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Abstract

We will introduce Heegaard decompositions and Heegaard diagrams for three-manifolds
and for three-manifolds containing a knot. We define (1,1)-knots and explain the method to
obtain the Heegaard diagram for some special (1,1)-knots, and prove that torus knots and 2-
bridge knots are (1,1)-knots. We also define the knot Floer chain complex by using the theory
of holomorphic disks and their moduli space, and give more explanation on the chain complex
of genus-1 Heegaard diagram. Finally, we compute the knot Floer homology groups of the
trefoil knot and the (-3,4)-torus knot.

1 Introduction

Knot Floer homology is a knot invariant defined by P. Ozsváth and
Z. Szabó in [6], using methods of Heegaard diagrams and moduli
theory of holomorphic discs, combined with homology theory.

Given a closed, connected, oriented three manifold Y , the Heegaard
decomposition of Y is a decomposition into two handlebodies U0, U1

such that ∂U0 = −∂U1 = Σ and Y = U0 ∪Σ U1. The decomposi-
tion is determined by specifying a connnected, closed, oriented two-
manifold Σ of genus g and two collections of curves {α1, ..., αg},
{β1, ..., βg}.
In the second section we will give the definition of a (1,1)-knot, de-
scribe how to get Heegaard diagram for (1,1)-knots using method
from [3], and give parametrization for (1,1)-knots. Later, we will
prove that torus knots are (1,1)-knots, and define another kind of
knots called 2-bridge knots, and prove that they are (1,1)-knots.

Then we will use the Heegaard diagram to define the chain com-
plex and the differential map. The differential relies on counting
holomorphic disks in the symmetric product Symg(Σ). After these
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definition we will compute the homology of the trefoil knot and (-
3,4)-torus knot.

2 Heegaard Decomposition

Definition 2.1. Equip Y with a self indexing Morse function f : Y →
[0, 3] with one minimum and one maximum, and let Σ = f−1(3

2)

be a genus g surface. Then f induces a Heegaard decomposition
Y = U0 ∪Σ U1 along Σ = ∂U0 = −∂U1, where U0 = f−1[0, 3/2]

and U1 = f−1[3/2, 3]. There are two sets of attaching circles α =

{α1, ..., αg} and β = {β1, ..., βg}, which are intersections of the de-
scending manifold of index 2 critical points and ascending manifold
of index 1 critical points with Σ. The triple (Σ,α,β) is called a
Heegaard diagram.

U0 can be obtained by attaching 2-handles to Σ along the α curves
and then attaching a 3-handle, U1 can be obtained by attaching 2-
handles to Σ along the β curves and then attaching a 3-handle. The
attaching curves are not unique for the decomposition, we have the
following operation.
Definition 2.2. Let (Σ,α,β) and (Σ′,α′,β′) be two Heegaard dia-
grams for the three-manifold Y. We say they are isotopic if there are
one-parameter families αt and βt of g-tuples of curves, connect-
ing the two pairs of curves, moving by isotopies so that for each t,
both the αt, βt are g-tuple of smoothly embedded, pairwise disjoint
curves.
Definition 2.3. Assume γ1 and γ2 are two curves on a genus-g sur-
face. The curve γ′1 is a handleslide of γ1 over γ2, if γ′1 is obtained by
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the following process: choose two points on γ1 and γ2, connect them
by a curve, open γ1 and γ2 along the two chosen points and turn
the curve connecting them into two curves, these two curves connect
the end points of the opened γ1 and γ2 , so all these curve become
one curve. We move this curve a little on the surface and get a new
curve which does not intersect γ1 and γ2. The resulting curve is γ′1,
as shown in Figure 2.

We say that (Σ′,α′,β′) is obtained by handleslide on (Σ,α,β) if
Σ′ = Σ and α′, β′ is obtained by handleslide from α, β.

Figure 1: Example of a handleslide

Definition 2.4. (Σ′,α′,β′) is called the stablization of (Σ,α,β), if

• Σ′ = Σ#E where E is the 2-torus;

• α′ = α∪{αg+1} and β′ = β∪{βg+1} where αg+1 and βg+1 are
two curves in E which meet tranversely in a single point on the
torus.

Conversely, we say (Σ,α,β) is obtained from (Σ′,α′,β′) by destabliza-
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tion.

We have the following result (from [8, 9]):
Proposition 2.5. Any two Heegaard diagrams (Σ,α,β) and (Σ′,α′,β′)

specifying the same three-manifold Y are isotopic after a finite se-
quence of isotopies, handleslides, stabilizations and destabilizations.

The proof can be found in [5, Chapter 2].

We would like to add a point z ∈ Σ−α1− ...−αg−β1− ...−βg on
the torus and set it as a base point for the diagram, in need to count
holomorphic disks later.

Definition 2.6. (Σ,α,β, z) is called a pointed Heegaard diagram
with a point z on the Heegaard surface without intersecting the α-
curves and β-curves. During the isotopy, stablization and destabliza-
tion operations, the curves do not intersect the point z.

The knot complement Y − nd(K) for a knot K ⊂ Y can also be
represented by a Heegaard diagram

(Σ, α1, ..., αg, β1, ..., βg−1).

Assume now that µ is a curve on Σ which is disjoint from β0 =

{β1, ..., βg−1} representing the meridian of the knot in Y , so (Σ,α, {µ}∪
β0) is a Heegaard diagram of Y . Let m ∈ µ ∩ (Σ − α1 − ... − αg)
and let δ be an arc that meets µ transversely in m, which is disjoint
from all α and β0. Let z be the initial point of δ and w be the final
point of δ, as shown in Figure 2.
Definition 2.7. (Σ,α,β, z, w) is called a doubly pointed Heegaard
diagram.

To reconstruct the knot, we connect z to w without intersecting the
α-curves and push it into the first handlebody, and connect z to w
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Figure 2: Doubly-pointed diagram

without intersecting β curves and push it into the second handlebody.
These two curves form the knot.

For the rest of this paper, the doubly pointed Heegaard diagrams only
correspond to the knot in S3.
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3 (1,1)-knots

In this section we discuss (1,1)-knots, including their definition, a
method to get Heegaard diagrams for such knots and their parame-
terization. We will also introduce some specific kinds of (1,1)-knots,
for example torus knots and 2-bridge knots.

Definition 3.1. A arc in the solid torus is a trivially embedded arc if
there is an embedded disk in the solid torus such that one part of the
boundary of the disk is the arc, and the rest of the boundary is on the
boundary of the solid torus.

Definition 3.2. A knotK is said to be a (1,1)-knot if there is a genus-
1 Heegaard splitting S3 = H1 ∪T2 H2 of S3 such that K ∩ Hi is a
single trivially embedded arc.

The knot Floer homology of these knots is calculated in [6, 3]. By
following the method in [3, Figure 1] we can obtain the Heegaard
diagram for such knots. We use the (-3,4)-torus knot as an example
to illustrate this method.

Figures 3 show the construction process. As Figure 3(b) shows, the
knot intersects the torus at two points, which separate the knot into
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Figure 3: The process to get the Heegaard diagram for (-3,4)-torus knot

two parts, one part is inside the torus, and it is not hard to see it
is a trivial arc, another part is outside the torus. Then we need to
move the outer part to form the shape of the knot. As Figure 3(c)
shows, we start with a trivial arc attached to the torus, and with a
longitude curve on the torus. The reason we add this longitude curve
is because by following the perturbation the longitude curve is also
moved on the torus. Without touching the arc it form a contour of
the arc, we can project the arc onto the torus inside the perturbed
longitude curve. From (d) to (e) we get the perturbed longitude curve
corresponding to the outer part of the (-3,4)-torus knot, we call it the
β-curve.
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Figure 4: Heegaard diagram for (-3,4)-torus knot

Figure 3 gives the doubly pointed Heegaard diagram for the knot.
If we cut along the α curve, we get the tubular representation of the
diagram. If we choose γ curve connecting the left and right boundary
of the tube below one part of the β curve, as shown in the figure 3,
we cut along γ, we get a plane Heegaard diagram for (-3,4)-torus
knot, as shown in Figure 3.

Definition 3.3. In [7] Rasmussen gave a parametrization for such a
diagram with four non-negative integers p, q, r and s. The number p
is the total number of intersection points of α with β, q is the number
of strands in each ”rainbow,” r is the number of strands running
from below the left-hand rainbow to above the right-hand one, and
”s” is the ”twist parameter”: if we label the intersection points on
either side of the diagram starting from the top, then the i-th point
on the right-hand side is identified with the (i + s)-th point on the
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Figure 5: Tubular Heegaard diagram for (-3,4)-torus knot

left-hand side.

For example, for the (-3,4)-torus knot we have (p, q, r, s) = (5, 1, 1, 1).
Conversely, suppose we are given p, q, r, s > 0 satisfying 2q+ r 6 p

and s < p, and with the property that the resulting curve α has in-
tersection number 1 with β. We can construct the Heegaard diagram
according to the number of strands in the rainbow and outside the
rainbow. To recover the knot, we add z and w inside the two bigons,
and attach the opposite sides of the rectangle with the points attached
according to the twist parameter, giving us a torus diagram. Then we
connect z to w without intersecting the α curves and perturb it inside
the torus, and connect z to w without intersecting β curves. These
two curves form the knot.

(1,1)-knots form a wide and important class in knot theory; for ex-
ample:
Theorem 3.4. Torus knots are (1,1)-knots.

Proof. For each torus knot choose two points in the knot which sepa-
rate the knot into two parts. We can perturb one of these parts inside
the torus, and perturb the other part outside the torus. If we consider
this process in S3 = H1 ∪T 2 H2 where T 2 is the torus, then each part
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Figure 6: Plane Heegaard diagram for (-3,4)-torus knot

of the knot is trivially embedded into the handlebody hence the torus
knot is a (1,1)-knot.

We apply the method of the proof for the left-handed trefoil knot on
the torus and get the Heegaard diagram for it, as shown in Figures 3.

Another source of (1,1)-knots is provided by 2-bridge knots. We will
need the following definition.
Definition 3.5. Assume Σ is a genus-g surface in S3. We say that
the knot K in S3 is in n-bridge position with respect to the surface
Σ if K intersects the closure of each component of S3 \ Σ in n triv-
ially embedded arcs. The genus-g bridge number of K, denoted by
bg(K), is the smallest integer n for whichK can be in n-bridge posi-
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Figure 7: The process to get the Heegaard diagram for left-handed trefoil knot
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tion with respect to Σ. When the genus of Σ is 0, we call the number
b0(K) the bridge number of the knot.

Definition 3.6. 2-bridge knots are the knots with bridge number 2.

Theorem 3.7. 2-bridge knots are (1,1)-knots.

Proof. Assume K is a 2-bridge knot. We can find a sphere S2 em-
bedded in S3, such that K can be put in a position which intersect
the inner and outer part of S2 in two arcs, the boundary points of the
arcs are on the sphere. We choose one arc inside S2, delete a tubu-
lar neighbourhood of it, then the inner part of S2 become a genus-1
handlebody, the boundary of the handlebody is a torus T 2, and there
is only one arc inside the torus and one arc outside the torus. Since
1 is the smallest number that the knot can intersect the components
of S3 \ T 2, we see that the genus-1 bridge number of K is 1, hence
K is a (1,1)-knot.

Figure 3 gives an application of this proof for the trefoil knot. The
blue curve is inside the sphere, the green curve is outside the sphere,
the red tube is the tubular neighbourhood of one inner arc. After
taking out the tubular neighbourhood, we get a torus intersecting the
knot in one arc inside and one arc outside.

Besides torus knots and 2-bridge knots, there are other (1,1)-knots.
For example, the (2,m, n)-pretzel knots (as shown by Figure 3) are
such knots.
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Figure 8: Proof for left-handed trefoil knot is (1,1)-knot

Figure 9: The (2,-3,-7)-pretzel knot.
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4 Holomorphic disks and knot Floer chain complex

Having the doubly pointed Heegaard diagram (Σ,α,β, z, w) for a
knot K ⊂ Y , we construct the symmetric product space Symg(Σ) =

Σ× ...×Σ/Sn and the two subspaces Tα = α1× ...×αg ⊂ Symg(Σ)

and Tβ = β1 × ... × βg ⊂ Symg(Σ). Next we define almost com-
plex structures and almost complex manifolds. Then we prove that
Symg(Σ) is a manifold, and we will study the holomorphic disks
inside Symg(Σ) connecting two points x and y such that x,y ∈
Tα ∩ Tβ.

Definition 4.1. Let M be a smooth manifold. An almost complex
structure J on M is a linear complex structure on each tangent space
of the manifold, that is, it is a map J : TM → TM on the tangent
bundle of M satisfying J2 = −1.

An almost complex structure on Σ induces an almost complex struc-
ture on Symg(Σ). Every 2-dimensional surface (in particular, every
Heegaard surface) admits a complex structure and can be turned into
a Riemann surface, in which every point has a neighbourhood home-
omorphic C.
Proposition 4.2. Symg(Σ) is a manifold.

Proof. Choose a point x = {x1, ..., xg} ∈ Symg(Σ). Each point xi is
on Σ, and since Σ is a complex manifold, we can find a neighbour-
hood Ui of it so that xi ∈ Ui ⊂ Σ and Ui is homeomorphic to C. So
we could take xi’s as points in C, and these g points corresponds to a
polynomial in C[z] which is f (z) = (z−x1)···(z−xg). After expan-
sion we get f (z) = zg+ag−1z

g−1+···+a1z+a0, and (a0, a1, ···, ag−1)
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is a point in Cg. Furthermore, for any point (b0, ..., bg−1) ∈ Cg the
polynomial g(z) = zg + bg−1z

g−1 + · · · + b1z + b0 can be factorized
in C as g(z) = (z − y1) · · · (z − yg), and {y1, ..., yg} can be taken as
a point in U1 × U2 × · · · × Ug/Sg. So there is a bijection between
(U1 × · · · × Ug)/Sg and Cg. This map is also continuous, hence it is
a homeomorphism, implying that Symg(Σ) is a manifold.

Definition 4.3. Consider the unit disk D in C, and let e1 ⊂ ∂D de-
note the arc where Re(z) > 0, and e2 ⊂ ∂D denote the arc where
Re(z) 6 0. Futhermore, let x,y ∈ Tα ∩ Tβ. Then we denote by
π2(x,y) the set of homotopy classes of maps

{u : D→ Symg(Σ)|u(−i) = x, u(i) = y, u(e1) ⊂ Tα, u(e2) ⊂ Tβ}

An element of this set is called a Whitney disks connecting x to y.

There is a splicing action between two different Whitney disks, de-
fined as follows. Let φ1 be a Whitney disk connecting x and y, and
φ2 be a Whitney disk connecting y to z. We can ”splice” them to
be a Whitney disk connecting x to z. This operation gives a general
splicing operation

∗ : π2(x,y)× π2(y, z)→ π2(x, z).

For the given basepoint z ∈ Σ − α1 − ... − αg − β1 − ... − βg, we
define the algebraic intersection number

nz = #u−1({z} × Symg−1(Σ))

for the Whitney disk. If we consider complex structure for Symg(Σ),
we can define pseudo-holomorphic representatives for φ which is a
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map umapping from D to Symg(Σ) satisfying the non-linear Cauchy-
Riemann equation for a family of almost complex structure J =

(Js)s∈[0,1].

Definition 4.4. Let D = [0, 1] × iR ⊂ C be the strip in the complex
plane, and Js be a path of almost complex structures on Symg(Σ).
We defineMJs(x,y) to be the moduli space of pseudo-holomorphic
curves satisfying the following conditions:

MJs(x,y) = {u : D→ Symg(Σ)| u({1}×R) ⊂ Tα, u({0}×R) ⊂ Tβ,

lim
t→−∞

u(s + it) = x, lim
t→+∞

u(s + it) = y,
du

ds
+ J(s)

du

dt
= 0}

The equation included is the Cauchy-Riemann equation. Given an
element φ ∈ π2(x,y), we define the spaceMJs(φ) as the subset of
MJs(x,y) consisting those holomorphic maps that are homotopic to
φ. There is a translation action Ta on D for any a ∈ R such that
T : D→ D and Ta(s + it) = s + i(t + a). This induces an R action
on MJs(φ). By taking the quotient of this R-action, we get a new
space M̂Js(φ) =

MJs(φ)

R .

From the analytic theory of holomorphic disks described in [5, Chap-
ter 3] we know that there is a energy bound for holomorphic disks
and we can use the compactification theorem for holomorphic curves
proved by Gromov in [4] to show that M̂Js(φ) admits a geometric
compactification. In some cases this argument also shows that (for
suitable choices of φ) the space M̂Js(φ) itself is compact.

There is a quantity µ(φ) associated to φ, called the Maslov index
(see [2]). For a generic complex structure, it equals the dimension of
the moduli spaceMJs(φ). Since M̂Js(φ) is obtained by taking the
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quotient ofMJs(φ) by R, its dimension is µ(φ)−1. When µ(φ) = 1,
the dimension of M̂Js(φ) is 0, and since this space is also compact,
we get that M̂Js(φ) consists of a finite number of points.

Definition 4.5. A chain complex is a sequence of abelian groups An

with homomorphisms ∂n connecting them,

· · · −→ An
∂n−→ An−1

∂n−1−→ · · · ∂2−→ A1
∂1−→ A0

∂0−→ 0

satisfying ∂n−1 ◦ ∂n = 0. From ∂n−1 ◦ ∂n = 0 we know that Im ∂n ⊂
Ker ∂n−1. By taking the quotient group Hn = Ker ∂n/Im ∂n+1, we
get the n-th homology group of the chain complex.

Definition 4.6. Let (Σ,α,β, z, w) be a doubly pointed Heegaard di-
agram for (S3, K). We define CFK∞(Σ,α,β, z, w) to be the free
module over the ring Z[U,U−1] generated by the intersection points
of Tα ∩ Tβ. The differential is defined as:

∂∞x =
∑

y∈Tα∩Tβ

∑
{φ∈π2(x,y)|µ(φ)=1}

#M̂(φ)Unw(φ) · y.

We equip the chain complex CFK∞(Σ,α,β, z, w) with a filtartion
A where the filtration difference of two intersection points x and y

is given
A(x)− A(y) = nz(φ)− nw(φ)

for a domain φ ∈ π2(x,y). We normalize the filtration by requiring
that

#{x|A(x) = i} ≡ #{x|A(x) = −i}( mod 2)

for every i ∈ Z. Multiplication by U lowers the filtration level by
1. In this way we get a filtered chain complex, which can also be
written as CFK∞(S3, K).
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An important consequence of the geometric compactification of the
moduli space is the following statement.
Theorem 4.7. For a knot K in S3 with doubly-pointed Heegaard di-
agram (Σ,α,β, z, w) and chain complex CFK∞(Σ,α,β, z, w) and
∂∞, the differential satisfies (∂∞)2 = 0.

Theorem 4.8. The filtered chain complex CFK∞(S3, K) is a topo-
logical invariant of the knot K; i.e. for different doubly pointed
Heegaard diagrams corresponding to the same knotK in S3, the two
filtered chain complexes are (filtered) chain homotopy equivalent.

The proof can be found in paper [6], we will omit it here. We will
prove (∂∞)2 = 0 for genus-1 Heegaard diagram in the next chapter.

Definition 4.9. We define the sub-complex CFK−(S3, K) as the
Z2[U ]-subcomplex of CFK∞(S3, K) generated by the intersection
points of Tα ∩ Tβ. Therefore CFK−(S3, K) is a finitely gener-
ated filtered chain complex over Z2[U ]. The boundary map ∂− on
CFK−(S3, K) is simply the restriction of ∂∞; in detail:

∂−x =
∑

y∈Tα∩Tβ

∑
{φ∈π2(x,y)|µ(φ)=1}

#M̂(φ)Unw(φ) · y.

Definition 4.10. We define

CFK+(S3, K) = CFK∞(S3, K)/CFK−(S3, K).

It is a quotient complex of CFK∞(S3, K). We define

ĈFK(S3, K) = CFK−(S3, K)/U · CFK−(S3, K)

as the quotient complex of CFK−(S3, K).
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The homology of the associated graded object to CFK−(S3, K),
that is, the same module equipped with the differential

∂−Kx =
∑

y∈Tα∩Tβ

∑
{φ∈π2(x,y)|µ(φ)=1,nz(φ)=0}

#M̂(φ)Unw(φ) · y.

which respects the Alexander filtration, provides, through taking ho-
mology, the invariant the knot Floer homology group of K:

HFK−(S3, K) = H∗(CFK
−(S3, K), ∂−K).

Considering the differential ∂−K induces on the quotinet complex
ĈFK(S3, K) we get

∂̂Kx =
∑

y∈Tα∩Tβ

∑
{φ∈π2(x,y)|µ(φ)=1,nz(φ)=nw(φ)=0}

#M̂(φ) · y.

The corresponding homology is denoted by ĤFK(S3, K).

Obviously there exist exact sequences relating these chain complexes.
The natural short exact sequences of chain complexes below induce
long exact sequences on their homologies.

0 −→ CFK−
i−→ CFK∞ −→ CFK+ −→ 0

0 −→ ĈFK
i−→ CFK+ U−→ CFK+ −→ 0,

here i is the inclusion map.

Following Theorem 4.8, we get the corollary below.
Corollary 4.11. The knot homology groupsHFK+(S3, K), ĤFK(S3, K)

and HFK−(S3, K) are topological invariants for the knot K ⊂ S3,
meaning that for two knots K1 and K2 in S3, if any of these three
groups corresponding to the two knots are different, then the knot
K1 is not equivalent to K2.
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5 Genus-1 Heegaard diagram and the chain complex

In this section we will focus on applying the concepts of the previous
section to a genus-1 doubly pointed Heegaard diagram for a knot K.
In this case, Σ = T is the torus, Symg(Σ) = T , α = {α1} and
β = {β1}, Tα = α1 and Tβ = β1. The chain group CFK∞(S3, K)

is generated by points from Tα ∩ Tβ = α1 ∩ β1.

If we choose two points x,y from Tα ∩ Tβ = α1 ∩ β1, we claim:

Theorem 5.1. For Heegaard diagram on torus T , the holomorphic
disks connecting x and y are the bigons on T connecting x and y
with boundary on the α1 and β1 curve. For each bigon φ ∈ π2(x,y),
M̂(φ) = {pt}.
Before the proof, we give a lemma which is needed.

Lemma 5.2. The Möbius transformations preserving the unit disk D
in C are precisely those of the form

T (z) = λ
z − a
āz − 1

,

where |λ| = 1 and |a| < 1. Denote the set of Möbius transformations
of this form by A = Aut(D).

Proof of Theorem 5.1. We consider the universal cover of T , which
is the complex plane C with the covering map π : C −→ T . The
lift of α1 and β1 are π−1(α1) and π−1(β1), they are embedded sub-
manifold of C and each of them is homeomorphic to R × Z. The
bigons in T are lifted to bigons in C, for one bigon B ⊂ T , its lift
π−1(B) contains infinitely many bigons in C. Since each bigon is a
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simply connected subset in the complex plane, according to the Rie-
mann mapping theorem, for one bigon B̃ ⊂ π−1(B), we can find a
holomorphic map f : D −→ B̃, where D is a unit disk in the com-
plex plane. Combining this with the projection map we get a map
π ◦ f : D −→ B from the unit disk to the bigon in T , and it is also a
holomorphic map.

We have already proved that M̂(φ) is not empty. Now we want to
prove the second part, which says that up to an equivalence relation,
i.e. Möbius transformation, for a given bigon φ connecting x and y,
there is only one holomorphic disk in the moduli space of φ. Assume
the holomorphic map from unit disk D in the complex plane to φ is
u, then u induces a trivial map in the fundamental group, since D
is simply connected. According to the lifting criterion for covering
space, u can be lifted to a map ũ which maps D to one bigon φ̃ in C,
φ̃ ⊂ π−1(φ), and C is the universal cover of T . If there is another
holomorphic map v from D to φ, we can also lift it to ṽ which maps
D to φ̃. Since u and v are both bijective maps, they are actually
biholomorphic. Combining v−1 with uwe get g = v−1◦u : D −→ D,
and g(−i) = −i; g(i) = i. According to Lemma 5.2 and after some
computation we get that a Möbius map from D to D preserving i and
−i has the form

Ty(z) =
z − iy
1 + iy

,

where y can be any real number. This implies that u = v ◦ Ty.
From this we know any two holomorphic maps from D to φ differ
by a Möbius map with the above form, hence dimM(φ) = 1 and
dimM̂(φ) = 0, M̂(φ) = {pt}.

Now we know the differential map ∂∞ can be reduced to
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∂∞(x) =
∑

y∈Tα∩Tβ

∑
{φ∈π2(x,y)|µ(φ)=1}

Unw(φ)y.

We will discuss in detail about the property (∂∞)2 = 0 for the case
of genus-1 Heegaard diagram. To simplify matters, we notice that
we can assume that the diagram contains only two bigons: one con-
taining w and another one containing z. Indeed, if there is an empty
bigon (i.e. one without w or z) then isotoping the β-curve we can
easily eliminate it. Continuing in this manner, we reach the case
when we have two bigons.

Proposition 5.3. (∂∞)2 = 0.

Proof. We want to argue that for any x ∈ Tα∩Tβ, (∂∞)2(x) = 0. The
idea is that if we can find a bigonD1 connecting x and y, and a bigon
D2 connecting y and u, then we can find a point v ∈ Tα ∩ Tβ with a
bigon D′1 connecting x and v, and a bigon D′2 connecting v and u in
such a way thatD1+D2 = D′1+D′2. Therefore a is counted two times
in (∂∞)2(x), so it becomes zero. There are mainly three cases, we
will use ∂ to represent ∂∞ and omit to count multiplicities of z andw
in computation for convenience. (Indeed, since D1 +D2 = D′1 +D′2,
the two count give coinciding results.)

In the first case, there are four bigons, D1 = φ1 + φ2, D2 = φ3.
D1 connects x and y, D2 connects y and v, we find D′1 = φ1 + φ3

connecting x and u and D′2 = φ2 connecting u and v, see Figure 5.
So we do the computation:
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Figure 10: Case 1

∂x = u + y + · · ·
∂u = v + · · ·
∂v = 0 + · · ·
∂y = v + · · ·.

Thus, we get

∂2x = ∂(u + y) + · · · = 2v = 0 + · · ·.

For the second case, the bigon D1 = φ1 + φ3 + φ5 connect x to y,
D2 = φ2 +φ4 connect y to u. We can find D′1 = φ1 +φ2 +φ3 connect
x to t and D′2 = φ4 + φ5 connect t to u. So u appear twice in ∂2,
which equals zero.

∂x = y + t + · · ·
∂y = u + · · ·
∂t = u + · · ·.
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Figure 11: Case 2

It is not hard to verify ∂2 = 0.

For the third case, D1 = φ1 + φ2 connect x to y, D2 = φ3 connect y
to v, then D′1 = φ2 + φ3 connect x to u, D′2 = φ1 connect u to v. v
appears twice in ∂2x, so it equals zero. We have the computation:

∂x = y + u + · · ·
∂y = v + · · ·
∂v = 0 + · · ·
∂u = v + · · ·.

So that (∂∞)2 = 0.

Claim 5.4. ∂̂ = 0 for genus-1 doubly pointed Heegaard diagram.

Proof. As mentioned in the above proof, for any bigon which does
not contain w and z, we can isotope the curves to eliminate such
bigon, so the bigons which remain contain at least one of the base-
points. From the definition of ∂̂ we know it is equal to zero.
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Figure 12: Case 3

6 Some Computations

In this section we will define the Alexander grading and the Maslov
grading, and will compute knot Floer homology for the trefoil knot
and for the (-3,4)-torus knot with the doubly pointed Heegaard dia-
gram given above, following the method used in [6, Chapter 6] [3,
Chapter 3]. Since ∂− and ∂∞ gives the same computation, we will
write ∂− here representing the two differentials.

6.1 Alexander grading and Maslov grading

Definition 6.1. For a given intersection point x ∈ Tα ∩ Tβ, the
Alexander grading and Maslov grading are integers associated to
x. We denote them to be A(x) and M(x). For any points x,y ∈
Tα ∩ Tβ and φ ∈ π2(x,y), they satisfy the following formula:

M(x)−M(y) = µ(φ)− 2nw(φ) (1)
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A(x)− A(y) = nz(φ)− nw(φ) (2)

∑
x∈Tα∩Tβ

(−1)M(x)qA(x) = ∆K(q). (3)

In Equation (3) ∆K is the Alexander-Conway polynomial of the knot
K.

6.2 The trefoil knot

We have already obtained the doubly pointed Heegaard diagram for
the trefoil knot as show in Figure 3. Now we cut along the β-curve
and a meridian curve of the torus which does not intersect the α-
curve, and convert this diagram into a diagram on a square, as shown
in Figure 6.2.

So the α and β curves intersect at three points x1, x2, x3, and there
are two bigons φ and ψ, φ connects x2 and x3, ψ connects x2 and x1.
The boundary of these two bigons both have two parts, one part is
on the α curve, the other part is on β curve. There exist holomorphic
maps from D to φ and ψ. The bigon from x2 to x3 contains z, while
the bigon from x2 to x1 contains w. Therefore the differential ∂−

vanishes on x1 and x3 and ∂−x2 = x3 + Ux1. On the other hand,
since the Alexander gradings of x2 and x3 are different (but A(x2) =

A(Ux1)), for the differential ∂−K of the associated graded object we
have

∂−Kx2 = Ux1.
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Figure 13: Plane Heegaard diagram for trefoil knot
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CFK∞(S3, K) is generated by x1, x2, x3 over Z2[U ]. If we con-
sider ĈFK(S3, K), the generators are still x1, x2, x3 and the differ-
ential ∂̂ = 0. So they also form generators of ĤFK(S3, K). We get
ĤFK(S3, K) = Z3

2.

The homology HFK−(S3, K) for the trefoil knot K can be easily
computed:

HFK−(S3, K) = Z2[U ]⊕ Z2

where Z2[U ] is generated by x3 and Z2 = Z2[U ]/UZ2[U ] is generated
by x1 (and Ux1 is zero in homology, since it is the boundary of x2).

6.3 (-3,4)-torus knot

From Section 2 we have already obtained the Heegaard diagram for
the (-3,4)-torus knot. We construct its universal cover, as shown
below.

There is a holomorphic disk connecting x1 and x2 with one z point
inside, one holomorphic disk connecting x5 and x3 with two z point
inside, one disk connecting x5 and x2 with two w points inside, one
disk connecting x4 and x3 with one w points inside.

Using the earlier formulas for the gradings (1) and (2) we have:

30

C
E

U
eT

D
C

ol
le

ct
io

n



Figure 14: Universal cover for Heegaard diagram for trefoil knot

M(x1) = 6, A(x1) = 3,

M(x2) = 5, A(x2) = 2,

M(x3) = 2, A(x3) = 0,

M(x4) = 1, A(x4) = −2,

M(x5) = 0, A(x5) = −3.

It implies that

31

C
E

U
eT

D
C

ol
le

ct
io

n



∂−x1 = 0

∂−x2 = x1 + U 2x5

∂−x3 = Ux4 + x5

∂−x4 = 0

∂−x5 = 0

From this description the map ∂−K of the associated graded object can
be easily computed:

∂−Kx1 = 0

∂−Kx2 = U 2x5

∂−Kx3 = Ux4

∂−Kx4 = 0

∂−Kx5 = 0.

Therefore ĤFK(S3, K) for the (-3,4) torus knot K is isomorphic to
Z5

2, while HFK−(S3, K) is isomorphic to Z2[U ]⊕ Z3
2, where Z2[U ]

is generated by x1, one copy of Z2 is generated by x4 (and it can
be viewed as Z2[U ]/UZ2[U ]), and the two further copies of Z2 are
generated by x5 and Ux5 and as a Z2[U ]-module these two copies of
Z2 are equal to Z2[U ]/U 2Z2[U ].
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