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Tight and Fillable Contact Structures on

Seifert Fibered Manifolds

Doctoral Thesis

Supervisor: Professor András Stipsicz

Budapest, 2018

C
E

U
eT

D
C

ol
le

ct
io

n



C
E

U
eT

D
C

ol
le

ct
io

n



I hereby declare:

• that the dissertation contains no materials accepted for any other degrees in

any other institution, and

• that the dissertation contains no materials previously written and/or pub-

lished by another person, except where appropriate acknowledgement is made

in the form of bibliographical reference, etc.

Budapest, 10 April 2018 Irena Matkovič
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Abstract

The fundamental question of contact topology is to classify contact structures.

Since overtwisted structures respect homotopy principles, we restrict the question

to tight structures, and among them to the fillable ones, which bound in symplectic

or holomorphic category. First to be understood are prime atoroidal manifolds,

which are either hyperbolic or small Seifert fibered.

This thesis deals with small Seifert fibered manifolds, which are obtained

from circle bundles over the sphere by performing Dehn surgery along (at most)

three of the fibers. For many of these manifolds, the complete classification is

known, and all tight structures are also fillable. We review these results from

various perspectives: convex decompositions along with contact surgery, the

dual presentation by open books, and in Heegaard Floer theory by means of the

Ozsváth-Szabó contact invariant. Our main focus are zero-twisting structures

on small Seifert fibered spaces of the form M(−1; r1, r2, r3), which are special as

they include non-fillable tight structures. We classify them by the Ozsváth-Szabó

contact invariant and characterize which of them are (Stein) fillable. The crucial

properties of these contact manifolds are the possibility to view the underlying

manifold as the boundary of a negative definite plumbing and the planarity of

the contact structures. For classification of tight structures, we use a specific

description of Heegaard Floer homology by equivalence classes of characteristic

cohomology elements on the bounded plumbing; we single out the elements which

correspond to the contact invariants and give a contact interpretation to the

equivalence relations between them. In order to characterize fillability, we study

positive factorizations of the planar monodromy.

Math. Subj. Class. (2010): 57R17, 57R57, 57M50
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contact structures, convex surface theory, contact surgery, open book decomposi-
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Vse poti so večno stare,

vsak korak je večno nov.

All the ways are old forever,

every step is always new.

Kajetan Kovič

To those who went before me,

to those who have walked with me

– thanks and respect.
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1

Introduction

A contact 3-manifold is a smooth 3-manifold endowed with an additional geometric

structure. The ultimate goal of contact topology is to understand (classify) contact

manifolds, up to certain equivalence relations. For low dimensional topology such

classifications are useful as the behavior of contact structures often reveals subtle

properties of the underlying manifold, which are hidden to more algebraic methods.

On the other hand, contact structures naturally arise as induced boundary

structures on holomorphic and symplectic domains, and are thus essentially

involved in various gluing constructions of 4-manifolds. When approaching them,

we are usually trying to understand compatibly embedded submanifolds or we are

looking at their dual counterpart, open book decompositions; whereas the gauge

theory (in particular, Heegard Floer homology) enters the subject by providing

obstructions for certain phenomena. Looking backwards, classification results

then help us to understand what these (in spirit) analytical invariants actually

see about manifolds.

At large, contact structures fall into two significantly different classes. Over-

twisted structures are everywhere existing and homotopically classified [11]. Tight

structures are geometric, they resemble some rigidity of complex manifolds [14];

they might bound in the symplectic category, in which case we say they are fillable.

Therefore, the classification problem reduces to tight structures and in particular

to the fillable ones. Furthermore, we usually stick to prime atoroidal manifolds;

the first because tight contact structures respect connected sum decomposition

of 3–manifolds [8], the second because an embedded essential torus is a known

source of infinitely many non-isotopic tight structures [6]. Small Seifert fibered

manifolds, beside hyperbolic ones, share these properties.

Seifert fibered manifolds borrow their name from their decomposition into

disjoint simple closed curves (called fibers) such that each fiber has a tubular

neighborhood which forms a standard fibered torus (that is, a solid torus foliated

into the core and the curves of the same rational slope on all concentric tori).

Throughout, we will think of them as circle bundles over a surface with isolated

singular fibers, along which Dehn surgery is performed. This description directly

1

C
E

U
eT

D
C

ol
le

ct
io

n



corresponds to a surgery diagram, and after applying inverse slam-dunks, also to

the plumbings of disk bundles which the Seifert manifolds bound. Simplifying

the drawings, these plumbings are given by weighted star-shaped graphs whose

vertices are decorated by pairs recording the genus of the base and the Euler

number of the corresponding disk bundle. In fact, all but the central vertex belong

to disk bundles over the sphere and in this case, we omit 0 for the genus. Specially,

by small Seifert fibered space we mean a Seifert fibration over the sphere S2 with

three singular fibers, standardly (after normalization by applying Rolfsen twists)

given as M(e0; r1, r2, r3) where e0 ∈ Z and ri ∈ Q ∩ (0, 1) with r1 ≥ r2 ≥ r3.

By reversing its orientation, we get −M = M(−e0 − 3; 1 − r1, 1 − r2, 1 − r3).

Regarding algebraic topology, we observe that a small Seifert fibered space M is

a rational homology sphere if and only if e(M) = e0 + r1 + r2 + r3 6= 0, and that

the corresponding 4-dimensional plumbing is negative definite when e(M) < 0,

and has b+2 = 1 when e(M) > 0. Finally, L-spaces (by definition, Heegaard

Floer homology lens spaces) among Seifert fibered manifolds are geometrically

characterized by the absence of transverse contact structures [51]. The restriction

for small Seifert fibered spaces which are rational homology spheres, can simply be

described in terms of the Seifert invariants: L-spaces are all manifolds with e0 ≥ 0

and with e0 ≤ −3, while for e0 = −1,−2 some explicit numerical inequalities are

imposed on the triple (r1, r2, r3).

As the aim of this thesis is to present what is known about the classification

of tight and fillable structures on small Seifert fibered spaces, we conclude the

introduction by citing the existence results, due to Lisca and Stipsicz [52] for tight

structures and due to Lecuona and Lisca [46] for the fillable ones. To have some

tight structure, we need to avoid the one-parameter family of (2n−1)–surgeries on

the torus knot T2,2n+1 (equivalently, the manifolds which are orientation preserving

diffeomorphic to M(−1; 1
2 ,

n
2n+1 ,

1
2n+3) for some n ∈ N). The manifolds of special

type, which do not admit any fillable structure, are characterized as L-spaces for

which ri + rj < 1 for all pairs of legs; this family of course contains the non-tight

family listed previously. Roughly, classification of tight contact structures then

arises from the comparison of bounds: the lower bound is obtained constructively

by contact surgery complemented with the use of invariants, and for the upper

bound convex surface theory is applied; whereas fillability can usually be proven

only by exhibiting the appropriate filling, which in turn is most tractable by

studying the supporting open books.

Chapter 2 Contact three-manifolds are introduced. We focus on constructive

aspects, contact surgery along with convex decompositions, and supporting open

books. The two example sections tackle contact structures on Seifert fibered

spaces.
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Chapter 3 After generalities of Heegaard Floer theory, we discuss its behavior

in the presence of two special structures, when the underlying manifold arises as

the boundary of a negative definite plumbing, and for contact manifolds. Example

complements the presentation of Seifert fibered spaces from the previous chapter.

Chapter 4 The discussion is targeted at the classification of tight contact

structures on small Seifert fibered spaces. The main subject are zero-twisting

structures on M(−1; r1, r2, r3), and we approach them through the study of their

Ozsváth-Szabó contact invariants. The first part is based on a yet unpublished

note, the second part follows the article [54].

Chapter 5 The upshot is a characterization of fillability for tight contact

manifolds discussed in the previous chapter. We analyze the supporting open

books, specifically positive factorizations of their monodromy. The chapter covers

the preprint [55].
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2

Contact three-manifolds

A contact structure on a smooth oriented 3-manifold is a nowhere integrable

2-plane field ξ ⊂ TY ; when it is positive cooriented, it is globally described as

ξ = kerα for some 1-form α ∈ Ω1(Y ) which satisfies α ∧ dα > 0. The 1-form

is determined up to multiplication by a positive function Y → R+, and hence

endows the plane bundle with a conformal symplectic structure. The basic

equivalence relation for pairs (Y, ξ) is given by a contactomorphism which is a

diffeomorphism between the underlying manifolds f : Y → Y ′ whose differential

connects the two contact structures f∗(ξ) = ξ′.

Locally, contact manifolds are homogeneous. According to Darboux’s Theo-

rem, around any point p in any contact manifold (Y, ξ) we can set a local chart

Up in which the contact structure ξ|Up is described by the standard contact form

of the 3-dimensional Euclidean space, αstd = dz + x dy.

Globally, we wish to classify contact structures up to contact isotopy. On

compact 3-manifolds this is – according to Gray’s Stability Theorem – the same

as to determine the connected components of the space of contact structures.

The underlying topological question is the classification of oriented 2–plane fields

ξ ∈ Ξ up to homotopy. Recall that π0(Ξ) can be identified with homotopy classes

of maps [Y, S2], which can be through Pontryagin-Thom construction given by

framed links in Y . Here a link up to oriented cobordism represents the class in

H1(Y ;Z), equivalently the Spinc structure tξ, while the framing corresponds to the

Hopf invariant as a 3–dimensional obstruction for homotopies between plane fields.

So, the homotopy type is given by the pairs of the induced Spinc structure tξ and

the 3–dimensional invariant d3(ξ) ∈ Zdiv(c1(tξ)) where div(c1(tξ)) is the divisibility

of c1(tξ) ∈ H2(Y ;Z). In fact, there is a subclass of overtwisted contact structures

which – according to Eliashberg [11] – completely respects homotopy principles;

the flexibility is ensured by inclusion of certain submanifold (as specified in

Section 2.1.1). All other structures are called tight. Their classification is much

more subtle – they tend to contain geometric information. Particularly, due to

adjunction type inequalities [14], there are only finitely many homology classes

realized as Euler classes of tight contact structures, also they are (in general) not
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distinguished by homotopic invariants [48].

In one direction, the rigidity is explained by the theorem of Eliashberg [12]

and Gromov, saying that contact manifolds which are null-cobordant in the

holomorphic or symplectic category (in the sense below), are tight. The notions

of fillability are from the 4-dimensional viewpoint complemented by convexity;

they are all weaker versions of geometrically convex domains. A contact manifold

(Y, ξ) is Stein fillable when Y is given as Levi pseudoconvex boundary of a

compact complex manifold (X,J) with ξ equal to the complex tangent bundle

TCY = TY ∩ J(TY ). The plurisubharmonic (exhaustion) function φ : X → R
endows a Stein domain with an exact symplectic form ωφ = −ddCφ whose

primitive (contraction by the gradient field) gives the contact form α = −dCφ.

A contact manifold (Y, ξ) is (strongly) symplectically fillable when it bounds a

compact symplectic domain (X,ω) which is exact along the boundary with the

primitive which defines the contact structure ξ (in other words, when there is an

outward pointing transverse Liouville field along the boundary). Finally, we say

that (Y, ξ) is weakly symplectically fillable if Y bounds X and ω is a symplectic

form for ξ. Stein fillability implies strong fillability, strong fillability implies

weak fillability, but all the notions are distinct, as first observed by Ghiggini

([24]; on certain Brieskorn spheres, by the means of Heegaard Floer theory) and

Eliashberg ([15]; on T 3, building on the work of Giroux), respectively. Still, they

are all very restrictive: none of the overtwisted structures bound, and not all tight

structures do. For the latter, the first examples were obtained by Etnyre and

Honda [21]. More generally, we can talk about a symplectic cobordism, a compact

symplectic manifold (W,ω) whose boundary ∂W can be written as a disjoint

union of two components Y− and Y+, along which ω is exact with its primitive

defining a negative and a positive contact form on Y− and Y+, respectively.

Finally, a symplectic cobordism from (Y, ξ) to ∅ is called a cap. In contrast to

the fillings, existence of caps is non-restrictive [16, 18], however their topological

and symplectic properties restrain the contact manifold [47].

2.1 Special submanifolds

Similarly to the usual topological setting, we can extract a lot of information out

of embedded submanifolds, and here also out of the way their position relates to

the neighboring contact planes. There are some preferred positions of knots and

surfaces in contact 3-manifolds with prescribed neighborhoods, which is especially

important for construction of manifolds.
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2.1.1 Legendrian knots

Knots can arise in two special positions: as integral submanifolds (Legendrian),

which are interesting as cores for surgeries (Weinstein handles), or with inherited

contact structure (transverse), which come into play as bindings of open books.

A knot K ⊂ (Y, ξ) is called Legendrian if it is everywhere tangent to ξ, that

is TK < ξ or equivalently α(TK) = 0. Every knot can be C0-approximated by

a Legendrian one, but equivalence given by Legendrian isotopy is much finer

than the smooth isotopy of knots. Particularly, it contains information about

neighboring contact structure. The preferred framing of a Legendrian knot is

given by the direction positively transverse to the contact planes, it is called the

contact framing. The number describing its relative twisting with respect to some

fixed framing F is denoted by tw(K,F), and in the null-homologous case with F
being the Seifert framing it is called the Thurston-Bennequin invariant tb(K).

On the other hand, the rotation number rotΣ(K) gives the winding of the knot

tangents in a trivialization of the contact structure over a Seifert surface Σ, or

in other words, the relative Euler class of the contact structure over Σ (when

H2(Y ;Z) 6= 0 it might depend on the relative homology class of the surface).

Legendrian knots in the standard (R3, ξstd = ker(dz+x dy)) are usually presented

by their front projection to the yz-plane, whose characteristic feature are cusps

in the place of vertical tangencies; from it the two invariants can be read off as

tb(K) = writhe− 1
2#cusps, and rot(K) = 1

2(#down-cusps−#up-cusps).

Dichotomy between overtwisted and tight contact structures is, by definition,

based on the containment of an unknot with tb = 0 in overtwisted structures, and

its absence in the tight ones. Equivalently (as shown by Eliashberg [14]), tight

contact structures can be characterized by satisfying the adjunction inequality

tbΣ(K) + | rotΣ(K)| ≤ −χ(Σ) for every Legendrian knot K ⊂ (Y, ξ) and its

Seifert surface Σ. Similarly, in tight contact manifold (Y, ξ) there is a genus

bound 〈c1(ξ), [Σ]〉 ≤ max{0,−χ(Σ)} for closed oriented surfaces Σ.

Stabilization is a simple deformation of a Legendrian knot type, which is

intimately connected to several other basic blocks of contact topology: bypasses

from the point of view of convex surface theory, basic slices (and thickenings) in the

convex decompositions, and positive Dehn twists in the monodromy factorizations

of open books. It consists of a local twisting change: in the front projection

(inside a Darboux chart) we replace a straight segment with a pair of upward

or downward cusps, resulting in a negative K− or positive K+ stabilization of

the Legendrian knot K. Hence, the invariants change to tb(K±) = tb(K) − 1

and rot(K±) = rot(K) ± 1. A knot K ⊂ (Y, ξ) is called transverse when it is

positively transverse to the contact structure, that is α(TK) > 0. They appear as

push-offs of Legendrian knots in the direction transverse to the contact structure.

Since their Legendrian approximation is unique up to negative stabilizations [17],

we think of their theory as a stable Legendrian theory.
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2.1.2 Convex surfaces

Nonintegrability prevents surfaces from being tangent to the contact distribution.

Therefore, contact planes always carve into an embedded surface. In the following,

let Σ denote a compact oriented surface, possibly with Legendrian boundary.

Characterictic foliation Σξ is a 1-dimensional singular foliation which inte-

grates the line field arising in the intersection TΣ ∩ ξ|Σ. If we write out the

contact form α = βt + ft dt in a vertical neighborhood of the surface Σ×Rt, it is

given by kerβ0. We say (in analogy with symplectic convexity) that Σ is convex

if there is a transverse contact vector field V (such that LV α = λα for a positive

function λ) in its neighborhood, or equivalently, when Σ admits a vertically

invariant neighborhood (in which α = β + f dt with t-independet β and f). On a

convex surface Σ a dividing set ΓΣ is a non-empty set of (properly embedded)

curves {p;V (p) ∈ ξ(p)} = {p; f(p) = 0}; notice that ΓΣ is transverse to Σξ,

dividing Σ into alternating positive and negative regions Σ± = {p;±dβ(p) > 0}.
The convex placement of surfaces in contact 3-manifolds is generic (provided the

twisting of boundary components is non-positive), their importance stems from

the Giroux’s Flexibility Theorem [33] which says that the germ of the surrounding

contact structure can be discretized into their dividing set. In particular, Giroux’s

Criterion [33] gives a complete characterization of neighboring tightness in terms

of the dividing set: ΓΣ should contain no contractible components for Σ 6= S2,

and should be connected when Σ = S2.

We present dividing sets and characteristic foliations on surfaces which are

related to standardized neighborhoods of certain submanifolds [37].

1. Boundary of the Darboux ball. Since, according to Giroux, #ΓS2 = 1,

the characteristic foliation on a convex sphere in tight ambient has two

singularities and S1-family of lines flowing between them. Explicitly, for

αstd = dz + r2 dϕ, it is described by (xz − y, yz + x,−x2 − y2) with ΓS2 =

{z = 0}.

2. Overtwisted disk. A contact structure in a neighborhood of an overtwisted

disk ∆ is described by αot = r sin r dϕ + cos r dz. On ∆ = {z = 0, r ≤ π},
the boundary ∂∆ with tb(∂∆) = 0 is a closed orbit of the characteristic

foliation which has an elliptic singularity in the center; the two are separated

by a single dividing circle.

3. Boundary of the Legendrian standard neighborhood. First, by Giroux’s

Criterion, the dividing set ΓT 2 on a convex torus in tight ambient consists of

an even number of parallel homotopically essential curves; after identifying

T 2 ∼= R2/Z2, they are described by the boundary slope s. The characteristic

foliation can be perturbed into S1 family of closed curves of slope r 6=
s, called Legendrian rulings, and the tangencies between dividing curves
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are called Legendrian divides. Concretely, for the standard neighborhood

V n
std = (S1 ×D2, α = − sin(2πnϑ) dx+ cos(2πnϑ) dy) of a Legendrian curve

S1 × 0 with twisting −n, the boundary dividing curves are parallel to the

contact framing; hence in the trivialization by the meridian (ϑ0, x, y) and the

longitude (ϑ, x0, y0) the slope equals − 1
n .

4. The collar neighborhood of the Legendrian boundary component. As in the

previous example we are in the standard Legendrian neighborhood V n
std, but

looking at the collar annulus A = S1× [0, 1] bounded by the core Legendrian

curve K. The characteristic foliation again consists of Legendrian rulings,

circles parallel to the boundary, and as the contact planes twist along the

knot, we alternatively hit dividing arcs and Legendrian divides which cross

the annulus. In particular, tw(K,A) = −1
2#(K t ΓA).

5. Edge-rounding. Looking at two annuli as above which intersect transversely

at K, the dividing arcs appear alternatively along K. Concretely, if we align

and orient them as Ax = {x = 0, 0 ≤ y ≤ 1} with positive normal ∂x and

Ay = {y = 0, 0 ≤ x ≤ 1} with positive normal ∂y, then ΓAx = { 2k
4n} × [0, 1]

and ΓAy = {2k−1
4n }× [0, 1], respectively. After rounding the edge, the dividing

arcs at the height 2k
4n get connected to the dividing arcs at 2k−1

4n .

As we move a convex surface Σ inside (Y, ξ) we hit (according to Giroux,

discrete) singular levels, at which the characteristic foliation changes by a bi-

furcation. In terms of dividing sets, Honda [37] has described an equivalent

operation combinatorially. A bypass D is a half of an overtwisted disk attached

to a convex surface Σ along a Legendrian arc α which intersects the dividing set

ΓΣ in three points; its boundary ∂D is the union of two Legendrian arcs α ∪ β
with tw(α,D) = −1 and tw(β,D) = 0. We say that the bypass is positive or

negative if such is the sign of the middle singularity on α. A bypass attachment

isotopes the convex surface Σ across a bypass disk to obtain a new convex surface

Σ′, locally changing the dividing curves as depicted:
→

.

Finding a bypass usually consists of finding a bounded convex surface with a

boundary-parallel dividing arc (which intersects same boundary component twice

and cuts off a disk without further dividing curves); it embraces one singularity,

and flowing out along characteristic foliation we cover a disk with Legendrian

boundary. Particular case of this is the Imbalance Principle, used in tight ambient

for a convex annulus with different (and negative) twisting number at the two

boundary components. Finally, from the knot perspective [20], adding a bypass

increases the twisting of the Legendrian curve, more, a bypass disk cuts off a

stabilization disk from a Seifert surface (studying a local picture we can see that

half-elliptic singularities of the characteristic foliation occur at cusps).
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2.2 Cut and paste

Understanding of compatibly embedded submanifolds is essential to perform

constructive techniques known from smooth manifold theory. These are based

on understanding some simple basic blocks and the study of how they are glued

together.

2.2.1 Convex decomposition

The main idea is to cut a contact manifold along properly embedded convex

surfaces to obtain simpler pieces (and eventually balls); if the initial structure

was tight, all the pieces need to be tight as well. To cut along a chosen surface

we only need flexibility, first to Legendrian realize the boundary curves, and then

to perturb the surface into convex position. More interesting is the retrograde

process, starting with tight pieces, how to glue them together to preserve tightness,

and moreover, whether different gluings give us different results.

The fundamental result is Eliashberg’s uniqueness of the tight contact structure

on a ball B3 [14], more precisely, a unique extension of the contact structure

which induces connected dividing set on S2 = ∂B3 from the neighborhood of the

sphere to the ball B3. Further cases of particular interest are the simplest pieces

with the toric boundary, that is S1 ×D2 and T 2 × I [37]. Throughout, we limit

the vertical twisting of the contact structure around the embedded tori, requiring

that there is no stack of convex tori on which the slope of dividing curves would

change for more than π. We call such structures appropriate, and in particular

case of T 2 × I minimally twisting.

Theorem 2.2.1 (Honda). Let T 2 × I have convex boundary with 2-component

dividing curves of slopes s(ΓT1) = −p
q with p ≥ q > 0 and gcd(p, q) = 1, and

s(ΓT0) = −1. Then there are exactly |(a0 − 1)(a1 − 1) · · · (ak−1 − 1)(ak)| tight

minimal twisting contact structures on T 2 × I, up to isotopy fixing the boundary,

for a0, . . . , ak the coefficients of the continued fraction expansion of −p
q .

We review the main ideas behind this theorem. The complete classification

is based on the layering of T 2 × I into basic slices. A basic slice is T 2 × I

with minimal twisting tight contact structure and convex boundaries whose

2-component dividing curves take, up to SL2(Z)-displacement, the slopes 0 and

−1. For fixed boundary slopes, there are exactly two such contact manifolds,

distinguished by the sign. Notable is the relation of the basic slices to the bypasses:

a basic slice (T 2 × I, s0 = 0, s1 = −1) is the trace of the isotopy which a convex

torus T , with #ΓT = 2 and s(ΓT ) = 0, describes when it is slid over a bypass

attached to its front along a linear arc of slope r,−∞ < r ≤ −1. The sign agrees

with the sign of the bypass attached. The possible SL2(Z)-transformations are

neatly presented by the Farey tessellation of the hyperbolic disk H: its geodesics
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connect exactly the pairs of boundary points which correspond to the pairs of

vectors forming basis of Z2, hence the pairs of boundary slopes of a basic slice.

In this language, having a convex torus with 2-component dividing curve of slope

s, and a bypass attached to it along a Legendrian ruling curve of slope r 6= s, the

other slope equals s′, a point on the arc [r, s] ⊂ ∂H2 which is closest to r and

connected to s.

Every contact T 2 × I can be sliced into basic slices, but not all sequences

of basic slices are different, neither they are all tight. The continued fraction

expansion of −p
q = [a0, . . . , ak] with ai > 1 determines a minimal sequence of

basic slices into which (T 2 × I, s0 = −1, s1 = −p
q ) factors. The boundary slopes

of the factorization can be obtained in order by decreasing the last entry of the

continued fraction. Any other slicing of this thickened torus is a subfactorization

of the described one. In the case of the minimal factorization the glued together

contact structure is tight regardless how the signs of basic slices are chosen,

while in any refinement all subslices of a single basic slice from the minimal

factorization should share the same sign (Gluing Lemma). Still, even in the

minimal factorization, not all the slices are equal. This is a consequence of

the fact that bypasses to which they correspond are not all attached with the

same slope. Concretely, starting with the convex torus of slope −1, the bypasses

for the zeroth continued fraction block, up to the boundary slope −a0 + 1, are

attached with slope ∞; the bypasses for the first continued fraction block, up to

the boundary slope [a0, a1 − 1], are attached with the slope −a0; the bypasses

for the second continued fraction block, up to the boundary slope [a0, a1, a2 − 1],

are attached with the slope [a0, a1], etc. The distinguished property of the slices

which belong to the same continued fraction block is, that they can be shuffled

within themselves without changing the glued-together structure.

A topologically assigned invariant of contact structures on manifolds with

boundary is their relative Euler class e(ξ, s) ∈ H2(Y, ∂Y ;Z), relative to a non-zero

section s of ξ along ∂Y . If Legendrian boundary of a convex embedded surface Σ is

aligned with s, we can compute its evaluation on Σ as 〈e(ξ, s),Σ〉 = χ(Σ+)−χ(Σ−).

In fact, since H1(T 2 × I;Z) ∼= Z2, the evaluation on two annuli, interpolating

between Legendrian rulings of two different slopes, completely determines the

Euler class. What is more, the minimally twisting tight contact structures on

T 2 × I with #ΓTi = 2 and boundary slopes s0 = −1 and s1 = −p
q < −1 are

classified by their relative Euler class, even less, by the value their relative Euler

class takes at a horizontal annulus A with Legendrian boundary. Writing out

〈e(ξ, s), [A]〉 = PD(e(ξ, s)) · [A] =
(∑

b basic slice±(vb1 − vb0)
)(0 1

1 0

)(
1

0

)
= χ(A+)− χ(A−)

we observe that the dividing set on A consists of two arcs which cross from one
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boundary to the other, and p− 1 one-sided arcs which cut off (possibly nested)

bypass disks. Concretely, for each ε-signed basic slice in the ith continued fraction

block there are as many ε-signed disk regions as the numerator of [a0, . . . , ai−1],

or 1 for i = 0.

For the solid torus with convex boundary with #ΓT = 2 and s(ΓT ) = −p
q for

p ≥ q > 0, the number of tight contact structures is the same as the number of

tight minimally twisting contact structures on T 2 × I with slopes s0 = −1 and

s1 = −p
q . We get them by gluing the toric annulus to the standard neighborhood

of the Legendrian knot. Additionally, solid tori of any other boundary slope can

be by a change of framing, multiplication by a Dehn twist, transformed into a

unique one as above. In particular, the boundary of the standard neighborhood

of the twisting −n Legendrian curve has slope − 1
n . Inside this neighborhood we

can find tori of slope − 1
m for any m > n, and indeed, by inserting stabilizations

we decrease the twisting of the core Legendrian curve. On the other hand,

a thickening of the standard neighborhood is possible only in the presence of

bypasses (and is precisely described by the Twist Number Lemma).

Finally, we consider appropriate contact structures on Σ× S1 where Σ stands

for the pair of pants. We define maximal twisting number to be the difference

between the contact framing and the fibration framing, maximized in the smooth

isotopy class of the (vertical) fiber. By standardization of the dividing set on

the section, cutting along carefully embedded vertical annuli and using the

above classification for the thickened torus, Ghiggini [26] obtained the following

uniqueness (in the zero-twisting case with ∞ boundary slopes, the result is due

to Honda [38]).

Theorem 2.2.2 (Honda, Ghiggini). Up to an isotopy not necessarily fixed on the

boundary, there is a unique tight contact structure on Σ×S1 with maximal twisting

number −q inducing the standard characteristic foliations on −∂(Σ × S1) =

T1 ∪ T2 ∪ T3 of slope −p1

q , −p2

q and p1+p2+1
q , respectively.

In general [39], we call a collection of compact pieces after cutting along

a properly and essentially embedded convex surface, with inherited contact

structure, a state (Y \W, ξ|Y \W ), and the cutting surface a wall W . A state

traversal then describes an isotopy of W inside Y , hence it changes ΓW by a

bypass attachment. Analysis of the states and their transitions allows complete

classification of tight structures.

Theorem 2.2.3 (Honda). Provided we are able to describe all the states reached

from any given state in a finite number of state traversals, a contact structure ξ

on Y is tight if and only if all of these states are tight, and two structures ξ1 and

ξ2 are isotopic if and only if their associated sets of states are the same.

The most studied state traversal is performed along the essential torus in a toric

annulus. Since we are applying it in a circle bundle over the pair of pants, we
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will first need a standardization of the annulus cutting between two of the three

boundary tori. With some further restrictions this is given in Section 4.2.3.

2.2.2 Four-dimensional viewpoint

At first glance, the study of symplectic fillings and caps presents a different sort of

cut and paste, in which the convex (and here not equivalent, concave) attaching

role is played by contact manifolds. But the changes in the induced boundary

structure can be described by cut and paste on the 3-dimensional level, as shown

in the next section.

Analyzing its plurisubharmonic Morse function, it is easy to see that a Stein

manifold has a homotopy type of a half-dimensional CW-complex. Eliashberg

[13] has proved the reverse, namely, for n > 2 every 2n-dimensional manifold

which admits an almost complex structure and can be built only by handles of

dimension at most n, admits a Stein structure; for n = 2 there is an additional

obstruction in terms of the framing of the critical handles. Gompf [35] gives a

handle description of Stein surfaces.

Theorem 2.2.4 (Gompf). Every Stein surface is built from some handlebody

#gS1 × D3 (with its unique Stein structure) by attaching 2-handles along a

Legendrian link with all framings one less than the contact framing.

For the cobordism, corresponding to a handle attachment, to bridge the

contact information we need it to be symplectic. The attaching sphere of the

handle is Legendrian; this follows from the fact that the stable manifolds of the

gradient flow in the metric, defined by ω (that is, g(·, ·) = ω(·, J ·)), are isotropic,

and so the same holds for their intersection with the regular value level set. The

symplectic structure on the handle is the standard one ωstd = dx1∧dy1+dx2∧dy2,

and on the collar of Y it is given by the symplectization (I × Y, d(etα)). The

Liouville vector fields, which get identified by gluing, are given by the gradient

field ∇f of the Morse function f = x2
1 + x2

2 − 1
2(y2

1 + y2
2) along the concave

end {f = −1} = {x1 = x2 = 0, y2
1 + y2

2 = 2} = S of the handle, and by ∂t
along Y . Finally, we determine the gluing framing in the standard model of the

handle: the attaching sphere S spans a disk in y1y2-plane, its normal direction

being trivialized by ∂x1 , while the contact form restricted to S takes the form

α|S = ι∇fω|S = y1 dx1 + y2 dx2 and gives the contact framing y2∂x1 − y1∂x2 ,

which twists once positively compared to ∂x1 . Reversed, the handle framing

with respect to the contact framing is −1, and so the same has to be the gluing

framing. Finally, note that attaching along the convex end of the handle gives

the framing +1 with respect to the contact framing, but since in this case the

Liouville fields are not coherently oriented, the symplectic structure does not

extend over the handle.
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At the 3-dimensional level, the symplectic handle attachment corresponds

to the Legendrian surgery. It is a Dehn surgery along K with framing −1

compared to the contact framing. If we trivialize −∂(Y \νK) and ∂νK as R2/Z2

with
(

1
0

)
the meridional direction and

(
0
1

)
the direction of the slope (given by

the pair of dividing curves), then the resulting manifold is Y \νK ∪f νK with

f : ∂νK → −∂(Y \νK) given by
(

1 0
−1 1

)
∈ SL2(Z), and the contact structures are

glued together along the tori with matching dividing sets.

A question arises, when the Legendrian surgery can be done in a given

topological type. Though for any given knot we have a homotopic Legendrian

knot, not all topological framings can be realized as −1 framings for some

Legendrian embedding in the given homotopy class. In fact, it is always possible

only to lower the contact framing (by stabilizations), to increase it we are in tight

contact manifolds limited by the maximal Thurston-Bennequin invariant of a

knot, while in overtwisted manifolds we can still achieve it by connect summing

with the boundary of the overtwisted disk. On the other hand, from the above

we have that the Legendrian surgery preserves fillability of contact structures,

even more, by the result of Wand [72] it preserves also tightness in the class of

closed contact manifolds.

From the handle description we can directly read off the first Chern class

of the Stein structure. When the Stein surface (X,J) is given by attaching

−1-framed 2-handles to (D4, Jstd) along the Legendrian link L, the first Chern

class evaluates on the homology generators (the capped-off Seifert surfaces ΣLi)

as 〈c1(X, J), [ΣLi ]〉 = rot(Li) [35]. (It describes how the C-trivialization of the

handle structure, given by the inward normal and the tangents of the attaching

circle, compares to the standard C-trivialization of TD4, given by the outward

normal and ∂x ∈ ξ.) The significance for the contact topology stems from

the theorem of Lisca and Matić [48], which allows us to distinguish (homotopy

equivalent but) non-isotopic fillable contact structures.

Theorem 2.2.5 (Lisca-Matić). If different Stein structures induce isotopic con-

tact structures on the boundary, then their Spinc structures (and in particular,

Chern classes) are isomorphic.

2.2.3 Contact surgery

Rational contact surgery is performed along a Legendrian link L ⊂ (Y, ξ) and the

surgery coefficient is measured with respect to the contact framing. In addition

to ordinary surgery, it prescribes for the contact structure to be preserved in the

complement of a tubular neighborhood of the core link, while the extension to

glued-up tori needs to be tight. The possible contact structures on every solid

torus are determined by the boundary slope, given by the surgery coefficient.

They are listed in the Honda’s classification in terms of the continued fraction
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decomposition, and in particular, there is no tight extension if and only if the

surgery coefficient is zero.

Moreover, Ding and Geiges [7] have shown that:

Theorem 2.2.6 (Ding-Geiges). Any (closed) contact 3-manifold can be obtained

from the standard contact structure on S3 by a sequence of contact ±1-surgeries.

Their conversion of contact r-surgery into successive +1- and −1-surgeries encodes

the convex decomposition of glued up tori in a form of the surgery diagram.

Let us first recall that in the smooth category [36] we can replace rational

surgery coefficients by the chains of integral surgeries (along meridians of meridi-

ans) using the inverse slam dunks. Essentially this means that we factorize the

gluing diffeomorphism. Namely, we are repeatedly taking out thinner and thinner

tubular neighborhoods of always the same core knot, successively approaching

the surgery coefficient. Explicitly, if the surgery coefficient is r = p
q , and n ∈ N

is the minimal such that −P
Q = p

q−np < 0, and −P
Q = [a0, . . . , ak], then we can

factorize

SL2(Z) 3

(
p p′

q q′

)
=

(
1 0

n 1

)(
−a0 1

−1 0

)
· · ·

(
−ak 1

−1 0

)
.

Recalling that ±1-surgery correspond to
(

1 0
±1 1

)
= T±1 and denoting S =

(
0 1
−1 0

)
,

we have Tn · ST−a0 · . . . · ST−ak . Here, the initial Tn corresponds to the change

of framing, T ai are the successive surgeries, and S rotates the basis.

In the contact setting, the slicing can be described on Legendrian push-offs

of the surgered knot K. First we perform contact +1-surgery along n push-offs

of K, then for each successive ith continued fraction block we do −1-surgery

along Ki where Ki is obtained from Ki−1 by Legendrian push-off and additional

ai − 1 stabilizations, and K0 = K stabilized a0 − 1 times. All possible contact

structures on glued-up torus are then covered by all possible choices of positive

or negative stabilizations. Note that, since there is a Legendrian isotopy between

the push-off and the meridian of a −1-surgery curve [9], the obtained surgery

diagram is equivalent to the legendrianized smooth picture.

After the initial change of framing (the +1-surgeries), we have direct corre-

spondence between the surgery diagram and the Honda’s decomposition of the

glued-up solid torus, whose boundary slope is − P
P ′ = [ak, . . . , a0], the pull-back of

the ∞-slope by
(
P P ′

−Q −Q′
)
∈ SL2(Z). Explicitly, in the layering of this solid torus

(S1 ×D2, η) =

k⋃
i=0

ai−1⋃
j=1

(T 2 × I, η(i, j)) ∪ V 1
std,

the continued fraction blocks (T 2× I, η(i)) are arranged from outside in, and they

are cut out by pairs of tori of slopes [ak, . . . , aj+1 − 1] and [ak, . . . , aj − 1] (the
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outermost being [ak, . . . , a0], and the innermost −1). In a surgery diagram, they

are represented in a chain of pushed-off knots Ki, and the successive slopes are

captured by their Thurston-Bennequin invariants. The distribution of signs of the

basic slices (T 2 × I, η(i, j)) within the ith continued fraction block is reflected in

the choice of signs for stabilizations of the Legendrian knot Ki (in other words, in

its rotation number). The loss of basic slice ordering in the transition is explained

by the shuffling property of basic slices within a single block.

An advantage of having a surgery description over the convex decomposition

is, that we can directly read off the homotopy invariants of the contact structure

[10]. As described at the end of the previous section, the Spinc structure induced

by a Stein structure is given by 〈c1(X, J), [ΣLi ]〉 = rot(Li). In case there are

some +1-surgeries, the almost complex structure J does not spread throughout

the manifold, but it can still be extended to the complement of a ball in each +1-

handle. So, it induces a Spinc structure sJ on X, equivalently c(X, sJ) ∈ H2(X;Z),

an integral lift of w2(X), and it evaluates on all homology generators as before

〈c(X, sJ), [ΣLi ]〉 = rot(Li). The sJ restricts to the boundary Y = ∂X as tξ = sJ |Y
which is the induced Spinc structure of the contact structure ξ. When c1(ξ) is

torsion, the three-dimensional invariant also has numerical expression (due to

Gompf [35]); the information is essentially contained in the almost complex

structure J , together with the topology of X (its intersection form). It is given as

an obstruction for gluing Stein domains (along (Y, ξ)) into closed almost complex

4-manifold, thus d3(ξ) = 1
4(c2

1(X, J)− 3σ(X)− 2χ(X)) ∈ Q. In the presence of

+1-surgeries it is for each +1-handle corrected by d3 of the plane bundle induced

by J on the boundary ∂B3, which cumulates in d3(ξ) = 1
4(c2(X, sJ)− 3σ(X)−

2χ(X)) + #(+1-surgeries).

2.2.4 Example

We give surgery presentation of many contact structures mostly on Seifert fibered

manifolds. First, the tight contact structure on the 3-sphere is given by the empty

diagram; recall that its uniqueness follows from the uniqueness of the tight ball,

observed by Eliashberg. Similarly, we have a unique tight structure on S1 × S2

and it is described by Stein 1-handle, or equivalently [9], by contact +1-surgery

on a Legendrian unknot with tb = −1.

To construct overtwisted structures (on any 3-manifold Y ) we may rely on

the homotopic classification [10]. It suffices to find a surgery diagram for a

single contact structure on Y , which we then alter in a neighborhood of an

embedded S1 × S2 and along some S3, topologically trivially but changing the

Spinc structure and the 3-dimensional invariant, respectively. For the single

structure, we change the smooth surgery by successive blow-ups so that all

surgery coefficients (except for each last blowing-up unknot) are smaller than

the maximal Thurston-Bennequin invariant of the corresponding knot, and then
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legendrianize and stabilize so that all coefficients are −1 (and replace −1-framed

unknots with +1-surgery on the unknot with tb = −2). For the alterations, we

need diagrams for all overtwisted structures on S3 and S1 × S2. See the paper of

Ding, Geiges and Stipsicz [10] for details.

We take up tight structures on small Seifert fibered spaces. On a lens

space, we get a number of tight structures by putting the unknots in the chain

(whose coefficients are all at most −2) into Legendrian position and introducing

stabilizations until all surgery coefficients are equal to −1. For the general

M(e0; r1, r2, r3) the plumbing graph is star-shaped with three legs, with central

coefficient e0 and all others at most −2. When e0 ≤ −2, we can do the same

as above. And for e0 ≥ 0, we can blow-up the central vertex until its coefficient

becomes 1, and then blow-down the central vertex, resulting in five −1-linked

unknots with coefficients 0,− e0−1
e0

and the three −1+ri
ri

. After legendrianization

and appropriate stabilizations we are left with some Legendrian surgery on the

tight S1 × S2, a single +1-surgery along a tb = −1 unknot. All the above

structures are fillable, also all of them are distinct (which is easiest to see by

applying Theorem 2.2.5, or more elementary by comparing Spinc structures).

What is more, using the classification of tight structures on tori and the uniqueness

of tight Σ× S1 with fixed maximal twisting, we get that these tight structures

are all tight structures – on lens spaces due to Honda [37] and Giroux, when

e0 6= −2 due to Wu [75] and Ghiggini, Lisca and Stipsicz [29], and for L-spaces

with e0 = −2 due to Ghiggini [26]. When e0 = −1 we can anti blow-up the central

vertex twice and then blow it down, resulting again in five −1-linked unknots,

now with coefficients 0, 0 and −1+ri
ri

. The associated contact surgery diagram is

some Legendrian surgery on an overtwisted S3, given by +1-surgery along two

once linked unknots of tb = −1. In this case, Lisca and Stipsicz [51] showed,

again using the uniqueness of appropriate Σ × S1, that all tight zero-twisting

structures (all tight structures for L-spaces) are of this form. Notice however,

that the structures described by this presentation are not necessarily (and indeed,

they are not) all tight, also they are not all distinct. We achieve a complete

characterization of tightness and fillability for these structures in Chapters 4 and

5. Finally, let us emphasize that L-space restriction in the cases e0 = −1,−2

ensured fixed maximal twisting, which is 0 and −1, respectively.

2.3 Open books

Contact manifolds can be alternatively approached by looking at their dual

counterpart – open book decompositions.

An open book decomposition of a 3-manifold Y is given by a fibered link B ⊂ Y ,

the link B is called the binding and a fiber F of the fibration π : Y \B → S1,

which is a Seifert surface for B, is called a page. The fibration can be described
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by its monodromy φ : (F, ∂F )→ (F, ∂F ), and we refer to the pair (F, φ) as an

abstract open book. Given two 3-manifolds with open book decompositions, their

connected sum has an open book decomposition whose page is a Murasugi sum

of the pages of the original open books. In particular case, when one of the two

is an open book decomposition of S3 with positive or negative Hopf bands as

pages, we get a new open book for Y ∼= Y#S3 called the positive or negative

stabilization. Notice that the new page F ′ is built from F by adding a 1-handle,

and the new monodromy is given as φ ◦D±1
γ for Dγ the positive (right-handed)

Dehn twist along a simple closed curve γ ⊂ F ′ which intersects the cocore of the

new 1-handle once.

We say that the open book decomposition supports the contact structure

when the contact planes are almost tangent to the interior of the pages (dα is a

volume form on each page), and are positively transverse to the binding, oriented

as the boundary of a page (α(TB) > 0). The contact manifold supported by the

Murasugi sum open book is equivalent to the connected sum of the originally

supported contact manifolds. Because the positive Hopf open book on S3 supports

the standard tight contact structure, positive stabilizations do not change the

contact structure the open book supports. Thurston and Winkelnkemper [70]

showed that any open book decomposition supports a contact structure, Giroux

[34] proved the converse, and established that:

Theorem 2.3.1 (Giroux). Contact structures on 3-manifolds up to contact

isotopy are in one to one correspondence with open book decompositions up to

positive stabilization.

In particular, starting from a surgery presentation of the contact manifold (Y, ξ)

we can built an open book (with a torus knot binding) which supports (S3, ξstd),

and for which the surgery link sits on a single page; the supporting open book of

(Y, ξ) has the same page and the monodromy given as product of positive and

negative Dehn twists along curves corresponding to cores of −1- and +1-surgeries,

respectively.

In the light of Giroux’s correspondence, there arises a need for a geometric

characterization of various algebraic and combinatorial properties of open books

[23]. A well-known open question in the area is, whether all contact structures

can be supported by open books of some bounded genus (in particular, genus-one).

Etnyre [19] proved that all overtwisted structures are planar. On the other hand,

there are obstructions for planarity of several other contact manifolds in terms of

the topology of their fillings [19, 27]. A general belief is that contact structures

whose Stein fillings admit arbitrarily large topology can not be supported by genus-

one open books. Such structures were found by Baykur and Van Horn-Morris [4]

via constructing arbitrarily long factorizations of corresponding monodromies on

genus-g, g > 1, surfaces. On the other hand, it is known that such factorizations
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of genus-one monodromies do not exist, but the problem is that the properties of

open books are not stabilization invariant.

Conversely, we wish to understand how contact properties (fillability, tightness)

manifest in the open book decompositions. It is a result of Giroux (building

on handle decomposition) that a contact 3-manifold (Y, ξ) is Stein fillable if

and only if it admits a supporting open book decomposition whose monodromy

factorizes into positive Dehn twists only (along homotopically nontrivial simple

closed curves). Moreover, according to Loi and Piergallini [53] (also Akbulut and

Özbağcı[1]), every Stein manifold admits the structure of an allowable Lefschetz

fibration. Recall that a Lefschetz fibration on a compact, oriented 4-manifold

X is a smooth surjective map to a compact, oriented surface (for us, a disk D)

π : X → D which is a fiber bundle except at finitely many (interior) singular

points, around which π takes the form (z1, z2) 7→ z2
1 + z2

2 in some local chart.

The topology of the underlying 4-manifold is determined by the fiber, which

gives 0- and 1-handles of F × D, and the vanishing cycles (isotopy classes of

simple closed curves in the nearby fiber which collapse to a point in the singular

fiber), which describe attaching circles of −1-framed 2-handles. The boundary

Y = ∂X consists of two parts: a fibration over the circle π−1(∂D), and solid

tori from the boundary components of all fibers ∂F ×D2. So, it comprises the

open book decomposition (F, φ) with F the fiber of the Lefschetz fibration and

the monodromy φ given by a product of positive Dehn twists, one along each

vanishing cycle. This (F, φ) supports the same contact structure which is induced

on the boundary by the Stein structure, as shown by Plamenevskaya [66]. In

general, a problem is that not every open book, which supports a Stein fillable

structure, admits a positive factorization [2, 73]. A theorem of Wendl confirms

this for planar contact structures, even more, in this case all Stein fillings arise

as positive factorizations of the same planar open book. (More in Section 5.1.)

The study of Stein fillings brings to our attention the study of positive

factorizations in the mapping class groups. We briefly recall that the group Γg,r
is generated by Dehn twists along finitely many non-separating simple closed

curves and a Dehn twist along a simple closed curve parallel to each boundary

component. The group is (in general) not commutative, still the Dehn twists

along disjoint curves commute. Important non-trivial relations among generators

are the lantern relation (relating boundary and pairwise twists in the 4-punctured

sphere), and its repeated generalization, the daisy relation; which in 4-dimensional

world, as monodromy substitution for the Lefschetz fibration, correspond to the

rational blow-down.

On the other hand, according to Honda, Kazez and Matić [40], a contact

3-manifold (Y, ξ) is tight if and only if all of its open book decompositions (F, φ)

have right-veering monodromy φ. In contrast to positive factorization, this is a

local property which describes how the monodromy acts on properly embedded
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arcs in a page. The mapping class φ is said to be right-veering if every arc

is mapped to the right at its endpoints (after we isotope the image so that it

has minimal intersection with its original). This approach allows us to detect

overtwistedness, but we need to find a supporting open book which contains an

arc which is mapped to the left, and not all open books supporting an overtwisted

structure are like that.

From an open book decomposition we can built a particular Heegaard splitting

of the (contact) 3-manifold (Y, ξ). If we write out Y as F × [0, 1]/∼ where ∼
identifies (p, 1) ∼ (φ(p), 0) for every p ∈ F , and (p, t) ∼ (p, s) for p ∈ ∂S and

t, s ∈ [0, 1], the two handlebodies are Hα = F × [0, 1
2 ] and Hβ = F × [1

2 , 1], and

the Heegaard surface is Σ = ∂Hα = F 1
2
∪−F0. If F = Σg,r a connected orientable

surface of genus g with r boundary components, then Σ has genus n = 2g+ r− 1.

Using convex surface theory, Torisu [71] showed that on the handlebodies Hα and

Hβ there is a unique tight contact structure with dividing curves ΓΣ = B = ∂F .

This means that the contact information is also completely contained in the

gluing map, and we rewrite it in form of the Heegaard diagram as follows. With

{a1, . . . , an} pairwise disjoint, properly embedded and homologically independent

arcs in F , and {b1, . . . , bn} their displacements, moving the endpoins in the

direction of ∂F and intersecting original arcs transversely once, we describe the α-

and β-attaching curves as αi = ai×{1
2}∪ai×{0} and βi = bi×{1

2}∪φ(bi)×{0}.

2.3.1 Example

Here, we directly complement the discussion in Section 2.2.4. As already men-

tioned, the simplest open book for (S3, ξstd) has disk pages and trivial monodromy,

though we mostly use its positive stabilization, which has annular pages and

monodromy given by positive (right-handed) Dehn twist along the core. Note

however that not every open book for (S3, ξstd) is a positive stabilization of the

disk one [22]. To get S1×S2, we perform +1-surgery on an unknot with tb = −1,

which is exactly the core of the annular page of the Hopf open book for S3
std. The

positive Dehn twist of the initial S3-monodromy and the negative Dehn twist

representing +1-surgery cancel each other, resulting in an open book for tight

S1 × S2 with annular page and trivial monodromy.

As observed by Etnyre [19], all overtwisted structures are supported by planar

open books. This again rests on the homotopic classification. We take a planar

open book for the underlying manifold, then we realize all Spinc structures

by performing Lutz twists along homologically independent curves, and realize

3-dimensional invariants by Murasugi summing with a planar open book for

overtwisted 3-spheres. We refer to the original paper [19] for the planar realization

of the Lutz twist, as well as for overtwisted structures on S3.

We exhibit planar open books for all tight contact structures constructed in

Section 2.2.4 on small Seifert manifolds, except the ones on M(−2; r1, r2, r3). To
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conclude, all contact structures on lens spaces, on small Seifert fibered spaces with

e0 6= −1,−2, and the zero-twisting ones on M(−1; r1, r2, r3), are planar. For this,

we need a contact surgery presentation whose core Legendrian link sits on a union

of pages of some planar open book for S3
std. For lens spaces and when e0 ≤ −3

such presentations were given by Schönenberger [68]; he calls them rolled-up

diagrams, and they are reminiscent to Ding-Geiges’s surgery presentation by

Legendrian push-offs. Concretely, instead of taking the plumbing graph and

legendrianize all unknots, we start at one end of the chain (for lens spaces),

realize first unknot and take its Legendrian push-off in place of the meridian (the

two being Legendrian isotopic after −1-surgery on the first unknot [9]), then we

proceed analogously, always taking the push-off of the previous unknot in the

chain. For M(e0; r1, r2, r3) with e0 ≤ −3, we take the above presentation for

the lens space described by two legs and the central vertex, then we look for a

meridian of the central unknot which is once linked also with all the following

unknots in the chain, and insert a rolled-up diagram of the third leg in its place.

Finally, for e0 ≥ −1 we take surgery diagrams described in Section 2.2.4. In

the following, we explain how to build a planar open book from such surgery

presentations. In all the cases we start with the Hopf open book for S3
std which we

then stabilize. Concretely, we insert a hole, encircled by one positive Dehn twist,

for every stabilization of every unknot in the surgery diagram; the stabilization

holes which correspond to positive stabilizations lie between the inner boundary

of the annulus and its core, the negative ones between the core and the outer

boundary. For lens spaces and when e0 ≤ −3 we add positive Dehn twists in the

same order as how we have described the surgery curves. From the first unknot

we get a positive Dehn twist along a push-off of the core (that is, the Dehn

twist which remained from the initial Hopf open book) modified by encircling

an additional stabilization hole for each negative stabilization, and avoiding a

stabilization hole for each positive stabilization. The twists corresponding to

the subsequent unknots are obtained by described modification on a push-off of

the twist corresponding to the previous unknot. When e0 ≥ −1 we start with

+1-surgeries, when there is one it eliminates the positive Dehn twist along the

core, when there are two we have a negative Dehn twist along the core instead.

We then proceed with each leg from the center out in the same manner as we

described in the case of lens spaces. At the end, let us remark that on many

L-spaces of the form M(−2; r1, r2, r3) no tight contact structure admits a planar

open book, due to obstructions which restrict possible intersection forms for Stein

fillings of planar contact manifolds (spotted by Etnyre [19], and Ghiggini, Golla

and Plamenevskaya [27]).
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3

Heegaard Floer homology

Defined by Ozsváth and Szabó [61, 62, 65], Heegaard Floer homology (in its

initial form) is an invariant of a closed, oriented 3-manifold. Following its two-

fold name, it combines the topology of pointed Heegaard diagram (Σn,α,β, z)

with the analysis of Lagrangian intersection Floer homology. Out of the first,

capturing the intersection data of stable and unstable manifolds associated with

a self-indexing Morse function, it keeps H∗(Y ), and additionally, paired with the

chosen base-point assigns Spinc structures to intersection points. Rewriting the

input in the symmetric product

(Symn(Σ),Tα = α1 × · · · × αn,Tβ = β1 × · · · × βn, Vz = {z} × Symn−1(Σ)),

HF∞(Y ) (basically) arises as the homology of a suitable Z-covering of the path

space P(Tα,Tβ), layered by Vz-intersections, which gives it F[U,U−1]-module

structure with U corresponding to a generator of deck translations.

Concretely, the chain groups are freely generated by the intersection points

x ∈ Tα ∩ Tβ , paired with integers i ∈ Z. The grading and the boundary map are

defined as follows. Given intersection points x,y ∈ Tα∩Tβ , we consider the moduli

spaces M(x,y) =
⋃
M(φ) of pseudoholomorphic representatives of a Whitney

disks φ from x to y, that is, φ ∈ π2(x,y) = {u : D → Symn(Σ), ∂D ∩ {Re z <

0} 7→ Tα, ∂D ∩ {Re z > 0} 7→ Tβ, (i,−i) 7→ (x,y)}. The maps u in M(x,y) lift

to holomorphic maps ũ : D̃ → Σ where D̃ → D is a suitable n-fold branched

cover; thus the disks u can be understood by looking at the image of ũ which is

a union of domains in Σ\(α ∪ β) with boundary alternating between segments

of α- and β-curves. The expected dimension of M(φ) is given by the Maslov

index µ(φ). Now, the relative grading on the generators of CF∞(Y ) is defined

by gr([x, i], [y, j]) = µ(φ)− 2nz(φ) + 2i− 2j (for admissible Heegaard diagram

independently of the choice of φ ∈ π2(x,y)), and the boundary map counts the

0-dimensional components of M(x,y)/R by the formula

∂∞[x, i] =
∑

y∈Tα∩Tβ

∑
φ∈π2(x,y)
µ(φ)=1

#(M(φ)/R) · [y, i− nz(φ)].
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Here, the function nz(φ) is given by the transverse intersections of u(D) with Vz.

Additionally, the chain complex admits an F[U ]-modul structure where U acts

by U · [x, i] = [x, i− 1], reducing grading by two.

Fixing the basepoint z, each intersection point x ∈ Tα ∩ Tβ defines a Spinc

structure tx on the 3-manifold Y . Since there is a Whitney disk between x and

y only if the two Spinc structures tx and ty agree, the chain complex splits as a

direct sum ⊕t∈Spinc(Y )(CF∞(Y, t), ∂∞). Furthermore, since the submanifold Vz
is a complex hypersurface, any pseudoholomorphic disk meets it positively; hence

nz(φ) > 0 whenever M(φ) is nonempty. Therefore the subset CF− generated

by the elements [x, i] with i < 0 forms a subcomplex of CF∞. We define CF+

to be the quotient CF∞ /CF−, that is the complex generated by [x, i] with

i ≥ 0. The corresponding homology groups are related by an exact sequence

· · · → HF−
ι−→ HF∞

π−→ HF+ δ−→ · · · , giving rise to a group HFred = coker(π).

Finally, we define ĈF to be the complex generated by the kernel of the U -action

on CF+; we may think of it as a chain complex generated by x ∈ Tα ∩ Tβ with

the boundary map counting only the disks which do not meet Vz. We have an

exact sequence · · · → ĤF → HF+ U ·−→ HF+ → · · · . All the chain groups and

the homology groups split according to Spinc structures and carry a relative

Zdiv(c1(t))-grading where div(c1(t)) is the divisibility of c1(t) ∈ H2(Y ;Z).

An oriented cobordism of 3-manifolds induces homomorphism between their

Heegaard Floer groups HF◦. It splits according to the Spinc structures on the

cobordism: for each s on W , which restricts to ti on Yi, we have an induced

map F ◦W,s : HF◦(Y1, t1)→ HF◦(Y2, t2). These maps are defined by looking at the

relative handle decomposition of (W,Y1), using Heegaard triples and counting

holomorphic triangles. Most important is the map associated to a 2-handle

attachment. Here, the triple α,β,γ is obtained from the Heegaard diagram

(Σ,α,βK) for the complement of the knot K along which the handle is attached.

The initial manifold Y is presented as (Σ,α,β) with β extending βK by the

meridian of K, the surgered manifold Yn(K) is presented as (Σ,α,γ) for γ

consisting of twice-intersecting push-offs of βK and the (n, 1)-curve on ∂(νK),

and (Σ,β,γ) is a diagram for #n−1S1 × S2. The boundary map then counts

triangles for which one corner goes to the distinguished top generator θ ∈ Tβ ∩Tγ .

The maps behave well under the compositions of cobordisms: if (W1, s1) is

a Spinc cobordism from (Y1, t1) to (Y2, t2), (W2, s2) is a Spinc cobordism from

(Y2, t2) to (Y3, t3), and we denote W1 ∪Y2 W2 by W , then F ◦W2,s2
◦ F ◦W1,s1

=∑
{s∈Spinc(W ):s|Wi=si} FW,s. An important property of the induced maps F∞W,s is

that they vanish for all Spinc structures s once b+2 (W ) > 0. This allows for W with

b+2 > 1 to define a mixed homomorphism Fmix
W,s : HF−(Y1, t1)→ HF+(Y2, t2) which

factors through HFred(N, t) of an admissible cut N (a 3-manifold which splits W

into halves W1,W2 with b+2 (Wi) ≥ 1 and such that H2(W )→ H2(W1)⊕H2(W2) is

injective). In particular, when (W, s) is a Spinc cobordism from (Y1, t1) to (Y2, t2)
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with t1, t2 both torsion, the map F ◦W,s shifts the grading of any homogeneous

element by the rational number 1
4(c2

1(s) − 3σ(W ) − 2χ(W )). Thus, whenever

c1(t) is torsion, the relative Z-grading on HF◦(Y, t) lifts to an absolute Q-grading,

defined through Spinc cobordisms. We capture it by the d-invariant d(Y, t), the

absolute degree of the unique nontrivial element x ∈ HF+(Y, t) which is in the

image of the map HF∞(Y, t)→ HF+(Y, t) and for which Ux = 0.

For a rational homology sphere, the Heegaard Floer homology in any Spinc

structure takes the form HF+(Y, t) = T +
d(Y,t)⊕HFred(Y, t) for T +

d an F[U ]-module

F[U,U−1]/UF[U ] with the lowest degree element in degree d. In particular,

dim ĤF(Y ) ≥ |H1(Y ;Z)|. A rational homology sphere Y is called an L-space if

HF+(Y, t) is isomorphic to T + for all Spinc structures t ∈ Spinc(Y ), equivalently,

dim ĤF(Y ) = |H1(Y ;Z)|. So, for an L-space the group ĤF(Y, t) can be described

as the kernel of the U -map on homology, U : HF+(Y, t) → HF+(Y, t), and the

d-invariant is characterized as the degree of the unique nontrivial element in

ĤF(Y, t).

The power of Heegaard Floer theory comes from the fact that it is well

adapted to usual geometric constructions in 3-manifold theory. A particular case

of this is the surgery exact triangle. Let the manifold Yn(K) be given as an

integral n-surgery along a knot K in Y , and Yn+1(K) be defined by an integral

surgery along K with the framing one higher. The groups corresponding to these

3-manifolds, together with the maps induced by cobordisms W1,W2,W3, defined

by attaching a 2-handle along K with framing n, along its meridional circle M

with framing −1, and along the meridian N of M with framing −1, respectively,

fit into an exact triangle:

HF◦(Y ) HF◦(Yn(K))

HF◦(Yn+1(K))

F ◦W1

F ◦W3
F ◦W2

where F ◦Wi
=
∑

s∈Spinc(Wi)
F ◦Wi,s

.

Finally, the determination of Heegaard Floer invariants often uses the special

way in which a particular manifold is constructed. Specifically, in the cases

below, we have negative definite plumbings, for which HF+ can be isomorphically

described by some equivalence classes of characteristic cohomology elements, and

contact structures, where the supporting open book decompositions are utilized.

3.1 Negative definite plumbings

For many graph 3-manifolds, a combinatorial description of HF+ in terms of

characteristic cohomology elements on the bounded 4-dimensional plumbings
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has been achieved [60, 56], based on the functorial behavior of Heegaard Floer

homology with respect to cobordisms.

Let Γ stand for a weighted tree which has at most one bad vertex (that is, a

vertex which has more neighbors than the negative of its weight) and such that

its intersection matrix is negative definite. We denote the associated plumbing

of disk bundles (over spheres) and its boundary, by XΓ and YΓ, respectively.

Homology of these manifolds is described by three groups: H2(XΓ;Z), generated

by the sections (vertices v ∈ Γ) of the disk bundles, H2(XΓ, YΓ;Z) and H1(YΓ;Z),

related by the exact sequence

H2(YΓ;Z) = 0→ H2(XΓ;Z)
PD−−→ H2(XΓ, YΓ;Z)→ H1(YΓ;Z)→ 0 = H1(XΓ;Z).

In particular, YΓ is a rational homology sphere. The Spinc structures on XΓ can

be equivalently described by the characteristic cohomology elements Char(Γ) =

{K; 〈K, v〉+ v · v ≡ 0 mod 2 for all v} ⊂ H2(XΓ;Z) ∼= H2(XΓ, YΓ;Z). The Spinc

structures on YΓ, which are in one to one correspondence with H1(YΓ;Z), agree

with the H2(XΓ;Z)-orbits in Char(Γ), inducing a partition Char(Γ) = ]Chart(Γ).

Denote by K+
t (Γ) the equivalence classes Z≥0 × Chart(Γ)/ ∼ where the

equivalence relation ∼ for K ∈ Chart(Γ) with 2n = 〈K, v〉+ v · v means Um+n ⊗
(K + 2 PD(v)) ∼ Um⊗K if n ≥ 0, and Um⊗ (K + 2 PD(v)) ∼ Um−n⊗K if n <

0. Ozsváth and Szabó [60] establish the following isomorphism, describing

HF+(−YΓ).

Theorem 3.1.1 (Ozsváth-Szabó). With the above notation, there is an isomor-

phism

Φl :
(

kerU l+1 ⊂ HF+(−YΓ, t)
)
→ Hom

(
K+

t (Γ)

Z≥l × Chart(Γ)
,F
)

for every l ∈ Z≥0.

The maps Φl for all l fit together into an isomorphism

Φ : HF+(−YΓ, t)→ (K+
t (Γ))∗.

The isomorphism Φ (and similarly its restrictions Φl) is given by the pairing

HF+(−YΓ, t)×K+
t (Γ)→ F which sends (x, Um ⊗K) 7→

(
Um · F+

XΓ,K
(x)
)

0

where we regard XΓ as cobordism from −YΓ to S3, and ( · )0 denotes the 0-

degree level of T +
0
∼= HF+(S3). In fact, if we set the grading on K+(Γ) to assign

deg(Um ⊗K) = 2m− K2+|Γ|
4 , then Φ gives a grading preserving isomorphism.

In particular, characteristic classes which present generators of kerU can be

recognized through the behavior of their full paths. A sequence of characteristic

covectors {Ki} on WΓ is said to be a full path if its elements satisfy the bounds

v · v ≤ 〈Ki, v〉 ≤ −v · v for all v ∈ Γ, and are connected by the following 2 PD
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steps: for some vertex v with 〈Ki, v〉 = −v · v, the vector Ki+1 is given by

Ki+1 = Ki + 2 PD(v). The path either reaches the proper ends in the initial

vector K1 satisfying v · v + 2 ≤ 〈K1, v〉 ≤ −v · v for all v ∈ Γ and the terminal

vector Kt satisfying v · v ≤ 〈Kt, v〉 ≤ −v · v − 2 for all v ∈ Γ – a full path with

such ending determines a non-trivial element of kerU . Otherwise, the path ends

by some characteristic vector K which exceeds the bounds v · v ≤ 〈Ki, v〉 ≤ −v · v
at some v ∈ Γ – we say that the path drops out, and its elements are equivalent

in K+(Γ) to Um ⊗K ′ for some m > 0 and K ′ ∈ kerU . The following properties

establish full paths as an algorithm to determine kerU . Two characteristic

covectors are equivalent in K+(Γ) if and only if there is a full path containing

both of them. If any full path which crosses a covector K properly ends (or

drops out), then all full paths through K behave the same. This means that

we have a bijective correspondence between a set of generators for kerU and

connected components defined by full paths with proper ends (equivalently, initial

vectors starting a full path which leads to a terminal vector). Finally, from the

U -equivariance of the maps F+
XΓ,K

, induced by the negative definite cobordism,

we derive that the d-invariant corresponds to the Spinc structure on XΓ which

decreases the absolute grading the least, thus d(−YΓ, t) = min −K
2−|Γ|
4 where

minimum is taken over covectors K which admit properly ending full paths.

Némethi’s lattice cohomology [56] reinterprets and generalizes (to a wider

class of graphs) the above isomorphism Φ. He establishes it as an invariant for

links of normal surface singularities [57], in particular, he observes the following.

Theorem 3.1.2 (Némethi). The set K+(Γ) depends only on the 3-manifold Y

and is independent of the choice of the negative definite plumbing graph Γ which

provides Y (that is, independent of the plumbed 4-manifold that Y bounds).

Essentially this means that blowing up induces a degree preserving isomorphism

between characteristic covectors of different plumbings.

Let us remark that the negative definite graphs naturally arise in singularity

theory as resolution graphs where vertices correspond to exceptional divisors

and edges represent their intersections. Lately, some relations between the bad

vertices and the support genus of the canonical contact structures on links of

singularities have been established (obstructions for planarity due to Ghiggini,

Golla and Plamenevskaya [27], and construction of genus-one open books by

Choi and Park [5]). In another direction, in Chapter 4 we find for a larger set of

characteristic covectors but for a very particular set of star-shaped plumbings a

contact interpretation for the steps in the full path associated to the bad vertex.
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3.2 Contact invariant

The Ozsváth-Szabó contact invariant [64] is defined using the Giroux’s correspon-

dence between contact structures and open book decompositions. The definition

rests on the fact that every contact structure is supported (possibly after posi-

tive stabilizations) by an open book with connected binding and with pages of

genus g > 1. By capping off the one boundary component, we obtain a closed

surface. If we denote by Y0 the corresponding fibered 3-manifold and by t0 the

Spinc structure on Y0 given by the fibration, then HF+(−Y0, t0) is generated by

a single element c+
0 . The contact invariant c+(Y, ξ) ∈ HF+(−Y ) is the image

of this element c+
0 under the map F+

V
, induced by the capping cobordism V

turned upside-down. In particular, c+(Y, ξ) lies in kerU ; when we consider it as

an element of ĤF(−Y ) we denote it c(Y, ξ). (The capping homomorphism was

generalized to open books with disconnected binding by Baldwin [3].) As eluci-

dated by Plamenevskaya [66] and Ghiggini [25], we can actually find a symplectic

cap (W ′, ω′) of (Y, ξ) with b+2 (W ′) > 1 for which the contact invariant can be

expressed as c+(ξ) = Fmix
W ′,k′

(θ−) with k′ the canonical Spinc structure on (W ′, ω′)

and θ− the generator of HF−−2(S3). Alternatively, Honda, Kazez and Matić [41]

later gave a reformulation of the Ozsváth-Szabó contact invariant in terms of

the Heegaard diagram (Σ,α,β) described at the end of Section 2.3. If we place

the basepoint into the complement of the thin strips between ai- and bi-arcs on

F 1
2
, the unique intersection point of α- and β-curves on F 1

2
gives rise to a cycle

[x, 0] ∈ CF+(−Y ) whose homology class agrees with c+(Y, ξ).

The contact invariant c+(ξ) ∈ HF+(−Y ) is an isotopy invariant of the contact

structure ξ, and it contains information about its homotopy type by lying in

HF+
−d3(ξ)(−Y, tξ) for tξ the Spinc structure induced by ξ and (if c1(tξ) is torsion)

d3(ξ) its 3-dimensional invariant. Additionally, the contact invariant captures a lot

of geometric information; in particular, it vanishes for all overtwisted structures,

and it is non-vanishing for strongly fillable ones. It behaves naturally with respect

to Legendrian surgeries; moreover [25]:

Theorem 3.2.1 (Ghiggini). There exists a unique, canonical, Spinc structure k

on a Stein cobordism W from (Y1, ξ1) to (Y2, ξ2) for which F+
W,k

(c+(ξ2)) = c+(ξ1),

while F+
W,s

(c+(ξ2)) = 0 for any other s ∈ Spinc(W ).

In particular, Legendrian surgery preserves non-vanishing of the contact

invariant. Also, because of the U -equivariance of the induced homomorphisms,

the U -depth σ(Y, ξ) = −max{d; c+(ξ) ∈ Ud ·HF+(−Y )} of the contact invariant

behaves monotonically with respect to the ordering by Stein cobordisms; the

invariant σ was first introduced by Karakurt [44].

Although the contact invariant vanishes for many tight structures (in partic-

ular, in the presence of Giroux torsion [28], or its higher genus generalizations
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[45]), it has proved to be useful in recognizing tightness of contact structures

which are not (or not obviously) fillable, notably in the work of Lisca and Stipsicz

[49, 50, 51, 52]. In most cases (including the ones we explore in Chapter 4) where

it is known to be a complete classification invariant for tight contact structures,

however, these structures can be set apart using only the homotopy type. Distinc-

tively, in the case of Brieskorn spheres −Σ(2, 3, 6n− 1) the classification (due to

Ghiggini and Van Horn-Morris [32]) of homotopic (non-isotopic) structures was

resolved using contact invariants. For Stein fillable structures, Plamenevskaya

[66] obtained the Heegaard Floer analogue of Theorem 2.2.5 of Lisca and Matić.

Theorem 3.2.2 (Plamenevskaya). If the Spinc structures of the Stein structures

J1 and J2 on the bounded compact 4-manifold X are not isomorphic, then the

induced contact structures ξ1 and ξ2 on the boundary Y = ∂X have distinct

contact invariants c+(ξ1) 6= c+(ξ2) ∈ HF+(−Y ).

This result basically follows from Theorem 3.2.1 applied on the Stein cobordism

W from S3 to Y . In the case of negative definite Stein plumbings, the fact that

F+
W,s

(c+(ξ)) is non-trivial only for the canonical Spinc structure, together with

the definition of the isomorphism from the previous section, implies the following

proposition (first observed by Karakurt [44]).

Proposition 3.2.3 (Karakurt). Let (Y, ξ) be a contact boundary of Stein negative

definite plumbing (X, J). Then the contact invariant c+(ξ) is mapped to the

dual of the first Chern class c1(J) ∈ H2(X;Z) via the isomorphism Φ between

kerU ⊂ HF+(−Y ) and Hom
(

K+(Γ)
Z>0×Char(Γ)

,F
)

.

Finally, we look at how some properties of supporting open books reflect in

the Heegaard Floer setting. First, the Heegaard diagram reformulation of the

contact invariant (due to Honda, Kazez and Matić [41]) was in fact introduced

parallel to the right-veeringness. The arc which is mapped to the left instantly

gives rise to a disk in the differential of the Heegaard Floer complex which causes

vanishing of the contact invariant. Higher-genus differentials have been closer

studied only recently, in work of Kutluhan, Matić, Van Horn-Morris and Wand

[45]. On the other hand, the planarity of contact structures is in the Heegaard

Floer homology captured in the U -action, as noticed by Ozsváth, Stipsicz and

Szabó [59]. Since any planar open book can be by adding positive Dehn twists

only transformed into an open book for a lens space with its canonical contact

structure, or alternatively because the capping off always brings us to a disk open

book of (S3, ξstd), the U -equivariance of the induced maps gives the following.

Theorem 3.2.4 (Ozsváth-Stipsicz-Szabó). For a planar contact structure ξ on

Y the contact invariant c+(ξ) ∈ HF+(−Y ) is contained in Ud ·HF+(−Y ) for all

d ∈ N.

27

C
E

U
eT

D
C

ol
le

ct
io

n



3.2.1 Example

Once again we follow the exposition of Sections 2.2.4 and 2.3.1. The contact

invariant of the standard contact structure on the 3-sphere is non-zero and lies

in degree zero, it generates T +
(0)
∼= HF+(S3). The contact invariant of the tight

S1× S2 is non-zero, it belongs to the torsion Spinc structure and has degree 1
2 , it

generates T +
( 1

2
)
⊂ T +

( 1
2

)
⊕ T +

(− 1
2

)
∼= HF+(S1 × S2, t0).

The contact invariant of an overtwisted structure (Y, ξ) vanishes. This can

be seen directly using an open book which is not right-veering, or we can (again

relying on the classification) build a Stein cobordism W on (Y, ξ) which contains

a sphere of self-intersection −1 and hence induces F+
W

= 0.

Before looking into tight contact structures on small Seifert fibered spaces,

we recall that most of these manifolds are actually L-spaces, in fact if e0 6= −1

or −2, all of them are. Now, if the contact invariant of some ξ on an L-space

is non-vanishing, then its 3-dimensional invariant necessarily agrees with the

d-invariant of the induced Spinc structure. Since all tight structures on lens spaces

and on small Sefert fibered spaces with e0 6= −1 (with additional assumption

of being an L-space when e0 = −2) are actually fillable, we have for all of

them d3(ξ) = d(M, tξ) and c+(M, ξ) generates T +
(d3(ξ))

∼= HF+(Y, tξ). For a zero-

twisting structure ξ on M = M(−1; r1, r2, r3), the non-vanishing c+(M, ξ) 6= 0

implies d3(ξ) = d(M, tξ) even if M is not an L-space, because we have observed

that all these structures are planar and so Theorem 3.2.4 applies to them. Recall

that such ξ is given by five −1-linked Legendrian unknots of tb = −1, performing

+1-surgery along two of them, and contact − 1
ri

-surgery along the other three.

Lisca and Stipsicz [51] established the reverse implication.

Theorem 3.2.5 (Lisca-Stipsicz). If for ξ as above on M(−1; r1, r2, r3) with

r1 + r2 + r3− 1 > 0 the equality d3(ξ) = d(M, tξ) holds, then its contact invariant

c+(M, ξ) ∈ HF+(−M, tξ) does not vanish.

We summarize their argument. According to Theorem 3.2.1, the contact invariant

c+(M, ξ) equals F+
−W,k(c+(M ′, ξ′)) for the canonical Spinc structure k on the

cobordism W induced by one +1-surgery. Since ξ′ is a Stein fillable structure

on M ′ = M(0; r1, r2, r3), its contact invariant c+(M ′, ξ′) does not vanish and

it satisfies d3(ξ) = d(M, tξ). The result now follows from the injectivity of

F+
W,k, which in turn is a consequence of negative definiteness of W (inducing

an isomophism on the HF∞-level), taking into account F[U ]-equivariance and

the degree-shift by −d3(ξ) + d3(ξ′), which by assumption equals to d(−M, tξ)−
d(−M ′, tξ′). In the case of L-spaces, Lisca and Stipsicz [52] actually gave a

geometric realization of the equality d3(ξ) = d(M, tξ) which allows us in Chapter 4

to systematically analyze tightness of zero-twisting structures on M(−1; r1, r2, r3).
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4

Tight contact structures on M(−1; r1, r2, r3)

The existence question for tight contact structures on Seifert manifolds has been

completely answered by Lisca and Stipsicz [52]: only the ones which belong to the

one-parameter family of (2n−1)-surgeries on the torus knot T2,2n+1 (equivalently,

which are orientation preserving diffeomorphic to M(−1; 1
2 ,

n
2n+1 ,

1
2n+3) for some

n ∈ N) do not admit any tight structure. Classification then arises from the

comparison of bounds: the lower bound is obtained constructively by contact

surgery complemented with the use of invariants, and for the upper bound convex

surface theory is used.

The main invariant in the classification of tight Seifert fibered manifolds is the

maximal twisting number (of a regular fiber; as defined in Section 2.2.1) – applied

in convex surface theory, it allows one to give upper bounds on the number of tight

structures. By the results of Wu [75] all tight contact structures when e0 ≤ −2

have negative maximal twisting, while for e0 ≥ 0 they are all zero-twisting; in

the work of Ghiggini [25] the negative maximal twisting is further related to the

existence of transverse contact structures. This, in the case of L-spaces, results

in a simple division: maximal twisting is equal to zero when e0 ≥ −1, and has

value −1 when e0 ≤ −2. The fixed maximal twisting of a regular fiber in all the

cases gives some unique contact structure on the complement of singular fibers

relative to boundary (see Theorem 2.2.2), pushing the classification into tubular

neighborhoods of the three singular fibers.

As presented in Section 2.2.4, the classification whenever e0 6= −1 is then

finished by Legendrian surgery construction – the diagrams are simply given by

legendrianization of the standard presentation of a Seifert manifold; this has been

done by Wu [75] for e0 6= −2,−1, 0, by Ghiggini, Lisca and Stipsicz [29] for e0 ≥ 0,

and by Ghiggini [25] for L-spaces with e0 = −2. In particular, all these tight

structures are Stein fillable, and are classified by the first Chern class of their

fillings (according to Lisca and Matić, Theorem 2.2.5), or closer to the present

context by their contact Ozsváth-Szabó invariants (according to Plamenevskaya,

Theorem 3.2.2).

In the following, we will explore the remaining case of M(−1; r1, r2, r3) which
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are rational homology spheres (e(M) 6= 0). Note that the family of Seifert

manifolds which do not admit fillable contact structures, as well as the family of

Seifert manifolds without tight contact structures, are of this type. Also, as we

will see in Chapter 5, some of these manifolds admit both fillable and non-fillable

tight structures. Remember that tight structures when e0 = −1 are essentially of

two flavors: zero-twisting and negative twisting. Negative twisting structures are

conjecturally characterized as surgeries on transverse contact structures. As such,

their contact class is never vanishing in reduced Heegaard Floer homology; they

are expected all to be symplectically fillable. A complete classification of (mainly)

negative twisting structures was achieved on Brieskorn spheres −Σ(2, 3, 6n−1) by

Ghiggini and Van Horn-Morris [32]; note also that the examples (due to Ghiggini)

of strongly but not Stein fillable contact structures are on these manifolds [24].

Our goal here is to understand the zero-twisting structures. As mentioned in

Section 2.2.4, Lisca and Stipsicz gave the following uniform surgery description

of them. Since they are all planar (see Section 2.3.1), their contact invariant (if

non-vanishing) always lies in the tower T +
d(−M,tξ)

⊂ HF+(−M, tξ).

Proposition 4.0.1. [51, Proposition 6.1] Each tight contact structure with max-

imal twisting equal to zero on the small Seifert fibered space M(−1; r1, r2, r3) is

given by one of the surgery presentations of Figure 4.1 left. �

− 1
r3 − 1

r2− 1
r1

+1
+1

∼=
− r3+1

r3

− r2+1
r2

− r1+1
r1

00−1 ∂∼= −1

− 1
r1 − 1

r2
− 1

r3

Figure 4.1: Contact structures on M(−1; r1, r2, r3), followed by the smoothened

surgery diagram of the underlying 3-manifold and its standard presentation; when

referring to them as 4-manifolds, we assume inverse slam-dunks to be done and

we denote them X and W .

By means of Section 2.2.3, this reduces the classification problem to the

recognition of tightness and isotopies between the finite collection of structures,

listed by the associated Thurston-Bennequin and rotation numbers. We devote

this chapter to the study of their Ozsváth-Szabó contact invariants.
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4.1 Contact invariant in lattice homology

Let the initial setting of this section be slightly more general; we consider Seifert

manifolds M of the form M(−1; r1, . . . , rn) with e(M) = −1 + r1 + · · ·+ rn > 0,

together with the contact structures ξ as in Figure 4.2.

− 1
rn

− 1
r2

− 1
r1

+1

+1

...
...

Figure 4.2: Contact structures on M(−1; r1, . . . , rn).

A characteristic property of these 3-manifolds is that their orientation reversals

bound negative definite star-shaped plumbings. Recall from Section 3.1, that for

the latter, Ozsváth and Szabó give a combinatorial description of their Heegaard

Floer homology in terms of characteristic cohomology elements of the plumbing

they bound. Specifically, for −M = ∂WΓ′ we have an isomorphism Φ from

Theorem 3.1.1 identifying Hom
(

K+(Γ′)
Z>0×Char(Γ′) ,F

)
∼= ker(U) ⊂ HF+(−M).

We focus on the pair of star-shaped plumbed 4-manifolds WΓ and WΓ′ which

arise as complementing parts in R = CP 2#NCP 2
when cut along a hypersurface

M . The configurations of the two intersection graphs Γ,Γ′ are obtained by blowing-

up the initial lines l1, . . . , ln ⊂ CP 2 : l1 ∩ · · · ∩ ln = {p}, and l ⊂ CP 2 : p /∈ l, as

shown in Figure 4.3 (see [52, Lemma 4.2]).

p l2

ln

l1

l

...
−→

0

...

−1

...

+1

0

0

⊆ CP 2#CP 2 → · · · → Γ
−1

−1

... −1

Γ′

Figure 4.3: R\ν(M) = WΓ ∪WΓ′ .

Via the embedding WΓ ∪WΓ′ ↪→ R (as given in Figure 4.3) the vertices of

the intersection graphs Γ and Γ′ can be expressed in the standard generators of

H2(R;Z):

• {z = center of Γ} 7→ e1
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• {z′ = center of Γ′} 7→ h− e2 − · · · − en+1

• {xi = first vertex of the leg Li ⊂ Γ} 7→ h− e1− ei+1−
∑
ej for i = 1, . . . , n

• {v vertex, v 6= z, z′, xi} 7→ ej −
∑
el, for example

{x′i = first vertex of the dual leg L′i ⊂ Γ′} 7→ ei+1 −
∑
el for i = 1, . . . , n.

We will refer to Γ as the manifold side and Γ′ as the dual side. Throughout,

we will follow the convention that primed notation belongs to the dual graph:

apart from the special vertices denoted above, let vij be the jth vertex of Li and

vi
′
j the jth vertex of L′i.

Motivated by the geometric realization of the condition d3(ξ) = d(M, tξ) given

by Lisca and Stipsicz in [52, Theorem 3.3] (see also the end of Section 3.2.1), we

pick a specific characteristic class in H2(WΓ′ ;Z) which we name contact covector

in the light of the theorem stated below.

Definition 4.1.1. Denote by h and ei the standard generators of H2(R;Z) and

define a class c ∈ H2(R;Z) through its Poincaré dual by PD(c) := αh+
∑
αiei

where α, αi ∈ {±1} are constrained by the surgery presentation on WΓ as follows:

c|WΓ
corresponds through the central blow-up to the Spinc structure whose first

Chern class evaluates as rotation numbers on surgery generators (see Figure 4.4).

Let us call the restriction c′ := c|WΓ′ the contact covector.

(1)

−1

(rot20−1)

−a20 = tb2
0

(rot10−1)

−a10 = tb1
0

(rotn0 −1)

−an0 = tbn
0

−a11 = tb1
1−1

(rot11)

−a21 = tb2
1−1

(rot21)

−an1 = tbn
1 −1

(rotn1 )

−a1k1
= tb1

k1
−1

(rot1k1
)

−a2k2
= tb2

k2
−1

(rot2k2
)

−ankn
= tbn

kn
−1

(rot3kn
)

...

...

...

−an′k′n −an′1

−a1′k′1 −a1′1

−a2′k′2 −a2′1

−an′0

−a2′0

−a1′0

−2

...

...

...

z = e1
x1 = h− e1 − e2 −

∑
ei . . .

x2 = h− e1 − e3 −
∑
ei . . .

xn = h− e1 − en+1 −
∑
ei . . .

z′ = h− e2 − · · · − en+1

x′1 = e2 −
∑
ei . . .

x′2 = e3 −
∑
ei . . .

x′n = en+1 −
∑
ei . . .

Figure 4.4: Plumbing graph Γ (left) and its dual Γ′ (right) with denoted self-

intersections and evaluations of characteristic covector c, (·) = 〈c, v〉, on the

manifold side; the central and the first vertices on legs are given in generating

classes of H2(R;Z).

Although c, and hence the contact covector, is not uniquely determined,

different classes specify the same element in K+(Γ′) (see Lemma 4.1.6).

32

C
E

U
eT

D
C

ol
le

ct
io

n



Theorem 4.1.2. Let (M, ξ) be any of the contact Seifert fibered 3-manifolds given

by Figure 4.2 for which e(M) = −1+r1 + · · ·+rn > 0. Then the contact invariant

c+(ξ) is mapped to the dual of the contact covector c′ via the isomorphism Φ

between kerU ⊂ HF+(−M) and Hom
(

K+(Γ′)
Z>0×Char(Γ′) ,F

)
.

In the remaining of the section we study the Heegaard Floer behavior of the

contact covector which eventually leads to the verification that it plays a role of

the contact invariant (proof of Theorem 4.1.2).

Notice that any class c as in Definition 4.1.1 satisfies c2 = σ(R). Since c

restricts to cΓ, corresponding to c(X, sJ), on WΓ, it satisfies

d3(ξ) =
1

4
(c2

Γ − 3σ(WΓ)− 2b2(WΓ)) + 1 =
1

4
(c2

Γ − σ(WΓ));

and since the degree of c′ in K+(Γ′) is defined to be

deg(c′) =
1

4
(c′2 + |Γ′|) =

1

4
(c′2 − σ(WΓ′)),

the equality c2 = σ(R) is equivalent to −d3(ξ) = deg(c′). When M is an L-space

[52, Theorem 3.3], properly ending full path of c′ (that is, c′ being non-trivial

in kerU ⊂ HF+(−Y )) suffices to conclude that −d3(ξ) = d(−M ; tξ), hence by

Theorem 3.2.5 also c+(M, ξ) 6= 0, and also that c′ represents c+(M, ξ) in K+(Γ′).

In general however, even if the full path ends properly, the degree deg(c′) might be

different from d(−M, tξ), in which case c+(M, ξ) (of a planar structure) vanishes,

or even if deg(c′) = d(−M, tξ), the element c′ might not lie in the tower T +
(−d3(ξ)).

4.1.1 Full path of contact covector

We study full path of the contact covector on the level of homology generators of

H2(R;Z). This allows us to follow the corresponding changes on the manifold

side. Proofs in this section are straightforward but technical.

Notation 4.1.3. We describe a characteristic cohomology element c ∈ H2(R;Z)

as PD(c) = αh +
∑
αiei where α, αi ∈ {±1}. In the following, vectors of

signs correspond to parts of the coefficient-vector (α, αi), covering generators of

(usually) a single Γ- or Γ′-vertex.

We often refer to a single vertex by its self-intersection. When a vertex

is written out in generating classes, these are called starting, middle and last,

according to the position; explicitly, if v = es −
∑l

j=s+1 ej , then es is starting, el
is last, and all others are middle. On legs, the starting generator of a vertex and

the last generator of the previous vertex coincide.

Presentability will be assigned to dual vectors c|Γ′ and it means that the

corresponding manifold side arises from a contact presentation, that is, c|Γ′ is a

contact covector of some presentation.
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Let our starting point be a characteristic vector c ∈ H2(R;Z) which comes

from a contact presentation, and which satisfies v · v ≤ 〈c, v〉 ≤ −v · v (otherwise

the full path has already dropped out). We will follow the path only in one

direction – towards the initial vector. Recall that the corresponding step is given

by c 7→ c − 2 PD(v) for some v with 〈c, v〉 = v · v, and the vector we aim at

satisfies v · v + 2 ≤ 〈c, v〉 ≤ −v · v. Everything could be verbatim repeated with

opposite signs in the direction of the terminal vector.

Steps on legs

First, we observe that steps taken for v 6= z′ never change the surgery presentation

considered, nor does the path drop out at any of these vertices.

Lemma 4.1.4. Characteristic vectors c and c− 2 PD(v) for v 6= z′ with 〈c, v〉 =

v · v, always belong to the same surgery presentation.

Proof. As these vertices (v ∈ Γ′, v 6= z′) are described by v = ei −
∑
ej , the

evaluation of the characteristic covector c reaches the self-intersection when

presenting generators all admit the same sign as in the vertex. So, −2 PD(v)

changes their signs from (+− · · ·−) to (−+ · · ·+). But this change has no effect

on the evaluation of c on any of the Γ-vertices.

Indeed, from the way how the exceptional classes are chosen we see that each

ej starts some new vertex, either one on the manifold side or one on the dual

side. So, the starting and the last generator of v are non-starting on the manifold

side, while all its middle generators are starting (and last) generators of manifold

vertices. Hence, the restriction of c to the generators of v evaluates trivially on

Γ, that is, 〈c|v,Γ〉 = 0, and is therefore independent of sign.

Since these (manifold-side) evaluations directly correspond to rotation num-

bers, with neither of these moves do we switch between presentations.

Lemma 4.1.5. All drop-outs occur in the center z′ = h− e2 − · · · − en+1 of the

dual star.

Proof. We notice that all the vertices in legs of Γ′ are formed by exactly as many

generators (ej ’s) as the value of their self-intersections. Hence, there is no way to

drop out at any of them. So, the only possible drop-out happens at z′ when the

signs of generators h and e2, . . . , en+1 are all the same, and 〈c, z′〉 = ±(n+1).

In sum, we may assume the initial condition v · v + 2 ≤ 〈c, v〉 ≤ −v · v is

violated only at the central vertex z′ – such a vector can be easily reached by

finishing all possible −2 PD-steps on legs, which either sweep out the problem

or transfer it to the center. (As each −2 PD-step pushes the problem to the

neighboring vertices, we are successively completing the steps, as long as we do

not run into a vertex v which despite of the −2-change does not evaluate as v · v,
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or we reach the end of the leg.) In particular, neither non-central vertex is of the

form (+− · · ·−).

Contact covector is well-defined

We check that the contact covector c′ is well-defined as an element of K+(Γ′).

Lemma 4.1.6. Any two contact covectors associated to ξ (via Definition 4.1.1)

are related by a sequence of full path steps.

Proof. Contact covectors are restrictions to WΓ′ of characteristic vectors c ∈
H2(R;Z) for which c2 = σ(R) (ensured by expansion of PD(c) as {±1}-linear

combination of generators), and whose evaluations on all the manifold vertices

agree. So, once we connect any two characteristic vectors c ∈ H2(R;Z) which

have the same evaluations on the manifold side, by full path steps (not necessarily

a path) we are done.

Let us successively turn both of them into the same characteristic vector

applying only −2 PD steps which do not change the presentation. First, we apply

steps on legs to both of them.

Observe a simple consequence of the above reduction.

Lemma 4.1.7. After all steps on legs (in the initial direction) are done, a

presentable covector on neither dual vertex takes the form (+− · · · −+).

Proof. Suppose on the contrary, there is such a dual vertex; it is not the last

vertex of the dual leg, because it would give the last vertex on the manifold

side with self-intersection −2 and c-evaluation +2. But then, every non-(−2)

dual vertex further on the dual leg needs to have again negative middle signs

(otherwise we have found a manifold vertex, starting in the negative sign of the

previous non-(−2) with all following generators positive) and positive last one

(because of (+− · · ·−) exclusion). After all, we end in the impossible last dual

vertex.

Therefore, since the middle generators of dual vertices are same-signed and

because of the rotation number constraints on the manifold side, the dual non-

central vertices need to be of one of the following forms (−− · · · − −), (−+ · · ·+
−), (−+ · · ·+ +), (+ + · · ·+−) or (+ + · · ·+ +). If the two vectors (after steps

on legs are applied) disagree on the generators of some dual leg L′i, they disagree

already on x′i, taking the form (+ · · · + −) on one and (− · · ·−) on the other.

But then c-evaluations on xi disagree unless the sign of h is different in the two

configurations. But this in turn requires that the signs on the generators of all

dual legs are related in the same way as the ones on L′i, and after adding −2z′ to

the covector with positive h-sign the two vectors coincide.
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Central step

After finishing all steps on legs, covector c either drops out at z′, presents the initial

vector or, it reaches self-intersection at z′. For the latter, the generators forming

z′ = h−e2−e3−· · ·−en+1 take values: either (+−− · · ·−) or (−+− · · ·−), up to

reordering the legs. The −2 PD-step taken next changes exactly these generators

by twice (−+ + · · ·+). In the first, trivial, case we stay in the same presentation,

as the step only switches the signs in the pairs (h, ei), i = 2, . . . , n+ 1, preserving

the evaluation on all the influenced manifold vertices, x1, . . . , xn. In the second

case, we can (on the level of generators) instead of simply adding −2z′ to the

given description of PD(c), first change the sign configuration, without changing

the dual c|Γ′ and with controlled (seen later) change on the manifold side c|Γ,

and then do the −2 PD-step as above, not influencing the manifold side.

Algorithm 4.1.8 (Central step or turn). Whenever we arrive, after possibly

renumbering the legs, at c with (h, e2, e3, . . . , en+1) = (−+− · · ·−) and 〈c, v〉 6=
v · v for all v 6= z′, the next step in the full path is given by the characteristic

covector c as follows. Denoting vertices of L′1 by {v′0, . . . , v′k′1} and their generators

as v′i = ei1−
∑li

j=2 e
i
j with eili = ei+1

1 and e0
1 = e2, define PD(c) = PD(c)+2h−2e2

and modify it as follows:

for i ∈ {0, . . . , k′1} if 〈c, ei1〉 6= 〈c, ei1〉 : for j ∈ {2, . . . , li}
if 〈c, eij〉 = +1 :

PD(c) = PD(c)− 2eij & endfor

if 〈c, ei1〉 = 〈c, ei1〉 : stop.

Then add −2z′ to the so obtained sign configuration PD(c).

To prove well-definedness, we need that this reformulation always exists (the

inner loop in our Algorithm always stops; see Lemma 4.1.9) and that uniqueness,

ensured by always taking the first positive generator (chosen ordering of the inner

loop), can be explained by the independence of order, at least as far as contact

presentations are concerned (Lemma 4.1.10).

Lemma 4.1.9. Every characteristic vector cΓ′ with PD(c|z′) = (− + − · · ·−)

can be achieved by another distribution of signs, with positive sign on h; it is

associated to a different manifold vector (possibly non-presentable).

Proof. Starting at the center z′, the two distributions are given by (−+− · · ·−)

and (+−− · · ·−). The switch of the h-sign with the opposite sign of e2, does

not impose any change into dual legs other than the first. For the first leg, the

appropriate adaptation of signs, which results in the same dual evaluation, exists

because of the exclusion of any (+−· · ·−)-configurations (that is, the assumption

〈c, v〉 6= v · v for any v 6= z′).
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Lemma 4.1.10. If a sign on one middle generator of a dual vertex is changed,

all of them need to be changed (independent of order) before we get back into

presentable. A turn of the last generator can result in a presentable vector only

when all prior middle generators are negative.

Proof. For a covector to be presentable, all dual vertices have to have same-signed

middle generators, because these generators on the manifold side are forming a

chain of −2’s, zero being their only possible rotation number.

For the second claim, suppose on the contrary the middle signs on some v′ are

positive. Changing the sign of its last generator (from positive to negative) forces

a switch of all the signs in the following chain (if any) of dual −2’s (to preserve

dual evaluations). Then, this influences the evaluation on the next non-(−2) dual

vertex w′, which can be corrected by changing one of its later generators from

positive to negative. If the middle generators of w′ are already negative or if we

get them all negative by the current turn, we have found (independent of further

changes) a manifold-side vertex which starts at positive (second last) generator

in v′ and has all further signs negative. If by the change of one middle generator

not all of them are negative, the vector is non-presentable by the first part. If all

generators of w′ are positive, and we turn the last one, we need to repeat the

same argument with w′ in place of v′. It remains to check whether we could get

presentable result by correcting only starting and last generators of all following

(necessarily, fully positive) dual vertices. But if not before, the process ends in

non-presentable, giving (+− · · ·−) on the last manifold vertex.

To sum up, the central turns are the only significant steps in following possible

changes on manifold vectors, and by that, in presentations. We may assume that

after each central turn also all −2 PD-steps on legs are finished.

Necessary for proper ends

Lemma 4.1.11. If after a central step, the covector c on the starting dual vertices

evaluates as their self-intersection, that is, 〈c, x′i〉 = x′i · x′i:

• on at most n− 2 legs, we have arrived at the initial end;

• on n− 1 legs, the full path continues;

• on all n legs, this causes a drop-out.

Proof. The maximal starting dual evaluations tell us on how many legs we need

further −2 PD-steps. The evaluation 〈c, z′〉 on z′ right after a central turn is

n− 1. If further turns are needed for n− 2 legs only, we do not reach a 1 − n
central evaluation again and the corresponding vector is initial; with n− 1 we

get back to 〈c, z′〉 = 1− n and we continue with another central turn; n gives a

drop-out in (h, e2, . . . , en+1) = (−− · · ·−).
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Corollary 4.1.12. A presentation ξ, whose contact covector has a full path with

proper ends, admits a leg, starting in a fully positive vertex. (If the presentation

corresponds to the initial vector, there are at least two fully positive starting

vertices.)

Proof. For PD(c) take a sign configuration which evaluates on manifold vertices

according to the rotation numbers of ξ, which takes minus sign on h, and for

which 〈c, v′〉 6= v′ · v′ for all v′ ∈ Γ′\{x′i; i = 1, . . . , n}. (This is the stage right

after a central turn.) As in Lemma 4.1.11 above, there is a leg, say L1, for which

〈c, x′1〉 6= x′1 · x′1. We prove that on this leg 〈c, x1〉 = a1
0 − 2 holds, that is, the

generators of x1 (apart from h, e1) are positive.

Write out x1 as h− e1− e2− e5− · · · − eJ . The signs on the generators up to

eJ−1 are positive as otherwise we would have shuffled the negative sign to e5 by

−2 PD-steps on consecutive dual vertices of square −2 (resulting in 〈c, x′1〉 = −2

for x′1 = e2−e5). The positivity of eJ follows from presentability, as it is a middle

generator of a dual vertex starting in positive eJ−1. Indeed, the middle generators

of any dual vertex are same-signed, and the (+− · · ·−)-configuration as well as

(+− · · · −+)-configuration are excluded; the first by assumption 〈c, v′〉 6= v′ · v′

for v′ 6= x′i, the second by Lemma 4.1.7.

4.1.2 Contact covector represents contact invariant

We prove Theorem 4.1.2, first for some overtwisted structures, then for some

fillable structures, and finally for the general case. Sufficient conditions for

overtwistedness and fillability which we use in this section are for M(−1; r1, r2, r3)

special cases of conditions we obtain in Section 4.2.3 and Section 5.2.

Overtwisted structures We consider a convex decomposition of the manifold

M(−1; r1, . . . , rn) with a zero-twisting structure (Figure 4.2) into a product

of the n-punctured sphere with the circle Σ × S1 (the background), and the

neighborhoods of the n singular fibers. We trivialize the separating tori by

the section and the fiber in the background basis, and by the meridian and a

longitude in the standard toric basis, so that the gluing maps are described

by Ai =
(
αi α′i
−βi −β′i

)
∈ SL2(Z) where βi

αi
= ri (or r1 − 1 for the first leg). In

particular, the infinite boundary slope of the thickened neighborhoods of singular

fibers correspond to −αi
α′i

= [aiki , ..., a
i
0] in the toric basis. The boundary slopes

in the basic slice decomposition of the considered neighborhoods (that is, the

factorizations of the solid tori) are given – in order from outside in – by decreasing

the last entry of the continued fraction. (Recall Section 2.2.1 for details.)

Proposition 4.1.13. Necessarily for tightness, the presentation admits a leg

i starting in the unknot with roti0 = tbi0 +1 = −ai0 + 1 or a leg starting in the

unknot with rotj0 = − tbj0−1 = aj0 − 1.
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Proof. (The proof builds on its special case [30, Proposition 6.3].) Conditions

say that the presentation should contain a fully positively stabilized or a fully

negatively stabilized starting unknot. Equivalently, in the light of convex decom-

positions, signs of all slices in the basic slice decomposition of the corresponding

toric annulus are the same.

Assume the contrary, there is no leg satisfying either condition. This means,

that all neighborhoods of singular fibers admit a positive as well as a negative

basic slice in their outermost continued fraction blocks. We start with the first two

singular fibers F1 and F2, we shuffle the basic slices of their outermost continued

fraction blocks so that the outermost basic slices have the same sign. Peeling

off these slices from the singular tori, we hit the tori of slope 0 and −1 in the

background basis. Connecting their rulings by an annulus (which admits no

one-sided dividing curves) and edge-rounding, we obtain a torus surrounding both

fibers, and of 0-slope. By adding a bypass to its back (which exists because the

background is zero-twisting) we obtain a basic slice around F1 and F2 together,

with boundary slopes 0 and ∞. Then we successively expand this toric annulus

so that it contains more and more singular fibers, by always cutting between its

0-slope boundary and the −1-slope torus which peels off the outermost basic slice

of Fi we are including; since we have both, positive and negative, outer basic

slices around each Fi, we can always shuffle them so that the outermost sign

agrees with the sign of the joint basic slice. Eventually, we obtain a torus of slope

0 around the (last remaining) singular fiber Fn. The toric annulus between this

torus and the ∞-slope boundary of the neighborhood of Fn, forms a basic slice.

Pulled-back (in the toric basis of Fn) the 0-slope equals [ankn , ..., a
n
1 ], which means

that the outermost continued fraction block of Fn together with this additional

basic slice gives a glued-together basic slice (having subsequent boundary slopes

[ankn , ..., a
n
1 − 1], [ankn , ..., a

n
1 ]), and by Gluing Lemma it is tight exactly when all

its subslices have the same sign. In particular, all the signs in the outermost

continued fraction block of Fn are the same, contradicting our assumption.

Corollary 4.1.14. Theorem 4.1.2 holds for (M, ξ) which admits neither any

starting unknot with roti0 = tbi0 +1 = −ai0 + 1 nor with rotj0 = − tbj0−1 = aj0 − 1.

Proof. According to Proposition 4.1.13, (M, ξ) is overtwisted, in particular

c+(M, ξ) = 0. According to Corollary 4.1.12, the full path of its associated

contact covector drops out.

Fillable structures

Proposition 4.1.15. Contact surgery diagram as in Figure 4.2 with n = 2, with

surgery coefficients equal to r1 = 1
p and r2 = p−1

p for p ∈ N, and stabilizations

chosen so that rot1
0 = ±(p− 1) and rot2

0 = ∓1, describes the tight S1 × S2.
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Proof. Described surgery is a special instance of surgery diagrams studied in

Section 5.2, where we obtain a positive factorization for the corresponding planar

monodromy. We give here an alternative proof in the light of Heegaard Floer

theory.

The proof is based on an interpretation of a surgery exact triangle relating

orientation reversals of manifolds, smoothly given by four −1-linked unknots

with framing coefficients x, 0,−p − 1,−2p−1
p−1 , where x stands for ∞, 0,−1, and

the underlying manifolds are −L(p2, p − 1), S1 × S2, and L(p, 1)# − L(p, 1),

respectively.

Here cobordism X between L(p2, p − 1) and S1 × S2 corresponds to one

contact +1-surgery. The associated map in Heegaard Floer homology relates

contact invariants of the two ends F−X(c(L(p2, p − 1), ζ)) = c(S1 × S2, η). As

c(L(p2, p− 1), ζ) 6= 0 (given by Legendrian surgery on the standard tight S1×S2)

we wish to prove that for ζ given by rot1
0 = ±(p− 1) and rot2

0 = ∓1, it is not in

the kernel of F−X .

Now, for the purpose of the following consideration we simplify the presenta-

tion by Kirby moves of Figure 4.5.

−3

(−1)

−p− 1

(p− 1)

0

(0)

−1

· · ·

−2 −2 −2

↔

−p 0 −2

(p)
(0)

(0)

· · ·
−2 −2 −2

(0) (0) (0)

↔

−p− 2

(p)

· · ·
−2 −2 −2

(0) (0) (0)

p 1 −p

(−p)
(1)

(p)

↔
0p− 1 −1 −p

(−p+ 1)
(−1)

(0)
(p)

↔ ·· ·

1
−1 −2

0−2 −p

(−1)
(−1)

(0) (0)
(0)

(p)

↔ ·· ·

−2 −2
0−2 −p

(0)
(0) (0)

(0)
(p)

l

l

−p · · ·

−p −p− 2
−2−2 −2

(p) (p) (0)
(0)

(0)

Figure 4.5: Kirby diagrams for L(p2, p− 1) with Spinc structure tζ .

−p −1 p −p 0 p

−p p

−L(p2, p− 1) S1 × S2

L(p, 1)#− L(p, 1)

−X

UV

Figure 4.6: Surgery exact triangle.
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Consider surgery exact triangle of Figure 4.6. The cobordisms −X and U

have zero signature, while V is generated by (1, p,−1) in the given presentation of

W−L(p2,p−1), whose square is −p2, so we have χ(V ) = 1, σ(V ) = −1. Associated

Heegaard Floer exact triangle takes the following form.

Zp2

2
∼= ĤF(−L(p2, p− 1)) ĤF(S1 × S2) ∼= Z2 ⊕ Z2

ĤF(L(p, 1)#− L(p, 1)) ∼= Zp2

2

F−X

FUFV

Since σ(−X) = σ(U) = 0 and all nontrivial components of F−X and FU
are induced by torsion Spinc structures, the degree-shift of both F−X and FU

is −1
2 . The degree-shift for FV at Spinc structure s = (i, k, j) is

c21(s)+1
4 where

for −p −1 p

(i)
(k)

(j)

c21(s) = 〈c1(s),(1,p,−1)〉2
−p2 = (i+pk−j)2

−p2 .
Furthermore, from the exactness of

Heegaard Floer triangle we observe that dimensions of the kernel of F−X , FU , FV
are p2 − 1, 1, 1, respectively.

Let us look at the spin structure tL#−L
(−p,p) = −p p

(−p) (p)

on L(p, 1)#−L(p, 1); cor-

responding Heegaard Floer group is supported in degree 0, ĤF(L#−L, tL#−L
(−p,p) ) =

Z2(0), and we will denote its generator by a.

Since the degree-shift of F(V,s) is non-positive for all s ∈ Spinc(V ) (because of

U -equivariance of HF -maps), we can expend FV (a) = c(ζ)+c(ζ)+
∑

deg b<0 b. The

contact class c(ζ) (and its conjugate) are reached by the only degree-zero Spinc

cobordisms, that is for k = 1 (and 3). Now, as the degree deg b < 0, b-elements

are all in the kernel of F−X which coincides with the image of FV ; and so, for

every b exists b′ such that FV (b′) = b. We are left with FV (a+
∑
b′) = c(ζ)+c(ζ).

Finally, we need that c(ζ) itself (thus also c(ζ)) is not in the image of FV .

Suppose on the contrary that FV (
∑
d) = c(ζ), then some of d’s must have

degree greater than or equal to 0, and some of these needs to be non-spin. Then

FV (a+
∑
b′ +

∑
(d+ d)) = 0, and thus a+

∑
b′ +

∑
(d+ d) in the image of FU .

But since the degree-shift of the only non-vanishing FU -component is −1
2 and

ĤF(S1×S2) is supported only in degrees ±1
2 , no element in the image of FU can

have degree greater than 0, and hence all d’s in the above sum have deg d ≤ 0. But

even so, the sum being in the image of FU forces each of its summands to be in the

image of some Spinc cobordism, so for some u ∈ Spinc(U) and e ∈ ĤF(S1×S2, t0)

we have FU,u(e) = a. But as tL#−L
(−p,p) and t0 are both spin, such u would be spin

as well, which is not the case as for −p 0 p

(−p)
(0)

(p)

〈c1(u), (1, p,−1)〉 = −2p 6= 0.

Proposition 4.1.16. Assume that (M, ξ) is given by a surgery diagram of Figure
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4.2 and that it contains a surgery link of the tight S1×S2 from Proposition 4.1.15

as a sublink. Theorem 4.1.2 holds for this (M, ξ).

Proof. The complete surgery presentation corresponds to a contact manifold

obtained by Legendrian surgery on the tight S1 × S2, hence it is Stein fillable.

Therefore and since ξ is supported by a planar open book, its contact invariant

c+(ξ) is non-vanishing and lies in the bottom of the tower T +.

On the other hand, the full path of the associated contact covector c′ properly

ends. Indeed, as described in Section 4.1.1, we can reduce a full path of any

covector to the central steps. Concretely, if contact covector c′ is not the initial

(the terminal) vector of the full path, we can ensure that violation of the initial

(terminal) condition happens on the central vertex with PD(c)|z′ = −h+ e2 −
e3−· · ·− en+1 (or +h− e2 + e3 + · · ·+ en+1) or with a drop-out, up to reordering.

The special form of the two legs described in Proposition 4.1.15 now ensures that

central steps (throughout the path) can be alternatively done with respect to

these two legs. Concretely, let us write out the argument for the proper end in the

initial direction when L1 = (a1
0) with rot1

0 = p− 1 and L2 = (a2
0, . . . , a

2
p−2) with

rot2
0 = −1. First, the path does not drop out at c′ because rot1

0 = − tb1
0−1 can

be reached only when all its generators (apart from h, e1) are positive, hence the

first central turn is done with respect to L1. This turn changes rotation number

on starting vertices of all other legs by +2, causing rot2
0 = − tb2

0−1 = 1. Now,

positivity of generators of a2
0-unknot and the consequent positivity of generators

forming the following chain of −2’s, allow us to do the next p − 1 turns with

respect to L2 (on the dual side these generators constitute the starting vertex

of L′2). After, the rotation number − tb−1 is reached on a1
0-unknot again, and

the described sequence of turns can be repeated. Eventually, rotation number

− tb−1 is reached also on the starting vertex of some other leg, and this covector

satisfies initial condition (having at least two positive signs in the expansion of

PD(c′)|z′). Other cases can be handled analogously, in particular, notice that

further vertices after a1
0 on L1 and after a2

p−2 on L2 result in less starting −2’s

on L′1 and lower self-intersection of the starting dual vertex on L′2, which both

(at most) stop the path earlier.

So, c′ represents a generator of kerU ⊂ HF+(−M, tξ). Its degree by definition

(because of c2 = σ(R)) agrees with the negative of the 3-dimensional invariant

of the contact structure, which in turn agrees with the degree of the contact

invariant in HF+(−M), and the last is by the first paragraph of the proof given

by d(−M, tξ). Read together:

deg(c′) = −d3(ξ) = deg(c+(ξ)) = d(−M, tξ) =: d

Note (testing realizability conditions for the Seifert constants) that M is an

L-space, hence we have rk HF+
d (−M, tξ) = 1 and the two generators c+(ξ) and c′

coincide.
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General case Let (M1, ξ1) be a given contact manifold, for which we addition-

ally assume that the sign of all stabilizations on the starting ai0-unknot is the

same, without lost of generality, positive. So, roti0 = − tbi0−1 = ai0 − 1. Other

cases have already been covered by Corollary 4.1.14.

Let (M2, ξ2) denote the Stein fillable contact manifold, obtained from (M1, ξ1)

by adding a new (n+ 1)th leg (in the surgery presentation of Figure 4.2) which

consists of an unknot with tb = −2 and rot = −1, followed by a chain of non-

stabilized unknots, two less than the Thurston-Bennequin invariant tbi0 of the

ai0-unknot. By Proposition 4.1.16, this manifold is indeed Stein fillable.

Additionally, write W1,W
′
1 and W2,W

′
2 for the pairs of plumbed 4-manifolds

obtained through the construction of Figure 4.3, which are bounded by ±M1 and

±M2, respectively. Finally, for the two structures ξ1 and ξ2 denote the contact

covectors (defined in Definition 4.1.1) by c′1 and c′2, respectively.

Since (M2, ξ2) is constructed from (M1, ξ1) by a sequence of Legendrian

surgeries, we have a Stein cobordism W from (M1, ξ1) to (M2, ξ2), such that

W1 ∪W = W2. By Theorem 3.2.1 (of Ghiggini) there is a Spinc structure k on

W such that F+
W,k

: c+(ξ2) 7→ c+(ξ1), and the degree-shift equals d3(ξ2)− d3(ξ1).

Analogous statement holds for contact covectors.

Lemma 4.1.17. There is a negative definite Spinc cobordism (X, s) from the

Spinc manifold (−M2, tξ2) to the Spinc manifold (−M1, tξ1), whose associated

map in Heegaard Floer homology takes (c′2)∗ to (c′1)∗.

Proof. Look at the negative definite plumbing W ′1 bounded by −M1, on which

c′1 is defined. According to Theorem 3.1.2 (of Némethi), the lattice cohomology

of negative definite plumbings (normal surface singularities) is independent of

the graph, that is, blowing up induces a degree preserving isomorphism. Now,

blowing up W ′1 we get W̄ ′1 as follows: first blow up the central vertex obtaining

a new vertex x (starting the (n + 1)th leg), then blow up x, and further the

intersection between x and the last blow-up as long that the self-intersection

x · x equals tbi0. The resulting plumbing W̄ ′1 has n+ 1 legs, self-intersection of

the central vertex is −n, and the new leg consists of tbi0 vertices, the first one

of weight tb(K), the second one of weight −1, and the other tbi0−2 of weight

−2, read from the center out. The contact covector c′1 when described on W̄ ′1 is

changed by −1 on the central vertex, takes value tbi0−2 on x, 1 on −1, and 0 on

−2’s.

Consider the Spinc cobordism (X, s) from (−M2, tξ2) to (−M1, tξ1), described

on W ′2 by adding a chain consisting of a vertex of self-intersection −1 and tbi0−2

vertices of self-intersection −2 with Spinc evaluations 1 and 0, respectively, to the

(n+ 1)th leg (a single vertex of self-intersection tbi0). By the previous paragraph

(X, s) is negative definite, and its associated map in Heegaard Floer homology

F+
X,s takes (c′2)∗ to (c′1)∗.
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Proof of Theorem 4.1.2. We know from Proposition 4.1.16 that Theorem 4.1.2

holds for (M2, ξ2) and c′2. Thus, since (c′2)∗ represents the contact invariant c+(ξ2)

of a planar Stein structure, it lies in the bottom of the tower T +
d(−M2,tξ2 ), and

hence its image (c′1)∗ can either lie in the bottom of the tower T +
d(−M1,tξ1 ) or it

vanishes as an element of kerU (in particular, it is not a generator of ĤF(−M1)).

So, if the full path of c′1 properly ends, its degree deg(c′1), which by definition

of the contact covector equals the negative of the 3-dimensional invariant −d3(ξ1),

agrees with the correction term d(−M1, tξ1). According to Lisca and Stipsicz

(see Theorem 3.2.5), this implies that c+(ξ1) is also non-zero, and hence c+(ξ1) =

(c′1)∗. If, on the other hand, the full path of c′1 drops out, its degree deg(c′1) =

−d3(ξ1) never equals d(−M1, tξ1). If it did, the contact invariant c+(ξ1) would

be non-zero, and c+(ξ1) and c′1 ∼ Um ⊗ h (for some m > 0 and h ∈ Char(Γ′1))

would be necessarily different elements of HF+
d (−M1, tξ1), contradicting the

fact that d(−M, tξ) = min −K
2−|Γ′|
4 over K ∈ Chartξ(Γ

′). But then, as ξ1 is a

planar contact structure with d(−M1, tξ1) 6= −d3(ξ1), its contact invariant c+(ξ1)

vanishes as well.

4.2 Complete classification for L-spaces

In the case of L-spaces – where, recall, the zero-twisting tight structures are all

tight structures – we give a complete classification.

Theorem 4.2.1. Let M be a Seifert fibered L-space of the form M(−1; r1, r2, r3).

Then a contact structure ξ on M is tight if and only if it is given by a contact

surgery presentation of Figure 4.1 and its 3-dimensional invariant d3(ξ) is equal

to the d-invariant d(M, tξ). Moreover, two tight structures ξ1 and ξ2 on M are

contact isotopic if and only if their induced Spinc structures tξ1 , tξ2 are isomorphic.

Our result reduces the classification problem to a well-understood computation

of invariants. Although our method does not result in the number of tight

structures on a given small Seifert manifold, the problem is translated to a

completely combinatorial (so not geometric) count. Indeed, in any special case

the number can be easily determined by, say, a computer calculation (as here both

d3 and d are computable, and the Spinc structure can be given as an element of the

first homology). What is more, since there is a surgery presentation of considered

contact manifolds, we have a very explicit description of tight structures.

Joint with previously stated results (see beginning of the chapter), all tight

structures on small Seifert fibered L-spaces can be characterized in terms of the

Ozsváth-Szabó contact invariant.

Corollary 4.2.2. Let ξ be a contact structure on small Seifert fibered L-space

M = M(e0; r1, r2, r3). Then ξ is tight if and only if its contact invariant c(ξ) ∈
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ĤF(−M, tξ) is nonzero. Moreover, two tight structures ξ1 and ξ2 are isotopic

if and only if their contact invariants c(ξ1), c(ξ2) coincide, if and only if their

induced Spinc structures tξ1 , tξ2 are isomorphic.

Outline of the proof By Proposition 4.0.1, to construct tight structures on

L-spaces of the form M(−1; r1, r2, r3), the contact surgery presentations of Figure

4.1 suffice. This leaves us with a finite collection of contact structures, for which

we need a method to detect tightness, and finally a proof that it is complete (that

is, a way to recognize overtwistedness and isotopies between possibly different

presentations of the same contact structure).

To detect tightness, we essentially use the Ozsváth-Szabó contact invariant,

implicitly expecting all tight structures to have non-vanishing one. We think of

it in the form of the contact covector, introduced in Definition 4.1.1 and studied

in Section 4.1. By Theorem 4.1.2, the non-vanishing of the contact invariant is

equivalent to the contact covector having a full path with proper ends. Here, we

wish to look closer into the behavior of the full path components of the contact

covectors; denote them by Pξ according to the contact structure ξ to which they

belong. In this language, Theorem 4.2.1 takes the following working form.

Theorem 4.2.3. The contact structure ξ on M(−1; r1, r2, r3) given by surgery

diagram is tight if and only if its full path Pξ properly ends in the initial and

terminal vector. Two such contact structures ξ1, ξ2 are isotopic if and only if

their paths Pξ1 ,Pξ2 meet (hence, coincide).

To close our classification we need that the zero elements (drop-outs) corre-

spond to overtwistedness, and for the second part of Theorem 4.2.3 that elements

giving the same ĤF(M)-generator (sharing the same path) are actually contact

isotopic. Here, convex surface theory comes in. We need to translate contact

surgeries back into convex decomposition. Natural convex decomposition of the

manifold M separates the three singular tori from the rest of the manifold. Then

the coefficients in the continued fraction expansions of the three surgeries, along

with the chosen stabilizations determine basic slice decompositions of the three

tori (as explained in Sections 2.2.1 and 2.2.3). What we need is to relate steps in

the full path with appropriate state traversals, and drop-outs to non-tight basic

slice configurations.

4.2.1 First example

We illustrate our strategy on small Seifert fibered L-spaces Mp := M(−1; 1
2 ,

1
2 ,

1
p).

The classification on these manifolds was first obtained by Ghiggini, Lisca and

Stipsicz in [30]; wherever applicable, we use their notation. First we describe

tight structures on Mp using Theorem 4.2.1, then we prove Theorem 4.2.1 in this

special case.
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Claim 4.2.4. Manifold Mp admits exactly three tight contact structures up to

isotopy.

The finite collection of contact structures, given by Figure 4.1, can be encoded

in the following table of invariants:

surgery coefficient tb rot(| rot | ≤ − tb−1)

+1 −1 0

+1 −1 0

−1 −2 rot1 ∈ {−1, 1}
−1 −2 rot2 ∈ {−1, 1}
−1 −p rot3 ∈ {−p+ 1,−p+ 3, ..., p− 1}.

As an application of the Theorem, the tightness and isotopies can be recognized

solely from the induced Spinc structures and the two invariants. In our case these

are as follows.

d3(ξ) = 1
4(c2(X, J)− 3σ(X)− 2b2(X)) + q

= 1
4((0, 0, rot1, rot2, rot3)Q−1

X (0, 0, rot1, rot2, rot3)T − 3 · (−1)− 2 · 5) + 2.

So, for mixed (rot1, rot2) = (±1,∓1), the d3 is always zero, as for (rot1, rot2) =

(±1,±1) it runs through the values {2−p
4 , ..., −2+3p

4 } by the step ±1 as rot3

increases.

There are exactly four Spinc structures for each p (as |H1(Mp;Z)| = 4):

H1(−Mp;Z) =

〈
µ, µa, µb, µc;


1 1 1 1

1 p 0 0

1 0 2 0

1 0 0 2




µ

µa
µb
µc

 = 0

〉

=

{
〈µb; 4µb = 0〉 ∼= Z4 for p odd

〈µb, µc; 2µb = 2µc = 0〉 ∼= Z2 ⊕ Z2 for p even.

They can be given by the set {t1 = t4 + µb, t2 = t4 + µc, t3 = t4 + µa, t4}. And

corresponding four characteristic 2-cohomology classes, realizing d(−Mp, ti), are

on the generators of H2(WΓ′) given by:

(0) (2)

(0)

(0) (0)...

K1

(0) (0)

(2)

(0) (0)...

K2

(0) (0)

(0)

(0) (0) (2)...

K3

(0) (0)

(0)

(0) (0)...

K4

Therefore:

d(−Mp, ti) = max

{
c1(s)2 + |Γ′|

4
; s ∈ Spinc(WΓ′), s|−Mp = ti

}
=


0 i = 1, 2
p−2

4 i = 3
p+2

4 i = 4
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Applying Theorem 4.2.1, the above computations already give that for distinct

rot1, rot2 all structures are tight, and belong to two different isotopy classes, while

for equal rot1, rot2 the only tight triples are (±1,±1,∓(p−1)) and they are isotopic

to each other. This proves Claim 4.2.4.

Claim 4.2.5. Theorem 4.2.1 holds for Mp.

We show this following the two-step analysis described in the outline of the proof.

Detect tightness

The condition we use to recognize tight structures among all (Mp, ξ) presented

by surgery diagrams of Figure 4.1 is an existence of the characteristic covector c

as in Theorem 4.1.2.

We give c as PD(c) = αh +
∑
αiei where α, αi ∈ {±1}, and such that

(ci) = 〈c, xi〉 = roti−1. Concretely, the c-evaluations on Γ belong to one of the

following.

(1)

−1

(−2) or (0)

−2

(−2) or (0)

−2

(−p) or (−p+ 2) or ... or (p− 2)

−p

z = e1
x1 = h− e1 − e2 − e5
x2 = h− e1 − e3 − e6
x3 = h− e1 − e4 −

∑p+5
7 ei

Then, for each such (α, αi) we compute c|Γ′ , and check how its full path ends.

−2 −2 −2

−2

−2

−2

...

z′ = h− e2 − e3 − e4
x′1 = e2 − e5
x′2 = e3 − e6
x′3 = e4 − e7, e7 − e8, . . . , ep+4 − ep+5

Below we list all possible (α, αi) for each given triple (c1, c2, c3). We will make

explicit how some c|Γ′ drop out, and connect the others to the right initial and

terminal vector. Also, we will emphasize the appearance of the same characteristic

covectors c|Γ′ in some pairs of c-triples.

First observe that (on the level of paths) the order of signs on generators

of each leg is unimportant, as they can be shuffled using ±2 PD(v′)-steps for

〈c, v′〉 = ±2. Then there are essentially only two different sign-vectors (α, αi) for

a chosen c-triple, differing in the sign of h. The two are connected by ±2 PD(z′),

applied when 〈c, z′〉 = ±2. Notice that all these different sign configurations

belong to the same surgery presentation.

In the light of the previous paragraph, we record only the number of positive

and negative signs on exceptional generators of each leg. Write {m+, n−}i when

there are m positive and n negative generators of Li (counted without h and e1);

not to be confused with vectors of signs which record exact sign configuration on

corresponding generators. In addition, let (h+)(c1,c2,c3) and (h−)(c1,c2,c3) denote

any of the sign configurations which belongs to (c1, c2, c3) and has positive and
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negative sign, respectively, on h. We look separately at the cases with the same,

and later with distinct (c1, c2).

c3 (−2,−2, c3) (0, 0, c3)

(h−) (h+) (h−) (h+)

{1+, 1−}1 {0+, 2−}1 {2+, 0−}1 {1+, 1−}1
{1+, 1−}2 {0+, 2−}2 {2+, 0−}2 {1+, 1−}2

p− 2 {p+, 0−}3 {(p− 1)+, 1−}3 {p+, 0−}3 {(p− 1)+, 1−}3
p− 4 {(p− 1)+, 1−}3 {(p− 2)+, 2−}3 {(p− 1)+, 1−}3 {(p− 2)+, 2−}3

...
...

...
...

...

−p {1+, (p− 1)−}3 {0+, p−}3 {1+, (p− 1)−}3 {0+, p−}3

For (−2,−2, c3) with c3 ∈ {p−4, ...,−p}, there exists a configuration (h, e2, e3, e4) =

(−,−,−,−) which drops out: 〈c, z′〉 = 〈−h− e2− e3− e4, h− e2− e3− e4〉 = −4.

Similarly, (0, 0, c3) with c3 ∈ {p − 2, ...,−p + 2}, drops out at (h, e2, e3, e4) =

(+,+,+,+). Therefore, the paths possibly end only for the triples (−2,−2, p− 2)

and (0, 0,−p).
Furthermore, we observe that (−2,−2, p−2) and (0, 0,−p) belong to the same

full path because the configurations (h−)(−2,−2,p−2) and (h+)(0,0,−p) give the same

characteristic vector (zeros on the third leg, and (h, e4) : (−,+)↔ (+,−) with the

same evaluation on z′ = h−e2−e3−e4). This proves also that their (common) path

indeed ends, namely at K3 (given by (h, e4, e7, ..., ep+4, ep+5) = (−,−,−, ...,−,+)

for (0, 0,−p)) on the initial side and at −K3 (as (h, e4, e7, ..., ep+4, ep+5) =

(+,+,+, ...,+,−) for (−2,−2, p− 2)) on the terminal.

c3 (−2, 0, c3) (0,−2, c3)

(h−) (h+) (h−) (h+)

{1+, 1−}1 {0+, 2−}1 {2+, 0−}1 {1+, 1−}1
{2+, 0−}2 {1+, 1−}2 {1+, 1−}2 {0+, 2−}2

p− 2 {p+, 0−}3 {(p− 1)+, 1−}3 {p+, 0−}3 {(p− 1)+, 1−}3
p− 4 {(p− 1)+, 1−}3 {(p− 2)+, 2−}3 {(p− 1)+, 1−}3 {(p− 2)+, 2−}3

...
...

...
...

...

−p {1+, (p− 1)−}3 {0+, p−}3 {1+, (p− 1)−}3 {0+, p−}3

Sign configurations adapted to any c-triple with distinct c1 and c2 build a

connected part of (one of the two) full paths. Indeed, let us see how these parts

patch together into a path. For k ∈ {1, ..., p− 1}, we have

(h+)(−2,0,p−2k) =
c|Γ′

(h−)(0,−2,p−2k−2) ≡
c|Γ

(h+)(0,−2,p−2k−2) =
c|Γ′

(h−)(−2,0,p−2k−4)

where the first and the last equality denote the same characteristic covector on

Γ′, while the middle equivalence means (different sign distributions of) the same
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presentation. This separates all characteristic vectors arising from presentations

with mixed (c1, c2) into two full paths. One starting at K1 (as −h − e2 +

e5 + e3 + e6 + e4 + e7 + · · · + ep+5 for (−2, 0, p − 2)) and ending at −K2 (as

+h − e2 − e5 + e3 − e6 − e4 − e7 − · · · − ep+5 for (−2, 0,−p)) or −K1 (as +h +

e2 − e5 − e3 − e6 − e4 − e7 − · · · − ep+5 for (0,−2,−p)). The other starting at K2

(as −h+ e2 + e5 − e3 + e6 + e4 + e7 + · · ·+ ep+5 for (0,−2, p− 2)) and ending at

−K1 (as +h+ e2− e5− e3− e6− e4− e7− · · · − ep+5 for (0,−2,−p)) or −K2 (as

+h− e2 − e5 + e3 − e6 − e4 − e7 − · · · − ep+5 for (−2, 0,−p)). The two terminal

possibilities depend on the parity of p (odd or even).

In conclusion, translated back into rotation numbers we have obtained the

following paths of tight structures, each sharing the same invariants:

• (−1,−1, p− 1) and (1, 1,−p+ 1) (Spinc = t4 + µa, d3 = 2−p
4 )

• (−1, 1, p−1) and (1,−1, p−3) and (−1, 1, p−5) and ... (Spinc = t4+µb, d3 = 0)

• (1,−1, p−1) and (−1, 1, p−3) and (1,−1, p−5) and ... (Spinc = t4+µc, d3 = 0)

Prove overtwistedness and describe contact isotopies

In our (simplest possible) cases with boundary slopes 1
k for k ∈ Z, there is a

single continued fraction block for each special fiber. Contact surgery presents

a direct translation between positive and negative stabilizations (down- and

up-cusps) of core Legendrian unknots and positive and negative basic slices in

the decomposition of a continued fraction block with slopes −1 and −k. The

generators forming the corresponding leg (and by that, the dual vertices) in the

plumbings above can be thought of as another way of layering solid torus into k

slices.

We need contact topological interpretation for the steps in full paths.

First, the unimportance of sign permutations in the legs coincide with the

shuffling of basic slices within a single continued fraction block. Moreover, [30,

Section 6] provides sufficient isotopy moves between contact structures presented

by different surgery diagrams. Let us spell this out. Since the moves in [30] are

given by the matrices of signs whose coefficients are qij , the number of positive

basic slices in the jth continued fraction block of the ith leg, in our case only

(q1
0, q

2
0, q

3
0), we rewrite the previously obtained paths of tight structures in this

language, changing rotation numbers to the qi0:

• (0, 0, p− 1) and (1, 1, 0)

• (0, 1, p− 1) and (1, 0, p− 2) and (0, 1, p− 3) and ...

• (1, 0, p− 1) and (0, 1, p− 2) and (1, 0, p− 3) and ...
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Now, we notice that the conditions which caused a full path to drop out,

and so prevented our tightness criterion from working, exactly agree with the

condition for which overtwistedness can be proved. And finally, there are contact

isotopies between pairs of surgery presentations which share the same path. Let

us compare.

Proposition 4.2.6. [30, Propositions 6.3, 6.1 and 6.4] Let a contact structure

on Mp be given by (q1
0, q

2
0, q

3
0) as above. Then the triples (1, 1, q3

0) with q3
0 6= 0

and (0, 0, q3
0) with q3

0 6= p − 1 present overtwisted structures. Between other

presentations, there are the following contact isotopies:

(1, 0, q3
0) '

{
(0, 1, q3

0 + 1) when q3
0 < p− 1

(0, 1, q3
0 − 1) when q3

0 > 0
and (1, 1, 0) ' (0, 0, p− 1). �

Problems in general

The examples shown above are special in several ways. In general, it can happen

that the full path associated to some presentation (cv)v∈Γ drops out, although all

characteristic covectors computed from (α, αi)-configurations which restrict to

(cv)v∈Γ satisfy the bounds v · v ≤ 〈c, v〉 ≤ −v · v for all v ∈ Γ′. Also, not all the

steps in a full path need to be presentable, that is, arising from some tuple of

rotation numbers. (For examples of such paths, look at the two “applications”

in [52].) That said, we need to find out how the (subsequent) presentations of

the same path are related, when neither of their characteristic covectors on Γ′

coincides (Corollary 4.2.12). Finally, we need new conditions for overtwistedness

(Proposition 4.2.13) and isotopies (Proposition 4.2.14), which will explain such

behavior of full paths.

4.2.2 Characteristic covectors, tightness, and full paths

In Section 4.1.1 we have described the full path steps on the level of homology

generators of H2(R;Z). Here, we are mainly concerned with the associated change

in c|Γ, whether the new c|Γ comes from some presentation and when it leads to

the end of the path. Moreover, we describe the first presentable c|Γ (or the end

of the path) following any contact covector we have started with.

On presentability

We have reduced the study of the full path to its central steps. In the Algorithm

4.1.8, the central step is described up to reordering the legs. When we wish

to emphasize according to which leg in the actual structure the central step is

done, we will refer to it as a turn of Li. Since the evaluation of characteristic

covector on Li-vertices changes only by turns of Li, we may separately study

their influence.
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Lemma 4.2.7. Let c be a presentable non-initial characteristic covector. Assume

that it evaluates on the vertices of some leg L = (−a0,−a1, . . . ,−aj ,−aj+1, . . . ,−ak)

as follows:

〈c, L〉 = (a0 − 2, a1 − 2, . . . , aj − 2, aj+1 − 2− 2nj+1, . . . , ak − 2− 2nk)

where k ≥ j, nj+1, . . . , nk ≥ 0 and nj+1 > 0.

The path runs into the next possibly presentable covector c̄ only after

1 + 1 + (a1 − 1) + (a2 − 1)(a1 − 1) + · · ·+ (aj−1 − 1) · · · (a1 − 1) turns of L,

in:

〈c̄, L〉 = (−a0,−a1 + 2, . . . ,−aj + 2, aj+1 − 2nj+1, . . . , ak − 2− 2nk).

Proof. To be illustrative, we explicitly write out all the generators involved in

the first few turns. Below are the two sides, L1 and L′1, in homology generators;

the ∗-symbol stands for truncation only.

L1 : x1 = h− e1 − e2 − e5 − · · · − eJ−1− eJ
eJ− eJ+1

eJ+1− eJ+2

. . .

eK−1 − eK − eK+1 − ∗
L′1 : x′1 = e2− e5

. . .

eJ−2− eJ−1
eJ−1 − eJ − eJ+1 − · · ·− eK

∗
In this notation, the starting part of L1 and the evaluation of c on it take

values:

L1 = (−J + 3,−2, . . . ,−2︸ ︷︷ ︸
K−J−1

,−T,−S, ∗) and 〈c, L1〉 = (J − 5, 0, . . . , 0,M,N, ∗).

By the first turn, according to the Algorithm, we change generators up to eJ
– it does not influence further dual vertices, but a new vector can be presentable

only when all the middle generators eJ , ..., eK−1 are same-signed. Therefore, in

order to (possibly) reach a presentable vector again we have to repeat turning

of this particular leg K − J times. The resulting manifold vector is of the form

(−J + 3, 0 . . . , 0,M + 2, N, ∗), its presentability depends on the (+2)-changed

manifold vertex eK−1 − eK − eK+1 − ∗.
In terms of generators, we have reached another presentation exactly when

the eK-sign is negative. The positive eK-sign, on the other hand, requires another

turn, but this forces some further changes to preserve the dual. Namely, we
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need to change signs on generators of the following chain of −2’s, and one

(without loss of generality, first) middle generator afterwards. The resulting

vector is not necessarily presentable, provided the starting point was, it depends

on presentability of the vertex starting in the (last changed) middle generator

(+2 rotation change). But if it is, the new presentation is (−J + 3, 0, . . . , 0,−T +

2, N + 2, ∗); for this, we need to turn this leg K − J + 1 times.

Continuing in the same manner, we trace similar behavior at all levels. Con-

cretely. We are successively turning fully positive vertices, which influences the

evaluation on the following manifold vertex by +2. If the result is presentable,

we have finished. Otherwise, the following vertex was also fully positive, at the

moment its evaluation is minus self-intersection, and it will have turned under the

influence of another turn of the previous vertex. For that we need to bring the

previous vertex back to maximal rotation, using (again) influence of the previous

vertices on the leg. But notice that each vertex is influenced only by turns of the

vertex just before it. Therefore, to come from maximal rotation through minus

self-intersection to minimal rotation on some vertex vk+1, we need to influence it

by two turns of its immediately previous vertex vk. This in turn is obtained by

ak−1 turns of its previous vertex vk−1, first to get from minus self-intersection to

minimal rotation, and then by the step of +2 to maximal rotation. This explains

the number of steps and finishes the proof.

Obviously, the leg (its vertices with self-intersections) together with the sign

configuration (in presentable, rotation numbers) determine when the leg is turned.

In particular, it specifies the gaps between the subsequent turnings of the same

leg, when some other leg needs to be turned in order for the path to continue.

Actually, the reverse also holds.

Lemma 4.2.8. A form of a leg together with a distribution of signs on its

generators is completely described by the sequence of its turns.

Proof. As before, we separately state (and argue for) the first step.

Claim. Between two subsequent turnings of the same leg L there are always

either a0 − 2 or a0 − 1 turnings of other legs.

Proof. Remember that all generators (except possibly the last) of the starting

manifold vertex on the turning leg are positive. Since by each turn of other legs

we change starting evaluation by +2 (through the change of h-sign from negative

to positive), the gap is determined by the number of generators of the starting

vertex. Its variation by one is due to whether the dual vertex following −2’s is

also fully negative after the L-turn.
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That said, given a turning sequence, we get a0 out of the size of gap between

subsequent turnings. If the gap is always the same (a0− 1), this means that v0 is

the only vertex on L, and its self-intersection is −a0.

Call this number of central turns between two turns of L, the (0th) period of

L. Let us define higher periods for a turning sequence:

1st period: number of times the 0th period is a0 − 2 before it turns to a0 − 1;

2nd period: number of times the 1st period is a′0 − 1 before it turns to a′0 − 2;

kth period: number of times the (k − 1)th period is a′k−2 − 1 before it turns to

a′k−2 − 2.

The numbers should not be read from the first time round. As suggested by

notation, they correspond to the self-intersections of dual vertices, hence they

determine L′, and by that L. The initial distribution of signs can be now

recognized from the values of periods before the first change.

Restrictions on the whole structure

We look at all possible (presentable) entries. For each we continue its path as long

as it reaches another presentation, or otherwise it ends, either by a drop-out or a

(non-presentable) initial vector. Throughout we assume that the (normalized)

Seifert constants are ordered r1 ≥ r2 ≥ r3. In order to reduce the possibilities we

invoke the L-space condition.

L-space condition Recall the numerical condition for M to be an L-space:

there are no coprime integers m, a such that 1
r1
> m

a ,
1
r2
> m

m−a ,
1
r3
> m; we say

that the coefficients (r1, r2, r3) are not realizable. As a direct consequence of this

condition we observe that:

(i) r1 ≥ 1
2 , equivalently one leg starts with −2 (otherwise the realizability

condition is satisfied for coprime m = 2, a = 1),

(ii) if L1 = (−2, . . . ,−2︸ ︷︷ ︸
k

, ∗) (then 1
r1
> k+2

k+1 = −([2, . . . , 2]︸ ︷︷ ︸
k+1

)), then 1
r2
≤ k + 2,

equivalently x2 · x2 ≥ −k − 2.

Dual configurations In the following arguments, there will frequently appear

a pair of (truncated) legs which are dual to each other, that is, describing a lens

space and its dual. Recall that the coefficients of the two are related as follows

(here, −2×bι means a chain of bι-many −2’s):

Li = (−b1 − 2, −2×b2 , −b3 − 3, . . . , −bm − 2)

Lj = (−2×b1 , −b2 − 3, −2×b3 , . . . , −2×bm)
.
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The inverses of the continued fractions they describe, add up to −1.

So, our starting point is a presentable characteristic covector, which does not

present an initial end, or a drop-out. Thus, exactly one leg of the corresponding

presentation starts in a fully positive vertex. We separate the cases: in Proposition

4.2.9 we gather presentations for which either v1
0 or v2

0 is stabilized fully positively,

and in Proposition 4.2.11 we cover presentations for which v3
0 is fully positively

stabilized.

Proposition 4.2.9. Let c be a presentable non-initial characteristic covector,

associated to a presentation with fully positive starting vertex on Li, either L1 or

L2. This means that it evaluates on the vertices of

Li = (−ai0,−ai1, . . . ,−aij ,−aij+1, . . . ,−aiki)

as in Lemma 4.2.7:

〈c, Li〉 = (ai0 − 2, ai1 − 2, . . . , aij − 2, aij+1 − 2− 2nij+1, . . . , a
i
ki
− 2− 2niki)

for some 0 ≤ j ≤ ki, nij+1, . . . , n
i
ki
≥ 0 and nij+1 > 0.

Denote coefficients on other two legs by aλκ, and let c evaluate as 〈c, v3
0〉 =

a3
0 − 2− 2n3

0 on the first vertex of the third leg L3, and

〈c, Ll〉 = (−al0,−al1 + 2, . . . ,−alk + 2, alk+1 − 2− 2nlk+1, . . . , a
l
kl
− 2− 2nlkl)

on the leg Ll for l 6= i, 3, for some −1 ≤ k ≤ kl, nlk+1 ≤ alk+1 − 3.

Furthermore, define m and N l
m+1 as follows:

m := max{κ ≤ k; denominator of [al0, . . . , a
l
κ, N ] ≤ n3

0 for some N}

N l
m+1 :=

{
nlk+1 + 1 if the denominator of [al0, . . . , a

l
k, n

l
k+1 + 1]−1 ≤ n3

0

N otherwise.

where N ∈ [1, alm+1) is such that the denominator of [al0, . . . , a
l
m, N ]−1 ≤ n3

0 and

the denominator of [al0, . . . , a
l
m, N + 1]−1 > n3

0. Then the full path of c behaves

as follows.

1. If −[ai0, . . . , a
i
j−1]−1 − [al0, . . . , a

l
m, N

l
m+1]−1 < 1, the full path drops out.

2. If −[ai0, . . . , a
i
j−1]−1− [al0, . . . , a

l
m, N

l
m+1]−1 = 1 and m = k,N l

m+1 = nlk+1 +1,

we reach a new presentation c̄ which on the three legs takes the following

values:

〈c̄, Li〉 = (−ai0,−ai1 + 2, . . . ,−aij + 2, aij+1 − 2nij+1, . . . , a
i
ki
− 2− 2niki)

〈c̄, Ll〉 = (al0 − 2, al1 − 2, . . . , alk+1 − 2, alk+2 − 2nlk+2, . . . , a
l
kl
− 2− 2nlkl)

〈c̄, v3
0〉 = a3

0 − 2− 2n3
0 + 2D

where D stands for the denominator of [al0, . . . , a
l
k, n

l
k+1 + 1]−1, and the

evaluations on the rest of L3 remain the same as for c.
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3. Otherwise, the path continues in non-presentable and reaches the non-presentable

initial end.

Remark 4.2.10. Rewrite the coefficients up to aij in the b-notation used for

dual configurations above, so for appropriate bι ≥ 0 (notice b1 > 0 on L1):

Li = (−2×b1 ,−b2 − 3,−2×b3 , . . . ,−2×bJ ,−aij+1, . . . ,−aiki).

Also for Ll, truncated as continued fractions in the Proposition, take

(al0, . . . , a
l
m, N

l
m+1) = (−b′1 − 2,−2×b

′
2 ,−b′3 − 2, . . . ,−b′J − 2).

Then the conditions, given in the Proposition in terms of continued fraction sums,

can be restated as:

• the two continued fractions add up to 1 when b′k = bk for all k;

• the sum is greater than 1 when for K = min{k; b′k 6= bk} : b′K < bK if K is

odd, b′K > bK if K is even;

• the sum is smaller than 1 when for K = min{k; b′k 6= bk} : b′K > bK if K is

odd, b′K < bK if K is even.

Proof of Proposition 4.2.9. We need to observe how specific behavior of the path

restricts possible forms of a covector, and by that, of a presentation.

To meet another presentation, recall that we need to swap the signs of

all generators forming the fully positive vertices vi0, . . . , v
i
j (Lemma 4.2.7). To

achieve this, we need certain number of Li-turns, which are arranged in the

turning sequence, uniquely determined by the form of Li. So, any turn of other

two legs should appear at exactly specified non-turning stages of Li.

Now notice that any turn of L3 (before finishing the specified sequence) would

immediately end the path (in non-presentable). Indeed, it has to appear after

k (or k + 1) turns of L1 (which is, the 1st period of L1). So after it L2 needs to

be turned (its starting coefficient being a2
0 ≤ k + 2, hence its 0th period being at

most k + 1) and also L1 needs to be turned (having 0th period 0 or 1). But this

already means we have arrived at the initial end, see Lemma 4.1.11.

Therefore, the turning sequence of Li (up to its (j + 1)th vertex) exactly

specifies the turning sequence of Ll (needed to reach presentability on Li again),

its turns being in non-turning points of Li, and vice versa. It is exactly the

turning sequence of the dual leg with all evaluations fully negative. Rewritten

in terms of relations between continued fractions, the two legs are of dual forms

if and only if the corresponding continued fractions add up to one. In the dual

(negative) leg for the last entry the significant information is the number of

negative signs, as turning sequence depends only on whether we have reached

maximal evaluation.

Taken together, we have obtained.
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1. If not all gaps in the turning sequence of Li are filled by turns of Ll, and at

the same time, the sequence is not quit by the turn of L3 before or at the

time when first such non-filled gap appears, then the full path drops out.

2. If the two continued fractions add up to exactly one, this means the turning

sequences of corresponding legs exactly fit together, and we reach another

presentation – if and only if the evaluation on the starting vertex of the third

leg is negative enough, not to quit the sequence of turnings interchanging

between Li and Ll. That is, there have to be more negative generators

than there are turns of Li and Ll, which equals the denominator of the

corresponding continued fractions. The form of the new presentation is

determined by Lemma 4.2.7.

3. Otherwise, either we hit into some turning point of Ll before reaching the

next gap in the sequence of Li, or we reach a turning point of L3 at or before

the time when the Li-gap is not filled by the Ll-turn for the first time. As

observed above, in these cases, the full path properly ends with the initial

vector, but it is necessarily non-presentable because we have not yet reached

the first possibly presentable stage as specified in Lemma 4.2.7.

Proposition 4.2.11. Throughout the path, there can be at most two non-initial

characteristic covectors for which the starting vertex of L3 is fully positive, that

is 〈c, v3
0〉 = a3

0 − 2.

If 〈c, v3
1〉 6= a3

1−2 or L3 = (v3
0), the turn of L3 is presentable, the two presenta-

tions differ in: 〈c̄, v3
0〉 = −a3

0, 〈c̄, v3
1〉 = 〈c, v3

1〉+ 2, and for l = 1, 2, also 〈c̄, vl0〉 =

〈c, vl0〉+ 2.

If 〈c, v3
1〉 = a3

1 − 2, and c is not terminal, the turn of L3 necessarily makes

the continuation of the path non-presentable, and ends it in a non-presentable

initial end.

If 〈c, v3
1〉 = a3

1 − 2, and c is terminal, let us write out the c-evaluations at the

terminal end:

〈c, L1〉 = (−a1
0,−a1

1 + 2, . . . ,−a1
j + 2, a1

j+1 − 2− 2n1
j+1, . . . , a

1
k1
− 2− 2n1

k1
)

〈c, L2〉 = (−a2
0,−a2

1 + 2, . . . ,−a2
k + 2, a2

k+1 − 2− 2n2
k+1, . . . , a

2
k2
− 2− 2n2

k2
)

for some 0 ≤ j ≤ k1 and 0 ≤ k ≤ k2. Then:

1. If for maximal J ≤ j,K ≤ k such that −[a1
0, . . . , a

1
J , 3]−1− [a2

0, . . . , a
2
K , 2]−1 =

1, the denominator of the two fractions is smaller than a3
0, then the full path

drops out.

2. If 〈c, v3
2〉 6= a3

2 − 2, and there exist J ≤ j,K ≤ k such that

−[a1
0, . . . , a

1
J , 3]−1 − [a2

0, . . . , a
2
K , 2]−1 = 1 and n1

J+1 ≥ 2 or L1 = (v1
0, . . . , v

1
J)

n2
K+1 ≥ 1 or L2 = (v2

0, . . . , v
2
K)

,
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and the denominator of the two fractions equals a3
0, we reach a new presentation

c̄ which on the three legs takes the values:

〈c̄, L1〉 = (a1
0 − 2, a2

1 − 2, . . . , a1
J − 2, 〈c, v1

J+1〉+ 4, 〈c, v1
ι 〉
k1
ι=J+2)

〈c̄, L2〉 = (a2
0 − 2, a2

1 − 2, . . . , a2
K − 2, 〈c, v2

K+1〉+ 2, 〈c, v2
κ〉
k2
κ=K+2)

〈c̄, L3〉 = (−a3
0,−a3

1, 〈c, v3
2〉+ 2, 〈c, v3

µ〉
k3
µ=3).

This c̄ presents the initial end of the full path.

3. Otherwise, the path continues in non-presentable and reaches the non-presentable

initial end.

Proof. As observed in the proof of Proposition 4.2.9, any time when the path

runs into a presentation with fully positive v3
0 (not at its terminal end), it

reaches the initial vector, either before or after a turn of L3. Therefore, if the

characteristic vector before the L3-turn is non-initial and presentable, the only

other presentation, which can appear as we continue the path, can occur straight

after this turn. The resulting vector is presentable if and only if 〈c, v3
1〉 6= a3

1 − 2

(when it exists). The relation between the two presentations is as always read

from Lemma 4.2.7 (the simplest possible – one-turn – case).

The only remaining option is to have a presentable terminal end with 〈c, v3
0〉 =

a3
0 − 2. In that case the turn of L3 does not end the path, and if this turn is not

presentable itself, we need to look for any possible following presentation. Since

presentability on L3 can be recovered only by a turn of L3, and since according

to the above this turn ends the path, we might meet such a presentation (only)

at the initial end. This in particular means that turns of L1 and L2 in between

the two turns of L3 should begin and end with a vector which is presentable on

these two legs. The first turn after the L3-turn, and the last turn before another

L3-turn are done according to L1.

As before, we inductively determine that, in order for the turning sequences of

L1 and L2 to fit together (being interchangeably turned until the second L3-turn),

the two legs need to have fully negative starting vertices, forming almost dual

vectors. Almost in the sense that there is no “last pair”, that is, the two vectors

as given in the paragraph on dual configurations end with −bm − 3 and −2×bm

instead of −bm − 2 and −2×bm . In other words, they are dual when enlarged by

3 and 2, respectively.

The three possibilities are now given as before:

1. We have not reached the turning point of L3 yet, but the sequence of turnings

of L1 and L2 cannot continue.

2. The turn of L3 appears exactly in the moment when neither L1 nor L2 can

be turned, and the sign configuration on them is presentable. Additionally,

we need that 〈c, v3
2〉 6= a3

2 − 2 to reach presentability of L3 as well.
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3. Otherwise, either the first two legs hit a common turning point, the third

leg finishes the sequence early not having enough negative generators, or

(simply) the terminal vector obtained as in (2) is not presentable because

〈c, v3
2〉 = a3

2 − 2 (hence, after the L3-turn, 〈c̄, v3
2〉 = a3

2). In all the cases, the

path stops in a non-presentable initial end.

Above we described how the successive presentations in the path are related to

each other and indicate what property causes a drop-out. Any given presentation

can now be either walked through these stages to the proper ends of the full path

or it drops out. Joining results (taking into account also their analogues obtained

by following the path in the terminal direction) we obtain the following picture.

Here, the presentations are given as evaluations of characteristic covectors on

generators of H2(WΓ), written as triples of vectors ci whose entries are cij = 〈c, vij〉.
Vectors are truncated – we write out only the relevant part and hide the rest into

∗.

Corollary 4.2.12 (Full path components). If a given presentation ξ does not

admit both a fully positive and a fully negative starting vertex, its full path drops

out at ξ. Moreover, a full path drops out when it runs into a presentation given

by either of the following characteristic covectors c|Γ, independently of how the

three vectors continue in the hidden ∗-part.

For some (i, l) ∈ {(1, 2), (2, 1)}:

c|Γ =



ai0 − 2

ai1 − 2
...

aij − 2

aij+1 − 2− 2nij+1

∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−al0
−al1 + 2

...

alk+1 − 2− 2nlk+1

alk+2 − 2− 2nlk+2

∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a3

0 − 2− 2n3
0

∗


for which −[ai0, . . . , a

i
j−1]−1 − [al0, . . . , a

l
m, N

l
m+1]−1 < 1 holds for N l

m+1 defined

as in Proposition 4.2.9, or

c|Γ =



−a1
0

−a1
1 + 2
...

−a1
j + 2

a1
j+1 − 2− 2n1

j+1

∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−a2
0

−a2
1 + 2
...

−a2
k + 2

a2
k+1 − 2− 2n2

k+1

∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a3
0 − 2

a3
1 − 2

∗


such that for maximal J ≤ j,K ≤ k with −[a1

0, . . . , a
1
J , 3]−1−[a2

0, . . . , a
2
K , 2]−1 = 1,

the denominator of the two fractions is smaller than a3
0.
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In the terminal direction, symmetrically, a drop-out occurs at presentations

with oppositely stabilized surgery link (that is, surgery diagrams given by the same

but reversely oriented link).

Any two presentations ξ1 and ξ2 whose associated characteristic vectors meet

at the same path Pξ1 = Pξ2 are related by the sequence of rotation number changes,

each taking one of the following forms. The pairs are presented in the form of c|Γ
and they have to be identical on all further generators, hidden in ∗.
Either for (i, l) ∈ {(1, 2), (2, 1)}:



ai0 − 2

ai1 − 2
...

aij − 2

aij+1 − 2− 2nij+1

∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−al0
−al1 + 2

...

alk+1 − 2− 2nlk+1

alk+2 − 2− 2nlk+2

∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a3

0 − 2− 2n3
0

∗


'

'



−ai0
−ai1 + 2

...

−aij + 2

aij+1 − 2nij+1

∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

al0 − 2

al1 − 2
...

alk+1 − 2

alk+2 − 2nlk+2

∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a3

0 − 2− 2(n3
0 −D)

∗



where D is the denominator of [al0, . . . , a
l
k, n

l
k+1 + 1]−1, and k, nlk+1 satisfy

1 = −[ai0, . . . , a
i
j−1]−1 − [al0, . . . , a

l
k, n

l
k+1 + 1]−1,

or  a1
0 − 2− 2n1

0

∗

∣∣∣∣∣ a2
0 − 2− 2n2

0

∗

∣∣∣∣∣
a3

0 − 2

a3
1 − 2− 2n3

1

∗

 '

'

 a1
0 − 2n1

0

∗

∣∣∣∣∣ a2
0 − 2n2

0

∗

∣∣∣∣∣
−a3

0

a3
1 − 2n3

1

∗


,
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or 

−a1
0

−a1
1 + 2
...

−a1
J + 2
...

−a1
j + 2

a1
j+1 − 2− 2n1

j+1

∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−a2
0

−a2
1 + 2
...

−a2
K + 2
...

−a2
k + 2

a2
k+1 − 2− 2n2

k+1

∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a3
0 − 2

a3
1 − 2

a3
2 − 2− 2n3

2

∗


'

'


a1

0 − 2
...

a1
J − 2

a1
J+1 + 2− 2n1

J+1

∗

∣∣∣∣∣∣∣∣∣∣∣∣

a2
0 − 2

...

a2
K − 2

a2
K+1 − 2n2

K+1

∗

∣∣∣∣∣∣∣∣∣∣∣∣

−a3
0

−a3
1 + 2

a3
2 − 2n3

2

∗


where for J ≤ j,K ≤ k,

−[a1
0, . . . , a

1
J , 3]−1 − [a2

0, . . . , a
2
K , 2]−1 = 1 and n1

J+1 ≥ 2 or L1 = (v1
0, . . . , v

1
J)

n2
K+1 ≥ 1 or L2 = (v2

0, . . . , v
2
K)

,

and the denominator of the two fractions equals a3
0. �

4.2.3 Convex surface theory, overtwistedness, and isotopies

To prove that the isotopic classification of tight structures is contained in the full

paths of their dual covectors, we need to observe that presentations sharing the

same path are indeed isotopic, and relate drop-outs to overtwistedness.

To begin with, remember two simple properties of full paths, which have a

direct convex theoretic interpretation. The first is the shuffling property of basic

slices within a single continued fraction block, which can be in the Heegaard

Floer interpretation recovered by 2 PD steps on the consecutive dual vertices of

square −2. The second is a necessary condition for tightness (see also Section

4.1.2), that the presentation contains both a leg starting in a fully positive vertex,

and a leg starting in a fully negative vertex. In full paths, a fully positive starting

vertex is required by Corollary 4.1.12, and a fully negative one by its analogue

when following the path in the terminal direction. In convex surface theory, other

presentations can be seen to fail the conditions of the Gluing Lemma, as in [30,

Proposition 6.3], but can be also understood as a special case of overtwistedness

proved below.

Let us now state the result as predicted from the Heegaard Floer picture, as

in Corollary 4.2.12. We encode contact presentations into “matrices of negative

signs”, that is, triples of vectors qi, possibly of different length, whose coefficients
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are qij , the number of negative basic slices in the jth continued fraction block of

the ith singular fiber. The three vectors in the propositions are truncated, so

that we write out only the relevant part (on which overtwistedness is decided,

or which behaves non-trivially under isotopy moves) and hide the rest into ∗.
Analogously, we can define “matrices of positive signs”. Notice that the ones

counting negative slices directly correspond to the relations obtained in the initial

direction of the full path in Section 4.2.2. With positive slices they correspond

to symmetric relations in the terminal direction. To describe isotopy moves it is

enough to give only pairs of matrices of negative (or only positive) signs, while

to encode conditions for overtwistedness, the two are different.

Proposition 4.2.13 (Overtwistedness conditions). Let a contact presentation

be described by either of the following matrices of signs, negative or positive:

O1. For some (i, l) ∈ {(1, 2), (2, 1)}:

(qi|ql|q3) =



0

0
...

0

nij+1

∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

al0 − 1

al1 − 2
...

alk − 2

nlk+1

nlk+2

∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n3

0

∗


for which −[ai0, . . . , a

i
j−1]−1 − [al0, . . . , a

l
m, N

l
m+1]−1 < 1 holds for N l

m+1 de-

fined as in Proposition 4.2.9.

O2. Or

(q1|q2|q3) =



a1
0 − 1

a1
1 − 2

...

a1
j − 2

n1
j+1

∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a2
0 − 1

a2
1 − 2

...

a2
k − 2

n2
k+1

∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

∗


such that for maximal J ≤ j,K ≤ k with −[a1

0, . . . , a
1
J , 3]−1−[a2

0, . . . , a
2
K , 2]−1 =

1, the denominator of the two fractions is smaller than a3
0.

Then, independently of the basic slice decompositions of further continued fraction

blocks (the ∗-part of vectors), the corresponding contact structure is overtwisted.

Proposition 4.2.14 (Isotopy conditions). The following pairs of matrices give

isotopic contact structures, provided all coefficients are in the range nij ∈ [0, aij −
2], ni0 ∈ [0, ai0 − 1], and the further basic slice decompositions (the ∗-parts) are the

same.
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I1. On (qi|ql|q3) for (i, l) ∈ {(1, 2), (2, 1)}:

0

0
...

0

nij+1

∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

al0 − 1

al1 − 2
...

alk − 2

nlk+1

nlk+2

∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n3

0

∗


'



ai0 − 1

ai1 − 2
...

aij − 2

nij+1 − 1

∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0
...

0

0

nlk+2 − 1

∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n3

0 −D
∗


where D is the denominator of [al0, . . . , a

l
k, n

l
k+1 + 1]−1, and k, nlk+1 satisfy

1 = −[ai0, . . . , a
i
j−1]−1 − [al0, . . . , a

l
k, n

l
k+1 + 1]−1.

I2. On (q1|q2|q3): n1
0

∗

∣∣∣∣∣ n2
0

∗

∣∣∣∣∣
0

n3
1

∗

 '
 n1

0 − 1

∗

∣∣∣∣∣ n2
0 − 1

∗

∣∣∣∣∣
a3

0 − 1

n3
1 − 1

∗

 .

I3. On (q1|q2|q3):

a1
0 − 1

a1
1 − 2

...

a1
J − 2

...

a1
j − 2

n1
j+1

∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a2
0 − 1

a2
1 − 2

...

a2
K − 2

...

a2
k − 2

n2
k+1

∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

n3
2

∗


'


0
...

0

n1
J+1 − 2

∗

∣∣∣∣∣∣∣∣∣∣∣∣

0
...

0

n2
K+1 − 1

∗

∣∣∣∣∣∣∣∣∣∣∣∣

a3
0 − 1

a3
1 − 2

n3
2 − 1

∗



where for J ≤ j,K ≤ k,

−[a1
0, . . . , a

1
J , 3]−1 − [a2

0, . . . , a
2
K , 2]−1 = 1 and n1

J+1 ≥ 2 or L1 = (v1
0, . . . , v

1
J)

n2
K+1 ≥ 1 or L2 = (v2

0, . . . , v
2
K)

,

and the denominator of the two fractions equals a3
0.

The proof of both Propositions is postponed till the end of the section, after a

note on contact topological foundations of isotopies and some general computation

of slopes.
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State traversals and contact isotopies

Convex decomposition of the Seifert fibrations we are working with consists of the

neighborhoods of the three singular fibers Fi and the background circle bundle

over the pair of pants Σ. To ensure the product structure in the complement of

Fi’s we use non-normalized coefficients M(0; r1 − 1, r2, r3). The results here rely

on Honda’s classification of tight structures on separated pieces, namely solid

tori and the product Σ× S1, see Section 2.2.1.

The isotopies can be described by the (state) transitions of toric annuli

surrounding the three singular fibers. Concretely, the following lemma – due to

Ghiggini and Schönenberger – enables us to relate certain pairs of toric annuli

around two singular fibers to toric annuli around the remaining one.

Lemma 4.2.15. [31, Lemma 4.13] Let Σ be a pair of pants and ξ a tight contact

structure on Σ× S1 whose boundary −∂(Σ× S1) = T1 ∪ T2 ∪ T3 consists of tori

in standard form with #ΓTi = 2 for i = 1, 2, 3, and slopes s(T1) = −p1

q , s(T2) =

−p2

q , s(T3) =∞. Suppose that there exists a pair of pants Σ′ ⊂ Σ such that Σ×S1

decomposes as Σ×S1 = Σ′×S1∪C1∪C2 where Ci = Ti× I, with ξ|Ci minimally

twisting and where ξ|Σ′×S1 is a tight contact structure with infinite boundary

slopes such that the section Σ′ × {θ} for some θ ∈ S1 is convex with dividing set

consisting of arcs, each connecting two different boundary components.

If s(T2) = −p2

q < 0 and both ξ|Ci decompose into basic slices of the same sign,

there exists a convex annulus A bounded by the Legendrian rulings of T1 and T2,

and without boundary parallel dividing curves.

Idea of the proof. The existence of an annulus A follows from the observation

that (Σ× S1, ξ) is isotopic to (T 2 × I, ξ|C1) with removed −p2

q -thickening of the

standard neighborhood of a vertical ruling in the invariant neighborhood of T1.

Alternatively, we notice that the dividing set on the vertical annuli Ai inside

Ci\Bi (that is, Ci without the outermost basic slice Bi) consists of two arcs which

cross the annulus and q − 1 boundary parallel arcs on Ti-side, which are (by

assumption) all of the same sign (all in the same region with respect to the two

crossing arcs). Additionally, there is a vertical annulus A∞ ⊂ Σ′ × S1 ∪B1 ∪B2

with boundary on ∂Ai, and a pair of dividing arcs crossing from ∂A1 to ∂A2. If

we glue A1, A∞ and −A2 along the common boundaries, we get an annulus A,

whose dividing set consists of two arcs which cross the annulus and the same

number (q−1) of oppositely-signed boundary parallel arcs along the two boundary

components. Since there are 0-twisting vertical curves in Σ× S1 (recall that the

boundary of Σ′ × S1 has ∞-slopes), we can alter ΓA by adding bypasses:

→ and →
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Eventually, we get an annulus with dividing set consisting of 2q crossing arcs.

In our case, the decomposition Σ × S1 = Σ′ × S1 ∪ C1 ∪ C2 always exists

as we are dealing with the zero-twisting structures; both thickened tori are

minimally twisting [38, Lemma 5.1]. The condition on the background structure,

no boundary parallel dividing curves on the convex section, follows (as in [30,

Lemma 5.4]) from the fact that ξ is appropriate on Σ × S1. And the latter is

fulfilled by any Σ× S1, cut as a background out of tight small Seifert manifold

[75, Lemma 2.4]. With the addition of [25, Section 3], Lemma 4.2.15 can be

reformulated in the sense of [30, Lemmas 5.7, 5.8].

Lemma 4.2.16. Let Σ be a pair of pants and let ξ be an appropriate contact

structure on Σ×S1 with convex boundary −∂(Σ×S1) = T1∪T2∪T3 with #ΓTi = 2

for i = 1, 2, 3, and boundary slopes s(T1) = −p1

q , s(T2) = −p2

q , s(T3) =∞.

(L1) If there exists a collar neighborhood C3 ⊂ Σ× S1 of T3, which is minimally

twisting with boundary slopes ∞ and p1+p2−1
q , whose basic slices are all same-

signed, and for which ξ|(Σ×S1)−C3
coincides with the unique tight structure

with boundary slopes −p1

q ,−
p2

q ,
p1+p2−1

q , and maximal twisting −q, then signs

of basic slices in the decomposition of C1 and C2 are all opposite to C3-signs.

(L2) And conversely, if C1 and C2 decompose into same-signed basic slices, then

there exists C3 composed of opposite-signed slices, with boundary slopes ∞
and p1+p2−1

q , and such that its complement is a unique tight structure as

above.

Proof (following [30]). For (L1), uniqueness of a tight structure with given proper-

ties is stated in [25, Proposition 3.3]. The fact that the signs in the decomposition

of collars are opposite, can be read from the relative Euler class evaluation on

vertical annuli Ai ⊂ Ci, which have boundaries in vertical Legendrian divides on

∞-side and in Legendrian rulings on the other boundary. If we complete these

annuli with annuli through the pair of pants up to T3 for A1, A2, and up to T1, T2

for A3, we get two pairs of homologically equivalent, but oppositely oriented,

annuli. As the Euler class evaluation on all the extended parts is zero (the first

having boundary in Legendrian divides, the second living inside −q-maximal

twisting), the evaluation on A1 and A2 is opposite to that of A3. Therefore, the

collars C1, C2 decompose into basic slices all of the same sign, opposite to the

signs in C3.

For (L2), we take the unique tight Σ′′ × S1 (as described in (L1)) and attach

to it a thickened torus with slopes p1+p2−1
q , ∞, and slices signed oppositely to

the ones in C1. Then according to (L1) the signs on collars in decomposition

Σ′ × S1 ∪ C1 ∪ C2 are again opposite. And we have built up a contact structure,

isotopic to the original in all three pieces (Σ′ × S1 has the same dividing set on

the pair of pants, while C1 and C2 have the same Euler class evaluations).
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Slicing and continued fractions

We give a short reflection on the slopes of glued-up torus and its slicing. Denote by

Vi the standard convex neighborhood of Fi with boundary −∂(M\Vi) trivialized

by
(

1
0

)
the horizontal direction of Σ× 1 and

(
0
1

)
the direction of fiber, and from

the other side ∂Vi by the meridian and some longitude, the last being chosen

so that translation Ai : ∂Vi → −∂(M\Vi) is given by Ai =
(
αi α′i
−βi −β′i

)
where

βi
αi

= ri (or r1 − 1 for the first leg); in terms of the continued fraction expansion

we have −αi
βi

= [ai0, ..., a
i
ki

],−αi
α′i

= [aiki , ..., a
i
0],−βi

β′i
= [aiki , ..., a

i
1]. Now, the ∞-

slope of a thickened neighborhood Ui of a singular fiber corresponds to [aiki , ..., a
i
0]

in the torus basis, and the slopes of the factorization can be obtained in order

(from outside in) by decreasing the last entry of this fraction.

We will be interested in slopes of tori, which peel off certain sequences of basic

slices from thickened neighborhoods Ui, and their expression in the background

basis. Notice the following general behavior.

Lemma 4.2.17. The slope of a torus which peels off
∑j−1

0 (aiι − 2) + m outer

basic slices from Ui, as seen from −∂(M\Vi), is independent of inner continued

fraction blocks in the decomposition of Ui, that is, of vertices aij , . . . , a
i
ki

, farther

down the legs. It equals [ai0, . . . , a
i
j−1,m]−1, or [ai0, . . . , a

i
j−1,m]−1 + 1 in the case

i = 1.

Proof. The slope of interest is in the torus basis expressed as [aiki , ..., a
i
j −m].

Recall the matrix form of a negative continued fraction

[aiki , . . . , a
i
0]↔

[(
−aiki

1

−1 0

)−1

· · ·
(
−ai0 1

−1 0

)−1
]2

=

[(
−β′i −α′i
βi αi

)]2
,

and notice that it is exactly the inverse of our identification A : ∂Vi → −∂(M\Vi).
Hence, we get the desired slope in the second column of:

(
−ai0 1

−1 0

)
· · ·
(
−aij+1 1

−1 0

)
· · ·
(
−aiki

1

−1 0

)(
−aiki

1

−1 0

)−1

· · ·
(
−aij+1 1

−1 0

)−1

︸ ︷︷ ︸
I

(
−aij +m 1

−1 0

)−1

=

=

(
−ai0 1

−1 0

)
· · ·
(
−aij 1

−1 0

)(
0 −1

1 −aij +m

)
=

(
−ai0 1

−1 0

)
· · ·
(
−aij−1 1

−1 0

)(
1 m

0 1

)

Indeed, this is independent of aiι for ι ≥ j.
Now, comparing the second columns:

[(
−ai0 1

−1 0

)
· · ·
(
−aij−1 1

−1 0

)(
1 m

0 1

)]2
=:

(
A

B

)
↔
(
−B
−A

)
=:

[(
0 −1

1 −ai0

)
· · ·
(

0 −1

1 −aij−1

)(
0 −1

1 −m

)]2
,

we express the slope as [ai0, . . . , a
i
j−1,m]−1 ([ai0, . . . , a

i
j−1,m]−1 +1 for i = 1).

This independence of inner layers, allows us to compute the background-basis

slope of any sequence of slices (from outside in) on a truncated leg. In the opposite
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direction, if the slope of peeled-off slices is [ai0, . . . , a
i
j−1,m]−1 ([ai0, . . . , a

i
j−1,m]−1+

1 if i = 1), this in the torus basis corresponds to [aik, . . . , a
i
j−m] when m ≤ aij−1.

When m = aij , we get [aik, . . . , a
i
j+1, 0], undefined as a continued fraction, but in

terms of the chain of surgeries, the 0-framed meridian cancels aj+1 which results

in [aik, . . . , a
i
j+2].

Proofs

The proofs of Propositions 4.2.13 and 4.2.14 are stated for matrices of negative

signs, but they can be verbatim repeated for positive ones. Without loss of

generality, basic slices within each continued fraction block are shuffled so that

the negative slices are outer.

Proof of Proposition 4.2.13. The guiding principle is as follows. Look at the two

singular tori Uµ, Uν whose outermost slices are negative. If we can peel such

sequences of negative basic slices from Uµ, Uν that their inner boundary tori

Tµ, Tν have slopes with the same denominator, say −pµ
q ,−

pν
q , we can use Lemma

4.2.15 to find a torus parallel to ∂Uλ of slope
pµ+pν−1

q , call it T . Whenever this

slope is not greater than the critical slope of the singular fiber, Crit(Fλ) (that is,

the slope of meridian of the glued-up torus in the background basis), there exists a

torus of critical slope between ∂Uλ and T , which proves overtwistedness (see also

[50, Section 2]). Furthermore, if the slope of T is such that the thickened torus

between ∂Uλ and T (whose basic slices are all positive by (L2)) forms a basic

slice together with some of the slices in the original decomposition of Uλ, any

negative basic slice in this glued-together basic slice implies overtwistedness by

the Gluing Lemma. Below we analyze the slopes in each of the cases separately.

O1. Consider first the structures of the first kind with (i, l) = (1, 2). Around

F2 there are only negative slices in the first k + 1 continued fraction blocks and

n2
k+1 of them in the block corresponding to the vertex v2

k+1 (here we shuffle them

to be its outer). Around F3, on the other hand, we have n3
0 negative slices (again,

shuffled so that they are the outer). Thus, peeling off from U2 basic slices up to the

(N2
m+1)th slice of the −a2

m+1-block, we obtain the slope [a2
0, . . . , a

2
m, N

2
m+1]−1 (in

the background basis), which can be joined by cutting annulus to the torus with

slope − 1
D around F3 (peeling off D slices from U3, where D is the denominator

of [a2
0, . . . , a

2
m, N

2
m+1]−1, which is at most n3

0 by assumption). That way, we have

found a torus T parallel to T1 of slope −[a2
0, . . . , a

2
m, N

2
m+1]−1.

Now, observe that the critical slope of F1 satisfies

[a1
0, . . . , a

1
j−1 − 1]−1 + 1 ≤ Crit(F1) = [a1

0, . . . , a
1
k1

]−1 + 1 ≤ [a1
0, . . . , a

1
j−1]−1 + 1.

Our assumed condition gives −[a2
0, . . . , a

2
m, N

2
m+1]−1 < [a1

0, . . . , a
1
j−1]−1 + 1. If

also a bit more holds true, namely −[a2
0, . . . , a

2
m, N

2
m+1]−1 ≤ Crit(F1), the

torus T embraces the critical one. Otherwise, we have −[a1
0, . . . , a

1
k1

]−1 −
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[a2
0, . . . , a

2
m, N

2
m+1]−1 ≥ 1 and we can truncate both fractions so that the trunca-

tions add up to exactly one [46, Lemma 3.2]. So, −[a1
0, . . . , a

1
J ]−1−[a2

0, . . . , b
2
M ]−1 =

1 for some J ∈ {j, . . . , k1} and M ∈ {0, . . . ,m+ 1}, and b2M = a2
M for M ≤ m or

b2M = N2
m+1 for M = m + 1. Peeling off from U2 only slices of the first M + 1

outer blocks and corresponding (as many as the denominator of [a2
0, . . . , b

2
M ]−1,

which is certainly less than or equal to D ≤ n3
0) slices in U3, the slope of T is

[a1
0, . . . , a

1
J ]−1 + 1 in the background basis. By the text under Lemma 4.2.17 this

equals [a1
k1
, . . . , a1

J+2] in torus basis, and T bounds a basic slice with a torus T1

of slope [a1
k1
, . . . , a1

J+2 − 1]. For tightness, the conditions of the Gluing Lemma

require for all the subslices of a glued-together basic slice to be positive, but this

is not satisfied as the toric annulus bounded by T1 and T contains the (j + 1)th

continued fraction block (J ≥ j) and n1
j+1 > 0 by assumption.

For (i, l) = (2, 1), the arguments are the same, but here the induced slope

of T (built from peeling-off tori in U1 and U3) equals [a1
0, . . . , a

1
m, N

1
m+1]−1 + 1,

while the critical slope is given by

[a2
0, . . . , a

2
j−1 − 1]−1 ≤ Crit(F2) = [a2

0, . . . , a
2
k2

]−1 ≤ [a2
0, . . . , a

2
j−1]−1.

O2. Structures of the second kind admit negative basic slices in the outer

layers of U1 and U2. The background-basis slopes [a1
0, . . . , a

1
J , 3]−1 + 1 on T1

around F1 and [a2
0, . . . , a

2
K , 2]−1 on T2 around F2 – which add up to zero – are

reached by peeling off the corresponding sequences of (negative) basic slices

when v1
J+1, v

2
K+1 exist, and by decreasing the twisting number of the Legendrian

singular fibers F1 or F2 by stabilizing when L1 = (v1
0, . . . , v

1
J) or L2 = (v2

0, . . . , v
2
K).

Joining the two tori T1 and T2 by an annulus interpolating between the rulings,

and edge-rounding, we obtain a torus T around F3 of slope − 1
D where D is

the denominator of [a1
0, . . . , a

1
J , 3]−1. By assumption, the denominator D is not

greater than a3
0 − 1, hence the obtained slope − 1

D is smaller than or equal to

− 1
a3

0−1
< Crit(F3), that is, T embraces the critical torus.

Proof of Proposition 4.2.14. Recognition of isotopies, in all cases, follows the

same steps. First, we apply (L2) to get an additional thickened torus C around

the singular torus Uλ with positive outermost slices – traverse outer layers, whose

basic slices are all negative, from Uµ and Uν . This new collar together with

some, say n, continued fraction blocks around Fλ join into a thicker basic slice,

separated into positive basic subslices. The isotopy is now given by reversing

all these signs. In case we have used all continued fraction blocks of Uλ, it is

interpreted in destabilization followed by opposite stabilization of a core knot.

Otherwise, C together with n+1 outermost continued fraction blocks in Uλ builds

a continued fraction block. Its signs can be shuffled, resulting in the +2-change

in its innermost (n+ 1)th block (one negative slice replaced by positive) and turn

of sign on all basic slices that form C and the first n continued fraction blocks
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(from positive to negative). The basic slices around the other two fibers, Fµ and

Fν , are then adapted according to (L1) – the peeled off ones change their signs

from negative to positive, others remain untouched. The relevant slopes for the

three isotopy moves are analyzed below.

I1. Since the equality −[ai0, . . . , a
i
j−1]−1 − [al0, . . . , a

l
k, n

l
k+1 + 1]−1 = 1 holds

and n3
0 is at least as much as the denominator of the two fractions, we can peel

off from Ul and U3 as many negative slices that the slope of the torus T we get

around Fi via (L2) equals [aiki , . . . , a
i
j+1] in the torus basis. The torus T bounds

a basic slice with the torus of slope [aiki , . . . , a
i
j+1 − 1] which cuts off the positive

outermost slices from Ui. The torus of slope [aik1
, . . . , aij+2] then gives a continued

fraction block with the torus T .

I2. These are essentially isotopies from [30, Proposition 6.4]. Peeling off a

single (negative outermost) basic slice from U1 and U2, we obtain a torus of slope

0, expressed in the background basis, around F3. It corresponds to the slope

[a3
k3
, . . . , a3

1], and forms a glued-together basic slice with the outermost continued

fraction block (with inner slope [a3
k3
, . . . , a3

1− 1]), and hence, a continued fraction

block with [a3
k3
, . . . , a3

2].

I3. In the proof of Proposition 4.2.13, for structures of the second kind (O2.),

we have obtained that the slope of the torus T built via (L2) from the two tori of

slopes [a1
0, . . . , a

1
J , 3]−1 + 1 around F1 and [a2

0, . . . , a
2
K , 2]−1 around F2, which sum

up to zero, equals − 1
D for D the denominator of [a1

0, . . . , a
1
J , 3]−1. By assumption,

D equals a3
0, moreover, − 1

a3
0

is in the torus basis expressed as [a3
k3
, . . . , a3

2]. Thus,

the torus T bounds a basic slice with the torus of slope [a3
k3
, . . . , a3

2 − 1] and

a continued fraction block with the torus of slope [a3
k3
, . . . , a3

3] in the slicing of

U3.

Proof of Theorem 4.2.1. In the outline of the proof we have reduced Theorem

4.2.1 to Theorem 4.2.3.

Suppose we are given a contact surgery presentation ξ as in Figure 4.1, whose

full path Pξ properly ends. By Theorem 4.1.2, such a presentation describes a tight

structure with non-vanishing contact invariant; furthermore, all presentations

which share this same path define the same element in ĤF(−M), hence they

induce the same Spinc structure and have the same 3-dimensional invariant. In

Corollary 4.2.12 we identify how presentations in the same path are related to

each other, and in Proposition 4.2.14 we realize all these relations by contact

isotopies. Any further isotopies are, of course, excluded by the fact that different

paths present different elements in ĤF(−M).

On the other hand, if the path Pξ drops out (fails the tightness criterion),

the corresponding structure ξ admits one of the features recognized in Corollary

4.2.12 or it can be walked through presentations, related by the above isotopy

moves, to some presentation which admits such a feature. Finally, for these
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structures either the existence of a torus with critical slope or the Gluing Lemma

argument proves their overtwistedness, in Proposition 4.2.13.

This finishes the proof of Theorem 4.2.3, originally stated as Theorem 4.2.1.
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5

Fillable contact structures on M(−1; r1, r2, r3)

Seifert fibered 3-manifolds not carrying (Stein) fillable contact structures has been

characterized by Lecuona and Lisca [46], they call them manifolds of special type.

Here, we address the question which exactly are the fillable contact structures on

small Seifert fibered spaces.

Let us summarize from Chapter 4: Tight contact structures on small Seifert

fibered spaces M(e0; r1, r2, r3) whenever e0 6= −1 or −2, and on L-spaces with

e0 = −2 are completely classified – they are all Stein fillable. On M(−1; r1, r2, r3)

there are essentially two types of tight contact structures, distinguished by the

maximal twisting of the regular fiber. The negative twisting structures are related

to the transverse contact structures, and they are expected to be all at least

symplectically fillable. On the other hand, zero-twisting tight contact structures

share a common contact surgery description (of Figure 4.1) and are (at least,

when L-spaces) characterized by non-vanishing of the Ozsváth-Szabó contact

invariant c(M, ξ) ∈ ĤF(−M, tξ).

The zero-twisting structures are all supported by planar open books, as shown

in Section 2.3.1. But in contrast to contact structures on small Seifert spaces with

e0 6= −1 not all tight ones are Stein fillable. Relying on a theorem of Wendl [74]

about fillings of planar contact structures, non-Stein fillable structures are not

fillable at all. Non-fillability was first observed by Ghiggini, Lisca and Stipsicz in

[30] for a particular structure on M(−1; 1
2 ,

1
2 ,

1
p). Based on their classification [30]

of tight structures on M(−1; r1, r2, r3) for r1 ≥ r2 ≥ 1
2 , Plamenevskaya and Van

Horn-Morris [67] then recognized exactly which of those manifolds admit non-

fillable tight structures using Wendl’s work and obstructing existence of positive

factorizations in (abelianization of) standardly associated (planar) open books.

On the other hand, Lecuona and Lisca [46] showed that for M(−1; r1, r2, r3) of

special type, that is, when it is L-space and ri + rj < 1 for all pairs i, j, topology

(the diagonalization argument) prevents existence of Stein fillings.

Here, we show that all fillable zero-twisting structures on M(−1; r1, r2, r3)

arise as Legendrian surgeries on tight S1×S2. For L-spaces this covers all fillable

structures, and hence implies the result of Lecuona and Lisca that small Seifert
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fibered manifolds of special type do not admit any fillable structure.

More specifically, we obtain the following.

Proposition 5.0.1. Contact surgery diagram as in Figure 4.1 with r1 + r2 = 1

and r3 = 0 describes the tight contact S1 × S2 if and only if rot1
j = − tb1

j −1 for

the Legendrian unknots in L1 and rot2
j = tb2

j +1 for the Legendrian unknots in

L2.

Theorem 5.0.2. Assume that a contact structure ξ on M(−1; r1, r2, r3) is given

by some surgery diagram of Figure 4.1. For each pair i, j for which ri + rj ≥ 1,

form a sublink Lij of the surgery link consisting of two unknots with +1-coefficient

and two truncated chains such that rational numbers − 1
si

they present satisfy

si ≤ ri, sj ≤ rj , and si + sj = 1. Then ξ is fillable if and only if there exists Lij
which describes the tight S1 × S2.

In words, fillability of a given surgery presentation is completely decided on

specific sublinks representing S1×S2, whose tightness is in turn met by a unique

choice of rotation numbers for this sublink.

This chapter is dedicated to the study of planar open books supporting our

contact manifolds. To prove fillability, we find an explicit positive factorization

of the monodromy. For negative results, we study abelianization of the mapping

class group of the planar page (following the approach of Plamenevskaya and

Van Horn-Morris).

5.1 Abelianized planar monodromy

Planar monodromy Since our contact structures are all planar, the following

theorem of Wendl ensures that to prove non-fillability, it suffices to study positive

factorizations of the given monodromy.

Theorem 5.1.1. [74, Corollary 2] A planar contact manifold is strongly sym-

plectically (and thus Stein) fillable if and only if every supporting planar open

book has monodromy isotopic to a product of positive Dehn twists.

Let us briefly review the characteristic features of the abelianized planar

mapping classes, as used by Plamenevskaya and Van Horn-Morris in [67].

The mapping class group of a planar surface (in the presentation of Margalit

and McCammond) is described (geometrically) on a disk, Dn, with n holes

arranged in the roots of unity. The group Map Dn is generated by all convex

Dehn twists (that is, the twists whose core is the boundary of the convex hull of

a set of holes), and factored by commutators of disjoint twists and all lantern

relations. Then, up to conjugation – as an element of AbMap Dn – a Dehn twist

is determined by the set of holes it encircles. Furthermore, any monodromy φ

factors into a product of Dehn twists, and each Dehn twist can be, using the
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lantern relations, decomposed into pairwise (around a pair of holes) and boundary

(around a single hole) Dehn twists; when a positive Dehn twist encircles r holes,

it provides r − 1 positive pairwise twists and r − 2 negative boundary twists,

both around each of its holes. Hence, φ as an element of AbMap Dn is uniquely

determined by a collection of multiplicities {mα,mαβ}, defined as the number of

twists (counted with signs) on the disk with all but one hole α, or a pair of holes

α and β, capped off. Finally, being interested only in positive factorization, the

number of its non-boundary twists around every hole is bounded from above by

the number of all twists encircling this hole in any given presentation [67, Lemma

3.1].

Nonfillability result Look at the monodromies as translated from the surgery

presentations (Section 2.3.1).

Notation 5.1.2 (see Figure 5.1). Given the continued fraction expansion

− 1

ri
= −ai0 −

1

. . . − 1
−aiki

= [ai0, . . . , a
i
ki

], aij ≥ 2,

denote by νij and πij any of the stabilization holes which correspond to, respectively,

negative and positive stabilizations of the aij-unknot (that is, the stabilization

holes which are additionally encircled, respectively left out, by the positive

Dehn twist corresponding to the aij-unknot in comparison to the aij−1-unknot

or the core in the case j = 0). Using | · | for the number of respective holes,

we see 2 + |νij | + |πij | = aij (or ai0 + 1 when j = 0), −1 − |νij | − |πij | = tbij and

|πij | − |νij | = rotij . Additionally, write πin and νout for the inner and the outer

boundary of the annulus. When grouped into certain types, we use νi for any

of ∪jνij , similarly νi≥j for any of ∪J≥jνiJ , and ν to denote any of νout ∪ νi; and

analogously for π-type holes.

Notation 5.1.3. We number the first unknot of the ith leg whose stabilizations

are not all of the same sign as the stabilizations of ai0-unknot, by ni; when the

ai0-unknot admits positive and negative stabilizations, we choose ni = 0. We name

the corresponding continued fraction by − 1
qi

:= [ai0, . . . , a
i
ni−1], or − 1

qi
:= −∞

when ni = 0.

Proposition 5.1.4. When there is no pair of legs i and j for which ai0- and

aj0-unknot are stabilized oppositely, with roti0 = −ai0 + 1 and rotj0 = aj0 − 1,

and qi + qj ≥ 1, the corresponding monodromy does not admit any positive

factorization.

Proof. We start with the factorization Φ of the monodromy φ as being read from

the surgery presentation, and we try to build a positive factorization of φ, at

72

C
E

U
eT

D
C

ol
le

ct
io

n



νout

πin

π1
0

π2
0

π1
1

ν30 ν30

ν31

ν21

ν30

πin

π1
0

π2
0

π1
1

ν30

ν31

ν21

νout

Figure 5.1: Illustration of our notation conventions on an example: L1 =

(−2,−3,−2) and rot1 = (1, 1, 0), L2 = (−2,−3) and rot2 = (1,−1), L3 =

(−3,−3) and rot3 = (−2,−1). In gray are boundary components of the punc-

tured disk, full curves correspond to positive Dehn twists, and dashed curves to

negative Dehn twists. The page is shown in two perspectives: with initial outer

boundary (left) and with outer boundary in one ν3
0 -hole (right).

least on the level of abelianization. Abusing the notation, we use same names in

AbMap, and in fact, throughout the proof we are interested in Dehn twists only

up to conjugation.

Without loss of generality (due to Proposition 4.1.13), we may assume that

there is only one leg, say the 3rd, whose starting unknot is stabilized fully

negatively, otherwise we turn our perspective interchanging the outer and the

inner boundary of the annulus.

We will interchangeably use three perspectives: initial with νout as the outer

boundary of the disk, turned-over with πin as the outer boundary, and finally,

call it D = Dπ∪ν , the punctured disk obtained by setting one of the ν3
0 -holes to

be the outer boundary. The multiplicities with respect to each viewpoint will be

denoted by m for the initial disk, by m′ for the turned-over one, and by capital

M in D. Let D be our preferred viewpoint if not stated otherwise. When some

of its holes are capped off, we denote this by putting the remaining holes in the

index; so, the notation Dχ means the page D with all but χ-type holes capped

off. Notice that all the multiplicities remain the same, and we keep the notation.

To begin with, let us study how possible positive factorizations behave with

respect to π-holes.

Lemma 5.1.5. By capping off all ν-holes, except the outer boundary of D,

we descend from AbMap Dπ∪ν to AbMap Dπ, φ 7→ φ, which maps the given

factorization Φ 7→ Φ. This Φ is a composition Φ1Φ2Φ3, where Φi is a product of
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Dehn twists coming from ai-unknots and boundary twists around πi-holes. Every

positive factorization Ψ of φ splits into subfactorizations Ψ = Ψ1Ψ2Ψ3 so that

Ψi and Φi describe the same element in AbMap Dπ.

Proof. The Φ itself presents a positive factorization of restricted monodromy φ.

Indeed, the only negative twist of Φ cancels with the boundary twist of the outer

ν3
0 after capping-off ν-holes.

Now, set πin as the outer boundary and consider the capped-off page Dπ

in the turned-over perspective. Here, no πi-hole is encircled together with any

πj-hole for i 6= j, in symbols m′
πiπj

= 0, and the only remaining ν3
0 is in at most

k1 + k2 + 2 twists (the number of twists around it in Φ). On the other hand, the

pairwise multiplicity of ν3
0 with πi0 is exactly m′

ν3
0π

i
0

= ki+ 1. So, there are exactly

ki + 1 twists encircling ν3
0 together with only πi-holes. Therefore, since there are

no twists containing πi and πj together, we can consider the whole (abelianized)

monodromy φ as a product of three monodromies φi, uniquely determined by

multiplicities: the πi-multiplicities are the same as in Φ, and the twists around

ν3
0 are distributed so that ν3

0 -multiplicity with πi-holes is k1 + 1, k2 + 1, and 0,

respectively. Thus, any positive factorization splits as Ψ1Ψ2Ψ3 with Ψi describing

φi.

Lemma 5.1.6. In the notation of Lemma 5.1.5, let us write out positive factor-

izations as Φi = f i0 · · · f iki · · · f
i
li

and Ψi = pi0 · · · piki · · · p
i
l′i

for i = 1, 2, where we

order the Dehn twist factors with the ones containing πin first and in the decreas-

ing order of the number of holes they include. Then for Ki := min{k; f ik 6= pik},
piKi is a strict subset of f iKi, and neither of πi-holes not in f iKi are encircled by

any non-boundary twist pik, k ≥ Ki.

Proof. Look at the capped-off page Dπ in the turned-over perspective, with

πin as outer boundary. We first notice that Ki always occurs among twists

containing ν3
0 , thus Ki ≤ ki, as otherwise all pairwise multiplicities are reached

within {pik; 0 ≤ k ≤ ki}, and the factorization agrees with Φ. Now, if piKi did not

contain some f iKi-hole χ, the pairwise multiplicity of χ with ν3
0 in Ψ would be

strictly smaller than in Φ, in symbols m′
χν3

0
(Ψ) < m′

χν3
0
(Φ). Indeed, the number

of twists containing ν3
0 is fixed and equal to ki, and f ik for k ≥ Ki all contain χ,

while f ik for k < Ki contains χ if and only if pik does. Finally, as (in D) pairwise

M -multiplicities of holes out of f iKi with any other hole are exactly as many as

there are twists from {pik = f ik; k < Ki} around them, neither can be encircled

together with any other hole additionally.

This reduces the problem of finding a positive factorization to whether any fac-

torization Ψ (maybe Φ) from Lemma 5.1.5 can be lifted to a positive factorization

of φ ∈ AbMap D.
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In the following, we investigate possible lifts of Ψ-twists, in particular, which

of the ν-holes they include.

Lemma 5.1.7. If there exists a positive factorization of φ lifting Ψ, then for

i = 1, 2, the last ki − ni + 1 twists containing πin in Ψi (that is, the ones which

avoid all πik with k < ni) lift to the twists which additionally contain only νi-holes.

Proof. Recall that on the disk with the initial outer boundary all multiplicities

mνiνj , i 6= j, vanish. On D this means that whenever some νi is encircled together

with any of νj , the twist needs to contain also the initial outer boundary, the hole

νout. But the πinν1- and πinν2-multiplicities are greater than Mπinνout = 1, for

νij-hole the multiplicity is exactly Mπinνij
= ki − j + 2. Thus (at least) ki − ni + 1

Dehn twists which contain πin need to lift into twists which include only νi-type

ν-holes. Moreover, as mπikν
i = 0 for k < ni, whenever such πik is encircled together

with νi, the twist contains also νout – hence the ki − ni + 1 twists mentioned

above are the last ki − ni + 1 twists from Ψi which contain πin (and avoid all πik
for k < ni).

Remark 5.1.8. Considering m′-multiplicities in the turned-over perspective,

the same (with interchanged role of ν- and π-holes) can be concluded for the

k3 − n3 + 1 twists containing νout and avoiding ν3
k for k < n3.

Let us list some properties of encircling νout ∪ ν3-holes (viewed in D):

1. Their pairwise multiplicity with any of πin ∪ π1 ∪ π2 is one (and with any of

π3 one plus the number of twists mentioned in Remark 5.1.8).

2. Each of ν3
j -holes is encircled by at most j + 2 non-boundary Dehn twists,

νout by at most k3 + 2 (the number of twists around them in Φ); for j ≥ n3,

j − n3 + 1 of them are described by Remark 5.1.8.

3. Pairwise multiplicity of each ν3
j with any ν3

≥j is exactly j + 1.

4. According to Lemma 5.1.7, lifts of the twists pini , . . . , p
i
ki

for i = 1, 2, never

encircle any of νout ∪ ν3; denote Ψ
∗

:= Ψ\{pini , . . . , p
i
ki

; i = 1, 2} and Ψ
∗
i =

Ψi ∩Ψ
∗
.

So, since we need to enclose each νout ∪ ν3 with all of π-holes once (1) and by

the bounded number of twists (2), we look (in every factorization Ψ) for partitions

of π-holes by the Ψ
∗
-twists, which have appropriate number of parts. If two sets

of Ψ
∗
-twists define set-wise the same partition, we say they are parallel as the

twists of the two sets need to be parallel (or equal), the equal twists are referred

to as shared.

Let us proceed successively, focusing on ν3
j for every j in 0, 1, . . . , k3 + 1, here

we denote ν3
k3+1 := νout. We say that Ψ lifts over ν3

≤j , if Ψ
∗
-twists can be lifted

to a positive factorization in AbMap Dπ∪ν3
≤j

which satisfies the listed properties.
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Recursively define J0 = −1 and

Jl := min{j; j > Jl−1 and |ν3
j | ≥ 1 and if j = 0 : |ν3

0 | > 1}.

Lemma 5.1.9. If Ψ lifts over νout ∪ ν3-holes, the Ψ
∗
-twists whose lifts encircle

νout ∪ ν3-holes, can all (apart from the ones from Remark 5.1.8) be chosen from

a single Ψ
∗
i for either i = 1 or 2. Furthermore, if any factorization Ψi lifts over

ν3
≤j, so does Φi.

Proof. The first property (1) states that the set of all twists whose lifts encircle

a νout ∪ ν3-hole forms a partition of πin ∪ π1 ∪ π2-holes. In particular, every

partition needs a twist which contains πin. If a partition is defined by Ψ
∗
-twists,

it consists of some pIK ∈ {pik; k < ni, i ∈ {1, 2}} and some twists covering all

πI -holes which are not in pIK . Now, if there is a partition of less than J0 + 2

parts, we can extend all its defining twists over all νout ∪ ν3. Indeed, this choice

satisfies the second (2) and the third (3) property (when completed by some

twists which do not contain any π-holes), and the lifted twists obviously come

from a single Ψ
∗
I . If all partitions have more than J0 + 2 parts, the second (2)

property can never be satisfied and there is no positive factorization. Finally, if

there is a partition of exactly J0 + 2 parts, J0 of them are necessarily shared by

all νout ∪ ν3, to fulfill the third (3) property. Since around each π-hole there can

be only one twist which does not contain πin, the twists other than pIK are always

shared by all νout ∪ ν3 and the partitions corresponding to different ν3
Jl

-levels

arise from splitting the pIK-part, which is possible only by Ψ
∗
I -twists.

Suppose now we are lifting Ψi 6= Φi. At each level we are looking for partitions

with the least possible parts (which has not yet been used at the previous levels).

As long as the twists used in Ψ
∗
i -partitions agree with some Φ

∗
i -twists, the two

factorizations lift simultaneously. Otherwise, as soon as we need the largest (as a

set) pik 6= f ik, k < ki, Lemma 5.1.6 tells that Φ
∗
i admits at least one more partition

of at least one less part. Since by assumption Ψi lifts over ν3
≤j , this Φ

∗
i -partition

has less than j+ 2 parts, and can be used for all ν3
≥j , fulfilling the properties.

Remark 5.1.10. The concluding statement in Lemma 5.1.9 essentially means

that we can focus only on Φ as the most liftable among φ-factorizations, when

looking for obstructions of positive factorization. Moreover, if we number the

legs so that − 1
q1
> − 1

q2
, the Ψi in Lemma 5.1.9 can be Φ1 (it lifts whenever any

of Ψi lifts).

Lemma 5.1.11. At the lth level when Jl < n3:

(i) If there is a (not-yet-used) Φ
∗
1-partition into less than Jl + 2 parts, the

assumptions of the proposition are not satisfied.
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(ii) If there is no (not-yet-used) Φ
∗
1-partition into less than Jl + 2 parts, and there

are less than |ν3
Jl
| (or |ν3

0 | − 1 for J1 = 0) of parallel Φ
∗
1-partitions into Jl + 2

parts, there is no positive factorization of φ.

(iii) Otherwise, we proceed to the next level.

Proof. Suppose that Φ
∗
1 falls under (iii) for all levels up to lth. At the lth level, if

there are only partitions of more than Jl + 2 twists or there are less than |ν3
Jl
| of

Jl + 2-part partitions, there is no positive factorization; because we cannot satisfy

the first (1) and the second (2) listed property simultaneously. On the other hand,

when we can partition π-holes into less than Jl + 2 parts, the structure does not

fulfill our assumptions. Indeed, in Remark 5.2.2 we write out how the coefficients

of two legs need to be related in order for corresponding rational numbers to

add up to one. In our case, the Jl is the index of the unknot on L3 with surgery

coefficient less than −2, Jl − Jl−1 counts the number of parallel twists, which is

one more than number of −2-unknots preceding −a3
Jl

-unknot. For the levels up

to lth, the conditions of (iii) mean that the number of left-out holes exactly agrees

with Jl − Jl−1, corresponding on L1 to an unknot of coefficient −Jl + Jl−1 − 2,

which is followed by exactly |ν3
Jl
| of −2-unknots. But condition (i) at the lth

level quit this sequence, having Jl − Jl−1 parallel twists (so, Jl − Jl−1 − 1 of

−2’s on L3) but leaving out less than Jl − Jl−1 holes by the next a1-unknot (its

coefficient being at least −Jl + Jl−1 − 1). Since Jl < n3 and we are considering

only Φ
∗
1-partitions, the two truncated chains correspond to rational numbers

smaller than or equal to − 1
qi

.

The process eventually stops as we run into an obstruction for positive

factorization (ii) or we leave the assumed conditions (i). If not before when we

cross the n3-level, as over that holes we are not allowed to extend more than n3 +2

twists – so, the only possible positive factorizations would arise from partitions

into n3 + 2 < Jl + 2 twists, which as before implies that the assumptions of the

proposition are not satisfied.

5.2 Surgery links of tight S1 × S2

Lemma 5.2.1. Whenever ri + rj ≥ 1, there is a sublink Lij of the surgery

presentation, as in Theorem 5.0.2, surgery along it smoothly describes S1 × S2.

Proof. By basic calculus of continued fractions there exist truncated continued

fractions − 1
si

= [ai0, . . . , a
i
mi ] < [ai0, . . . , a

i
ki

] = − 1
ri

(mi ≤ ki) such that si+sj = 1

(see [46, Lemma 3.2]).

The framed link Lij smoothly consists of four −1-linked unknots with framing

coefficients 0, 0,− si+1
si
,− sj+1

sj
. Blowing-up once and applying inverse slam-dunks

to rationally framed unknots, we obtain a chain of unknots with coefficients
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Figure 5.2: Example of positive factorization: Li = (−3,−3) and Lj =

(−2,−3,−2). On the first and the last picture the page is presented as a punc-

tured disk with outer boundary in νout and one of νi0, respectively. Intermediate

steps are presented as punctured spheres.

(−aimi , . . . ,−a
i
0,−1,−aj0, . . . ,−a

j
mj ), which can be successively, starting with the

middle −1-surgery, blown-down ending in a 0-framed unknot.

Remark 5.2.2. Notice that the two chains forming the two legs of Lij need to

be dual to each other (that is, describing a lens space and its orientation reversal).

Explicitly, the coefficients of the two are related as follows (here, −2×b means a

chain of b-many −2-unknots):

Li = (−b1 − 2, −2×b2 , −b3 − 3, . . . , −bm − 2)

Lj = (−2×b1 , −b2 − 3, −2×b3 , . . . , −2×bm)
.

When looked in the presentation of Figure 4.1 middle, the first unknots of both

chains are framed one lower, so −b1 − 3 and −3 respectively.

Proposition 5.2.3 (Proposition 5.0.1). Contact surgery presentation by Legen-

drian link Lij corresponds to the tight S1 × S2 if and only if all stabilizations on

one leg are positive and all stabilizations on the other leg are negative.

Proof. Necessity of the condition is a special case of Proposition 5.1.4. We prove

here that it is also sufficient, describing concrete factorization.

Considering Legendrian link Lij with all stabilizations on the ith leg Li =

(−ai0, . . . ,−aimi) negative and all stabilizations on the jth leg Lj = (−aj0, . . . ,−a
j
mj )

positive, all Dehn twists corresponding to the ai-unknots lie outside the core

circle N (along which the negative Dehn twist is performed) and the ones from

the aj-unknots lie inside. We can rewrite this monodromy by iterative use of the

lantern relation as follows (look also at the example given by Figure 5.2).

In the following we use the b-notation in the sense of Remark 5.2.2.

One of the two legs, say Lj , starts in −2-unknots, say b1 of them. In the

first step we consider the associated b1 parallel Dehn twists, a Dehn twist around

the hole πj0 responsible for stabilization of the first unknot in this chain, and b1
stabilizations νi0 of ai0-unknot (one less than all if we have not reached the end
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of Li). We apply daisy relation on them (that is, a repeated lantern relation

as described in [67, Lemma 3.5]). This pushes the negative twist N over b1
stabilizations (the νi0-holes) of ai0, and gives additional positive Dehn twist D1

around all considered stabilization holes (the one πj0 from aj0 and b1 of νi0 from

ai0).

From now on, imagine the remaining νi0-hole as the outer boundary of the disk.

Now we take positive Dehn twist coming from the ai0 and all of its parallel push-offs,

there are b2 +1 of them where b2 is the number of −2-unknots following ai0-unknot

on Li. Further, we take positive Dehn twist D1 and all b2 + 1 stabilization holes

πjb1 of ajb1 . We apply the daisy relation on them, resulting in a new negative twist

N ′ around all considered holes, and a positive twist D2 around considered holes

which are not initially encircled by ai0. Concretely, the twist N ′ goes around the

initial outer boundary νout, all stabilization holes νi of Li (except one νi0), and

the first two levels stabilization holes of Lj (this is, πj0 ∪ π
j
b1

), while D2 enlarges

D1 over the second level stabilization holes of Lj (containing πj0 ∪ νi0 ∪ π
j
b1

).

We continue by interchangeably applying daisy relation from inside (involving

some ajk-twist) and from outside (involving some aik-twist), interchangeably

“pushing” the two negative twists N and N ′ over always the next level of Li-

or Lj-holes, respectively. (For the negative twist which arises through a single

application of daisy relation we use the name of the negative twist which has

been canceled through the same process.) At the same time, each application

of daisy relation “enlarges” Dl−1 into Dl, additionally encircling the next level

of Li- (for l odd) or Lj-holes (when l even). After the lth application of daisy

relation, the twists contain:

l = 2l′ + 1 : Dl = {πj0 ∪ νi0 ∪ · · · ∪ π
j∑l′
k=1 b2k−1+l′−1

∪ νi∑l′
k=1 b2k+l′

}

N = {πin ∪ πj ∪ νi0 ∪ · · · ∪ νi∑l′
k=1 b2k+l′

}

N ′ = N ′ after (l − 1)th step

l = 2l′ : Dl = {πj0 ∪ νi0 ∪ · · · ∪ νi∑l′−1
k=1 b2k+l′−1

∪ πj∑l′
k=1 b2k−1+l′−1

}

N ′ = {νout ∪ νi ∪ πj0 · · · ∪ π
j∑l′
k=1 b2k−1+l′−1

}

N = N after (l − 1)th step

In the last level there is one less stabilization hole of the aj- (ai-) unknot

in comparison to the number of parallel twists from −2’s ending Li (Lj); when

applying daisy relation we include also the initial outer (inner) boundary hole.

So after the last step, Dm contains also the initial outer (inner) boundary and it

cancels with the negative twist N ′ (N). While the other negative twist, N,N ′

respectively, encircles all the holes and it cancels with the positive Dehn twist

along the current outer boundary.
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Proof of Theorem 5.0.2. Joining Proposition 5.1.4 and Proposition 5.2.3 we ob-

tain the theorem. Indeed, Legendrian surgeries on tight S1×S2 (from Proposition

5.2.3) give Stein fillable structures, while all other presentations fall under the

conditions of Proposition 5.1.4, thus they do not admit positive factorization of

associated planar monodromy, and by that, do not admit any Stein filling.

80

C
E

U
eT

D
C

ol
le

ct
io

n



Bibliography
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[60] P. Ozsváth, and Z. Szabó, On the Floer homology of plumbed three-manifolds,

Geom. Topol. 7 (2003) 185–224.
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