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Abstract

Resistance matrices of graphs exhibit non-trivial global information about the graph such

as community structure. This property seams to make them good candidates for develop-

ing fast machine learning algorithms for very large graphs. However, it has been recently

reported that for large graphs the resistance matrices are dominated by something as local

as the degrees of the vertices [13]. This phenomenon is sometimes called Global Infor-

mation Loss (GIL), and it suggests that using resistance matrices in data science should

be discouraged. However, the significance of GIL is not yet well understood; there have

been arguments that with simple operations the global information can still be accessed

[13, 16]. Conversely it has also been reported that GIL does not have significant effect on

the numerical results in applications [10].

In this thesis we aim to build the theoretical background to better understand the GIL

phenomenon. To give a rigorous definition for GIL, first we build a new notion of graph

convergence based on resistance matrices, and we say that GIL occurs if the limit object is

trivial (low rank in some sense). The properties of the new graph convergence definition is

also of independent interest. Our notion of limit object is similar to the graphon, although

due to the GIL, as a simple corollary of previous results, the limit object of dense graphs is

always trivial. We also prove that 2D grid graphs and binary trees have trivial limit; these

are examples of sparse, bounded degree sequences that have the GIL property.

However, we also exhibit examples of sequences where the limit objects are non-trivial:

path graphs and conditioned critical Galton-Watson trees. Since we suspect that more

examples of such sequences with non-trivial limits will come from random graph models at

the critical point (e.g. critical percolation) we call these sequences critical.

The main results of this thesis are the proofs of criticality and triviality of several

examples of graph models. In the end we also show numerical simulations to strengthen

the robustness of our arguments, and outline a direction for practical applications.
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Chapter 1

Introduction

Effective resistances have played an important role for a long time in physics and engineering

and more recently in probability theory and computer science. The notion originates from

the theory of electric networks. Given a resistor network, the electric resistance between

two points i and j measures their potential difference if we push a unit current flow across

the entire network from i to j. In other words, it is the resistance of the entire network if

the input/output wires are attached to i and j. The same notion can be defined for any

weighted graph G = (V,E,w) where the edge weights set the conductances of the links of

the corresponding electric network. The resistance matrix of a weighted graph is simply

the matrix R where the (i, j) entry is the magnitude of effective resistance between i and

j.

Resistance matrices connect many seemingly unrelated notions. On one hand they are

tightly linked with the Laplacian inverse of G: Ri,j = (ei − ej)
TL†(ei − ej). Laplacian

matrices are important in the computation of global properties of graphs, such as the

maximum-flow or the number of spanning trees. Their applications range over machine

learning, partial differential equations, spectral graph theory, etc [18]. Moreover, taking

advantage of the special structure of Laplacian matrices, the effective resistances can be

computed in Õ(|E|) time with the Spielman-Teng solver [17]. On the other hand, entries of

Ri,j are just the normalised expected commute times between i and j for a simple random

walk on G. For this reason instead effective resistance, often the term resistance distance is

used. Again, this result implies that resistance matrices tell us something about the global

structure of the graph.

The advantages of resistance matrices is thus two-fold; they are fast to (approximately)
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compute and they carry non-trivial, global information. Therefore, they seam to be highly

applicable for very large graphs, where more accurate approaches would be intractable.

However, recently it was shown that for large and dense graphs the effective resistances

loose their global meaning; they only contain something very local such as the degree of

each point [13]. Intuitively, in a large and dense graph the random walk mixes very quickly,

we reach the neighbourhood of every point. The bottleneck for the commute time is hitting

the points exactly, which of course is dominated by the local information. This phenomenon

is referred to as Global Information Loss by [16]. There have been attempts to correct for

GIL, either by just subtracting the known local information the [13] or modifying slightly

modifying the definition of effective resistances [16]. On the other hand, there have been

reports where resistance matrices and the Spielman-Teng solver have been successfully

applied and produced state of the art results for large-scale clustering [10]. While the

authors mention the issue, they do not report any effect of GIL on their results.

The questions in this thesis are motivated by understanding the practical questions

above, however, we take a more theoretical path. Since the GIL appears only for large

graphs we attempt to study it in the limits of graph sequences. To do this, we define a new

notion of graph convergence based on the resistance matrices, where the limit object is in

some sense an generalised infinite resistance matrix. It is of independent theoretical interest

how this new notion of graph convergence behaves with respect to existing notions. Due

to the GIL phenomenon, for many dense graphs the limit will be trivial, however, we are

also able to exhibit graph sequences for which the limit object has interesting structure.

Since these interesting graph sequences seem to come from random graph models near

the critical point (critical Galton-Watson tree, critical percolation), we call such sequences

critical. Critical graphs are therefore graphs where the GIL phenomenon does not occur.

This thesis mostly focuses on developing the theoretical background of this new notion

of graph convergence and proving the criticality of the following graph sequences: path

graphs, 2D grids, binary trees, critical Galton-Watson trees.

In section 2 we give a more rigorous treatment of the theory of electric resistances and
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develop tools needed in the subsequent proofs. In section 3 we define the new notion of

resistance based graph convergence and we present fundamental examples and results. In

section 4 we define critical graphs and prove our three main results: path graphs and critical

Galton-Watson trees are critical whereas 2D grid graphs are not. Finally, in section 5 we

strengthen our theoretical arguments with numerical experiments.
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Chapter 2

Effective resistance

In this section we provide the important rigorous definitions and theorems about effective

resistances needed in later chapters. Complete proofs will be omitted; besides the exact

statements only intuition and citations are given. Some of our notation and many of the

definitions follow Section 2 of [15].

While effective resistances have already been (intuitively) defined in the Introduction,

we prefer this more concise theoretical definition.

Definition 1. The resistance matrix of a weighted graph G = (V,E,w) with edge is

Ri,j = L†i,i + L†j,j − 2L†i,j = (ei − ej)
TL†(ei − ej) (2.1)

where L† is the Moore-Penrose inverse of the Laplacian matrix L = D−A of the graph.

Throughout this thesis, we only consider connected graphs with non-negative edge weights.

This condition implies that apart from the lowest, all eigenvalues are strictly positive, and

the nullspace of L is spanned by 1.

This definition agrees with the physics interpretation of the effective resistance. Let’s

consider an electrical network induced by the graph G, where the edge weights become

the conductances of the connections in the network. If iij = ei − ej ∈ Rn is a vector that

represents and external battery connected to nodes i and j that maintains a unit current

flow, then by Kirchoff’s laws v = L†iij is exactly the vector of electrical potentials in the

network with this current flow (up to a shift with 1). Then the magnitude of the effective

resistance between i and j is |vi−vj| which agrees with our definition (see [15] for a detailed

proof).
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2.1 Probabilistic interpretations

As outlined in the Introduction, effective resistances have important probabilistic interpre-

tations. The reason behind this is that electric current itself can be modelled as a random

walk of tiny electrons. Let’s we consider a resistor network and apply potential 0 to vertex

a and 1 to set Z. Then by Proposition 2.2 in [15] the resulting current flow i can be viewed

as E[Sxy − Syx], where Sxy is the number of transitions from x to y of the simple random

walk started at a and absorbed by Z.

The following lemma makes the connection with effective resistances more direct. This

statement is the way [15] defines effective resistance (page 25).

Lemma 1. Let R(a, Z) be the effective resistance between a and z, where z is the supernode

that collects all vertices of Z. Let P (a→ Z) be the probability that a simple random walk

started at a hits Z before returning to a. Then

R(a, Z) =
1

daP (a→ Z)
(2.2)

where da is the degree of a.

A similar connection can be made for two-point resistances and commute times. This

lemma will not be used in later proofs, but we feel that it cannot be omitted from such a

review.

Lemma 2 (Corollary 2.21 in [15]). Let the random variable τij be the number of steps it

takes for a random walk on graph G to reach node j starting from node i. Then, for the

commute time Cij = E[τij] + E[τji] we have

Ri,j =
1

vol(G)
Cij (2.3)

, where vol(G) = 1
2

∑
i∈V

di is the sum of the edge weights.
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2.2 Energy of current flow

We already saw that the effective resistance between nodes i and j is tightly linked with

the unit flow from i to j. We will make this connection even tighter.

Definition 2. Let’s direct the edges E in some arbitrary way. A flow between source

s ∈ V and sink t ∈ V is a function F : E → R, which satisfies the conservation law∑
e∈E+(v)

F (e) −
∑

e∈E−(v)

F (e) = 0 for every node v ∈ V \ {s, t}, where E+(v) and E−(v) are

the edges entering and leaving v respectively. The energy of a flow is E(F ) =
∑
e∈E

1
w(e)

F (e)2,

where w(e) is the weight of edge e in G.

The energy defined in the previous definition again follows the intuition from physics.

The if the flow is the current flow, then the above formula gives the
∑
e∈E

ReI
2
e formula from

high-school physics. It turns out that indeed, the current flow has special meaning in our

mathematical model as well. It is the flow with minimal energy.

Theorem 1 (Thompson’s Principle, page 35 in [15]). Let F be any unit flow with source

i and sink j of unit magnitude (meaning
∑

e∈E+(i)

F (e)−
∑

e∈E−(i)

F (e) = 1), and let ii,j be the

unit current flow from i to j. Then if F 6= ii,j we have

Ri,j = E(ii,j) < E(F ) (2.4)

This theorem will be used to give upper bounds on Ri,j by constructing unit flows in

the proof of the triviality of 2D grids. For the proof of path and tree graphs the following

simple corollary will be useful.

Corollary 1. The resistance distance on a tree G is the same as the distance on G′ with

reciprocal edge weights.

Proof. Since there is only one path between i and j, the only possible unit flow gives value

1 to each edge on the path and zero everywhere else.
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2.3 Global information loss

In this subsection we quickly review the results of [14] on GIL. The authors focus on two

geometric graph models important in machine learning (ε−graphs and knn-graphs) and

they propose two techniques (flow based and spectral) to prove that the effective resistances

converge to 1
di

+ 1
dj

, where di =
∑
j

w(i, j) denotes the degrees of the nodes and w(i, j) are the

edge weights of G. In this paper we are mostly interested in the spectral arguments since

they generalise to more general graph models. The main result depends on the following

proposition

Theorem 2 (Proposition 5 in [14]). For any graph G∣∣∣∣Rij −
(

1

di
+

1

dj

)∣∣∣∣ ≤ 2

(
1

1− λ2
+ 2

)
wmax
d2min

(2.5)

where λ2 is the second largest eigenvalue of the transition matrix of the random walk of G

(P = D−1W ).

Luxburg et al. use this theorem to show that graphs with high minimum degree and

not too low spectral gap, the GIL phenomenon holds. They are able to prove that a rather

large class of graphs satisfy this property:

Corollary 2 (Corollary 13 in [14]). For random graphs on n nodes with expected minimum

degree dmin = ω(log(n)) and i 6= j we have

∣∣∣∣Rij −
(

1

di
+

1

dj

)∣∣∣∣ = O

(
1

log(2n)

)
→ 0 (2.6)

In particular, Corollary 2 covers for Erdős Rényi graphs with p = ω
(
log(n)
n

)
. The proof

of Corollary 2 relies on advanced techniques by [6] to bound λ2 by dmin in a random graph.

Luxburg et al. point out in their discussion that these methods don’t generalise to

graphs with bounded degree, e.g. grid graphs, and they are not aware of any previous

work from which the convergence of the resistances of such graphs would follow easily. In

chapter 4 we will prove a result for grid graphs similar to Corollary 2, although the limit

of Rij will be 1
π

instead of
(

1
di

+ 1
dj

)
.
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Chapter 3

Graph Convergence

3.1 Graph convergence

Convergence of graphs is a relatively young field of study. The first definitions for the

convergence of bounded degree graphs was introduced in 2001 [4], and for dense graphs the

definition of the limit first appeared in 2006 in [5], and later that year the corresponding

limit appeared in [12]. The dense graph convergence boils down to the convergence of

subgraph statistics:

Definition 3. A dense sequence of graphs Gn is convergent if

t(F,Gn) =
N(F,Gn)

n|V (F )|

converge for every connected graph F , where N(F,G) is the number of subgraphs in G

isomorphic of F .

Definition 4. The limit object of dense graph convergence is the so called graphon, a

two-measurable function W : [0, 1]2 → [0, 1], which satisfies

t(F,W ) =

∫
[0,1]k

∏
ij∈E(F )

W (xi, xj)dx1 . . . dxk (3.1)

It is a non-trivial theorem in that every convergent sequence in the sense of Definition

3 has a limit graphon. We will revisit this idea in Chapter 3 in our definition of graph

convergence.

For the sparse regime, the definition relies on a more involved probabilistic approach:
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Definition 5. A bounded degree sequence of graphs Gn is (Benjamini-Schramm) con-

vergent if the sequence (0, Gn) of random rooted graphs (deterministic Gn with uniform

random root 0) weekly converges to (0, G∞), where G∞ is a random graph on countably

infinitely many vertices. In this case the limit object is a distribution over rooted countable

graphs.

We need different definitions for the sparse and dense case because both definitions

are meaningless (or trivial) in the other regime and there has not yet been developed any

general theory that would apply to both cases. In fact the two regimes capture different

properties, they are two different worlds. For a thorough treatment of graph convergence

we refer to [11].

3.2 Resistance based graph convergence

The discrepancy in the different graph convergence notions suggests that there is room

for new definitions. Our goal in this chapter is to start developing a new theory of graph

convergence based on the effective resistance. Our hope is that this definition will also help

understanding the GIL phenomenon.

Definition 6 (Resistance based graph convergence). Let (Gn = (Vn, En, wn))n∈N be a

sequence of weighted graphs and for a given k, let Rn,k be the resistance matrix of k points

uniformly sampled from Vn. We say that (Gn) is convergent if (Rn,k) is weekly convergent

to some Rk for every k as n→∞.

Definition 7. The limit object of a sequence (Gn) is a measurable function fR : [0, 1]4 →

R+ such fR(a, b, c, d) = fR(a, c, b, d), and if α, (ξi)1≤i≤k and (λ{i,j})1≤i≤j≤k are uniform

independent random variables on [0, 1], then the matrix with (i, j) entry fR(α, ξi, ξj, λ{i,j})

has the same distribution as Rk. The notation is (Gn)
r−→ fR, where the r stands for

resistance based convergence.
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The limit object of the resistance based convergence is very similar to the graphon,

although this definition seams slightly more complicated at first. We address these differ-

ences and similarities and prove the existence of such limit objects later; let’s see a few

examples first to understand the definitions more clearly.

For any sequence (Gn) we always scale the edge weights such that the maximum entry

of (Rn,k) is O(1) but larger than 0 with high probability, so that the Rks and limit objects

are meaningful. After such rescaling, our definition gives results for the convergence of

both the dense and sparse graphs. We give and example to both cases.

Example 1 (Complete graph). Let Gn be the sequence of complete graphs of size n with

edge weights wn(i, i+ 1) = n
2
. Then Gn

r−→ fR(·, ·, ·, ·) = 1, the constant 1 function.

Proof. It is not difficult to check that (nIn− 11T )† = 1
n
In− 1

n2 11T , which implies that the

effective resistance between any two points of the complete graph is 2( 1
n
− 1

n2 )−2(− 1
n2 ) = 2

n
.

After rescaling with conductances 2
n
, we get the the resistance matrix of Gn is 11T − In,

which is what we needed.

Example 2 (Path graph). Let Gn be the sequence of paths of length n with edge weights

wn(i, i+ 1) = n. Then Gn
r−→ |ξi − ξj|.

Proof. By Corollary 1 and the convenient choice of edge weights, Rn,k = Abs(Zn,k1
T −

1ZT
n,k), where Zn,k ∈ Rk contains the k randomly selected points from the set { i

n
| 1 ≥

i ≥ n} and Abs is the absolute value function taken entrywise. This expression weekly

converges to Rk = Abs(Zk1
T − 1ZT

k ) where Zk ∈ Rk is now sampled uniformly randomly

from [0, 1]. Hence, Gn is convergent to the given object.

In these examples, after establishing that the sequences are convergent, we proved the

existence of the limit object by exhibiting it. However, it is not yet clear that every

convergent sequence has a limit object. Proving this statement if in fact the main result of

this chapter.
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Theorem 3. Every convergent sequence of graphs (Gn) in the sense of Definition 6 has a

limit object as defined in Definition 7.

Proof. The proof given here will be similar to one of the proofs for the existence of Lovász-

Szegedy limit objects discussed in section 11.3.3. in [11]. Instead of considering Rn,k,

consider Rn ∈ R∞×∞ which is constructed by sampling countably infinity points from Gn

instead of k. If (Gn) is convergent, the sequence (Rn) also weakly convergent to some infinite

matrix R∞. Moreover, R∞ have the symmetrially exachangability property: the submatrix

(R∞)ij for 1 ≤ i, j ≤ k has the same joint distribution as the submatrix (R∞)σ(i)σ(j) for for

1 ≤ i, j ≤ k, since we the order of the graph vertices does not matter.

Such objects as R∞ are called symmetrically or weakly exchangeable arrays, and there

are many known results about them. Theorem 5.1 in [3] shows the existence of a measur-

able function that satisfies exactly the same conditions as our measurable function fR in

Definition 7.

As stated several times, our resistance based graph convergence and especially our limit

object bears resemblance to the dense graph limit and the graphon. This might not be

obvious at first sight, since the graphon if a deterministic object, and all of our definitions

made use of randomness so far. However, if we slightly rephrase the definition of the limit

object of dense convergence, it could be a measurable function f : [0, 1]4 → {0, 1}, such that

similarly to our definition, the submatrix generated by f(α, ξi, ξj, λ{i,j}) for 1 ≤ i, j ≤ k

converges in distribution to the submatrix we get by sampling k vertices from the adjacency

matrix. We even know what that f is

f =

1 if λ{i,j} < W (ξi, ξj)

0 otherwise

(3.2)

Since the graphon W encodes exactly the subgraph densities the adjacency matrix of

subgraph F will be generated exactly with the desired probability.
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With this new point of view, it is clear the the graphon and the resistance based limit

are tightly linked, however there are still notable differences:

• The obvious difference is that while the graphon ensures convergence of adjacency

matrices whereas resistance based limit ensures convergence of resistance matrices.

• We already saw that as opposed to the dense graph limit, that the resistance based

limit can gives non-zero limit object even if the graphs are sparse. In fact, we will

see soon that the resistance based limit is most interesting in the sparse regime.

• For the graphon, it has been prooved by [8] that f is independent of α (the limit

object is ergodic). We will see later that this is not the case for the resistance based

limit object. On the other hand, we are yet to encounter a sequence of graphs where

the resistance based limit object depends on λ{i,j}.

3.3 Large degree graphs

While the resistance based graph convergence non-zero limit objects to both the dense and

sparse regime, unfortunately, due to the GIL phenomenon, the definition is oblivious to

global structure in the dense case. As shown in Corollary 2 many dense graphs, the effective

resistance between two points (in the limit) is simply 1
di

+ 1
dj

. Thus, in some sense we can

say that these graphs converge to the augmented star graph R(α, ξi, ξj, λ{i,j}) = 1
d(ξi)

+ 1
d(ξj)

with an auxiliary node in the middle that is connected to vi with weight di.

One way to give more strength to our definition would be to subtract the limiting low-

rank matrix and rescale the edge weights until we again get a O(1), non-zero limit. This

approach is similar to the idea of second order convergence in a Taylor series and has been

already used in applications [13].

In this thesis, we do not explore this idea any further, instead we focus on characterising

the graphs for which the limit object is meaningful without any modifications.
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Chapter 4

Criticaility

It will be more convenient to give a definition for the graphs where the GIL phenomenon

does occur, where the limit objects become trivial.

Definition 8. The the limit object of (Gn) be R(·, ·, ·, ·) and let’s sample α, (ξi)1≤i≤2k

and (λ{i,j})1≤i≤j≤2k. Let the (i, j) entry of the k × k the random matrix Rk be the value

R(α, ξi, ξj+k, λ{i,j+k}). We say that G is trivial if for every ε > 0 we have P
(
rank(R)

k
> ε
)
→

0 as k → ∞. We call a sequence of graphs trivial if they converge to a trivial object. A

sequence of graphs is critical if it is not trivial.

The intuition is that row-rank Rk corresponds to trivial. Notice that since the (i, j)

entry of Rk depends on ξs with indices i and j + k we essentially measure the effective

resistance between two disjoint set of points. In particular, the diagonal elements behave

the same way as the off-diagonals unlike in Rk which allows Rk to be low-rank in many

cases.

By Corollary 2, for large degree graphs the Rk matrices are all deterministic with rank

1 or 2, which immediately gives us our first result.

Theorem 4. Limits of sequences of graphs with dmin = ω(log(n)) are trivial.

Not only does this Definition 8 rule out the previously described 1
di

+ 1
dj

type augmented

star matrices and the limit objects of the grid graphs (see the proof later in the chapter),

but also any combinations of them. For example one could consider a sequence of graphs

Gn that consists of a union of complete graphs and grid graphs on n
2

nodes respectively,

with appropriate edge weights (and connected with a single edge). Such objects should
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still be characterised to be trivial, however, less robust definitions (e.g. trivial objects are

defined to have local information based resistance: Rij = f(vi) + f(vj) for some f) would

have missed these examples.

We showed several examples of trivial graphs sequences but we are yet to show critical

ones ones. As one of the main results of this thesis, the next two sections will be about

showing such examples.

4.1 Grid graphs

4.1.1 1D grid

Theorem 5. The sequence of path graphs is critical.

Proof. In the proof of Example 2 we showed that Rk = Abs(Zk1
T − 1ZT

k ), where where

the entries of Zk ∈ Rk are sampled uniformly randomly from [0, 1]. We will drop the k

subscript for better readability.

A similar argument shows that Rk = Abs(Z(1)1T − 1Z(2)T ), where Z(1), Z(2) ∈ Rk are

2k independent uniform samples from [0, 1]. Let’s assume Z(1), Z(2) are both in ascending

order and let’s also define a third vector Z(3) ∈ R2k that contains both the the values of

Z(1) and Z(2), again in ascending order. Let Z(4) ∈ {0, 1}2k have 1 at it’s ith entry if Z
(3)
i is

an element of Z(1), and 0 if Z
(3)
i is an element of Z(2). A helpful schematic the illustrates

these definitions on an example is included in Figure 4.1 (a).

Now consider the auxiliary matrix Ck = Rk + Z(1)1T − 1Z(2)T . Since we changed Rk

only by a rank 2 matrix, it will be enough to show rank(Ck) = Θ(n) to get the desired

result. The block structure of of sign(Ck) is shown on Figure 4.1 (b). Notice that the

thick red line of 2k segments that separates non-zeros from the 0-block is exactly encoded

in Z(4), as a 0 in Z(4) corresponds to a vertical segment and a 1 to a horizontal segment.

This is because if for example we start with a zero, than Z
(2)
1 is smaller than all elements

of Z(1), so the entire first row of Z(1)1T −1Z(2)T is positive which implies that the first row
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of Ck is positive as well. This argument can be generalised to derive the correspondence

between the red line and Z(4).

Z(1)Z(1) Z(1) Z(1) Z(1) Z(1)
 1  2  3  4  5

Z(2)Z(2):

Z(3):

Z(4):

Z(1):

Z(2) Z(2) Z(2) Z(2)
 1  2  3  4  5

Z(2) Z(1) Z(2) Z(1) Z(1)
 1  1  2  2  3 Z(2) Z(2) Z(2) Z(1) Z(1)

 3  4  5  4  5

0 1 0 0 0 01 1 1 1

X : 1 1 1 0 0 10 1 0

(a) (b)

>0

0

(2)-Z 1

(2)-Z 2

(2)-Z 3

(2)-Z 4

(2)-Z 5

(1)Z 1
(1)Z 2

(1)Z 3
(1)Z 4

(1)Z 5

Figure 4.1:
(a): A helpful schematic for definitions the of Z(1), Z(2), Z(3), Z(4) and
X . The order of the interlacing of Z(1) and Z(2) is picked arbitrarily to
show a particular example.
(b): The block structure of of sign(Ck) corresponding to (a)

The rank of Ck can be lower bounded by the number of rows that start with different

number of leading zeros (e.g. rows 1,2 and 5 on Figure 4.1 (b)). The number of such rows

is exactly the same as the number of times we see a 01 subsequence in Z(4). Let Xi ∈ R2k−1

be indicator vector of a 01 or 10 sequence starting at index i of Z(4). Since the number of

01 and 10 subsequences are the same it will be enough to show that
2k−1∑
i=i

Xi = Θ(k) w.h.p.

Unfortunately, the Xis are not independent since for example knowing the first 2k−2 values

completely determines X2k−1. Still, we can show that if we only know the first few values

the dependence of the next Xi will not be too great. Let’s make this more rigourous.

We can model Z
(4)
i as a random permutation of k zeros and k ones. Given all previous

Z
(4)
j s, Z

(4)
i has the same distribution as Ber

(
1

2k−i

(
k −

∑i−1
j=1 Z

(4)
j

))
, where Ber (p) is a
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Bernoulli random variable. This in particular implies that

P (Xi = 1 | Xj for all j < i) > P

(
Ber

(
1

4

)
= 1

)
if i <

k

4
(4.1)

since in that case 3
4
> k −

∑i−1
j=1 Z

(4)
j > 1

4
, so knowing the first k

4
still gives us enough

freedom to choose the next element somewhat independently.

Then for any sufficiently small ε > 0

P

(
1

k

k∑
i=i

Xi > ε

)
≥ P

1

k

k
4∑
i=i

Xi > ε

 ≥ P

4

k

k
4∑
i=1

Ber

(
1

4

)
> 4ε

→ 1 (4.2)

by the law of large numbers. Equation (4.2) implies that P
(
rank(R)

k
> ε
)
→ 1, so

sequence of path graphs is critical.

4.1.2 2D grid

Our physical intuition tells us that the 2D grid should be trivial. Electric resistance on a

metal plate does not depend on the two points chosen. The physics theory even provides a

formula to compute the effective resistance on an Ohmic material: R = ρl
A

, where ρ is the

resistivity, l is the length of the conductor and A is the cross section. We could apply this

formula to compute the resistance between a circle of radius 1
n

and a circle of radius 1

1∫
1
n

ρ

2rπ
dr =

ρ

2π
log(n) + o(log(n)) (4.3)

Intuitively, ρ corresponds to the inverse of the edge weights 1
wij

, and we should choose

ρ = 1
log(n)

for proper scaling. Then, as we take n → ∞ the expression above converges to

around 1
2π

. The two-point resistance in the limit should be two times the expression above

(because there are two points), so it should be around 1
π
. In the rest of this section we

provide a rigorous statement and proof.
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Theorem 6. If (Gn) is the sequence of n×n 2D grid graphs with edge weights wn = log(n),

(Gn) is convergent and trivial. The matrix Rk = 1
π
11T is deterministic, rank 1 for every

k.

Proof. It is a known result by [7], that for an infinite grid graph with unit edge weights,

the asymptotic form of the resistance between points v1 = (0, 0) and v2 = (v2x, v2y) is

R∞(v1, v2) =
1

π
log
(√

v22x + v22y

)
+ o(1), (4.4)

This formula already gives a lower bound on the entries of Rk. By Rayleigh’s Mono-

tonicity Principle (page 35 of [15]), adding edges only decreases the effective resistances

Rn(v1, v2) ≥
1

log(n)
R∞(v1, v2) =

log
(√

(v1x − v2x)2 + (v1y − v2y)2
)

π log(n)
+O(1)→ 1

π
(4.5)

with high probability as n → ∞, because if we sample k points from an n × n grid,

their distance will be Θ(n) with high probability.

For the upper bound we need to work slightly harder. We will construct a flow on

the n × n grid (with unit edge weights) that has energy 1
π
log(n) + o(log(n)), which by

Thompson’s principle will give us the desired upper bound.

The flow will be build up of three parts; a flow from v1 a to circle of radius r around v1

(denoted by C(v1, r)), a flow between C(v1, r) and C(v2, r) and finally a flow from B(v2, r)

to v2. The circles should be understood as a discretised versions of the Euclidian circles;

the boundary points of the set of grid points less than or exactly r, but more than r − 1

distance away from v1 using the Euclidian distance.

Since the each of k points will also be Θ(n) distance away from the boundary of Gn we

suppose that r = Θ(n) and the circles are still fully contained in the grid, non-intersecting.

The intuition is that the flow between the two circles will have o(log(n)) energy because

the flow is spread out in a very large space, compared to the flows concentrated around v1

and v2. This resembles the main idea behind GIL: the effective resistance only depends on
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what happens in a neighbourhood of the points, although in our case we have to consider

a larger neighbourhood then just the degree.

First let’s construct the flow from v1 to C(v1, r). The construction is not easy to be

made explicit. Let’s consider the electric flow that we get if we apply potential 0 to v1 and

as much potential to each node of C(v1, r) as needed for the flow to have magnitude 1. We

have two claims about this flow: 1) That it brings approximately equal Θ(1
r
) current to

each node of C(v1, r), and 2) the energy of this flow is 1
2π
log(n) + o(log(n)).

The first claim follows from symmetry; both the potential differences and the effective

resistances (as seem in 4.4) are constant across C(v1, r), so the incoming current flow must

be as well. An alternative argument would rely on the random walk interpretation of the

current flow and the fact that random walk on a 2D grid converges to a normal distribution

which is spherically symmetric.

For the second claim, we use the interpretation outlined in Lemma 1 and the result

4.4. The energy of the flow can be interpreted as R∞(v1, C(v1, r)), since the flow we are

considering is oblivious to what is happening outside the circle.

Let l be the (discretised) perpendicular bisector of v1 and v2. We may assume that

such a bisector exists; if v1 and v2 are odd distance away we may move v2 one edge further

without changing any of the resistances by ω(log(n)). Since, the event of a random walk

on the infinite grid hitting l is always preceded by the random walk hitting C(v1, r):

R∞(v1, C(v1, r)) =
1

4P (v1 → C(v1, r))
<

1

4P (v1 → l)
= R∞(v1, l)

Now consider the electrical flow on the infinite grid between v1 and v2. The line l splits

this flow into two, and if we flip edges on the v2 side of the plane we get two unit flows

from a point to l. At least one of these flows must have energy 1
2
R∞(v1, v2). Hence,

R∞(v1, l) <
1

2
R∞(v1, v2) =

1

2π
log(n) + o(log(n))

Now we just need to show the construction of the flow between B(v1, r) and B(v2, r).

We can be somewhat generous in our construction and our analysis since we only need
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an asymptotic upper bound. For simplicity let’s assume that v1 and v2 has the same

y-coordinate.

The outline of the construction is on Figure 4.2. We first split the circles into four

equal parts: (a), (b), (c) and (d) as shown. Each grid point c1,a ∈ C(v1, r) in part (a) is is

connected with a straight horizontal line to its pair in c2,a ∈ C(v2, r), and a constant flow

is sent across this path, which has value Θ(1
r
), the same as the incoming current to c1 from

our point-to-circle flow construction. Note that multiple points c1,a may have the same

y-coordinate, in which case these flows collide and add up. Still, since we are in region (a),

this can happen with only a constant number of grid points, so the value of the flow on

each green edge is at most Θ(1
r
). Similar arguments can be said about regions (b), (c) and

(d) although in these cases the flows start out in different direction to assure that there are

only a constant number of collisions.

v1

r

D

r√2

r√2/2

r√2/2

r√2/2

r√2

r√2

2r

v2

r

(a)

(d)

(b)

(c)

y

x

Figure 4.2:
Flow construction with energy Θ(1) between two circles of radius r.
Red, blue and yellow lines correspond to the flow lines in different
sections. The dashed grey lines help count the number of flow lines in
each section.
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Now we have to upper bound the energy of the flow. The number of edges in this con-

struction is upper bounded by (D+4r+r
√

2)(4r
√

2) = Θ(n2), since D = dist(v1, v2)−2r =

Θ(n) and r = Θ(n) by assumption. On the other RI2 term for each edge is asymptotically

Θ( 1
n2 ) (since we set R = 1), hence the energy of the flow is Θ(1). Also since the number of

rows are columns used are both Θ(r), the flow will fit inside the n× n grid.

Therefore, once we join the flow tree constructed flows, we get that the overall energy

is 1
π
log(n) + o(log(n)) which is what we needed for the upper bound.

This is an important result, since this is the first example when the limiting effective

resistance is trivial but does not depend on 1
di

. To be fair, the 1
π

can still be thought of the

the local neighbourhood of a point in a plane.

4.1.3 3D grid

We can essentially use the same technique to show that a 3D grid is trivial, only the flow

construction is slightly more involved. For a 3D grid, the limiting resistance is much more

complicated (see [7], Eq. (37))

4.2 Tree graphs

4.2.1 Binary tree

The binary tree is an interesting example of trivial graphs. Here, the triviality does not

come from many disjoint paths which allow the random walker to get lost in space. Instead,

all nodes behave very similarly, hence the trivial limit.

Theorem 7. A sequence (Gn) of binary trees of depth n are convergent with edge weights

wn = n. The limiting object is trivial.
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Proof. By Corollary 1, the effective resistance between two points only depends on their

distance. For a binary tree the distance is easily calculated as

(Rn,k)ij = l(vi) + l(vj)− 2l(p(vi, vj)) (4.6)

where l(v) : Vn → N is the level of a vertex on the tree and p(v1, v2) is the first common

parent of v1, v2.

Since the tree is growing exponentially, most of the mass is concentrated on the leaves.

If we sample vi and vj uniformly randomly, they will most likely be on one of the lowest

levels. For any 0 < C < 1

P (l(vi) < Cn) =
2Cn − 1

2n − 1
→ 0 as n→∞ (4.7)

We can also show that first their common parent will be around the root. This is

because to have p(vi, vj) ≥ k, even if we know that l(vi) ≥ k, we need that vj to be chosen

to be in the same subtree starting from the kth level as vi. There are 2k−1 disjoint subtrees

starting from level k, so the probability of this event is low for large 0.

P (p(vi, vj) > Cn) ≤ P (vj and vj in same Cn-subtree | l(vi) ≥ Cn) ≤ 1

2Cn−1
→ 0 (4.8)

as n → ∞. We have this shown that almost surely l(vi)
n

= 1 and
p(vi,vj)

n
= 0. This,

together with Equation (4.6), shows that after rescaling, (Rn,k)i,j = 2 if i 6= j almost

surely, which proves the theorem.

4.2.2 Non-critical Galton-Watson tree

We are interested in the limit of a sequence of graphs (Gn), that are are generated by a

Galton-Watson process. We would like the size of Gns to increase as n increases, we need

need to condition on the size of the random tree. The first natural idea is to condition

on |Gn| = n, however, as shown in Lemma 1.2.5. in [1], such trees actually behave like
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subcritical trees. Instead, we condition on the event of non-extinction before level n and we

set Gn to be the first n levels (and ignore the rest). We strongly suspect that a similar proof

as for the case of the deterministic binary tree would work here since on these conditioned

supercritical trees we know that the lowest levels grow exponentially w.h.p. and on any

level there is a node which has at least two child branches that never become extinct with

non-zero probability. However, no rigorous proof is shown here.

4.2.3 Critical Galton-Watson tree

Again, we need to condition on something to assure that Gn is increasing in size. For

critical Galton-Watson tree it is standard to condition on |Gn| = n (following the notation

of [2], we call these CRT(n)). In fact, there are many known results known about the

convergence of such graphs [1]. Convergence in a local sense looks at the trees at a finite

size, it is oblivious to events that happen infinitely far from the root. The limit object of

CRT(n) in the local sense is a so called Kesten tree, which is essentially an infinite path

graph with long, but finite branches. This result already hints that similarly to the path

graph, the critical Galton-Watson tree should also be critical.

For the proof, we need the other convergence notion, scaling convergence. In the scaling

limit, the edge lengths are rescaled such that all vertices remain finite distance away from

the root. Since distances are effective resistances are identical in a tree graph, scaling

convergence agrees with our definition.

Theorem 8. A sequence of graphs (Gn), where Gn = CRT (n), with edge weights wn = 1√
n

.

The limiting object is critical.

Proof. It is a previous result by [2] that CRT(n)s converge with 1√
n

edge weights to the

Continuum Random Tree (CRT). Since we only consider tree graphs their definition of

convergence agrees with resistance based convergence. The limit object is fR = distα(ξi, ξj),

where distα(·, ·) is the distance function on the CRT with parameter by α (this is our

example where the first argument of fR plays an important role).
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We also know from [2] that if we sample k points from a CRT, the edge lengths of the

resulting k-subtree is given by the density function

f = s · exp(−s
2

2
)dl1 . . . dl2k−3 where s =

∑
i

li (4.9)

and topology of the tree is uniformly random across all binary trees. Another way

to describe the random k-subtree of the CRT is by the line-breaking process: consider a

non-homogenous Poisson process on [0,∞) with rate λ(x) = x, separate out the segments

between the points, start with the first segment, and in the ith step join one end of ith

segment to a uniform random point of the subtree built by the previous segments. After

k steps this tree has the same distribution as the k-subtree. To show (Gn) is critical

we need to show that if we sample 2k points - half of them colored red and half colored

blue randomly - then the distance matrix between red and blue points is high rank, more

precisely for some ε small enough P
(
rank(R)

k
> ε
)
→ 1.

As in the proof of the criticality of the path graph we will make a few rank-one modifi-

cations to R to get a high-rank matrix. We will call these rank one modifications pruning.

The modification will always involve deleting all leaves of the tree and moving the red and

blue points to the parent of the leaf. Let’s label red points by ri and blue points by bi so

we can keep track of them, and as always let Ri,j contains the distance between ri and bi.

First, we will prune leaves that are colored red. Notice, that the distance from ri to its

parent (denoted by dp(ri)) is added to each entry of row i of R. Therefore we can subtract

the rank one matrix dp(r)1
T from R, and now R(1)

i,j contains distances between r
(1)
i and bi,

where r
(1)
i is now the parent of ri. Visually we can imagine this as moving the red dots

up by one and deleting the edges which became irrelevant. After pruning red leaves, we

can do the same with the blue ones. This time the matrix we subtract is 1dp(b)
T , since

we are now subtracting constant vectors from the columns. Again we can do this as in the

line-breaking process it was assured that all colored nodes are leaves, and the leave edge s

contain low-rank information. The pruning of red and blue edges together are shown on

an example on Figure 4.3 (a) → (b).
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2x

2x
2x2x

2x

2x

3x3x
2x

2x 3x

3x4x4x 4x 8x 8x

(a)
“cherry”

(d) (e) (f )

(b) (c)

Figure 4.3:
The pruning of a 16-subtree in 5 steps starting from (a), finishing at
(f). The colored numbers next to the balls indicate how many of that
color has been merged to that particular ball. For example the lone
ball in (f) colored both red and blue indicates that all 8 red and all 8
blue balls has been merged into a single point.

Once we are done with our first round of pruning, it is possible that two blue, two red

or a blue and a red point at the same node, they collide. This last case, the collision of

differently colored balls is the key to this proof. It prevents us from doing an other round

of pruning of either colors, since moving up a for instance a blue ball to its parent would

decrease its distance from most of the red balls, but would increase it from the red ball it

collided with previously. The indicator vector that would tells us which distances increase

and which decrease differs for every bi, which might turn out complicated.

The key idea is to continue with the pruning regardless and correct for the problem

caused by the collisions. Let CB
(i)
j = {k | r

(i)
k collided with b

(i)
j } and CR

(i)
j and the

same for the collisions with r
(i)
j . Clearly these sets (or equivalence classes) are disjoint and

monotone increasing in i for every j; balls only collide, don’t separate. Initially these blocks
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are small. We already saw that |CB(0)
j | = |CR

(0)
j | = 0 and |CB(1)

j |, |CR
(1)
j | ≤ 1. By the end

the whole tree will be pruned off, and we get |CB(t)
j | = |CB

(t)
j | = k, where t is the number

of rounds of pruning we need to take (see Figure 4.3 (f)). Finally, let cb
(i)
j be a canonical

(e.g. lowest) element of CB
(i)
j . Now we have enough notation to start the pruning.

We will prune the two colors at the same time, thus we will make rank-two subtractions

of 1dp(b
(i))T + dp(r

(i))1T in the ith step, and we set r(i+1) and b(i+1) be the parents of r(i)

and b(i). The term we need to correct by to make the subtractions legitimate is a matrix

supported only on the blocks defined by the sets of indices (CB
(i)
j , CB

(i)

cb
(i)
j

). This is because

these are precisely the terms which are already 0 in R(i), and while all other terms should

be decrease with the weight of the pruned edge, these terms should still stay 0. Denote

this block matrix that we need to add back to the sum by D(i). Note that these D(i) are

positive semidefinite and their rank is exactly the number of district sets defined by CB
(i)
j

(or in other words the number of balls where there is a collision of different colors).

By the end of the pruning process we are left with a single point and R(t) = 0. This

means that we proved the equation

R =
t∑
i=1

(
1dp(b

(i))T + dp(r
(i))1T +D(i)

)
(4.10)

Since the diameter of the tree decreases by 2 at each step, we can bound t by the depth

of the tree. It has been shown in [9], that the expected value of the depth of a uniformly

random binary tree is Θ(
√
n) and by Markov’s inequality for any c > 0

P (depth of unif. rand. bin. tree > cn) ≤ Θ(
√
n)

cn
→ 0 as n→∞ (4.11)

Therefore with high probability, t < cn so to show R is high rank it is enough to show

that
∑
D(i) is high rank. As noted before each D(i) is positive semidefinite, so for us it will

be enough if D(1) is high rank, the addition of the other D(i)s can only increase this value.

The rank D(1) is exactly the number of nodes with a red-blue collision after the first

step. The preimage of such a collision is a so called “cherry”, a red and a blue ball with
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common parent (see Figure 4.3 (a)).

Lemma 3. The number of cherries in a 2k-subtree with randomly chosen k red and k blue

leaves is Θ(k).

Proof. It will be enough to show that the number of colorless cherries (leaves with common

parent) is Θ(k), because the coloring is independent of the construction of the tree, and

the probability for a colorless cherry to become differently colored is 1
2
.

We will show that when we add the next branch in the ith step of the line-breaking

process, we either create a new cherry with probability 1
4
. By equation (4.9), if we condition

on the length of the whole tree, the edge lengths all have the same distribution. Since there

i leaf edges and i− 3 internal edges, this implies that we have more than 1
2

probability of

adding the next branch to a leaf edge. When we add the next branch to an internal edge,

the number of cherries stay the same. When we add the next branch to a leaf edge, we

always create a new cherry, however, we might also destroy an existing one. The chance of

us creating a new cherry is thus

1

2

(
1− 2 ·# of cherries

# of leaves

)
(4.12)

Solving for the stable point of the equation 1
2

(1− 2p) = p we get that the probability

of creating a cherry is 1
4
.

With the proof of the Lemma 3, the proof of the theorem will be complete.
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Chapter 5

Numerical experiments

5.1 Measuring criticality

In this section we propose a method to measure how close the graphs are to criticality.

Criticality depends on the rank of Rk. Of course we cannot expect to have the exact

ranks of finite size trivial graphs to be low, our results only hold in the limit. Instead,

measurements we measure how close Rn,k is to a low-rank matrix. We compute all singular

values of Rn,k, and measure how fast they decay.

Definition 9. Let the approximate rank of the matrix Rn,k be given by:

Arank(Rk) =

k∑
i=1

σ2
i

k∑
i=1

σi

(5.1)

The Arank function is in the range [0, 1], and the closer the value is to 1 the closer the

graph is to being critical. We computed the the Arank function for several graph models

and the results are shown on Figure 5.1. The results agree with the theoretical arguments;

for most graph models Arank is monotone increasing except for the path graph and the

critical Galton-Watson tree where the function stays constant.

We do not have theoretical arguments for percolation, but Figure 5.1 suggests that the

situation there is similar to the case of Galton-Watson trees; only the critical percolation

seems to be critical.
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Figure 5.1:
The graphs show that value of the Arank(Rk) function against the size
graph sizes for different graph models (2D Grid graphs, Path graphs,
Binary trees, Galton-Watson trees with geometric offspring distribution
and Percolation on the 2D grid). For all graphs k=30. Rk was sampled
1000 times except for the G-W trees and the Percolation models where
Rk was sampled 100 times for each of the 20 random graph samples.
The blue dots show the Arank values for each sample and the red lines
show the average value. 28
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5.2 Future applications

One of the main messages of this thesis is that while the GIL phenomenon seams to hold

for most graph models, there are examples where the information carried by effective re-

sistances is non-trivial. Moreover, for the path graph and the critical Galton-Watson tree

we saw that effective resistances preserve the geometry of the path even in the limit. This

doesn’t necessary imply that for all critical graphs resistant distances will be meaningful,

but our results serve as motivation continue working on this question. First, it would be

interesting to expand the set of known critical graphs. Random graphs models around the

critical point, e.g. critical percolation and real-world data around the percolation threshold

are good candidates.

As described in the Introduction, the effect of GIL is not completely clear on real world

applications as there are conflicting reports [13, 16, 10]. After a through review on this

matter, our work in this thesis could help identify the conditions under which resistance

based methods can still be useful.
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