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A B S T R A C T

The thesis consists of two parts. In the first part consisting of Chapter 2

and 3, matrix bialgebras, generalizations of the quantized coordinate ring
of n× n matrices are considered. The defining parameter of the construc-
tion is an endomorphism of the tensor-square of a vector space. In the
investigations this endomorphism is assumed to be either an idempotent
or nilpotent of order two. In Theorem 2.2.2, 2.3.2 and 2.5.3 it is proved
that the Yang-Baxter equation gives not only a sufficient condition – as it
was known before – for certain regularity properties of matrix bialgebras,
such as the Poincaré-Birkhoff-Witt basis property or the Koszul property,
but it is also necessary, under some technical assumptions. The proofs are
based on the methods of the representation theory of finite-dimensional
algebras.

In the second part consisting of Chapter 4 and 5, the quantized coor-
dinate rings of matrices, the general linear group and the special linear
group are considered, together with the corresponding Poisson algebras
called semiclassical limit Poisson algebras. In Theorem 4.1.1 and 5.1.1 it
is proved that the subalgebra of cocommutative elements in the above
mentioned algebras and Poisson algebras are maximal commutative, and
maximal Poisson-commutative subalgebras respectively. The proofs are
based on graded-filtered arguments.
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Pötyinek.

És mindenkinek, aki szeret.
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“(...) you’ll begin challenging your own assumptions.
Your assumptions are your windows on the world.

Scrub them off every once in a while,
or the light won’t come in.”

— Alan Alda (62nd Commencement Address,
Connecticut College, New London, 1980)
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P R E FA C E

The field of quantum groups and quantum algebra emerged at the in-
tersection of ring theory, Lie theory and C∗-algebras in the 1980s from the
works of V. G. Drinfeld [Dri], M. Jimbo [Ji], L. D. Faddeev et al. [FRT], Yu.
I. Manin [Man], and S. L. Woronowicz [Wo].

Although the frameworks they applied were different in nature and di-
verged even further in the last four decades, one of the common guiding
principles was to observe phenomena that are in parallel with the clas-
sical counterparts, such as the (Brauer-)Schur-Weyl duality (see [Hay] or
Sec. 8.6 in [KS]), analogous representation theory (see Sec. 10.1 in [ChP]),
existence of a Poincaré-Birkhoff-Witt basis (see I.6.8 in [BG]) or existence
of a Haar state (see I.2. in [NT]).

In the thesis, we follow the track laid by Yu. I. Manin and M. Takeuchi,
and investigate matrix bialgebras (see Def. 2.1.1) from the point of view
of properties of quadratic graded algebras and their symptoms on the
Hilbert series of the algebra. The terminology on these bialgebras is very
diverse, they are also called quantum semigroups in [Man] (Ch. 7), ma-
tric bialgebras or conormalizer algebras in [Ta], or matrix-element bial-
gebras in [Su]. Moreover, matrix bialgebras are special cases of the FRT-
construction in the sense of [Lu], and of the universal coacting bialgebra
or coend-construction (see [EGNO] and Subsec. 2.1.1).

Main examples of matrix bialgebras include every FRT-bialgebraM(R̂),
where R̂ satisfies the Yang-Baxter equation (see [KS],[Hay]), in particular
the quantized coordinate ring Oq(Mn) of n × n matrices for a non-zero
scalar q. Further examples are the covering bialgebras of quantum SL2
Hopf-algebras (see [DVL]) or the quantum orthogonal bialgebra M̃+

q (n)
(see [Ta]).

A well-investigated case is that of the Hecke-type FRT-bialgebrasM(R̂)
where R̂ satisfies both the Yang-Baxter and the Hecke equations. These
algebras are known to have several favorable properties under mild con-
ditions (see [AA],[Hai1],[Su]). After introducing the conventions and def-
initions of the studied topics in Chapter 1, we give results in the reverse
direction in Chapter 2. Namely a matrix bialgebra M(p) – associated to
an element p ∈ End(V ⊗ V) with minimal polynomial of degree two –
cannot have the appropriate Hilbert-series implied by the above proper-
ties, without being a Hecke-type FRT-bialgebra.

One of these favorable properties is the existence of a Poincaré-Birkhoff-
Witt basis. For a Hecke-type FRT-bialgebra M(R̂) this property holds,
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assuming q is not a third root of unity and the corresponding symmetric
and exterior algebras have compatible PBW-bases (see Theorem 3 in [Su]).

In Theorem 2.2.2 we show that a matrix bialgebraM(p) for an idempo-
tent element p (with natural assumptions on certain dimensions) can have
Hilbert-series (1− t)−n2

only if 1 + bp satisfies the Yang-Baxter equation
for some b 6= 0,−1 that is not a third root of unity. In Theorem 2.3.2 we
show a similar result for the case p2 = 0. Note that if the minimal polyno-
mial of p has degree two then we may assume that either p2 = p or p2 = 0.
The methods applied in the proofs are based on the representation theory
of some serial and biserial algebras.

A weaker property of a quadratic graded algebra, compared to the ex-
istence of a PBW-basis, is the Koszul property. It was a question of Manin
to characterize Koszul matrix bialgebras associated to orthogonal idem-
potent elements in End(V ⊗ V) over C (see Section VI/6. and Problem
IX/12. in [Man]). By Theorem 2.5 in [Hai1] it is known that a Hecke-type
FRT-bialgebra is Koszul, assuming q is not a root of unity. In Theorem
2.5.3 we give a more general, partial characterization of the Koszul prop-
erty, in the presence of rank-related assumptions.

In both of the above cases, the idea in the background is to compare the
representation theoretical decomposition of V⊗d over the dual bialgebra
of M(p) to its classical decomposition over the symmetric group (for
d = 3 and 4, respectively). In Section 2.4 we show how this comparison
can help to give upper bounds on the coefficients of the Hilbert series of
the bialgebras for arbitrary d.

In Chapter 3 we discuss the 2-dimensional case and a motivating ex-
ample. Originally our objective was to check a conjecture in [Ta] stating
that the quantum orthogonal bialgebra M̃+

q (n) has a Poincaré-Birkhoff-
Witt basis (for n = 3 it is claimed to hold). The bialgebra is obtained by
a modification of a (non-Hecke type) FRT-bialgebra so that it is a matrix
bialgebraM(p) for an idempotent element p.

For n = 3 the algebra is defined by 9 generators and 36 quadratic
relations, hence using a computer algebra system it is possible but not
really enlightening to compute the first few terms of its Hilbert series. It
turns out that M̃+

q (n) does not have a Poincaré-Birkhoff-Witt basis even
for n = 3 (see Section 3.2). The above theorems show that it is not a
coincidence, but is equivalent to the fact that M̃+

q (n) cannot be defined as
Hecke-type FRT-bialgebra.

An alternative motivation is the recent activity in search of quantum Pn

spaces (see [ZZ]), which are Artin-Schelter regular algebras of global di-
mension n with Hilbert series (1− t)−n. Generalizing the fact thatOq(Mn)
is a quantum projective space of dimension n2, a possible source for fur-
ther examples could be matrix bialgebras. The above results can be inter-
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preted as no-go theorems in the direction that any matrix bialgebra with
the appropriate Hilbert series must be a Hecke-type FRT-bialgebra.

In Chapter 4 (based on [Me1]) we deal with the most classical ma-
trix bialgebras and its variants, namely, the quantized coordinate rings
Oq(Mn), Oq(SLn) and Oq(GLn) of n× n matrices, the special linear group
and the general linear group, respectively (see [BG],[FRT],[PW]). In this
case we assume that the base field is C and q ∈ C× is not a root of unity.
These algebras are under active research, certain fundamental properties
of them were described only recently (see for example [Ya1]).

In [DL1] M. Domokos and T. Lenagan determined generators for the
subalgebra of cocommutative elements Oq(GLn)coc in Oq(GLn) with q be-
ing not a root of unity. Their proof was based on the observation that
these are exactly the invariants of some quantum analog of the conju-
gation action of GLn on O(GLn) which may be called modified adjoint
coaction. It turned out that this ring of invariants is basically the same as
in the classical setting, namely it is a polynomial ring generated by the
quantum versions of the trace functions (see Subsec. 4.2.2).

The correspondence between Oq(GLn)coc and O(GLn)coc does not stop
on the level of their algebra structure. In [AY] A. Aizenbud and O. Yacobi
proved the quantum analog of Kostant’s theorem stating that Oq(Mn) is
a free module over the ring of invariants under the adjoint coaction of
Oq(GLn), provided that q is not a root of unity. Hence the description of
Oq(GLn) as a module over Oq(GLn)coc is available. The classical theorem
of Kostant can be interpreted as the q = 1 case of this result.

In Theorem 4.1.1 we show another strong relation: Oq(GLn)coc is a
maximal commutative subalgebra in Oq(GLn), and similarly for Oq(Mn)
andOq(SLn). In fact we show a stronger statement, Theorem 4.1.2, stating
that the centralizer of the cocommutative element σ1 is Oq(GLn)coc and
similarly for the other two cases.

The maximal commutative property of this subalgebra is a genuinely
noncommutative aspect, it does not hold if q = 1 and neither if q is
a root of unity. On first sight the phenomenon seems to have no com-
mutative counterpart. In Chapter 5 (based on [Me2]) we show that this
is not the case. We consider the semiclassical limit Poisson algebras of
the quantized coordinate rings (see Subsec. 5.2.5). These Poisson alge-
bras received considerable attention recently, among other things because
of the connection between the primitive ideals of the quantized coordi-
nate ring Oq(SLn) and the symplectic leaves of the Poisson manifold
SLn (see [Go],[HL2],[Ya2]). In Theorem 5.1.1 we show that the Poisson-
subalgebras of cocommutative elements in each Poisson-algebras form
maximal Poisson-commutative subalgebras. The arguments are based on
the ideas of Chapter 4.
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1
P R E L I M I N A R I E S

1.1 C O N V E N T I O N S

Throughout the thesis, we work over an algebraically closed field k of
characteristic zero. The set N includes 0, and N+ does not. The Kronecker
delta δa,b is one if a = b and zero otherwise. Let us collect some linear
algebraic notations and conventions we apply.

For a k-vector space V, we denote its k-dimension by dim V, its dual vec-
tor space by V∨, and the k-algebra of its linear endomorphisms by End(V).
Direct sums, kernels, images and cokernels of maps are denoted as usual,
suppressing the base field from the notation. By Vect f we denote the cat-
egory of finite-dimensional vector spaces over the field k.

Tensor products U ⊗V and V⊗d (for vector spaces U, V and d ∈ N) are
also understood over k unless it is explicitly written. To simplify notations,
if dim V < ∞, the standard algebra identifications

End(V)⊗d ∼=−→ End(V⊗d) (d ∈N) (1.1)

a1 ⊗ . . .⊗ ad 7→ (v1 ⊗ . . .⊗ vd 7→ a1(v1)⊗ . . .⊗ ad(vd))

are used without further mention. On the other hand, the transpose (or
dualization) algebra anti-isomorphism ∨ : End(V) → End(V∨) and the
vector space isomorphism φ : End(V)→ End(V)∨ given by φ(a) = (b 7→
Trace(ab)) will be explicit, since in the presence of a bilinear form on V,
there may be non-equivalent identifications among these spaces. The rank
of a ∈ End(V) is denoted by rk(a).

We will use the following standard indexing notations. For indexing a
basis of a (finite-dimensional) vector space V, we typically use subscripts
as v1, . . . , vn, while for indexing the dual basis f 1, . . . , f n ∈ V∨ we use
superscripts. Compatibly with the usual isomorphism V⊗V∨ → End(V),
v⊗ f 7→

(
w 7→ v f (w)

)
we denote by ej

i ∈ End(V) the image of vi ⊗ f j.
To be compatible also with the Einstein summation convention (though

we will not omit summation signs), the coordinates of an endomorphism
ϕ ∈ End(V) are denoted as ϕ = ∑i,j ri

je
j
i for some ri

j ∈ k. Hence if we
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preliminaries

write elements of V as column vectors, elements of V∨ as row vectors,
and use matrix-vector multiplication from the left, then ri

j appears in the
i-th row and j-th column in the matrix [ϕ].

By an algebra, we always mean a unital, associative k-algebra. By k〈H〉
(resp. k[H]) we denote the free (resp. free commutative) unital algebra
over the alphabet H. Modules of k-algebras are understood as unital
left modules, unless it is stated otherwise explicitly. For an algebra A,
the abelian category of left A-modules (resp. finite-dimensional left A-
modules) is denoted by A−Mod (resp. A−Mod f ). For an A-module M
with structure map ρ : A→ End(M) and an element a ∈ A we may write
KerM(a) instead of Ker(ρ(a)) (and similarly for Im). If ϕ : A→ B is a mor-
phism of algebras then the restriction functor Resϕ : B−Mod→ A−Mod
is defined on an object M ∈ B−Mod as a · m = ϕ(a)m for each m ∈ M
and a ∈ A.

Similarly, by a k-coalgebra, we mean a k-vector space C endowed with a
coassociative comultiplication ∆ that is counital with respect to the counit
ε. In details, the linear maps ∆ : C → C⊗ C and ε : A→ k have to satisfy
both (id ⊗ ∆) ◦ ∆ = (∆ ⊗ id) ◦ ∆ and (ε ⊗ id) ◦ ∆ = id = (id ⊗ ε) ◦ ∆.
A right comodule of a k-coalgebra C is defined as a vector space W with
a linear map ρ : W → W ⊗ C such that (ρ ⊗ idC) ◦ ρ = (idW ⊗ ∆) ◦
ρ. Morphisms, kernel and quotients of these structures can be defined
suitably (see Ch. 2 in [Rad]). The kernel of a morphism of coalgebras is
called a coideal, that is, a subspace I ⊆ C such that ∆(I) ⊆ I ⊗ C + C⊗ I.

As the combination of the notions of algebra and coalgebra, we de-
fine a k-bialgebra as a k-vector space A endowed with both a (unital, as-
sociative) k-algebra structure, and a (counital, coassociative) k-coalgebra
structure, such that for all a, b ∈ A, ∆(ab) = ∆(a)∆(b), ε(ab) = ε(a)ε(b),
∆(1A) = 1A⊗A and ε(1A) = 1k. In short, ∆ and ε are k-algebra morphisms.
Morphisms of bialgebras are defined as algebra morphisms that are coal-
gebra morphisms. Kernels of these are called biideals, ideals that are also
coideals.

1.2 G R A D E D A L G E B R A S

For a monoid (i.e. unital semigroup) S and a k-algebra A, A is S-
graded if there is a fixed decomposition A =

⊕
s∈S As for some subspaces

{As | s ∈ S} such that As · At ⊆ Ast for all s, t ∈ S . Similarly, for an
S-graded algebra A, an A-module M is S-graded, if AsMt ⊆ Mst for all
s, t ∈ S .

In the following, unless stated explicitly, by a graded algebra A we mean
an N-graded algebra, equivalently, a Z-graded algebra with Ai = 0 for
i < 0. Similarly, if A is a graded algebra, then graded A-module is a short-
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1.2 graded algebras

hand for Z-graded A-module. The Hilbert series of a graded algebra is
defined as H(A, t) = ∑∞

d=0(dim Ad)td.
The most elementary graded algebra we use is the (unital) tensor algebra

T (V) =
⊕
d∈N

V⊗d

with tensor product w · w′ := w ⊗ w′ as the multiplication for w, w′ ∈
T (V). It has a natural graded algebra structure given by the above direct
sum decomposition. The tensor algebra is universal in the sense that for
any algebra A, every linear map V → A extends to a unique algebra
morphism T (V)→ A.

Definition 1.2.1. A graded algebra A is called quadratic if the natural em-
bedding A1 ↪→ A extended to p : T (A1) → A is surjective and the
two-sided ideal generated by Ker(p) ∩ A2 is Ker(p).

Equivalently, a quadratic algebra is of the form T (V)/(Rel) for some
vector space V and a subspace Rel ⊆ V⊗2, inheriting the grading from
T (V). Define the quadratic dual A! of a quadratic algebra A = T (V)/(Rel)
as

A! := T (V∨)/(Relo)

where Relo = { f ∈ V∨ | f (r) = 0 (∀r ∈ Rel)}.
One of the most studied subclasses of quadratic algebras is the class

of Koszul algebras. An algebra A is called Koszul if and only if the nat-
ural embedding A! ↪→ ExtA(k,k) is an isomorphism (for further details,
see [PP]). By Corollary 2.2 in Ch. 2 of [PP], a necessary condition for an
algebra A to be Koszul is that it is numerically Koszul i.e.

H(A!,−t)H(A, t) = 1

where H(A, t) is the Hilbert series of A. More explicitly, A is numerically
Koszul if and only if

d

∑
k=0

(−1)k dim A!
k dim Ad−k = 0 (1.2)

for all d ≥ 1. Note that if A is quadratic, then for 1 ≤ d ≤ 3, Eq. 1.2 always
holds (see Sec. 2.4 in [PP]).

1.2.1 PBW-basis

Assume that n := dim V < ∞ and fix a basis B = {v1, . . . , vn} in V. In
this subsection, we suppress the tensor signs when writing elements of
V⊗d for some d ∈N. The definitions agree with those used in [PP].
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preliminaries

Define the degree-lexicographic ordering on the set of monomials

Mon(B) := {vi1 . . . vid ∈ T (V) | 1 ≤ i1, . . . , id ≤ n, d ∈N}

as vi1 . . . vid <deglex vi1 . . . vie if and only if d < e or d = e and there is a
k ≤ d such that (i1, . . . , ik−1) = (j1, . . . , jk−1) and ik < jk. Note that <deglex
is a semigroup ordering, i.e. m <deglex m′ implies smt <deglex sm′t for all
m, m′, s, t ∈ Mon(B). Moreover, <deglex is a well-ordering i.e. any subset
of monomials has a minimal element.

With the purpose of defining the PBW-property of a quadratic algebra
A = T (V)/I, consider the set of quadratic monomials that cannot be
written as a linear combination of smaller monomials modulo I:

S(2) :=
{

vivj ∈ Mon(B) | vivj /∈
(

I2 + Span(vkvl | vkvl <deglex vivj)
)}

and define the set of all monomials that cannot be written as a linear
combination of smaller monomials using relations in I2:

S :=
{

vi1 . . . vid ∈ Mon(B) | vij vij+1 ∈ S(2), ∀j ≤ d− 1
}

.

Then S is a k-vector space generating system of A. Indeed, if vi1 . . . vid ∈
Mon(B)\S then it can be expressed modulo I, as a linear combination of
monomials smaller with respect to <deglex, using that <deglex is a semi-
group ordering. As <deglex is a well-ordering and T (V) is spanned by
Mon(B), we obtain that S is indeed a k-vector space generating system.

The quadratic algebra A is called a PBW-algebra (or said to have a PBW-
basis), if S is independent, i.e. it is a k-basis of A.

Following [Su], we say that A has a polynomial (resp. exterior) order-
ing algorithm with respect to <deglex if S(2) ⊆ {vivj | i ≤ j} (resp. S(2) ⊆
{vivj | i < j}). In this case, for all d ∈N, dim Ad is at most dim Sym(V)d =

(n+d−1
d ) (resp. dim Λ(V)d = (n

d)), since the generating system S consists
of the ordered (resp. strictly ordered) monomials.

Assuming that A has a polynomial (resp. exterior) ordering algorithm,
it is called a polynomial (resp. exterior) PBW-algebra, if it is a PBW-algebra,
or equivalently, if dim Ad equals dim Sym(V)d (resp. dim Λ(V)d) for all
d ∈N.

Remark 1.2.2. In the terminology of Gröbner bases (see [Mo]), an algebra
A = T (V)/I is a PBW-algebra if and only if the reduced Gröbner basis
of I with respect to <deglex consists of quadratic elements.

Set the leading monomial lm(g) = m ∈ Mon(B) if g = cm + ∑i cimi for
some mi ∈ Mon(B), c, ci ∈ k such that c 6= 0 and mi <deglex m for all i. A
subset G of an ideal I C T (V) is a (noncommutative) Gröbner basis, if

lm(G) :=
(
lm(g) | g ∈ G

)
=
(
lm(r) | r ∈ I

)
=: lm(I)
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1.2 graded algebras

A Gröbner basis G is called reduced, if for each g ∈ G, c = 1 in the above
definition (i.e. g is monic), moreover,

g− lm(g) ∈ Span
(
m ∈ Mon(B) | m ∈ lm(G)

)
and lm(G) is an irredundant basis of lm(I).

Lemma 1.2.3. A quadratic algebra A = T (V)/I has a polynomial ordering
algorithm if and only if for each i > j

vivj ∈ I2 + Span(vkvl | vk < vi, vk ≤ vl) (1.3)

Similarly, A has an exterior ordering algorithm if and only if for each i ≥ j

vivj ∈ I2 + Span(vkvl | vk < vi, vk < vl) (1.4)

Note that the right hand sides do not depend on j.

Proof. It is clear that if Eq. 1.3 (resp. 1.4) holds then {vivj | i > j} ⊆
Mon(B)\S(2) (resp. same with i ≥ j) as vk < vi implies vkvl <deglex
vivj. Conversely, assume that A has a polynomial (resp. exterior) ordering
algorithm. Then for all i > j (resp. i ≥ j)

I2 + Span(vkvl | vkvl <deglex vivj) =

= I2 + Span(vkvl | vkvl <deglex vivj, vk ≤ vl)

(resp. the same with vk < vl). Indeed, each vkvl such that vkvl <deglex vivj

can be written modulo I2 as a sum of monomials in S(2) ⊆ {vivj | i ≤ j}
(resp. i < j) that are also smaller than vivj. Moreover, we claim that it is

= I2 + Span(vkvl | vk < vi, vk ≤ vl)

(resp. the same with vk < vl) independently of j. Indeed, ⊇ is clear. For
the converse, assume that vk = vi, vl < vj and vk ≤ vl (resp. vk < vl).
Then vi = vk ≤ vl < vj < vi by i > j (resp. vi = vk < vl < vj ≤ vi by
i ≥ j), but that is a contradiction.

From the Diamond Lemma (see Appendix I.11 in [BG] or Theorem 2.1
in Chapter 4 of [PP]) one may deduce the following well-known fact:

Fact 1.2.4. A quadratic algebra A = T (V)/I with a polynomial (resp. exterior)
ordering algorithm is a polynomial (resp. exterior) PBW-algebra if and only if
dim(A3) equals (n+2

3 ) (resp. (n
3)), where n = dim V.

In the proof of Cor. 2.2.4, we will use the following lemma, that is
implicit in the proof of Thm. 4.1 in Ch 4 of [PP].

Lemma 1.2.5. Let v1, . . . , vn be a basis of V and assume that A = T (V)/I has
an exterior ordering algorithm with respect to <deglex. Then A! has a polynomial
ordering algorithm with respect to the degree-lexicographic ordering correspond-
ing to the reversely ordered basis vn, vn−1, . . . , v1.
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preliminaries

1.3 F I N I T E - D I M E N S I O N A L A L G E B R A S

In the following, by a quiver we mean a finite, oriented graph Q with
vertex set V(Q) and set of arrows (i.e. directed edges) A(Q). A finite-
dimensional k-representation ρ : Q→ Vect f of Q is a map that associates a
finite-dimensional k-vector space ρ(v) to each v ∈ V(Q), and a linear map
ρ(α) : ρ(sα) → ρ(tα) to each arrow α : sα → tα in A(Q). The category of
finite-dimensional k-representations of Q is denoted by rep(Q) (following
the notation of [SS]).

It is well-known that there is an equivalence between k-representations
of Q, and (left) modules of the path algebra of Q:

kQ := k
〈
v, α

∣∣ v ∈ V(Q), α ∈ A(Q)
〉/

(
v2 − v, 1− ∑

v∈V(Q)

v, αv− δv,sα α, vα− δv,tα α, α2α1

∣∣∣
v ∈ V(Q), α, α1, α2 ∈ A(Q), α : sα → tα, tα1 6= sα2

)
In other words, kQ is spanned by the directed paths in Q, using concate-
nation of paths as multiplication. Note that sometimes kQ is defined in
the opposite way (with vα − δv,sα α and so on), in that case the equiva-
lence holds for right modules. For further details about representations
of quivers, one may consult [SS].

1.3.1 Representations theory of the four subspace quiver

Let S4 be the so-called four subspace quiver, i.e. the quiver with vertices
labeled by 0, 1, 2, 3, 4 and one arrow pointing to 0 from all other vertices.
This is a Euclidean quiver i.e. the underlying graph is extended Dynkin of
type D̃4. The indecomposable finite-dimensional k-representations of S4
over an algebraically closed field were first described in [GP]. A complete
description of these representations may be found in [MZ].

The defect ∂(ρ) of a finite-dimensional k-representation ρ of S4 is de-
fined as

∂(ρ) := −2 dim ρ(0) +
4

∑
j=1

dim ρ(j)

It is well-known that a finite-dimensional indecomposable representation
ρ of S4 is regular (resp preinjective, resp. postprojective) if and only if
∂(ρ) = 0 (resp. > 0, resp. < 0), see Corollary 3.5 and 3.8 in Chapter XIII.
of [SS]. In particular, if an indecomposable representation ρ has dim ρ(i)+
dim ρ(i + 2) = dim ρ(0) for i = 1, 2 then it is regular.
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1.3 finite-dimensional algebras

By Theorem XIII.3.13 in [SS], the category addR(S4) of regular repre-
sentations of S4 decomposes as

addR(S4) =
⊕

λ∈P1

addTλ (1.5)

as an abelian category. A representative for the isomorphism class of each
indecomposable module in Tλ can be given as follows (by the Appendix
of [MZ]).

For λ /∈ {0, 1, ∞} and m ∈ N+ define the representation ρ := R(λ)[m]
as ρ(0) = k2m with a basis e1, . . . , e2m (and e0 := 0 to simplify notation)
together with the sequence of subspaces

ρ(1) = Span(ek | 1 ≤ k ≤ m)

ρ(2) = Span(em+k | 1 ≤ k ≤ m)

ρ(3) = Span(ek + em+k | 1 ≤ k ≤ m)

ρ(4) = Span(ek−1 +
1

1− λ
ek + em+k | 1 ≤ k ≤ m)

and the arrows of S4 are mapped to the corresponding embeddings. The
coefficient is defined as 1

1−λ instead of λ to keep compatibility with Sub-
sec. 2.2.2.

For κ ∈ {0, 1, ∞}, i = 1, 2 and m ∈ N+, define ρ := R(κ)
i [2m] as follows.

Let σ ∈ Sym({1, 2, 3, 4}) be the permutation given by the following table:

κ 0 0 1 1 ∞ ∞

i 1 2 1 2 1 2

σ (23) (14) (34) (12) (12)(34) id

Let ρ(0) = k2m and

ρ
(
σ(1)

)
= Span

(
ek | 1 ≤ k ≤ m

)
ρ
(
σ(2)

)
= Span

(
em+k | 1 ≤ k ≤ m

)
ρ
(
σ(3)

)
= Span

(
ek + em+k | 1 ≤ k ≤ m

)
ρ
(
σ(4)

)
= Span

(
ek−1 + em+k | 1 ≤ k ≤ m

)
and the arrows are mapped to the corresponding embeddings. For κ ∈
{0, 1, ∞}, i = 1, 2 and m ∈ N+, define R(κ)

3−i[2m − 1] as the quotient of

R(κ)
i [2m] by the subrepresentation given by ρ′(0) = kem+1 and ρ′(j) =

ρ(j) ∩ kem+1 for j = 1, 2, 3, 4.
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preliminaries

1.3.2 Modules over biserial algebras

In this subsection we discuss the module theory of special biserial alge-
bra (based on [WW]), that we will apply in Section 2.2 and 2.3.

The notion of path-algebra can be generalized to include relations as
follows. Let Q be a (finite) quiver, and consider the path-algebra kQ. An
ideal I C kQ is called admissible, if there is an m ≥ 2 such that Rm ⊆ I ⊆
R2, where R = (α | α ∈ A(Q)). (If Q is acyclic and hence kQ is finite-
dimensional, then R is the Jacobson-radical of kQ.) A finite-dimensional
algebra A is a bound quiver algebra if it is isomorphic to an algebra quotient
of the path-algebra kQ of a finite quiver Q with an admissible ideal I. In
the following, we suppress this (non-unique choice of) isomorphism and
identify A with kQ/I.

A well-understood subclass of bound quiver algebras is the class of
special biserial algebras (see [WW]) defined as follows: for each v ∈ V(Q),
there are at most two arrows α1, α2 ∈ A(Q) that touch v, moreover, for
each α1 ∈ A(Q) there is at most one arrow α2 (resp. α3) such that α1α2 /∈ I
(resp. α3α1 /∈ I). For our investigations, it is enough to restrict ourselves to
monomial algebras, i.e. where I is generated by monomials of the arrows.

Following [WW], we may describe the isomorphism types of finite-
dimensional indecomposable modules of a monomial special biserial al-
gebra as follows. Let us call a quiver L a walk-quiver, if the underlying
undirected graph of L is a path-graph i.e. non-empty connected graph
without cycles and loops, with degrees at most two at each vertex.

For a given bound quiver algebra kQ/I, let us define a V-sequence as
a quiver-homomorphism (directed graph-homomorphism) v : L → Q
where L is a walk-quiver, moreover,

• if • β1← • · · · • βr← • is a directed path in L, then v(β1) . . . v(βr) /∈ I,
and

• if β1 6= β2 are distinct arrows in L such that either their sources or
their targets agree, then v(β1) 6= v(β2).

Similarly, let us call Z a tour-quiver, if Z is not a directed cycle, but the
underlying undirected graph of Z a cycle-graph i.e. connected graph with-
out loops on at least two vertices with all vertices of undirected degree
two.

Let us define a primitive V-sequence as a quiver-homomorphism u : Z →
Q where Z is a tour-quiver, moreover,

• if • β1← • · · · • βr← • is a directed path in Z, then u(β1) . . . u(βr) /∈ I,

• if β1 6= β2 are distinct arrows in Z such that either their sources or
their targets agree, then u(β1) 6= u(β2), and
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1.3 finite-dimensional algebras

• there is no quiver-automorphism σ 6= id of Z such that u ◦ σ = u.

Given a quiver homomorphism h : X → Q and a representation ρ of X,
we may induce a representation Fhρ of Q as follows:

(Fhρ)(y) :=
⊕

h(x)=y

ρ(x)
(
y ∈ V(Q)

)
(Fhρ)(α) :=

⊕
h(β)=α

ρ(β)
(
α ∈ A(Q)

)
Note that Fh commutes with direct sum of representations. (In fact Fh can
be extended to an additive functor.)

For a walk-quiver L there is a unique (up to isomorphism) faithful
indecomposable representation L of L:

L(x) = k (x ∈ V(L))
L(β) = idk (β ∈ A(L))

For a tour-quiver Z, m ∈ N+, λ ∈ k× and β0 ∈ A(Z) we may define a
faithful indecomposable representation Z(m, λ, β0) of Z as

Z(m, λ, β0)(x) = km (x ∈ V(Z))
Z(m, λ, β0)(β) = idkm (β ∈ A(Z)\{β0})

Z(m, λ, β0)(β0) = Jm(λ) =


λ 1 0

. . . . . .
. . . 1

0 λ


where Jm(λ) is the Jordan block of rank m with eigenvalue λ. One may
observe that if β0, β1 ∈ A(Z) then

Z(m, λ, β0) ∼= Z(m, λε(β0,β1), β1)

where ε(β0, β1) = 1 if β0 and β1 have the same orientation along the circle,
and ε(β0, β1) = −1 if they have opposite orientations.

Given a V-sequence v : L→ Q (resp. primitive V-sequence u : Z → Q),
we may define representations of Q as

M(v) := FvL M(u, m, λ, β0) := FuZ(m, λ, β0)

Then (suitable modification of) Prop. 2.3 in [WW] claims the following.

Proposition 1.3.1. Let kQ/I be a monomial special biserial algebra. Then M(v)
and M(u, n, λ, β0) are all indecomposable representations of Q, annihilated by I.
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preliminaries

Conversely, any indecomposable representation of Q annihilated by I is isomor-
phic to one of the above representations.

Moreover, the list is irredundant in the sense, that no representation M(v) is
isomorphic to M(u, n, λ, β0); for some V-sequences v : L→ Q and v′ : L′ → Q,
we have M(v) ∼= M(v′) if and only if there is a quiver-isomorphism σ : L→ L′

such that v′ = v ◦ σ; and for any primitive V-sequences u : Z → Q and
u : Z′ → Q, M(u, n, λ, β0) is isomorphic to M(u′, n′, λ′, β′0) if and only if
n = n′, and there is a quiver-isomorphism σ : Z → Z′ such that u′ = u ◦ σ and
λ′ = λ · ε(σ(β0), β′0).

Let L be a walk-graph. Let us call an induced directed subgraph H ⊆ L
a source subgraph (resp. sink subgraph), if there is no arrow from the com-
plement of H to H (resp. from H to the complement). Such a subgraph is
called connected, if the underlying undirected graph is connected.

Proposition 1.3.2. Let L and L′ be walk-quivers and v : L→ Q and v′ : L′ →
Q be V-sequences of the bound quiver algebra kQ/I. Then

dim HomkQ/I
(
M(v), M(v′)

)
= |{ f : H → H′ quiver-isomorphism |
H ⊆ L is a connected source subgraph,
H′ ⊆ L′ is a sink subgraph, v′ ◦ f = v}|

The proof of the claim is the same as of Lemma 4.2 in [WW].

1.3.3 Norm-square on monoids

In Section 2.4, we will need the following observations on the notion of
norm-square defined on commutative monoids.

Recall that for a commutative monoid S (i.e. a commutative unital
semigroup, which we will denote additively), a non-invertible element
a ∈ S is called an atom if a = b + c implies that b or c is invertible. A
monoid is called atomic, if every non-invertible element can be written as
a sum of finitely many atoms. The monoid is factorial if it is isomorphic
to N[I] := N⊕I for some set I.

Denote by A(S) (resp. S×) the set of atoms (resp. invertible elements)
in S . Define the norm-square of an s ∈ S as

NS(s) := sup
(

∑
a∈A(S)

k2
a

∣∣∣ ∑
a∈A(S)

kaa = s
)

(1.6)

using the convention that sup(∅) = −∞. Note that s 7→ NS(s)
1
2 is not

a norm in the sense that it satisfies neither subadditivity, nor absolute
homogeneity, in general. On the other hand, for a factorial monoids, it
agrees with the usual notion of norm-square, hence the name.
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1.3 finite-dimensional algebras

Lemma 1.3.3. Let ϕ : S → S ′ be a homomorphism of atomic monoids such that
ϕ−1((S ′)×) ⊆ S×. Then for any s ∈ S one has NS(s) ≤ NS ′

(
ϕ(s)

)
.

Moreover, if S and S ′ are factorial then NS(s) = NS ′
(

ϕ(s)
)

if and only if
the restriction of ϕ to {a ∈ A(S) | ∃b ∈ S , s = a + b} is injective into A(S ′).

Proof. If s is invertible in S then both sides of the inequality are −∞,
hence we may assume this is not the case. As S is atomic, s = ∑a∈A kaa
for some finite subset A ⊆ A(S), ka ∈ N+. As S ′ is also atomic, for any
a ∈ A(S ′) – using that ϕ(a) is not invertible by the assumption, – we may
decompose

ϕ(a) = ∑
b∈Ba

la,bb

for some nonempty finite subsets Ba ⊆ A(S ′) and la,b ∈N+ for all b ∈ Ba.
Then

ϕ(s) = ∑
a∈A

ka ∑
b∈Ba

la,bb = ∑
b∈∪aBa

(
∑

a: Ba3b
kala,b

)
b

Hence

NS ′
(

ϕ(s)
)
≥ ∑

b∈∪aBa

(
∑

a: Ba3b
kala,b

)2

≥ ∑
b∈∪aBa

∑
a: Ba3b

k2
a ≥ ∑

a∈A
k2

a

by la,b ≥ 1 and Ba 6= ∅.
The second and third inequalities are satisfied with equality if and only

if la,b = 1 for all b ∈ BA, a ∈ A, and {Ba | a ∈ A} consists of disjoint
one-element sets, i.e. ϕ injects A into A(S ′). Hence the “only if” part
of the equality statement holds using that S is atomic, even without the
assumption that S and S ′ are factorial.

Conversely, assume that s ∈ S = N[I], S ′ = N[J] and that for all
i ∈ Is := {k ∈ I | sk > 0} we have ϕ(ei) = eji for some ji ∈ J. Then
ϕ restricted to N[Is] ⊆ N[I] is induced by an injective map ϕ′ : Is → J.
In particular, ϕ restricted to N[Is] is an isomorphism onto N[ϕ′(Is)], and
hence

NS(s) = NN[Is](s) = NN[ϕ′(Is)](ϕ(s)) = NS ′(ϕ(s))

so the claim follows.

1.3.4 Endomorphisms

The monoids we will encounter in Sec. 2.4 are typically monoids of
modules in the following sense.

Let R be a k-algebra, and denote by Indec f (R) (resp. Irr f (R)) the set
of isomorphism classes of finite-dimensional, indecomposable (resp. sim-
ple) R-modules. Then N[Indec f (R)] can be identified with the commuta-
tive monoid of the isomorphism classes of finite-dimensional R-modules
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preliminaries

under direct sum. Similarly, its submonoid N[Irr f (R)] is the monoid of
semisimple finitely-dimensional R-modules.

Let us define the monoid homomorphism

N[Indec f (R)]→N[Irr f (R)] M 7→ Mss :=
⊕

S∈Irr f (R)

S[M:S]

where the composition multiplicity [M : S] is defined as

[M : S] := dim HomR(QS, M
)

(1.7)

for the projective cover QS of S ∈ Irr f (R). In other words, Mss is the
semisimple R-module such that [M : S] = [Mss : S] for all S ∈ Irr f (R). In
fact M 7→ Mss is additive on short exact sequences, but we will not need
this property.

The goal of defining Mss is to give a simple bound on dim EndR(M) as
follows.

Lemma 1.3.4. For a finite-dimensional R-module M,

dim EndR(M) ≤ dim EndR(Mss)

with equality if and only if M is semisimple.

Proof. Let N be a maximal proper submodule of M and take S := M/N.
By the left-exactness of the co- and contravariant Hom-functors,

dim EndR(M) ≤ dim HomR(S, M) + dim HomR(N, M) ≤

≤ ∑
X,Y∈{N,S}

dim HomR(X, Y) = dim HomR(S⊕ N, S⊕ N)

Hence the inequality follows by induction on the length of M.
If M is semisimple then there is clearly an equality in the statement.

Conversely, if M is not semisimple, take a maximal proper submodule N
that contains the socle of M. Then HomR(S, M) = HomR(S, N) hence we
may repeat the previous inequality without the term dim HomR(S, S) = 1
on the right hand side.

Note that the term on the right hand side of the lemma can be ex-
pressed as

dim EndR(Mss) = ∑
S∈Irr(R)

[M : S]2 = NS(Mss) (1.8)

where S = N[Irr f (R)]. Indeed, the first equality follows by the Schur
lemma, as k is assumed to be algebraically closed and dim M is finite.
The second equality is by the definition of NS .

For M ∈ S = N[Indec f (R)], we have NS(M) < dim EndR(M), if M ∈
S is not semisimple. In particular, Lemma 1.3.4 does not follow from
Lemma 1.3.3.
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1.4 monoidal categories

Remark 1.3.5. In general, M 7→ (dim EndR(M))
1
2 is not necessarily a norm

on R[Indec f (R)], or equivalently, the bilinear extension of (M, N) 7→
1
2(dim Hom(M, N)+dim Hom(N, M)) is not necessarily positive definite.

1.4 M O N O I D A L C AT E G O R I E S

The topic of Hopf algebras and quantum groups is closely connected
to the theory of monoidal categories. Here, we list the definitions used in
the next chapter, following the conventions of [EGNO].

In this work, a category C is always assumed to be additive and k-linear
i.e. C has a zero object 0, finite direct sums, and for every x, y ∈ C,
Hom(x, y) is endowed with a fixed k-vector space structure such that
composition of morphisms is k-linear. Similarly, a functor F is assumed
to be k-linear, i.e. F( f + g) = F( f ) + F(g) and F(c f ) = cF( f ) for any
f , g ∈ Hom(x, y) and c ∈ k. For further standard definitions, including
kernel, cokernel, exact functor, length of an object, abelian category, and
monoidal category, see [EGNO].

1.4.1 Tensor bialgebra

Let V be a finite-dimensional k-vector space. Now we define a coalge-
bra structure on T (E) where E := End(V), that we will use in Def. 2.1.1.
Recall that T (E) is a graded algebra by Sec. 1.2.

First, consider the comultiplication on E defined as

∆(a) := τ(12) ◦ (a⊗ id) = (id⊗ a) ◦ τ(12) (a ∈ E) (1.9)

where E⊗2 ∼= End(V⊗2) by Eq. 1.1, and τ(12)(u⊗ v) = v⊗ u for u, v ∈ V.
Note that E is coassociative as

((∆⊗ id) ◦∆)(a) = (id⊗ τ(12))(id⊗ a⊗ id)(τ(12)⊗ id) = ((id⊗∆) ◦∆)(a)

and counital with counit ε(a) = Trace(a).
More explicitly, using the notation of Sec. 1.1, let v1, . . . , vn ∈ V be a

basis of V and hence {ej
i | 1 ≤ i, j ≤ n} is a basis in E, where ej

i(vk) = δj,kvi
for all i, j, k. The coproduct can be expressed as

∆(ek
i ) = τ(12) ◦

(
ek

i ⊗
n

∑
j=1

ej
j

)
=

n

∑
j=1

ek
j ⊗ ej

i

Remark 1.4.1. Using the above definition of ∆, the map φ : End(V) → E∨

given by φ(a) = (b 7→ Trace(ab)) gives an algebra isomorphism between
End(V) endowed with composition and E∨ with the multiplication ∆∨.
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preliminaries

Indeed, denoting the dual basis of {ej
i ∈ E | i, j ≤ n} by { f i

j ∈ E∨ | i, j ≤
n} (note that the indexes are switched), we obtain φ(ej

i) = f j
i by φ(ej

i)(e
i
j) =

Trace(ej
ie

i
j) = 1. On the other hand, ∆∨( f j

k ⊗ f i
l ) = δj,l f i

k, analogously to

ej
k · e

i
l = δj,lei

k, hence φ is indeed an algebra isomorphism. Note that the
other possible definition ∆op(a) = (a⊗ id) ◦ τ(12) would make φ an alge-
bra anti-isomorphism.

The coalgebra structure of E can be extended to the tensor algebra
T (E) with product w ·w′ := w⊗w′ such that T (E) is a bialgebra. Indeed,
by the universality of T (E) as an algebra (see Sec. 1.2), the linear maps
ε : E → k and ∆ : E → E⊗ E ↪→ T (E)⊗ T (E) extend to unique algebra
morphisms T (E) → k and T (E) → T (E)⊗ T (E), that are also denoted
by ε and ∆ by a slight abuse of notation. Since the equations (ε⊗ id) ◦∆ =
id = (id⊗ ε) ◦ ∆ and (id⊗ ∆) ◦ ∆ = (∆⊗ id) ◦ ∆ hold on E and all sides
are algebra morphisms, they hold on the whole T (E) by the uniqueness
part of the universality of T (E) as an algebra. Hence T (E) is indeed a
bialgebra.

More explicitly, for b = a1 · . . . · ad ∈ E⊗d (d ≥ 2),

∆(b) = ∆(a1) · . . . · ∆(ad) =
(
τ(12)(a1 ⊗ id)

)
· . . . ·

(
τ(12)(ad ⊗ id)

)
=

= τ(d)(a1 · . . . · ad)⊗ (id · . . . · id) = τ(d)(b⊗ idV⊗d) (1.10)

where τ(d) ∈ E⊗d ⊗ E⊗d is defined as τ(d)(u⊗ v) = v⊗ u for u, v ∈ V⊗d.
Similarly, we have ∆(b) = (idV⊗d ⊗ b)τ(d).

The tensor bialgebra is universal among bialgebras on E (also called
free bialgebra in [Rad] or free matric bialgebra in [Ta]), i.e. for any bial-
gebra B and coalgebra morphism ϕ : E → B, there is a unique bialgebra
morphism T (E) → B extending ϕ. The proof is similar to the previous
argument defining the bialgebra structure on T (E), see Theorem 5.3.1 in
[Rad].

We will also need the (right) comodule structure of V⊗d over the sub-
coalgebra E⊗d ↪→ T (E). Let w1, . . . , wnd be a basis of V⊗d, denote its dual
basis by g1, . . . , gnd

, and the corresponding matrix units u 7→ wigj(u) by
bj

i ∈ E⊗d. The comodule structure on V⊗d is defined as

ρV⊗d : wi 7−→
n

∑
j=1

wj ⊗ bj
i ∈ V⊗d ⊗ E⊗d (1.11)

for all i = 1, . . . , nd. In the case of ρV⊗d , the coordinate-free definition,
w 7→ τ(12)(w⊗ idE⊗d) where τ(12)(w⊗ (u 7→ v f (u))

)
= v⊗ (u 7→ w f (u))

would yield complicated notation, hence we omit its use.
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1.4 monoidal categories

Remark 1.4.2. If dim V = ∞ then τ(12) /∈ End(V)⊗2, hence ∆ cannot be
defined as above. Indeed, if τ(12) = ∑m

i=1 ϕi ⊗ ψi then

v⊗ u = τ(12)(u⊗ v) =

=
m

∑
i=1

ϕi(u)⊗ ψi(v) ∈ Span(ϕi(u) | i = 1, . . . , m)⊗V

in particular for fixed u, we have v ∈ Span(ϕi(u) | i = 1, . . . , m) for all v.

1.4.2 Ring categories

In Subsec. 2.1.1 we will need the following notions.

Definition 1.4.3. A ring category C (Def. 4.2.3, [EGNO]) is an abelian cat-
egory (in the sense of Def. 1.3.1, [EGNO]) with a monoidal structure (in
the sense of Def. 2.1.1, [EGNO]) such that the tensor product is a k-linear
exact functor in both arguments, x has finite length in C for all x ∈ Ob(C),
dim HomC(x, y) < ∞ for all x, y ∈ Ob(C), and dim EndC(1) = 1 for the
unit object 1.

An example is the category Vect f of finite-dimensional k-vector spaces
equipped with the usual tensor product. In Subsec. 2.1.1, we will consider
abelian monoidal subcategories D of Vect f , which are automatically ring
categories. Explicitly, an abelian monoidal subcategory D of Vect f consists of
a nonempty subclass Ob(D) ⊆ Ob(Vect f ) and k-subspaces HomD(x, y) ⊆
HomVect f (x, y) for all x, y ∈ Ob(D) such that x ∈ Ob(D) ⇒ idx ∈
D and morphisms are closed under taking compositions, finite direct
sums, kernels, cokernels and tensor products. Equivalently, the embed-
ding D ↪→ Vect f is a (k-linear) exact monoidal functor (in the sense of Def.
2.4.1, [EGNO]).

Given a bialgebra A, we may consider the ring category of fin. dim.
(right) comodules Comod f (A) (see Sec. 5.2 in [EGNO]), together with
the forgetful functor FA : Comod f (A) → Vect f mapping each comodule
(resp. morphism) to the underlying vector space (resp. map). This way
we obtain an assignment

Rep : A 7→ (Comod f (A), FA)

that is in fact functorial i.e. a bialgebra homomorphism ϕ : A → A′

induces a monoidal functor (named corestriction)

Coresϕ : Comod f (A)→ Comod f (A′)

in a composition-preserving way. Note that both FA and Coresϕ are faith-
ful and exact monoidal functors. (Calling Rep a functor would lead to size
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preliminaries

issues, as there is no class of monoidal categories with forgetful functors,
using the Von Neumann–Bernays–Gödel foundation discussed in [AHS].)

By the next proposition, Rep has a left-adjoint in the following sense:

Proposition 1.4.4 (Sec. 8, Prop. 4 in [JS]). Let C be a ring category and X : C →
Vect f a monoidal functor. Then there is a bialgebra A with the following univer-
sal property: for any bialgebra A′ and monoidal functor X′ : C → Comod f (A′)
satisfying FA′ ◦ X′ = X there is a unique bialgebra homomorphism ϕ : A→ A′

such that FA′ ◦Coresϕ = FA.

Definition 1.4.5. The universal coacting bialgebra End(X)∨ of a functor X :
C → Vect f is defined as the bialgebra A given by Prop. 1.4.4.

The bialgebra End(X)∨ (where the dual is understood as graded dual)
is unique up to unique bialgebra isomorphism, since it is defined by a
universal property. The construction of A is called the coend construction
(see Sec 1.10 in [EGNO]). By Theorem 5.4.1 in [EGNO], if X is faithful
and exact (such a functor is called a fiber functor) then C is equivalent to
Comod f (A).

The enhancement of the proposition for Hopf algebras and rigid monoidal
categories is referred as Tannaka duality, see [JS], [Sch] or [Ul].
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2
M AT R I X B I A L G E B R A S

In this chapter we define and investigate the matrix bialgebra M(p)
corresponding to a map p ∈ End(V ⊗V).

First, in Section 2.1 we collect the definitions and basic facts about
M(p) and the corresponding, dually defined Schur algebra Schd(p) and
(generalized) Hecke algebra Hd(p). Then we characterize the existence of
a PBW-basis (see Theorem 2.2.2 and Corollary 2.2.4), assuming that p is
an idempotent and polynomial-type up to degree three (see Def. 2.2.1). In
Section 2.3 we show an analogous theorem (Theorem 2.3.2) for the case
when p is nilpotent of order two, an polynomial-type up to degree three
in the sense of Def. 2.3.1.

In Section 2.4, we describe a method that can be used to bound the co-
efficients of the Hilbert series of matrix bialgebras (see Proposition 2.4.8).
In Section 2.5, assuming that p is an orthogonal projection, we partially
characterize the Koszul property of the bialgebra (see Theorem 2.5.3).

Throughout the chapter, k denotes an algebraically closed field, and V
is a fixed k-vector space of dimension n < ∞.

2.1 T H E M AT R I X B I A L G E B R A M(p)

Let E := End(V). The central object of our study is the following.

Definition 2.1.1. Let p ∈ E⊗2 ∼= End(V ⊗V), and define the algebra

M(p) := T (E)
/(

a ◦ p− p ◦ a | a ∈ E⊗2)
where T (E) denotes the tensor algebra of E (see Subsec. 1.2).

In particular,M(p) is a finitely generated quadratic algebra in the sense
of Def. 1.2.1. Note thatM(p) =M(cid + dp) by definition, for any c, d ∈
k, d 6= 0. For an alternative definition of M(p) using the RTT-relations,
see the end of Subsec. 2.1.1.

Recall from Subsec. 1.4.1 the bialgebra structure defined on T (E).

Proposition 2.1.2. M(p) is a bialgebra quotient of T (E), i.e. the ideal
(
a ◦ p−

p ◦ a | a ∈ E⊗2) is a biideal in T (E).
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matrix bialgebras

By the proposition, we call M(p) the matrix bialgebra of p. As we will
see in Subsec. 2.1.1,M(p) is isomorphic to the universal coacting bialge-
bra End(X)∨ (see Def. 1.4.5), where X is the embedding of the smallest
abelian monoidal subcategory C of Vect f that contains p.

The standard example forM(p) is p = τ(12) where τ(12)(u⊗ v) = v⊗ u
for all u, v ∈ V. Then

M(τ(12))
∼= O(Mn) ∼= k[xi,j | 1 ≤ i, j ≤ n]

the coordinate ring of the n× n matrices over k, endowed with the bialge-
bra structure ∆(xi,j) = ∑n

k=1 xi,k ⊗ xk,j for all 1 ≤ i, j ≤ n. More generally,
if p satisfies the Yang-Baxter equation (see Eq. 2.19), then M(p) is also
called an FRT-bialgebra (see Section 9.1 in [KS]).

From another point of view, consider psym = 1
2(id− τ(12)). Then we also

have M(psym) = M(τ(12)) by definition, i.e. the bialgebra O(Mn) can
be constructed using an idempotent p. Similarly, if r satisfies the Hecke
equation (r + id)(r− q) = 0 for some q ∈ k×, then p := 1

1+q (qid− r) is an
idempotent andM(p) =M(r).

If r satisfies both the Yang-Baxter equation and the Hecke equation,
then the bialgebra M(r) have numerous regularity properties, assuming
q is not a root of unity (see [Hai1], [Hai2], [Su] and Subsec. 2.2.3).

In Sec. 2.2 and 2.5 (resp. Sec. 2.3), we will investigate properties of the
bialgebraM(p) arising from an idempotent (resp. nilpotent of order two)
p, comparing these with the well-behaved case of M(r) where r is as in
the previous paragraph. If the minimal polynomial of p ∈ End(V ⊗V) is
of degree two, then we may always reduce to the above mentioned cases
of p2 = p or p2 = 0, as k is algebraically closed.

Proof of Proposition 2.1.2. As E⊗2 is a sub-coalgebra of T (E), it is enough
to prove that

Rel :=
{

a ◦ p− p ◦ a | a ∈ E⊗2}
is a coideal in E⊗2. Indeed, if Rel is a coideal of E⊗2 meaning that ∆(Rel) ⊆
Rel⊗ E⊗2 + E⊗2 ⊗ Rel then

∆(E⊗d · Rel) ⊆ (E⊗d · Rel)⊗ E⊗(d+2)+

+E⊗(d+2) ⊗ (E⊗d · Rel) ⊆ E⊗(d+2) ⊗ E⊗(d+2)

for any d > 2. Similarly for ∆(E⊗d · Rel), hence I = (Rel) is indeed a
biideal of T (E).

Let us denote composition by concatenation, and τ := τ(12). Then, by
Eq. 1.10, for any a ∈ E⊗2,

∆(ap− pa) = τ(ap⊗ id)− τ(pa⊗ id) =
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2.1 the matrix bialgebra M(p)

= τ(ap⊗ id)− τ(a⊗ p) + τ(a⊗ p)− τ(pa⊗ id)

=
(

τ(a⊗ id)(p⊗ id)− (p⊗ id)τ(a⊗ id)
)

+
(

τ(a⊗ id)(id⊗ p)− (id⊗ p)τ(a⊗ id)
)

=
(

∆(a)(p⊗ id)− (p⊗ id)∆(a)
)

+
(

∆(a)(id⊗ p)− (id⊗ p)∆(a)
)

Denoting the tensor-components of ∆(a) as ∆(a) = ∑i gi ⊗ hi, we obtain

∆(ap− pa) = ∑
i
(gi p− pgi)⊗ hi + ∑

i
gi ⊗ (hi p− phi)

that is an element of Rel⊗ E⊗2 + E⊗2⊗Rel. Hence Rel is indeed a coideal.

Remark 2.1.3. A proof of Prop. 2.1.2 using computations with coordinates
can be found in Subsec. 9.1.1 of [KS].

2.1.1 Universal property

The subsequent chapters do not build directly on this subsection, its
sole purpose is to connect the explicit definition of M(p) given in Def.
2.1.1 to the literature (see for example [Lu]) and the generalities discussed
in Subsec. 1.4.2.

We define an abelian monoidal subcategory C X
↪→ Vect f containing V

and p such that the following proposition holds.

Proposition 2.1.4. For p ∈ End(V ⊗V),M(p) is isomorphic to the universal
coacting bialgebra End(X)∨.

First, we define a subcategory C̃ in Vect f that is small i.e. Ob(C̃) and
∪x,y∈C̃Hom(x, y) are sets instead of proper classes. Then we will define

C as an intersection of abelian monoidal subcategories of C̃. The purpose
of this technical step involving C̃ is twofold. First, a not necessarily small
category may have too many subcategories (that do not form a set), hence
considering their intersection may lead to foundational issues. Secondly,
intersecting abelian monoidal subcategories containing different (but of
course isomorphic) realizations of the tensor product (resp. direct sums,
kernels, cokernels) of two objects or morphisms would not necessarily
yield a monoidal (resp. abelian) subcategory.

Define C̃ as the full subcategory of Vect f with objects as the quotient
spaces of all subspaces of the form ⊕m

i=1V⊗ki for m ∈ N and k1, . . . , km ∈
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matrix bialgebras

N (cf. Birkhoff’s HSP theorem), and with morphisms as all k-linear maps
between them (i.e. it is a full subcategory of Vect f ). Clearly, this is closed
under compositions, finite direct sums, kernels and cokernels. Moreover,
one can check that it is closed under tensor products as ⊗ is exact in both
arguments. Therefore C̃ is an abelian monoidal subcategory of Vect f .

Define C as minimal among the abelian monoidal subcategories of C̃
that contain V and p, moreover, the direct sums, kernels, cokernels and
tensor product are realized in the following fixed way, instead of being
defined only up to isomorphism. The kernel-object of a morphism Q1 →
Q2 where Q1 = U/U′ for some

U′ ⊆ U ⊆ ⊕m
i=1V⊗ki

m ∈ N and k1, . . . , km ∈ N is realized as the subspace Ker(U → Q2) ⊆ U
modulo its intersection with U′, and the corresponding kernel-morphism
is the embedding. Similarly, we use the most standard choices for direct
sums, cokernels and tensor products.

By the assumptions, C exists uniquely since the intersection (that makes
sense as C̃ is small) of – not necessarily minimal – categories of the above
mentioned form is again an abelian monoidal subcategory. By Subsec.
1.4.2, C is a ring category. Hence we may apply Prop. 1.4.4 to construct
End(X)∨ where X : C ↪→ Vect f is the (faithful and exact, but not full)
embedding functor.

Prop. 2.1.4 is proved in [Man] (Prop. VI/9.), [Ta] (Prop. 3.4/a) and Sud-
bery [Su] (Theorem 1), with slightly different formulations. For the sake
of completeness, we include its proof.

Proof of Proposition 2.1.4. Let A′ be a bialgebra and X′ : C → Comod f (A′)
such that FA′X′ = X. Then X′(V) is a comodule over A′ with underlying
vector space FA′X′(V) = X(V) = V. Recall from Subsec. 1.4.1, that T (E)
is universal among bialgebras coacting on V, hence there is a unique
bialgebra homomorphism ψ : T (E)→ A′ such that Coresψ(V) = X′(V).

Let us denote composition by concatenation. We claim that it is enough
to deduce that ap − pa ∈ Ker(ψ) for any a ∈ E⊗2. Indeed, in that case

ψ factorizes as T (E)
π
� M(p)

ϕ→ A′ giving the existence of a bialge-
bra morphism ϕ. For this ϕ, we have that FA′Coresϕ = FM(p) holds on
V and p. Using that the functors FM(p), FA′ and Coresϕ are monoidal
and exact, the subcategory of C on which the above equality holds forms
an abelian monoidal subcategory of Vect f , hence it contains the whole
abelian monoidal category “generated” by p and V, that is C. The unique-
ness of ϕ follows from the faithfulness of FA′ .

Now we prove that ap − pa ∈ Ker(ψ) for all a ∈ E⊗2. Consider the
coactions ρ : V⊗2 → V⊗2⊗T (E) and ρ′ : V⊗2 → V⊗2⊗ A′. We know that

(idV⊗2 ⊗ ψ)ρ = ρ′ (2.1)
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2.1 the matrix bialgebra M(p)

as ψ is a bialgebra morphism. Moreover, for any w ∈ V⊗2

ρ′(pw) = (p⊗ idT (E))ρ
′(w) (2.2)

since p is an A′-comodule homomorphism. Denote the basis of V⊗2 by
w1, . . . , wn2 , its dual basis by g1, . . . , gn2

, and the matrix units u 7→ wigj(u)
by bj

i ∈ E⊗2 (1 ≤ i, j ≤ n2). By Eq.1.11,

ρ(wi) =
n

∑
j=1

wj ⊗ bj
i =

n

∑
j=1

wj ⊗ wi ⊗ gj (2.3)

and similarly for ρ′ . Then we may compute

ρ′(pwi)
2.1
= (idV⊗2 ⊗ψ)ρ(pwi)

2.3
= ∑

j

(
wj⊗ψ(pwi⊗ gj)

)
= ∑

j

(
wj⊗ψ(pbj

i)
)

On the other hand,

ρ′(pwi)
2.2
= (p⊗ idE⊗2)ρ′(wi)

2.1
= (p⊗ ψ)ρ(wi)

2.3
= ∑

k

(
pwk ⊗ ψ(bk

i )
)

Using the conventions of Sec. 1.1, we have pwk = ∑j[p]
j
kwj and bj

i p =

∑k[p]
j
kbk

i . Hence,

= ∑
k

∑
j

(
[p]jkwj ⊗ ψ(bk

i )
)
= ∑

j

(
wj ⊗ ψ

(
∑
k
[p]jkbk

i
))

= ∑
j

(
wj ⊗ ψ(bj

i p)
)

As w1, . . . , wn2 form a basis, we have ψ(pbj
i − bj

i p) = 0 for all 1 ≤ i, j ≤ n2,
and the claim follows.

The definitions given in Def. 2.1.1 and Prop. 2.1.4 have several equiva-
lent formulations. We mention two that appear in [Su] and in [KS] (first
investigated in [FRT].

In [Su] before Prop. 1. the following universal construction for quadratic
coordinate algebras is given. Let C1, . . . , Cr be quadratic (in the sense of
Def. 1.2.1) quotient algebras of the tensor algebra T (V∨). The matrix-
element bialgebra M determined by C1, C2, . . . , Cr is defined as the largest
quotient algebra of T (E∨) such that there are algebra morphisms ρi :
Ci → Ci ⊗M completing the following commutative diagrams

V∨ //

��

V∨ ⊗ E∨

��
Ci ρi

// Ci ⊗M
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matrix bialgebras

for i = 1, 2, . . . , r. Beyond the universal definition, there is an explicit
construction for M in [Su]. Namely denote Si = Ker(T (V∨) → Ci) and
define the standard isomorphism

τ(23) : V∨ ⊗V∨ ⊗V ⊗V → (E∨)⊗2

via f ⊗ g⊗ v⊗ w 7→ (x 7→ f (xv))⊗ (y 7→ g(yw)). For any vector space
W and subspace U ⊆ W, let Uo := { f ∈ W∨ | f (u) = 0, ∀u ∈ U}. Then,
[Su] Theorem 1/a claims that

M∼= T
(
E∨
)/(

τ(23)

r

∑
i=1

Si ⊗ So
i
)

(2.4)

Moreover, in [Su] Theorem 1/c, it is shown that if |k| ≥ r then M ∼=
M(p) for a p ∈ End

(
(V∨)⊗2) that is a semisimple endomorphism with

eigenspaces S1, . . . , Sr. In our treatment, we hid the duals on the level of
the definitions.

An alternative definition of M(p) is given in Sec. 9 of [KS]. Denote
temporarily dim V by N. For a map R ∈ End(V ⊗ V), let R̂ := τ(12) ◦ R
and define A(R) as the quotient of k〈ui

j | 1 ≤ i, j ≤ N〉 by the relations

∑
k,l

(
R̂i,j

k,lu
k
mul

n − ui
kuj

l R̂
k,l
m,n
)

(1 ≤ i, j, m, n ≤ N) (2.5)

We claim that A(R) = M(R̂). Indeed, we may write out the defining
relation ofM(R̂) in the basis ei

m⊗ ej
n ∈ End(V⊗V) ∼= E⊗2 (1 ≤ i, j, m, n ≤

N), using es
k ◦ ei

m = δs,mei
k and the coefficients

R̂ = ∑
s,t,k,l

R̂k,l
s,te

s
k ⊗ et

l

We obtain
R̂ ◦ (ei

m ⊗ ej
n)− (ei

m ⊗ ej
n) ◦ R̂ =

= ∑
k,l

R̂k,l
m,n(e

i
k ⊗ ej

l)− (ek
m ⊗ el

n)R̂i,j
k,l

that agrees with Eq. 2.5 (multiplied by −1). The relations in Eq. 2.5 are
also called the RTT-relations.

2.1.2 Dual, Schur bialgebra

In the current setup, there is a natural analog of the Schur algebra and q-
Schur algebra, which classically appear in the study of symmetric groups
and Hecke algebras.
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2.1 the matrix bialgebra M(p)

Definition 2.1.5. For p ∈ End(V ⊗V) and d ∈N, define

Schd(p) :=Md(p)∨

whereMd(p) is the homogeneous component ofM(p) of degree d.

As M(p)d is a finite-dimensional coalgebra (see Eq. 1.10), Schd(p) is a
finite-dimensional algebra for all d ∈ N with multiplication ∆∨d , the dual
of the comultiplication ofM(p) in degree d. Together for all d, these form
the graded-dual bialgebra

Sch(p) :=
⊕
d∈N

Schd(p)

The coalgebra structure on Sch(p) is defined by the sum of the algebra
morphisms on each Schd(p) as⊕

i+j=d

m∨i,j : Schd(p)→
⊕

i+j=d

Schi(p)⊗ Schj(p)

that are well-defined by dim Schi(p) < ∞ for all i.

Definition 2.1.6. For d ≥ 2 a fixed integer, let

pi,i+1 = id⊗(i−1)
V ⊗ p⊗ id⊗(d−1−i)

V (i = 1, . . . , d− 1) (2.6)

and define Hd(p) as the (unital) subalgebra of E⊗d := End(V⊗d) gen-
erated by p1,2, . . . , pd−1,d and idV⊗d . By definition, V⊗d is a (left) Hd(p)-
module.

For the k-algebra Schd(p) (d ≥ 2) one may obtain the following descrip-
tion, that is a suitable variation of Theorem 2.1 in [Hai1] or Prop. 4.2.5 in
[Rae] (see also [RVdB]).

Proposition 2.1.7. For any d ≥ 2, Schd(p) ∼= EndHd(p)(V⊗d) as a k-algebra.

Proof. First, for d = 2 the coalgebra surjection E⊗2 � M2(p) defines
an algebra injection g : Sch2(p) ↪→ (E⊗2)∨ where the multiplication on
(E⊗2)∨ is ∆∨2 . Let φ : E⊗2 → (E⊗2)∨ be the map φ(a) = (b 7→ Trace(ab)),
that is an algebra isomorphism by Remark 1.4.1. Then, for Rel :=

(
a ◦ p−

p ◦ a | a ∈ E⊗2)
Sch2(p) ∼= Im(φ−1 ◦ g) =

{
b ∈ E⊗2 | Trace(b ◦ c) = 0, ∀c ∈ Rel

}
=

= {b ∈ E⊗2 | Trace(p ◦ b ◦ a) = Trace(b ◦ p ◦ a), ∀a ∈ E⊗2}
= {b ∈ E⊗2 | b ◦ p = p ◦ b} = EndH2(p)(V

⊗2)

For d > 2, we may use the same argument to deduce

Im
(
Schd(p) ↪→ E⊗d) = d−1⋂

i=1

{b ∈ E⊗d | b ◦ pi,i+1 = pi,i+1 ◦ b}

The claim follows.
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matrix bialgebras

2.2 I D E M P O T E N T C A S E

In the following, we assume that p ∈ End(V ⊗ V) such that p2 = p.
The goal of the section is to prove Theorem 2.2.2 and as a consequence
Corollary 2.2.4.

The motivation is the following: let q ∈ k× and assume that r ∈ End(V⊗
V) satisfies the Hecke equation (r + id)(r − q) = 0, and the Yang-Baxter
equation, i.e.

r12r23r12 = r23r12r23

for r12 = r⊗ id and r23 = id⊗ r, suppressing the notation of composition.
By Theorem 3 in [Su],M(r) has a PBW-basis under suitable assumptions
on AKer(r) and AIm(r) where AU = T (V)/(U). Now we would like to
prove the converse in the sense of Corollary 2.2.4 (cf. Fact 1.2.4).

Recall that p12 := p⊗ id and p23 := id⊗ p in End(V⊗3).

Definition 2.2.1. We say that an idempotent p is polynomial-type up to
degree three, if p is of rank (n

2), idV⊗V⊗V − p12− p23 is invertible, p12− p23
is not nilpotent, and

dim(Ker(p12) ∩Ker(p23)) =

(
n + 2

3

)
dim(Im(p12) ∩ Im(p23)) =

(
n
3

)
where n = dim V.

Theorem 2.2.2. Let n ≥ 2 and p ∈ End(V ⊗ V) be an idempotent that is
polynomial-type up to degree three. Then

dimH3(p) ≥ 6− δn,2 dimM3(p) ≤
(

n2 + 2
3

)
and the following are equivalent:

i) dimM3(p) = (n2+2
3 ),

ii) dimH3(p) = 6− δn,2,

iii) there are distinct scalars a, b ∈ k× such that a + b and a2 + ab + b2 are
nonzero, and r = a + bp satisfies the Yang-Baxter equation.

Remark 2.2.3. An example for an idempotent that is polynomial-type up
to degree three is p = psym (as it follows from Remark 2.2.5 and Lemma
2.2.12). In this case T (V)/(Im(p)) ∼= k[x1 . . . , xn], hence the name.

Note also that id− p12 − p23 being invertible (resp. p12 − p23 being not
nilpotent) is an open condition in the sense that the subset of such idem-
potents in End(V ⊗V) form a Zariski-open subset.
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2.2 idempotent case

For any U ⊆ V ⊗ V define AU := T (V)/(U). Recall from Subsec.
1.2.1 the definition of ordering algorithm, polynomial and exterior PBW-
algebras.

Corollary 2.2.4. Let n ≥ 2 and p ∈ End(V ⊗ V) an idempotent, polynomial-
type up to degree three. Assume that there is an ordered basis v1, . . . , vn of V
such that AIm(p) (resp. AKer(p)) is a polynomial (resp. exterior) PBW-algebra
with respect to it.

ThenM(p) is a PBW-algebra if and only if there are distinct scalars a, b ∈ k×
such that a + b and a2 + ab + b2 are nonzero, and r = a + bp satisfies the Yang-
Baxter equation (Eq. 2.19).

Remark 2.2.5. id− p12 − p23 is invertible if and only if

Ker(p12) ∩ Im(p23) = 0 = Ker(p23) ∩ Im(p12)

Indeed, for any 0 6= v ∈ Ker(id− p12 − p23) we have (id− p12)v = p23v
and (id− p23)v = p12v, where either (id− p12)v or p12v is nonzero, hence
is a nonzero element of Ker(p12) ∩ Im(p23) or Ker(p23) ∩ Im(p12).

Conversely, for w ∈ Ker(p12) ∩ Im(p23) we have (id− p12 − p23)w =
w− p23w = 0, and similarly for w ∈ Ker(p23) ∩ Im(p12).

By Prop. 2.1.7, for any d ≥ 2, the algebra Schd(p) (and hence the coalge-
braMd(p)) can be understood using the Hd(p)-module structure of V⊗d.
In the case p2 = p, Hd(p) is a quotient of the algebra

Pd := k〈x1, . . . , xd−1〉
/(

x2
i − xi (1 ≤ i < d), xixj− xjxi (|i− j| > 1)

)
(2.7)

by mapping xi to pi,i+1 (i = 1, . . . , d− 1). The proof of Theorem 2.2.2 is
built on the fact that the representations of P3 are understood. For d ≥ 4,
the method does not extend, as then Pd is of wild representation type.
Indeed, Pd/(xi | i ≥ 4) ∼= P4, and P4 is of wild representation type, see for
example p. 214 in [OS].

2.2.1 Excursion: relation to the four subspace quiver

The modules of Pd can also be described using quiver representations
as follows. For the terminology of quiver-representations, see Section 1.3.

Let Sr be the quiver of r subspaces, i.e. it is the directed graph on
the vertices labeled by 0, 1, . . . , r and one arrow pointing to 0 from all
other vertices. An ordered choice (U1, . . . , Ur) of r subspaces in a k-vector
space U0 defines a k-representation of Sr: each vertex i is mapped to Ui
(i = 0, . . . , r), and the corresponding arrows are mapped to the embed-
dings. Conversely, every representation that assigns injective linear maps
to the arrows (equivalently, the representation has no simple injective di-
rect summand) can be given this way.
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matrix bialgebras

Hence a Pd-module M with structure map ϕ : Pd → Endk(M) induces
a representation ρd of S2d−2 defined by the subspaces

Im ϕ(x1), . . . , Im ϕ(xd−1), Ker ϕ(x1), . . . , Ker ϕ(xd−1) (2.8)

Let us denote by Pd−Mod f the abelian category of finite-dimensional Pd-
modules. The above assignment extends to a fully faithful functor Fd :
Pd−Mod f → rep(S2d−2), since the homomorphisms ϕ : ρ → ρ′ of these
k-representations of Sr are in obvious bijection with linear maps ρ(0) →
ρ′(0) that commutes with all xi, i.e. that map the subspace ρ(i) into ρ′(i)
for all 1 ≤ i ≤ n.

It is well-known that the quiver S2d−2 is of tame representation type if
and only if d ≤ 3. For d = 3, the underlying unoriented graph of S4 is
the four subspace quiver, which is extended Dynkin of type D̃4, whose
representations are completely described (see [GP] or Subsec. 1.3.1).

For simplicity, let us denote the generators of P3 by x and y, i.e. P3
∼=

k〈x, y〉/(x2 − x, y2 − y). For the definition of addR(S4) and addTλ, see
Eq. 1.5.

Proposition 2.2.6. The functor F3 restricted to finite-dimensional P3-modules
defines an equivalence of k-linear abelian categories with image

⊕
λ∈k addTλ (

addR(S4).

Proof. Let us denote F3 by F. As F is fully faithful, it is enough to deter-
mine its image in rep(S4). First we show that for any finite-dimensional
P3-module M, F(M) is a direct sum of regular indecomposable represen-
tations such that

ρ(i)⊕ ρ(i + 2) = ρ(0) (i = 1, 2) (2.9)

where ρ(j) is considered as a subspace of ρ(0) for all j. Indeed, for any
submodule N ≤ M, we may compute the defect (see Subsec. 1.3.1):

∂
(

F(N)
)
= ∑

u∈{x,y}

(
dim Im u|N + dim Ker u|N − dim N

)
= 0 (2.10)

as N is closed under x and y. Hence F(M) is a direct sum of regular inde-
composable S4-representations, by Subsec. 1.3.1. Similarly, Eq. 2.9 follows
from the definition of F. Conversely, to any regular indecomposable rep-
resentation ρ satisfying 2.9, one can define the corresponding P3-module
where x (resp. y) acts via projection onto ρ(3) (resp. ρ(4)) with kernel ρ(1)
(resp. ρ(2)).

Next we show that ImF is closed under extensions and taking regular
submodules. Indeed, for P3-modules N and Q, an extension ρ such that
ρ/F(N) ∼= F(Q) is a direct sum of regular representations, as addR(S4)
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2.2 idempotent case

is closed under extension. Moreover, ρ(i) ∩ ρ(i + 2) = 0 and dim ρ(i) +
dim ρ(i + 2) = dim ρ(0), as the same hold for both F(N) and F(Q) for
i = 1, 2. By the previous paragraph, ρ ∼= F(M) for some P3-module M.
Similarly, if ρ ≤ F(M) is a regular subrepresentation, then we may apply
the same argument, where ρ(i)∩ ρ(i + 2) = 0 is automatic and dim ρ(i) +
dim ρ(i + 2) ≤ dim ρ(0) holds with equality by the regularity assumption
(see Eq. 2.10).

By the previous paragraph, it is enough to determine which simple reg-
ular representations are in ImF. For the notation on the representation of
S4, see Subsec. 1.3.1. We show that ImF does not contain a representation
isomorphic to R(∞)

i [1] (i = 1, 2), but it does contain one isomorphic to

R(κ)
i [1] (κ = 0, 1, i = 1, 2) and R(λ)[1] (λ ∈ k\{0, 1}). By Eq. 1.5, these are

all the simple regular representations of S4.
For λ ∈ k\{0, 1}, a P3-module representing the isomorphism class

R(λ)[1] (denoted this way instead of F−1(R(λ)[1])) can be given by the
homomorphism P3 → End(k2)

x 7→
[

1 −1
0 0

]
y 7→

[
0 0

λ− 1 1

]
(2.11)

using the definition of R(λ)[1] given in Subsec. 1.3.1. Similarly, for κ = 0, 1
and i = 1, 2, the P3-module R(κ)

i [1] can be defined by x(κ,i), y(κ,i) 7→ 0
where the variables x(κ,i) and y(κ,i) are given by the following table:

(κ, i) (0, 1) (0, 2) (1, 1) (1, 2)

x(κ,i) x 1− x x 1− x
y(κ,i) y 1− y 1− y y

(2.12)

Moreover, ρ = R(∞)
i [1] (i = 1, 2) is not a P3-module since for a P3-module,

we have Ker(u) ∩ Im(u) = 0 for i = 1, 2 and u ∈ {x, y}, however ρ(i) ∩
ρ(i + 2) 6= 0.

2.2.2 Modules of P3

Recall that P3
∼= k〈x, y〉/(x2− x, y2− y). In this subsection, we describe

P3-modules without referring to the four subspace quiver S4 and the pre-
vious subsection. On one hand, this yields a more self-contained discus-
sion, moreover in Subsec. 2.2.3 we will need a description of the annihila-
tor of each module anyway, that are easier to compute this way.
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matrix bialgebras

By a slight abuse of notation, we will use the same notation for P3-
modules, that was used in the previous section for the representations of
S4. In particular, we will give modules denoted as{

R(λ)[m], R(κ)
i [m] | m ∈N+, λ ∈ k\{0, 1}, κ = 0, 1, i = 1, 2

}
(2.13)

that constitute a complete list of isomorphism classes of indecomposable
P3-modules. By Prop. 2.2.6 this notation will not cause ambiguity.

Note the key fact that (x − y)2 = x + y− xy− yx is a central element
in P3, as x(x − y)2 = x − xyx = (x − y)2x, and similarly for y. For a k-
algebra A, denote by A−Mod f the abelian category of finite-dimensional
A-modules.

Lemma 2.2.7. Let A be a k-algebra, and z ∈ A a central element. Then

A−Mod f
∼=
⊕
λ∈k

∞⋃
k=1

(
A/(z− λ)k)−Mod f

where the union is defined using the natural embeddings induced by

A/(z− λ)l � A/(z− λ)k

for l > k. In particular, Irr f (A) =
⊔

λ∈k Irr f (A/(c− λ)).

Proof. Let M be a finite-dimensional A-module. The eigenspaces of z are
A-submodules by centrality. Using that k is algebraically closed, there is
a unique decomposition M ∼= ⊕λ∈kMλ such that (z− λ)k annihilates Mλ

for high enough k. Clearly, Hom(Mλ, Mλ′) = 0 for λ 6= λ′ ∈ k, hence the
decomposition gives a direct sum decomposition of the categories.

By the lemma, instead of P3−Mod f , it is enough to understand the
modules of the algebras

Aλ,k := P3/((x− y)2 − λ)k (2.14)

These are finite-dimensional by the next remark. In the terminology of
finite-dimensional hereditary algebras (see [SS]), the Auslander-Reiten
quivers of ∪k∈N+ Aλ,k −Mod f are tubes of rank one for λ 6= 0, 1 and
of rank two otherwise, by the following lemmas.
Remark 2.2.8. The following subset is a k-basis of P3:

{1, (xy)jx, (yx)jy, (xy)j+1, (yx)j+1 | j ∈N}

Moreover, the coefficient of (yx)k in ((x − y)2 − λ)k is (−1)k 6= 0, hence
(yx)k can be expressed in Aλ,k as a linear combination of (xy)k and mono-
mials of degree at most k− 1. In particular, dim Aλ,k ≤ 2k.

As a side result of Lemma 2.2.9 and 2.2.10, we will obtain that in fact
dim Aλ,k = 2k and hence {1, (xy)jx, (yx)jy, (xy)j+1, (yx)j+1 0 ≤ j ≤ k −
1}\{(yx)k} is a k-basis of Aλ,k. (A fact that is also easy to see by the
definition of Aλ,k.)
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2.2 idempotent case

Lemma 2.2.9. For all k ∈N+ and λ ∈ k\{0, 1},

Aλ,k
∼= M2[t]/(tk) ∼ k[t]/(tk)

where M2 is the algebra of 2× 2 matrices (over k) and ∼ denotes Morita equiv-
alence.

Proof. Consider the unital homomorphism ϕλ,k : Aλ,k → M2[t]/(tk) de-
fined as

x 7→
[

1 −1
0 0

]
y 7→

[
0 0

t + λ− 1 1

]
(2.15)

extended multiplicatively. This map is well-defined, because for u ∈ {x, y},
ϕλ,k(u2) = ϕλ,k(u), moreover,

ϕλ,k
(
(x− y)2) = [ 1 −1

1− t− λ −1

]2

=

[
t + λ 0

0 t + λ

]

hence ϕλ,k
(
((x− y)2− λ)k) = 0. We may also verify that ϕλ,k is surjective

since t · [id] ∈ Im(ϕλ,k) and

ϕλ,k
(
x(1− y)

)
=

[
t + λ 0

0 0

]
ϕλ,k

(
y(1− x)

)
=

[
0 0
0 t + λ

]

where t + λ ∈ k[t]/(tk) is invertible if λ 6= 0. Therefore if λ− 1 6= 0 then
every matrix unit is in Im(ϕλ,k), hence ϕλ,k is surjective. By dim Aλ,k ≤ 2k
(see Remark 2.2.8), ϕλ,k is an isomorphism.

Lemma 2.2.10. For k ∈N+ and λ ∈ {0, 1},

Aλ,k
∼= kQ/

(
(αiα3−i)

k | i = 1, 2
)

where

kQ := k〈e, α1, α2〉/(e2 − e, α2
1, α2

2, eα1 − α1, α2e− α2, α1e, eα2)

The notation kQ stands for the fact that it is the path algebra (see Sub-
sec. 1.3.1) of the quiver Q with two vertices connected by one arrow in
both directions:

Q : •1

α1
""
•2α2dd

(2.16)

Proof. First note that it is enough to prove the statement for λ = 0, since
x 7→ 1− x, y 7→ y defines an A0,k → A1,k isomorphism. Indeed, (1− x)2 =
(1− x), moreover in P3,

(1− x− y)2 = 1− x− y + xy + yx = 1− (x− y)2 (2.17)
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matrix bialgebras

so the above mentioned map is an A0,k → A1,k homomorphism, that is
involutive, hence an isomorphism.

For λ = 0, let us define ϕk : A0,k → kQ/I, where I =
(
(αiα3−i)

k | i =
1, 2
)
, as

x 7→ e, y 7→ e + α1 + α2 +
k−2

∑
i=0

Ci

(
(α2α1)

i+1 − (α1α2)
i+1
)

where Cn = 1
n+1(

2n
n ) is the n-th Catalan number. Then ϕk is well-defined

as ϕk(x)2 = ϕk(x) and

ϕk(y)2 =

(
e + α1 + α2 +

k−2

∑
i=0

Ci

(
(α2α1)

i+1 − (α1α2)
i+1
))2

=

= e + α1 + α2 + α1α2 + α2α1 − 2
k−2

∑
i=0

Ci(α1α2)
i+1

+
k−2

∑
i=0

Ci

(
α1(α2α1)

i+1 − α2(α1α2)
i+1
)

+
k−2

∑
i=0

Ci

(
(α2α1)

i+1α2 − (α1α2)
i+1α1

)
+

k−2

∑
i=0

k−2

∑
j=0

CiCj
(
(α2α1)

i+j+2 + (α1α2)
i+j+2)

= e + α1 + α2 + α2α1 + (1− 2C0)α1α2

+
k−3

∑
l=0

(
∑

i+j=l
CiCj − 2Cl+1

)
(α1α2)

l+2 +
k−3

∑
l=0

(
∑

i+j=l
CiCj

)
(α2α1)

l+2

= e + α1 + α2 + α2α1 − α1α2 +
k−2

∑
i=1

Ci

(
(α2α1)

i+1 − (α1α2)
i+1
)
= ϕk(y)

where we used C0 = 1 and the standard recursion formula ∑i+j=n CiCj =

Cn+1. Moreover, ϕk(x− y) ∈ Rad(kQ/I) so ϕk(x− y)2k ⊆ Rad(kQ/I)k =
0. Therefore ϕk is indeed well-defined.

One can also prove recursively that ϕk is surjective. Indeed, for all j =
1, . . . , k− 1

ϕk
(
x(x− y)2j+1) ∈ (−1)(α1α2)

jα1 + Rad(kQ/I)2j+2

and similarly for x(x − y)2j, (1− x)(x − y)2j+1 and (1− x)(x − y)2j. As
dimkQ/I = 2k and dim A0,k ≤ 2k by Remark 2.2.8, the claim follows.
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2.2 idempotent case

By Lemma 2.2.9 and 2.2.10, Aλ,k is a uniserial ring for all λ ∈ k, k ∈
N+. As uniserial rings are particular cases of monomial special biserial
algebras, we may determine the indecomposable modules of Aλ,k by Prop.
1.3.1.

For λ 6= 0, 1, Aλ,k has a unique (up to isomorphism) indecomposable
2m-dimensional module for each 1 ≤ m ≤ k, let us denote it by R(λ)[m].

Similarly, for λ ∈ {0, 1}, i ∈ {1, 2} and 1 ≤ m ≤ 2k we may define
the indecomposable Aλ,k-module R(λ)

i [m] as follows. In the notation of
Subsec. 1.3.2, consider the walk-quiver Lm−1:

• β1←− • β2←− • β3←− . . .
βm−1←− •

Let Q be the quiver as in Eq. 2.16, and define a V-sequence v : Lm−1 → Q
by β j 7→ α1+j for all j ≤ m− 1 where j ∈ {0, 1} is j modulo 2. Using the

isomorphism given in 2.2.10, define the representation R(λ)
i [m] := M(v)

(see Subsec. 1.3.2).
More explicitly, Aλ,k has two non-isomorphic simple modules. We de-

note by R(λ)
1 [1] (resp. by R(λ)

2 [1]) the one with annihilator (x, λ− y) (resp.
(1− x, 1− λ− y)). Moreover, for all 1 ≤ m ≤ k and i ∈ {1, 2}, Aλ,k has
a unique (up to isomorphism) indecomposable m-dimensional module
with socle (i.e. minimal semisimple submodule) isomorphic to R(λ)

i [1],

we denote it by R(λ)
i [m]. Therefore, by Lemma 2.2.7, Eq. 2.13 is a complete

list of finite-dimensional P3-modules.
By Prop. 1.3.2, we may deduce the following combinatorial lemma.

Proposition 2.2.11. For all λ ∈ {0, 1}, i, i′ ∈ {1, 2} and m, m′ ∈N+,

dim HomP3

(
R(λ)

i [m], R(λ)
i′ [m′]

)
=

=



⌊
min(m,m′)+1

2

⌋
if (m ≤ m′, i = i′) or

(m > m′, m + i ≡ m′ + i′ mod 2)⌊
min(m,m′)

2

⌋
otherwise

In particular, [
R(λ)

i [m] : R(λ)
i′ [1]

]
=
⌊m + δi,i′

2

⌋
The statement can also be visually verified using Loewy diagrams. As

a demonstration, denote S(i) := R(0)
i [1] (i = 1, 2), and observe

R(0)
1 [5] :

S(1)
S(2)
S(1)
S(2)
S(1)

R(0)
2 [4] :

S(1)
S(2)
S(1)
S(2)

dim HomP3

(
R(0)

1 [5], R(0)
2 [4]

)
= 2
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matrix bialgebras

In the proof of Theorem 2.2.2, we will need the following straightfor-
ward observations, connecting the polynomial-type assumption on p with
the module theory of P3.

Lemma 2.2.12. Let M be a finite-dimensional P3-module. Then 1− x− y acts
invertibly on M if and only if

Hom
(

R(1)
i [m], M

)
= 0 (i = 1, 2, m ∈N+)

Similarly, x− y is nilpotent on M if and only if every direct summand of M is
isomorphic to R(0)

i [m] for some i = 1, 2 and m ∈N+. Moreover,

dim
(
KerM(x) ∩KerM(y)

)
= dim HomP3(R(0)

1 [1], M)

dim
(
ImM(x) ∩ ImM(y)

)
= dim HomP3(R(0)

2 [1], M)

rkM(u) =
[
M : R(0)

2 [1]
]
+
[
M : R(1)

i [1]
]
+ ∑

λ∈k\{0,1}

[
M : R(λ)[1]

]
(2.18)

for (u, i) ∈ {(x, 2), (y, 1)}.

Proof. First, note that all of the above formulas are additive in M, hence it
is enough to check for M indecomposable. By Lemma 2.2.7, an indecom-
posable P3-module N is induced from an A1,k-module for some k ∈ N+

if and only if the element 1− (x − y)2 = (1− x − y)2 (see Eq. 2.17) acts
non-invertibly on M. Hence the first claim follows by the definition of
R(1)

i [m]. Similarly, x− y is nilpotent if and only if P3 → Endk(M) factors
through P3 � A0,k for some k ∈N+.

If 0 6= v ∈ KerM(x) ∩ KerM(y) then kv is a P3-submodule isomorphic
to R(0)

1 [1] ∼= P3/(x, y), and vice versa. Similarly, for ImM(x)∩ ImM(y) and

R(0)
2 [1] = P3/(1− x, 1− y).
Moreover, both sides of 2.18 are additive on short exact sequences of P3-

modules, hence it is enough to check the equation for simple P3-modules.
For these we have rkR(λ)[1](x) = 1 for λ ∈ k\{0, 1} and rk

R(λ)
i [1]

(x) = δi,2

for λ = 0, 1 and i = 1, 2 (and similarly for y).

2.2.3 Yang-Baxter equation

In this subsection we investigate for a given idempotent p ∈ End(V ⊗
V), whether there is an element r ∈ Span(id, p) = H2(p) that satisfies the
Yang-Baxter equation

r12r23r12 = r23r12r23 (2.19)

where r12 = id⊗ r and r23 = id⊗ r.
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2.2 idempotent case

Proposition 2.2.13. Let M be a finite-dimensional P3-module and a, b ∈ k×
such that a + b and a2 + ab + b2 are nonzero. Then

Da,b :=
(
(a + bx)(a + by)(a + bx)
− (a + by)(a + bx)(a + by)

)
∈ Ann(M)

if and only if M is isomorphic to the direct sum of copies of

R(0)
1 [1], R(0)

2 [1], R(λ)[1]

where λ = 1
b2 (a2 + ab + b2).

If a2 + ab + b2 = 0 then Da,b ∈ Ann(M) if and only if M is isomorphic to
the direct sum of copies of R(0)

i [m] for i = 1, 2 and 1 ≤ m ≤ 3.

Remark 2.2.14. The element Da,b annihilates M = V⊗3 if and only if r :=
a + bp satisfies the Yang-Baxter Equation. If we use the normalization
a = q and b = −(1 + q), then r satisfies (r + id)(r− q) = 0, hence H3(p)
is the Hecke algebra Hq,3, and λ = 1− q

(1+q)2 .

Proof. After simplification,

Da,b = b3(xyx− yxy) + ab(a + b)(x− y)

Since Ann(⊕i Mi) = ∩iAnn(Mi), we may assume that M is indecompos-
able.

By Remark 2.2.8, the images of x, y, xyx and yxy in Endk(R(λ)[m])

are independent for λ ∈ k\{0, 1}, m > 1 and similarly for R(λ)
i [m] for

λ ∈ {0, 1}, i ∈ {1, 2}, m > 3.
By the relations

−x
(
(x− y)2 − λ

)
= xyx + (λ− 1)x

−y
(
(x− y)2 − λ

)
= yxy + (λ− 1)y

for λ ∈ k\{0, 1} we have Da,b ∈ Ann
(

R(λ)[1]
)

if and only if λ− 1 = a(a+b)
b2

as we claimed.
Considering R(λ)

i [1] for λ ∈ {0, 1}, one may observe that Da,b is not an
element of the ideals

Ann(R(1)
1 [1]) = (x, 1− y) Ann(R(1)

2 [1]) = (1− x, y)

by a + b 6= 0. On the other hand, it is contained in

Ann(R(0)
1 [1]) = (x, y) Ann(R(0)

2 [1]) = (1− x, 1− y)
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Moreover, Da,b ∈ Ann(R(0)
i [3]) (i = 1, 2) if and only if a2 + ab + b2 = 0.

Indeed,
Ann(R(0)

1 [3]) = −(x− y)2 · (x, y) =

= (xyx− x, yxy− y) 3 xyx− yxy− (x− y)

Ann(R(0)
2 [3]) = (x− y)2 · (1− x, 1− y) =

= (y− xy− yx + xyx, x− yx− xy + yxy) 3 xyx− yxy− (x− y)

Similarly, for R(0)
i [2] (i = 1, 2) . Hence Da,b ∈ Ann(R(0)

i [m]) (i = 1, 2,
1 ≤ m ≤ 3) if and only if ab(a + b) = −b3.

Remark 2.2.15. If a + b = 0 then Da,b = b3(xyx− yxy) that is contained in
Ann(R(λ)

i [1]) for λ = 0, 1 and i = 1, 2, but not contained in Ann(R(λ)
i [m])

if m > 1, neither in Ann(R(λ)[m]) for any λ ∈ k\{0, 1} and m ∈N+.

2.2.4 Proof of Theorem 2.2.2

The proof of Theorem 2.2.2 is based on the following proposition.

Proposition 2.2.16. Let n ≥ 2 and M a P3-module of dimension n3 such that
the action of 1 − x − y (resp. x − y) is invertible (resp. not nilpotent) on M.
Moreover, assume that

dim
(
KerM(x) ∩KerM(y)

)
=

(
n + 2

3

)
dim

(
ImM(x) ∩ ImM(y)

)
=

(
n
3

)
rkM(x) = rkM(y) =

(
n
2

)
n.

Then

dim EndP3(M) ≤
(

n2 + 2
3

)
with equality if and only if there is a λ ∈ k\{0, 1} such that

M ∼=
(

R(0)
1 [1]

)n0,1 ⊕
(

R(0)
2 [1]

)n0,2 ⊕
(

R(λ)[1]
)c (2.20)

where n0,1 = (n+2
3 ), n0,2 = (n

3) and c = 2(n+1
3 ).

Remark 2.2.17. If M is assumed to be semisimple, then Prop. 2.2.16 is
more straightforward. Also it is a consequence of Prop. 2.4.10. However,
the general case cannot be reduced to the semisimple one.

The length of the proof may also be justified by the fact that if x− y is
nilpotent then the proposition does not hold. That is why p12 − p23 is as-
sumed to be not nilpotent in Def. 2.2.1, though we were unable to find an
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2.2 idempotent case

idempotent p ∈ End(V ⊗V) such that V⊗3 is an explicit counterexample
to the statement of Theorem 2.2.2 without the assumption above.

Indeed, by Lemma 2.2.12, x− y is nilpotent if and only if M is an A0,k-
module for some k. Consider

M :=
(

R(0)
1 [2]

)k1,2 ⊕ (R(0)
1 [3])k1,3 ⊕

(
R(0)

2 [2]
)k2,2 ⊕ (R(0)

2 [3])k2,3

where k1,2 = k2,2 = n,

k1,3 =

(
n + 1

3

)
+

(
n
2

)
=

1
6
(n− 1)n(n + 4)

k2,3 =

(
n + 1

3

)
−
(

n
2

)
− n =

1
6
(n− 4)n(n + 1)

Then M satisfies every assumption of Prop. 2.2.16 except x − y is not
nilpotent on M, by Remark 2.2.5 and Lemma 2.2.12. Note also that by
Prop. 2.2.13 there are a, b ∈ k× such that a2 + ab + b2 = 0 and Da,b ∈
Ann(M).

On the other hand, by Prop. 2.2.11,

dim EndP3(M) = k2
1,2 + k2

2,2 + 2
(

k2
1,3 + k2

2,3 + k1,2k1,3 + k2,2k2,3

+k1,2k2,2 + k1,2k2,3 + k1,3k2,2 + k1,3k2,3

)
=

(
n2 + 2

3

)
+ n2

The example shows that careful estimations are required in the proof.

In the proof of Prop. 2.2.16, we will need the following lemma.

Lemma 2.2.18. Let k, m, m′ ∈ N such that m + 3 ≤ m′ ≤ k, and let N
be a finite-dimensional A0,k-module such that all of its indecomposable direct
summands are isomorphic to R(0)

i [l] for some i = 1, 2 and m ≤ l ≤ m′. Then

dim EndA0,k

(
R(0)

j [m]⊕ N⊕R(0)
j′ [m′]

)
<

< dim EndA0,k

(
R(0)

j [m + 2]⊕ N ⊕ R(0)
j′ [m′ − 2]

)
for any j, j′ ∈ {1, 2}.

Using Loewy diagrams (see Subsec. 2.2.2), the lemma can be visualized
as

dim EndA0,k
S(1)⊕

S(2)
S(1)
S(2)
S(1)
S(2)

= 4 < 6 = dim EndA0,k

S(1)
S(2)
S(1)
⊕

S(2)
S(1)
S(2)

for the modules R(0)
1 [1]⊕ R(0)

2 [5] and R(0)
1 [3]⊕ R(0)

2 [3].
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Proof. For any N1, N2 ∈ A0,k−Mod f denote

〈N1, N2〉 := dim HomA0,k(N1, N2) + dim HomA0,k(N2, N1)

By Prop. 2.2.11, for any j, j′ ∈ {1, 2} and m, l ≤ k,

dim HomA0,k

(
R(0)

j′ [l], R(0)
j [m + 2]

)
− dim HomA0,k

(
R(0)

j′ [l], R(0)
j [m]

)
=

=

1 if l ≥ m + 2 or (l = m + 1 and j = j′)

0 otherwise

Similarly, if we reverse the order of modules in both Hom, then the result
is the same with j 6= j′ instead of j = j′. Consequently,

〈
R(0)

j [m + 2], R(0)
i [l]

〉
−
〈

R(0)
j [m], R(0)

i [l]
〉
=


2 if l ≥ m + 2

1 if l = m + 1

0 otherwise

(2.21)

Therefore, using dim EndA0,k

(
R(0)

j [m + 2]
)
− dim EndA0,k

(
R(0)

j [m]
)
= 1 by

Prop 1.3.2, we may compute

dim EndA0,k

(
R(0)

j [m + 2]⊕ N ⊕ R(0)
j′ [m′ − 2]

)
−dim EndA0,k

(
R(0)

j [m]⊕ N ⊕ R(0)
j′ [m′]

)
=

=
〈

R(0)
j [m + 2], N

〉
+
〈

R(0)
j′ [m′ − 2], N

〉
+
〈

R(0)
j [m + 2], R(0)

j′ [m′ − 2]
〉

−
〈

R(0)
j [m], N

〉
−
〈

R(0)
j′ [m′], N

〉
−
〈

R(0)
j [m], R(0)

j′ [m′]
〉

(2.22)

where 〈
R(0)

j [m + 2], R(0)
j′ [m′ − 2]

〉
−
〈

R(0)
j [m], R(0)

j′ [m′]
〉
=

=
〈

R(0)
j [m + 2], R(0)

j′ [m′ − 2]
〉
−
〈

R(0)
j [m], R(0)

j′ [m′ − 2]
〉

+
〈

R(0)
j [m], R(0)

j′ [m′ − 2]
〉
−
〈

R(0)
j [m], R(0)

j′ [m′]
〉
≥ 1 + 0

by Eq. 2.21, using m′ − 2 ≥ m + 1 and m < m′ − 1. Hence the quantity in
Eq. 2.22 is

1 + ∑
i=1,2

(
∑

l≥m+2
2
[
N :⊕ R(0)

i [l]
]
+
[
N :⊕ R(0)

i [m + 1]
]

− ∑
l≥m′

2
[
N :⊕ R(0)

i [l]
]
−
[
N :⊕ R(0)

i [m′ − 1]
])

> 0

that is positive by m′− 1 ≥ m+ 1, where [N :⊕ Q] denotes the multiplicity
of Q as a direct summand of N.
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2.2 idempotent case

In the proof we will apply Prop. 2.2.11 several times, that describes the
dimension of the space of endomorphisms of P3-modules.

Proof of Proposition 2.2.16. The proof is done in four steps: First we decom-
pose M as M0 ⊕Mcont and convert the assumptions into equations about
P3-module multiplicities (see Eq. 2.25, 2.26 and 2.27). In the second (resp.
third) step, we apply Lemma 2.2.18 (resp. Lemma 1.3.4), to reduce to a
case where the decomposition of M0 (resp. Mcont) is simpler. Finally, we
turn the problem into a numerical issue, that we solve in Lemma 2.2.20.

First step: The P3-module M can be decomposed as

M = M0 ⊕M1 ⊕Mcont (2.23)

by Lemma 2.2.7, 2.2.9 and 2.2.10, where the indecomposable direct sum-
mands of Mcont (resp. M0, M1) are isomorphic to R(λ)[m], λ ∈ k\{0, 1}
and m ∈ N+ (resp. R(0)

i [m], R(1)
i [m] for some i = 1, 2, and m ∈ N+). In

fact M1 = 0 by Lemma 2.2.12 using that 1− x− y is invertible. Hence

dim EndP3(M)
2.2.7
= dim EndP3(M0) + dim EndP3(Mcont) (2.24)

by Lemma 2.2.7, so we bound these two quantities separately.
By Lemma 2.2.12, Mcont 6= 0 as x− y is not nilpotent, and

dim HomP3(R(0)
1 [1], M0) =

(
n + 2

3

)
(2.25)

dim HomP3(R(0)
2 [1], M0) =

(
n
3

)
(2.26)

using the assumptions. Moreover, we claim that

[
M0 : R(0)

1 [1]
]
− n2 =

[
M0 : R(0)

2 [1]
]
≤ n

(
n
2

)
− 1 (2.27)

Indeed, by Lemma 2.2.9 and 2.2.12,

2n
(

n
2

)
− 2
[
M0 : R(0)

2 [1]
] rkM(x)=(n

2)n= 2rkM(x)− 2
[
M0 : R(0)

2 [1]
]
=

2.2.12
= 2 ∑

λ∈k\{0,1}

[
Mcont : R(λ)[1]

] 2.2.9
= dim Mcont

2.23
= dim M− dim M0

2.2.11
= n3 −

[
M0 : R(0)

1 [1]
]
−
[
M0 : R(0)

2 [1]
]

where this value is ≥ 1 by Mcont 6= 0. Eq. 2.27 follows by rearrangement
using n3 − 2n(n

2) = n2.
Second step: Our goal is to deduce Eq. 2.28 and as a consequence Eq.

2.34, using Lemma 2.2.18. First, we claim that we may assume that there
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is an mmin such that if R(0)
i [m] is a direct summand of M0 for some i = 1, 2

then mmin ≤ m ≤ mmin + 2.
Indeed, if there are summands R(0)

j [m] and R(0)
j′ [m′] of M0 such that

m′ −m ≥ 3 then we may replace them with R(0)
j [m + 2] and R(0)

j′ [m′ − 2].
By Prop. 2.2.11, we do not change the quantities in Eq. 2.25, 2.26 and 2.27,
but strictly increase dim EndP3(M0) by Lemma 2.2.18.

We show that mmin ≤ 2. Indeed, if mmin ≥ 3 then

n3 = dim M ≥ dim M0 ≥

2.2.11& mmin≥3
≥ 3 ∑

i=1,2
dim HomP3(R(0)

i [1], M0)

2.25&2.26
≥ 3

(
n + 2

3

)
+ 3
(

n
3

)
= n3 + 2n

where [N :⊕ Q] denotes the multiplicity of Q as a direct summand of N.
This is a contradiction. Consequently, we may assume that

M0
∼=
⊕

i=1,2

4⊕
m=1

R(0)
i [m]ki,m (2.28)

for some ki,m ∈ N (i = 1, 2, m = 1, 2, 3, 4). In fact either k1,1 = k2,1 = 0 or
k1,4 = k2,4 = 0, but we do not use this.
Claim 2.2.19. In the above notations,

4

∑
m=1

k1,m =

(
n + 2

3

) 4

∑
m=1

k2,m =

(
n
3

)
(2.29)

k2,3 + k2,4 + k1,2 + k1,3 + 2k1,4 ≤ 2
(

n + 1
3

)
− 1 (2.30)

n2 = k1,1 + k1,3 − k2,1 − k2,3 (2.31)

k1,2 + k1,4 = k2,2 + k2,4 (2.32)

The equations are linearly dependent, but it is simpler to write out all.

Proof. The first two equations are clear by Eq. 2.25, 2.26 and Prop. 2.2.11.
Moreover, still by Prop. 2.2.11

[
M0 : R(0)

i [1]
]
= ∑

j=1,2

4

∑
m=1

⌊m + δj,i

2

⌋
k j,m =

= (ki,1 + ki,2 + 2ki,3 + 2ki,4) + (k3−i,2 + k3−i,3 + 2k3−i,4) (2.33)
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2.2 idempotent case

In particular, by Eq. 2.27 and Eq. 2.29,

n
(

n
2

)
− 1

2.27
≥
[
M0 : R(0)

2 [1]
] 2.29
=

(
n
3

)
+ (k2,3 + k2,4) + (k1,2 + k1,3 + 2k1,4)

Using n(n
2)− (n

3) = 2(n+1
3 ), we obtain Inequality 2.30. Moreover, Eq. 2.31

and 2.32 may be deduced from Eq. 2.27, 2.29 and 2.33 as

n2 2.27
=
[
M0 : R(0)

1 [1]
]
−
[
M0 : R(0)

2 [1]
]
=

2.33
= k1,1 + k1,3 − k2,1 − k2,3

2.29
=

(
n + 2

3

)
− k1,2 − k1,4 −

(
n
3

)
+ k2,2 + k2,4

Using n2 = (n+2
3 )− (n

3), we obtain the claim.

By Prop. 2.2.11, we have

dim EndP3 M0 = vTBv

where v = (k1,1, k1,2, k1,3, k1,4, k2,1, k2,2, k2,3, k2,4) and

B =

((
dim HomP3

(
R(λ)

i [m], R(λ)
i′ [m′]

)))
(i,m),(i′,m′)

=

=



1 1 1 1 0 0 0 0
0 1 1 1 1 1 1 1
1 1 2 2 0 1 1 1
0 1 1 2 1 1 2 2
0 0 0 0 1 1 1 1
1 1 1 1 0 1 1 1
0 1 1 1 1 1 2 2
1 1 2 2 0 1 1 2


where (i, m) and (i′, m′) runs on {1, 2} × {1, 2, 3, 4} (ordered lexicograph-
ically). It is elementary to check, using Claim 2.2.19, that

2vTBv = vT(B + BT)v =
4

∑
s=1

( 2

∑
i=1

4

∑
m=s

ki,m

)2

+ (k1,1 + k1,3 − k2,1 − k2,3)
2 =

=

((
n + 2

3

)
+

(
n
3

))2

+
(
k1,3 + k2,3 + 2k1,2 + 2k1,4

)2
+

+
(
k1,3 + k2,3 + k1,4 + k2,4

)2
+ (k1,4 + k2,4)

2 + n4 (2.34)
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Third step: The goal in this step is to deduce that Mcont my be assumed
to be semisimple, and hence Eq. 2.36 holds.

Indeed, replacing R(λ)[m] by (R(λ)[1])m for all λ ∈ k\{0, 1} and m ∈N+

does not change the quantities in Eq. 2.25, 2.26 and 2.27, but – by Lemma
1.3.4 – strictly increases dim EndP3(Mcont) if Mcont was not semisimple yet.
Explicitly, by dim R(λ)[1] = 2,

dim EndP3(Mcont) ≤ ∑
λ∈k

[
Mcont : R(λ)[1]

]2 ≤
≤
(1

2
dim(Mcont)

)2 2.23
=

1
4

(
dim M− dim M0

)2
(2.35)

with equality if and only if Mcont ∼= (R(λ)[1]
) 1

2 dim Mcont . By Eq. 2.28 and

dim R(0)
i [m] = m, we have

=
1
4

(
n3 −

4

∑
m=1

mk1,m −
4

∑
m=1

mk2,m

)2

2.29
=

1
4

(
4
(

n + 1
3

)
− k1,2 − 2k1,3 − 3k1,4 − k2,2 − 2k2,3 − 3k2,4

)2

2.32
=
(

2
(

n + 1
3

)
− k2,3 − k2,4 − k1,2 − k1,3 − 2k1,4

)2
(2.36)

using n3 − (n+2
3 )− (n

3) = 4(n+1
3 ).

Fourth step: We claim that for the proof of the proposition (i.e. for
bounding the sum of the right hand sides of Eq. 2.34 and 2.36), it is
enough to prove the following lemma.

Lemma 2.2.20. Let n ≥ 2, c = 2(n+1
3 ) and consider the compact convex poly-

tope

K :=
{
(x, y, z) ∈ R3 | x, y, z ≥ 0, x + y + z ≤ c− 1, 2x + y ≤ c + n

}
If n = 3 then include x ≤ 1 in the definition of K. Then the function f : K → R

defined as

f (x, y, z) =
1
2

(
(2x + y)2 + (y + z)2 + z2

)
+ (c− x− y− z)2

attains its maximum value (which is c2) if and only if (x, y, z) = (0, 0, 0).

Indeed, we may apply the lemma for

(x, y, z) =
(
k1,2 + k1,4, k1,3 + k2,3, x1,4 + x2,4

)
.
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2.2 idempotent case

The assumption x + y + z ≤ c− 1 holds by Eq. 2.30. Moreover, by Eq. 2.32

and 2.29,
2x + y = 2(k1,2 + k1,4) + (k1,3 + k2,3) =

2.32
= (k1,2 + k1,4) + (k2,2 + k2,4) + (k1,3 + k2,3)

2.29
≤
(

n + 2
3

)
+

(
n
3

)
= 2

(
n + 1

3

)
+ n

For n = 3, x = k1,2 + k1,4 = k2,2 + k2,4 ≤ (n
3) = 1 by Eq. 2.29 and 2.32.

Therefore, by Lemma 2.2.20, Eq. 2.34 and 2.36, we obtain

dim EndP3(M)
2.24
= dim EndP3 M0 + dim EndP3(Mcont) ≤

2.34&2.36
≤ 1

2

((
n + 2

3

)
+

(
n
3

))2

+
n4

2
+ f
(
k1,2 + k1,4, k1,3 + k2,3, x1,4 + x2,4

)
≤

2.2.20
≤ n6 + 13n4 + 4n2

18
+ 4
(

n + 1
3

)2

=

(
n2 + 2

3

)
with equality if and only if ki,m = 0 for all i = 1, 2 and m = 2, 3, 4.

In the reduction steps we strictly increased dim EndP3(M) except when

m′ − m was at most 2 and Mcont ∼= (R(λ)[1]
) 1

2 dim Mcont , hence the bound
may be satisfied with equality if and only if Eq. 2.20 holds.

Proof of the Lemma 2.2.20. The gradient and Hessian of f are

∇ f (x, y, z) = [4x + 2y, 2x + 2y + z, y + 2z] + 2
(
x + y + z− c

)
[1, 1, 1]

∇2 f (x, y, z) =

6 4 2
4 4 3
2 3 4


where the second has leading principal minors 6, 8, and 10, hence is ∇2 f
is positive definite, and f is strictly convex. Consequently, as P is compact
and convex, maximum points of f are among the extreme points of P.

First assume that n ≥ 4. Then c+n
2 ≤ c− 1 and the extreme points are

[0, 0, 0], [0, 0, c− 1], [0, c− 1, 0],
[ c + n

2
, 0, 0

]
[ c + n

2
, 0,

c− n− 2
2

] [
n + 1, c− n− 2, 0

]
where c− n− 2 ≥ 0 for all n ≥ 3.

One can check that the values of f on these points are smaller than c2,
except the case of [0, 0, 0]. Indeed,

f (0, 0, c− 1) = f (0, c− 1, 0) = (c− 1)2 + 12 < c2
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matrix bialgebras

for all n. Moreover,

f (n + 1, c− n− 2, 0) =
1
2
(c + n)2 +

1
2
(c− n− 2)2 + 12 =

= c2 − 2c + (n2 + 2n + 3) < c2

as n2 + 2n + 3 < 2c = 4(n+1
3 ) = 2

3 n(n2 − 1) for n ≥ 4. For the other two
extreme points, we obtain

f
( c + n

2
, 0,

c− n− 2
2

)
=

1
2
(c + n)2 +

( c− n− 2
2

)2
+ 12

f
( c + n

2
, 0, 0

)
=

1
2
(c + n)2 +

( c− n
2

)2

where the first is clearly at most f (n + 1, c− n− 2, 0) < c2. For the second
one, we get

1
2
(c + n)2 +

( c− n
2

)2
= c2 + n2 − 1

4
(c− n)2 < c2

by c− n > 2n using n ≥ 4, hence the claim follows for n ≥ 4.
For n = 3, c = 2(4

3) = 8 and the equations defining K are x, y, z ≥ 0,
x + y + z ≤ 7 and x ≤ 1 (as we exceptionally assumed for n = 3) since
2x + y ≤ 11 is superfluous. The extreme points are

[0, 0, 0], [0, 0, 7], [0, 7, 0],

[1, 0, 0], [1, 6, 0], [1, 0, 6]

where the values of f are 64, 50, 50, 51, 57.5 and 39, respectively. For
n = 2, we have c = 2 and K is defined by x, y, z ≥ 0 and x + y + z ≤ 1.
The values of f on the four extreme points are 4, 3, 2 and 2, hence the
claim follows.

The Lemma completes the proof of Prop. 2.2.16.

Remark 2.2.21. For n = 3, without the assumption x ≤ 1, K would have an
extreme point [4, 3, 0] with f (4, 3, 0) = 66 > 64 = c2. On the other hand,
including the assumption x ≤ (n

3) for all n would yield higher number of
extreme points for K, resulting an even longer, superfluous computation.

Note also that if we replace the assumption x + y + z ≤ c − 1 with
x + y + z ≤ c in the definition of K, then Lemma 2.2.20 does not hold.
Indeed, for x = n, y = c− n and z = 0 we have f (x, y, z) = c2 + n2 (cf.
Remark 2.2.17).
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2.2 idempotent case

Proof of Theorem 2.2.2. By Prop. 2.1.7, 2.2.13 and 2.2.16, the bound on the
dimension ofM3(p) holds and both i) and iii) are equivalent to the fact
that there is a single λ ∈ k\{0, 1} such that Eq. 2.20 holds, using the fact
that we know

[
V⊗3 : R(0)

1 [1]
]

and
[
V⊗3 : R(0)

2 [1]
]

by the assumption that
p is polynomial-type up to degree three (see Eq. 2.25 and 2.26).

On the other hand, if n ≥ 3, then both (n+2
3 ) and (n

3) are positive, hence

R(0)
1 [1] and R(0)

2 [1] are P3-direct summands of V⊗3 i.e. they give two non-
isomorphic simpleH3(p)-modules of dimension 1. Moreover, as p12− p23
is not nilpotent there exists a λ ∈ k\{0, 1} such that R(λ)[1] defines an
H3(p)-module. Hence dimH3(p) ≥ 1 + 1 + 22 = 6, with equality if and
only if V⊗3 is the direct sum of copies of these three simple modules. For
n = 2, (n

3) = 0 so the same result holds with 5 instead of 6. Consequently,
ii) is also equivalent to the other assertions.

2.2.5 PBW-basis

In this subsection we may characterize the existence of a PBW-basis in
M(p) in the sense of Subsec. 1.2.1.

Let S := Ker(p) and T := Im(p), and identify E = End(V) with V⊗V∨.
We will suppress the tensor signs between elements of V and V∨. The
proof of Cor. 2.2.4 follows directly from Theorem 2.2.2 and the following
proposition, that is implicit in Theorem 3, [Su].

Proposition 2.2.22. Let p ∈ E⊗2 be an idempotent, v1, . . . , vn an ordered basis
of V and f1, . . . , fn its dual basis. Assume that AT (resp. AS) has a polynomial
(resp. exterior) ordering algorithm with respect to the given ordered basis.

ThenM(p) has a polynomial ordering algorithm with respect to the basis

{vi fk ∈ E | 1 ≤ i, k ≤ n}

where vi fl > vj fk if and only if i > j or i = j and l < k.

Proof. By Eq. 2.4,

M(p) ∼= T (E)/(τ(23)(SSo + TTo))

Using the ordering on E defined in the statement, for all 1 ≤ a, b ≤ n, let

K≤
(a,b) := Span(vivj fl fk ∈ E⊗2 | vi fl < va fb, vi fl ≤ vj fk)

By Lemma 1.2.3 the claim is equivalent to

vavc fb fd ∈ SSo + TTo + K≤
(a,b) (2.37)

for all 1 ≤ a, b, c, d ≤ n such that va fb > vc fd i.e. a > c or a = c and b < d.
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matrix bialgebras

For fixed 1 ≤ a, b ≤ n, define the following spaces

K<
a = Span(vivj | i < a, i < j)

K=
a = Span(vivi | i < a)

L≤b = Span( fl fk | l > b, l ≥ k)

We use the last definition also for b = 0.
As AT (resp. AS) has a polynomial (resp. exterior) ordering algorithm,

and by Lemma 1.2.3, we have

vavc ∈ T + K<
a + K=

a (n ≥ a > c ≥ 1) (2.38)

vavc ∈ S + K<
a (n ≥ a ≥ c ≥ 1) (2.39)

Moreover, by Lemma 1.2.5, A!
S
∼= T (V∨)/(So) has a polynomial ordering

algorithm for the dual ordering on f1, . . . , fn. Hence

fb fd ∈ So + L≤b (1 ≤ b < d ≤ n) (2.40)

On the other hand, by the definition of the ordering on E,

K≤
(a,b) = Span(vivj fl fk | i < a, i < j) + Span(vivi fl fk | i < a, l ≥ k)

+Span(vavj fl fk | l > b, a = i < j) + Span(vava fl fk | l > b, l ≥ k) =

= K<
a V∨V∨ + K=

a L≤0 + ∑
j>a

vavj ∑
l>b

flV∨ + vavaL≤b

So, by Eq. 2.37, it is enough to verify

vavc fb fd ∈ SSo + TTo + K<
a V∨V∨ + K=

a L≤0 + vavaL≤b (2.41)

for all a > c or a = c and b < d.
First assume that a = c and b < d. Then, by Eq. 2.39 and 2.40, we have

vava fb fd
2.40
∈ vava(So + L≤b ) ⊆

2.39
⊆ (S + K<

a )S
o + vavaL≤b

⊆ SSo + K<
a V∨V∨ + vavaL≤b (2.42)

Hence Eq. 2.41 holds.
Now assume that a > c. Then, by So + To = V∨V∨, Eq. 2.39 and 2.38,

we have
vavc fb fd ∈ vavc(So + To) ⊆

⊆ (S + K<
a )S

o + (T + K<
a + K=

a )T
o
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2.3 nilpotent case

⊆ SSo + TTo + K<
a V∨V∨ + K=

a V∨V∨

where
K=

a V∨V∨ = K=
a L≤0 + K=

a ∑
k<l

fk fl

by the definition of L≤0 . To rearrange the last summand, we apply the
previous paragraph: for all j < a and k < l,

vjvj fk fl
2.42
∈ SSo + K<

j V∨V∨ + vjvjL
≤
k ⊆

⊆ SSo + K<
a V∨V∨ + K=

a L≤0
Therefore Eq. 2.41 indeed holds in all cases.

Proof of Corollary 2.2.4. By Prop. 2.2.22, M(p) has a polynomial order-
ing algorithm. Hence, by Fact 1.2.4, it is a PBW-algebra if and only if
dimM3(p) = (n2+2

3 ) . Therefore the claim follows by Theorem 2.2.2.

2.3 N I L P O T E N T C A S E

In the following, we assume that p ∈ End(V ⊗V) such that p is nilpo-
tent of order 2, i.e. p2 = 0. Our goal is to prove Theorem 2.3.2 by reducing
it to Theorem 2.2.2.

Matrix bialgebras arising from such a nilpotent element include the
Hecke-type FRT-bialgebras for q = −1. In particular, the bialgebra Oi(M2)
corresponding to the isolated quantum group investigated in [Skr].

Recall that we denote p12 = p⊗ id and p23 = id⊗ p in End(V⊗3), and
n := dim V.

Definition 2.3.1. Let us call a nilpotent (of order two) p ∈ End(V ⊗ V)
polynomial-type up to degree three, if p is of rank (n

2), p12 + p23 is not nilpo-
tent, and

dim(Ker(p12) ∩Ker(p23)) =

(
n + 2

3

)
(2.43)

dim(Im(p12) ∩ Im(p23)) =

(
n
3

)
(2.44)

Ker(p12) ∩ Im(p23) ⊆ Im(p12) (2.45)

Im(p12) ∩Ker(p23) ⊆ Im(p23) (2.46)

where n = dim V. Note that the definition differs from Def. 2.2.1.
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matrix bialgebras

Theorem 2.3.2. Let dim V ≥ 2 and p ∈ End(V ⊗ V) such that p2 = 0 that
is polynomial-type up to degree three. Then the statements of Theorem 2.2.2 hold
for p, with characterization iii) replaced by

iii)’ there are distinct scalars λ, µ ∈ k× such that

p12p23p12 − λp12 − µp23p12p23 + µλp23

annihilates V⊗3.

Remark 2.3.3. Assume that there are a, b ∈ k× such that a + bp satisfies the
Yang-Baxter equation (see Eq. 2.19). Assume also that the Hilbert series
of AKer(p) (resp. AIm(p)) agrees with (1− t)−n (resp. (1 + t)n) in degrees
1, 2 and 3, where AU = T (V)/U for U ⊆ V ⊗ V. In Remark 2.3.10 we
prove that in this case p is polynomial-type up to degree three and iii)′

holds with µ = 1, assuming that p12 + p23 is not nilpotent. The latter extra
assumption holds for Oi(M2) (see [Skr]).

By Prop. 2.1.7, for all d ≥ 2 we have Schd(p) ∼= EndHd(p)(V⊗d). As
Hd(p) is the quotient of

P′d := k〈y1, . . . , yd−1〉
/(

y2
i (1 ≤ i < d), yiyj − yjyi (|i− j| > 1)

)
similarly to idempotent case, we may also write EndP′3

instead of EndHd(p).
For d = 3, we describe P′3−Mod f in the next subsection.

2.3.1 Representations of P′3

In this subsection, we describe the indecomposable modules of P′3 =
k〈x′, y′〉/

(
(x′)2, (y′)2) in the form of Corollary 2.3.6.

Note that (x′+ y′)2 = x′y′+ y′x′ is central in P′3. Hence, by Lemma 2.2.7,
it is enough to understand the modules of A′λ,k := P′3

/(
(x′y′+ y′x′− λ)k).

Lemma 2.3.4. For all k ∈N+ and λ ∈ k×

A′λ,k
∼= M2[t]/(tk) ∼ k[t]/(tk)

Proof. The unital homomorphism A′λ,k → M2[t]/(tk) given by

x′ 7→
[

0 1
0 0

]
y′ 7→

[
0 0

t + λ 0

]
(2.47)

is clearly a homomorphism. If λ 6= 0 then it is also invertible.

For all λ 6= 0, m ∈ N+, let us denote by T(λ)[m] the unique 2m-
dimensional indecomposable module of P′3 induced from A′λ,k (for any
k ≥ m > 0).
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2.3 nilpotent case

Lemma 2.3.5. Let B′k := P′3
/
(x′, y′)k. Then

∞⋃
k=1

(
A′0,k−Mod f

) ∼= ∞⋃
k=1

(
B′k−Mod f

)
Proof. We claim that

(x′, y′)k+1 ⊆ (x′y′ + y′x′)k ⊆ (x′, y′)k (2.48)

for all k ∈ N+. Indeed, the second containment is clear. Moreover, for k
odd,

(x′y′ + y′x′)k = x′y′x′ . . . y′x′ + y′x′y′ . . . x′y′

hence (x′y′+ y′x′)kx′ = y′x′y′ . . . x′y′x′ and (x′y′+ y′x′)kx′ = y′x′y′ . . . x′y′x′.
Similarly, for k even, hence Eq. 2.48 holds.

By the previous paragraph, there are natural surjections

B′k+1 � A′0,k � B′k

for all k ∈N+. The claim follows.

The motivation for the second lemma is the following. For all k ≥ 2,

B′k ∼= kQ/Ik

is a monomial special biserial algebra (see Subsec. 1.3.2), with quiver Q
that has a single vertex and two loops (x′ and y′):

•x′ 99 y′ee

and Ik = (x′, y′)k.
By Prop. 1.3.1, we may describe the indecomposable modules in C :=⋃∞

k=1
(

B′k−Mod f
)
. For the terminology, see Subsec. 1.3.2.

Fix k ≥ 2. By definition, a V-sequence for kQ/Ik is a walk-quiver L
with arrow-labeling v : A(L) → {x′, y′} such that L contains no directed
path with k arrows, moreover, the labeling v is alternating, i.e. if distinct
arrows β1, β2 ∈ A(L) have a common end-point (in the undirected sense)
then v(β1) 6= v(β2).

Similarly, a primitive V-sequence for kQ/Ik is a tour-quiver Z with
arrow-labeling u : A(Z) → {x′, y′} such that Z contains no directed path
of k arrows, moreover, u is alternating, and there is no quiver-automorphism
σ 6= id of Z such that u ◦ σ = u. Consequently, by Lemma 2.2.7:

Corollary 2.3.6. The isomorphism types of indecomposable modules of P′3 can
be listed as follows:

• T(λ)[m] for some λ ∈ k× and m ∈N+,
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matrix bialgebras

• M(v) where L is a walk-quiver and v : A(L)→ {x′, y′} is an alternating
labeling,

• M(u, m, λ, β0) where m ∈ N+, λ ∈ k×, Z is a tour-quiver, β0 ∈ A(Z),
u : A(Z) → {x′, y′} is an alternating labeling, and there is no quiver-
automorphism σ 6= id of Z such that u ◦ σ = u.

The redundancies in the list are as in Prop. 1.3.1.

In the next subsection, we will need the following notions and proper-
ties about the above mentioned modules. For a quiver C that is either a
walk-quiver or a tour-quiver let us define the number of sinks and complete
sinks as

sk(C) := {c ∈ V(C) | @β ∈ A(C), β : c→ d}
csk(C) := {c ∈ sk(C) | deg(c) = 2}

where deg(c) stands for the graph-theoretic undirected degree of the ver-
tex c.

Let Lk,l be the walk-quiver that is the join of a path with k − 1 edges,
and a path with l − 1 edges, at their sinks, as in the figure.

Lk,l : •
βk−1 // . . .

β2 // • β1 // • •γ1oo . . .
γ2oo •

γl−1oo

Then let V[k, l] := M(v) where v : A(Lk,l) → {x′, y′} is the labeling on
Lk,l such that v(β1) = x′ (this determines the labeling completely). Note
that dim V[k, l] = k + l − 1.

Lemma 2.3.7. For k, k′, l, l′ ∈N+,

dim HomP′3

(
V[k, l], V[k′, l′]

)
= δk>k′δl>l′ − 1+

+dim HomP3

(
R(0)

1 [k]⊕ R(0)
2 [l], R(0)

1 [k′]⊕ R(0)
2 [l′]

)
By Prop. 1.3.2, the lemma may be verified by a combinatorial case check-

ing. Moreover, analogously to Lemma 2.2.12, the following holds.

Lemma 2.3.8. Let C be either a walk-quiver or a tour-quiver, and v : A(C) →
{x′, y′} alternating labeling of C such that there is no quiver-automorphism
σ 6= id of C satisfying u ◦ σ = u. Then

dim
(
KerM(x′) ∩KerM(y′)

)
= m · sk(C)

dim
(
ImM(x′) ∩ ImM(y′)

)
= m · csk(C)

rkMz = m · {β ∈ A(C) | v(β) = z} (z ∈ {x′, y′})
for M = M(v) and m = 1 if C is a walk-quiver, and M = M(v, m, λ, β0) if C
is a tour-quiver (λ ∈ k×, m ∈N+ and β0 ∈ A(C) arbitrary).
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2.3 nilpotent case

Similarly to Subsec. 2.2.3, condition iii)′ in Theorem 2.3.2 determines
the isomorphism types of indecomposable summands of V⊗3 as follows.

For each µ ∈ k× let U(µ) := M(u, 1, µ, β0) where Z is the Kronecker
quiver (i.e. two vertices with two parallel arrows pointing from one vertex
to the other), u : A(Z) → {x′, y′} is an alternating labeling such that
u(β0) = x′. Moreover, let V := V[1, 1], and T(λ) := T(λ)[1] for any λ ∈ k×.

Proposition 2.3.9. Let M be a finite-dimensional P′3-module and λ, µ ∈ k×.
Then

x′y′x′ − λx′ − µy′x′y′ + µλy′ ∈ Ann(M) (2.49)

if and only if M is isomorphic to the direct sum of copies of the modules V, U(µ),
and T(λ).

Proof. We may assume that M is indecomposable. If M ∼= M(v) for some
alternating v : A(L) → {x′, y′}, then we prove that M ∼= V. Indeed, let
w ∈ V(L) and assume that β ∈ A(L) has source w (for the notation, see
Subsec. 1.3.2). If v(β) = x′ then x′L(w) is independent of the span of
x′y′x′L(w), y′x′y′L(w) and y′L(w), hence 2.49 cannot hold. Similarly, if
v(β) = y′.

Assume that M is of the form M(u, m, µ, β0). Then there is w ∈ V(Z)
such that β1, β2 ∈ A(Z) have source w, u(β1) = x′ and u(β2) = y′. If x′

and y′ have distinct targets then x′L(w) is independent of the span of the
other spaces, hence 2.49 cannot hold. Therefore, Z is the Kronecker-quiver,
and we may assume that u(β0) = x′. We still need to prove that x′− µy′ ∈
Ann(M) (in particular, m = 1). Since x′y′x′ and y′x′y′ annihilate M, this
follows.

Assume that M ∼= T(ν)[m] for some ν ∈ k× and m ∈ N+. Then by Eq.
2.47, the matrix of x′y′x′ − λx′ − µy′x′y′ + µλy′ in the appropriate basis
over k[t]/(tm) is [

0 (t + ν)− λ

−µ(t + ν)2 + µλ(t + ν) 0

]

that is zero only if m = 1 and ν = λ. The claim follows.

Remark 2.3.10. The relation of the Yang-Baxter equation to Prop. 2.2.13

and the polynomial-type assumption is the following.
By elementary computation, there are a, b ∈ k× such that

(a + bx′)(a + by′)(a + bx′)− (a + by′)(a + bx′)(a + by′) ∈ Ann(M)

if and only if Eq. 2.49 holds with µ = 1. In that case, a = −λ (and b
arbitrary). Indeed, the expression above simplifies as

b3(x′y′x′ − y′x′y′) + ab2(x′ − y′)
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Now, assume the conditions given in Remark 2.3.3. We prove the state-
ment given there. Clearly, rk(p) = (n

2), Eq. 2.43 and 2.44 hold, by the
assumption on AKer(p) and AIm(p). The previous paragraph implies that
iii)′ in Theorem 2.3.2 is true for p with µ = 1. Hence we only have to
show Eq. 2.45 and 2.46.

Note that it is enough to show the above equations for the indecom-
posable P′3-module summands of V⊗3. By Prop. 2.3.9, these are among
V, U(µ) and T(λ). In the case of V, Im(x′) = Im(y′) = 0. For U(µ), the
subspaces Ker(x′), Ker(y′), Im(x′) and Im(y′) all agree with the unique
one-dimensional submodule of U(µ). While for T(λ), Ker(x′)∩ Im(y′) and
Im(x′) ∩Ker(y′) are both zero. The claim of Remark 2.3.3 follows.

2.3.2 Proof of Theorem 2.3.2

Using Prop. 2.2.16, we may deduce its analog for the p2 = 0 case. This
is the main step in the proof of Theorem 2.3.2.

Proposition 2.3.11. Let n := dim V ≥ 2 and p ∈ End(V ⊗ V) such that
p2 = 0 and p polynomial-type up to degree three in the sense of Def. 2.3.1. Then

dimM3(p) ≤
(

n2 + 2
3

)
(2.50)

with equality if and only if there are λ, µ ∈ k× such that

V⊗3 ∼= Vn2 ⊕
(
U(µ)

)n0,2 ⊕
(
T(λ)

)c (2.51)

where n0,2 = (n
3) and c = 2(n+1

3 ).

Recall that for a ring R, N[Indec f (R)] denotes the monoid of isomor-
phism classes of finite-dimensional left R-modules (with direct sum). Let
P3 := k〈x, y〉/(x2 − x, y2 − y) as in Sec. 2.2. Consider the following sub-
monoid of N[Indec f (P3)].

S = 〈V, T(λ)[m], M(u, m, µ, β0) | λ, µ ∈ k×, m ∈N+, u, β0 as above〉
(2.52)

Fix λ0 ∈ k\{0, 1}, and let us define an additive map

h : S →N[Indec f (P3)]

h(V) := R(0)
1 [1]

h
(
T(λ)[m]

)
:= R(λ0)[m]

for all λ ∈ k× and m ∈ N+. Moreover, if M ∼= M(u, m, µ, β0) for some
choice of u : A(Z) → {x′, y′}, m, µ and β0, then – by the definition of
M(u, m, µ, β0) – we have

M/radM ∼= Vsk(Z)·m (2.53)
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2.3 nilpotent case

radM ∼=
⊕

s∈sk(Z)

V[ks, ls]m (2.54)

for some ks, ls ∈ N+ (s ∈ sk(Z)), where radM is the (Jacobson) radical of
the module M. Hence we may define

h(M) :=
⊕

s∈sk(Z)

(
R(0)

1 [ks]
m ⊕ R(0)

2 [ls]m
)

The following lemma describing the properties of h – especially Eq. 2.56

– reduces Prop. 2.3.11 to 2.2.16.

Lemma 2.3.12. For all M, N ∈ S ,

dim h(M) = dim M (2.55)

dim HomP3(h(M), h(N)) ≥ dim HomP′3
(M, N) (2.56)

with strict inequality if T(λ)[1] ≤ M and T(λ′)[1] ≤ N for λ 6= λ′ ∈ k×.
Moreover,

rkh(M)x = rkMx′ rkh(M)y = rkMy′ (2.57)

dim HomP3

(
R(λ0)[m], h(M)

)
= ∑

λ∈k×
dim HomP′3

(
T(λ)[m], M

)
(2.58)

dim HomP3

(
R(0)

i [1], h(M)
)
= dim

(
ImM(x′) ∩ ImM(y′)

)
+ δi,1[M : V]

(2.59)
dim HomP3

(
R(1)

i [1], h(M)
)
= 0 (2.60)

for any λ ∈ k× and i = 1, 2.

The proof of the lemma follows from the definition of h and Lemma
2.3.7 and 2.3.8.

Proof of Proposition 2.3.11. By Corollary 2.3.6, V⊗3 can be decomposed as
V⊗3 ∼= M0,walk ⊕M0,tour ⊕Mcont where every indecomposable summand
of M0,walk (resp. M0,tour, Mcont) is isomorphic to a module of the form
M(v) (resp. M(u, m, µ, β0), T(λ)[m]). We claim that M0,walk

∼= Vn2
.

First observe that M0,walk is a direct sum of n2 indecomposable P′3-
modules. Indeed, for an indecomposable P′3-module M, we have

dim M− rkM(x′)− rkM(y′) =

1 M is of the form M(v)

0 otherwise

by Lemma 2.3.8 for M(v) and M(u, m, µ, β0), and by the definition for
T(λ)[m]. The left hand side is additive in M, hence the number of inde-
pendent indecomposable direct summands of M0,walk is

dim V⊗3 − rk(p12)− rk(p23) = n3 − 2n
(

n
2

)
= n2 (2.61)
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matrix bialgebras

Now we show that each summand of M0,walk is isomorphic to V. As
p is polynomial-type in the sense of Def. 2.3.1, for each indecomposable
summand M of V⊗3, we have

KerM(x′) ∩ ImM(y′) ⊆ ImM(x′)

ImM(x′) ∩KerM(y′) ⊆ ImM(y′).

If M ∼= M[v] for some v : A(L) → {x′, y′} and walk-quiver L, this is
possible only if either L is the one-point quiver L1 (with no edges), or
sk(L) = csk(L), i.e. L has no vertex with in-degree 1 and out-degree
0. Indeed, if β : d → c is the only arrow touching c and v(β) = y′,
then the one-dimensional subspace L(c) ⊆ M (see Subsec. 1.3.2) will give
KerM(x′) ∩ ImM(y′) 6⊆ ImM(x′). Similarly, for v(β) = x′.

We have to prove that for every indecomposable summand M ∼= M[v]
of M0,walk, the case ofsk(L) = csk(L) is impossible. For this purpose,
observe that for an indecomposable P′3-module M, we have

dim
(
KerM(x′) ∩KerM(y′)

)
− dim

(
ImM(x′) ∩ ImM(y′)

)
=

=

sk(L)− csk(L) M is of the form M(v)

0 otherwise
(2.62)

by Lemma 2.3.8 for M(v) and M(u, m, µ, β0), and by the definition for
T(λ)[m]. Note that sk(L) − csk(L) ∈ {0, 1, 2}. The left hand side of Eq.
2.62 is additive in M. We may compute

dim
(
Ker(p12) ∩Ker(p23)

)
− dim

(
Im(p12) ∩ ImM(p23)

)
=

=

(
n + 2

3

)
−
(

n
3

)
= n2 (2.63)

Together with Eq. 2.62 and 2.63, this shows that Vn2
is a summand of V⊗3.

Hence, by Eq. 2.61, we got M0,walk
∼= Vn2

, as claimed.
By the previous paragraphs, (the isomorphism type of) V⊗3 is in the

submonoid S (see Eq. 2.52). In particular, we may apply h on V⊗3.
It is enough to show that the P3-module h(V⊗3) satisfies the assump-

tions of Prop. 2.2.16. Indeed, then Eq. 2.56 implies the stated inequality
(Eq. 2.50), moreover, in the case of equality, V⊗3 cannot have submod-
ules isomorphic to T(λ)[1] and T(λ′)[1] for λ 6= λ′ ∈ k×, and h(V⊗3) is
of the form given by Eq. 2.20, by Prop. 2.2.16. That is possible only if
Mcont = T(λ)[1]c for some λ ∈ k× and rad rad M0,tour = 0, by the defini-
tion of h.
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2.4 upper bound

We need to prove that rad rad M0,tour = 0 implies that M0,tour is a power
of U(µ) for some µ ∈ k×. Observe that if rad rad M(u, m, µ, β0) = 0 then
the arrows of Z are oriented alternatingly (i.e. there is no directed path of
two arrows in Z). As M(u, m, µ, β0) is indecomposable only if Z has no
quiver-automorphism quiver-automorphism σ 6= id such that u ◦ σ = u,
we get that Z must be the Kronecker quiver (i.e. two vertices with two
parallel arrows pointing from one vertex to the other). That is, M0,tour

∼=
(U(µ))n0,2 for some µ ∈ k×. Conversely, if V⊗3 is as in Eq. 2.51 then the
inequality holds with equality by elementary calculation.

Now we check the assumptions of Prop. 2.2.16 using Lemma 2.3.12.
Clearly, dim h(V⊗3) = n3 Eq. 2.55, rkh(V⊗3)(x) = rkh(V⊗3)(y) = (n

2) by Eq.
2.57 and 1− x− y is invertible on h(V⊗3) by Eq. 2.60 and Lemma 2.2.12.
Moreover, x′ + y′ is not nilpotent on V⊗3 if and only if Mcont 6= 0, equiva-
lently R(λ)[1] is a submodule of h(V⊗3), by Eq. 2.58. By Lemma 2.2.12 it is
also equivalent to x− y being not nilpotent on h(V⊗3). Similarly, the con-
ditions on the dimensions of Ker(x) ∩ Ker(y) and Im(x) ∩ Im(y) follow
by Eq. 2.59 and Lemma 2.3.8, using that M0,walk

∼= Vn2
.

Proof of Theorem 2.3.2. It follows from Prop. 2.3.9 and 2.3.11 the same way
as Theorem 2.2.2 did from Prop. 2.2.16 and 2.2.13.

2.4 U P P E R B O U N D

In this section, our goal is to give an upper bound on dimMd(p) for
some p ∈ End(V ⊗V), in the form of Prop. 2.4.8 and Cor. 2.4.9.

For d = 3, in Section 2.2 we used that the algebra generated by two
idempotents is of tame representation type, hence dim EndP3(V

⊗3) (i.e.
dimM3(p)) can be computed. As for d ≥ 4 the analogous algebra Pd
is wild, we investigate an alternative method, with necessarily weaker
consequences.

The goal is to bound dim EndHd(p)(V⊗d) by applying Lemma 1.3.3 on
monoid homomorphism with domain N[Irr f (Hd(p))]. In Subsec. 2.4.4
we discuss the (already described) case of d = 3, while in Subsec. 2.5.1,
we investigate the case of d = 4. Note that in this section (except Subsec.
2.4.4) p is not assumed to be idempotent.

2.4.1 Ordered Multiplicities

Fix d ∈ N+ and denote by OPartd the set of ordered partitions of size
d, where an ordered partition α of size d is a sequence of positive integers
(α1, . . . , αr) for some r ∈ N+ such that ∑r

i=1 αi = d (but αi ≥ αi+1 is not
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assumed). The length r is called the height of α and is denoted by ht(α).
Note that |OPartd| = 2d−1 as

α 7→
{ k

∑
i=1

αi

∣∣∣ k = 1, . . . , d− 1
}

(2.64)

is a bijection onto P({1, 2, . . . , d− 1}).
Let p ∈ End(V ⊗ V). For α ∈ OPartd, consider the natural algebra

injection

Hα(p) := Hα1(p)⊗ · · · ⊗Hαht(α)(p) ια−→ Hd(p) ⊆ End(V⊗d)

where Hd(p) is defined in Def. 2.1.6. Consider the ideal

Iα :=
(

pj,j+1
∣∣ 1 ≤ j ≤ d− 1, j 6=

k

∑
i=1

αi
(
∀k ≤ ht(α)

))
CHα(p)

that is of codimension at most one. Define Trivα as the (isomorphism class
of the) Hα(p)-module Hα(p)/Iα.

Recall from Eq. 1.7 the definition of composition multiplicity [M : S] of
a module S as a factor of M. For an arbitrary finite-dimensional Hd(p)-
module M, let us define the ordered multiplicities corresponding to ordered
partitions α ∈ OPartd as

OMultp
α(M) :=

[
Resια M : Trivα]

where Resια M is M understood as an Hα(p)-module, instead of an Hd(p)-
module. If Trivα = 0 i.e. Iα = Hα(p) then let OMultp

α(M) := 0. If d is
understood from the context, we denote the resulting homomorphism as

OMultp : N
[
Indec f

(
Hd(p)

)]
→N[OPartd]

The map is determined by its values on Irr f (Hd(p)) by the following
lemma.

Lemma 2.4.1. For a finite-dimensional Hd(p)-module M,

OMultp(Mss) = OMultp(M)

Proof. As Resιµ is exact, and N 7→ [N : Trivµ] is additive on short exact
sequences, N 7→ [Resιµ N : Trivµ] is also additive on short exact sequences.
Hence

[
Resιµ(Mss) : Trivµ

]
=
[
Resιµ(M) : Trivµ

]
. The claim follows.

Recall from Eq. 1.6 the notion of norm-square NS(s) for a commutative
monoid S and s ∈ S .
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2.4 upper bound

Lemma 2.4.2. Let Sd(p) be the image of OMultp in N[OPartd]. Then

dim Schd(p) ≤ NSd(p)
(
OMultp(V⊗d)

)
If Sd(p) is factorial then equality is attained if and only if Hd(p) is semisimple
and OMultp is an isomorphism.

Proof. By Prop. 2.1.7, Lemma 2.4.1 and Subsec. 1.3.4, we obtain

dim Schd(p) 2.1.7
= dim EndHd(p)(V

⊗d)
1.3.4
≤ N

N
[

Irr(Hd(p))
]((V⊗d)ss) ≤

1.3.3
≤ NSd(p)

(
OMultp((V⊗d)ss)) 2.4.1

= NSd(p)
(
OMultp(V⊗d)

)
where the first inequality is an equality if and only ifHd(p) is semisimple.
Moreover, V⊗d is a faithfulHd(p)-module, so if Sd(p) is factorial then any
atom a ∈ A(N

[
Irr(Hd(p))

]
) = Irr(Hd(p)) divides OMultp(V⊗d). Hence

the second inequality holds with equality if and only if OMultp is an
isomorphism, by Lemma 1.3.3.

Consequently, the problem of finding an upper bound on dimMd(p)
can be split into determining OMultp(V⊗d) and Sd(p).

2.4.2 The case of symmetric groups

Let d ≥ 2 be a fixed integer, and denote the symmetric group on d
elements by Sd. First we investigate the prime example: when Hd(p) is
the image of the group algebra kSd.

For an ordered partition α ∈ OPartd, denote by α̃ ∈ OPartd the ordered
partition of height ht(α) such that α̃i = ασ(i) for some permutation σ

of {1, . . . , ht(α)} and α̃i ≥ α̃i+1 for all i = 1, . . . , ht(α) − 1. The subset
{α̃ | α ∈ OPartd} in OPartd is denoted by Partd as its elements are the
classical (unordered) partitions.

Let us recall the dominance order, that endows Partd with a lattice struc-
ture (see Def 3.2 in [Ja]). For ν, µ ∈ Partd, ν dominates µ (denoted as ν ≥ µ)
if and only if

k

∑
i=1

νi ≥
k

∑
i=1

µi

for all k = 1, . . . , ht(ν).
For ν ∈ Partd, define f ν ∈N[OPartd] as

f ν
α := Kν,α̃ (α ∈ OPartd)

where Kν,µ is the Kostka number of (ν, µ) ∈ Part2
d i.e. the number of semis-

tandard Young tableaux of shape ν and weight µ (see p. 101 in [Mac]).
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Remark 2.4.3. Recall that Kν,ν = 1 and Kν,µ 6= 0 if and only if ν ≥ µ in the
dominance order.

Consider psym = 1
2(idV⊗2 − τ(12)) ∈ End(V ⊗ V) where τ(12) is the flip

τ(12)(u⊗ v) = v⊗ u (u, v ∈ V). Then

Hd(psym) = kSd ⊆ End(V⊗d) (2.65)

where kSd denotes the image in End(V⊗d) of the group algebra kSd.
Consequently, Schd(psym) is the ordinary Schur algebra S(n, d) for n =
dim V (hence the notation Sch), by Schur-Weyl duality. On the other hand,
we haveM(psym) ∼= ⊕dEndkSd

(
V⊗d) = O(Mn).

It is classical that the simple modules of Hd(psym) (resp. kSd) are
parametrized by {ν ∈ Partd | ht(ν) ≤ dim V} (resp. Partd), where the
simple module Sν is the Specht-module corresponding to the partition
ν ∈ Partd (for definition, see [Mac]).

Lemma 2.4.4. For all ν ∈ Partd such that ht(ν) ≤ dim V, we have

OMultpsym(Sν) = f ν

In particular, OMultpsym is injective.

Proof. For the proof, note that for α ∈ OPartd, the simple module Trivα of
Hα(psym) = kSα ⊆ End(V⊗d) is isomorphic to the (module given by the)
trivial representation of Sα := Sα1 × · · · ×Sαht(α) .

As kSd is semisimple by Maschke’s theorem, for any α ∈ OPartd,

OMult
pSym
α (Sν)

def
= [Resια Sν : Trivα] =

Maschke
= HomkSα(Trivα, Resια Sν)

Frob.
= HomkSd(IndSd

Sα
Trivα, Sν)

Young
= Kν,α̃

using Frobenius reciprocity, and Young’s rule (see Theorem 14.1 in [Ja]).
Therefore OMultpsym(Sν) = f ν. Since Kν,ν = 1 and Kν,α̃ 6= 0 if and only
if ν ≥ α̃, the matrix (Kν,α̃) is unitriangular (using an enumeration of par-
titions, that is a refinement of the dominant order) so the set of its row-
vectors { f ν | ν ∈ Partd} is independent.

Denote by K−1
µ,ν the inverse Kostka number corresponding to the parti-

tions ν, µ ∈ Partd, using the indexing convention such that ∑µ Kν,µK−1
µ,ξ =

δν,ξ .
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2.4 upper bound

Corollary 2.4.5. The submonoid generated by { f ν | ν ∈ Partd, ht(ν) ≤
dim V} is the set of u ∈N[OPartd] such that

uα = uα̃ (∀α ∈ OPartd)

∑
µ∈Partd

uµK−1
µ,ν ≥ 0, (ht(ν) ≤ dim V)

∑
µ∈Partd

uµK−1
µ,ν = 0, (ht(ν) > dim V)

where ν runs on Partd.

Proof. The first set of equations holds by definition. Consider the basis
B = {eν | ν ∈ Partd} in P := {u ∈ Z[OPartd] | uα = uα̃} defined
as eν

α = δν,α̃. The matrix whose rows are the coordinate-vectors of f ν

(ν ∈ Partd) with respect to the basis B is the Kostka matrix (Kν,µ). It has
determinant 1. Hence the vectors form a Z-module basis of P ∼= Z[Partd].
Consequently, the submonoid 〈 f ν | ν ∈ Partd〉 can be described as{

u ∈ P | ∑
µ∈Partd

uµK−1
µ,ν ≥ 0, ∀ν ∈ Partd

}
To obtain all defining inequalities for the submonoid 〈 f ν | ν ∈ Partd, ht(ν) ≤
dim V〉 in N[OPartd], we have to further require ∑µ∈Partd

vµK−1
µ,ν = 0 for

all ν ∈ Partd such that ht(ν) > dim V.

Remark 2.4.6. We could also define psym as 1
2(idV⊗2 + τ(12)), but in that

case 1-dimensional Hd(psym)-module Triv(d) would not give the trivial
representation of Sd.

2.4.3 Subsymmetric case

Let d ≥ 2 still be a fixed integer, and p ∈ End(V ⊗V).

Definition 2.4.7. Let us call Hd(p) subsymmetric if

Im
(
OMultp) ⊆ 〈 f ν | ν ∈ Partd〉N[OPartd]

where 〈.〉 stands for the submonoid generated.

In fact it is not a property of the algebra Hd(p), but a property of
its generating subset p1,2, . . . , pd−1,d. By Lemma 2.4.1, Im

(
OMultp) =

Im
(
OMultp|Irr f (Hd(p))

)
.

Proposition 2.4.8. If Hd(p) is subsymmetric, then

dim Schd(p) ≤ ∑
µ∈Partd

(
∑

ν∈Partd

OMultp
ν(V⊗d)K−1

ν,µ

)2

with equality if and only ifHd(p) is semisimple and OMultp injects Irr(Hd(p))
into { f ν | ν ∈ Partd}.
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Proof. By Lemma 1.3.3 applied to S := Sd(p) and S ′ := 〈 f ν | ν ∈ Partd〉
we obtain

dim Schd(p)
2.4.2
≤ NSd(p)

(
OMultp(V⊗d)

) 1.3.3
≤ NS ′

(
OMultp(V⊗d)

)
Then, by Lemma 2.4.4, S ′ ∼= N[Irr(Hd(pSym))] is factorial with A(S ′) ∼=
{ f ν | ν ∈ Partd, ht(ν) ≤ dim V}. Hence we have the following unique
decomposition into atoms:

OMultp(V⊗d) = ∑
ν∈Partd

OMultp
ν(V⊗d)eν =

= ∑
µ∈Partd

(
∑

ν∈Partd

OMultp
ν(V⊗d)K−1

ν,µ

)
f µ

where (eν)µ = δν,µ for ν, µ ∈ Partd. The desired inequality follows.
By Lemma 1.3.3 applied to OMultp : N[Irr(Hd(p))]→ S ′, the inequali-

ties are all satisfied with equality if and only if OMultp injects Irr(Hd(p))
into A(S ′).

Corollary 2.4.9. Assume that Hd(p) is subsymmetric, and

OMultp
µ(V⊗d) =

ht(µ)

∏
i=1

(
n + µi − 1

µi

)
for all µ ∈ Partd. Then

dim Schd(p) ≤
(

n2 + d− 1
d

)
with equality if and only if Hd(p) is semisimple and OMultp is an isomorphism
onto 〈 f ν | ν ∈ Partd, ht(ν) ≤ n〉. In particular, if the assumptions hold for all
d ≥ d0 for some d0 ∈N then GKdim(M(p)) ≤ n2.

Proof. First note that Schd(psym) is the ordinary Schur algebra S(n, d) by
Schur-Weyl duality. Hence p = psym satisfies the assumption and the
stated inequality holds with equality. Moreover, Prop. 2.4.8 also holds
with equality by Lemma 2.4.4.

For arbitrary p satisfying the assumptions, the bound in Prop. 2.4.8
depends only on OMultp

µ(V⊗d). Since these numbers agree with the case
of psym, we obtain that

dim Schd(p) ≤ dim S(n, d) =
(

n2 + d− 1
d

)
The characterization of the equality case follows by the equality case in
Prop. 2.4.8.
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2.4 upper bound

Without further assumptions, the subsymmetric property of Hd(p) is
complicated to check, as it depends on all of its irreducible representa-
tions. In the next subsection, we give a characterization of it in the case
when p is an idempotent and d = 3. For the d = 4 case, see Prop. 2.5.5.

2.4.4 Subsymmetric in degree three

Proposition 2.4.10. H3(p) is subsymmetric if and only if id − p12 − p23 is
invertible.

Proof. By the definition of subsymmetric (Def. 2.4.7), we have to check
that for any simple H3(p)-module M,

OMultp(M) ∈ 〈 f (3), f (2,1), f (1,1,1)〉 ⊆N[OPartd] ∼= N4

where the vectors f (3), f (2,1), f (1,1,1) in the standard basis e(3), e(2,1), e(1,2), e(1,1,1)

of Z[OPart3] are the rows of

((Kνα̃))ν,α∈Partd×OPartd =

1 1 1 1
0 1 1 2
0 0 0 1


As P3 � H3(p), it is enough to investigate the simple modules of P3 i.e.
of Aλ,1 (λ ∈ k) by Lemma 2.2.7. For λ 6= 0, 1, R(λ)[1] is given in 2.15

by taking t = 0, hence OMultp(R(λ)[1]) = (0, 1, 1, 2). Moreover, by their
definition,

OMultp(R(λ)
i [1]) =



(1, 1, 1, 1) if λ = 0, i = 1

(0, 0, 0, 1) if λ = 0, i = 2

(0, 1, 0, 1) if λ = 1, i = 1

(0, 0, 1, 1) if λ = 1, i = 2

Therefore H3(p) is subsymmetric if and only if the P3-module R(1)
i [1] (i =

1, 2) does not define an H3(p)-module. By Lemma 2.2.12, it is equivalent
to 1− x− y acting invertibly on anyH3(p)-module M, i.e. id− p12− p23 ∈
H3(p) being invertible.

As a consequence, assuming that id− p12 − p23 is invertible, we may
apply Prop. 2.4.8 to bound dimM(p):

dim EndH3(p)(V
⊗3) ≤ a2 + (b− a)2 + (n3 − a− 2b)3
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where a = OMultp
(3)(V

⊗3), b = OMultp
(2,1)(V

⊗3) = n ·dim Ker(p) and n =

dim V. For the bound, note that the Kostka and inverse Kostka matrices
for d = 3 are

K =

1 1 1
0 1 2
0 0 1

 K−1 =

1 −1 1
0 1 −2
0 0 1


The problem is that a is non-trivial to determine if V⊗3 is not semisimple.

2.5 O RT H O G O N A L P R O J E C T I O N C A S E

In this section, we investigate matrix bialgebras in the special case,
when k = C, V is a finite-dimensional complex Hilbert space and p ∈
End(V ⊗ V) is an orthogonal projection. Then the construction yields
cosemisimple bialgebras that were first considered by Manin (see Section
VI/6 in [Man]). The main goal of the next subsection is to prove Theorem
2.5.2 and 2.5.3 below.

Theorem 2.5.2 is an application of Cor. 2.4.9 for d = 4, showing that
the characterization of subsymmetric property for low degrees is possible
but increases in complexity (see Prop. 2.4.10 and 2.5.5). While, Theorem
2.5.3 is motivated by Theorem 2.5 in [Hai1] stating thatM(r) is Koszul, if
r satisfies the Yang-Baxter equation and the Hecke equation (r + id)(r−
q) = 0, assuming that q is not a root of unity.

Recall that p12 = p⊗ idV ⊗ idV and similarly for p23 and p34.

Definition 2.5.1. An orthogonal projection p ∈ End(V ⊗ V) is called
polynomial-type up to degree four, if it is polynomial-type up to degree three
(see Def. 2.2.1), and for n = dim V

dim
( 3⋂

i=1

Ker(pi,i+1)
)
=

(
n + 3

4

)
dim

( 3⋂
i=1

Im(pi,i+1)
)
=

(
n
4

)
Theorem 2.5.2. Assume that p ∈ End(V ⊗V) is polynomial-type up to degree
four,

rk(p12(id− p23)p34) = rk((id− p23)p34)

rk(p34(id− p23)p12) = rk((id− p23)p12)

and {Ker(pi,i+1) | i = 1, 2, 3} generates a distributive lattice of subspaces. Then

dimM4(p) ≤
(

n2 + 3
4

)
with equality if and only if OMultp is an isomorphism onto Im(OMultpsym) for
d = 4.
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2.5 orthogonal projection case

Theorem 2.5.3. Assume that p ∈ End(V ⊗ V) is an orthogonal projection,
polynomial-type up to degree four and the following conditions hold:

dim
(

Ker
(

p23(p12 − p34)
)
∩ Im

(
p23(id− p12)

)
∩Ker(p12p34)

)
=

3n + 6
4

(
n + 1

3

)
dim

(
Ker

(
(id− p23)(p12 − p34)

)
∩ Im

(
(id− p23)p12

)
∩Ker

(
(id− p12)(id− p34)

))
=

3n− 6
4

(
n + 1

3

)
dim Ker

(
(p12 − p34)p23

)
= 4n

(
n + 1

3

)
(2.66)

ThenM(p) is Koszul only if the equivalent conditions of Theorem 2.2.2 hold.

The dimension conditions in Eq. 2.66 are satisfied for psym (see Remark
2.5.16). Unfortunately, these are not open conditions in the sense that in
the space Gr(n

2)
(V ⊗ V) of orthogonal projections on V ⊗ V of rank (n

2),
the elements that satisfy Eq. 2.66 do not form a Zariski-open subset. This
is in contrast with Remark 2.2.3.

Recall from Subsec. 2.1.2 the definitions of Hd(p) and Schd(p) that are
subalgebras of E⊗d = End(V⊗d). As p is self-adjoint, they are closed un-
der taking adjoints, and hence for each Hd(p)-submodule (resp. Schd(p)-
submodule) M ⊆ V⊗d, M⊥ is a submodule direct complement. In partic-
ular, Hd(p) and Schd(p) are semisimple subalgebras of E⊗d, and they are
each other’s centralizer, by the double centralizer theorem for semisimple
algebras.

The fact that H3(p) is semisimple is equivalent to V⊗3 being a semisim-
ple P3-module. Let us denote the simple P3-modules as R(κ)

i , R(λ) for
κ = 0, 1, i = 1, 2, λ ∈ k\{0, 1} (see Subsec. 2.2.2). Now if x1, x2 ∈ P3 act
as self-adjoint operators on R(λ) then λ ∈ (0, 1) ⊆ R. Indeed, by Eq. 2.11,
the operators are self-adjoint with respect to the Hermitian sesquilinear
form with matrix [

1− λ λ− 1
λ− 1 1

]
if λ ∈ R, that is positive definite if and only if 0 < λ < 1. The modules
R(κ)

i are one-dimensional and x1 and x2 act via real scalars, so they are
automatically self-adjoint.

Assuming id− p12 − p23 is invertible,

V⊗3 ∼= (R(0)
1 )n0,1 ⊕ (R(0)

2 )n0,2 ⊕
⊕

λ∈k\{0,1}
(R(λ))nλ (2.67)
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matrix bialgebras

for some n0,1, n0,2, nλ ∈ N (λ ∈ (0, 1)), by Lemma 2.2.12. Moreover, if p
is polynomial-type up to degree three, then n0,1 = (n+2

3 ), n0,2 = (n
3) and

hence ∑λ nλ = 2(n+1
3 ), by Lemma 2.2.12.

Remark 2.5.4. For the arguments in this section, it is enough to assume
that k is an arbitrary algebraically closed field of characteristic zero, and
V is finite-dimensional vector space endowed with a σ-sesquilinear non-
degenerate Hermitian form β : V ⊗ V → k for some involutive automor-
phism σ of k, such that for all d ≥ 1, the induced (σ-sesquilinear, non-
degenerate, Hermitian) form β⊗d on V⊗d is anisotropic i.e. β⊗d(v, v) = 0
implies v = 0.

Then the idempotent p ∈ End(V⊗V) is required to be self-adjoint with
respect to β⊗2 i.e. β⊗2(pu, v) = β⊗2(u, pv) for all u, v ∈ V ⊗V. For a sim-
pler discussion, we restrict ourselves to the main special case, when k = C

and σ is the complex conjugation (hence the fixed field kσ specializes to
R).

2.5.1 Subsymmetric in degree four

Theorem 2.5.2 is a direct consequence of Cor. 2.4.9 and the following
proposition.

Proposition 2.5.5. Let p ∈ End(V ⊗ V) an orthogonal projection such that
id− p12 − p23 is invertible,

rk(p12(id− p23)p34) = rk((id− p23)p34) (2.68)

rk(p34(id− p23)p12) = rk((id− p23)p12) (2.69)

and {Ker(pi,i+1) | i = 1, 2, 3} generates a distributive lattice of subspaces. Then
H4(p) is subsymmetric.

Remark 2.5.6. Though the notation id− p12− p23 is ambiguous as it can be
an element of End(V⊗d) for any d ≥ 3, its invertibility is still well-defined.
Indeed, the element s := id− p12 − p23 ∈ End(V⊗3) is invertible if and
only if idV⊗(k−1) ⊗ s⊗ idV⊗(d−k−1) is invertible in End(V⊗d) for any (hence
all) 1 ≤ k ≤ d− 1.

Recall from Subsec. 2.4.3 that H4(p) is subsymmetric if and only if for
every simple H4(p)-module M,

OMultp(M) ⊆ 〈 f ν | ν ∈ Part4〉N[OPart4]
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2.5 orthogonal projection case

where (( f ν
α )) = ((Kν,α̃)) ∈ ZPart4×OPart4 is



(4) (3,1) (1,3) (2,2) (2,1,1) (1,2,1) (1,1,2) (1,1,1,1)

(4) 1 1 1 1 1 1 1 1
(3,1) 0 1 1 1 2 2 2 3
(2,2) 0 0 0 1 1 1 1 2
(2,1,1) 0 0 0 0 1 1 1 3
(1,1,1,1) 0 0 0 0 0 0 0 1


and Kν,µ is the Kostka number corresponding to the partitions (ν, µ). Let
M be a fixed simple H4(p)-module and denote by yi ∈ Endk(M) the
action of pi,i+1 on M. Consider

Ui := Ker(yi) (i = 1, 2, 3)

dα := OMultp
α(M) = dim

(⋂
{Uj | j 6=

k

∑
i=1

αi
(
∀k ≤ ht(α)

)
}
)

for any α ∈ OPart4.
By Cor. 2.4.5, the subsymmetric condition can be formulated as

dim U1 = dim U2 = dim U3 (2.70)

dim(U1 ∩U2) = dim(U2 ∩U3) (2.71)

and that
∑

µ∈Part4

dµK−1
µ,ν ≥ 0 (ν ∈ Part4) (2.72)

By [ELW], we may replace K−1 in the last inequality. Namely, define
K′ ∈ ZOPart4×Part4 as

K′ =



(4) (3,1) (2,2) (2,1,1) (1,1,1,1)

(4) 1 −1 0 1 −1
(3,1) 0 1 0 −1 1
(1,3) 0 0 −1 0 1
(2,2) 0 0 1 −1 1
(2,1,1) 0 0 0 1 −1
(1,2,1) 0 0 0 0 −1
(1,1,2) 0 0 0 0 −1
(1,1,1,1) 0 0 0 0 1


We claim that, Eq. 2.72 is equivalent to

∑
α∈OPart4

dαK′α,ν ≥ 0 (ν ∈ Part4) (2.73)
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matrix bialgebras

assuming Eq. 2.70 and 2.71 hold. (The replacement of K−1 with K′ is not
necessary, but it makes the proof of Prop. 2.5.5 more straightforward.)

Indeed, by Eq. 2.70 and 2.71,

(dα)α∈OPart4 ∈ P := {u ∈ Z[OPart4] | uα = uα̃}

Moreover, P is freely generated by { f ν | ν ∈ Part4}, as a Z-module, by
Lemma 2.4.4. On the other hand, by Proposition 5 in [ELW],

∑
α∈OPart4

Kν,α̃K′α,µ = δν,µ (∀ν, µ ∈ Part4) (2.74)

(for the notation α̃, see Subsec. 2.4.2). Hence, by f ν
α = Kν,α̃ for all α ∈

OPart4, we have

∑
α∈OPart4

f ν
α K′α,µ = δν,µ = ∑

ξ∈Part4

f ν
ξ K−1

ξ,µ

by the definition of K−1 and Eq. 2.74. Therefore both define the same
affine monoid in P.

Now we turn to the proof of Prop. 2.5.5, that is naturally split into the
following two lemmas.

Lemma 2.5.7. If id− p12 − p23 is invertible, and Eq. 2.68 and 2.69 hold then
Eq. 2.70 and 2.71 are satisfied.

Proof. For all i, j = 1, 2, 3, |i− j| = 1, we verify that 1− yi maps Ui into Uj
injectively, in particular dim Ui ≥ dim Uj.

Indeed, since V⊗4 is a semisimple faithful H4(p)-module, M is isomor-
phic to a direct summand of V⊗4. Hence 1− y1 − y2 is invertible on M
using the assumption on id− p12− p23. Similarly, 1− y3− y4 is invertible
by Remark 2.5.6. Therefore

Ker
(
(1− yi)|Uj

)
= Im(yi) ∩Ker(yj) = 0

by Remark 2.2.5, so dim Ui ≥ dim Uj follows.
To obtain Eq. 2.71, we use the same argument as in the previous para-

graph. First note that

M = (Ui ∩Ui+1)⊕ (Im(yi) + Im(yi+1))

as a vector space (i = 1, 2), by Im(yi)
⊥ = Ker(yi) (since yi is self-adjoint).

Consider M as a P3-module via γ : P3 → Endk(M), such that γ(xi) is the
projection onto Im(yi) + Im(yi+1) with kernel Ui ∩Ui+1.

Then for dim(U1 ∩ U2) ≥ dim(U2 ∩ U3) it is enough to verify that
γ(1− x1) maps U2 ∩U3 into U1 ∩U2 injectively. Hence we need

0 = Ker
(
γ(1− x1)|U2∩U3

)
= Im

(
γ(x1)

)
∩Ker

(
γ(x2)

)
=
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2.5 orthogonal projection case

= (Im(y1) + Im(y2)) ∩Ker(y2) ∩Ker(y3)

= Im
(
(1− y2)y1

)
∩Ker(y3)

That is, rk(y3(1 − y2)y1) = rk((1 − y2)y1). Similarly, γ(1 − x2)|U1∩U2 is
injective if and only if rk(y1(1− y2)y3) = rk((1− y2)y3). As M is a sum-
mand of V⊗4 and rk(y4−j(1 − y2)yj) ≤ rk((1 − y2)yj) (j = 1, 3) holds
unconditionally, the rank conditions follow from Eq. 2.69.

Lemma 2.5.8. Assuming Eq. 2.70, 2.71 and that {U1, U2, U3} generates a dis-
tributive lattice of subspaces, the second condition in Eq. 2.73 holds.

Proof. In details, Eq. 2.73 can be expanded as

0 ≤ d(4) ≤ d(3,1) ≤ d(2,2)

d(3,1) + d(2,2) − d(4) ≤ d(2,1,1) (2.75)

(d(2,1,1) + d(1,2,1) + d(1,1,2))− (d(3,1) + d(2,2) + d(1,3)) + d(4) ≤ d(1,1,1,1)
(2.76)

Clearly, we have

0 ≤ dim
( ⋂

i=1,2,3

Ui
)
= d(4) ≤ d(3,1) = dim

(
U1 ∩U2

)
Moreover, we may prove that 1− y3 maps U1 ∩U2 into U1 ∩U3 injectively,
in particular d(3,1) ≤ d(2,2). Indeed, by y1y3 = y3y1, we have

(1− y3)
(
U1 ∩U2) ⊆ U1 ∩U3

On the other hand,

Ker
(
(1− y3)|U1∩U2

)
= U1 ∩ (U2 ∩ Im(y3)) = 0

using that 1− y2 − y3 is invertible (see Remark 2.5.6).
Inequality 2.75 is clear as

d(3,1) + d(2,2) − d(4) =

= dim(U1 ∩U2) + dim(U1 ∩U3)

−dim(U1 ∩U2 ∩U3)

≤ dim U1 = d(3,1)

Finally, Inequality 2.76 can be expanded as

∑
i=1,2,3

dim Ui − ∑
j=1,2

dim(Uj ∩Uj+1) + dim(U1 ∩U2 ∩U3) ≤ dim M.

This follows from the assumption on {U1, U2, U3}, by elementary proper-
ties of distributive subspace lattices (see Proposition 7.2 in [PP]).
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matrix bialgebras

Proof of Proposition 2.5.5. By Lemma 2.5.7, 2.5.8, it is enough to see that
{U1, U2, U3} generates a distributive lattice of subspaces. That follows
from the fact that distributivity is preserved for direct summands of P4-
modules, moreover, V⊗4 is a faithful semisimple H4(p)-module, hence M
is a direct summand of V⊗4 where {Ker(pi,i+1) | i = 1, 2, 3} generates a
distributive lattice by assumption.

2.5.2 Koszul property

Recall (from Section 1.2) that if a quadratic algebra A is Koszul, then
it is numerically Koszul, i.e. Eq. 1.2 holds for the Hilbert series of A and
its quadratic dual A! for all d ≥ 1. Since the equation always holds for
1 ≤ d ≤ 3, in this section we investigate it for d = 4 in the case of
A =M(p).

We may express the quadratic dualM(p)! in terms of Pd-representations
(for definition, see Eq. 2.7) as follows. Let fd : Pd → Pd the algebra auto-
morphism defined as xi 7→ 1− xi for all i = 1, . . . , d− 1. Recall from Sec.
1.1 that for any Pd-module M, Res fd

M is defined as the vector space M
such that x ∈ Pd acts as x ·m := fd(x)m for any m ∈ M.

Lemma 2.5.9.
(
M(p)!

d
)∨ ∼= HomPd(V

⊗d, Res fd
V⊗d) as a vector space.

Proof. For a quadratic algebra A := T (U)/(Rel) where Rel ⊆ U ⊗U, A!

is defined as T (V∨)/(Relo). Hence for all d ≥ 1

(A!
d)
∨ =

d−1⋂
i=1

V⊗(i−1) ⊗ Rel⊗V⊗(d−i−1)

as a subspace of V⊗d. (For the notations, see Subsec. 1.2.1.) In particular,
for A =M(p) we obtain

(
M(p)!

d
)∨

=
d−1⋂
i=1

{
a ◦ pi,i+1 − pi,i+1 ◦ a

∣∣ a ∈ E⊗d} (2.77)

as a subspace of E⊗d, for all d ≥ 2.
Let us suppress the composition signs. By p2

i,i+1 = pi,i+1, we may con-
clude that for all i ≤ d− 1,{

api,i+1 − pi,i+1a
∣∣ a ∈ E⊗d} =

{
b ∈ E⊗d | bpi,i+1 + pi,i+1b = b

}
(2.78)

Indeed, for any a ∈ E⊗d, it is straightforward to check b = api,i+1− pi,i+1a
is an element of the right hand side of Eq. 2.78. Conversely, given b as
above, take a = bpi,i+1 − pi,i+1b. Then

api,i+1 − pi,i+1a =
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2.5 orthogonal projection case

=
(
bpi,i+1 − pi,i+1b

)
pi,i+1 − pi,i+1

(
bpi,i+1 − pi,i+1b

)
= bpi,i+1 + pi,i+1b− 2pi,i+1bpi,i+1 = b

as pi,i+1bpi,i+1 = b(1− pi,i+1)pi,i+1 = 0. Hence Eq. 2.78 holds.
On the other hand,

HomPd(V
⊗d, Res fd

V⊗d) =
{

b ∈ E⊗d | bpi,i+1 = fd(pi,i+1)b (i = 1, . . . , d− 1)
}

where fd(pi,i+1) = 1− pi,i+1 for all i. The claim follows.

Assuming that p is polynomial-type up to degree four (see Def. 2.5.1),
the numerically Koszul assumption for d = 4 can be spelled out as fol-
lows.

Proposition 2.5.10. Let p ∈ End(V ⊗ V) be an orthogonal projection that is
polynomial-type up to degree four, and consider the P4-module

N := V⊗4
/( 3⋂

i=1

Im(xi) +
3⋂

i=1

Ker(xi)
)

Then,
4

∑
k=0

(−1)k dimM(p)!
k dimM(p)4−k =

= dim EndP4(N) + dim HomP4(N, Res f4 N)

+
21
4

n2
(

n + 1
3

)2

− 2n2 ∑
λ∈(0,1)

n2
λ (2.79)

where nλ is defined by Eq. 2.67.

Theorem 2.5.3 can only be deduced from the proposition in the special
case n = 2 (see Example 2.5.11). For n ≥ 3, we need Lemma 2.5.12, 2.5.14,
and the assumptions in Eq. 2.66 of the theorem.

Proof. By the definitions, we have dimM(p)1 = dimM(p)!
1 = dim E =

n2 and denoting r := rk(p)

dimM(p)2 = dim{a ∈ E⊗2 | ap = pa} = r2 + (n2 − r)2

dimM(p)!
2 = dim{a ∈ E⊗2 | ap + pa = a} = 2r(n2 − r)

Moreover, as Res f3 R(0)
i
∼= R(0)

3−i for i = 1, 2, and Res f3 R(λ) ∼= R(λ) for all λ,
Prop. 2.5.9 implies

dimM(p)3 = n2
0,1 + n2

0,2 + ∑
λ

n2
λ
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dimM(p)!
3 = 2n0,1n0,2 + ∑

λ

n2
λ

Therefore
4

∑
k=0

(−1)k dimM(p)!
k dimM(p)4−k =

= dimM(p)4 − n2
(

n2
0,1 + n2

0,2 + ∑
λ

n2
λ

)
+2(n2 − r)r

(
(n2 − r)2 + r2)

−
(

2n0,1n0,2 + ∑
λ

n2
λ

)
n2 + dimM(p)!

4

= dimM(p)4 + dimM(p)!
4 − 2n2 ∑

λ

n2
λ

+ 2(n2 − r)r
(
(n2 − r)2 + r2)− n2(n0,1 + n0,2)

2 (2.80)

The subspaces ∩3
i=1Ker(xi) and ∩3

i=1Im(xi) are direct summands of the
P4-module V⊗4, isomorphic to powers of the one-dimensional modules
Triv(4) and Res f4Triv(4). As p is polynomial-type up to degree four, these
are of dimension (n+3

4 ) and (n
4), respectively. Hence, by Prop. 2.1.7 and

Lemma 2.5.9, we obtain

dimM(p)4 =

(
n + 3

4

)2

+

(
n
4

)2

+ dim EndP4(N)

dimM(p)!
4 = 2

(
n + 3

4

)(
n
4

)
+ dim HomP4(N, Res f4 N)

By the polynomial-type assumption, we have r = (n
2), n0,1 = (n+2

3 ), and
n0,2 = (n

3). Hence

2.80 = dim EndP4(N) + dim HomP4(N, Res f4 N)− 2n2 ∑
λ

n2
λ

+2
(

n + 1
2

)(
n
2

)((n + 1
2

)2

+

(
n
2

)2)
− n2

((n + 2
3

)
+

(
n
3

))2

+

((
n + 3

4

)
+

(
n
4

))2

where the sum in the last two rows equal to 21
4 n2(n+1

3 )
2
. The claim follows.
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2.5 orthogonal projection case

Example 2.5.11. For dim V = 2 and p polynomial-type up to degree four,
Prop. 2.5.10 implies that M(p) can be Koszul only if the equivalent con-
ditions of Theorem 2.2.2 hold. Indeed, as ∑λ nλ = 2(n+1

3 ) = 2, if nλ 6= 2
for all λ, then ∑λ n2

λ ≤ 2, hence

2.79 =
21
4

n2
(

n + 1
3

)2

− 2n2 ∑
λ

n2
λ ≥ 21− 16 > 0

For dim V = 3 and p polynomial-type up to degree three, the same does
not hold. Then ∑λ nλ = 2(n+1

3 ) = 8 and

2.79 =
21
4

n2
(

n + 1
3

)2

− 2n2 ∑
λ

n2
λ = 756− 18 ∑

λ

n2
λ

that is negative, if nλ = 7 and nµ = 1 for some λ, µ ∈ (0, 1), λ 6= µ.

2.5.3 Some P4-modules

For the proof of Theorem 2.5.3, let us define the following three P4-
modules, mimicking the corresponding irreducible kS4-modules.

For λ ∈ (0, 1), let R(λ)
(2,2) := ResgR(λ) where the algebra morphism g :

P4 → P3 is defined as g(x3) = x1 and g(xi) = xi for i = 1, 2, i.e. the maps
can be given as

[x1] = [x3] =

[
1 −1
0 0

]
[x2] =

[
0 0

λ− 1 1

]
(2.81)

Moreover, for λ, µ ∈ (0, 1), define R(λ,µ)
(3,1) via the projection matrices

[x1] =

1 −1 0
0 0 0
0 0 0

 [x3] =

0 0 0
0 0 0
0 −1 1



[x2] =

 0 0 0
λ− 1 1 µ− 1

0 0 0

 (2.82)

that are self-adjoint with respect to the unique (up to scalar multiple)
Hermitian sesquilinear form with matrix−(λ− 1) λ− 1 0

λ− 1 1 µ− 1
0 µ− 1 −(µ− 1)


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matrix bialgebras

The form is positive definite if and only if λ + µ > 1.
Finally, let

R(λ,µ)
(2,1,1) := Res f4 R(λ,µ)

(3,1)

If λ = µ, then we simply write R(λ)
(3,1) instead of R(λ,λ)

(3,1) (and similarly for

R(λ,λ)
(2,1,1)).

Note also – using g ◦ f4 = f3 ◦ g and Res f3 R(λ) ∼= R(λ) – that

Res f4 R(λ)
(2,2)
∼= Res f4ResgR(λ) ∼= ResgRes f3 R(λ) ∼= R(λ)

(2,2)

Recall the definition of ια from Subsec. 2.4.1. By the above definitions,

Resι(4−i,i)R
(λ)
(3,1)
∼= R(λ) ⊕ R(0)

2 (i = 1, 3)

Resι(4−i,i)R
(λ)
(2,1,1)

∼= R(λ) ⊕ R(0)
1 (i = 1, 3)

As a consequence, R(λ)
(3,1), R(λ)

(2,2) and R(λ)
(2,1,1) are simple modules.

Lemma 2.5.12. Let N be a semisimple P4-module, and denote

U := Ker
(
x2(x1 − x3)

)
∩ Im

(
x2(1− x1)

)
∩Ker(x1x3)

Then for any λ ∈ (0, 1)

[N : R(λ)
(3,1)] ≥ dim U − dim Ker(x1)

+ [Resι(3,1)N : R(λ)] + [Resι(3,1)N : R(0)
1 ] (2.83)

Proof. First note that if

0 6= u ∈ U ∩Ker
(
(x1 − x2)

2 − λ
)

then
M := Span(u, x1u, x3u) ∼= R(λ)

(3,1)

Indeed, define a map R(λ)
(3,1) → M as e2 7→ −u and ei 7→ xiu for i = 1, 3.

We claim that it is a P4-homomorphism (hence an isomorphism as R(λ)
(3,1)

is simple and u 6= 0). The matrices of x1 and x3 are the same as 2.82, by
u ∈ Ker(x1x3) and x2

i = xi (i = 1, 3). Moreover, to compute the matrix of
x2, we may use u ∈ Im(x2), x2u = u, and

u ∈ Ker
(
(x1 − x2)

2 − λ
)
∩Ker

(
x2(x1 − x3)

)
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2.5 orthogonal projection case

So we obtain,

x2x3u = x2x1u = x2u− (x2 − x2x1x2)u =

= u− (x1 − x2)
2x2u = −(λ− 1)u

Hence M is indeed isomorphic to R(λ)
(3,1).

Now we give a lower bound on [N : R(λ)
(3,1)], that is the same as dim

(
U∩

Ker
(
(x1− x2)

2−λ
))

, by the previous paragraph and dim
(
U∩R(λ)

(3,1)

)
= 1.

Therefore

[N : R(λ)
(3,1)] = dim

(
U ∩Ker

(
(x1 − x2)

2 − λ
))
≥

≥ dim
(
Ker

(
(x1 − x2)

2 − λ
)
∩ Im

(
x2(1− x1)

))
+ dim(U)− dim Im

(
x2(1− x1)

)
(2.84)

where

dim
(
Ker

(
(x1 − x2)

2 − λ
)
∩ Im

(
x2(1− x1)

))
= [Resι(3,1)N : R(λ)]

since for any λ ∈ (0, 1), Ker
(
(x1 − x2)

2 − λ
) ∼= (

R(λ)
)d as a module over

k〈x1, x2〉 ∼= P3 by Lemma 2.2.9, and x2(1 − x1)R(λ) = R(λ) ∩ Im(x2) is
one-dimensional. Moreover, for the third term in Eq. 2.84

dim Im
(
x2(1− x1)

)
= dim Im(1− x1)− dim

(
Ker(x2) ∩ Im(1− x1)

)
=

= dim Ker(x1)− [Resι(3,1)N : R(0)
1 ]

The claim follows.

Corollary 2.5.13. By applying Eq. 2.83 on ResgN, we obtain

[N : R(λ)
(2,1,1)] ≥ dim U′ − dim Im(x1)

+[Resι(3,1)N : R(λ)] + [Resι(3,1)N : R(0)
2 ]

where U′ is

Ker
(
(1− x2)(x1 − x3)

)
∩ Im

(
(1− x2)x1

)
∩Ker

(
(1− x1)(1− x3)

)
Lemma 2.5.14. Let N be a semisimple P4-module. Then, for any λ ∈ (0, 1)

[N : R(λ)
(2,2)] ≥ dim Ker

(
(x1 − x3)x2

)
+ [Resι(3,1)N : R(λ)]− dim N
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matrix bialgebras

Proof. Let

Uλ := Ker(x1 − x3) ∩ Im(x2) ∩Ker
(
(x1 − x2)

2 − λ
)

First note that if 0 6= u ∈ Uλ then M := Span(u, x1u) ∼= R(λ)
(2,2). Indeed, the

map R(λ)
(2,2) → M defined as e2 7→ u, ei 7→ x1u (i = 1, 3) gives a nonzero

P4-homomorphism from the simple module R(λ)
(2,2), by Eq. 2.81.

The lower bound on [N : R(λ)
(2,2)] follows by

[N : R(λ)
(2,2)] = dim Uλ ≥ dim

(
Ker(x1 − x3) ∩ Im(x2)

)
+

+dim
(

Ker
(
(x1 − x2)

2 − λ
)
∩ Im(x2)

)
− rk(x2)

where dim
(
Ker(x1− x3)∩ Im(x2)

)
+dim Ker(x2) = dim Ker

(
(x1− x3)x2

)
and dim

(
Ker

(
(x1 − x2)

2 − λ
)
∩ Im(x2)

)
= [Resι(3,1)N : R(λ)], hence the

claim follows.

2.5.4 Proof of Theorem 2.5.3

Now, we may conclude Theorem 2.5.3 by Prop. 2.5.10, Lemma 2.5.12

and 2.5.14.

Proof of Theorem 2.5.3. It is enough to show that

dim EndP4(N) + dim HomP4(N, Res f4 N) ≥

≥ 2n2 ∑
µ∈(0,1)

n2
µ −

21
4

n2
(

n + 1
3

)2

(2.85)

with equality only if there is a λ ∈ (0, 1) such that nλ = ∑µ nµ = 2(n+1
3 ).

Indeed, ifM(p) is Koszul then by Prop. 2.5.10, the above inequality must
hold with equality. If we prove that the case of equality implies nλ =
2(n+1

3 ) for some λ, then by Prop. 2.2.16 and Theorem 2.2.2, the statement
of the theorem holds.

Now we apply the lemmas to obtain 2.85. Fix λ ∈ (0, 1) such that nλ

is maximal among nµ’s. As R(λ)
(3,1), R(λ)

(2,2) and R(λ)
(2,1,1) are non-isomorphic

simple P4-modules, and Res f4 R(λ)
(3,1)
∼= R(λ)

(2,1,1) while Res f4 R(λ)
(2,2)
∼= R(λ)

(2,2),
we have

dim EndP4(N) ≥ [N : R(λ)
(3,1)]

2 + [N : R(λ)
(2,1,1)]

2 + [N : R(λ)
(2,2)]

2 (2.86)

dim HomP4(N, Res f4 N) ≥ [N : R(λ)
(3,1)] · [N : R(λ)

(2,1,1)] + [N : R(λ)
(2,2)]

2

(2.87)
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2.5 orthogonal projection case

Let c = 2(n+1
3 ). By Lemma 2.5.12, Cor. 2.5.13 and the assumptions Eq.

2.66,
[N : R(λ)

(3,1)] + [N : R(λ)
(2,1,1)] ≥ (2.88)

≥ max
(

0,
3n + 6

8
c+
[
Resι(3,1)N : R(λ)

]
+[Resι(3,1)N : R(0)

1 ]−dim Ker(x1)

)
+max

(
0,

3n− 6
8

c+
[
Resι(3,1)N : R(λ)

]
+[Resι(3,1)N : R(0)

2 ]−dim Im(x1)

)
By the definition of N, we have

dim Ker(x1) = n2
(

n + 1
2

)
−
(

n + 1
4

)
=

11n + 6
8

c

dim N = n4 −
(

n + 3
4

)
−
(

n
4

)
=

22n
8

c[
Resι(3,1)N : R(λ)

]
=
[
Resι(3,1)V

⊗4 : R(λ)
]
= n[V⊗3 : R(λ)

]
= n · nλ[

Resι(3,1)N : R(0)
1

]
= n

(
n + 2

3

)
−
(

n + 3
4

)
=

3n + 6
8

c

[
Resι(3,1)N : R(0)

2
]
= n

(
n
3

)
−
(

n
4

)
=

3n− 6
8

c

Therefore, by Eq. 2.88,

[N : R(λ)
(3,1)] + [N : R(λ)

(2,1,1)] ≥

≥ max
(

0, n · nλ −
5n− 6

8
c
)
+ max

(
0, n · nλ −

5n + 6
8

c
)

(2.89)

Similarly, by Lemma 2.5.14,

[N : R(λ)
(2,2)] ≥ dim Ker

(
(x1 − x3)x2

)
+ [Resι(3,1)N : R(λ)]− dim N =

= 2nc + n · nλ −
11n

4
c = n · nλ −

3n
4

c (2.90)

Together Eq. 2.86, 2.87, 2.89 and 2.90 imply that

dim EndP4(N) + dim HomP4(N, Res f4 N) ≥

≥
(

max
(

0, n · nλ −
5n− 6

8
c
)
+ max

(
0, n · nλ −

5n + 6
8

c
))2

+ 2 max
(

0, n · nλ −
3n
4

c
)2

(2.91)

Hence it is enough to prove the following claim:
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matrix bialgebras

Claim 2.5.15. Let n ≥ 3 integer, I a finite set, and for each µ ∈ I, let
αµ ∈ R≥0 such that ∑µ αµ = 1. Fix λ ∈ I such that αλ is maximal. Then

1
2

(
max

(
0, αλ −

5− 6
n

8

)
+ max

(
0, αλ −

5 + 6
n

8

))2

(2.92)

+max
(

0, αλ −
3
4

)2
+

21
32
≥ ∑

µ∈I
α2

µ

with equality if and only if αλ = 1.
Indeed, by the claim applied on αλ = nλ

c , we obtain Ineq. 2.85 (using
Ineq. 2.91), with an equality if and only if nλ = c.

Proof. First assume that αλ ≥ max
(

3
4 , 5+ 6

n
8

)
. Then the left hand side is

1
2

(
2αλ −

5
4

)2
+
(

αλ −
3
4

)2
+

21
32

= 3α2
λ − 4αλ + 2

while the right hand side

∑
µ∈I

α2
µ ≤ α2

λ + (1− αλ)
2 = 2α2

λ − 2αλ + 1 (2.93)

Their difference is α2
λ − 2αλ + 1 = (αλ − 1)2 ≥ 0 hence the claim follows

in this case.
Next, assume that 3

4 > αλ > 1
4 . Then

∑
µ∈I

α2
µ ≤ α2

λ + (1− αλ)
2 ≤

(3
4

)2
+
(1

4

)2
=

5
8
<

21
32

Now assume that αλ ≤ 1
4 and define the function

f :
{

y ∈ [0, αλ]
k |

k

∑
i=1

yi = 1
}
→ R

as y 7→ ∑k
i=1 y2

i where k = |I|. Then, as f is strictly convex, it attains its
maximum on the extreme points of the compact and convex domain, i.e.
on a point of the form

(αλ, αλ, . . . , αλ, 1−
⌊ 1

αλ

⌋
αλ, 0, 0, . . . , 0)

Hence

f (y) ≤
⌊ 1

αλ

⌋
α2

λ +
(

1−
⌊ 1

αλ

⌋
αλ

)2
≤ αλ + α2

λ ≤
5

16
<

21
32
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2.5 orthogonal projection case

The case we left out is when 5+ 6
n

8 > αλ ≥ 3
4 and hence n ≤ 5. Then, by

3
4 >

5− 6
n

8 , the difference of the two sides of Eq. 2.92 – using Eq. 2.93 – is at
least

1
2

(
αλ −

5− 6
n

8

)2
+
(

αλ −
3
4

)2
+

21
32
−
(

2α2
λ − 2αλ + 1

)
=

= −1
2

α2
λ +

6
n − 1

8
αλ +

1
2

(5− 6
n

8

)2
+

7
32

Let β =
6
n−1

8 and note that β ≤ 3
4 ≤ αλ <

5+ 6
n

8 = β + 3
4 . Hence 0 ≤

αλ − β < 3
4 and so

= −1
2

α2
λ + βαλ +

1
2

(1
2
− β

)2
+

7
32

= β2 − 1
2

β +
11
32
− 1

2
(αλ − β)2 >

> β2 − 1
2

β +
2

32
=
(

β− 1
4

)2
≥ 0

The claim follows.

The proof of Theorem 2.5.3 is completed by Claim 2.5.15.

Remark 2.5.16. The assumptions of Theorem 2.5.3 are satisfied by psym. In-
deed, psym is polynomial-type up to degree three as we mentioned in Re-
mark 2.2.3. Moreover, V⊗4 decomposes as a H4(p)-module (equivalently,
kS4-module) as follows:

V⊗4 ∼= Rk4
(4)⊕

(
R(λ)
(3,1)

)k3,1 ⊕
(

R(λ)
(2,2)

)k2,2

⊕
(

R(λ)
(2,1,1)

)k2,1,1 ⊕
(

R(1,1,1,1)
)k1,1,1,1

where R(4) := Triv(4), R(1,1,1,1) is the sign representation, λ = 3
4 , and the

exponents are

k4 =

(
n + 3

4

)
k1,1,1,1 =

(
n
4

)
k2,2 =

n
2

(
n + 1

3

)
k3,1 =

3n + 6
4

(
n + 1

3

)
k2,1,1 =

3n− 6
4

(
n + 1

3

)
As it is well-known (see for example, Thm. 8.1.16 in [JK]) the number kµ

can be computed as the number of semi-standard Young tableaux over
{1, 2, . . . , n} of shape µ (and arbitrary type).

By the proofs of Lemma 2.5.12 and 2.5.14, we obtain the first two equa-
tions of 2.66. Moreover, by the definition of R(λ)

(3,1), R(λ)
(2,2) and R(λ)

(2,1,1),

dim Ker
(
(x1 − x3)x2

)
= 2(k3,1 + k2,2 + k2,1,1) = 4n

(
n + 1

3

)
hence psym indeed satisfies every assumption of Theorem 2.5.3.
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3
E X A M P L E S

The main example of matrix bialgebras is Oq(Mn), the quantized coor-
dinate ring of n× n matrices. Instead of this well-studied algebra – that
we discuss in the next chapter – first we investigate the matrix bialgebras
with dim V = 2 in Section 3.1, and the quantum orthogonal bialgebra of
Takeuchi in Section 3.2. In Section 3.3, we show that the twist of a matrix
bialgebra is still a matrix bialgebra.

3.1 D I M E N S I O N T W O

Let V be a vector space of dimension two and β a symmetric non-
degenerate k-bilinear form on V. Our goal is to determine basic prop-
erties of the matrix bialgebra M(p) discussed in Section 2.2, for every
β-symmetric idempotent p ∈ E⊗2 of rank one. For a related classification
of quantum deformations of GL2, see [Skr].

These idempotents correspond to the points of

P =
{
[w] ∈ P(V ⊗V) | β⊗2(w, w) 6= 0

}
Indeed, kw⊕ kw⊥ = V ⊗ V for any [w] ∈ P, hence the orthogonal pro-
jection pw onto kw gives a symmetric idempotent. Conversely, taking
Im(p) ∈ P for an idempotent p is clearly an inverse of the previous con-
struction.

The orthogonal group O(V, β) acts on P and the isomorphism type of
M(p) (as a bialgebra) is invariant under this action. So, first we determine
the O(V, β)-orbits of P. As k is algebraically closed, there is a basis e1, e2 ∈
V such that

[β] =

[
0 1
1 0

]
In this basis, we have

O(V, β) =

{[
a 0
0 a−1

]
,

[
0 a−1

a 0

] ∣∣∣∣ a ∈ k×
}
∼= k× o (Z/2)
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3.1 dimension two

Using the ordered basis e1,1, e1,2, e2,1, e2,2 in V ⊗ V where ei,j = ei ⊗ ej
(i, j = 1, 2), we have

P =
{
[a1, a2, a3, a4] ∈ P3 | a1a4 + a2a3 6= 0

}
By elementary observations, we may decompose P into the following or-
bits:

O1 =
{
[1, 0, 0, a4] | a4 6= 0

}
O2(c) =

{
[0, 1, c, 0], [0, c, 1, 0]

}
(c ∈ k×)

O3(c) =
{
[0, 1, c, a4], [a4, c, 1, 0]

∣∣ a4 6= 0
}

(c ∈ k×)

O4(c) =
{
[a1, 0, 1, a4], [a1, 1, 0, a4]

∣∣ a1a4 = c
}

(c ∈ k×)

O5(b, c) =
{
[a1, a2, a3, a4] | a1, a2, a3, a4 6= 0,

(a2 − ca3)(a2 − c−1a3) = 0 = a1a4 − ba2a3
}

(b, c ∈ k×, b 6= −1)

where O2(c) = O2(c−1), and O5(b, c) = O5(b, c−1) for any c ∈ k×.
To investigate M(p) for each p, we consider the following representa-

tives from each orbit:

[1, 0, 0, 1] [0, 1, c, 0] [0, 1, c, 1] [1, 0, 1, c] [1, 1, c, bc]

where b, c 6= 0, b 6= −1.
By the aid of the computer algebra software (we used Magma), we

may determine some properties ofM(p) for each w mentioned above. It
turns out that Im(p12) ∩ Im(p23) = 0 is satisfied in all examples, except
w = [1, 1, 1, 1]; id− p12 − p23 is invertible in all examples, except for w =
[1, 1, c, c]; and p12 − p23 is always non-nilpotent. Moreover, H3(p) is non-
semisimple for

w ∈
{
[0, 1,−1, 1], [1, 0, 1, b], [1, 1,−b,−b2], [1, 1,−b, 1] | b ∈ k\{0,−1}

}
Recall that for U ⊆ V ⊗V we defined AU := T (V)/U.

Example 3.1.1. For w = [1, 0, 0, 1], the bialgebra M(p) satisfies Theorem
2.2.2 with equality and can be defined as

k〈a, b, c, d〉/(a2 − d2, b2 − c2, ab + cd, ac + bd, db + ca, dc + ba)

Moreover, AIm(p) = k〈x, y〉/(x2 + y2) ∼= k〈x, y〉/(xy + yx).
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examples

Example 3.1.2. The second example, where w = [0, 1, c, 0], is not Oq(M2)
but the twist of O(M2) (see Subsec. 3.3). Indeed, in our case Ker(p) =
(e2

1, e2
2, e1e2− ce2e1) and the eigenvalues of (p12− p23)

2 are {0, 3
4}, whereas

for Oq(M2) we would need Ker(p) = (e2
1, e2

2, e1e2− c−1e2e1) and the eigen-
values are λ = 1− q(1 + q)−2 (see Remark 2.2.14).

The isomorphism type of AIm(p)
∼= k〈x, y〉/(xy + cyx) is a quantum

polynomial ring for c 6= −1 and the commutative polynomial ring for
c = −1.

Example 3.1.3. For w = [0, 1,−1, 1], M(p) is the quantum semigroup
of Jordanian matrices, discussed in Sec. 6/2. of [DVL], or [DR]. In this
case, AIm(p)

∼= k〈x, y〉/(xy− yx + y2), the Jordan plane. As one can check

by computer, p12p23p12 is not diagonalizable, hence V⊗3 ∼= (R(1)
1 [1])4 ⊕

R( 3
4 )[2], in particular H3(p) is not semisimple.

Example 3.1.4. For w = [1, 0, 1, c], we obtain

P1(t) = CharPol
(
(p12 − p23)

2) = t4
(

t2 +
(1

c
− 3

2
)
t +

9
16
− 1

c

)2

The discriminant of the last factor is (constant multiple of) c + 1. Hence
for c 6= −1 we have V⊗3 ∼= (R(1)

1 [1])4 ⊕ R(λ)[1]⊕ R(µ)[1] for some λ 6= µ

and so H3(pw) is semisimple. For c = −1, the roots are {0, 5
4}, however –

as one can check by computer – p12p23p12 is not diagonalizable.
In this case, AIm(p)

∼= k〈x, y〉/(xy− qyx) for q = 1−2c±
√

1−4c
2c , in partic-

ular for c = −1 it is q = −3±
√

5
2 .

Example 3.1.5. For w = [1, 1, c, bc] and b 6= −1, we obtain that

P2(t) = CharPol
(
(p12 − p23)

2) =
=

t4

c(b + 1)4

(
c(b + 1)4t2 − (b + 1)2

(3
2

b2c− bc2 + 3bc− b +
3
2

c
)

t

+
9

16
b4c− b3c2 +

7
4

b3c− b3− 2b2c2 +
27
8

b2c− 2b2− bc2 +
7
4

bc− b +
9

16
c
)2

with discriminant (constant multiple of)

c−2(b + 1)−4b(c + 1)2(b + c)(bc + 1)

For c = −1, the roots of P2 are 0 and 3
4 + b

(1+b)2 and it can be checked

that M(p) ∼= Oq(M2) for 1− q
(1+q)2 = 3

4 +
b

(1+b)2 . In particular, H3(p) is

semisimple. For c = −b±1, the roots of P2 are the same, but H3(pw) can
be checked to be non-semisimple for all b, c ∈ k×, b 6= −1.

The isomorphism type of AIm(p) (for b 6= −1) is k〈x, y〉/(xy− yx + y2)

assuming (1 + c)2 = 4bc and c 6= 1, otherwise it is k〈x, y〉/(xy− qyx) for
some q ∈ k×.
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3.2 quantum orthogonal matrices

Example 3.1.6. For w = [1, 1, c, c], we have

dim Ker(p12) ∩ Im(p23) = 1 + δc,−1

dim Im(p12) ∩ Im(p23) = δc,1

Consequently, for c 6= ±1,

V⊗3 ∼= (R(1)
1 [1])4 ⊕ R(0)

1 [1]⊕ R(0)
2 [1]⊕ R(λ)[1]

where λ = −1
4(c− c−1). In the case c = −1, we have

V⊗3 ∼= (R(1)
1 [1])4 ⊕ (R(0)

1 [1])2 ⊕ (R(0)
2 [1])2

while for c = +1,

V⊗3 ∼= (R(1)
1 [1])5 ⊕ R(1)

2 [1]⊕ R(0)
1 [1]⊕ R(0)

2 [1]

hence dim EndH3(p)(V⊗3) is 42 + 2 · 22 = 24 and 52 + 3 · 1 = 28 in the last
two cases, respectively. In particular, the statement of Theorem 2.2.2 does
not hold for c = ±1.

The isomorphism type of AIm(p) is k〈x, y〉/(x2) if c = 1 and k〈x, y〉/(xy)
otherwise.

3.2 Q U A N T U M O RT H O G O N A L M AT R I C E S

In this section, we discuss the example of quantum orthogonal matrices
introduced by Takeuchi in Sec. 4 of [Ta].

Let V = kN with basis x1, . . . , xN, and (following the notation of the
literature) fix q

1
2 ∈ k× that is not a root of unity. Define

n := bN
2
c i′ := N + 1− i (i = 1, . . . , N)

Consider the space S ⊆ V ⊗V spanned by

x2
i (i 6= i′)

xixj + q−1xjxi (i < j 6= i′)

xi′xi + xixi′ − (q− q−1)
i−1

∑
k=1

qk−i+1xkxk′ (i < i′)

x2
N+1

2
− (q− 1)

n

∑
k=1

qk− N
2 xkxk′ (if 2 - N)

Moreover, take the direct complement T spanned by

xixj − qxjxi (i < j 6= i′)
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xi′xi − xixi′ − q−iD− (q− q−1)
n

∑
k=i+1

qk−i−1xkxk′ (i < i′)

where
D = (1− q−1)q

N
2 x2

N+1
2

if 2 - N and D = 0 otherwise. In the notations of [BG], T (V)/(S) =
Λ(ON

q ) and T (V)/(T) = O(ON
q ).

In [Ta], the author considered the bialgebraM(p) – using the notation
M̃+

q (N) – where p is the projection onto T with kernel S. (Note that the
roles of q and q−1 are reversed in the article.) He conjectured that these
bialgebras have a PBW-basis for all N ∈ N+. By Prop. 2.2.16, a necessary
condition for the existence of a PBW-basis of M(p) is that (p12 − p23)

2

has only one non-zero eigenvalue. Now we show that for N = 3 (resp.
N = 4), this condition does not hold. In fact we can also check that it is
not Koszul using Theorem 2.5.3.

3.2.1 Dimension three

First, let N = 3. The generators of S are

x2
1, x2

3, x1x2 + q−1x2x1, x2x3 + q−1x3x2,

x3x1 + x1x3, x2
2 − (q

1
2 − q−

1
2 )x1x3

while for T, we have

x1x2 − qx2x1, x2x3 − qx3x2, x3x1 − x1x3 − (q
1
2 − q−

1
2 )x2

2

Order the standard basis ei,j ∈ V ⊗V (i = 1, 2, 3) as

e1,1, e3,3, e1,2, e2,1, e2,3, e3,2, e1,3, e2,2, e3,1

We claim that the matrix of p in this basis can be expressed as the block-
matrix

[p] = A⊕2
1 ⊕ A⊕2

2 ⊕ A3

where

A1 = [0] A2 =
1

q + q−1

[
q−1 −1
−1 q

]

A3 =
1

q + q−1

 1 q
1
2 − q−

1
2 −1

q
1
2 − q−

1
2 (q

1
2 − q−

1
2 )2 −(q 1

2 − q−
1
2 )

−1 −(q 1
2 − q−

1
2 ) 1


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3.2 quantum orthogonal matrices

It is straightforward to check that using the above matrix, ps = 0 and
pt = t for all s ∈ S and t ∈ T, hence it is indeed the projection onto T
with kernel S.

As it can be computed (by software),

det(id− p12 − p23) = −
q10(q2 − q + 1)6

(q2 + 1)16 = − (q
1
2 − q−

1
2 )6

(q + q−1)16

that is nonzero, if q 6= 1. Moreover, the eigenvalues of (p12 − p23)
2 are

0, 1− 1
(q + q−1)2 ,

2(q + q−1)− 1
(q + q−1)2

with multiplicities 11, 10 and 6, respectively. The last two are distinct
ifq + q−1 6= 1

2 i.e. q 6= 1
4(1± i

√
15).

Since Λ(ON
q ) = T (V)/Ker(p) and O(ON

q ) = T (V)/Im(p) are PBW-
algebras (see [KS]), the further conditions of p being polynomial-type up
to degree three are satisfied. Hence Prop. 2.2.16 shows that dim M̃+

q (3) <

(32+2
3 ) = 165. In fact

dim M̃+
q (3) = 102 + 12 +

(10
2

)2
+
(6

2

)2
= 135

Moreover, still by the PBW-property of Λ(ON
q ) andO(ON

q ), p is polynomial-
type up to degree four in the sense of Def. 2.5.1. By

21
4

32
(

3 + 1
3

)2

− 2 · 32(52 + 32) = 36 · (21− 17) > 0

and Prop. 2.5.10, the bialgebra M̃+
q (3) is not Koszul.

3.2.2 Dimension four

Let N = 4. The generators of S are

x2
1, x2

2, x2
3, x2

4, x4x1 + x1x4, x3x2 + x2x3 − (q− q−1)x1x4,

x1x2 + q−1x2x1, x1x3 + q−1x3x1, x2x4 + q−1x4x2, x3x4 + q−1x4x3

while for T,

x1x2 − qx2x1, x1x3 − qx3x1, x2x4 − qx4x2, x3x4 − qx4x3,

x4x1 − x1x4 − (q− q−1)x2x3, x3x2 − x2x3

Order the standard basis ei,j ∈ V ⊗V (i, j = 1, 2, 3, 4) as

e1,1, e2,2, e3,3, e4,4,
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e1,2, e2,1, e1,3, e3,1, e2,4, e4,2, e3,4, e4,3,

e1,4, e2,3, e3,2, e4,1

We claim that the matrix of p in this basis can be expressed as the block-
matrix

[p] = A⊕4
1 ⊕ A⊕4

2 ⊕ A4

where A1 and A2 as before, and

A4 =
1

(q + q−1)2


2 q− q−1 q− q−1 −2

q− q−1 q2 + q−2 −2 −(q− q−1)

q− q−1 −2 q2 + q−2 −(q− q−1)

−2 −(q− q−1) −(q− q−1) 2


It is again straightforward to check that this is the matrix of the projection
onto T with kernel S.

As it can be computed (by software),

det(id− p12 − p23) =
q32(q4 + 1)8

(q2 + 1)48 =
(q2 + q−2)8

(q + q−1)48

that is nonzero if q is not a primitive 8-th root of unity. Moreover, the
eigenvalues of (p12 − p23)

2 are

0, 1− 1
(q + q−1)2 ,

4(q + q−1)2 − 4
(q + q−1)4

x4 − 5x2 + 4 = (x2 − 4)(x2 − 1) = 0

with multiplicities 24, 32, and 8. The last two are distinct, if (q + q−1)2 /∈
{1, 4}, equivalently, if q is not a sixth root of unity.

By the same argument as before, p is polynomial-type up to degree
four, hence Prop. 2.2.16 shows that dim M̃+

q (4) < (42+2
3 ) = 816. In fact

dim M̃+
q (4) = 202 + 42 +

(32
2

)2
+
(8

2

)2
= 688

However, using Prop. 2.5.10, we cannot decide whether M̃+
q (4) is Koszul,

since

21
4

42
(

4 + 1
3

)2

− 2 · 42(162 + 42) = 16 · (525− 544) < 0

Hence in this case further investigations are necessary.
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3.3 twisting

3.2.3 Higher dimension

For N > 4, the general form of p is complicated enough that computing
eigenvalues of (p12 − p23)

2 remains a non-trivial task. Indeed, for y ∈ Q

denote ay := qy + q−y and for 1 ≤ u ≤ N define ū := min(u, u′). A
tedious computation shows the following.

Proposition 3.2.1. For N ∈ N+ the matrix [p] of the projection onto T with
kernel S in the standard basis {ei,j ∈ V ⊗V | i, j = 1, . . . , N} has the following
coordinates:

For 1 ≤ k, l, m, n ≤ N and l 6= k′, n 6= m′, and {k, l} = {m, n},

[p]k,l
m,n = (q + q−1)−1sign(k− l)sign(m− n)q

1
2 (sign(k−l)+sign(m−n))

For 1 ≤ k, m ≤ N such that k < m

[p]k,k′
m,m′ =

(q− q−1)qm− N
2 −χ(m>n)

q + q−1 ·

·
(

qk− N
2 −χ(k>n)

(
q

N
2 −1

a N
2 −1
− q

N
2 −k̄

a N
2 −k̄

)
+ sign

(N + 1
2
− k
)

a−1
N
2 −k̄

)
For m < k̄, we have [p]k,k′

m,m′ = [p]m,m′
k,k′ as p is symmetric.

For 1 ≤ k, m ≤ N and k̄ = m 6= N+1
2 we have

[p]k,k′
m,m′ =

1
q + q−1

(
(q− q−1)qk+m−N−χ(k>n)−χ(m>n)

(
q

N
2 −1

a N
2 −1
− q

N
2 −k̄

a N
2 −k̄

)

+sign
(N + 1

2
− k
)

sign
(N + 1

2
−m

) a N
2 −k̄−1

a N
2 −k̄

)
While if N is odd then

[p]
N+1

2 , N+1
2

N+1
2 , N+1

2
=

q− q−1

q + q−1

(
q

N
2 −1

a N
2 −1
− q−

1
2

a− 1
2

)
All other coordinates of p are zero.

3.3 T W I S T I N G

In the following, we show that Zhang-twist of a matrix bialgebraM(p)
is isomorphic to another bialgebra of the formM(p′) for some p′ ∈ E⊗2.
This section is not used elsewhere in the thesis.
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Let M be a monoid and A an M-graded k-algebra. In [Z], the Zhang
twist of A is defined as follows. A set {τs | s ∈ M} of M-graded k-algebra
automorphisms of A is called a twisting system, if

Im(τs ◦ τt − τst) ⊆ RAnn(At) (∀s, t ∈ M)

Given a twisting system, one defines the Zhang twist Aτ as the vector
space A endowed with the new multiplication a ∗τ b := a · τs(b) for any
a ∈ As and b ∈ At, s, t ∈ M.

Now we apply a special case of this construction for our current setup.
Let V be a finite-dimensional vector space, M a graded monoid i.e. a
monoid M with a fixed monoid homomorphism deg : M → N. We de-
note Md := {m ∈ M | deg(m) = d}. Assume that there is an M-grading
on the tensor algebra T (V) such that

V⊗d =
⊕

s∈Md

T (V)s (d ∈N)

Let p ∈ E⊗2 an M-homogeneous idempotent on V⊗2. Then AS = T (V)/(S)
and AT = T (V)/(T) are also M-graded algebras, where S = Ker(p),
T = Im(p).

Consider the monoid

M×deg M := {(m, m′) ∈ M×M | deg(m) = deg(m′)}

that is also a graded monoid. Then T
(
End(V)

)
is graded by M ×deg M

as follows:

T
(
End(V)

)
(m,m′) := Hom

(
T (V)m, T (V)m′

)
⊆ End(V)⊗deg(m)

for any (m, m′) ∈ M ×deg M. Since Span(a ◦ p − p ◦ a | a ∈ E⊗2) is an
M-homogeneous subspace, the corresponding universal bialgebra M(p)
is also M×deg M-graded, by its definition.

Consider a monoid homomorphism γ : M→ Aut(V, M, p) where

Aut(V, M, p) :=
{

g ∈ GL(V) | f is M-homogeneous, (g⊗ g)p = p(g⊗ g)
}

Then γm ∈ GL(V) (m ∈ M) induces an M-homogeneous automorphism
of AS and AT so it uniquely defines a twisting system of both M-graded
algebra. Given such a γ, that we will call a compatible twisting system (of
AS and AT), we may define

γ−1 ⊗ γ∨ : M×deg M→ GL
(
T
(
End(V)

))
(γ−1 ⊗ γ∨)(m,m′)( f ) = (γ−1

m )⊗d ◦ f ◦ (γm′)
⊗d (

f ∈ End(V⊗d)
)
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3.3 twisting

where d = deg(m). As (γm ⊗ γm)p = p(γm ⊗ γm) for all m ∈ M by
definition, (γ−1 ⊗ γ∨)(m,m′) fixes pE⊗2(1− p) and (1− p)E⊗2p hence it
induces an automorphism ofM(p).

We may assume that M is generated in degree one since T (V) is gen-
erated in degree one.

Lemma 3.3.1. Let M be a graded monoid, p ∈ E⊗2 an M-homogeneous idem-
potent, and γ a compatible twisting system. ThenM(p)γ−1⊗γ∨ ∼=M(q−1

γ pqγ)
as an algebra, where

qγ := ∑
m∈M1

(
PVm ⊗ γm

)
∈ GL(V ⊗V)

and PVm is the projection to the direct summand Vm ⊆ V (m ∈ M1).

Remark 3.3.2. Given a bilinear form on V, if qγ is not orthogonal then
q−1

γ pqγ is not necessarily self-adjoint, hence not an orthogonal projection.

Proof. First, note that the algebra AR = T(V)/(R) twisted with a compat-
ible twisting system is isomorphic to ARγ where Rγ := q−1

γ (R) for any
R ⊆ V ⊗V. Let us apply this forM(p), where

End(E⊗2) 3 qγ−1⊗γ∨ = ∑
m,m′∈M1

(
(PVm ⊗ P∨Vm′

)⊗ (γ−1
m ⊗ γ∨m′)

)
=

=
(

∑
m∈M1

(PVm ⊗ γm)
)−1
⊗ ∑

m′∈M1

(PVm′
⊗ γm′)

∨

= qγ−1 ⊗ q∨γ ∈ End(V⊗2 ⊗ (V⊗2)∨)

using the identification E⊗2 ∼= V⊗2 ⊗ (V⊗2)∨ and that qγ is invertible.
Therefore the defining ideal ofM(p)γ−1⊗γ∨ is

qγ−1⊗γ∨
(

pE⊗2(1− p) + (1− p)E⊗2p
)
=

= qγ−1 pE⊗2(1− p)qγ + qγ−1(1− p)E⊗2pqγ

that is the defining ideal ofM(q−1
γ pqγ).

Proposition 3.3.3. Let γ be a compatible twisting system γ. Then M(p) ∼=
M(q−1

γ pqγ) as graded coalgebras.

Proof. The coalgebras in the statement are direct sums of finite-dimensional
coalgebras, hence they are isomorphic if and only ifM(p)∨d

∼=M(q−1
γ pqγ)∨d

for all d ∈N.
Let p̃ := q−1

γ pqγ and consider the subalgebras Hd(p) and Hd( p̃) of E⊗d

generated by p1,2, . . . , pd−1,d and p̃1,2, . . . , p̃d−1,d, respectively. It is enough
to prove that there is an invertible rd ∈ E⊗d such that r−1

d pk,k+1rd = p̃k,k+1

89

C
E

U
eT

D
C

ol
le

ct
io

n



examples

for k = 1, . . . , d − 1. Indeed, in that case e 7→ r−1
d erd defines an alge-

bra isomorphism EndHd(p)(V⊗d) → EndHd( p̃)(V⊗d) and by Prop. 2.1.7,
M(p)∨d

∼= EndHd(p)(V⊗d) and similarly for p̃.
For any m1, . . . , md−1 ∈ M1 define

rd|V⊗Vm1⊗Vm2⊗···⊗Vmd−1
= id⊗ γm1 ⊗ (γm1γm2)⊗ · · · ⊗ (γm1 . . . γmd−1)

Since γm is invertible and M-homogeneous for all m ∈ M1, rd is also
invertible. Then (

r−1
d pk,k+1rd

)
|Vm1⊗···⊗Vmd−1⊗V =

= id⊗(k−1) ⊗
((

(γm1 . . . γmk−1 ⊗ γm1 . . . γmk)
−1 ◦ p◦

◦(γm1 . . . γmk−1 ⊗ γm1 . . . γmk)
)∣∣∣

(Vmk⊗Vmk+1 )

)
⊗ id⊗(d−k−1)

= id⊗(k−1) ⊗
((

(id⊗ γm)
−1p(id⊗ γm)

)∣∣∣
(Vmk⊗Vmk+1 )

)
⊗ id⊗(d−k−1)

by p(γm⊗ γm) = (γm⊗ γm)p for any m ∈ M. Therefore, by the definition
of qγ, we obtain that it is indeed p̃k,k+1 on every summand of V⊗d.

Example 3.3.4. The multiparameter quantum matrices Oλ,q(Mn) (intro-
duced in [ASchT]) is an example of twisting Oλ(Mn) (λ ∈ k×), where
the monoid M = Nn, the grading of kn = Span(v1, . . . , vn) is given by
(kn)ei = kvi and the twisting system is γei(xj) = qjixj if i < j and xj if
j ≥ i.
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4
Q U A N T I Z E D C O O R D I N AT E R I N G S O F
M n , G L n A N D S L n

4.1 M A I N R E S U LT S O F T H E C H A P T E R

In this chapter we investigate the well-studied quantizations of coor-
dinate rings of the space of n× n matrices Mn, the general linear group
GLn and the special linear group SLn. The algebras in the chapter are
considered over the field C.

In [DL1] it is proved (see Theorem 6.1) that the subalgebra of cocom-
mutative elements in the quantized coordinate ring Oq(GLn) form a com-
mutative subalgebra, assuming q is not a root of unity. We prove the
following related result, based on [Me1].

Theorem 4.1.1. For n ∈ N+ and q ∈ C× not a root of unity, the subalgebra
of cocommutative elements is a maximal commutative C-subalgebra in Oq(Mn),
Oq(GLn) and Oq(SLn).

The proof of commutativity in [DL1] is constructive in the sense that a
free generating system is determined in the form of sums of (principal)
quantum minors, denoted by σi, (i = 1, . . . , n) (see Sec. 4.2 for definition).
It means that for Theorem 4.1.1, it is enough to prove that the intersection
of the centralizers of σ1, . . . , σn is not larger than their generated subalge-
bra. In fact the following (stronger) statement holds:

Theorem 4.1.2. For n ∈ N+ and q ∈ C× not a root of unity, the centralizer of
σ1 = x11 + · · ·+ xnn in Oq(Mn) (resp. σ1 ∈ Oq(GLn) and σ1 ∈ Oq(SLn)) as
a unital C-subalgebra is generated by

• σ1, . . . , σn−1, σn in the case of Oq(Mn),

• σ1, . . . σn−1, σn, σ−1
n in the case of Oq(GLn), and

• σ1, . . . σn−1 in the case of Oq(SLn).

It is important to note that, while the theorems in [DL1] are quantum
analogs of theorems established in the commutative case and they are
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quantized coordinate rings of mn , gln and s ln

also true if q is a root of unity (see [AZ]). Theorem 4.1.2, however has no
direct commutative counterpart (only Poisson-algebraic, see Chapter 5).
Also it fails if q is a root of unity since then the algebras have large center.

There is a connection between the subalgebra of cocommutative ele-
ments in Oq(Mn) and the center of the so-called reflection equation alge-
bra. See [JW] for recent new results on the latter and a thorough overview
of related literature.

First, in Section 4.3 we prove Proposition 4.3.1 that states that it is
enough to prove Theorem 4.1.2 for any of the three algebras Oq(Mn),
Oq(GLn) or Oq(SLn). Then, in Section 4.4 we discuss the computation
for the case n = 2, that is the first step of the induction we use to prove
Theorem 4.1.2 in Section 4.5.

4.2 D E F I N I T I O N S

4.2.1 Quantized coordinate rings

Assume that n ∈ N+ and q ∈ C× is not a root of unity. Define the
quantized coordinate ring of n× n matrices Oq(Mn) as a matrix bialgebra
M(p) for p ∈ End(kn ⊗ kn) defined as

p(ei ⊗ ej) =

 1
q+q−1 (qsign(j−i)ei ⊗ ej + ej ⊗ ei) if i 6= j

0 if i = j

where e1, . . . , en is the standard basis of kn, and sign(u) is the sign func-
tion. More explicitly, Oq(Mn) is the unital C-algebra generated by the n2

generators xi,j for 1 ≤ i, j ≤ n that are subject to the following relations:

xi,jxk,l =


xk,lxi,j + (q− q−1)xi,lxk,j if i < k and j < l

qxk,lxi,j if (i = k and j < l) or (j = l and i < k)

xk,lxi,j otherwise

for all 1 ≤ i, j, k, l ≤ n. It turns out to be a Noetherian domain. (For a
detailed exposition, see [BG].) As a matrix bialgebra Oq(Mn) is endowed
with a coalgebra structure given in Prop. 2.1.2.

Similarly, we may define the quantized coordinate rings of GLn and
SLn using the quantum determinant

detq := ∑
s∈Sn

(−q)`(s)x1,s(1)x2,s(2) . . . xn,s(n)

where `(s) is the length of s in Sn considered as a Coxeter group.
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4.2 definitions

The quantum determinant generates the center of Oq(Mn). Also it is a
group-like element, i.e. ∆(detq) = detq⊗detq. Hence – analogously to the
classical case – one defines

Oq(SLn) := Oq(Mn)/(detq − 1)

Oq(GLn) := Oq(Mn)
[
det−1

q
]

where we may invert detq in the sense of Ore’s theorem, as it is central
(hence normal), and not a zero-divisor. The comultiplication and counit
on Oq(Mn) induce bialgebra structures on the latter algebras as well. In
particular, Oq(Mn) is a subbialgebra of Oq(GLn). In the case of Oq(SLn)
and Oq(GLn) we can define antipodes that turn them into Hopf algebras.

Recall that Oq(Mn) is an N-graded algebra by its definition. Conse-
quently, we may define the function deg : Oq(Mn)→N as the maximum
of the degrees of nonzero homogeneous components of an element.

Moreover, though detq−1 is not homogeneous with respect to the total
degree, it is homogeneous modulo n so the quotient algebra Oq(SLn)
becomes a Z/nZ-graded algebra.

4.2.2 Quantum minors

An element a ∈ A is called cocommutative if ∆(a) = (τ ◦ ∆)(a) where
τ : A⊗ A → A⊗ A is the flip τ(a⊗ b) = b⊗ a. Hence we may consider
Acoc, the subset of cocommutative elements in A. If A is a bialgebra, then
Acoc is necessarily a subalgebra of A.

For A = Oq(Mn) the quantum determinant detq is cocommutative
since it is group-like. Moreover, by generalizing detq, an explicit descrip-
tion of Oq(Mn)coc is given in [DL1].

For I, J ⊆ {1, . . . , n}, I = (i1, . . . , it) and J = (j1, . . . , jt) let us define the
quantum minor corresponding to I and J as

[I | J] := ∑
s∈St

(−q)`(s)xi1,js(1) . . . xit,js(t) ∈ Oq(Mn).

Equivalently, [I | J] is the quantum determinant of the subalgebra inOq(Mn)
generated by {xi,j}i∈I,j∈J , that is defined using the obvious identification
between the mentioned subalgebra and Oq(Mt).

One may compute

∆
(
[I | J]

)
= ∑
|K|=t

[I |K]⊗ [K | J].

Hence we obtain cocommutative elements by taking

σi = ∑
|I|=i

[I | I] ∈ Oq(Mn)
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quantized coordinate rings of mn , gln and s ln

for all 1 ≤ i ≤ n. For i = n it is detq. In the case of i = 1, it is σ1 =
x1,1 + x2,2 + · · ·+ xn,n.

We will use the notation σi and σi for the induced elements

σi = σi + (detq − 1) ∈ Oq(SLn)

σi ∈ Oq(Mn) ≤ Oq(GLn)

Given an algebra isomorphism A → Oq(Mt) for some t, we will write
σi(A) for the image of σi in A.

Theorem 6.1 in [DL1] states that

Oq(Mn)
coc = C〈σ1, . . . , σn〉 (4.1)

where C〈H〉 stands for the C-subalgebra generated by a subset H. They
also state that the algebra is freely generated as a commutative algebra,
i.e. it is isomorphic to C[t1, . . . , tn−1]. Similarly,

Oq(GLn)
coc = C〈σ1, . . . , σn, σ−1

n 〉 (4.2)

that is isomorphic C[t1, . . . , tn, t−1
n ]. The case of SLn is proved in [DL2]:

Oq(SLn)
coc = C〈σ1, . . . , σn−1〉 (4.3)

that is isomorphic to C[t1, . . . , tn−1].

4.2.3 PBW-basis in the quantized coordinate ring of matrices

Several properties of Oq(Mn) can be deduced by the observation that
it is an iterated Ore extension. It means that there exists a finite sequence
of C-algebras R0, R1, . . . , Rn2 such that R0 = C and Ri+1 = Ri[yi; τi, δi], the
skew polynomial ring in yi for an appropriate automorphism τi ∈ Aut(Ri)
and a derivation δi ∈ Der(Ri).

An iterated Ore extension has a Poincaré-Birkhoff-Witt basis (in the
sense of Subsec. 1.2.1). In the case of as Oq(Mn), the ordering can be
chosen to be the lexicographic ordering on {xi,j | 1 ≤ i, j ≤ n} (see [BG]).

4.2.4 Associated graded ring

For a filtered ring
(

R, {F d}d∈N

)
i.e. where {F d}d∈N is an ascending

chain of subspaces in R such that R = ∪d∈NF d and F d · F e ⊆ F d+e for
all d, e ∈N, we define its associated graded ring

gr(R) :=
⊕
d∈N

F d/F d−1
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4.3 equivalence of the statements

where we use the notation F−1 = {0}. The multiplication of gr(R) is
defined in the usual way:

F d/F d−1 ×F e/F e−1 → F d+e/F d+e−1(
x +F d−1, y +F e−1) 7→ xy +F d+e−1

Clearly, it is a graded algebra by definition. In fact gr(.) can be made
into a functor defined as follows: for a morphism of filtered algebras
f :
(

R, {F d}d∈N

)
→
(
S, {Gd}d∈N

)
(i.e. when f (F d) ⊆ Gd) we define

gr( f ) : gr(R)→ gr(S)(
xd +F d−1)

d∈N
7→
(

f (xd) + Gd−1)
d∈N

One can check that it is indeed well-defined and preserves composition.
A basic property of gr(.) is that if we have a map f : R → S such that
f (F d) = Gd then the gr( f ) is also surjective.

4.3 E Q U I VA L E N C E O F T H E S TAT E M E N T S

As it is mentioned in the introduction, Theorem 4.1.1 follows directly
from Theorem 4.1.2. Indeed, since σi’s are commuting generators in the
subalgebra of cocommutative elements in Oq(Mn), Oq(GLn) and Oq(SLn)
(see Eq. 4.1, 4.2 and 4.3), any commutative subalgebra containing the sub-
algebra of cocommutative elements is contained in the centralizer of σ1.

Moreover, the following proposition shows that it is enough to prove
Theorem 4.1.2 in the case of Oq(Mn).

Proposition 4.3.1. Assume that n ∈ N+ and q ∈ C× is not a root of unity.
The following are equivalent:

i) The centralizer of σ1 ∈ Oq(Mn) is generated by σ1, . . . , σn−1, σn.

ii) The centralizer of σ1 ∈ Oq(GLn) is generated by σ1, . . . , σn−1, σn, σ−1
n .

iii) The centralizer of σ1 ∈ Oq(SLn) is generated by σ1, . . . , σn−1.

For the proof, we need the following straightforward lemma:

Lemma 4.3.2. Let R = ⊕i≥0Ri be an N-graded algebra and r ∈ Rk (for some
k > 0) a central element that is not a zero-divisor. Then for all d ∈N, (r− 1)∩
Rd = 0.

Proof. As r − 1 is central, 0 6= x ∈ (r − 1) means that x = y · (r − 1) for
some y ∈ R. Let y = ∑

j′

i=j yi ∈ ⊕iRi be the homogeneous decomposition
of y where yj, yj′ 6= 0. Then the highest (resp. lowest) degree nonzero ho-
mogeneous component of y · (r− 1) is yj′r (resp. −yj), which is of degree
j′ + k (resp. j) since r is not a zero-divisor. By j ≤ j′ < j′ + k, x cannot be
homogeneous.
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quantized coordinate rings of mn , gln and s ln

Proof of Proposition 4.3.1. Assume that i) holds and let h ∈ Oq(GLn) that
commutes with σ1. By the definition of Oq(GLn), there exists a k ∈ N

such that h · detk
q ∈ Oq(Mn) ≤ Oq(GLn) which also commutes with σ1

since detq is central. Therefore, by i), we have h ·detk
q ∈ C〈σ1, . . . , σn−1, σn〉

hence
h = h · detk

q · det−k
q ∈ C〈σ1, . . . , σn−1, σn, σ−1

n 〉

and so ii) follows.
Conversely, assume ii) and take an h ∈ Oq(Mn) ⊆ Oq(GLn) that com-

mutes with σ1. By the assumption, h ∈ C〈σ1, . . . , σn−1, σn, σ−1
n 〉 hence it is

cocommutative in Oq(GLn). Since Oq(Mn) is a subbialgebra of Oq(GLn),
h is cocommutative in Oq(Mn) as well, hence by Eq. 4.1 i) follows.

Now we prove i) ⇔ iii): First assume i) and let h ∈ Oq(SLn) that com-
mutes with σ1. Since Oq(SLn) is Z/nZ-graded and σ1 is homogeneous
with respect to this grading, its centralizer is generated by homogeneous
elements. So we may assume that h is homogeneous as well.

Let k = deg(h) ∈ {0, 1, . . . , n − 1}. Take an h ∈ Oq(Mn) that repre-
sents h ∈ Oq(SLn)= Oq(Mn)/(detq − 1). Let h = ∑d

j=0 hjn+k be the N-
homogeneous decomposition of h where hjn+k is homogeneous of degree
jn + k for all j ∈ N. (As h is Z/nZ-homogeneous we may assume that h
has nonzero homogeneous components only in degrees ≡ k modulo n.)
Let

h′ :=
d

∑
j=0

hjn+k · detd−j
q ∈ Oq(Mn)dn+k

which is a homogeneous element of degree dn + k representing h in
Oq(Mn). Therefore σ1h′− h′σ1 ∈ (detq−1)∩Oq(Mn)dn+k+1 because σ1h−
hσ1 = 0 ∈ Oq(SLn) and σ1 is homogeneous of degree 1. By Lemma 4.3.2,

(detq − 1) ∩Oq(Mn)dn+k+1 = 0

hence σ1h′ = h′σ1. By i) we obtain h′ ∈ C〈σ1, . . . , σn〉 therefore h ∈
C〈σ1, . . . , σn−1〉 as we claimed.

Conversely, assume iii) and let h ∈ Oq(Mn) such that σ1h = hσ1. Since
σ1 is N-homogeneous, its centralizer is also generated by homogeneous
elements so we may assume that h is homogeneous. Then the image h of
h in Oq(SLn) is also homogeneous with respect to the Z/nZ-grading of
Oq(SLn).

By the assumption, h commutes with σ1 hence h ∈ C〈σ1, . . . , σn−1〉
by iii). This decomposition of h can be lifted to Oq(Mn) giving an ele-
ment s ∈ C〈σ1, . . . , σn−1〉 such that h − s ∈ (detq−1). As h was Z/nZ-
homogeneous, s can also be chosen to be Z/nZ-homogeneous since the
generators σ1, . . . , σn−1 are homogeneous as well.
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4.4 case of Oq(SL2)

Now we modify h and s so that they become Z-homogeneous ele-
ments of the same degree. Let Let k = deg(h) ∈ {0, 1, . . . , n − 1} and
d = 1

n
(

max(deg h, deg s)− k
)

and take s = ∑d
j=0 sjn+k the homogeneous

decomposition of s. If deg(s) > deg(h) then let

h′ = h · det
1
n

(
deg(s)−deg(h)

)
q

so now d = deg(s) = deg(h′). (The exponent is an integer since deg(h) ≡
deg(s) modulo n.) Otherwise, let h′ = h.

The same way as in the proof of i) ⇒ iii), we can modify s as follows.
Let

s′ :=
d

∑
j=0

sjn+k · detd−j
q

Then s′ ∈ C〈σ1, . . . , σn〉, it is N-homogeneous of degree nd + k, and s−
s′ ∈ (detq−1). So

h′ − s′ = (h′ − h) + (h− s) + (s− s′) ∈ (detq − 1) ∩Oq(Mn)nd+k

that is zero by Lemma 4.3.2. Hence h′ ∈ C〈σ1, . . . , σn〉 which gives h ∈
C〈σ1, . . . , σn, σ−1

n 〉. However,

C〈σ1, . . . , σn, σ−1
n 〉 ∩ Oq(Mn) = C〈σ1, . . . , σn〉

by Eq. 4.1 and 4.2. The claim follows.

4.4 C A S E O F Oq(SL2)

In this section we prove Theorem 4.1.2 for Oq(SL2), that is the base step
of the induction that we use in the proof of Theorem 4.1.2.

In fact in the induction step we will show the statement for Oq(Mn)
and not for Oq(SLn). In the light of Prop. 4.3.1 these are equivalent. The
reason why we use SL2 in this part and not M2 is that Oq(SL2) has fewer
elements (in the sense of Gelfand-Kirillov dimension) so the computa-
tions are shorter.

Proposition 4.4.1. Assume that q ∈ C× is not a root of unity. The centralizer
of σ1 ∈ Oq(SL2) is C〈σ1〉.

For the generators of Oq(SL2) we will use the notations

a := x1,1 b := x1,2

c := x2,1 d := x2,2

where xi,j = xi,j + (detq − 1). In particular, σ1 = a + d.
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quantized coordinate rings of mn , gln and s ln

By Theorem I.7.16. in [BG] we have a basis of Oq(SL2) consisting of the
following elements:

aibkcl, bkcldj, bkcl (i, j ∈N+, k, l ∈N)

We will use the Z/2Z-grading of Oq(SL2) defined as

deg(aibkcl) = i mod 2

deg(bkcldj) = j mod 2

Note, that it is not the Z/2Z-grading that Oq(SL2) inherits from the Z-
grading of Oq(M2). That would give i + k + l and k + l + j modulo 2,
respectively. Still, this is a grading in the sense of graded algebras.

Proof. First, let us compute the adjoint action of σ1 = a + d on the basis
elements.

(a + d) · aibkcl = ai+1bkcl + (1 + q−1bc)ai−1bkcl =

= ai+1(bkcl) + ai−1(bkcl + q−2(i−1)−1bk+1cl+1)

Similarly,

aibkcl · (a + d) = q−(k+l)ai+1bkcl + qk+lai−1(1 + qbc)bkcl =

= ai+1(q−(k+l)bkcl) + ai−1(qk+lbkcl + qk+l+1bk+1cl+1).

Hence for the commutator we get[
(a + d), aibkcl] = ai+1((1− q−(k+l))bkcl) (4.4)

+ ai−1((1− qk+l)bkcl

+ (q−2(i−1)−1 − qk+l+1)bk+1cl+1).
By the same computation on bkcldj and bkcl, we may conclude that[

(a + d), bkcldj] =
(
(q−(k+l) − 1)bkcl)dj+1

+
(
(qk+l − 1)bkcl

+ (qk+l+1 − q−2(j−1)−1)bk+1cl+1)dj−1[
(a + d), bkcl] = a(1− q−(k+l))bkcl + (q−(k+l) − 1)bkcld.

Generally, for a polynomial p ∈ C[t1, t2] and i ≥ 1:[
(a + d), ai p(b, c)

]
= ai+1 ∑

m

(
(1− q−m)pm(b, c)

)
(4.5)

+ ai−1
(

∑
m
(1− qm)pm(b, c)

+ (q−2(i−1)−1 − qm+1)bcpm(b, c)
)
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4.4 case of Oq(SL2)

where pm is the m-th homogeneous component of p with respect to the
N-valued total degree on C[t1, t2] ∼= C〈b, c〉. The analogous computations
for p(b, c)dj (j ≥ 1) and p(b, c) give[

(a + d), p(b, c)dj] = ∑
m

(
(q−m − 1)pm(b, c)

)
dj+1 (4.6)

+ ∑
m

(
(qm − 1)pm(b, c)

+ (qm+1 − q−2(j−1)−1)bcpm(b, c)
)
dj−1[

(a + d), p(b, c)
]

= a ∑
m

(
(1− q−m)pm(b, c)

)
(4.7)

+ ∑
m

(
(q−m − 1)pm(b, c)

)
d

To prove the statement, it is enough to show that in each subspace
∑α

i=0 ai · C〈b, c〉 + ∑α
j=0 C〈b, c〉 · di ⊆ Oq

(
SL2(C)

)
the space of elements

that centralize σ1 has dimension α + 1. Indeed, dim ∑α
i=0 Cσi

1 = α + 1
by C〈σ1〉 ∼= C[t], and its elements centralize σ1 so then it is the whole
centralizer.

Assume that the nonzero element g commutes with σ1. Express g in
the above mentioned basis as

g =
α

∑
i=1

airi +
β

∑
j=1

sjdj + u

where ri, sj and u are elements of C〈b, c〉, and α and β are the highest
powers of a and d appearing in the decomposition (i.e. rα 6= 0 and sβ 6= 0).
We will also write r0 or s0 for u, if it makes a formula simpler. Since σ1
is a homogeneous element with respect to the Z/2Z-grading, we may
assume that g is also homogeneous.

The proof is split into two cases: if g has degree 0 ∈ Z/2Z (hence α

is even) then we will prove that the constant terms of the α
2 + 1 polyno-

mials rα, rα−2, . . . , r2, u ∈ C[b, c] determine g uniquely, and similarly, if
g ∈ Z/2Z has degree 1 (hence α is odd) then the constant terms of the
α+1

2 polynomials rα, rα−2, . . . , r1 ∈ C[b, c] also determine g uniquely. This
is enough, since in the even case we obtain

(
α
2 + 1

)
+ (α−1)+1

2 = α + 1 for
the dimension of the σ1-centralizing elements as the sum of dimensions
of homogeneous σ1-centralizing elements in even and odd degrees. Sim-
ilarly, if α is odd, it is α+1

2 + α−1
2 = α + 1 so it is indeed enough to prove

the above claim.
First we prove that rα ∈ C · 1 in both cases. If α = 0 then rα = u so

the aibkcl terms in [a + d, g] (decomposed in the monomial basis) are the
same as the aibkcl terms in [a + d, u] by Eq. 4.5, 4.6 and 4.7. However, by
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quantized coordinate rings of mn , gln and s ln

Eq. 4.7, these terms would be nonzero if u /∈ C. Now assume that α ≥ 1
and define the subspace

Ad := SpanC(aibkcl, bkcldj, bkcl | i ≤ d, k, l ∈N)

for any d ∈ N. Recall the fact that σ1Aα−1, Aα−1σ1, dAα and Aαd are all
contained in Aα, using the defining relations. Hence

σ1g− gσ1 +Aα ⊆

⊆ σ1(aαrα +Aα−1)− (aαrα +Aα−1)σ1 +Aα

= a · aαrα − aαrα · a +Aα.

Using the decomposition rα = ∑ λk,lbkcl we have

aαrα · a = ∑ λk,lq−k−laα+1bkcl.

Since the elements aα+1bkcl are independent even modulo Aα by Subsec.
4.2.3, aαrα · a may agree with aα+1rα modulo Aα only if λk,l = 0 for all
(k, l) 6= (0, 0). Therefore rα ∈ C · 1.

Now we prove that for all 1 ≤ i ≤ α− 1, ri+1 and the constant term of
ri−1 determines ri−1 ∈ C[b, c]. Indeed, by Eq. 4.5 we have

0 = Coeffai
(
[(a + d), g]

)
= ∑

m

(
(1− q−m)ri−1,m

)
(4.8)

+ ∑
m
(1− qm)ri+1,m

+ ∑
m
(q−2(i−1)−1 − qm+1)bcri+1,m

where and ri,m is the m-th homogeneous term of ri ∈ C[b, c] and Coeffai

stands for the element in C[b, c] such that ai ·Coeffai(x) is a summand of
x when it is decomposed in the monomial basis. The degree k part of the
right hand side is

(1− q−k)ri−1,k + (1− qk)ri+1,k + (q1−2i − qk−1)bcri+1,k−2 if k ≥ 2

(1− q−1)ri−1,1 + (1− q1)ri+1,1 if k = 1

for all 1 ≤ i ≤ α− 1. Hence ri+1 determines ri−1 (using that q is not a root
of unity) except for the constant term ri−1,0 which has zero coefficient in
Eq. 4.8 for all k.
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4.4 case of Oq(SL2)

We prove that deg sj+1 ≤ deg sj−1 − 2 for all j ≥ 1 where deg stands
for the total degree of C[b, c]. Analogously to Eq. 4.8, one can deduce the
following by Eq. 4.6:

0 = Coeffdj
(
[(a + d), g]

)
= ∑

m

(
(q−m − 1)sj−1,m

)
+

+ ∑
m
(qm − 1)sj+1,m

+ ∑
m
(qm+1 − q−2(j−1)−1)bcsj+1,m

The degree k part of the right hand side is

(q−k− 1)sj−1,k +(qk− 1)sj+1,k +(qk−1− q1−2j)bcsj+1,k−2 if k ≥ 2 (4.9)

(q−1 − 1)sj−1,1 + (q1 − 1)sj+1,1 if k = 1

for all 1 ≤ j ≤ β − 1. Note that qk−1 − q1−2j = 0 can never happen for
k ≥ 2. If sj+1 = 0 then the statement is empty. If sj+1 6= 0 then for
k = 2 + deg sj+1 ≥ 2, we have sj+1,k = 0 but sj+1,k−2 = sj+1,deg sj+1

6= 0
hence Eq. 4.9 gives sj−1,k 6= 0. So deg sj+1 ≤ deg sj−1 − 2.

Now assume that α is even. By the previous paragraphs, the scalars rα,
rα−2,0, . . . , r2,0 and u0 determine all the polynomials rα, rα−2, rα−4, . . . , r2
and u. We prove that they also determine the sj’s. Starting from u =
s0 one can obtain sj+1 by sj−1. Indeed, since deg sj+1 ≤ deg sj−1 − 2, if
deg sj−1 ≤ 1 then sj+1 = 0, and similarly, for k = deg sj−1 ≥ 2 we have
sj+1,k−1 = 0 and Eq. 4.9 gives

(q−k − 1)sj−1,k = −(qk−1 − q1−2j)bc · sj+1,k−2.

Then, recursively for k, if sj−1,k and sj+1,k are given, by Eq. 4.9 they deter-
mine sj+1,k−2, using that q is not a root of unity.

If α is odd, then by Eq. 4.5 one can obtain the following for the sum-
mand of [(a + d), g] that does not contain a and d when decomposed in
the given basis:

0 = Coeff1
(
[(a + d), g]

)
= ∑

m

(
(1− qm)r1,m + (q− qm+1)bc · r1,m +

+ (qm − 1)s1,m + (qm+1 − q)bc · s1,m

)
The homogeneous components of degree k are

(1− qk)r1,k + (q− qk−1)bc · ri+1,k−2 (4.10)

+ (qk − 1)s1,k + (qk+1 − q)bc · s1,k−2 if k ≥ 2
(1− q)r1,1 + (q− 1)s1,1 if k = 1
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quantized coordinate rings of mn , gln and s ln

Hence rα, rα−2,0, . . . , r1,0 determine not only ri for 1 ≤ i ≤ α but also s1 by
Eq. 4.10 applied for k = deg s1 + 2 and the same recursive argument as in
the even case. Then, similarly, sj+1 is unique by sj−1 for all 2 ≤ j ≤ β− 1
and the statement follows.

4.5 P R O O F O F T H E O R E M 4 . 1 . 2

In [DL1], to verify that the subalgebra of cocommutative elements in
An := Oq(Mn) is generated by the σi’s, the authors proved that the natural
surjection

η : Oq(Mn)→ C[t1, . . . , tn] xi,j 7→ δi,jti

restricted to the subalgebra of cocommutative elements Oq(Mn)coc is an
isomorphism and its image is the subalgebra of symmetric polynomials
DSn

n where Dn := C[t1, . . . , tn]. We use the same plan to prove that it is
also the centralizer of σ1 ∈ Oq(Mn). The idea is to translate the problem
for associated graded rings where we may apply induction.

For this purpose, we will need the following intermediate quotient al-
gebra between An and Dn:

B2,n := An/(x1,j, xi,1 | 2 ≤ i, j ≤ n)

Let us denote the corresponding natural surjection by ϕ : An → B2,n.
Since Ker η ⊆ Ker ϕ by their definition, η can be factored through ϕ. So
our setup is:

C(σ1) ⊆ An
ϕ
// // B2,n

δ // // Dn (4.11)

where η = δ ◦ ϕ and C(σ1) denotes the centralizer of σ1 in An. The struc-
ture of B2,n is quite simple: B2,n ∼= An−1[t] by the map xi,j 7→ xi−1,j−1 for
i, j ≥ 2 and x1,1 7→ t. One can check that it is indeed an isomorphism since
x1,1 commutes with the elements of C〈x1,1, xi,j | i, j ≥ 2〉 modulo Ker ϕ.

These algebras are N-graded algebras using the total degree of An,
but we can also endow them by a filtration that is not the corresponding
filtration of the grading.

Namely, for each d ∈ N let Ad be the subspace of An that is generated
by the monomials in which x1,1 appears at most d times, i.e. it is spanned
by the ordered monomials of the form xi

1,1m where i ≤ d and m is an
ordered monomial in the variables xi,j, (i, j) 6= (1, 1).

One can check that this is indeed a filtration: they are linear subspaces
such that ∪dAd = An and Ad · Ae ⊆ Ad·e for all d, e ∈ N. As C(σ1) is a
subalgebra of An, we get an induced filtration Cd = Ad ∩ C(σ1) (d ∈ N)
on C(σ1), and similarly, an induced filtration Bd := ϕ(Ad) (d ∈ N) on
B2,n and Dd := δ ◦ ϕ(Ad) (d ∈N) on Dn.
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4.5 proof of the main result

Proof of Theorem 4.1.2. We prove the statement by induction on n. The
statement is verified for Oq(SL2) in Sec. 4.4 so by Prop. 4.3.1 the case
n = 2 is proved. Now assume that n ≥ 3. We shall prove that

• (δ ◦ ϕ)|C(σ1)
: C(σ1)→ Dn is injective, and

• the image (δ ◦ ϕ)
(
C(σ1)

)
is in DSn

n .

These imply that the restriction of δ ◦ ϕ to C(σ1) yields an isomorphism
onto DSn

n , since by [DL1], C(σ1) 3 σi for all i = 1, . . . , n and δ ◦ ϕ restricts
to an isomorphism between C〈σ1, . . . , σn〉 and DSn

n .
First part, step 1: First we show that it is enough to prove that gr(δ ◦ ϕ)

restricted to gr
(
C(σ1)

)
is injective to get the injectivity of δ ◦ ϕ on C(σ1).

Apply gr(.) to the filtered algebras in our setup presented in Diagram
4.11. It gives

gr
(
C(σ1)

)
⊆ gr(An)

gr(ϕ)
// // gr(B2,n)

gr(δ)
// // gr(Dn) (4.12)

The surjectivity of the maps follow by ϕ(Ad) = Bd and δ(Bd) = Dd.
Assuming that gr(δ ◦ ϕ) restricted to gr

(
C(σ1)

)
is injective, we get the

injectivity of (δ ◦ ϕ)|C0 , moreover, we can apply an induction on d using
the 5-lemma in the following commutative diagram of vector spaces for
all d ≥ 1:

0 // Cd−1
� _

δ◦ϕ|Cd−1
��

// Cd

δ◦ϕ|Cd
��

// Cd/Cd−1
� _

gr(δ◦ϕ|C(σ1)
)d

��

// 0

0 // Dd−1 // Dd // Dd/Dd−1 // 0

where the rows are exact by definition and gr(δ ◦ ϕ|C(σ1)
)d and δ ◦ ϕ |Cd−1

are injective by the assumption and the induction hypothesis. Therefore
δ ◦ ϕ is injective on ∪dCd = C(σ1).

Notice that B2,n and Dn are not only filtered by the ϕ(x1,1) and t1 de-
grees but they are also graded as B2,n ∼= An−1[t] and Dn ∼= Dn−1[t] by
t1 7→ t and ti 7→ ti−1 ∈ Dn−1 (i ≥ 2). Hence we will use the natural iden-
tifications of graded algebras B2,n ∼= gr(B2,n) and gr(Dn) ∼= Dn (and so
gr(δ) is just δ).

Step 2: We prove that the image of the map gr(ϕ) restricted to gr
(
C(σ1)

)
is in C

(
ϕ(σ1)

)
⊆ B2,n. (For a diagram about the maps involved in the

proof of the first part, see Diagram 4.13.) Here, C
(

ϕ(σ1)
)

is a graded sub-
algebra of B2,n since ϕ(σ1) is a sum of a central element ϕ(x1,1) and of
the elements ϕ(x2,2), . . . , ϕ(xn,n) (that are homogeneous of degree zero)
so C

(
ϕ(σ1)

)
= C

(
ϕ(x2,2 + · · ·+ xn,n)

)
is homogeneous. The proof of this

step is clear: For an h ∈ Cd ⊆ Ad we have 0 = ϕ
(
[σ1, h]

)
=
[
ϕ(σ1), ϕ(h)

]
,

hence gr(ϕ)(h + Cd−1) ∈ C
(

ϕ(σ1)
)
.
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quantized coordinate rings of mn , gln and s ln

Step 3: We prove the injectivity of δ restricted to C
(

ϕ(σ1)
)

by the in-
duction. First note that C

(
ϕ(σ1)

) ∼= CAn−1(σ1)[t] using the isomorphism
B2,n ∼= An−1[t]. Then, by the induction hypothesis,

CAn−1(σ1) = C
〈
σ1(An−1), . . . , σn−1(An−1)

〉
Therefore C

(
ϕ(σ1)

)
= C〈σ1(B2,n), . . . , σn−1(B2,n), ϕ(x1,1)〉 where σi(B2,n)

is defined as the image of σi(An−1) under the above mentioned isomor-
phism. For these elements, we have δ

(
σi(B2,n)

)
= si(t2, . . . , tn) where

si(t2, . . . , tn) is the i-th elementary symmetric polynomial in the variables
t2, . . . , tn. Hence δ restricted to C

(
ϕ(σ1)

)
is indeed injective by the funda-

mental theorem of symmetric polynomials.
Now it is enough to prove the injectivity of gr(ϕ) restricted to gr

(
C(σ1)

)
to get the injectivity of δ ◦ ϕ by Step 1 and 2.

Step 4: We find a subalgebra of gr(An) containing gr
(
C(σ1)

)
that has

simple explicit description via the monomial basis. For adσ1 : An → An,
h 7→ [σ1, h], we have C(σ1) = Ker(adσ1) by definition. Although adσ1 is
not a morphism of algebras but a derivation of degree one, we can still
take

Ker
(
gr(adσ1)

)
:=
{
(hd)d∈N ∈ gr(An) | σ1hd− hdσ1 +Ad = 0 ∈ Ad+1/Ad}

where gr(adσ1) is understood as a map of graded vector spaces. Then, we
can extend Diagram 4.12 as:

gr(An)
gr(ϕ)

// // B2,n
δ // // Dn

Ker
(
gr(adσ1)

)⋃
C
(

ϕ(σ1)
)⋃

gr
(
C(σ1)

)⋃ 77

(4.13)

Naturally, gr
(
C(σ1)

)
⊆ Ker

(
gr(adσ1)

)
since σ1hd− hdσ1 = 0 ∈ An implies

σ1hd − hdσ1 ∈ Ad.
We give an explicit description of Ker

(
gr(adσ1)

)
. Observe that

gr(An) ∼=
⊕
d∈N

ydC〈xi,j | (i, j) 6= (1, 1)〉

where y, the image of x1,1, commutes with every xi,j for 2 ≤ i, j ≤ n and
q-commutes with x1,j and xi,1 for all i, j ≥ 2. Indeed, by the monomial
basis of An (see Sec. 4.2) we get the direct sum decomposition, more-
over, the only defining relations involving x1,1 are x1,1x1,j = qx1,jx1,1,
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4.5 proof of the main result

x1,1xi,1 = qxi,1x1,1 and x1,1xi,j = xi,jx1,1 + (q − q−1)xi,1x1,j that reduce to
q-commutativity of y and commutativity of y with the appropriate ele-
ments. The argument also gives that the image of the monomial basis of
An is a monomial basis in gr(An).

In particular, we get that

Ker
(
gr(adσ1)

) ∼= ⊕
d∈N

ydC〈xi,j | 2 ≤ i, j ≤ n〉

by the same isomorphism. Indeed, for an element xd
1,1m ∈ Ad where m is

an ordered monomial in the variables xi,j ((i, j) 6= (1, 1)), we have

gr(adσ1)(xd
1,1m +Ad−1) = x1,1 · xd

1,1m− xd
1,1m · x1,1 +Ad

since xi,i · Ad ⊆ Ad and Ad · xi,i ⊆ Ad for all i ≥ 2. Then, by the above
mentioned q-commutativity relations, we obtain (1− q−c(m))xd+1

1,1 m +Ad

where c(m) stands for the sum of exponents of the x1,j’s and xi,1’s (2 ≤
i, j ≤ n) appearing in m. The result is a monomial basis element in
Ad+1/Ad ⊆ gr(An). For different monomials xd

1,1m and xd′
1,1m′ we get

different monomials xd+1
1,1 m and xd′+1

1,1 m′ so gr(adσ1) is diagonal in the
monomial basis of gr(An) with the scalars (1− q−c(m)). Hence its kernel
is

{xd
11m +Ad−1 | d ∈N, c(m) = 0}

since q is not a root of unity, as we stated. Therefore we get Ker
(
gr(adσ1)

) ∼=
An−1[t] using y 7→ t and xi,j 7→ xi−1,j−1 since y commutes with every xi,j
for 2 ≤ i, j ≤ n.

Now the injectivity part of the theorem follows: the isomorphisms
B2,n ∼= An−1[t] and Ker

(
gr(adσ1)

) ∼= An−1[t] established in step 4 are com-
patible, meaning that gr(ϕ) composed with them on the appropriate sides
is idAn−1[t]. In particular, gr(ϕ) restricted to gr

(
C(σ1)

)
⊆ Ker

(
gr(adσ1)

)
is

injective. By step 3, δ restricted to C
(

ϕ(σ1)
)

is also injective, so the com-
position δ ◦ gr(ϕ) = gr(δ ◦ ϕ) is injective as well, using step 2. By step 1,
this means that δ ◦ ϕ is injective.

Second part: To prove η
(
C(σ1)

)
⊆ DSn

n , consider the following commu-
tative diagram:

An
ϕ

// // B2,n
δ // // Dn

C(σ1)

⋃
// C
(

ϕ(σ1)
)⋃

// DSn−1
n

⋃

where Sn−1 acts on Dn by permuting t2, . . . , tn. The diagram implicitly
states that ϕ

(
C(σ1)

)
⊆ C

(
ϕ(σ1)

)
(which is clear) and that δ

(
C
(

ϕ(σ1)
))
⊆

DSn−1
n . The latter follows by the induction hypothesis for n − 1: it gives
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quantized coordinate rings of mn , gln and s ln

that C
(

ϕ(σ1)
)

= C〈σ1(B2,n), . . . , σn−1(B2,n), ϕ(x1,1)〉 by B2,n ∼= An−1[t]
and since δ(ϕ(x1,1)) = t1 and δ

(
σi(B2,n)

)
= si(t2, . . . , tn), the i-th ele-

mentary symmetric polynomial in the variables t2, . . . , tn, we obtain that
(δ ◦ ϕ)

(
C(σ1)

)
is symmetric in t2, . . . , tn.

To prove symmetry in t1, . . . , tn−1 too, consider the isomorphism γ :
Oq(Mn) ∼= Oq−1(Mn) given by xi,j ↔ x′n+1−i,n+1−j where x′i,j denotes
the variables in Oq−1(Mn). This is indeed an isomorphism: interpreted in
the free algebra it maps the defining relations of Oq(Mn) to the defining
relations of Oq−1(Mn). It also maps σ1 ∈ Oq(Mn) into the σ1 of Oq−1(Mn)

denoted by σ′1. Moreover, γ ◦ η = η′ ◦ γ where γ : Dn → Dn, ti 7→ tn+1−i
(i = 1, . . . , n) and η′ : Oq−1(Mn) → C[t1, . . . , tn], x′i,j 7→ tiδi,j is the η(=
δ ◦ ϕ) of Oq−1(Mn).

Hence (γ ◦ η)
(
C(σ1)

)
= η′

(
C(σ′1)

)
as C(σ′1) is symmetric under γ. Ap-

plying the previous argument on Oq−1(Mn) gives that η′
(
C(σ′1)

)
⊆ DSn−1

n

where Sn−1 still acts by permuting t2, . . . , tn. Hence η
(
C(σ1)

)
is sym-

metric in t1, . . . , tn−1 too. So η
(
C(σ1)

)
is symmetric in all the variables

t1, . . . , tn by n ≥ 3, as we claimed.

Remark 4.5.1. In fact the proof of the injectivity of η = δ ◦ ϕ is valid in the
case n = 2 too, but the symmetry argument used to prove η

(
C(σ1)

)
⊆

C[t1, . . . , tn]Sn does not give anything if n = 2. That is why we had to
start the induction at n = 2 instead of n = 1.

Remark 4.5.2. As it is discussed in [DL1], the set of cocommutative ele-
ments in Oq(GLn) is the ring of invariants under the right coaction

α : Oq(GLn)→ Oq(GLn)⊗Oq(GLn)

a 7→∑ a(2) ⊗ a(3)S(a(1))

where we use Sweedler’s notation. Although this coaction does not agree
with the right adjoint coaction

a 7→∑ a(2) ⊗ S(a(1))a(3)

of the Hopf algebra Oq(GLn) (that is also mentioned in the referred ar-
ticle) but they differ only by the automorphism S2. Hence, by Theorem
4.1.1, the invariants of the right adjoint coaction also form a maximal
commutative subalgebra.

We get other maximal commutative subalgebras by applying automor-
phisms of the algebras Oq(GLn), Oq(Mn) or Oq(SLn), though they do not
have many automorphisms: it is proved in [Ya1] establishing a conjecture
stated in [LL] that the automorphism group of Oq(Mn) is generated by
the transpose operation on the variables and a torus that acts by rescaling
the variables xi,j 7→ cidjxi,j (ci, dj ∈ C×).
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5
S E M I C L A S S I C A L L I M I T P O I S S O N
A L G E B R A S

5.1 M A I N R E S U LT S O F T H E C H A P T E R

In this chapter, we prove the Poisson algebraic version of Theorem 4.1.1
and 4.1.2 for the corresponding semiclassical limit Poisson-algebra struc-
tures on O(Mn), O(GLn) and O(SLn).

Let n ∈ N+ and consider O(Mn), the algebra of polynomial functions
on the affine space of n× n matrices Mn over the base field C. In Subsec-
tion 5.2.5 and 5.2.6 we define a Poisson-algebra structure on O(Mn), and
elements ck ∈ O(Mn) (1 ≤ k ≤ n) that are (scalar multiples of) the coeffi-
cients of the characteristic polynomial. Our goal is to prove the following
result, based on [Me2].

Theorem 5.1.1. For n ∈N+ the subalgebra C[c1, . . . , cn] (resp. C[c1, . . . , cn, c−1
n ]

and C[c1, . . . , cn−1]) is maximal Poisson-commutative inO(Mn) (resp.O(GLn)
and O(SLn)) with respect to the semiclassical limit Poisson structure.

It is easy to deduce from [DL1] or [DL2] that {ci, cj} = 0 (1 ≤ i, j ≤ n) in
O(Mn) (see Proposition 5.5.1 below). Therefore Theorem 5.1.1 is a direct
consequence of the following statement:

Theorem 5.1.2. For n ≥ 1 the Poisson-centralizer of c1 in O(Mn) (resp. c1 in
O(GLn), c1 in O(SLn)) equipped with the semiclassical limit Poisson bracket is
generated as a subalgebra by

• c1, . . . , cn in the case of O(Mn),

• c1, . . . , cn, c−1
n in the case of O(GLn) and

• c1, . . . cn−1 in the case of O(SLn).

The applied method is similar to that of Chapter 4, namely we mod-
ify the Poisson bracket by taking the associated graded filtered Poisson-
algebras, and use induction.

107

C
E

U
eT

D
C

ol
le

ct
io

n



semiclassical limit poisson algebras

It is well-known that the coefficient functions c1, . . . , cn ∈ O(Mn) of
the characteristic polynomial generate the subalgebra O(Mn)GLn of GLn-
invariants with respect to the adjoint action. This implies that the subal-
gebra coincides with the Poisson center of the coordinate ring O(Mn) en-
dowed with the Kirillov-Kostant-Souriau (KKS) Poisson bracket. Hence
Theorem 5.1.1 for O(Mn) can be interpreted as an interesting interplay
between the KKS and the semiclassical limit Poisson structure. Namely,
while the subalgebra O(Mn)GLn is contained in every maximal Poisson-
commutative subalgebra with respect to the former Poisson bracket, it is
contained in only one maximal Poisson-commutative subalgebra (itself)
with respect to the latter Poisson bracket.

A Poisson-commutative subalgebra is also called an involutive (or Hamil-
tonian) system, while a maximal one is called a complete involutive sys-
tem (see Sec. 5.2 or [Va]). Such a system is integrable if the (Krull) dimen-
sion of the subalgebra generated by the system is sufficiently large. In
our case, the subalgebra generated by the elements c1, . . . , cn−1 is not inte-
grable, as its dimension is n− 1 (resp. n for GLn) instead of the required
(n+1

2 )− 1 (resp. (n+1
2 ) for GLn), see Remark 5.5.3.

The chapter is organized similarly to the previous chapter: first we
prove that the three statements in Theorem 5.1.2 are equivalent (Propo-
sition 5.3.1), then we prove Theorem 5.1.2 for n = 2 (Proposition 5.4.1) as
a starting case of an induction presented in Sec. 5.5 that completes the
proof of the theorem. In the chapter, every algebra is understood over the
field C.

5.2 D E F I N I T I O N S

5.2.1 Poisson algebras

First we collect the basic notions about Poisson algebras we need here.
For further details see [Va].

A (commutative) Poisson algebra
(

A, {., .}
)

is a unital commutative as-
sociative algebra A together with a bilinear operation {., .} : A× A → A
called the Poisson bracket such that it is antisymmetric, satisfies the Jacobi
identity, and for any a ∈ A, {a, .} : A → A is a derivation. For Poisson
algebras A and B, the map ϕ : A → B is a morphism of Poisson algebras
if it is both an algebra homomorphism and a Lie-homomorphism.

There is a natural notion of Poisson subalgebra (i.e. a subalgebra that is
also a Lie-subalgebra), Poisson ideal (i.e an ideal that is also a Lie-ideal)
and quotient Poisson algebra (as the quotient Lie-algebra inherits the
bracket). The Poisson centralizer C(a) of an element a ∈ A is defined as
{b ∈ A | {a, b} = 0}. Clearly, it is a Poisson subalgebra. The Poisson
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5.2 definitions

center (or Casimir subalgebra) of A is Z(A) := {a ∈ A | C(a) = A}.
Analogously, a ∈ A is called Poisson-central if C(a) = A. One says that a
subalgebra C ≤ A is Poisson-commutative (or involutive) if {c, d} = 0 for
all c, d ∈ C and it is maximal Poisson-commutative (or maximal involutive)
if there is no Poisson-commutative subalgebra in A that strictly contains
C.

Let A be a reduced, finitely generated commutative Poisson algebra.
The rank Rk{., .} of the Poisson structure {., .} is defined by the rank of
the matrix

(
{gi, gj})i,j ∈ AN×N for a generating system g1, . . . , gN ∈ A.

(One can prove that it is independent of the chosen generating system.)
In the terminology of [Va], a maximal Poisson-commutative subalgebra C
is called Liouville integrable if

dim C = dim A− 1
2

Rk{., .}

The inequality ≤ holds for any Poisson-commutative subalgebra (Propo-
sition II.3.4 in [Va]), hence integrability is a maximality condition on the
size of C that does not necessarily hold for every complete involutive
system.

5.2.2 Filtered Poisson algebras

Definition 5.2.1. A filtered Poisson algebra is a Poisson algebra together
with an ascending chain of subspaces {F d}d∈N in A such that

• A = ∪d∈NF d,

• F d · F e ⊆ F d+e for all d, e ∈N, and

• {F d,F e} ⊆ F d+e for all d, e ∈N.

Together with the filtration preserving morphisms of Poisson algebras,
they form a category.

For a filtered Poisson algebra A, we may define its associated graded
Poisson algebra grA as

gr(A) :=
⊕
d∈N

F d/F d−1

where we used the simplifying notation F−1 = {0}. The multiplication
of gr(A) is defined the usual way:

F d/F d−1 ×F e/F e−1 → F d+e/F d+e−1(
x +F d−1, y +F e−1) 7→ xy +F d+e−1
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semiclassical limit poisson algebras

Analogously, the Poisson structure of gr(A) is defined by
(
x + F d−1, y +

F e−1) 7→ {x, y}+F d+e−1. One can check that this way gr(A) is a Poisson
algebra.

Let (S,+) be an abelian monoid. (We will only use this definition for
S = N and S = Z/nZ for some n ∈ N.) An S-graded Poisson algebra R is
a Poisson algebra together with a fixed grading

R = ⊕d∈SRd

such that R is both a graded algebra (i.e. Rd · Re ⊆ Rd+e for all d, e ∈ S)
and a graded Lie algebra (i.e. {Rd, Re} ⊆ Rd+e for all d, e ∈ S) with respect
to the given grading.

The above construction A 7→ gr(A) yields an N-graded Poisson alge-
bra. In fact gr(.) can be turned into a functor: for a morphism of filtered
Poisson algebras f :

(
A, {F d}d∈N

)
→
(

B, {Gd}d∈N

)
we define

gr( f ) : gr(A)→ gr(B)
(
xd +F d−1)

d∈N
7→
(

f (xd) + Gd−1)
d∈N

One can check that it is indeed well-defined and preserves composition.

Remark 5.2.2. Given an N-graded Poisson algebra R = ⊕d∈NRd, one has
a natural way to associate a filtered Poisson algebra to it. Namely, let
F d := ⊕k≤dRk. In this case, the associated graded Poisson algebra grR of(

R, {F d}d∈N

)
is isomorphic to R.

5.2.3 The Kirillov-Kostant-Souriau bracket

A classical example of a Poisson algebra is given by the Kirillov-Kostant-
Souriau (KKS) bracket on O(g∗), the coordinate ring of the dual of a
finite-dimensional (real or complex) Lie algebra

(
g, [., .]

)
(see [ChP] Exam-

ple 1.1.3, or [We] Section 3).
It is defined as follows: a function f ∈ O(g∗) at a point v ∈ g∗ has

a differential d fv ∈ T∗v g∗ where we can canonically identify the spaces
T∗v g∗ ∼= T∗0 g

∗ ∼= g∗∗ ∼= g. Hence we may define the Poisson bracket on
O(g∗) as

{ f , g}(v) := [d fv, dgv](v)

for all f , g ∈ O(g∗) and v ∈ g∗. It is clear that it is a Lie-bracket but it can
be checked that the Leibniz-identity is also satisfied. For g = gln, it gives
a Poisson bracket on O(Mn).

Alternatively, one can define this Poisson structure via semiclassical
limits.
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5.2.4 Semiclassical limits

Let A = ∪d∈ZAd be a Z-filtered algebra such that its associated graded
algebra gr(A) := ⊕d∈ZAd/Ad−1 is commutative. The Rees ring of A is
defined as

Rees(A) :=
⊕
d∈Z

Adhd ⊆ A[h, h−1]

Using the obvious multiplication, it is a Z-graded algebra. The semiclas-
sical limit of A is the Poisson algebra Rees(A)/hRees(A) together with
the bracket

{a + hAm, b + hAn} :=
1
h
[a, b] +An+m−2 ∈ An+m−1/An+m−2

for all a + hAm ∈ Am+1/hAm, b + hAn ∈ An+1/hAn. The definition is
valid as the underlying algebra of Rees(A)/hRees(A) is gr(A) that is
assumed to be commutative, hence [a, b] ∈ hAm+n−1.

The Poisson algebra O(g∗) with the KKS bracket can be obtained as
the semiclassical limit of the universal enveloping algebra Ug, see [Go],
Example 2.6.

5.2.5 Semiclassical limits of quantized coordinate rings

The semiclassical limits of Oq(SLn) can be obtained via slight modifica-
tion of process of Subsec. 5.2.4 (see [Go], Example 2.2).

Consider the k[t]-algebra R := Ot(Mn) that is defined by the same for-
mulas asOq(Mn) (see Subsec. 4.2.1), but using the indeterminate t instead
of q ∈ k×. Then Ot(Mn) can be endowed with a Z-filtration by defining
Fn to be the span of monomials that are the product of at most n variables.
However, instead of defining a Poisson structure on Rees(R)/hRees(R)
with respect to this filtration, consider the algebra R/(t− 1)R that is iso-
morphic to O(Mn) as an algebra.

The semiclassical limit Poisson bracket is defined as

{ā, b̄} :=
1

t− 1
(ab− ba) + (t− 1)R ∈ R/(t− 1)R

for any two representing elements a, b ∈ R for ā, b̄ ∈ R/(t− 1)R. One can
check that it is a well-defined Poisson bracket.

Explicitly, the Poisson structure of O(Mn) defined above is

{xi,j, xk,l} =


2xi,lxk,j if i < k and j < l

xi,jxk,l if (i = k and j < l) or (j = l and i < k)

0 otherwise
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semiclassical limit poisson algebras

extended according to the Leibniz-rule (see [Go]).
It is a quadratic Poisson structure in the sense of [Va], Definition II.2.6.

The semiclassical limit for GLn and SLn is defined analogously using
Oq(GLn) and Oq(SLn) or by localization (resp. by taking quotient) at the
Poisson central element det (resp. det− 1) in O(Mn).

5.2.6 Coefficients of the characteristic polynomial

Consider the characteristic polynomial function Mn → C[x], A 7→
det(xI − A). Let us define the elements c0, c1, . . . , cn ∈ O(Mn) as

det(xI − A) =
n

∑
i=0

(−1)icixn−i

In particular, c0 = 1, c1 = tr and cn = det. Their images in O(SLn) ∼=
O(Mn)/(det− 1) are denoted by c1, . . . , cn−1. If ambiguity may arise, we
will write ci(A) for the element corresponding to ci for an algebra A with
a fixed isomorphism A ∼= O(Mk) for some k.

The coefficient functions c1, . . . , cn can also be expressed via matrix mi-
nors as follows: For I, J ⊆ {1, . . . , n}, I = (i1, . . . , ik) and J = (j1, . . . , jk)
define

[I | J] := ∑
s∈Sk

sgn(s)xi1,js(1) . . . xik,js(k)

i.e. it is the determinant of the subalgebra generated by {xi,j}i∈I,j∈J that
can be identified with O(Mk). Then

ci = ∑
|I|=i

[I | I] ∈ O(Mn)

for all 1 ≤ i ≤ n. It is well-known that c1, . . . , cn generate the same subal-
gebra of O(Mn) as the trace functions A 7→ Trace(Ak), it is the subalgebra
O(Mn)GLn of GLn-invariants with respect to the adjoint action.

5.3 E Q U I VA L E N C E O F T H E S TAT E M E N T S

ConsiderO(Mn) endowed with the semiclassical limits Poisson bracket.
As it is discussed in the Introduction, Theorem 5.1.1 follows directly from
Theorem 5.1.2 and Prop. 5.5.1.

The following proposition shows that it is enough to prove Theorem
5.1.2 for the case of O(Mn).

Proposition 5.3.1. For any n ∈N+ the following are equivalent:

i) The Poisson-centralizer of c1 ∈ O(Mn) is generated by c1, . . . , cn.
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5.3 equivalence of the statements

ii) The Poisson-centralizer of c1 ∈ O(GLn) is generated by c1, . . . , cn, c−1
n .

iii) The Poisson-centralizer of c1 ∈ O(SLn) is generated by c1, . . . , cn−1.

Proof. The first and second statements are equivalent as det is a Poisson-
central element, so we have {c1, h · detk} = {c1, h} · detk for any h ∈
O(GLn) and k ∈ Z. Hence

O(GLn) ⊇ C(c1) =
(
O(Mn) ∩ C(c1)

)
[det−1]

proving i) ⇐⇒ ii).
i) ⇐⇒ iii): First, assume i) and let h ∈ O(SLn) such that {c1, h} = 0.

Since O(SLn) is Z/nZ-graded (inherited from the N-grading of O(Mn))
and c1 is homogeneous with respect to this grading, its Poisson-centralizer
is generated by Z/nZ-homogeneous elements, so we may assume that h
is Z/nZ-homogeneous.

Let k = deg(h) ∈ Z/nZ. Let h ∈ O(Mn) be a lift of h ∈ O(SLn) and
consider the N-homogeneous decomposition h = ∑d

j=0 hjn+k of h, where
hjn+k is homogeneous of degree jn + k for all j ∈N. Define

h′ :=
d

∑
j=0

hjn+kdetd−j ∈ O(Mn)dn+k

that is a homogeneous element of degree dn + k representing h ∈ O(SLn)
inO(Mn). Then {c1, h′} ∈ (det−1)∩O(Mn)dn+k+1 since {c1, h′} = {c1, h} =
0, c1 is homogeneous of degree 1 and the Poisson-structure is graded.
Clearly, (det−1) ∩ O(Mn)dn+k+1 = 0 hence {c1, h′} = 0. Applying i)
gives h′ ∈ C[c1, . . . , cn] so h ∈ C[c1, . . . , cn−1] as we claimed.

Conversely, assume iii) and let h ∈ O(Mn) such that {c1, h} = 0. Since
c1 is N-homogeneous, we may assume that h is also N-homogeneous and
so the image h ∈ O(SLn) of h is Z/nZ-homogeneous. By the assumption,
h = p(c1, . . . , cn−1) for some p ∈ C[t1, . . . , tn−1]. Endow C[t1, . . . , tn] with
the N-grading deg(ti) = i. As h is Z/nZ-homogeneous, we may choose
p ∈ C[t1, . . . , tn−1] so that its homogeneous components are all of degree
dn + deg(h) ∈N with respect to the above grading for some d ∈N.

By h− p(c1, . . . , cn−1) ∈ (det−1) and the assumptions on degrees, we
may choose a polynomial q ∈ C[t1, . . . , tn] that is homogeneous with re-
spect to the above grading and q(t1, . . . , tn−1, 1) = p. Let h′ := h · detr

where r := 1
n (deg q− deg h) ∈ Z so deg(h′) = deg(q) ∈N. Then

h′ − q(c1, . . . , cn) ∈ (det−1) ∩O(Mn)degq = 0

hence h′ ∈ C[c1, . . . , cn] and h ∈ C[c1, . . . , cn, c−1
n ]. This is enough as

C[c1, . . . , cn, c−1
n ] ∩O(Mn) = C[c1, . . . , cn] by the definitions.
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semiclassical limit poisson algebras

5.4 C A S E O F O(SL2)

In this section we prove Theorem 5.1.2 for O(SL2) that is the first step
of the induction in the proof of the general case.

We denote by a, b, c, d the generators x1,1, x1,2, x2,1, x2,2 ∈ O(SL2) and
tr := c1 = a + d.

Proposition 5.4.1. The centralizer of tr ∈ O(SL2) is C[tr].

By ad− bc = 1 we have a monomial basis of O(SL2) consisting of

aibkcl, bkcldj, bkcl (i, j ∈N+, k, l ∈N)

The Poisson bracket on the generators is the following:

{a, b} = ab {a, c} = ac {a, d} = 2bc

{b, c} = 0 {b, d} = bd {c, d} = cd

The action of {tr, .} on the basis elements can be written as{
(a + d), aibkcl} =

=(k + l)ai+1bkcl − 2iai−1bk+1cl+1 − (k + l)aibkcld

=(k + l)ai+1bkcl − (2i + k + l)ai−1bk+1cl+1 − (k + l)ai−1bkcl

By the same computation on bkcl and bkcldj one obtains{
(a + d), bkcl} =(k + l)abkcl − (k + l)bkcld{

(a + d), bkcldj} =(k + l + 2j)bk+1cl+1dj−1

+(k + l)bkcldj−1 − (k + l)bkcldj+1

Hence for a polynomial p ∈ C[t1, t2] and i ≥ 1:{
(a + d), ai p(b, c)

}
= ai+1 ∑

m
m · pm(b, c) (5.1)

− ai−1 ∑
m

(
(2i + m)bc + m

)
pm(b, c)

where pm is the m-th homogeneous component of p. The analogous com-
putations for p(b, c)dj (j ≥ 1) and p(b, c) give{

(a + d), p(b, c)dj} = −dj+1 ∑
m

m · pm(b, c) (5.2)

+ dj−1 ∑
m

(
(m + 2j)bc + m

)
pm(b, c){

(a + d), p(b, c)
}

= (a− d)∑
m

m · pm(b, c) (5.3)
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5.5 proof of the main result

Proof of Proposition 5.4.1. Assume that 0 6= g ∈ C(tr) and write it as

g =
α

∑
i=1

airi +
β

∑
j=1

sjdj + u

where ri, sj and u are elements of C[b, c], and α and β are the highest
powers of a and d appearing in the decomposition.

We prove that rα ∈ C · 1. If α = 0 then rα = u so the aibkcl terms (i > 0)
in {a + d, g} are the same as the aibkcl terms in {a + d, u} by Eq. 5.1, 5.2
and 5.3. However, by Eq. 5.3, these terms are nonzero if u /∈ C and that
is a contradiction. Assume that α ≥ 1 and for a fixed k ∈ N define the
subspace

Ak := ∑
l≤k

alC[b, c, d] ⊆ O(SL2)

By
{

tr,Aα−1} ⊆ Aα we have

Aα = {tr, g}+Aα =
{

tr, aαrα +Aα−1}+Aα =

= aα{tr, rα}+ αaα−1bcrα +Aα = aα{tr, rα}+Aα

By Eq. 5.3 it is possible only if {tr, rα} = 0 so rα ∈ C[b, c] ∩ C(tr) = C · 1.
If α > 0 we may simplify g by subtracting polynomials of tr from it.

Indeed, by rα ∈ C× we have g− rαtrα ∈ Aα−1 ∩ C(tr) so we can replace
g by g− rαtrα. Hence we may assume that α = 0. Then, again, rα = u ∈
C · 1 ⊆ C(tr) so we may also assume that u = 0.

If g is nonzero after the simplification, we get a contradiction. Indeed,
let p(b, c)dγ be the summand of g with the smallest γ ∈ N. By the above
simplifications, γ ≥ 1. Then the coefficient of dγ−1 in {tr, g} is the same
as the coefficient of dγ−1 in

{tr, p(b, c)dγ} = {tr, p(b, c)}dγ + 2γbcp(b, c)dγ−1

so it is 2γbcp(b, c)dγ−1 that is nonzero if p(b, c) 6= 0 and γ ≥ 1. That is a
contradiction.

5.5 P R O O F O F T H E O R E M 5 . 1 . 2

Let n ≥ 2 and let us denote An := O(Mn).

Proposition 5.5.1. C[σ1, . . . , σn] ≤ An is a Poisson-commutative subalgebra.

Proof. Consider the principal quantum minor sums

σi = ∑
|I|=i

∑
s∈Si

t−`(s)xi1,is(1) . . . xit,is(t) ∈ Ot(Mn)
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semiclassical limit poisson algebras

When An is viewed as the semiclassical limit R/(t − 1)R where R =
Ot(Mn) (see Subsec. 5.2.5), one can see that σi represents ci ∈ R/(t −
1)R ∼= O(Mn). In [DL1], it is proved that σiσj = σjσi in Oq(Mn) if q is not
a root of unity, in particular, if q is transcendental.

Since the algebraOq(Mn) is defined over Z[q, q−1], the elements σ1, . . . , σn
(that are defined over Z[q, q−1]) commute in Oq

(
Mn(Z)

)
≤ Oq

(
Mn(C)

)
as well. Hence σ1, . . . , σn also commute after extension of scalars, i.e. in the
ring Oq

(
Mn(Z)

)
⊗Z C ∼= Ot

(
Mn(C)

)
. Consequently, in An ∼= R/(t− 1)R

the subalgebra C[c1, . . . , cn] is a Poisson-commutative subalgebra, by the
definition of semiclassical limit.

By Prop. 5.5.1, C[c1, . . . , cn] is in the Poisson-centralizer C(c1). To prove
the converse, Theorem 5.1.2, we need further notations. Consider the Pois-
son ideal

I := (x1,j, xi,1 | 2 ≤ i, j ≤ n)C An

We will denote its quotient Poisson algebra by B2,n := An/I and the
natural surjection by ϕ : An → B2,n. Note that B2,n ∼= An−1[t] as Poisson
algebras by xi,j + I 7→ xi−1,j−1 (2 ≤ i, j ≤ n) and x1,1 7→ t where the bracket
of An−1[t] is the trivial extension of the bracket of An−1 by {t, a} = 0 for
all a ∈ An−1[t].

Furthermore, Dn will stand for C[t1, . . . , tn] endowed with the zero Pois-
son bracket. Define the map δ : B2,n → Dn as xi,j + I 7→ δi,jti that is mor-
phism of Poisson algebras by {xi,i, xj,j} ∈ I. Note that (δ ◦ ϕ)(ci) = si,
the elementary symmetric polynomial in t1, . . . , tn. In particular, δ ◦ ϕ re-
stricted to C[c1, . . . , cn] is an isomorphism onto the symmetric polynomi-
als in t1, . . . , tn by the fundamental theorem of symmetric polynomials. In
the proof of Theorem 5.1.2 we verify the same property for C(σ1).

Although the algebras An, B2,n and Dn are N-graded Poisson algebras
(see Subsec. 5.2.2) using the total degree of An and the induced gradings
on the quotients, we will instead consider them as filtered Poisson alge-
bras where the filtration is not the one that corresponds to this grading.
For each d ∈N, let us define

Ad = {a ∈ An | degx1,1
(a) ≤ d}

This is indeed a filtration on An. Note that the grading degx1,1
is incom-

patible with the bracket by {x1,1, x2,2} = x1,2x2,1. The algebras B2,n, Dn
and C(c1) inherit a filtered Poisson algebra structure as they are Pois-
son sub- and quotient algebras of An so we may take Bd := ϕ(Ad),
Dd := (δ ◦ ϕ)(Ad) and Cd = Ad ∩ C(c1). This way the natural surjections
ϕ and δ and the embedding C(c1) ↪→ An are maps of filtered Poisson
algebras.

In the proof of Theorem 5.1.2 we use the associated graded Poisson
algebras of B2,n, Dn and C(c1) (see Subsec. 5.2.2). First we describe the
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5.5 proof of the main result

structure of these. The filtrations on B2,n and Dn are induced by the x1,1-
and t1-degrees, hence we have grB2,n ∼= B2,n and grDn ∼= Dn as graded
Poisson algebras (and grδ = δ), so we identify them in the following.

The underlying graded algebra of grAn is isomorphic to An using the
x1,1-degree but the Poisson bracket is different: it is the same on the gen-
erators xi,j and xk,l for (i, j) 6= (1, 1) 6= (k, l) but

{x1,1, xi,j}gr = 0 (2 ≤ i, j ≤ n)
{x1,1, x1,j}gr = x1,1x1,j (2 ≤ j ≤ n)
{x1,1, xi,1}gr = x1,1xi,1 (2 ≤ i ≤ n)

where {., .}gr stands for the Poisson bracket of grAn. Consequently, as
maps we have grϕ = ϕ, we still have {ci, cj}gr = 0 for all i, j, and the
underlying algebra of grC(c1) can be identified with C(c1).

Note that C(c1) is defined by the original Poisson structure {., .} of An
and not by {., .}gr, even if it will be considered as a Poisson subalgebra
of grAn. The reason of this slightly ambiguous notation is that we will
also introduce Cgr(x1,1) ⊆ grAn as the centralizer of x1,1 with respect to
{., .}gr.

Our associated graded setup can be summarized as follows:

C(c1) ⊆ grAn
ϕ
// // B2,n

δ // // Dn

Proof of Theorem 5.1.2. We prove the statement by induction on n. The
statement is verified for O(SL2) in Sec. 5.4 so, by Prop. 5.3.1, the case
n = 2 is proved. Assume that n ≥ 3. We shall prove that

• (δ ◦ ϕ)|C(c1)
: C(c1)→ Dn is injective, and

• the image (δ ◦ ϕ)
(
C(c1)

)
is in DSn

n .

These imply that the restriction of δ ◦ ϕ to C(c1) is an isomorphism onto
DSn

n since C(c1) 3 ci for i = 1, . . . , n (see Subsec. 5.2.6) and δ ◦ ϕ restricted
to C[c1, . . . , cn] is surjective onto DSn

n . The statement of the theorem fol-
lows.

To prove that δ ◦ ϕ is injective on C(c1) it is enough to prove that δ is
injective on C

(
ϕ(c1)

)
and that ϕ is injective on C(c1). Indeed, as ϕ is a

Poisson map we have ϕ
(
C(c1)

)
⊆ C

(
ϕ(c1)

)
.

First we prove δ is injective on C
(

ϕ(c1)
)
. By B2,n ∼= An−1[t] where t is

Poisson-central, we have

B2,n ⊇ C
(

ϕ(c1)
) ∼= CAn−1[t]

(
t+ c1(An−1)

)
= CAn−1

(
c1(An−1)

)
[t] ⊆ An−1[t]

By the induction hypothesis

CAn−1

(
c1(An−1)

)
= C

[
c1(An−1), . . . , cn−1(An−1)

]
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semiclassical limit poisson algebras

Therefore δ restricted to C
(

ϕ(c1)
)

is an isomorphism onto the subalge-
bra C[s1, . . . , sn−1][t1]⊆ Dn where si is the symmetric polynomial in the
variables t2, . . . , tn. In particular, δ is injective on C

(
ϕ(c1)

)
.

To verify the injectivity of ϕ on C(c1), define

Cgr(x1,1) := {a ∈ grAn | {x1,1, a}gr = 0}

The subalgebra C(c1) is contained in Cgr(x1,1) since for a homogeneous
element a of degree d, we have

Ad+1/Ad 3 {x1,1, a}gr +Ad = {x1,1 +A0, a +Ad−1}+Ad = {c1, a}+Ad

hence {c1, a} = 0 implies {x1,1, a}gr = 0 ∈ grAn. Our setup can be visual-
ized on the following diagram:

gr(An)
ϕ

// // B2,n
δ // // Dn

Cgr(x1,1)

⋃
C
(

ϕ(c1)
)⋃
, �

::

C(c1)

⋃ 88

Now it is enough to prove that ϕ restricted to Cgr(x1,1) is injective.
We can give an explicit description of Cgr(x1,1) in the following form:

Cgr(x1,1) = C[x1,1, xi,j | 2 ≤ i, j ≤ n] ≤ grAn

Indeed,

{x1,1, xi,j}gr =

x1,1xi,j if j 6= i = 1 or i 6= j = 1

0 otherwise

Therefore the map adgrx1,1 : a 7→ {x1,1, a}gr acts on a monomial m ∈ grAn
as {x1,1, m}gr = c(m) · x1,1m where c(m) is the sum of the exponents of
the x1,j’s and xi,1’s (2 ≤ i, j ≤ n) in m. Hence adgrx1,1 maps the monomial
basis of grAn injectively into itself. In particular,

Cgr(x1,1) = Ker
(
adgrx1,1

)
= {a ∈ grAn | c(m) = 0} ∼= An−1[t]

using the isomorphism x1,1 7→ t and xi,j 7→ xi−1,j−1.
The injectivity part of the theorem follows: ϕ is injective on Cgr(x1,1)

(in fact it is an isomorphism onto B2,n), and ϕ maps C(c1) into C
(

ϕ(c1)
)

on which δ is also injective.
To prove (δ ◦ ϕ)

(
C(c1)

)
⊆ DSn

n , first note that in the above we have
proved that

(δ ◦ ϕ)
(
C(c1)

)
⊆ δ

(
C
(

ϕ(c1)
))
⊆ DSn−1

n
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5.5 proof of the main result

where Sn−1 acts on Dn by permuting t2, . . . , tn. Consider the automor-
phism γ of An given by the reflection to the off-diagonal:

γ(xi,j) = xn+1−i,n+1−j

It is not a Poisson map but a Poisson antimap (using the terminology
of [ChP]), i.e. γ({a, b}) = −{γ(a), γ(b)}. It maps c1 into itself and con-
sequently C(c1) into itself. For the analogous involution γ : Dn → Dn,
ti 7→ tn+1−i (i = 1, . . . , n) we have (δ ◦ ϕ) ◦ γ = γ ◦ (δ ◦ ϕ). Hence

(δ ◦ ϕ)
(
C(c1)

)
= (δ ◦ ϕ ◦ γ)

(
C(c1)

)
= (γ ◦ δ ◦ ϕ)

(
C(c1)

)
⊆ γ

(
DSn−1

n
)

proving the symmetry of (δ ◦ ϕ)
(
C(c1)

)
in t1, . . . , tn−1, so it is symmetric

in all the variables by n ≥ 3.

Remark 5.5.2. In the case of the KKS Poisson structure (see Subsec. 5.2.3),
every maximal Poisson-commutative subalgebra contains the Poisson cen-
ter C[c1, . . . , cn], see [We]. (For an example of such a maximal Poisson-
commutative subalgebra, see [KW].) This is in contrast with Theorem
5.1.1 in the sense that for the semiclassical Poisson structure, there is
a single maximal Poisson-commutative subalgebra of O(Mn) containing
C[c1, . . . , cn].

Remark 5.5.3. We prove that C[c1, . . . cn−1] is not an integrable complete
involutive system (see Subsec. 5.2.1). First observe that the rank of the
semiclassical Poisson bracket of O(SLn) is n(n− 1).

Indeed, by Subsec. 5.2.1, the rank is the maximal dimension of the sym-
plectic leaves in SLn. The symplectic leaves in SLn are classified in [HL1],
Theorem A.2.1, based on the work of Lu, Weinstein and Semenov-Tian-
Shansky [LW], [Sem]. The dimension of a symplectic leaf is determined
by an associated element of W ×W where W = Sn is the Weyl group
of SLn. According to Proposition A.2.2, if (w+, w−) ∈ W ×W then the
dimension of the corresponding leaves is

`(w+) + `(w−) + min{m ∈N | w+w−1
− = r1 · · · · · rm, (5.4)

ri is a transposition for all i}

where `(.) is the length function of the Weyl group that – in the case of
SLn – is the number of inversions in a permutation. By the definition of
inversion using elementary transpositions, the above quantity is bounded
by

`(w+) + `(w−) + `(w+w−1
− )

The maximum of the latter is n(n− 1) since `(w+) = (n
2)− `(w+t) where

t = (n . . . 1) stands for the longest element of Sn. Therefore

`(w+) + `(w−) + `(w+w−1
− ) =
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semiclassical limit poisson algebras

= n(n− 1)− `(w+t)− `(w−t) + `
(
(w+t)(w−t)−1) ≤ n(n− 1)

because `(gh) ≤ `(g) + `(h) = `(g) + `(h−1) for all g, h ∈ Sn. This maxi-
mum is attained on w+ = w− = t, even for the original quantity in Equa-
tion 5.4. Hence Rk{., .} = n(n− 1) for SLn and Rk{., .} = n(n− 1) + 1 for
Mn and GLn. However, a complete integrable system should have dimen-
sion

dim SLn −
1
2

Rk{., .} = n2 − 1−
(

n
2

)
=

(
n + 1

2

)
− 1

So it does not equal to dim C[c1, . . . cn−1] = n− 1 if n > 1. Similarly, the
system is non-integrable for Mn and GLn.
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