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Abstract

In my thesis, I propose an experimental design, the Paired 2 × 2 Factorial Design,

together with two strategies for treatment e�ect identi�cation and estimation from

a large sample of pairs, comprised of distinguishable members (e.g. couples with a

healthy and an ill member), when (i) there is interference: the potential outcomes

of a pair member do not only depend on the member's own treatment participation

but on his/her partner's participation too; (ii) there is (endogenous) noncompliance:

the units may not comply perfectly with their treatment encouragement; (iii) the

experimenter can have two di�erent binary treatments and two di�erent outcomes

of interest for the di�erent members in a pair; (iv) units within a pair are allowed to

coordinate their treatment participation based on their encouragement. The latter,

number (iv), is the main contribution of my thesis, as this has not been addressed

by previous studies.

The �rst strategy uses only half of the sample to identify the e�ects of both

treatments on both pair members, in certain complier subpopulations, under the

usual instrumental variables assumptions. The second strategy, the main theoretical

result, uses the whole sample to identify the same treatment e�ects, but this comes

at the cost of additional strict symmetry assumptions on the members' participation

willingness. To explore the impact of the violation of symmetry on consistency, some

Monte Carlo results are presented.

The use of the design is illustrated, in theory, on a sample of married couples

where one member su�ers from depression. The treatment is an antidepressant for

the depressed member and an educational program for the healthy partner.
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1. Introduction

Suppose that we have a random sample of married couples where one member of

each couple su�ers from depression while the other member, the depressed's spouse,

does not. Of interest are the e�ects of two binary treatments: an antidepressant for

the depressed member, and an educational program about depression for the healthy

spouse.

In this example, a depressed person's outcome (say, symptoms of depression)

might be improved alone by his/her partner's participation in the educational pro-

gram even if the depressed member does not take the antidepressant. The same is

true for the healthy partner, who might feel better due to his/her depressed spouse

taking the antidepressant even if he/she does not attend the educational program.

If so, the Stable Unit Treatment Value Assumption (SUTVA (Rubin, 1980)), made

by most works on treatment e�ects in the framework of the Rubin Causal Model

(Rubin, 1974), is violated as interference arises within prede�ned pairs of units, the

married couples.1

Hence, if a researcher wants to make causal inference about the treatment ef-

fects of the antidepressant and the educational program in a randomised controlled

trial (RCT), a suitable experimental design and methods addressing interference are

needed. Furthermore, it is necessary for such methods to correct for the cases when

the units do not comply with their treatment encouragement instructions because

their expected improvement from doing so is low or negative (in short, endogenous

noncompliance, or, somewhat imprecisely, imperfect compliance). For example, if the

expected improvement from participating in the educational program is low for both

members, then the healthy member is less likely to participate in the educational

program when he/she is encouraged to do so.

Methods capable of handling interference and imperfect compliance in RCTs

have just been gaining ground recently but are still rare. Moreover, to the best of

my knowledge, there exists no such method which allows for within-pair discussion

and coordination of treatment participation even though this is desirable in real-life

applications. To �ll this gap, I propose an easy-to-implement experimental design,

built on a coin-tossing protocol, the Paired 2×2 Factorial Design, and two associated

large-sample identi�cation and estimation strategies, which

1SUTVA states that the potential outcomes of a unit (the unit's outcome were it (not) treated)
depends only on the unit's own participation in the treatment but not on others'.
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(i) take into account interference present only within pairs of units, where the

members of a pair are distinguishable (e.g. healthy-ill, male-female, sister-

brother members in each pair in the population); and

(ii) enable the experimenter to have two, potentially member-speci�c binary treat-

ments and two, potentially member-speci�c outcomes of interest (or one single

outcome belonging to the pair); and

(iii) allow for imperfect compliance, potentially of endogeneous nature, of the units

with the treatment encouragement given by the experimenter; and

(iv) allow for within-pair discussion and coordination of treatment participation.

The �rst strategy uses only half of the sample to identify the average treatment

e�ects of both treatments on both pair members, in certain complier subpopulations,

under the usual instrumental variables assumptions (Imbens and Angrist, 1994). The

second strategy, the main theoretical result, uses the whole sample to identify the

same treatment e�ects, but this comes at the cost of additional, strict symmetry

assumptions on the members' participation willingness. Unfortunately, neither of

the strategies is appropriate for identifying the joint e�ect of the two treatments;

only a spillover-like e�ect can be captured by the second one.

Regarding application, the Paired 2× 2 Factorial Design together with the two

identi�cation strategies constitute a ready-made tool for practical use. Implemented

in Python, each step is feasible.2 In the next the section, I give some examples for

cases when the design could be used.

1.1. Application Domains, Examples

The proposed design allows for the evaluation of two, potentially di�erent, binary

treatments on two, potentially di�erent, outcomes belonging to distinguishable pair

members (for notations and de�nitions see Section 3.1). Thus every case in which

we have a population of pairs with distinguishable members is a valid domain for

the application. This includes cases when the treatments are the same for both

pair members and/or when the two outcomes of interest are the same for both pair

members. Moreover, cases where there is only a single outcome belonging to a pair,

i.e. not two identical outcomes belonging to the two members, are included as well.

In general there exists a variable along which we can distinguish between mem-

bers in a pair. To mention probably the most prevalent one, there is age: in each

2Find the codes at GitHub.
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pair we are almost sure to be able to distinguish younger from older members. It is

another question, however, that what sense it makes to do so, whether the interpre-

tation is meaningful in this way. This question is to be answered by the experimenter

based on the research topic.

Nevertheless, I list some possible examples in Table 1, where the distinction is

natural and the design could be useful. Take, e.g. a policy evaluation issue regarding

parental leave. We can distinguish between the mother and the father in each couple,

and the treatment is the maternity and paternity leave, with new conditions. It is

quite reasonable to assume that the parents discuss whether they want to stay at

home with the baby given the chance. In this case, the proposed design could be

useful to identify the e�ect of parental leave on the labour supply of both parents

afterwards, which could a�ect some labour policy. Another research on parental leave

could assess its e�ect on the social/psychological development of their child. This is

an example for the case when the outcome of interest (development of children) is a

single variable and we have one measurement of it per pair, not two, belonging to two

parents. A typical economic example is principal-agent contracting. The treatments

could be new principal and agent speci�c clauses in the contract, with outcomes

being the satisfaction of the principal with the agent's work and the performance,

or stress-level, of the agent.

Table 1: Application examples

Population Treatment Outcome

Member-A Member-B Treatment-A Treatment-B Outcome-A Outcome-B

impoverished

sister

impoverished

brother

special educa-

tional program

special educa-

tional program

grades grades

husband wife marriage

therapy for

husbands

marriage

therapy for

wives

marriage outcome

mother father maternity leave paternity leave labour supply labour supply

mother father maternity leave paternity leave child

development

sister brother vaccination vaccination health status health status

principal agent contract contract satisfaction performance

The remainder of the thesis is organised as follows. Section 2 contains the novel

components in relation to the existing literature; Section 3 describes the experimen-

tal design and the two identi�cation strategies, while in Section 4 simulation results

on consistency are reported when symmetry assumptions are violated. Finally, I

conclude in Section 5.
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2. Previous Work

The idea of interference is not new, with many papers written on the subject based

on either randomised trials or observational data (for a review see VanderWeele et al.

(2014)). Without any speci�c structure imposed on the nature of interference, Hallo-

ran and Struchiner (1991) conceptualise treatment e�ects of interest, estimands such

as direct and indirect e�ects. Halloran and Struchiner (1995) re�ne these concepts

aligning them with Rubin's paradigm. Rosenbaum (2007) extends Fisher's sharp

null hypothesis of no e�ect for the interference setting.

Sobel (2006) intruduces the notion of partial interference, on which my design

is built so that interference may only occur within groups, pairs, in the population

but not across them. Based on Sobel (2006), Hudgens and Halloran (2008) propose

a two-stage randomised design to identify and estimate total, direct and indirect

treatment e�ects unbiasedly and consistently and derive variances of the estimators.

As for observational studies, Tchetgen and VanderWeele (2012) contributes to

the literature by examining �nite sample inference with inverse probability weight-

ing estimators, which are implemented in R by Saul and Hudgens (2017). While

they do not take into account the within-group correlation structure of treatment

participation, Barkley et al. (2017) do so with a group-speci�c random e�ect logit

model.

In all the randomised trial approaches above, it is assumed that the units per-

fectly comply with their treatment assignment instruction, which may be unrealistic.

Under SUTVA, in the no interference case, the instrumental variables (IV) frame-

work of Imbens and Angrist (1994) provides a means to correct for this and makes

it possible to identify treatment e�ects for the subpopulation who comply with the

assignment. However, Sobel (2006) proves that these IV methods do not work under

interference. Another, simulation-based, evidence for the undesirable IV properties

for the 2× 2 factorial design is given by Merrill and McClure (2015), which however

assumes that there is no interference e�ect of the treatments on the outcome.

A solution to this is presented by Kang and Imbens (2016) who develop a two-

stage randomised design called Peer Encouragement Design. An important step to

account for imperfect compliance, they put forward the idea of personalised treat-

ment. Personalised treatment means that a unit's participation can only depend on

the unit's own treatment encouragement, but not on other units' treatment encour-

agement. As the authors point out, this might be violated if the units are able to
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discuss and coordinate their participation knowing about each other's encourage-

ment.

My method is vary similar to that of Blackwell (2017) who corrects for non-

compliance in the 2×2 factorial design with IV, when there are two treatments and

imperfect compliance can occur along both treatments. However, in his framework

there is no paired stucture, the level of analysis is the individual/person. In other

words, interference arises from the interaction of the two treatments not from another

individual's treatment (he makes the assumption of no interference across people).

While my paired experiment setup can be thought of as having two treatments for

the same person (we consider education of the partner as the second treatment for

the depressed spouse) with imperfect compliance occuring along both treatments,

Blackwell does not study a paired structure. Neglecting paired structure is not neces-

sarily a problem when we are only interested in the outcome of either the depressed

or the non-depressed person (or in a single outcome per pair), yet it is restrictive

when both are of interest.

More importantly, Blackwell makes the same personalised treatment assumption

as Kang and Imbens (2016), corresponding to the individual-level analysis , so that

participation in `treatment-A' only depends on the encouragement of `treatment-

A' but not on that of `treatment-B'. In some cases this may be plausible but in

the paired structure it rules out within-pair discussion as Kang and Imbens (2016)

writes, so it is less credible.

As opposed to this, my proposed design and strategies relax this assumption

by allowing for such discussion and coordination within a pair. To the best of my

knowledge, there exists no other work permitting this yet. Although the symmetry

assumptions of the second strategy are strict, my work can be considered as a �rst

step in this direction.

Compared to previous works on interference, I focus my attention on pairs,

which is restrictive on one hand, but the results are more easily interpretable. This

is achieved by allowing for member-speci�c treatments (antidepressant for the de-

pressed member, educational program for the spouse) and also for di�erent outcome

of interests for the di�erent members of the pairs (depression symptoms for the de-

pressed member, some well-being/anxiety measure for the spouse). Previous studies

typically de�ne group-level averages to identify e�ects more easily; however this

would not work with member-speci�c treatments and outcomes of interest.

5

C
E

U
eT

D
C

ol
le

ct
io

n



3. Identi�cation

In this section, after the general framework and notation is introduced (Section

3.1), I present the protocol of the Paired 2×2 Factorial Design (Section 3.3), with

which are associated two identi�cation strategies. Following the discussion of the

identifying assumptions (Section 3.4), the two strategies are described.

The �rst strategy uses only half of the sample to infer treatment e�ects (Half-

sample Identi�cation Strategy, see Section 3.5). This strategy is not a theoretical

advancement per se, it is merely a `trick' to see the problem as one in the traditional

Imbens and Angrist (1994) IV-setting. Consequently, the advantage of it is that

the assumptions of Imbens and Angrist (1994) applied to the interference setup are

su�cient for identi�cation (see Theorem 1). The drawback is that it throws away

the information present in the other half of the sample. The second strategy uses

the whole sample for identi�cation and is the main theoretical result of this thesis

(Full-sample Identi�cation Strategy, see Section 3.6 and Theorem 2). This, however,

comes at the cost of additional strict assumptions.

3.1. Framework & Notation

3.1.1 Statistical Viewpoint & Sampling.

In analysing relationships between variables, multiple approaches can be taken de-

pending on how we view our available data at hand. We can consider our available

data as the whole population or a random sample drawn from the population.3

Throughout the thesis, I take the view that there is an in�nite population of pairs

from which the available data are a single random sample drawn with replacement.

The reason is that, even if the whole population is available, we are likely to want

to sample from it due to cost considerations. Sampling randomly with replacement

from the population is important because this way the sample is independently and

identically distributed which renders the analysis simpler. Given this viewpoint,

there are two possible scenarios.

The �rst scenario is the cleanest, statistically speaking. Suppose that we have

the complete list of the pairs in the population of interest. In principle, we assign

treatment to every single unit in the population in the same way as treatment

assignment protocol is given in Algorithm 1 with the di�erence that this time we

do this for the whole population, not only for the sample. Then we draw a random

3For further details on the implications of this on the analysis of randomised experiments see Athey
and Imbens (2016)
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sample of pairs with replacement (e.g. we independently generate random integers

uniformly corresponding to the unique identi�er of the pairs), and now we tell the

members in the sampled pairs that what their in-principle treatment encoragement

was. In this way, there is a theoretical chance that a pair shows up in the sample

multiple times (because we sample with replacement); however the probability of

this is near-zero.

In the second scenario, suppose that we do not have the list of the population,

but we have a large number of available pairs. Now if we assume that this available

set is itself a random sample drawn with replacement from the population of interest,

we can apply the very same encouragement protocol as that in Algorithm 1 for this

sample. In this way, however, the probability that a pair is present in the sample

multiple times is exactly zero.

Either way, we end up with an independently and identically distributed large

sample of size n from the in�nite population of pairs for the analysis. Hence, every

random variable introduced below is a single draw from their respective distribution

and is indexed with i: i = 1, . . . , n. In general, I omit the index i, except for the

introduction below and when it is necessary to write it out.

3.1.2 Partial Interference

According to partial interference, the interference may occur only within speci�c

groups, pairs in this case, but not across them. Interference stands for possible

interactions between potential outcomes and treatment participation (see Section

3.1.5) within a pair.

3.1.3 Distinguishable Members

The pair members are distinguishable; thus we have member-A and member-B in

each pair of the population. Equivalently, there exists at least one variable along

which we can deterministically distingiush member-A from member-B in the whole

population of interest. In our example, the discriminating variable is whether some-

one is depressed (say, member-A) or not (member-B). Other examples for divison:

healthy-ill, doctor-patient, sister-brother, man-woman, younger-older pairs etc..

3.1.4 Treatment Encouragement

Let ZAi ∈ {0, 1} and ZBi ∈ {0, 1}, i = 1, . . . , n be the binary random variables

indicating the treatment encouragement (assignment) of member-A and member-B
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in the ith pair of the n-large sample. Then ZAi = 1 if and only if member-A in the

ith pair is encouraged to take the member-A speci�c treatment, treatment-A; and

ZBi = 1 if and only if member-B in the ith pair is encouraged to take the memer-B

speci�c treatment, treatment-B. For example, if member-A is the depressed person,

ZAi = 1 and ZBi = 1 means that in pair i we encourage the depressed person to

take the antidepressant and his/her partner to enroll to the educational program.

3.1.5 Treatment Participation

Denoting the observable, actual treatment participation with D, we can distinguish

between four binary random variables belonging to member-A and another four be-

longing to member-B. As a function of the treatment encouragements in pair i, this is

compactly written as DAi(ZAi, ZBi) ∈ {0, 1} and DBi(ZAi, ZBi) ∈ {0, 1}. That is, we
haveDAi(00), DAi(10), DAi(01), DAi(11) andDBi(00), DBi(10), DBi(01), DBi(11).4 To

ease notation, no comma is used to separate arguments when actual numbers (0,1)

are used. It is important to pay attention to the order of the arguments: A comes

�rst so that DAi(01) and DBi(01) describes the actual treatment participation of

members when member-A is not encouraged to take his/her treatment (ZAi = 0)

and member-B is encouraged to take his/her treatment (ZBi = 1).

Among the four variables, there is only one which is observable as there is only

one treatment encouragement which can be given to pair i. In our example, we

obviously cannot instruct the very same depressed person to take and not to take

the antidepressant at the same time. Conveniently, the observable one among the

four random variables can be written as

DAi =ZAiZBiDAi(11) + ZAi(1− ZBi)DAi(10)

+ (1− ZAi)ZBiDAi(01) + (1− ZAi)(1− ZBi)DAi(00) (1)

DBi =ZAiZBiDBi(11) + ZAi(1− ZBi)DBi(10)

+ (1− ZAi)ZBiDBi(01) + (1− ZAi)(1− ZBi)DBi(00), (2)

where the binary treatment encouragement (ZAi, ZBi) `activates' the appropriate

random variables (DAi(ZAi, ZBi), DBi(ZAi, ZBi)) corresponding to the given treat-

ment encouragement.

4The personalised treatment of Kang and Imbens (2016) formally states that DAi(ZAi, ZBi) =
DAi(ZAi) and DBi(ZAi, ZBi) = DBi(ZBi).
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Once again, suppose that member-A is the depressed person. Then by not giv-

ing the depressed person the antidepressant (ZAi = 0) while encouraging his/her

spouse to enroll to the educational program (ZBi = 1), we observe DAi(01) and

DBi(01) telling us whether the depressed member takes the pill and whether the

non-depressed one enrolls to the program given the encouragement (no pill, educa-

tion program).

3.1.6 Potential Outcomes

There are four potential outcomes in pair i for member-A: YAi(DAi, DBi) ∈ R1 and

four for member-B: YBi(DAi, DBi) ∈ R1. These are four-four random variables which

characterise the outcome of interest as a function of the actual treatment partici-

pation of both members in the pair. They can be thought of as random variables

describing the outcome in four states of the world, of which we can only witness one.

Similarly to the treatment encouragment, the observable one of the four is written

as

YAi =DAiDBiYAi(11) +DAi(1−DBi)YAi(10)

+ (1−DAi)DBiYAi(01) + (1−DAi)(1−DBi)YAi(00) (3)

YBi =DAiDBiYBi(11) +DAi(1−DBi)YBi(10)

+ (1−DAi)DBiYBi(01) + (1−DAi)(1−DBi)YBi(00), (4)

where the binary actual treatment participations (DAi, DBi) select the observable

one. It might be the case that YAi(DAi, DBi) and YBi(DAi, DBi) measures the same

thing for the members, i.e. GPA of member-A and GPA of member-B. It might also

be the case that there is only a single potential outcome per pair (e.g. marriage

outcome of married couples; see Section 1.1). If so, YAi(DAi, DBi) = YBi(DAi, DBi),

thus A-B indexing is unnecessarry and the e�ects in Section 3.5 and 3.6 is to be

interpreted accordingly.

In our example (member-A is the depressed), YAi(10) and YBi(10) are the out-

comes of the pair members when the depressed actually takes the antidepressant and

his/her spouse is not enrolled to the educational program; YAi(11) and YBi(11) are

the outcomes when the depressed takes the pill and the non-depressed in enrolled

to the program and so on.
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3.2. Variables in the Sample

To understand how the proposed estimator works, a few more notations have to

be brought in. Let yAi (yBi) denote the sample analogue of the observable out-

come for member-A (member-B); let dAi ≡ [1, dAi, dBi, dAidBi]
′ ∈ {0, 1}4×1 and

dBi ≡ [1, dBi, dAi, dAidBi]
′ ∈ {0, 1}4×1, where dAi (dBi) is the sample-realisation of

treatment participation of member-A (member-B) in pair i; and last let zAi ≡
[1, zAi, zBi, zAizBi]

′ ∈ {0, 1}4×1 and zBi ≡ [1, zBi, zAi, zAizBi]
′ ∈ {0, 1}4×1, where

zAi (zBi) is the sample-realisation of the treatment encouragement of member-A

(member-B) in pair i. Broadcasting them to yA ≡ [yA1, . . . , yAn]′ ∈ Rn×1 and yB ≡
[yB1, . . . , yBn]′ ∈ Rn×1, D′A ≡ [dA1, . . . ,dAn] ∈ {0, 1}4×n and D′B ≡ [dB1, . . . ,dBn] ∈
{0, 1}4×n, Z ′A ≡ [zA1, . . . ,zAn] ∈ {0, 1}4×n and Z ′B ≡ [zB1, . . . ,zBn] ∈ {0, 1}4×n

facilitates more compact notation, with `′' indicating the transpose.

3.3. Paired 2× 2 Factorial Design

After having obtained a large random sample of pairs, the next step in the experi-

ment is to assign treatments to the units (e.g. which depressed person is encouraged

to take the antidepressant and which healthy person is encouraged to enroll to the

educational program). The exact, algorithmic procedure of doing so is the experi-

mental design/protocol, which is presented in this section.

In our case, a good starting point is the 2 × 2 factorial design, which is suit-

able for exploring the interaction e�ect between two binary treatments on a signle

unit (Cheng, 2013). The depression example can be thought of as having two treat-

ment for the same unit/person (we consider education of the partner as the second

treatment for the depressed spouse) which gives rise to the factorial design.

The treatment encouragement protocol is speci�ed, somewhat formally, in Algo-

rithm 1, and is illustrated with the depression example in Algorithm 2. The encour-

agement mechanism is fairly simple and the advantage of it is that upon treatment

assignment, the experimenter does not have to take into account the paired struc-

ture: it is only later, in the treatment e�ect estimation phase, when it is necessary

to keep track of the paired structure. In contrast to the personalised treatment as-

sumption of Kang and Imbens (2016), the experimenter does not have to care about

whether the members in a pair know about each other's encouragement or not, as

discussion and coordination between them is allowed for in the estimation phase.
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Algorithm 1 Paired 2× 2 Factorial Design

1: draw an n-large i.i.d. sample from the population of (member-A, member-B) pairs
2: for k=1:2n do . for each unit, k, in the sample
3: draw x from Bernoulli(P ) i.i.d. with P = 0.5
4: if x ≥ 0.5 then

5: if person is member-A then

6: encouragement(person) ← `take treatment-A!'
7: else

8: encouragement(person) ← `take treatment-B!'

9: zk ← 1 . dummy indicating treatment
10: else

11: encouragement(person) ← excluded from treatment
12: zk ← 0

Output: n pairs with member-speci�c treatment assignment: {(zAi, zBi)}ni=1

Algorithm 2 Paired 2× 2 Factorial Design example

1: draw an i.i.d. sample from the population of (depressed, not depressed) pairs
2: for each person in the sample do
3: �ip a fair coin: P (head) ≡ P = 0.5
4: if head then

5: if person is depressed then

6: encouragement(person) ← `take the pill!'
7: else

8: encouragement(person) ← `enroll to educational program!'

9: else

10: encouragement(person) ← cannot access to pill/education

Output: n pairs with member-speci�c treatment assignment

The encouragement protocol leads to four goups of pairs along treatment assign-

ment: based on the observed values of (ZA, ZB) we have GZA,ZB
: G00,G10,G01,G11. In

our example (member-A is depressed), these are the pairs with treatment encourage-

ment: (no pill, no education), (pill, education), (no pill, education), (pill, education),

respectively. It is easy to see that for P = 0.5 the groups consist of approximately

the same number of pairs, i.e. the proportion of pairs in each group is roughly 25%,

even though we neglected the paired structure during encouragement.5 These groups

play a role in the di�erent identi�cation strategies in Section 3.5 and 3.6.

5See the Monte Carlo simulation of the assignment in assignment_mechanism.py, which veri�es
the 25% proportion.
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3.4. Identifying Assumptions

Once the treatments are assigned to the units based on the protocol in Algorithm

1, the experimenter observes whether they comply and participate in the treatment,

and records their outcome of interest (e.g. symptoms of depression). Before analysing

these data to identify treatment e�ects with the strategies in Section 3.5 or 3.6, it

is crucial that the experimenter is aware of the underlying assumptions. In this

section, the Identifying Assumptions, i.e. the su�cient conditions to identify treat-

ment e�ects, are outlined. The two (half- and full-sample) identi�cation strategies

depend on di�erent set of assumptions: the half-sample identi�cation relies solely

on assumptions A1 − A6, while full-sample identi�cation requires all assumptions

A1 − A8. First, I describe the assumptions formally, and then in a more intuitive

way.

Some assumptions address the treatment encouragement and thus are completely

under the control of the experimenter; they are met by following Algorithm 1 (these

assumptions are not in italic). Other assumptions concern the participation be-

haviour of the subjects and hence are not under the control of the experimenter

(indicated in italic). In between these is One-sided noncompliance, which depends

on both the experimenter and the nature of the treatments. An in-depth view on

assumptions concerning the distribution of treatment participation (A4 − A8) is

provided in Appendix A.

Identifying Assumptions Usual IV assumptions, extended for interference:

A1 Exclusion: YA(DA, DB, ZA, ZB) = YA(DA, DB)

YB(DA, DB, ZA, ZB) = YB(DA, DB)

A2 Random assignment:

[YA(DA, DB), YB(DA, DB), DA(ZA, ZB), DB(ZA, ZB)]⊥⊥ [ZA, ZB]

A3 i.i.d. assigment: ZA⊥⊥ ZB and P (ZA = 1) = P (ZB = 1) ≡ P ∈ (0, 1)

A4 One-sided noncompliance:

DA(ZA = 0, ZB) = DB(ZA, ZB = 0) = 0∀ZA, ZB

A5 Monotonicity: DA(ZA = 1, ZB = 0) ≤ DA(ZA = 1, ZB = 1)

DB(ZA = 0, ZB = 1) ≤ DB(ZA = 1, ZB = 1)

A6 Invertibility:

P (DA(ZA = 1, ZB = 1) = 1, DA(ZA = 1, ZB = 0) = 1) 6= 0

P (DB(ZA = 1, ZB = 1) = 1, DB(ZA = 0, ZB = 1) = 1) 6= 0
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Symmetry assumptions:

A7 Joint willingness:

P (DA(ZA = 1, ZB = 1) = 1) = P (DB(ZA = 1, ZB = 1) = 1)

A8 Spouse sensitivity:

P (DA(ZA = 1, ZB = 1) = 1, DA(ZA = 1, ZB = 0) = 0)

=P (DB(ZA = 1, ZB = 1) = 1, DB(ZA = 0, ZB = 1) = 0) .

3.4.1 Exclusion

The outcome variable is not in�uenced directly by the assignment, only by the actual

treatment participation. That is, the fact itself that the unit is instructed to take

the treatment has no e�ect whatsoever on the outcome of interest � it is only the

fact whether the pair members participate in the treatments which may in�uence

the outcome.

3.4.2 Random Assignment

The assignment must be independent of the outcomes and the actual treatment par-

ticipation. This rules out that the experimenter encourges those units to take the

treatment who is more likely to (i) bene�t from it (e.g. will have higher/lower out-

come) or (ii) follow their treatment instruction (e.g. will have higher participation).

Hence, the experimenter must randomise the treatment assignment.

3.4.3 i.i.d. Assignment

Every single unit in the sample is independently encouraged, with the same prob-

ability, to take his/her appropriate member-speci�c treatment. As a result, the ex-

perimenter does not have to take into account who is the pair of whom during

the assignment procedure; the only thing has to be tracked is whether the unit is

member-A or member-B in the pair in which he/she is.

3.4.4 One-sided Noncompliance

Whenever a unit is not encouraged to take the treatment, he/she is enforcably

excluded from participation, i.e. has no access to the treatment.
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3.4.5 Monotonicity

If a member is willing to take the treatment when his/her partner is excluded from

doing so, he/she must also take the treatment whenever they are both encouraged

to take the treatment.

3.4.6 Invertibility

There must be such member-A and member-B units in the population who partic-

ipate when he/she is encouraged but his/her pair is excluded from the treatment.

In fact, these units form the complier subpopulations for whom the average e�ects

are identi�ed (see later). Intuitively, if there are no units who respect their own

encouragment, ignoring their partner's, we cannot identify and estimate the e�ects.

3.4.7 Joint Willingness

For member-A the willingness to participate when both members in the pair are

encouraged is the same as the willingness of member-B.

3.4.8 Spouse Sensitivity

Member-A and member-B are equally sensitive to the exclusion of their spouse from

the treatment assignment in terms of their participation willingness.

3.5. Half-sample Identi�cation Strategy

Having discussed the assumptions, we can turn to the Half-sample Identi�cation

Strategy, which is rewarding as fewer assumptions are su�cient to identify treatment

e�ects, but is costly as we throw away half of the sample. Figure 1 illustrates how

the half-sample and the full-sample strategies relate to one another.

Figure 1: Half- and Full-sample strategies, with (ZA, ZB) values in the

nodes

(0, 0) (1, 0)

(0, 1) (1, 1)

Half-1

Half-2

Full
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As discussed earlier, the sample can be split up into groups G00,G10,G01,G11 based

on the sample values of (ZA, ZB) . In the Full-sample Identi�cation Strategy we use

the observations in all four groups. In the Half-sample Identi�cation Strategy we use

observations in either groups G00 and G10 (Half-1), or G00 and G01 (Half-2). In our

example, these are the pairs: Half-1: (no pill, no education) and (pill, no education),

or Half-2: (no pill, no education) and (no pill, education). That is, when one member

is excluded from the treatment, so there are exactly two half-sample strategies.

What the half-sample strategy exploits is A4 One-sided noncompliance. Because

under Identifying Assumptions A1 Exclusion and A4 One-sided noncompliance, the

observable outcome variable can be written as

Half-1

Y Half-1
A = DAYA(10) + (1−DA)YA(00)

= YA(00) + (YA(10)− YA(00))DA

Y Half-1
B = DAYB(10) + (1−DA)YB(00)

= YB(00) + (YB(10)− YB(00))DA

Half-2

Y Half-2
A = DBYA(01) + (1−DB)YA(00)

= YA(00) + (YA(01)− YA(00))DB

Y Half-2
B = DBYB(01) + (1−DB)YB(00)

= YB(00) + (YB(01)− YB(00))DB.

From this follows Theorem 1.

Theorem 1 (Half-sample Identi�cation). Applying the IV method of Imbens and An-

grist (1994) in each of the cases (Half-1 and Half-2) separately (that is, instrumenting DA

with ZA and DB with ZB), the Paired 2×2 Factorial Design and Identifying Assumptions

A4−A6 are su�cient to identify:

[1] Average baseline outcomes: E [YA(00)] and E [YB(00)]

[2] Average e�ect of own treatment for compliers (ATEO):

E [YA(10)− YA(00) | DA(10) = 1, DA(11) = 1]

E [YB(01)− YB(00) | DB(01) = 1, DB(11) = 1]

[3] Average e�ect of partner's treatment for those with complier partner (ATEP):

E [YA(01)− YA(00) | DB(01) = 1, DB(11) = 1]

E [YB(10)− YB(00) | DA(10) = 1, DA(11) = 1].

Proof: see Appendix D.
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According to Theorem 1 we can identify the following averages for the member-A:

[1] E [YA(00)] which is the average baseline level for member-A in the whole pop-

ulation, the expected outcome when none of the members is treated. In our

example (member-A is the depressed), this is the average outcome of the de-

pressed member when he/she does not take the antidepressant, and nor does

his/her spouse participate in the educational program.

[2] E [YA(10)− YA(00) | DA(11) = 1, DA(10) = 1] which is the average treatment

e�ect of his/her own (member-speci�c) treatment on member-A, in the com-

plier subpopulation of member-A's, i.e. those who respect their own treatment

encouragment regardless of their partner's access to treatment. In our exam-

ple, this is the average treatment e�ect of the antidepressant (given to the

depressed member) on the depressed member when the non-depressed has no

access to the educational program for the (sub)population of those depressed

people who are willing to take the antidepressant regardless of their spouse's

access to the educational program.

[3] E [YA(01)− YA(00) | DB(11) = 1, DB(01) = 1] which is the average treatment

e�ect of his/her partner's (member-speci�c) treatment on member-A, in the

subpopulation of member-A's who have complier partners, i.e. those whose

partner respect their treatment encouragement, regardless of member-A's ac-

cess to treatment. In our example, this is the average treatment e�ect of

the educational program (given to the non-depressed member) on the de-

pressed member when the depressed has no access to the antidepressant for the

(sub)population of those depressed people who have partners that are willing

to take the educational program regardless of the depressed's access to the

antidepressant.

Similarly, for member-B:

[1] E [YB(00)] which is the average baseline level for member-B in the whole pop-

ulation, the expected outcome when none of the members is treated. In our

example, thsi is the average outcome of the non-depressed member when nei-

ther him/her nor his/her spouse receives their corresponding treatment.

[2] E [YB(01)− YB(00) | DB(11) = 1, DB(01) = 1] which is the average treatment

e�ect of his/her own (member-speci�c) treatment on member-B, in the com-

plier subpopulation of member-B's, i.e. those who respect their own treatment
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encouragment regardless of their partner's access to treatment. In our example,

this is the average treatment e�ect of the educational program (given to the

non-depressed member) on the non-depressed member when the depressed has

no access to the antidepressant for the (sub)population of those non-depressed

people who are willing to take the educational program regardless of their

spouse's access to the antidepressant.

[3] E [YB(10)− YB(00) | DA(11) = 1, DA(10) = 1] which is the average treatment

e�ect of his/her partner's (member-speci�c) treatment on member-B, in the

subpopulation of member-B's who have complier partners, i.e. those whose

partner respect their treatment encouragement, regardless of member-B's ac-

cess to treatment. In our example, this is the average treatment e�ect of the

antidepressant (given to the depressed member) on the non-depressed mem-

ber when the non-depressed has no access to the educational program for the

(sub)population of those non-depressed people who have partners that are

willing to take the antidepressant regardless of the non-depressed's access to

the educational program.

There are only two half-sample strategies in Figure 1. Why only two if there are

more possibilities? In the same spirit, it is tempting to pick any other two groups and

compare the outcomes similarly. The problem is that comparison will not be simpler

then in the full-sample case and/or there is not enough variation in the instrument(s)

(treatment encoragement(s)) or the correlation between the encouragement and the

participation is insu�cient (singular matrix). I do not provide details on this in this

thesis � it can be shown by going through the initial steps of the proof of Theorem

2 in the Appendix.

3.6. Full-sample Identi�cation Strategy

The Full-sample Identi�cation Strategy, the main theoretical advancement of my

work, is also illustrated in Figure 1. The name is self-explanatory: the strategy has

the advantage over the half-sample one that we use information present in the whole

sample. But the experimenter has to be aware of the high price paid for the extra

information: Identifying Assumptions A7 − A8. These symmetry assumptions are

the most restrictive of all, and are unlikely to meet exactly in practice. However,

were it not for A7 − A8, the IV-based identi�cation, which I use, would become

intractable.6

6Even with A7−A8 holding, the proof is quite involved (see Appendix E).
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If the experimenter is willing to make Identifying Assumptions A1 − A8 then

he/she can refer to Theorem 2 for the identi�able treatment e�ects. The identi�ed

e�ects [1]− [3] are identical to those in Theorem 1 and are described in Section 3.5.

What, in addition, is identi�ed is e�ect [4]. This is a spillover-like e�ect which is

quite hard to interpret (in words).

Theorem 2 (Full-sample Identi�cation). Let

θ̂A ≡
(
n−1Z ′ADA

)−1
n−1Z ′AyA =

(
n−1

n∑
i=1

zAid
′
Ai

)−1

n−1
n∑
i=1

zAiyAi

θ̂B ≡
(
n−1Z ′BDB

)−1
n−1Z ′ByB =

(
n−1

n∑
i=1

zBid
′
Bi

)−1

n−1
n∑
i=1

zBiyBi.

Then the Paired 2×2 Factorial Design and Identi�ying Assumptions A4−A8 are su�cient
to identify:

[1] Average baseline outcome: E [YA(00)]

[2] Average e�ect of own treatment for compliers (ATEO):

E [YA(10)− YA(00) | DA(11) = 1, DA(10) = 1]

[3] Average e�ect of partner's treatment for those with complier partner (ATEP):

E [YA(01)− YA(00) | DB(11) = 1, DB(01) = 1]

[4] Spillover-like e�ect:

E [YA(11)− YA(10)− [YA(10)− YA(00)] | DA(11) = 1, DB(11) = 1]

+
r

q̄
{E [YA(10)− YA(00) | DA(11) = 1, DA(10) = 0]

−E [YA(10)− YA(00) | DA(11) = 1, DA(10) = 1]}

+
r

q̄
{E [YA(01)− YA(00) | DB(11) = 1, DB(01) = 0]

−E [YA(01)− YA(00) | DB(11) = 1, DB(01) = 1]}

as the probability limit plim θ̂A, and:

[1] Average baseline outcome: E [YB(00)]

[2] Average e�ect of own e�ect for compliers (ATEO):

E [YB(01)− YB(00) | DB(11) = 1, DB(01) = 1]

[3] Average e�ect of partner's treatment for those with complier partner (ATEP):

E [YB(10)− YB(00) | DA(11) = 1, DA(10) = 1]
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[4] Spillover-like e�ect:

E [YB(11)− YB(01)− [YB(01)− YB(00)] | DB(11) = 1, DA(11) = 1]

+
r

q̄
{E [YB(01)− YB(00) | DB(11) = 1, DB(01) = 0]

−E [YB(01)− YB(00) | DB(11) = 1, DB(01) = 1]}

+
r

q̄
{E [YB(10)− YB(00) | DA(11) = 1, DA(10) = 0]

−E [YB(10)− YB(00) | DA(11) = 1, DA(10) = 1]}

as the probability limit plim θ̂B, where r ≡ P (DA(11) = 1, DA(10) = 0) = P (DB(11) = 1, DB(01) = 0)

and q̄ ≡ P (DA(11) = 1, DB(11) = 1).

Proof: see Appendix E.

It may as well concern us what happens if we refer to the full-sample strategy

while assumptions A7 − A8 do not hold. To examine this case in one particular

setup, I conduct a simulation study, which is reported in the next section.

4. Violation of Symmetry Assumptions: a Monte Carlo Study

of Consistency

To explore the impact of the violation of the symmetry assumptions A7 − A8 of

the full-sample strategy, I carry out a Monte Carlo study to examine how o� the

estimates are compared to the case when the assumptions are met. For the simu-

lation the distributions of the relvant random variables have to be speci�ed. The

distribution of the treatment encouragements (ZA, ZB) is known, however those of

the treatment participations and the potential outcomes are not entirely. Hence, an

arbitrary decision has to be made on these distributions and, as a consequence, the

result of the simulation is conditional on their speci�cation.

First, I construct two types of probability distributions for the treatment par-

ticipation.7 One of the so-constructed distributions ful�lls Identifying Assumptions

A7− A8:

P (DA(11) = 1)− P (DB(11) = 1) = 0 (5)

P (DA(11) = 1, DA(10) = 0)− P (DB(11) = 1, DB(01) = 0) = 0, (6)

7Each type is a multivariate Bernoulli distribution (Dai et al., 2012) of the vector
(DA(10), DA(11), DB(01), DB(11)) ∈ {0, 1}4. Note that DA(00) = DA(01) = DB(00) =
DB(10) = 0 because of A4 One-sided noncompliance, hence we do not have to include them
in the distributions; further note that the distribution of (DA(10), DA(11), DB(01), DB(11)) is
zero for some combinations because of A5 Monotonicity.
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while the other is crafted on purpose to violate A7− A8:

P (DA(11) = 1)− P (DB(11) = 1) = d1 (7)

P (DA(11) = 1, DA(10) = 0)− P (DB(11) = 1, DB(01) = 0) = d2 (8)

d1 6= 0 (9)

d2 6= 0. (10)

Having �xed the deviations at eirher zero or not, the distribution of treatment

participation is not yet fully speci�ed as there remains a lot of free parameters

to assign value to. (For further details on their choice and on how the Identifying

Assumptions A4− A8 are present in the distribution, refer to Appendix A and the

Python codes.8)

Second, the distribution of the potential outcomes given the treatment participa-

tions remains to speci�ed. This is a conditional distribution, the advantage of which

is that it captures endogenous self-selection into the treatment which necessitates

the IV approach in the �rst place. In other words, the distribution represents the

situation when noncompliance occurs because the unit knows that participation will

not, on average, mean a better outcome for him/her than opting out. For sake of

simplicity, I work with a multivariate normal distribution, where the mean vector

depends on the treatment participation9, but the covariance matrix does not. That

is, the units are sensitive to the expected outcomes but not to their variation. Then

how the mean vector is speci�ed is, again, arbitrary. In this study, I choose a few

behavioural patterns based on which I build the conditional mean vector. These

are the following: (i) higher outcome is better � units aim to achieve high expected

change in outcomes; and (ii) laziness � if no strictly positive expected change in

outcome, then no participation; and (iii) lazy altruism toward spouse � participa-

tion even if the unit is worse-o� as long as the sum of the expected changes for

both members is strictly positive. The covariance matrix is speci�ed so that any

two potential outcomes are positively correlated, which is often the case in (social

science) applications. (For further details refer to Appendix B.)

Finally, having speci�ed the distributions, we can see how sensitive the consis-

tency is to the violation of symmetry assumptions A7−A8. To get a clear picture, I

8For now, let us just remark that the parameters are given so that the distribution is approximately
uniform over the combinations of the values of (DA(10), DA(11), DB(01), DB(11)), except those
probabilites directly a�ected by d1, d2.

9i.e. on the the value of (DA(10), DA(11), DB(01), DB(11))
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trace out the bias of the four-four treatment e�ects estimators (four for member-A

and B) as compared to the case when A7−A8 hold10, and their variances for di�er-

ent combinations of d1, d2. (For exact details of the implementation, see Algorithm

3 in Appendix C and the Python codes.) Using 1000 Monte Carlo repetitions, I

conducted the experiment with sample sizes n = 250, 300, 400, the results of which

are in Figures 2, 3, 4 respectively.11

The baseline estimator when symmetry is violated (θ̂1) does not seem to exhibit

any regular pattern as a function of the deviations (d1, d2); however the bias as

compared to the symmetrical case shrinks, as does the variance, as the sample size

grows. Thus the baseline estimator seems to show mean square convergence (which

implies consistency) irrespective of whether symmetry holds.

The same irregularity goes for the bias of the own e�ect estimator for member-A

(θ̂A2 ) and the partner e�ect estimator for member-B (θ̂B3 ). Their variances, on the

other hand, exhibit the same behaviour as a function of the deviations, and are

decaying to zero in the neighbourhood of d1 = 0, d2 = 0 as n grows. This suggests

that the consistency of these estimators is somewhat robust to minor violations of

symmetry assumptions.

Similarly, the bias of the own e�ect estimator for member-B (θ̂B2 ) and the bias of

the partner e�ect estimator for member-A (θ̂A3 ) display the same pattern. So does

their variances, which is more sensitive to the deviation in d2. In the light of this,

the consistency of these estimators is less robust to minor violations of symmetry

assumptions.

The bias of the estimator of the spillover-like e�ect (θ̂4) reveals a regular pattern,

just like its variance, for both members. Even though the variance is by far the

largest for the spillover-like e�ect, it slowly decreses in the sample size. Judging by

the �gures, the consistency of these estimators is probably more robust to minor

violations of symmetry assumptions than θ̂B2 and θ̂A3 , but less than θ̂
A
2 and θ̂B3 .

10That is, (expected value when symmetry does not hold)-(expected value when symmetry holds).
11White blank areas in the �gures are points in the (d1, d2) space for which the probability mass
function of the treatment participation is invalid (negative) given the chosen values of other
parameters of the distribution.
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Figure 2: Monte Carlo results when symmetry does not hold, n = 250
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Figure 3: Monte Carlo results when symmetry does not hold, n = 300
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Figure 4: Monte Carlo results when symmetry does not hold, n = 400
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5. Conclusion, Limitations and Further Research

In my thesis, I proposed an experimental design and two treatment e�ect identi�ca-

tion strategies (based on instrumental variables) when there is interference within

prede�ned pairs, made up by distinguishable members (e.g. healthy-ill members),

and there is imperfect compliance, probably of endogenous nature, with treatment

encouragement. As opposed to previous works addressing these two issues, my strate-

gies allow for within-pair discussion and coordination of treatment participation.

Both strategies are suitable for identifying the average treatment e�ects of two, po-

tentially member-speci�c, binary treatments on two, potentially member-speci�c,

outcomes belonging to the di�erent pair members (or on one single outcome belong-

ing to a pair) in complier subpopulations. Hence, we can identify an own e�ect and

a partner e�ect for both members separately. Unfortunately, the joint e�ect of the

two treatments is not identi�ed.

One of the strategies throws away half of the sample but requires less assump-

tions. The other one, the main theoretical contribution of this thesis, uses the whole

sample but comes at the high cost of strict symmetry assumptions on the members'
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participation willingness. Even though a Monte Carlo study suggests that the con-

sistency of the proposed estimators in this second strategy is somewhat robust to

minor violation of symmetry, this is hardly generalisable as the simulation results

are conditional on speci�c, arbitrarily chosen distributions. Thus, extra care should

be taken if the design is applied to real-life problems � the safe choice is obviously

the half-sample strategy. Furthermore, I would recommend the use of bootstrap re-

sampling to explore the properties of the estimators of the two strategies in the data

at hand.

In addition to the symmetry assumptions, there are some drawbacks of my

method. First, generalisation to more than two units in a group is hardly feasible due

to the exponentially growing number of combinations. Second, working with distin-

guishable pair members has its advantages on one hand (member-speci�c treatments

and outcomes), but is restrictive on the other because pairs with indistinguishable

members require a di�erent identi�cation strategy. To the best of my kowledge, there

is no such strategy which permits coordination of treatment participation, so this

remains a subject of further research.

Last, but not least, future research topics could include inference, that is, to

establish the asymptotic distribution of the estimators. Besides, one could consider

blocking on pretreatment variables, i.e. to implement the Paired 2 × 2 Factorial

Design within a block design, to reduce asymptotic variance.
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Appendices

A. Distribution of Treatment Participation

The purpose of examining the distribution of the treatment participation is three-

fold: to see what the Identifying Assumptions A5−A8 require from the distribution

to exhibit (Appendix A.1); to derive an intermediate result from these which is

later used in the proof of Theorem 2 (Appendix A.2); and to implement the Monte

Carlo simulation in Section 4 (Appendix A.3). As previously, I use the abbrevia-

tions DA(10) for DA(ZA = 1, ZB = 0), DA(01) for DA(ZA = 0, ZB = 1), DB(10)

for DB(ZA = 1, ZB = 0), DB(01) for DB(ZA = 0, ZB = 1) and so on. During

the analysis, A4 One sided-noncompliance is assumed to hold, leading to the de-

generate random variables DA(00) = DA(01) = DB(00) = DB(10) = 0. Hence the

distribution boils down to that of D ≡ [DA(10), DA(11), DB(01), DB(11)]′. This is

a 4-variate Bernoulli distribution supported on {0, 1}4 and can be characterised by

16 non-negative parameters (Dai et al., 2012), each of which indicates the joint

prabability of a certain combination of zeros and ones:

p0000 ≡ P (DA(10) = 0, DA(11) = 0, DB(01) = 0, DB(11) = 0)

p1000 ≡ P (DA(10) = 1, DA(11) = 0, DB(01) = 0, DB(11) = 0)

p0100 ≡ P (DA(10) = 0, DA(11) = 1, DB(01) = 0, DB(11) = 0)

...

p0001 ≡ P (DA(10) = 0, DA(11) = 0, DB(01) = 0, DB(11) = 1)

p1111 ≡ P (DA(10) = 1, DA(11) = 1, DB(01) = 1, DB(11) = 1) .

Let p's be denoted by P , then the probability mass function of D is

fP(D) =p
DA(10)DA(11)DB(01)DB(11)
1111 p

[1−DA(01)][DA(11)DB(01)DB(11)]
0111 × . . .

× p[1−DA(10)][1−DA(11)][1−DB(01)][1−DB(11)]
0000 .

A.1. Implications of Identifying Assumptions

A5 Monotonicity. Monotonicity requires DA(10) ≤ DA(11) and DB(01) ≤ DB(11).

Hence whenever DA(10) > DA(11) or DB(01) > DB(11) we need fP(D) = 0 which

is met by p10.. = p..10 = 0, or for more explicit form see Lemma 1.
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Lemma 1 (Conditions for A5 Monotonicity). For Identifying Assumption A5 Mono-

tonicity to hold the condition

p1000 = p0010 = p0110 = p1010 = p1001 = p1011 = p1110 = 0.

is necessary and su�cient.

A6 Invertibility. Having clari�ed the implications of A5, let us turn our attention

to A6 Invertibility which has P (DA(11) = 1, DA(10) = 1) 6= 0 and

P (DB(11) = 1, DB(01) = 1) 6= 0. By the law of total probability and A5 Monotonic-

ity we can express these in terms of P :

P (DA(11) = 1, DA(10) = 1) = P (DA(10) = 1, DA(11) = 1, DB(01) = 1, DB(11) = 1)

+ P (DA(10) = 1, DA(11) = 1, DB(01) = 0, DB(11) = 1)

+ P (DA(10) = 1, DA(11) = 1, DB(01) = 0, DB(11) = 0)

= p1111 + p1101 + p1100

P (DB(11) = 1, DB(01) = 1) = P (DA(10) = 1, DA(10) = 1, DB(01) = 1, DB(11) = 1)

+ P (DA(10) = 0, DA(11) = 1, DB(01) = 1, DB(11) = 1)

+ P (DA(10) = 0, DA(11) = 0, DB(01) = 1, DB(11) = 1)

= p1111 + p0111 + p0011.

Hence

P (DA(11) = 1, DA(10) = 1) 6= 0 ⇐⇒ p1111 + p1101 + p1100 6= 0

⇐⇒ min({p1111, p1101, p1100}) > 0

P (DB(11) = 1, DB(01) = 1) 6= 0 ⇐⇒ p1111 + p0111 + p0011 6= 0

⇐⇒ min({p1111, p0111, p0011}) > 0,

from which follows Lemma 2.

Lemma 2 (Conditions for A6 Invertibility). For Identifying Assumptions A6 In-

vertibility to hold, assuming that A5 Monotonicity holds, the conditions

min({p1111, p1101, p1100}) > 0

min({p1111, p0111, p0011}) > 0
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are necessary and su�cient. This implies that the condition p1111 > 0 is su�cient

for A6 to hold.

A7 Joint willingness. Joint willingness has P (DA(11) = 1) = P (DB(11) = 1).

We continue in the same fashion, expressing the assumption with P . By the law of

total probability and by A5 Monotonicity holding:

P (DA(11) = 1) = P (DA(10) = 1, DA(11) = 1, DB(01) = 1, DB(11) = 1)

+ P (DA(10) = 0, DA(11) = 1, DB(01) = 1, DB(11) = 1)

+ P (DA(10) = 1, DA(11) = 1, DB(01) = 0, DB(11) = 1)

+ P (DA(10) = 0, DA(11) = 1, DB(01) = 0, DB(11) = 1)

+ P (DA(10) = 1, DA(11) = 1, DB(01) = 0, DB(11) = 0)

+ P (DA(10) = 0, DA(11) = 1, DB(01) = 0, DB(11) = 0)

= p1111 + p0111 + p1101 + p0101 + p1100 + p0100

P (DB(11) = 1) = P (DA(10) = 1, DA(11) = 1, DB(01) = 1, DB(11) = 1)

+ P (DA(10) = 0, DA(11) = 1, DB(01) = 1, DB(11) = 1)

+ P (DA(10) = 1, DA(11) = 1, DB(01) = 0, DB(11) = 1)

+ P (DA(10) = 0, DA(11) = 1, DB(01) = 0, DB(11) = 1)

+ P (DA(10) = 0, DA(11) = 0, DB(01) = 1, DB(11) = 1)

+ P (DA(10) = 0, DA(11) = 0, DB(01) = 0, DB(11) = 1)

= p1111 + p0111 + p1101 + p0101 + p0011 + p0001,

which implies

P (DA(11) = 1) = P (DB(11) = 1) ⇐⇒

p1100 + p0100 = p0011 + p0001,

thus we get Lemma 3.

Lemma 3 (Conditions for A7 Joint willingness). For Identifying Assumptions A7

Joint willingness to hold, assuming that A5 Monotonicity holds, the condition

p1100 + p0100 − (p0011 + p0001) = 0

is necessary and su�cient.
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A8 Spouse sensitivity. Spouse sensitivity has: P (DA(10) = 0, DA(11) = 1) =

P (DB(01) = 0, DB(11) = 1). Repeating our routine, by the law of total probabil-

ity and A5:

P (DA(10) = 0, DA(11) = 1) = P (DA(10) = 0, DA(11) = 1, DB(01) = 1, DB(11) = 1)

+ P (DA(10) = 0, DA(11) = 1, DB(01) = 0, DB(11) = 1)

+ P (DA(10) = 0, DA(11) = 1, DB(01) = 0, DB(11) = 0)

= p0111 + p0101 + p0100

P
(
D′j(01) = 0, DB(11) = 1

)
= P (DA(10) = 1, DA(11) = 1, DB(01) = 0, DB(11) = 1)

+ P (DA(10) = 0, DA(11) = 1, DB(01) = 0, DB(11) = 1)

+ P (DA(10) = 0, DA(11) = 0, DB(01) = 0, DB(11) = 1)

= p1101 + p0101 + p0001,

which implies

P (DA(10) = 0, DA(11) = 1) = P
(
D′j(01) = 0, DB(11) = 1

)
⇐⇒

p0111 + p0100 = p1101 + p0001,

thus we get Lemma 4.

Lemma 4 (Conditions for A8 Spouse sensitivity). For Identifying Assumptions A8

Spouse sensitvity to hold, assuming that A5 Monotonicity holds, the condition

p0111 + p0100 − (p1101 + p0001) = 0

is necessary and su�cient.

A.2. Rami�cation of A7− A8: a Useful Intermediate Result

The symmetry assumptions A7− A8 have an important implication, which is used

in the proof of Theorem 2 in Appendix E. The implication itself is a symmetry

condition and is stated in Lemma 5.

Lemma 5 (Consequence of A5, A7, A8). If symmetry assumptions A7 − A8 and

A5 Monotonicity holds, then it must be that

P (DA(10) = 1) = P (DB(01) = 1) .
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Proof of Lemma 5. The proof is straightforward, we proceed in the the familiar

way, expressing the probabilities with P . By the law of total probability and A5

Monotonicity holding:

P (DA(10) = 1) = P (DA(10) = 1, DA(11) = 1, DB(01) = 1, DB(11) = 1)

+ P (DA(10) = 1, DA(11) = 1, DB(01) = 0, DB(11) = 1)

+ P (DA(10) = 1, DA(11) = 1, DB(01) = 0, DB(11) = 0)

= p1111 + p1101 + p1100

P (DB(01) = 1) = P (DA(10) = 1, DA(11) = 1, DB(01) = 1, DB(11) = 1)

+ P (DA(10) = 0, DA(11) = 1, DB(01) = 1, DB(11) = 1)

+ P (DA(10) = 0, DA(11) = 0, DB(01) = 1, DB(11) = 1)

= p1111 + p0111 + p0011,

so

P (DA(10) = 1) = P (DB(01) = 1) ⇐⇒

p1101 + p1100 = p0111 + p0011.

We know from Lemmas 3 and 4 that whenever A5 holds, the necessary and su�cient

conditions are

p1100 + p0100 − (p0011 + p0001) = 0 (11)

p0111 + p0100 − (p1101 + p0001) = 0 (12)

for A7 − A8 to hold. In other words, if A5 and A7 − A8 holds then these must be

true. But if both hold then the necessary and su�cient condition for Lemma 5 is

true, thus Lemma 5 must hold. This is seen by subsracting (12) from (11).

A.3. Constructing the Distribution of Treatment Participation for the

Monte Carlo Study

Let us quickly review what is known so far about the distribution. The 4-variate

Bernoulli distribution is fully speci�ed by 16 parameters, P , that are constrained by

Identifying Assumptions A5−A8. A5 Monotonicity requires 7 parameters to be zero

(Lemma 1), and for A6 Invertibility p1111 > 0 is su�cient, and A7−A8 impose two

resrictions on the parameters. To assess the impacts of the violation of the symmetry

31

C
E

U
eT

D
C

ol
le

ct
io

n



assumptions, we want to construct a distribution which respects the requirements

of A5 − A6 but allows for deliberate discrepancies in A7 − A8. In other words, we

want to specify d1 and d2 in

P (DA(11) = 1)− P (DB(11) = 1) = d1

P (DA(11) = 1, DA(10) = 0)− P (DB(11) = 1, DB(01) = 0) = d2.

A speci�cation d1 6= 0 means that A7 is violated, and a speci�cation d2 6= 0 means

that A8 is violated. Based on the previous results of expressing these probabilities

in terms of P , we can write

P (DA(11) = 1)− P (DB(11) = 1) = p0001 − p0100

− p1100 + p0011

P (DA(11) = 1, DA(10) = 0)− P (DB(11) = 1, DB(01) = 0) = p0001 − p0100

+ p1101 − p0111

and then want to solve for p's given the d's:

[
−1 1 1 −1 0 0

−1 1 0 0 −1 1

]


p0001

p0100

p1100

p0011

p1101

p0111


=

[
d1

d2

]
,

from which

[
−1 1 1 −1 0 0

0 0 −1 1 −1 1

]


p0001

p0100

p1100

p0011

p1101

p0111


=

[
d1

d2 − d1

]
.
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The system is underdetermined and there is no contradiction, thus we can have

p0001 = −d1 + p0100 + p1100 − p0011 (13)

p0111 = d2 − d1 + p1100 − p0011 + p1101. (14)

So given d1, d2, we can freely choose p0100, p1100, p0011 and p1101 subject to non-

negativity contraints. Tthe relationships between the parameters, and what can be

chosen freely and what is a�ected are summarised in Table 2.

Table 2: Distribution of treatment participation

Parameter How is the parameter speci�ed?
0 by A5? Free to choose? Determined by what?

p0000 Xs.t. ≥ 0

p1000 Yes, 0
p0100 X s.t. ≥ 0
p0010 Yes, 0
p0001 X and d1, d2

p1100
A XX s.t. ≥ 0

p0110 Yes, 0
p0011

B XX s.t. ≥ 0
p1010 Yes, 0
p0101 Xs.t. ≥ 0
p1001 Yes, 0

p0111
B X and d1, d2

p1011
A Yes, 0

p1101
A X s.t. ≥ 0

p1110
A Yes, 0

p1111
A, B Xs.t. > 0

A determines complier subpopulation for the treatment e�ects: DA(10) =
1 and DA(11) = 1
B determines complier subpopulation for the treatment e�ects: DB(01) =
1 and DB(11) = 1
A, B determines both above

This is complete in theory, but it provides only guidance in practice, as one has

to make sure that the probability mass function adds up to one. To ensure that

this is ful�lled, the discrepancies d1, d2 hold, and one can specify the free-to-choose

probabilities in an intuitive way without having to worry about normalisation, I ap-

ply a multi-stage procedure.12 In the �rst stage, the user speci�es the discrepancies,

d1, d2 and weights for the free-to-choose parameters. The non-negative weights are

intuitive and what matters is their ratio. Then a quasi-normalisation is done with

12See the Python code for formal details.

33

C
E

U
eT

D
C

ol
le

ct
io

n



the sum of weights on the free-to-choose parameters, taking into account their future

role in determining p0001 and p0111. Next, the two parameters, p0001 and p0111, are

computed as speci�ed by Equations (13), (14) using the quasi-normalised weights

from the previous step as the right-hand-side probabilities and using d1, d2. The

�nal step is a normalisation, after which we obtain a valid p.m.f., where the ratios

and the discrepancies speci�ed in the �rst step approximately hold.

Following the steps speci�ed above, we end up with a distribution which ful�lls

A5 and A6, and either ful�lls both A7 and A8, or fails to ful�ll one or both of

them. In Appendix C, where the details of the Monte Carlo simulation are outlined

in Algorithm 3, the former is denoted by fD,S, while the latter by fD,¬S, where

D = [DA(10), DA(11), DB(01), DB(11)]′.

B. Conditional Distribution of Potential Outcomes

For the Monte Carlo simulation it is necessary to specify the distribution of the

random variables involved. The joint 4-variate distribution characterising the treat-

ment participation is given in Appendix A, with emphasis on Monte Carlo in Ap-

pendix A.3. In this section, I specify the distribution of the potential outcomes

conditional on the treatment participation. As noted in Section 4, the virtue of

the conditional distribution is that it represents endogenous self-selection into the

treatment. The conditional distribution is denoted by fY|D(. | ΘY(D)) 8-variate

p.d.f., where Y = [YA(00), YA(10), YA(01), YA(11), YB(00), YB(10), YB(01), YB(11)]′

and D = [DA(10), DA(11), DB(01), DB(11)]′. To simplify analysis, I choose to work

with a 8-variate normal distribution, the covariance matrix of which does not depend

on the treatment participation, unlike its mean vector, so ΘY(D) = {µ(D),Σ}.
As discussed in Section 4, the dependence of the expected potential outcomes on

the treatment participation re�ects certain behavioural patterns of the subjects. In

Section 4, three principles are listed (higher outcome is better; laziness, lazy altruism

toward spouse), which summarises the following exact rules on participation:

� Let improvement mean a zero or positive expected change in the potential

outcome stemming from participation.

� Let decline mean a strictly negative expected change in the potential outcome

stemming from participation.

� Let welfare-change mean the sum of the expected changes in the potential

outcomes of both members stemming from participation.
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� If no member has strict improvement, no member participates.

� If both members have strict improvement, both participate.

� Member-A (Member-B) does not participate if there is no strictly positive

welfare-change and there is own decline.

� Member-A (Member-B) participates if there is no strictly positive welfare-

change but there is own strictly postive improvement.

� Member-A participates if |declineA|< improvementB.

� Member-B participates if |declineB|< improvementA.

Then µ(D) is chosen to comply with these rules and is given in Table 3 for those

values of D which have non-zero probability by A5 Monotonicity.

What remains to be speci�ed is the covariance matrix, Σ. Before the simulation,

I initialise a random positive semide�nite matrix in R8×8, where the covariance

between any two potential outcomes is positive, which is likely the case in a lot of

applications in social sciences. Then I use this matrix throughout every step of the

simulation afterwards.

Table 3: Mean vector of potential outcomes conditional on the

treatment particiption

D′\µ′ of YA(00) YA(10) YA(01) YA(11) YB(00) YB(10) YB(01) YB(11)

[0, 0, 0, 0] 0 0 0 0 1 1 1 1
[0, 1, 0, 0] 0 0 0 1 1 1 1 0
[0, 0, 0, 1] 0 0 0 -1 1 1 1 2

[1, 1, 0, 0] 0 1 0 1 1 1 0 0
[0, 0, 1, 1] 0 -1 0 -1 1 1 2 2
[0, 1, 0, 1] 0 0 0 4 1 1 1 5

[0, 1, 1, 1] 0 0 3 6 1 1 0 7
[1, 1, 0, 1] 0 -1 0 6 1 3 1 7

[1, 1, 1, 1] 0 5 6 8 1 4 8 10

C. Implementation of the Monte Carlo simulation

This section describes the technical details of the Monte Carlo simulation, described

in Section 4, to explore the e�ects of the violation of symmetry assumptons A7−A8.

The pseuso-code of implementation is in Algorithm 3. Pay attention to the order of

arguments in the treatment paticipation and potential outcomes in the pseudo code.
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Due to lack of space, no keyword arguments are possible. Hence, whenever letters A

and B are used the �rst arguments always belong to member-A and the second to

member-B. When the generic j, j′ indexing is used the �rst argument always belongs

to member-j and the second to member-j′.
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Algorithm 3 Monte Carlo simulation

1: let ◦ denote the Hadamard, i.e. element-wise product
2: n← large sample size
3: R← Monte Carlo repetitions
4: construct fD,S 4-variate p.m.f. such that it ful�ls symm. assumptions A7−A8
5: construct fD,¬S 4-variate p.m.f. such that it does not ful�l A7−A8, where
D = [DA(10), DA(11), DB(01), DB(11)]′

6: construct fY|D(. | ΘY(D)) 8-variate p.d.f., where
Y = [YA(00), YA(10), YA(01), YA(11), YB(00), YB(10), YB(01), YB(11)]′

. Draw a sample from DGP at each Monte Carlo repetition
7: for r = 1 : R do

. Treatment assignment
8: zA, zB ← n× 1 vectors generated by Algorithm 1

. One-sided noncompliance
9: dA(00),dA(01),dB(00),dB(10)← 0n×1 zero vectors

. DGP when symmetry holds (S) and does not hold (¬S)
10: for s = S,¬S do

. Treatment participation: potential
11: dA,s(10),dA,s(11),dB,s(01),dB,s(11)← each row is i.i.d. draw from fD,s

. Treatment participation: observed
12: dA,s ← zA ◦ zB ◦ dA,s(11) + zA ◦ (1− zB) ◦ dA,s(10)

+(1− zA) ◦ zB ◦ dA(01) + (1− zA) ◦ (1− zB) ◦ dA(00)
13: dB,s ← zA ◦ zB ◦ dB,s(11) + zA ◦ (1− zB) ◦ dB(10)

+(1− zA) ◦ zB ◦ dB,S(01) + (1− zA) ◦ (1− zB) ◦ dB(00)
. Potential outcomes

14: yA,s(00),yA,s(10),yA,s(01),yA,s(11),yB,s(00),yB,s(10),yB,s(01),yB,s(11)←
each row, i, is i.i.d. draw from
fY|D(. | ΘY([dA,s,i(10), dA,s,i(11), dB,s,i(01), dB,s,i(11)]))

. Estimators
15: for j = A,B do . j′ = {A,B} \ {j}

. Observed outcome
16: yj,S ← dj,S ◦ dj′,S ◦ yj,S(11) + dj,S ◦ (1− dj′,S) ◦ yj,S

+(1− dj,S) ◦ dj′,S ◦ yj,S(01) + (1− dj,S) ◦ (1− dj′,S) ◦ yj,S(00)
17: yj,¬S ← dj,¬S ◦ dj′,¬S ◦ yj,¬S(11) + dj,¬S ◦ (1− dj′,¬S) ◦ yj,¬S

+(1− dj,¬S) ◦ dj′,¬S ◦ yj,¬S(01) + (1− dj,¬S) ◦ (1− dj′,¬S) ◦ yj,¬S(00)
18: Dj,S ← [1n×1,dj,S ,dj′,S ,dj,S ◦ dj′,S ]
19: Dj,¬S ← [1n×1,dj,¬S ,dj′,¬S ,dj,¬S ◦ dj′,¬S ]
20: Zj ← [1n×1, zj , zj′ , zj ◦ zj′ ]
21: θ̂nj,S(r)← (Z ′jDj,S)−1Z ′jyj,S . consistent estimator under symm. ass.

22: θ̂nj,¬S(r)← (Z ′jDj,¬S)−1Z ′jyj,¬S . estimator when symm. ass. violated

. Check consistency: consistent for member-j if

23: E
[
θ̂nj,¬S

]
− E

[
θ̂nj,S

]
≈ R−1

R∑
r=1

θ̂nj,¬S(r)−R−1
R∑
r=1

θ̂nj,S(r)
n→∞−→ 04×1 and

24: V
[
θ̂nj,¬S

]
≈ R−1

R∑
r=1

θ̂nj,¬S(r)θ̂nj,¬S(r)′ −R−2

(
R∑
r=1

θ̂nj,¬S(r)

)(
R∑
r=1

θ̂nj,¬S(r)

)′
n→∞−→ 04×4
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D. Proof of Theorem 1

The proof of Theorem 1 directly follows from the results of Imbens and Angrist

(1994). When using G10 and G00, we set D(1) ≡ DA(ZA = 1, ZB = 0), D(0) ≡
DA(ZA = 0, ZB = 0), and Y (1) ≡ Yj(DA = 1, DB = 0), Y (0) ≡ Yj(DA = 0, DB = 0)

for j ∈ {A,B}. Directly applying the results of Imbens and Angrist (1994) gives

the own e�ect for member-A (in the subpopulation of complier member-A's) and

the partner e�ect for member-B (in the subpopulation with complier member-A

partner):

E [YA(DA = 1, DB = 0)− YA(DA = 0, DB = 0) | DA(ZA = 1, ZB = 0) = 1]

E [YB(DA = 1, DB = 0)− YB(DA = 0, DB = 0) | DA(ZA = 1, ZB = 0) = 1] .

Now under A5 Monotonicity the condition DA(ZA = 1, ZB = 0) = 1 is equivalent

to the condition DA(ZA = 1, ZB = 0) = 1 and DA(ZA = 1, ZB = 1) = 1.

When using G01 and G00, we set D(1) ≡ DB(ZA = 0, ZB = 1), D(0) ≡ DB(ZA =

0, ZB = 0), and Y (1) ≡ Yj(DA = 0, DB = 1), Y (0) ≡ Yj(DA = 0, DB = 0)

for j ∈ {A,B}. Then we can immediately apply the proof of Imbens and Angrist

(1994) again to obtain the own e�ect for member-B (in the subpopulation of com-

plier member-B's) and the partner e�ect for member-A (in the subpopulation with

complier member-B partner):

E [YA(DA = 0, DB = 1)− YA(DA = 0, DB = 0) | DB(ZA = 0, ZB = 1) = 1]

E [YB(DA = 0, DB = 1)− YB(DA = 0, DB = 0) | DB(ZA = 0, ZB = 1) = 1] .

Now under A5 Monotonicity the condition DB(ZA = 0, ZB = 1) = 1 is equivalent

to the condition DB(ZA = 0, ZB = 1) = 1 and DB(ZA = 1, ZB = 1) = 1.

The results of Imbens and Angrist (1994) apply as A5 Monotonicity together

with A6 Invertibility implies that P (DA(10) = 1) 6= 0 and P (DB(01) = 1) 6= 0.

Thus the proof of Theorem 1 is complete �

E. Proof of Theorem 2

E.1. Generic Notation

To make the proof of Theorem 2 generic for both member-A and member-B, I adopt

a general j, j′ indexing so that j ∈ {A,B} and j′ ∈ {A,B} \ {j}. That is, when j
is �xed at A, j′ stands for member-B, and when j represents member-B, j′ denotes

member-A.
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Treatment encouragement. Zji denotes the member-j speci�c treatment encour-

agement and is 1 if and only if member-j in pair i is encouraged to take the member-j

speci�c treatment. Similarly, Zj′i denotes the member-j′ speci�c treatment encor-

agement in pair i and is 1 if and only if member-j′ in pair i is encouraged to take the

member-j′ speci�c treatment. Suppose that j ≡ A, and member-A is the depressed

person. Then Zji = 1 means that the depressed person in pair i is encouraged to

take the treatment.

Treatment participation. Let Dji(Zji, Zij′) denote the treatment participation of

member-j when the treatment encouragement of member-j in pair i is Zji, while

that of member-j′ is Zj′i. It is again important to pay attention to the order of the

arguments: Dji(01) is the treatment participation of member-j, and Dj′i(01) is the

treatment participation of member-j′ in pair i when member-j is not encouraged to

take his/her treatment, while member-j′ is encouraged (i.e. the �rst argument always

stands for member-j). Then the observable treatment participation is written as

Dji =ZjiZj′iDji(11) + Zji(1− Zj′i)Dji(10)

+ (1− Zji)Zj′iDji(01) + (1− Zji)(1− Zj′i)Dji(00) (15)

Dj′i =ZjiZj′iDj′i(11) + Zji(1− Zj′i)Dj′i(10)

+ (1− Zji)Zj′iDj′i(01) + (1− Zji)(1− Zj′i)Dj′i(00). (16)

Suppose that j ≡ A, and member-A is the depressed person. Then by not giving the

depressed person the antidepressant (Zij = 0) while encouraging his/her spouse to

enroll to the educational program (Zij′ = 1), we observe Dij(01) and Dij′(01) telling

us whether the depressed member takes the pill and whether the non-depressed one

enrolls to the program given the encouragement (no pill, education program).

Potential outcomes. There are four potential outcomes in pair i for member-j:

Yji(Dji, Dj′i) ∈ R1 and four for member-j′: Yj′i(Dji, Dj′i) ∈ R1. Similarly to the

treatment encouragment, the observable one of the four is written as

Yji =DjiDj′iYji(11) +Dji(1−Dj′i)Yji(10)

+ (1−Dji)Dj′iYji(01) + (1−Dji)(1−Dj′i)Yji(00) (17)

Yj′i =DjiDj′iYj′i(11) +Dji(1−Dj′i)Yj′i(10)

+ (1−Dji)Dj′iYj′i(01) + (1−Dji)(1−Dj′i)Yj′i(00), (18)
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where the binary actual treatment participation (Dji, Dj′i) selects the observable

one. In our example (j ≡ A = depressed member), Yji(10) and Yj′i(10) are the

outcomes of the pair members when the depressed actually takes the antidepressant

and his/her spouse is not enrolled to the educational program; Yji(11) and Yj′i(11)

are the outcomes when the depressed takes the pill and the non-depressed in enrolled

to the program and so on.

Variables in the sample. Let yji denote the sample analogue of the observable

outcome for member-j; let dji ≡ [1, dji, dj′i, djidj′i]
′ ∈ {0, 1}4×1, where dji is the

sample-realisation of treatment participation of member-j in pair i; and last let zji ≡
[1, zji, zj′i, zjizj′i]

′ ∈ {0, 1}4×1, where zji is the sample-realisation of the treatment

encouragement of member-j in pair i. Broadcasting them to yj ≡ [yj1, . . . , yjn]′ ∈
R
n×1, D′j ≡ [dj1, . . . ,djn] ∈ {0, 1}4×n, Z ′j ≡ [zj1, . . . ,zjn] ∈ {0, 1}4×n facilitates

more compact notation.

E.2. Statement of Theorem 2

Theorem 2 states that the certain treatment e�ects are identi�ed as plim θ̂j if Iden-

tifying Assumptions are met, where the IV-based estimator is

θ̂j ≡
(
n−1Z ′jDj

)−1
n−1Z ′jyj

=

(
n−1

n∑
i=1

zjid
′
ji

)−1

n−1

n∑
i=1

zjiyji

dji ≡ [1, dji, dj′i, djidj′i]
′ ∈ {0, 1}4×1

zji ≡ [1, zji, zj′i, zjizj′i]
′ ∈ {0, 1}4×1

for j ∈ {A,B} and j′ ∈ {A,B} \ {j}. To prove this, we examine plim θ̂j, i.e. the

probability limit of θ̂j, or equivalently θj : limn→∞ P
(
||θ̂j − θj||22 > ε

)
= 0 for any

ε > 0. By the continuous mapping property of the probability limit and by the Weak
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Law of Large Numbers for i.i.d. data (as the data across pairs are i.i.d.), we have

plim θ̂j = plim

(
n−1

n∑
i=1

zjid
′
ji

)−1

n−1

n∑
i=1

zjiyji

=

(
plimn−1

n∑
i=1

zjid
′
ji

)−1

plimn−1

n∑
i=1

zjiyji

= E
[
zjid

′
ji

]−1 E [zjiyji]

= E




1

Zj

Zj′

ZjZj′


[
1 Dj Dj′ DjDj′

]

−1

E




1

Zj

Zj′

ZjZj′

Yj


≡M−1v. (19)

Thus we need to compute the appropriate expectations and calculate the product.

Though this might seem easy, were it not for the simplifying symmetry assumptions,

the procedure would be unwieldy even when symbolic math packages are used,

mainly due to the 4-by-4 matrix. The proof is organised into sections, so that in

Appendix E.3 M , and in Appendix E.4 v are computed, and then the product

M−1v is evaluated and the results are summarised in Appendix E.6.

E.3. Computing M

In this section, I compute M , which is de�ned in (19). For a start, because of A4

One-sided noncompliance (Dj(0, Zj′) = Dj′(Zj, 0) = 0∀Zj, Zj′) we can rewrite the

observable treatment participations in (20) and (22) as

Dj =ZjZj′Dj(11) + Zj(1− Zj′)Dj(10)

+ (1− Zj)Zj′Dj(01) + (1− Zj)(1− Zj′)Dj(00)

=ZjZj′ [Dj(11)−Dj(10)] + ZjDj(10)

Dj′ =ZjZj′Dj′(11) + Zj(1− Zj′)Dj′(10)

+ (1− Zj)Zj′Dj′(01) + (1− Zj)(1− Zj′)Dj′(00)

=ZjZj′ [Dj′(11)−Dj′(01)] + Zj′Dj′(01).
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Now we can focus on M :

M = E




1

Zj

Zj′

ZjZj′


[
1 Dj Dj′ DjDj′

]


= E




1 Dj Dj′ DjDj′

Zj ZjDj ZjDj′ ZjDjDj′

Zj′ Zj′Dj Zj′Dj′ Zj′DjDj′

ZjZj′ ZjZj′Dj ZjZj′Dj′ ZjZj′DjDj′




=


1 E [Dj] E [Dj′ ] E [DjDj′ ]

E [Zj] E [ZjDj] E [ZjDj′ ] E [ZjDjDj′ ]

E [Zj′ ] E [Zj′Dj] E [Zj′Dj′ ] E [Zj′DjDj′ ]

E [ZjZj′ ] E [ZjZj′Dj] E [ZjZj′Dj′ ] E [ZjZj′DjDj′ ]

 .

In the following, these expectations are computed row-by-row, one-by-one. At each

element I use: A2 Random assignment to factor the expectation of the product

of the assigment(s) and participation(s) into the product of the expected assign-

ment(s) and expected participation(s); A3 i.i.d. assignement to have E [ZjZj′X] =

E [Zj]E [Zj′ ]E [X] = PP E [X] = P 2 E [X] for any random variable X which is

not Zj or Zj′ . Also note that for any binary random variable W we have E [W ] =

P (W = 1) and that W 2 = W . So, let us proceed with the expectations.

Row of M : 1st

E [Dj] =E [ZjZj′ [Dj(11)−Dj(10)] + ZjDj(10)]

=P 2 E [Dj(11)−Dj(10)] + P E [Dj(10)]

=P 2 E [Dj(11)−Dj(10)] + PP (Dj(10) = 1) A5 =⇒

=P 2[0P (Dj(11) = 0, Dj(10) = 0) + 1P (Dj(11) = 1, Dj(10) = 0)

+ 0P (Dj(11) = 1, Dj(10) = 1)] + PP (Dj(10) = 1)

=P 2P (Dj(11) = 1, Dj(10) = 0) + PP (Dj(10) = 1) . (20)

Similarly for Dj′

E [Dj′ ] = E [ZjZj′ [Dj(11)−Dj(01)] + Zj′Dj(01)] (21)

= P 2P (Dj′(11) = 1, Dj′(01) = 0) + PP (Dj′(01) = 1) . (22)
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Then

DjDj′ ={ZjZj′ [Dj(11)−Dj(10)] + ZjDj(10)}

× {ZjZj′ [Dj′(11)−Dj′(01)] + Zj′Dj′(01)}

=Z2
jZ

2
j′ [Dj(11)−Dj(10)][Dj′(11)−Dj′(01)]+

+ ZjZ
2
j′ [Dj(11)−Dj(10)]Dj′(01)

+ Z2
jZj′ [Dj′(11)−Dj′(01)]Dj(10)

+ ZjZj′Dj(10)Dj′(01) (23)

Z ∈ {0, 1} =⇒

E [DjDj′ ] = P 2{E [(Dj(11)−Dj(10))(Dj′(11)−Dj′(01))]

+ E [(Dj(11)−Dj(10))Dj′(01)]

+ E [(Dj′(11)−Dj′(01))Dj(10)]

+ E [Dj(10)Dj′(01)]}

= P 2{E [(Dj(11)−Dj(10))(Dj′(11)−Dj′(01)]

+ E [Dj(11)Dj′(01) +Dj′(11)Dj(10)−Dj′(01)Dj(10)]}

= P 2 E [Dj(11)Dj′(11)]

= P 2P (Dj(11) = 1, Dj′(11) = 1) .

Row of M : 2nd

E [ZjDj] = E [Zj{ZjZj′ [Dj(11)−Dj(10)] + ZjDj(10)}]

= E
[
Z2
jZj′ [Dj(11)−Dj(10)] + Z2

jDj(10)
]

Zj ∈ {0, 1} =⇒

= E [ZjZj′ [Dj(11)−Dj(10)] + ZjDj(10)]

= E [Dj]

= P 2P (Dj(11) = 1, Dj(10) = 0) + PP (Dj(10) = 1) .

E [ZjDj′ ] = E [Zj{ZjZj′ [Dj′(11)−Dj′(01)] + Zj′Dj′(01)}] Zj ∈ {0, 1} =⇒

= E [ZjZj′ [Dj′(11)−Dj′(01)] + ZjZj′Dj′(01)]

= E [ZjZj′Dj′(11)]

= P 2P (Dj′(11) = 1) .
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(23) and Zj ∈ {0, 1} =⇒

E [ZjDjDj′ ] = E [DjDj′ ]

= P 2P (Dj(11) = 1, Dj′(11) = 1) .

Row of M : 3rd

E [Zj′Dj] = E [Zj′{ZjZj′ [Dj(11)−Dj(10)] + ZjDj(10)}]

= E [Zj′Zj[Dj(11)−Dj(10)] + Zj′ZjDj(10)]

= E [Zj′ZjDj(11)]

= P 2P (Dj(11) = 1) .

(22) and Zj′ ∈ {0, 1} =⇒

E [Zj′Dj′ ] = E [Dj′ ]

= P 2P (Dj′(11) = 1, Dj′(01) = 0) + PP (Dj′(01) = 1) .

(23) and Zj′ ∈ {0, 1} =⇒

E [Zj′DjDj′ ] = E [DjDj′ ]

= P 2P (Dj(11) = 1, Dj′(11) = 1) .

Row of M : 4th

(20) and Zj ∈ {0, 1} =⇒

E [ZjZj′Dj] = E [Zj′Dj]

= P 2P (Dj(11) = 1) .

(22) and Zj′ ∈ {0, 1} =⇒

E [ZjZj′Dj′ ] = E [ZjDj′ ]

= P 2P (Dj′(11) = 1) .
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(23) and Zj, Zj′ ∈ {0, 1} =⇒

E [ZjZj′DjDj′ ] = E [DjDj′ ]

= P 2P (Dj(11) = 1, Dj′(11) = 1) .

Next, I invoke the symmetry assumptions and our intermediate result from

Lemma 5, and introduce new notation for compactness:

q ≡ P (Dj(11) = 1) = P (Dj′(11) = 1) by A7

r ≡ P (Dj(11) = 1, Dj(10) = 0) = P (Dj′(11) = 1, Dj′(01) = 0) by A8

p ≡ P (Dj(10) = 1) = P (Dj′(01) = 1) by Lemma 5

q̄ ≡ P (Dj(11) = 1, Dj′(11) = 1) new notation,

so that we can compactly expresss the expectations of M row-by-row:

Row of M : 1st

E [Dj] = P 2r + Pp

E [Dj′ ] = P 2r + Pp

E [DjDj′ ] = P 2q̄

Row of M : 2nd

E [ZjDj] = P 2r + Pp

E [ZjDj′ ] = P 2q

E [ZjDjDj′ ] = P 2q̄

Row of M : 3rd

E [Zj′Dj] = P 2q

E [Zj′Dj′ ] = P 2r + Pp

E [Zj′DjDj′ ] = P 2q̄
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Row of M : 4th

E [ZjZj′Dj] = P 2q

E [ZjZj′Dj′ ] = P 2q

E [ZjZj′DjDj′ ] = P 2q̄.

For further simpli�cation let

a ≡ P 2r + Pp

b ≡ P 2q̄

c ≡ P 2q

so we can write

M =


1 a a b

P a c b

P c a b

P 2 c c b

 .

The letters a, b, c will not be used later on, their only purpose is to see howM can

be written in the simplest form and thus to check the conditions forM−1 to exist.13

So there exists M−1 if and only if

a 6= c

Pp 6= P 2(q − r)

p 6= P (q − r),

where by A5 Monotonicity

q − r = P (Dj(11) = 1)− P (Dj(11) = 1, Dj(10) = 0)

= P (Dj(11) = 1, Dj(10) = 1)

p = P (Dj(10) = 1)

= P (Dj(10) = 1, Dj(11) = 1) ,

13Another purpose is that the reader can follow more easily symbolic_inverversion.py.
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so

p 6= P (q − r)

P (Dj(11) = 1, Dj(10) = 1) 6= PP (Dj(11) = 1, Dj(10) = 1)

P (Dj(11) = 1, Dj(10) = 1) 6= 0.

Note that this is where A6 Invertibility stems from.

E.4. Computing v

Having computed M and checked the necessary and su�cient condition for M−1

to exist, now we can analyse v de�ned in (19):

v = E




1

Zj

Zj′

ZjZj′

Yj


=


E [Yj]

E [ZjYj]

E [Zj′Yj]

E [ZjZj′Yj]


This analysis is more tedious, but the procdure is the same: computing expecta-

tions one-by-one. Again, I use A2 Random assignment and A3 I.i.d. assignment

throughout the computation. Before this, let us rewrite the potential outcomes in

(17) as

Yj =DjDj′Yj(11) +Dj(1−Dj′)Yj(10)

+ (1−Dj)Dj′Yj(01) + (1−Dj)(1−Dj′)Yj(00)

=DjDj′ [Yj(11)− Yj(01)− (Yj(10)− Yj(00))]

+Dj[Yj(10)− Yj(00)] +Dj′ [Yj(01)− Yj(00)] + Yj(00) (24)

and introduce ∆j(Dj, Dj′ |D̃j, D̃j′) ≡ Yj(Dj, Dj′)−Yj(D̃j, D̃j′). Then we can proceed

with the expectations one by one.
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Row of v: 1st, E [Yj]. (24) =⇒

E [Yj] =E [DjDj′{∆j(11|01)−∆j(10|00)}+Dj∆j(10|00) +Dj′∆j(01|00) + Yj(00)]

=P 2 E [Dj(11)Dj′(11){∆j(11|01)−∆j(10|00)}+Dj(11)∆j(10|00) +Dj′(11)∆j(01|00) + Yj(00)]

+ P (1− P )E [Dj(10)Dj′(10){∆j(11|01)−∆j(10|00)}+Dj(10)∆j(10|00) +Dj′(10)∆j(01|00) + Yj(00)]

+ (1− P )P E [Dj(01)Dj′(01){∆j(11|01)−∆j(10|00)}+Dj(01)∆j(10|00) +Dj′(01)∆j(01|00) + Yj(00)]

+ (1− P )2 E [Dj(00)Dj′(00){∆j(11|01)−∆j(10|00)}+Dj(00)∆j(10|00) +Dj′(00)∆j(01|00) + Yj(00)] (25)

(26)

Now by A4 One-sided noncompliance (Dj(0, Zj′) = Dj′(Zj, 0) = 0∀Zj, Zj′)

E [Yj] =P 2 E [Dj(11)Dj′(11){∆j(11|01)−∆j(10|00)}+Dj(11)∆j(10|00) +Dj′(11)∆j(01|00) + Yj(00)]︸ ︷︷ ︸
≡α

+ P (1− P )E [Dj(10)∆j(10|00) + Yj(00)]︸ ︷︷ ︸
≡β

+ (1− P )P E [Dj′(01)∆j(01|00) + Yj(00)]︸ ︷︷ ︸
≡γ

+ (1− P )2 E [Yj(00)]︸ ︷︷ ︸
≡ψ

,
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so

E [Yj] =P 2α + P (1− P )β + (1− P )Pγ + (1− P )2ψ

=P 2α + Pβ − P 2β + Pγ − P 2γ + (1− P )ψ − (P − P 2)ψ

=P 2(α− (β + γ)) + P (β + γ) + (1− P )ψ − (P − P 2)ψ

=P 2(α− (β + γ − ψ)) + P (β + γ − 2ψ) + ψ.

What we want to take advantage of now is A5 Monotonicity, which is best done by expressing as many terms as we can with

Dj(11)−Dj(10) and Dj′(11)−Dj′(01). This is why the greek letters are introduced in the �rst place. Let us see how it works:

β + γ − ψ = E [Dj(10)∆j(10|00) + Yj(00)] + E [Dj′(01)∆j(01|00) + Yj(00)]− E [Yj(00)]

= E [Dj(10)∆j(10|00) +Dj′(01)∆j(01|00) + Yj(00)] (27)

α− (β + γ − ψ) = E [Dj(11)Dj′(11){∆j(11|01)−∆j(10|00)}+ (Dj(11)−Dj(10))∆j(10|00) + (Dj′(11)−Dj′(01))∆j(01|00)] ,

which simpli�es by A5 Monotonicity as follows

E [Dj(11)Dj′(11){∆j(11|01)−∆j(10|00)}] = E [∆j(11|01)−∆j(10|00) | Dj(11) = 1, Dj′(11) = 1]P (Dj(11) = 1, Dj′(11) = 1)

E [(Dj(11)−Dj(10))∆j(10|00)] = E [∆j(10|00) | Dj(11) = 1, Dj(10) = 0]P (Dj(11) = 1, Dj(10) = 0)

E [(Dj′(11)−Dj′(01))∆j(01|00)] = E [∆j(01|00) | Dj′(11) = 1, Dj′(10) = 0]P (Dj′(11) = 1, Dj′(01) = 0) ,
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thus

α− (β + γ − ψ) =E [∆j(11|01)−∆j(10|00) | Dj(11) = 1, Dj′(11) = 1]P (Dj(11) = 1, Dj′(11) = 1)

+ E [∆j(10|00) | Dj(11) = 1, Dj(10) = 0]P (Dj(11) = 1, Dj(10) = 0)

+ E [∆j(01|00) | Dj′(11) = 1, Dj′(10) = 0]P (Dj′(11) = 1, Dj′(01) = 0) .

Next, by (27) and the de�nition of ψ = E [Yj(00)],

β + γ − 2ψ = E [Dj(10)∆j(10|00) +Dj′(01)∆j(01|00)]

= E [∆j(10|00) | Dj(10) = 1]P (Dj(10) = 1) + E [∆j(01|00) | Dj′(01) = 1]P (Dj′(01) = 1) .

Putting together the greek-letter expressions, we �nally obtain the �rst row of v:

E [Yj] = P 2(α− (β + γ − ψ)) + P (β + γ − 2ψ) + ψ

= P 2{E [∆j(11|01)−∆j(10|00) | Dj(11) = 1, Dj′(11) = 1]P (Dj(11) = 1, Dj′(11) = 1)

+ E [∆j(10|00) | Dj(11) = 1, Dj(10) = 0]P (Dj(11) = 1, Dj(10) = 0)

+ E [∆j(01|00) | Dj′(11) = 1, Dj′(10) = 0]P (Dj′(11) = 1, Dj′(01) = 0)}

+P{E [∆j(10|00) | Dj(10) = 1]P (Dj(10) = 1) + E [∆j(01|00) | Dj′(01) = 1]P (Dj′(01) = 1)}

+E [Yj(00)] .
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Row of v: 2nd, E [ZjYj]. (24) andA4 One-sided noncompliance =⇒

E [ZjYj] =E [Zj{DjDj′{∆j(11|01)−∆j(10|00)}+Dj∆j(10|00) +Dj′∆j(01|00) + Yj(00)}]

=P 2 E [Dj(11)Dj′(11){∆j(11|01)−∆j(10|00)}+Dj(11)∆j(10|00) +Dj′(11)∆j(01|00) + Yj(00)]

+ P (1− P )E [Dj(10)∆j(10|00) + Yj(00)] (28)

=P 2 E [Dj(11)Dj′(11){∆j(11|01)−∆j(10|00)}+ (Dj(11)−Dj(10))∆j(10|00) +Dj′(11)∆j(01|00)]

+ P E [Dj(10)∆j(10|00) + Yj(00)] .

Note how the last two terms in (25) are not present in (28) because of A4 One-sided noncompliance. Next, as we did for E [Yj], using

A5 Monotonicity:

E [ZjYj] = P 2{E [∆j(11|01)−∆j(10|00) | Dj(11) = 1, Dj′(11) = 1]P (Dj(11) = 1, Dj′(11) = 1)

+ E [∆j(10|00) | Dj(11) = 1, Dj(10) = 0]P (Dj(11) = 1, Dj(10) = 0)

+ E [∆j(01|00) | Dj′(11) = 1]P (Dj′(11) = 1)}

+P E [∆j(10|00) | Dj(10) = 1]P (Dj(10) = 1)

+P E [Yj(00)] .
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Row of v: 3rd, E [Zj′Yj]. (24) andA4 One-sided noncompliance =⇒

E [Zj′Yj] =E [Zj′{DjDj′{∆j(11|01)−∆j(10|00)}+Dj∆j(10|00) +Dj′∆j(01|00) + Yj(00)}]

=P 2 E [Dj(11)Dj′(11){∆j(11|01)−∆j(10|00)}+Dj(11)∆j(10|00) +Dj′(11)∆j(01|00) + Yj(00)]

+ (1− P )P E [Dj′(01)∆j(01|00)] (29)

=P 2 E [Dj(11)Dj′(11){∆j(11|01)−∆j(10|00)}+Dj(11)∆j(10|00) + (Dj′(11)−Dj′(01))∆j(01|00)]

+P E [Dj′(01)∆j(01|00) + Yj(00)]

Note again how the two terms in (25) are not present in (29) because of A4 One-sided noncompliance. Next, as we did for E [Yj],

using A5 Monotonicity:

E [Zj′Yj] = P 2{E [∆j(11|01)−∆j(10|00) | Dj(11) = 1, Dj′(11) = 1]P (Dj(11) = 1, Dj′(11) = 1)

+ E [∆j(10|00) | Dj(11) = 1]P (Dj(11) = 1)

+ E [∆j(01|00) | Dj′(11) = 1, Dj′(01) = 0]P (Dj′(11) = 1, Dj′(01) = 0)}

+P E [∆j(01|00) | Dj′(01) = 1]P (Dj′(01) = 1)

+P E [Yj(00)] .

Row of v: 4th, E [ZjZj′Yj]. (24) andA4 One-sided noncompliance =⇒

E [ZjZj′Yj] =E [ZjZj′{DjDj′{∆j(11|01)−∆j(10|00)}+Dj∆j(10|00) +Dj′∆j(01|00) + Yj(00)}]

=P 2 E [Dj(11)Dj′(11){∆j(11|01)−∆j(10|00)}+Dj(11)∆j(10|00) +Dj′(11)∆j(01|00) + Yj(00)]
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Doing what has been done with the three previous rows:

E [ZjZj′Yj] = P 2{E [∆j(11|01)−∆j(10|00) | Dj(11) = 1, Dj′(11) = 1]P (Dj(11) = 1, Dj′(11) = 1)

+ E [∆j(10|00) | Dj(11) = 1]P (Dj(11) = 1)

+ E [∆j(01|00) | Dj′(11) = 1, Dj′(01) = 0]P (Dj′(11) = 1)}

+P 2 E [Yj(00)] .

Before M−1v is computed in Appendix E.5, I introduce new notation for further simpli�cation:

e1 ≡ E [∆j(11|01)−∆j(10|00) | Dj(11) = 1, Dj′(11) = 1]

e2 ≡ E [∆j(10|00) | Dj(11) = 1, Dj(10) = 0]

e3 ≡ E [∆j(01|00) | Dj′(11) = 1, Dj′(01) = 0]

e4 ≡ E [∆j(10|00) | Dj(10) = 1]

e5 ≡ E [∆j(01|00) | Dj′(01) = 1]

e6 ≡ E [Yj(00)]

e7 ≡ E [∆j(01|00) | Dj′(11) = 1]

e8 ≡ E [∆j(10|00) | Dj(11) = 1] .

53

C
E

U
eT

D
C

ol
le

ct
io

n



Recalling the notation in Appendix E.3,

q ≡ P (Dj(11) = 1) = P (Dj′(11) = 1)

r ≡ P (Dj(11) = 1, Dj(10) = 0) = P (Dj′(11) = 1, Dj′(01) = 0)

p ≡ P (Dj(10) = 1) = P (Dj′(01) = 1)

q̄ ≡ P (Dj(11) = 1, Dj′(11) = 1) ,

we can now express v as

v =


E [Yj]

E [ZjYj]

E [Zj′Yj]

E [ZjZj′Yj]

 =


P 2{e1q̄ + e2r + e3r}+ Pe4p+ Pe5p+ e6

P 2{e1q̄ + e2r + e7q}+ Pe4p+ Pe6

P 2{e1q̄ + e8q + e3r}+ Pe5p+ Pe6

P 2{e1q̄ + e8q + e7q}+ P 2e6

 . (30)54
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E.5. Putting the Pieces Together: Computing M−1v

Having computedM and v in Appendix E.3 and E.4, the �nal step in the proof of

Theorem 2 is evaluatingM−1v ∈ R4×1. In this 4-long column vector, each row is a

linear combination of the elements of v, where the weigths are the elements in the

corresponding rows of M−1. A6 Invertibility ensures that M−1 exists (see the end

of E.3). Suppose that

M−1 =


m

(1)
1 m

(1)
2 m

(1)
3 m

(1)
4

m
(2)
1 m

(2)
2 m

(2)
3 m

(2)
4

m
(3)
1 m

(3)
2 m

(3)
3 m

(3)
4

m
(4)
1 m

(4)
2 m

(4)
3 m

(4)
4

 ,

then the rth row for r = 1, 2, 3, 4 in M−1v, (M−1v)r is given by

(M−1v)r = m
(r)
1 v1 +m

(r)
2 v2 +m

(r)
3 v3 +m

(r)
4 v4.

If we substitute in the results from (30) we obtain

(M−1v)r =m
(r)
1 [P 2{e1q̄ + e2r + e3r}+ Pe4p+ Pe5p+ e6]

+m
(r)
2 [P 2{e1q̄ + e2r + e7q}+ Pe4p+ Pe6]

+m
(r)
3 [P 2{e1q̄ + e8q + e3r}+ Pe5p+ Pe6]

+m
(r)
4 [P 2{e1q̄ + e8q + e7q}+ P 2e6],
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and after collecting terms

(M−1v)r =e1[P 2q̄{m(r)
1 +m

(r)
2 +m

(r)
3 +m

(r)
4 }]

+ e2[P 2r(m
(r)
1 +m

(r)
2 )]

+ e3[P 2r(m
(r)
1 +m

(r)
3 )]

+ e4[Pp(m
(r)
1 +m

(r)
2 )]

+ e5[Pp(m
(r)
1 +m

(r)
3 )]

+ e6[m
(r)
1 + Pm

(r)
2 + Pm

(r)
3 + P 2m

(r)
4 ]

+ e7[P 2q(m
(r)
2 +m

(r)
4 )]

+ e8[P 2q(m
(r)
3 +m

(r)
4 )]

≡
8∑

k=1

ekw
(r)
k .

At this point, to compute w's, it is convenient to rely on a symbolic math package,

SymPy. The code in symbolic_inversion.py computes {w(r)
k }8

k=1 for r = 1, 2, 3, 4,

and the values are shown in Table 4.

Table 4: Output from symbolic_inversion.py

{w(r)
k }8

k=1\Row 1 2 3 4

w
(r)
1 0 0 0 1

w
(r)
2 0 Pr

−Pq+Pr+p 0 −Pqr
q̄(−Pq+Pr+p)

w
(r)
3 0 0 Pr

−Pq+Pr+p
−Pqr

q̄(−Pq+Pr+p)

w
(r)
4 0 p

−Pq+Pr+p 0 −pq
q̄(−Pq+Pr+p)

w
(r)
5 0 0 p

−Pq+Pr+p
−pq

q̄(−Pq+Pr+p)

w
(r)
6 1 0 0 0

w
(r)
7 0 0 −Pq

−Pq+Pr+p
q(Pr+p)

q̄(−Pq+Pr+p)

w
(r)
8 0 −Pq

−Pq+Pr+p 0 q(Pr+p)
q̄(−Pq+Pr+p)

In the following, I plug in these values to
8∑

k=1

ekw
(r)
k to evaluate M−1v row by

row (weights taking on the value 0 are not written out). However, before that let us

examine −Pq + Pr + p as it is present in all denominators.
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Denominator: −Pq+ Pr+ p.

By the de�nition of r, q, p, A5 Monotonicity (Dj(10) ≤ Dj(11)), and the law of total probability (LTP):

r = P (Dj(11) = 1, Dj(10) = 0) (31)

q = P (Dj(11) = 1) LTP =⇒

= P (Dj(11) = 1, Dj(10) = 1) + P (Dj(11) = 1, Dj(10) = 1) (32)

p = P (Dj(10) = 1) LTP =⇒

= P (Dj(10) = 1, Dj(11) = 0) + P (Dj(10) = 1, Dj(11) = 1) A5 =⇒

= P (Dj(10) = 1, Dj(11) = 1) =⇒

−Pq + Pr + p = P (r − q) + p

= P (P (Dj(11) = 1, Dj(10) = 0)− [P (Dj(11) = 1, Dj(10) = 1) + P (Dj(11) = 1, Dj(10) = 1)]) + p

= −PP (Dj(11) = 1, Dj(10) = 1) + p

= −PP (Dj(11) = 1, Dj(10) = 1) + P (Dj(11) = 1, Dj(10) = 1)

= (1− P )P (Dj(11) = 1, Dj(10) = 1) , (33)

which is non-zero because P ∈ (0, 1) and P (Dj(11) = 1, Dj(10) = 1) 6= 0 by A6 Invertibility. Now we can focus on the linear

combinations.

Row of M−1v: 1st, (M−1v)1.

(M−1v)1 = w
(1)
6 e6 = 1e6 = E [Yj(00)] .

Hence the �rst claim of Theorem 2 is proved.
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Row of M−1v: 2nd, (M−1v)2.

(M−1v)2 =w
(2)
2 e2 + w

(2)
4 e4 + w

(2)
8 e8

=
1

−Pq + Pr + p
{PrE [∆j(10|00) | Dj(11) = 1, Dj(10) = 0] + pE [∆j(10|00) | Dj(10) = 1]− Pq E [∆j(10|00) | Dj(11) = 1]}

=
1

−Pq + Pr + p
{P [rE [∆j(10|00) | Dj(11) = 1, Dj(10) = 0]− q E [∆j(10|00) | Dj(11) = 1]] + pE [∆j(10|00) | Dj(10) = 1]}

(34)

At this point, to �gure out what q E [∆j(10|00) | Dj(11) = 1] is, we need to think backwards using the law of total probability and

the de�nition of conditional probability.

E [∆j(10|00) | Dj(11) = 1] =E [∆j(10|00) | Dj(11) = 1, Dj(10) = 0]P (Dj(10) = 0 | Dj(11) = 1)

+ E [∆j(10|00) | Dj(11) = 1, Dj(10) = 1]P (Dj(10) = 1 | Dj(11) = 1)

=E [∆j(10|00) | Dj(11) = 1, Dj(10) = 0]
P (Dj(10) = 0, Dj(11) = 1)

P (Dj(11) = 1)

+ E [∆j(10|00) | Dj(11) = 1, Dj(10) = 1]
P (Dj(10) = 1, Dj(11) = 1)

P (Dj(11) = 1)

=E [∆j(10|00) | Dj(11) = 1, Dj(10) = 0]
P (Dj(10) = 0, Dj(11) = 1)

q

+ E [∆j(10|00) | Dj(11) = 1, Dj(10) = 1]
P (Dj(10) = 1, Dj(11) = 1)

q
,
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which in turn implies

q E [∆j(10|00) | Dj(11) = 1] =E [∆j(10|00) | Dj(11) = 1, Dj(10) = 0]P (Dj(10) = 0, Dj(11) = 1)

+ E [∆j(10|00) | Dj(11) = 1, Dj(10) = 1]P (Dj(10) = 1, Dj(11) = 1) . (35)

Applying the same logic to pE [∆j(10|00) | Dj(10) = 1] and keeping in mind that by A5 Monotonicity p = P (Dj(11) = 1, Dj(10) = 1)

leads to

pE [∆j(10|00) | Dj(10) = 1] = P (Dj(11) = 1, Dj(10) = 1)E [∆j(10|00) | Dj(10) = 1, Dj(11) = 1] . (36)

Plugging in the above expressions, the de�nition of r, and the denominator, into (34):

(M−1v)2 =
1

−Pq + Pr + p
{P [rE [∆j(10|00) | Dj(11) = 1, Dj(10) = 0]− q E [∆j(10|00) | Dj(11) = 1]] + pE [∆j(10|00) | Dj(10) = 1]}

=
1

−Pq + Pr + p
{P{P (Dj(11) = 1, Dj(10) = 0)E [∆j(10|00) | Dj(11) = 1, Dj(10) = 0]

− [E [∆j(10|00) | Dj(11) = 1, Dj(10) = 0]P (Dj(10) = 0, Dj(11) = 1)

+ E [∆j(10|00) | Dj(11) = 1, Dj(10) = 1]P (Dj(10) = 1, Dj(11) = 1)]}

+ P (Dj(11) = 1, Dj(10) = 1)E [∆j(10|00) | Dj(10) = 1, Dj(11) = 1]}

=
1

−Pq + Pr + p
(1− P )P (Dj(11) = 1, Dj(10) = 1)E [∆j(10|00) | Dj(10) = 1, Dj(11) = 1]
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Finally, substituting in −Pq + Pr + p = (1− P )P (Dj(11) = 1, Dj(10) = 1) (see (33)) gives us

(M−1v)2 =
1

−Pq + Pr + p
(1− P )P (Dj(11) = 1, Dj(10) = 1)E [∆j(10|00) | Dj(10) = 1, Dj(11) = 1]

=
1

(1− P )P (Dj(11) = 1, Dj(10) = 1)
(1− P )P (Dj(11) = 1, Dj(10) = 1)E [∆j(10|00) | Dj(10) = 1, Dj(11) = 1]

=E [∆j(10|00) | Dj(10) = 1, Dj(11) = 1] .

Hence the second claim of Theorem 2 is proved.

Row of M−1v: 3rd, (M−1v)3.

Exploiting symmetry, we can proceed in this case exactly as with the second row.

(M−1v)3 =w
(3)
3 e3 + w

(3)
5 e5 + w

(3)
7 e7

=
1

−Pq + Pr + p
{PrE [∆j(01|00) | Dj′(11) = 1, Dj′(01) = 0] + pE [∆j(01|00) | Dj′(01) = 1]− Pq E [∆j(01|00) | Dj′(11) = 1]}

=
1

−Pq + Pr + p
{P [rE [∆j(01|00) | Dj′(11) = 1, Dj′(01) = 0]− q E [∆j(01|00) | Dj′(11) = 1]] + pE [∆j(01|00) | Dj′(01) = 1]}

=
1

−Pq + Pr + p
(1− P )P (Dj′(11) = 1, Dj′(01) = 1)E [∆j(01|00) | Dj′(01) = 1, Dj′(11) = 1]

=
1

(1− P )P (Dj′(11) = 1, Dj′(01) = 1)
(1− P )P (Dj′(11) = 1, Dj′(01) = 1)E [∆j(01|00) | Dj′(01) = 1, Dj′(11) = 1]

=E [∆j(01|00) | Dj′(01) = 1, Dj′(11) = 1] .

Hence the third claim of Theorem 2 is proved.
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Row of M−1v: 4th, (M−1v)4.

For the last element we have the most non-zero weigths in Table 4, amounting to

(M−1v)4 =w
(4)
1 e1 + w

(4)
2 e2 + w

(4)
3 e3 + w

(4)
4 e4 + w

(4)
5 e5 + w

(4)
7 e7 + w

(4)
8 e8

=w
(4)
1 e1 + (w

(4)
2 e2 + w

(4)
4 e4 + w

(4)
8 e8) + (w

(4)
3 e3 + w

(4)
5 e5 + w

(4)
7 e7).

Grouping the sum as indicated with the brackets renders the computation easier. In the following, I evaluate the sum group by

group.

� w
(4)
1 e1

w
(4)
1 e1 = 1e1 = E [∆j(11|01)−∆j(10|00) | Dj(11) = 1, Dj′(11) = 1] (37)

� w
(4)
2 e2 + w

(4)
4 e4 + w

(4)
8 e8

w
(4)
2 e2 + w

(4)
4 e4 + w

(4)
8 e8 =

1

q̄(−Pq + Pr + p)
{−Pqre2 − pqe4 + q(Pr + p)e8}

=
1

q̄(−Pq + Pr + p)
{Pqr(e8 − e2) + pq(e8 − e4)}.

Next, I compute Pqr(e8 − e2) and pq(e8 − e4).
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•• Pqr(e8 − e2) From the de�nition of e8 and from(35), we know that

qre8 =qrE [∆j(10|00) | Dj(11) = 1]

=E [∆j(10|00) | Dj(11) = 1, Dj(10) = 0]P (Dj(10) = 0, Dj(11) = 1) r

+ E [∆j(10|00) | Dj(11) = 1, Dj(10) = 1]P (Dj(10) = 1, Dj(11) = 1) r,

where by de�nition P (Dj(10) = 0, Dj(11) = 1) = r, and by the law of total probability and A5 Monotonicity

r = P (Dj(11) = 1, Dj(10) = 0) = P (Dj(11) = 1)− P (Dj(11) = 1, Dj(10) = 1) = q − P (Dj(11) = 1, Dj(10) = 1) ⇐⇒
(38)

P (Dj(11) = 1, Dj(10) = 1) = q − r,
(39)

so

qrE [∆j(10|00) | Dj(11) = 1] =E [∆j(10|00) | Dj(11) = 1, Dj(10) = 0]P (Dj(10) = 0, Dj(11) = 1) r

+ E [∆j(10|00) | Dj(11) = 1, Dj(10) = 1]P (Dj(10) = 1, Dj(11) = 1) r

=E [∆j(10|00) | Dj(11) = 1, Dj(10) = 0] r2

+ E [∆j(10|00) | Dj(11) = 1, Dj(10) = 1] (q − r)r.

By the de�nition of e2

qre2 =E [∆j(10|00) | Dj(11) = 1, Dj(10) = 0] qr,
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so

Pqr(e8 − e2) = P{E [∆j(10|00) | Dj(11) = 1, Dj(10) = 0] r2

+ E [∆j(10|00) | Dj(11) = 1, Dj(10) = 1] (q − r)r

− E [∆j(10|00) | Dj(11) = 1, Dj(10) = 0] qr}

= P{E [∆j(10|00) | Dj(11) = 1, Dj(10) = 1] (q − r)r − E [∆j(10|00) | Dj(11) = 1, Dj(10) = 0] (q − r)r}

= P (q − r)r{E [∆j(10|00) | Dj(11) = 1, Dj(10) = 1]− E [∆j(10|00) | Dj(11) = 1, Dj(10) = 0]}.

•• pq(e8 − e4) From the de�nition of e8 and from(35), we know that

pqe8 =pq E [∆j(10|00) | Dj(11) = 1]

=E [∆j(10|00) | Dj(11) = 1, Dj(10) = 0]P (Dj(10) = 0, Dj(11) = 1) p

+ E [∆j(10|00) | Dj(11) = 1, Dj(10) = 1]P (Dj(10) = 1, Dj(11) = 1) p,

and from (39) P (Dj(10) = 1, Dj(11) = 1) = q − r, and by de�nition P (Dj(10) = 0, Dj(11) = 1) = r so

pqe8 =E [∆j(10|00) | Dj(11) = 1, Dj(10) = 0] rp+ E [∆j(10|00) | Dj(11) = 1, Dj(10) = 1] (q − r)p.
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From (36) we kow that

pe4 =pE [∆j(10|00) | Dj(10) = 1]

=P (Dj(11) = 1, Dj(10) = 1)E [∆j(10|00) | Dj(10) = 1]

=(q − r)E [∆j(10|00) | Dj(10) = 1] =⇒

pqe4 =q(q − r)E [∆j(10|00) | Dj(10) = 1] .

It follows then that

pq(e8 − e4) =E [∆j(10|00) | Dj(11) = 1, Dj(10) = 0] rp+ E [∆j(10|00) | Dj(11) = 1, Dj(10) = 1] (q − r)p

− q(q − r)E [∆j(10|00) | Dj(10) = 1]

=E [∆j(10|00) | Dj(11) = 1, Dj(10) = 1] ((q − r)p− (q − r)q) + E [∆j(10|00) | Dj(11) = 1, Dj(10) = 0] rp

=E [∆j(10|00) | Dj(11) = 1, Dj(10) = 1] (q − r)(p− q) + E [∆j(10|00) | Dj(11) = 1, Dj(10) = 0] rp

=E [∆j(10|00) | Dj(11) = 1, Dj(10) = 1] (q − r)(−r) + E [∆j(10|00) | Dj(11) = 1, Dj(10) = 0] rp,
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where the last step is possible due to A5 Monotonicity and the law of total probability:

p− q =P (Dj(10) = 1)− P (Dj(11) = 1)

=(P (Dj(10)) = 1, Dj(11) = 1) + P (Dj(10) = 1, Dj(11) = 0))

− (P (Dj(11) = 1, Dj(10) = 1) + P (Dj(11) = 1, Dj(10) = 0))

=− P (Dj(11) = 1, Dj(10) = 0)

=− r (40)

by the de�nition of r.

Having computed Pqr(e8 − e2) and pq(e8 − e4) we can obtain

Pqr(e8 − e2) + pq(e8 − e4) =P (q − r)r{E [∆j(10|00) | Dj(11) = 1, Dj(10) = 1]− E [∆j(10|00) | Dj(11) = 1, Dj(10) = 0]}

+ E [∆j(10|00) | Dj(11) = 1, Dj(10) = 1] (q − r)(−r) + E [∆j(10|00) | Dj(11) = 1, Dj(10) = 0] rp

=(q − r)r(P − 1)E [∆j(10|00) | Dj(11) = 1, Dj(10) = 1]

+ (−P (q − r)r + rp)E [∆j(10|00) | Dj(11) = 1, Dj(10) = 0]

=r{(1− P )(r − q)E [∆j(10|00) | Dj(11) = 1, Dj(10) = 1]

+ E [∆j(10|00) | Dj(11) = 1, Dj(10) = 0] (−P (q − r) + p)}
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Note that (1− P )(r − q) = (1− p)(−1)P (Dj(11) = 1, Dj(10) = 1) = −Pq + Pr + p by (40) and (33). Thus

w
(4)
2 e2 + w

(4)
4 e4 + w

(4)
8 e8 =

1

q̄(−Pq + Pr + p)
{Pqr(e8 − e2) + pq(e8 − e4)}

=
1

q̄(−Pq + Pr + p)
{r{(1− P )(r − q)E [∆j(10|00) | Dj(11) = 1, Dj(10) = 1]

+ E [∆j(10|00) | Dj(11) = 1, Dj(10) = 0] (−P (q − r) + p)}

=
r

q̄
{E [∆j(10|00) | Dj(11) = 1, Dj(10) = 0]− E [∆j(10|00) | Dj(11) = 1, Dj(10) = 1]}.

� w
(4)
3 e3 + w

(4)
5 e5 + w

(4)
7 e7

w
(4)
3 e3 + w

(4)
5 e5 + w

(4)
7 e7 =

1

q̄(−Pq + Pr + p)
{−Pqre3 − pqe5 + q(Pr + p)e7}

=
1

q̄(−Pq + Pr + p)
{Pqr(e7 − e3) + pq(e7 − e5)}.

Due to the symmetry assumptions and the de�nitions of e's, this sum behaves exactly as Pqr(e8− e2) + pq(e8− e4), only that

this time we have Dj′(11) instead of Dj(11), Dj′(01) instead of Dj(10) and ∆j(01|00) instead of ∆j(10|00). So the proof is

exactly the same, and we have

w
(4)
3 e3 + w

(4)
5 e5 + w

(4)
7 e7 =

r

q̄
{E [∆j(01|00) | Dj′(11) = 1, Dj′(01) = 0]− E [∆j(01|00) | Dj′(11) = 1, Dj′(01) = 1]}.
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Putting all this together leaves us with

(M−1v)4 =w
(4)
1 e1 + (w

(4)
2 e2 + w

(4)
4 e4 + w

(4)
8 e8) + (w

(4)
3 e3 + w

(4)
5 e5 + w

(4)
7 e7)

=E [∆j(11|01)−∆j(10|00) | Dj(11) = 1, Dj′(11) = 1]

+
r

q̄
{E [∆j(10|00) | Dj(11) = 1, Dj(10) = 0]− E [∆j(10|00) | Dj(11) = 1, Dj(10) = 1]}

+
r

q̄
{E [∆j(01|00) | Dj′(11) = 1, Dj′(01) = 0]− E [∆j(01|00) | Dj′(11) = 1, Dj′(01) = 1]}.

Hence the fourth statement of Theorem 2 is proved.

E.6. Overview of the Proof

Let

θ̂j ≡
(
n−1Z ′jDj

)−1
n−1Z ′jyj

=

(
n−1

n∑
i=1

zjid
′
ji

)−1

n−1

n∑
i=1

zjiyji

dji ≡ [1, dji, dj′i, djidj′i]
′ ∈ {0, 1}4×1

zji ≡ [1, zji, zj′i, zjizj′i]
′ ∈ {0, 1}4×1

for j ∈ {A,B} and j′ ∈ {A,B} \ {j}.
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Examining plim θ̂j, i.e. the probability limit of θ̂j, or equivalently θj : limn→∞ P
(
||θ̂j − θj||22 > ε

)
= 0 for any ε > 0 leads to

plim θ̂j = plim

(
n−1

n∑
i=1

zjid
′
ji

)−1

n−1

n∑
i=1

zjiyji

=

(
plimn−1

n∑
i=1

zjid
′
ji

)−1

plimn−1

n∑
i=1

zjiyji

= E
[
zjid

′
ji

]−1 E [zjiyji]

= E




1

Zj

Zj′

ZjZj′


[
1 Dj Dj′ DjDj′

]

−1

E




1

Zj

Zj′

ZjZj′

Yj


≡M−1v

by the continuous mapping property of the probability limit and by the Weak Law of Large Numbers for i.i.d. data (as the data

across pairs are i.i.d.).
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I proved that Identifying Assumptions A1− A8 are su�cient to establish

(M−1v)1 =E [Yj(00)]

(M−1v)2 =E [∆j(10|00) | Dj(10) = 1, Dj(11) = 1]

(M−1v)3 =E [∆j(01|00) | Dj′(01) = 1, Dj′(11) = 1]

(M−1v)4 =E [∆j(11|01)−∆j(10|00) | Dj(11) = 1, Dj′(11) = 1]

+
r

q̄
{E [∆j(10|00) | Dj(11) = 1, Dj(10) = 0]− E [∆j(10|00) | Dj(11) = 1, Dj(10) = 1]}

+
r

q̄
{E [∆j(01|00) | Dj′(11) = 1, Dj′(01) = 0]− E [∆j(01|00) | Dj′(11) = 1, Dj′(01) = 1]}.

Thus the proof of Theorem 2 is complete �
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