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GAUSS-LUCAS THEOREM IN HYPERBOLIC GEOMETRY 3

Abstract. This paper is mainly on extending the results on geometry of com-

plex polynomials in Euclidean geometry to hyperbolic geometry. The aim of

this thesis is to investigate the Blaschke products, which mimic the polyno-

mials for Hyperbolic geometry and present results on finite Blaschke products

analogous to the Gauss-Lucas theorem.

1. Introduction

1.1. Motivation.

. Mathematics is conceived as a form of art among the pure mathematicians, be-

cause it is a way of expressing the ideas in a formal and structured manner which

mathematician learns through meditation of his/her mind. Considering this piece

of work with such a point of view, asking why a mathematical result is important

is as meaningless as asking why a painting or a song is important. Even though

we all have different tastes in life, in terms of art there is a common perception

of aesthetics. Thus, instead of importance, one should question what makes this

mathematical result beautiful? The main results that will be discussed in this paper

are known for decades for Euclidean geometry. These results uncovers the great

harmony between the roots and the critical points of the polynomials, more rigor-

ous statements of these results will be provided in the next sections. Observing the

similar scenario in non-Euclidean geometries is remarkable because in a way this

extends our understanding of geometry in general by providing some clues about

the hierarchy of the truths within the geometry.

. Apart from the pure mathematicians side of the story, there is also a scientific

motivation behind this work. Study of roots and critical points of polynomials
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4 OGUZHAN YURUK

doubtlessly play a great role in science. These do not merely help us with expending

our understanding of geometry but at some point these facts could come handy in

computations. For example, Gauss-Lucas theorem restricts the solution of critical

points to a convex hull formed by the roots. Moreover, Marden’s theorem tells

us the exact location of critical points when the roots are given and describes

the possible roots when critical points are given. Unfortunately this holds only for

cubic polynomials. These results indeed provides an ease of calculation, nonetheless

these hold only in Euclidean geometry. Considering that we are existing in a non-

Euclidean universe, one cannot stop himself to think about if similar results hold

for non-Euclidean geometries as well?

1.2. What do we know in Euclidean case and how to go further.

. Gauss-Lucas theorem is a well-known theorem in complex analysis. Throughout

the years many proofs of this theorem have been discovered by fellow mathemati-

cians. The theorem is as follows:

Theorem 1.1 (Gauss-Lucas). Let p(z) ∈ C[z] be a degree n polynomial with roots

z1, . . . zn. If we denote the convex hull of these points in the complex plane as H,

then for any critical point of p(z),i.e. w ∈ C such that p′(w) = 0, we have that

w ∈ H.

This result gives us a bounded area where the critical points can be. Furthermore

if we restrict ourselves to the degree three case, even more remarkable result exists:

Theorem 1.2 (Marden). Given a cubic polynomial p(z) with non-collinear roots

z1, z2, z3, there exists a unique ellipse E passing through the midpoints of the triangle

formed by z1, z2, z3. The focus points of E are exactly the critical points of p(z).
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GAUSS-LUCAS THEOREM IN HYPERBOLIC GEOMETRY 5

Figure 1. This figure both the Gauss-Lucas theorem for degree

3 and Marden’s theorem. Vertices of the triangle are representing

roots and the points in the triangle are critical points.

Even though it was not proven by Morris Marden first, the theorem is named

after him [8]. There are various proofs of this result, however in this work the

ideas given in [9] and [8] will have the priority. A reason for these choices is that

the ideas presented in these papers provide a good geometric intuition. Moreover

Northshield gives a complete picture of what is going on in the background of

Marden’s theorem while Kalman provides a neat elementary proof of the theorem

which can be followed by any reader with a basic notion of complex polynomials.

. In this work, we will pursue these results in the hyperbolic geometry. Of course

this raises serious questions; One way the visualization technique for hyperbolic

geometry is Poincaré’s disk model which models the whole hyperbolic geometry

with the unit disk. The roots and critical points of a given polynomial can be

outside of the unit disk. So we have to come up with a concept which will mimic

the polynomials in the hyperbolic case. This is where Blaschke products come

into play and [7] will come handy to understand this concept. In this survey, the

authors provide general facts about finite Blaschke products as well as some insight

in the geometry of their roots and critical points. They even provide a proof for the
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6 OGUZHAN YURUK

hyperbolic case of Gauss-Lucas Theorem in this survey. However in the provided

proof, some arguments are missing and some of them are just mentioned without

proof. One of the aims of this work will be to clarify and simplify some of the

arguments presented in [7] with implementing the Northshield’s ideas in [9] to the

hyperbolic geometry.

1.3. Outline.

. There will be two main aims of this thesis; the first one is to familiarize the reader

with the study of polynomial-like structures within other geometries. The other

one is to point out some of the analogous results in hyperbolic geometry that have

been known in Euclidean geometry for many years, namely Gauss-Lucas Theorem.

While the second will be the main focus point of this work, the first aim has to

be achieved at some level in order to actually achieve the second aim. However

further research can be done on other beautiful and useful results from Euclidean

geometry.

. In order to achieve these aims, the flow of topics will be as follows. The second

chapter will begin with a brief introduction to non-euclidean geometries. The main

aim is to give the idea of how non-euclidean geometry is discovered and progressed,

also a reader who is familiar with the idea of non-euclidean geometries may skip this

part. In the third chapter the Gauss-Lucas theorem will be stated and proved, a

proof inspired by [9] will be given. The main ideas behind the proof will come handy

in the next chapters. The chapter 4 will give us the technical background concerning

the hyperbolic geometry and Blaschke products, the required definitions and facts

will be provided in this chapter. Chapter 5 will be entirely on the hyperbolic version
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GAUSS-LUCAS THEOREM IN HYPERBOLIC GEOMETRY 7

of Gauss-Lucas’ theorem. Lastly the thesis will conclude with finishing remarks to

point out in what direction a further research could be pursued in this area.

2. A Brief Introduction to non-Euclidean Geometries

. Geometry is one of the oldest fields in mathematics. First axiomatic book that

we know in history, Euclid’s Elements is probably written around 300 B.C. For

centuries the system proposed by Euclid was presumed as geometry. As the study

of mathematics progressed into a better system, fellow mathematicians started to

question these axioms given by Euclid. Especially the fifth axiom was one of the

main questions of debate.

Fifth (Parallel) Postulate: If a straight-line falling across two

(other) straight-lines makes internal angles on the same side (of

itself) less than two right-angles, being produced to infinity, the

two (other) straight-lines meet on that side (of the original straight-

line) that the (internal angles) are less than two right-angles (and

do not meet on the other side)[4]

To make it more meaningful, the postulate can be rephrased as: If two line segments

intersect a third one such that the sum of the inner intersection angles is less than

180 degrees, then these two line segments intersect at the same side where the two

inner angles are taken.

. Some people tried to prove it using other axioms but in vain. Some mathemati-

cians worked on simplifying the axiom to make it more intuitive. The fifth axiom

is named as ”Parallel Axiom” even though it does not say anything about being

parallel. A well-known equivalent of this postulate, is given by the Scottish math-

ematician John Playfair and also named after him.
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8 OGUZHAN YURUK

Figure 2. Illustration of the fifth axiom.

Playfair’s Axiom: In a plane, given a line and a point not on it,

there is one and only one parallel line to the given line that can be

drawn through the point.[5]

Sometimes the statement of the axiom is given as there exists at most one parallel

line. However, it is possible to prove the uniqueness from the other axioms. As a

side note instead of existence of a parallel line to a given line, it would be a better

idea to say existence of a line that does not intersect the given line. Of course in

the Euclidean sense this coincides with the line being parallel.

. Another approach was to disprove the postulate. It did not took so long for people

to realize that it is possible to come up with a consistent system of geometry with-

out the fifth axiom. In [4] as Fitzpatrick explains, the original version of the fifth

axiom in a way is specifying that the surface that we study is actually flat. As it was

realized later when this constraint of flatness is removed there are other possible ge-

ometries that can be studied. Therefore it was wrong to consider Euclid’s proposed

system as the unique geometry, so it turned into one of the geometries named as
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GAUSS-LUCAS THEOREM IN HYPERBOLIC GEOMETRY 9

Euclidean geometry. János Bolyai, Nikolai Lobachevsky and Carl Friedrich Gauss

come up with a model where infinitely many parallel lines through a point to a

given line existed on a surface, which we know now as hyperbolic geometry. On

the other hand in Bernhard Riemann’s spherical geometry, no such parallel lines

exists on the surface. Later on with the application of these mathematical ideas to

science, non-euclidean geometries secured its academic popularity to this day.

3. Gauss-Lucas Theorem in Euclidean Geometry

. This chapter will be fully reserved for the Euclidean version of the Gauss-Lucas

theorem. This result is on complex polynomials, however well before complex anal-

ysis was discovered a similar statement was already found in real analysis.

Theorem 3.1 (Rolle). Given a real valued continuous function f : [a, b] −→ R

where a, b ∈ R are different real numbers and f is differentiable on (a, b); if f(a) =

f(b) = 0 then there exists c ∈ [a, b] such that f ′(c) = 0.

Considering a real valued polynomial f(x) with roots x1, . . . xn ∈ R, the above

theorem is implies that the critical points of f are between the maximal and minimal

root of f . In other words, in one dimensional space the critical points of the

polynomial in the convex hull of the roots since in this case the convex hull is just the

line segment between min
1≤i≤n

xi and max
1≤i≤n

xi. Gauss-Lucas’ theorem generalizes this

to the case of complex polynomials. Roots of a complex polynomial p(z) : C −→ C

are in the complex plane. In the generic case the roots do not lie on the same

line and produce a closed region that encloses the critical points. Let us state the

theorem here one more time for the ease of the reader and prove it using an idea

provided in [9].
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10 OGUZHAN YURUK

Theorem 3.2 (Gauss-Lucas Theorem for Euclidean Geometry). Let p(z) ∈ C[z]

be a degree n polynomial with roots z1, . . . zn. If we denote the convex hull of these

points in complex plane as H, then for any critical point of p(z),i.e. w ∈ C such

that p′(w) = 0, we have that w ∈ H

Let us first consider an easy example;

Example 3.3. Consider the polynomial with roots −1 + i, 1 + 3i,−i:

p(z) = (z + 1− i)(z − 1− 3i)(z + i)

Set z1 = −1 + i, z2 = 1 + 3i, z3 = −i. With an easy calculation we get

p′(z) = 3z2 − 6iz − 2i

Finally with a routine discriminant calculation we get the critical points as w1 =

i−
√
−1 + 2i

3 and w2 = i+
√
−1 + 2i

3 . It is not hard to see that these two points

are included in the convex hull of −1 + i, 1 + 3i and −i. Let us clarify this with a

figure.
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GAUSS-LUCAS THEOREM IN HYPERBOLIC GEOMETRY 11

Figure 3. z1, z2, z3 denotes the roots, w1, w2 denotes the critical

points and the gray triangle is the convex hull of z1, z2, z3.

. Before the actual proof of the theorem, we make few remarks about the proof that

has to be underlined. Northshield mentions[8] the main idea that we are going to

present, however he does not present a rigorous proof of why this works and how

this critical idea leads to the proof of Gauss-Lucas’ theorem. This will be presented

in a lemma before the actual proof. The proof of the theorem will cover only the

case of degree three polynomials, higher degree cases can be proven similarly. Case

of degree 1 is trivial. For degree two; let p(z) be a polynomial with two distinct

roots z1, z2.So,

p(z) = c(z − z1)(z − z2) = c(z2 − (z1 + z2)z + z1z2)

for some non-zero complex constant c. From here it is easy to find the zero of the

derivative:

p′(z) = c(2z − (z1 + z2)) = 0⇐⇒ z =
z1 + z2

2

The convex hull of z1 and z2 is the line segment between them and in this case, the

critical point lies in the midpoint of this line segment.
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12 OGUZHAN YURUK

Lemma 3.4. Let z1, z2, z3 be three complex numbers and H be their convex hull,

that is;

H = {n1z1 + n2z2 + n3z3 : ni ∈ [0, 1], n1 + n2 + n3 = 1}

Then for any u /∈ H there exists θ ∈ [0, π] such that eiθ(u−z1), eiθ(u−z2), eiθ(u−z3)

all have strictly positive real part.

Proof. Given a u /∈ H, define the function f(z) = u− z. Basically we want to find

a line passing through origin such that u − z1, u − z2, u − z3 are all on the same

side of the line. To follow with the proof let’s draw a basic figure where z1, z2, z3

denotes the three complex numbers.

Figure 4.

Note that f is a composition of translation and rotation, thus it is just a confor-

mal map from C to itself. This gives us that the image of H under f has to be a

convex set as well. Moreover the following holds for all z ∈ C;

z ∈ H ⇐⇒ f(z) ∈ f(H)
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GAUSS-LUCAS THEOREM IN HYPERBOLIC GEOMETRY 13

Thus we must have that f(u) = 0 /∈ f(H). Let’s denote f(z) = u − z = z′ for all

z ∈ C and use the Figure 4 to visualize f(H).

Figure 5. The arbi-

trary point u outside the

convex hull is chosen as

1 + 2i

Figure 6. u′, z′1, z
′
2, z
′
3

are the images of

u, z1, z2, z3 respectively

under f . The triangle

formed is f(H)

Now among z′1, z
′
2 and z′3, we will chose two points such that the difference of

their arguments is maximal,i.e. arg(z′i) − arg(z′j) is maximal. In order to do this,

first we have to know such a maximal choice exists but this is trivial. Second we

show that there is essentially one choice of difference of arguments exist. This

means if z′a, z
′
b and z′c, z

′
d are two different choices then arguments of z′a and z′b are

actually either equal to argument of z′c or z′d. Such a situation won’t interfere with

our future arguments in this proof. Let’s say that we found one such pair with

maximal difference z′a, z
′
b. We can parametrize the lines that contains origin in the

Euclidean plane with their argument angles θ ∈ [0, π). Let’s say that la with the

argument angle θa ∈ [0, π) is the line that contains z′a and similarly lb with the

argument angle θb ∈ [0, π) is the line that contains z′b.Without loss of generality

let’s say that θb < θa. These lines divide the plane into four parts, denoted as
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14 OGUZHAN YURUK

A,B,C,D in the figure. Now one of the points z′c or z′d has to be equal to either

Figure 7. The choice of zb and za following from Figure 6

z′a or z′b in our degree three case. But for the sake of higher degree cases let’s

assume that we are in the most generic case where z′c and z′d are different from

z′a,z′b. Let’s see in which region these two points can be. First of all observe that

none of them can be in the region D since otherwise zero would fall into the convex

hull. Similarly none of them can be in A or C since it would contradict |θa − θb|

being maximal.The argument difference between z′a and the a point in the region

C is higher than |θa − θb|, similar reasoning works for A and the point z′b as well.

This leaves the region B as the last option, however both z′c and z′d cannot be in the

region B otherwise we would |θc − θd| < |θa − θb| contradictory to |θc − θd| being

maximal. We had parameterized the lines containing zero with θ ∈ (0, π], among

these lines we can choose any with argument not in (θb, θa)

Let’s say we have chosen a line with argument θ explained as above. All that is

left to do is to rotate our picture with −θ degrees,i.e. multiply all z′1, z
′
2, z
′
3 with

ei(−θ). Thus for all i we have that ei(−θ)z′i = ei(−θ)(u− zi) has strictly positive real

part. �
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GAUSS-LUCAS THEOREM IN HYPERBOLIC GEOMETRY 15

Figure 8. Bold lines denote lb and la, dashed lines denote the

possible choices for our desired line.

Remark 3.5. Note that even though the proof and the lemma above is stated for

specific case of three points, it can be easily generalized using the same proof. So

in general we can say given n points z1, . . . , zn and their convex hull H, then for

any u /∈ H there exists a θ such that all eiθ(u− zi) has strictly positive real parts.

Remark 3.6. Note that in the above lemma u can be chosen as one of the zi with

losing the strictness of the positivity. In that case due to convexity the the roots

with maximal difference in their arguments, z′a and z′b, are simply where zi−1 and

zi+1 are mapped under f .

Proof of the Gauss-Lucas’ Theorem. Let p(z) = c(z− z1)(z− z2)(z− z3) be a com-

plex polynomial with non-collinear roots z1, z2, z3, where c is a complex constant.

Let H denote the convex hull of these roots. We want to see that the roots of p′(z)

are in H. First of all, let’s make an observation about the logarithmic derivative of
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16 OGUZHAN YURUK

p(z). (p′(z)
p(z)

)
=
(c(z − z1)(z − z2) + (z − z1)(z − z3) + (z − z1)(z − z2))

c(z − z1)(z − z2)(z − z3)

)
=
( 1

z − z1

)
+
( 1

z − z2

)
+
( 1

z − z3

)
=

z − z1
|z − z1|2

+
z − z2
|z − z2|2

+
z − z3
|z − z3|2

(3.1)

Let w be a critical point of p(z), thus we have p′(w) = 0 and Equation 3.1 reduces

to:

(3.2)
(p′(w)

p(w)

)
= 0

Now on the contrary to our statement if we assume that w /∈ H then Lemma 3.4

tells us that there exists θ such that eiθ(w − z1), eiθ(w − z2), eiθ(w − z3) all has

positive real part. Combining this with Equation 3.2 we get a contradiction:

0 =
(p′(w)

p(w)

)
eiθ

=
w − z1
|w − z1|2

eiθ +
w − z2
|w − z2|2

eiθ +
w − z3
|w − z3|2

eiθ

The right hand side of the equation surely has a modulus greater than zero due

to the positive real part while the left hand side is equal to zero. Therefore we

conclude that w is actually in H as we wanted. �

4. Preliminary Information on The Poincaré Disk Model and Finite

Blaschke Products

4.1. Poincaré Disk Model of Hyperbolic Geometry.

. This section will cover preliminary facts about hyperbolic geometry. Hyperbolic

geometry shares the same first four axioms with Euclidean geometry, that means

it is an absolute geometry like Euclidean geometry. Thus, Euclidean geometry and

hyperbolic geometry have many common properties.On the other hand they have
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GAUSS-LUCAS THEOREM IN HYPERBOLIC GEOMETRY 17

significant differences, due to the difference in the fifth axiom. In chapter two we

mentioned Playfair’s axiom, basically it is equivalent to the fifth axiom. In contrast

to Playfair’s axiom, in hyperbolic geometry the following is true.

In the hyperbolic plane, given a line l and a point P there exists

two distinct lines through the point P that does not intersect line

l.

It is hard work to visualize the hyperbolic plane in a Euclidean space. But through-

out the years several models were discovered. In this thesis, we will use one of the

methods introduced by Henri Poincaré, the Poincaré disk model. In this method,

hyperbolic plane is modeled as a small subset of the Euclidean plane. To be more

specific, this subset is the unit disk D = {(x, y) ∈ R2 : x2 + y2 < 1} = {z ∈ C :

|z| < 1}. Points in the disk are the points of the hyperbolic plane. Points in the

boundary of the unit disk, i.e. the points in the unit circle are not in the model.

However, they are named as ”ideal points”. As we change our point of view from

Euclidean geometry to hyperbolic geometry, the notion of distance will also change.

The ideal points’ distances to the origin will be infinity with this distance definition

and hence it helps intuitively to see the ideal points as the points in the infinity.

The actual formula of the distance won’t be useful for our purposes thus it will be

skipped. More information can be found in various text books, one of such is [1].

. The lines and line segments will be one of our main concern. They also have

different properties than they did in Euclidean case of course. In general lines

in Poincaré disk model are circular arcs within D which intersect with the unit

circle with a right angle and Euclidean lines that pass through origin. Let’s clarify

what do we mean by the first one. If Γ is the circle that the arc belongs and say
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18 OGUZHAN YURUK

Γ intersects unit disc at the point P then the line segments from the center of

the unit disk to P is perpendicular to the line from center of Γ to P . Just like

Figure 9. Here is an example of hyperbolic line that passes

through A and intersects with the unit circle at point P.

in the Euclidean case, given two points, there exists a unique line passing through

them. In order to visualize the line passing through points A and B in the Poincaré

disk model, we have to draw the circular arc that passes through A and B at the

same time is orthogonal to the unit circle. Basically what we have to do is first

construct the line OA and then draw the perpendicular line to OA at point A.

Denote the intersection points of this perpendicular and unit circle with D and

E. Draw the tangents from D and E to the unit circle and name the intersection

points of these tangents as F . Now the circle Γ that passes through A,B and F

is the circle that is perpendicular to unit circle. This is not a trivial fact but with

some elementary geometry it is easy to prove, hence will be skipped. Of course

since Γ is circumcircle of the triangle formed by A,B and F ; the center of gamma

will be the intersection points of the perpendicular bisectors of the triangle ABF .

Two intersecting lines have pretty much the same properties, they can have only

one intersection point. However when we try to add another line we end up with
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GAUSS-LUCAS THEOREM IN HYPERBOLIC GEOMETRY 19

Figure 10. Geometric illustration of how to draw the hyperbolic

line that passes through the points A and B

some differences to Euclidean geometry. Unlike the Euclidean case, this new line

doesn’t have to intersect with these two lines. These all emerge from the difference

in the fifth axiom because now we know that there exists at least two distinct lines

that pass through a point not on the line and does not intersect the line. In a way

it makes sense to call them as parallel lines but essentially they are divided into

two groups. The first group is called limiting parallel lines, in the disk model these

lines correspond to the ones that never meet inside the unit disk but converge to

same point on the unit circle. The second type is called ultra-parallel lines which

actually diverge from each other, or do not intersect even on the unit circle. The

following figure includes an example for both types.

Figure 11. R is limiting parallel to l and ultra-parallel to u.
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20 OGUZHAN YURUK

. It is useful to think D in C rather than in R2, then given any two complex numbers

z1,z2 from the unit disk the line segment between them can be parametrized as

follows[6]:

[0, 1] −→ D

(4.1) t −→
z1 − z1−z2

1−z1z2 t

1− z1 z1−z2
1−z1z2 t

Any hyperbolic line in D can be parametrized as,

(4.2) ρ
ω − z
1− ωz

= t, t ∈ [−1, 1]

This special expression on the left hand side of the equation will be the main concern

of the next chapter, and then we will see why the statement above is true.

4.2. What is a Finite Blaschke Product? If we consider the Poincaré disk

model, there is an ambiguity with the roots and critical points of the polynomials.

Usually these roots and critical points are not in the unit disk and therefore these

points are not in the model. So instead of looking at the functions that are analytic

in the whole complex plane we have to restrict ourselves to the analytic functions

on D. The following definition will describe such functions which will take the role

of polynomials in the hyperbolic version of Gauss-Lucas theorem.

Definition 4.1. (Finite Blaschke Product) A Finite Blaschke Product is a function

of the following form:

B(z) = eiαzK
n∏
i=1

|zi|
zi

zi − z
1− ziz

where α ∈ R, K is a non-negative integer and zi are just some complex numbers

which are in {0 < |z| < 1}.
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Immediately from the definition we can see that all the zeros are in the unit disk.

Furthermore any pole of B(z) is outside of the unit disk since;

1− ziz = 0 ⇔ z =
1

zi

A single factor of this product is named as Blaschke factor. Here is a more rigorous

definition:

Definition 4.2. (Blaschke Factor) Given z0 ∈ D, the Blaschke factor with a zero

in z0 is given as,

bz0(z) =


|z0|
z0

z0−z
1−z0z if z0 6= 0

z if z0 = 0

Considering any finite Blaschke product B(z) as the multiplication of Blaschke

factors, now it is not hard to see that B(z) is an analytic function from D to itself.

Consider the automorphisms of the unit disk, i.e. bijective conformal maps on D,

namely Aut(D). Recall that this set can be characterized as follows. Let ω ∈ D,

ρ ∈ T = {z ∈ C : |z| = 1} and define the functions

τω(z) =
ω − z
1− ωz

and ργ(z) = γz

Then,

AutD = {ργ ◦ τω : ω ∈ D, γ ∈ T}

So every Blaschke factor corresponds to an automorphism of D. Therefore if we

consider bz0(z) : D −→ D, then we can say that bz0(z) is actually an analytic

function from D to itself with a single zero. In more general sense if we consider

B(z) a finite Blaschke product of degree n, we can easily see that it is an analytic

function from D to itself with n zeros within the unit disk.
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. This is a good moment to remark the resemblance to the Euclidean side of the

story. Instead of focusing on the automorphisms of the disk if we consider the

conformal automorphisms of the whole C, we have:

AutC = {az + b : a, b ∈ C, a 6= 0}

With the enough complex analytic tools this is an easy fact to prove. Let f ∈ AutC,

so f is a bijective analytic function on C. Then f cannot have an essential singular-

ity around infinity otherwise Big Picard theorem would ensure that in any neigh-

borhood of infinity f takes every value with at most a single exception infinitely

often, therefore f cannot be an automorphism in this case. Also if f has a remov-

able singularity, then f would be bounded by its value at infinity and Liouville’s

theorem gives us that f has to be constant in this case, so not an automorphism.

Therefore f has a pole at infinity, therefore it must be a polynomial. Now if f

has degree higher than 1, f would have more than one root meaning it cannot be

injective. Therefore if f is in AutC then f has to be a degree one polynomial.

Again, any element in this set can be considered as a composition rotation and a

bijective analytic function on C, or an analytic function on C with a single zero, or

a bijective conformal map on C. Further in the case of polynomials we follow the

exact same pattern, any degree n polynomial is actually multiplication of n such

bijective analytic functions.

. Recall the equation (4.2) from the previous chapter, now we can see that it actually

takes the line [-1,1] in the Poincaré disk and conformally maps it to a curve. It

makes sense to call the image of [−1, 1] as a parameterization of the hyperbolic line.

Now we can actually prove that equation (4.1) is true. As starting step let’s take
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z2 = 0, then the line segment between 0 and z1 is parameterized as:

[0, 1] −→ D

t −→ tz1

Now move on to the general case, let z1, z2 be two complex numbers from the unit

disk. Then use the automorphism of D, τz1(z) = z1−z
1−z1z to move z1 to zero and z2

to some non-zero element of D.

τz1(z2) =
z1 − z2
1− z1z2

:= z3

Now we can parameterize the line from 0 to z3 as before:

[0, 1] −→ D

(4.3) t −→ tz3

However this is not the parameterization of the line segment that we want, but it’s

conformal image of it under the automorphism τz1(z). We know that,

τz1(z)−1 =
z1 − z
1− z1z

So if we compose this with parameterization in equation (4.3) we will get the

parametrization of the desired line segment:

[0, 1] −→ D

t −→ tz3 − z1
1− z1tz3
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As the last step if we write back z3 in terms of z1 and z2 we get the parametrization

of the line segment between z1 and z2 the same thing with equation (4.1):

t −→
t z1−z21−z1z2 − z1
1− z1t z1−z21−z1z2

. In the following chapters we will try to formalize the statement of Gauss-Lucas

theorem for hyperbolic case. And as we have mentioned before, the Poincaré disk

model will be our main model. As a result of this, we had to restrict ourselves

to D where the hyperbolic space is modeled. Considering the pattern above, finite

Blaschke products is a natural choice of functions to consider instead of polynomials.

Therefore they will be our main concern in the statement of the hyperbolic case of

the theorem. The next chapter will provide more information about finite Blaschke

products.

4.3. Preliminary Results about Finite Blaschke Products.

. This section will be entirely denoted to some significant properties of finite Blaschke

products. The aim will be to show the similarities between finite Blaschke products

and polynomials, in addition to prepare some foundations to generalize the Gauss-

Lucas theorem to hyperbolic case. First of all let us clarify the notion of degree

for a finite Blaschke product. In the Definition 4.1, we simply regarded a degree n

Blaschke product as multiplication of n Blaschke factors. In the polynomial sense

we know that degree corresponds to number of zeros of the polynomial. Similarly

for finite Blaschke products, degree directly corresponds to the number of zeros in

the unit disk as it was mentioned previously. From another point of view, we can

see any finite Blaschke product as a rational function;

B(z) = eiαzK
n∏
i=1

|zi|
zi

zi − z
1− ziz

=
P (z)

Q(z)
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then the degree would be given as max{deg(P (z)), deg(Q(z))} if P (z), Q(z) are co-

prime as polynomials, that is they don’t have a common non-constant divisor. We

know that both P (z) and Q(z) are polynomials of degree n. Moreover we know that

P (z) and Q(z) cannot have a common factor. This is because for every root z0 ∈ D

of P (z), z′0 = 1
z0

is a root of Q(z). Of course any z′0 is outside of D. Therefore,

deg(B(z)) = max{n, n} = n

So the degree of a Blaschke product can be both regarded as the number of Blaschke

factors that it contains(or the number of zeros within D) and degree of the rational

function. These two different interpretation of degree actually coincides and we will

use both interchangeably.

. Regarding a finite Blaschke product B(z) as multiplication of Blaschke factors is

very useful for many reasons. For example in order to calculate the modulus or

argument of the B(z), it is enough to focus on a single Blaschke factor, which is

actually a conformal automorphism of the unit disk. Therefore any finite Blaschke

product is actually multiplication of conformal automorphisms of the disk. Modulus

of a single factor is fairly easy to calculate. Recalling from the Definition 4.2, for a

Blaschke factor with a zero in z0 ∈ D the modulus is calculated as follows:

|bz0(z)|2 = bz0(z)bz0(z) =
|z0|
z0

z0 − z
1− z0z

|z0|
z0

z0 − z
1− z0z

=
|z0|2 − z0z − z0z + |z|2

|1− z0z|2

=
1− z0z − z0z + |z|2|z0|2 − 1 + |z0|2 + |z|2 − |z|2|z0|2

|1− z0z|2

=
(1− z0z)(1− z0z)
|1− z0z|2

− (1− |z0|2)(1− |z|2)

|1− z0z|2

= 1− (1− |z0|2)(1− |z|2)

|1− z0z|2
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In general given the degree n Blaschke product B(z),

B(z) = eiα
n∏
j=1

bzj (z)

modulus of B(z) can be calculated as follows.

(4.5) |B(z)| =
n∏
j=1

|bzj (z)|

Remark 4.3. Following from the above equation, if z ∈ T then |bz0(z)|2 = 1. Since

|z| = 1, it follows that (1−|z|) = 0 which reduces the right-hand side to 1. Therefore

we have that for any z0 ∈ D, bz0(z) maps T to itself. In general, any finite Blaschke

product actually maps T to T.

. The argument of bz0(z) is a little harder to calculate than the modulus. This

part is not going to be used in the following parts but it is included for the sake

of completeness. We will first investigate how the argument of bz0(z) behaves on

the boundary of the unit disk, T. As an aside, for z0 = 0 case trivially we have

arg(bz0(z)) = arg(z). So let z = eiθ and z0 = r0e
iθ0 for some r0 ∈ (0, 1). Then we

have the following lemma to describe the behavior of the Blaschke factor’s argument

in the unit disk.

Lemma 4.4. bz0(z) maps T to itself, so if we denote z = eiθ for some θ ∈ [0, 2π)

we can write:

bz0(z) = ei arg(bz0 (z))

where arg(bz0(z)) ∈ [−π, π). Then

arg(bz0(z)) =


−π if θ = θ0

−2 arctan( (1−r0)
(1+r0) tan(

θ+θ0
2 )

) if θ 6= θ0
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Here we use the principal branch of the arctan function which has range (−π2 ,
π
2 ),

so indeed arg(bz0(z)) ∈ [−π, π).

This lemma will be useful to investigate the argument of the Blaschke factor for

any given point z = reiθ ∈ D. If we normalize bz0(z) we have:

bz0(reiθ)

|bz0(reiθ)|
= ei arg(bz0 (re

iθ)

Clearly if r < |z0| = r0 then bz0(z) has no zeros inside the disk |z| < r. Therefore

when r is given, ei arg(bz0 (re
iθ) is actually a continuous function of θ ∈ R. So,

arg(bz0(reiθ) is actually a 2π-periodic continuous function of θ ∈ R. On the other

hand, if r > |z0| = r0 argument principle gives us that arg(bz0(reiθ) has a jump

discontinuity in every interval larger than 2π. These observations can be turned

into a more specific description of the argument of bz0(z), even though it will

not be useful for this thesis’ purposes. The following theorem gives us the total

description of the argument of a Blaschke factor, the proof will be omitted however

more detailed information can be found in [7].

Theorem 4.5. Let r0 ∈ (0, 1) and z0 = r0e
iθ0 , write:

bz0(z) = |bz0(z)|ei arg bz0 (z)

where −π ≤ arg bz0(z) < π . Then the following holds,

(4.6) arg bz0(z) = arcsin
=(z0z)(1− |z0|2)

|z0||z0 − z||1− z0z|

where =(z0z) denotes the imaginary part of z0z.
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. Following from the fact that B(z) maps D and T to itself, we can say B(z) maps

C\D to itself. If we consider Poincaré disk model this fact means that every Blaschke

product gives us a well-defined map of the model to itself. Every point of the model

is mapped to some point inside the model and similarly points that stay out of the

model are sent to points that stay out of the model. By our construction B(z) has

n zeros inside the unit disk, this can be interpreted as the equation

B(z) = 0

has n solutions. In fact B(z) is a n-to-1 map from Ĉ to itself, where Ĉ denotes

the extended complex plane. Since B(z) = w actually gives a polynomial equation

of degree n, which obviously have n solutions in Ĉ. The following theorem will

describe how these solutions are located in the extended complex plane for a given

w.

Theorem 4.6. Let Ĉ denote the extended complex plane and B(z) be a finite

Blaschke product of degree n. Then given a w ∈ Ĉ, there exists exactly n solutions

to the equation

B(z) = w

Moreover if w ∈ D then all n solutions are in D, if w ∈ T all solutions are in T and

if all w ∈ Ĉ\D then all the solutions are in Ĉ\D where D is the closed unit disk.

Proof. First of all we have already shown that this equation has n solutions in Ĉ

above. Now let’s assume first that w ∈ D. We know that B(z) maps Ĉ\D to Ĉ\D,

therefore if z is mapped to w ∈ DD then z has to be within the unit disk or on

the unit circle. Similarly T is mapped to T, so z cannot be on T. Therefore all n

solutions of the equation is indeed in D.
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Second, assume that w ∈ T. Following similar argument, any z ∈ Ĉ\D would be

mapped to something in Ĉ\D and any z ∈ D would be mapped to something in

D. Therefore the complex number that was sent to w by B(z) has no choice but

to be in T. Lastly for w ∈ Ĉ\D case with a similar argument we can see that all

solutions have to be in Ĉ\D. �

. Our main concern in the above theorem is the case where w ∈ D. Of course

there may be repeated solutions, for example simply in the w = 0 case any finite

Blaschke factor with repeated Blaschke factor would result in repeated solutions.

An interesting side note is if w ∈ T there exists no repeated solutions[7], however

these kinds of equations won’t be our concern. A more important remark about

the Theorem 4.6 is, it shows us that once again why finite Blaschke products are a

natural choice instead of polynomials in the Poincaré disk model. Any equation of a

degree n Blaschke product in the Poincaré disk, actually gives us n solutions in the

disk. Recall from the proof of Lemma 3.4 in Chapter 3, we have defined a conformal

map of C to move the roots of the polynomial so that they all had positive real

parts. Luckily it was possible to do that since polynomials are conformally invariant,

that is when a polynomial is composed with a conformal map the resulting map is

again a polynomial. In the next theorem we will show a similar property for finite

Blaschke products.

Theorem 4.7. Let B(z) be a finite Blaschke product of degree n and τw(z) = w−z
1−wz

for w ∈ D. Then both τw ◦B(z) and B(z)◦ τw are finite Blaschke products of degree

n.

Before the proof of theorem we will present a characterization of finite Blaschke

products within the analytic functions on D. It is an important result proven by
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Fatou, see [7]. Instead of calling it a theorem, we will call it a lemma since it will

be one of the main arguments of the proof.

Lemma 4.8. If f is analytic on D and

lim
|z|→1

|f(z)| = 1

then f is a finite Blaschke product.

Remark 4.9. Note that if f is a finite Blaschke product we know f is analytic on

D and ,

lim
|z|→1

|f(z)| = 1

Proof of Lemma 4.8. First of all note that |f(z)| → 1 uniformly as |z| → 1, thus we

can say that there has to be an annulus {z : r0 < |z| < 1} where f does not vanish.

Therefore as a result of analytic continuity f can have only finitely many zeros

inside D. Let B(z) be the Blaschke product with the exact same roots of f within

D with the same multiplicity. So we must have that both f
B and B

f are analytic

within the unit disk and their moduli goes to 1 as |z| → 1. Maximum modulus

principle gives that as analytic functions on D, both of these functions have moduli

of at most 1. Therefore, | fB | ≤ 1,|Bf | ≤ 1. But this tells us that | fB | = 1 is just

a unimodular and f is just a unimodular multiple of B(z), meaning that we have

to multiply B(z) with a complex number of modulus 1 to get f. Thus f is a finite

Blaschke product. �

Now as a corollary to this lemma, we can say that if the disk algebra A(D)

denotes the set of analytic functions on D that extend continuously to D, then the

finite Blaschke products are precisely those elements in A(D) that map T to T.

Now we can give the proof of Theorem 4.7
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Proof of Theorem 4.7. Let B(z) = eiαzK
n∏
k=1

|zk|
zk

zk−z
1−zkz be a finite Blaschke product

of degree n and define τw(z) = w−z
1−wz for w ∈ D. First let’s see that B(z) ◦ τw(z) is

a finite Blaschke product of degree n.

B(z) ◦ τw(z) = eiαzK
n∏
k=1

|zk|
zk

zk − w−z
1−wz

1− zk w−z
1−wz

= eiαzK
n∏
k=1

|zk|
zk

zk − zkwz − w − z
1− wz − zkw + zkz

= eiαzK
n∏
k=1

|zk|
zk

1− zkw
1− zkw

w−zk
1−wzk − z

1− w−z
1−wzk z

= eiα
′
zK

n∏
k=1

|τw(zk)|
τw(zk)

τw(zk)− z
1− τw(zk)z

(4.7)

Note that in the last step we carried out the required unimodular constant outside

so now we have α′ instead of α. Therefore indeed we have that B(z) ◦ τw(z) is a

Blaschke product of degree n with zeros τw(zk)

Now we have to show that τw(z) ◦ B(z) is also a finite Blaschke product of degree

n. Observe that τw(z) ◦ B(z) is analytic on D and continuous on D. But more

importantly it maps T to T since,

|τw(z)| = | w − e
iθ

1− weiθ
| = | − eiθ||1− we

−iθ

1− weiθ
| = 1

and B(eiθ) = 1 as we know. Therefore conclusion of the previous lemma gives us

that τw(z) ◦ B(z) is a finite Blaschke product. Let’s try to verify it’s degree now,

we know:

τw(z) ◦B(z) = 0⇐⇒ B(z) = w

and w ∈ D. Now theorem 4.6 gives us that the equation on the left has exactly n

solutions all inside D. Therefore τw(z)◦B(z) has exactly n zeros in D and therefore

it is of degree n. �
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Note that Theorem 4.7 focuses on one kind of automorphism of disk, but it

is easy to show that composition of a rotation with a Blaschke product is also a

Blaschke product. Given ρθ(z) = eiθz for θ ∈ [0, 2π) and

B(z) = eiαzK
n∏
k=1

|zk|
zk

zk − z
1− zkz

for zk ∈ D, we can easily calculate B(z) ◦ ρθ(z) and ρθ(z) ◦B(z).

B(z) ◦ ρθ(z) = eiαzK
n∏
k=1

|zk|
zk

zk − zeiθ

1− zkzeiθ

= eiαzK
n∏
k=1

|zk|
zk

eiθ(zke
−iθ − z)

1− zke−iθz

= eiαzK
n∏
k=1

|zk||e−iθ|
zke−iθ

zke
−iθ − z

1− zke−iθz

(4.8)

And this corresponds to a finite Blaschke product with zeros zke
iθ. Similarly if we

compute this from the other way:

(4.9) ρθ(z) ◦B(z) = eiθ
(
eiαzK

n∏
k=1

|zk|
zk

zk − z
1− zkz

)

The result is trivially another degree n Blaschke product. As a further step, using

Theorem 4.7 it is not hard to show that composition of two finite Blaschke prod-

ucts of degree m and n is again a Blaschke product of degree mn. Let B1(z) =

eiα
∏n
k=1 bk(z), B2(z) = eiα

′ ∏m
k=1 b

′
k(z). Then we have,

(4.10) B1(z) ◦B2(z) = eiα
n∏
k=1

(bk(z) ◦B2(z))

From Theorem 4.7 we know bk(z) ◦ B′(z) are Blaschke products of degree m and

hence the resulting product is indeed a finite Blaschke product of degree nm.
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. Before moving on to the Gauss-Lucas theorem there is one more topic that we

have to elaborate on, the derivative of a Blaschke product. Let’s say that we are in

the generic case where B(0) 6= 0, so write B(z) = eiα
n∏
k=1

|zk|
zk

zk−z
1−zkz . Since B(z) is a

product of many factor, we just have to take a derivative of products. In order to

do so let us define:

(4.11) Bj(z) =

n∏
k=1
k 6=j

zk − z
1− zkz

Also note that for single Blaschke factor bzk(z), we can write the derivative as:

(4.12) (bzk(z))′ =
|zk|2 − 1

(1− zkz)2

Now using (4.11) and (4.12) we can write B′(z) easily as follows.

(4.13) B′(z) =

n∑
k=1

(bzk(z))′Bk(z) = −
n∑
k=1

1− |zk|2

(1− zkz)2
Bk(z)

Again in parallel with how we proceeded in the proof of the Euclidean Gauss-Lucas’

theorem, logarithmic derivative of B(z) is a powerful tool that we can use. If we

divide both sides of (4.13) by B(z) we can easily get the logarithmic derivative.

B′(z)

B(z)
= −

n∑
k=1

1− |zk|2

(1− zkz)2
Bk(z)

B(z)

= −
n∑
k=1

1− |zk|2

(1− zkz)2
1

bzk(z)
=

n∑
k=1

1− |zk|2

(1− zkz)(z − zk)

(4.14)

As a finishing remark for this chapter we will see another fascinating property of the

derivative of Blaschke products. Let z ∈ T and write z = eiθ, we will manipulate
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(4.14) as follows:

B′(z)

B(z)
=

n∑
k=1

1− |zk|2

(1− zkz)eiθ(1− e−iθzk)

=

n∑
k=1

1− |zk|2

(1− zkz)eiθ(1− zzk)
=

n∑
k=1

1− |zk|2

|1− zkz|2eiθ

Now if we take the modulus of both sides, since |B(eiθ)| = 1 and |zk| < 1:

(4.15)
|B′(z)|
|B(z)|

= |B′(z)| =
n∑
k=1

1− |zk|2

|1− zkz|2

Note that the right-handside is always positive and gives us the following remark.

Remark 4.10. If B(z) is a finite Blaschke product then for any eiθ ∈ T we have

B′(eiθ) 6= 0.

5. Hyperbolic Gauss-Lucas Theorem

. After some brief introduction to the Poincaré disk model of hyperbolic geometry

and finite Blaschke products we are almost ready to state and prove the hyperbolic

version of Gauss-Lucas theorem. Before we start recall the equation of the hyper-

bolic line segment (4.1), we will use this to define the notion of convexity in the

hyperbolic sense. We call a set convex if given any two points in the set, all the

points on the geodesic connecting these two points must also be in the convex set.

In the light of (4.1) a set A ⊂ D is convex if for any two points z1, z2 ∈ A we have

that

(5.1)
z1 − z1−z2

1−z1z2 t

1− z1 z1−z2
1−z1z2 t

∈ A for all t ∈ [0, 1]

Using this, the hyperbolic convex hull of n points z1, . . . , zn can be defined as the

hyperbolic convex set that contains z1, . . . , zn. Next we state the main theorem of

this work.
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Theorem 5.1 (Hyperbolic Gauss-Lucas Theorem). If B(z) is a finite Blaschke

product, then the roots of B′(z) lies in the hyperbolic convex hull of B(z).

Before proceeding with the proof, let’s give an example and illustrate what is

happening.

Example 5.2. For the ease of computation, we will consider an example of degree

three case. Let’s take three points from the unit disk, z1 = 0.2− 0.2i, z2 = 0.4i and

z3 = −0.6− 0.4i. Consider the finite Blaschke product with α = 0 and z1, z2, z3 as

roots:

B(z) =
0.2− 0.2i− z

1− (0.2− 0.2i)z

0.4i− z
1− (0.4i)z

−0.6− 0.4i− z
1− (−0.6− 0.4i)z

=
0.2− 0.2i− z

1− (0.2 + 0.2i)z

0.4i− z
1 + (0.4i)

z
−0.6− 0.4i− z

1− (−0.6 + 0.4i)z

(5.2)

After calculating the critical roots using any basic software such as Mathematica

or Wolfram Alpha, we can write them as z = 0.0592106 + 0.104897i and w2 = z =

−0.353041− 0.258281i. Let’s put all these into a picture, see Figure 12.

Figure 12. Picture of Example 5.2

Let’s proceed with the proof of the hyperbolic version of Gauss-Lucas theorem.
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Proof of 5.1. LetB(z) be a finite Blaschke product of degree n with zeros z1, . . . , zn ∈

D and H denote the hyperbolic convex hull of these points. The proof of the hy-

perbolic version will follow similar steps to what we have done in the Theorem 3.2.

Recall that in order to prove the theorem we had to go through a lemma first,

namely Lemma 3.4. We will proceed in a similar way, if a ∈ D is any point not

inside the convex hull H then with the transformation τa(z) = a−z
1−az we can move

a to zero. After that we had that since a is not in the hyperbolic convex hull then

it is possible to choose an appropriate rotation such that each τa(zk) is mapped to

a complex number with a non-negative imaginary part. Note that in the proof of

Lemma 3.4 we have done the same thing except we had moved the roots so that all

of them had non-negative real part, in essence we just fit all the points into one half-

plane. In addition, we had done all these for Euclidean case in Lemma 3.4 but same

arguments holds in hyperbolic case as well since we did not use any property specific

to the Euclidean geometry. So let’s say that f = B(z)◦τa(z)◦ρθ(z), where a is one

of the roots of B(z) and θ ∈ [0, 2π). We have already seen that f is a finite Blaschke

product of degree n. Since τ2a = id, and ρ−1θ (z) = ρ−θ the zeros of f are located in

u1 := ρ−θ(τa(z1)), . . . , un := ρ−θ(τa(zn)) and if we let w1, . . . , wn−1 be the roots of

B′(z) then the roots of f ′ are v1 := rho−θ(τa(w1)), . . . , vn := ρ−θ(τa(wn−1)). See

Figure 13

Next step is to make use of this non-negativity of the imaginary parts. Let’s divide

D into three parts as follows.

D− = D ∩ {z : =(z) < 0} and D+ = {z : =(z) > 0}

and lastly we have [−1, 1]. Basically positioning all zk such that they have all non-

negative imaginary parts means that they will stay on the same side of the line
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Figure 13. The transformation τz1(z) is applied in the case of

Example 5.2. z1 is mapped to 0, τ2 and τ3 denotes the points

τz1(z2) and τz1(z3) respectively. In this case θ = 0

formed by any mapping of [−1, 1] with τa(z),i.e. the line parameterized as:

τa(z) =
a− z
1− az

= t, for t ∈ [−1, 1]

Our aim is to show that the roots of B′(z) falls are on the same side of the line for

all such a. Now referring back to equation (4.14), we have that putting f instead of

B(z)

(5.3) =
(f ′(z)
f(z)

)
= =

( n∑
k=1

1− |uk|2

(1− ukz)(z − uk)

)
=

n∑
k=1

=
( 1− |uk|2

(1− ukz)(z − uk)

)
where = denotes the imaginary part. Now instead of focusing the whole sum in

the (5.3), just focus on one of the summands. Let’s define

(5.4) ϕ(z) =
1− |w|2

(1− wz)(z − w)

for a fixed w ∈ D+. We want to consider the case where w has non-negative

imaginary part in particular. Because we know that the apart from the origin

remaining zeros of f are in the upper half-plane by construction. In order to
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investigate where the D− is mapped, let’s consider it’s boundary under ϕ. That

means we have to consider the image of T− = {eiθ : −π ≤ θ ≤ 0} and [−1, 1]. For

T−, we have

ϕ(eiθ) =
1− |w|2

(1− weiθ)(eiθ − w)

=
1− |w|2

(1− weiθ)eiθ(1− weiθ)
=

1− |w|2

|1− weiθ|2
e−iθ

(5.5)

Note that result of the equation (5.5) has non-negative imaginary part since w ∈ D+

and θ ∈ [−π, 0]. Similarly for the interval [−1, 1], we have:

ϕ(x) =
1− |w|2

(1− wx)(x− w)

=
1− |w|2

(1− wx)(x− w)(1− wx)(x− w)
(1− wx)(x− w)

=
1− |w|2

|(1− wx)(x− w)|2
(1− wx)(x− w)

(5.6)

Observe that the first fraction part is actually just a real coefficient. If we calculate

last part:

(1− wx)(x− w) = x− w − wx2 + |w|2x

So imaginary part of this expression is basically =(−w−x2w) = =(w−x2w), hence

in general combining this with (5.6) we get that:

=(ϕ(x)) =
1− |w|2

|(1− wx)(x− w)|2
(1− wx)=(w − x2w)

=
1− |w|2

|(1− wx)(x− w)|2
(1− wx)(1− x2)=(w)

(5.7)

Note that we already had that w ∈ D+ hence this is a non-negative number.Therefore

we can say that the boundary of the half-disk D− is mapped to a curve in C+ ∪ R

where C+ = {z : =(z) > 0}. Note that ϕ is analytic on D− := D− ∪ T− ∪ [−1, 1]

since w ∈ D+. Therefore by continuity we can deduce that ϕ maps D− to C+.

This actually tells us that any z ∈ D− we have that =(ϕ(z)) > 0. In total if we sum
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all ϕ(w) while w runs over uk we have that =
(
f ′(z)
f(z)

)
> 0 for any z ∈ D−. Therefore

f ′(z) has no zeros in D−. In other words =(vk) ≥ 0, therefore all vk ∈ D+∪ (−1, 1).

Now we have shown that the roots of f and f ′ lie on the same side of the hyperbolic

line parametrized by ρθ ◦ τa(z) = t for t ∈ [−1, 1]. Now recall the Remark 3.6, if a

is taken equal to zk then uk−1 = ρ−θ(τa(zk−1)) and uk+1 = ρ−θ(τa(zk+1)) will have

the maximal difference of arguments for all u1, . . . , un. If we let θ0 = arg(uk+1),

then g = ρ−θ0 ◦ f(z) is another Blaschke product of degree n with one of its roots

in zero and another one on real axis. In general the zeros of g are ρθ0(uk) and g′ is

of degree n − 1 with zeros ρ−θ0(vk). Moreover all the zeros of g and g′ are on the

same side of the line passing through ρ−θ0(uk) and ρ−θ0(uk+1). This gives us that

all the zeros of B(z) and B′(z) are actually on the same side of the line containing

zk and zk+1. Now going through the same process with every root, we get that

actually the roots of B′(z), wk, are in the hyperbolic convex hull of z1, . . . , zk �

Figure 14. Following from the Figure 13, this figure shows the

result of applying the required rotation. In this case we used

ρ(z) = ei∗−0.503, since the angle formed by τ3, 0 and x axis was

approximately 0.503 radians.
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. Let’s have a concluding remark on the proof. In essence the proof of hyperbolic

version and Euclidean version are pretty similar. A key geometric step is to see that

given a point outside of the convex hull, then it is possible to find a transformation

which takes takes this particular point to zero and leaves all vertices of the hull

on the same half-plane. After restricting ourselves to a certain half-plane, the rest

of the job is done by the complex analytic theory. Even though there are certain

differences, in essence these two proofs use closely related ideas.

6. Concluding Remarks

6.1. What has been done in this work? As stated before, there were two main

aims of this work. First to familiarize the reader with the notion of the hyperbolic

geometry. Second, to state and prove the well-known Gauss-Lucas theorem with the

hyperbolic geometric tools instead of Euclidean ones. Of course the first one was just

a milestone for the second goal and second and fourth chapters served specifically

for this purpose. Since these were elementary steps that were taken by fellow

mathematicians decades ago, most of these chapters gives references to various

papers. In order to achieve the second goal, first the Euclidean case of the Gauss-

Lucas theorem is introduced in chapter 3. As explained before, provided proof

for the theorem is significant because similar arguments appear in the hyperbolic

case of the theorem. The main idea of the proof, which is named as Lemma 3.4,

is mentioned in [9]. However no proof for this argument was provided, so in this

work a full proof of Gauss-Lucas theorem using the Lemma 3.4 is given. Finally

in chapter 5, with the proof of the hyperbolic version of the Gauss-Lucas theorem

the second aim of the work is fulfilled. The provided proof is actually a completed

and more elaborated version of [7]. More specifically, the idea of Lemma 3.4 is
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implemented to hyperbolic case which was lacking in the original proof. Thus in

addition to achieving two main goals, this work also gives a new and more complete

perspective to the proof of the hyperbolic version of Gauss-Lucas theorem.

6.2. Further Research Topics. After reading this paper, many questions arise as

well as a few is answered. First of all, after realizing how Blaschke products mimics

the polynomials in hyperbolic sense, one cannot stop to wonder about other possible

geometries. One way to move on with the research could be to try to achieve similar

results to Gauss-Lucas in different geometries such as spherical. On the other hand,

if we don’t want to leave waters of the finite Blaschke products there are still many

possible directions one can go. There are many results and conjectures relating the

roots of the polynomial with critical points of the polynomial. Another possible

direction for research is to focus on conjectures rather than already proven theorems

in Euclidean geometry. An example of many such results is Marden’s theorem

Figure 15. An illustration of a special case of Marden’s theorem

in hyperbolic geometry with roots located in 0.6, -0.6 and 0.76i,

which gives the resulting equilateral triangle. D and E are the

critical points calculated as −0.096 + 0.238i and 0.096 + 0.238i

respectively.
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which was mentioned in the first chapter. It could be a possible further research to

study this theorem in hyperbolic geometry. For example the Sendov’s conjecture

mentioned in [9] is still open since 1958:

Theorem 6.1 (Sendov’s Conjecture). Let p be the polynomial with roots z1, . . . , zk

and let p′ have roots at w1, . . . , wm without multiplicity. Then,

max
k

min
j
|wj − zk| ≤ max

k
|zk|

The degree three case of the theorem is just a corollary of Marden’s theorem.

Also from a geometric point of view this conjecture is saying that if the roots of the

polynomial are in the unit disk, then every root of p′(z) is in the unit disk around

one of the zk’s.
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