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Abstract
This thesis intends to serve as an introduction to Hodge theory in the simplest possible setting:
our base manifold is a compact Riemann surface Σ without boundary, the vector bundle E → Σ is
the trivial complex line bundle. In this setup, the Betti, the de Rham and the Dolbeault groupoids
are introduced and their equivalence is investigated.
The proof of the equivalence of the de Rham and Dolbeault groupoids uses the existence of har-
monic metrics with respect to a connection D on E. The thesis concludes with the generalisation
of the existence of such metrics to the case where the connection is no longer smooth but has
logarithmic singularities, and the weight of the associated local system vanishes.
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Introduction
Hodge theory is a fastly developing branch of modern geometry, and it is deeply related to (at
least) two of the Clay Institute’s Millennium Problems. In recent years irregular Hodge theory has
been widely investigated by the mathematics and mathematical physics communities. The gen-
eral, non-abelian theory has been explored by many, see [Witt], [GMN], [Kon], [Boa], [Moc], [Sab],
etc. Although these expositions use some heavy machinery, the regular (without singularities)
abelian theory on a compact Riemann surface is classic, and is very well-exposed using today’s
terminology in [GoXi].
Yet, as far as we know, the abelian theory with singularities on a non-compact Riemann surface
has not been treated in the literature. The aim of the present thesis is to generalise the results
covered in [GoXi] to the logarithmic case.
The moduli spaces underlying non-abelian Hodge theory have rich geometric structures. In the
abelian case, one may explicitly check how these structures behave under the non-abelian Hodge
correspondence. In the non-abelian case however, much of the hands-on understanding of these
spaces is lacunary, and the transformation behaviour of the geometric structures is, at some points,
merely conjectural. This thesis extends some of the geometric understanding of these spaces from
the smooth abelian case to the logarithmic case, with the hope of getting some ideas about the
non-abelian case too.
Chapter 1 is a summary of the theoretical background and description of tools that we use in
the rest of the thesis, including connections on principal bundles and vector bundles, complex
differential geometry, the Hodge decomposition theorem and sheaf theory.
Chapter 2 serves as an overview of the regular abelian theory. This means a short description of
the category theoretic equivalence between the

(B) Betti groupoid of the representations of the fundamental group, (Hom(π1(Σ),C∗),C∗)
(dR) de Rham groupoid of flat connections modulo linear gauge transformations, (Fl(E),Gl(E))

(D) Dolbeault groupoid of Higgs pairs modulo linear gauge transformations, (Higgs(E),Gl(E))

The proof of the equivalence of (dR) and (D) relies on the existence of harmonic metrics on the
bundle.
Chapter 3 generalises the existence of such metrics to the case where the connection has logarith-
mic singularities which is a more direct proof than using the general non-abelian theory.
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Chapter 1

Preliminaries

1.1 Fiber bundles

Definition 1.1. Let B,F be smooth manifolds. A (smooth) fiber bundle over B with fiber F is a
manifold E and a smooth map π : E → B, if for every b ∈ B there exists a neighbourhood Ub ⊂ B
and a diffeomorphism φb : π−1(Ub)→ Ub × F such that the following diagram commutes:

π−1(Ub) Ub × F

Ub

φb

π
proj1

Example 1.2 (Trivial Bundle). Let E = B × F the product manifold of B and F , and π = projB .
This is clearly a fiber bundle, for each b ∈ B we can set Ub = B and φb = idB×M .

It follows from the definition that for each b ∈ B, the preimageEb := π−1(b) is diffeomorphic to F .
We call Eb the fiber over b. By restricting the bundle to Ub we obtain a trivial bundle, therefore the
neighbourhood Ub is called a trivialising neighbourhood of b. For two overlapping trivialisations
(Uα, φα), (Uβ, φβ) and b ∈ Uα ∩Uβ the composition f → proj2 ◦ φα ◦ φ−1

β (b, f) is a diffeomorphism
of the fiber π−1(b).

Example 1.3 (Möbius strip). The Möbius strip is nontrivial fiber bundle over S1 with fiber [0, 1]

that can be obtained as

[0, 1]× [0, 1]/ ∼

where ∼ is given by (0, y) ∼ (1, 1− y).

Definition 1.4. If F is an n-dimensional linear space over K and for any two overlapping trivi-
alisations (Uα, φα) and (Uβ, φβ) the map v → proj2 ◦ φα ◦ φ−1

β (b, v) is a K-linear isomorphism for
every b ∈ Uα ∩ Uβ , then the fiber bundle is called a vector bundle of rank n.

One of the most important examples of a vector bundle is the tangent bundle of a smooth mani-
fold.

Example 1.5. The tangent bundle of an n-dimensional smooth manifold M is the disjoint union

TM =
⊔
p∈M

TpM = {(p, v) | p ∈M,v ∈ TpM}
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4 Chapter 1. Preliminaries

of its tangent spaces. To put a topology on TM , let (Ui, αi) be the atlas of M , {∂p,1, ..., ∂p,n} a
basis for TpM that depends smoothly on p ∈ Ui, and define π : TM → M as π(p, v) = p. The
maps ᾱi(p,

∑
vj∂p,j)) = (αi(p), v

1, ..., vn) are diffeomorphisms between π−1(Ui) and R2n and can
be used to put the topology on TM . This makes TM a 2n-dimensional smooth manifold.

Let π : E → B be a vector bundle of rank n and (Uα, φα), (Uβ, φβ) two overlapping local trivialisa-
tions. Then the map φα ◦ φ−1

β is defined on Uα ∩ Uβ ×Rn and satisfies φα ◦ φ−1
β (x, v) = (x, φαβ(v))

for some φαβ ∈ GL(n,R). The function φαβ : Uα ∩ Uβ → GL(n,R) smoothly depends on the base
point, and is called the transition function from (Uβ, φβ) to (Uα, φα).
Given the local trivialisation (Ui, φi) the transition functions give us the way to patch these local
trivialisations together and obtain the total space of the vector bundle. These transition functions
clearly satisfy φαβ = φ−1

βα and the cocycle condition

φαβφβγφγα = idUα∩Uβ∩Uγ

Using the above observations, we can build a vector bundle over B if the local trivialisations and
the transition functions are given.

Example 1.6. For the tangent bundle the transition functions are simply the Jacobians

φαβ = D(φα ◦ φ−1
β )

Given two vector spaces A and B, we can form the following new vector spaces:

A⊕B A⊗B Hom(A,B) A∗
∧kA

We want to do the the same for vector bundles fiberwise. This can be done by the the following
technique.
Let π1 : E1 → B and π2 : E2 → B be vector bundles over the same space B. Let Eb = F (E1, E2)

be one of

(E1 ⊕ E2)b (E1 ⊗ E2)b (Hom(E1, E2))b (E∗1)b (
∧kE1)b

for every b ∈ B.
In the following paragraph we slightly modify the notation, and let (Ui, idUi ×φi) denote the local
trivialisations, where φi : Ui → Rn. (We originally defined φi to be a map from π−1(Ui) to Ui×Rn.)
So we replace φi by its graph x→ (x, φi(x)).
If (U1,α, idU1,α × φ1,α) are the local trivialisation of π1 : E1 → B glued together by φ1,αβ and
(U2,γ , idUγ,j × φ2,γ) are the local trivialisation of π2 : E2 → B glued together by φ2,γδ, then
(U1,α ∩ U2,γ , idU1,α∩U2,γ × F (φ1,α, φ2,γ)) are the local trivialisations of F (E1, E2) glued together
by F (φ1,αβ, φ2,γδ).

Definition 1.7. LetE and F be vector bundles over the same spaceB. A homomorphism of vector
bundles f : E → F is a smooth map between the total spaces that preserves the fibers and is linear
on them. If f is a diffeomorphism and a linear isomorphism on the fibers, then f is said to be an
isomorphism of vector bundles.

Definition 1.8. A section of a bundle π : E → B is a smooth map s : B → E such that π ◦ s = idB .
We denote the space of all sections of E by Γ(E).

Example 1.9. The sections of the tangent bundle are the smooth vector fields on the base manifold.
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1.2. Connections on principal bundles 5

Example 1.10. Every vector bundle admits a section, the so-called zero section, s(b) = 0 for every
b ∈ B. For a vector bundle of rank n, n nowhere dependent (local) sections determine a (local)
trivialisation of the bundle.

Definition 1.11. Let G be a Lie group. A principal G-bundle over B is a fiber bundle π : E → B

and a smooth right action R of G on E satisfying the following:

• Each Rg preserves the fibers and acts freely and transitively on them
• There is an open cover {Uα} of B with local trivialisations (φα : π−1(Uα) → Uα × G) such

that the group action commutes with the trivialisations

φα(p) = (π(p), a)⇒ φα(Rg(p)) = (π(p), ag)

It follows from the first condition that the fibers are diffeomorphic to G. The second condition
implies that the transition maps between local trivialisations also commute with the group action
and therefore

φα ◦ φ−1
β (b, g) = (φα ◦ φ−1

β (b, e))g = (b, φαβ(e))g = (b, Lφαβ(e)(g))

i.e. the transition maps are left actions of G.

1.2 Connections on principal bundles

In what follows let π : P → B be a principal G-bundle.

Connections as horizontal subspace distributions

Definition 1.12. Let p ∈ P . The vertical space at p is defined as

VpP = ker(dπ)

Intuitively, VpP is the vector subspace of TpP that is parallel to the fiber. The complementary
subspaces of VpP are called horizontal. While the vertical subspace is uniquely defined by the
projection, we have many choices for the horizontal complement, connections are introduced to
deal with this matter.

Definition 1.13. A connection on π : P → B is a smooth assignment of a horizontal subspace
HpP to each p ∈ P such that Rg preserves the horizontal subspaces, i.e.

HRg(p)P = (dRg)pHpP

for all g ∈ G.

Connections can be defined on any fiber bundle π : E → B as smooth horizontal subspace dis-
tributions (for principal bundles we also require this distribution to be compatible with the group
action). Given a connection, a tangent vector X ∈ TbB to the base manifold B, and a point p ∈ Eb
of the fiber over b, we can lift X to a tangent vector X̃ ∈ HpE ⊂ TpE. This is doable because dim
HpE = dim TpB and the projection induces an isomorphism between these spaces. The reason for
doing all this is that two fibers over different points, say Ea and Eb, are diffeomorphic by defini-
tion, but not in a natural way. If B is path connected, then by picking a curve γ ∈ B from a to b,
lifting γ′ ∈ TB to γ̃′ ∈ HE ⊂ TE with initial point ã ∈ Ea and solving this differential equation
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6 Chapter 1. Preliminaries

yields a diffeomorphism from Ea to Eb. Hence the name connection. This diffeomorphism, of
course, depends on the connection itself and the chosen curve γ. This construction transports the
points of Ea to every fiber over γ, and is called the parallel transport along γ.

Connections as Lie-algebra-valued 1-forms

An alternative description of connections can be given, but we need a few more definitions for
that.

Definition 1.14. The Lie-algebra g of a Lie-group G is the set of left-invariant vector fields on G,
i.e.

X ∈ g⇔ X = (dLg)X

for all g ∈ G.

The Lie-algebra g can be identified with TeG by X ↔ X(e). Every left-invariant vector field X ∈ g

is complete (because every integral curve can be extended by the left-invariance of X), therefore
the following definition makes sense:

Definition 1.15. The exponential map exp : g→ G is given by

exp(X) = γ(1)

where γ(t) is the integral curve of X for which γ(0) = e.

It follows by the chain rule that exp(tX) = γ(t).

Definition 1.16. The fundamental vector field corresponding to X ∈ g is defined as

X∗p =
d

dt

∣∣∣
t=0

Rexp(tX)(p)

The right action of G preserves the fibers, therefore X∗p ∈ VpP . Suppose X∗p = 0 for some X ∈ g.

Then p is a fixed point of Rexp(tX) for all t. But G acts freely on E, so exp(tX) = e ⇒ X = 0. This
shows that the map X → X∗p is a linear isomorphism from g to VpP .

Moreover, this linear isomorphism turns out to be a Lie algebra isomorphism. To see this, consider
the map αp : G → P given by αp(g) = pg, i.e.the right action of g ∈ G on p ∈ P . The group law
p(g1g2) = (pg1)g2 becomes

αp ◦ Lg1(g2) = αpg1(g2)

Taking differentials at g2 = e,

(dαp)g1 ◦ (dLg1)e(Xe) = (dαpg1)e(Xe)

for any X ∈ g. Using this,

X∗pg1 = (dαpg1)e(Xe) = (dαp)g1 ◦ (dLg1)e(Xe) = (dαp)g1(Xg1)

where the last equality comes from the left invariance of X. Thus the vector field X∗|Pπ(p)
is the

pushforward of the vector field X along αp. Since dαp commutes with the Lie bracket, so does the
map X → X∗. This paragraph justifies the

[A∗, B∗] = [A,B]∗
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1.3. Integrability of connections 7

type equalities in the upcoming proofs.

Now we can give the alternative definition of a connection. Fix p ∈ P . Every choice ofHpP defines
a projection TpP → VpP ∼= g, which is in fact a g-valued 1-form on P , called the connection 1-form
of the connection.

Theorem 1.17. If ω is a connection 1-form, then it satisfies the following:
• ω vanishes on horizontal vectors
• ω(X∗) = X for all X ∈ g

• ω(dRgX) = Adg−1ω(X)

Proof. The first two claims follow from the definition of ω. For the third we decompose X as the
sum of a vertical and a horizontal vector, X = V + H . By the linearity of ω it is enough to prove
the statement for V and H separately. For the horizontal component we have

ω(dRgH) = 0 = Adg−1ω(H)

because both H and dRgH are horizontal. For the vertical component there exists A ∈ g such that
V = A∗, then

ωRg(p)(dRgVp) = ωRg(p)(dRgA
∗
p) = ωRg(p)

( d
dt

∣∣∣
t=0

Rg ◦Rexp(tA)(p)
)

= ωRg(p)

( d
dt

∣∣∣
t=0

Rg ◦Rexp(tA) ◦Rg−1(Rg(p))
)

= ωRg(p)

( d
dt

∣∣∣
t=0

Rg−1exp(tA)g(Rg(p))
)

= ωRg(p)((Adg−1A)∗Rg(p))

= (Adg−1A)Rg(p)

= Adg−1ω(V )Rg(p)

Conversely, if a 1-form ω on P satisfies the conditions of Theorem 1.17, then it defines a connection
on P by HpP = ker(ωp).

Remark 1.18. By the compatibility of the connection and the group action, the connection at one
point determines the connection at every point along the fiber. Namely, given ωp, we can use the
group action to spread it out along the fiber to obtain ωRg(p).
This also means that for a collection of local trivialisations {Ui, φi}, we can pull back ω along φi to
obtain a g-valued 1-form on B.

1.3 Integrability of connections

Definition 1.19. Let h : TpP → HpP be the projection to the horizontal subspace, and α an n-form.
Define the (n+ 1)-form

Dα(X1, ..., Xn) = dα(hX1, ..., hXn)

In particular the curvature 2-form of a connection 1-form ω is defined as

Ω(X,Y ) = Dω(X,Y ) = dω(hX, hY )
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8 Chapter 1. Preliminaries

If Ω = 0, then ω is said to be flat.

Theorem 1.20 (Structure equation). Let ω be a connection 1-form and Ω is its curvature 2-form. Then

Ω = dω +
1

2
[ω, ω]

where d is the exterior derivative, and [ω ∧ ω] is defined as

[ω ∧ ω](X,Y ) = [ω(X), ω(Y )]− [ω(Y ), ω(X)] = 2[ω(X), ω(Y )]

Proof. We need to show that dω(hX, hY ) = dω(X,Y ) + [ω(X), ω(Y )].

First, suppose X and Y are horizontal. Then hX = X,hY = Y and ω(X) = ω(Y ) = 0. The
structure equation reduces to

dω(X,Y ) = dω(X,Y )

Now let X = A∗ and Y = B∗ be vertical and A,B ∈ g. Then hX = hY = 0, which implies
dω(hX, hY ) = 0. For the RHS we have

dω(X,Y ) + [ω(X), ω(Y )] = dω(A∗, B∗) + [A,B]

= A∗ω(B∗)−B∗ω(A∗)− ω
(
[A∗, B∗]

)
+ [A,B]

= −ω
(
[A∗, B∗]

)
+ [A,B]

= −[ω(A∗), ω(B∗)] + [A,B] = 0

Finally, let X = A∗ be vertical and Y horizontal. Then dω(hX, hY ) = dω(0, hY ) = 0 and
[ω(X), ω(Y )] = [A, 0] = 0. We only need to show that dω(X,Y ) = 0.

dω(X,Y ) = dω(A∗, Y ) = A∗ω(Y )− Y (ω(A∗))− ω([A∗, Y ])

= −ω([A∗, Y ])

= −ω
(

lim
t→0

1

t
(YΦt

A∗
− Y )

)
where YΦt

A∗
is the pullback of YA∗(t) along the flow of A∗. The vector field Y is a horizontal, YΦt

A∗

is also horizontal, because the right action of the group preserves horizontal subspaces. The above
expression is then 0 by the vanishing of ω on horizontal vectors.

The general case follow from the above 3 special cases by linearity.

Theorem 1.21 (Bianchi’s identity). Let Ω be a curvature 2-form of a connection. Then DΩ = 0.

Proof. By the definition of D it is enough to prove the statement for horizontal vectors X,Y, Z.
Then by the structure equation

DΩ(X,Y, Z) = d2ω(X,Y, Z) +
1

2
d[ω ∧ ω](X,Y, Z)

= 0 + d[ω(X), ω(Y )](Z)

= dω(X,Z)ω(Y )− ω(X)dω(Y,Z)

which is 0, because ω vanishes on horizontal vectors.

Definition 1.22. Let M be a smooth manifold. A k-dimensional subspace distribution δ is an
assignment of a k-dimensional subspace of TpM to each point p ∈M .

Example 1.23. A connection is a horizontal distribution on the total space of the principal bundle.
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1.4. Digression to vector bundles 9

Definition 1.24. A k-dimensional distribution δ on M is said to be integrable if for every p ∈ M
there exists a k-dimensional submanifold N of M such that p ∈ N and N is everywhere tangent to
δ.

Theorem 1.25 (Frobenius). A k-dimensional distribution δ on M is integrable if and only if [δ, δ] ⊂ δ.

Where [δ, δ] ⊂ δ means that if X,Y are vector fields on M that are contained in D, then so is [X,Y ].

Proof. [LeeSM], Theorem 19.12

For connections this condition becomes equivalent to vanishing of its curvature 2-form.

Theorem 1.26. A connection is integrable if and only if it is flat.

Proof. This is just a simple computation:

Ω(X,Y ) = dω(hX, hY )

= hX
(
ω(hY )

)
− hY

(
ω(hX)

)
− ω

(
[hX, hY ]

)
= −ω

(
[hX, hY ]

)
And the theorem follows by the theorem of Frobenius.

1.4 Digression to vector bundles

Now that we have developed some machinery on principal bundles, we derive similar results for
vector bundles.

Connections on vector bundles

Definition 1.27. A linear connection on a vector bundle E →M is a smooth horizontal subspace
distribution that satisfies

G∗(HvE) = HGvE

where G is a linear automorphism of the bundle.

Equivalently, we can define connections as covariant derivations.

Definition 1.28. A covariant derivative on a vector bundle E →M is a linear map ∇ : Γ(TM)→
Γ(T ∗M ⊗ E) satisfying a Leibniz rule

∇X(fs) = df(X)s+ f∇X(s)

for f ∈ C∞(M), X ∈ Γ(TM), s ∈ Γ(E).

Given a covariant derivative∇, the corresponding horizontal subspace distribution is given by

Hs(b)E = {s∗(X)−∇X(s)|X ∈ TbM}

this distribution is well-defined, i.e. Hs(b) = Hs′(b) if s(b) = s′(b). Conversely, given a horizontal
subspace distribution, the corresponding covariant derivative is

∇X(s) = s∗(X)−Hors(b)(X)

C
E

U
eT

D
C

ol
le

ct
io

n



10 Chapter 1. Preliminaries

where Hors(b)(X) is the horizontal lift of X ∈ TbM to Hs(b)E. In the previous formulas the fiber
Eb and the vertical subspace Vs(b)E are identified by the isomorphism

Eb → Vs(b)E : w → γ(t) = s(b) + tw

Now let {E1, E2, ..., En} be a local trivialisation. Every section s can be written as s = siEi (using
the summation convention) for some si ∈ C∞(M). Using the definition of the covariant deriva-
tive, we have

∇X(s) = ∇X(siEi) = dsi(X)Ei + si∇X(Ei) = ds(X) +As

where A is a matrix of 1-forms whose ith column is formed by the components ∇XEi in the basis
{E1, ..., En}. Therefore we can write

∇ = d+A

Conversely, given any matrix of 1-forms A defines a connection d+A.

Now let {E′1, ..., E′n} be an other basis, then we can write Ei = T ji E
′
j for some matrix T . The

covariant derivative∇ then acts as

∇X(s) = ∇(siEi) = ∇X(siT ji E
′
j) = d(siT ji )(X)E′j + siT ji ∇X(E′j)

and we have∇ = d+A′ where A′ is a matrix of 1-forms in the basis {E′1, ..., E′n}.

Definition 1.29. We define the curvature F (∇) of a linear connection∇ = d+A as the 2-form

dA(X,Y ) +A ∧A(X,Y ) = dA(X,Y ) +A(X)A(Y )−A(Y )A(X)

The associated bundle

Now let P → M be a principal G-bundle, V a vector space and ρ : G → GL(V ) a representation
of G.

Definition 1.30. Let P → M be defined by trivialisations {Ui, φi} and transition functions φαβ
corresponding to the left action of gαβ . The associated bundle E → M is the vector bundle
defined by the set of trivial bundles Ui × V and transition maps ρ(gαβ).

The derivative of ρ at the identity is a map from the Lie algebra of G to the endomorphism group
of V,

ρ∗ : g→ End(V )

A connection 1-form ω on P → M can be thought of a as a g-valued 1-form on M (see Remark
1.18), its composition with ρ∗ is an endomorphism valued 1-form ρ∗◦ω onM . This endomorphism
valued 1-form is the linear connection induced by ω.

Frame bundles

Let E → M be a vector bundle. We can associate a principal bundle F (E) → M , the so-called
frame bundle of E → M as follows. Let the fiber F (E)b be the set of all ordered bases of Ex with
the action of GL(Ex) as basis transformations. This space can be given a natural topology and
bundle structure using those of E → M . The structure group is a linear group by definition, and
the vector bundle associated to F (E)→M is E →M.
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1.5. Complex manifolds 11

Moreover, since the representation is the identity, its derivative is bijective, therefore every con-
nection on the vector bundle is induced by a connection on its frame bundle. Also, we have

ρ∗ ◦ (dω + ω ∧ ω) = dρ∗(ω) + ρ∗(ω) ∧ ρ∗(ω)

In particular, flat connections induce flat connections.

These observations show that every vector bundle can be constructed as an associated bundle of
some principal bundle, and the results derived for principal bundles also hold for vector bundles
via the correspondence between principal and vector bundles.

Parallel Transport

The horizontal subspace interpretation of parallel transport was mentioned in Section 1.2.
When our bundle is a vector bundle and connections can be thought of as covariant derivatives,
then it makes sense to talk about constant sections of the bundle. These constant sections give
the interpretation of parallel transport in the language of covariant derivatives. We will need the
following theorem in the rest of this thesis.

Theorem 1.31. If the curvature of a connection vanishes, then the parallel transport along a curve γ only
depends on the homotopy class of γ.

1.5 Complex manifolds

Complex structure on a manifold

The definition of a complex manifold is analogous to that of a smooth manifold.

Definition 1.32. Let M be a topological manifold. A complex chart (U, φ) is an open set U ⊂ M

and a homeomorphism φ : U → φ(U) ⊂ Cn.
A complex atlas is a collection of complex charts (Ui, φi) such that M =

⋃
Ui.

A complex structure on the manifold M is a maximal complex atlas such that if two charts (Ui, φi)

and (Uj , φj) overlap, i.e. Ui ∩ Uj 6= ∅ then the transition functions

φi ◦ φ−1
j : φj(Ui ∩ Uj)→ φi(Ui ∩ Uj)

between the charts are biholomorphic (i.e. the inverse is also holomorphic).
A complex manifold is topological manifold equipped with a complex structure.

Smooth maps and diffeomorphisms are replaced by holomorphic and biholomorphic maps.

Definition 1.33. Let M and N be complex manifolds, (Ui, φi) the atlas for M and (Vj , φj) the atlas
for N. A map f : M → N between them is said to be holomorphic if φj ◦ f ◦ φ−1

i is holomorphic
whenever f(Ui)∩Vj 6= ∅. If φj◦f◦φ−1

i are biholomorphisms, then f is said to be a biholomorhism.

The analogue of a vector bundle is also straightforward.

Definition 1.34. A vector bundle is π : E →M is said to be a holomorphic vector bundle of rank n
if the fibers are Cn, E andM are complex manifolds, π is holomorphic, and the local trivialisations
are biholomorphisms.
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12 Chapter 1. Preliminaries

Example 1.35 (Holomorphic tangent bundle). Let M be complex n-manifold, and p ∈ M. The
tangent space TpM at p is defined the same way as in the real case. In local coordinates the deriva-
tions {∂z1 , ..., ∂zn} form a basis. The tangent bundle TM is the disjoint union of tangent spaces,
and the topology of TM is defined the same way as in Example 1.5. The transition functions of
1.6 are given by the complex Jacobian of φα ◦ φ−1

β .

Almost complex manifolds

Let V be a real vector space and J : V → V a linear map such that J2 = −I (where I is the identity
on V ). Such a J is called a complex structure on V , because we can equip V with the structure of
a complex vector space by

(α+ iβ)v = αv + βJv

for α, β ∈ R, v ∈ V .
Now consider V ⊗R C, the complexification of V. We can extend J to a map on V ⊗R C by C-
linearity such that J2 = −I still holds. It follows that J has two eigenvalues, i and −i. Let V 1,0

and V 0,1 be the eigenspaces of i and and −i, respectively. We can write

V ⊗R C = V 1,0 ⊕ V 0,1

Definition 1.36. LetM be a smooth manifold of dimension 2n. Suppose J : TM → TM is a vector
bundle isomorphism such that Jp : TpM → TpM is a complex structure on each fiber. Then J is
called an almost complex structure on the smooth manifold M.

Every complex manifold structure induces an almost complex structure on its underlying smooth
manifold. LetM be a complex manifold andM0 its underlying differentiable manifold. If {∂z1 , ..., ∂zn}
is a basis for TpM , then {∂x1 , ∂y1 ..., ∂xn , ∂yn} is a basis for TpM0 where zk = xk + iyk. Then

Jp(∂xk) = ∂yk Jp(∂yk) = −∂xk
is an almost complex structure on M0.
The converse, however, is not true in general. Given an almost complex structure J , the Newlander-
Nirenberg theorem gives a necessary and sufficient condition for the existence of a complex struc-
ture that induces J . To state the theorem, we need to introduce differential forms on almost com-
plex manifolds.

Differential forms on almost complex manifolds

Let V be a real vector space with a complex structure J , let Vc = V ⊗RC denote its complexification.
The exterior algebras of V 1,0 and V 0,1 are naturally injected into the exterior algebra of Vc∧

V 1,0 −→
∧
Vc

∧
V 0,1 −→

∧
Vc

Let
∧
p,qV be the subspace of Vc that is generated by elements of the form α∧ β where α ∈

∧
pV 1,0

and β ∈
∧
qV 0,1. We can write ∧

Vc =

2n∑
d=0

∑
p+q=d

∧p,qV

Now suppose (M0, J) is an almost complex manifold. J restricts to a complex structure on every
fiber. Let TM1,0

0 be the bundle of (+i)-eigenspaces, TM0,1
0 the bundle of (−i)-eigenspaces, T ∗M1,0

0
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1.6. The theorems of de Rham and Hodge 13

and T ∗M0,1
0 their duals. Again, we have T ∗M1,0

0 ⊕ T ∗M0,1
0 = T ∗Mc and the injections∧

T ∗M1,0
0 −→

∧
T ∗Mc

∧
T ∗M0,1

0 −→
∧
T ∗Mc

Definition 1.37. The complex-valued differential forms of type (p, q) on M0 are the sections of
π :
∧
p,qT ∗M0 →M0. The space of such forms is denoted by Ap,q.

In general, the exterior derivative maps a form α of type (p, q) to a form

dα =
∑

r+s=p+q+1

πr,sdα

where πr,s is the projection to the subspace of the forms of type (r, s). We define the ∂ and ∂

operators that map a form of type (p, q) to a form of type (p+ 1, q) and (p, q + 1), respectively.

∂ = πp+1,q ◦ d ∂ = πp,q+1 ◦ d

Definition 1.38. If d = ∂ + ∂, then we say that the almost complex structure is integrable.

Now we can state the Newlander-Nirenberg theorem.

Theorem 1.39 (Newlander-Nirenberg). Let (X, J) be an almost complex manifold. There exists a unique
complex manifold structure on X inducing J if and only if J is integrable.

There is a similarity between this theorem and the theorem of Frobenius, as they both characterise
the existence of manifold structures.

1.6 The theorems of de Rham and Hodge

Let X be a topological space. Let ∆p = [e0 e1 ... ep] ⊂ Rp be the standard p-simplex. A continuous
map σ : ∆p → X is called a singular p-simplex in X. The singular chain group of degree p,
denoted by Cp(X), is the free abelian group generated by all singular p-simplices. The elements
of Cp(X) are called singular p-chains.

For i = 0, ..., p we define the face map Fi,p : ∆p−1 → ∆p to be the unique affine map that sends

e0 → e0, e1 → e1, ... ei−1 → ei−1, ei → ei+1, ..., ep−1 → ep

The boundary of a p-simplex σ : ∆p → X is the (p− 1)-chain

∂σ =

p∑
i=0

(−1)iσ ◦ Fi,p

A p-chain c is called a cycle if ∂c = 0 ∈ Cp−1(X). LetZp(X) denote the singular p-cycles. A p-chain
b is called a boundary if there exists c ∈ Cp+1(X) such that ∂c = b. Let Bp(X) denote the singular
p-boundaries. The boundary map satisfies ∂2 : Cp(X)→ Cp−2(X) = 0, therefore Bp(X) ⊂ Zp(X).

Definition 1.40. The p-th singular homology group is defined as

Hp,sing(X) = Hp(C•, ∂) =
Zp(X)

Bp(X)

Remark 1.41. IfR is a unital ring, we can take the singular p-simplices to be the generators of a free
R-module. Let Hp,sing(X,R) denote the homology groups we obtain using the same construction
as above. If we take R = Z, we get back Hp,sing(X,Z) = Hp,sing(X).
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14 Chapter 1. Preliminaries

Let (C•, ∂) be a graded chain complex (i.e. ∂(Ci) ⊂ Ci−1 and ∂2 = 0), and G an abelian group. The
dual chain complex (or cochain complex) is defined as

Ci = Hom(Ci, G) = {f : Ci → G| f is a homomorphism}

with coboundary d : Ci → Ci+1 defined as

[d(f)](c) = f(∂c)

for f ∈ Ci, c ∈ Ci+1. The singular cochains of degree p of a topological space are defined as

Cising(X) = Hom(Ci,sing(X), G)

A p-cochain f is called a cocycle if d f = 0 ∈ Cp+1(X). Let Zp(X) denote the singular p-cocycles.
A p-cochain g is called a coboundary if there exists h ∈ Cp−1(X) such that dh = g. Let Bp(X)

denote the singular p-coboundaries.

Definition 1.42. The p-th singular cohomology group is defined as

Hp
sing(X) = Hp(C

•,d) =
Zp(X)

Bp(X)

So far these definitions work for any topological space. If in addition M has a smooth manifold
structure, then we can replace the singular simplices (continuous maps ∆p → M ) with smooth
simplices (smooth maps ∆p →M ). Following the exact same steps as above, we obtain the smooth
homology groups Hp,∞(M). Also, the inclusion map ι : Cp,∞(M) → Cp,sing(M) commutes with
the boundary map, so it induces a map ι∗ : Hp,∞(M)→ Hp,sing(M)

Theorem 1.43. For a smooth manifold M, the map ι∗ : Hp,∞(M)→ Hp,sing(M) is an isomorphism.

Proof. [LeeSM], Theorem 18.7

The reason we need this theorem is that we want to pull back forms along simplices (maps ∆p →
M ), and that is only possible if the simplices are smooth. Theorem 1.43 states that we don’t lose
anything if we only consider the smooth simplices.
Let ω be a closed p-form on some smooth manifold M, σ a smooth p-simplex in M. Define the
integral of ω on σ as the integral of the pullback form in Rp,∫

σ
ω =

∫
∆p

σ∗ω

We extend this definition R-linearly to Hp,sing(M,R). Now we are ready to state the the de Rham
theorem.

Theorem 1.44 (de Rham). Let M be a smooth manifold. The inclusion I : Hp
dR(M) → Hp

sing(M,R)

defined by

[I(ω)](c) =

∫
c
ω

is an isomorphism.

The formula is understood as follows: ω is a closed p-form representing the cohomology class
[ω] ∈ Hp

dR(M) and c is a (smooth) singular p-chain representing the homology class [c] ∈ Hp,sing(M) ∼=
Hp,∞(M).

Proof. [LeeSM], Theorem 18.14
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1.6. The theorems of de Rham and Hodge 15

The Hodge Decomposition

Let (M, g) be a Riemannian manifold. The scalar product on the fibers of the tangent bundle
can be extended to a scalar product on cotangent bundle by the isomorphism coming from the
Riemannian structure v ↔ g(., v). There is also a natural construction on the tensor products of
these spaces that yields an inner product 〈, 〉 on the space of differential forms over (M, g),

Definition 1.45. The Hodge star operator ? : Ak → An−k is defined as

α ∧ ?β = 〈α, β〉dVg

for α ∈ Ak, β ∈ An−k.

Definition 1.46. The Hodge inner product (, ) of two forms α, β of the same degree is defined by

(α, β) =

∫
M
〈α, β〉dVg =

∫
M
α ∧ ?β

where dµ is the volume form of g.

Definition 1.47. The codifferential δ : Ak(M)→ Ak−1(M) is

δ = (−1)nk+1 ? d?

We can now define the Laplace-de Rham operator ∆ : An → An,

∆ = dδ + δd

Definition 1.48. A form ω is said to be harmonic if ∆ω = 0. When ω = f is a smooth function,
this definition reduces to δdf = 0. The space of harmonic forms of degree k is denoted byHk.

If M has empty boundary, then δ is the formal adjoint of the exterior derivative in the sense that

(dα, β) = (α, δβ)

where α ∈ Ak(M), β ∈ Ak+1. This follows from the theorem of Stokes,

0 =

∫
M
d(α ∧ ?β) =

∫
M
dα ∧ ?β − α ∧ (−1)k+1d ? β =

=

∫
M
dα ∧ ?β − α ∧ (−1)k(n−k) ? (−1)k+1 ? d ? β = (dα, β)− (α, δβ)

This also implies that on a manifold without boundary ω is harmonic if and only if dω = 0 and
δω = 0.

Theorem 1.49 (Hodge). Let M be a closed Riemannian manifold. Then

Ak = Hk ⊕ dAk−1 ⊕ δAk+1

i.e. every form ω of order k can be uniquely decomposed as

ω = ωh + dα+ δβ

where ωh is a harmonic form, α is a (k − 1)-form and β is a (k + 1)-form.

Corollary 1.50. For a closed form ω, Theorem 1.49 reduces to ω = ωh + dα.

Definition 1.51. On a complex manifold the space of harmonic (p, q) forms are denoted byHp,q. In
particular, holomorphic and antiholomorphic p-forms are defined asHp,0 andH0,p, respectively.
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16 Chapter 1. Preliminaries

Theorem 1.52. If M is a Riemann surface (complex 1-manifold) then

H1 = H1,0 ⊕H0,1

A0,1 = H0,1 ⊕ ∂A0

An other simple consequence of the Hodge decomposition theorem is that every de Rham coho-
mology class has a unique harmonic representative.

Theorem 1.53. Let M be a closed Riemannian manifold. Then Hk
dR
∼= Hk(M).

1.7 Sheaf theory

Presheaves and Sheaves

Definition 1.54. Let X be a topological space, C a category. A presheaf F on X is
◦ A map F from the open sets of X into ob(C).
◦ A collection of restriction morphisms rUV : F (U)→ F (V ) for each V ⊂ U satisfying

• rUU : idF (U)

• rUW = rVW ◦ rUV , for every W ⊂ V ⊂ U
This essentially defines a contravariant functor from the category of open sets of X into C.

Definition 1.55. A presheaf F on X is said to be a sheaf if for every collection Ui of open subsets
of X with U = ∪Ui then F satisfies the following gluing axioms
(S1) If si ∈ F (Ui) and if for Ui ∩ Uj 6= ∅ we have

rUiUi∩Uj (si) = r
Uj
Ui∩Uj (sj)

for all i, then there exists an s ∈ F (U) such that rUUi(s) = si.
(S2) If s1, s2 ∈ F (U) and rUUi(s1) = rUUi(s2) for all i, then s1 = s2

Informally, (S1) guarantees that the existence and (S2) the uniqueness of the gluing.

Example 1.56. Let X and Y be topological spaces, and let CX,Y be a presheaf over X defined as
◦ CX,Y (U) = {f : U → Y | f is continuous }
◦ If f ∈ CX,Y (U), then rUV = f

∣∣
V

In addition, CX,Y satisfies (S1) and (S2), therefore this presheaf is actually a sheaf.

Definition 1.57. Let F and G be sheaves (resp. presheaves) over the same space X. A morphism
of sheaves(resp. presheaves) is a collection of morphisms

hU : F (U)→ G (U)

for each open set U such that (rUV )G ◦ hU = hV ◦ (rUV )F for all V ⊂ U ⊂ X , where (rUV )F and (rUV )G

are restriction morphisms of F and G , respectively.
If the morphisms hU are inclusions then F is said to be a subsheaf (resp. subpresheaf) of G .
If the morphisms hU are isomorphisms, then F and G are said to be isomorphic sheaves (resp.
presheaves).

Definition 1.58. Let (I,≤) be a partially ordered set (i.e. ≤ is transitive and reflexive). If for every
i, j ∈ I there exists a k ∈ I such that i ≤ k, j ≤ k, then (I,≤) is said to be a directed set.
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1.7. Sheaf theory 17

Let (I,≤) be a directed set and C a category. A direct system is a collection of Ai ∈ ob(C) for all i,
and αi,j : Ai → Aj are morphisms for each i ≤ j.

Example 1.59. Let F be a presheaf over X. The order on the open sets of X is given by Ui ≤ Uj ⇔
Uj ⊂ Ui. Then Ai = F (Ui) is indexed by the open sets of X, and αi,j = rUiUj .

Definition 1.60. An object A ∈ ob(C) together with morphisms αi : Ai → A is said to be the direct
limit of the above direct system if
◦ αi = αj ◦ αi,j for all i ≤ j
◦ For any other object A′ ∈ ob(C) and morphisms satisfying α′i = α′j ◦αi,j there exists a unique

morphism α : A→ A′ such that α ◦ αi = α′i. (universal property)
The direct limit is denoted as lim−→Ai.

The second condition guarantees that if the direct limit exists, then it is unique up to isomorphism.
If C is the category of abelian groups, rings (commutative with identity) or modules, then the direct
limit exists and it is given by the following construction.
Let ({Ai}, {αij}) be a direct system. Consider the disjoint union

⋃
ai∈Ai(ai, Ai) of the elements of

Ai and the define the equivalence relation ∼ by (ai, Ai) ∼ (aj , Aj) if there exists a k ≥ i, j such
that αi,k(ai) = αj,k(aj). Let [(ai, Ai)] be the equivalence class of (ai, Ai). Then

A =
⋃
ai∈Ai

(ai, Ai)/ ∼ αi(ai) = [(ai, Ai)]

is the direct limit of the system. From this point on we only deal with sheaves and presheaves of
abelian groups, rings and modules.

Definition 1.61. Given a presheaf F over X, let

Fx = lim−→
x∈U

F (U)

where the direct limit is taken with respect to the restriction morphisms. We call Fx the stalk of
F at x. For s ∈ F (U) its image in the stalk is called the germ of s at x.

Consider the space

F̃ =
⋃
x∈X

Fx

with the following topology. Fix an open set U ⊂ X and s ∈ F (U). Let sx denote the germ of s
at x. Then we take {sx | x ∈ U} to be open for all pairs (s, U) and let these open sets generate the
topology of F̃ .

Theorem 1.62. Let F be a presheaf. The sections of F̃ over open sets U (i.e.continuous maps s : U → Y

such that π ◦ s = idU ) form a sheaf. Let us denote this sheaf with F̄ . Moreover, if F is a sheaf to begin
with, then F and F̄ are isomorphic sheaves.

Remark 1.63. The restriction morphisms are the natural restrictions of sections, and the abelian
group structure of sections over the same open set is defined pointwise.

Definition 1.64. The sheaf F̄ is called the sheaf generated by F .

By the second statement of Theorem 1.62 we may think of a sheaf F as the family of sections of
the space F̃ (which is just the disjoint union of stalks for all x ∈ X).
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18 Chapter 1. Preliminaries

Cohomology

Definition 1.65. Let A ,B,C be sheaves over X, and g : A → B, h : B → C sheaf morphisms.
The sequence

A
g−→ B

h−→ C

is said to be exact at B if the induced sequence

Ax
gx−→ Bx

hx−→ Cx

is exact at Bx for all x ∈ X. Short and long exact sequences of sheaves are defined similarly.

Definition 1.66. Let F i be a collection of sheaves indexed by the integers. A differential complex
of sheafs is a sequence of sheafs

...
αi−2−−−→ F i−1 αi−1−−−→ F i αi−→ F i+1 αi+1−−−→ ...

connected by sheaf morphisms αi such that αi+1 ◦ αi = 0.

A resolution of a sheaf F is a long exact sequence of sheaves of the form

0 −→ F
j−→ F 0 d0−→ F 1 d1−→ ... −→ F q dq−→ F q+1 dq+1

−−−→ ...

where 0 is the constant 0 sheaf.

Definition 1.67. A sheaf F is called flabby if for every open subset U the restriction map rXU :

F (X)→ F (U) is onto, i.e. every section of F on U can be extended to a section on X.

Let F be a sheaf and F [0] the sheaf of germs of sections that are not necessarily continuous (maps
s : X → F̃ such that π ◦ s = idX ). It is clear that F [0] is flabby and there is an injection j : F →
F [0].
Now define F [q] as (F [q−1])[0]. This is the sheaf of germs of sections of the sheaf F [q−1] over X.
By induction, we can think of the stalk F

[q]
x as the equivalence classes of maps f : Xq+1 → F̃ such

that f(x0, ..., xq) ∈ Fxq , where the equivalence relation is given as follows.
Let f, g : Xq+1 → F̃ be maps such that f(x0, ..., xq), g(x0, ..., xq) ∈ Fxq . If they coincide on a set of
the form

x0 ∈ V0 x1 ∈ V1(x0) ... xq ∈ Vq(x0, ..., xq−1), Vq ⊂ ... ⊂ V1 ⊂ V0

where Vi is a neighbourhood of xi depending on x0, ..., xi−1, then f and g are equivalent in the
stalks in Vq.
The differential dq : F [q] → F [q+1] is defined by

df(x0, ..., xq+1) =
∑

0≤j≤q
(−1)jf(x0, ..., x̂i, ..., xq+1) + (−1)q+1f(x0, ..., xq)(xq+1)

where the last term is the image of xq+1 under the continuous section f(x0, ..., xq) ∈ Fxq .

Theorem 1.68 (Godement, 1957). The complex (F [•], d) is a resolution of the sheaf F , called the canon-
ical flabby resolution of F .

Now we are ready to define the cohomology groups.

Definition 1.69. Let F be a sheaf of abelian groups. For an integer q ∈ Z, the q-th cohomology
group of X with values in F is

Hq(X,F ) = Hq(F [•](X), d) = ker(dq)/Im(dq−1)
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1.7. Sheaf theory 19

with the convention F q = 0, dq = 0, Hq(X,F ) = 0, when q ≤ 0.

Definition 1.70. A sheaf F overX is said to be acyclic on an open set U ifHq(U,F ) = 0 for q ≥ 1.

Theorem 1.71. Flabby sheaves are acyclic on all open subsets.

Proof. [Dem], Theorem 4.4

In Definition 1.69 we defined the cohomology groups by the canonical flabby resolution. The
following theorem states the interesting result that by choosing any resolution by acyclic sheaves,
we obtain the same cohomology groups.

Theorem 1.72 (de Rham-Weil). Let F be a sheaf over X and

0 −→ F
j−→ A 0 d0−→ A 1 d1−→ ... −→ A q dq−→ A q+1 dq+1

−−−→ ...

a resolution of F , such that A q is acyclic on X for all q. Then

Hq(A •(X), d) ∼= Hq(X,F )

Proof. [Dem], Theorem 6.4

Let M be a smooth manifold of dimension n. Also, let E i denote the space of differential forms of
degree q on M . Consider the resolution

0 −→ R j−→ E 0 d−→ E 1 d−→ ...
d−→ E q d−→ ...

d−→ E n d−→ 0

where d is the exterior derivative. The de Rham cohomology groups Hq
dR are defined as

Hq
dR(X,R) = Hq(E •(X), d)

It can be shown that E q is acyclic for all q, therefore (by the de Rham-Weil isomorphism)

Hq
dR(X,R) ∼= Hq(X,R)

To conclude this section we state, without proof, a few relevant results of Algebraic Topology.

Theorem 1.73 (Five-lemma). Given a commutative diagram of abelian groups

A B C D E

A′ B′ C ′ D′ E′

i j k l

i′ j′ k′ l′
α β γ δ ε

if the rows are exact and α, β, δ, ε are isomorphisms, then γ is also an isomorphism.

Theorem 1.74 (Snake lemma). If we are given a commutative diagram

A0 B C 0

A′ B′ C ′ 00

i j

i′ j′
α β γ

with exact rows, then there is an exact sequence

0→ kerα→ kerβ → kerγ
δ−→ cokerα→ cokerβ → cokerγ
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20 Chapter 1. Preliminaries

Theorem 1.75 (Mayer-Vietoris Exact Sequence). Let X be a topological space, U, V open subsets such
that U ∪ V = X. Then there exist maps δp such that the following sequence, called the Mayer-Vietoris
sequence is exact:

...
δp−1−−−→ Hp(X)

ρp−→ Hp(U)⊕Hp(V )
∆p−−→ Hp(U ∩ V )

δp−→ Hp+1(X) −→ ...

where ρ = rXU + rXU and ∆ = rUU∩V − rVU∩V
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Chapter 2

Smooth Hodge theory on compact
Riemann surfaces

This chapter is mainly based on [GoXi].

2.1 Equivalence of Betti and de Rham groupoids

Definition 2.1. A groupoid is a category in which every morphism is invertible.

Definition 2.2. Let C and D be categories. An equivalence of categories is a functor F : C → D if
it is

• full, i.e. for x, y ∈ Obj(C), the map Mor(x, y)→ Mor(F (x), F (y)) is surjective
• faithful, i.e. for x, y ∈ Obj(C), the map Mor(x, y)→ Mor(F (x), F (y)) is injective
• surjective on isomorphism classes, i.e. the induced map F∗ : Iso(C)→ Iso(D) is surjective

The following example shows that equivalent categories are not necessarily isomorphic.

Example 2.3. Let C contain the abelian group Z2 and its identity morphism , and letD contain two
isomorphic copies of Z2 with the identity morphisms of both and the isomorphism between them.
These categories are easily seen to be equivalent, however they are clearly not isomorphic.

In this section we construct the Betti and de Rham groupoids and the equivalence between them.
In what follows, let G be either C∗ or U(1). Also, let Σ be a closed, oriented, smooth 2-manifold
with fundamental group π.

The Betti groupoid

Definition 2.4. The Betti groupoid is the category (Hom(π,G), G), i.e. the objects are the repre-
sentations π → G, and the morphisms are conjugations by the elements of G.

The fundamental group of a closed, oriented, smooth 2-manifold is

〈A1, B1, ... , Ak, Bk | [A1, B1] ... [Ak, Bk] = 1〉

where k denotes the genus of the surface. Now let ρ ∈ Hom(π,G). Since G is abelian, its action is
trivial and the relation

[ρ(A1), ρ(B1)] ... [ρ(Ak), ρ(Bk)] = 1G
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22 Chapter 2. Smooth Hodge theory on compact Riemann surfaces

is automatically satisfied, therefore

Hom(π,G)/G ∼= Hom(π,G) ∼= G2k

Hence Hom(π,C∗) can be equipped with a natural complex structure.

The de Rham groupoid

Let π : E → Σ be the trivial complex line bundle over Σ with a fixed a trivialisation τ0.

Definition 2.5. A gauge transformation ξ of π : E → Σ is a smooth bundle automorphism. Since
E is a line bundle, this definition reduces to a smooth map g : Σ→ C∗. Let Gl(E) denote the group
of gauge transformations of E. Similarly, the U(1)-gauge group Gu(E) is the subgroup of smooth
Σ→ U(1) maps.

A trivialising section τ0 : Σ→ E determines a connection D0 by

D0(s) = D0(fτ0) = df(.)τ0

Every connection on D can be written as D = D0 + η for some η ∈ A1(Σ), and D acts as

D(s) = D(fτ0) = df(.)τ0 + η(.)fτ0

Now let ξ ∈ Gl(E) be a gauge transformation represented by g : Σ → C∗. Define its action on
D = D0 + η by

ξ(D0 + η) = D0 + η − g−1dg

Let τ0, τ
∗
0 = gτ0 be trivialisations, s = fτ0 a section, and D,D∗ the connections determined by τ0

and τ∗0 , respectively. Also, let ξ be the gauge transformation that is represented by g. Then we
have

(ξD)
[
ξ(fτ0)

]
= (d+ η − g−1dg)(gfτ0) = [d(gf) + gfη − fdg]τ0 = (df + fη)(gτ0) = D∗(fτ∗0 )

A simple computation shows that although the Gl(E)-action alters the connection, the curvature
of the connection is invariant.

d(η − g−1dg) = dη − dg−1 ∧ dg = dη + g−2dg ∧ dg = dη

Let Fl(E) denote the set of flat C∗ connections on the E, i.e. those connections for which dη

vanishes.

Definition 2.6. The de Rham groupoid is defined as (Fl(E),Gl(E)).

Complex structure of the de Rham groupoid

The Gl(E) action can be decomposed as the action of the identity component Gl(E)0 and the action
of the group of connected components π0(Gl(E)) on the quotient. If g ∈ Gl(E)0 then g = exp f for
some f ∈ A0(Σ) and its action is given by

D0 + η
g−→ D0 + η − (exp f)−1d(exp f) = D0 + η − df

The quotient Fl(E)/(Gl(E)0) is then H1(Σ,C).

The action of π0(Gl(E)) will correspond to the inclusion of H1(Σ,Z) into H1(Σ,C). To see this, we
first observe that the fundamental group ofG is Z, thus every smooth map g ∈ Map(Σ, G) induces
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2.2. Equivalence of Dolbeault and de Rham groupoids 23

a homomorphism

π1(Σ)→ Z

determining and element of

Hom(π1(Σ),Z) ∼= Hom(Ab(π1(Σ)),Z) = H1(Σ,Z)

The resulting group homomorphism Map(Σ, G)→ H1(Σ,Z) induces an isomorphism

π0(Map(Σ, G)) ∼= H1(Σ,Z)

Thus Fl(E)/Gl(E) can be identified with H1(Σ,C)/H1(Σ,Z) and inherits the complex structure J

J(η) = iη

The Equivalence

Holonomy assigns to each loop based at x0 a homomorphism

holx0 : π1(Σ, x0)→ C∗

If ξ ∈ Gl(E)(corresponding to g : Σ → C∗) is a gauge transformation, then the evaluation of g at
x0 is a Gl(E)→ C∗ homomorphism. These two maps together give the holonomy functor.

Theorem 2.7 (Riemann-Hilbert correspondence). The functor

hol : (Fl(E),Gl(E))→ (Hom(π,C∗),C∗)

is full, faithful, and surjective on isomorphism classes, ie. an equivalence of the Betti and de Rham groupoids.

2.2 Equivalence of Dolbeault and de Rham groupoids

The Dolbeault groupoid

Let E → Σ, τ,D,D0 be as in the previous section. Then we can decompose D0 as

D0(fτ) = df(.)τ = ∂f(.)τ + ∂̄f(.)τ = D′0(fτ) +D′′0(fτ)

Definition 2.8. A holomorphic structure is an operator

D′′ = D′′0 + Ψ Ψ ∈ A0,1(X)

that satisfies

fτ
D′′−−→ (∂̄f + fΨ)τ

Let Hol(E) denote the space of all holomorphic structures on E.

Definition 2.9. A Higgs field on a holomorphic vector bundle (E,D′′) is a (1, 0) form Φ on Σ

taking values in the endomorphism bundle End(E) that is holomorphic with respect to the holo-
morphic structure of T ∗Σ ⊗ End(E). A Higgs bundle is the triple (E,D′′,Φ) where (E,D′′) is a
holomorphic vector bundle and Φ is a Higgs field on (E,D′′).

When E is a line bundle, a Higgs field is just a holomorphic 1-form,

Higgs(E) = Hol(E)×H1,0(Σ)
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24 Chapter 2. Smooth Hodge theory on compact Riemann surfaces

The gauge group Gl(E) acts on Hol(E) by

D′′0 + Ψ
ξ−→ D′′0 + Ψ− g−1∂̄g

and on Higgs fields by conjugation. Since End(E) is commutative, the action of Gl(E) on H1,0(Σ)

is trivial. Denote the resulting groupoid by (Higgs(E),Gl(E)).

Complex structure of the Dolbeault groupoid

The Gl(E) action on Hol(E) can be decomposed as the action of the identity component Gl(E)0

and the action of the group of connected components π0(Gl(E)) on the quotient. If g ∈ Gl(E)0 then
g = exp f for some f ∈ A0 and its action is given by

D′′0 + Ψ
g−→ D′′0 + Ψ− ∂f

The quotient Hol(E)/(Gl(E)0) can be identified with A0,1/∂A0 = H0,1 by the Hodge decomposi-
tion theorem. Let V = H0,1 denote the space of antiholomorphic 1-forms.

The action of π0(Gl(E)) ∼= H1(Σ,Z) corresponds to the action of H1(Σ,Z) on H0,1 by translation
via the map

H1(Σ,Z)
i−−→ H1(Σ,C)

p−−→ H0,1 = V

where i is the natural inclusion of H1(Σ,Z) into H1(Σ,C) and p is the projection to the subspace
of antiholomorphic 1-forms. The image of H1(Σ,Z) under p ◦ i is a lattice L ⊂ V of rank dimR(V ).
The quotient V/L is then a torus of dimension dimR(V ), the Jacobian of Σ, denoted by Jac(Σ).

The Dolbeault isomorphism identifies the space of antiholomorphic 1-forms and the first coho-
mology group of the sheaf of germs of holomorphic functions,

H0,1(Σ) ∼= H1(OΣ,Σ)

To summarise, Higgs(E)/Gl(E) identifies with

Jac(Σ)×H1,0 = V/L× V

The complex structure I of V/L× V arises from those of V and V . Namely, for Ψ ∈ V and Φ ∈ V

(Ψ,Φ)
I−−→ (iΨ, iΦ)

The Equivalence

Definition 2.10. Let Her(E) denote the space of Hermitian metrics, i.e. tensors of type TM2 → C
that restrict to positive definite Hermitian forms 〈, 〉H on each fiber.

In a trivialisation{s1, ..., sn} the Hermitian metric H can be represented by a positive definite Her-
mitian matrix hij . WhenE is a complex line bundle and τ0 is a trivialisation, the matrix hij reduces
to positive real function h

〈s1, s2〉H = 〈f1τ0, f2τ0〉H = f1hf2

Gauge transformations act on Hermitian metrics by

〈s1, s2〉H
ξ−→ 〈g−1s1, g

−1s2〉H = 〈s1, s2〉ξH

i.e. we have the identity

〈ξ(s1), ξ(s2)〉ξH = 〈s1, s2〉H
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2.2. Equivalence of Dolbeault and de Rham groupoids 25

and the functions representing H and (ξH) are related by

h
ξ−→ g−1g−1h = |g|−2h

Definition 2.11. A connection D is said to be unitary with respect to H if it satisifies

d〈s1, s2〉H = 〈Ds1, s2〉H + 〈s1, Ds2〉H

for any two sections s1, s2. Equivalently, we say that H is parallel with respect to D.

Let si = fiτ0 The above equation then becomes

d(f1hf2) = (df1 + f1η)hf2 + f1hd(df2 + f2η)

which simplifies to

f1dhf2 = f1ηhf2 + f1hf2η ⇔ dh = h(η + η)

which shows that D is unitary with respect to H if and only if

h−1dh = 2Re(η)

Let p : Σ̃ → Σ be the universal cover of Σ. Also, let p∗E, p∗D, p∗H and p∗τ0 be the pullbacks of
E → Σ, D,H and τ0, respectively. We want to find a p∗D-parallel trivialisation τ of p∗E.

We look for τ in the form

τ = ϕ(p∗τ0) (2.1)

where ϕ is a smooth function on Σ̃. Such a trivialisation needs to satisfy

0 = p∗D(τ) = p∗D(ϕ(p∗τ0)) = dϕ(.)p∗τ0 + p∗η(.)ϕ(p∗τ0)

therefore

p∗η = −ϕ−1dϕ = −d logϕ (2.2)

Since Σ̃ is simply connected, H1(Σ̃) = 0 which also implies H1(Σ̃) = 0, i.e. all closed forms are
exact, and the above equation can be solved. Thus we can define ϕD : Σ̃→ C in a way that makes
ϕD(p∗τ0) parallel with respect to p∗D.

Now we define a metric H̃ on Σ̃ which is, in the trivialisation p∗τ0 , represented by

h̃ = |ϕD|2p∗h

Equivalently, in the p∗D-parallel trivialisation τ = |ϕD|2p∗τ0 it is represented by

|ϕD|−2h̃ = p∗h

Since ϕD is equivariant with respect to the holonomy group of the connection, we can define p∗ϕD
locally on Σ.

Definition 2.12. Define the metric H0 by 〈τ0, τ0〉H0 = 1, i.e. H0 is represented (with respect to
the trivialisation τ0) by h0 = 1. The subset of Fl(E) containing connections that are unitary with
respect to H0 will be denoted by Fu(E).

AsD0 is determined by the trivialisation τ0, so isH0. In other words, once we pick a trivisalisation
τ0, we automatically obtain the connection D0 and the metric H0.

Definition 2.13. Let H be a Hermitian metric, D′′ a holomorphic structure. The connection D is
said to be compatible with D′′ and H if
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26 Chapter 2. Smooth Hodge theory on compact Riemann surfaces

• the (0, 1) part of D equals D′′ and
• D is unitary with respect to H

The connection D is also called the Chern-connection.

For any pair of D′′ and H exists a unique connection satisfying these conditions. Namely, if D′′ =
D′′0 + µ, and H is represented by h, then D is given by

D0 + µ− µ+ h−1∂h

Definition 2.14. A Hermitian metric H is said to be the Hermitian-Einstein metric with respect
to D′′ if D (the connection compatible with D′′ and H) is flat.

Let Holu(E) denote the subset of Hol(E)×Her(E) consisting of (D′′, H) such that H is Hermitian-
Einstein with respect to D′′.

Theorem 2.15. There is an equivalence of groupoids T

(Fu(E),Gu(E))
T−−−→ (Holu(E),Gl(E))

where T acts on the objects by

D
T−→ (D(0,1), H0)

and on morphisms by the inclusion Gu(E) ↪→ Gl(E).

Theorem 2.16. Let D′′ ∈ Hol(E). Then there exists a Hermitian metric represented by h such that
(D′′, h) ∈ Holu(E).

Proof. Let D′′ be a holomorphic structure. By Theorem 1.52 D′′ = D′′0 + Ψ0 + ∂f , where Ψ0 is
antiholomorphic and f ∈ A0. The connection D = D0 + Ψ0 −Ψ0 + df is flat (η = Ψ0 −Ψ0 + df is
closed) and D0,1 = D′′. We just need to find a metric that is parallel with respect to D. We define
H by the equation η+ η = d log h to obtain a desired metric that is defined up to multiplication by
a positive constant (h = c e2Ref for any c ∈ R+).

Note that Theorem 2.15 is about unitary connections and unitary gauge-transformations, whereas
the de Rham groupoid is (Fl(E),Gl(E)). In the rest of this section we extend the unitary case to
the linear one, and relate the de Rham groupoid to the Dolbeault groupoid.
Let E → Σ be a trivial line bundle, D a flat connection, H a Hermitian metric, τ0 a trivialisation.
With respect to τ0 we can write D = D0 + η for some η ∈ Z1(Σ). Let φ and ψ be the real and
imaginary parts of η. Since φ and ψ are purely real and imaginary, η is closed if and only if φ and
ψ are closed. We can then form the unitary part of D

DH = D0 + ψ +
1

2
h−1dh

Let φ1 denote D −DH , i.e. φ1 = φ− 1
2h
−1dh.

Definition 2.17. A Hermitian metric H is said to be harmonic with respect to D if log h̃ is a har-
monic function on Σ̃.

Theorem 2.18. A Hermitian metric H is harmonic if and only if φ1 is a harmonic 1-form.

Proof. By definition H is harmonic if log h̃ is harmonic on Σ̃. Since log h̃ is a 0-form, we automati-
cally have dδ log h̃ = 0. Thus log h̃ is harmonic if and only if

0 = δd log h̃ by definition, h̃ = |ϕD|2p∗h
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2.2. Equivalence of Dolbeault and de Rham groupoids 27

= δd(logϕ+ logϕ+ log p∗h) by (2.2)

= − δ(p∗η + p∗η − d log p∗h) by definition, φ = Re(η)

= − 2δ(p∗φ− 1

2
d log p∗h) by definition, φ1 = φ− 1

2
d log h

= − 2δp∗φ1

= − 2p∗(δφ1)

Since dφ1 = 0, H is a harmonic metric if and only if φ1 is a harmonic 1-form on Σ.

Theorem 2.19. Let D be flat. Then there exists a Hermitian metric that is harmonic with respect to D.

Proof. LetD = D0 +φ+ψ as above, where ψ is a real-valued 1-form. By the Hodge decomposition
we have

φ = φh + df

where φh is harmonic with respect to the metric H0. Setting φ1 = φh and df = 1
2h
−1dh we obtain a

metric represented by h = e2f that is harmonic by Theorem 2.18 and unique up to multiplication
by a positive constant.

Now let D be a flat connection, H its harmonic metric (as in Theorem 2.19) and put D = DH + φ1.
Also, let Φ = φ

(1,0)
1 . Since φ1 is harmonic, ∂Φ = 0.

Theorem 2.20. The resulting functor S

(Fl(E),Gl(E))
S−−−−→ (Higgs(E),Gl(E))

that acts on objects by

D
S−→ (D

(0,1)
H ,Φ)

is an equivalence of groupoids.

Proof. First we prove surjectivity on isomorphism classes. Let (D′′,Φ) be a Higgs pair. Suppose
D′′ = D′′0 + Ψ. By Theorem 2.16 there exists a metric H that is Hermitian-Einstein with respect
to D′′. Let DH denote the Chern connection (Definition 2.13). Then D = DH + Φ + Φ is flat, and
S(D) = (D′′,Φ).

Next we show that S is faithful and full. Let D1, D2 be flat connections. If they are Gl(E)-
equivalent, then there exists g0 : Σ → C∗ such that D1 = D2 + g−1

0 dg0. For any other g1 that
satisfies D1 = D2 + g−1

1 dg1, we have g−1
0 dg0 = g−1

1 dg1, that implies g0 = cg1 for some constant
c ∈ C∗, and Mor(D1, D2) ∼= C∗. If D1 and D2 are not Gl(E)-equivalent, then Mor(D1, D2) = ∅.
Similarly, if (D′′,Φ)1 and (D′′,Φ)2 are Gl(E)-equivalent, then Mor((D′′,Φ)1, (D

′′,Φ)2) ∼= C∗, other-
wise Mor(D1, D2) = ∅.

It remains to show that S(D1) is equivalent to S(D2) if and only if D1 is equivalent to D2. Let
D = D0 + η and ξD be equivalent connections. Then

DH = D0 + iIm(η) +
1

2
h−1dh

(ξD)ξH = D0 + iIm(η + g−1dg) +
1

2
|g|2h−1d|g|−2h

= D0 + iIm(η + g−1dg) +
1

2
d log(|g|−2h)
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28 Chapter 2. Smooth Hodge theory on compact Riemann surfaces

Also,

(ξD)0,1 = ξ(D0,1)

Therefore the holomorphic structures of S(D) and S(ξD) are related by ξ. Moreover,

D −DH = Re(η)− 1

2
h−1dh

We also have

ξD − (ξD)ξH = Re(η − g−1dg)− 1

2
|g|2h−1d|g|−2h

= Re(η − d log g)− 1

2
d log(|g|−2h)

= Re(η − d log g)− 1

2
(d log g−1 + d log g−1 − d log h)

= Re(η − d log g)− 1

2
(−dlog g − d log g − d log h)

= Re(η)− 1

2
d log h

i.e. the Higgs fields of S(D) and S(ξD) agree. Conversely, if S(D1) and S(D2) are ξ-related, then
so are D1 and D2. This completes the proof.
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Chapter 3

Logarithmic theory on compact Riemann
surfaces

Let Σ be a closed Riemann-surface, p1, p2, ..., pn ∈ Σ distinct, β1, β2, ..., βn ∈ R, µ1, µ2, ..., µn ∈ C.
Let D be a flat connection on the trivial line bundle over Σ \ {p1, ..., pn} such that τ0 is a D0,1-
holomorphic trivialisation and for every pi

D1,0 = ∂ +
µi
zi
dzi +O(1)dzi (3.1)

where zi are local coordinates in a neighbourhood of pi such that zi(pi) = 0.

Remark 3.1. A trivialisation τ0 isD0,1-holomorphic ifD0,1(τ0) = 0, i.e. ifD = D0+η, then η0,1 = 0.

Theorem 3.2. If βi = Re(µi) for i ∈ {1, 2, ..., n}, then there exists a unique (up to multiplication by
constants) metric H that is harmonic with respect to D, for which

lim
zi→0

〈τ0, τ0〉H
|zi|2βi

= αi 6= 0 (3.2)

i.e the above limit exists and it is non-zero.

Remark 3.3. Let η be a connection 1-form of a connection D that satisfies (3.1). If we substitute η
into (2.2) we obtain the equation

−d logϕD =
µi
zi
dzi +O(1)dzi = µid log zi + df0 = µid log zi + d log f = d log(zµii f)

where df0 = O(1)dzi and f = ef0 is non-zero. Therefore

logϕ−1
D = log(zµii f) + c0 ⇒ ϕD = cz−µii f−1

where c = e−c0 is non-zero.

Also, let h represent a metric H that satisfies (3.2). Then for every pi, with local coordinate zi

lim
zi→0

h̃(zi) = lim
zi→0

∣∣ϕD(zi)
∣∣2h(zi)

= lim
zi→0

∣∣cz−µii f(zi)
−1
∣∣2(αi|zi|2βi)

= lim
zi→0

(
|zi|−2Reµi |c|2|f(zi)|−2

)(
αi|zi|2βi

)
=αi|c|2|f(0)|−2

which is non-zero by assumption.

Definition 3.4. The weight of the associated local system at pi is defined as the constant c ∈ R
for which 〈τ, τ〉H = h̃ asymptotically equals λ|zi|2c for some λ 6= 0 as zi → 0.
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30 Chapter 3. Logarithmic theory on compact Riemann surfaces

By the above computation, the weight of our associated local system is 0 at every pi.

During the proof of Theorem 3.2 we are going to encounter a differential equation, which has
— because of the singular points pi — non-smooth terms. Before starting the proof, we need a
couple of computations to understand the distributions (in the generalised functions sense) that
will appear in the equation.

Proposition 3.5. Let z be a local coordinate on a neighbourhood U of p that extends smoothly to a global
function such that z(Σ \ {p}) ∈ C∗. Then

1. ∆ log(|z|) = 2πδp + s1

2. ?d ? Re(µdzz ) = −2πRe(µ)δp + s2

where δp is the Dirac delta distribution at p, and s1, s2 denote compactly supported smooth functions on
Σ \ \{p1, ..., pn}.

Proof. Let D2(ε) be the disk of radius ε, centered at p with boundary S1(ε) and f a test function on
Σ. If f is supported on Σ \ {p}, then both ∆ log |z|f and Re(µdzz )f are smooth. Now let suppf ⊂ U .

1. After some formal manipulations of the distributions, and by Stokes’ theorem,

〈∆ log |z|, f〉 =

∫
Σ

∆(log |z|)fdVΣ =

∫
Σ
− ? d ? d(log |z|)fdVΣ = −

∫
Σ
d ? d(log |z|)f

=−
∫

Σ
?d log |z| ∧ df = −

∫
U
?
(
∂ log |z|
∂r dr + ∂ log |z|

∂θ dθ
)
∧
(
∂f
∂r dr + ∂f

∂θ dθ
)

=−
∫
U

∂ log |z|
∂r rdθ ∧ ∂f

∂r dr =

∫
U

∂f
∂r dr ∧ dθ = lim

ε→0

∫
U\D2(ε)

d
(
fdθ

)
= lim
ε→0

∫
S1(ε)

fdθ = lim
ε→0

∫
S1(ε)

f

r
dVS1(ε) = 2πf(p)

2. Similarly,

〈?d ? Re(µdzz ), f〉 =

∫
Σ
?d ? Re(µdzz )fdVΣ =

∫
Σ
d ? Re(µdzz )f =

∫
Σ
?Re(µdzz ) ∧ df

=

∫
U
?Re(µd log z) ∧ df =

∫
U
?Re

(
µd(log r + log eiθ)

)
∧ df

=

∫
U
?Re

(
µ(drr + idθ)

)
∧ df =

∫
U
?
(
Re(µ)drr − Im(µ)dθ

)
∧ df

=

∫
U

(
Re(µ)dθ + Im(µ)drr

)
∧ df =

∫
U

(
Re(µ)dθ + Im(µ)drr

)
∧
(
∂f
∂r dr + ∂f

∂θ dθ
)

=Re(µ)

∫
U

∂f
∂r dθ ∧ dr + Im(µ)

∫
U

1
r
∂f
∂θ dr ∧ dθ

=− 2πRe(µ)f(p) + Im(µ)

∫
U
d
(f
r dr
)

= −2πRe(µ)δp + Im(µ) lim
ε→0

∫
S1(ε)

f
r dr

=− 2πRe(µ)f(p)

Proof of Theorem 3.2. Let H∗ (represented by h∗) be a metric that satisfies (3.2). Such a metric can
easily be constructed locally in a small neighbourhood around pi and then the local definitions
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can be glued together by smooth bump functions. We will look for the desired metric in the form
of h = e2ρh∗ for some ρ : Σ→ R. Such a metric needs to satisfy (Theorem 2.18)

0 = ∆
(
Re(η)− 1

2
h−1dh

)
= ∆

(
Re(η)− e−ρdeρ − dh∗

2h∗

)
Therefore

0 = ∆
(
Re(η)− dρ− 1

2
d log h∗

)
= −d ? d ?

(
Re(η)− dρ− 1

2
d log h∗

)
= −d

(
? d ? Re(η) + ∆ρ+

1

2
∆ log h∗

)
which implies

∆ρ = − ? d ? Re(η)− 1

2
∆ log h∗ + c (3.3)

for some constant c. Then by Proposition 3.5,

∆ρ = S + c+ 2π
n∑
i=1

(
Re(µi)− βi

)
δpi

for some smooth function S on Σ. The Dirac distributions cancel each other by assumption, and
(3.3) simplifies to

∆ρ = S + c

By Theorem 1.49 the 0-forms can be decomposed as

A0 = H0 ⊕ δA1

On a closed manifold harmonic functions are just constants, therefore we can pick c such that the
RHS of (3.3) is in the image of δ. It remains to prove that the image of δ : A1 → A0 is exactly the
image of ∆ : A0 → A0.
This follows from Theorem 1.49,

δ(A1) = δ(H1 ⊕ dA0 ⊕ δA2) = δdA0 = ∆(A0)

This shows the existence of the function ρ that solves (3.3) and its uniqueness up to the addition
of harmonic functions. Harmonic functions on compact manifolds are just constants, therefore ρ
is unique up to an additive constant, which in turn defines H up to a multiplicative constant.
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