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Introduction

Differential Galois theory is an analogue of Galois theory for studying solutions of linear

differential equations in a purely algebraic way. It originates in work of Kolchin carried out

from the 1940’s and has undergone considerable development since.

In the classical setting, the object of study is a linear differential equation of the form

y(n) + an−1y
(n) + . . . a1y

′ + a0y = 0

where the coefficients ai are taken from a field K of characteristic 0 equipped with a deriva-

tion ∂, the basic example being the rational function field C(t). To such an equation one

associates an analogue of the splitting field in Galois theory called the Picard–Vessiot exten-

sion. It is a field extension L|K generated by a system of solutions of the equation and their

derivatives and is equipped with a natural extension of the derivation of K. As Kolchin

showed, the group G of relative automorphisms of L|K respecting the derivation ∂ has a

natural structure of a linear algebraic group over the field of constants k ⊂ K (defined as

the subfield of elements killed by ∂). Moreover, there is a Galois correspondence between

intermediate fields of L|K carrying an extension of ∂ and closed subgroups of G. For these

classical results we refer to the book of van der Put and Singer [30].

In his recent paper [4], Yves André introduced a refinement of the differential Galois cor-

respondence over algebraically closed constant fields k of characteristic zero. Namely, he

obtained a characterization of closed subgroups corresponding to intermediate extensions

generated by some but not necessarily all solutions of the differential equations. He called

these subfields solution fields and showed that they correspond to observable subgroups of

the differential Galois group, i.e. closed subgroups H ⊂ G with quasi-affine quotient G/H.

Using the more refined Tannakian approach to differential Galois theory, André also showed

that solution fields arise as fraction fields of so-called solution algebras which are general-

izations of the classical Picard–Vessiot algebras, and established a correspondence between

solution algebras and affine quasi-homogeneous varieties under the differential Galois group.

At the end of his paper ([4], Remark 6.5 (3)), André writes that he expects a similar theory

of solution algebras in characteristic p > 0 using iterated derivations and a similar theory for

difference equations. In this thesis we confirm his expectations. In fact, we develop a theory

of solution algebras within a general Tannakian framework and prove a correspondence

with affine quasi-homogeneous varieties. For the theory of solution fields, however, we shall
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2 INTRODUCTION

work in the specialized settings of iterative differential or difference equations (the latter in

characteristic 0). One important feature of the characteristic p theory is that nonreduced

Galois group schemes may occur. In particular, we shall exhibit an example of a solution field

corresponding to a non-reduced closed subgroup scheme of a reduced differential differential

Galois group which is moreover not a Picard–Vessiot extension.

Let us now describe the contents of the thesis in more detail.

The first chapter is devoted to an abstract theory of Picard–Vessiot ring objects in Tannakian

categories. We work in a k-linear tensor category C equipped with a faithful tensor functor

ϑ : C → QCoh(S) into the category QCoh(S) of quasi-coherent sheaves on some scheme

S; we will call such tensor categories pointed. (In the applications we shall mainly have

S = Spec(k) but for technical reasons it is useful to allow this flexibility.) In Proposition

1.2 we shall establish that the functor X 7→ HomC(1, X) (where 1 denotes the unit object)

from C to k-vector spaces has a left adjoint τ ; we call objects of C in the essential image of

τ trivial. For instance, in the category of differential modules over a differential rings the

trivial objects are the trivial differential modules, and in the category of representations of

a group G the trivial objects are those with trivial G-action. Roughly speaking, a Picard–

Vessiot ring object for an object X of C is a faithfully flat simple ring object P in C such that

P ⊗X is a trivial object and A is minimal with respect to this property (see Definition 1.13

for details). Our main result is then the following abstract generalization of the Tannakian

characterization of Picard–Vessiot extensions in [11].

For a dualizable object X of a tensor category C we will denote by 〈X〉⊗ the full essential

subcategory of C consisting of subquotients of finite direct sums of objects of the form

X⊗i ⊗ (X∨)⊗j .

Theorem 0.1. (= Theorem 1.21.) Let ϑ : C → QCoh(S) be a pointed tensor category over

an algebraically closed field k with simple unit object, and let X be a dualizable object of C.

The subcategory 〈X〉⊗ has the structure of a neutral Tannakian category if and only if there

exists a Picard-Vessiot ring for X in C.

Moreover, there is a bijective correspondence between Picard-Vessiot rings of X in C and

k-valued fibre functors on 〈X〉⊗.

As usual, given a fibre functor ω on 〈X〉⊗, we define the associated differential Galois group

scheme as the group of tensor automorphisms of ω.

This part of the thesis was written during the winter of 2014/15. Theorem 1.21. was

independently proven by Maurischat in [27] by a somewhat different method.

We next consider an abstract version of the notion of solution algebras introduced in [4]. In

the situation of the above theorem, a solution algebra for 〈X〉⊗ is a ring object B in C such

that
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INTRODUCTION 3

(1) there exists an injective ring homomorphism ι : B → P in C,
(2) there exists an object Y of 〈X〉⊗ and a morphism σ : Y → B in C such that the

induced ring homomorphism Sym∗(Y )→ B is surjective.

Note that B is an ind-object in 〈X〉⊗, so given a fibre functor ω on 〈X〉⊗, it makes sense to

consider its value ω(B).

With this definition we have a generalization of ([4], Theorem 1.4.2 (3)). Recall that given a

group scheme G over our algebraically closed field k, a k-scheme X is a quasi-homogeneous

G-scheme over k there exists a G-equivariant quasi-compact schematically dominant mor-

phism G → X. The unit section of G yields a k-point z of the schematically dominant

G-orbit in X. We will assume G and X to be finite type over k.

Theorem 0.2. (= Theorem 1.32.) Fix a fibre functor ω on 〈X〉⊗, and let G be the associated

differential Galois group.

The map (B, ι) 7→ (Spec(ω(B)), z) gives an anti-equivalence between the category of solution

algebras and the category of affine quasi-homogeneous G-schemes of finite type over k with a

given k-point of the schematically dominant orbit. Ideals of a solution algebra B correspond

to closed G-subschemes of Spec(ω(B)).

In characteristic zero, applying the theorem to the category of usual differential modules

gives back the result in [4]. In characteristic p > 0, the theorem is applicable to the category

of iterative differential modules (or ID-modules for short) developed in Matzat–van der Put

[25] and Maurischat [26]; see the beginning of Chapter 2 for more details. The former

reference implicitly works under a separability assumption while the latter does not. In par-

ticular, in the more general theory of [26] differential Galois groups may be non-reduced. In

this more general context, Maurischat proves a differential Galois correspondence analogous

to the classical correspondence of Kolchin. Combining it with the above theorem, we are

able to extend André’s theory of solution fields to positive characteristic.

Namely, given an ID-moduleMK over an ID-field K with constant field k, we may associate

with it a Picard–Vessiot extension J |K of ID-fields by the theory of [25] and [26]. On the

other hand, we say that an extension L|K is a solution field for 〈MK〉⊗ if the constant

field of L is k and there exists an ID-module NK in 〈MK〉⊗ and a morphism of ID-modules

NK → L whose image generates the underlying field extension of L|K. The main result of

Chapter 2 is then the following analogue of ([4], Theorem 1.2.1 (2)):

Theorem 0.3. (= Theorem 2.13.) An intermediate ID-extension L of J |K is a solution field

for 〈MK〉⊗ if and only if the corresponding subgroup scheme H is an observable subgroup

scheme of the Galois group scheme G.

Recall that H is called an observable subgroup scheme if the quotient G/H is quasi-affine.

Note that in contrast to [4], the group schemes involved may be reduced. Indeed, we have

the following example.
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4 INTRODUCTION

Example 0.4. (= Example 2.15.) Let k be an algebraically closed field of characteristic

p > 0. Consider k(t) equipped with its natural ID-structure, and the ID-module over k(t)

corresponding to the system of equations

∂pn

(
y1

y2

)
=

(
0 1

0 ant
−pn

)(
y1

y2

)
,

where an ∈ {1, . . . , p− 1}. For a suitable choice of the ai, the associated differential Galois

group will be a semi-direct product G := GmnGa. The composite embedding µp ⊂ Gm ⊂ G
realizes µp as an non-reduced, non-normal but observable subgroup scheme, which thus

corresponds to a solution field that is not a Picard–Vessiot extension.

In Chapter 3 we apply the general theory of Chapter 1 to difference modules over difference

rings. Difference rings are rings equipped with an endomorphism σ and difference modules

are modules over them equipped with a σ-linear endomorphism (see the first two sections of

the chapter for basic definitions). For difference modules satisfying certain mild restrictive

conditions we obtain a Tannakian theory to which the considerations of Chapter 1 can

be applied, whence a correspondence between solution algebras for difference modules and

quasi-homogeneous affine schemes.

The theory of solution fields works in a less general setting as for ID-modules because the

difference Galois correspondence of van der Put–Singer [30] only works in characteristic zero

and for certain difference subrings of the Picard–Vessiot ring. Also, simple difference rings

are not necessarily integral domains, so we have to work with their total quotient rings.

We thus consider a difference field K = (K,σ) with bijective endomorphism σ and a finite

dimensional difference module M = (M,Σ) over K such that Σ is bijective as well. We say

that a difference ring L ⊃ K is a total solution ring for 〈M〉⊗ if every non-zerodivisor of

the underlying ring L is a unit, the constant ring k of L is the same as that of K, and there

exists a difference module N in 〈M〉⊗ and a morphism of difference modules N → L such

that the total fraction ring of the image of this homomorphism is L.

With this definition we have:

Theorem 0.5. (= Theorem 3.19) Assume k is an algebraically closed field of characteristic

0, and denote by T (P) the Picard-Vessiot ring associated with M; it is a semisimple K-

algebra. Let L be an intermediate difference ring of T (P)|K in which every non-zerodivisor

is a unit.

The ring L is a total solution ring for 〈M〉⊗ if and only if the corresponding subgroup H is

an observable subgroup of the Galois group G(k).

The thesis closes with an appendix assembling category-theoretical constructions needed for

the theory of Chapter 1.
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CHAPTER 1

Picard-Vessiot theory in tensor categories

In this chapter we develop an abstract version of the Tannakian approach to the theory of

Picard–Vessiot extensions that will be applied in the concrete situation of iterative differen-

tial modules and difference modules in the next chapters. We also introduce a generalization

of Yves André’s notion of a solution algebra and establish an abstract variant of his corre-

spondence between solution algebras and quasi-homogeneous varieties.

1. Tensor categories

We begin with some reminders concerning tensor categories.

In this text a tensor category C is a cocomplete (i.e. admits all small colimits) abelian sym-

metric monoidal category such that the tensor product of C is additive and commutes with

small colimits (hence right exact) in both variables. A tensor category over a commutative

ring k is a tensor category which is k-linear such that the tensor product is k-linear in both

variables.

A tensor functor between tensor categories is a cocontinuous (i.e. commutes with all small

colimits) additive symmetric monoidal functor. If the tensor categories are over a commu-

tative ring k, then a tensor functor is also assumed to be k-linear.

The endomorphism ring EndC(1) of the unit object of a tensor category C is commutative by

an Eckmann-Hilton type argument (see [29] I.1.3.3.1., p.21). Furthermore, this endomor-

phism ring acts on the Hom-sets of C and with this action C can be seen as a tensor category

over the endomorphism ring. We assume that k = EndC(1) for every tensor category C.

Example 1.1.

(1) Let k be a commutative ring and R a commutative k-algebra. The category

Mod(R) of R-modules is a tensor category over k. Generally, if S is a scheme over

k, then the category QCoh(S) is a tensor category over k. Given a k-morphism

f : S1 → S2 of schemes, the pullback functor f∗ : QCoh(S2) → QCoh(S1) is a

tensor functor.

(2) Let k be a field and G be an affine group scheme over k. Then the category

Repk(G) of arbitrary dimensional k-representations of G is a tensor category over

5
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6 1. PICARD-VESSIOT THEORY IN TENSOR CATEGORIES

k. The forgetful functor Repk(G)→ Vec(k) to the category of k-vector spaces is a

tensor functor.

(3) Let R be an (iterative) differential ring with constant ring k. The category Diff(R)

of (iterative) differential modules is a tensor category over k and the forgetful

functor Diff(R)→ Mod(R) is a tensor functor.

Let C be a tensor category over a commutative ring k and S 6= ∅ be a k-scheme. An S-

valued point of C is a faithful exact tensor functor (over k) from C to the category QCoh(S)

of quasi-coherent OS-modules. Forgetful functors (e.g. as in the case of representations

and differential modules) provide natural examples of S-valued points. A tensor category C
(over k) with an S-valued point ϑ : C → QCoh(S) will be called a pointed tensor category

(over k).

One can think of an S-point of a tensor category as a ”faithfully flat cover” of the tensor

category: in the case of C = QCoh(T ), where T is a k-scheme, the pullback functor of a

faithfully flat k-morphism S → T gives an S-valued point of QCoh(T ).

2. Trivial objects

In this section we generalize the notion of trivial (iterative) differential modules of [3] III.1.1.

to an abstract tensor categorical framework.

Proposition 1.2. Let C be a tensor category with endomorphism ring k = EndC(1). Then

there exists a unique (up to unique isomorphism) k-linear tensor functor

τ : Mod(k)→ C

such that it is a left adjoint of the functor

(−)∇ := HomC(1,−) : C → Mod(k).

Proof. The existence and the uniqueness of τ follows from the following general result

(where k can be an arbitrary commutative ring, not just the endomorphism ring of the

tensor category).

Proposition 1.3 ([9] Proposition 2.2.3., [20] Theorem 4.51.). Let k be a commutative ring,

A be a commutative k-algebra and C be a tensor category over k. Then there exists an

equivalence of categories

Homc,⊗,/k(Mod(A), C) ∼= HomAlg(k)(A,EndC(1)).

between the category of k-linear tensor functors from Mod(A) to C and the discrete category

of k-algebra homomorphisms from A to EndC(1).
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2. TRIVIAL OBJECTS 7

Moreover, every cocontinuous k-linear symmetric monoidal functor F : Mod(A)→ C has a

right adjoint, given by

C → Mod(A)

X 7→ HomC(1, X),

where A acts on HomC(1, X) via the k-algebra homomorphism A→ EndC(1) corresponding

to the functor F in the equivalence above.

The required result follows now immediately: the category of functors from Mod(k) to C is

equivalent to the discrete category of k-algebra homomorphisms from k to k = EndC(1), but

the latter consists of only one object, namely the identity homomorphism. Thus we get the

existence and uniqueness of τ : Mod(k) → C. Furthermore, the existence of a right adjoint

and its explicit description also follows. �

An object X of C will be called trivial if X is isomorphic to an object of the form τ(Q)

for a k-module Q. The functor τ will be called the trivial object functor of C over k. The

category Triv(C) of trivial objects of C is defined as the full subcategory of C consisting of

trivial objects.

As the trivial object functor is a tensor functor, we immediately get that Triv(C) is a

cocomplete k-linear additive symmetric monoidal subcategory of C. Moreover, the trivial

object functor τ is right exact as it is a left adjoint.

Example 1.4.

(1) For a commutative k-algebra R, the functor HomR(R,−) is just the restriction

functor from R-modules to k-modules and the trivial object functor is the base

change functor from k to R. More generally, for a scheme S over a ring k, the

adjoint pair of pullback and pushforward via the structure morphism S → Spec(k)

is precisely the adjoint pair of trivial object functor and the global sections functor.

(2) Let G be an affine group scheme over a field k and V be a vector space over k.

Let Vτ denote the trivial representation associated to a vector space V . For a

representation Vρ, denote by V Gρ = HomG(kτ , Vρ) the G-invariant elements. The

adjoint isomorphism

HomG(Vτ ,Wρ) ∼= Homk(V,WG
ρ )

shows that V 7→ Vτ is the trivial object functor.

(3) Let R be an (iterative) differential ring with constant ring k. For any k-module

Q, we can endow the R-module R ⊗k Q with the connection ∂ ⊗ idQ, since ∂ is

k-linear, and we have a natural isomorphism

HomR(R⊗k Q,M) ∼= Homk(Q,M∇),

showing that R⊗k − is the trivial object functor.
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8 1. PICARD-VESSIOT THEORY IN TENSOR CATEGORIES

Let Q be a k-module and X be an object of C. We will write

ηQ : Q→ τ(Q)∇

and

εX : τ(X∇)→ X

for the adjoint morphisms corresponding to the adjoint pair (τ, (−)∇).

The unit object of a tensor category is called simple if it has no proper, non-trivial subobject.

For a more general definition for ring objects in a tensor category, see Definition A.2. If

we assume that the unit object is simple, then by Proposition A.3 of the Appendix the

endomorphism ring k = EndC(1) is a field.

Until the end of this section we will consider a pointed tensor category ϑ : C → QCoh(S)

with simple unit object.

Proposition 1.5. An object X of C is trivial if and only if the adjoint morphism εX : τ(X∇)→
X is an isomorphism.

Proof. If the adjoint morphism is an isomorphism, then X is trivial by definition.

Conversely, let X be a trivial object. We will prove that εX is a (split) epimorphism and a

monomorphism.

Since ε is a functor morphism, we can assume that X = τ(Q). The general theory of adjoint

pairs tells us that the composition

τ(Q)
τ(ηQ)−−−−→ τ(τ(Q)∇)

ετ(Q)−−−→ τ(Q)

is the identity map, hence ετ(Q) is a split epimorphism.

We now prove that the adjoint morphism is a monomorphism. First we note that the

coproduct of monomorphisms in C is a monomorphism. Indeed, ϑ is a faithful and exact

functor, hence the claim follows from the fact that the coproduct of monomorphisms is a

monomorphism in QCoh(S).

The k-vector space X∇ can be written as a coproduct k⊕I . The functor τ commutes with

small colimits and sends the unit object to unit object, therefore τ(X∇) is isomorphic to

1⊕I . Now the adjoint morphism εX can be written as the coproduct of morphisms of the

form 1→ X. But 1 is a simple ring, thus these are monomorphisms and using the previous

observation, we get that εX is a monomorphism. �

Remark 1.6. The last part of the proof even shows that the adjoint morphism εX : τ(X∇)→
X is a monomorphism for every object of C (under the conditions of the proposition), a fact

we will use later.

Proposition 1.7. The trivial object functor τ : Mod(k) → C is a k-linear faithful exact

tensor functor.
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2. TRIVIAL OBJECTS 9

Proof. By [9] Corollary 2.2.4., the composite functor

ϑ ◦ τ : Mod(k)→ QCoh(S)

is isomorphic to the pullback functor induced by a k-morphism S → Spec(k). But there

is only one such morphism, the structure morphism σ : S → Spec(k). As the unit object

is simple, the endomorphism ring k is a field and therefore the structure morphism σ is

faithfully flat. It follows that the pullback functor σ∗ ∼= ϑ ◦ τ is faithful exact and in

conclusion, τ is faithful exact. �

Proposition 1.8. Subquotients of trivial objects are again trivial and thus Triv(C) is an

abelian subcategory of C.

Proof. Let X2 be a trivial object and consider a short exact sequence in C

0→ X1 → X2 → X3 → 0.

We have to show that X1 and X3 are trivial objects. Since τ is an exact functor and (−)∇

is a left exact functor, we have a commutative diagram with exact rows

0 τ(X∇1 ) τ(X∇2 ) τ(X∇3 )

0 X1 X2 X3 0.

τ(φ∇)

ε1

τ(ψ∇)

ε2 ε3

φ ψ

By assumption, ε2 is an isomorphism and Remark 1.6. tells us that ε1 and ε3 are monomor-

phisms. Hence, it is enough to show that ε1 and ε3 are epimorphisms.

Let g be a morphism such that g ◦ ε3 = 0. Then g ◦ ε3 ◦ τ(ψ∇) = 0 and using the

commutativity, we get that g ◦ ψ ◦ ε2 = 0. But ψ ◦ ε2 is an epimorphism (composition

of two epimorphisms), hence g = 0 and thus ε3 is an epimorphism.

It follows that τ(ψ∇) is an epimorphism, too. Using now the snake lemma, we can conclude

that ε1 is an epimorphism. �

Proposition 1.9. The trivial object functor

τ : Mod(k)→ Triv(C)

induces an equivalence of tensor categories over k with a quasi-inverse given by the restric-

tion of the functor (−)∇ to Triv(C).

Proof. We already know that τ is a k-linear faithful exact tensor functor and by

definition, the essential image of τ is the category Triv(C) of trivial objects. To prove that

τ is an equivalence, we only have to show that τ is also full. The general theory of adjoint

functors tells us that for every k-module Q, the composition

τ(Q)
τ(ηQ)−−−−→ τ(τ(Q)∇)

ετ(Q)−−−→ τ(Q)
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10 1. PICARD-VESSIOT THEORY IN TENSOR CATEGORIES

is the identity. We have seen that ετ(Q) is an isomorphism, hence τ(ηQ) is also an isomor-

phism. Using that τ is faithful exact, we get that ηQ is an isomorphism. But is well-known

that the adjoint morphism ηQ is an isomorphism if and only if the left adjoint functor τ is

fully faithful (c.f. [21] IV.3. Theorem 1.).

Furthermore, the adjoint morphisms ηQ and τX are isomorphisms for any k-module Q and

trivial object X, hence the right adjoint functor (−)∇ is a quasi-inverse of the trivial object

functor. �

We can use this equivalence for proving the following result. Recall the notion of dualizable

objects from Section 3 of the Appendix.

Proposition 1.10. Let ϑ : C → QCoh(S) be a pointed tensor category over a commutative

ring k with simple unit object (hence k is a field).

(1) A trivial object X is dualizable in C if and only if X∇ is a finite dimensional

k-vector space.

(2) The dual of a dualizable trivial object is also trivial and is isomorphic to τ((X∇)∨),

where ∨ denotes the k-dual of a vector space.

(3) If X is a trivial object and ϑ(X) is a quasi-coherent OS-module of finite type, then

X has a dual.

Proof. The equivalence between the category of trivial objects in C and the category

of k-vector spaces implies the first two parts of the proposition.

Let X be a trivial object in C such that the quasi-coherent OS-module ϑ(X) is of finite

type. As X is trivial, we may write ϑ(X) as (ϑ ◦ τ)(X∇). We know that ϑ ◦ τ is isomorphic

to the pullback of the structure morphism σ : S → Spec(k), hence ϑ(X) ∼= σ∗(X∇). The

structure morphism σ is faithfully flat because k is a field. The property of being of finite

type descends via faithfully flat morphisms, hence we get that X∇ is a finite dimensional

vector space over k. But finite dimensional vector spaces are dualizable and tensor functors

preserve dualizable objects, hence X ∼= τ(X∇) is dualizable. �

3. Solvable objects

We now come to an abstract version of the notion of solvability for differential modules. For

a general exposition of ring and module objects, we refer to Section 1 of the Appendix.

Definition 1.11. Let C be a tensor category, X be an object of C and A be a ring in C. We

say that the object X is solvable in A if the A-module A⊗X is a trivial object in ModC(A).

For a ring A in the tensor category C, we will denote by kA the endomorphism ring EndA(A).

The base change functor A⊗− induces a homomorphism between the endomorphism rings
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3. SOLVABLE OBJECTS 11

k → kA. Via this ring homomorphism, the category ModC(A) can be viewed as a tensor

category over k.

Let τ : Mod(k)→ C and τA : Mod(kA)→ ModC(A) be the trivial object functors of C and

ModC(A). We have two functors from Mod(k) to ModC(A): the first one is the composition

(A ⊗ −) ◦ τ and the second one is the composition τA ◦ (kA ⊗k −). By Proposition 1.3.,

these functors correspond to k-algebra homomorphisms k → kA, but there is only one such

k-algebra homomorphism, thus these functors are isomorphic. In other words the following

diagram is commutative (up to functor isomorphism):

Mod(k) C

Mod(kA) ModC(A)

kA⊗k−

τ

−⊗A

τA

Furthermore, if ϑ : C → QCoh(S) is pointed for some scheme S, then the category ModC(A)

will be pointed as well. Denote by SA the relative spectrum of the quasi-coherent OS-algebra

ϑ(A) over S and by

µ : SA → S

the structure morphism. It is known (see Appendix, Section 2) that there exists a faithful

exact tensor functor

ϑA : ModC(A)→ QCoh(SA)

such that the following diagram is commutative

(1)

C QCoh(S)

ModC(A) QCoh(SA).

ϑ

A⊗− µ∗

ϑA

We will denote by ωA the composite functor HomA(A,−) ◦ (A⊗−).

We will investigate the properties of those objects of C that are solvable in a faithfully flat

simple ring. The existence of a faithfully flat simple ring in a tensor category implies that

the unit object of the tensor category is also simple (see Proposition A.6.), therefore we

may assume that the unit object of C is simple. This implies that the endomorphism ring

k = EndC(1) is a field.

Proposition 1.12. Let ϑ : C → QCoh(S) be a pointed tensor category with simple unit

object. Let A be a faithfully flat simple ring in C.

(1) Objects of C solvable in A are closed under arbitrary small colimits, tensor products

and subquotients. The unit object of C is solvable in A.

(2) An A-solvable object X is dualizable if and only if the kA-vector space ωA(X) is

finite dimensional.

(3) The dual of an A-solvable dualizable object is also A-solvable.
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12 1. PICARD-VESSIOT THEORY IN TENSOR CATEGORIES

(4) If X is solvable in A and ϑ(X) is a quasi-coherent OS-module of finite type, then

X is dualizable in C.

(5) For an A-solvable object X, we have an isomorphism

µ∗ϑ(X) ∼= σ∗AωA(X)

of quasi-coherent OSA-modules, where σA : SA → Spec(kA) is the structure mor-

phism.

Proof.

(1) Base change to A commutes with small colimits (resp. tensor product) and sends

the unit object to the unit object, hence small colimits (resp. tensor product)

of solvable objects are solvable and the unit object of C is solvable. Since A is

faithfully flat and thus the base change functor is exact, we see that subquotients

are mapped to subquotients. We can now use Proposition 1.8. to conclude that

subquotients of solvable objects are solvable.

(2)-(4) By faithfully flat descent (Proposition A.9.), we know that an object is dualizable

in C if and only if its base change is dualizable in ModC(A). Using this fact and

the definition of solvability, parts (2)-(4) follow from Proposition 1.10.

(5) By definition of solvability we have an isomorphism

X ⊗A ∼= τA(HomA(A,A⊗X)) = τAωA(X)

of A-modules. We get the desired isomorphism after applying functor ϑA, and

using the commutativity of diagram (1) on the left side and isomorphism σ∗A
∼=

ϑAτA (we get this as in Proposition 1.7.) on the right side.

�

4. Picard-Vessiot rings

We now come to the first key definition in this chapter.

Definition 1.13. Let C be a tensor category with simple unit object and X be a dualizable

object of C. A ring P in C is called a Picard-Vessiot ring for X in C if it satisfies the following

properties:

(1) P is a faithfully flat simple ring in C,
(2) the homomorphism k = EndC(1) → EndP(P), induced by the morphism 1 → P,

is an isomorphism,

(3) the object X is solvable in P,

(4) the ring P is minimal with these properties, i.e. if P ′ is another ring in C satis-

fying the previous properties and P ′ → P is a ring homomorphism, then it is an

isomorphism.
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4. PICARD-VESSIOT RINGS 13

Let X be a dualizable object of a tensor category C. We will denote by 〈X〉⊗ the full

essential subcategory of C consisting of subquotients of finite direct sums of objects of the

form X⊗i ⊗ (X∨)⊗j . The category of finite dimensional vector spaces over a field k will be

denoted by Vecf(k).

Proposition 1.14. Let ϑ : C → QCoh(S) be a pointed tensor category with simple unit

object. Let X be a dualizable object of C and assume that there exist a Picard-Vessiot ring

P for X in C. Then 〈X〉⊗ is a rigid k-linear abelian symmetric monoidal category and

ωP = HomP(P,P ⊗−) : 〈X〉⊗ → Vecf(k)

is a k-linear faithful exact symmetric monoidal functor. Moreover, we have a functorial

isomorphism

µ∗ϑ(Y ) ∼= σ∗ωP(Y )

for every object Y of 〈X〉⊗, where σ : SP → Spec(k) is the structure morphism.

Proof. First, X is solvable in P and hence its dual is also solvable in P. This implies

that every object of 〈X〉⊗ is solvable since they can be written as subquotients of direct

sums of tensor products of solvable objects.

The base change functor maps objects of 〈X〉⊗ to the subcategory of trivial objects of

ModC(P), hence by Proposition 1.9. the functor ωP = HomP(P,−) ◦ (P ⊗ −) is a faithful

exact tensor functor, implying that ωP(Y ) will be a finite dimensional k-vector space for

every object Y of 〈X〉⊗. Now all the claims follow from Proposition 1.12. �

In other words, 〈X〉⊗ is a neutral Tannakian category with ωP as a fibre functor.

Definition 1.15. The Tannakian fundamental group scheme G = Aut⊗(ωP) of the neutral

Tannakian category 〈X〉⊗ with fibre functor ωP is called the Galois group scheme of X

(pointed in P or ωP).

The isomorphism

µ∗ϑ(Y ) ∼= σ∗ωP(Y )

implies that the isomorphism scheme Isom⊗(ωP , ϑ), which is a G-torsor, has an SP -valued

point.

Proposition 1.16. Let C be a tensor category with simple unit object and X be a dualizable

object of C. Assume that there exists a Picard-Vessiot ring P for X in C. Then for every

Y ∈ 〈X〉⊗, the elements of ωP(Y ) can be identified with C-morphisms from Y ∨ to the

Picard-Vessiot ring P.

In other words, the vector space ωP(Y ) can be thought of as the vector space of ”solutions”

of the dual of Y in P, and hence we could call ωP as the functor of solutions in P.
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14 1. PICARD-VESSIOT THEORY IN TENSOR CATEGORIES

Proof. The identification goes via the isomorphism

HomP(P,P ⊗−) ∼= HomC(1,P ⊗−)

and the following (adjoint) isomorphism, induced by a dualizable object Y3,

HomC(Y1, Y2 ⊗ Y3) ∼= HomC(Y1 ⊗ Y ∨3 , Y2).

�

We state now the converse of Proposition 1.14.

Proposition 1.17. Let ϑ : C → QCoh(S) be a pointed tensor category with simple unit

object. Let X be a dualizable object of C and assume that the subcategory 〈X〉⊗ is a rigid

k-linear abelian symmetric monoidal category equipped with a k-valued fibre functor ω. Then

there exists a Picard-Vessiot ring for X in C and the induced functor of solutions of this

Picard-Vessiot ring is isomorphic to the given fibre functor ω.

The proof will be given in the next section.

5. Existence of Picard–Vessiot rings

In order to prepare for the proof of Proposition 1.17, we first examine the fundamental

example for a Picard-Vessiot ring, namely the regular representation of an affine algebraic

k-group scheme G, where k is a field. Let Repk(G) (resp. Repfk(G)) be the category of

arbitrary (resp. finite) dimensional G-representations over k. We make some observations

about these categories:

(1) any finite dimensional faithful representation Vρ ⊗-generates the category Repfk(G)

of finite dimensional representations, meaning that Repfk(G) = 〈Vρ〉⊗, hence we

will simply say that the regular representation is a Picard-Vessiot ring for Repfk(G)

in Repk(G) (instead of choosing a specific faithful finite dimensional representa-

tion);

(2) every representation of the affine algebraic group scheme G over k can be written

as the union of its finite dimensional subrepresentations. In other words, the Ind-

category of Repfk(G) is Repk(G);

(3) the trivial object functor τ : Vec(k) → Repk(G) is simply the functor equipping

a vector space V with the trivial representation, which will be denoted by Vτ ,

and the functor (−)∇ is just sending a representation to the vector space of its

G-invariant elements.

Proposition 1.18. Let G be an affine algebraic group scheme over a field k and consider the

tensor category Repk(G) of (arbitrary dimensional) k-representations of G with the forgetful

functor Repk(G)→ Vec(k).
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5. EXISTENCE OF PICARD–VESSIOT RINGS 15

The regular representation O(G)ρ is a Picard-Vessiot ring for Repfk(G) in Repk(G) and

the fibre functor induced by the regular representation is isomorphic to the natural forgetful

functor ω : Repfk(G)→ Vecf(k).

Moreover, if P is a Picard-Vessiot ring for Repfk(G) in Repk(G) such that the functor of

solutions ωP is isomorphic to the forgetful functor ω, then P is isomorphic to the regular

representation O(G)ρ.

Proof. The regular representation is a faithfully flat ring in Repk(G) since its image

under the forgetful functor is a faithfully flat ring in Vec(k). Denote by GG the scheme

G equipped with G-action induced by the regular representation. As there are no non-

trivial proper closed G-subsets of GG, we get that the regular representation is simple. The

elements of the endomorphism ring of the regular representation can be identified with the

G-invariant regular functions of GG and hence they are just the constants k.

Let Vρ be a finite dimensional representation and denote by Vρ the associated vector bundle

Spec(Sym∗(V ∨)). Solvability is equivalent to the existence of a G-equivariant isomorphism

GG×k Vρ → GG×k Vτ ,

which can be explicitly given on scheme-theoretic points by (g, v) 7→ (g, g−1v).

By taking G-invariant elements and taking into account the graded structure, we can deduce

from the isomorphism

Vρ ⊗k O(G)ρ ∼= Vτ ⊗O(G)ρ

that the fibre functor induced by the regular representation is isomorphic to the natural

forgetful functor ω.

Lastly, we have to show that the regular representation is minimal: let P be a ring in

Repk(G) having the necessary properties and let P → O(G)ρ be a ring homomorphism in

Repk(G). Since P is simple, this homomorphism is injective, hence we only have to show

that it is surjective. The homomorphism induces a functor morphism

ωP ∼= HomG(kτ ,P ⊗k −)→ HomG(kτ ,O(G)ρ ⊗k −) ∼= ω

between the fibre functors. But Repfk(G) is rigid, hence this functor morphism is in fact

a functor isomorphism. This implies that for any finite dimensional subrepresentation of

the regular representation, the embedding Vρ → O(G)ρ can be extended to P such that the

following diagram is commutative

Vρ

P O(G)ρ

This implies that the ring homomorphism is surjective and we get the minimal property of

the regular representation.
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16 1. PICARD-VESSIOT THEORY IN TENSOR CATEGORIES

Let P be a Picard-Vessiot ring for Repfk(G) in Repk(G) whose functor of solutions ωP is

isomorphic to ω and hence, as we just have seen, to the fibre functor induced by the regular

representation. We have to prove that P is isomorphic to O(G)ρ and it is enough to show

that there exists a homomorphism O(G)ρ → P by the minimal property of Picard-Vessiot

rings. We can write O(G)ρ as a colimit lim−→Vi of finite dimensional representations Vi. By

assumption, ωP is naturally isomorphic to ωO(G)ρ . Using the same trick as before, we can

associate to every morphism Vi → O(G)ρ = lim−→Vi a morphism Vi → P. By naturality, the

morphisms Vi → P are compatible with the morphism Vi → Vj of the inductive system,

hence they give rise to a homomorphism O(G)ρ → P. Moreover, as the natural isomor-

phism of the fibre functors respects the symmetric monoidal structure, the homomorphism

O(G)ρ → P commutes with multiplication and thus, it is a ring homomorphism. �

Remark 1.19. Let ϑ : Repk(G)→ QCoh(S) be a k-linear faithful exact symmetric monoidal

functor, where S 6= ∅ is a k-scheme. Then by [11] Theorem 3.2., the relative spectrum Sϑ

of the quasi-coherent OS-algebra ϑ(O(G)ρ) is faithfully flat over S, it represents the functor

Isom⊗(ω, ϑ) and it is a G-torsor over S in the fpqc-topology.

Let now (T , ω) be a neutral Tannakian category over a field k. As recalled in the Appendix,

the main theorem of neutral Tannakian categories (Theorem A.10) says that the k-group

functor Aut⊗(ω) is representable by an affine group scheme G over k and the functor ω

induces a tensor equivalence T ∼= Repfk(G).

By Proposition A.13 the pair (Ind(T ), J(ω)) is a tensor category over k equipped with an

exact k-linear faithful tensor functor. Moreover, the above equivalence can be extended to

an equivalence Ind(T ) ∼= Ind(Repfk(G)) = Repk(G) of Ind-categories.

Denote by Pω the image of O(G)ρ under this equivalence. Proposition 1.18 and the main

theorem of neutral Tannakian categories now imply the following.

Corollary 1.20. Let (T , ω) be a neutral Tannakian category over a field k that can be

⊗-generated by an object. Let Pω be the previously defined ring in Ind(T ). Then Pω is a

Picard-Vessiot ring for T in Ind(T ) and the fibre functor induced by this Picard-Vessiot ring

is isomorphic to the fibre functor ω.

We finally come to:

Proof of Proposition 1.17. By the previous corollary we know that there exists a

Picard-Vessiot ring in the ind-category of 〈X〉⊗. By a general category-theoretical construc-

tion (Proposition A.19) we can embed this ind-category in C.
As the ind-category is closed under subquotients in C, the object Pω will satisfy all the

required properties of Definition 1.13 in C, except perhaps for the faithful flatness. For this

latter property, it is enough to show that the image of Pω under the functor ϑ is a faithfully

flat quasi-coherent algebra (by Example A.5.(3)). This follows from Remark 1.19. �
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6. PICARD-VESSIOT RINGS AND FIBRE FUNCTORS 17

6. Picard-Vessiot rings and fibre functors

Let ϑ : C → QCoh(S) be a pointed tensor category with simple unit object and X be a

dualizable object of C.
We have seen in Proposition 1.14. that the existence of a Picard-Vessiot ring for X in C
implies that 〈X〉⊗ is a neutral Tannakian category with the functor of solutions as fibre

functor. In particular, we can associate a fibre functor to a Picard-Vessiot ring.

In the other direction, we have proved in Proposition 1.17. that if the subcategory 〈X〉⊗ of

C is neutral Tannakian, then we can construct a Picard-Vessiot ring for X in C using the

fibre functor such that the fibre functor induced by this Picard-Vessiot ring is isomorphic

to the original one. By combining these two results we get the following.

Theorem 1.21. Let ϑ : C → QCoh(S) be a pointed tensor category with simple unit ob-

ject. Let X be a dualizable object of C such that 〈X〉⊗ is a rigid k-linear abelian symmet-

ric monoidal subcategory of C. The previously defined maps are inverse bijections between

Picard-Vessiot rings of X in C and k-valued fibre functors on 〈X〉⊗.

Suppose that there exists a Picard-Vessiot ring P for X in C. The Tannakian fundamental

group Aut⊗(ωP) is called the Galois group scheme of X w.r.t. the Picard-Vessiot ring P or

w.r.t. the fibre functor ωP . It will be denoted by Gal(T ,P) or Gal(T , ωP).

The Galois group scheme can be interpreted as the group of automorphisms of the Picard-

Vessiot ring object over the unit object as follows. Let τ : Mod(k)→ C be the trivial object

functor. For any k-algebra k′, we can take the ring object P ⊗ τ(k′) over τ(k′) and consider

the group of relative automorphisms of the former ring object over the latter one. This way

we obtained a group functor

Aut(P|1) : Alg(k)→ Group

over k.

Proposition 1.22. The k-group functor Aut(P|1) is representable by the Galois group

scheme G.

Proof. Applying the functor ω, we may identify the k-group functor Aut(P|1) with

AutG(O(G)), which is nothing else but the functor that represents G. �

General results about torsors and Tannakian categories tell us the following:

(1) the relative spectrum SP of the quasi-coherent OS-algebra ϑ(P) is a faithfully flat

scheme over S,

(2) the scheme SP represents the functor Isom⊗(ωP , ϑ) and thus it is an fpqc-torsor

under the Galois group scheme over S,

C
E

U
eT

D
C

ol
le

ct
io

n



18 1. PICARD-VESSIOT THEORY IN TENSOR CATEGORIES

(3) the set of isomorphism classes of Picard-Vessiot rings is in bijection with the first

non-abelian cohomology set H1
fpqc(k,G),

(4) there exists a closed immersion G→ GL(ω(X)) of affine group schemes,

(5) the Galois group scheme is smooth (resp. étale resp. finite) over k if and only if

SP is smooth (resp. étale resp. finite) over S.

We mention now some basic observations about the existence and uniqueness of Picard-

Vessiot rings. A natural source for Picard-Vessiot rings is the set S(k) of k-points of S

(when nonempty): indeed, pulling back the S-valued fibre functor ϑ : 〈X〉⊗ → QCoh(S) via

the morphism Spec(k) → S, we get a k-valued fibre functor on 〈X〉⊗ and a Picard-Vessiot

ring for X in C. In particular, there certainly exists a Picard-Vessiot ring in the following

cases:

(1) the field k is algebraically closed and S is locally of finite type over k,

(2) the field k is pseudo-algebraically closed and S is a geometrically integral separated

scheme of finite type over k.

The question of uniqueness of Picard-Vessiot rings is translated to the question of cardinality

of the non-abelian cohomology set H1(k,G). There are many results concerning the first

cohomology set, we just mention a trivial one: if the field k is algebraically closed and a

Picard-Vessiot ring exists, then it is unique.

7. Quasi-homogeneous G-schemes

In the next section we shall generalize André’s correspondence between solution algebras

and quasi-homogeneous varieties. As a preliminary, we assemble here some facts concerning

the latter.

We first recall the definition of schematically dominant morphisms: a quasi-compact mor-

phism is called schematically dominant if and only if the scheme-theoretic closed image of

the morphism equals the target.

Definition 1.23. Let k be a field, G be a group scheme over k and X be a G-scheme over k.

We say that X is a quasi-homogeneous G-scheme over k (for the fppf-topology of k) if there

exists a finite extension k′|k and a Gk′ -equivariant quasi-compact schematically dominant

Gk′ → Xk′ morphism.

Before proving an equivalent characterization of quasi-homogeneous G-schemes, we review

the basic facts of quotients of affine algebraic group schemes. The classical theorem about

the existence of quotients is the following.

Theorem 1.24 ([12] III.3.5.4 Theorem). Let k be a field, G be an affine algebraic group

scheme over k and H be a closed subgroup scheme of G. Then the fppf-quotient G/H is

representable by an algebraic k-scheme with a canonical G-equivariant ample line bundle.
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7. QUASI-HOMOGENEOUS G-SCHEMES 19

Furthermore, if N is a closed normal subgroup scheme, then G/N has the structure of an

affine group scheme and the quotient morphism G → G/N is a homomorphism of affine

group schemes.

The proof of this theorem uses the following special case.

Proposition 1.25 ([12] III.3.5.2 Proposition). Let k be a field, G be an affine algebraic

group scheme over k and X be an algebraic G-scheme over k. If x ∈ X(k) is a k-valued

point of X, then the stabilizer StabG(x) is a closed subgroup scheme of G, the fppf-quotient

G/StabG(x) is representable by an algebraic k-scheme and the induced morphism φx : G→
X factors through a G-equivariant immersion G/StabG(x)→ X:

G X

G/StabG(x)

φx

q

Now we can state and prove a second characterization of quasi-homogeneous G-schemes.

Proposition 1.26. Let k be a field, G be an affine algebraic group scheme over k and X

be an algebraic G-scheme over k. Then X is quasi-homogeneous if and only if there exists

a finite field extension k′|k such that Xk′ has a Gk′-invariant subscheme U ′ such that

(1) the scheme U ′ represents the fppf-quotient Gk′/H for a closed subgroup scheme H

of Gk′ ,

(2) the morphism U ′ → Xk′ is quasi-compact and schematically dominant.

Proof. Assume that X satisfies the second condition, i.e. we have a composition

Gk′
q−→ Gk′/H ∼= U ′ ↪→ Xk′ ,

where every morphism isGk′-equivariant. Fppf-quotients are also geometric quotients, hence

it follows that the quotient morphism q is schematically dominant. The second morphism

is schematically dominant by definition, hence the composition is also quasi-compact and

schematically dominant.

Conversely, assume that there exists a finite extension k′|k and a Gk′ -equivariant quasi-

compact schematically dominant morphism f : Gk′ → Xk′ . Let

x : Spec(k′)
e′−→ Gk′

f−→ Xk′

be the k′-point of Xk′ obtained from the unit of Gk′ . We will call the composition

Gk′ Gk′ ×k′ Spec(k′) Gk′ ×k′ Gk′ Gk′ ×k′ Xk′ Xk′
∼= idG

k′
×e′ idG

k′
×f hX

k′
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20 1. PICARD-VESSIOT THEORY IN TENSOR CATEGORIES

the morphism induced by this point. This induced morphism is just the original morphism

f , indeed, this follows from the commutative diagram

Gk′ Gk′ ×k′ Spec(k′) Gk′ ×k′ Gk′ Gk′ ×k′ Xk′

Gk′ Xk′

∼= idG
k′
×e′

∼=

idG
k′
×f

mG
k′ hX

k′

f

Proposition 1.25. tells us now that the stabilizer H := StabGk′ (x) is a closed subgroup

scheme of Gk′ , the fppf-quotient Gk′/H is representable by an algebraic k′-scheme and we

have a Gk′ -equivariant immersion Gk′/H → Xk′ and a commutative diagram

Gk′ Xk′

Gk′/H

f

q

We only have to show that the morphism Gk′/H → Xk′ is quasi-compact and schematically

dominant. First, this morphism is quasi-compact, since Gk′/H is quasi-compact and Xk′ is

quasi-separated ([14] Prop. 10.3.(2) and Remark 10.4.).

Since this morphism is quasi-compact, it is schematically dominant if and only if its schematic

image is Xk′ (for a quasi-compact morphism f : X → Y , the schematic image is given

by the closed subscheme corresponding to the quasi-coherent ideal ker(OY → f∗OX)).

The schematic image of the quotient morphism q : Gk′ → Gk′/H is Gk′/H, hence by the

transitivity of schematic image ([16] Prop. (9.5.5)) we get that the schematic image of

Gk′/H → Xk′ is the same as the schematic image of the morphism f : Gk′ → Xk′ , which is

the desired Xk′ by assumption. �

In the classical setting of an algebraically closed field of characteristic 0, the above definition

gives the usual notion of quasi-homogeneous space, i.e. a reduced scheme with a dense G-

orbit.

Proposition 1.27. Let k be an algebraically closed field of characteristic 0, G be an affine

algebraic group scheme over k and X be an algebraic scheme over k. Then X is a quasi-

homogeneous G-scheme over k if and only if X is a reduced scheme and there exists a point

x ∈ X(k) such that the induced morphism φx : G→ X is dominant.

Proof. If X is quasi-homogeneous under G over k, then there exists a schematically

dominant (hence dominant) G-equivariant morphism G → X (finite extensions do not ap-

pear as k is algebraically closed) and which also gives us the required point x ∈ X(k).

Moreover, since k is of characteristic 0, we know that G is a reduced scheme. By [14]

Remark 10.32., the scheme theoretic image of G → X, which is X by assumption, is the

reduced induced scheme on f(G), hence X is reduced.
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8. SOLUTION ALGEBRAS 21

Conversely, a dominant morphism G → X to a reduced scheme is schematically dominant

by [18] Proposition 11.10.4. �

8. Solution algebras

Let now ϑ : C → QCoh(S) be a pointed tensor category with simple unit object such that

the endomorphism ring k is an algebraically closed field. Let X be a dualizable object of

C, and let P be the Picard-Vessiot ring P for X in C. Denote by ω = ωP the fibre functor

induced by P and by G the Galois group scheme of X.

Definition 1.28. A solution algebra for 〈X〉⊗ is a ring B in C such that

(1) there exists an injective ring homomorphism ι : B → P (i.e. this morphism is a

monomorphism in C),
(2) there exists an object Y of 〈X〉⊗ and a morphism σ : Y → B in C such that the

induced ring homomorphism Sym∗(Y )→ B is surjective.

The first observation we make is that a solution algebra is an object of Ind〈X〉⊗: indeed,

Ind(〈X〉⊗) is closed under subquotients in C, hence we get from item (2) of the definition

that B is an object of Ind〈X〉⊗.

Example 1.29. The first example for a solution algebra is the Picard-Vessiot ring itself: by

definition, P is generated by the covariant and contravariant solutions of X in P, that is

the morphism X⊕r ⊕ (X∨)⊕r → P induces a surjective ring homomorphism, where r is the

k-dimension of the solutions of X in P.

The relative spectrum SB = SpecS(ϑ(B)) of the image of a solution algebra B under ϑ

is a finite type scheme over S: the surjective ring homomorphism Sym∗(Y ) → B gives a

surjective homomorphism Sym∗(ϑ(Y )) → ϑ(B), where ϑ(Y ) is a locally free OS-module

of finite rank (as Y is dualizable, its image under a tensor functor is also dualizable, but

dualizable quasi-cohenernt modules are locally free). Taking relative spectrum over S, we

get a closed immersion SB → V(ϑ(Y )) and V(ϑ(Y )) is of finite type over S.

The converse statement provides us a second source of examples for solution algebras.

Proposition 1.30. If B is a subring of P such that the morphism SB → S is of finite type,

then B is a solution algebra.

Proof. By Proposition 1.14. we have an isomorphism of quasi-coherent OSP -algebras

µ∗Pϑ(B) ∼= σ∗Pω(B)

or after taking relative spectrum

SP ×S SB ∼= SP ×k Spec(ω(B)).
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22 1. PICARD-VESSIOT THEORY IN TENSOR CATEGORIES

Since SP is faithfully flat over the field k and S as well, we can deduce that ω(B) is a

G-algebra which is finitely generated over k. We have the following general result.

Lemma 1.31. Let G be an affine group scheme over a field k and Z be an affine G-scheme

finite type over k. Then there exists a finite dimensional G-representation Vρ over k and a

G-equivariant closed immersion Z → Spec(Sym∗(Vρ)).

Proof. Let f1, . . . , fn be a set of generators of the coordinate ring OZ(Z) over k. It is

known that each fi is contained in a finite dimensional subrepresentation of OZ(Z), hence

there is a finite dimensional subrepresentation Vρ containing all the fi-s. By assumption,

the induced morphism Sym∗ Vρ → OZ(Z) is surjective. �

Using the previous lemma, there exists a finite dimensional G-subrepresentation Vρ of ω(B)

such that the induced morphism is surjective. Using the equivalence ω, we get an object Y

of 〈X〉⊗ and a morphism σ : Y → B such that Sym∗(σ) is surjective. �

The category of solution algebras for 〈X〉⊗ in C consists of pairs (B, ι), where ι is the given

embedding of B into P with the obvious morphisms. The (extension of the) functor ω sends

a solution algebra to a G-algebra over k, after taking the spectrum, we get an affine G-

scheme over k. We have also seen in the previous reasoning that ω(B) is of finite type over

k. The given embedding ι : B → P is mapped to a G-equivariant morphism G→ Spec(ω(B))

under ω. Taking the composition with the identity element morphism Spec(k)→ G, we get

a k-point z of Spec(ω(B)).

The following theorem is the generalization of the equivalence proved by André for (gener-

alized) differential rings in [4] 3.2.1. Theorem to the general, tensor categorical framework.

Theorem 1.32. The map (B, ι) 7→ (Spec(ω(B)), z) is anti-equivalence between the category

of solution algebras and the category of affine quasi-homogeneous G-schemes of finite type

over k with a given k-point of the schematically dominant orbit. Ideals of a solution algebra

B correspond to closed G-subschemes of Spec(ω(B)).

Proof. Let B be a solution algebra for 〈X〉⊗. Apply the functors ω and Spec on the

ring homomorphisms

Sym∗(Y ) � B ↪→ P.

Using that ω(P) is just the regular representation of G, we get the following G-equivariant

morphisms:

GG→ Spec(ω(B))→ Spec(Sym∗(ω(Y ))).

The first morphism is schematically dominant and quasi-compact, as it comes from an

injection of rings. Let z be the k-point given by the composition

Spec(k)
e−→ G→ Spec(ω(B)).
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8. SOLUTION ALGEBRAS 23

Proposition 1.25. tells us that the fppf-quotient G/StabG(z) exists and the morphism

G → Spec(ω(B)) factors through this quotient such that G/StabG(z) → Spec(ω(B)) is an

immersion.

We only have to show that the morphism G/StabG(z)→ Spec(ω(B)) is quasi-compact and

schematically dominant. First, this morphism is quasi-compact, since G/StabG(z) is quasi-

compact and Spec(ω(B)) is affine, hence quasi-separated ([14] Prop. 10.3.(2) and Remark

10.4.).

By definition, this morphism is schematically dominant if and only if its schematic image is

Spec(ω(B)). The schematic image of the quotient morphism is G/StabG(z), hence by [16]

Prop. (9.5.5) we get that the schematic image of G/StabG(z)→ Spec(ω(B)) is the same as

the schematic image of the morphism f : G→ Spec(ω(B)), which is the desired Spec(ω(B))

by assumption.

We also see that the second map is a closed immersion into a finite type affine scheme since

the G-representation ω(Y ) is finite dimensional and the morphism comes from a surjection.

In conclusion, we get that Spec(ω(B)) is an affine quasi-homogeneous G-scheme of finite

type.

The composite functor Spec ◦ω is fully faithful as it is the composition of fully faithful

functors.

It is left to prove that it is also essentially surjective. Let Z be an affine quasi-homogeneous

G-scheme of finite type over k with a given k-point z of the schematically dominant orbit.

First, we have a schematically dominant G-morphism GG→ Z (given by z), or on the level

of G-algebras, an injection

O(Z) ↪→ O(G)reg.

Second, there exists a finite dimensional G-representation V with a homomorphism V →
O(Z) of G-representations such that the induced homomorphism

Sym∗(V ) � O(Z)

is surjective. The equivalence ω can be used to translate objects and morphism between

Repk(G) and Ind〈X〉⊗ as follows:

Repk(G) Ind〈X〉⊗
V Y

O(Z) B
V → O(Z) Y → B

O(Z)→ O(G)reg B → P

The functor ω is faithful and exact, hence it reflects monomorphisms and epimorphisms, thus

B → P is injective and the induced morphism Sym∗(Y )→ B is surjective. In conclusion, B
is a solution algebra.
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24 1. PICARD-VESSIOT THEORY IN TENSOR CATEGORIES

We can associate to an ideal I of a solution algebra B the closed G-subscheme Spec(ω(B/I)).

�
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CHAPTER 2

Iterative differential rings and modules

In this chapter we apply the theory of the previous one to the iterative differential modules

of Matzat and van der Put [25]. After recalling the necessary preliminaries, we state our

abstract theorems on Picard–Vessiot and solution algebras in this special context. After-

wards, we discuss the analogue of André’s solution fields for iterative differential modules

and gives some examples.

1. Iterative derivations on rings

A general exposition on iterative differential rings can be found in [25].

An iterative differential ring (ID-ring for short) is a pair R = (R, {∂i}i≥0), where R is a

commutative ring and ∂i : R→ R are additive maps for all i ≥ 0 such that

(1) ∂0 = idR,

(2) ∂i(r1r2) =
∑
j+j′=i ∂j(r1)∂j′(r2),

(3) ∂i ◦ ∂j =
(
i+j
i

)
∂i+j .

The set {∂j}j≥0 of maps is called an iterative derivation on R.

A homomorphism f : R1 → R2 of ID-rings is a ring homomorphism f : R1 → R2 such that

f ◦∂R1
i = ∂R2

i ◦f for every i ≥ 0, that is, the following diagram is commutative for all i ≥ 0:

R1 R2

R1 R2

f

∂
R1
i ∂

R2
i

f

We say that K = (K, {∂i}i≥0) is an iterative differential field (or ID-field) if the underlying

ring K is a field.

An iterative derivation on R gives a ring homomorphism

∂ : R→ R[[t]]

r 7→
∞∑
i=0

∂i(r)t
i,

25
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26 2. ITERATIVE DIFFERENTIAL RINGS AND MODULES

and for every k ≥ 0 a ring homomorphism

∂≤k : R→ R[t]/(tk+1)

r 7→
k∑
i=0

∂i(r)t
i

Example 2.1.

(1) For every commutative ring R, there is the trivial iterative derivation, given by

∂0 = idR and ∂i = 0 for every i ≥ 1.

(2) Let R be a ring containing the field Q of rational numbers as a subring. Then every

derivation δ on R can be extended to an iterative derivation on R by ∂i = 1
i!δ

i.

In particular, if R is a simple differential ring such that the field of constants has

characteristic 0, then we can extend the derivation of R to an iterative derivation

of R.

(3) Let R be a commutative ring. There is an iterative derivation on the polynomial

ring R[t] defined in the following way: if
∑n
j=0 rjt

j is a polynomial, then

∂i(

n∑
j=0

rjt
j) =

n∑
j=0

rj

(
j

i

)
tj−i,

where
(
j
i

)
= 0 if j < i. We note that ∂1 is just the usual (formal) derivation of

polynomials. The same definition gives an iterative derivation on the ring R[[t]] of

formal power series and we will see that the iterative derivations on R[t] and R[[t]]

can be extended to iterative derivations on the fraction fields R(t) and R((t)).

Let f, g : R1 → R2 be homomorphisms of ID-rings. Then the equalizer eq(f, g) = {r ∈ R1 |
f(r) = g(r)} of the pair (f, g) is an ID-ring with the restriction of the iterative derivation

of R1 and the embedding eq(f, g)→ R1 is a homomorphism of ID-rings.

Let R be an ID-ring and I be an ideal in R. We say that I is an iterative differential

ideal (ID-ideal) if for all i ≥ 0 we have ∂i(I) ⊆ I. An iterative differential ring R is called

simple if the only iterative differential ideals of R are 0 and R. Trivially, an ID-field is

simple. The kernel of a homomorphism of ID-rings is an ID-ideal. In particular, an ID-ring

homomorphism from a simple ID-ring must be injective.

Iterative derivations can be extended through formally étale ring homomorphisms. In par-

ticular, any localization of an ID-ring is again an ID-ring such that the natural ring homo-

morphism commutes with the iterative derivations. The proof for the general case can be

found in [23] Theorem 27.1; we only present here the proof for localizations.

Proposition 2.2. Let R be an ID-ring, S ⊆ R be a multiplicatively closed subset and

f : R → S−1R be the induced localization homomorphism. Then we can extend the iter-

ative derivation of R uniquely to an iterative derivation on S−1R such that f becomes a

homomorphism of ID-rings.
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1. ITERATIVE DERIVATIONS ON RINGS 27

Proof. We can define the iterative derivation on S−1R iteratively: for i = 0, ∂0 is

just the identity on S−1R . Let us assume that we have defined the iterative derivations

∂i for i = 0, . . . , k on S−1R that satisfy the required properties. Then we have a ring

homomorphism

∂≤k : S−1R→ S−1R[t]/(tk+1).

Since if an element is a unit modulo a nilpotent ideal, then it is itself a unit, the diagonal

homomorphism exists in the following diagram, and it determines the map ∂k+1 on S−1R:

S−1R S−1R[t]/(tk+1)

R S−1R[t]/(tk+2)

∂≤k

f

∂≤k+1

proj

It remains to check that the maps ∂k+1 satisfy the properties of an iterative derivation. As

we got the maps ∂k+1 from ring homomorphism, we have the additivity of the map. The

definition of multiplication in the truncated polynomial rings S−1R[t]/(tk+2) implies the

multiplicative property. �

An element c of an ID-ring R is called constant if ∂i(c) = 0 for all i ≥ 1. The set of

constants of R is a ring, called the ring of constants of R and denoted by kR (or simply k).

A homomorphism f : R1 → R2 of ID-rings induces a ring homomorphism kR1 → kR2 .

Proposition 2.3.

(1) If R is a simple ID-ring, then R is an integral domain.

(2) If R is a simple ID-ring, then the ring of constants k is a field.

(3) If R is a simple ID-ring with constant ring k and K is the fraction field of R, then

there is a unique iterative derivation on K extending the iterative derivation on

R. Moreover, the field of constants of the iterative differential field K is k.

Proof.

(1) Let P be a prime ideal of R. We prove first that the kernel of the composition

R
∂−→ R[[t]]→ (R/P )[[t]]

is an iterative differential ideal of R. By construction, an element r ∈ R is in the

kernel if and only if ∂i(r) ∈ P for all i ≥ 0. Let r be in the kernel, we have to

prove that ∂j(r) is in the kernel, or equivalently: ∂i ◦ ∂j(r) is in P for all i ≥ 0.

But ∂i ◦ ∂j(r) =
(
i+j
i

)
∂i+j(r) is in P (as r is in the kernel). By assumption, R

is simple, so the kernel can only be 0 or R. But 1 is not in the kernel, hence the

kernel is trivial and the map R → (R/P )[[t]] is an injection. In other words, R is

a subring of an integral domain, therefore R is an integral domain.
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28 2. ITERATIVE DIFFERENTIAL RINGS AND MODULES

(2) Let c be an element of the constant ring of R. The ideal Rc is an iterative differ-

ential ideal:

∂i(rc) =
∑

j+j′=i

∂j(r)∂j′(c) = ∂i(r)c ∈ Rc.

As R is simple and Rc is non-empty (c ∈ Rc), we have that Rc = R, i.e. c is

invertible in R. Using induction on i, one can show that ∂i(c
−1) is 0 for i ≥ 1,

hence c−1 is in the constant ring and k is a field.

(3) We can extend the iterative derivation of R to its fraction field by Prop. 2.2. Let

γ be in the constant field of K. Let I be the following set

I := {r ∈ R | rγ ∈ R}.

It is a non-empty ideal in R, moreover, we show that I is an iterative differential

ideal. If r is an element of I, we have to prove that ∂i(r) is in I. We have

∂i(r)γ =
∑

j+j′=i

∂j(r)∂j′(γ) = ∂i(rγ)

and rγ ∈ R by the definition of r, so ∂i(r)γ is an element of R. Therefore I must

be R, meaning that 1 · γ = γ is in R and hence it is in k.

�

2. Iterative connections on modules

Let R be an ID-ring. An iterative differential module (or ID-module) M over R is a pair

(M, {∇i}i≥0), where M is an R-module and ∇i : M →M are additive maps for i ≥ 0 such

that

(1) ∇0 = idM ,

(2) ∇i(rm) =
∑
j+j′=i ∂j(r)∇j′(m),

(3) ∇i ◦ ∇j =
(
i+j
i

)
∇i+j .

The set of maps {∇i}i≥0 is called an iterative connection on M over A.

A homomorphism φ : M→ N of ID-modules over R is an R-module homomorphism such

that φ ◦ ∂Mi = ∂Ni ◦ φ for every i ≥ 0, that is, the following diagram is commutative for all

i ≥ 0:

M N

M N

φ

∂Mi ∂Ni

φ

ID-modules over R (with ID-module homomorphisms as morphisms) form a category, which

will be denoted by Diff(R).

An ID-submodule of an ID-moduleM is a submodule stable under the maps of the iterative

connection. If N is an ID-submodule of M, then there exists a unique iterative connection
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2. ITERATIVE CONNECTIONS ON MODULES 29

on the quotient module M/N . The kernel (resp. cokernel) of the underlying module homo-

morphism of an ID-module homomorphism is an ID-module and it satisfies the universal

property in the category of ID-modules over R.

If we have an inductive systemMi of ID-modules, then there exists an ID-module structure

on the inductive limit lim−→Mi such that the natural morphisms Mi → lim−→Mi are homo-

morphisms of ID-modules. In particular, we can take arbitrary direct sums of iterative

differential modules.

The set HomR(M,N ) of ID-module homomorphisms over R is a module over the constant

ring k of R.

Let M and N be ID-modules over an ID-ring R. The tensor product M ⊗R N can be

endowed with an iterative connection, given by ∂i(m⊗ n) =
∑
j+j′=i ∂j(m)⊗ ∂j′(n).

The maps

f 7→
∑

j+j′=i

(−1)j
′
∇Nj ◦ f ◦ ∇Mj′

define an iterative connection on the module HomR(M,N) of R-linear homomorphisms from

M to N , called the internal hom of the ID-modules M and N .

Proposition 2.4. Let R be an ID-ring. An ID-module M over R has a dual (in the sense

of symmetric monoidal categories) if and only if the underlying R-module M is finitely

generated and projective.

Proof. The forgetful functor is monoidal and it is known that monoidal functors com-

mute with duals, hence if the iterative differential module has a dual, then its underlying

module has also, or in other words, it is finitely generated and projective. Conversely, we

take the inner homM∨ = HomR(M,R) ofM and R. As M is finitely generated projective,

we have evaluation and coevaluation maps for M and M∨ which will satisfy the necessary

diagrams. The only thing to be checked is that the evaluation and coevaluation maps are

really homomorphisms of differential modules, which is a short calculation. �

In summary, the category Diff(R) of ID-modules over an ID-ring R is a tensor category

over the constant ring k of R and the forgetful functor ϑ : Diff(R)→ Mod(R) is a faithful

exact tensor functor over k.

If R1 → R2 is a homomorphism of iterative differential rings, then the base change functor

Diff(R1)→ Diff(R2) is a tensor functor over k.

The following proposition is a direct generalization of [4], Theorem 2.2.1 to the iterative

differential setup.

Proposition 2.5. Let R a simple iterative differential ring and denote by K the quotient

field of R with its canonical ID-structure. Let M be a finitely generated ID-module over R.

We have the following:
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30 2. ITERATIVE DIFFERENTIAL RINGS AND MODULES

(1) the underlying module of M and its ID-subquotients are all projective modules,

(2) the category consisting of objects that are ID-subquotients of finite direct sums of

tensor products of the formM⊗i⊗(M∨)⊗j form a Tannakian category 〈M〉⊗ over

the constant field k of R,

(3) the base change functor 〈M〉⊗ → 〈MK〉⊗ is an equivalence.

Proof. We first prove item (3): let M and N be finitely generated ID-modules over

R and consider the following diagram:

HomR(M,N ) HomK(MK,NK)

HomR(M,N) HomK(MK , NK)

The map HomR(M,N) → HomK(MK , NK) is injective since K is flat over A and M is

finitely generated ([7] Proposition §2.10. Prop. 11.). This implies that the base change

functor is faithful. For surjectivity, let φ : MK → NK be a homomorphism of ID-modules

over K. The set φ(M) is an ID-submodule of NK over R and the quotient

φ(M)/(φ(M) ∩N )

is a finitely generated torsion ID-module over R. Hence its annihilator is a differential ideal

in R, therefore it is either 0 or R. But since M is finitely generated, the annihilator cannot

be 0, thus it is R, meaning that φ(M)/(φ(M) ∩N ) = 0, therefore φ(M) ⊆ N .

The previous observations show that the base change functor

〈M〉⊗ → 〈MK〉⊗,

is fully faithful. To see that it is an equivalence, it is enough to show essential surjectivity,

which follows from the fact that any subobjectN ′ ofNK ∈ 〈MK〉⊗ comes from the subobject

N ′ ∩N of N .

We can now prove item (1). First we note that MK is a finitely generated projective K-

module, as K is a field. Therefore MK has a dual in Diff(K) and the dual is just

HomK(MK ,K).

The evaluation and coevaluation morphisms ofMK are homomorphisms of ID-modules and

we have just proved that the base change functor is fully faithful in this situation, thus we

get homomorphisms of ID-modules

HomR(M,R)⊗RM→R

R→M⊗R HomR(M,R).

These maps satisfy the identities of the dual object since they satisfy them after applying

the fully faithful base change functor. This shows that M has a dual and in particular, M

is a finitely generated projective R-module.
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3. PICARD-VESSIOT THEORY OF ITERATIVE CONNECTIONS 31

The quotient module of a finitely generated module is again finitely generated, hence ID-

quotients of M are again projective. For an ID-submodule M′ of M, we use that the

quotient ID-module is finitely generated, hence projective, therefore the submodule M ′ is a

direct summand in M and in particular finitely generated, thus projective.

The previous considerations show that 〈M〉⊗ is a rigid k-linear abelian symmetric monoidal

category and the forgetful functor to the category of R-modules is a fibre functor, whence

we have item (2). �

3. Picard-Vessiot theory of iterative connections

Let R be a simple ID-ring with constant field k and denote by K the quotient field of

R with its canonical iterative connection. Let M be a finitely generated ID-module over

R. By Proposition 2.5. we know that 〈M〉⊗ is a Tannakian category with the forgetful

functor ϑ : 〈M〉⊗ → Mod(R), furthermore, the base change functor 〈M〉⊗ → 〈MK〉⊗ is an

equivalence.

A Picard-Vessiot ring for M in the category Diff(R) defined as in Definition 1.13. is a

generalization of the classical definition (see [25] Definition 3.3) of Picard-Vessiot rings,

allowing non-free ID-modules.

We assume from now on that the constant field k is algebraically closed. It follows that there

exists a fibre functor 〈M〉 → Vecf(k) and hence, a Picard-Vessiot ring P forM by Proposi-

tion 1.17. The fibre functor will be denoted by ω = ωP . The Tannakian fundamental group

Aut⊗(ω) is called the Galois group scheme of M and will be denoted by G = Gal(M, ω).

We have an equivalence of categories 〈M〉⊗ ∼= Repfk(G), which can be extended to an

equivalence of Ind-categories Ind〈M〉⊗ ∼= Repk(G).

The underlying ring P of the Picard-Vessiot ring is faithfully flat over R and it represents

the G-torsor (the torsor of solutions) Isom⊗(ω, ϑ). The Galois group scheme G is a closed

subgroup scheme of GL(ω(M)). The canonical P-point of the torsor of solutions gives an

isomorphism of ID-modules over P

ω(N )⊗k P ∼= N ⊗R P

for every N of 〈M〉⊗. This isomorphism holds as well for the objects of Ind〈M〉⊗ via the

extension of ω to the equivalence of Ind-categories, therefore we have the following.

Corollary 2.6. The underlying R-module of every object of Ind〈M〉⊗ is faithfully flat over

R.

Consider finally the localization MK. Using Proposition 2.5 (3), we obtain:

Corollary 2.7. With notations as above, the ring PK is a Picard-Vessiot ring for MK
and the Galois group scheme of MK is naturally isomorphic to the Galois group scheme of

M.
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32 2. ITERATIVE DIFFERENTIAL RINGS AND MODULES

4. Solution algebras of iterative connections

The general theory of solution algebras (see Proposition 1.32) tells us that there exists an

anti-equivalence between the category of solution algebras for 〈M〉⊗ and the category of

affine quasi-homogeneous G-schemes of finite type over k. The Picard-Vessiot ring P is a

solution algebra itself, whose corresponding quasi-homogeneous G-scheme is simply G.

As a solution algebra is an object in the Ind-category of 〈M〉⊗, we know by Corollary 2.6.

that the underlying ring of a solution algebra is faithfully flat over R.

The equivalence 〈M〉⊗ → 〈MK〉⊗ given by the base change functor in Proposition 2.5 (3)

induces an equivalence between the categories of solution algebras for 〈M〉⊗ and 〈MK〉⊗.

The quasi-inverse assigns the intersection S ′ ∩ P to a solution algebra S ′ for 〈MK〉⊗.

Finally, we present an equivalent characterization of solution algebras, which is taken from

[4] Definition 3.1.1.

Proposition 2.8. An ID-ring S over R is a solution algebra for 〈M〉⊗ if and only if the

underlying ring S is an integral domain, the constant field of the quotient field of S is k

and there exists a morphism N → S of ID-modules over R whose image generates S as an

R-algebra.

Proof. Let first S be a solution algebra. We only have to check that S is a domain

and that the constant field of its quotient field is k, as the third condition is satisfied by

definition. Since S can be embedded into the Picard-Vessiot ring and as simple ID-rings

are integral domains, it follows that S is an integral domain, too. Moreover, we have the

following sequence of injective homomorphisms of ID-rings (the injectivity of the first one

follows from the fact that R is a simple ID-ring):

R → S → P.

Pasing to the level of quotient fields and than taking constant fields, we get the following

sequence of injective homomorphism:

k → Quot(S)∇ → k,

where the composition is an isomorphism. This implies that the constant field of the quotient

field of S is k.

In the other direction, we can assume that N isM (as the Picard-Vessiot ring of N embeds

in the Picard-Vessiot ring of M). Let L be the quotient field of S and denote by S ′ the

Picard-Vessiot ring for ML. It is a simple ID-ring with constant field k (the constant field

of L is k by assumption) and contains L, and hence S. The ID-module M is solvable in

S ′, since ML is solvable. It follows that the Picard-Vessiot ring P of M is contained in

S ′. Since P contains all of the solutions of M, it follows by the third condition that S is

contained in P. �
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5. SOLUTION FIELDS FOR ITERATIVE CONNECTIONS 33

5. Solution fields for iterative connections

Consider now the ID-module MK over the ID-field K. The quotient field J of the Picard-

Vessiot ring PK is called the Picard-Vessiot field of MK.

More generally, we have the following analogue of André’s notion of solution fields for

differential modules.

Definition 2.9. Let L|K be an extension of ID-fields. We say that L is a solution field for

〈MK〉⊗ if the constant field of L is k and there exists an ID-module NK in 〈MK〉⊗ and a

morphism of ID-modules NK → L whose image generates the field extension L|K.

Proposition 2.10. We have the following properties:

(1) the quotient field of a solution algebra S for 〈M〉⊗ is a solution field for 〈MK〉⊗,

(2) every solution field L for 〈MK〉⊗ is the quotient field of a solution algebra S for

〈M〉⊗,

(3) every solution field L for 〈MK〉⊗ embeds as an intermediate ID-extension of J |K.

Proof.

(1) This follows from the definition of solution fields and Proposition 2.8.

(2) Let S be the R-subalgebra of L generated by the image of the ID-morphism NK →
L. It is an ID-ring with quotient field L and the conditions of being a solution

algebra are satisfied by construction.

(3) This follows from the previous point using the fact that solution algebras are

embedded into the Picard-Vessiot ring.

�

We next develop the Galois theory of solution fields. We begin by recalling the Galois

correspondence for Picard-Vessiot extensions. The Galois group scheme G represents the

k-group functor AutID(PK|K) and using this representation of the Galois group scheme, one

can naturally extend the action of G to the Picard-Vessiot field J . An element p/q ∈ J
is called invariant under a closed subgroup scheme H if for all k-algebras k′ and for all

h ∈ H(k′) we have an equality

h(p⊗ 1) · (q ⊗ 1) = (p⊗ 1) · h(q ⊗ 1) ∈ PK ⊗k k′.

The set of invariant elements of J under H is denoted by JH .

The iterative differential Galois correspondence is now stated as follows.

Theorem 2.11 ([26] Theorem 11.5.). Let MK be a finite dimensional ID-module over the

ID-field K. Let J be the quotient field of the Picard-Vessiot ring of MK. Denote by G the

Galois group scheme ofMK. The previously defined map H 7→ JH gives an order-reversing

bijection between the closed subgroup schemes H of G and the intermediate ID-fields of J |K.
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34 2. ITERATIVE DIFFERENTIAL RINGS AND MODULES

We note that the above theorem is stated for θ-rings/fields in the reference, i.e. for

rings/fields equipped with an iterable higher derivation (see [26] Definition 10.4.). The

most natural example of an iterable higher derivation is an iterative derivation, and hence

the general result given in [26] Theorem 11.5. can be specialised to our iterative differen-

tial framework. Note the important point that [26] makes no separability assumption on

Picard–Vessiot extensions.

In characteristic zero André proved that solution fields correspond to observable subgroups

of the Galois group. Here we need a slightly more general notion allowing non-reduced group

schemes. Namely, we call a closed subgroup scheme H of an affine group scheme G over a

field k observable if every finite dimensional H-representation is an H-subrepresentation of

a finite dimensional G-representation.

We have the following equivalent characterizations of observable subgroups.

Theorem 2.12. Let G be an affine algebraic group scheme over a field k and H be a closed

subgroup scheme of G. Then the following are equivalent:

(1) H is an observable subgroup of G,

(2) the quotient G/H is quasi-affine over k,

(3) there exists a finite dimensional G-representation V and a vector v ∈ V such that

H is the stabilizer subgroup scheme of the vector v in G.

The proof of equivalence (1)⇔ (2) is Theorem 1.3. in [2]. The proof of (1)⇒ (3) goes the

same as the proof of (7) ⇒ (2) in Theorem 2.1. of [15]: the crucial point is that for any

closed subgroup scheme H of an affine group scheme G, there exists a finite dimensional G-

representation V , a vector v ∈ V and a character χ of H such that H acts via the character

χ on v and only H stabilizes the line k ·v. For the proof of (3)⇒ (2), we can use Prop. 1.25.

to see that there exists an immersion of G/H to the vector bundle V, which is an algebraic

affine scheme, hence we can conclude that G/H is quasi-affine.

We can now state the following generalization of [4] 4.2.3. Theorem (3) to iterative differ-

ential rings.

Theorem 2.13. An intermediate ID-extension L of J |K is a solution field for 〈MK〉⊗ if

and only if the corresponding subgroup scheme H is an observable subgroup scheme of the

Galois group scheme G.

Proof. Let H be an observable subgroup scheme of the Galois group scheme. There

exists a finite dimensional G-representation V and a vector v ∈ V such that H is the isotropy

subgroup scheme of v in V . Using the equivalence given by ω, we can write V as ω(N∨K ) for

some ID-module NK in 〈MK〉⊗. The vector v determines a ID-homomorphism v : NK →
PK → J . Let L be the subfield of J generated by the image of this ID-homomorphism
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6. EXAMPLES 35

and let H ′ be the closed subgroup scheme corresponding to L by the Galois correspondence

(Theorem 2.11), i.e. L = JH′ .
H is the isotropy subgroup scheme of v, hence for all k-algebra k′ and h ∈ H(k′) we have

h(v(n)⊗ 1) = (h · v)(n)⊗ 1 = v(n)⊗ 1 and thus H ≤ H ′. Conversely, L = JH′ means that

for any k-algebra k′ and any h′ ∈ H ′(k′) we have (h · v)(n) ⊗ 1 = h(v(n) ⊗ 1) = v(n) ⊗ 1

for all n, in other words h′ · v = v and hence H ′ ≤ H. This show that for every observable

subgroup scheme H, the intermediate ID-field L = JH is a solution field.

Let L be a solution field that is generated by a solution v of NK and denote by H the

subgroup scheme attached to L in G. Just as in the previous calculation, we see that H is

the isotropy subgroup scheme of the solution v in ω(N∨K ) and hence, H is observable. �

Remark 2.14. The following general group theoretic observations show that the relationship

between solution algebras and solution fields is not at all unexpected. For the ease of

exposition, assume that the base field k is algebraically closed.

Let X be an affine quasi-homogeneous G-scheme with given G-invariant subscheme U ∼=
G/H. Then G/H is quasi-affine, since by definition the morphism G/H ∼= U → X is a

quasi-compact immersion and hence, it is quasi-affine. This shows that H is an observable

subgroup. In other words, when X is an affine quasi-homogeneous G-scheme and x ∈ X(k)

is a k-point of the schematically dense orbit, then we can associate an observable subgroup

scheme H of G to the pair (X,x).

In the other direction, let H be an observable subgroup scheme of G. By definition, the

quotient G/H is a quasi-affine algebraic scheme. Proposition 13.80. of [14] tells that the

canonical morphism (also called the canonical embedding) G/H → Spec(O(G/H)) is a

quasi-compact schematically dominant immersion, hence the affine scheme Spec(O(G/H))

with its natural G-action is quasi-homogeneous. The k-point 1̃ given by the image of the

identity element of G in Spec(O(G/H)) is in the schematically dense orbit.

We also note that if we start with an observable subgroup scheme H, then the observable

subgroup scheme associated to the pair consisting of the affine quasi-homogeneous G-scheme

Spec(O(G/H)) and its natural k-point 1̃ is H itself. However, this latter pair is not unique

with this property, as the different affine embeddings of the quasi-affine scheme G/H all

give rise to H as their associated observable subgroup schemes.

6. Examples

In the following examples, k will denote an algebraically closed field of characteristic p > 0.

We can define an iterative derivation on the polynomial ring k[t] by setting ∂i(t
k) =

(
k
i

)
tk−i

and extending it linearly to the whole polynomial ring. Since ∂k(tk) = 1, we get that k[t]

is a simple ID-ring with this iterative derivation. Furthermore, the field of constants is
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36 2. ITERATIVE DIFFERENTIAL RINGS AND MODULES

precisely k ⊆ k[t]. The iterative derivation can be extended to the quotient field k(t) of the

polynomial ring k[t].

Iterative derivations (resp. connections) are determined by the p-th power maps ∂pn (resp.

∇pn): if we write n as the sum a0 + a1p+ . . .+ amp
m, where ai ∈ {0, 1, . . . , p− 1}, then

(∂1)a0 ◦ (∂p)
a1 ◦ . . . ◦ (∂pm)am = c · ∂n,

where c is a non-zero element of Fp.

Example 2.15.

(1) Let M be the ID-module corresponding to the sequence of equations

∂pn(y) = ant
−pny,

where an ∈ {1, . . . , p − 1}. Over the ID-ring k[t], this ID-module has a Picard-

Vessiot ring P = k[t][s, s−1] and Picard-Vessiot field k[t](s) for a solution s of the

system, after base change to k(t), the Picard-Vessiot ring is k(t)[s, s−1] and the

Picard-Vessiot field is k(t)(s). This implies that the Galois group scheme is a closed

subscheme of the multiplicative group Gm. A suitable choice of the coefficients an

(see [25] Section 4. and [24] Theorem 3.13.) guarantees that the Galois group

scheme is the whole Gm.

The closed subgroup schemes of Gm are given by the n-th roots of unity for

n ≥ 0. The intermediate field of the Picard-Vessiot field extension k(t)(s)|k(t) cor-

responding to the subgroup scheme of n-th roots of unity is k(t)(sn). All subgroup

schemes of Gm are observable, since Gm is commutative, hence all intermediate

fields are solution fields. The explicit description of the intermediate fields also

shows that the intermediate fields are solution fields: they are generated by the

solutions sn.

(2) Let M be the ID-module corresponding to the sequence of equations

∂pn

(
y1

y2

)
=

(
0 an

0 0

)(
y1

y2

)
,

where an ∈ {1, . . . , p − 1}. By [24] Theorem 3.15., we know that for a solution

s = (s1, s2)T , s2 is a constant, s1 can be written as s2 ·
∑
ait

pi , thus the Picard-

Vessiot ring (resp. Picard-Vessiot field) is generated by s1. Moreover, the Galois

group scheme acts by translation on s1, hence it is a subgroup of the additive group

Ga and with a suitable choice of the coefficients an, the Galois group scheme will

be whole additive group Ga.

The closed subgroup schemes of Ga correspond to the kernels of additive poly-

nomials φ ([12] p. 483). The intermediate field corresponding to kernel(φ) for

an additive polynomial φ is generated by φ(s1). Again, all intermediate fields are
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6. EXAMPLES 37

solution fields: one can say either that the Galois group scheme Ga is commutative

or that we know the generating solution of the intermediate field.

(3) Let M be the ID-module corresponding to the sequence of equations

∂pn

(
y1

y2

)
=

(
0 1

0 ant
−pn

)(
y1

y2

)
,

where an ∈ {1, . . . , p − 1}. Let s = (s1, s2)T be a non-trivial solution of this

iterative differential equation. First, we see that s2 is a solution of the iterative

differential equation

∂pn(y) = ant
−pny,

hence after a suitable choice of the coefficients an, we see that s2 is transcendental

over k(t) and the multiplicative group Gm = AutID(k[t][s2]|k[t]) is a quotient of

the differential Galois group

G = AutID(k[t][s1, s2]|k[t]).

Moreover, for every element h of the differential Galois group that fixes s2, the

element h(s1)− s1 is a constant, since

∂pn(h(s1)− s1) = h(∂pn(s1))− ∂pn(s1) = h(s2)− s2 = 0.

This implies that AutID(k[t][s1, s2]|k[t][s2]) is a subgroup of the additive group Ga.

We can explicitly describe the elements of the Galois group scheme. It is

enough to give the image of the solutions s1 and s2 under an ID-automorphism as

the generate the Picard-Vessiot ring. The general form of an ID-automorphism is

the following:

s1 7→ βs1 + α

s2 7→ βs2,

where α is an arbitrary and β is an invertible element. We will denote this element

of the Galois group scheme by (α, β). We note that multiplication is given by

(α′, β′)(α, β) = (β′α+ α′, β′β) and (α, β)−1 is just (−αβ−1, β−1).

We can extend an ID-automorphism of k[t][s2]|k[t] given by multiplication

of s2 with an invertible element β to an ID-automorphism of k[t][s1, s2]|k[t] by

simply multiplying both s1 and s2 with β, with the notation above, it is the

element (0, β). This gives us a homomorphism from Gm = AutID(k[t][s2]|k[t]) to

G = AutID(k[t][s1, s2]|k[t]), whose composition with the quotient homomorphism

is the identity on Gm. In other words, that extension splits and the differential

Galois group is a closed subgroup scheme of Gm nGa.

The explicit description of the elements of the Galois group scheme also shows

that the group µpn of pn-th roots of unity is not a normal sungroup scheme in the

Galois group scheme: over a k-algebra k′, where µpn(k′) 6= 1, the subgroup µpn(k′)
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38 2. ITERATIVE DIFFERENTIAL RINGS AND MODULES

is not normal, since it is not stable under the conjugation with an element (α, β),

where α 6= 0.

The only subgroups of Ga that are stable under the action of the multiplicative

group are the Frobenius kernels, but the differential Galois group must be reduced

by [26] Corollary 11.7., thus G is either Gm or Gm nGa.

We show that s1 is transcendental over k(t)(s2), which implies that the differ-

ential Galois group is indeed the whole Gm nGa. Let s1 = b0 + b1s2 + b2s
2
2 + . . .

be a polynomial with coefficients in k(t). Applying ∂1, we get that

s2 = ∂1(s1) = ∂1(b0 + b1s2 + b2s
2
2 + . . .) =

= ∂1(b0) + ∂1(b1)s2 + b1a0t
−1s2 + second or higher order terms in s2.

We get that the element b1 ∈ k(t) must satisfy the following equation:

∂1(b1) = 1− a0t
−1b1.

Write b1 as f/g, where f, g ∈ k[t] are relatively prime polynomials. The previous

equation can now be rewritten as

(2) t∂1(f)g − tf∂1(g) = tg2 − a0fg.

We get that g must divide the term tf∂1(g), hence g divides t∂1(g), as f and g are

relatively prime. This can happen either if g = t∂1(g) or ∂1(g) = 0. We show that

neither case can happen, which means that s1 is transcendental over s2.

Let g = t∂1(g): substituting back this identity to Equation 2, we get that

t∂1(f)g − fg = tg2 − a0fg

t∂1(f)− f = tg − a0f

t(∂1(f)− g) = (1− a0)f.

If we assume that a0 6= 1, then we see that t divides f , but it also divides g, which

is a contradiction as f and g are relatively prime.

Let ∂1(g) = 0: this implies that g(t) = g′(tp). Equation 2 now becomes

t∂1(f)g = tg2 − a0fg

t∂1(f) = tg − a0f

t(∂1(f)− g) = −a0f.

It follows that f can be divided by t, write f as t · f ′:

t(∂1(t · f ′)− g) = −a0tf
′

f ′ + t∂1(f ′)− g = −a0f
′

g = (1 + a0)f ′ + t∂1(f ′).
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6. EXAMPLES 39

We apply ∂1 now and use that ∂1(g) = 0

0 = (1 + a0)∂1(f ′) + ∂1(f ′) + 2t∂2(f ′) =

= (2 + a0)∂1(f ′) + 2t∂2(f ′)

From now on we assume that char(k) 6= 2. The previous identity implies that the

coefficients ci of f ′ must satisfy the following:

i · ci · (a0 + 2 + i− 1) = 0.

If we let a0 be p − 1, then we see that the non-zero coefficients ci must satisfy

p|i, or in other words, f ′(t) = f ′′(tp). In summary, b1 is of the form t f
′′(tp)
g′(tp) ,

but the first iterative derivative of such an element is f ′′(tp)
g′(tp) , not the required

1 + (p− 1)t−1t f
′′(tp)
g′(tp) = 1 + f ′′(tp)

g′(tp) , a contradiction.

In conclusion: if char(k) 6= 2 and a0 = p − 1 and the other ai-s are chosen

suitably, then the differential Galois group scheme is Gm n Ga. In this case we

get solution fields corresponding to non-normal, non-reduced observable subgroup

schemes, namely the pn-th roots of unity µpn in Gm ⊆ Gm nGa.
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CHAPTER 3

Difference rings and modules

In this chapter we apply the general theory developed in Chapter 1 to difference Galois

theory. After recalling some basics on difference rings and modules, we study Tannakian

properties of categories of difference modules. The theory of invertible difference rings and

modules is detailed in [30], a summary about étale difference modules over σ-flat difference

rings can be found in [13] Section A1.1. The theory of solution algebras and solution fields

is given in the last two sections.

1. Difference rings

A difference ring A is a pair (A, σ) where A is a commutative ring and σ : A→ A is a ring

endomorphism. We say that K is a difference field if the underlying ring is a field.

A difference ideal of A is an ideal I such that σ(I) ⊆ I. A simple difference ring is a

difference ring with only the trivial difference ideals: 0 and A. Trivially, a difference field is

simple.

A homomorphism f : A → A′ of difference rings is a ring homomorphism f : A → A′ such

that f ◦ σ = σ′ ◦ f . The kernel of a difference homomorphism is a difference ideal. In

particular, a difference homomorphism from a simple difference ring is always injective.

As the endomorphism σ commutes with itself, we see that σ is also a difference ring endo-

morphism. Hence, if A is simple, then σ is injective.

An element c ∈ A is called constant if σ(c) = c. The set of constant elements is a ring, it

will be denoted by kA. A morphism f : A → A′ of difference rings induces a homomorphism

kA → kA′ of constant rings.

Proposition 3.1. Let A = (A, σ) be a difference ring.

(1) If A is simple, then the constant ring k is a field.

(2) The nilradical of a difference ring is always a difference ideal. More generally, the

radical of a difference ideal is a difference ideal.

(3) If A is simple, then it is reduced.

(4) A maximal difference ideal I satisfies a ∈ I if and only if σ(a) ∈ I.

Proof.

41
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42 3. DIFFERENCE RINGS AND MODULES

(1) Let c be a constant element. Then the ideal (c) is a difference ideal of A: indeed,

σ(ac) = σ(a)σ(c) = σ(a)c ∈ (c). Therefore (c) must be the whole ring (as it

is a non-empty ideal), hence there exists an element c′ such that cc′ = 1. Now

1 = σ(1) = σ(cc′) = σ(c)σ(c′) = cσ(c′) shows that σ(c′) = c′, thus the inverse of c

is a constant element, too.

(2) If a is an element of the nilradical, i.e. an = 0, then σ(a)n = σ(an) = σ(0) = 0 and

hence σ(a) is an element of the nilradical, too. The second claim can be proven

similarly.

(3) Trivial from the previous item.

(4) If a ∈ I, then σ(a) ∈ I. Conversely, the ideal {a ∈ A | σ(a) ∈ I} is a difference

ideal containing I, but not containing 1.

�

We can extend the difference ring structure through special localizations.

Proposition 3.2. Let A be a difference ring and S ⊆ A be a σ-stable multiplicatively closed

subset. Then there exists an endomorphism σ′ of S−1A such that the natural homomorphism

A → S−1A is a homomorphism of difference rings. If A is a simple difference ring, then

S−1A will be a simple difference ring, too.

Proof. We have a ring homomorphism A→ S−1A, given by a 7→ σ(a)/1, which is just

the composition of σ : A→ A and the natural homomorphism A→ S−1A.

A A

S−1A S−1A

σ

As S is σ-stable, every element of S is mapped to an invertible element, hence by the

universal property of the localization, we get a ring homomorphism σ′ : S−1A→ S−1A. The

commutativity of the previous diagram proves that the natural localization homomorphism

is a homomorphism of difference rings.

The inverse image of a difference ideal I of S−1A via A → S−1A is a difference ideal in A,

hence it is either 0 or A. But then I is either 0 or S−1A. �

Corollary 3.3. Let A be a difference ring.

(1) If the endomorphism σ is an isomorphism, then there exists a unique difference

ring structure on the total fraction ring T (A) of A such that the natural ring homo-

morphism A→ T (A) is a homomorphism of difference rings. The endomorphism

of T (A) will be again an automorphism. Moreover, if A is a simple difference ring,

then the constant field of T (A) will be the same as the constant field of A.
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2. DIFFERENCE MODULES 43

(2) If the endomorphism σ is injective and A is an integral domain, then there exists

difference ring structure on the fraction field K = Quot(A) such that the natural

ring homomorphism A→ K is a homomorphism of difference rings. Moreover, if

A is a simple difference ring, then the constant field of K will be the same as the

constant field of A.

Proof. In both cases, the defining multiplicatively closed subsets are σ-stable under

the assumptions. To see that the endomorphism of T (A) is an automorphism, it is enough

to prove that the multiplicatively closed subset is closed under σ−1, or in other words, if

s ∈ S is a non-zero-divisor, then σ(s) is a non-zero-divisor.

It is left to check that the constant field does not change if A is simple. In both cases, one

checks that for a constant element c of T (A) (or K), the set

Ic = {a ∈ A | a · c ∈ A}

is a non-empty difference ideal, hence Ic = A and thus c is in the constant field of A. �

2. Difference modules

Let A be a difference ring. A difference module M over A is pair (M,Σ) where M is an

R-module over R and Σ: M → M is an additive map such that Σ is σ-semilinear, i.e.

Σ(rm) = σ(r)Σ(m).

A trivial example for a difference module is the difference ring itself.

A difference submodule ofM is an A-submodule N which is stable under Σ, that is Σ(N) ⊆
N . In this case, there exists a unique difference module structure on M/N induced by Σ.

A homomorphism of difference modules φ : M→M′ is an A-module homomorphism such

that the following diagram is commutative:

M M ′

M M ′

φ

Σ Σ′

φ

The kernel, cokernel and image of the underlying homomorphism of difference modules are

again difference modules with the natural semilinear maps.

If we have an inductive system Mi of difference modules, then there exists a difference

module structure on the inductive limit lim−→Mi such that the natural morphisms Mi →
lim−→Mi become homomorphisms of difference modules. In particular, we can take direct

sums of difference modules.

For two difference modulesM andM′, the maps m⊗m′ 7→ Σ(m)⊗Σ′(m′) define semilinear

maps on the tensor product M ⊗AM ′. This tensor productM⊗AN of difference modules

inherits nice properties from the plain tensor product, e.g. it is associative, commutative,
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44 3. DIFFERENCE RINGS AND MODULES

has a unit object (the difference module A) and commutes with small inductive limits in

both variables).

For a special case, let A → B be a homomorphism of difference rings andM be a difference

module over A. Then the tensor product M ⊗A B is not just a difference module over A,

but also over B. We call it the base change (or pullback) of M w.r.t. the difference ring

homomorphism A → B. This base change again has the expected nice properties.

In general there does not exist a good notion of inner hom of difference modules. However,

we will see later that under some restrictions on the difference ring or the difference modules,

we indeed have inner homs.

The set HomA(M,N ) of difference module homomorphisms M → N has a natural k-

linear structure (k is the constant ring of A) and this k-linear structure behaves nicely on

compositions.

We note that all constructions above used the underlying modules of the differential modules.

To summarize, we rephrase these properties as follows.

Proposition 3.4. Let A be a difference ring with constant ring k. Then the category Diff(A)

of difference modules over A is a cocomplete k-linear abelian symmetric monoidal category

with unit object the trivial difference module A. The forgetful functor ϑ : Diff(A)→ Mod(A)

is a cocontinuous k-linear faithful exact symmetric monoidal functor.

If A → B is a homomorphism of difference rings, then the base change functor Diff(A) →
Diff(B) is a cocontinuous k-linear additive symmetric monoidal functor.

A constant element of a difference moduleM over a difference ring A is an element m ∈M
such that Σ(m) = m. The set MΣ = {m ∈ M | Σ(m) = m} of constant elements is a

module over the constant ring k of A. For the unit object A, the constant elements are

precisely the constant elements defined previously. A homomorphismM→N of difference

modules over A induces a k-linear homomorphism MΣ → NΣ.

As σ(1) = 1 in the difference ring A, we get that for any homomorphism φ : A → M of

difference modules, the element φ(1) is constant. Conversely, any constant element gives

rise to a homomorphism of difference modules, hence we have the following.

Proposition 3.5. Let A be a difference ring and M be a difference module over A. Then

we have a natural isomorphism

HomA(A,M)→MΣ

φ 7→ φ(1).

In particular, we see that the endomorphism ring of the unit difference module A is the con-

stant ring k and the k-linear structure of the category Diff(A) is just the k-linear structure

induced by the endomorphism ring of the unit object.
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2. DIFFERENCE MODULES 45

Let us mention two much-studied examples of difference rings and difference modules.

Example 3.6.

(1) Let κ be a perfect field of characteristic p > 0. Denote by W the ring of Witt

vectors of κ and by K the fraction field of W . We note that W is a complete

discrete valuation ring with residue field κ. Let F be the Frobenius automorphism

of κ. It extends to automorphisms of W and K, which will be denoted by F , also.

Denote by W and K the corresponding difference rings.

The classical definition of an F -crystal (resp. F -isocrystal) over κ is the fol-

lowing: it is a finitely generated free W -module (resp. finite dimensional K-vector

space) M (resp. V ) with an injective F -semilinear endomorphism M → M . If V

is an F -isocrystal, then the injective endomorphism is in fact a bijection, since the

dimension of V is finite. So F -isocrystals are precisely the finite dimensional dif-

ference modules over K with invertible endomorphism. But the endomorphism of

an F -crystal may not be bijective, hence an F -crystal is just an object of Diff(A).

See e.g. [6] for the use of crystals in p-adic cohomology theories.

(2) Consider the finite field Fq for some p-power q. Let | · |∞ be the infinite place

of the rational function field κ = Fq(θ) normalized such that |θ|∞ = q. Let

κ∞ = Fq((1/θ)) be the ∞-adic completion of Fq(θ), κ∞ be the algebraic closure

and K be the ∞-adic completion of κ∞. Finally, let κ be the algebraic closure of

κ in K.

There is an automorphism σ : κ(t)→ κ(t), which is just taking q-th root in the

coefficients. The constant ring of κ(t) with respect to this automorphism is Fq(t).
We can restrict the automorphism σ to an automorphism of the polynomial ring

κ[t]. The constant ring of this difference ring is Fq[t].
An Anderson t-motive is a difference module M over the difference ring κ[t]

such that M is finitely generated and free as a κ[t]-module and as a κ[σ]-module

and for all large enough n, we have (t − θ)nM ⊆ Σ(M). For more on these, see

e.g. [28].

Now we turn our attention to a special case where we have inner homs for any pair of

difference modules. Let A = (A, σ) be a difference ring. Semilinear maps give rise to special

A-module homomorphisms: let Mσ be the tensor product Aσ ⊗AM , where Aσ is the A-A-

bimodule on which A acts regularly from the left, but via σ from the right. A σ-semilinear

map Σ: M →M gives an A-module homomorphism Ψ: Mσ →M , given by a⊗m 7→ aΣ(m).

Conversely, such an A-module homomorphism Mσ →M gives is σ-semilinear endomorphism

of M .

Definition 3.7. Let A be a difference ring. A difference module M over A is called étale

if the induced morphism

Ψ: Mσ →M
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46 3. DIFFERENCE RINGS AND MODULES

is an isomorphism.

The trivial difference module A is étale, since in this case the Ψ is the identity. Another

example is given by:

Example 3.8. Let A be a difference ring such that σ is an automorphism. Then a difference

module M is étale if and only if its endomorphism Σ is bijective.

Indeed, let first let M be étale, i.e. the map

Ψ: Aσ ⊗AM →M

a⊗m 7→ aΣ(m)

is a bijection. From this it follows immediately that Σ is surjective, since any element

m ∈M can be written as

m = Ψ(
∑
i

aimi) =
∑
i

aiΣ(mi) = Σ(
∑
i

σ−1(ai)mi).

The map ι : M → Aσ⊗AM : m 7→ 1⊗m is injective, since it has a left inverse Aσ⊗AM →M

defined by a⊗m 7→ σ−1(a)m. Therefore the composition

M
ι−→ Aσ ⊗AM

Ψ−→M

is injective, but this is just Σ.

Conversely, assume that Σ is bijective. Then we can define an inverse to Ψ as follows: send

an element m ∈ M to 1 ⊗ Σ−1(m). It is a trivial calculation that it is indeed an inverse,

thus M is étale.

F -isocrystals are étale difference modules of the kind discussed in this example.

Now back to general étale difference modules. As tensor product over A commutes with

small inductive limits, we see that small inductive limits of étale difference modules are étale.

Similarly, the tensor product of two étale difference modules is again étale. For kernels and

cokernels we have to assume that σ : A → A is a flat ring homomorphism. In this case we

will call A a σ-flat difference ring.

Proposition 3.9. Let A be a σ-flat difference ring. Let φ : M→M′ be a homomorphism

of étale difference modules. Then the kernel and cokernel difference module is also étale.

Proof. Let φ : M→M′ be a homomorphism of étale difference modules and consider

the exact sequence

0→ kernel(φ)→M→M′ → coker(φ)→ 0.
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2. DIFFERENCE MODULES 47

Since σ : A → A is flat, after tensoring with Aσ we get a commutative diagram with exact

rows
0 kernel(φ)σ Mσ M′σ coker(φ)σ 0

0 kernel(φ) M M′ coker(φ) 0

Since the two middle vertical maps are isomorphism, it follows that the other two vertical

arrows must be isomorphisms, too, hence the kernel and cokernel are also étale difference

modules. �

In conclusion, we get the following.

Proposition 3.10. Let A be a σ-flat difference ring and k be the constant ring of A. Then

the full subcategory Diff ét(A) of the category of all difference modules consisting of étale

difference modules over A is a cocomplete k-linear abelian symmetric monoidal category

and the forgetful functor ϑ : Diff ét(A) → Mod(A) is a cocontinuous k-linear faithful exact

symmetric monoidal functor.

If B is an other σ-flat difference ring and A → B is a homomorphism of difference rings, then

the base change functor Diff ét(A)→ Diff ét(B) is a cocontinuous k-linear additive symmetric

monoidal functor.

For the base change, the fact that we have a homomorphism of difference rings is important

to establish the étaleness of the base change module, since then we have an isomorphism

Bσ′ ⊗B (B ⊗AM) ∼= B ⊗A (Aσ ⊗AM).

Unfortunately, we do not necessarily have inner hom for any two étale difference modules,

but we have the following result.

Proposition 3.11. Let A be a σ-flat difference module. Let M and M′ be étale difference

modules such that M is a finitely presented A-module. Then there exists a difference module

structure on HomA(M,M ′) such that it becomes the inner hom of M and M′ and which is

étale.

Proof. Since A is σ-flat and M is a finitely presented A-module, by [7] §2.10. Prop.11.

the natural homomorphism

Aσ ⊗A HomA(M,M ′)→ HomAσ (Mσ,M
′
σ)

is an isomorphism. We can define a homomorphism

Ψ: Aσ ⊗A HomA(M,M ′) ∼= HomAσ (Mσ,M
′
σ)→ HomA(M,M ′)

by Ψ(φ) = ΨM′ ◦ φ ◦ Ψ−1
M , where φ ∈ HomAσ (Mσ,M

′
σ). This induces an σ-semilinear

endomorphism on HomA(M,M ′) and Ψ is bijective, since ΨM and ΨM′ are bijective. �

C
E

U
eT

D
C

ol
le

ct
io

n



48 3. DIFFERENCE RINGS AND MODULES

Applying the above with M′ = A and using that a finitely generated projective module is

necessarily finitely presented, we get the following in the same way as in Proposition 2.4.

Corollary 3.12. Let A σ-flat difference module and M be an étale difference module over

A. Then M has a dual in Diff ét(A) if and only if M is a finitely generated projective

A-module.

3. Tannakian categories of difference modules

We now prove an analogue of Proposition 2.5 for étale difference modules over a σ-flat

difference ring.

First we need a lemma.

Lemma 3.13. Let A = (A, σ) be a difference ring and M be an étale difference module over

A. Then the annihilator AnnA(M) of M in A is a difference ideal.

Proof. We only have to show that if a ∈ AnnA(M), then σ(a) ∈ AnnA(M). As M
is an étale difference module, we know that every m ∈ M can be written as

∑
i aiΣ(mi).

Then

σ(a)
∑
i

aiΣ(mi) =
∑
i

aiσ(a)Σ(mi) =
∑
i

aiΣ(ami) = 0

since aM = 0. �

We can now state:

Proposition 3.14. Let A = (A, σ) be a σ-flat simple difference ring such that A is a

noetherian ring and let M be a finitely genereted étale difference module over A. Denote by

k the constant field of A. We have the following:

(1) The underlying module ofM and its difference subquotients are projective modules,

(2) The category consisting of objects that are difference subquotients of finite direct

sums of tensor products of the form M⊗i ⊗ (M∨)⊗j form a Tannakian category

〈M〉⊗ over the constant field k of A,

(3) the natural base change functor

〈M〉⊗ → 〈MT (A)〉⊗

is an equivalence of categories.

Proof. As A is simple, we get that A is reduced. Moreover, since A is assumed to be

noetherian, we see that the total ring T (A) of fractions is a semisimple commutative ring, i.e.

the finite product of fields. By Proposition 3.2. and Corollary 3.3., the ring T (A) is a simple

difference ring, its endomorphism is an automorphism and the natural map A→ T (A) is a

homomorphism of difference rings. Moreover, since A is assumed to be noetherian, we have

that finitely generated modules are also finitely presented.
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3. TANNAKIAN CATEGORIES OF DIFFERENCE MODULES 49

Let M and M′ be finitely generated étale difference modules over A. We know that their

inner hom HomA(M,M ′) exists in Diff ét(A). We first prove item (3), i.e. that the base

change functor is fully faithful for finitely generated difference modules:

HomA(M,M′) ∼= HomT (A)(MT (A),M′T (A)).

To see injectivity, we consider the following diagram

HomA(M,M′) HomT (A)(MT (A),M′T (A))

HomA(M,M ′) HomT (A)(MT (A),M
′
T (A))

The map HomA(M,M ′) → HomT (A)(MT (A),M
′
T (A)) is injective since T (A) is flat over A

and M is finitely generated ([7] Proposition §2.10. Prop. 11.). This implies the injectivity

of the dotted map.

For surjectivity, let φ : MT (A) → M′T (A) be a homomorphism of difference modules over

T (A). The set φ(M) is a difference A-submodule of M′T (A) and the quotient

φ(M)/(φ(M) ∩M′)

is a finitely generated torsion étale difference module over A. Hence its annihilator is a

difference ideal in A, therefore it is either 0 or A. But since M is finitely generated, the

annihilator cannot be 0, thus it is A, meaning that φ(M)/(φ(M) ∩ M′) = 0, therefore

φ(M) ⊆M′. We have just proved that base change functor

〈M〉⊗ → 〈MT (A)〉⊗,

is fully faithful. For proving that the base change is an equiavalence, it is enough to show es-

sential surjectivity, which follows from the fact that any subobject N ofM′T (A) ∈ 〈MT (A)〉⊗
comes from the subobject N ∩M′ of M′.
We can now prove that the A-module M is projective. First we note that MT (A) is a finitely

generated projective T (A)-module, as T (A) is a semisimple commutative ring. Therefore

MT (A) has a dual in Diff ét(T (A)) and the dual is just

HomT (A)(MT (A), T (A)).

The assumption that A is noetherian implies that any finitely generated A-module is finitely

presented, therefore the base change of HomA(M,A) viaA→ T (A) is HomT (A)(MT (A), T (A)).

In particular, the base change of the inner hom difference module HomA(M,A) is the dual

of MT (A). Moreover, HomA(M,A) is finitely generated over A, too.

The evaluation and coevaluation morphisms of MT (A) are homomorphisms of difference

modules and we have just proved that the base change functor is fully faithful in this
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50 3. DIFFERENCE RINGS AND MODULES

situation, thus we get homomorphisms of difference modules

HomA(M,A)⊗AM→A

A→M⊗A HomA(M,N).

These maps satisfy the identities of the dual object since they satisfy them after applying the

fully faithful base change functor. This shows that M has a dual and in particular, M is a

finitely generated projective A-module. The quotient module of a finitely generated module

is again finitely generated, hence quotients of M are again projective. For a difference

submodule N ofM, we use that the quotient difference module is finitely generated, hence

projective, therefore the submodule N is a direct summand in M and in particular finitely

generated, thus projective. This proves item (1).

For item (2), the previous shows that 〈M〉⊗ is a rigid k-linear abelian symmetric monoidal

category and the forgetful functor to the category of A-modules is a fibre functor. �

4. Picard-Vessiot theory and solution algebras of difference modules

The general theory of Picard-Vessiot rings and solution algebras in tensor categories de-

veloped in Chapter 1 can be applied to difference modules as well. From now on, we will

assume that A is a σ-flat simple difference ring such that A is a noetherian ring and M is

a finitely generated étale difference module over A.

The category 〈M〉⊗ generated by M is a Tannakian category, hence by Theorem 1.21 the

question of the existence of a Picard-Vessiot ring for M is equivalent to the existence of

k-valued fibre functors on 〈M〉⊗, where k is the constant field of A.

From now on we assume that k is algebraically closed. We get that there exists a Picard-

Vessiot ring P forM and the category 〈M〉⊗ is equivalent to the category Repfk(G), where

G is the Galois group scheme ofM pointed at the Picard-Vessiot ring. We will denote by ω

the fibre functor given by the Picard-Vessiot ring. Furthermore, Proposition 3.14 (3) implies

that the base change of the Picard-Vessiot ring to the total ring of fractions is the Picard-

Vessiot ring of the difference module MT (A), and the associated Galois group schemes are

isomorphic.

We also note that the Picard-Vessiot ring P has the properties satisfied by the base ring

A: it is a noetherian ring and the endomorphism of P is flat. The first property follows

from that Spec(P )→ Spec(A) is an fppf-cover and the fact that locally noetherian is a local

property of schemes in the fppf-topology. The Picard-Vessiot ring can be written as the

colimit of étale difference modules, hence it is étale as a difference module over A. The étale

property implies that the endomorphism of P is the base change of the endomorphism of A
via the homomorphism A→ P , and since the base change of a flat morphism is flat, we are

done.
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The general definition of solution algebras given in Chapter 1 applies in this concrete context,

and by Theorem 1.32 we obtain a correspondence between solution algebras and quasi-

homogeneous schemes over the Galois group scheme.

We even have the following analogue of Proposition 2.8 for difference rings.

Proposition 3.15. A σ-flat difference ring S over A is a solution algebra for 〈M〉⊗ if and

only if the S is contained in a σ-flat noetherian simple difference ring whose constant field

is k and there exists a morphism N → S of étale difference modules over A whose image

generates S as an A-algebra.

Proof. We have just seen that the Picard-Vessiot ring is a σ-flat noetherian simple

difference ring and by definition, its field of constants is k.

In the other direction, we can assume that N is M. Let S ′ be the σ-flat noetherian simple

difference ring containing S. Let P ′ be the Picard-Vessiot ring of MS′ : this difference ring

contains S ′ and thus S. Moreover, M is solvable in P ′, hence the Picard-Vessiot ring P of

M is also contained in P ′. By definition, P is generated by the solutions of M, hence by

the last assumption on S, the Picard-Vessiot ring P will contain S. �

5. Solution fields for difference modules

In this section we will consider a difference field K with bijective endomorphism σ and a

finite dimensional étale difference module M over K. In this case the endomorphism Σ of

M is also bijective by Example 3.8. Denote by k the constant field of K. The total ring of

fractions T (P) of the Picard-Vessiot ring P for M is called the total Picard-Vessiot ring of

the difference module. This is a semisimple commutative ring, i.e. a finite product of fields.

The notion corresponding to solution fields in the difference setting is defined as follows.

Definition 3.16. Let L|K be an extension of difference rings. We say that L is a total

solution ring for 〈M〉⊗ if

(1) every non-zerodivisor of L is a unit in L,

(2) the constant ring of L is k,

(3) there exists a difference module N in 〈M〉⊗ and a morphism of difference modules

N → L such that the total fraction ring of the image of this homomorphism is L.

Proposition 3.17. We have the following properties:

(1) the total fraction ring of a solution algebra S for 〈M〉⊗ is a total solution ring for

〈M〉⊗,

(2) every total solution ring L for 〈M〉⊗ is the total fraction ring of a solution algebra

S for 〈M〉⊗,

(3) every total solution ring L for 〈M〉⊗ embeds as an intermediate difference exten-

sion of T (P)|K.
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52 3. DIFFERENCE RINGS AND MODULES

Proof.

(1) This follows from the definition of total fraction ring, solution algebras and total

solution rings.

(2) Let S be the K-subalgebra of L generated by the image of the difference morphism

N → L. It is a difference ring with total fraction ring L and the conditions of

being a solution algebra are satisfied by construction.

(3) This follows from the previous point using the fact that solution algebras are

embedded into the Picard-Vessiot ring.

�

There exists a Galois correspondence for the total Picard-Vessiot rings in characteristic 0

which establishes a bijection between certain difference subrings of the total Picard-Vessiot

ring and closed subgroups of the Galois group scheme.

Proposition 3.18 ([30] Thm. 1.29). Let K be an invertible difference field of characteristic

0 with algebraically closed constant field k, and let M be a finite dimensional invertible

difference module over K. Denote by T (P) the total Picard-Vessiot ring of M over K and

by G the Galois group scheme. The maps H 7→ T (P)H and L 7→ Aut(T (P)|L) define an

order-reversing bijection between the set of closed subgroups of G(k) and those intermediate

difference rings of Aut(T (P)|K) where every non-zerodivisor is a unit.

Having this Galois correspondence, we have a similar characterization of total solution rings

in the difference case as for (iterative) connections.

Theorem 3.19. Let L be an intermediate difference ring of T (P)|K in which every non-

zerodivisor is a unit.

The ring L is a total solution ring for 〈M〉⊗ if and only if the corresponding subgroup H is

an observable subgroup of the Galois group G(k).

Proof. Let H be an observable subgroup of the Galois group. There exists a finite

dimensional G-representation V and a vector v ∈ V such that H is the isotropy subgroup of v

in V . Using the equivalence given by ω, we can write V as ω(N∨) for some difference module

N in 〈M〉⊗. The vector v determines a difference homomorphism v : N → P → T (P). Let L
be the total fraction ring of the ring generated by the image of this difference homomorphism

in T (P) and let H ′ be the closed subgroup corresponding to L by the Galois correspondence

(Theorem 3.18), i.e. L = T (P)H
′
.

H is the isotropy subgroup of v, hence for all h ∈ H we have h(v(n)⊗ 1) = (h · v)(n)⊗ 1 =

v(n) ⊗ 1 and thus H ≤ H ′. Conversely, L = T (P)H
′

means that for any h′ ∈ H ′ we have

(h · v)(n)⊗ 1 = h(v(n)⊗ 1) = v(n)⊗ 1 for all n, in other words h′ · v = v and hence H ′ ≤ H.

This show that for every observable subgroup H, the intermediate difference ring L = JH

is a total solution ring.
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5. SOLUTION FIELDS FOR DIFFERENCE MODULES 53

Let L be a total solution ring that is generated by a solution v of N and denote by H the

subgroup scheme attached to L in G. Just as in the previous calculation, we see that H is

the isotropy subgroup of the solution v in ω(N∨) and hence, H is observable. �
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APPENDIX A

Tools from category theory

1. Rings and modules in tensor categories

We briefly review the basics of commutative algebra in tensor categories. Let C be a tensor

category. A (commutative unitary) ring in C is a a triple (A,m, u), where A is an object of

C, m : A ⊗ A → A and u : 1 → A are morphisms in C that satisfy the usual commutative

diagrams expressing associativity and commutativity of multiplication with u being the unit

morphism. All rings in tensor categories will be commutative and unitary.

A homomorphism of rings in C is a C-morphism that commutes with multiplication and

sends the unit morphism to the unit morphism. We will call a ring homomorphism a

monomorphism (resp. an epimorphism) if the underlying C-morphism is monic (resp. epic).

A module over a ring A in a tensor category C is a pair (M, a), where M is an object of C
and a : A ⊗M → M is a morphism that satisfies the usual commutative diagrams of the

associativity of the action and such that the action is unitary.

An A-module homomorphism is a C-morphism that commutes with the action of the ring.

Naturally, we have the category ModC(A) of A-modules in C.

Proposition A.1. Let C be a tensor category and A be a ring in C.

(1) The category ModC(A) of A-modules in C is a tensor category with unit object A.

(2) The base change functor A ⊗ − : C → ModC(A) is a left adjoint of the forgetful

functor res : ModC(A)→ C.

(3) The base change functor is a cocontinuous right exact symmetric monoidal functor.

The forgetful functor is a cocontinuous faithful exact functor.

Proof. The tensor productM⊗AN of two A-modules is defined as the cokernel of the

morphismsM⊗A⊗N ⇒M⊗N , where the maps are given by the action of A onM and N
respectively. Now, using that C is cocomplete and that the tensor product is cocontinuous

in both variables, one can prove that −⊗A − is indeed an associative, commutative tensor

product on the category ModC(A) of A-modules. For details, see [8] Proposition 4.1.10. or

[22] Proposition 1.2.15.

55

C
E

U
eT

D
C

ol
le

ct
io

n



56 A. TOOLS FROM CATEGORY THEORY

The small colimit of A-modules is constructed by defining an A-module structure on the

small colimit of the underlying objects of A-modules, we can do this since − ⊗ − is co-

continuous in both variables. These facts also show that the tensor product of ModC(A) is

cocontinuous in both variables.

For a homomorphism of A-modules, we can define an A-module structure on the kernel

and cokernel of the underlying C-morphism and they will be the kernel and cokernel in the

category of A-modules in C. For details, see [5] Theorem 3.6. So far we know that ModC(A)

is a cocomplete abelian symmetric monoidal category and that the forgetful functor is a

cocontinuous faithful exact functor. The base change functor is clearly cocontinuous and

symmetric monoidal. If we prove that it is the left adjoint of the forgetful functor, then we

get that it is right exact. Let X be an object of C. If A ⊗ X → N is a homomorphism

of A-modules, then the composition X → A⊗ X → N is a morphism in C. This way we

obtained a map

HomA(A⊗X,N )→ HomC(X,N ).

Conversely, if X → N is a morphism in C, then we can tensor it with A and use the

morphism defining the A-action on N , getting a homomorphism of A-modules

A⊗X → A⊗N → N .

These maps are the inverses of each other, hence the base change functor A ⊗ − is a left

adjoint of the forgetful functor. �

Using that A ∼= A ⊗ 1 as A-modules, we get the following special case of the adjunction

isomorphism

HomA(A,A⊗−) ∼= HomC(1,A⊗−).

Definition A.2. Let C be a tensor category and A be a ring in C. We say that A is

simple ring if it has no proper, non-trivial A-submodules. Equivalently, every A-module

homomorphism A →M, to an A-module M in C, is either 0 or a monomorphism.

We have the following analogue of Schur’s lemma.

Proposition A.3. Let C be a tensor category and A be a simple ring in C. Then the ring

EndA(A) of A-module endomorphisms of A is a field.

Proof. The ring EndA(A) is the endomorphism ring of the unit object of the tensor

category ModC(A), hence it is commutative. An non-zero endomorphism A → A must be

a monomorphism by definition and it has full image A, since the image is an A-submodule,

hence it is an epimorphism, thus it is an automorphism. �
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2. Image of rings and modules under tensor functors

Let F : C → C′ be a tensor functor between tensor categories and A be a ring in C. The

object A′ := F (A) inherits a ring structure from A, furthermore, the image of an A-module

M can be considered as a module over A′. In other words, the functor F induces a functor

FA : ModC(A)→ ModC′(A′) and the following diagrams are commutative

C C′

ModC(A) ModC′(A′)

F

A⊗− A′⊗−
FA

ModC(A) ModC′(A′)

C C′

FA

res res

F

Using the commutativity of the right-side diagram and the faithful exactness of the forgetful

functors, we see that FA is a faithful exact functor if F is faithful exact.

We will use this most frequently in the following situation: let ϑ : C → QCoh(S) be a

pointed tensor category over a commutative ring k and let A be a ring in C. Then ϑ(A) is

a quasi-coherent OS-algebra and we can take the relative spectrum

µ : SA = SpecS(ϑ(A))→ S

over S. The category of quasi-coherent modules over SA is equivalent to the category of

quasi-coherent ϑ(A)-modules in QCoh(S), thus we have a commutative diagram

C QCoh(S)

ModC(A) QCoh(SA)

ϑ

A⊗− µ∗

ϑA

By definition, ϑ is faithful exact, hence ϑA is an SA-valued point of the tensor category

ModC(A).

3. Faithfully flat descent in tensor categories

Definition A.4. Let C be a tensor category and A be a ring in C. We say that A is flat

(resp. faithfully flat) (over 1) in C if the base change functor

A⊗− : C → ModC(A)

is an exact (resp. a faithful exact) functor.

Example A.5.

(1) Let R be a commutative ring. In the category Mod(R) of R-modules, the flat

(resp. faithfully flat) rings in the above sense are the same as flat (resp. faithfully

flat) R-algebras.
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58 A. TOOLS FROM CATEGORY THEORY

(2) For a general scheme S, there is a little difference between flatness in the above

sense and flat morphisms. A morphism Y → X is called flat (resp. faithfully flat)

if the functor

−�X OY : QCoh(X ′)→ QCoh(X ′ ×X Y )

is exact (resp. faithful and exact) for every morphismX ′ → X (for more details, see

[17] §2.). But our definition only requires the exactness for the identity morphism

X → X, hence a (faithfully) flat affine morphism Y → X gives rise to (faithfully)

flat quasi-coherent OX -algebra, but the converse is not necessarily true.

(3) Let F : C → C′ be a faithful exact tensor functor between tensor categories. If A
is a ring in C and F (A) is a flat (resp. faithfully flat) ring in C′, then A is also flat

(resp. faithfully flat) in C: indeed, this follows from the fact that faithful exact

functor preserves and reflects short exact sequences.

Proposition A.6. Let C be a tensor category. Then the unit object is simple if and only if

there exists a faithfully flat simple ring A in C.

Proof. If the unit object 1 is simple, then the unit object itself is the faithfully flat

simple ring in C. Conversely, let A be a faithfully flat simple ring in C and let X → 1 be a

proper subobject of the unit object. As the base change is faithful exact, we get that A⊗X
is a proper A-submodule of A, hence it must be 0 and therefore X is 0, too. �

Let C be a tensor category and A be a ring C. A descent datum on an A-module M is an

isomorphism A ⊗M ∼= M⊗A of A ⊗ A-modules that satisfies the cocycle condition. A

morphism between modules with descent data is an A-module homomorphism such that the

natural diagram is commutative. With these morphisms, there is the category DescC(A) of

A-modules with descent data.

If X is an object of C, then the base change A ⊗ X has a natural descent datum as in

the classical case and thus we obtain a functor C → DescC(A). The classical theorem of

faithfully flat descent holds in this general situation, too.

Proposition A.7 (Barr-Beck theorem). Let C be a tensor category and A be a faithfully

flat ring in C. Then the functor C → DescC(A) is an equivalence of categories.

A proof can be found in [11] 4.1.

Our aim now is to show that faithfully flat descent preserves dualizable objects. Recall that

an object X of a tensor category C is called dualizable if there exists an object X∨ in C
and morphisms ev : X ⊗X∨ → 1, coev : 1→ X∨ ⊗X such that the following diagrams are
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3. FAITHFULLY FLAT DESCENT IN TENSOR CATEGORIES 59

commutative:

X 1⊗X

X ⊗ 1 X ⊗X∨ ⊗X

∼=

∼=

id⊗coev

ev⊗id

X∨ X∨ ⊗ 1

1⊗X∨ X∨ ⊗X ⊗X∨

∼=

∼=

coev⊗id

id⊗ev

The dual object X∨ is unique up to isomorphism. Tensor functors commute with duals, i.e.

the image of a dualizable object is again dualizable and the dual of the image is the image

of the dual.

Example A.8.

(1) The dualizable objects in the category Mod(R) of R-modules are precisely the

finitely generated projective modules. More generally, the dualizable quasi-coherent

modules over a scheme are precisely the locally free modules of finite rank.

(2) Let G be an affine group scheme over a field k. A representation of G over k

is dualizable if and only if it is finite dimensional: if it is dualizable, then the

underlying vector space is a dualizable k-vector space, i.e. it is finite dimensional.

Conversely, if the representation is finite dimensional, then it can be checked that

the dual representation is the dual (in the above sense).

Let C be a tensor category, A be a ring and X be a dualizable object in C. As the base

change functor A ⊗ − is symmetric monoidal, we know that the A-module A ⊗ X is also

dualizable. We show that the converse is also true if the ring A is faithfully flat.

Proposition A.9. Let C be a tensor category, A be a faithfully flat ring in C and X be an

object of C. If the A-module A⊗X is dualizable in ModC(A), then X is dualizable in C.

Proof. Let N be the dual of M = A⊗X in ModC(A). We first show that there is a

descent datum on N : the A⊗A-module A⊗M is isomorphic to (A⊗A)⊗AM, hence it

has a dual in the category of A⊗A-modules, namely A⊗N ∼= (A⊗A)⊗A N . The same

can be said ofM⊗A. Therefore we can dualize the isomorphism giving the descent datum

on M and obtain an isomorphism

A⊗N ∼= (A⊗A)⊗A N ∼= N ⊗A (A⊗A) ∼= N ⊗A.

We can also dualize the cocycle condition and hence we see that N has a descent datum.

By the Barr-Beck theorem, N is of the form A⊗Y for an object Y of C. The evaluation and

coevaluation maps ofM and N commute with the descent data, hence there are evaluation

and coevaluation maps for X and Y . These maps satisfy the triangle identities since they

satisfy it after the base change to the faithfully flat ring A. �
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4. The Ind-category of a Tannakian category

Let k be a field and (T , ω) be a Tannakian category over k, that is, T is a rigid k-linear

abelian symmetric monoidal category with EndT (1) ∼= k and

ω : T → QCoh(S)

is a k-linear faithful exact symmetric monoidal functor, where S 6= ∅ is a k-scheme. The

functor ω is called an S-valued fibre functor on T . We say that a Tannakian category (T , ω)

is neutral if ω is Spec(k)-valued.

Tannakian categories have the following properties:

(1) the fibre functor ω factors through the category LF(S) of finite locally free OS-

modules,

(2) if f : S′ → S is a morphism of schemes, then the composition

f∗ ◦ ω : T → QCoh(S)→ QCoh(S′)

is an S′-valued fibre functor,

(3) if ω′ : T → QCoh(S) is an other S-valued fibre functor, then any functor homo-

morphism ω → ω′ is an isomorphism,

(4) every object X of T has finite length, in particular, every object is noetherian.

The main theorem of neutral Tannakian categories is the following.

Proposition A.10 ([11],Theorem 2.11). Let (T , ω) be a neutral Tannakian category over a

field k. Then the automorphism group functor Aut⊗(ω) is representable by an affine group

scheme G over k and ω induces an equivalence of categories C ∼= Repfk(G) such that the

following diagram is commutative:

C Repfk(G)

Vecf(k)

∼=

ω ω

The representing affine group scheme is called the Tannakian fundamental group of the

neutral Tannakian category (T , ω).

Proposition A.11 ([11] Prop. 2.20., [29] II.4.3.2.). Let (T , ω) be a neutral Tannakian

category over a field k and let G be its Tannakian fundamental group.

(1) G is of finite type over k if and only if the category T has a tensor generator,

i.e. an object X such that every object of T is isomorphic to a subquotient of

X⊕n ⊗ (X∨)⊕m for some n,m ≥ 0. In this case, we have a closed immersion

G→ GL(ω(X)), where X is a tensor generator.

(2) G is finite over k if and only if T has a generator, i.e. an object X such that every

object of T is isomorphic to a subquotient of X⊕n for some n ≥ 0.
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4. THE IND-CATEGORY OF A TANNAKIAN CATEGORY 61

The full subcategory consisting of objects isomorphic to a subquotient of X⊕n ⊗ (X∨)⊕m

for some n,m ≥ 0 for a fixed object X of T will be denoted by 〈X〉⊗. Similarly, the full

subcategory consisting of objects isomorphic to a subquotient of X⊕n for some n ≥ 0 will

be denoted by 〈X〉⊕.

Proposition A.12 ([11] Prop. 2.21., [29] II.4.3.2.). Let (T , ω) and (T ′, ω′) be neutral

Tannakian categories over a field k with Tannakian fundamental groups G and G′. There is

a bijection between the set of symmetric monoidal functors F : T → T ′ such that ω′ ◦F = ω

and the set of homomorphisms f : G′ → G of affine k-group schemes.

Moreover, we have the following properties:

(1) The homomorphism f is a closed immersion if and only if every object X ′ of T ′

is the subquotient of an object of the form F (X) for some X in T .

(2) The homomorphism f is faithfully flat if and only if F is fully faithful and F

induces an equivalence

〈X〉⊗ → 〈F (X)〉⊗
for every object X of T .

Our aim is to show that the indization a Tannakian category is a tensor category with a

scheme-valued point. We state the result now, but postpone the proof until later.

Proposition A.13. Let (T , ω : T → QCoh(S)) be a Tannakian category over a field k.

Then the category Ind(T ) is a cocomplete k-linear abelian symmetric monoidal category and

the functor J(ω) : Ind(T ) → QCoh(S) is a cocontinuous k-linear faithful exact symmetric

monoidal functor, i.e. Ind(T ) is a tensor category and J(ω) is an S-valued point of this

category.

Before we can prove this, we first need to recollect the basics of Ind-categories and the

process of indization. For a complete treatment, see [1] Exp.I. §8. or [19] Chapter 6 and

Section 8.6.

Let C be a category. An ind-object of C is a covariant functor α : I → C (i.e. an inductive

system), where I is a small filtered category. We will denote an ind-object corresponding to a

small filtered inductive system α by (Cα). The category Ind(C) of ind-objects is the category

consisting of ind-objects of C as objects and where the morphisms from an ind-object (Cα)

to an ind-object (Dβ) are given by

HomInd(C)((Cα), (Dβ)) = lim←−
α

lim−→
β

HomC(Cα, Dβ).

We have a natural functor ιC from C to Ind(C), where we map an object C of C to the small

filtered inductive system (C) consisting only of C.

Proposition A.14 ([19] Cor. 6.1.6., Thm. 6.1.8., Prop. 6.1.9., Prop. 6.1.10., Prop.

6.1.11.,Prop. 6.1.12.). Let C be a category.
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62 A. TOOLS FROM CATEGORY THEORY

(1) The category Ind(C) admits small filtered colimits.

(2) The functor ιC : C → Ind(C) commutes with finite colimits that exist in C.

(3) Let F : C → D be a functor. Then there exists a unique functor

Ind(F ) : Ind(C)→ Ind(D)

such that Ind(F ) commutes with small filtered colimits and the following diagram

is commutative:

C D

Ind(C) Ind(D)

F

ιC ιD

Ind(F )

(4) If the functor F is faithful (resp. fully faithful), then Ind(F ) is faithful (resp. fully

faithful).

(5) Let G : D → D′ be a functor. Then Ind(G ◦ F ) is isomorphic to the composite

functor Ind(G) ◦ Ind(F ).

(6) The projection functors from C × D to the factors induce a natural equivalence of

categories Ind(C × D) ∼= Ind(C)× Ind(D).

In case when a category C admits small filtered colimits, we have a left adjoint to the

inclusion functor.

Proposition A.15 ([19] Prop. 6.3.1.). Let D be a category admitting small filtered colimits.

Then the inclusion functor ιD : D → Ind(D) has a left adjoint σD : Ind(D) → D such that

σD ◦ ιD ∼= idD and if (Dα) is an ind-object, then σD((Dα)) ∼= lim−→Dα.

Let now F : C → D be a functor, where the category D admits all small filtered colimits.

Using the left adjoint σD, we can define the functor J(F ) : Ind(C) → D as the composite

functor σD◦Ind(F ). The functor J(F ) commutes with all small filtered colimits and J(F )◦ιC
is isomorphic to the original functor F (c.f. [19] Cor. 6.3.2.).

Let C be a category admitting small filtered colimits. An object C of C is called of finite

presentation if for any filtered inductive system α : I → C, the natural map

lim−→HomC(C,αi)→ HomC(C, lim−→αi)

is an isomorphism.

Proposition A.16. Let C be a category and D be a category that admits all small filtered

colimits. Let F : C → D be a faithful (resp. fully faithful) functor such that F (X) is of finite

presentation for every object X of C. Then J(F ) : Ind(C) → D is a faithful (resp. fully

faithful) functor, too.

A proof in the case when F is fully faithful can be found in [19] Prop. 6.3.4., but it can

be applied to the faithful case as well: we only need that taking small filtered limits (resp.
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4. THE IND-CATEGORY OF A TANNAKIAN CATEGORY 63

colimits) is a left exact (resp. exact) functor in the category of sets or in the category of

modules over a ring, hence it takes monomorphisms to monomorphisms.

What structures does the ind-category inherit from the original category? Naturally, we

are interested in the inheritance of k-linearity (for some commutative ring k), symmetric

monoidal structure and abelianness.

Using the explicit description of Hom-sets in the ind-category, we see that Ind(C) is a k-

linear category if C is and the functor ιC becomes a k-linear functor. One can argue similarly

for the indization of a k-linear category.

The tensor product on C can be extended to a tensor product on Ind(C) using the natural

equivalence of categories Ind(C × C) ∼= Ind(C)× Ind(C). More explicitly, the tensor product

of two ind-objects (Cα) and (Dβ) is just the inductive system (Cα⊗Dβ) on I × J (we note

that the product of small filtered categories is again small and filtered). The unit object is

just the constant ind-object (1). To check that the necessary diagrams are commutative, one

can use the following result which says that finite loopless diagrams in Ind(C) are essentially

small filtered systems of diagrams in C.
The explicit description of objects also shows that the functor ιC is symmetric monoidal.

One can reason similarly to show that the indization of a symmetric monoidal functor is

symmetric monoidal.

For abelian categories, we have the following:

Proposition A.17 ([19] Thm. 8.6.5., Cor. 8.6.8., Prop. 8.6.11.). Let C be an abelian

category.

(1) The category Ind(C) is an abelian category and the natural functor ιC : C → Ind(C)
is fully faithful and exact.

(2) The category Ind(C) is cocomplete (i.e. admits all small colimits) and taking small

filtered colimits is an exact functor.

(3) Let F : C → D be an additive functor of abelian categories. If F is a right exact

(resp. left exact) functor, then Ind(F ) is a right exact (resp. left exact) functor,

too.

(4) The category C is closed by kernels, cokernels and extension in Ind(C) (i.e. the

kernel in Ind(C) of any morphism of C is isomorphic to an object of C, and similarly

for the others).

In conclusion, we get that the Ind-category of a k-linear abelian symmetric monoidal cate-

gory is a tensor category. Moreover, the indization of a k-linear (faithful exact) symmetric

monoidal functor is a (faithful exact) tensor functor.

Let D be a cocomplete k-linear abelian symmetric monoidal category. We know that the

inclusion functor ιD : D → Ind(D) has a left adjoint σD, that maps a small filtered inductive

system (Xi) to the colimit lim−→Xi. We shall need the properties of this functor.
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64 A. TOOLS FROM CATEGORY THEORY

Proposition A.18. Let D be a tensor category. Then σD : Ind(D) → D is a right exact

tensor functor. If small filtered colimits are exact in D, then σD is an exact functor.

Since σD is a left adjoint, it is cocontinuous and right exact. The explicit description of σD

shows that it is k-linear and symmetric monoidal (we use here the assumption on D that

the tensor product of D commutes with colimits). The explicit description of σD shows that

it is exact if small filtered colimits are exact in D.

We can now prove Proposition A.13.

Proof of Proposition A.13. We have the following diagram:

T QCoh(S)

Ind(T ) Ind(QCoh(S))

QCoh(S)

ω

ι ι

Ind(ω)

J(ω)
σ

We have seen that the indization of a k-linear abelian symmetric monoidal category is a

tensor category, hence Ind(T ) is a tensor category. Moreover, the indization of a k-linear

faithful exact symmetric monoidal functor is a faithful exact tensor functor, hence Ind(ω)

is a faithful exact tensor functor. By definition, J(ω) is the composite of σ and Ind(ω). By

Proposition A.18., we get almost every required property, except the faithfulness of J(ω).

But this will follow from Proposition A.16. if we can show ω(X) is of finite presentation (in

the categorical sense) for every object X of T . We know that ω(X) is a locally free sheaf of

finite rank, hence it is of finite presentation (in the algebro-geometrical sense).

Thus we need to prove that for every scheme S, a quasi-coherent OS-module M of finite

presentation is a finitely presented object in the category of quasi-coherent modules, i.e. the

natural map

lim−→HomOS (M, αi)→ HomOS (M, lim−→αi)

is an isomorphism for every small filtered inductive system (αi). This map is the global

section of the map of sheaves

lim−→HomOS (M, αi)→ HomOS (M, lim−→αi),

therefore it is enough to prove that it is an isomorphism of sheaves. But we can check this

locally, meaning that it is sufficient to prove that a finitely presented module over a ring is

finitely presented in the categorical sense, which is an easy calculation. �
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5. Embedding the Ind-category of a neutral Tannakian category

Suppose now a neutral Tannakian category (T , ω) is contained (as an essentially full k-

linear abelian symmetric monoidal subcategory) in a tensor category C. As explained before

Proposition A.16, the embedding functor i : T → C extends to a functor J(i) : Ind(T )→ C.

Proposition A.19. In the above situation assume moreover that T is closed under subquo-

tients in C.

Then the functor J(i) : Ind(T ) → C is a fully faithful exact k-linear tensor functor and

Ind(T ) is closed under subquotients C.

The proof is based on [10], Lemme 4.2.2.

Proof. Results from the previous section show that J(i) is a exact tensor functor

(exactness follows from the fact that small filtered colimits in C are exact).

An object of T is noetherian in T (using the fibre functor), but it is also noetherian consid-

ered as an object of C, since we assumed that T is closed under subquotients in C.
We claim that

(1) every small filtered colimit lim−→Xα of objects of T is the colimit of an ind-object

of T whose transition morphisms are monomorphisms,

(2) if (Xα) is an ind-object of T whose transition morphisms are monomorphisms,

then the natural map Xα → lim−→Xα is a monomorphism in C.

Let (Xα) be an ind-object of T . For a fixed α, the objects kernel(Xα → Xβ) (α < β) form

an increasing system of subobjects in Xα, hence it stabilizes. Denote by Kα the largest one.

Then lim−→Xα
∼= lim−→Xα/Kα and the transition morphisms of the ind-object (Xα/Kα) are

monomorphisms.

The natural morphism Xα → lim−→Xα is the filtered colimit of the morphisms Xα → Xβ

(α < β), since filtered colimits in C are exact, it is a monomorphism.

Using these two properties, we can show that the Ind-category is closed under subquotients in

C: first, let Z be a subobject of lim−→Xα in C. We can assume that the transition morphisms

of (Xα) are monomorphisms and that Xα is a subobject of lim−→Xα. Consider the exact

sequence

0→ Z ∩Xα → Xα → (lim−→Xα)/Z.

Taking the colimit and using that filtered colimits are exact in C, we get that Z is the filtered

colimit of its subobjects Z ∩Xα. Since T is closed under subquotients, we have that Z ∩Xα

is in T and hence Z is in Ind(T ).

If Y is now a quotient of lim−→Xα, then we just saw that the kernel Z of the quotient map

comes from Ind(T ) and we can write Y as the filtered colimit of Xα/Zα.
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Let again (Xα) be an ind-object whose transition morphisms are monomorphisms. We can

adapt the previous proof to show that the subobjects Xα in lim−→Xα are cofinal in the directed

set of T -subobjects of lim−→Xα: let Z ∈ T be a subobject of lim−→Xα and consider again the

exact sequence

0→ Z ∩Xα → Xα → (lim−→Xα)/Z.

Taking colimit again, we see that Z is the filtered colimit of the subobjects Z ∩Xα, but Z

is noetherian, hence the subobjects must stabilize at some α: Z ⊆ Xα. In particular, this

implies that lim−→Xα is the filtered colimit of its T -subobjects.

Let now f : lim−→Xα → lim−→Yβ be a morphism in C. For every T -subobject Z of lim−→Xα, the

morphism f maps Z to a T -subobject of lim−→Yβ . Since lim−→Xα is the filtered colimit of its

T -subobjects, the previous restrictions induce a morphism lim−→Xα → lim−→Yβ , which is just

the original morphism, hence J(i) is full.

For faithfulness, let f : (Xα)α∈I → (Yβ)β∈I′ be a morphism of ind-objects whose colimit is

0. We can assume that the indexing set is the same ([19] Prop. 6.1.13.) and we can also

assume that the transition morphisms are monomorphisms for both ind-objects, moreover,

there exists a small filtered indexing category I ′′ and cofinal functors I ′′ → I and I ′′ → I ′

such that the morphism f is lim−→α∈I′′ fα. Thus we have a commutative diagram, where the

vertical morphisms are monomorphisms

Xα Yα

lim−→Xα lim−→Yβ

fα

0

and we can deduce that fα has to be 0 and thus f is 0. �
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