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Abstract

Studying financial systems from a network perspective became an essential part of the
economic literature after the financial crisis. This thesis analyzes the Hungarian interbank
network on the basis of a recently emerged concept, namely the multiplex approach of the
financial networks. This idea emphasizes that banks are connected through multiple channels,
which should be considered when assessing systemic risk. Using a dataset of the Hungarian
uncovered interbank transactions between 2003 and 2013 this thesis shows that the overnight
and the longer-term maturity layers of this market have different characteristics in both cross-
sectional and historical comparison. The analysis also reveals that the relative importance of
the banks in the system is strongly varying across the layers, which should be taken into

consideration in the SIFI assessment methodologies.
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1. INTRODUCTION

The recent financial crisis made it clear that understanding the network structure of the
financial sector is crucial to assess systemic risk adequately. As Smaga (2014) points out, the
economic literature provides various definitions for the concept of systemic risk. In this thesis,
I will use this expression to the risk that emerges due to the interconnectedness of the
financial institutions. It is the risk that an idiosyncratic shock affecting only one or few
institutions will be amplified in the network due to the interbank connections, which finally
leads to system-wide disturbances that may also have a real economic effect.

Beside “systemic risk”” another expression started to be widely used in the literature about the
financial system: the “too connected to fail” institutions. This concept took over the place of
the “too big to fail” expression, and it emphasizes that the importance of an institution in the
financial network does not only depend on its size but rather its embeddedness in the system.
One key purpose of the network analysis of the financial market is the detection of these

banks, the so called systemically important financial institutions (SIFIs).

The identification of the SIFIs became a crucial part of the macroprudential regulation of the
central banks and financial authorities because the default or some serious solvency problems
of these banks can have far-reaching effects. First, if a key bank defaults in the system then it
causes direct losses to its creditors. Second, this effect may induce further defaults among the
creditors, which means losses to their counterparties as well. In this way, the original default
can be both directly and indirectly contagious, which potentially leads to solvency problems
of institutions that were not partners of the originally problematic bank. As a third
mechanism, the increased counterparty risk may result in a partial or full freeze of the
interbank market. As a consequence, banks are compelled to find alternative ways of
financing, which usually means higher costs since the interbank market is generally the

cheapest way to get additional short-term liquidity.

In the recent years, a new approach appeared in the literature about the financial networks.
This concept puts emphasis on the fact that financial institutions are connected through
multiple layers forming a multiplex network. These papers suggest that if we combine the
information that is incorporated in the various networks, then we get a more precise picture of

the network structure of the interbank market, which ultimately can be used for more effective
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regulation. For example, banks can be directly connected through bilateral exposures in the
uncovered interbank market, the covered interbank market (repo market) and the swap market
(for example FX-swap). These networks may be further divided by the maturity of the
transactions. Developing methods to analyze the separate sub-networks, their similar and
diverse characteristics, and to assess how they contribute to the overall systemic risk is an

interesting and currently expanding part of the financial network literature.

In this thesis, | will analyze the Hungarian uncovered interbank market using multiplex
network approach. Although some papers have already analyzed the Hungarian financial
network, this new multiplex approach has not yet been applied to Hungarian data. Albeit the
uncovered interbank market is only one part of the complex financial network (see Section
3.1.), it can be useful to get an insight into the system. Furthermore, since the transactions are
uncovered in this market, a potential distress could cause severe losses for the banks. Thus,
knowing the characteristics of the network and detecting the systemically important

institutions may be crucial not only from theoretical but also practical point of view.

The analysis is based on an anonymized dataset containing the uncovered interbank
transactions between January 2003 and April 2013 provided by the Hungarian National Bank
(MNB). The dataset provides information about the transacted amount, interest rate and
maturity of every interbank transaction, which makes it possible to create sub-networks based
on the different maturity of the deals. Since the uncovered interbank market is mainly used to
get short-term liquidity, | create two layers: the overnight network containing transaction with

one-day maturity, and the longer-term network that incorporates all other transactions.*

My first hypothesis is that the Hungarian uncovered interbank network shows small world
characteristics where some large hubs are connected to many other banks, while the
periphery-nodes only have a few counterparties. This finding would be in line with many
empirical papers analyzing various interbank networks. Regarding the multiplex comparison,
| expect that banks show different behavior in the overnight (ON) and the longer-term (LT)
layers. This hypothesis is based on the presumption that these sub-networks serve different
purposes for the banks. While the overnight network is the market to overcome short-term

liquidity shocks (from the borrowing side) and expose excess liquidity (from the lending

! For every calculation including the creation of the networks | used the R programming language. The networks
were visualized with Gephi.
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side), the longer-term market may be a substitute for refinancing longer-term obligations from

the non-interbank market.

The thesis is structured as follows. Chapter 2 contains a selected review of the relevant
literature focusing on the single and multilayer approaches of the financial network analysis,
as well as the identification of SIFIs. Chapter 3 gives a short description of the current
Hungarian interbank market, and then it turns to the analysis of the interbank transaction

network. The last section summarizes the findings.



CEU eTD Collection

2. LITERATURE REVIEW

This chapter provides a selected literature review about the network analysis of financial
systems. In the first section, | summarize the main concepts about the relationship of the
network structure of the financial market and the systemic risk, as well as the relevant
empirical analysis about the Hungarian interbank network. Then | show papers that use the
recently emerged multiplex approach. The last section gives an overview about the SIFI

identification from both theoretical and practical point of view.
2.1. Financial networks — traditional approach

Many theoretical and empirical papers have tried to evaluate how the interconnectedness of
the financial institutions affects the stability of the system. Some authors argue that more
interconnected institutions form a more resilient system since in a loosely connected network
banks have large exposures towards a few counterparties that can be the source of instability.
For example, Allen and Gale (2000) emphasizes that a densely (preferably fully) connected
financial network enhances risk-sharing of the banks since the losses of a defaulted bank are

shared across its creditors, which makes the system more robust to shocks.

In contrast to this view, many authors started to analyze the increased systemic risk that arises
from a dense interbank network. These papers focus mainly on the interbank contagion, when
a shock of one or few institutions spread across the network and causes disturbances for other
institutions as well. Gai and Kapadia (2010) argue that although the interconnectedness of the
banks may reduce the probability of a severe distress in the network, it will amplify its effect
through the interbank contagion channel. They call this phenomenon the “robust-yet-fragile”

characteristics of the financial networks.

Battistion et al. (2012) drew a similar conclusion based on their dynamic modelling
framework. The authors found that the connectivity of the institutions in the network and the
probability of their default have a U-shaped relationship: in the case of a loosely connected
network the increase of the interbank exposures is beneficial, but in a densely connected
system the negative effect of interbank contagion exceeds the gain of risk sharing.

Acemoglu et al. (2015) also showed that the financial network disposes of a “robust-yet-

fragile” property, but in their framework this phenomenon depends on the size of the shock
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rather than the density of the network. The authors claim that as long as the shock that hits the
system is below a certain threshold, a denser network is much more robust than a sparse one.
However, if some large shock affects the system, then contagion is more severe and quicker in
a highly connected interbank network. In this case a dense network becomes fragile, while a

sparse network is more resilient to the shock.
2.1.1. Hungarian application

Beside the theoretical foundations of financial networks, there is an extensive literature about
the empirical analysis of specific networks. In the case of the Hungarian financial system,
Lubloy (2006) provided an early paper in this context. She analyzed the Hungarian large-
value transfer system (VIBER) that is a settlement system for transactions of larger amounts
operated by the MNB. The network analysis of transactions in 2005 discovered that the
linkages and the importance of the banks in this payment system were quite stable over time.
Those banks that were central in one day tended to be important in the following days as well
(i.e. the centrality indicators were strongly autocorrelated). In addition, the author identified
the key institutions in the system based on various centrality indicators. The results showed
that surprisingly not the largest banks were the most important ones, but rather those that were
active in the USD/HUF FX swap market. This finding also indicates that the centrality of a
bank from a network point of view is not always in line with its relative size (its total assets

compared to other banks).

Another relevant empirical analysis was carried out by Berlinger et al. (2011) who studied the
Hungarian uncovered interbank market using a transactional dataset between 2002 and 2009.
The main purpose of this paper was the comparison of the pre-crisis and post-crisis networks.
The authors found that although the number, the interest and the magnitude of the transactions
did not show any structural change before the collapse of Lehman Brothers in September
2008, some network indicators like the density and the average closeness of the nodes started
to show different dynamics beginning from 2006. It indicates that the banks anticipated the

increased risks in the market long before the outbreak of the crisis.

As Lubloy (2006) pointed out, the FX swap market is crucial in the Hungarian financial
network. Banai et al. (2015) carried out the network analysis of this market and showed that
severe disruptions were detectable during the crisis, which led to the fragmentation of the

network and the vanishing of some group of nodes. Although the scope of this paper did not
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include a thorough multi-layer analysis, the authors differentiated and compared the FX sub-
markets of different maturities. Their results indicated that the maturity-layers showed
different dynamics and reacted distinctly to the shocks of the financial crisis. This finding also
indicates that the segmentation of the interbank markets and the comparison of the sub-

networks can add new aspects to the financial network analysis.
2.2. Financial networks — multiplex approach

As discussed in the introduction of this thesis, the literature about the interbank networks has
turned to the multi-layer approach only during the recent years. One early contribution to this
literature was written by Montagna and Kok (2013) who developed an agent-based multi-
layer model to analyze the European interbank market. Their dataset included detailed balance
sheet information of 50 large EU banks at the end of 2011. Since the interbank exposures data
were not available, the authors used simulated interbank networks. The most important
finding of this paper was that the disregard of the interconnectedness of banks across multiple
layers leads to a serious underestimation of systemic risk. They found that a shock affecting
the system can be significantly intensified if the banks are connected in more than one

network.

Bargigli et al. (2015) analyzed the Italian interbank network from the multiplex point of view.
Their dataset contained interbank exposures that made it possible to create secured and
unsecured exposure layers along different maturities. The authors suggested differentiating
between two aspects of similarity: the topological similarity that compares the network
characteristics, and the point-wise similarity that relates the node-level indicators like the
centrality metrics. The analysis detected strong topological differences among the layers
meaning that a connection between two banks in one of the sub-networks did not imply their
linkage in other layers. Thus, the authors concluded that using the overall interbank network

or only one of its sub-layers to assess systemic risk in the market can be highly misleading.

A pioneering paper was published by Aldasoro and Alves (2016) about the multiplex
approach of interbank networks. Firstly, the authors amended the input-output model of
Aldasoro and Angeloni (2013) by creating a multi-layer theoretical framework that makes it
possible to assess the multi-layer systemic importance of the nodes. Secondly, they applied
this approach to a dataset containing bilateral exposures among 53 large European banks at

the end of 2011. The authors created layers by decomposing the network based on the
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instrument type (assets, derivatives and off-balance-sheet) and the maturity (less than one

year, more than one year and unspecified) of the exposures.

Following the distinction of layer and node similarities suggested by Bargigli et al. (2015),
Aldasoro and Alves (2016) first compared the adjacency matrices of the created interbank
layers. They found that the instrument layers of the same maturity are not necessarily
overlapping: for example while 81% of all bilateral connections are observable in the asset
network, this share is only 48% in the case of the off-balance-sheet layer. Considering the
maturity decomposition, the authors found that generally the different maturity-layers of the
same instrument type show similar characteristics, while different instrument-layers are rather

diverse.

As a next step, the authors also assessed how the systemic importance of the nodes is related
across the layers. Their analysis included the correlation of various centrality metrics and the
core-periphery structure across the layers. The results suggested that node-level indicators are
positively correlated, thus systemic importance is quite persistent across layers of the
analyzed network, which an opposite finding as of Bargigli et al. (2015). However, the
authors emphasize that even in this case the decomposition of the systemic importance of the
nodes into layer-specific contribution is an important aspect that can deepen our knowledge

about the structure of the interbank market.

The literature of the multiplex financial network analysis is steadily growing with both
theoretical modelling frameworks (see for example Peralta and Cris6stomo, 2016), and
empirical applications (see for example Poledna et al., 2015). My comparison of the overnight
and the longer-term layers of the Hungarian interbank network in Section 3.3.4. is based on

these presented theoretical and empirical papers.
2.3. SIFI identification

As | emphasized in the introduction of this thesis, shocks can easily spread across the
financial system and cause disturbances in that part of the network that was directly
unaffected by the original shock. One of the primary purposes of the network analysis of the
interbank market is to identify those institutions whose turmoil or default is likely to be very
contagious in the network. These so called SIFIs are key nodes in the network, and therefore

the regulators have a strong incentive to prevent their potential insolvency.
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The identification of the SIFIs can be done in many ways, and there is a wide range of
theoretical literature and practical methodologies to find these key nodes in the system. From
a network point of view, the importance of a node can be captured with different metrics of
centrality, like degree, betweenness, closeness or eigenvector centralities. These indicators
evaluate the importance of a node in the network from various aspects. Therefore they often

lead to divergent conclusions regarding the key institutions in the network.

Alter et al. (2015) applied these network metrics to identify the key institutions and the
potential effect of their default in the German banking system. The authors combined these
indices with data about the lending activity of the banks, which made it possible to evaluate
the effects of correlated portfolio losses and interbank contagion in a holistic framework.
Their analysis based on a dataset containing more than 1700 German banks supported that
network centrality measures can be efficiently used to mitigate systemic risk. They showed
that a capital allocation mechanism that takes into account the network centrality indicators
can improve financial stability compared to a baseline model that disregards the interbank

network.

A recent example for the SIFI identification in the Hungarian interbank market is the paper of
Fukker (2017). The author applied the harmonic distance suggested by Acemoglu et al. (2015)
to assess the centrality of the nodes. Both his simulations and the application to real data
showed that this way of SIFI assessment performs similarly to the “usual” centrality metrics.
However, this approach can be used as an indicator of financial stress in the system as it

peaked around the financial crisis but was quite stable in normal times.

A more complex approach for the SIFI identification is proposed by Battiston et al. (2012)
who introduced a DebtRank value measuring the importance of a node in the network. This
metrics is based on the idea of feedback centrality that evaluates the role of a node not only by
its place in the network but also by the importance of its neighbors. The DebtRank measures
the “fraction of the total economic value in the network that is potentially affected by the
distress or the default” of the particular node. (Battistion et al., 2012, p. 3) The calculation is

made through the following steps:

1. First, the authors calculate the direct loss that the default of a node would cause to its

partners based on the outstanding amounts. These losses are weighted with the
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economic value of the counterparties, measured by the share of their exposures and the
total exposures in the network.

2. Then, the authors determine the weighted losses of the partners of the neighbors that
were directly affected, so they evaluate the spillover contagion of the original default.
And they continue with the neighbors of these nodes and so on.

3. The total DebtRank is a weighted sum of these implied losses, where a dampening
factor is used to assign a lower weight for nodes that are farther from the original

node.

The authors applied the introduced DebtRank metrics for a special network of the FED
emergency loan program during the financial crisis. They combined these data with the equity
investments among the institutions to have a directed network for the estimation. The analysis
revealed that the interbank network was highly interconnected with some very large
borrowers with high DebtRank. It means that even a small shock of these banks could have

caused the collapse of the system with great losses for the periphery nodes as well.

Another application of the DebtRank is the contagion analysis of Fink et al. (2015). They used
this indicator on an end-of-year 2013 data about the German interbank exposures, and
established a framework that is appropriate for the estimation of the effect of both
idiosyncratic and system-wide shocks taking into account the interbank contagion channel.
Their algorithm estimates how an increase of the probability of default (PD) of a bank affects
its creditors, which increases the creditors’ PD as well, that has an effect on their creditors,
etc. By combining this methodology with real interbank exposure data, the authors estimated
the effect of a real estate shock as an example. Their results showed that the indirect interbank
contagion is responsible for the half of the total realized losses in the network. This modeling
framework can be easily adjusted and therefore used to identify SIFIs or answer various

policy questions.

Bluhm et al. (2013) also used the interbank contagion chain for the SIFI assessment. In their
model, the banks are connected through their correlated balance sheets (non-interbank
exposures) and also in the interbank market. The importance of a bank in the network is
calculated as its contribution to the overall systemic risk. The marginal contributions are
defined using the Shapley-value. They found that this SIFI identification and contagion
simulation can be used for more effective policy making since the overall systemic risk can be

reduced by adequate incentives. One measure they suggest is the taxation of interbank returns
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that would charge interbank transactions and therefore decrease the interconnectedness of

banks and mitigate contagion.

Since my dataset contains anonymized interbank transactions, | cannot apply the more
complex SIFI assessing methodologies due to the lack of real balance sheet (most importantly
capital) data. Thus, for the SIFI identification in section 3.3.3. | will rely on the network

centrality metrics.
2.3.1. SIFI assessment in practice

The recognition of the critical role of the systemically important financial institutions led to
the change of regulation as well. The Basel Committee on Banking Supervision (BCBS)
suggested a SIFI assessment methodology and a calculation of additional capital buffers these
institutions should be required to hold to increase their loss absorbency as a part of the Basel
I11 regulatory framework. (BCBS, 2013) Although the Committee recommended a common
quantitative framework for the SIFI (or as they call them, global systemically important bank,
G-SIB) identification, they emphasize that banks show large differences in their activities and
portfolio structure. Thus, the SIFI assessment may be subject to qualitative refinements.

The BCBS (2013) publication uses an indicator-based methodology for scoring the
importance of the banks. The indicators cover five categories that equally have 20% weight in
the final score: size (total exposures), interconnectedness (interbank exposures), substitutes or
financial institution infrastructure, complexity and cross-jurisdictional activity. After
assigning a score to each institution, the Committee ranks them and suggests pre-defined

additional capital requirements for each bucket (see Appendix Table 1).

The BCBS methodology is incorporated into the Capital Requirement Directive’? (CRD V)
that serves as the harmonized banking regulation within the European Union. The Article 131
of CRD 1V distinguishes the global (G-SIl) and other (O-SII) systemically important
institutions, where the latter ones are not key banks on international level but they are highly
influential within the local financial network. A guideline for the assessment of such O-Slls
was issued by the European Banking Authority (EBA) in 2014 that strongly relies on the
BCBS recommendations (EBA, 2014).

2 Full text of the Directive is available at:
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=0J:L.:2013:176:0338:0436:En:PDF
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Since neither of the Hungarian banks is qualified as a global systemic important institution by
the Basel methodology, the SIFI assessment of the MNB is based on the EBA guidelines for
the O-SII identification (MNB, 2016). In line with the standard methodology of the EBA
guidelines, the scoring evaluates the banks with respect to four categories that actually include
all aspects of the original Basel recommendation. Furthermore, the standard approach is
amended with a supplementary methodology that already incorporates a network analysis of
the interbank market. For the full list of indicators and the corresponding weights used by the
MNB see Appendix Table 2.

Based on the determined scores of systemic importance the MNB requires additional capital
buffers for the most significant O-SlIs. These buffers vary between 0.5% and 2% and will be
gradually introduced until 2020. The first deadline when systemically important Hungarian
banks have to comply with the required systemic risk buffer is 1% July 2017. For the list of
Hungarian SIFIs identified by the MNB and the planned introduction of their additional

capital buffer requirements see Appendix Table 3.

Although the suggested methodology of the Basel Committee is widely applied by the
national banking authorities, some critics also emerged concerning the calculation. Benoit et
al. (2017) argue that the calculation of the scores is statistically biased, and some indicators
get disproportionally high weights in the total score. Their observation is that the consequence
of the pure weighted sum of the five indicators is that the scores are dominated by the
categories that have the largest cross-sectional variation. Thus, the indicators should be
standardized (for example by their standard deviation) to be in line with the original concept
of equal weights across the categories. The empirical analysis of the authors showed that this
correction leads to much more robust SIFI identification.

As we see, the problem of SIFI identification is an essential part of the post-crisis banking
regulation that focuses on the maintenance of financial stability. As the regulation of the SIFIs
through additional capital buffers becomes part of the everyday macroprudential toolkit of the
banking authorities, the deep analysis of the interbank network and the interconnectedness of
the financial institutions are getting more and more crucial. In the following chapter, | will
analyze and evaluate the network characteristic of the Hungarian interbank network, which

can add some aspects to these problems from the network theory point of view.

11



CEU eTD Collection

3. EMPIRICAL ANALYSIS

The first two sections of this chapter give an overview of the basic characteristics of the
Hungarian interbank network and my analyzed transactional dataset. Then | analyze the most
recent available interbank network along four aspects: undirected network, directed network,
SIFI identification and the multiplex analysis of the system. However, to get a clear picture of
this market, it is not enough to study only the “current” (the latest available) snapshot.
Therefore, the fourth section presents how the networks and their characteristics changed over

time.
3.1. The Hungarian interbank network

Before analyzing the transactional dataset, it is worth to assess the importance of the interbank
lending within the Hungarian financial network. As | mentioned in the introduction, the main
purpose of the interbank network is the get additional short-time liquidity. Thus, banks
probably do not finance their longer-term assets from the interbank network, but it serves as
an important market to overcome liquidity shocks that affect the system in an asymmetric

way.
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Figure 1 — Hungarian interbank exposures (end-of-quarter)

Source: MNB

In Figure 1 we can see that amount of the overall interbank exposures among the Hungarian
credit institutions based on quarterly MNB data. The green line (right-hand side axis) shows
the share of the interbank exposures compared to the total liabilities of the sector. Based on

aggregated data the interbank exposures amounted around 2-3% of the total liabilities during
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the 2006-2016 period, while it peaked in 2016 reaching almost 6%. Regarding the
denomination, only 1/3 of the latest available interbank exposure data was in HUF, but as we

can see the share of FX exposures was quite varying over time.

mmmm Uncovered interbank exposure
=@ Share of uncovered exposures in the interbank market (RHS)
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Figure 2 — Hungarian uncovered interbank exposures (end-of-quarter)

Source: MNB and own dataset (provided by the MNB)

Although banks are connected through the overall interbank market, from a systemic risk
point of view the uncovered interbank lending is the most interesting sub-market since only
marginal counterparty risk emerges if the exposures are covered with securities.
Unfortunately, there is no openly accessible data about the decomposition of the formerly
presented interbank exposures, so | used my transactional database to calculate end-of-quarter
uncovered interbank exposures. In Figure 2 we can see these exposure values compared to the
overall aggregated interbank exposures (red line). The presented time period is the
intersection of my 2003-2013 transactional dataset and the 2006-2016 aggregated time series.

As we can see in Figure 2 the uncovered interbank lending summed up to 150 billion HUF in
average over this period, which meant 9.5% of the total interbank market. However, this ratio
was quite volatile, reaching almost 20% in 2007Q4 but falling to 3% in 2011Q4. Compared to
the total liabilities over this period, we can conclude that the uncovered interbank market had
a share of 0.5% in average. This value does not seem to be notable, but a default of an

important borrower in this market can cause serious losses for its counterparties.

The previous statement can be supported with a simple calculation. Based on the data used for
Figure 1 the total aggregated liabilities of the credit institutions were 31 158 billion HUF in
average between 2006 and 2016. Using the 0.5% average share of the uncovered interbank

market, such exposures summed up to 155.8 billion HUF. As I will present in Section 3.3.2.,
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due to the high concentration on the borrowing side, the most important bank can be
responsible for 1/3 of the total borrowed amount. If we consider a potential default of this key
institution, then it causes 51.9 billion HUF instant loss for its counterparties. If we compare it
to the 124 billion HUF average pre-tax profit of the credit institutions over this 11 years
period (see Appendix Figure 1), then we can see that the potential systemic risk in this sub-
network is not as negligible as it seemed to be based on its share among the total liabilities (or
total assets). Of course, it is an extremely simplified calculation that does not take into
account the cross-sectional and historical variation of the interbank lending activity.
Unfortunately, due to the anonymity of my transactional dataset, | cannot individually
compare the interbank lending behavior of the banks to their balance sheet. Such an analysis

could reveal more appropriate conclusions.
3.2. Data description

The dataset provided by the Hungarian National Bank (MNB) contains uncovered interbank
transactions between January 2003 and April 2013. The data is anonymized, so the banks are
not identifiable. Therefore, T will use the assigned IDs as “names”. Beside the source and
target IDs the following information is available for every transaction: start date, finish date,
transacted amount and interest rate. From the start and finish date I derived the maturity of the
deals (adjusted with weekends and holidays). The maturity will serve as the basis of the

segmentation of the market into overnight and longer-term sub-markets.

The data contains 102 941 transactions among 45 banks.® However, as one can expect, neither
the number of the transaction nor the number of active banks was stable in the observed
period. To get an insight into the historical changes of the market | created monthly one-year
windows from the dataset. For example, the “April 2010” network refers to a network that is
built based on the interbank transactions with start date between 1% April 2010 and 31* March

2011. These monthly one-year networks will be used during the whole analysis.

® Actually, the dataset contains 53 separate institutions but those that belong to the same banking group are
merged together.
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In Figure 3 we can see the total number and amount of the interbank transactions. Every
observed point represents a one-year network beginning at the indicated month. Before the
2008-2009 financial crisis, the time series were quite stable: the banks transacted around 25-
30 thousand billion HUF through 10-12 thousand transactions. However, as the crisis
unfolded and reached the Hungarian banking sector the interbank lending activity
dramatically decreased. In the November 2008 network, right after the collapse of Lehman
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Figure 3 — Total transactions in the one-year networks

Brothers, the transacted amount was around one-third of the pre-crisis level.
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The narrowing of the market is even more apparent if we consider the weekly aggregated
transactions and transacted amounts in Figure 4. Right after the Lehman default, the average

234 weekly transactions (average of all weeks before 46™ week of 2008) fell to 83
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Figure 4 — Weekly uncovered transactions
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transactions (average of weeks in the following one year). The fallback was similarly strong if
we consider the transacted amounts: it decreased from the average weekly 520 to 210 billion
HUF. As Berlinger et al. (2011) points out this phenomenon reflects that the Hungarian banks
reacted to the increased uncertainty in the market with pulling back their interbank activity
rather than increasing the interest rates. After the crisis, the uncovered interbank lending
activity started to increase, but it did not reach the pre-crisis level even in the latest observed
network (but it probably did in the following years).
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Figure 5 — Overnight transactions in the one-year networks
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Figure 6 — Longer-term transactions in the one-year networks

Since the main focus of my thesis is to separate and compare the two identifiable layers of the
interbank network, it is important to have an insight into the basic dynamics of these sub-
markets. As Figure 5 and Figure 6 present, we can see different patterns for the two layers. In

this case, it is also worth to divide the analyzed period into the pre-crisis, crisis and post-crisis
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years because the dynamics of the analyzed metrics usually show clearly detectable

differences among these time periods.

Regarding the number of transactions and the total transacted amount in the case of the
overnight sub-network, we can see similar dynamics as for the whole market, which is not
surprising knowing that the majority of the interbank transactions are overnight. However, the
longer-term sub-market shows different patterns. In the pre-crisis period it gradually
decreased until 2006, then within one year, the total transacted amount almost doubled. The
crisis also left its mark on this sub-market since the transactions fell below their pre-crisis
level during 2008 and 2009. Although this sub-market consolidated to some extent, we cannot
see signs of any increasing trend. It may indicate that banks introduced more severe interbank
exposure limits towards each other during the crisis period and these limits have not been

loosened since then.

After having an overall picture of the transactions in the market, in the following Sections |
will analyze the latest available one-year network that begins on 1% May 2012. Then in
Section 3.4., | present the historical analysis of the interbank lending data together with

various network-level and node-level metrics.
3.3. Analysis of the latest network

The data in my transactional database make it possible to build different types of networks
that help me to analyze the Hungarian interbank market from various aspects. One aspect is
the type of connection among the nodes. If we build an undirected network, then we connect
two banks if any transaction occurred between them during the observation period. In this
way, we can get an insight into the interconnectedness of the banking sector, which is highly

important for the assessment of systemic risk and potential contagion.

However, we can get additional information about the system if we also take into
consideration the direction of the transactions by building a directed network. In this way, we
can also analyze which banks appear mostly on the lending, on the borrowing or both sides of
the transactions. This approach makes it possible to differentiate the SIFIs on the borrowing

and the lending sides of the market.

In the next sub-section, I will identify the most important characteristics of the undirected

network. Then | turn to the analysis of the directed system. Based on the directed network |
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identify the most important institutions in the third sub-section. The fourth part is a
fundamental element of the multiplex comparison, where | evaluate both the layer and the

node similarities of the overnight and the longer-term submarkets.

3.3.1. Undirected network

The latest one-year window in my dataset contains the interbank transactions between May
2012 and April 2013. To get an insight into the “current” state of the Hungarian interbank
market, | will use the network built using this time period. This network contains 34 financial
institutions and 8 777 transactions among them. In this part, I won’t differentiate between the
overnight and the longer-term layers because this sub-section serves as a general overview of

the interbank market.

Figure 7 — Undirected one-year network (May 2012)

Figure 7 presents the latest available one-year network. It is an undirected graph where two
nodes (banks) are connected if at least one transaction occurred between them during the

observation period. The color of the links indicates the amount transacted between the two
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adjacent banks during this one year period: the darker is the line, the greater is the transacted

amount. The basic metrics of the network are summarized in Table 1.

Table 1 — Basic metrics of the undirected network

Indicator Value
Number of banks 34
Number of connections 197
Diameter 3
Average degree 11.588
Average path length 1.699
Density 0.351
Betweenness centrality 0.165
Global clustering coefficient 0.577
Average local clustering coefficient 0.733

The first thing one can observe is that the graph seems to be quite dense, which means that
banks are connected with many other banks in the uncovered interbank market. The network
consists of one giant connected component, so every node can be reached by any other node
through some path that contains at most 3 nodes as the diameter of the network shows. Based
on this we can conclude that the Hungarian interbank network has a small world
characteristic, but it is not surprising given that it is a network with a quite small number of

nodes.

The average degree in the network is around 11.6 meaning that a randomly selected bank is
expected to be connected with 11-12 other institutions. This phenomenon has an ambiguous
effect on financial stability from a theoretical perspective. First, if many banks are connected
on the market, then it is easier to find new transaction partners for an institution if one of its
partners is not capable of taking part in the network anymore. On the other hand, in a highly
connected network financial distress can spread much faster if some key counterparties
become insolvent. Therefore, it is crucial to identify the key banks in the network, which I

will present in Section 3.3.3.

To quantify the density of the network we can use various metrics. First, we can calculate the
density which is the ratio of the realized links and the potential maximum number of links. In
this network, there are 34 nodes meaning that the maximum number of links can be 561.
Since there are 197 observed links, the density of the interbank network is 0.351. Another
meaningful indicator is the average local clustering coefficient which is 0.73 in this network.

It can be interpreted as the probability that two randomly chosen neighbors of a node are
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connected to each other. The global clustering coefficient that measures the closed triangles in

the network also gives us a hint about the connectedness of the nodes is 0.58.

These metrics suggest that the Hungarian interbank network based on one-year transactions is
quite dense and the banks are strongly connected to each other. However, | have to emphasize
that these values reflect a network built using transactions over a one-year period. Thus, it
enables me to study the interbank connections in a more robust way, where day-to-day
variations do not influence the results. However, the findings are not comparable with such
empirical analyses that use the interbank exposures as a basis. For example, Bargigli et al.
(2015) analyzed the Italian interbank market, and they found that the density of the network
was around 0.01 (1%) at the end of 2012. Similarly, the German interbank network analyzed
by Alter et al. (2015) had a density of 0.007 (0.7%) at the end of March 2011. But these
networks are based on the interbank outstanding amounts (which is a stock variable) rather
than the transactions over a certain period (which a flow variable). Thus, concluding that the
Hungarian interbank network is by magnitudes denser than in other countries would be

misleading.
Degree distribution

One key indicator that helps us to understand the characteristics of our network is the degree
distribution; that is how many connections a node has in the system. Based on Barabasi
(2016) real life networks tend to have power-law degree distribution, which can be described

by the following equation:

pr =k

, Where p,, stands for the probability that a node has degree k, and y is the degree component.
In this case the degree distribution is approximately a straight line on a log-log scale graph.
This means that in such networks there are a few nodes with extremely high degree, the so
called hubs, while a lot of nodes have only a few links. This phenomenon, i.e. the existence of

large hubs ensures that the network has a small world characteristic.
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Figure 8 — Degrees and transactions in the undirected network

In Figure 8 you can see the degrees of the banks in descending order marked by blue circles.
Contradicting the aforementioned empirical evidence of the observed degree distributions we
cannot see nodes with extremely high degrees. The degrees of the nodes seem to be equally
distributed meaning that this network cannot be regarded as scale-free based on the
unweighted degree distribution. The scale of the degrees is quite wide compared to the total
number of the banks in the network: the least active institution had transactions with only one
partner, while the most active one was involved in transactions with 29 other banks (which is

88% of the total possible number of counterparties).
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Figure 9 — Degree distribution in the undirected network

Since there are only 34 nodes in this network, it has no sense to calculate the empirical degree
distribution because almost every node has a different degree. However, if we bin the degrees
into larger categories then it already shows something about the functional form of the

underlying degree distribution. In Figure 9 we can see this degree distribution can be regarded

21



CEU eTD Collection

as closely linear on a linear-linear scale, so it is definitely not a scale-free network. This result
IS somewhat surprising because Aldasoro and Alves (2016) pointed out that the empirical
analyses of the interbank markets usually find that the networks have scale-free property.
Banai et al. (2013) also found scale-free characteristics for the Hungarian overnight FX-swap

network.

However, the pure unweighted degree distribution is probably not the best indicator if we
want to assess the structure of the network. Since the Hungarian interbank market is a small
market with only 34 active institutions (in the May 2012 — May 2013 period), it is absolutely
not surprising that we cannot see much difference in the number of total connections. What
really determine the role a bank plays in this network are the number and the total amount of
the transactions rather than the number of its counterparties. If we have a look at the red bars
in Figure 8, then we can conclude that contrary to the unweighted degree we definitely can
detect institutions with outlying number of transactions (which can be called as the weighted
degree using the number of transactions as weights). Precisely, nodes 24 and 13 are the ones

that are involved in almost 30% of all transactions.
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Figure 10 — Degrees and transacted amounts in the undirected network

The weighted degree distribution is even more unequal if we use the total transacted amounts
as weights. As plotted in Figure 10, Bank 13 is extremely active based on the transacted
amounts and banks 21 and 24 also transacted twice as much as the fourth Bank in the row. It
infers that although the pure degree distribution covered it, there is some sign of scale-free
property in the Hungarian interbank network with a few big hubs and many nodes with a

smaller weighted degree.
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Figure 11 — Lorenz-type curves of the undirected network

Another way to assess how unequal is the distribution of the weighted degrees is by using the
methodology of determining income inequality within a country, which is the Lorenz curve
and GINI coefficient. For the interbank network in Figure 11 I plotted a Lorenz-type curve for
both weighted degree distributions. We can see how unequal are the distributions weighted
with the number and the amount of transactions if we compare them to the red 45° line
indicating the completely equal distribution. The curves represent the cumulative share in the
number or amount of transactions counting from the largest (most important) nodes towards
the smallest ones. For example, the green point in the green curve indicates that the three
largest banks (3/34 = 8.8%) are involved in 47% of the total transactions in the network based
on the transacted amounts. Hence the far are the curves from the 45° red line the unequal are
the weighted degree distributions. As we can see the inequality is larger if we consider the
transacted amounts rather than the number of transactions, which is supported by the GINI

coefficients that are 66% and 54%, respectively.

So far | have presented the main characteristics of the network and which role the banks play
in it compared to each other. We saw that banks tend to have quite a lot counterparties, and a
few banks are responsible for the majority of the transactions. However, it is also an important
question how diversified is the “interbank portfolio” of one particular node. We don’t know
yet whether the banks’ transactions are equally distributed among their counterparties or

banks tend to transact with only a few key other banks irrespectively of the number of their
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total counterparties. For example, it can be possible that a less active institution with 6
counterparties accomplishes 90% of its transaction with only one counterparty and 10% with
the other five. From a financial stability point of view, the diversified are the portfolios of the
institutions the stable is the market since the collapse of one key counterparty has a smaller
effect on the other institutions. To get an answer to this problem | applied the Herfindahl-
Hirschmann Index that is generally used to assess the concentration of a market. In this case
the “market” is the interbank portfolio of an institution, and the Index is calculated for Bank i

as follows:

2

trij
HHI; = Z (TR-)
L

, Where tr;; stands for the total transacted amount between banks i and j, and TR; indicates the
total transacted amount of Bank i. The larger is the value of the Index, the more unequal is the

distribution of the transacted amount across the counterparties of the particular bank.
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Figure 12 — HHI index by degree

In Figure 12 we can see the calculated HHI indices by the number of degrees (number of

counterparties) for the analyzed financial institutions. The red line indicates the theoretical

totally equal distribution, which is kl for Bank i (where k; stands for the degree of Bank i). As

we can see the observed HHI distribution approximately follows the shape of the theoretical
totally equal distribution, which means that banks with more counterparties tend to have more
diversified transaction portfolio as well. Banks with more than 15 counterparties are quite
close to the red line indicating that their transactions are fairly balanced across their
counterparties. However, the HHI indices are quite diverse for banks with fewer

counterparties. For example, we can see that there are two banks with 12 counterparties but
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with HHI around 0.55 and 0.75 meaning that despite of the number of their partners they
prefer to transact only with 1-2 other institutions. Concerning the potential contagious effect
of the insolvency of a bank in the network, highly concentrated interbank portfolios like these

two cases are quite dangerous.
Comparison with theoretical networks

As we could see, the Hungarian interbank network cannot be regarded as scale-free based on
the pure degree distribution, but it seems to have this characteristic if we weight the degrees
of the nodes. In this section, | compare the structure of the observed interbank network with
theoretically grounded network models: the Erdés-Rényi random graph and the Barabasi-
Albert model.

Based on Barabasi (2016) the Erdés-Rényi model is a fully random network based on two
input parameters: the number of nodes (N) and the number of links (L) or the probability that
two nodes are connected (p). These random networks have binomial degree distribution. For
this comparison, | use the G(N,p) model where N is set to 34 just as in the interbank network,
while p is defined as the density of my interbank network (the number of links compared to its

theoretical maximum).

The other theoretical model | use for the comparison is the Barabasi-Albert (BA) model. The
algorithm models the dynamic evolution of a network on the basis of two main concepts:
growth and preferential attachment (Barabasi, 2016). Growth means that in every step new
nodes are added to the network. The concept of preferential attachment defines how these new
nodes connect to the already existing ones: the probability that a new node B “chooses” the
old node A depends on the degree of A. It means that those nodes that are connected to many
other nodes in the network are preferred counterparties of the new entrants. As Barabasi
(2016) shows, such networks have a power law degree distribution. For the comparison |
simulated Barabasi-Albert networks through the following steps: (1) In the first period there is
only one node, and in every step a new node is added to the system. (2) In every period the
number of created edges equals the current number of nodes in the network, where the
probability of choosing a given node linearly depends on its degree, and multiple edges are

enabled.
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Table 2 — Metrics of the interbank and theoretical networks

Indicator Interbank Erdoés-Rényi Barabasi-Albert
network random network | scale-free network

Number of banks 34 34 34
Number of connections 197 197 367
Diameter 3 3 2
Average degree 11.588 11.546 21.605
Average path length 1.699 1.660 1.345
Density 0.351 0.350 0.655
Global clustering 0.577 0.348 0.666
coefficient
Average local 0.733 0.350 0.669
clustering coefficient

The average network metrics of these random graph based on 50-50 simulations are
summarized in Table 2. The results are interesting in the sense that the interbank network
based on transactions over one year cannot be regarded as fully random since the clustering
coefficients show that it is much more concentrated than the corresponding Erdds-Rényi
graphs. On the other hand, the chosen BA model that simulated the evolution of the network
resulted in a much denser network based on the density indicator, although the clustering
coefficients are much closer to the interbank ones. Thus, the analyzed interbank network
cannot be classified as fully random or scale-free network according to these examples, since

it shows some characteristics of both types.
3.3.2. Directed network

So far | have presented the main characteristics of the undirected interbank network.
However, this approach disregards one important aspect of the interbank lending, namely the
directions of the transactions. If we add this information and build a directed network, then it
already enables us to differentiate between the lending and the borrowing sides of the
interbank market. In addition, | will separate the data along another dimension, namely the
maturity of the transaction by creating an overnight and a longer-term network since the main

focus of this thesis is the comparison of these network layers.
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Figure 13 — Graph of the overnight network (colored by lending activity)

(Node color: out-transactions, node size: lent amount, edge color: transacted amount)

Figure 13 plots the overnight directed network where the transactions have a maturity of one
working day (weekends and holidays are not counted). A directed link goes from a source
node (lender) to a target node (borrower) if there was at least one transaction in this direction
during the one-year period (May 2012 — April 2013). The darkness of the nodes represents the
number of out-transactions (lending activity) while the size of the nodes indicates the total
lent amount. There are many nodes with darker blue color indicating that a lot of banks are

active lenders in the overnight interbank market.
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Figure 14 — Graph of the overnight network (colored by borrowing activity)

(Node color: in-transactions, node size: borrowed amount, edge color: transacted amount)

If we change the color and the size of the nodes in order to reflect the borrowing-side of the
overnight market, we can see that banks 13 and 24 are extremely important institutions in the

network. Both the number (color) and the total amount (size) of their borrowing activity are

@

Figure 15 — Graph of the longer-term network (colored by lending activity)

(Node color: out-transactions, node size: lent amount, edge color: transacted amount)
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In contrast to the short-term network, the longer-term network is much less dense with the
density of 0.137 (Figure 15). Since | am analyzing the uncovered interbank market, it is
anticipated that the longer-term sub-market contains fewer transactions because the uncovered
lending for longer maturity is riskier for the lender institution than the overnight lending. The
average interest rate is slightly higher in the longer-term market, which also refers to higher

risk (see Table 3).

As we can see in the longer-term part of the market, bank 13 is the most important lender
based on the total transacted amount, while there are some other institutions that transact a lot

but only small amounts (e.g. bank 55, see Appendix Figure 2 and Appendix Figure 3).
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Figure 16 — Graph of the longer-term network (colored by borrowing activity)

(Node color: in-transactions, node size: borrowed amount, edge color: transacted amount)

In the borrowing part of the longer-term layer more banks appear as important institutions
beside bank 13 (Figure 16). It also shows that in this sub-market the lender and borrower parts
are quite different and there are a lot of banks that are key nodes only in one of the networks.
This phenomenon suggests that in the assessment of the Hungarian interbank market the

analysis of the directed network is preferable rather than the whole undirected one.
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Table 3 — Metrics of the overnight and the longer-term layers

Overnight layer | Longer-term layer

Number of banks 34 33
Number of transactions 8272 505
Average transaction per bank 243.294 15.303
Average interest rate (%) 5.715 5.833
Average maturity (day) 1 8.952
Average transacted amount (billion HUF) 3.197 2.472
Diameter 3 4
Average in-degree / out-degree 8.118 4.394
Average path length 1.680 2.025
Density 0.246 0.137
Betweenness centrality 0.192 0.256
Global clustering coefficient 0.578 0.433
Average local clustering coefficient 0.483 0.440

In Table 3 we can compare the basic metrics of the two directed sub-networks. The first
observation is that almost every bank that is active in the overnight sub-market appears in the
longer-term as well. However, both the average number and average amount of the
transactions are significantly lower in the latter one, which indicates that the longer-term layer
constitutes a sparser network. The densities, the average path lengths and the clustering
coefficients also support this finding. While the global clustering coefficient of the overnight
layer is almost the same as in the undirected network, the average local clustering coefficient
is much lower indicating that the differentiation between the lending and borrowing side in a
directed network leads to a less connected system. Since the diameter is 3 and 4 in the two
layers, it is still true that every node can be reached with a small number of steps from every

other node.
Degree distribution

For the comparison of the activity of the banks in the lending and borrowing sides of the two
layers, | will use the degree distributions and the transacted amounts. For the assessment of
the importance of a node in the network, I find the transacted amounts preferable against the
number of transactions because the latter indicator can be misleading if a bank has many

transactions with smaller quantities.
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Figure 17 — In-degrees and borrowed amounts in the overnight layer

If we have a look at the relationship of the in-degree and borrowed amounts in the overnight
network (Figure 17), we can see that 9 banks (26.5%) have zero in-degree meaning that they
were active only on the lending side of the overnight interbank transactions. Similarly to the
undirected network, we cannot see outlying hubs regarding the pure in-degree distribution,
but there is clearly one large hub (bank 13) if we use the in-strength calculated with the
borrowed amounts. Bank 24 also seems to be an important node in this sub-network; together
with bank 13, they are responsible for 51% of the total borrowed amounts. While bank 21 also
borrowed almost 2 800 billion HUF during this one-year period, the other banks are negligible
players. Thus, it seems that on the overnight borrowing side of the market only a few banks
are active.
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Figure 18 — In-degrees and borrowed amounts in the longer-term layer
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In the longer-term borrowing sub-network, two main conclusions can be drawn (Figure 18).
Firstly, half of the banks have zero or one in-degree, which indicates that much fewer
institutions borrow for longer-term maturity than overnight. Secondly, while the in-degrees of
banks 13 and 24 are also outstanding of the distribution, the in-strength is more balanced
among the most active banks (the top five) than in the overnight network. It means that
although fewer banks are active in this sub-network, they seem to be similarly important
based on the borrowed amounts.
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Figure 19 — Out-degrees and lent amounts in the overnight layer

Since there are only a few active players on the borrowing side in both layers, we can expect
that the remaining institutions appear as lenders in the network. Indeed, looking at Figure 19,
we can see that the distribution of the out-strength is much more balanced than in the
borrowing side. There are 13 banks that transacted more than the average 777.8 billion HUF,
while this number was only 8 in the overnight borrowing sub-network. Another important
difference is that the former clear positive relationship between the number of counterparties
(degree) and the transacted amount is not observable. It means that there are numerous banks

that lend huge amounts only for a few partners (for example banks 1 and 2).

32



CEU eTD Collection

m Transacted amount as source node @ Qut-degree (RHS)

300 18
0
2 250 15
)
= 200 12 g
3 2
g 150 9 3
= L
2 100 6 O
g
£ 50 3
'_

0 0

1324 7 301 511152221 6 48265312 2 35 3 163641515543235450101918392028
Bank ID

Figure 20 — Out-degrees and lent amounts in the longer-term layer

In contrast to the more balanced overnight lending side, we can see that bank 13 is definitely
the most important lender in the longer-term layer being responsible for 20% of the total lent
amount (Figure 20). Although many other institutions appear as a lender for longer maturity,

the distribution of the out-strength is quite unequal with three larger nodes beside bank 13.
Concentration

Thus, based on these figures we can detect some differences between the overnight and the
longer-term sub-networks. While in the former one the transacted amounts seem to be more
equally distributed among the largest banks in the lending side compared to the borrowing
side, the opposite can be observed for the longer-term layer. To evaluate in a more
quantitative way how this observation affects the overall concentration of the two sides, I
applied the Herfindahl-Hirschmann Index presented in the last sub-section. In this case, the

index is calculated as follows:

TR;\?
Y
TR

l

In the formula TR; stands for the total transacted amount of bank i, while TR indicates the
total transacted amount in the analyzed layer. The higher is the HHI index of the market the

concentrated it is, which is potentially riskier concerning financial stability.
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Table 4 — HHI index in the overnight and the longer-term layers

Overnight layer Longer-term layer
Theoretical Theoretical
ks minimum HHI Ak minimum HHI
Borrowing side 0.163 0.029 0.131 0.030
Lending side 0.080 0.029 0.084 0.030

The results are summarized in Table 4. As expected from the previous graphs the HHI
concentration index is much larger in the borrowing sides for both sub-markets. Comparing
the sides across layers, we cannot see any difference in the case of the lending-side
concentration, while the longer-term borrowing sub-market is less concentrated than the
overnight one, which supports the observed differences between Figure 17 and Figure 18. The
inequality of the participation in the borrowing and lending sides of the sub-markets can be

assessed with the already presented Lorenz-type curves as well.
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Figure 21 — Lorenz-type curves of the directed networks

Figure 21 also supports the finding, that the participation on the lender side of the markets is
much more even than on the borrower side. Similarly to the undirected network, we should
also have a look at the in- and out-portfolios of the banks to assess the potential risks of

concentration.
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Figure 22 — HHI index by in-degree on the borrowing side of the overnight layer

In Figure 22 we can see the HHI index of the banks in the overnight layer, calculated using
the borrowed amounts. The observed values follow quite closely the red line that indicates the
totally equal distribution. It means that those banks that are active borrowers in the overnight
interbank market tend to diversify their portfolios. The evaluation of this finding regarding
systemic risk can be ambiguous. As Gai and Kapadia (2010) points out, diversification
enhances risk-sharing and lowers the probability of a distress, but at the same time, it

increases the contagion if a key node defaults in the network.

= HH]I - equality ® HHI as source

1 —\—.
0.8 ®
0.6 oo
0.4 :—.
0% 04, 2 o
5

10 15 20 25
Out-degree

Figure 23 — HHI index by out-degree on the lending side of the overnight layer

On the lending side of the market banks tend to choose their counterparties in a more
concentrated way (Figure 23). It may be the consequence of the counterparty limits. The HHI

indices show similar pattern in the longer-term networks as well.

As a conclusion, we can state that few large institutions are responsible for the majority of the
borrowed money in the overnight layer, while this distribution is more balanced in the longer-

term sub-network. From a financial stability point of view, a highly concentrated overnight
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borrowing side is not a preferred state. If only a few banks are responsible for the majority of
the interbank borrowing, then a potential default or distress of these key institutions can cause
severe direct losses to their counterparties. However, it is true for both layers that much more
banks appear as lenders in the network. Since it facilitates the liquidity of the market, this is a

favorable condition.
3.3.3. SIFI identification

One main purpose of the network analysis of the interbank connections might be the
identification of the banks that play a pivotal role in the system, the so called SIFIs. The
literature review about the SIFI identification in Section 2.3 highlighted that various
approaches could be found in the empirical analyses to assess the importance of the nodes in

the network.

The SIFI identification can be based on simple and more complex network metrics as well.
The most basic approach uses the pure degree centralities and strength of the nodes: the more
links, transactions or transacted amounts a bank has the important it is the whole system. Of
course, it is advantageous in this case to differentiate the lending and borrowing side of the

market, so analyzing a directed network.

In the last section, we saw that based on these simple metrics banks 13 and 24 are the greatest
players on the borrowing side. In this case, we analyze either the unweighted degrees, the
transactions-weighted strength or the amounts-weighted strength, we get the same result
regarding the potential SIFIs. In contrast, on the borrowing side of the market, the indicators
lead to different results. While based on the pure out-degrees also banks 13 and 24 are the
most important ones, the transactions-weighted strength already shows five similarly
important banks, and the amounts-weighted strength clearly indicates that bank 13 and 21 is

are the key nodes.

These examples show that various metrics can lead to entirely different conclusion concerning
the SIFI identification since they capture different aspects of the network. For example, in the
case of the default of a bank, the pure in- and out degrees show how many other institutions
may be affected, while the strength metrics give us some information about how severe the
contagious effect might be. Using only these simple metrics on their own is probably not the

best way to find the key banks in the system.
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Opsahl centrality

However, if we create a more complex indicator by combining the information these metrics
carry, we can get a much more meaningful index. For this purpose, | will use the Opsahl

centrality index proposed by Opsahl et al. (2010), which is calculated as follows.
Copsi = (kM) "+ (wim)*
ngg"i — (kiout)l—a * (Wiout)a

In the equations k™ and k2%t stand for the in- and out-degrees of node i, while w/™ and w2
indicate the sum of the weights of the in- or out-edges corresponding to node i. The parameter
a serves as a weight for the two metrics. If @ = 0 then we get the simple in- and out-degrees,

while @ = 1 gives back the in- and out-strength of the node.

| calculated the Opsahl centrality indices using the transacted amounts as edge weights. Since
both the number of counterparties and the strength of the nodes carry useful information, |
decided to use @ = 0.5 as weight parameter. The results calculated using the latest available
network (May 2012 to April 2013) for both the overnight and the longer-term layers are
summarized in Figure 24 and Figure 25. The higher is the Opsahl centrality of a node the
important it is in the network. The red and green lines on the graphs indicate the cutoffs of the

top 3 key borrowers and lenders, respectively.
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Figure 24 — Opsahl centralities in the overnight layer
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Figure 25 — Opsahl centralities in the longer-term layer

The first observation is that although the Opsahl centralities of the nodes in the borrowing and
the lending market show some positive correlation (within the graphs), we can find several
examples that appear only on one side of the market as an important node. For example bank
12 seems to be a crucial lender in both layers, but it is not a particularly active borrower. In
contrast, bank 26 is the third most central node in the longer-term borrowing side, while it is a

negligible lender in this layer.

Bank 13 is apparently the most important node in the network in both layers and on both
sides. Its relative importance is exceptionally high in the longer-term network. As we can see,
banks 24 and 21 also seem to be key nodes in the network. The main conclusion based on the
Opsahl centralities is that the relative importance of the banks is greatly varying across the
sides of the market. These results are in line with the findings of the last section, and support

the importance of the market segmentation based on the direction of the transactions.
Betweenness centrality

So far I mainly focused on the direct relationships between the nodes for the SIFI
identification. However, the importance of a node in a network does not only depend on its
(weighted or unweighted) links but its position in the system as well. This aspect can be
captured by the betweenness centrality that quantifies how central a node is in the network.
This indicator is calculated as the number of the shortest paths between all possible pair of
nodes that goes through the analyzed node compared to the theoretical maximum of such

paths. Expressed mathematically following the notations of Jackson (2010):
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P;(kj)
P(kj)

Cperw,i =
’ -1 —2)/2
k=j:i¢{k,j} (n ) * (n )/

In the equation P;(kj) stands for the number of shortest paths between nodes k and j that go
through node i, while P(kj) is the number of all shortest paths between nodes k and j. The

closer is the value of Czgryy ; to One, the important a node is in the network.

In the interbank network the central placement of a bank can mean that it may bind together
such banks that have zero limits towards each other. For example banks A and B are not
allowed to transact with each other, but since bank C is an important counterparty of both
banks, they are part of the same connected component of the network. Thus, centrally lying
smaller banks can facilitate the flow of interbank funding and therefore make the market more

liquid and less segmented.
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Figure 26 — Betweenness centrality in the latest directed network

As we can see in Figure 26, more than 47% of the nodes have zero betweenness centrality
meaning that no shortest path goes through them. On the other end of the scale bank 13 is
clearly the most central node in both layers since 20% and 27% of all directed shortest paths
include this bank in the overnight and the longer-term layers, respectively. It is twice of the
value of the second most important bank (node 24) in the case of the overnight sub-network.
Since these banks were key nodes based on the degree and Opsahl centrality measures as

well, we can conclude that this network has small world characteristics like other empirical
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networks, where large hubs with a high number of links serve as linking nodes for smaller,

less important ones.
Closeness — harmonic centrality

Another usual way to assess the centrality of a node is by using the closeness centrality. This

indicator is calculated as the reciprocal of the fairness, that is the sum of the pairwise shortest

paths between the nodes.

1
Crrni=——
O X e d (i)

In the equation d (i, j) indicates the shortest path (distance) between nodes i and j. However,
since | analyze a directed network, it can happen that there is no directed path between two
nodes. For example bank 53 has zero in-degree meaning that it is not reachable from any
other node. To overcome this problem I will use the normalized Harmonic centrality proposed

by Rochat (2009).

1 1
CIN =
s =55 ) 35
j#i

1 1
Citarmi = 7 —7* Z 4G, 1)

JE!

If there is no directed path between nodes i and j, then ﬁ and ﬁ are set to zero. In this

way we can get comparable and meaningful centrality values for all nodes.
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Figure 27 — Harmonic centralities in the latest directed network

Figure 27 presents the scatter plot of the calculated harmonic centralities of the borrowing and
the lending sides of the market for the two layers. If we disregard the nodes with zero value
for either of the centralities, then we can see a moderate positive relationship between the two
metrics. It indicates that among those banks that are active on both sides of the market the
more central ones on the one side tend to be important on the other side as well. This
relationship seems to be much more robust than in the case of Opshal centralities, which
indicates that different network metrics capture various aspects of being systemically
important, thus using only one indicator can be misleading in some cases. Based on this way

of SIFI assessment banks 13 and 24 are also the key nodes on both sides of the network.
Summary of the SIFI identification

As | presented in the previous sub-chapters, one can assess the relative importance of the
banks in the interbank network with various metrics. Since they capture different aspects of
the role a node plays in the network, one can make different conclusion concerning the SIFIs
in the market. Thus, to assess systemic importance one should not rely on only one indicator
because it can disregard crucial elements. In Table 5, | summarized the results of my SIFI
analysis. The indicators are categorized into three groups based on their information content:

they assess the importance of a node in the overall network or in the borrowing/lending side.

Since | discovered important differences between the two sides of the market, the undirected

degree centrality is not a useful indicator. For the economically meaningful assessment of the
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overall importance of the nodes, the betweenness centrality may be used. It evaluates how
important a bank is in the sense of connecting the institutions in the interbank market. If a
bank that is a key player in this aspect collapses, then it may lead to the disjunction of the
market with group of banks that are not connected anymore. It is particularly possible
knowing that the key drivers of the interbank lending activity are the limits the banks have

towards each other. Thus, a centrally lying bank may not be replaced due to these fix limits.

The indices that try to identify the key banks on the borrower side of the interbank market are
extremely important since the default of a key borrower can be very contagious. First, a
collapsed SIFI has a direct effect on its lenders in the form of immediate loss. The number of
the potentially affected institutions and the severity of the direct contagion can be captured by
the in-degree, in-strength and “In-Opsahl” centrality indicators. However, there is an indirect
contagious effect of a potential default as well through the further links in the network. If the
lenders of the defaulted banks will not be able to meet their liabilities either then it will cause
losses for their lenders as well, and so on. The severity of this potential spillover contagion

can be assessed by the analysis of the Harmonic centrality.

Putting together these aspects | can conclude that banks 13 and 24 are clearly the most
important nodes on the borrowing side of the interbank market. Their collapse or even some
smaller disturbance could have large direct and indirect contagion through the network.
Unfortunately, | cannot analyze further these institutions for having a clearer picture of their

activity since my database contains anonymous data.

On the lending side of the market, the same metrics can be used for the assessment of the
direct and indirect contagion of a potential default. However, the insolvency of a key lender is
likely less problematic from a financial stability point of view. The main consequence of such
event is that the market becomes less liquid since a key liquidity provider is not active
anymore. It can lead to higher funding costs for the institutions that cannot get enough

liquidity from the interbank market.

Of course, if more lending banks draw back from the market, for example, due to the lack of
trust towards other banks as we saw during the 2008-2009 financial crisis, the market may
freeze, and potentially the central bank has to step in by providing liquidity for the banking
system. Thus, knowing the SIFIs on the lending side of the market is also crucial, although in

my opinion not as important as in the borrowing side.
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In my network banks 13, 24 and 21 seem to be the most important banks in the lending side,
while some other institutions can also be regarded as key nodes in some aspects. As a
combined evaluation | can conclude that banks 13 and 24 are the systemically most important
institutions in the analyzed Hungarian interbank network. Probably these institutions are

among those 8 Hungarian banks that are required to hold additional capital buffer due to their

key role in the banking system.*

* For the list of these institutions and the current capital buffers see the following MNB statement:
https://www.mnb.hu/letoltes/az-egyeb-rendszerszinten-jelentos-intezmenyek-azonositasa-2016-en-honlap.pdf
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Table 5 — Summary table of the SIFI identification

Centrality Network definition Economic meaning Information content about the Identified | Identified
index contagion of the bank’s default SIFls, ON | SIFIs, LT
(in order) | (in order)
Overall importance in the market
Betweenness Number of shortest | Relative importance in | Potential effect on market liquidity: the | 13, 24 13, 24
(with  directed | paths through the | connecting disjoint groups of | default of a bank with high betweenness
links) node banks can lead to the fragmentation of the
market into more connected components.
Borrowing side of the market
In-degree Number of edges to | Number of counterparties the | Number of directly affected institutions: | 13, 24 13,24
the node bank borrows from immediate loss for the lender banks.
In-strength  (in- | Sum of edge weights | Number of borrowing Severity of the direct contagion: | 24, 13 24,13, 26
transactions) to the node immediate loss for the lender banks.
In-strength Sum of edge weights | Amount of borrowing Severity of the direct contagion: | 13,24 13, 26, 21
(borrowed to the node immediate loss for the lender banks.
amount)
Opsahl (in- | Weighted index of | Relative importance in the | Severity of the direct contagion: | 24, 13 24,13, 26
degree and in- | the in-degree and in- | market based on the number of | immediate loss for the lender banks.
transactions) strength lending partners and the
number of borrowing
Opsahl (in- | Weighted index of | Relative importance in the | Severity of the direct contagion: | 13,24,21 |13, 24,
degree and | the in-degree and in- | market based on the number of | immediate loss for the lender banks. 26, 21
borrowed strength _ lending partners and the
amount) 3 amount of borrowing
Harmonic Reciprogl of the | Relative importance in the | Severity of the indirect contagion: the | 13, 24 13, 24, 26

(borrowing)

directed2  distances
with  gther  nodes
(starting-at the node)

market based on the borrowing
activity from other banks

default of a more central bank spreads
more quickly through the network.
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Centrality Network definition Economic meaning Information content about the Identified | Identified
index contagion of the bank’s default SIFIs, ON | SIFIs, LT
(in order) | (in order)
Lending side of the market
Out-degree Number of edges | Number of counterparties the | Number of directly affected institutions: | 13, 24 13,24
from the node bank lends to less available, thus likely more expensive
funding for the borrower banks.
Out-strength Sum of edge weights | Number of lending Severity of the direct effect: less |1, 21, 5, 55,48, 13
(out- from the node available,  therefore  likely = more | 16, 13
transactions) expensive funding for the borrower
banks.
Out-strength Sum of edge weights | Amount of lending Severity of the direct effect: less| 21,13 13,12, 21
(lent amount) from the node available,  therefore  likely = more
expensive funding for the borrower
banks.
Opsahl (out- | Weighted index of | Relative importance in the | Severity of the direct effect: less |13, 21, 24, | 13, 24, 48
degree and out- | the out-degree and | market based on the number of | available,  therefore  likely — more | 5,7
transactions) out-strength borrowing partners and the | expensive funding for the borrower
number of lending banks.
Opsahl (out- | Weighted index of | Relative importance in the | Severity of the direct effect: less |13, 21, 7,|13
degree and lent | the out-degree and | market based on the number of | available,  therefore  likely — more | 12,5
amount) out-strength borrowing partners and the | expensive funding for the borrower
amount of lending banks.
Harmonic Reciprocal of the | Relative importance in the | Severity of the indirect effect: the default | 13, 24 13,24
(lending) directeds  distances | market based on the lending | of a more central bank can cause more
with  dher nodes | activity to other banks severe liquidity problems in the market.

(ending gt the node)

CEUeT

45




CEU eTD Collection

3.3.4. Multiplex comparison

As we can saw in the previous two sections, there are some detectable differences between the
overnight and longer-term layers based on the network metrics. To quantify this finding, we
can use various indicators that assess the similarity (or the distance) of the two layers. For the
analysis, | will distinguish two aspects of the similarity: the comparison of the sub-networks

as a whole, and the assessment of the relative importance of the nodes in the two layers.
Layer similarity

The first question one could pose is whether the existence of a directed connection in one of
the layers contains information about the existence of the connection in the other one. As
Aldasoro and Alves (2016) suggests, the Jaccard Similarity Index is one possible indicator

that can help to answer this question. The index is computed as follows:

|x Nyl

J(x,y) = XUy

In the equation x and y stand for the vectors to compare. To apply the index in this framework
| transformed the unweighted adjacency matrices of the sub-networks into row vectors. Thus,
the nominator of the index contains the total number of cases when there is a directed
connection between Banks i and j in both sub-networks for every (i,j) pair. The denominator
is the sum of the cases where there was a directed connection between every pair of banks in
either of the two networks (including the nominator, i.e. when there was a connection in both
sub-networks). Therefore, the greater is the index, the similar are the compared sub-networks
based on the existence of connections. The index in my framework is calculated as follows,
where ON stands for the overnight layer and LT for the longer-term layer.

number of links in both ON and LT layers
J(ON,LT) =

number of links in either ON or LT layers (or in both)

Although the Jaccard Similarity Index contains important information about the co-existence
of links, to fully assess the similarity or difference of the layers, we should take into
consideration those cases as well, when there is no connection between banks i and j in both
sub-networks. Thus, I will also use the Simple Matching Coefficient (SMC) to compare the

unweighted adjacency matrices.
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number of matching links in ON and LT layers
SMC(ON,LT) =

number of total possible links

The nominator of SMC counts the cases where the existence or non-existence of a directed
link is the same in the two sub-networks, while the denominator is simply the total number of

possible directed connections (which is n * (n — 1) for n number of nodes).

Table 6 — Layer similarity indicators

Similarity indicator | Value
SMC 0.875
Jaccard Index 0.488

As we can see in Table 6, for the latest available overnight and longer-term sub-networks the
SMC indicator is 0.875 showing a strong similarity between the layers. The value means that
the “existence dummies” of the possible links are the same in 87.5% of the cases. However,
the Jaccard Index is 0.488 that means that the similarity is much lower if we compare only the

existing links. To evaluate the Jaccard Index we can consider that in the case of two totally

0.5%0.5 _
3%0.540.5

random networks where the existence of a link is 50%, the index is expected to be

% = 33.3%, while two totally similar networks have an index of 1.

Based on these result | conclude that although the layers seem to be quite similar as a whole
(based on SMC), I cannot infer that those banks that are connected in one layer are probably
connected in the other one too (as the Jaccard index shows). It leads to the question whether
the absence of this link similarity is symmetric: can either of the layers tell something about
the other layer’s links or neither of them is useful for “forecasting” the connections in the
other one? To answer this question | slightly modified the Jaccard index by creating

“conditional” indices in the following way:

number of links in both ON and LT

Jov( ) number of links in ON

number of links in both ON and LT

Jur( ) number of links in LT

The modified indices are summarized in Table 7.
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Table 7 — Conditional Jaccard indices

Similarity indicator Value
Conditional Jaccard index | link in ON 0.500
Conditional Jaccard index | link in LT 0.952

The Conditional Jaccard indices clearly show what the simple index covered: the lack of
similarity is asymmetric. While only 50% of the links in the overnight network is present in
the longer-term network, the share is 95.2% in the other direction. It means that those banks
that transact for longer maturity also tend to be connected in the overnight network, but this is
not true in the other way around. Of course, this result is not surprising in my dataset about
the uncovered interbank lending, but it indicates an important methodological aspect, namely
that the similarity of the layers shouldn’t be assessed only by the overall comparison of the

adjacency matrices since it can hide important characteristics of the overall network.

The SMC and Jaccard indices used the unweighted adjacency matrices of the sub-networks
for their comparison. However, as we could see in section 3.3.1., to analyze the characteristics
of the interbank network the weighted degree distributions are much more informative
indicators. To compare the sub-networks without losing this information, I will use the Cosine

index suggested by Aldasoro and Alves (2016). The index is calculated as follows:

ON * LT
[|ON]| = ||LT||

C(ON,LT) =

In the formula, ON and LT stand for the weighted adjacency matrices of the overnight and
longer-term layers (transformed into row vectors). The numerator is the scalar product of the
vectors, while the denominator contains the product of the length (norm) of the vectors. Thus,
the index calculates the cosine of the angle between the two row vectors. As a consequence,
the result is constrained between -1 and 1 irrespectively of the magnitude of the used weights,
which makes it comparable across the used weights and over time. Since in my analyzed
networks the used adjacency matrices cannot contain negative numbers, the index can take

values between 0 and 1 (the latter one would mean perfect matching).

Table 8 — Cosine indices

Similarity indicator Value
Cosine index (weights: number of transactions) 0.404
Cosine index (weights: transacted amount) 0.629

| applied the cosine index for the two sub-networks with both the number of transactions and

the transacted amounts as weights (Table 8). Similarly to the unweighted similarity indices,
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these results also suggest that the two layers have some similar characteristics. The positive
relationship is much stronger if we use the transacted amounts as weights rather than the
number of transactions. As a comparison, Aldasoro and Alves (2016) found that that the
Cosine similarity is 0.43 between the long-term (more than one year) and short-term (less than
one-year) interbank market in their network consisting of 53 large European banks. Based on
the amount-weighted index, the different maturity-layers of the Hungarian market seem to be

more overlapping.
Nodes similarity

Beside the assessment of the similarity of the two sub-networks, it is also an important
question whether banks that play a key role in one of the layers are key nodes in the other one
as well. To quantify this relationship, | estimated the correlation between the metrics used for
the SIFI identification between the two layers. Higher correlation means that key banks in one
sub-network are expected to be important in the other one as well. The results are summarized
in Table 9.

Table 9 — Correlations of node metrics

Metrics Pearson C_orrelation
Coefficient
Betweenness centrality 0.964
In-degree 0.885
In-strength (transaction) 0.925
Saraing e In-strength (amount) 0.863
Opsahl centrality (borrowing, transaction) 0.952
Opsahl centrality (borrowing, amount) 0.922
Harmonic centrality (borrowing) 0.734
Out-degree 0.862
Out-strength (transaction) 0.275
. Out-strength (amount) 0.758
Lending side Opsahl centrality (lending, transaction) 0.682
Opsahl centrality (lending, amount) 0.849
Harmonic centrality (lending) 0.810

To assess the importance of the banks from a network point of view, we can use the
betweenness centrality is presented in the last section. Among the analyzed correlations this
metrics has the highest value (0.964). It means that those banks that are central nodes in one
of the networks tend to be central ones in the other one as well. However, if we divide the

networks into borrowing and lending side, then the picture is more complex.

49



CEU eTD Collection

Comparing the borrowing and the lending sides we can find systematically lower correlation
coefficients in the latter case (except for the harmonic centrality). The banks that are active
borrowers in one of the sub-networks seem to be active in the other one as well, but this
cannot be unanimously stated for the lending side. Although the pure out-degrees seem to be
strongly correlated between the overnight and longer-term networks, the strength and Opsahl
centrality indices are definitely lower, especially when calculated with the number of
transactions. Thus, we can conclude that banks that provide much liquidity for other
institutions in the overnight market are not necessarily key lenders in the longer-term sub-

network (and vice versa).

As a conclusion, the two analyzed subnetworks of the Hungarian interbank market, namely
the overnight and the longer-term layers are somewhat overlapping, but the similarity is
definitely not symmetric. First, 1 found some asymmetry regarding the co-existence of the
links among the banks: transactions in the longer-term network seem to imply transactions in
the overnight one, but reversely it is not necessarily observable. Second, concerning the
similarity of the roles the banks play in the network, I can conclude that the borrowing
behavior of the banks is expected to be similar in the two sub-markets, but it is not certainly

true for the lending sides.
3.4. Historical analysis

In the previous sections, | analyzed the latest available network in my dataset. However, it
also important how the uncovered interbank market changed over time since a snapshot
network is not necessarily able to provide a fully detailed description of the market. In this
section, I will show the historical realizations of the calculated network metrics focusing on
the network characteristics, SIFls in the markets and the comparison of the overnight and

longer-term network.
3.4.1. Network characteristics
Network metrics

As we could see in Figure 3 in Section 3.1, the liquidity in the interbank network strongly
declined during the crisis period. From a network perspective, such a phenomenon may have
various effects. First, it can happen that the former links remained among the banks, but the

frequency and the amount of the transactions decreased. That would mean unchanged density
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and path lengths in the network. However, if banks ceased to transact with some of their

former counterparties, then it would appear as a less dense and more fragmented network.
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Figure 28 — Average path length of the networks

Regarding the average path lengths in the analyzed networks, three of them seem to be only
slightly different in the crisis period (Figure 28). For the directed or undirected networks and
the overnight directed network the slowly increasing trend of the average path lengths was
already observable before the crisis. However, we can see much more robust changes in the
long-term network. Interestingly, the strong increase of the path lengths preceded the Lehman
collapse and began a few months earlier. It can indicate that there were some prior signs of
the financial distress in the Hungarian interbank market as well (for example due to the
spillover effects of the collapse of the US subprime mortgage market).
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Figure 29 — Density of the networks

51



Comparing the density of the four network approaches the results are in line with the
expectations: the undirected network has the highest while the longer-term directed network
the lowest density parameter during the whole sample period (Figure 29). The dynamics of
these metrics is more interesting and shows similar pattern across the networks: it gradually
decreased until 2009 and then stabilized. It indicates that the Hungarian interbank market was

much denser during the 2000s than in the first years of the 2010s.
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Figure 30 — Global clustering coefficient of the networks

We can see similar pattern concerning the global clustering coefficient (Figure 30). Since it is
also an indicator of the connectedness of the networks it leads to the same conclusion as the
density. However, it adds some information about the dynamics of the longer-term network
since the decreasing trend strongly accelerated during the crisis. That was followed by a
consolidation period, and it seems to be stabilized in the last two observed years. Based on
these graphs we can conclude that the longer-term network is much more sensitive to the
financial disturbances than the overnight network. It is a rational behavior since in a period of
uncertainty the financial institutions obviously don’t want to lend each other with higher

maturity, especially in the uncovered market.
Concentration

As we saw in Section 3.3.2., the lending and borrowing sides of the market are quite different
regarding the market concentration. In the latest network the lending side is much more
balanced with some equally important institutions while the borrowing side is dominated by
banks 13 and 24. However, it is only a snapshot of the interbank market, so this status does

not necessarily reflect a long-run equilibrium.
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Figure 31 — HHI indices of the overnight layer

In Figure 31 we can see the historical values of the HHI indices for the borrowing and lending
parts of the overnight market. The first astonishing observation is that the huge differences
detected in the latest available network were absolutely not typical before the crisis. All HHI
indices were between 0.04 and 0.08 in the pre-crisis years referring to a much more balanced
uncovered overnight interbank market. However, in the post-crisis years the borrowing side
started to transform and become less unbalanced. Such changes are observable in the lending
side when the HHI is calculated with the transacted amounts, but the increase of the index is

more moderate.
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Figure 32 — HHI indices of the overnight and the longer-term layers

If we compare the HHI indices (calculated with transacted amount) of the overnight and the
longer-term networks than we can state that the longer-term market concentration is highly

volatile compared to the overnight concentration (Figure 32). It can be the consequence of the
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fewer number transactions in the market, where some large transactions can strongly

influence the concentration indices.

To sum up, although the Hungarian banks were highly connected in the interbank market
before the financial crisis, the network seems to have transformed during the post-crisis years
into a denser and more concentrated market where a few key banks are responsible for large
part of the transactions. It is especially true for the borrowing side of the market, while the

lending activity is more balanced across the institutions.

At first sight, this result is somewhat surprising since in a period of uncertainty one could
expect that banks draw back their lending rather than their borrowing activity due to the
riskier counterparties, which would lead to more a concentrated lending side. However, this
observation is explainable if we regard the counterparty limits that the banks have towards
each other. In an unsecure period banks probably decide to lower their lending (exposure)
limits towards smaller and therefore potentially riskier banks, and are willing to lend only to
some few trustful institutions. It is particularly true for those banks that operate only as
branches of large foreign banking groups because they usually have to apply the limits set in
the headquarter of the bank. Since a large Western European bank probably doesn’t let its
Hungarian branch to have large exposures towards smaller and riskier Hungarian institutions,
the branch will be able to have interbank exposures towards a few other institutions in the

Hungarian interbank market.
3.4.2. SIFI identification

As we saw in Section 3.3.3., it can vary across both the sides of the market and the maturity
layers, which banks prove to be systemically important. However, even if a bank seems to be
SIFI in the current market, it is not necessarily true that it has been an important node in the
network for the whole analyzed sample. In this section, | present how the systemic importance
of the nodes changed over time both within and across the sub-networks. For the SIFI
assessment, | rely on the Opsahl centrality index calculated with the transacted amounts
because it does not only incorporate both the degree and the strength of the nodes, but it
makes it possible to distinguish between the lending and borrowing sides of the market as

well.
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Figure 33 — Number of top three rankings of the key banks in the one-year networks, borrowing side

The first question one can pose is whether the systemic important nodes of the latest network
reflect a longer-term equilibrium of the market. In Figure 33 we can see that in how many
one-year networks (of the total 113) the banks were the first, second or third most important
institutions based on their In-Opsahl centrality. Those banks appear in the graphs that were

among the top three banks in any of the 113 networks.”

The left panel of Figure 33 shows that 8 banks shared the top 3 “places” in the SIFI ranking of
the borrowing side in the overnight layer. As we can see bank 13 was the most important
overnight borrower in 46% of the networks, while banks 21 and 7 also proved to be top SIFIs
in one-third of the analyzed time period. The majority of the “second ranks” is shared quite
equally among banks 24, 5, 7 and 21.

Compared to the overnight borrowing market the longer-term market shows a different
picture (right panel of Figure 33). In this case, more banks appear among the top three nodes
with more balanced rank distribution, which indicates that the SIFIs of the longer-term
borrowing network changed more frequently over the 10 years. Bank 13 has clearly been the
most influential bank in this network as well, but we can see that for example bank 24 has

been much more important in this longer-term network than in the overnight one.

® The sum of the height of the same-color columns may exceed 113 because if more banks had the same
centrality value then the same rank was assigned to all of them.
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Figure 34 — Number of top three rankings of the key banks in the one-year networks, lending side

Looking at the lending sides of the overnight and the longer-term layers (Figure 34), we can
conclude that concerning the first and second most important banks there has not been as
much variation as in the borrowing side. Bank 13 was the most important SIFI in 86% and
56% of the ON and LT lending networks, while the distribution of the second places is also
more concentrated, for example, bank 1 has been the second most important bank in 50% of

the longer-term lending layer.

It may be surprising that in Section 3.3.2. | presented that the lending sides are much more
balanced than the borrowing sides, while here we can see the opposite concerning the SIFI
identification. However, Figure 33 and Figure 34 only present the relative ranking of the
banks (ordinal scale), and they cannot evaluate their relative importance (cardinal scale). If we
plot the standard deviations of the Opsahl centralities of the nodes over the analyzed period,
then it supports that the relative importance of the nodes is more balanced on the lending side

of the overnight layer than on its borrowing side (see Appendix Figure 4).

As the pool of the top three SIFIs varied over the analyzed time period, so did the role of the
particular banks in the network. Clearly, bank 13 is the most important SIFI in the interbank
network. However, if we have a closer look at its history, then we can see that this statement

has not always been true in all four sub-networks.
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Figure 35 — Top three rankings of bank 13

In Figure 35 we can see the historical SIFI top 3 ranking of bank 13 in the four sub-networks:
the borrowing and lending sides of the overnight and longer-term layers. Every dot indicates
that bank 13 was the first/second/third important SIFI in the corresponding one-year network.®
The upper-left graph shows that bank 13 was not among the top three overnight borrowers
before October 2005. Moreover, it appeared in the top three most important borrowers in the
longer-term layer only in the February 2007 network. Apparently, it has been an important
SIFI in the lending part of the networks during the whole period (lower-left and lower-right

graphs of Figure 35).

® For example the number of dots in the first row in the upper-left graph of Figure 35 is equal to the height of the
blue (1%) column of bank 13 in the left graph of Figure 33.
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Figure 36 — Top three rankings of bank 12

Another interesting example is bank 12 that appeared in all graphs of Figure 33 and Figure 34
indicating that it has been a quite important institution in all parts of the interbank network.
However, its role in the network changed significantly over time. In the first 2-3 years of the
sample it was a core overnight borrower in the market as the upper-left graph of Figure 36
shows. During the pre-crisis years it also appeared as key borrower in the longer-term market
as well (see the upper-right graph), but it was not among the top three lenders at all. But its
behavior substantially changed after the crisis as it became a key lender in the market while it
disappeared from the top three borrowers. We can state that in the post-crisis years bank 12
has been a key SIFI in the lending side of both the overnight and the longer-term sub-

networks (lower-left and lower-right graphs).

Some more interesting example also show that the role the banks have played in the network
strongly varied over time. For example bank 24 which is a key node in the latest network has
always been a key longer-term borrower, but it only appeared as an important overnight
borrower after the crisis (see Appendix Figure 5). Based on these observations | can conclude
that in different parts of the sample different banks proved to be the systemically most
important institutions. Unfortunately, I cannot identify the key factors that drove the changes
of the behavior of some key banks due to the anonymity of my dataset, but a later analysis
with not anonymized data could reveal interesting details about the interbank behavior of the

Hungarian banks.
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3.4.3. Multiplex network

Layer similarity

In Section 3.3.4 | presented that the overnight and the longer-term network have some
common characteristics but the relationship is highly asymmetric and strongly depends on the
chosen indicator of comparison. However, if we look at the historical realization of the

analyzed parameters, then it turns out that the discovered similarities and differences have not

always shown this picture.
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Figure 37 — Simple Matching Coefficient of the layers

The Simple Matching Coefficient was extremely high between the latest networks, but as we
can see in Figure 37 it is the result of a positive trend that began around 2006. In the pre-crisis
years this indicator varied around 0.77 indicating that % of the directed unweighted
connections was present in both the overnight and the longer-term one-year networks. Then
this index started to slowly increase reached today’s value of 0.88. Since I analyze yearly

networks, these high numbers about the co-existence of the connections are not surprising.
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Figure 38 — Conditional Jaccard indices of the layers
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The results are more interesting if we examine the asymmetry of the conditional Jaccard
indices introduced in Section 3.3.4. As Figure 38 shows, if we take the longer-term network
as the basis of the connections (red line) then the index is much more stable than in the case of
the overnight network as a baseline (blue line). It indicates that the existence of a partnership
in the longer-term interbank network has been a good proxy for the overnight connection over

the observed period.

Apart from this observation, we can see that both indices fell during the crisis period. It
signals that in times of uncertainty in the financial market the usually observable behaviors
(for example the correlation of the transactions) change and interbank lending is not driven by
the “everyday” processes anymore. As we moved away from the peak of the crisis the indices
started to rise again, which supports the former inference.
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Figure 39 — Cosine indices of the layers

To compare not only the co-existence but the strength of the connections as well I applied the
cosine index to the weighted adjacency matrices. In Figure 39 we can see how these indices
(calculated with the number or the amount of the directed transactions) evolved over time.
Concerning the dynamics we can see similar patterns for the two metrics: the similarity
between the overnight and the longer-term networks was quite high until 2005, but it
decreased to 0.3 around the peak of the financial crisis. So, this “weighted similarity”
indicates that the sub-networks diverged during these years. It is an important observation
since it infers that the overnight and the longer-term networks behave disparately during a

crisis period.

60



Node similarity

1.0
A ‘

[ =y

S 0.9 /

=

[+

< 0.8 I"'\\ I W

o

=

c v

2 0.6 v

]

o 0.5

o

0.4 r tr T 1T 1+ T+ T 1T 1T 1T 1T 1T 1T T T 71T "1 70
N MO < < 0O IO © O M~ - 00 0 OO 00 O O +d «+H «
LLLLLLRLLR;RRR R A4
e L &£ I L I L I L 1 L I L I L oo

> > =) > > > > > >

TS5 85 85 85 85 85 85 85 85 3

Figure 40 — Betweenness centrality correlation

Concerning the similarity of the role the nodes play in the two sub-networks, | found in
Section 3.3.4. that the betweenness centrality indices are extremely correlated (0.964).
However, based on Figure 40 this is absolutely not a long-time equilibrium since the current
value is the highest in the analyzed period. The correlation of the betweenness centralities had
an average of 0.78 with 0.11 standard deviation. Thus, the similarity of this metrics was quite
varying, and we cannot see clear structural processes in the time series, only some slow
positive trend after the crisis. This finding infers that the simultaneous importance of a bank
in the two layers is not as unambiguous as the current state of the networks show; the positive

connection is always true, but its strength is often changing.
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Figure 41 — Opsahl centrality correlations

If we compare the similarities in the borrowing and the lending part of the two networks, then
we can see that the detected higher correlation of the borrowing side Opsahl similarities is

rather a post-crisis phenomenon (Figure 41). Before the collapse of the Lehman Brothers the
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two sides of the market seemed to be roughly equally correlated across the layers. During
2008-2009 the two time series deviated, but their distance shrank in the last years of the
sample. It infers that in “normal” times the importance of the banks in the two sides of the
market is similarly correlated across the overnight and longer-term layers, but this connection

becomes loose in times of turmoil.

As a summary, we can conclude that the multiplex comparison of the interbank sub-markets
may be misleading if we focus on only one snapshot of the market. The connection between
the layers and the relative importance of the nodes are not necessarily robust over time.
Studying the dynamics of the similarities and understanding why the layers diverge in times

of financial distress can deepen our knowledge about financial networks.
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4. CONCLUDING REMARKS

This thesis intended to demonstrate that a financial network can be quite complex, and one
has to apply various methodologies to get an insight into its structure. Following the recently
emerged approach of the literature, | showed that the multiplex characteristic of the interbank
network is an important aspect that has to be taken into consideration when assessing such

systems.

The analysis of the Hungarian uncovered interbank network revealed that this market has a
small world attribute, which supports my first hypothesis. However, this finding is probably
the consequence of the low number of participants in this market. The relatively small size of
the Hungarian banking sector makes it hard to compare it to other empirical papers that
analyzed much larger networks with more thousand nodes. Nevertheless, | detected some
signs of scale-free characteristic that is usually observed in the case of real financial networks.

From a systemic risk perspective, it is crucial how balanced the lending and the borrowing
sides of the market are. My results show that a small number of key banks are responsible for
the majority of the borrowed amounts, while on the lending side, banks appear to transact in a
more equal way. This phenomenon is present in both the overnight and the longer-term layers.
Regarding financial stability, it is a worrisome problem since the default or distress of such

central institutions could cause severe losses and contagion in the whole system.

The multiplex comparison of the overnight and the longer-term layers confirmed that this
approach is meaningful for financial networks. On the layer level, 1 found signs of
asymmetry, namely that the connections among the banks in the overnight network do not
imply that they lend to each other on longer maturity as well, while this implication was true
in the other direction. The distance of the two layers significantly increased during the crisis
period, which is the sign that the overnight and the longer-term sub-networks show different

patterns in times of financial disturbances.

Regarding the node-level similarity, my results showed that in the latest available network the
relative importance of the institutions on the borrowing side was strongly correlated across the
layers, but it was just moderately accurate for the lending sides. However, the historical
analysis revealed that the node-level similarity across layers has been strongly varying during
the analyzed 10 years. In addition, as the historical assessment of the systemically important
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institutions discovered, banks tend to change the role they play in the system as well. For
example, systemically important overnight lenders may become crucial longer-term
borrowers. These findings support my hypothesis that banks show different behavior in the
two layers, which indicates that the multiplex analysis of the system is crucial to understand

the financial networks and to assess the SIFIs in both the sub-networks and the whole system.

My dataset made it possible to have an overview of the Hungarian uncovered interbank
network. However, banks can be connected through other networks as well. To have a deeper
understanding of the structure of this market, it would be beneficial to combine this dataset
with information about the covered interbank lending, as well as the FX-swap transactions
among the banks. A multiplex network analysis built on these layers could reveal essential
details which may be used for improving SIFI assessment methodologies and ensuring a more

resilient financial system.
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5. APPENDIX

Appendix Table 1 — SIFI assessment weights of the BCBS methodology

Source: (2013, pp. 6, 12)

Category (and weighting)

Individual indicator

Indicator weighting

Cross-jurisdictional activity (20%)

Size (20%)

Interconnectedness (20%)

Substitutability/financial
institution infrastructure (20%)

Complexity (20%)

Cross-jurisdictional claims
Cross-jurisdictional liabilities

Total exposures as defined for use in the Basel Il
leverage ratio

Intra-financial system assets
Intra-financial system liabilities

Securities cutstanding

Assets under custody
Payments activity

Underwritten transactions in debt and equity
markets

Notional amount of over-the-counter (OTC)
derivatives

Level 3 assets

Trading and available-for-sale securities

10%
10%
20%

6.67%
6.67%
6.67%

6.67%
6.67%
6.67%

6.67%

6.67%
6.67%

Bucket Score range* Higher loss absorbency requirement (common equity as a
percentage of risk-weighted assets)
5 D-E 3.5%
4 c-D 2.5%
3 B-C 2.0%
2 A-B 1.5%
1 Cutoff point-A 1.0%

* All score ranges are equal in size. Scores equal to one of the boundanes are assigned to the higher bucket.
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Appendix Table 2 — Indicators used for the SIFI assessment by the MNB

Source: (2016, p. 4)

Criterion Indicators

Size Total assets 20%

Value of domestic payment transactions

Importance Private sector deposits from depositors in the EU 20%

Private sector loans to recipients in the EU

Value of OTC derivatives

Complexity Cross-jurisdictional liabilities 20%

Cross-jurisdictional claims

Standard methodology

Intra financial system liabilities

Interconnectedness | Intra financial system assets 20%

Debt securities outstanding

Off-balance-sheet items (credit lines, guarantees)

Share in clearing and settlement system

Suppl t
u;.:p f_-men Y| Assets under custody 20%
indicators

Interbank claims and/or liabilities {(network analysis)

Supplementary
methodology

Market transaction volumes or values (network analysis)

Appendix Table 3 — Hungarian SIFIs identified by the MNB and their capital buffer
requirements

Source: MNB press release
Available at: http://www.mnb.hu/en/pressroom/press-releases/press-releases-2016/mnb-allows-more-time-for-
banks-to-build-capital-buffers-in-order-to-support-lending

| Capital buffer rate

Institution | For 2017 | For 2018 | For 2019 | For 2020
OTP Bank Nyrt. 0.50% 1.00% 1.50% 2.00%
UniCredit Bank Hungary Zrt. 0.25% 0.50% 0.75% 1.00%
Kereskedelmi és Hitelbank Zrt. 0.25% 0.50% 0.75% 1.00%
Magyar Takarékszovetkezeti Bank Zrt. 0.125% 0.25% 0.375% 0.50%
Raiffeisen Bank Zrt. 0.125% 0.25% 0.375% 0.50%
Erste Bank Hungary Zrt. 0.125% 0.25% 0.375% 0.50%
CIB Bank Zrt. 0.125% 0.25% 0.375% 0.50%
MKB Bank Zrt. 0.125% 0.25% 0.375% 0.50%
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Appendix Figure 1 — Aggregated pre-tax profit of the Hungarian credit institutions

Source: MNB
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Appendix Figure 2 — Connections of Bank 13 in longer-term network

(Node color: out-transactions, node size: lent amount, edge color: transacted amount)
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Appendix Figure 3 — Connections of Bank 55 in longer-term network

(Node color: out-transactions, node size: lent amount, edge color: transacted amount)

Appendix Figure 4 — Standard deviation of the Opsahl centralities
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Appendix Figure 5 — Top three rankings of bank 24
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