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Introduction

Multi-criteria decision making (MCDM) is a branch of Operations Research that

deal with decision problems under the existence of many conflicting criteria. It

plays a very important role in many real life problems. For instance, industries,

governmental agencies, and business activities involve evaluating a set of alternatives

with respect to multiple criteria. To determine the best alternative or criteria,

there are different MCDM methodologies like AHP (Analytical Hierarchy Process),

ELECTRE (ELimination and Choice Expressing REality), and many others [41].

Since Thomas L. Saaty proposed the Analytic Hierarchy Process (AHP) [36],

pairwise comparison matrices are often used as basic tools in multi-criteria decision

making. It is assumed that a decision maker doesn’t know the weights of criteria or

values of the alternatives precisely while the comparison is possible. When a decision

maker wants to compare n objects (criteria or alternatives with respect to a given

criteria), a pairwise comparison matrix is introduced as A = [αij]i,j=1,...,n, where αij

is the numerical answer for the question ’How many times is Criterion i better than

Criterion j?’, or ’How many times is Alternative i preferred to Alternative j?’. It

is always positive and reciprocal, i.e. αij > 0 and αij = 1
αji
∀i, j. The incomplete

version of A is known as incomplete pairwise comparison matrix.

The thesis considers analysis of incomplete pairwise comparison matrices and its

application for ranking top table tennis players by taking large-scale data (54× 54

size) from International Table Tennis Federation (ITTF) database [26]. The aim

is to find an appropriate positive priority vector that demonstrates the decision

maker’s preference and ranking problems in the incomplete case. There are a number

of estimation methods for determining the weights from the pairwise comparison

matrix filled in by the decision maker [2,12]. The thesis emphasizes the two methods:
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Contents 3

Eigenvector Method (EM) and Logarithmic Least Squares Method (LLSM) [29].

My thesis is organized as follows. Chapter 1 describes the basic definitions and

theorems that are connected to the topic. In Chapter 2, three algorithms are pre-

sented in order to minimize inconsistency ratio in the case of incomplete pairwise

comparison matrix. Implementation of gradient descent method for eigenvalue min-

imization problem regarding incomplete pairwise comparison matrices is also pro-

vided. This is one of the main research parts of the thesis for which the eigenvalue

minimization problem is of the form

min
x∈Rk

+

λmax(A(x)),

where x = (x1, x2, ..., xk) ∈ Rk
+ represents the missing elements in the matrix,

and Rk
+ denotes the positive orthant of the k-dimensional Euclidean space whereas

λmax(A(x)) is the maximum eigenvalue of a given incomplete matrix A.

Chapter 3 observes an application of incomplete pairwise comparison of matrices

for ranking top table tennis players from large-scale historical data. The expected

and unexpected results have also been presented. Chapter 4 is the conclusion of

the thesis. Moreover, Appendix A comprises basic Harker’s formulas, Tables for a

ranking problem, and ITTF world ranking basic description.

Here, I have listed my own contributions to the thesis so far as follows:

• collecting the proper sources (books, papers, lecture notes) of information;

• my effort to run several algorithms (Cyclic coordinates algorithm, Newton’s

method for univariate and multivariate case, Logarithmic Least Squares Method,

and other weighting methods);

• implementation of the gradient descent algorithm for the eigenvalue minimiza-

tion problem regarding incomplete pairwise comparison matrices;

• analyzing my own ranking problem in Chapter 3 including data collection,

problem definition, calculations, discussion of the results and recommenda-

tions.

Last but not least, my thesis addresses aspects of Operations Research, Decision

Theory, Optimization and Ranking.
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Chapter 1

Preliminaries

The aim of this chapter is to present the basic definitions with theorems and its

proofs. Here, the theory is explored in general incomplete pairwise comparison

matrices. The global existence and uniqueness of optimal solution for eigenvalue

minimization problem is also stated.

Throughout this thesis, we shall use notations λmax, EM and LLSM for Perron

eigenvalue, Eigenvector Method and Logarithmic Least Squares Method, respec-

tively. Similarly, weight vector as w = (w1, ..., wn)T , the set of positive real numbers

as R+, and the positive orthant of the n-dimensional Euclidean space as Rn
+.

1.1 Pairwise Comparison Matrices

Definition 1.1.1 (Pairwise comparison matrix). A real matrix A = [αij]n×n) is

called pairwise comparison matrix if αij > 0, αii = 1 and αij = 1
αji

for all i, j =

1, ..., n.

The goal is to determine a positive weight vector w = (w1, w2, ..., wn)T ∈ Rn
+

such that αij ≈ wi

wj
for all i, j. That means, if the entries precisely represent ratios

between weights, then the given matrix A can be expressed as A = [wi

wj
](n×n).

With reciprocity condition, A can be rewritten as

4
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1.1. Pairwise Comparison Matrices 5

A =



1 α12 α13 · · · α1n

1
α12

1 α23 · · · α2n

1
α13

1
α23

1 · · · α3n

...
...

...
. . .

...

1
α1n

1
α2n

1
α3n

· · · 1


. (1.1.1)

Definition 1.1.2 (Consistency). A pairwise comparison matrix is A = [αij](n×n)

called consistent if the transitivity αijαjk = αik holds for all i, j, k = 1, 2, ..., n.

Otherwise, the matrix is called inconsistent.

If A is consistent, then the rank of A is one and the weights are unique up to a

positive scalar multiple.

There are a lot of ways of measuring or indexing the level of inconsistency, see

Subsection 1.1.4. Here, the consistency conditions are formulated in some equivalent

ways as follows:

• αik = αijαjk for all i, j, k,

• There exists a weight vector (w1, ..., wn)T such that αij = wi

wj
for all i, j,

• Rank(A ) =1.

• The pairwise comparison matrix A has its λmax, equal to n.

Remark 1.1. The number of independent transitivities (i, j, k) in a maximum

of order n is
(
n
3

)
. See ([10], page 27).

1.1.1 Eigenvector Method

Definition 1.1.3 (Eigenvector Method (EM)). The Eigenvector Method provides

the real weight vector wEM (right eigenvector) of a pairwise comparison matrix A

such that

AwEM = λmaxw
EM ,

where λmax denotes the maximal eigenvalue, also known as Perron eigenvalue, of

A.
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1.1. Pairwise Comparison Matrices 6

By the following Theorem 1.1.1, wEM is positive and unique up to a scalar

multiplication. A usual normalization is
∑n

i=1w
EM
i = 1.

Theorem 1.1.1 (Perron-Frobenius Theorem). A positive square matrix has a unique

largest real eigenvalue with multiplicity one and an associated strictly positive right

eigenvector.

1.1.2 The Logarithmic Least Squares Method

Definition 1.1.4 (The Logarithmic Least Squares Method (LLSM)). The Loga-

rithmic Least Squares Method provides a positive real weight vector wLLSM as the

optimal solution of the following optimization problem:

min
(w1,...,wn)

n∑
i=1

n∑
j=1

[
logαij − log

wi
wj

]2
(1.1.2a)

n∑
i=1

wi = 1, wi > 0, i = 1, 2, ..., n. (1.1.2b)

Problem (1.1.2a)–(1.1.2a) can be solved by the geometric mean method. It is

supposed that the solutions are geometrically normalized and constitutes a unique

optimal solution.

Theorem 1.1.2 ([6, 29]). The optimal solution of the LLSM problem (1.1.2a) −

(1.1.2b) is unique and can be explicitly written as the geometric mean of the pairwise

comparison matrix’s row elements

wLLSMi =

( n∏
j=1

αij

) 1
n

(1.1.3)

for all i = 1, 2, ...n after the appropriate renormalization..

Proof. Let α > 0. Then the objective function’s value at any w is the same as to

αw. Now let us rewrite the normalization in 1.1.2b as

n∏
i=1

wi = 1. (1.1.4)

Putting xij = logαij and yi = logwi , we can find the following from 1.1.2a:

n∑
i=1

n∑
j=1

[
xij + yj − yi

]2
. (1.1.5)
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1.1. Pairwise Comparison Matrices 7

From yi = logwi and the transformation of reciprocity condition as xij = −xji
for i, j = 1, ..., n, we have

∏n
i=1wi = e

∑n
i=1 yi = 1. So,

∑n
i=1 yi = 0.

Thus, we can write problem (1.1.2a)− (1.1.2b) as:

min
n∑
i=1

n∑
j=1

[
xij + yj − yi

]2
(1.1.6a)

n∑
i=1

yi = 0. (1.1.6b)

Since the objective function 1.1.6a is strictly convex, it is enough to apply the first

optimality conditions:

∂

∂yi

n∑
i=1

n∑
j=1

(xij + yj − yi)2 = 0, i = 1, ..., n.

Then,

∂

∂yi

n∑
i=1

n∑
j=1

(xij + yj − yi)2 = −2
n∑
j=1

(xij + yj − yi) = −2
n∑
j=1

xij + 2nyi− 2
n∑
j=1

yj = 0.

Since
∑n

j=1 yj = 0 in 1.1.6b, then 2
∑n

j=1 xij = 2nyi. Hence, we get the solution

yi =

∑n
j=1 xij

n
, i = 1, ..., n.

Rewriting this again to the original variables, we obtain logwi =
∑n

j=1 logαij

n
. That

means,

wLLSMi =

( n∏
j=1

αij

) 1
n

, i = 1, ..., n.

1.1.3 Other Weighting Methods

There are many estimation methods for the priority values other than the above

two methods. However, none of the weighting methods are totally superior over the

others. Each of them works best on its own standard of effectiveness.

Some estimating methods for deriving ratio scaled weight vectors are presented

in a short form in Table 1.1 with their formulas. Most of them have the following

required properties [2, 12]:
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1.1. Pairwise Comparison Matrices 8

• keeps ranks robustly: if αik ≥ αjk (k = 1, ..., n), then wi ≥ wj

• correctness in the case of consistency: if A is consistent, then the estimated

priority vector is equal to the true priority vector;

• smoothness of outcomes: small changes in A do not cause big changes in the

estimated priority vector;

• comparison order independence: the estimated weight vector is independent

of the order of the attributes compared in A.

Remark 1.2. The EM, LLSM and all other weighting methods bring about the

same weights when the matrix is consistent.

1.1.4 Inconsistency Ratio

In solving real decision problems, the priority vector w can be approximated by using

the inconsistent pairwise comparison matrix though the levels of inconsistency are

different. Some of which are acceptable by the real decision maker and some are not

in Saaty’s sense [8, 36,37].

There are different consistency indices in many literatures. Saaty [36, 37] pro-

posed the Consistency Index as

CI =
λmax − n
n− 1

.

Note that the logical name would be inconsistency index, but customarily it is

often called consistency index.

However, CI is not guaranteed to compare matrices of different orders due to

the variations of expectations of CI values [10]. So, it requires to be rescaled as

follows.

Definition 1.1.5 (Inconsistency Ratio). According to Saaty [36, 37], the inconsis-

tency ratio CR is defined as

CR =
CI

RIn

where RIn = λmax−n
n−1 , and λmax is an average value of the Perron eigenvalues of

randomly generated n× n pairwise comparison matrices. Some estimated values of

RIn are given in Table 1.2 [10,36,37].
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1.1. Pairwise Comparison Matrices 9

Table 1.1: Weighting Methods

Method The problem to be solved

The Geometric Mean Method (GM)

min
∑
i 6=j

[
logαij − log

wi
wj

]2
n∏
i=1

wi = 1,

wi > 0, i = 1, 2, ..., n

The Normalized Column Mean Method (NCM)

min
n∑
i=1

n∑
j=1

[
αij∑n
k=1 αkj

− wi
]2

n∑
i=1

wi = 1,

wi > 0, i = 1, 2, ..., n

Least Squares Method (LSM)

min
n∑
i=1

n∑
j=1

[
αij −

wi
wj

]2
n∑
i=1

wi = 1,

wi > 0, i = 1, 2, ..., n

Chi Squares Method (χ2 M)

min
n∑
i=1

n∑
j=1

(
αij − wi

wj

)2

wi

wj

n∑
i=1

wi = 1,

wi > 0, i = 1, 2, ..., n

Singular Value Decomposition Method (SVDM)

wSV Di =
ui + 1

vi∑n
j=1 ui + 1

vi

i = 1, ..., n

where A[1] = α1uvT ,

approximation of A

with the best 1 rank in

Frobenius norm
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1.1. Pairwise Comparison Matrices 10

n 3 4 5 6 7 8 9 10 11

RIn 0.5247 0.8816 1.1086 1.2479 1.3417 1.4057 1.4499 1.4854 1.5156

Table 1.2: Some values for RIn

It is shown in Proposition 1.1.3 that λmax ≥ n, and equals to n if and only if

the matrix is consistent. In practice one should accept matrices with values CR less

than or equal to 0.1 and reject values greater than 0.1 [36,37].

Example 1.1.1. Consider a pairwise comparison matrix A as follows.

A =


1 3 8 1

1/3 1 1/2 1/7

1/8 2 1 3

1 7 1/3 1

 .

Here, the maximum eigenvalue, λmax(A) = 5.3612. Using the formula for CR, we

have

CR =
CI

RI4
=

(5.3612− 4)/3

0.8816
≈ 0.5146,

which is significantly greater than 0.1. Hence, in Saaty sense, the judgement matrix

A is too inconsistent. So, a decision maker has to revise his decision until CR < 0.1.

Proposition 1.1.3 ([10]). Let A be a pairwise comparison matrix. Then λmax = n

if and only if A is consistent, and λmax > n otherwise.

Proposition 1.1.4 ([39]). Let A = [αij]n×n be a pairwise comparison matrix. Then

A is consistent if and only if its characteristic polynomial can be written as

pA(t) = tn − ntn−1.

Proof. We consider the characteristic polynomial of A,

pA(t) = det(A− tI).

Let pA(t) = tn − ntn−1. Then pA(t) has solutions t = 0, and t = n. So, the

maximum eigenvalue is equal to n, i.e. t∗ = λmax = n. Hence, by Proposition 1.1.3,

A is consistent.

C
E

U
eT

D
C

ol
le

ct
io

n



1.1. Pairwise Comparison Matrices 11

Conversely, let A be consistent. Then using the relation α1jαjk = α1k for all

j, k = 1, ..., n, we obtain

pA(t) = det(A− tI) = det



1− t α12 α13 · · · α1n

α21 1− t α23 · · · α2n

α31 α32 1− t · · · α3n

...
...

...
. . .

...

αn1 αn2 αn3 · · · 1− t



= α21 · · ·αn1 · det



1− t α12 α13 · · · α1n

1 α12(1− t) α13 · · · α1n

1 α12 α13(1− t) · · · α1n

...
...

...
. . .

...

1 α12 α13 · · · α1n(1− t),



= det



1− t 1 1 · · · 1

1 1− t 1 · · · 1

1 1 1− t · · · 1
...

...
...

. . .
...

1 1 1 · · · 1− t



= det



n− t n− t n− t · · · n− t

1 1− t 1 · · · 1

1 1 1− t · · · 1
...

...
...

. . .
...

1 1 1 · · · 1− t



= (n− t) det



1 1 1 · · · 1

1 1− t 1 · · · 1

1 1 1− t · · · 1
...

...
...

. . .
...

1 1 1 · · · 1− t


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1.2. Incomplete Pairwise Comparison Matrices 12

= (n− t) det



1 1 1 · · · 1

0 −t 0 · · · 0

0 0 −t · · · 0
...

...
...

. . .
...

0 0 0 · · · −t


= (n− t)(−t)n−1

= tn − ntn−1.

Remark 1.3. Any 2× 2 pairwise comparison matrix is consistent.

Now we consider the coefficients of characteristic polynomial of A for the follow-

ing theorem. That is, pA(t) = tn + c1t
n−1 + ...+ cn−1t+ cn. Thus, we can decide the

consistency of A from the coefficient c3 alone.

Theorem 1.1.5 ([39], Theorem 1). Let n ≥ 3 and A be a pairwise comparison

matrix. Then A is consistent if and only if c3 = 0.

1.2 Incomplete Pairwise Comparison Matrices

In the case of complete pairwise comparison matrix, i.e. when all its entries are

known, the two well known methods are defined in Sections 1.1.1 and 1.1.2.

It may happen that one or more entries are not given by the decision expert for

several reasons: when the decision maker does not complete the judgment matrix

due to lack of time or some of the data have been lost, or s/he is not able to make

comparisons about ranking of certain pairs. Incompleteness may indeed be the case

if the number n of items is a huge task to give as many as
(
n
2

)
considerable estimates.

From now on, we shall assume our pairwise comparison matrices are not com-

pletely filled in by the decision maker.

Definition 1.2.1. Pairwise comparison matrix with one or more missing elements is

called Incomplete Pairwise Comparison Matrix (IPCM). IPCM is similar to (1.1.1)
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1.2. Incomplete Pairwise Comparison Matrices 13

in form, except the missing elements. Missing elements of pairwise comparison

matrices are denoted by *. It is structured as follows:

A =



1 α12 ∗ · · · α1n

1
α12

1 α23 · · · ∗

∗ 1
α23

1 · · · α3n

...
...

...
. . .

...

1
α1n

∗ 1
α3n

· · · 1


. (1.2.7)

Generally, by introducing variables xi’s instead of the missing elements, we can

rewrite the incomplete pairwise comparison matrix A in (1.2.7) as

A(x) = A(x1, x2, ..., xk) =



1 α12 x1 · · · α1n

1
α12

1 α23 · · · xk

1
x1

1
α23

1 · · · α3n

...
...

...
. . .

...

1
α1n

1
xk

1
α3n

· · · 1


(1.2.8)

where x = (x1, x2, ..., xk) ∈ Rk
+. There are k variables in the upper triangular

part and another k number of variables in its lower triangular part. That means,

totally 2k number of variables occur in A. Furthermore, linear algebraic manipula-

tions in A are defined after the completion of the missing entries.

1.2.1 Graph Representation

In multi-criteria decision making process, it is a natural phenomenon to describe

pairwise comparison matrices with the corresponding associated graph structures.

Two criteria that have no direct relation may be described as an indirect relation

through its associated undirected graph.

Definition 1.2.2 (Undirected Graph). For a given n × n (in)complete pairwise

comparison matrix A, its associated undirected graph G is defined by

G := (V,E),
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1.2. Incomplete Pairwise Comparison Matrices 14

where V = {1, 2, ..., n} denotes the nodes (vertices) corresponding to matrix order

n, and E= {e(i, j)|αij (and αji) is given, i 6= j} represents the undirected edges

corresponding to the matrix entries. The edge is assigned exactly from node i to j if

the comparison element αij is already given. No edges are assigned for the missing

elements in the matrix.

Remark 1.4. For a complete pairwise comparison matrix, its corresponding

undirected graph G is a complete graph Kn [6].

1.2.2 Eigenvector Method for Incomplete Pairwise Compar-

ison Matrices

Based on Saaty’s inconsistency ratio CR [36], Shiraishi, Obata and Daigo [38, 39]

considered the eigenvalue minimization problem for a given incomplete matrix A as

min
x∈Rk

+

λmax(A(x)), (1.2.9)

where x = (x1, x2, ..., xk) ∈ Rk
+ represents the missing elements in the matrix,

and Rk
+ denotes the positive orthant of the k-dimensional Euclidean space whereas

λmaxA(x) is the maximum eigenvalue that can be obtained from (A(x)) in (1.2.8).

The aim is to solve this eigenvalue optimization problem by applying different

suitable algorithms that are presented in Chapter 2. That means, equivalently, we

need to find the best completion of the given matrix in order to get the minimum

inconsistency ratio (in Saaty sense).

In this section, we present some basic concepts and state the main theorems that

are applicable to the next chapters.

Definition 1.2.3 (Logarithmically Convex Function). Let S ⊂ Rk be a convex

set. A function f : S → R+ is called log-convex or superconvex if the composition

function log f : S → R is a convex function.

Basically, the logarithm extremely makes to decrease the growth of the original

function f , hence we call it superconvex if the composition still holds convexity.

It is possible to show that log-convexity implies convexity, but the converse is not

necessarily true.
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1.2. Incomplete Pairwise Comparison Matrices 15

Parameterizing the elements of the incomplete pairwise comparison matrix A(x) =

A(x1, x2, ..., xk) of (1.2.8) as xi = eyi for i = 1, 2, ..., k, we can establish a matrix of

the form [6]

A(x) = B(y) = B(y1, y2, ..., yk). (1.2.10)

Proposition 1.2.1 ([6]). For the parametrized matrix B(y) from (1.2.10) the Per-

ron eigenvalue λmax(B(y)) is a log-convex (hence convex) function of y.

Proof. See (pages 321–323).

Proposition 1.2.2 ([6]). The Perron eigenvalue λmax(B(y)) is either strictly convex

or constant along any line in the y space.

Theorem 1.2.3 ([6], Theorem 2). The optimal solution of the eigenvalue mini-

mization problem (1.2.9) is unique if and only if the graph G corresponding to the

incomplete pairwise comparison matrix is connected.

Theorem 1.2.4 ([6], Theorem 3). The function λmax(B(y)) attains its minimum

over Rk, and the optimal solutions constitute an (s − 1) dimensional affine set of

Rk, where s is the number of the connected components in G.

Remark 1.5. The Perron eigenvalue minimization problem (1.2.9) is a non-

convex function of its entries. However, if graph G corresponding to the incomplete

pairwise comparison matrix is connected, then by using the exponential parametriza-

tion x1 = et1 , x2 = et2 , ..., xk = etk, it can be transformed into a strictly convex

minimization problem.

Remark 1.6. Based on Tummala and Ling [42], the formula of the maximum

eigenvalue λmax for 3 × 3 incomplete pairwise comparison matrix M (where x, y, z

are the elements in the upper triangular):

M(x, y, z) =


1 x y

1
x

1 z

1
y

1
z

1


is given as

λmax(M(x, y, z)) = 1 + 3

√
y

xz
+ 3

√
xz

y
. (1.2.11)
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1.2. Incomplete Pairwise Comparison Matrices 16

Example 1.2.1. Let M be a 3 × 3 pairwise comparison matrix with one missing

element x as follows:

M =


1 x 3

1
x

1 6

1
3

1
6

1

 .

Now using formula (1.2.11) and exponential parametrization x = et, we obtain

λmax(M(x)) = 1 + 3

√
1
2x

+ 3
√

2x and λmax(M(et)) = 1 + 3

√
1
2et

+ 3
√

2et, respectively.

Hence, one can see the transformation of non-convexity of the function λmax(M(x))

in Fig. 1.1 into convexity of the function λmax(M(et)) in Fig. 1.2.

1.2.3 The Logarithmic Least Squares Method for Incom-

plete Pairwise Comparison Matrices

In this section, we consider the extension of Logarithmic Least Squares Method

(LLSM) (1.1.2) for incomplete pairwise comparison matrix A. Considering only the

the given entries αij, we can define LLSM as

min
(w1,...,wn)

∑
1≤i<j≤n

[
logαij − log

wi
wj

]2
+

[
logαji − log

wj
wi

]2
(1.2.12a)

n∑
i=1

wi = 1, wi > 0, i = 1, 2, ..., n. (1.2.12b)

The objective function (1.2.12a) consists of each pair of elements related to αij

and αji. The entries related to i = j are 0 and eliminated from the objective

function.

Theorem 1.2.5 ([6], Theorem 4). The optimal solution of the incomplete LLSM

problem (1.2.12a)–(1.2.12b) is unique if and only if graph G corresponding to the

incomplete pairwise comparison matrix is connected.

Remark 1.7. The uniqueness of the optimal solution depends on the structure

of the graph G, but not the values of comparisons.
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1.2. Incomplete Pairwise Comparison Matrices 17

0 50 100 150 200
0

2

4

6

8

10

12

14

x

λ m
a
x
(M

(x
))

Figure 1.1: Non-convexity of the function x 7→ λmax(M(x)) in Example 1.2.1
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Figure 1.2: Strict convexity of the function t 7→ λmax(M(et)) in Example 1.2.1
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Chapter 2

Algorithms for Perron Eigenvalue

Minimization Problem

In this chapter, we observe three practical Perron eigenvalue minimization algo-

rithms that are used to minimize the inconsistency ratio CR, or equivalently, to find

the best (λmax-optimal) completion to the eigenvalue minimization problem (1.2.9).

The generalization of the eigenvector method is also applied here as proposed by

Shiraishi, Obata and Diago [38,39].

It is also shown that the Perron eigenvalue minimization problem can be trans-

formed into convex minimization problem using exponential parametrization. Hence,

the existence of optimal solution is guaranteed [6].

One can provide an algorithm with or without derivative information for filling

in the gap of the incomplete pairwise comparison matrix as good as possible (i.e.

CR < 0.1). Bozóki et al. [6] proposed an algorithm which is called cyclic coordinates.

They used a general optimization function fminbnd in MATLAB for determining

the best optimal completion. Further, Ábele-Nagy [1] suggested Newton’s Method

for univariate and multivariate case to compute the Perron eigenvalue optimization

problem. He applied Harker’s [24] first and second derivatives in his iterations

procedure. In our approach, a gradient descent method is proposed in Section 2.3.

18
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2.1. Cyclic Coordinates Algorithm 19

2.1 Cyclic Coordinates Algorithm

The iterative method of cyclic coordinates minimizes the function λmax cyclically

with respect to the coordinate variables. The method of cyclic coordinates is in-

dependent of the derivatives. It can be used with derivatives, but also without

derivatives. The main idea of cyclic coordinates is that the problem is divided to

many, single variable optimization problems. In each step, a single variable func-

tion is minimized. The procedure is, with arbitrary or algorithmic initial value

x
(0)
i , i = 1, 2, ..., k, where k denotes the number of missing elements (current vari-

ables) by considering the upper triangular matrix only. Each iteration of the method

comprises k steps. Thus, x1 is changed first by fixing the rest associated variables,

then x2 and so forth through xk. The process is then repeated starting with x1 again

until it achieves the stopping criteria.

The steps of the algorithm is stated as follows in reference to [1,6,30]. Here, we

consider the incomplete pairwise comparison matrix A. The aim is to find a complete

pairwise comparison matrix A such that λmax is minimal. Let x = (x1, x2, ..., xk) ,

where xi ∈ R+ are the missing elements for finite i. Also let x
(m)
i denote the value

of xi in the mth step of the iteration.

Algorithm 1 Cyclic coordinates algorithm for min
x
λmax(A(x))

1: procedure let x
(m)
i denote the value of xi in the mth step of the

iteration and ti = log xi ∀i = 1, 2, ..., k.

2: Set m← 0, and x
(0)
i ← 1 ∀i

3: while max
i=1,2,..,k

||x(m)
i − x(m−1)i || > Tolerance do

4: choose i ∈ {1, 2, .., k}

5: x
(m)
i ← arg min

xi
λmaxA(x

(m)
1 , ..., x

(m)
i−1, xi, x

(m−1)
i+1 , ..., x

(m−1)
k )

6: repeat step 5 for all i ∈ {1, 2, .., k}, then go to step 7

7: m← m+ 1

8: end while.

The global convergence for cyclic coordinate descent algorithm is stated and

proved in ([30], pages 266–267). Regarding to the rates of convergence, it is difficult
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2.2. Newton’s Method 20

to compare cyclic coordinates with that of steepest descent and Newton’s method,

since it is not affected by scale factor changes. However, it is affected by rotation of

coordinates. Nonetheless, some comparison is doable.

2.2 Newton’s Method

Newton’s method is the popular algorithm that is used to find an optimal solution

using first derivative (in univariate case) and second derivative (in multivariate case)

information. In univariate case, it endeavors to construct a sequence xn from an

initial value (guess) x0 that converges to a certain value x∗ that makes the first

derivate to vanish at x∗.

In multivariate case, the gradient vector∇F (x) and the inverse of Hessian matrix

H(x) are required provided that the function F is twice differentiable.

In this section, we give multivariate Newton’s algorithm for solving Perron eigen-

value minimization problem for a given incomplete pairwise comparison matrix.

Following Bozóki et al. [6] paper, Ábele-Nagy [1] proposed the univariate and mul-

tivariate Newton methods for his optimal completion procedure. In the univariate

case, he used the method of cyclic coordinates with Newton iteration to optimize

only one variable at a time.

Applying Newton’s Multivariate method, one can optimize in all of the variables

at the same time instead of optimizing one variable at a time cyclically [1]. The

procedure for multivariate Newton’s method is provided as follows [1]. Let x = et

be in the position of (i, j) in the matrix and F (t) = λmax(e
t1 , et2 , ..., etk), where k is

the number of elements in the matrix (upper triangular at a time). By Harker [21],

the derivatives ∂λmax(x)
∂x

and ∂2λmax(x)
(∂x)2

are known. Here, we want to minimize F . To

do so, we use Newton’s iteration

t(m+1) = t(m) − γ[HF (t(m))]−1∇F ((t(m)), (2.2.1)

where HF (t(m)) denotes the Hessian matrix of F (t), ∇F (t(m)) is the gradient vector

of F (t), and the usual Newton’s step size γ .

The gradient vector ∇F (t) = ( ∂F
∂t1
, ..., ∂F

∂tk
) can be found from the following
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2.3. Gradient Descent Method 21

method [1, 21] and it is also given in the Appendix (A.1):

∂F (t)

∂t
=
∂λmax(e

t)

∂t
=
∂λmax(x)

∂x
· ∂(et)

∂t
=
∂λmax(x)

∂x
· et. (2.2.2)

Similarly, the derivation for the Hessian matrix has been given from the paper ([1],

page 65). The stopping criteria must be given for x, but not for t as small changes

in t results in large differences in x.

Algorithm 2 Newton’s Multivariate Algorithm for min
x
λmax(A(x))

1: procedure let t(m) denote the value of t in the mth iteration, and

x
(m)
i be the value of xi in the mth iteration and ti = log xi ∀i = 1, 2, ..., k.

2: Starting values of t, where t = log x, and step size γ

3: Set m← 0

4: while max
i=1,2,..,k

||x(m)
i − x(m−1)i || > Tolerance do

5: t(m+1) ← t(m) − γ[HF (t(m))]−1∇F (t(m))

6: m← m+ 1.

7: end while.

Assuming the Jacobian matrix at the current point is invertible, we can say that

Newton’s method has a quadratic convergence. Otherwise, the global converge may

fail. Newton’s method provides a better finite iteration relative to the cyclic coor-

dinates and gradient descent methods. However, evaluation of the Hessian at every

point can be costly. Its convergence is stated and proved in Numerical Optimization,

Nocedal and Wright’s book ([34], pages 44–45).

2.3 Gradient Descent Method

Gradient descent algorithm (also called steepest descent) is a first-order derivative

iterative optimization method by taking steps proportional to the negative of the

gradient function at the current point.

In this section, we are interested in solving the eigenvalue minimization problem

(1.2.9) by gradient descent method.
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2.3. Gradient Descent Method 22

2.3.1 The Algorithm

With parametrization x = et , let F (t) = λmax(e
t1 , et2 , ..., etk), where k denotes the

number of missing elements in the pairwise comparison matrix (upper triangular).

The aim is to minimize F (t). The gradient function∇F (t) = ( ∂F
∂t1
, ..., ∂F

∂tk
) is obtained

from F (t) in equation (2.2.2). (See also the appendix for Harker’s [21] first derivative

formula).

Since F (t) is convex and differentiable, for a given point t = t, the approximation

of F (t) can be presented as a linear approximation

F (t+ d) ≈ F (t) +∇F (t)Td,

if the norm ||d|| is small. Now we choose d so as to make the scalar product

∇F (t)Td is as small as possible. Normalizing d with ||d|| = 1, a particular direc-

tion d∗ = −∇F (t)

||∇F (t)|| gives the smallest scalar product with the gradient ∇F (t). The

following inequality asserts this reality [18]:

∇F (t)Td ≥ −||∇F (t)|| · ||d|| = ∇F (t)T
(
−∇F (t)

||∇F (t)||

)
= ∇F (t)Td∗.

Following this, the un-normalized direction d = −∇F (t) is called the direction

of gradient descent, or simply descent direction, at the current point t.

It is worth noting that d
T∇F (t) = −∇F (t)T∇F (t) < 0 only if ∇F (t) 6= 0, i.e. d

is the descent direction provided that ∇F (t) 6= 0. It follows that F (t
m+1

) < F (t
m

).

The stopping criteria is given for x, but not for t as small changes in t results

in large differences in x. The locally optimal step size γ maybe chosen by an exact

or inexact line search algorithm in each iteration or just fixed gamma. However,

carrying out line search can be time-taking. On the other hand, using a fixed γ

can result in poor convergence. Using Newton’s method and Hessian versions of

conjugate gradient methods can be better options to get fewer iterations. But, its

each iteration cost is higher. Nonetheless, the algorithm works well in any number

of dimension. Its global and rate of convergence is stated and proved in ([18], pages

3–5). The algorithm is given as follows.
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2.3. Gradient Descent Method 23

Algorithm 3 Gradient Descent Algorithm for min
x
λmax(A(x))

1: procedure Let tm denote the value of t in the mth iteration, and xmi

be the value of xi in the mth iteration where ti = log xi ∀i = 1, 2, ..., k.

2: Choose starting values of t and step size γ

3: Set m← 0

4: while max
i=1,2,..,k

||x(m)
i − x(m−1)i || > Tolerance do

5: dm ← −∇F (tm)

6: If dm = 0, then stop. Otherwise, go to step 7

7: tm+1 ← tm + γdm

8: m← m+ 1

9: end while.

2.3.2 Numerical Example

Let us take an 8× 8 incomplete pairwise comparison matrix as follows:

A(x) =



1 5 3 7 6 6 1/3 1/4

1/5 1 x1 5 x2 3 x3 1/7

1/3 1/x1 1 x4 3 x5 6 x6

1/7 1/5 1/x4 1 x7 1/4 x8 1/8

1/6 1/x2 1/3 1/x7 1 x9 1/5 x10

1/6 1/3 1/x5 4 1/x9 1 x11 1/6

3 1/x3 1/6 1/x8 5 1/x11 1 x12

4 7 1/x6 8 1/x10 6 1/x12 1



.

This is an example of Saaty’s ’buying a house’ incomplete version [36]. Moreover,

this matrix has been used as an example in both Bozóki et al. [6] and Ábele-Nagy [1]

papers. It is easy to see that the graph associated to the matrix is connected [6]:

the first row is completely filled in, node 1 is directly connected to all nodes.

The aim is to find the complete matrix A for which λmax is minimal by using

gradient descent method. In this matrix, the missing elements are denoted by vector

x = (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) ∈ R12
+ .
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2.3. Gradient Descent Method 24

Table 2.1: The 21 iterations of the gradient descent algorithm to the given incom-

plete pairwise comparison matrix A.

m x
(m)
1 x

(m)
2 x

(m)
3 x

(m)
4 x

(m)
5 x

(m)
6 x

(m)
7 x

(m)
8 x

(m)
9 x

(m)
10 x

(m)
11 x

(m)
12

0 0.3823 1.8428 0.4758 8.9924 4.2688 0.5228 0.5361 0.1384 0.8855 0.1085 0.2916 0.4200

1 0.3338 1.7890 0.4866 9.7728 4.7893 0.5609 0.5426 0.1495 0.8975 0.1061 0.3045 0.3834

2 0.3384 1.7603 0.4746 9.6902 4.7370 0.5565 0.5396 0.1445 0.9084 0.1063 0.2961 0.3979

3 0.3341 1.7529 0.4727 9.7944 4.7905 0.5626 0.5344 0.1446 0.9142 0.1075 0.2953 0.3967

4 0.3333 1.7403 0.4710 9.8250 4.8064 0.5641 0.5320 0.1437 0.9199 0.1079 0.2941 0.3999

5 0.3322 1.7351 0.4692 9.8566 4.8199 0.5297 0.5297 0.1434 0.9231 0.1084 0.2930 0.4002

6 0.3315 1.7298 0.4686 9.8752 4.8313 0.5669 0.5285 0.1431 0.9257 0.1086 0.2926 0.4015

7 0.3311 1.7270 0.4677 9.8899 4.8365 0.5680 0.5274 0.1429 0.9273 0.1088 0.2921 0.4017

8 0.3307 1.7246 0.4674 9.8987 4.8425 0.5683 0.5267 0.1427 0.9285 0.1090 0.2919 0.2918

9 0.3305 1.7232 0.4670 9.9059 4.8447 0.5688 0.5263 0.1427 0.9293 0.1091 0.2916 0.4024

10 0.3303 1.7221 0.4669 9.9100 4.8478 0.5690 0.5260 0.1426 0.9299 0.1092 0.2915 0.4027

11 0.3303 1.7214 0.4667 9.9136 4.8487 0.5693 0.5257 0.1425 0.9303 0.1092 0.2914 0.4028

12 0.3302 1.7209 0.4666 9.9155 4.8503 0.5693 0.5256 0.1425 0.9306 0.1092 0.2914 0.4029

13 0.3301 1.7205 0.4665 9.9173 4.8507 0.5694 0.5255 0.1425 0.9308 0.1092 0.2913 0.4029

14 0.3301 1.7203 0.4665 9.9182 4.8515 0.5695 0.5254 0.1425 0.9309 0.1093 0.2913 0.4030

15 0.3301 1.7201 0.4664 9.9190 4.8516 0.5695 0.5254 0.1425 0.9310 0.1093 0.2913 0.4030

16 0.3300 1.7199 0.4664 9.9194 4.8520 0.5695 0.5253 0.1424 0.9310 0.1093 0.2912 0.4030

17 0.3300 1.7199 0.4663 9.9198 4.8520 0.5695 0.5253 0.1424 0.9311 0.1093 0.2912 0.4030

18 0.3300 1.7198 0.4663 9.9200 4.8522 0.5695 0.5253 0.1424 0.9311 0.1093 0.2912 0.4030

19 0.3300 1.7198 0.4663 9.9202 4.8523 0.5695 0.5252 0.1424 0.9311 0.1093 0.2912 0.4030

20 0.3300 1.7198 0.4663 9.9204 4.8524 0.5695 0.5253 0.1424 0.9312 0.1093 0.2912 0.4030

21 0.3300 1.7198 0.4663 9.9205 4.8524 0.5696 0.5253 0.1424 0.9312 0.1093 0.2912 0.4031

The approximated values (up to 4 digits) for all variables in each iteration are

provided in Table 2.1 based on the algorithm. Further, we have used the tolerance

T = 10−4 and initial value x
(0)
k using the weights from Incomplete Logarithmic Least

Squares Method (ILLSM) in [1, 9] depending on the position of x
(0)
k in the matrix

(i, j) such that x
(0)
k = wi/wj for k = 1, ..., 12. With several numerical experiments,

we have applied the value for step size γ = 6.77 in order to get the minimum number

of iterations. Thus, the least possible 21 iterations were found which can be seen in

Table 2.1.

When the starting value x
(0)
k = 1∀k = 1, ..., 12, the gradient algorithm yields

25 iterations with γ = 6.55. However, with γ = 6.77, its number of iterations gets

higher which is 37.

In the case of Newton’s method with ILLSM for x
(0)
k , γ = 0.45 resulted in the

least number of iterations m = 14 in both univariate and multivariate case. But,

with starting value x
(0)
k = 1, again γ = 0.45 yielded m = 15 in the univariate case
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Figure 2.1: λmax(A(x)) values for the first 21 iterations

while m = 26 iterations in the multivariate case [1]. However, Newton’s multivariate

method has provided the least possible iterations (m = 20) with γ = 1.77 and

x
(0)
k = 1 for all k = 1, 2, .., 12.

In addition to this, one can observe that in Figure 2.1 the objective func-

tion’s value decreases in the first few iterations (with 4 decimal place approxima-

tion). However, λmax(A(x)) values decrease throughout the iterations if we consider

15 decimal places. For instance, λmax value for the 20th and 21st iterations is

9.298092250616087 and 9.298092250477843, respectively.

Based on the algorithm results from Table 2.1, the optimal solution of the eigen-

value minimization problem for the incomplete matrix A is given as follows. Here,

the missing elements are completed with four digits accuracy. The algorithm yields

the same result with that of Bozóki et al. [6] and Ábele-Nagy [1], except few vari-

ants in the third and fourth decimal places (missing values are taken from the last

iteration):

C
E

U
eT

D
C

ol
le

ct
io

n



2.3. Gradient Descent Method 26

A(x∗) =



1 5 3 7 6 6 1/3 1/4

1/5 1 0.3300 5 1.7198 3 0.4664 1/7

1/3 3.0303 1 9.9205 3 4.8524 6 0.5696

1/7 1/5 0.1008 1 0.5253 1/4 0.1424 1/8

1/6 0.5815 1/3 1.9040 1 0.9312 1/5 0.1093

1/6 1/3 0.2061 4 1.0740 1 0.2912 1/6

3 2.1445 1/6 7.0225 5 3.4341 1 0.4030

4 7 1.7556 8 9.1491 6 2.4814 1



.

The minimal objective function λmax(A(x∗)) value is 9.2981. The corresponding

normalized right eigenvector is

wEM = (0.1894, 0.0567, 0.2116, 0.0175, 0.0319, 0.0354, 0.1509, 0.3066)T .

Its inconsistency ratio is computed as

CR =
CI

RI8
=

(9.2981− 8)/7

1.4057
≈ 0.1319,

which is above the threshold (i.e. CR > 0.1). Hence, the matrix is a bit above

acceptable inconsistency according to Saaty’s criteria [36,37].

Table 2.2 represents the comparison of three algorithms (Newton’s multivariate,

Gradient descent and Cyclic coordinates) using MATLAB programming with regard

to iteration times (tic and toc) and iteration numbers from the same incomplete

matrix A 2.3.2. In the table 2.2: m, λmax(N), λmax(G), λmax(C), iterTime(N),

iterTime(G), and iterTime(C) denote number of iterations, λmax from Newton’s

method, λmax from Gradient descent method, λmax from Cyclic coordinates method,

iteration time from Newton’s method, iteration time from Gradient descent, and

iteration time from Cyclic coordinates, respectively. Here, we need to observe which

algorithm is costly in each step of the iterations (with fixed x
(0)
k = 1, γ = 6.55 for

gradient descent, and γ = 1.77 for Newton’s Method). We have run the algorithms

for several times on the same computer. Hence, one can see that each iteration

time of Cyclic coordinates method is higher than the others. In the case of gradient
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2.3. Gradient Descent Method 27

Table 2.2: Comparison of Newton’s, Gradient Descent and Cyclic Coordinates Al-

gorithms with respect to iteration time

m λmax(N) λmax(G) λmax(C) iterTime(N) iterTime(G) iterTime(C)

5 9.3793 9.2998 9.2981 684.8107 317.2281 799.4947

8 9.3046 9.2983 9.2981 684.8344 317.2295 799.616

10 9.2991 9.2981 9.2981 684.8444 317.2318 799.6974

12 9.2982 9.2981 9.2981 684.8543 317.2341 799.7758

14 9.2981 9.2981 9.2981 684.8747 317.2361 799.8768

20 9.2981 9.2981 9.2981 684.9389 317.242 800.125

descent, each iteration time is much less. It is noted that each corresponding λmax

value is relatively similar for all algorithms.

In general, it is important to note that if the objective function is convex, New-

ton’s method provides a better finite iteration. But, each steps of the iteration is

costly relative to gradient descent method.
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Chapter 3

An Application of Incomplete

Pairwise Comparison Matrices for

Ranking Top Table Tennis Players

In this chapter, we observe an application of incomplete pairwise comparison ma-

trices for ranking of top table tennis players for the last 90 years. Literature review

and main results are also discussed.

3.1 Data Analysis

The ranking idea is based on the players that have played in a pairwise way in

the long run. The data is taken from a freely available International Table Tennis

Federation (ITTF) database [26] beginning from 1926. Our alternatives are the

players. Thus, the comparison considers the results of the first and the second top

players of each year. In this case, the reason of missing of elements is: when it is

impossible to compare those players who have never played against each other on

the court [5]. This yields a 54× 54 incomplete pairwise comparison matrix.

The claim is to assert that we can produce a ranking of players by generating the

weight vectors using one of the estimation methods which leads to the ITTF-ranking

for a long period of any length. That means, ranking of players can be done based

on the weight vectors, and the player with maximum weight is considered as the

28
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3.1. Data Analysis 29

’top’ player.

In the ranking process, one of the main purpose of the ITTF-ranking is to pro-

vide an assistance for professional organizers depending on the winner regarding to

the basic principles in Appendix A.3. In this case, the person who was defeated is

not relevant. Our ranking process is different from ITTF-ranking. Both situations

will be considered. Unlike ITTF-ranking, our pairwise comparison considers both

the final and the match results in Round 16 equally if the players themselves are

the same.

The challenging question is ’who is the best player ever?’ in the ’historical’ sport

competition. Many literatures have been proposed regarding to the question. In the

case of ranking tennis players, Radicchi (2011) computed the priority vector and con-

structed directed preference graph by considering all matches played between 1968

and 2010. He found that his new rankings has a better predictive power than the

ATP (Professional Tennis Association) rankings. Dingle et al. [17] used PageRank-

based tennis rankings instead of ATP and WTA rankings. Motegi and Masuda [33]

proposed a network-based dynamic ranking system taking into account that the

strength of a player depends on time. Csató [14] considered ranking by pairwise

comparisons for Swiss-system tournaments. He used the two methods (Eigenvec-

tor and Logarithmic Least Squares) for his ranking procedure. However, results

were constructed regarding to different scaling techniques. The proposed rankings

were almost the same, except the one estimation method he applied. Bozóki et

al. [5] suggested the possibility of ranking the top tennis players by using the two

mathematical estimation methods and constructed directed preference graph. They

applied the two estimation methods (EM and LLSM) along with correction and

transformation methods. Their rankings were almost the same in both weighting

methods.

Our paper discusses the results applying the correction methods in [5,40]. Based

on our data, we have obtained a 54 × 54 incomplete matrix. The corresponding

graph with its associated matrix is connected as it can be shown in Figure 3.1. Con-

sequently, from Theorems 1.2.3 and 1.2.5, we can confirm that the optimal solution

exists, and it is unique. The thesis first considers a 5× 5 sub-matrix for the ranking
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3.1. Data Analysis 30

procedure as it can be seen in Table 3.1.

In order to give calculations from our initial data [26], we first state the definition

as follows.

Definition 3.1.1 (Pairwise Comparison Matrix of Top Table Tennis Players [5]).

We consider our initial data as

• zij (i = 1, ..., n, i 6= j): the number of matches that have played between

players Pi and Pj, where zij = zji;

• xij (i > j): the number of matches between player Pi and Pj, where Pi was

the winner;

• yij = zij−xij (i > j): the number of matches between player Pi and Pj, where

Pi lost against Pj.

Then the pairwise comparison matrix R = [pij]n×n is calculated as follows:

• pij =
xij
yij

if i, j = 1, ..., n, i > j and xij 6= 0, yij 6= 0;

• pji =
yij
xij

if i, j = 1, ..., n, i < j and xij 6= 0, zij 6= 0;

• pii = 1 for all i = 1, ..., n;

• pij and pji elements are missing otherwise.

In addition to Definition 3.1.1, it may happen that Pi won many times over Pj

without being beaten by his his opponent. At this time, one may use artificial pij

when zij 6= 0 with either xij = 0 or yij = 0 in order to keep unbiasedness [5,40]. As a

result, we can form the weight vectors by using different estimation methods. In this

thesis, we have used Logarithmic Least Squares Method for our data manipulation

with different correction methods in [5, 40].

The pairwise comparison from the matches that have played between players Pi

and Pj, i.e. number of wins per number of matches, is given in the Appendix A,

Table (A.1)–(A.4), in partition form from a 54× 54 table. The blue colored cells in

the first and the last tables indicate the indifferent value 1.
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Figure 3.1: Graph representation for the corresponding 54× 54 adjacent matrix.
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3.2. Main Result 32

Table 3.1: Number of wins per number of matches

Hao Jike Liqin Long Schlager

Hao 1/2 1/2 3/3

Jike 1/2 1/1

Liqin 1/2 0/1 0/1

Long 0/3

Schlager 1/1

3.2 Main Result

In this section, the expected result is provided by taking a 5 × 5 incomplete ma-

trix which appears in Section 3.2.1. We have also put our observations from our

calculations in Table (A.1)–(A.4). As a consequence, our unexpected result will be

provided in Section 3.2.2 .

3.2.1 Expected Result

Let us now consider our incomplete data (3.1). The data was taken from the In-

ternational Table Tennis Federation (ITTF) freely available database since 2001 by

considering only Men’s single World Championship [26,44].

In our 5 × 5 data, we have made some correction methods by considering a re-

scalings of the n : 0 matches [5,40] . We have carried out re-scalings +0.1,+0.5,+1

and +2. For instance, with re-scaling +0.5, we have used the calculations 1 : 0→ 1.5,

2 : 0 → 2.5, 3 : 0 → 3.5 [40]. It is worth noting that these methods have no

significant change in the rankings as suggested by Temesi et al. [40]. We have also

found that these methods yield an insignificant result. This might happen because of

few values in the data 3.1 that were used these re-scalings. But, in the case of 54×54

matrix, there is an obvious change in our final rankings. Our recommendations are

included in Section 3.2.2.

Since the corresponding graph to the incomplete matrix (3.1) is connected, it

has a unique solution. Thus, using the weight estimation method LLSM with three

re-scaling of n : 0 matches, let A-LLSM, B-LLSM, C-LLSM, and D-LLSM denote
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3.2. Main Result 33

Table 3.2: Rankings of 5× 5 pairwise comparisons

A-LLSM B-LLSM C-LLSM D-LLSM W/L

Hao 1 1 1 2 2

Jike 2 2 2 1 3

Long 3 3 3 4 4

Liqin 4 4 4 3 5

Schlager 5 5 5 5 1

Table 3.3: Spearman rank correlation coefficients

A-LLSM B-LLSM C-LLSM D-LLSM

A-LLSM 1 1 1 0.8

B-LLSM 1 1 1 0.8

C-LLSM 1 1 1 0.8

D-LLSM 0.8 0.8 0.8 1

the priority vectors obtained from n : 0 → n + 0.1, n : 0 → n + 0.5, n : 0 → n + 1,

and n : 0 → n + 2 re-scalings, respectively. We can also consider the win to loss

ratio (W/L). Their respective ratios are 5 : 2, 2 : 1, 1 : 3, 0 : 3, and 1 : 0. Their

rankings are also given in Table 3.2. Here, rankings were practically the same for

all correction methods, except a few variants in D-LLSM. However, it doesn’t make

a substantial change in its rankings. These results valid the suggestion of Temesi et

al. [40] by handling a balance. Because huge values of re-scalings for n : 0 matches

may cause a huge difference in their rankings.

The above statements are also reinforced by the values of the Spearman rank

correlation coefficients as it can be shown in Table 3.3. It is one of the most known

index for the rankings of pairwise comparisons [5,14,40]. The values in the table are

closer to unity except the bottom and the right corner parts. This is from the fact

that the first three re-scalings were taken smaller in value. The result has brought

about almost the same rankings.

Player ”Jike” is one of the first top players of the 2017 world ranking lists [44].

He is also ranked in the second place in our most priority vectors estimation results.
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Figure 3.2: Weight vectors derived from LLSM

Even though player ”Hao” has got the first place in our rankings, player ”Long”

has been assigned in the first position in the ITTF list according to the ITTF

basic rule: ”4 years after the last appearance on the ITTF ranking list, the players

ranking points will be completely deleted” [27]. For the reader’s convenience, only

two players are listed on the ITTF rankings based on this rule among the pairs.

The first three top players have been included in the ITTF world rankings, except

”Hao”. This is because of the rule. He was off for the last 4 years. Even though

”Long” was listed in the first place of ITTF world rankings, it doesn’t mean that

he is the best player in the Men’s Single World Championship.

The weight vectors derived from LLSM are presented in Figure 3.2. For instance,

in this graph, ”Jike” has got weights 0.33 from A-LLSM, 0.36 from B-LLSM, 0.39

from C-LLSM, and 0.38 from D-LLSM. Similarly, it is easy to see the weights for

other players. We can also compare its overall rankings with Table 3.2 which is

exactly the same.

From our data [26], it can be seen that the players that have received gold

medals starting from the year 2001 were listed with their respective years as: Hao

[2009], Jike [2011, 2013], Liqin [2001,2005, 2007], Long [2015] and Schlager [2003].
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Figure 3.3: Number of years for which players have won gold medals

It’s noted again that there is a two years gap in this competition according to the

Champions game rule. Moreover, the 2017 competition event has not been included

in our data until the time we have done our research because of the event didn’t

happen yet. Following this, Figure 3.3 demonstrates the number of years versus list

of players who have won Men’s Single World Championship since 2001. One can

also observe that ”Hao” has won the champion only once in these time intervals.

Again, ”Liqin” has won gold medals for three times. However, in our calculation

3.2, ”Hao” is better than ”Liqin” based on our previous estimation method. It is

important to note that matches are not distinguished in the pairwise comparison

matrix. A match in Round 16 and another match in the final have the same effect

unlike in the world championship.

3.2.2 Unexpected Result

In our 54 × 54 incomplete pairwise comparison matrix, one can observe in Table

(A.1)–(A.4) that the data values (Number of wins/number of matches) are very

sparse. For our calculations, we have used different re-scalings for many values in it.
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In the paper [5,40], there were few modifications in their data based on the correction

methods in comparison to our data. Moreover, the transformations method [4] were

not applicable in our paper as the maximum number of matches in our data was

not far from the other values.

We have also tried to see other numerical calculations by ignoring the players

with degree one using the re-scalings in Section 3.2.1. These methods produced a

substantial change of orders in our rankings.

In our 54×54 corresponding graph 3.1, player 23 is connected to player 33, while

player 33 is connected to players 54 (and 23). For instance, using D-LLSM, player

23 is 3 times better than player 33, and player 33 is 3 times better than player 54.

Since this subset of comparisons forms a tree (the path 54−33−23), all these ratios

will be estimated perfectly:

3× 0.000000029959154 (54’s weight) = 0.000000089877462 (33 ’s weight);

3× 0.000000089877462 (33 ’s weight) = 0.000000269632386 (23 ’s weight).

So, 9× 0.000000029959154 (54’s weight) = 0.000000269632386 (23’s weight).

This is a kind of drawback of the method. Player 23 is probably not 9 times

better than player 54. The result is undoubtedly sensitive to the elements along the

path. If both of them were 4, then player 23 would be 16 times better than player

54. It is also noted that longer paths would result in even larger differences. For

example, a 4-path will end up with a multiplier 34 = 81 (if every value is 3). In this

case, the multipliers 34 cause the huge differences.

It seems that the method implicitly requires a kind of balance in the graph, not

just connectedness. Very long paths may cause bias in the final result. For example,

although the graph is connected, but some nodes are connected to each other by

one path only. Thus, from our data analysis and results, our recommendation will

be: eliminating the nodes with degree 1 such as 45, 43, (26), 42, 23, (33), 16 and 9.

Connectivity will not be lost. Another recommendation is the modification of the

scale. That means, 3 times better can be too large to express the difference.

In general, from our point of view for ranking problems, a small subset of the

comparisons may lead to a very different rankings.
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Chapter 4

Conclusion

The connectedness of an associated graph in Theorems 1.2.3 and 1.2.5 is a necessary

and sufficient condition for the optimal completion of a given incomplete pairwise

comparison matrix.

Since the eigenvalue minimization problem can be transformed into convex prob-

lem (strictly convex in the case of connected graph), the global convergence of

the algorithms (cyclic coordinates method, Newton’s method, and gradient descent

method) is guaranteed. However, the choice of step size γ still affects the stability

of the algorithms. The future research can be the choice of step size γ for Gradient

Descent and Newton’s methods, and comparative analysis of the algorithms.

In the case of ranking, incomplete pairwise comparison matrices can be applied

to give response for the questions: ’Who is the best player ever?’ and ’What is the

rank of players for any length of time?’ from the given historical data. Different

kinds of correction and transformation methods can modify the original data in order

to form unbiasedness among the pairs. Further, the sparsity of pairwise comparison

matrix perturbs the rankings by applying results from correction methods.

Having had several numerical calculations with table tennis results, we have real-

ized that a small subset of comparisons may lead to an extremely different rankings.

The future research could be the impact of the degrees of vertices for ranking top

table tennis players.
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[5] S. Bozóki, L. Csató, J. Temesi, An application of incomplete pairwise compari-

son matrices for ranking top tennis players European Journal of Operational

Research 248(1) (2016) 211-218.
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Appendix A

A.1 Harker’s Formulas

The following Harker’s [21] formulas are related to Chapter 2. Harker’s formulas for

the derivatives of the Perron eigenvalue are given as follows [1, 21]. Let A denote a

pairwise comparison matrix, and let x = x(A) denote the left Perron eigenvectors,

y = y(A) denote its right Perron eigenvector and λmax = λmax(A) its Perron eigen-

value, so Ax = λmaxx and yTA = λmaxy
T . The normalization for the eigenvectors

in this case is yTx = 1. Let Q = λmaxI − A. Also let Q+ denote the pseudoin-

verse of Q, with properties: QQ+Q = Q, Q+QQ+ = Q+, Q+Q = QQ+. Further,

∂αij represents differentiation with respect to the entry in position (i, j) in A, and

similarly ∂αkl represents differentiation with respect to the entry in position (k, l).

Applying these notations, the formulas are given as follows:

• Harkers formula for the first derivative ∂λmax(x)
∂x

:

(
∂λmax
∂ij
‖i > j

)
=

(
[yixj]−

[yjxi]

[αij]2

)
where vectors x = x(A), y = y(A) are the right-hand side and left-hand side

eigenvectors of A, respectively.

• Harker’s formula for the second derivative (when i 6= k or j 6= l):

∂2λmax
∂ij∂kl

= (xyT )liQ
+
jk + (xyT )jkQ

+
li
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−
(xyT )kiQ

+
jl + (xyT )jlQ

+
ki

[αkl]2

−
(xyT )ljQ

+
ik + (xyT )ikQ

+
lj

[αij]2

−
(xyT )klQ

+
il + (xyT )ilQ

+
kj

[αij]2[αkl]2
.

• Harker’s formula for the second derivative (when i 6= k or j 6= l):

∂2λmax
∂ij∂kl

=
2(xyT )ij

[αij]3
+ 2(xyT )jiQ

+
ii

−2
(xyT )iiQ

+
jj + (xyT )jjQ

+
ii

[αij]2

+2
(xyT )ijQ

+
ij

[αij]4

A.2 Pairwise Comparisons: Number of wins per

number of matches

There are four tables in this section which are a partition of 54 × 54 incomplete

matrix whose values represent Number of wins per number of matches. These are

related to Chapter 3.
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A.3 ITTF World Ranking Basic Description

This section is related to Chapter 3. It is also available online [27].

1. BASIC PRINCIPLES

1.1. For each match, the winner gains a certain number of points whilst, at the

same time, points are deducted from the rating of the loser. The number of

points won or lost depends on the relative strength of the two players involved.

1.2. Points are added or deducted in accordance with the Rating points table.

”Expected results” are those of matches where the winner had a higher rating

than the loser. ”Unexpected results” are those of matches where the winner

had a lower rating than the loser.

1.3. Wins and losses against unrated players give no points to the winner and

loser.

1.4. It has to be noted that these calculations are carried out only on the basis

of the rating points, without taking into account the Bonus Points.

1.5. The rating points are calculated in bulk and not after each match.

2. WEIGHTINGS

2.1. Depending on the event, the basic points gained for each win are increased

by multiplying them by a weighting factor.

2.2. The ITTFs Competition Department has classified all the events consid-

ered for Ratings into tiers. There are three (3) tiers of events, each with a

specific weight ranging from the normal rate of 1, or 1.5 (points are multiplied

by a factor of 1.5) or 2 (points are multiplied by a factor of 2).

2.3. Weightings for losses are all calculated at half of the winners points.

2.4. Values in the Rating points table are rounded so as to avoid fractions.

3. BONUS POINTS

3.1. Bonus Points are generally awarded on the basis of the final positions in

knockout singles events. However, in competitions where alternative formats

(to knockout) are used, up to 20 players may be given bonus points. Addition-

ally, in the same way as for 3rd place (see table in Bonus Points are awarded

whenever possible when other matches for intermediate positions are played.
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3.2. The number of Bonus Points awarded is related to the event. These Bonus

Points remain valid for a period of 12 months only from the date of each Bonus

point earned.

3.3. Bonus Points are not awarded for Team events, U21 events, Qualifying

events or Ranking (Consolation) events except as listed in 3.4.

3.4. Last two (2) qualification rounds of the Mens and Womens Singles at the

ITTF World Tour Platinum events and at the ITTF World Tour events with

K.O. playing system (see table in [27]).

4. FIRST RANKING

4.1 A player enters the ranking list with a 1st Rating only when he/she has at

least 4 significant wins against already ranked players.

4.2 The 1st Rating is calculated as follows

4.2.1 As soon as a player has 4 significant wins, he/she will get a Rating equal

to the Rating of his/her best win less 10 points.

4.2.2 The 4 significant wins are valid from the entire database of matches over

the past 4 years.

4.2.3 All losses within the previous 12 rating periods (from the date of the 4th

win) would then be taken into consideration and points deducted based on the

normal exchange points table for each event played.

4.2.4 The 1st Rating is then equal to the rating of the highest win, less 10

points, less points deducted for losses over the previous 12 periods.

4.2.5 If a player has 4 wins and no losses, then the 1st Rating is equal to

his/her best win less 10 points.

4.2.6 The 1st Rating can never exceed the best win less 10 points.

4.2.7 The lowest 1st Rating can never be less than 200 points, regardless of

the number of points lost in the calculation.

4.2.8 Bonus points are added as usual. Markers for ratings yellow shade Yellow

background means that this is the ranking list on which the player appears for

the first time with the first rating.

5. DELETED PLAYERS
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5.1 Players who have no recorded international results for more than four

(4) months are marked with grey shades and they appear on a separate list

but their ranking points are used for seeding purposes, but not for selections,

qualifications and invitations for specific tournaments.

5.2 Players who do not have any recorded international results (ITTF Events,

ITTF Recognized Events or ITTF Approved Events) for more than eight (8)

months are excluded from the published ranking lists. However such players

will retain their rating points until they become active again, meaning that in

the interim, they still have rating points, and these points could still be used

for seeding purposes at non ITTF events.

5.3 4 years after the last appearance on the ITTF ranking list, the players

ranking points will be completely deleted, and if the player becomes active

again, this player will be treated as a new player and subject to first rating

procedures.
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