41 2
6 41 2
7 41 2
8 38 1
9 38 1
10 36 1
11 34 1
12 32 1
13 30 1
14 30 1
15 30 1
16 30 1
17 30 1
18 30 1
19 30 1
20 30 1
21 30 1
22 30 1
23 30 1
24 30 1
25 30 1
26 30 1
27 30 1
28 29 1
29 29 1
30 29 1
31 29 1
32 30 1
33 30 1
34 30 1
35 30 1
36 30 1
37 30 1
38 30 1
39 41 2
40 38 1
41 41 2



3.5125



3 41 2
4 32 1
5 32 1
6 32 1
7 32 1
8 32 1
9 32 1
10 32 1
11 30 1
12 29 1
40 41 2


4.0000



3 32 1
4 32 1
5 32 1
6 32 1
7 32 1
8 32 1
9 32 1
10 32 1
11 32 1
12 32 1
13 30 1



Table 7: Optimal strategies under di�erent a′s

In the last part we �x µ = a = r = σ2 = 1 and vary k accordingly. We get the
following results.
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k (β1, α1, γ1) k (β1, α1, γ1) k (β1, α1, γ1) k (β1, α1, γ1)

1



18 41 1
19 41 1
20 41 1
21 41 1
22 41 1
23 41 1
24 41 1
25 41 2
32 41 1
33 41 1
34 41 1
35 41 1
36 41 1
37 41 1
38 41 1
39 41 1
40 41 1
41 41 1



2



13 41 1
14 30 1
15 13 1
16 11 1
17 11 1
18 11 1
19 41 1
20 41 1
21 41 1
22 5 1
23 41 1
24 41 1
25 41 1
26 41 1
27 41 2
28 30 1
28 41 1
29 32 1
30 34 1
31 34 1
32 34 1
33 34 1
34 34 1
35 34 1
36 34 1
37 34 1
38 34 1
39 34 1
40 34 1
41 34 1



8

 11 19 1
11 36 1
13 11 1

 9
(
9 33 1

)

Table 8: Optimal strategies under di�erent k′s

In the above simulations we get similar results as Scenario 1. as we increase µ, a ,
r and k convergence is fast and we get smaller optimal strategies for (α1, β1). On the
other hand when σ2increase the convergence is slower due to the nature of the lognormal
distribution (Higher σ2implies higher probabilities for low S1 values). Lastly γ1 stays at
1 -which is the minimum amount- throughout all simulations. This is due the negative
payout and optimally the minimum gives maximum expected utility.

6 Conclusion

From Chapter 3 and 4 we conclude the following remarks:

1. MINMAXV@R

(a) The optimal strategies are determined by the Gradient of the resultant matrix.

(b) The surface has constant gradient for all scenarios.

(c) In Scenario 3 the optimal asset choice for γ1is 1.

(d) In Scenario 3 the choice of our (α1, γ1 = 1)is capped by k.
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(e) In all Scenarios increasing r favors riskless choice while increasing µ, b and k
favors picking risky assets. Similarly a decreasing q gives favor to risky assets
as well.

(f) An increasing σ2gives two results. In Scenario 1 as it increases it favors riskless
assets then level o� and then exponentially favoring optimal strategy in risky as-
sets only. In Scenario 3 due to the o�set from the contingent claim an increasing
σ2 favors riskless assets only.

2. U(X)

(a) The optimal strategies follow an arc in the mesh ofU(X) surface.

(b) The U(X) and its gradient varies and level o� depending on the parameters.

(c) In Scenario 3 the optimal asset choice for γ1is 1.

(d) In all Scenarios increasing r , µ, b, k and a gives a faster convergence and thus
small values for both α1 and β1. While an increasing σ2 gives higher values for
the optimal strategies due to the nature of Log normal distribution.

We know that U(X) = infq∈M2 Eq[u(X)] as a robust representation. our utility func-

tion is de�ned by u(c) =

{
(1−e−ac)

a
a 6= 0

c a = 0
and if we choose the special case of a = 0

we get U(X) = infq∈M0 Eq[X] and taking its negative we get U(X) = − infq∈M0 Eq[X]
which is similar to the coherent risk measure representation ρ(X) = − infq∈Q⊆M2 Eq[X].
if we assume that M0 = Q then our coherent risk measure is just a special case of U(X)
speci�cally ρ(X) = −U(X) at a = 0. In our setting we chose MINMAXV@R as a
representative of the law invariant coherent risk measure and we know that any such
measure can be represented as ρ(X) = supq∈M2((0,1])WV@Rq(X) ( q the concave distor-
tions we choose) which MINMAXV@R is an example of. so varying q ∈ Q to get the
in�mum translates into varying the concave distortions q. This connection between U(X)
andMINMAXV@R serves as an indicator into the behavior of optimal strategies under
them.

Comparing the optimal strategies for both U(X) and MINMAXV@R we see di�er-
ences. First MINMAXV@R optimal strategies depend on the cash �ow distribution
only. The distribution and its parameters determine if we choose risky or riskless assets
and this is due to the semi linear structure of MINMAXV@R (inherited from positive
homogeneity, subadditivity and translation invariance).

If we look into the optimal strategies under U(X) we see a dependence on both the
distribution parameters and risk aversion quanti�ed by a. The dependence on both
quantities shapes theU(X) size of the optimal strategies as they control the functional
convergence. In my simulations the distribution choice with its parameters and also of
a gave no clear distinction between the preference of risky or riskless assets. It only
controlled their size (the optimal arc in U(X) domain mesh). This indi�erence could be
a result of inadequate mesh size which should be further investigated in more involved
simulations.

In conclusion, the optimal strategies tend to be convergence based as we follow U(X)
and as our risk aversion becomes neutral (Linearized) we cascade into a risk measure
which depend solely on the distribution. This dependence gives a clear cut binary choice
of optimal strategies as determined by the parameters.
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The next interesting steps is �rst to further investigate U(X) through more heavy
simulations and second to study optimal strategies for multi step models.
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A Appendix

A.1 MINMAXV@R Matlab Codes
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A.2 U(X) Matlab Codes
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A.3 MINMAXV@R Figures

A.3.1 Scenario 1 Figures

Figure 10: Varying r
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Figure 11: Varying σ2
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Figure 12: Varying µ
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Figure 13: Varying q
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A.3.2 Scenario 2 Figures

Figure 14: Varying r
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Figure 15: Varying b

52

C
E

U
eT

D
C

ol
le

ct
io

n



Figure 16: Varying q
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A.4 U(X) Figures

A.4.1 Scenario 1 Figures

Figure 17: Varying r
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Figure 18: Varying σ2

Figure 19: Varying µ
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Figure 20: Varying a

A.4.2 Scenario 2 Figures

Figure 21: Varying r
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Figure 22: Varying b

Figure 23: Varying a
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