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Abstract

The topic of this dissertation is the Quantified Argument Calculus, or Quarc,
and its goal to explore its formal properties, and to investigate its application
to issues in philosophy.

Chapter 1 briefly introduces the motivation for the forthcoming inquiry and
lays out the plan of the rest of the dissertation.

Chapter 2 presents the formal system of Quarc and demonstrates the com-
pleteness of it, as well as some additional features.

Chapter 3 presents the sequent-calculus representation of Quarc, the LK-
Quarc. It demonstrates that Quarc and LK-Quarc are deductively equivalent,
and establishes the cut elimination property and its corollaries, as well as some
additional features, for a series of subsystems, and finally for the full system
LK-Quarc.

Chapter 4 follows up on the previous chapter by demonstrating that the
Craig interpolation property holds of a system closely related to LK-Quarc, and
outlines venues of further research.

Chapter 5 discusses the modal expansions of Quarc and LK-Quarc, as well
as their relation. Cut elimination property and its corollaries are established for
a range of modal systems.

Chapter 6 applies some of the lessons of previous chapters to a case study of
a part of Aristotle’s modal syllogistic. Quarc is shown to be an appropriate tool
for study of Aristotle, and then applied to establish some indicative difficulties
for the modal syllogistic.
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Chapter 1

Introduction

The topic of this dissertation, as its title suggests, is the Quantified Argument
Calculus, its logical properties and its applications. The idea of the Quantified
Argument Calculus, or Quarc for short, was first presented by Hanoch Ben-
Yami in his 2004 book Logic and Natural Language, where he discusses the
motivation, stemming from considerations on natural language, philosophy and
history of logic, for moving away from the standard Predicate Calculus. Impor-
tantly, Ben-Yami also offered an alternative system to complement his criticism.
This system was further developed and given formal rigor in Ben-Yami’s 2014
paper The Quantified Argument Calculus (Review of Symbolic Logic 7(1), pp.
120-146). In that paper Quarc is given its current form, with truth-valuational
semantics and a Suppes-Lemmon natural deduction system. Moreover, sound-
ness of the system is demonstrated, and some considerations on its completeness
are offered. Finally, Ben-Yami discusses a possible extension of the system, in a
way that is both natural and in the spirit of Quarc, with modal operators. The
primary driving force of this dissertation is the continuation of that project, and
while some headway is made, it is far from finished. Throughout the disserta-
tion, possible venues of continued research will be pointed out.

1.1 Motivation

Before giving a more precise plan of what this dissertations will be concerned
with, a brief outline of the motivation for this work is in order.1 First, it should
be noted that Quarc is arguably closer to natural language, at least in its surface
structure, than the Predicate Calculus. A thorough discussion of this can be
found in the 2004 book, and here we will offer just an illustration of that. Note
first and foremost that the quantified phrases are embedded, in the argument
position, within a clause, as they appear in natural language. While this is the
titular feature of Quarc and the most notable similarity to natural language,
several other closely follow.

Consider the example of anaphora. In natural language, a term, mostly a
noun, be it common or proper, is referred to by means of a anaphoric expression
(e.g. John thinks he is going to win, Every dog has its day). So, there is an

1Since the formal system has not been introduced yet, any reader unfamiliar with Quarc
is advised to skip this section and return to it after finishing Chapter 2.
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CHAPTER 1. INTRODUCTION

asymmetry between the anaphoric expressions and the source of an anaphor. In
the Predicate Calculus, while the individual variables function somewhat like
anaphors, the asymmetry is not present. Moreover, variables can only occur in
a quantified context, losing the possibility of referring to a proper noun. It is
left to the readers’ natural language ability to render the anaphors correctly in
terms of variables and vice versa. In other words, that feature of language is, in
fact, absent from the formal language of Predicate Calculus. Take the example
of

(i) Charles is bald and he is bold.

This is rendered in the Predicate Calculus as

(ii) Bald(c) ∧Bold(c)

Sentence (ii) is sufficient to conclude that

(iii) Bold(c)

which, if the correspondence with (i) was preserved, would read as

(iv) He is bold.

But (i) is not sufficient to conclude that, since the sentence (iv) does not
function as well as (i) when it’s self-standing. For instance, there might not be
anyone around us for the pronoun ‘he’ to pick up, in which case we would deem
it meaningless. Instead, we should read (iii) as

(v) Charles is bold.

This, of course, is done using the aforementioned readers’ natural language
ability. By contrast, in Quarc, (i) is rendered as

(vi) (cα)Bald ∧ (α)Bold.

And from this we cannot derive

(vii) (α)Bold.

as this is again does not function self-standing. Of course, we can derive that
Charles is bold, which (i) entails as well, if we remove the anaphor, just like we
would going from (i) to (v). So, the inferential patterns of natural language
anaphora are more closely modeled by Quarc, at no loss of derivational force.

A full discussion of why anaphora, as well as such specific elements of Quarc
as reordered predicates or negative predications were introduced into the system
can be found in the 2004 book. But this brief aside should serve to illustrate
why Quarc is taken to be (at least arguably) closer to natural language on one
side, while at the same time being an appropriate system of formal logic.

Given this, it is the goal of this dissertation to demonstrate in the subsequent
chapters that Quarc has the logical properties of a well-behaved logical system,
somewhat extend it, and then apply Quarc to obtain some results in philosophy
(or history of philosophy as the case may be).
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CHAPTER 1. INTRODUCTION

1.2 Plan of the Dissertation

The subsequent chapters will be concerned with, in order, establishing the com-
pleteness of Quarc, presenting the sequent-calculus representation of Quarc and
exploring its properties, most notably cut elimination, demonstrating that it
possesses the Craig interpolation property, expanding it with modal operators
and then applying that to the study of Aristotle’s modal syllogistic.

Chapter 2: Completeness of the Quantified Argument Calculus is
concerned with establishing the completeness of Quarc, as well as some minor
additional features. The proof is an adaptation of the seminal proof by Henkin
to the truth-valuational approach used by Ben-Yami in his 2014 paper. It is
worth noting that here the system used is the one from that paper, extended
with the identity predicate.

Chapter 3: The Proof-Theoretic Analysis of the Quantified Argument
Calculus presents LK-Quarc, a sequent-calculus representation of Quarc. The
system is presented as a series of expanding systems, first without identity and
instantial import, which are added in the course of the chapter. What is estab-
lished is that the system is deductively equivalent to Quarc, thus transferring all
the properties established here back to Ben-Yami’s version of Quarc. We then
demonstrate that LK-Quarc possesses the cut elimination property. The proof,
as well as the system LK-Quarc itself, is an adaptation of the seminal work by
Gentzen.

After establishing the cut elimination theorem, we demonstrate that LK-
Quarc possesses the subformula property, and is therefore also consistent. More-
over, we prove conservativity for the versions of LK-Quarc containing identity.

Chapter 4: Craig Interpolation Property follows up on the previous
chapter by using the cut elimination theorem to prove that LK-Quarc possesses
the Craig interpolation. It establishes the significant result that LK-Quarc◦, the
system extended with a unary predicate τ , possesses the property and shows a
constructive method, following Maehara’s method, of constructing an appropri-
ate interpolant for every derivable sequent of LK-Quarc◦. Given the timeline
of this dissertation, it is left for future research to determine whether and how
this result can be extended to LK-Quarc, but the final sections of the chap-
ter offer some headway on that problem, with discussing some possibilities for
eliminating τ .

Chapter 5: Modal Extension of LK-Quarc is a brief exploration of an
extension of Quarc with modal operators. It establishes that everything provable
in the modal extension of Quarc along the lines suggested in Ben-Yami’s 2014
paper is likewise derivable in the modal extension of LK-Quarc, for any of a
range of modal systems (K, T, 4, B, S4, S5). Moreover, the cut elimination
theorem, subformula property and consistency are established for the entire
range of modal systems, to be used in the following, final, chapter.

Chapter 6: On a Mismatch between Aristotle’s Modal Syllogistic
and Modern Modal Logic explores Aristotle’s Modal Syllogistic from the
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CHAPTER 1. INTRODUCTION

perspective of Quarc. It is shown why Quarc is a very fruitful approach for
investigating Aristotle’s syllogistic, providing streamlined proofs of the validity
of its assertoric segment, while at the same time providing sound and indepen-
dently motivated reasons for all the concessions needed for a success of such an
endeavor.

We then turn our attention to the modal, or more specifically apodictic,
syllogistic. Quarc is here used to demonstrate the shortcomings of a popular
recent attempt, by Marko Malink, of proving its validity. This result is used
to illustrate an existence of a fundamental mismatch between Aristotle’s and
modern approaches to modality which makes it unlikely that any attempt of
that sort will be successful.
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Chapter 2

Completeness of the
Quantified Argument
Calculus

2.1 Introduction1

The presentation of the Quantified Argument Calculus in [Ben-Yami, 2014]
makes a mention of the completeness of the system, but does not demonstrate it.
In this chapter we will prove that Quarc is complete, alongside a few additional
facts about it.

Structure of the chapter: in the second section of this chapter we present
Quarc, closely following [Ben-Yami, 2014]. A significant addition, though, is the
introduction into the system of identity, which was not systematically considered
in that paper. We add formation rules for formulas containing identity, rules for
truth value assignments and derivation rules. Corresponding adjustments have
been made in the ordering and numbering of the definitions and rules. We also
prove that any truth value assignment uniquely determines the truth value of
any formula, a fact stated without proof in the earlier paper.

In the third section we provide a completeness proof for Quarc. Note that
the soundness of the system was proved in the earlier paper, and like that
paper, this one doesn’t use a model-theoretic semantics but a truth-valuational
approach. The proof is an adaptation of the completeness proof from [Henkin,
1949], with some changes to accommodate that difference in approach.

2.2 The Formal System

In this section we present the formal system of Quarc. As noted in the previous
section, this presentation follows [Ben-Yami, 2014], mostly verbatim, with the

1The author’s research in this chapter contributed to a joint paper with Hanoch Ben-
Yami [Pavlovic and Ben-Yami, 2013]. The structure of the proof of the uniqueness of truth-
value assignment is due to Ben-Yami, as is the idea of a Henkin assignment and a non-model-
theoretic completeness proof, taken from [Ben-Yami, 2011].
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CHAPTER 2. COMPLETENESS OF QUARC

addition of identity to the vocabulary of the language, and the corresponding
adjustments to truth-value assignments and addition of the derivation rules.

2.2.1 Vocabulary of Quarc

Definition 1 (Vocabulary of Quarc) The language of Quarc contains the fol-
lowing symbols:

1. Predicates: P,Q,R, ..., denumerably many and with a fixed arity, includ-
ing a binary predicate of identity, =.

2. Singular arguments (SAs): a, b, c, ...

3. Anaphors: α, β, γ, ...

4. Sentential operators: ¬,∨,∧,→,↔.

5. Quantifiers: ∀,∃.

6. Numerals used as indices, comma, parentheses.

If P is a unary predicate, then ∀P and ∃P will be called quantified arguments
(QAs). An argument is only a singular argument or a quantified one (anaphors
are not considered arguments).

An occurrence of an argument A is the source of the anaphor α if A is to
the left of α, α is written as a subscript to A (i.e. Aα), and α is not a subscript
to any argument occurring between it and A. In Aα, only A is considered an
argument.

For every n-ary (n > 1) predicate R, Rπ, where π is any permutation of
1, ..., n (including identity permutation) is called a reordered form of R.

2.2.2 Formulas of Quarc

Definition 2 (Formula) The following rules specify all the ways in which for-
mulas can be generated.

1. (Basic formula) If P is an n-ary predicate and t1, ..., tn SAs, then (t1, ..., tn)P
is a formula, called a basic formula.

2. (Reorder) If P is a reordered n-ary predicate (n > 1) and t1, ..., tn SAs,
then (t1, ..., tn)P is a formula.

3. (Identity) If a and b are singular arguments, not necessarily different, then
a = b is a formula. a = b is an alternative way of writing (a, b) =, which
is a basic formula. We shall not use the latter form of the formula.

4. (Negative predication) If P is an n-ary predicate or a reordered n-ary
predicate and t1, ..., tn SA’s, then (t1, ..., tn)¬P is a formula.

5. (Sentential operators) If A andB are formulas, so are ¬(A), (A)∧(B), (A)∨
(B), (A)→ (B). The parentheses surrounding formulas are called senten-
tial parentheses.
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CHAPTER 2. COMPLETENESS OF QUARC

6. (Anaphora) If A is a formula containing, from left to right, t1, ..., tn (n > 1)
occurences of SA t, none of which is a source of any anaphor, and A does
not contain α, then A [tα/t1, α/t2, ..., α/tn] is a formula. We call tα the
source of the anaphora α.

Before proceeding to define the rules for quantifiers, a notion of gover-
nance, related to that of scope in the Predicate Calculus, needs to be
introduced:

7. (Governance) An occurrence qP of a QA governs a formula A just in case
qP is the leftmost QA in A and A does not contain any other string of
symbols (B) in which the parentheses are a pair of sentential parentheses,
such that B contains qP and all the anaphors of all the QAs in B.

8. (Quantification) If A is a formula containing an occurrence of an SA t, and
substituting a QA qP for t will result in qP governing A, then A [qP/t] is
a formula.

For examples of formulas and explanation of the ideas behind some of the
definitions, see [Ben-Yami, 2014].

2.2.3 Truth-Value Assignments

We next list the rules for assigning truth values to formulas.

Definition 3 (Truth-Value Assignments) The following holds for any truth-
value assignment:

1. (Basic formula) Every basic formula is assigned the truth-value of true or
false, but not both.

2. (Reorder) Let P be an n-ary predicate and π = π1, ..., πn a permutation of
1, ..., n. Then, the truth-value assigned to (tπ1, ..., tπn)Pπ is that assigned
to (t1, ..., tn)P .

3. (Law of Identity) Every formula of the form t = t is true.

4. (Indiscernibility of Identicals) If t = c is true and the formula A [t1, ..., tn]
is a basic formula containing the instances t1, ..., tn of an SA t, then
A [c/t1, ..., c/tn] is true if A [t1, ..., tn] is true. 2

5. (Instantiation) For every unary predicate P there is some SA t such that
(t)P is true.

6. (Sentential operators) Let A and B be formulas. Then, ¬(A) is true just
in case A is false. Etc.

7. (Negative predication) Let P be an n-ary predicate and t1, ..., tn SA’s.
The truth value of (t1, ..., tn)¬P is that of ¬(t1, ..., tn)P .

2The only if part follows from Definition 3.3 and Definition 3.4. This rule could have been
defined for only a single occurence of t, but this formulation will save us some unnecessary
longer derivations.
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CHAPTER 2. COMPLETENESS OF QUARC

8. (Anaphora) If A is a formula containing, from left to right, occurrences
t1, ..., tn of SA t, none of which is the source of any anaphors, and A does
not contain α, then the truth-value of A [tα/t1, α/t2, ..., α/tn] is that of A.

9. (Quantification) Let A [∀P ] (A [∃P ]) be a formula governed by an occur-
rence of ∀P (∃P ). If for every (some) SA t for which (t)P is true A [t/∀P ]
(A [t/∃P ]) is true, then A [∀P ] (A [∃P ]) is true. If for some (every) t for
which (t)P is true A [t/∀P ] (A [t/∃P ]) is false, then A [∀P ] (A [∃P ]) is
false.

For a discussion of these definitions, and in particular of Instantiation, see
[Ben-Yami, 2014].

Uniqueness of Truth-Value Assignments

On any assignment, every basic formula is assigned a truth-value, and any for-
mula that is not basic is assigned a truth-value according to the way it is gen-
erated. It follows that on any assignment, every formula has a truth-value.
However, since some formulas can be generated in more than a single way, we
have to show that on any assignment all these ways determine the same truth-
value.

Any element of a formula is introduced by a unique rule. Accordingly, any
formula is generated by a unique combination of rules. However, some formulas
can be generated by applying the rules in more than one order. Consider for
instance the formula (aα, α)R ∧ (b)Q. It can be generated from (aα, α)R and
(b)Q according to Definition 2.5 (Sentential operator), or from (a, a)R ∧ (b)Q
by Definition 2.6 (Anaphora).

In general, if two consecutive applications of rules can be transposed without
affecting the generated formula, then a concatenation of such rules can some-
times yield more than two ways of generating the same formula. For instance,
the formula (aα, α)R ∧ (bβ , β)Q can be generated by two applications of Defi-
nition 2.6 and one of Definition 2.5 to the formulas (a, a)R and (b, b)Q in five
different orders.

Examination of Definition 2 shows that the order of two applications of
Anaphora can always be transposed, and that the order of application of Sen-
tential Operators or Quantification can sometimes be transposed with the ap-
plication of Anaphora. The consecutive application of any two other rules can
never be transposed.

We will prove the following:

Theorem 4 If some formula can be generated by applying two definitions in
two different sequences, then for any truth-value assignment each sequence as-
signs to that formula the same truth-value.

Note that if a longer sequence of rules can be arranged in several ways to
generate the same formula, then recurrent application of the theorem for the
transposition of two rules will show that for any truth-value assignment, any
way of generating the same formula determines the same truth-value for it.

Proof. By cases. As an illustration, let us examine just the proof for Defini-
tion 2.6 (Anaphora) and Definition 2.8 (Quantification), and more specifically,
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CHAPTER 2. COMPLETENESS OF QUARC

for the case of the universal quantifier. Consider the formula A [a1, ..., an, b].
By applying the Definition 2.6 and then Definition 2.8, we obtain the formula
(i) A [a1, ..., an, b] [aα/a1, ..., α/an] [∀P/b], and by applying the Definition 2.8 and
then Definition 2.6 we obtain the formula (ii)A [a1, ..., an, b] [∀P/b] [aα/a1, ..., α/an].
These two formulas are identical in case ∀P governs both A [a1, ..., an, b] [∀P/b]
and (i).

Now, (i) is true just in case for every c for which cP is true, the formula
A [a1, ..., an, c] [aα/a1, ..., α/an] is true, and this is true just in case A [a1, ..., an, c]
is true. Therefore, (i) is true just in case for every c for which cP is true,
A [a1, ..., an, c] is true.

Similarly, (ii) is true just in case A [a1, ..., an, b] [∀P/b] is true, and this is true
just in case for every c for which cP is true, A [a1, ..., an, c] is true. Therefore,
(ii) is true just in case for every c for which cP is true, A [a1, ..., an, c] is true.

It follows that (i) is true just in case (ii) is. Similarly for other cases.

2.2.4 Derivation Rules

We proceed to define the proof system of Quarc. We use a natural deduction
system, in which proofs are written as follows:

Definition 5 (Proof) A proof is a list of lines of the form 〈L, (i), A,R〉, where
L is a (possibly empty) list of line numbers of premises; (i) the line number;
A a formula; and R the justification, an element of a set of derivation rules,
such that the line is written in accordance with it. A is said to depend on the
premises listed in L. The line numbers in L are written without repetitions and
in ascending order. The formula in the last line of the proof is its conclusion.

We next list the derivation rules of the system.

Definition 6 (Derivation Rules)

1. (Premise) At any stage in a proof, any formula can be written, depending
on itself, its justification being Premise:

i (i) A Premise

2. (Propositional Calculus Rules, PCR) We allow the usual derivation rules
of the Propositional Calculus, but with the constraint that for each rule,
all the appropriate symbols in its formulation stand for formulas.

3. (Sentence negation to Predication negation, SP) Let P be an n-ary pred-
icate or a reordered n-ary predicate, and t1, ..., tn singular arguments.

L (i) ¬(t1, . . . tn)P
L (j) (t1, . . . tn)¬P SP, i

4. (Predication negation to Sentence negation, PS) Let P be an n-ary pred-
icate or a reordered n-ary predicate, and t1, . . . tn singular arguments.

L (i) (t1, . . . tn)¬P
L (j) ¬(t1, . . . tn)P PS, i
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CHAPTER 2. COMPLETENESS OF QUARC

5. (Reorder, R) Let P be an n-ary predicate and π = π1, . . . πn and ρ =
ρ1, . . . ρn two permutations of 1, 2, . . . n (the identity permutation included).

L (i) (tπ1, . . . tπn)Pπ

L (j) (tρ1, . . . tρn)P ρ R, i

6. (Anaphora Introduction, AI) Let A be a formula containing, from left to
right, occurrences t1, . . . tn of the singular argument t, none of which has
any anaphors, and suppose α does not occur in A.

L (i) A
L (j) A [tα/t1, α/t2 . . . α/tn] AI, i

7. (Anaphora Elimination, AE) Let A be a formula containing, from left to
right, occurrences t1, . . . tn of the singular argument t, none of which has
any anaphors, and suppose α does not occur in A.

L (i) A [tα/t1, α/t2 . . . α/tn]
L (j) A AE, i

8. (Universal Introduction, UI) Let A [∀P ] be a formula governed by ∀P .
Assume that neither A [∀P ] nor the formulas in lines L apart from (t)P
contain any occurrence of the singular argument t.

i (i) (t)P Premise
L (j) A [t/∀P ]

L− i (k) A [∀P ] UI, i, j

Where L− i is the (possibly empty) list of numbers occurring in L apart
from i.

9. (Universal Elimination, UE) Let A [∀P ] be a formula governed by ∀P .

L1 (i) A [∀P ]
L2 (j) (t)P

L1, L2 (k) A [t/∀P ] UE, i, j

Where L1, L2 is the list of numbers occurring either in L1 or in L2.

10. (Particular Introduction, PI) Let A [∃P ] be a formula governed by ∃P .

L1 (i) A [t/∃P ]
L2 (j) (t)P

L1, L2 (k) A [∃P ] PI, i, j

11. (Instantial Import, Ins) Let q stand for either ∀ or ∃, and A [qP ] be
governed by qP . Assume t does not occur in A [qP ], B or L1 and in no
formula in L2 apart from j and k.

L1 (i) A [qP ]
j (j) (t)P Premise
k (k) A [t/qP ] Premise
L2 (l) B

L1, L2 − j − k (m) B Ins, i, j, k, l
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CHAPTER 2. COMPLETENESS OF QUARC

12. (Identity Introduction, =I) In any line of the proof a formula of the form
t = t can be written, depending on no premises, with its justification being
=I.

(i) t = t =I

13. (Identity Elimination, =E) Let A be a basic formula containing occur-
rences t1, . . . tn of the singular argument t (A may also contain additional
occurrences of t).

L1 (i) A
L2 (j) t = c

L1, L2 (k) A [c/t1, . . . c/tn] =E, i, j

For examples of proofs, see [Ben-Yami, 2014] §3.5.

2.3 Completeness of Quarc

Completeness is a metalogical property of a formal system, a relation between
validity and derivability. Therefore, before proving completeness, let us define
these two:

Definition 7 (Validity) An argument whose premises are all and only the for-
mulas in the set of formulas Γ, and whose conclusion is the formula A is valid
(written Γ � A) just in case every truth-value assignment that makes all the
formulas in Γ true also makes A true, even if we add or eliminate singular argu-
ments from our language (of course, only singular arguments not occurring in
Γ and A can be eliminated).3

Definition 8 (Derivability) Formula A is derivable from a (possibly empty) set
of formulas Γ (written Γ ` A) just in case there is a proof whose conclusion is
A, such that A depends only on premises γ1 . . . γn, where {γ1 . . . γn} ⊆ Γ.

We can now define completeness:

Definition 9 (Completeness) A formal proof system is complete just in case
for every valid argument Γ � A, it holds that Γ ` A. Completeness can also be
formulated as Γ � A⇒ Γ ` A.

We proceed to prove the completeness of Quarc. The proof is an adaptation
of Leon Henkin’s proof [Henkin, 1949]. A standard Henkin-style proof consists
of the following stages: adding witnessing constants; constructing the Henkin
theory; defining the Henkin construction; proving the elimination theorem; and
some final steps. The structure of the proof below, which applies to the truth-
valuational approach, departs from the standard structure in its replacement of
the Henkin construction, which is the step in which models are introduced, by
the Henkin assignment.

3The need to make validity on the truth-valuational approach independent of a specific
individual constant list has long been recognized. For more details see [Ben-Yami, 2011].
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CHAPTER 2. COMPLETENESS OF QUARC

2.3.1 Henkin Theory

The Henkin Theory is a set of formulas that fall under given schemas, which we
will use to establish a connection between Quarc and the Propositional Calculus,
a calculus that we know to be complete. The Henkin Theory uses a language LH ,
which is an extension of the language of Quarc with new singular arguments,
the witnessing constants. We first define these.

Definition 10 (Witnessing Constant) For every formula of Quarc of the form
A[∃P ], where ∃P governs the formula, we introduce the witnessing constant
wA[∃P ].

Extending our language with witnessing constants will generate a language
L1, which will contain new formulas, some of them once again of the form A[∃P ],
where ∃P governs the formula. We repeat the same process for L1 to obtain
L2, and so on for any subsequent language Ln.

Definition 11 (Henkin Language LH) The Henkin language LH is the union
of all the languages Li, i ∈ N produced by the extensions of Quarc by witnessing
constants.

Definition 12 (Date of Birth) Date of birth of a witnessing constant is the i
of the Li in which it was introduced.

With these definitions in place, we can now define the Henkin Theory (where
P is a unary predicate and R an n-ary predicate, Rπ and R% reorderings of R,
c and t singular arguments, with c with numbered indices the same argument,
but t a possibly different singular argument, C a formula of Quarc in which the
anaphor α does not occur, and where c1 . . . cn are not the source of any anaphor,
B a basic formula, and A[qP ] a formula of Quarc governed by the quantified
argument qP ).

Definition 13 (Henkin Theory) Henkin Theory H consists of all the formulas
that fall under one of the following schemas:

H1. A[∃P ]→ ((wA[∃P ])P ∧A[wA[∃P ]/∃P ])

H2. (tP ∧A[t/∃P ])→ A[∃P ]

H3.1. ¬A [∀P ]↔ (∃PαP ∧ ¬A [α/∀P ]), if ∀P is source of no anaphors

H3.2. ¬A [∀P ]↔ (∃PαP ∧ ¬A [α/∀Pα]), if ∀P is source of anaphor α

H4. c = c

H5. c = t→ (B [c1 . . . cn]→ B [t/c1 . . . t/cn])

H6. (t1 . . . tn)¬R↔ ¬(t1 . . . tn)R

H7. C [c1, c2 . . . cn]↔ C [cα/c1, α/c2 . . . α/cn]

H8. (tπ1 . . . tπn)Rπ ↔ (t%1 . . . t%n)R%

H9. (∃P )P

We next define the Henkin Assignments and examine their properties.
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CHAPTER 2. COMPLETENESS OF QUARC

2.3.2 Henkin Assignment

Definition 14 (Henkin Assignment) A Henkin Assignment χ is a truth-value
assignment that assigns truth-values to all formulas of LH , such that χ respects
the truth-value assignment rules for the connectives of the propositional calculus
(Definition 3), while also making all the formulas of the Henkin Theory true.

We now prove the following important Lemma:

Lemma 15 Any Henkin assignment χ respects all the truth-value assignment
rules of Quarc. Notably, it respects the truth-value assignment rules for the
particular quantifier, negative predication, anaphora, the universal quantifier,
identity and instantiation.

Proof. First note that the truth-value assignment rule for basic formulas,
that each is either true or false, is observed by χ, since any formula is either
true or false on χ.

Particular Quantifier. Suppose that a formula of the form A [∃P ] governed
by ∃P is true. By H1 it follows that so is a formula of the form A [t/∃P ], namely
A[wA[∃P ]/∃P ], and moreover, that the formula (wA[∃P ])P is true.

Likewise, if a formula of the form A[t/∃P ] and the formula (t)P are true, then
by H2 A[∃P ] is true as well. Therefore, χ satisfies the truth-value assignment
rule for the particular quantifier.

Negative Predication. Let (t1 . . . tn)¬R be true (false). Then, by H6, the
formula ¬(t1 . . . tn)R is true (false). Therefore, the truth-value assignment for
(t1 . . . tn)¬R is the same as ¬(t1 . . . tn)R, and χ satisfies the truth-value assign-
ment rule for negative predication.

Anaphora. Suppose C [c1, c2 . . . cn] is true (false). Then by H7, the formula
C [cα/c1, α/c2 . . . α/cn] is true (false), and χ satisfies the truth-value assignment
rule for anaphora.

Reorder. As above, since χ satisfiesH8, it satisfies the truth-value assignment
rule for reorder.

Universal Quantifier. Let A [∀P ] be a formula governed by the quantified
argument ∀P , which does not contain the singular argument c. Assume first ∀P
is not a source of any anaphor.

Assume (i) that for every singular argument t for which (t)P is true, A [t/∀P ]
is also true. We need to show that A [∀P ] is then true. Now assume for reductio
that (ii) ∃PαP ∧ ¬A [α/∀P ] is true.

Since it has already been established that χ satisfies the truth-value as-
signment rule for particular quantification, it follows from (ii) that for some a,
aαP ∧ ¬A [α/∀P ] is true, and from that, since it has already been established
that χ satisfies the truth-value assignment rule for anaphora, aP ∧¬A [a/∀P ] is
true. But this is contrary to assumption (i). So, ∃PαP ∧¬A [α/∀P ] is false, and
by H3.1, ¬A [∀P ] is also false, and therefore A [∀P ] is true. Similar for falsity.
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CHAPTER 2. COMPLETENESS OF QUARC

Now assume ∀P is a source of anaphor α. The case is mutatis mutandis
same as above, using H3.2. Therefore, χ satisfies the truth-value assignment
rule for the particular quantifier.

Identity. Suppose c = t is true and B [c1 . . . cn] a basic formula containing
occurrences c1 . . . cn of a singular argument c. Since χ satisfies H5, the formula
B [t/c1 . . . t/cn] obtained by substituting some or all occurrences of c by t in B
is true if B [c1 . . . cn] is true. Moreover, χ satisfies H4. Therefore, χ satisfies
the truth-value assignment rules for identity.

Insantiation. Since χ satisfies H9, (∃P )P is true, and since it satisfies H1,
(w(∃P )P )P is true. Therefore, for every unary predicate P there is a singular
argument t for which (t)P is true, namely w(∃P )P , and χ satisfies the truth-value
assignment rule for instantiation, which concludes the proof of Lemma 15.

Now take any argument Γ � A, valid in Quarc, where χ and all the formulas
of Γ belong to L (i.e. they contain no witnessing constants). Since LH is simply
an extension of Quarc with additional singular arguments, by the definition of
validity, Γ � A is valid in Quarc with LH as its language as well. And, since
adding premises to a valid argument does not affect its validity, the argument
Γ, H � A is likewise valid in Quarc with LH as its language. Now, given that any
truth-value assignment that respects the rules of the Propositional Calculus and
makes all the formulas of Γ and H true will be a Henkin Assignment, it follows
by Lemma 15 that it will likewise respect all the other truth-value assignment
rules of Quarc, and therefore that it will make χ true as well. It follows that
Γ, H � A also in the Propositional Calculus.

Given the completeness of the Propositional Calculus, this yields that Γ, H `
A in the Propositional Calculus. What needs to be shown now is that, if
Γ, H ` A in the Propositional Calculus, then Γ ` A in Quarc – the Elimination
Theorem.

2.3.3 Elimination Theorem

Before proceeding with the proof of this theorem, several preliminary results
need to be established. The proofs that involve only the derivation rules of the
Propositional Calculus will be omitted.

Let Γ be a set of formulas of Quarc and A, B and C formulas of Quarc.

Theorem 16 (Deduction Theorem) If Γ, A ` B then Γ ` A→ B.

Proposition 17 If Γ, A1 . . . An ` B and for every i ≤ n, Γ ` Ai then Γ ` B.

Lemma 18 If Γ ` A→ B and Γ ` ¬A→ B, then Γ ` B.

Lemma 19 If Γ ` (A→ B)→ C, then Γ ` ¬A→ C and Γ ` B → C.

Lemma 20 If A [∃P ] is governed by ∃P and t is a singular argument appearing
nowhere in Γ, A [∃P ] or B, then if Γ ` (tP ∧A [t/∃P ])→ B, then Γ ` A [∃P ]→
B.
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CHAPTER 2. COMPLETENESS OF QUARC

Proof. Since Γ ` (tP ∧ A [t/∃P ]) → B, then there is a finite number of
formulas of Γ, say k, such that C1 . . . Ck ` (tP ∧ A [t/∃P ]) → B. Let us now
write the proof of (tP ∧ A [t/∃P ]) → B, with C1 . . . Ck as premises. Suppose
that the proof is i lines long. The proof then continues as follows:

. . .

L (i) (tP ∧A [t/∃P ])→ B
i+ 1 (i+1) A [∃P ] Premise
i+ 2 (i+2) A [t/∃P ] Premise
i+ 3 (i+3) tP Premise

i+ 2, i+ 3 (i+4) tP ∧A [t/∃P ] ∧I, i+ 2, i+ 3
L, i+ 2, i+ 3 (i+5) B →E, i, i+ 4

L, i+ 1 (i+6) B Ins, i+ 1, i+ 2, i+ 3, i+ 5
L (i+7) A [∃P ]→ B →I, i+ 1, i+ 6

Since all the formulas in L are in Γ, it follows that Γ ` A [∃P ]→ B.
Next we prove Lemma 21, needed so we can eliminate the formulas containing

witnessing constants from Γ, H ` A:

Lemma 21 If A [∃P ] is governed by ∃P and t is a singular argument nowhere
in Γ, A [∃P ] or B, then if Γ, A [∃P ]→ (tP ∧A [t/∃P ]) ` B then Γ ` B

Proof. By applying Theorem 16 to Γ, A [∃P ] → (tP ∧ A [t/∃P ]) ` B, we
obtain Γ ` (A [∃P ] → (tP ∧ A [t/∃P ])) → B. Then by Lemma 19 we get (i)
Γ ` ¬A [∃P ]→ B and (ii) Γ ` (tP ∧ A [t/∃P ])→ B. Applying Lemma 20 (and
given our assumptions) to (ii) we get (iii) Γ ` A [∃P ] → B. Finally, applying
Lemma 19 to (i) and (iii), we get Γ ` B.

The final preliminary consideration we need for the proof of the Elimination
Theorem is to show that the formulas H2-H9 of Henkin Theory are theorems
of Quarc. Let us consider the straightforward cases first.

H2 corresponds to the derivation rule PI and can be proved by it and the
derivation rules of the Propositional Calculus; H4 corresponds to the rule =I;
H5 corresponds to =E; the two directions of H6 correspond to the rules PS and
SP; the two directions of H7, to AI and AE; and H8 to Reorder. This leaves
us with H3.1, H3.2 and H9 to prove.

We first prove H3.1. Let ∀P be the source of no anaphora.

(i) ` ¬A [∀P ]→ (∃PαP ∧ ¬A [α/∀P ])
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CHAPTER 2. COMPLETENESS OF QUARC

1 (1) ¬A [∀P ] Premise
2 (2) ¬(∃PαP ∧ ¬A [α/∀P ]) Premise
3 (3) tP Premise
4 (4) ¬A [t/∀P ] Premise

3, 4 (5) tP ∧ ¬A [t/∀P ] ∧I: 3, 4
3, 4 (6) tαP ∧ ¬A [α/∀P ] AI: 5
3, 4 (7) ∃PαP ∧ ¬A [α/∀P ] PI: 3, 6
2, 3 (8) ¬¬A [t/∀P ] ¬I:4, 2, 7
2, 3 (9) A [t/∀P ] ¬E: 8

2 (10) A [∀P ] UI: 3, 9
1 (11) ¬¬(∃PαP ∧ ¬A [α/∀P ]) ¬I: 2, 1, 10
1 (12) ∃PαP ∧ ¬A [α/∀P ] ¬E: 11

(13) ¬A [∀P ]→ (∃PαP ∧ ¬A [α/∀P ]) →I: 1, 12

In line (3) we choose a t that does not occur in the string ¬A [α/∀P ]. This
is necessary for the use of UI in line (10).

(ii) ` (∃PαP ∧ ¬A [α/∀P ])→ ¬A [∀P ]
1 (1) ∃PαP ∧ ¬A [α/∀P ] Premise
2 (2) A [∀P ] Premise
3 (3) tP Premise
4 (4) tαP ∧ ¬A [α/∀P ] Premise
4 (5) tP ∧ ¬A [t/∀P ] AE: 4
4 (6) ¬A [t/∀P ] ∧E: 5

2, 3 (7) A [t/∀P ] UE: 2, 3
3, 4 (8) ¬A [∀P ] ¬I: 2, 6, 7

1 (9) ¬A [∀P ] Ins: 1, 3, 4, 8
(10) (∃PαP ∧ ¬A [α/∀P ])→ ¬A [∀P ] →I: 1, 9

We now prove H3.2. Let ∀P be the source of anaphora α. The proof differs
only slightly from the one for H3.1 and will be omitted here.

And finally, we prove H9:

1 (1) tP Premise
(2) (∀P )P UI: 1, 1

1 (3) (∃P )P PI: 1, 1
(4) (∃P )P Ins: 2, 1, 1, 3

We should keep in mind that whatever is derivable in the Propositional
Calculus is derivable in Quarc as well, as the derivation rules or the latter
include those of the former.

With all this preliminary work done, we can now proceed with the proof of
the Elimination Theorem itself. We have previously indicated what the Elimi-
nation Theorem is, but let us now formulate it precisely:

Theorem 22 (Elimination Theorem) If A is a formula of Quarc derivable from
formulas of Quarc C1 . . . Cn together with formulas of Henkin Theory (written
as C1 . . . Cn, h1 . . . hm ` A), and A, C1 . . . Cn belong to L, then A is derivable
from C1 . . . Cn alone (C1 . . . Cn ` A).

Proof. By induction on the number of Henkin formulas k from which A is
derivable.
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CHAPTER 2. COMPLETENESS OF QUARC

Basic step. If k = 0, then Theorem 22 vacuously holds as there are no
Henkin formulas to eliminate.

Inductive step. We now wish to show that, if the Elimination Theorem
holds for any derivation with k or fewer formulas of the Henkin theory H, it
also holds for any formula A derivable from k+ 1 formulas of the Henkin theory
and formulas C1 . . . Cn of L. There are two cases to consider here.

First, suppose one of the formulas of H is of the form H2 – H9, say hk+1.
Since all of these formulas are theorems of Quarc, so ` hk+1 and therefore
C1 . . . Cn, h1 . . . hk ` hk+1. Therefore, by Proposition 17, C1 . . . Cn, h1 . . . hk `
A, and by inductive hypothesis these can be eliminated.

The second case is that in which all the k + 1 Henkin formulas are of the
form H1. In that case, we choose one instance of H1 the witnessing constant
of which is of the same or greater date of birth than any witnessing constant
of any other instance of H1. Since this witnessing constant does not occur in
any of the other schema instances, and neither does it occur C1 . . . Cn or A (as
they are formulas of the non-extended language of Quarc), by Lemma 21 it can
be eliminated. So, A is derivable from C1 . . . Cn and k formulas of H, and by
inductive hypothesis these can be eliminated.

Since Quarc includes all the derivation rules of the Propositional Calculus, we
can now conclude that if Γ, H ` A in the propositional calculus, then Γ, H ` A
in Quarc as well. Since the conclusion in any proof depends on a finite number of
premises, it follows that C1 . . . Cn, H ` A. If Γ, A are all formulas of Quarc that
belong to L, then by the Elimination Theorem, C1 . . . Cn ` A, and therefore
Γ ` A in Quarc.

To summarize, what we have established is that, if Γ � A in Quarc, then
Γ, H � A in Quarc as well. But, given the definition of a Henkin assignment, it
follows Γ, H � A in the Propositional Calculus, and since this calculus is com-
plete, Γ, H ` A in it. We have further established by means of the Elimination
Theorem that if Γ, H ` A in the Propositional Calculus, then Γ ` A in Quarc.
This finally enables us to conclude that if Γ � A in Quarc, then Γ ` A in Quarc,
and therefore Quarc is complete.
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Chapter 3

Proof-Theoretic Analysis of
The Quantified Argument
Calculus

3.1 Introduction1

This chapter investigates the proof theory of the Quantified Argument Calculus
(Quarc) as developed and systematically studied by Hanoch Ben-Yami [Ben-
Yami, 2014], [Ben-Yami, 2004]. Ben-Yami makes use of a natural deduction
(Suppes-Lemmon-style), we, however, have chosen a sequent calculus presen-
tation; which allows for the proofs of a multitude of significant meta-theoretic
results with minor modifications to the Gentzen’s original framework, i.e. LK.
LK, although it has been developed in the 1930ies serves still (as a basis) for
proof theoretic investigations [Baaz and Leitsch, 2011], [Buss, 1998], [Takeuti,
2013].

The way the research on Quarc is conducted here is as follows: we observe
first that Ben-Yami’s Quarc is a rather rich system. In our analysis we split up
Quarc into three distinct sub-systems, namely (1) LK-QuarcB , (2) LK-Quarc2,
(3) LK-Quarc3, and finally, LK-Quarc – which is Ben-Yami’s (full) Quarc. LK-
QuarcB does not contain either the rules for identity or instantiation (to be
explained later). LK-Quarc2 is an extension of LK-QuarcB with identity, and
LK-Quarc3 an extension of LK-QuarcB with the rule for instantiation. Finally,
LK-Quarc is obtained by combining LK-Quarc2 and LK-Quarc3. As will be
made clear in the course of the chapter LK-Quarc will enjoy Cut elimination
and its corollaries (including subformula property and thus consistency which
is outlined but not proven in [Ben-Yami, 2014]).

Plan of the chapter: In section 2 we present QuarcB , consisting of its lan-
guage, truth-value assignments and derivation rules (natural deduction – follow-
ing Ben-Yami) with appropriate modifications for the purposes of this chapter.
Section 3 sets out with the sequent calculus formulation of QuarcB . Section 4

1The author’s research in this chapter contributed to a joint paper with Norbert Gratzl
[Pavlovic and Gratzl, 2016]. The system LK-Quarc, as well as its susbsystems, were jointly
constructed.
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CHAPTER 3. PROOF-THEORETIC ANALYSIS OF QUARC

proves the deductive equivalence of the two formulations of QuarcB . The central
section of this chapter, 5, prove the Cut elimination theorem and its corollar-
ies (subformula property and consistency) for LK-QuarcB . Section 6 expands
LK-QuarcB with the rules for identity, proves again deductive equivalence, Cut
elimination and its corollaries and furthermore conservativity over LK-QuarcB .
Section 7 extends LK-QuarcB with a rule of instantiation and once again proves
all the results from above for LK-Quarc3.

3.2 QuarcB

The system presented here will be QuarcB , which differs from the full Quarc in
containing no rules for identity and instantiation. Moreover, the definition of
Reorder has been slightly altered to not include identity permutation. Finally,
the truth value assignment rule for quantifiers is modified.

3.2.1 Language

Definition 23 Our language has the same symbols as Definition 1, except as
noted:

1. Predicates: P,Q,R, ..., denumerably many and with a fixed arity, not
including identity.

2. Reordered predicates: For every n-ary (n > 1) predicate R, reordered
predicates Rπ, where π is any permutation of 1, ..., n except identity per-
mutation.

3. Sentential operators: ¬,∨,∧,→.

3.2.2 Formula

Definition 24 (Formula) The rules for formula formation of QuarcB are the
same as in Definition 2, mutatis mutandis for changes in Definition 23.

As noted in the previous chapter, an inspection of the rules shows that some
of these can be applied in multiple orders. Namely, applications of the anaphora
rule can be transposed with one or more applications of the quantifier, sentential
operator, or anaphora rules. Here, whenever such a situation occurs, as a matter
of convention, anaphora rules are applied first. Among the anaphora rules, first
applied is that which has then rightmost argument as its source. Given that
every anaphor has a single source, and no two anaphors have the same source,
this convention produces a unique order of applications of formula-generation
rules.

Definition 25 (Terminal Symbol) The symbol introduced, for any formula, by
the last application of a formula-generation rule is called a terminal symbol of
that formula.
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CHAPTER 3. PROOF-THEORETIC ANALYSIS OF QUARC

3.2.3 Truth-Value Assignments

Definition 26 (Truth-Value Assignments) Any truth-value assignment is the
same as in Definition 3, except as noted, and mutatis mutandis for the changes
in vocabulary (chiefly for identity):

9. (Quantification) Let A [∀P ] (A [∃P ]) be formula A governed by the QA ∀P
(∃P ). If for every (some) SA t for which (t)P is true A [t/∀P ] (A [t/∃P ])
is true, then A is true, and false otherwise.

In addition to these, one of the rules needed for full Quarc is that of
instantiation, which is not a part of QuarcB :

5. (Instantiation) For any unary predicate P there is an SA t such that (t)P
is true.

3.2.4 Derivation Rules

The rules presented here are taken from [Ben-Yami, 2014]. We only present the
rules specific to Quarc; the rules for propositional connectives are standard and
will be omitted. We begin by a definition of a proof, slightly modified from
Definition 5:

Definition 27 (Proof) A proof is a list of lines of the form 〈L, (i), A,R〉, where
L is a possibly empty sequence of formulas (represented by the number of the
line in which they are introduced as premises), (i) the line number, A a formula
and R a justification, an element of the set of the derivation rules. We write
L ` A to indicate the existence of a proof in Quarc with the sequence of formulas
L and the formula A in its final line. The formula A is called the conclusion of
that proof and the fomulas in L its premises.

Definition 28 (Derivation Rules) The derivation rules of QuarcB are the same
as those in Definition 6, except that they do not contain Identity Introduction,
Identity Elimination and Instantial Import. The latter is replaced by the rule
Particular Elimination (PE):

10. (Particular Elimination, PE)

L1 (i) A [∃P ]
j (j) (t)P Premise
k (k) A [t/∃P ] Premise
L2 (l) B

L1 ∪ L2 − {j, k} (m) B PE, i, j, k, l

Where t does not appear in A [∃P ] or B.

3.2.5 Instantial Import

Note that PE is a deviation from [Ben-Yami, 2014], since it is a rule of QuarcB ,
but not full Quarc, which uses a rule called Instantial Import in order to dis-
tinguish it from the semantic rule and stress the relation to Existential Import.
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CHAPTER 3. PROOF-THEORETIC ANALYSIS OF QUARC

This rule resembles PE but is defined for either quantifier. Let q be either ∃ or
∀, and again let t not appear in A [qP ] or B.

1. (Instantial Import, Ins)

L1 (i) A [qP ]
j (j) (t)P Premise
k (k) A [t/qP ] Premise
L2 (l) B

L1 ∪ L2 − {j, k} (m) B Ins, i, j, k, l

Consequently, the following is a theorem of full Quarc, but not (as we will
see) QuarcB :

Theorem 29 (Particular Import in Quarc): (∀M)P ` (∃M)P

Proof.

1 (1) (∀M)P Premise
2 (2) (a)M Premise
3 (3) (a)P Premise

2,3 (4) (∃M)P PI, 2, 3
1 (5) (∃M)P Ins, 1, 2, 3, 4

Examples

In this section we provide several examples of the uses of (full) Quarc, namely
to prove the syllogism Barbara and several instances of the DeMorgan laws.

Example 30 Syllogism Barbara

(∀M)P, (∀S)M ` (∀S)P

Proof.

1 (1) (∀M)P Premise
2 (2) (∀S)M Premise
3 (3) (a)S Premise

2,3 (4) (a)M UE, 2, 3
1,2,3 (5) (a)P UE, 1, 4

1,2 (6) (∀S)P UI, 3, 5

Example 31 DeMorgan Laws

(∃M)P ` ¬(∀M)¬P

Proof.
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CHAPTER 3. PROOF-THEORETIC ANALYSIS OF QUARC

1 (1) (∃M)P Premise
2 (2) (∀M)¬P Premise
3 (3) (a)M Premise
4 (4) (a)P Premise

2,3 (5) (a)¬P UE, 2, 3
2,3 (6) ¬(a)P PS, 5
3,4 (7) ¬(∀M)¬P ¬I, 2, 4, 6

1 (8) ¬(∀M)¬P PE, 1, 3, 4, 7

¬(∀M)¬P ` (∃M)P

Proof.

1 (1) ¬(∀M)¬P Premise
2 (2) ¬(∃M)P Premise
3 (3) (a)M Premise
4 (4) (a)P Premise

3,4 (5) (∃M)P PI, 3, 4
2,3 (6) ¬(a)P ¬I, 4, 2, 5
2,3 (7) (a)¬P SP, 6

2 (8) (∀M)¬P UI, 3, 7
1 (9) ¬¬(∃M)P ¬I, 2, 1, 8
1 (10) (∃M)P ¬E, 9

3.3 LK-QuarcB

We now move to the presentation of the sequent-calculus version of QuarcB ,
called LK-QuarcB . LK-QuarcB is an adaptation of the Gerhard Gentzen’s sys-
tem LK from [Szabo, 1969], along the lines of the presentation in [Baaz and
Leitsch, 2011]. The system presented here consists of sequents of the form
Γ ⇒ ∆, where Γ and ∆ are possibly empty sequences of formulas, connected
into derivations via derivation rules. These rules take one or more (usually two),
sequents, called the upper sequent(s) and produce a single sequent, called the
lower sequent. A single application of a derivation rule will be referred to as an
inference.

Derivation rules are divided into five types: (i) axioms, (ii) structural, (iii)
propositional, (iv) quantificational and (v) special. Axioms are the initial se-
quents of a derivation. Structural rules concern the addition, removal or trans-
position of formulas in a sequent. Propositional rules concern the addition or
removal of propositional (truth-functional) connectives from the lower sequent
of an inference, quantification rules do he same for quantifiers, and special for
reordered predicates, anaphora and negative predication. Finally, the Cut rule,
although a structural rule, is listed separately, as it will be a rule we will elimi-
nate in subsequent sections.

Every rule of LK-QuarcB , with the exception of Cut operates either on the
left (marked by L before the relevant symbol), or the right (R) side of the arrow
in the lower sequent. As we will see later, LK-Quarc2 and LK-Quarc3 will offer
further exceptions to this convention.
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CHAPTER 3. PROOF-THEORETIC ANALYSIS OF QUARC

The sequent which is not an upper sequent of an inference is called an endse-
quent of a derivation it belongs to. A derivation can have only one endsequent,
as will be obvious from the structure of the derivation rules. We now proceed
to define them.

Definition 32 (LK-QuarcB) The following are the rules of LK-QuarcB . In all
but the Cut rule, the formula occurring in the lower sequent of a rule other than
Γ and ∆ is called the principal formula of that rule.

3.3.1 Axioms

An axiom is a formula of the form (t1, ..., tn)P =⇒ (t1, ..., tn)P , where t1, ..., tn
are singular arguments and P is a n-ary predicate. Axioms are also called initial
sequents.

3.3.2 Structural

We next define the structural rules. As stated previously, these rules govern
the addition (weakening, W ), removal (contraction, C ), and transposition (ex-
change, P) of formulas in the lower sequent.

1. Γ =⇒ ∆ (LW )
A,Γ =⇒ ∆

Γ =⇒ ∆ (RW )
Γ =⇒ ∆, A

2. A,A,Γ =⇒ ∆
(LC)

A,Γ =⇒ ∆

Γ =⇒ ∆, A,A
(RC)

Γ =⇒ ∆, A

3. Γ′, A,B,Γ =⇒ ∆
(LP )

Γ′, B,A,Γ =⇒ ∆

Γ =⇒ ∆, A,B,∆′
(RP )

Γ =⇒ ∆, B,A,∆′

3.3.3 Propositional

The rules in this section do not introduce anything unfamiliar to those ac-
quainted with standard LK. Therefore, in a number of subsequent section seg-
ments concerning these rules will be omitted or presented only schematically.

1. Γ =⇒ ∆, A
(L¬)¬A,Γ =⇒ ∆

A,Γ =⇒ ∆
(R¬)

Γ =⇒ ∆,¬A

2. A,Γ =⇒ ∆
(L∧)*

A ∧B,Γ =⇒ ∆

Γ =⇒ ∆, A Γ =⇒ ∆, B
(R∧)

Γ =⇒ ∆, A ∧B
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CHAPTER 3. PROOF-THEORETIC ANALYSIS OF QUARC

3. A,Γ =⇒ ∆ B,Γ =⇒ ∆
(L∨)

A ∨B,Γ =⇒ ∆

Γ =⇒ ∆, A
(R∨)*

Γ =⇒ ∆, A ∨B

4. B,Γ =⇒ ∆ Γ =⇒ ∆, A
(L→)

A→ B,Γ =⇒ ∆

A,Γ =⇒ ∆, B
(R→)

Γ =⇒ ∆, A→ B

* - the rules L∧ and R∨ can also, respectively, produce the formula B ∧A
and B ∨A.

3.3.4 Quantificational

The primary novelty of Quarc is in its treatment of Quantified Arguments.
Therefore, the rules in this section will constitute (along with the Cut rule) the
primary focus of this chapter.

1. A [a/∀M ] ,Γ =⇒ ∆ Γ =⇒ ∆, aM
(L∀)

A [∀M ] ,Γ =⇒ ∆

aM,Γ =⇒ ∆, A [a/∀M ]
(R∀)*

Γ =⇒ ∆, A [∀M ]

2. aM,A [a/∃M ] ,Γ =⇒ ∆
(L∃)*

A [∃M ] ,Γ =⇒ ∆

Γ =⇒ ∆, aM Γ =⇒ ∆, A [a/∃M ]
(R∃)

Γ =⇒ ∆, A [∃M ]

* - the Singular Argument a does not occur anywhere in Γ, ∆, A [∀M ] or
A [∃M ].

3.3.5 Special

This section introduces further rules (in addition to those for quantification)
specific to Quarc, those for anaphora, reorder and negative predication.

1.
A [...a1...an...] ,Γ =⇒ ∆

(LA)
A [...aα/a1...α/an...] ,Γ =⇒ ∆

Γ =⇒ ∆, A [...a1...an...]
(RA)

Γ =⇒ ∆, A [...aα/a1...α/an...]

2. (t1, ..., tn)R,Γ =⇒ ∆
(LRd)

(tπ1, ..., tπn)Rπ,Γ =⇒ ∆

Γ =⇒ ∆, (t1, ..., tn)R
(RRd)

Γ =⇒ ∆, (tπ1, ..., tπn)Rπ

3. ¬(t1, ..., tn)P,Γ =⇒ ∆
(LNP )

(t1, ..., tn)¬P,Γ =⇒ ∆

Γ =⇒ ∆,¬(t1, ..., tn)P
(RNP )

Γ =⇒ ∆, (t1, ..., tn)¬P
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CHAPTER 3. PROOF-THEORETIC ANALYSIS OF QUARC

3.3.6 Cut

Finally, we have the Cut rule. The formula A in the schema below is called the
Cut formula of the application of the rule.

1.
Γ⇒ Θ, A A,Π⇒ ∆

Γ,Π⇒ Θ,∆

3.3.7 Axiom Generalization

Before proceeding, let us demonstrate a simple and useful lemma – that the ax-
iom rule, which has been defined only for the basic sentences, can be generalized
for any formula A.

Lemma 33 Sequent of the form A⇒ A is derivable in LK-QuarcB .

Proof. By induction on the terminal symbol of A.

Basic step. Every initial sequent is derivable.

Inductive step.

1. Negation

(ind. hyp.)
A⇒ A (L¬)¬A,A⇒

(LP )
A,¬A⇒

(RP )¬A⇒ ¬A

2. Conjunction

(ind. hyp.)
A⇒ A (L∧)

A ∧B ⇒ A

(ind. hyp.)
B ⇒ B (L∧)

A ∧B ⇒ B (R∧)
A ∧B ⇒ A ∧B

3. Disjunction

(ind. hyp.)
A⇒ A (R∨)

A⇒ A ∨B

(ind. hyp.)
B ⇒ B (R∨)

B ⇒ A ∨B (L∨)
A ∨B ⇒ A ∨B

4. Conditional

(ind. hyp.)
B ⇒ B (LW )
A,B ⇒ B

(LP )
B,A⇒ B

(ind. hyp.)
A⇒ A (RW )
A⇒ A,B

(RP )
A⇒ B,A

(L→)
A→ B,A⇒ B

(LP )
A,A→ B ⇒ B

(R→)
A→ B ⇒ A→ B
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CHAPTER 3. PROOF-THEORETIC ANALYSIS OF QUARC

5. Universal Quantifier

(ind. hyp.)
A [a/∀M ]⇒ A [a/∀M ]

(LW )
aM,A [a/∀M ]⇒ A [a/∀M ]

(LP )
A [a/∀M ] , aM ⇒ A [a/∀M ]

aM ⇒ aM (RW )
aM ⇒ aM,A [a/∀M ]

(RP )
aM ⇒ A [a/∀M ] , aM

(L∀)
aM,A [∀M ]⇒ A [a/∀M ]

(R∀)
A [∀M ]⇒ A [∀M ]

Where a is some singular argument such that A [∀M ] does not contain it.

6. Particular Quantifier

aM ⇒ aM (LW )
A [a/∃M ] , aM ⇒ aM

(LP )
aM,A [a/∃M ]⇒ aM

(ind. hyp.)
A [a/∃M ]⇒ A [a/∃M ]

(LW )
aM,A [a/∃M ]⇒ A [a/∃M ]

(R∃)
aM,A [a/∃M ]⇒ A [∃M ]

(L∃)
A [∃M ]⇒ A [∃M ]

As above, where a is some singular argument such that A [∃M ] does not
contain it.

7. Special

(ind. hyp.)
A [...a1...an...]⇒ A [...a1...an...]

(LA)
A [...aα/a1...α/an...]⇒ A [...a1...an...]

(RA)
A [...aα/a1...α/an...]⇒ A [...aα/a1...α/an...]

Obviously, the steps for the special symbols are trivial and the remaining
ones will thus be skipped.

3.4 Deductive Equivalence

In this section we will demonstrate the deductive equivalence of LK-QuarcB
and QuarcB . Note that we will make full use of the Cut rule (even though the
Cut Elimination Theorem will later guarantee that for each derivation presented
here, there is a Cut-free derivation).

Before proceeding, a note on the structure of this section may perhaps be
helpful. Theorem 35 is demonstrated by proving two auxiliary lemmas, Lemma
36 and Lemma 37, each corresponding to one direction of the biconditional in
Theorem 35. The proof of the basic step of Lemma 37 is Lemma 33 and the
inductive step of Lemma 37 for the Universal Elimination requires the (trivial)
Lemma 38.

First we need to be explain the correspondence between the lines of a proof
and sequents. To do that, we define the standard translation:
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CHAPTER 3. PROOF-THEORETIC ANALYSIS OF QUARC

Definition 34 (Standard Translation) Standard translation of a sequent Γ ⇒
∆ of LK-Quarc, where Γ = γ1, ..., γn and ∆ = δ1, ..., δm is the derivation in
Quarc γ1 ∧ ... ∧ γn ` δ1 ∨ ... ∨ δm. Conversely, standard translation of a line of
a proof in Quarc 〈Γ, (i), δ, R〉 is the sequent Γ⇒ δ.

We now wish to show the following:

Theorem 35 LK-QuarcB and QuarcB are deductively equivalent. Namely,
the standard translation of every endsequent of any derivation of LK-QuarcB is
derivable in QuarcB , and the standard translation of any line (i) of any proof
in QuarcB can be derived in LK-QuarcB from trivial lemmas and the standard
translations of the lines of a proof (i) is derived from in QuarcB .

The proof of the theorem proceeds through proof of two lemmas, one going
from the LK-QuarcB to QuarcB , and the other in the opposite direction.

3.4.1 From LK-Quarc to Quarc

The proof in this direction goes by the following lemma:

Lemma 36 Every endsequent Γ ⇒ ∆ of some derivation in LK-QuarcB is,
given standard translation, derivable in QuarcB .

Proof. By induction on applications of rules of LK-QuarcB .

Basic step. Every initial sequent is derivable in QuarcB . Follows trivially
from the Premise rule of Quarc.

Inductive step. We outline the important steps. We will abbreviate γ1∧ ...∧
γn as Γ and δ1 ∨ ... ∨ δm as ∆.

1. (L∀) Assume that in QuarcB (i) A [a/∀M ]∧Γ ` ∆ and (ii) Γ ` ∆∨ (a)M .
We need to show that A [∀M ] ∧ Γ ` ∆.

1 (1) A [∀M ] ∧ Γ Premise
1 (2) A [∀M ] ∧E, 1
1 (3) Γ ∧E, 1
1 (4) ∆ ∨ (a)M by (ii)
5 (5) ∆ Premise
6 (6) (a)M Premise

1,6 (7) A [a/∀M ] UE, 2, 6
1,6 (8) A [a/∀M ] ∧ Γ ∧I, 7, 3
1,6 (9) ∆ by (i)

1 (10) ∆ ∨E, 4, 5, 5, 6, 9

2. (R∀) Assume that in QuarcB (i) (a)M ∧ Γ ` ∆ ∨ A [a/∀M ] and (ii) a
does not appear anywhere in Γ, ∆ or A [∀M ]. We need to show that
Γ ` ∆ ∨A [∀M ].
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CHAPTER 3. PROOF-THEORETIC ANALYSIS OF QUARC

1 (1) Γ Premise
2 (2) (a)M Premise

1,2 (3) (a)M ∧ Γ ∧I, 1, 2
1,2 (4) ∆ ∨A [a/∀M ] by (i)

(5) ∆ ∨ ¬∆ Prop.
6 (6) ∆ Premise
6 (7) ∆ ∨A [∀M ] ∨I, 6
8 (8) ¬∆ Premise

1,2,8 (9) A [a/∀M ] Prop. 4, 8
1,8 (10) A [∀M ] UI, 2, 9, given (ii)
1,8 (11) ∆ ∨A [∀M ] ∨I, 10

1 (12) ∆ ∨A [∀M ] ∨E, 5, 6, 7, 8, 11

3. (L∃) Assume that (i) (a)M ∧A [a/∃M ]∧Γ ` ∆ and (ii) a does not appear
anywhere in Γ, ∆ or A [∃M ]. We need to show that A [∃M ] ∧ Γ ` ∆.

1 (1) A [∃M ] ∧ Γ Premise
1 (2) A [∃M ] ∧E, 1
1 (3) Γ ∧E, 1
4 (4) (a)M Premise
5 (5) A [a/∃M ] Premise

4,5 (6) (a)M ∧A [a/∃M ] ∧I, 4, 5
1,4,5 (7) (a)M ∧A [a/∃M ] ∧ Γ ∧I, 6, 3
1,4,5 (8) ∆ by (i)

1 (9) ∆ PE, 2, 4, 5, 8, given (ii)

4. (R∃) Assume (i) Γ ` ∆ ∨ (a)M and (ii) Γ ` ∆ ∨ A [a/∃M ]. We need to
show that Γ ` ∆ ∨A [∃M ].

1 (1) Γ Premise
1 (2) ∆ ∨ (a)M by (i)
3 (3) ∆ Premise
3 (4) ∆ ∨A [∃M ] ∨I, 3
5 (5) (a)M Premise
1 (6) ∆ ∨A [a/∃M ] by (ii)
7 (7) A [a/∃M ] Premise

5,7 (8) A [∃M ] PI, 5, 7
5,7 (9) ∆ ∨A [∃M ] ∨I, 8
1,5 (10) ∆ ∨A [∃M ] ∨E, 6, 3, 4, 7, 9

1 (11) ∆ ∨A [∃M ] ∨E, 2, 3, 4, 5, 10

5. (LA) Assume (i)A [...a1...an...]∧Γ ` ∆. We need to show thatA [aα/a1...α/an]∧
Γ ` ∆.
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CHAPTER 3. PROOF-THEORETIC ANALYSIS OF QUARC

1 (1) A [aα/a1...α/an...] ∧ Γ Premise
1 (2) A [aα/a1...α/an...] ∧E, 1
1 (3) A [...a1...an...] AE, 2
1 (4) Γ ∧E, 1
1 (5) A [a1...an...] ∧ Γ ∧I, 3, 4
1 (6) ∆ by (i)

Obviously, this is straightforward.

6. Similarly for other Special rules.

This concludes the proof of Lemma 36. We now turn to the proof of the
other Lemma.

3.4.2 From Quarc to LK-Quarc

In this direction the proof relies on the following lemma:

Lemma 37 For any line (i) of any proof in QuarcB there exists a corresponding
sequent in LK-QuarcB which can be derived from trivial lemmas and sequents
corresponding to the lines of a proof (i) is derived from in QuarcB .

Before proceeding with the proof, perhaps a slight clarification of this lemma
is in order. Keep in mind that every step of a proof in Quarc is derived from
previous step or steps (or none for Premise and, as we shall see, Identity Intro-
duction) via the application of a certain rule. What this lemma does is construct
a segment of a derivation in LK-QuarcB (not a full derivation because it does
not necessarily have an initial sequent in all of its topmost places) that be-
gins with (the standard translation of) the steps the application of the rule of
QuarcB relies on, and ends with (the standard translation of) the step that the
rule produces.

Since any proof in Quarc consist of a finite number of steps each produced
by a rule, by “stacking” the segments of the derivation one after the other (one
segment for each step, according to the rule used in that step), we produce a
derivation for which the endsequent is the standard translation of the conclusion
of the proof in QuarcB . We now proceed with the proof of the lemma.

Proof. By induction on the applications of the rules of derivation of QuarcB .

Basic step. Since we are dealing with QuarcB , which does not include the
identity rules, a proof can only begin with an application of a Premise rule. For
any application of the Premise rule, the corresponding sequent is A⇒ A. That
such a sequent exists is shown by Lemma 33.

Inductive step.

1. (¬I) The rule for the Negation Introduction has the following form:

k (k) A Premise
L1 (m) B
L2 (n) ¬B

L1*, L2* (i) ¬A ¬I, k, m, n
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CHAPTER 3. PROOF-THEORETIC ANALYSIS OF QUARC

Here Ln* stands for the sequence of formulas Ln with all the occurrences
of k omitted.

The corresponding segment of a derivation in LK-QuarcB is as follows
(part separated out for legibility):

(Lemma 33)
B ⇒ B (L¬)
B,¬B ⇒

(L∧)
B ∧ ¬B,¬B ⇒

(LP )¬B,B ∧ ¬B ⇒
(L∧)

B ∧ ¬B,B ∧ ¬B ⇒
(LC)

B ∧ ¬B ⇒

We now use this part in the top right and provide the rest of the segment:

(k) A⇒ A

(m) L1 ⇒ B (n) L2 ⇒ ¬B
(R∧)

L1, L2 ⇒ B ∧ ¬B B ∧ ¬B ⇒
(Cut)

L1, L2 ⇒
(maybe LW )

L1, L2, A⇒
(maybe some LC)

L1∗, L2∗, A⇒
(Cut)

L1∗, L2∗, A⇒
(R¬)

(i) L1∗, L2∗ ⇒ ¬A

The use of ‘maybe’ in this derivation will be explained below. Obviously,
the sequent corresponding to the step (k) is unnecessary here, but we use
all the steps that are listed in the justification of the application of the
rule in Quarc, regardless of whether they are premises or not.

These derivations are schematic. For instance, the inference between the
sequents L1, L2 ⇒ and L1, L2, A⇒may require a use of the left weakening
rule (LW ) in case neither L1 nor L2 contain A. If they do, this step can be
omitted. Similarly, if either L1 or L2 contain A, one or more applications
of the left contraction (LC) rule may be required to obtain the sequent
L1∗, L2∗, A ⇒. Again, in case neither L1 nor L2 contains A these steps
can be omitted.

2. Similarly for other propositional rules.

3. (UE) The rule for the Universal Elimination has the following form:

L1 (k) A [∀M ]
L2 (m) (a)M

L1, L2 (i) A [a/∀M ] UE, k, m

Before proceeding with the corresponding segment of a derivation, we need
to prove the following (easy) lemma:

Lemma 38 The sequent A [∀M ] , aM ⇒ A [a/∀M ] is derivable in LK-
QuarcB .
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CHAPTER 3. PROOF-THEORETIC ANALYSIS OF QUARC

Proof.

(Lemma 33)
A [a/∀M ]⇒ A [a/∀M ]

(LW )
aM,A [a/∀M ]⇒ A [a/∀M ]

(LP )
A [a/∀M ] , aM ⇒ A [a/∀M ]

aM ⇒ aM (RW )
aM ⇒ aM,A [a/∀M ]

(RP )
aM ⇒ A [a/∀M ] , aM

(L∀)
A [∀M ] , aM ⇒ A [a/∀M ]

The corresponding segment of a derivation in LK-QuarcB for the rule UE
is as follows:

(k)L1 ⇒ A [∀M ]

(m)L2 ⇒ aM
(Lemma 38)

A [∀M ] , aM ⇒ A [a/∀M ]
(Cut)

L2, A [∀M ]⇒ A [a/∀M ]
(Cut)

L1, L2 ⇒ A [a/∀M ]

4. (UI) The rule for the Universal Introduction has the following form:

k (k) (a)M Premise
L1 (m) A [a/∀M ]

L1* (i) A [∀M ] UI, k, m

Here L1* stands for the sequence of formulas L1 with all the occurrences
of k omitted. By rule, L1 contains no occurrences of the SA a apart from
that in k, and therefore L1* contains no occurrences of a.

The corresponding segment of a derivation in LK-QuarcB for the rule UI
is as follows:

(k)aM ⇒ aM

(m)L1 ⇒ A [a/∀M ]
(LW )

aM,L1 ⇒ A [a/∀M ]
(maybe LC)

aM,L1∗ ⇒ A [a/∀M ]
(Cut)

aM,L1∗ ⇒ A [a/∀M ]
(R∀)

L1∗ ⇒ A [∀M ]

Since L1* contains no occurrences of a, this is an appropriate use of the
rule R∀.

5. (PI) The rule for the Particular Introduction has the following form:

L1 (k) A [a/∃M ]
L2 (m) (a)M

L1, L2 (i) A [∃M ] PI, i, j

The corresponding segment of a derivation in LK-QuarcB for the rule PI
is as follows:

(m)L2 ⇒ aM
(some LW )

L1, L2 ⇒ aM

(k)L1 ⇒ A [a/∃M ]
(some LW , LP )

L1, L2 ⇒ A [a/∃M ]
(R∃)

(i)L1, L2 ⇒ A [∃M ]
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CHAPTER 3. PROOF-THEORETIC ANALYSIS OF QUARC

6. (PE) The rule for the Particular Elimination has the following form:

L1 (k) A [∃M ]
j (l) (a)M Premise
k (m) A [a/∃M ] Premise
L2 (n) B

L1, L2 − {j, k} (i) B PE, k, l, m, n

The singular argument a occurs nowhere in L1, A [∃M ] or B, and nowhere
in L2 except j or k.

The corresponding segment of a derivation in LK-QuarcB for the rule PE
is as follows (broken into two parts for legibility):

(l)aM ⇒ aM

(m)A [a/∃M ]⇒ A [a/∃M ]

(n)L2 ⇒ B
(some LW , LC)

A [a/∃M ] , aM,L2∗ ⇒ B
(Cut)

A [a/∃M ] , aM,L2∗ ⇒ B
(LP )

aM,A [a/∃M ] , L2∗ ⇒ B
(Cut)

aM,A [a/∃M ] , L2∗ ⇒ B
(L∃)

A [∃M ] , L2∗ ⇒ B

where L2∗ stands for the sequence of formulas L2 with all instances of
aM and A [a/∃M ] removed. Since L2∗ and B contain no instances of SA
a, this is an appropriate use of the rule L∃. Now, having obtained the
sequent A [∃M ] , L2∗ ⇒ B, we combine it with the step (k) and obtain the
desired sequent:

(k)L1 ⇒ A [∃M ] A [∃M ] , L2∗ ⇒ B
(Cut)

(i)L1, L2∗ ⇒ B

7. The rule for Reorder has the following form:

L (i) (tπ1, ..., tπn)Pπ

L (j) (tρ1, ..., tρn)P ρ R, i

The corresponding segment of a derivation in LK-QuarcB for the Reorder
rule is as follows:

(i)L⇒ (tπ1, ..., tπn)Pπ

(t1, ..., tn)P ⇒ (t1, ..., tn)P
(LRd)

(tπ1, ..., tπn)Pπ ⇒ (t1, ..., tn)P
(RRd)

(tπ1, ..., tπn)Pπ ⇒ (tρ1, ..., tρn)P ρ
(Cut)

L⇒ (tρ1, ..., tρn)P ρ

8. The remaining derivations of sequents corresponding to the special sym-
bols of Quarc are trivial and will be omitted here

This concludes the proof of Lemma 37 and thus of Theorem 35.
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CHAPTER 3. PROOF-THEORETIC ANALYSIS OF QUARC

3.5 Cut Elimination Theorem

We finally arrive at the central section of this chapter, the demonstration of
the Cut elimination theorem for LK-QuarcB . This, in turn, will allow us to
arrive at the subformula property for our system and motivate some further
considerations in the following sections.

3.5.1 Preliminaries

The proof presented in this section is modified of Gentzen’s from [Szabo, 1969].
It is a double induction on the grade and rank of the Cut formula.

Cut and Mix

Since LK-QuarcB contains the contraction rules, there might be multiple in-
stances of the Cut formula occurring. In order to be able to Cut on all of those,
let us also define the Mix rule:

Definition 39 (Mix rule)

Γ⇒ Θ Π⇒ ∆
Γ,Π∗ ⇒ Θ∗,∆

Where some formula M , called the Mix formula occurs at least once in Π
and Θ, and Π∗ and Θ∗ are obtained by removing all instances of M from Π and
Θ, respectively.

Definition 40 (LK − Quarc†) LK − Quarc† is a sequent calculus obtained
from LK-Quarc by replacing the Cut rule by the Mix rule.

Lemma 41 For any sequent S, S is provable in LK −Quarc† just in case it is
provable in LK-Quarc.

Proof. By showing Cut is derivable in LK −Quarc†

Γ⇒ Θ, A A,Π⇒ ∆
(Mix)

Γ,Π∗ ⇒ Θ∗,∆
(some LW , RW )

Γ,Π⇒ Θ,∆

and conversely that Mix is derivable in LK-Quarc.

Γ⇒ Θ (some RP , RC)
Γ⇒ Θ∗, A

Π⇒ ∆ (some LP , LC)
A,Π∗ ⇒ ∆

(Cut)
Γ,Π∗ ⇒ Θ∗,∆

Since LK-QuarcB contains all the rules used, this lemma will hold for it. We
will call LK-Quarc†B the sequent calculus obtained by substituting the Mix rule
for the Cut rule in LK-QuarcB .
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CHAPTER 3. PROOF-THEORETIC ANALYSIS OF QUARC

Grade and Rank

Definition 42 (Grade, γ) Let A, B and C be formulas, R an n-ary predicate,
P an n-ary predicate or a reordered n-ary predicate, t1, ..., tn SA’s and π1, ..., πn
some permutation of 1, ..., n except identity permutation. Then, the grade γ(A)
of the formula A is:

1. γ(A) = 0 if A is basic.

2. γ(A) = 1 if A is (tπ1, ..., tπn)Rπ.

3. γ(A) = γ((t1, ..., tn)P ) + 1 if A is (t1, ..., tn)¬P .

4. γ(A) = γ(B) + 1 if A is ¬B.

5. γ(A) = γ(B) + γ(C) + 1 if A is B ∧ C, B ∨ C or B → C.

6. γ(A) = γ(B [t/∀P ]) + 1 if A is B [∀P ].

7. γ(A) = γ(B [t/∃P ]) + 1 if A is B [∃P ].

8. γ(A) = γ(B [..., t1, ..., tn, ...]) + 1 if A is B [..., tα/t1, ..., α/tn].

The order of application of the rule for anaphora can sometimes be trans-
posed with the application of the rules for sentential operators, quantifiers, or
another anaphora. It can be shown by induction that all of those transposi-
tions assign the same grade to a formula. For a similar proof, see [Pavlovic and
Ben-Yami, 2013].

Definition 43 (Rank, ρ) Rank of a derivation is the sum of the left and right
rank of a Mix formula. Left rank (right rank) is the maximal number of se-
quents in a branch, starting from the upper left (right) sequent of the Mix rule,
such that each sequent of the branch contains the Mix formula in the succedent
(antecedent).

Re-designating the Proper Singular Arguments

Before proceeding to the Cut elimination theorem, we shall prove an auxiliary
lemma. Again, this is due to Gentzen from [Szabo, 1969].

Definition 44 (Re-designation procedure) Call the Singular Argument a oc-
curring in the Definition 6 of the rules R∀ and L∃ the proper singular argument
of the respective rules. To re-designate the proper singular arguments, we alter
a derivation according to the following procedure. First, for every occurrence
of a rule R∀ or L∃ above which no other occurrence of these rules is present
(to have a unique procedure we can start with the leftmost and move right),
we replace their proper singular argument in all the sequents above the lower
sequent of the occurrence of the rule with a singular argument that has so far
not occurred anywhere in the derivation. Second, we apply the same procedure
to all the occurrences of the rules R∀ or L∃ which are such that the procedure
has already been applied to any other occurrence of said rules in all the sequents
above their lower sequents.
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CHAPTER 3. PROOF-THEORETIC ANALYSIS OF QUARC

We need to prove the following auxiliary lemma:

Lemma 45 If In is an initial sequent or a correct inference which contains a
singular argument a, which is not the proper singular argument of In, and if
the singular argument b is likewise not the proper singular argument of In, then
In′, obtained from In by uniformly substituting b for a is an initial sequent or
a correct inference.

Proof. By induction on the rules of LK-QuarcB .

Next we prove the following lemma:

Lemma 46 If we re-designate the proper singular arguments of a derivation, it
will yield a derivation of the same grade and rank and of the same endsequent.

That the two derivations end in the same endsequent is obvious from the
definition of the re-designation procedure. We now need to show this is a correct
derivation of the said sequent.

Proof. By induction on the steps of the re-designation procedure. For every
occurrence of a rule R∀ or L∃, every sequent above its lower sequent is derived
correctly, by Lemma 45 and the inductive hypothesis. Moreover, replacing the
proper singular argument of a correct application of R∀ or L∃ with a singular
argument that occurs nowhere above its lower sequent will likewise produce a
correct instance of R∀ or L∃.

3.5.2 Cut Elimination

We want to show the following:

Theorem 47 (Cut Elimination) For any sequent S, if S is provable in LK-
QuarcB , then it is provable in LK-QuarcB without using the Cut rule.

Given Lemma 41, it will suffice to show:

Lemma 48 For any sequent S, if S is provable in LK-Quarc†B , then it is prov-

able in LK-Quarc†B without using the Mix rule.

Proof. By induction on grade and rank.

Case ρ = 2

Obviously, the lowest rank of an application of a Mix rule is 2. So, suppose
ρ(M) = 2. We will omit all the familiar cases and focus on the symbols of
Quarc. Moreover, for legibility the rule labels will be omitted (it will always be
the L and the R rule for a given symbol).
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CHAPTER 3. PROOF-THEORETIC ANALYSIS OF QUARC

Special

We start with the special symbols of LK-QuarcB as those have the lowest
grade.

1. Reorder:

Γ =⇒ Θ, (t1, ..., tn)R

Γ =⇒ Θ, (tπ1, ..., tπn)Rπ
(t1, ..., tn)R,Π =⇒ ∆

(tπ1, ..., tπn)Rπ,Π =⇒ ∆
(Mix)

Γ,Π⇒ Θ,∆

This can be transformed into:

Γ =⇒ Θ, (t1, ..., tn)R (t1, ..., tn)R,Π =⇒ ∆
(Mix)

Γ,Π∗ ⇒ Θ∗,∆
(some RW , RP , LW , LP )

Γ,Π⇒ Θ,∆

Since the Mix formula is of a lower grade, by inductive hypothesis, it can
be eliminated.

2. Anaphora:

Γ =⇒ Θ, A [...a1...an...]

Γ =⇒ Θ, A [...aα/a1...α/an...]

A [...a1...an...] ,Π =⇒ ∆

A [...aα/a1...α/an...] ,Π =⇒ ∆
(Mix)

Γ,Π⇒ Θ,∆

This can be transformed into:

Γ =⇒ Θ, A [...a1...an...] A [...a1...an...] ,Π =⇒ ∆
(Mix)

Γ,Π∗ ⇒ Θ∗,∆
(some RW , RP , LW , LP )

Γ,Π⇒ Θ,∆

Again, since the Mix formula is of a lower grade, by inductive hypothesis,
it can be eliminated.

3. Negative Predication:

Γ =⇒ Θ,¬(t1, ..., tn)P

Γ =⇒ Θ, (t1, ..., tn)¬P
¬(t1, ..., tn)P,Π =⇒ ∆

(t1, ..., tn)¬P,Π =⇒ ∆
(Mix)

Γ,Π⇒ Θ,∆

This can be transformed into:
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CHAPTER 3. PROOF-THEORETIC ANALYSIS OF QUARC

Γ =⇒ Θ,¬(t1, ..., tn)P ¬(t1, ..., tn)P,Π =⇒ ∆
(Mix)

Γ,Π∗ ⇒ Θ∗,∆
(some RW , RP , LW , LP )

Γ,Π⇒ Θ,∆

This Mix formula can be eliminated according to the procedure for nega-
tion below.

Propositional

Cut elimination theorem for the propositional symbols is a familiar result
and will be omitted here, apart from negation, which is required to finalize the
Cut elimination for negative predication above:

A,Γ⇒ Θ

Γ⇒ Θ,¬A
Π⇒ ∆, A

¬A,Π⇒ ∆
(Mix)

Γ,Π⇒ Θ,∆

This can be transformed into:

Π⇒ ∆, A A,Γ⇒ Θ
(Mix)

Π,Γ∗ ⇒ ∆∗,Θ
(some LW , LP , RW , RP )

Π,Γ⇒ ∆,Θ

Since the Mix formula A is of lesser grade than ¬A, by inductive hypothesis,
it can be eliminated.

Quantification - Universal

Let the terminal symbol of the Mix formula be a universal quantifier:

aM,Γ⇒ Θ, A [a/∀M ]

Γ⇒ Θ, A [∀M ]

A [b/∀M ] ,Π⇒ ∆ Π⇒ ∆, bM

A [∀M ] ,Π⇒ ∆
(Mix)

Γ,Π⇒ Θ,∆

This can be transformed into:

Π⇒ ∆, bM bM,Γ⇒ Θ, A [b/∀M ]
(Mix)

Π,Γ∗ ⇒ ∆∗,Θ, A [b/∀M ]
(some RW , RP , LW , LP )

Π,Γ⇒ ∆,Θ, A [b/∀M ] A [b/∀M ] ,Π⇒ ∆
(Mix)

Π,Γ,Π∗ ⇒ ∆∗,Θ∗,∆
(some LC, LP , RW , RC, LP )

Π,Γ⇒ Θ,∆

The change from the the sequent aM,Γ ⇒ Θ, A [a/∀M ] to the sequent
bM,Γ⇒ Θ, A [b/∀M ] in the transformation above is justified by Lemma 46.

Quantification - Particular
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Let the terminal symbol of the Mix formula be a particular quantifier:

Γ⇒ Θ, bM Γ⇒ Θ, A [b/∃M ]

Γ⇒ Θ, A [∃M ]

aM,A [a/∃M ] ,Π⇒ ∆

A [∃M ] ,Π⇒ ∆
(Mix)

Γ,Π⇒ Θ,∆

This can be transformed into:

Γ⇒ Θ, A [b/∃M ]

Γ⇒ Θ, bM bM,A [b/∃M ] ,Π⇒ ∆
(Mix)

Γ, A [b/∃M ] ,Π⇒ Θ∗,∆
(some RW , RP )

Γ, A [b/∃M ] ,Π⇒ Θ,∆
(Mix)

Γ,Γ∗∗,Π⇒ Θ∗∗,Θ,∆
(some LC, LP , RC, RP )

Γ,Π⇒ Θ,∆

For both quantifiers, the grade of the Mix formula of the upper Mix rule is
0, and of the lower is 1 less. Therefore, by induction hypothesis, those can be
eliminated.

Case ρ > 2

Here we will assume left rank is 1 and right is greater than 1. Again, the ma-
jority of cases here are familiar results, and we focus on LK-QuarcB . The only
part that is not a familiar result here is L∀ and R∃, which fall under the case of
two-sequent rules. However, before proceeding we should at least mention the
case where the mix formula is obtained by the Contraction rule, since that is
precisely what motivates the use of Mix instead of the Cut rule in the first place.

1. (LC)

Γ⇒ Θ, A

A,A,Π⇒ ∆

A,Π⇒ ∆
(Mix)

Γ,Π∗,⇒ Θ,∆

This is transformed into:

Γ⇒ Θ, A A,A,Π⇒ ∆
(Mix)

Γ,Π∗,⇒ Θ,∆

Right rank was reduced by 1, while left remains the same, and so by
inductive hypothesis, Mix can be eliminated.

2. (L∀)

Γ⇒ Θ

A [a/∀M ] ,Π⇒ ∆ Π⇒ ∆, aM

A [∀M ] ,Π⇒ ∆
(Mix)

Γ,Π∗, A [∀M ]⇒ Θ∗,∆
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This is transformed into:

Γ⇒ Θ A [a/∀M ] ,Π⇒ ∆
(Mix)

Γ,Π∗, A [a/∀M ]⇒ Θ∗,∆

Γ⇒ Θ Π⇒ ∆, aM
(Mix)

Γ,Π∗ ⇒ Θ∗,∆, aM

Γ,Π∗, A [∀M ]⇒ Θ∗,∆

As each instance of a Mix rule has rank lowered by 1, so by the inductive
hypothesis both can be eliminated. We now proceed to examine the case
of R∃.

3. (R∃)

Γ⇒ Θ

Π⇒ ∆, aM Π⇒ ∆, A [a/∃M ]

Π⇒ ∆, A [a/∃M ]
(Mix)

Γ,Π∗ ⇒ Θ∗,∆, A [∃M ]

This is transformed into:

Γ⇒ Θ Π⇒ ∆, aM
(Mix)

Γ,Π∗ ⇒ Θ∗,∆, aM

Γ⇒ Θ Π⇒ ∆, A [a/∃M ]
(Mix)

Γ,Π∗ ⇒ Θ∗,∆, A [a/∃M ]

Γ,Π∗ ⇒ Θ∗,∆, A [∃M ]

Again, the rank of each instance of a Mix rule has been lowered by 1, and
by the inductive hypothesis both can be eliminated.

Similarly if the left rank is greater than 1 or if both are greater. This concludes
the proof of the Cut elimination theorem.

3.5.3 Subformula Property

Definition 49 (Subformula)

1. Every formula is a subformula of itself.

2. The formula (t1, ..., tn)R is a subformula of (tπ1, ..., tπn)Rπ.

3. The formula ¬(t1, ..., tn)P is a subformula of (t1, ..., tn)¬P .

4. Every formula A and B mentioned in the antecedent of the rules for gener-
ation of a formula in Definition 24 is a subformula of that formula. More-
over, any formula tM is likewise the subformula of the formula A [qM ].

5. If a formula A is a subformula of any subformula of B, then it is a sub-
formula of B.

Theorem 50 (Subformula property) Any formula appearing in any Cut-free
proof of LK-Quarc

B
, is a subformula of some formula in its endsequent.
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Proof. We only need to show that the subformula property holds for all rules
of LK-QuarcB , except Cut, which can be eliminated. Since this is a familiar
result for the propositional and structural rules, what remains to be shown is
that it holds for the quantification and special rules of LK-Quarc

B
.

Observing the rules for the universal quantifier:

A [t/∀M ] ,Γ =⇒ ∆ Γ =⇒ ∆, tM
(L∀)

A [∀M ] ,Γ =⇒ ∆

tM,Γ =⇒ ∆, A [t/∀M ]
(R∀)*

Γ =⇒ ∆, A [∀M ]

We can see that any formula of Γ and ∆ will be a subformula of some formula
of Γ and ∆ in the lower sequent, namely itself. Moreover, tM and A [t/∀M ] are
both subformulas of A [∀M ]. Therefore, the subformula property holds for this
derivation. The proof for the particular quantifier proceeds in the same manner,
and is straightforward for the special symbols of Quarc.

Consistency

Given the definition of consistency,

Definition 51 (Consistency) A sequent calculus is consistent just in case the
sequent · · · ⇒ · · · is not derivable.

An important corollary from Theorem 50 immediately follows:

Corollary 52 LK-QuarcB is consistent.

To see this, one need only observe that no formula is a subformula of an
empty sequent.

3.6 Identity

In this section we expand LK-QuarcB into LK-Quarc2 by adding the two identity
rules.

3.6.1 Identity Rules

The identity rules in Quarc are as follows [Pavlovic and Ben-Yami, 2013]:

Identity Introduction, =I

(k) a = a =I

Identity Elimination, =E

Let A [b] be a basic formula containing occurrences b1, ..., bn of a singular
argument b (A might also contain further occurrences of b).

40

C
E

U
eT

D
C

ol
le

ct
io

n



CHAPTER 3. PROOF-THEORETIC ANALYSIS OF QUARC

L1 (k) A [b]
L2 (m) a = b

L1, L2 (n) A [a/b1, ..., a/bn]

To expand LK-QuarcB into LK-Quarc2 we add the following rules. The rules
here are modified for Quarc from [Negri and von Plato, 2001].

a = a,Γ⇒ ∆
(=1)

Γ⇒ ∆

A [b] , a = b, A [a/b] ,Γ⇒ ∆
(=2)

a = b, A [a/b] ,Γ⇒ ∆

Where A is a basic formula and A [a/b] is a formula produced by substituting
any number of occurrences of the singular argument b by a.

Before proceeding, let us prove a simple and useful lemma.

Lemma 53
a = b,Γ⇒ ∆

b = a,Γ⇒ ∆

Proof.

a = b,Γ⇒ ∆

a = b, b = a, b = b,Γ⇒ ∆
(=2)

b = a, b = b,Γ⇒ ∆

b = b, b = a,Γ⇒ ∆
(=1)

b = a,Γ⇒ ∆

3.6.2 Deductive Equivalence

The proof of deductive equivalence proceeds with the expansion of the proof of
Theorem 35 with the appropriate steps for the identity rules.

LK-Quarc to Quarc

1. (=1) Assume that in Quarc2 (i) a = a ∧ Γ ` ∆. We need to show that
Γ ` ∆.

1 (1) Γ Premise
(2) a = a =I

1 (3) a = a ∧ Γ ∧I, 1, 2
1 (4) ∆ by (i)

2. (=2) Assume that in Quarc2 (i) A [b] ∧ a = b ∧ A [a/b] ∧ Γ ` ∆. We need
to show that a = b ∧A [a/b] ∧ Γ ` ∆.

1 (1) a = b ∧A [a/b] ∧ Γ Premise
1 (2) a = b ∧E, 1
1 (3) A [a/b] ∧E, 1
1 (4) A [b] =E, 2, 3
1 (5) A [b] ∧ a = b ∧A [a/b] ∧ Γ ∧I, 1, 4
1 (6) ∆ by (i)

The derivation rule used in the steps (2) and (3) is a straightforward
generalization of ∧E.
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Quarc to LK-Quarc

1. The segment of a derivation corresponding to the rule =I is as follows:

a = a⇒ a = a (=1)⇒ a = a

2. The segment of a derivation corresponding to the rule =E is as follows:

(k) L1 ⇒ A [b]

(m) L2 ⇒ a = b

A [a/b]⇒ A [a/b]
(LW , LP )

A [a/b] , b = a,A [b]⇒ A [a/b]
(=2)

b = a,A [b]⇒ A [a/b]
(Lemma 53)

a = b, A [b]⇒ A [a/b]
(Cut)

L2, A [b]⇒ A [a/b]
(LP )

A [b] , L2 ⇒ A [a/b]
(Cut)

L1, L2 ⇒ A [a/b]

This concludes the proof of deductive equivalence of LK-Quarc2 and Quarc2.

3.6.3 Cut Elimination

We prove the Cut elimination theorem for LK-Quarc2:

Theorem 54 For any sequent S, if S is provable in LK-Quarc2, then it is
provable in LK-Quarc2 without using the Cut rule.

Proof. By expanding the proof for LK-QuarcB . Clearly, in both rules for
identity all the formulas appearing in the lower sequent also appear in the upper
sequent. Therefore, we only need to expand the proof for ρ > 2.

The Rule (=1)

The rule =1 fits into the general proof for one-sequent derivations in the case
ρ > 2 with no modification, since Π does not contain the Mix formula (it is
empty). However, we will examine the rule =2 more closely, since it, in fact,
has two principal formulas, which also occur as the side formulas, and either of
which could be the Mix formula.

The Rule (=2)

The case that needs to be examined here is when either a = b or A [a/b] is the
Mix formula. Assume it is a = b. The application of the Mix rule then looks as
follows:

Γ⇒ Θ

A [b] , a = b, A [a/b] ,Π⇒ ∆
(=2)

a = b, A [a/b] ,Π⇒ ∆
(Mix)

Γ, A [a/b] ,Π∗ ⇒ Θ∗,∆
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The formula a = b either occurs or it doesn’t occur in Γ. Suppose it does.
Then the derivation is transformed as follows:

A [b] , a = b, A [a/b] ,Π⇒ ∆
(=2)

a = b, A [a/b] ,Π⇒ ∆
(some LP )

a = b,Π, A [a/b]⇒ ∆
(some LC)

a = b,Π∗, A [a/b]⇒ ∆
(some LW )

Γ, a = b,Π∗, A [a/b]⇒ ∆
(some LC)

Γ,Π∗, A [a/b]⇒ ∆
(some LP , RW , RP )

Γ, A [a/b] ,Π∗ ⇒ Θ∗,∆

Now suppose a = b does not occur in Γ. Since a = b is a basic formula, and
by assumption the left rank is 1, the sequent Γ ⇒ Θ is obtained by RW from
Γ⇒ Θ∗. The derivation is then transformed as follows:

Γ⇒ Θ∗ (some LW , LP , RW )
Γ, A [a/b] ,Π∗ ⇒ Θ∗,∆

Since A [a/b] is likewise a basic formula, the same considerations will apply
there. The remainder of the proof runs in parallel. This concludes the proof of
the Theorem 54.

3.6.4 Subformula Property

Here we can adopt a slightly weaker definition of subformula property, due
to [Negri and von Plato, 2001]:

Theorem 55 Any formula appearing in any Cut-free proof of LK-Quarc
2

is a
subformula of some formula in its endsequent or a basic formula.

Proof. We only need to expand the proof of Theorem 50 with the cases for
=1 and =2. However, these only remove basic formulas. Therefore, Theorem
55 holds.

Now, using this we can show consistency:

Corollary 56 LK-Quarc2 is consistent.

Proof. From Theorem 55, by noting that basic formulas can only disappear
from the left side of a sequent. Therefore, the empty sequent is not derivable.

3.6.5 Conservativity

Theorem 57 LK-Quarc2 is conservative expansion of LK-QuarcB . Namely, if
Γ⇒ ∆ is derivable in LK-Quarc2, and Γ and ∆ contain no identity, then Γ⇒ ∆
is derivable in LK-QuarcB .

Proof. Assume Γ ⇒ ∆ is derivable in LK-Quarc2, and Γ and ∆ contain no
identity. By weak subformula property, it follows that
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Corollary 58 Any formula in the derivation of Γ ⇒ ∆ that contains identity
is a basic formula.

Moreover, it follows that

Corollary 59 No formula containing identity occurs on the right side of any
sequent in the derivation.

Furthermore, given that the rule =2 can never reduce the number of formulas
containing identity below 1, and that the rule =1 can only reduce the number
of such formulas below 1 if they are of the form a = a, it follows that

Corollary 60 Any identity formula in the derivation of Γ ⇒ ∆ is of the form
a = a.

Take a (Cut-free) derivation of Γ⇒ ∆. It is then transformed in two step.

First step. Any occurrence of the rule =2, given Corollary 60, is of the form:

A [a] , a = a,A [a/a] ,Γ′ ⇒ ∆′
(=2)

a = a,A [a/a] ,Γ′ ⇒ ∆′

Since A [a] and A [a/a] are the same formula, this is transformed into

A [a] , a = a,A [a/a] ,Γ′ ⇒ ∆′
(LC)

a = a,A [a/a] ,Γ′ ⇒ ∆′

Second step. Any occurrence of the rule LC, where a = a is the principal
formula,

a = a, a = a,Γ⇒ ∆
(LC)

a = a,Γ⇒ ∆

Is transformed into an occurrence of the rule =1:

a = a, a = a,Γ⇒ ∆
(=1)

a = a,Γ⇒ ∆

Observation 61 Obviously, both these transformations yield correct deriva-
tions. After completing both, the rule =2 does not occur, and the formula
a = a is the principal formula of either the rule =1 or LW (since by Corollary
59 it cannot occur in an initial sequent).

We now proceed to prove the above theorem by proving the following lemma:

Lemma 62 Any occurrence of the formula a = a in the derivation of Γ ⇒ ∆
can be eliminated.

Proof. Given Observation 61, every formula of the form a = a will form a
chain of sequents, such that the first sequent of the chain is the lower sequent
of a LW rule with a = a as a principal formula, and the last sequent of the
chain the upper sequent of a =1 rule with a = a as a principal formula. Let the
length of such a chain be the number of sequents in the chain.
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We only need to show that such a chain ending with the topmost leftmost
occurrence of =1 can be eliminated. The proof is by induction on the length of
the chain.

Basic step. The shortest chain has length 1, and is of the following form:

Γ′ ⇒ ∆′ (LW )
a = a,Γ′ ⇒ ∆′

(=1)
Γ′ ⇒ ∆′

This is transformed into the derivation of the upper sequent Γ′ ⇒ ∆′, which
by Corollary 59 does not contain the formula a = a.

Inductive step. Let the end of a chain be

a = a,Γ′′ ⇒ ∆′′
(Inf)

a = a,Γ′ ⇒ ∆′
(=1)

Γ′ ⇒ ∆′

Since a = a is not principal in Inf, this can be transformed into

a = a,Γ′′ ⇒ ∆′′
(=1)

Γ′′ ⇒ ∆′′ (Inf)
Γ′ ⇒ ∆′

Where the length of the chain is reduced by one. Similarly for the two-
sequent rules. This concludes the proof of Lemma 62.

By Corollary 60 and Lemma 62 if follows that the derivation transformed in
this manner contains no identity. Moreover, it contains no rule =2 (Observation
61) nor =1 (Lemma 62). Therefore, it is a derivation of LK-QuarcB . This
concludes the proof of Theorem 57.

3.6.6 Generalization of Identity Rules

As we can see, the rules in LK-Quarc2, just like in Quarc, are defined only for
the basic formulas. We will now show that these rules generalize to any formula.
Similar result is shown in [Negri and von Plato, 2001], and the approach here is
also independently motivated by [Ben-Yami, 2011].

Theorem 63 (Identity Generalization) For any formula S of Quarc, it is an
admissible rule of LK-Quarc2 that

S [b] , a = b, S [a/b] ,Γ⇒ ∆

a = b, S [a/b] ,Γ⇒ ∆

Proof. By induction on the terminal symbol of S. Basic step is trivial,
so we proceed to the inductive step, and only examine the interesting step of
the universal quantifier. In the following section A need not stand for a basic
formula.

Let S beA [∀M ]. Assume (i) that the sequentA [∀M ] [b] , a = b, A [∀M ] [a/b] ,Γ⇒
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∆ is derivable. From (i) it follows2 that the sequents (ii) A [c/∀M ] [b] , a =
b, A [∀M ] [a/b] ,Γ′ ⇒ ∆′ and (iii) a = b, A [∀M ] [a/b] ,Γ′ ⇒ ∆′, cM are deriv-
able. We need to show the sequent a = b, A [∀M ] [a/b] ,Γ′ ⇒ ∆′ is derivable.
The derivation proceeds as follows, broken into parts for legibility:

A [c/∀M ] [b]⇒ A [c/∀M ] [b]
(some LW , LP )

A [c/∀M ] [b] , a = b, A [c/∀M ] [a/b]⇒ A [c/∀M ] [b]
(ind. hyp.)

a = b, A [c/∀M ] [a/b]⇒ A [c/∀M ] [b]

We now proceed by using this sequent as the upper left sequent of the fol-
lowing Cut, also utilizing (ii):

a = b, A [c/∀M ] [a/b]⇒ A [c/∀M ] [b] (ii) A [c/∀M ] [b] , a = b, A [∀M ] [a/b] ,Γ′ ⇒ ∆′
(Cut)

a = b, A [c/∀M ] [a/b] , a = b, A [∀M ] [a/b] ,Γ′ ⇒ ∆′
(LC)

A [c/∀M ] [a/b] , a = b, A [∀M ] [a/b] ,Γ′ ⇒ ∆′

Next, we use this sequent as the upper left sequent of L∀, also utilizing (iii):

A [c/∀M ] [a/b] , a = b, A [∀M ] [a/b] ,Γ′ ⇒ ∆′ (iii) a = b, A [∀M ] [a/b] ,Γ′ ⇒ ∆′, cM
(L∀)

A [∀M ] [a/b] , a = b, A [∀M ] [a/b] ,Γ′ ⇒ ∆′
(LC)

a = b, A [∀M ] [a/b] ,Γ′ ⇒ ∆′

This concludes the proof of the Theorem 63.

3.7 Particular Import in LK-QuarcB

Having proven the Cut elimination theorem in Section 3.5, we now proceed to
use it in further considerations. The application here will be to demonstrate that
particular import is not derivable in LK-QuarcB and therefore, given the de-
ductive equivalence result of Theorem 35, it is likewise not derivable in QuarcB .

As we have seen in a simplified version in Example 2 in Section 3.2, DeMor-
gan laws hold in QuarcB (and consequently in Quarc as well). In LK-QuarcB ,
the DeMorgan laws, in their general form, hold as well:

Lemma 64 (DeMorgan) A [∃S]⇔ ¬(∀SαS ∧ ¬A [α/∃S 〈α〉])

A note on notation – the quantified argument ∃S may or may not be a source
of an anaphor. If it is, since an anaphoric expression cannot itself be a source of
an anaphor, in the right-hand side of the lemma we need to replace not only the

2Given Cut elimination and the fact initial sequents contain nothing but basic formulas,
the quantified formula A [∀M ] [b] is introduced either via LW , or via L∀. Let the sequent
A [∀M ] [b] ,Γ′′ ⇒ ∆′′ be the topmost sequent in which A [∀M ] [b] occurs.

The sequent A [∀M ] [b] , a = b, A [∀M ] [a/b] ,Γ′ ⇒ ∆′ is derivable from it without A [∀M ] [b]
being principal, and A [∀M ] [b] , a = b, A [∀M ] [a/b] ,Γ ⇒ ∆ from it without any of the principal
formulas of =2 being principal.

The sequents (ii′) A [c/∀M ] [b] ,Γ′′ ⇒ ∆′′ and (iii′) Γ′′ ⇒ ∆′′, cM are either trivially deriv-
able if formula A [∀M ] [b] is introduced via LW , or are upper sequents of L∀. (ii) is derivable
from (ii′) and (iii) from (iii′), applying the above reasoning repeatedly if the formulas in
question feature in any Contractions. Finally, a = b, A [∀M ] [a/b] ,Γ ⇒ ∆ is derivable from
a = b, A [∀M ] [a/b] ,Γ′ ⇒ ∆′.
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quantified argument ∃S, but both it and the index (assume it is α) indicating
the source of an anaphor. The notation A [α/∃S 〈α〉] indicates that in A, ∃Sα
is replaced by α in case ∃S is the source of an anaphor, and ∃S is replaced by
α otherwise.

Given that this is a sizable derivation, it will be presented here broken down
in two parts, each corresponding to one direction of the equivalence. Moreover,
the derivation rules will be omitted.

Proof L - R.

A [a/∃S]⇒ A [a/∃S]

A [a/∃S]⇒ A
[
α/∃S〈α〉

]
[a/α1, ..., a/αn]

aS,A [a/∃S]⇒ A
[
α/∃S〈α〉

]
[a/α1, ..., a/αn]

¬A
[
α/∃S〈α〉

]
[a/α1, ..., a/n] , aS,A [a/∃S]⇒

aS ∧ ¬A
[
α/∃S〈α〉

]
[a/α1, ..., a/n] , aS,A [a/∃S]⇒

aαS ∧ ¬A
[
α/∃S〈α〉

]
, aS,A [a/∃S]⇒

aS ⇒ aS
A [a/∃S] , aS ⇒ aS

aS,A [a/∃S]⇒ aS

∀SαS ∧ ¬A
[
α/∃S〈α〉

]
, aS,A [a/∃S]⇒

aS,A [a/∃S]⇒ ¬(∀SαS ∧ ¬A
[
α/∃S〈α〉

]
)

A [∃S]⇒ ¬(∀SαS ∧ ¬A
[
α/∃S〈α〉

]
)

Proof R - L.

Again, in the interest of legibility, the derivation of the sequent aS ⇒ aS ∧
¬A

[
a/∃S〈α〉, a/α1, ..., a/αn

]
, A [a/∃S] is here shown separately.

aS ⇒ aS
aS ⇒ aS,A [a/∃S]

aS ⇒ A [a/∃S] , aS

A
[
a/∃S〈α〉, a/α1, ..., a/αn

]
⇒ A

[
a/∃S〈α〉, a/α1, ..., a/αn

]
A
[
a/∃S〈α〉, a/α1, ..., a/αn

]
⇒ A [a/∃S]

⇒ A [a/∃S] ,¬A
[
a/∃S〈α〉, a/α1, ..., a/αn

]
aS ⇒ A [a/∃S] ,¬A

[
a/∃S〈α〉, a/α1, ..., a/αn

]
aS ⇒ A [a/∃S] , aS ∧ ¬A

[
a/∃S〈α〉, a/α1, ..., a/αn

]
aS ⇒ aS ∧ ¬A

[
a/∃S〈α〉, a/α1, ..., a/αn

]
, A [a/∃S]

We now use this endsequent as the upper right sequent of the full derivation:

aS ⇒ aS

aS ⇒ aS, aS ∧ ¬A
[
a/∃S〈α〉, a/α1, ..., a/αn

]
aS ⇒ aS ∧ ¬A

[
a/∃S〈α〉, a/α1, ..., a/αn

]
, aS aS ⇒ aS ∧ ¬A

[
a/∃S〈α〉, a/α1, ..., a/αn

]
, A [a/∃S]

aS ⇒ aS ∧ ¬A
[
a/∃S〈α〉, a/α1, ..., a/αn

]
, A [∃S]

aS ⇒ A [∃S] , aS ∧ ¬A
[
a/∃S〈α〉, a/α1, ..., a/αn

]
aS ⇒ A [∃S] , aαS ∧ ¬A

[
α/∃S〈α〉

]
⇒ A [∃S] ,∀SαS ∧ ¬A

[
α/∃S〈α〉

]
¬(∀SαS ∧ ¬A

[
α/∃S〈α〉

]
)⇒ A [∃S] ,

This gives us the general form of DeMorgan laws for LK-QuarcB . We now
wish to demonstrate the invalidity of Particular Import for it. In order to
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generate a counterexample to it, we will opt for the simplest sufficient sequent.
Therefore, the following simplification will be of use:

Lemma 65 (Simplification) ∀MαM ∧ ¬αP ⇔ ∀M¬P

This equivalence is again presented in two parts.

Proof L - R.

¬aP ⇒ ¬aP
aM,¬aP ⇒ ¬aP
¬aP, aM ⇒ ¬aP

aM ∧ ¬aP, aM ⇒ ¬aP
aαM ∧ ¬αP, aM ⇒ ¬aP

aM ⇒ aM
aM ⇒ aM, a¬P
aM ⇒ a¬P, aM

∀MαM ∧ ¬αP, aM ⇒ a¬P
aM,∀MαM ∧ ¬αP ⇒ a¬P
∀MαM ∧ ¬αP ⇒ ∀M¬P

Proof R - L.

aM ⇒ aM
∀M¬P, aM ⇒ aM

¬aP ⇒ ¬aP
aM,¬aP ⇒ ¬aP
¬aP, aM ⇒ ¬aP
a¬P, aM ⇒ ¬aP

aM ⇒ aM
aM ⇒ aM,¬aP
aM ⇒ ¬aP, aM

∀M¬P, aM ⇒ ¬aP
∀M¬P, aM ⇒ aM ∧ ¬aP
aM, ∀M¬P ⇒ aM ∧ ¬aP
aM, ∀M¬P ⇒ aαM ∧ ¬αP
∀M¬P ⇒ ∀MαM ∧ ¬αP

Observation 66 ∀MP ` ∃MP holds in Quarc (Theorem 29), and given stan-
dard translation, that is ∀MP ⇒ ∃MP in LK-Quarc. Given Lemma 64, this se-
quent is derivable just in case ∀MP ⇒ ¬(∀MαM∧¬(α)P ) is derivable. Further-
more, given Lemma 65, this sequent is derivable just in case ∀MP ⇒ ¬∀M¬P
is derivable.

We will demonstrate that

Theorem 67 The sequent ∀MP ⇒ ¬∀M¬P , and therefore particular import,
is not derivable in LK-QuarcB .

Proof. Suppose there is a Cut-free proof of ∀MP ⇒ ¬∀M¬P in LK-QuarcB .
Then, there is also a Cut-free proof of ∀M¬P,∀MP ⇒. Before the end of the
derivation, this sequent may have undergone any number of applications of LW ,
LC and LP , resulting in a sequent (∀MP )1, ..., (∀MP )n, (∀M¬P )1, ..., (∀M¬P )m ⇒,
with formulas in any order.

Since every initial sequent contains only basic formulas, each of the formulas
must have been first introduced either by LW or by L∀. Focusing on those
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CHAPTER 3. PROOF-THEORETIC ANALYSIS OF QUARC

introduced via L∀, we see that for each application of the rule (where ∼ is ¬ or
empty),

a ∼ P,Γ⇒ ∆ Γ⇒ ∆, aM
(L∀)∀M ∼ P,Γ⇒ ∆

there is an upper right sequent with one quantified formula less, one occur-
rence of the predicate P less, and one formula aM more on the right. Let us
consider the right upper sequent of the topmost rightmost application of L∀.
Γ could either be empty or contain only formulas introduced via LW , but in
any case that sequent is derivable only if ⇒ ∆, aM is. By subformula property
∆ can contain no quantified formulas or formulas with any connective and no
formulas containing P , as none of those can be rightmost. Therefore, ∆ can
only contain formulas aM . But for no i is ⇒ aM1 . . . aMi an initial sequent.

Therefore, there is no Cut-free proof of ∀M¬P,∀MP ⇒ in LK-QuarcB , and
so no Cut-free proof of ∀MP ⇒ ¬∀M¬P . Given the Cut elimination theorem,
this means there is no proof of ∀MP ⇒ ¬∀M¬P in LK-QuarcB .

This concludes the proof of Theorem 67. This is the greatest obstacle to
expanding LK-QuarcB into a sequent calculus deductively equivalent with full
Quarc. In the following subsection, we will see a way to expand LK-QuarcB
with a rule that will give the resulting system equivalence with Quarc which
includes Instantiation (Quarc3).

3.7.1 Instantial Import Rule

To expand LK-QuarcB into LK-Quarc3, we add the rule for Instantial Import:

tM,Γ⇒ ∆
(Ins)*

Γ⇒ ∆

* - where neither Γ nor ∆ contain the singular argument t.

This rule allows for the derivation of a particular sentence from a corre-
sponding sentence governed by the universal quantified argument:

Theorem 68 A [∀S]⇒ A [∃S/∀S]

Proof.

aS ⇒ aS (LW )
A [∀S] , aS ⇒ aS

(LP )
aS,A [∀S]⇒ aS

(Lemma 38)
A [∀S] , aS ⇒ A [a/∀S]

(RP )
aS,A [∀S]⇒ A [a/∀S]

(R∃)
aS,A [∀S]⇒ A [∃S/∀S]

(Ins)
A [∀S]⇒ A [∃S/∀S]

Moreover, it allows for the derivation of a theorem

Theorem 69 ⇒ (∃S)S
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CHAPTER 3. PROOF-THEORETIC ANALYSIS OF QUARC

Proof.

aS ⇒ aS aS ⇒ aS
aS ⇒ (∃S)S

(Ins)
⇒ (∃S)S

However, this rule will not allow the derivation of the problematic sequent
‘⇒ aM ’ from the proof of Theorem 67, since the following is not a permissible
application of this rule:

aM ⇒ aM *(Ins)⇒ aM

So, this sequent calculus is, at least prima facie, powerful enough, without
being too powerful. We now formalize this result.

3.7.2 Deductive Equivalence

Theorem 70 Quarc3 and LK-Quarc3 are deductively equivalent.

Proof. In addition to the proof of Lemma 36, we need to show that

1. (Ins) Assume (i) (t)S ∧ Γ ⇒ ∆ and (ii) Γ and ∆ do not contain t. We
need to show that Γ ` ∆.

1 (1) Γ Premise
2 (2) (t)S Premise

(3) (∀S)S UI, 2, 2
4 (4) (t)S Premise
5 (5) (t)S Premise

1,4 (6) (t)S ∧ Γ ∧I, 1, 4
1,4 (7) ∆ by (i)

1 (8) ∆ Ins, 3, 4, 5, 7 given (ii)

Note that the justification of Instantial Import in line (8) could use the
line (2) twice instead of the lines (4) and (5), and this slightly longer proof
is presented for clarity.

In addition to the proof of Lemma 37 we need to construct a corresponding
segment of a derivation for the Instantial Import rule of Quarc3.

1. (Ins) The Instantial Import rule has the following form:

L1 (i) A [qP ]
j (j) (t)P Premise
k (k) A [t/qP ] Premise
L2 (l) B

L1 ∪ L2 − {j, k} (m) B Ins, i, j, k, l

where L1 and A do not contain the singular argument t, and in L2 the
only occurrences of t are in (j) and (k).
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CHAPTER 3. PROOF-THEORETIC ANALYSIS OF QUARC

Since we have already demonstrated Lemma 37 for the particular quanti-
fier, we need to concern ourselves only with the cases where q stands for
the universal quantifier ∀. The corresponding segment of that derivation
is as follows (let L2∗ be the list L2 with (j) and (k) omitted – it thus
contains no singular argument t):

(i) L1 ⇒ A [∀P ]

(Lemma 38)
A [∀P ] , tP ⇒ A [t/∀P ] (l) A [t/∀P ] , tP, L2∗ ⇒ B

(Cut)
A [∀P ] , tP, tP, L2∗ ⇒ B

A [∀P ] , tP, L2∗ ⇒ B
(Cut)

L1, tP, L2∗ ⇒ B
(LP )

tP, L1, L2∗ ⇒ B
(Ins)

L1, L2∗ ⇒ B

Since neither L1, L2∗ nor B contain the singular argument t, this is an
appropriate use of the Ins rule of LK-Quarc3. Of course, for this segment
to have the appropriate form of using all the steps listed in the justification
in Quarc, the segment above the application of Lemma 38 should have the
following form:

(j) tP ⇒ tP

(Lemma 38)
A [∀P ] , tP ⇒ A [t/∀P ]

(LP )
tP,A [∀P ]⇒ A [t/∀P ]

(Cut)
tP,A [∀P ]⇒ A [t/∀P ] (k) A [t/∀P ]⇒ A [t/∀P ]

(Cut)
tP,A [∀P ]⇒ A [t/∀P ]

(LP )
A [∀P ] , tP ⇒ A [t/∀P ]

However, since steps (j) and (k) are always premises, the above segment
will suffice on its own.

3.7.3 Cut Elimination

Here we need to check only the cases where ρ > 2. Let the right rank be greater
than 1. So, the application of the Mix rule will be:

Γ⇒ Θ
Ψ⇒ ∆ (Ins)
Π⇒ ∆ (Mix)

Γ,Π∗ ⇒ Θ∗,∆

(suppose the Mix formula A is not in Γ). Then this transforms into (re-
designating the SA if it occurs in Γ or Θ):

Γ⇒ Θ Ψ⇒ ∆
Γ,Ψ∗ ⇒ Θ∗,∆

(some LP )
Ψ∗,Γ⇒ Θ∗,∆

(Ins)
Π∗,Γ⇒ Θ∗,∆

(some LP )
Γ,Π∗ ⇒ Θ∗,∆

Since the right rank was reduced by 1, while the left remains the same, the
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CHAPTER 3. PROOF-THEORETIC ANALYSIS OF QUARC

rank of the resulting Mix rule is one less and, by inductive hypothesis, it can be
eliminated. Similarly when the left rank is greater than 1.

3.7.4 Subformula Property

The reasoning here runs in parallel to Theorem 55:

Theorem 71 Any formula appearing in any Cut-free proof of LK-Quarc
3

is a
subformula of some formula in its endsequent or a basic formula.

Proof. We only need to expand the proof of Theorem 50 with the case for
Ins. However, it only removes basic formulas. Therefore, Theorem 71 holds.

And consistency follows:

Corollary 72 LK-Quarc3 is consistent.

Proof. Same as Corollary 56.

3.8 Concluding remarks

In this chapter we have provided a concise proof-theoretic study of Quarc within
LK-systems. An obvious next step would naturally be completeness which fol-
lows from the deductive equivalences [Pavlovic and Ben-Yami, 2013]. More-
over, there is also a more direct way of establishing this important theorem,
by adopting a proof of completeness that is typical for sequent calculi [Schütte,
1960], [Buss, 1998].

Topics for further research include an interpolation theorem for the various
LK-Quarc systems covered in the next chapter; thereby we could also examine
Beth’s definability theorem, an investigation left for the future. On a more
philosophical side, Quarc enriched by modalities – as suggested by [Ben-Yami,
2014] – and correspondingly with its expansion of expressive power, provides
ample opportunity for exploration. Some initial examination of the possibilities
is conducted in Chapter 5.
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Chapter 4

Interpolation Theorem for
LK-Quarc

In this chapter we aim to prove the Craig interpolation property, first proved
in [Craig, 1957], for LK-Quarc. The proof uses some elements of the proof
in [Boolos et al., 2007], but is primarily an adaptation of Maehara’s method
[Maehara, 1960], as found in [Ono, 1998]:

Definition 73 (Craig Interpolation Property) LK-Quarc has the interpolation
property just in case that, if a formula A ⇒ C is derivable in LK-Quarc, then
there is a formula B such that A⇒ B, B ⇒ C are derivable in LK-Quarc and
V (B) ⊆ V (A) ∩ V (C) if V (A) ∩ V (C) 6= ∅, and otherwise either ⇒ ¬A or ⇒ C
is derivable (where V (A) is a set of all the non-logical predicate constants in A).

We first expand the language of Quarc with the (logical) predicate τ1 and
constants > and ⊥, and the system LK-Quarc with the corresponding initial
sequents, to obtain the system LK-Quarc◦

⇒ > ⊥ ⇒ and ⇒ aτ

It is easy to check that this expanded system still has the cut elimination and
all the associated properties. To prove that LK-Quarc◦ has the Interpolation
property, we will prove the following Theorem:

Theorem 74 If Γ ⇒ ∆ is derivable in LK-Quarc◦ and 〈(Γ1 : ∆1); (Γ2 : ∆2)〉
is any partition of Γ,∆, then there is a formula C such that Γ1 ⇒ ∆1, C,
C,Γ2 ⇒ ∆2 and V (C) ⊆ V (Γ1,∆1) ∩ V (Γ2,∆2).

If Theorem 74 holds, and we can eliminate the constants and the predicate
τ , then taking Γ as Γ1, with ∆1 empty, and ∆ as ∆2, with Γ2 empty, LK-Quarc
has the Interpolation property.

In the proof below, for any sequent Γ⇒ ∆, we take some cut-free derivation
of it, δ.

Proof. By induction on the length n of derivation δ.

1Intuitively this predicate can be read as “thing” (cf. [Lanzet and Ben-Yami, 2004]).
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CHAPTER 4. INTERPOLATION THEOREM FOR LK-QUARC

4.1 Initial

If the length of the derivation is 1, then Γ⇒ ∆ is an initial sequent A⇒ A. The
partitions to be considered here are 〈(A : A); (:)〉 , 〈(:); (A : A)〉, 〈(A :); (: A)〉
and 〈(: A); (A :)〉.

4.1.1 〈(A : A); (:)〉
The interpolant here is ⊥:

A⇒ A
A⇒ A,⊥ and ⊥ ⇒

and V (⊥) = ∅, so therefore V (⊥) ⊆ ∅ ∩ V (A,A).

4.1.2 〈(:); (A : A)〉
The interpolant here is >:

⇒ > and
A⇒ A
>, A⇒ A

and V (>) = ∅, so therefore V (>) ⊆ V (A,A) ∩ ∅.

4.1.3 〈(A :); (: A)〉 and 〈(: A); (A :)〉
In the first case the interpolant is A, since A ⇒ A holds, and V (A) = V (A) ∩
V (A). In the second case the interpolant is ¬A, since ⇒ A,¬A and A,¬A ⇒
hold and V (¬A) = V (A) ∩ V (A)

Proceeding to the inductive step, we will examine the rule used in the last
inference of δ. We start with the rules for the universal quantifier.

4.2 Universal

We inspect the rules for the universal quantifier starting with the easier case of
L∀.

4.2.1 L∀
The rule has the following form:

A [a/∀M ] ,Γ⇒ ∆ Γ⇒ ∆, aM

A [∀M ] ,Γ⇒ ∆

So, by inductive hypothesis, there is a C (for any partition 〈(Γ1 : ∆1); (Γ2 :
∆2)〉 of Γ,∆, same in all the cases below) such that

1. A [a/∀M ] ,Γ1 ⇒ ∆1, C

2. C,Γ2 ⇒ ∆2
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CHAPTER 4. INTERPOLATION THEOREM FOR LK-QUARC

3. V (C) ⊆ V (A [a/∀M ] ,Γ1,∆1) ∩ V (Γ2,∆2)

and moreover, there is a D such that

4. Γ1 ⇒ ∆1, aM,D

5. D,Γ2 ⇒ ∆2

6. V (D) ⊆ V (Γ1,∆1, aM) ∩ V (Γ2,∆2)

We want to show that there is a formula K, such that:

(a) A [∀M ] ,Γ1 ⇒ ∆1,K

(b) K,Γ2 ⇒ ∆2

and

(c) V (K) ⊆ V (A [∀M ] ,Γ1,∆1) ∩ V (Γ2,∆2)

Such a formula is C ∨D.

Proof. (a)

A [a/∀M ] ,Γ1 ⇒ ∆1, C

A [a/∀M ] ,Γ1 ⇒ ∆1, C ∨D

Γ1 ⇒ ∆1, aM,D

Γ1 ⇒ ∆1, aM,C ∨D
Γ1 ⇒ ∆1, C ∨D, aM

A [∀M ] ,Γ1 ⇒ ∆1, C ∨D

Proof. (b)

C,Γ2 ⇒ ∆2 D,Γ2 ⇒ ∆2

C ∨D,Γ2 ⇒ ∆2

Proof. (c)

Clearly, V (C ∨D) = V (C) ∪ V (D).
Since by inductive hypothesis (3) V (C) ⊆ V (A [a/∀M ] ,Γ1,∆1)∩ V (Γ2,∆2)

and V (A [a/∀M ] ,Γ1,∆1) ∩ V (Γ2,∆2) ⊆ V (A [∀M ] ,Γ1,∆1) ∩ V (Γ2,∆2) given
that the formula A [∀M ] is identical to A [a/∀M ] except for containing the quan-
tified argument ∀M , it follows that V (C) ⊆ V (A [∀M ] ,Γ1,∆1) ∩ V (Γ2,∆2).

Likewise, since by inductive hypothesis (6) V (D) ⊆ V (Γ1,∆1, aM)∩V (Γ2,∆2)
and V (Γ1,∆1, aM)∩V (Γ2,∆2) ⊆ V (A [∀M ] ,Γ1,∆1)∩V (Γ2,∆2) it follows that
V (D) ⊆ V (A [∀M ] ,Γ1,∆1) ∩ V (Γ2,∆2).

Therefore, V (C ∨D) ⊆ V (A [∀M ] ,Γ1,∆1) ∩ V (Γ2,∆2)

Mutatis mutandis for partition 〈(Γ1 : ∆1); (A [∀M ] ,Γ2 : ∆2)〉 with the inter-
polant formula C ∧D.

4.2.2 R∀
We now move to the rule R∀, which has the following form:

aM,Γ⇒ ∆, A [a/∀M ]

Γ⇒ ∆, A [∀M ]
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Where Γ, ∆ and A [∀M ] do not contain a.

By inductive hypothesis, there is a C such that

1. aM,Γ1 ⇒ ∆1, A [a/∀M ] , C

2. C,Γ2 ⇒ ∆2

3. V (C) ⊆ V (aM,Γ1,∆1, A [a/∀M ]) ∩ V (Γ2,∆2)

We want to show that there is a formula K, such that:

(a) Γ1 ⇒ ∆1, A [∀M ] ,K

(b) K,Γ2 ⇒ ∆2

and

(c) V (K) ⊆ V (Γ1,∆1, A [∀M ]) ∩ V (Γ2,∆2)

Case 75 If C does not contain a, such a formula is C.

Proof. (a)

aM,Γ1 ⇒ ∆1, A [a/∀M ] , C

aM,Γ1 ⇒ ∆1, C,A [a/∀M ]
R∀

Γ1 ⇒ ∆1, C,A [∀M ]

Γ1 ⇒ ∆1, A [∀M ] , C

Proof. (b) Trivial

Proof. (c) Clearly, V (aM,Γ1,∆1, A [a/∀M ]) = V (Γ1,∆1, A [∀M ]). There-
fore, V (C) ⊆ V (Γ1,∆1, A [∀M ]) ∩ V (Γ2,∆2)

Case 76 However, if C contains the SA a (labeled as C [a]), the application of
R∀ in proof (a) will not be permissible. In that case we move to the following,
replacing C with (∃τα)τ ∧ C [α/a1...α/an]:

Proof. (a)

⇒ aτ
aM,Γ1 ⇒ ∆1, A [a/∀M ] , aτ

⇒ aτ
aM,Γ1 ⇒ ∆1, A [a/∀M ] , aτ aM,Γ1 ⇒ ∆1, A [a/∀M ] , C [a]

aM,Γ1 ⇒ ∆1, A [a/∀M ] , aτ ∧ C [a]

aM,Γ1 ⇒ ∆1, A [a/∀M ] , aατ ∧ C [α/a1...α/an]

aM,Γ1 ⇒ ∆1, A [a/∀M ] , (∃τα)τ ∧ C [α/a1...α/an]

Γ1 ⇒ ∆1, A [∀M ] , (∃τα)τ ∧ C [α/a1...α/an]

Proof. (b)
C [a] ,Γ2 ⇒ ∆2

aτ ∧ C [a] ,Γ2 ⇒ ∆2

aατ ∧ C [α/a1...α/an] ,Γ2 ⇒ ∆2

aτ, aατ ∧ C [α/a1...α/an] ,Γ2 ⇒ ∆2

(∃τα)τ ∧ C [α/a1...α/an] ,Γ2 ⇒ ∆2

Proof. (c) Since τ is a logical predicate, V ((∃τα)τ ∧ C [α/a1...α/an]) =
V (C [a]), and thus the proof is the same as Case 75.
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Mutatis mutandis for partition 〈(Γ1 : ∆1); (Γ2 : ∆2, (A [∀M ])〉 with the in-
terpolant C for Case 75 and (∀τα)τ ∧ C [α/a1...α/an] for Case 76.

4.3 Particular

We now move on to inspecting the particular quantifier, once again starting
with the easier case, this time, of R∃.

4.3.1 R∃
This rule has the following form:

Γ⇒ ∆, aM Γ⇒ ∆, A [a/∃M ]

Γ⇒ ∆, A [∃M ]

So, by inductive hypothesis, there is a C such that

1. Γ1 ⇒ ∆1, C

2. C,Γ2 ⇒ ∆2, aM

3. V (C) ⊆ V (Γ1,∆1) ∩ V (Γ2,∆2, aM)

and moreover, there is a D such that

4. Γ1 ⇒ ∆1, D

5. D,Γ2 ⇒ ∆2, A [a/∃M ]

6. V (D) ⊆ V (Γ1,∆1) ∩ V (Γ2,∆2, A [a/∃M ])

We want to show that there is a formula K, such that:

(a) Γ1 ⇒ ∆1,K

(b) K,Γ2 ⇒ ∆2, A [∃M ]

and

(c) V (K) ⊆ V (Γ1,∆1) ∩ V (Γ2,∆2, A [∃M ])

Such a formula is C ∧D.

Proof. (a)

Γ1 ⇒ ∆1, C Γ1 ⇒ ∆1, D

Γ1 ⇒ ∆1, C ∧D

Proof. (b)

C,Γ2 ⇒ ∆2, aM

C ∧D,Γ2 ⇒ ∆2, aM

D,Γ2 ⇒ ∆2, A [a/∃M ]

C ∧D,Γ2 ⇒ ∆2, A [a/∃M ]

C ∧D,Γ2 ⇒ ∆2, A [∃M ]
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Proof. (c)

Clearly, V (C ∧D) = V (C) ∪ V (D).
Since by inductive hypothesis (3) V (C) ⊆ V (Γ1,∆1) ∩ V (Γ2,∆2, aM) and

V (Γ1,∆1) ∩ V (Γ2,∆2, aM) ⊆ V (Γ1,∆1) ∩ V (Γ2,∆2, A [∃M ]), it follows that
V (C) ⊆ V (Γ1,∆1) ∩ V (Γ2,∆2, A [∃M ]).

Likewise, since by inductive hypothesis (6) V (D) ⊆ V (Γ1,∆1)∩V (Γ2,∆2, A [a/∃M ])
and V (Γ1,∆1)∩V (Γ2,∆2, A [a/∃M ]) ⊆ V (Γ1,∆1)∩V (Γ2,∆2, A [∃M ]) it follows
that V (D) ⊆ V (Γ1,∆1) ∩ V (Γ2,∆2, , A [∃M ]).

Therefore, V (C ∧D) ⊆ V (A [∀M ] ,Γ1,∆1) ∩ V (Γ2,∆2)

Mutatis mutandis for partition 〈(Γ1 : ∆1, A [∃M ]); (Γ2 : ∆2)〉 with the inter-
polant C ∨D.

4.3.2 L∃
This rule has the following form:

aM,A [a/∃M ] ,Γ⇒ ∆

A [∃M ] ,Γ⇒ ∆

Where Γ, ∆ and A [∃M ] do not contain a.

By inductive hypothesis, there is a C such that

1. aM,A [a/∃M ] ,Γ1 ⇒ ∆1, C

2. C,Γ2 ⇒ ∆2

3. V (C) ⊆ V (aM,A [a/∃M ] ,Γ1,∆1) ∩ V (Γ2,∆2)

We want to show that there is a formula K, such that:

(a) A [∃M ] ,Γ1 ⇒ ∆1,K

(b) K,Γ2 ⇒ ∆2

and

(c) V (K) ⊆ V (A [∃M ] ,Γ1,∆1) ∩ V (Γ2,∆2)

Case 77 If C does not contain a, such a formula is C.

Proof. (a)

aM,A [a/∃M ] ,Γ1 ⇒ ∆1, C
L∃

A [∃M ] ,Γ1 ⇒ ∆1, C

Proof. (b) Trivial

Proof. (c)
Since V (aM,A [a/∃M ] ,Γ1,∆1)∩V (Γ2,∆2) = V (A [∃M ] ,Γ1,∆1)∩V (Γ2,∆2),

it follows from inductive hypothesis (3) that V (C) ⊆ V (A [∃M ] ,Γ1,∆1) ∩
V (Γ2,∆2).
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Case 78 Of course, the application of the rule L∃ in Proof (a) will not be
permissible if C contains a. In that case we move to the following, replacing C
with ∃τα ∧ C [α/a1 . . . α/an]:

Proof. (a)

⇒ aτ
aM,A [a/∃M ] ,Γ1 ⇒ ∆1, aτ

⇒ aτ
aM,A [a/∃M ] ,Γ1 ⇒ ∆1, aτ aM,A [a/∃M ] ,Γ1 ⇒ ∆1, C [a]

aM,A [a/∃M ] ,Γ1 ⇒ ∆1, aτ ∧ C [a]

aM,A [a/∃M ] ,Γ1 ⇒ ∆1, aτα ∧ C [α/a1 . . . α/an]

aM,A [a/∃M ] ,Γ1 ⇒ ∆1,∃τα ∧ C [α/a1 . . . α/an]

A [∃M ] ,Γ1 ⇒ ∆1,∃τα ∧ C [α/a1 . . . α/an]

Proof. (b)

C [a] ,Γ2 ⇒ ∆2

aτ ∧ C [a] ,Γ2 ⇒ ∆2

aατ ∧ C [α/a1 . . . α/an] ,Γ2 ⇒ ∆2

aτ, aατ ∧ C [α/a1 . . . α/an] ,Γ2 ⇒ ∆2

(∃τ)ατ ∧ C [α/a1 . . . α/an] ,Γ2 ⇒ ∆2

Proof. (c) Since τ is a logical predicate, V ((∃τα)τ ∧ C [α/a1...α/an]) =
V (C [a]), and thus the proof is the same as Case 77.

Mutatis mutandis for partition 〈(Γ1 : ∆1); (Γ2, (A [∃M ] : ∆2)〉 with the in-
terpolant C for Case 77 and (∀τα)τ ∧ C [α/a1...α/an] for Case 78.

4.4 Special Rules

Next, we inspect the special rules of Quarc, starting with Anaphora.

4.4.1 Anaphora

The rules for anaphora have the following form:

A [. . . a1 . . . an . . .] ,Γ⇒ ∆
LA

A [. . . aα/a1 . . . α/an . . .] ,Γ⇒ ∆

Γ⇒ ∆, A [. . . a1 . . . an . . .]
RA

Γ⇒ ∆, A [. . . aα/a1 . . . α/an . . .]

Starting with LA, by inductive hypothesis there is a C such that

1. A [. . . a1 . . . an . . .] ,Γ1 ⇒ ∆1, C

2. C,Γ2 ⇒ ∆2

and

3. V (C) ⊆ V (A [. . . a1 . . . an . . .] ,Γ1,∆1) ∩ V (Γ2,∆2)

We want to show there is a formula K such that

(a) A [. . . aα/a1 . . . α/an . . .] ,Γ1 ⇒ ∆1,K
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(b) K,Γ2 ⇒ ∆2

and

(c) V (K) ⊆ V (A [. . . aα/a1 . . . α/an . . .] ,Γ1,∆1) ∩ V (Γ2,∆2)

Such a formula is C.

Proof. (a)

A [. . . a1 . . . an . . .] ,Γ1 ⇒ ∆1, C

A [. . . aα/a1 . . . α/an . . .] ,Γ1 ⇒ ∆1, C

Proof. (b) Trivial

Proof. (c) Since V (A [. . . a1 . . . an . . .] ,Γ1,∆1) = V (A [. . . aα/a1 . . . α/an . . .] ,Γ1,∆1),
it follows from V (C) ⊆ V (A [. . . a1 . . . an . . .] ,Γ1,∆1) ∩ V (Γ2,∆2) that V (C) ⊆
V (A [. . . aα/a1 . . . α/an . . .] ,Γ1,∆1) ∩ V (Γ2,∆2).

Mutatis mutandis for the partition 〈(Γ1 : ∆1); (A [. . . aα/a1 . . . α/an . . .] ,Γ2 :
∆2)〉 and similarly for the rule RA.

4.4.2 Reorder

An important thing to note with the Reorder rules is that here we will treat them
as logical operations on predicates, and not independent predicates (remember
that we, correspondingly, treated them as increasing grade of a formula for the
purposes of the cut elimination theorem).

The rules for reorder have the following form:

(t1 . . . tn)R,Γ⇒ ∆
LRd

(tπ1 . . . tπn)Rπ,Γ⇒ ∆

Γ⇒ ∆, (t1 . . . tn)R
RRd

Γ⇒ ∆, (tπ1 . . . tπn)Rπ

Starting with LRd, by inductive hypothesis there is a C such that

1. (t1 . . . tn)R,Γ1 ⇒ ∆1, C

2. C,Γ2 ⇒ ∆2

and

3. V (C) ⊆ V ((t1 . . . tn)R,Γ1,∆1) ∩ V (Γ2,∆2)

We want to show there is a formula K such that

(a) (tπ1 . . . tπn)Rπ,Γ1 ⇒ ∆1,K

(b) K,Γ2 ⇒ ∆2

and

(c) V (K) ⊆ V ((tπ1 . . . tπn)Rπ,Γ1,∆1) ∩ V (Γ2,∆2)

Such a formula is C.

Proof. (a)
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(t1 . . . tn)R,Γ1 ⇒ ∆1, C

(tπ1 . . . tπn)Rπ,Γ1 ⇒ ∆1, C

Proof. (b) Trivial

Proof. (c) Since we treat reordered predicates as operations on predicates
rather than separate predicates, it follows that V ((t1 . . . tn)R,Γ1,∆1) = V ((tπ1 . . . tπn)Rπ,Γ1,∆1),
from this and V (C) ⊆ V ((t1 . . . tn)R,Γ1,∆1)∩V (Γ2,∆2) it follows that V (C) ⊆
V ((tπ1 . . . tπn)Rπ,Γ1,∆1) ∩ V (Γ2,∆2)

Mutatis mutandis for the partition 〈(Γ1 : ∆1); ((tπ1 . . . tπn)Rπ,Γ2 : ∆2)〉 and
similarly for the rule RRd.

4.4.3 Negative Predication

Since the rules LNP and RNP precisely mirror the respective rules for reorder,
they will be omitted here.

4.5 Instantiatial Import

We now move on to LK-Quarc3 and show that the inductive step holds for the
rule of Instantial Import:

aM,Γ⇒ ∆

Γ⇒ ∆

Where Γ,∆ do not contain a.

By inductive hypothesis, there is a C such that

1. aM,Γ1 ⇒ ∆1, C

2. C,Γ2 ⇒ ∆2

3. V (C) ⊆ V (aM,Γ1,∆1) ∩ V (Γ2,∆2)

And moreover, D such that

4. Γ1 ⇒ ∆1, D

5. D, aM,Γ2 ⇒ ∆2

6. V (D) ⊆ V (Γ1,∆1) ∩ V (aM,Γ2,∆2)

We want to show that there is a formula K, such that:

(a) Γ1 ⇒ ∆1,K

(b) K,Γ2 ⇒ ∆2

and

(c) V (K) ⊆ V (Γ1,∆1) ∩ V (Γ2,∆2)

There are several cases to consider here.
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Case 79 If M /∈ V (Γ2,∆2) and C does not contain a, then K is C.

Proof. (a)

aM,Γ1 ⇒ ∆1, C

Γ1 ⇒ ∆1, C

Proof. (b) Trivial

Proof. (c) Since M /∈ V (Γ2,∆2), it follows that V (aM,Γ1,∆1)∩V (Γ2,∆2) =
V (Γ1,∆1) ∩ V (Γ2,∆2), and therefore V (C) ⊆ V (Γ1,∆1) ∩ V (Γ2,∆2)

If C does contain a, then we move to the following case:

Proof. (a)

⇒ aτ
aM,Γ1 ⇒ ∆1, aτ

⇒ aτ
aM,Γ1 ⇒ ∆1, aτ aM,Γ1 ⇒ ∆1, C [a]

aM,Γ1 ⇒ ∆1, aτ ∧ C [a]

aM,Γ1 ⇒ ∆1, aατ ∧ C [α/a1 . . . α/an]

aM,Γ1 ⇒ ∆1,∃τατ ∧ C [α/a1 . . . α/an]

Γ1 ⇒ ∆1,∃τατ ∧ C [α/a1 . . . α/an]

Proof. (b)

C [a] ,Γ2 ⇒ ∆2

aτ ∧ C [a] ,Γ2 ⇒ ∆2

aατ ∧ C [α/a1 . . . α/an] ,Γ2 ⇒ ∆2

aτ, aατ ∧ C [α/a1 . . . α/an] ,Γ2 ⇒ ∆2

∃τατ ∧ C [α/a1 . . . α/an] ,Γ2 ⇒ ∆2

Proof. (c) Since M /∈ V (Γ2,∆2), same as before.

Case 80 If M ∈ V (Γ2,∆2), then K is D or ∃τατ ∧C [α/a1 . . . α/an] as in Case
79, except noting that if M ∈ V (Γ2,∆2), then V (aM,Γ2,∆2) = V (Γ2,∆2) in
Proof (c).

4.6 Identity

Finally, we examine the rules for identity - LK-Quarc2. The rules are:

a = a,Γ⇒ ∆
=1

Γ⇒ ∆

A [b] , a = b, A [a/b] ,Γ⇒ ∆
=2

a = b, A [a/b] ,Γ⇒ ∆

We first focus on the =1 rule. By inductive hypothesis, there is a C such
that

1. a = a,Γ1 ⇒ ∆1, C

2. C,Γ2 ⇒ ∆2

and

62

C
E

U
eT

D
C

ol
le

ct
io

n



CHAPTER 4. INTERPOLATION THEOREM FOR LK-QUARC

3. V (C) ⊆ V (a = a,Γ1,∆1) ∩ V (Γ2,∆2)

We want to show there is a formula K such that:

(a) Γ1 ⇒ ∆1,K

(b) K,Γ2 ⇒ ∆2

and

(c) V (K) ⊆ V (Γ1,∆1) ∩ V (Γ2,∆2)

Such a formula is C.

Proof. (a)

a = a,Γ1 ⇒ ∆1, C

Γ1 ⇒ ∆1, C

Proof. (b) Trivial.

Proof. (c) Since = is a logical predicate, V (a = a,Γ1,∆1) = V (Γ1,∆1), and
therefore V (C) ⊆ V (Γ1,∆1) ∩ V (Γ2,∆2).

We now focus on the rule =2. We need to inspect several partitions here.

Case 81 Partition 〈(a = b, A [a/b] ,Γ1 : ∆1); (Γ2 : ∆2)〉

By inductive hypothesis, there is a C such that

1. A [b] , a = b, A [a/b] ,Γ1 ⇒ ∆1, C

2. C,Γ2 ⇒ ∆2

and

3. V (C) ⊆ V (A [b] , a = b, A [a/b] ,Γ1,∆1) ∩ V (Γ2,∆2)

We want to show there is a formula K such that:

(a) a = b, A [a/b] ,Γ1 ⇒ ∆1,K

(b) K,Γ2 ⇒ ∆2

and

(c) V (K) ⊆ V (a = b, A [a/b] ,Γ1,∆1) ∩ V (Γ2,∆2)

Such a formula is C.

Proof. (a)

A [b] , a = b, A [a/b] ,Γ1 ⇒ ∆1, C

a = b, A [a/b] ,Γ1 ⇒ ∆1, C

Proof. (b) Trivial.
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Proof. (c) Since V (A [a]) = V (A [b/a]) it follows that, V (A [a] , a = b, A [a/b]) =
V (a = b, A [a/b]) and therefore V (C) ⊆ V (a = b, A [a/b] ,Γ1,∆1) ∩ V (Γ2,∆2)

Mutatis mutandis for partition 〈(Γ1 : ∆1); (a = b, A [a/b] ,Γ2 : ∆2)〉

Case 82 Partition 〈(A [a/b] ,Γ1 : ∆1); (a = b,Γ2 : ∆2)〉

By inductive hypothesis, there is a C such that

1. A [b] , A [a/b] ,Γ1 ⇒ ∆1, C

2. C, a = b,Γ2 ⇒ ∆2

and

3. V (C) ⊆ V (A [b] , A [a/b] ,Γ1,∆1) ∩ V (a = b,Γ2,∆2)

We want to show there is a formula K such that:

(a) A [a/b] ,Γ1 ⇒ ∆1,K

(b) K, a = b,Γ2 ⇒ ∆2

and

(c) V (K) ⊆ V (A [a/b] ,Γ1,∆1) ∩ V (a = b,Γ2,∆2)

Such a formula is C ∨ ¬a = b.

Proof. (a)

A [b] , A [a/b] ,Γ1 ⇒ ∆1, C

A [b] , a = b, A [a/b] ,Γ1 ⇒ ∆1, C

a = b, A [a/b] ,Γ1 ⇒ ∆1, C

A [a/b] ,Γ1 ⇒ ∆1, C,¬a = b

A [a/b] ,Γ1 ⇒ ∆1, C ∨ ¬a = b, C ∨ ¬a = b

A [a/b] ,Γ1 ⇒ ∆1, C ∨ ¬a = b

Proof. (b)

C, a = b,Γ2 ⇒ ∆2

a = b⇒ a = b
¬a = b, a = b⇒

¬a = b, a = b,Γ2 ⇒ ∆2

C ∨ ¬a = b, a = b,Γ2 ⇒ ∆2

Proof. (c) Since V (A [b]) = V (A [a/b]), it follows that V (A [b] , A [a/b] ,Γ1,∆1) =
V (A [a/b] ,Γ1,∆1). Since ”=” is a logical predicate, it follows that V (a =
b,Γ2,∆2) = V (Γ2,∆2). Therefore, it follows from V (C) ⊆ V (A [b] , A [a/b] ,Γ1,∆1)∩
V (a = b,Γ2,∆2) that V (C) ⊆ V (A [a/b] ,Γ1,∆1) ∩ V (Γ2,∆2)

Similarly for partition 〈(a = b,Γ1 : ∆1); (A [a/b] ,Γ2 : ∆2)〉

This concludes the proof of Theorem 74 and therefore, we have established
that the interpolation property holds for LK-Quarc◦. We next need to show we
can transfer that result to LK-Quarc by eliminating constants and the predicate
τ . We start with the former.
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4.7 Eliminating Constants

When an interpolant contains constants > or ⊥, we can simplify it using the
following equivalences, which we will not prove here (“≡” means “is logically
equivalent in LK-Quarc”) whenever A is a formula containing either no anaphors
or sources of anaphors, or both a source and all the anaphors it is a source of:

1. > → A ≡ A; ⊥ → A ≡ >; A→ > ≡ >; A→ ⊥ ≡ ¬A

2. > ∧A ≡ A; ⊥ ∧A ≡ ⊥

3. > ∨A ≡ >; ⊥ ∨A ≡ A

4. ¬> ≡ ⊥; ¬⊥ ≡ >

However, these transformations will not do if the formulaA contains a source,
but not all the anaphors it is a source of. E.g. ((∀Sα)P ∨ >) → (α)Q would
become > → (α)Q, which is not a formula.

In these cases we perform the previous substitutions when A is (i) a string of
symbols such that for all anaphors α1, . . . , αn, . . . , β1, . . . βm in A there is a for-
mula C[c1, . . . , cn, . . . d1, . . . , dm], such that C[α1/c1, . . . , αn/cn, . . . β1/d1 . . . βm/dm]
is a string of symbols identical to A (A differs from a formula only in containing
anaphors), or (ii) a formula, while also making sure to:

5. If an argument stops being source of any anaphors, remove source marking.

6. If a source of an anaphor is a singular argument that disappears in the
transformation, replace the leftmost anaphor by its source with a source
marking.

7. If a source of an anaphor is a quantified argument that would disappear
in the transformation, replace > with (∀S)S and ⊥ with ¬(∀S)S, where
S is the unary predicate appearing in the quantified argument.

It should be clear that, as above, we are replacing formulas with their equivalent
formulas.

After these transformations we are left with an interpolant C ′ which is either
free of constants, or a constant itself. In the first case the elimination is complete.
Let us now consider the second case.

4.7.1 Replacing Constants

If V (Γ) ∩ V (∆) 6= ∅, then, for some predicate R ∈ V (Γ) ∩ V (∆) of arity n and
some singular arguments t1 . . . tn which do not appear in Γ,∆, it holds that
> ≡ (t1 . . . tn)R → (t1 . . . tn)R, and ⊥ ≡ ¬((t1 . . . , tn)R → (t1 . . . tn)R) and
therefore the constants can be replaced by an expression not containing them.

If V (Γ) ∩ V (∆) = ∅, then either (i) Γ ⇒ ⊥ and ⊥ ⇒ ∆ or (ii) Γ ⇒ > and
> ⇒ ∆. If (i), then ⇒ ¬Γ, and if (ii) then ⇒ ∆. Therefore, either ⇒ ¬Γ or
⇒ ∆.

We have now demonstrated that the interpolation property holds of an in-
termediate system LK-Quarc†, which does not contain the constants but does
contain the predicate τ . In the following section we will make some headway
towards eliminating it.
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4.8 Eliminating τ

We now eliminate the predicate τ . The order of presentation here notwithstand-
ing, it will be obvious from the proceeding that τ needs to be eliminated prior
to the elimination of the constants if we wish to show that the interpolation
property holds for LK-Quarc. The three places where τ was used were the rules
Ins, R∀ and L∃. We will examine how to eliminate it in the first case, and offer
some thoughts how this reflects on the latter two.

Note that here we are dealing only with LK-Quarc3, since some of the pro-
cedures below will not apply to identity.

Before proceeding, we prove a lemma, beginning with introducing a defini-
tion. This is adopted from [Wansing, 1996], omitting the part containing Cut,
as here we are dealing with Cut-free derivations.

Definition 83 Two formulas are immediately connected just in case they are

1. two sides of an initial sequent

2. non-parametric in an inference (i.e. either side or principal/main formula
of the inference)

3. parametric and congruent (i.e. appearing on the same side of the sequents)
in an inference.

All immediately connected formulas are connected and the connection relation
is transitive and symmetric.

Lemma 84 If Γ1,Γ2 ⇒ ∆1,∆2 and no formula of Γ1,∆1 is connected to any
formula of Γ2,∆2, then either Γ1 ⇒ ∆1 or Γ2 ⇒ ∆2.

Proof. By induction on inference steps.

Basic step. If A ⇒ A then either A ⇒ A or (since Γ2, ∆2 are empty)
. . .⇒ . . . Holds because the first disjunct holds.

Inductive step. We want to show that for every rule of inference

Γ′1,Γ
′
2 ⇒ ∆′1,∆

′
2

Inf
Γ1,Γ2 ⇒ ∆1,∆2

if either Γ′1 ⇒ ∆′1 or Γ′2 ⇒ ∆′2, and no formula of Γ1,∆1 is connected to any
formula of Γ2,∆2, then either

Γ′1 ⇒ ∆′1
Inf

Γ1 ⇒ ∆1

or
Γ′2 ⇒ ∆′2

Inf′
Γ2 ⇒ ∆2

for rules with one upper sequent, and for the rules with two upper sequents

Γ′1,Γ
′
2 ⇒ ∆′1,∆

′
2 Γ′′1 ,Γ

′′
2 ⇒ ∆′′1 ,∆

′′
2

Inf
Γ1,Γ2 ⇒ ∆1,∆2

if either (Γ′1 ⇒ ∆′1 and Γ′′1 ⇒ ∆′′1) or (Γ′2 ⇒ ∆′2 and Γ′′2 ⇒ ∆′′2), then either
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Γ′1 ⇒ ∆′1 Γ′′1 ⇒ ∆′′1
Inf

Γ1 ⇒ ∆1

or
Γ′2 ⇒ ∆′2 Γ′′2 ⇒ ∆′′2

Inf′
Γ2 ⇒ ∆2

We will assume that the principal formula is always connected to Γ1 and ∆1.

The cases for most rules are similar, so we will only illustrate on a couple of
examples.

(LW )

Γ1,Γ2 ⇒ ∆1,∆2
LW

A,Γ1,Γ2 ⇒ ∆1,∆2

Assume Γ1 ⇒ ∆1 or Γ2 ⇒ ∆2. Then either

Γ1 ⇒ ∆1
LW

A,Γ1 ⇒ ∆1
or

Γ2 ⇒ ∆2

Γ2 ⇒ ∆2

Clearly holds. Similarly for other structural rules.

(L∧)

A,Γ1,Γ2 ⇒ ∆1,∆2
L∧

A ∧B,Γ1,Γ2 ⇒ ∆1,∆2

Assume A,Γ1 ⇒ ∆1 or Γ2 ⇒ ∆2. Then either

A,Γ1 ⇒ ∆1
L∧

A ∧B,Γ1 ⇒ ∆1
or

Γ2 ⇒ ∆2

Γ2 ⇒ ∆2

Clearly holds. Similarly for other one-sequent rules.

(R∧)

Γ1,Γ2 ⇒ ∆1,∆2, A Γ1,Γ2 ⇒ ∆1,∆2, B
R∧

Γ1,Γ2 ⇒ ∆1,∆2, A ∧B

Assume that either Γ1 ⇒ ∆1, A and Γ1 ⇒ ∆1, B (note that if A were
connected to Γ1,∆1, but B to Γ2,∆2 then, contrary to our assumption, Γ1,∆1

and Γ2,∆2 would be connected), or Γ2 ⇒ ∆2. Then either

Γ1 ⇒ ∆1, A Γ1 ⇒ ∆1, B
R∧

Γ1 ⇒ ∆1, A ∧B
or

Γ2 ⇒ ∆2 Γ2 ⇒ ∆2

Γ2 ⇒ ∆2

Clearly holds. Similarly for other two-sequent rules. This concludes the
proof of Lemma 84.

4.8.1 Instantiation

We now move on to elimination of the predicate τ for the case of Ins:

aM,Γ⇒ ∆
(Ins)*

Γ⇒ ∆
* - where neither Γ nor ∆ contain the singular argument a.
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By inductive hypothesis, there are C and D such that

1. aM,Γ1 ⇒ ∆1, C

2. C,Γ2 ⇒ ∆2

3. V (C) ⊆ V (aM,Γ1,∆1) ∩ V (Γ2,∆2)

and

4. Γ1 ⇒ ∆1, D

5. D, aM,Γ2 ⇒ ∆2

6. V (D) ⊆ V (Γ1,∆1) ∩ V (aM,Γ2,∆2)

if either of those do not contain a, the problem of eliminating τ does not
arise, so assume both contain a (marked as C [a] and D [a]). There are
multiple possibilities here:

(a) M ∈ V (Γ1,∆1) and M ∈ V (Γ2,∆2)

Whenever M is both in V (Γ1,∆1) and V (Γ2,∆2) , we can quantify
over C:

aM ⇒ aM
aM,Γ1 ⇒ ∆1, aM aM,Γ1 ⇒ ∆1, C [a]

aM,Γ1 ⇒ ∆1, aM ∧ C [a]

aM,Γ1 ⇒ ∆1, aαM ∧ C [α/a1 . . . α/an]

Γ1 ⇒ ∆1,∀MαM ∧ C [α/a1 . . . α/an]

C [a] ,Γ2 ⇒ ∆2

aM ∧ C [a] ,Γ2 ⇒ ∆2

aM ∧ C [a] , aM,Γ2 ⇒ ∆2

aαM ∧ C [α/a1 . . . α/an] , aM,Γ2 ⇒ ∆2

aM ⇒ aM
aM,Γ2 ⇒ ∆2, aM

L∀∀MαM ∧ C [α/a1 . . . α/an] , aM,Γ2 ⇒ ∆2

aM, ∀MαM ∧ C [α/a1 . . . α/an] ,Γ2 ⇒ ∆2
Ins∀MαM ∧ C [α/a1 . . . α/an] ,Γ2 ⇒ ∆2

Moreover, since M ∈ V (Γ1,∆1), V (aM,Γ1,∆1) = V (Γ1,∆1), and
therefore V (C) ⊆ V (Γ1,∆1) ∩ V (Γ2,∆2). Similar proof is available
for D. Now assume either M /∈ V (Γ1,∆1) or M /∈ V (Γ2,∆2)

(b) M /∈ V (C) and M /∈ V (D)

From M /∈ V (Γ1,∆1) and M /∈ V (C) it follows by subformula prop-
erty that aM in aM,Γ1 ⇒ ∆1, C was introduced by LW , and from
there and the fact it is a basic formula it follows by Definition 83
that it is not connected to anything. Therefore, by Lemma 84 (and
since aM ⇒ does not hold), it follows that Γ1 ⇒ ∆1, C. Moreover,
since M /∈ V (C), V (C) ⊆ V (Γ1,∆1) ∩ V (Γ2,∆2). A similar proof is
available for D and M /∈ V (Γ2,∆2).
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Let us take an overview of the cases covered and solved so far. Here ‘+’
indicates ∈ and ‘-’ indicates /∈. That the solution is imp(ossible) indicates that
it violates some inductive hypotheses. For example, in line (2), we have a
situation where V (C) contains M , but V (Γ2,∆2) does not, which contradicts
inductive hypothesis 3.

M ∈ V (C) M ∈ V (D) M ∈ V (Γ1,∆1) M ∈ V (Γ2,∆2) Solution
1 + + + + a
2 + + + - imp
3 + + - + imp
4 + + - - imp
5 + - + + a
6 + - + - imp
7 + - - + ?
8 + - - - imp
9 - + + + a
10 - + + - ?
11 - + - + imp
12 - + - - imp
13 - - + + a,b
14 - - + - b
15 - - - + b
16 - - - - b

Of course, this table is only the top quarter of the full table that also takes
into consideration whether C and D contain a (remember we assumed they
do because otherwise the solution is covered by Case 79 and 80). This clearly
illustrates the complexity of the problem.

In light of this, in order to further approximate the solution in the remainder
of this section we will consider some further options for τ elimination, but
exploring whether they are exhaustive is left for future work. We will examine
the case in row 7, but 10 is similar.

Further Possibilities

If in inductive hypothesis (5), D and aM are not connected, then by Lemma
84, either

(i) D,Γ′2 ⇒ ∆′2 or (ii) aM,Γ′′2 ⇒ ∆′′2

If (i), then and if (ii), then

D,Γ′2 ⇒ ∆′2 LW , RW
D,Γ2 ⇒ ∆2

aM,Γ′′2 ⇒ ∆′′2
Ins

Γ′′2 ⇒ ∆′′2 LW , RW
D,Γ2 ⇒ ∆2

Moreover, since M /∈ V (Γ1,∆1), V (Γ1,∆1) ∩ V (Γ2,∆2) = V (Γ1,∆1) ∩
V (aM,Γ2,∆2) and therefore V (D) ⊆ V (Γ1,∆1) ∩ V (Γ2,∆2).

Alternatively, given Γ′′2 ⇒ ∆′′2 we can derive
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⇒ > LW , RW
Γ1 ⇒ ∆1,>

and
Γ′′2 ⇒ ∆′′2 LW , RW>,Γ2 ⇒ ∆2

Obviously, V (>) ⊆ V (Γ1,∆1) ∩ V (Γ2,∆2).

Furthermore, if D is not connected to some Γ′′1 ,∆
′′
1 in inductive hypothesis

(4), then either

(iii) Γ′1 ⇒ ∆′1, D or (iv) Γ′′1 ⇒ ∆′′1

and if (iv), then

Γ′′1 ⇒ ∆′′1
Γ1 ⇒ ∆1,⊥

and
⊥ ⇒

⊥, aM,Γ2 ⇒ ∆2

As above, V (⊥) ⊆ V (Γ1,∆1) ∩ V (Γ2,∆2).

This can be further strengthened by ”severing” connections in the inductive
hypotheses. We first re-designate the entire derivation, leaving a intact, and
then apply the following procedure.

Definition 85 (Maximization Procedure)
We start with the topmost leftmost instance of an inference, except weaken-

ing and initial sequents, where a-formula is non-parametric. If any occurrence
of a congruent formula in the upper sequent(s) of the rule was introduced via
weakening rules, then the inference is transformed in one of the following ways,
depending on the rule used.

(L∧)
A [a] ,Γ⇒ ∆

A [a] ∧B,Γ⇒ ∆
is transformed into

Γ⇒ ∆
LW

A [a] ∧B,Γ⇒ ∆

Since A is introduced via (left) weakening and then parametric down to this
inference, there is a previous inference in the derivation

Γ′ ⇒ ∆′

A,Γ′ ⇒ ∆′

Moreover, since A is parametric in any interceding line, it follows (by remov-
ing A in those lines) that

Γ′ ⇒ ∆′

Γ⇒ ∆

Therefore, the derivation above the sequent Γ ⇒ ∆ is correct. Likewise,
the derivation below the sequent A [a] ∧ B,Γ ⇒ ∆ is correct because nothing
there has changed, and the rule of inference is used correctly. Therefore, this
is a correct derivation. Similarly for other one sequent rules. Note that due to
re-designation, a-formulas are only principal in R∀ or L∃ if the proper singular
argument is some other SA c.

Then, the following transformation occurs:

cS,A [c/∃S] [a] ,Γ⇒ ∆

A [∃S] [a] ,Γ⇒ ∆
is transformed into

cS,Γ⇒ ∆
Ins

Γ⇒ ∆
LW

A [∃S] [a] ,Γ⇒ ∆
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And similarly for R∀.

(R∧)

If A [a] is introduced via weakening, then

Γ⇒ ∆, A [a] Γ⇒ ∆, B

Γ⇒ ∆, A [a] ∧B
is transformed into

Γ⇒ ∆
RW

Γ⇒ ∆, A [a] ∧B

And same for B [a]. Applying the same considerations as above, we can show
this is a correct derivation. Similarly for other two sequent derivations.

Obviously, any time the same sequent occurs multiple times in the same
branch, the lowest occurrence can be substituted for the highest one, keeping
the proof above the latter intact.

We apply this procedure repeatedly to a derivation. Since the procedure
either pushes an instance of weakening lower into a derivation or removes it
completely, and does not extend the derivation below that weakening, it will
terminate in a finite number of steps.

This procedure will maximize the complexity of a-formulas introduced via
weakening, thereby reducing the need for them to be non-parametric in instances
of rules, and consequently reducing the number of formulas they are connected
to.

Consider an example:

Example 86

C ⇒ C
C,B ⇒ C

B ⇒ B
B ⇒ C,B

B → C,B ⇒ C

B → C,B ⇒ C,A [a]

B,B → C ⇒ C,A [a]

C4 ⇒ C3

C,¬C ⇒
C ⇒ ¬¬C
B,C ⇒ ¬¬C
C,B ⇒ C,¬¬C

B ⇒ B
B ⇒ C,¬¬C,B

B,B → C5 ⇒ C,¬¬C2

B,B → C ⇒ C,¬¬C ∨ ¬C
B,B → C6 ⇒ C,A [a] ∧ (¬¬C ∨ ¬C)1

Where the formula labeled 1 is connected to the one labeled 2 etc. and by
transitivity, formula 1 is connected to formula 6. This is transformed (in two
steps) into

C ⇒ C
C,B ⇒ C

B ⇒ B
B ⇒ C,B

B → C,B ⇒ C

B,B → C ⇒ C

B,B → C ⇒ C,A [a] ∧ (¬¬C ∨ ¬C)1

Where formula 1 is no longer connected to any other formula, and therefore
by Lemma 84 it follows that either B,B → C ⇒ C, in which case ⊥ is an
acceptable interpolant (as in (iv) above), or ⇒ A [a] ∧ (¬¬C ∨ ¬C), in which
case > is an acceptable interpolant (as in (ii) above).

As noted at the beginning of this section, this procedure will not work for
LK-Quarc2, since it does not apply to identity rules. Consider the following
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example:

Example 87

bS ⇒ bS LW , LP
bS, a = b, aS ⇒ bS

=2
a = b, aS ⇒ bS

Both a = b and aS are introduced via weakening, but transplacing the
weakening and the rule will not work here:

bS ⇒ bS
Inf*⇒ bS

LW
a = b, aS ⇒ bS

Clearly, Inf* corresponds to no rule of LK-Quarc2.

We’ve so far dealt with cases where D [a] is, in some sense, unnecessary.
Another option is that we could have a solution using only some part of D
which does not contain a. Consider the following Lemma:

Lemma 88 If every a-formula is introduced via weakening, L∧ or R∨, by a
substitution procedure which replaces every first occurrence of an a-formula on
the left by >, and on the right by ⊥, we can, by making corresponding changes
in the rest of the proof (substituting the formula A by its replacement formula
A′ according to the rule used), produce a correct derivation Γ ⇒ ∆, A′ such
that A′ ⇒ A (or, if A′ is on the left, A⇒ A′).

Proof. By induction on the rules of LK-Quarc.

Basic step.

(LW )

Γ⇒ ∆
A [a] ,Γ⇒ ∆

is transformed into
Γ⇒ ∆
>,Γ⇒ ∆

And A [a]⇒ >

(RW )

Γ⇒ ∆
Γ⇒ ∆, A [a]

is transformed into
Γ⇒ ∆

Γ⇒ ∆,⊥

And ⊥ ⇒ A [a]

(L∧)

B,Γ⇒ ∆

A [a] ∧B,Γ⇒ ∆
is transformed into

B,Γ⇒ ∆

> ∧B,Γ⇒ ∆

And A [a] ∧B ⇒ >∧B

(L∨)

Γ⇒ ∆, B

Γ⇒ ∆, B ∨A [a]
is transformed into

Γ⇒ ∆, B

Γ⇒ ∆, B ∨ ⊥
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And B ∨ > ⇒ B ∨A

Inductive step. We first consider the cases where the replacement formula
is non-parametric.

(L∧)

A′,Γ⇒ ∆

A′ ∧B,Γ⇒ ∆
is correct, and moreover if A⇒ A′, then A ∧B ⇒ A′ ∧B.

(R∧)

Γ⇒ ∆, A′ Γ⇒ ∆, B

Γ⇒ ∆, A′ ∧B
is correct, and moreover if A′ ⇒ A, then A′ ∧B ⇒ A ∧B.

(L¬)

Γ⇒ ∆, A′

¬A′,Γ⇒ ∆
is correct, and moreover if A′ ⇒ A, then ¬A⇒ ¬A′.

Similarly for other propositional rules.

(L∀)

A [b] ,Γ⇒ ∆ Γ⇒ ∆, bS

A [∀S/b] ,Γ⇒ ∆
is transformed into

A [b]
′
,Γ⇒ ∆ Γ⇒ ∆, bS

A [∀S/b]′ ,Γ⇒ ∆

or, if A′ does not contain b,
A′,Γ⇒ ∆

A′,Γ⇒ ∆

and if A [b]⇒ A [b]
′
, then A [∀S/b]⇒ A [∀S/b]′ (or trivially, A′ ⇒ A′):

A [b]⇒ A [b]
′

bS,A [b]⇒ A [b]
′

A [b] , bS ⇒ A [b]
′

bS ⇒ bS

bS ⇒ bS,A [b]
′

bS ⇒ A [b]
′
, bS

A [∀S/b] , bS ⇒ A [b]
′

bS,A [∀S/b]⇒ A [b]
′

A [∀S/b]⇒ A [∀S/b]′

(R∀)

bS,Γ⇒ ∆, A [b]

Γ⇒ ∆, A [∀S/b]
is transformed into

bS,Γ⇒ ∆, A [b]
′

Γ⇒ ∆, A [∀S/b]′

or, if A′ does not contain b,
bS,Γ⇒ ∆, A′

Ins
Γ⇒ ∆, A′

and, if A [b]
′ ⇒ A [b], then A [∀S/b]′ ⇒ A [∀S/b] (or trivially, A′ ⇒ A′):

mutatis mutandis, as the previous rule.

(R∃)
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Γ⇒ ∆, bS Γ⇒ ∆, A [b]

Γ⇒ ∆, A [∃S/b]
is transformed into

Γ⇒ ∆, bS Γ⇒ ∆, A [b]
′

Γ⇒ ∆, A [∃S/b]′

or, if A′ does not contain b,
Γ⇒ ∆, A′

Γ⇒ ∆, A′

and, if A [b]
′ ⇒ A [b], then A [∃S/b]′ ⇒ A [∃S/b] (or trivially, A′ ⇒ A′):

bS ⇒ bS

A [b]
′
, bS ⇒ bS

bS,A [b]
′ ⇒ bS

A [b]
′ ⇒ A [b]

bS,A [b]
′ ⇒ A [b]

bS,A [b]
′ ⇒ A [∃S/b]

A [∃S/b]′ ⇒ A [∃S/b]

(L∃)

bS,A [b] ,Γ⇒ ∆

A [∃S/b] ,Γ⇒ ∆
is transformed into

bS,A [b]
′
,Γ⇒ ∆

A [∃S/b]′ ,Γ⇒ ∆

or, if A′ does not contain b,
bS,A′,Γ⇒ ∆

Ins
A′,Γ⇒ ∆

and, if A [b] ⇒ A [b]
′
, then A [∃S/b] ⇒ A [∃S/b]′ (or trivially, A′ ⇒ A′):

mutatis mutandis, as the previous rule.

Due to re-designation, any instance of Ins remains unchanged.

The case where the replacement formula is parametric in a one-sequent in-
ference is trivial. In a two sequent inference, it can occur that the congruent
formulas A are replaced by different replacement formulas A′ and A′′:

A,Γ′ ⇒ ∆′ A,Γ′′ ⇒ ∆′′

A,Γ⇒ ∆
is replaced by

A′,Γ′ ⇒ ∆′ A′′,Γ′′ ⇒ ∆′′

???,Γ⇒ ∆

In such a case the derivation is transformed in the following way:

A′,Γ′ ⇒ ∆′

A′ ∧A′′,Γ′ ⇒ ∆′
A′′,Γ′′ ⇒ ∆′′

A′ ∧A′′,Γ′′ ⇒ ∆′′

A′ ∧A′′,Γ⇒ ∆

Clearly, this is again a correct derivation, and moreover, since bothA′ andA′′

are replacement formulas of the same formula A, it holds by inductive hypothesis
that A⇒ A′ and A⇒ A′′, and therefore

A⇒ A′ A⇒ A′′

A⇒ A′ ∧A′′

Mutatis mutandis on the right with the formula A′∨A′′. This concludes the
proof of Lemma 88.

This procedure will again not work for LK-Quarc2. Coming back to Example
87, we can see that the endsequent would be (underivable) >,> ⇒ bS.

As noted at the beginning of this section, it is left for future work to deter-
mine whether these procedures give an exhaustive method of eliminating τ , or
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if indeed one exists at all.

4.8.2 Quantification

A lot of the same procedures from the previous section will apply here as well.
As an illustration, let us examine them for the case of R∀. Remember that by
inductive hypothesis, there is a C such that

1. aM,Γ1 ⇒ ∆1, A [a/∀M ] , C

2. C,Γ2 ⇒ ∆2

3. V (C) ⊆ V (aM,Γ1,∆1, A [a/∀M ]) ∩ V (Γ2,∆2)

Whenever C does not contain a, the problem of eliminating τ does not
arise, so assume it does. We can again quantify over C [a] whenever M ∈
V (Γ1,∆1, A [∀M ]) ∩ V (Γ2,∆2) (which holds just in case M ∈ V (Γ2,∆2) ):

Proof. (a)

aM ⇒ aM
aM,Γ1 ⇒ ∆1, A [a/∀M ] , aM

aM ⇒ aM
aM,Γ1 ⇒ ∆1, A [a/∀M ] , aM aM,Γ1 ⇒ ∆1, A [a/∀M ] , C [a]

aM,Γ1 ⇒ ∆1, A [a/∀M ] , aM ∧ C [a]

aM,Γ1 ⇒ ∆1, A [a/∀M ] , aαM ∧ C [α/a1 . . . α/an]

aM,Γ1 ⇒ ∆1, A [a/∀M ] ,∃MαM ∧ C [α/a1 . . . α/an]

Γ1 ⇒ ∆1, A [∀M ] ,∃MαM ∧ C [α/a1 . . . α/an]

Proof. (b)

C [a] ,Γ2 ⇒ ∆2

aM ∧ C [a] ,Γ2 ⇒ ∆2

aαM ∧ C [α/a1 . . . α/an] ,Γ2 ⇒ ∆2

aM, aαM ∧ C [α/a1 . . . α/an] ,Γ2 ⇒ ∆2

∃MαM ∧ C [α/a1 . . . α/an] ,Γ2 ⇒ ∆2

Proof. (c) Since V (aM,Γ1,∆1, A [a/∀M ]) = V (Γ1,∆1, A [∀M ]), M ∈ V (Γ2,∆2),
it follows that V (∃MαM ∧C [α/a1 . . . α/an]) ⊆ V (Γ1,∆1, A [∀M ])∩ V (Γ2,∆2).

Furthermore, whenever C [a] is connected to neither aM nor A [a/∀M ], by
Lemma 84 either

(i) Γ′1 ⇒ ∆′1, C [a] or (ii) aM,Γ′′1 ⇒ ∆′′1 , A [a/∀M ]

If (i), then by re-designation and if (ii), then

Γ′1 ⇒ ∆′1, C [b/a]

Γ1 ⇒ ∆1, A [∀M ] , C [b/a]

aM,Γ′′1 ⇒ ∆′′1 , A [a/∀M ]

Γ′′1 ⇒ ∆′′1 , A [∀M ]

Γ′′1 ⇒ ∆′′1 , A [∀M ] , C [b/a]

Γ1 ⇒ ∆1, A [∀M ] , C [b/a]

In both cases, by re-designation it also holds that C [b/a] ,Γ2 ⇒ ∆2, and
moreover it holds that V (C [a]) = V (C [b/a]), and therefore this reduces to the
case where C does not contain a.
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Another point of similarity with instantiation is that whenever there are
some Γ′1 ⊆ Γ1 and some ∆′1 ⊆ ∆1 (Γ′2 ⊆ Γ2 and ∆′2 ⊆ ∆2 ), such that Γ′1 ⇒ ∆′1
(Γ′2 ⇒ ∆′2) then C [a] is replaceable by ⊥ (>).

A separate method for eliminating a in C [a] occurs when for some unary
predicate S it holds that C [a] ⇒ aS. In the derivation of this sequent, aS is
either introduced via weakening and therefore not connected to anything, in
which case C [a] can be replaced with ⊥, or S ∈ V (C [a]). In the latter case
it holds that aM,Γ1 ⇒ ∆1, A [a/∀M ] , aS and we can once again quantify over
C [a]:

Proof. (a)

aM,Γ1 ⇒ ∆1, A [a/∀M ] , aS

aM,Γ1 ⇒ ∆1, A [a/∀M ] , aS aM,Γ1 ⇒ ∆1, A [a/∀M ] , C [a]

aM,Γ1 ⇒ ∆1, A [a/∀M ] , aS ∧ C [a]

aM,Γ1 ⇒ ∆1, A [a/∀M ] , aαS ∧ C [α/a1 . . . α/an]

aM,Γ1 ⇒ ∆1, A [a/∀M ] ,∃SαS ∧ C [α/a1 . . . α/an]

Proof. (b)

C [a] ,Γ2 ⇒ ∆2

aS ∧ C [a] ,Γ2 ⇒ ∆2

aαS ∧ C [α/a1 . . . α/an] ,Γ2 ⇒ ∆2

aS, aαS ∧ C [α/a1 . . . α/an] ,Γ2 ⇒ ∆2

∃SαS ∧ C [α/a1 . . . α/an] ,Γ2 ⇒ ∆2

Proof. (c) Since S ∈ V (C [a]), it follows that V (C [a]) = V (∃SαS∧C [α/a1 . . . α/an])
and therefore V (∃SαS ∧ C [α/a1 . . . α/an]) ⊆ V (Γ1,∆1, A [∀M ]) ∩ V (Γ2,∆2).

Finally, the inductive hypotheses can undergo the transformations in Defi-
nition 85 and Lemma 88. As above, checking whether these are exhaustive and
whether τ can be fully eliminated is left for future work.
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Chapter 5

Modal Expansion of
LK-Quarc

5.1 Introduction

In this chapter we take a closer look at the final section of [Ben-Yami, 2014], in
which Ben-Yami touches on the possibility of the modal extension of Quarc. We
will develop a corresponding system by transforming LK-Quarc into a labeled
sequent calculus, and then by expanding it with the rules for modal operators.
We will follow the outline presented in [Negri and von Plato, 2011]. The rela-
tional rules are retained in full, and the rules for operators are simplified since
at this point we are not interested in invertibility.

Since this is an expansion of LK-Quarc, the resulting system will be a quan-
tified modal sequent calculus. Notice that unlike [Negri and von Plato, 2011],
we do not need to add a condition of a constant being in the domain of a label,
since Quarc has a condition of a unary predicate holding of a singular argument.
Therefore, the modal expansion of a quantified system presented here is more
straightforward.

We now proceed with the expansion, after which we demonstrate cut elim-
ination theorem and its associated properties. Since the proofs of those for
LK-Quarc are all by induction on rules, we will only demonstrate them for the
new rules added to that system.

5.2 M-Quarc

We first transform Quarc into M-Quarc. This modal system is not quite identical
to the one presented in [Ben-Yami, 2014], but it is easy to see that anything
that holds in the latter will likewise hold sin the former.

5.2.1 Language of M-Quarc

To obtain the language of M-Quarc, we expand the language of Quarc with:

1. Labels: x, y, z, . . .,
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2. Assignment set function symbol, σ,

3. Element function symbol, ∈,

4. Modal operators: �, ♦, which function both as sentential and predication
operators.

5.2.2 Formula of M-Quarc

We next expand the definition of a formula:

1. If A is a (basic) formula of Quarc and x a label, then x : A is a (basic)
formula of M-Quarc.

2. If x : (t1 . . . tn) ∼ S is a formula of M-Quarc, where S is an n-ary predicate
or a reordered n-ary predicate, t1 . . . tn are SA’s and ∼ a possibly empty
string of operators which function both as sentential and predication oper-
ators, then x : (t1 . . . tn)� ∼ S, x : (t1 . . . tn)♦ ∼ S and x : (t1 . . . tn)¬ ∼ S
are formulas of M-Quarc.

3. If A is a formula of M-Quarc, then (�A) and (♦A) are formulas of M-
Quarc.

4. All other formula formation rules apply normally.

5. If x, y are labels, then y ∈ σ(x) is a relational formula of M-Quarc.
Formula formation rules do not apply to relational formulas, and therefore
all relational formulas are basic.

5.2.3 Value Assignments

1. For any formula A of Quarc, the formula x : A of M-Quarc is assigned the
same value as A.

2. Every relational formula is assigned either > or ⊥.

3. The formula x : �A (x : ♦A) is assigned > if for every (some) y, such that
y ∈ σ(x), y : A is assigned >, and ⊥ otherwise.

4. The formula x : (t1 . . . tn) ∼ S is assigned the same value as x :∼
(t1 . . . tn)S.

5.3 LK-QuarcK

We now transform LK-Quarc into LK-QuarcK . Every formula A in all the
rules of LK-Quarc is replaced by x : A. Moreover, relational formulas can
be non-parametric in structural rules and parametric in all rules of LK-Quarc.
Furthermore, the rules LNP and RNP are replaced by rules LPS and RSP ,
respectively:

x :∼ (t1, . . . , tn)P,Γ⇒ ∆
LPS

x : (t1, . . . , tn) ∼ P,Γ⇒ ∆

Γ⇒ ∆, x :∼ (t1, . . . , tn)P
RSP

Γ⇒ ∆, x : (t1, . . . , tn) ∼ P

where ∼ is any string of operators which can function both as sentential and
predication operators (i.e. ¬, � or ♦). We now add the modal rules:

78

C
E

U
eT

D
C

ol
le

ct
io

n



CHAPTER 5. MODAL EXPANSION OF LK-QUARC

5.3.1 Modal
y : A, y ∈ σ(x),Γ⇒ ∆

L�
x : �A, y ∈ σ(x),Γ⇒ ∆

y ∈ σ(x),Γ⇒ ∆, y : A
R�∗

Γ⇒ ∆, x : �A

y : A, y ∈ σ(x),Γ⇒ ∆
L♦∗

x : ♦A,Γ⇒ ∆

y ∈ σ(x),Γ⇒ ∆, y : A
R♦

y ∈ σ(x),Γ⇒ ∆, x : ♦A

∗ - where y does not occur in the lower sequent.

5.3.2 Re-designating the Labels

First, we show that everything derivable in LK-Quarc will still (mutatis mutan-
dis) be derivable in LK-QuarcK :

Lemma 89 If Γ ⇒ ∆ is derivable in LK-Quarc, then for any label x it holds
that Γ′ ⇒ ∆′ is derivable in LK-QuarcK , where Γ′ and ∆′ are the result of
substituting every A in Γ and ∆, respectively, by x : A.

Proof. Simple. By substituting every occurrence of every formula A in the
derivation of Γ⇒ ∆ by x : A.

We now define the re-designation procedure:

Definition 90 Call the label y appearing in the definition of the rules R� and
L♦ the proper label of the respective rules. To re-designate the labels, we start
with the topmost occurrence of one of these rules (going left to right) to which
this procedure has not been applied. We replace every occurrence of their proper
label in all the sequents above the lower sequent of the rule with a label that
has so far not appeared in the derivation, and we continue doing so until all the
instances of these rules have been treated in this manner.

We prove an auxiliary lemma:

Lemma 91 If Inf is an initial sequent or a correct inference which contains
label y which is not the proper label of Inf, and if z is likewise not a proper
label of Inf, then Inf′, obtained by uniformly substituting z for y is an initial
sequent or a correct inference.

Proof. By induction on the rules of LK-QuarcK .

Basic step. Follows from Lemma 89.

Inductive step. Easy for most cases. We will illustrate on the example of
L�:
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CHAPTER 5. MODAL EXPANSION OF LK-QUARC

If

y : A, y ∈ σ(x),Γ⇒ ∆

x : �A, y ∈ σ(x),Γ⇒ ∆

is a correct inference, then so is

z : A, z ∈ σ(x),Γ⇒ ∆

x : �A, z ∈ σ(x),Γ⇒ ∆

And similarly for other rules.

Lemma 92 If we re-designate the proper labels of a derivation, it will yield
a correct (beginning with permissible initial sequents and consisting only of
correct inferences) derivation of the same endsequent. Moreover, the derivation
will be of the same grade (defined below) and rank.

Proof. That the derivation is of a same endsequent is obvious form Definition
90. That the derivation begins with permissible initial sequents follows from
Lemma 89. That every inference, except R� and L♦ is correct follows from
Lemma 91, and replacing the proper label of a correct application of R� and
L♦ with one that has not appeared in the derivation so far will likewise produce
a correct inference. Finally, that the derivation will be of the same grade and
rank is clear from Definition 90.

We can extend axiom generalization to LK-QuarcK by extending the proof
for the cases of the modal operators:

Lemma 93 If the terminal symbol1 of x : B is � or ♦, x : B ⇒ x : B is
derivable in LK-QuarcK .

Proof. Consider the � first, and let B be �A. If x : A⇒ x : A is derivable
in LK-QuarcK , then x : �A⇒ x : �A is as well.

If x : A ⇒ x : A is derivable, then, by Lemma 91, so is y : A ⇒ y : A, for
some y which does not appear in the derivation of x : A⇒ x : A. Then,

y : A⇒ y : A
LW

y ∈ σ(x), y : A⇒ y : A
L�

y ∈ σ(x), x : �A⇒ y : A
R�

x : �A⇒ x : �A

Similarly for the case of ♦. Cases for LPS and RSP will follow from cases for
¬, � and ♦ according to their order in ∼.

Observation 94 Necessitation is admissible in LK-QuarcK (keeping in mind
that, by Lemma 91, if ⇒ x : A is derivable, so is ⇒ y : A for some y as above)

⇒ y : A
LW

y ∈ σ(x)⇒ y : A
R�⇒ x : �A

1As previously, the symbol introduced, for any formula, by the last application of a formula-
generation rule is called a terminal symbol of that formula.
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CHAPTER 5. MODAL EXPANSION OF LK-QUARC

Observation 95 These rules allow us to derive the K axiom:
⇒ x : �(P → Q)→ (�P → �Q)

y : Q⇒ y : Q
LW , LP

y : Q, y : P ⇒ y : Q

y : P ⇒ y : P
RW , RP

y : P ⇒ y : Q, y : P
L→

y : P → Q, y : P ⇒ y : Q
LW

y ∈ σ(x), y : P → Q, y : P ⇒ y : Q
L�

y ∈ σ(x), x : �(P → Q), y : P ⇒ y : Q
L�

y ∈ σ(x), x : �(P → Q), x : �P ⇒ y : Q
R�

x : �(P → Q), x : �P ⇒ x : �Q
R→

x : �(P → Q)⇒ x : �P → �Q
R→⇒ x : �(P → Q)→ (�P → �Q)

5.3.3 LK-QuarcT

To obtain LK-QuarcT , we expand LK-QuarcK with the following rule:

x ∈ σ(x),Γ⇒ ∆
Ref

Γ⇒ ∆

Observation 96 Now we can derive the T axiom:
⇒ x : �P → P

x : P ⇒ x : P
LW

x ∈ σ(x), x : P ⇒ x : P
L�

x ∈ σ(x), x : �P ⇒ x : P
Ref

x : �P ⇒ x : P
R→⇒ x : �P → P

5.3.4 LK-QuarcB

To obtain LK-QuarcB , we expand LK-QuarcK with the following rule:

x ∈ σ(y), y ∈ σ(x),Γ⇒ ∆
Sym

y ∈ σ(x),Γ⇒ ∆

Observation 97 Now we can derive the B axiom:
⇒ x : P → �♦P

x : P ⇒ x : P
several LW

x ∈ σ(y), y ∈ σ(x), x : P ⇒ x : P
R♦

x ∈ σ(y), y ∈ σ(x), x : P ⇒ y : ♦P
Sym

y ∈ σ(x), x : P ⇒ y : ♦P
R�

x : P ⇒ x : �♦P
R→⇒ x : P → �♦P
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CHAPTER 5. MODAL EXPANSION OF LK-QUARC

5.3.5 LK-Quarc4

To obtain LK-Quarc4, we expand LK-QuarcK with the following rule:

z ∈ σ(x), y ∈ σ(x), z ∈ σ(y),Γ⇒ ∆
Trans

y ∈ σ(x), z ∈ σ(y),Γ⇒ ∆

Observation 98 Now we can derive the 4 axiom:
⇒ x : �P → ��P

z : P ⇒ z : P
several LW

z ∈ σ(x), z ∈ σ(y), y ∈ σ(x), z : P ⇒ z : P
L�

z ∈ σ(x), z ∈ σ(y), y ∈ σ(x), x : �P ⇒ z : P
Trans

z ∈ σ(y), y ∈ σ(x), x : �P ⇒ z : P
R�

y ∈ σ(x), x : �P ⇒ y : �P
R�

x : �P ⇒ x : ��P
R→⇒ x : �P → ��P

5.3.6 LK-QuarcS4

To obtain LK-QuarcS4, we expand LK-QuarcK with rules Ref and Trans.
Obviously, here both T and 4 axioms will hold.

5.3.7 LK-QuarcS5

Finally, we obtain LK-QuarcS5 by adding to LK-QuarcK the rules Ref, Sym
and Trans.

Observation 99 Now we can derive the 5 axiom:
⇒ x : ♦P → �♦P

y : P ⇒ y : P
LW

y ∈ σ(z), y : P ⇒ y : P
R♦

y ∈ σ(z), y : P ⇒ z : ♦P
several LW , LP

y ∈ σ(z), x ∈ σ(z), y ∈ σ(x), y : P ⇒ z : ♦P
Trans

x ∈ σ(z), y ∈ σ(x), y : P ⇒ z : ♦P
LW , LP

x ∈ σ(z), z ∈ σ(x), y ∈ σ(x), y : P ⇒ z : ♦P
Sym

z ∈ σ(x), y ∈ σ(x), y : P ⇒ z : ♦P
R�

y ∈ σ(x), y : P ⇒ x : �♦P
L♦

x : ♦P ⇒ x : �♦P
R→⇒ x : ♦P → �♦P

And obviously, the T axiom will hold as well.

5.4 Cut Elimination

In this section we prove that the Cut elimination theorem holds for LK-QuarcK
(and later for its expansions). The proof is an expansion of that for LK-Quarc
and therefore still a modification of the proof in [Szabo, 1969]. We first define
the grade of modal formulas (the definition of the rank, ρ, stays the same):
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CHAPTER 5. MODAL EXPANSION OF LK-QUARC

Definition 100 Grade of formula x : A in LK-QuarcK is the same as the grade
of formula A in LK-Quarc. Moreover,

• γ(A) = 0 if A is a relational formula,

• γ(A) = γ(B) + 1 if A is �B or ♦B,

• γ(A) = γ(∼ (t1 . . . tn)P ) if A is (t1 . . . tn) ∼ P .

Theorem 101 For any sequent S, if S is derivable in LK-QuarcK , then it is
derivable in LK-QuarcK without using the cut rule.

Proof. By expanding the proof of the Cut elimination theorem for LK-Quarc
with the cases for rules of LK-QuarcK . We start with the case of ρ = 2.

5.4.1 Case ρ = 2

Relational formulas are handled the same way as other formulas of grade 0. We
now move on to the formulas in which the terminal symbols are modal operators.

1. We first tackle the expanded rules RSP and LPS:

Γ⇒ Θ, x :∼ (t1 . . . tn)P

Γ⇒ Θ, x : (t1 . . . tn) ∼ P
x :∼ (t1 . . . tn)P,Π⇒ ∆

x : (t1 . . . tn) ∼ P,Π⇒ ∆
Mix

Γ,Π⇒ Θ,∆

This is transformed into:

Γ⇒ Θ, x :∼ (t1 . . . tn)P x :∼ (t1 . . . tn)P,Π⇒ ∆
Mix

Γ,Π∗ ⇒ Θ∗,∆

Γ,Π⇒ Θ,∆

This mix formula can be eliminated according to the procedure for the
modal operators below and previously established procedure for negation,
according to their order in ∼.

2. We now consider the rules for �:

y ∈ σ(x),Γ⇒ Θ, y : A

Γ⇒ Θ, x : �A

y : A, y ∈ σ(x),Π⇒ ∆

x : �A, y ∈ σ(x),Π⇒ ∆
Mix

y ∈ σ(x),Γ,Π⇒ Θ,∆

This is transformed into:

y ∈ σ(x),Γ⇒ Θ, y : A y : A, y ∈ σ(x),Π⇒ ∆
Mix

y ∈ σ(x),Γ,Π∗ ⇒ Θ∗,∆

y ∈ σ(x),Γ,Π⇒ Θ,∆

3. And finally we consider the rules for ♦:

y ∈ σ(x),Γ⇒ Θ, y : A

y ∈ σ(x),Γ⇒ Θ, x : ♦A

y : A, y ∈ σ(x),Π⇒ ∆

x : ♦A,Π⇒ ∆
Mix

y ∈ σ(x),Γ,Π⇒ Θ,∆
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CHAPTER 5. MODAL EXPANSION OF LK-QUARC

This is transformed into:

y ∈ σ(x),Γ⇒ Θ, y : A y : A, y ∈ σ(x),Π⇒ ∆
Mix

y ∈ σ(x),Γ,Π∗ ⇒ Θ∗,∆

y ∈ σ(x),Γ,Π⇒ Θ,∆

Both new mix formulas are of lesser grade and can by inductive hypothesis
be eliminated.

5.4.2 Case ρ > 2

Suppose left rank is 1 and right rank is greater than 1. We will examine situa-
tions when the last rule on the right is each of our new rules.

1. Suppose first the last rule on the right is L�. The application of the mix
rule then has the following form:

Γ⇒ Θ

y : A, y ∈ σ(x),Π⇒ ∆

x : �A, y ∈ σ(x),Π⇒ ∆
Mix

Γ, x : �A, y ∈ σ(x),Π∗ ⇒ Θ∗,∆

This is transformed into:

Γ⇒ Θ y : A, y ∈ σ(x),Π⇒ ∆
Mix

Γ, y : A, y ∈ σ(x),Π∗ ⇒ Θ∗,∆

Γ, x : �A, y ∈ σ(x),Π∗ ⇒ Θ∗,∆

2. Now suppose the last rule on the right is R�. The application of the mix
rule then has the following form:

Γ⇒ Θ

y ∈ σ(x),Π⇒ ∆, y : A

Π⇒ ∆, x : �A
Mix

Γ,Π∗ ⇒ Θ∗,∆, x : �A

This is transformed into:

Γ⇒ Θ z ∈ σ(x),Π⇒ ∆, z : A
Mix

Γ, z ∈ σ(x),Π∗ ⇒ Θ∗,∆, z : A

Γ,Π∗ ⇒ Θ∗,∆, x : �A

The change from the sequent y ∈ σ(x),Π ⇒ ∆, y : A to the sequent
z ∈ σ(x),Π⇒ ∆, z : A is justified by Lemma 92.

3. Suppose the last rule on the right is L♦. The application of the mix rule
then has the following form:

Γ⇒ Θ

y : A, y ∈ σ(x),Π⇒ ∆

x : ♦A,Π⇒ ∆
Mix

Γ, x : ♦A,Π∗ ⇒ Θ∗,∆

This is transformed into:
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Γ⇒ Θ z : A, z ∈ σ(x),Π⇒ ∆
Mix

z : A, z ∈ σ(x),Γ,Π∗ ⇒ Θ∗,∆

Γ, x : ♦A,Π∗ ⇒ Θ∗,∆

As above, the change from the sequent y ∈ σ(x),Π ⇒ ∆, y : A to the
sequent z ∈ σ(x),Π⇒ ∆, z : A is justified by Lemma 92.

4. Suppose the last rule on the right is R♦. The application of the mix rule
then has the following form:

Γ⇒ Θ

y ∈ σ(x),Π⇒ ∆, y : A

y ∈ σ(x),Π⇒ ∆, x : ♦A
Mix

Γ, y ∈ σ(x),Π∗ ⇒ Θ∗,∆, x : ♦A

This is transformed into:

Γ⇒ Θ y ∈ σ(x),Π⇒ ∆, y : A
Mix

Γ, y ∈ σ(x),Π∗ ⇒ Θ∗,∆, y : A

Γ, y ∈ σ(x),Π∗ ⇒ Θ∗,∆, x : ♦A

5. Finally, suppose the last rule on the right is LPS. The application of the
mix rule then has the following form:

Γ⇒ Θ

x :∼ (t1, . . . , tn)P,Π⇒ ∆,

x : (t1, . . . , tn) ∼ P,Π⇒ ∆
Mix

Γ, x : (t1, . . . , tn) ∼ P,Π∗ ⇒ Θ∗,∆

This is transformed into:

Γ⇒ Θ x :∼ (t1, . . . , tn)P,Π⇒ ∆,
Mix

Γ, x :∼ (t1, . . . , tn)P,Π∗ ⇒ Θ∗,∆

Γ, x : (t1, . . . , tn) ∼ P,Π∗ ⇒ Θ∗,∆

And mutatis mutandis for RSP .

In all the cases, the rank of the mix formula is reduced by 1 and can therefore
by inductive hypothesis be eliminated. Similarly for left rank, and both left and
right rank, being higher than 1. This concludes the proof of Theorem 101.

5.4.3 Subformula Property

Definition 102 The definition of a subformula stays the same as in LK-Quarc,
apart from the fact we need to substitute every formula A with x : A, and add
the following clauses:

6. x :∼ (t1, . . . , tn)P is a subformula of x : (t1, . . . , tn) ∼ P .

7. y : A is a subformula of x : �A and x : ♦A for any y.

We want to show that subformula property holds of LK-QuarcK :
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CHAPTER 5. MODAL EXPANSION OF LK-QUARC

Theorem 103 Any formula appearing in any cut-free derivation of LK-QuarcK
is either a subformula of some formula in its endsequent or a basic formula.

Proof. We extend the proof for LK-Quarc with the new rules of LK-QuarcK .
Let us examine the example of rules for �:

y : A, y ∈ σ(x),Γ⇒ ∆
L�

x : �A, y ∈ σ(x),Γ⇒ ∆

y ∈ σ(x),Γ⇒ ∆, y : A
R�∗

Γ⇒ ∆, x : �A

We can see that any formula in Γ and ∆ will be subformula of some formula
in the lower sequent, namely itself. Furthermore, y : A is a subformula of x : �A.
Finally, y ∈ σ(x) is basic. Similarly for other rules.

Corollary 104 LK-QuarcK is consistent.

Proof. From Theorem 103, by noting no rule removes basic formulas on the
right.

5.4.4 Cut Elimination for Ref, Sym and Trans

With all three rules, all the formulas that appear in the lower sequent appear
in the upper sequent as well, so we only need to extend the cut elimination
procedure for the case where ρ > 2. As before, assume left rank is 1 and right
rank is greater than 1.

1. The Rule Ref

Suppose the last rule on the right is Ref. The application of the mix rule
then has the following form:

Γ⇒ Θ

x ∈ σ(x),Π⇒ ∆

Π⇒ ∆
Γ,Π∗ ⇒ Θ∗,∆

This is transformed into:

Γ⇒ Θ x ∈ σ(x),Π⇒ ∆

Γ, x ∈ σ(x),Π∗ ⇒ Θ∗,∆

Γ,Π∗ ⇒ Θ∗,∆

Or, if x ∈ σ(x) is the mix formula, into:

Γ⇒ Θ x ∈ σ(x),Π⇒ ∆

Γ,Π∗ ⇒ Θ∗,∆

In either case, the rank is reduced by 1 and by inductive hypothesis can
be eliminated. Note also that only basic formulas are eliminated via this
rule.

2. The Rule Sym

The case we need to examine is when y ∈ σ(x) is the mix formula. The
application of the mix rule then has the following form:
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Γ⇒ Θ

x ∈ σ(y), y ∈ σ(x),Π⇒ ∆

y ∈ σ(x),Π⇒ ∆

Γ,Π∗ ⇒ Θ∗,∆

Suppose y ∈ σ(x) is in Γ. Then the derivation is transformed as follows:

x ∈ σ(y), y ∈ σ(x),Π⇒ ∆
Sym

y ∈ σ(x),Π⇒ ∆
some LW

Γ, y ∈ σ(x),Π⇒ ∆
some LC

Γ,Π∗ ⇒ ∆
some RW , RP

Γ,Π∗ ⇒ Θ∗,∆

Now suppose y ∈ σ(x) is not in Γ. Then, since left rank is 1, Γ ⇒ Θ is
derived by RW from Γ⇒ Θ∗, and the derivation is transformed as follows:

Γ⇒ Θ∗

Γ,Π∗ ⇒ Θ∗,∆

In either case, the mix rule is eliminated. Note again that only basic
formulas are eliminated via this rule.

3. The Rule Trans

The cases for this rule are the same, mutatis mutandis, as the previous
rule, for both y ∈ σ(x) and z ∈ σ(y) the principal formula. Again, only
basic formulas are eliminated.

This establishes:

Theorem 105 For any sequent S, if it is derivable in LK-QuarcT , LK-QuarcB ,
LK-Quarc4, LK-QuarcS4 or LK-QuarcS5, it is derivable in its respective system
without using the cut rule.

and (given all the rules only remove basic formulas)

Theorem 106 Any formula appearing in any cut-free derivation of LK-QuarcT ,
LK-QuarcB , LK-Quarc4, LK-QuarcS4 or LK-QuarcS5 is a subformula of some
formula in its endsequent or a basic formula.

Again, this leads to the corollary (since no rule removes the basic formulas
on the right):

Corollary 107 LK-QuarcT , LK-QuarcB , LK-Quarc4, LK-QuarcS4 and LK-
QuarcS5 are consistent.

5.4.5 From Modal Quarc to LK-QuarcK and Others

For our present purposes we do not need to show full deductive equivalence, but
simply that for any line of a proof in Modal Quarc there is a derivation with
an endsequent corresponding to that line. Note that Modal Quarc presented
in [Ben-Yami, 2014] is not the same as M-Quarc presented here, but we only
need to show the result for the former anyway. We first expand the definition
of standard translation of a line of a proof:
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CHAPTER 5. MODAL EXPANSION OF LK-QUARC

Definition 108 Standard translation of a line 〈L, i, A,R〉 of Modal Quarc (on
any variety) is a sequent L⇒ x : A of the corresponding variety of LK-Quarc.

We want to show that

Lemma 109 For any line (i) of any proof in any version of Modal Quarc there
exists a corresponding sequent in the respective version of LK-Quarc, such that
it is derivable from trivial lemmas and sequents corresponding to lines (i) relies
on.

Proof. Note that Modal Quarc in [Ben-Yami, 2014] consists of rule of neces-
sitation, which is admissible in any of LK-QuarcK to LK-QuarcS5, and a rule
introducing the characteristic axiom with no premises, which is derivable for
its respective system, as noted in Observations 95 - 99. For any other rule the
deductive equivalence has already been established (exchanging the formula A
for x : A). This concludes the proof of Lemma 109.

It follows that

Corollary 110 Modal Quarc, on any of its versions, is consistent.

Proof. From Lemma 109 and Corollary 104 and 107.
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Chapter 6

On a Mismatch between
Aristotle’s Modal Syllogistic
and Modern Modal Logic

6.1 Introduction

The dominant opinion on Aristotle’s modal syllogistic is perhaps best expressed
by Jan  Lukasiewicz, who was also instrumental in shaping it:

There are two reasons why Aristotle’s modal logic is so little known.
The first is due to the author himself: in contrast to the assertoric
syllogistic which is perfectly clear and nearly free of errors, Aristotle’s
modal syllogistic is almost incomprehensible because of its many faults
and inconsistencies. [ Lukasiewicz, 1957]

The most prominent defender of Aristotle today is Marko Malink1. In addi-
tion to other features, and crucially for the proceeding, Malink presents his work
in a symbolism useful for understanding the subject matter, especially for some-
one who is not an Aristotle or ancient scholar. Therefore, when approaching
Aristotle in this chapter, we will utilize the assistance provided by Malink.

In his [Malink, 2006] and [Malink, 2013], Malink tries to offer a single con-
sistent model for Aristotle’s modal syllogistic. The goal of this chapter is to
approach Aristotle and Malink’s results from a perspective of a modern modal
quantified calculus. The goal here is not to determine what Aristotle’s opin-
ion on various modal syllogisms was, but rather, given the interpretations by
Malink, himself following other Aristotle scholars, to evaluate the conditions
of their validity and supply some possible formal reconstructions of Aristotle’s
modal logic, given current views of modality. The guiding criterion in doing so
will be to avoid what Robin Smith calls “tinkering” [Smith, 1995], which in this
instance we take to be the introduction of principles and procedures for the sole
purpose of validating Aristotle. An aim of this chapter is to show that there is
a mismatch between modern and Aristotelian systems of modal logic which the

1Malink follows in the footsteps of Richard Patterson [Patterson, 1995], and explicitly
addresses criticism raised against him by Tad Brennan [Brennan, 2007].
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CHAPTER 6. ARISTOTLE AND MODERN MODAL LOGIC

defenders of Aristotle cannot overcome without being charged of tinkering. We
focus on one approach from each side, but those will be indicative of the entire
discussion.

6.2 The Assertoric Syllogistic

On the modern side of things, we will be using the Quantified Argument Calculus
and its modal extension, M-Quarc presented in [Ben-Yami, 2014]. There are
several reasons to use Quarc when dealing with Aristotle’s syllogistic. First,
it validates all the Aristotelian assertoric syllogisms, as well as the relations
of the Square of Opposition, in a tinkering-free manner. Most notably, given
that a quantified phrase occurs in the argument position, instantial import is
introduced to make Quarc a non-free logic.2 Second, Quarc simplifies the proofs
of syllogisms compared to standard Predicate Calculus, as we will shortly see
in an example. Finally, it clearly distinguishes what options are available when
we incorporate modal logic.

One feature of Quarc we should recall is that it allows for both sentential
and predication operators. This is notably a syntactic feature, and that point
will be important in the following discussion. Let us therefore remember that:

If ‘∼’ stands for a string, possibly empty, of operators which can function
both as sentential and predication operators, S and P for unary predicates and
‘q’ for a quantifier {∀,∃}, then:

Definition 111 ∼ (qS)P is a sentence of Quarc, with the string of symbols ∼
said to be in sentential position,

Definition 112 (qS) ∼ P is a sentence of Quarc, with the string of symbols ∼
said to be in predication position.

The predication position can be seen as representing the copula, where an
empty string of operators stands for the positive copula ‘is’ or ‘are’, and the
negative sentences are obtained by placing a single negation into this position:

Proposition 113 (∀S)¬P - No S is P .

Proposition 114 (∃S)¬P - Some S are not P .

One can see the notational simplicity of representing the categorical propo-
sitions in Quarc. In the following section we will expand this idea by demon-
strating how the whole of the assertoric syllogistic is valid in Quarc. We will
also briefly contrast it with the Predicate Calculus.

6.2.1 Assertoric Syllogistic in Quarc

In this section, we demonstrate the validity of Aristotle’s assertoric syllogistic,
as well as some other supplementary results. Given that Quarc is sound [Ben-
Yami, 2014] and complete [Pavlovic and Ben-Yami, 2013], we will freely move

2 Note that since [Ben-Yami, 2014] uses truth-valuational semantics, existential import is
there substituted by instantial import. The diferrence between the two will not, however, be
crucial for anything in the proceeding.
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CHAPTER 6. ARISTOTLE AND MODERN MODAL LOGIC

between the considerations of semantics, truth-value and entailment (the latter
symbolized by ‘�’) on the one hand, and syntax, proof and derivability (the
latter symbolized by ‘`’) on the other. Unless otherwise noted, the entailment
and derivability are in Quarc. We aim to show that:

Theorem 115 All of Aristotle’s assertoric syllogistic is valid.

Since the proofs of the syllogistic ultimately rely upon the “perfect” syllo-
gisms (Barbara, Celarent, Darii, Ferio), the validity of those will be demon-
strated first. In this section we also briefly compare Quarc to the Predicate
Calculus. After the perfect syllogisms, we demonstrate the auxiliary theorems
needed to prove the remaining ones. We do not offer proof of the entire remain-
der of the syllogistic, but merely provide some examples.

Perfect Syllogisms

The four perfect syllogisms are the starting proof for the derivation of all valid
syllogisms. In the following proofs, let ‘∼’ be a metaoperator standing for either
the empty string of operators or the negation operator ‘¬’, which allows us to
tackle the proofs two at the time. We can see that this metaoperator, standing
in the predication position, basically represents the copula, with the empty
string representing ‘is’, and the negation representing ‘is not’.3 After each of
the proofs, we will offer the corresponding proofs in the Predicate Calculus to
demonstrate the relative simplicity of using Quarc.

Lemma 116 (Barbara: AAA-1; Celarent: EAE-1):
(∀M) ∼ P, (∀S)M ` (∀M) ∼ P

Proof.

1 (1) (∀M) ∼ P Premise
2 (2) (∀S)M Premise
3 (3) (a)S Premise

2,3 (4) (a)M UE, 2, 3
1,2,3 (5) (a) ∼ P UE, 1, 4

1,2 (6) (∀M) ∼ P UI, 3, 5

Compare this proof with the proof of Barbara, using the standard presen-
tation in the Predicate Calculus (obviously, adding the ‘∼’ metaoperator, this
would serve as the proof of Celarent as well, but that need not concern us at
the moment). One can easily see that the additional syntactic element, the
conditional arrow (highlighted), makes even the simplest proof of Barbara more
cumbersome. The rest of the proof completely matches the previous one:

Observation 117 (Barbara: AAA-1):
∀x(Mx→ Px),∀x(Sx→Mx) `PC ∀x(Sx→ Px)

Proof.

3In fact, a related system, presented in [Lanzet and Ben-Yami, 2004], had an explicit copula
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CHAPTER 6. ARISTOTLE AND MODERN MODAL LOGIC

1 (1) ∀x(Mx→ Px) Premise
2 (2) ∀x(Sx→Mx) Premise
3 (3) Sa Premise
2 (4) Sa→Ma ∀E: 2

2,3 (5) Ma →E: 3, 4
1 (6) Ma→ Pa ∀E: 1

1,2,3 (7) Pa →E: 5, 6
1,2 (8) Sa→ Pa →I: 3, 7
1,2 (9) ∀x(Sx→ Px) ∀I: 8

Next we move to the proofs of the perfect syllogisms containing the particular
quantifier, Darii and Ferio:

Lemma 118 (Darii: AII-1; Ferio: EIO-1):
(∀M) ∼ P, (∃S)M ` (∃S) ∼ P

Proof.

1 (1) (∀M) ∼ P Premise
2 (2) (∃S)M Premise
3 (3) (a)S Premise
4 (4) (a)M Premise

1,4 (5) (a) ∼ P UE, 1, 4
1,3,4 (6) (∃S) ∼ P PI, 3, 5

1,2 (7) (∃S) ∼ P Ins, 2, 3, 4, 6

Compare once more with the corresponding proof in the Predicate Calculus.
Again, the additional syntactic elements, in this case the conditional and the
conjunction, prolong the proof:

Observation 119 (Darii: AII-1):
∀x(Mx→ Px),∃x(Sx ∧Mx) `PC ∃x(Sx ∧ Px)

Proof.

1 (1) ∀x(Mx→ Px) Premise
2 (2) ∃x(Sx ∧Mx) Premise
3 (3) Sa ∧Ma Premise
3 (4) Ma ∧E: 3
1 (5) Ma→ Pa ∀E: 1

1,3 (6) Pa →E: 4, 5
3 (7) Sa ∧E: 3

1,3 (8) Sa ∧ Pa ∧I: 6, 7
1,3 (9) ∃x(Sx ∧ Px) ∃I: 8
1,2 (10) ∃x(Sx ∧ Px) ∃E: 2, 3, 9

Of course, the greatest problem in the Predicate Calculus is not the length of
proofs, but the special provisions that need to be made for the existential import.
We will see that Quarc does not run into similar problems in the next section,
in which we demonstrate the validity of conversions needed to demonstrate the
rest of the syllogistic.
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CHAPTER 6. ARISTOTLE AND MODERN MODAL LOGIC

Conversions

A conversion is an inference in which the subject and the predicate switch
positions. The three demonstrated here are: the conversion of the universal
negative (MeP ⇒ PeM), particular affirmative (MiP ⇒ PiM), and universal
affirmative into the particular affirmative (MaP ⇒ PiM):

Lemma 120 (Conversion MeP ⇒ PeM):
(∀M)¬P ` (∀P )¬M

Proof.

1 (1) (∀M)¬P Premise
2 (2) (a)M Premise
3 (3) (a)P Premise

1,2 (4) (a)¬P UE, 1, 2
1,2 (5) ¬(a)P PS, 4
1,3 (6) ¬(a)M ¬I, 2, 3, 5
1,3 (7) (a)¬M SP, 6

1 (8) (∀P )¬M UI, 3, 7

Lemma 121 (Conversion MiP ⇒ PiM):
(∃M)P ` (∃P )M

Proof.

1 (1) (∃M)P Premise
2 (2) (a)M Premise
3 (3) (a)P Premise

2,3 (4) (∃P )M PI, 2, 3
1 (5) (∃P )M Ins, 1, 2, 3, 4

Note that the next conversion differs only in having the universal quantifier
where the previous one had a particular. Given that the rule of Instantial Import
is defined for either quantifier, it is to be expected that the proof of conversions
will likewise be similar:

Lemma 122 (Conversion MaP ⇒ PiM):
(∀M)P ` (∃P )M

Proof.

1 (1) (∀M)P Premise
2 (2) (a)M Premise
3 (3) (a)P Premise

2,3 (4) (∃P )M PI, 2, 3
1 (5) (∃P )M Ins, 1, 2, 3, 4

Obviously, the final conversion would normally be a more controversial one,
but not so in Quarc which validates all the entailments of the Square of oppo-
sition, as we will see in the next section.

This concludes the proof of Theorem 115. Let us now observe a couple of
examples of how the perfect syllogisms and conversions are used to demonstrate
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CHAPTER 6. ARISTOTLE AND MODERN MODAL LOGIC

the other syllogisms. The first, slightly more complex proof of the third figure
syllogism Disamis will just serve as an illustration of this procedure, while the
simpler proof of the syllogism Cesare will be useful in the further discussion.
Obviously, both proofs are in metalanguage.

Example 123 (Disamis: IAI-3):
(∃M)P, (∀M)S ` (∃S)P

Proof. Take as premises (1) (∃M)P and (2) (∀M)S. From (1) by Conversion
MiP ⇒ PiM follows (3) (∃P )M . From (2) and (3) if follows by Darii (4) (∃P )S.
From (4) again by Conversion MiP ⇒ PiM follows (5) (∃S)P :

1 (1) (∃M)P Premise
2 (2) (∀M)S Premise
1 (3) (∃P )M MiP ⇒ PiM , 1

1,2 (4) (∃P )S Darii, 2, 3
1,2 (5) (∃S)P MiP ⇒ PiM , 4

Therefore (∃M)P, (∀M)S ` (∃S)P .

Example 124 (Cesare: EAE-2):
(∀P )¬M, (∀S)M ` (∀S)¬P

Proof. Take as premises (1) (∀P )¬M and (2) (∀S)M . From (1) by Con-
version PeM ⇒ MeP follows (3) (∀M)¬P , and from (2) and (3) it follows by
Celarent (4) (∀S)¬P .

1 (1) (∀P )¬M Premise
2 (2) (∀S)M Premise
1 (3) (∀M)¬P PeM ⇒MeP , 1

1,2 (4) (∀S)¬P Celarent, 2, 3

Therefore, (∀P )¬M, (∀S)M ` (∀S)¬P .

Square of Opposition

The relations of the Square of opposition that hold between the categorical
sentences are as shown on the following diagram:
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Where contraries cannot both be true, subcontraries cannot both be false, super-
ordinate entails its subordinate sentence and each sentence entails the negation
of its contradictory sentence. We will now show that

Theorem 125 All the relations of the Square of Opposition are valid in Quarc.

We prove this by considering all the relations in turn. To again merge the
proofs, let the operator ‘∼’ stand for either an empty string of operators or the
operator ‘¬’, with ‘¬¬’ read as an empty string of operators, and the following
special cases of SP and PS, respectively:

1 (1) ¬(a)¬P Premise
2 (2) ¬(a)P Premise
2 (3) (a)¬P SP, 2
1 (4) ¬¬(a)P ¬I, 1, 2, 3
1 (5) (a)P ¬E, 4

1 (1) (a)P Premise
2 (2) (a)¬P Premise
2 (3) ¬(a)P PS, 2
1 (4) ¬(a)¬P ¬I, 1, 2, 3

1. Contradictions

Let us start with the more mundane relation of contradictions or DeMorgan’s
laws.

Lemma 126 (Contradiction):
¬(∀S) ∼ P ` (∃S)¬ ∼ P

Proof.
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CHAPTER 6. ARISTOTLE AND MODERN MODAL LOGIC

1 (1) ¬(∀S) ∼ P Premise
2 (2) ¬(∃S)¬ ∼ P Premise
3 (3) (a)S Premise
4 (4) ¬(a) ∼ P Premise
4 (5) (a)¬ ∼ P SP, 4

3,4 (6) (∃S)¬ ∼ P PI, 3, 5
2,3 (7) ¬¬(a) ∼ P ¬I, 4, 2, 6
2,3 (8) (a) ∼ P ¬E, 7

2 (9) (∀S) ∼ P PI, 3, 8
1 (10) ¬¬(∃S)¬ ∼ P ¬I, 2, 1, 9
1 (11) (∃S)¬ ∼ P ¬E, 10

Lemma 127 (Contradiction):
(∃S)¬ ∼ P ` ¬(∀S) ∼ P

Proof.

1 (1) (∃S)¬ ∼ P Premise
2 (2) (∀S) ∼ P Premise
3 (3) (a)S Premise
4 (4) (a)¬ ∼ P Premise
4 (5) ¬(a) ∼ P PS, 4

2,3 (6) (a) ∼ P UE, 2, 3
3,4 (7) ¬(∀S) ∼ P ¬I, 2, 5, 6

1 (8) ¬(∀S) ∼ P Ins, 1, 3, 4, 7

2. Subordination

We move on to the proof of subordination. It is a straightforward conse-
quence of the rule of Instantial Import. We will discuss in more detail the
justification and implications of this rule in the following sections.

Lemma 128 (Subordination):
(∀S) ∼ P ` (∃S) ∼ P

Proof.

1 (1) (∀S) ∼ P Premise
2 (2) (a)S Premise
3 (3) (a) ∼ P Premise

2,3 (4) (∃S) ∼ P PI, 2, 3
1 (5) (∃S) ∼ P Ins, 1, 2, 3, 4

With these two relations of Square of opposition in place, others follow.

3. Contrariness

Lemma 129 (Contrariness):
(∀S) ∼ P ` ¬(∀S)¬ ∼ P

96

C
E

U
eT

D
C

ol
le

ct
io

n



CHAPTER 6. ARISTOTLE AND MODERN MODAL LOGIC

Proof. Take as premises (1) (∀S) ∼ P and (2) (∀S)¬ ∼ P . It follows from
(1) by Contradiction that (3) ¬(∃S)¬ ∼ P . It follows from (2) by Subordination
that (4) (∃S)¬ ∼ P . But this is a contradiction. So, (5) ¬(∀S)¬ ∼ P .

1 (1) (∀S) ∼ P Premise
2 (2) (∀S)¬ ∼ P Premise
1 (3) ¬(∃S)¬ ∼ P Lemma 6.2, 1
2 (4) (∃S)¬ ∼ P Lemma 7, 2
1 (5) ¬(∀S)¬ ∼ P ¬I, 2, 3, 4

Therefore, (∀S) ∼ P ` ¬(∀S)¬ ∼ P .

4. Subcontrariness

Lemma 130 (Subcontrariness):
¬(∃S) ∼ P ` (∃S)¬ ∼ P .

Proof. Take as a premise (1) ¬(∃S) ∼ P . It follows from (1) by Contradiction
that (2) (∀S)¬ ∼ P . From (2) by Subordination it follows that (3) (∃S)¬ ∼ P .

1 (1) ¬(∃S) ∼ P Premise
1 (2) (∀S)¬ ∼ P Lemma 6.1, 1
1 (3) (∃S)¬ ∼ P Lemma 7, 2

Therefore, ¬(∃S) ∼ P ` (∃S)¬ ∼ P .

This concludes the proof of Theorem 125.

6.2.2 Malink’s Formalization of the Assertoric Syllogistic

In this section we will briefly present and then comment on some of the features
of Malink’s formalization of the assertoric syllogistic. These carry over into
the modal syllogistic and are therefore relevant to the overall discussion. To
distinguish Quarc from Malink, we retain his notation. Therefore, it will need
to be explained before proceeding.

Preliminaries

First, a few notes on the mode of presentation employed by Malink in [Malink,
2013]. The copulas he uses combine the four letters for the categorical proposi-
tions (a, e, i, o) with an indexed modality of the proposition (of interest to us are
‘X’ for assertoric propositions and ‘N’ for necessity). So, the set of copulas used
in this chapter is {aN , aX , eN , eX , iN , iX , oN , oX}. These combine the subject
and predicate terms, in reverse order as Malink reads the copula as “belongs
to”.

So, the set of propositions we will examine, and the natural language ren-
derings preferred by Malink, are as follows:
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Assertoric Propositions Formalization Read as

Universal Affirmative PaXS P belongs to all S
Universal Negative PeXS P belongs to no S
Particular Affirmative PiXS P belongs to some S
Particular Negative PoXS P does not belong some S

Apodictic Propositions Formalization Read as

Universal Affirmative PaNS P necessarily belongs to all S
Universal Negative PeNS P necessarily belongs to no S
Particular Affirmative PiNS P necessarily belongs to some S
Particular Negative PoNS P necessarily does not belong some S

Note that proofs which use this notation are in this chapter meant to be
taken as proof in Malink’s system, not in Quarc.

Existential Import

Obviously, the most controversial element required to demonstrate the validity
of assertoric syllogistic is the existential import, needed for one of the conver-
sions. Malink discusses several possible ways one can go about securing it before
presenting his own account. The first and most plausible, given various remarks
by Aristotle, is to simply introduce a stipulation that only terms that apply to
at least one element of the domain (or something to that effect) are permissible.

To this Malink objects, accurately, that “the assertoric syllogistic would then
rely on a tacit extralogical presupposition about the nature of admissible terms
which Aristotle failed to make explicit. It would not be the universally applicable
system of formal logic that it is often thought to be.” [Malink, 2013, p. 43]. In
the terminology of this chapter, such an attempt would invariably be open to
the charge of tinkering.

Malink instead opts for a variant of this strategy, where he does not impose a
general requirement, but specifies his semantics in a way that secures existential
import, by introducing the heterodox dictum semantics. In the next section we
examine it in more detail.

The Heterodox Dictum Semantics

In a nutshell, the heterodox dictum semantics4 takes the universal affirmative
predication as a primitive, and uses it to provide the semantics for the four
categorical propositions.

C5 is a member of a plurality associated with A if and only if A is
aX -predicated of C. [Malink, 2013, p. 63]

In other word, something is an A just in case A is universally affirmatively
predicated of it. The heterodox dictum semantics of the four categorical propo-
sitions then goes as (lettering adjusted):

4As opposed to the orthodox dictum semantics, as Malink calls, following [Barnes, 2007],
the familiar way of rendering the four Aristotelian categorical sentences in the Predicate
Calculus.

5C here need not be an individual, as Malink argues in [Malink, 2013, pp. 52–53].
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PaXS iff ∀Z(SaXZ ⇒ PaXZ)
PeXS iff ∀Z(SaXZ ⇒ ¬PaXZ)
PiXS iff ∃Z(SaXZ ∧ PaXZ)
PoXS iff ∃Z(SaXZ ∧ ¬PaXZ)

Malink, naturally, concedes that this is not a definition of the four categor-
ical propositions (in virtue of not being a definition of aX predication, since it
can offer only a circular definition), and is thus less informative than an explicit
definition. However, he contends these suffice to establish the validity of the
four perfect syllogisms and three conversions, and thereby validate the asser-
toric syllogistic. The biggest problem, that of existential import, is solved by
reflexivity of the universal affirmative predication – there is always something
A is aX -predicated of, namely A.

Problems for Malink

By way of an argument for his position, Malink offers two considerations, a
negative and a positive one. The negative comes in response to an exegetic
challenge from Barnes, where Malink states that

it is not implausible that what [Aristotle] meant in his formulation of
the dictum is adequately captured by the heterodox interpretation,

although he accepts that

if he wanted, Aristotle could have explicitly stated the heterodox dic-
tum de omni. [Malink, 2013, p. 65]6

The second argument, in reply to the circularity objection, is to point out
the usefulness of this formulation in validating the assertoric syllogistic.

The problem with both of these responses is that they are not sufficient to
justify the concessions of Malink’s system. And if we consider the results of
the previous section, we see that Quarc likewise achieves all the positive results,
but with two significant advantages. First, Quarc does not risk circularity, and
offers full-fledged definitions of all the categorical propositions. Second, it also
validates the assertoric syllogistic, and the requirement of “existential” import.
Moreover, the motivation for the latter is widely accepted – avoiding a free logic
(cf. [Pavlovic and Gratzl, 2016]). Therefore, it is not necessary to take the route
Malink does.

Combined with the previous section, this should establish that Quarc is
more appropriate formalization of Aristotle’s assertoric syllogistic than either
the standard Predicate Calculus or Malink’s system. The consequences of this
become apparent once we move to the modal syllogistic.

6.3 Aristotle’s Modal Syllogistic

We now move on to a discussion of Aristotle’s modal syllogistic. Following the
pattern from the previous section, we will first present the Quarc approach, and

6In the interest of full disclosure, the rhetorical force of these two quotes has been changed
from the source by placing them in a different order. This is as justified as Malink is in using
the other ordering to the opposite effect, but the reader should be aware of the discrepancy.
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then move on to compare and contrast it with Malink’s. The modal extension
of Quarc is called M-Quarc, and it will presented first.

6.3.1 The M-Quarc

When we move to M-Quarc, we expand the list of operators with the modal
operators {�,♦}. Like negation, these can function either as the sentential or
the predication operator. Then, the sentential position of a (modal) operator
corresponds to what is commonly called de dicto modality, while the predication
position corresponds7 to de re modality. Note that we are concerned here only
with the syntactic issue of the position of modal operators, and will therefore
prefer the terms introduced in Definitions 111 and 112, as these carry no meta-
physical implications. Note also that rules PS and SP of Quarc will apply to
these operators as well.

The semantics for both Quarc and M-Quarc used here is substitutional, in
keeping with [Ben-Yami, 2014]. For example, (∀S)P is true iff every substitution
of the quantified argument ‘∀S’ by a constant ‘a’ for which (a)S is true, the
resulting sentence (a)P is also true. Compare to Aristotle:

We use the expression ‘predicated of every’ when none of the subject
can be taken of which the other term cannot be said. [Aristotle, 1989,
24b28]

However, nothing in this chapter hinges on this approach to semantics.
Specifically, anyone more familiar with the possible world semantics for modal
logic can treat truth-value assignments below as possible worlds, and an as-
signments set of an assignment as a set of possible worlds accessible to that
world.

Preliminaries

In this section we lay the groundwork for what is to come. We will establish
rules and definitions for the modal expansion of Quarc used here.

One adjustment of the system provided in [Ben-Yami, 2014] is that for
brevity, instead of modal axioms for K and T, we use rules of derivation:

Definition 131 (K): For any sentences A and B, if on some line of the proof
(i) we have a sentence �A and on some line of the proof (j) we have �(A→ B),
we can in any subsequent line (k) derive the sentence �B. The line (k) depends
on all premises that (i) and (j) depend on, and its justification is written as ‘K
i, j’.

L1 (i) �A
L2 (j) �(A→ B)

L1, L2 (k) �B K, i, j

Definition 132 (T): For any sentence A, if at some line (i) of the proof we
have a sentence �A, then in any subsequent line (j) we can derive the sentence

7To an extent. In this context, de praedicationi might be a more fortunate label, but
it is not overly important, given that we mostly use the terms ‘sentential’ and ‘predication’
instead.

100

C
E

U
eT

D
C

ol
le

ct
io

n



CHAPTER 6. ARISTOTLE AND MODERN MODAL LOGIC

A. The line (k) depends on whatever (i) depends on, and its justification is
written as ‘T, i’.

L1 (i) �A
L1 (j) A T, i

The proof system used in this chapter, unless noted otherwise, is the minimal
M-Quarc with added rules of derivation from Definitions 131 and 132.

6.3.2 Validity of Modal Syllogisms in M-Quarc

The valid syllogisms of the first figure remain valid when the sentences are
replaced with sentences with necessary predication. This was also Aristotle’s
view, as can be seen in the following passage from his Prior Analytics:

In the case of necessary premises, then, the situation is almost the
same as with premises of belonging: that is, there either will or will
not be a deduction with the terms put in the same way, both in the
case of belonging and in the case of belonging or not belonging of
necessity, except that they will differ in the addition of “belonging (or
not belonging) of necessity” to the terms. [Aristotle, 1989, 29b36]

What Aristotle seems to be saying is that these syllogisms will come out as
(in)valid in the same manner as their non-modal counterparts. Given that all
of the listed (non-modal) syllogisms come out valid in Quarc, we should expect
the NNN syllogisms to follow suit, which they indeed do, as we will see in the
following section.

NNN Syllogisms

The four perfect assertoric syllogisms all come out valid when both the premises
and the conclusion are necessitated, on either the sentential or the predication
reading. However, the proofs differ somewhat for the two readings, so we will
tackle them in turn. First, the sentential reading.

1. Sentential Reading (“de dicto”)

Although we are only concerned with the first figure here, one proof in fact
demonstrates the validity of all the NNN syllogisms. Before providing the proof
of the validity of the NNN syllogisms on the sentential reading, we prove a
simple auxiliary lemma:

Lemma 133 :
` �(A1 → (A2 → (A1 ∧A2)))

Proof.

1 (1) A1 Premise
2 (2) A2 Premise

1,2 (3) A1 ∧A2 ∧I, 1, 2
1 (4) A2 → (A1 ∧A2) →I, 2, 3

(5) A1 → (A2 → (A1 ∧A2)) →I, 1, 4
(6) �(A1 → (A2 → (A1 ∧A2))) Nec, 5
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CHAPTER 6. ARISTOTLE AND MODERN MODAL LOGIC

Now we can demonstrate the validity of all NNN syllogisms for which the
corresponding assertoric syllogism is valid all at once. The proof will provide
the general schema for proving any one particular syllogism.

Lemma 134 (NNN Validity on Sentential Reading):
If A1, A2 ` B, then �A1,�A2 ` �B.

Proof.

1 (1) �A1 Premise
2 (2) �A2 Premise
3 (3) A1 ∧A2 Premise
3 (4) A1 ∧E, 3
3 (5) A2 ∧E, 3
3 (6) B Assumption, 4, 5

(7) (A1 ∧A2)→ B →I, 3, 6
(8) �((A1 ∧A2)→ B) Nec, 7
(9) �(A1 → (A2 → (A1 ∧A2))) Lemma 133

1 (10) �(A2 → (A1 ∧A2)) K, 1, 9
1,2 (11) �(A1 ∧A2) K, 2, 10
1,2 (12) �B K, 8, 11

Obviously, the import of this theorem extends far beyond the syllogistic, but
that need not concern us at the moment. Note, though, that a simplified version
of this proof will guarantee that the necessitated conversions likewise hold: if
A ` B then �A ` �B.

2. Predication Reading

The proof of validity on the predication reading does not follow as straight-
forwardly from the corresponding assertoric syllogisms, but the proofs of the
two are nonetheless similar, with only two added lines (use of the PS and T rule
in the proof below) to accommodate the addition of the necessity operator to
the minor premise. Let ‘∼’ stand for either an empty string of operators or the
negation, same as above.

Lemma 135 (Barbara-NNN, Celarent-NNN):
(∀M)� ∼ P, (∀S)�M ` (∀S)� ∼ P

Proof.

1 (1) (∀M)� ∼ P Premise
2 (2) (∀S)�M Premise
3 (3) (a)S Premise

2,3 (4) (a)�M UE, 2, 3
2,3 (5) �(a)M PS, 4
2,3 (6) (a)M T, 5

1,2,3 (7) (a)� ∼ P UE, 1, 6
1,2 (8) (∀S)� ∼ P UI, 3, 7

The proofs of Darii-NNN and Ferio-NNN on the predication reading are
related in the same way, mutatis mutandis, to their non-modal versions. As we
can see, the NNN syllogisms of the first figure are relatively unproblematic.
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CHAPTER 6. ARISTOTLE AND MODERN MODAL LOGIC

XNN Syllogisms

None of these syllogisms will be valid, and therefore we will proceed to construct
assignments sets that invalidate them. But first, let us observe the textual
support for Aristotle holding them invalid. Given that in all of these cases the
major premise is not necessary, Aristotle writes:

It sometimes results that the deduction becomes necessary when only
one of the premises is necessary (not whatever premise it might be,
however, but only the premise in relation to the major extreme). [Aris-
totle, 1989, 30a15]

Since the conclusion can be necessary only when the major premise is nec-
essary, and that is not the case in any of these premises, we should expect all
of them to be invalid. Let us now demonstrate their invalidity, again starting
with the sentential reading.

1. Sentential Reading

Invalidity 136 (Barbara XNN, Sentential):
(∀M)P,�(∀S)M 2 �(∀S)P

Proof. Let σ(s1) = {s1, s2}.
Let s1 = {〈(a)S,>〉, 〈(a)M,>〉, 〈(a)P,>〉, 〈(b)S,⊥〉, 〈(b)M,⊥〉, 〈(b)P,⊥〉}.
Let s2 = {〈(a)S,>〉, 〈(a)M,>〉, 〈(a)P,⊥〉, 〈(b)S,>〉, 〈(b)M,>〉, 〈(b)P,>〉}.

(i) The major premise, (∀M)P , is true on s1: every M , namely a, is P .

(ii) The minor premise, �(∀S)M , is true on s1: on s1 every S, namely a, is M
and so (∀S)M is true, and on s2 every S, namely a and b, are M and so
(∀S)M is true. Therefore, �(∀S)M is true.

(iii) But the conclusion, �(∀S)P , is not true on s1: on s2, a is S but not P , so
(∀S)P is false on s2, and therefore �(∀S)P is false on s1.

Invalidity 137 (Cesare XNN, Sentential):
(∀M)¬P,�(∀S)M 2 �(∀S)¬P

Proof. Same as Invalidity 136, with all values of P switched.

Invalidity 138 (Darii XNN, Sentential):
(∀M)P,�(∃S)M 2 �(∃S)P

Proof. Let σ(s1) = {s1, s2}.
Let s1 = {〈(a)S,>〉, 〈(a)M,>〉, 〈(a)P,>〉, 〈(b)S,⊥〉, 〈(b)M,⊥〉, 〈(b)P,⊥〉}.
Let s2 = {〈(a)S,>〉, 〈(a)M,>〉, 〈(a)P,⊥〉, 〈(b)S,⊥〉, 〈(b)M,>〉, 〈(b)P,>〉}.

(i) The major premise, (∀M)P , is true on s1: every M , namely a, is P .

(ii) The minor premise, �(∃S)M , is true on s1: on s1 some S, namely a, is M
and so (∃S)M is true, and on s2 some S, namely a, is M and so (∃S)M is
true. Therefore, �(∃S)M is true.
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CHAPTER 6. ARISTOTLE AND MODERN MODAL LOGIC

(iii) But the conclusion, �(∃S)P , is not true on s1: on s2, the only S, namely
a is not P , so (∃S)P is false on s2, and therefore �(∃S)P is false on s1.

Invalidity 139 (Ferio XNN, Sentential):
(∀M)¬P,�(∃S)M 2 �(∃S)¬P

Proof. Same as Invalidity 138, with all values of P switched.

2. Predication Reading

Invalidity 140 (Barbara XNN, Predication):
(∀M)P, (∀S)�M 2 (∀S)�P

Proof. σ(s1) from Invalidity 136 will invalidate this syllogism as well.

Invalidity 141 (Cesare XNN, Predication):
(∀M)¬P, (∀S)�M 2 (∀S)�¬P

Proof. σ(s1) from Invalidity 137 will invalidate this syllogism as well.

Invalidity 142 (Darii XNN, Predication):
(∀M)P, (∃S)�M 2 (∃S)�P

Proof. σ(s1) from Invalidity 136 will invalidate this syllogism as well.

Invalidity 143 (Ferio XNN, Predication):
(∀M)¬P, (∃S)�M 2 (∃S)�¬P

Proof. σ(s1) from Invalidity 137 will invalidate this syllogism as well.

This concludes the examination of the XNN necessity syllogisms from the
first figure. As we have seen, for both the NNN and the XNN syllogisms, all
those and only those syllogisms Aristotle believed to be valid are in fact valid,
on both the predication and the sentential versions. In the following section,
we will encounter some complications, as that result does not hold for the NXN
syllogisms.

NXN Syllogisms

In this section we will see that in Quarc a familiar problem for Aristotle’s modal
syllogistic arises from an ambiguity with respect to the position of the modal
operator. Namely, Aristotle is often charged with conflating the de re version,
which validates some first figure syllogisms, with the de dicto one, required to
validate the proofs of the second figure syllogisms8. The problem arises for the

8 [Malink, 2013, p. 10] lists a number of authors
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CHAPTER 6. ARISTOTLE AND MODERN MODAL LOGIC

NXN syllogisms (where the minor premise is assertoric), which we focus on in
this section.

Here is what Aristotle says on the first two of these syllogisms, which he
obviously takes to be valid:

If P has been taken to belong or not to belong of necessity to M, and
M merely to belong to S: for if the premises have been taken in this
way, then P will belong or not belong to S of necessity. [Aristotle,
1989, 30a18]

Let us therefore proceed with the proofs. The de re or predication version of
the proof is the same as for Barbara and Celarent, as the above quote suggests.

Lemma 144 (Barbara NXN; Celarent NXN, Predication): (∀M)� ∼ P, (∀S)M `
(∀S)� ∼ P

Proof. Same as Lemma 116, if we substitute ‘� ∼’ for ‘∼’ in that proof.9

Notice, however, that neither of these come out valid on the sentential or de
dicto reading.10

Invalidity 145 (Barbara NXN, Sentential):
�(∀M)P, (∀S)M 2 �(∀S)P

Proof. Let σ(s1) = {s1, s2}.
Let s1 = {〈(a)S,⊥〉, 〈(a)M,⊥〉, 〈(a)P,>〉, 〈(b)S,>〉, 〈(b)M,>〉, 〈(b)P,>〉}.
Let s2 = {〈(a)S,>〉, 〈(a)M,⊥〉, 〈(a)P,⊥〉, 〈(b)S,⊥〉, 〈(b)M,>〉, 〈(b)P,>〉}.

(i) The major premise, �(∀M)P , is true on s1: on s1 every M , namely b, is
P , so (∀M)P is true on s1. Likewise on s2 every M , namely b, is P , so
(∀M)P is true on s2. Therefore, �(∀M)P is true on s1.

(ii) The minor premise, (∀S)M , is true on s1: every S, namely b, is M .

(iii) But the conclusion, �(∀S)P , is not true on s1: on s2 some S, namely a,
is not P , so (∀S)P is false on s2 and therefore �(∀S)P is false on s1.

Invalidity 146 (Cesare NXN, Sentential):
�(∀M)¬P, (∀S)M 2 �(∀S)¬P

Proof. Same as Invalidity 145, with all values of P switched.

As we can see, similarly to the validity proofs of Barbara and Celarent for the
predication reading, their invalidity proofs for sentential versions run in parallel.

In the following section, we will demonstrate that the two readings are not
interchangeable when it comes to modality (and that we therefore must opt for
one). The principles which state that one reading entails the other are known
as the Barcan formula and the Converse Barcan formula.

9Compare to the quote 29b36 above
10One could trivialize the difference between the sentential and the predication version by

deriving either one from the other with the help of Barcan formulas. However, as we will soon
see, neither the Barcan formula nor its converse are valid in M-Quarc.
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CHAPTER 6. ARISTOTLE AND MODERN MODAL LOGIC

6.3.3 Barcan Formula and the Converse Barcan Formula
in M-Quarc

Barcan Formula and its Converse involve the “traveling” of the modal operator
over the quantifier. Let us label their respective versions in M-Quarc as Barcan
Formula′ and Converse Barcan Formula′.

Definition 147 (Barcan Formula′, BF′):
BF′ is an M-Quarc formula of the form (∀M)�P → �(∀M)P .

Definition 148 (Converse Barcan Formula′, CBF′):
CBF′ is an M-Quarc formula of the form �(∀M)P → (∀M)�P .

As we shall now see, neither of these are valid in M-Quarc. We consider the
BF′ first.

Invalidity 149 (BF′):
(∀M)�P 2 �(∀M)P

Proof. Let σ(s1) = {s1, s2}.
Let s1 = {〈(a)M,>〉, 〈(a)P,>〉, 〈(b)M,⊥〉, 〈(b)P,>〉}.
Let s2 = {〈(a)M,⊥〉, 〈(a)P,>〉, 〈(b)M,>〉, 〈(b)P,⊥〉}.

(i) The premise, (∀M)�P , is true on s1: on s1, every M , namely a, is P both
on s1 and on s2, so on s1 (a)�P is true, and therefore (∀M)�P is true.

(ii) But the conclusion, �(∀M)P , is not true on s1: on s2, some M , namely
b is not P , so (∀M)P is false on s2, and therefore �(∀M)P is false on s1.

Invalidity 150 (CBF′):
�(∀M)P 2 (∀M)�P

Proof. Let σ(s1) = {s1, s2}.
Let s1 = {〈(a)M,>〉, 〈(a)P,>〉, 〈(b)M,⊥〉, 〈(b)P,⊥〉}.
Let s2 = {〈(a)M,⊥〉, 〈(a)P,⊥〉, 〈(b)M,>〉, 〈(b)P,>〉}.

(i) The premise, �(∀M)P , is true on s1: on s1 every M , namely a, is P and
on s2 every M , namely b, is P . So (∀M)P is true on both s1 and s2, and
therefore �(∀M)P is true on s1.

(ii) But the conclusion, (∀M)�P , is not true on s1: some M , namely a, is not
P on s2, so (a)�P is false on s1, and therefore (∀M)�P is false on s1.

As we can see, in Quarc neither the Barcan formula nor its Converse are
valid. The reason for this is that here we are dealing with quantified arguments.
However, this is not only not detrimental when dealing with Aristotle, but
arguably an advantage of Quarc. It allows, as we have seen, more elegant proofs,
while also more neatly lining up with the structure of categorical sentences, both
in Aristotle and natural language.

Another way of putting this is that with Quarc, it does not hold that every
M is necessarily M, and therefore the Converse Barcan formula is not valid. To
make this clear, observe the following lemma:
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CHAPTER 6. ARISTOTLE AND MODERN MODAL LOGIC

Lemma 151 :
(∀M)�M ` �(∀M)P → (∀M)�P

Proof.

1 (1) (∀M)�M Premise
2 (2) �(∀M)P Premise
3 (3) (∀M)P Premise
4 (4) (a)M Premise

3,4 (5) (a)P UE, 3, 4
3 (6) (a)M → (a)P →I, 4, 5

(7) (∀M)P → ((a)M → (a)P ) →I, 3,6
(8) �((∀M)P → ((a)M → (a)P )) Nec, 7

2 (9) �((a)M → (a)P ) K, 2, 8
1,4 (10) (a)�M UE, 1, 4
1,4 (11) �(a)M PS, 10

1,2,4 (12) �(a)P K, 9, 11
1,2,4 (13) (a)�P SP, 12

1,2 (14) (∀M)�P UI, 4, 13
1 (15) �(∀M)P → (∀M)�P →I, 2, 14

Likewise, the Converse Barcan formula′ will entail (∀M)�M , from �(∀M)M
and the instance of the CBF′: �(∀M)M → (∀M)�M . As we can see, adding the
provision that every M is necessarily M,11 makes the Converse Barcan formula′

valid. A close observation of the above invalidity proof will reveal this was
precisely what made it work. This condition is analogous to the condition of
non-contracting domain (if a possible world w2 is accessible to a world w1, then
the domain of w2, D(w2) ⊆ D(w1)), which makes the CBF valid, but for the
predicates contained in the quantified argument. Let us therefore define it as:

Definition 152 (Non-Contracting Predicate):
A unary predicate P is non-contracting just in case for every singular argument
a, if (a)P then (a)�P .

The situation is similar with the Barcan formula′. Let us define the anal-
ogous condition of the predicate contained within the quantified argument for
validity of BF′:

Definition 153 (Non-Expanding Predicate):
A unary predicate P is non-expanding just in case for every singular argument
a, if (a)¬P then �(a)¬P .

We can now demonstrate that

Lemma 154 The Barcan formula′ is valid for formulas with non-expanding
predicates in their governing quantified arguments.

Proof.

For our present purposes it will suffice to examine the case of BF′ as pre-
sented in Definition 147, even though expanding this to the case for any formula

11With deliberate word order, not to be mistaken with necessarily, every M is M, i.e.
�(∀M)M , which is a theorem of Quarc, but will not do.
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CHAPTER 6. ARISTOTLE AND MODERN MODAL LOGIC

governed by ∀M is straightforward. Let M be a non-expanding predicate, and
let (∀M)�P be a formula governed by ∀M . Assume that on s1 (s1 ∈ σ(s1)),
(1) (∀M)�P is true and (2), for reductio, that �(∀M)P is false. Therefore, on
some si ∈ σ(s1), there is a c, such that (3) (c)M is true on si and (4) (c)P is
false on si.

Assume (6) (c)M is true on s1. If follows from (1) that (c)�P is true on
s1, and so �(c)P is true on s1 and therefore (c)P is true on si. But this is a
contradiction with (4).

Assume (7) (c)M is false on s1. It follows that ¬(c)M is true on s1, and
therefore by Definition 153, that �(c)¬M is true on s1. But then (c)¬M is true
on si, and therefore (c)M is false on si. But this is a contradiction with (3).

Therefore, by reductio, �(∀M)P is true on s1.

This property of a predicate is analogous to the condition of non-expanding
domain for the validity of BF. Combining the previous two definitions, we can
say that the Barcan formula′ and its Converse hold for predicates with the
property:

Definition 155 (Constant Predicate):
A predicate is constant just in case it is non-contracting and non-expanding.

Of course, given there is no obvious reason to limit the governing quantified
arguments to constant predicates, BF′ and CBF′ remain invalid in Quarc.

We will revisit the topic later in the chapter, but the takeaway now should
be that the two positions of operators, sentential and predicative, are not inter-
changeable. Given this, and the fact that the NXN syllogisms only come out
valid on the predicative version, it seems to be the preferable reading.12 How-
ever, as we move to the second figure we see that this cannot be the reading
throughout. Let us examine Cesare NXN to demonstrate this point.

6.3.4 A Study of Cesare NXN

Aristotle considers this syllogism valid:

For first let the privative be necessary, and let it not be possible for
M to belong to any P, but let M merely belong to S. Then, since the
privative converts, neither is it possible for P to belong to any M. But
M belongs to every S; consequently, it is not possible for P to belong
to any S, for S is below M. [Aristotle, 1989, 30b9](letters adjusted)

He derives it from Celarent NXN by conversion of the major premise. How-
ever, the conversion does not hold on predication reading (here reading ‘not
possible’ as ‘necessarily not’):

Invalidity 156 :
(∀P )�¬M 2 (∀M)�¬P

Proof. Let σ(s1) = {s1, s2}.
Let s1 = {〈(a)M,>〉, 〈(a)P,⊥〉, 〈(b)M,⊥〉, 〈(b)P,>〉}.
Let s2 = {〈(a)M,>〉, 〈(a)P,>〉, 〈(b)M,⊥〉, 〈(b)P,>〉}.

12As we have seen, it makes no difference for the first figure NNN syllogisms, and likewise
for the XNN syllogisms. Constraints of space prevent us from tackling the syllogisms with
other modalities, as they run into a number of issues peculiar just to them.
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(i) The premise, (∀P )�¬M , is true on s1: for every P , namely b, it holds
both on s1 and s2 that (b)¬M , and so it holds on s1 that (b)�¬M , and
therefore it holds on s1 that (∀P )�¬M .

(ii) But the conclusion, (∀M)�¬P , is false on s1: there is an M , namely
a, such that (a)P is true on s2, and so (a)¬P is false on s2. Therefore
(a)�¬P is false on s1 and so (∀M)�¬P is false on s1.

This conversion does hold on the sentential reading:

Lemma 157 :
�(∀P )¬M ` �(∀M)¬P

Proof. From Lemma 120 by propositional modal logic.

Since Celarent NXN is valid only on the predicative reading but the conver-
sion only on the sentential one, we cannot derive Cesare NXN from Celarent
NXN by this conversion. This results in the familiar charge against Aristotle
mentioned above.

Furthermore, one should not expect that some other procedure will be more
effective, given that in any case Cesare NXN comes out invalid on either reading:

Lemma 158 (Cesare NXN):
(∀P )�¬M, (∀S)M 2 (∀S)�¬P ; �(∀P )¬M, (∀S)M 2 �(∀S)¬P

Proof. For the predication version, an assignment set σ(s1) = {s1, s2},
with s1 = {〈(a)S,>〉, 〈(a)M,>〉, 〈(a)P,⊥〉, 〈(b)S,⊥〉, 〈(b)M,⊥〉, 〈(b)P,>〉}.
and s2 = {〈(a)S,⊥〉, 〈(a)M,>〉, 〈(a)P,>〉, 〈(b)S,>〉, 〈(b)M,⊥〉, 〈(b)P,⊥〉}.

For the sentential version, an assignment set σ(s1) = {s1, s2},
with s1 = {〈(a)S,>〉, 〈(a)M,>〉, 〈(a)P,⊥〉, 〈(b)S,⊥〉, 〈(b)M,⊥〉, 〈(b)P,>〉}.
and s2 = {〈(a)S,>〉, 〈(a)M,⊥〉, 〈(a)P,>〉, 〈(b)S,>〉, 〈(b)M,>〉, 〈(b)P,⊥〉}.

To answer this objection, Malink points out that this relies on the idea that
de dicto and de re are the only two possible understandings of modality in these
sentences. Instead, he offers an alternative, one that is, he argues, akin to the
source material and which nullifies the objection. Again, in this section we will
use Malink’s notation to indicate that these are not theorems of M-Quarc.

The idea behind the modal system Malink suggests in [Malink, 2013] relies on
the concepts developed in his treatment of the assertoric syllogistic, once again
rooting it in the aX -predication (universal affirmative assertoric predication).
Namely, the analysis of the necessary affirmative assertoric predication (aN -
predication) is as follows:

Definition 159 (Necessary Universal Affirmative Predication, aN ):
P is aN -predicated of S if and only if P is aN -predicated of everything of which
S is aX -predicated. [Malink, 2013, p. 112](letters adjusted):

Malink gives the truth conditions of a necessary universal-negative (signified
by eN , while the assertoric universal negative is signified by eX) sentence in the
following way:
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Definition 160 :
PeNM if and only if PeXM and P and M are essence terms. [Malink, 2013, p.

170](letters adjusted)

This means that P is universally-negatively necessarily predicated of M just
in case (∀M)¬P is true and M and P are both essence terms. Essence terms
are those that are subjects of essential predication [Malink, 2013, p. 141], and
the latter has the following properties:

P1: If there is a P that is predicated essentially of M , and M is predicated
of S, then M is predicated essentially of S [Malink, 2013, p. 124](letters
adjusted)

P2: if P is predicated essentially of S, then PaNS [Malink, 2013, p. 125](let-
ters adjusted)

So, if an essence term is predicated of something, it is predicated of it essen-
tially and thus, necessarily.

On this reading, the conversion between MeNP and PeNM is valid – by
Definition 160, M and P are both essence terms, and the assertoric conversion
is valid (HDS here stands for heterodox dictum semantics):

Lemma 161 :
MeNP �HDS PeNM

Proof. Assume MeNP is true. By Definition 160, (1) M and P are essence
terms and (2) MeXP . From (2) by Lemma 120, mutatis mutandis for Malink’s
system, it follows (3) PeXM . From (1) and (3) by Definition 160 it follows that
PeNM .

Therefore, the conversion holds as well. Moreover, it does not mean we have
proved something invalid, since Cesare NXN is valid under this definition:

Lemma 162 :
MeNP,MaXS �HDS PeNS

Proof. From MeNP it follows that M and P are essence terms as above, and
from that and MaXS it follows that MaNS by P1 and P2 above. So S is an
essence term. From MeNP it follows that MeXP , and from that and MaXS it
follows by assertoric syllogistic Cesare (Example 2 previously) that PeXS. So
finally, since P and S are essence terms, it follows by Definition 160 that PeNS.

So Malink does provide us with a solution that accounts for the validity of
the desired syllogisms, one that, according to him, blurs the distinction between
de dicto and de re reading [Malink, 2013, p. 176].

6.3.5 Problems for Malink

There are several problems with Malink’s account. First of all, the question that
he answered might not be the same one, or even in the same field, as the one that
was raised (remember, the terms “sentential” and “predicative” were used to
clearly delineate the questions of syntax from those of metaphysics). Moreover,
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the textual support for Aristotle agreeing with him seems to be tenuous, which
raises the question of tinkering.

Furthermore, it seems that when we consider the logical ramifications of
some of his definitions, they turn out to rely on principles that lack independent
plausibility. Finally, it seems Malink, at least in part, commits something he
himself spoke against with regards to the assertoric syllogistic.

Does the Answer Match the Question?

Malink is right in pointing out that de re and de dicto might not be the only two
possible readings of modal sentences. But the issue here is not merely whether
there is a consistent system that validates all those and only those syllogisms
Aristotle held as valid, but also to do so in a manner that is free of the charge of
tinkering. Otherwise, one will only convince those already inclined to consent.

With this in mind, observe that the solutions presented here, and in Malink’s
book, introduce notions like predicables, essence and essential predication, sub-
stance and genus, mostly taken from Aristotle’s Topics. These do, perhaps,
offer a reply to his harsher critics, but they also rely on his specific metaphys-
ical views, while the problem here stems from syntax. Syntactically, there are
only two possibilities – the sentential or the predication position. Since he moves
beyond the only independently plausible options and the very field in which the
problem arises, Malink can avoid the charge of tinkering only if he can produce
solid evidence that that is indeed what Aristotle had intended. But, Aristotle
himself does not handle the issue in such a manner – as Malink points out, the
relations needed for his solution do not appear in the part of the Prior Analytics
concerned with these issues [Malink, 2013, p. 114].

The textual support Malink does offer for the use of predicables is from the
following passages:

So one must select the premises about each subject in this way, as-
suming first the subject itself, and both its definitions and whatever is
peculiar to the subject; next after this, whatever follows the subject;
next, whatever the subject follows; and then, whatever cannot belong
to it. (Those to which it is not possible for the subject to belong need
not be selected, because the privative converts). The terms which
follow the subject must also be divided into those which are predi-
cated of it essentially, those which are peculiar to it, and those which
are predicated incidentally. And these, again, 〈should be divided〉
into such as are matters of opinion and such as are according to the
truth. [Aristotle, 1989, 43b1]

However, this is not an analysis of modal syllogistic, but merely instructions
on what one needs to keep in mind when choosing the terms for syllogisms.
Nowhere does Aristotle say we need to limit ourselves to terms predicated essen-
tially, so the evidence this passage provides is circumstantial at best. Likewise
for the next passage:

For it is possible for A to belong neither to any B nor to any C, nor B
to any C, as the genus does to species from another genus. [Aristotle,
1989, 54b36]
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The mention of the predicable “genus” here is meant merely as an example
and as such offers little by way of definitive proof. Of course, these considera-
tions do not prove Malink wrong, nor are they meant to. The point is to make
a distinction between raising a charge of tinkering against Malink and against
Aristotle, the latter being much less plausible. But since nothing Malink offers
compels us to accept his view as Aristotle’s, it becomes much less persuasive.

In short, the issue here was whether to understand the modal operators as
fulfilling the role of a sentential or a predication operator, a question of syntax.
These notions, unlike de re and de dicto labels, do not involve metaphysics.
On the other hand, Malink’s answer crucially involved metaphysical notions.
Moreover, there is no evidence that in this respect, Aristotle intended for his
metaphysics to be reflected in the syntax. Therefore, it seems Malink introduces
these notions as a way of validating Aristotle, and that would classify it as
tinkering.

De Re – De Dicto Distinction

Malink in effect limits the subjects of necessary propositions to essence terms.
And those are such that they are “aN -predicated of everything of which they
are aX -predicated.” [Malink, 2013, p. 152]. In effect, Malink limits the modal
syllogistic to non-contracting predicates.

Moreover, although the situation with the non-expanding predicates is not
as clear, it is obvious that at least as far as the necessary universal-negative is
concerned (which will suffice for the purposes of this chapter, as it only focuses
on Cesare NXN), it also limits the predicates to non-expanding. Therefore,
Malink’s treatment of Cesare NXN is such that it limits it to constant predicates.
In other words, he does not do away with the de re – de dicto distinction, it’s just
that his formalization validates the principles required for the Barcan formula
and it converse to be valid, thus making the two readings equivalent.

However, those principles are not universally acceptable, so the solution can
be said, in Malink’s own words, to “rely on a tacit extralogical presupposition
about the nature of admissible terms which Aristotle failed to make explicit. It
would not be the universally applicable system of formal logic” [Malink, 2013, p.
43]. Recall that these same words were previously quoted when discussing the
strategies for ensuring the existential import in the assertoric syllogistic, and
here Malink seems to fall victim of his own objection. Of course, an important
difference is that unlike the assertoric syllogistic, Aristotle’s modal syllogistic
is not often thought to be a “universally applicable system of formal logic”.
If anything, the opposite holds true. So, even this limited result would be an
improvement. However, it simply fails to match up to the modern modal logic,
which is considered a universally applicable system of formal logic.

6.4 Conclusions

The issues presented in this chapter are not peculiar to the system used here,
as the questions discussed here predate not only Quarc, but the majority of
modern logic. However, the way in which these problems arise in Quarc and
M-Quarc is particularly informative. In the closing section of this chapter, we
gather all the result obtained so far into a systematic argument.
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One fundamental difference between the Aristotelian modal syllogistic and
modern modal systems is that the most natural way of extending a quantified
logic to incorporate modalities is by adding modal operators as distinct syntactic
units. These can serve two functions – sentential, i.e. ranging over the whole
sentence, or predication, i.e. modify the mode of predication. Again, this is
not peculiar to the modern system at hand, but the syntactic idiosyncrasies of
Quarc make this readily apparent – it is at the same time closer to both the
natural language and to Aristotle.

Proposition 163 Quarc has exactly two available positions where one can in-
troduce the modal operators (as is evident from Definitions 111 and 112) – the
sentential and the predication position.

As we have seen in Section 6.3.3, in general these two options are not equiv-
alent, and to make them equivalent, one would need to accept counter-intuitive
extralogical limitations on the kinds of predicates we use.

Proposition 164 The two options are not equivalent when it comes to quan-
tified sentences.

Therefore, one needs to choose one of the options (tacit assumption being
that we want a uniform reading throughout). However, as we have seen in
Section 6.3.2, the NXN syllogisms of the first figure only come out valid on the
predication reading. But, Section 6.3.4 demonstrates that the inferences needed
for the proof of the second figure syllogism are only valid on the sentential
reading. Moreover, some syllogisms are invalid no matter the reading we take.
So:

Proposition 165 Neither option satisfies all of the required inferences.

It follows that there is no independently plausible way, in M-Quarc, of recon-
structing Aristotle’s modal syllogistic that validates it in its entirety. The fact
that modern modal systems have independent reasons for introducing modal
operators as distinct syntactic units (expressive power, compositionality, sim-
plicity), and that those are precisely the cause of problems for Aristotle’s modal
syllogistic, seems to suggest that

Proposition 166 There is a fundamental mismatch between Aristotle’s modal
syllogistic and modern modal logic that makes it highly unlikely the latter will
ever treat the former as valid.

Solutions like that of Malink seem to offer a solution, by way of a compromise.
In the example we have seen in this chapter, Malink limits the scope of the
universal necessary propositions. However, due to Proposition 166, any such
attempt can be construed as “tinkering”. Therefore, even if one were to come up
with a system that validates all those and only those modal syllogisms Aristotle
considers valid, one is unlikely to change the dominant opinion on Aristotle’s
modal syllogistic.
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