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In this thesis, we study the definition of Khovanov homology. Before doing that, we describe

some basic information about knot theory and homological algebra, which we need in the

definition of Khovanov homology. We also describe the definition of the unnormalized Jones

polynomial of a knot or link and then extend this construction (based on the paper of Bar

Natan) to the definition of Khovanov homology. We describe detailed definition of Khovanov

homology, as a bigraded vector space invariant of a link, which has the unnormalized Jones

polynomial as its Euler characteristic. Moreover, we study slice genus via Khovanov homol-

ogy. We study new knot invariant to study slice genus and prove main theorems about slice

genus. At the last chapter, we study relation of Khovanov homology and topological quantum

field theory.
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Chapter 1

Khovanov homology

In this chapter we define Khovanov homology and we show that it is independent under the

Reidemeister moves. To define it, we would first introduce some basic concepts such as knot

theory, Jones polynomial and some information about homological algebra. We start with

knot theory.

1.1 Short introduction to knot theory

Knot and link diagrams will be crucial for our Khovanov homology definition, so to under-

stand the definition of the Khovanov homology we need some basic definitions and facts

about knots and links.

Definition 1.1. A Knot is an embedding of a circle S1 in 3-dimensional Euclidean space or in

S3.

If we link or tangle more than one knot, we call it link. Generally, we are interested in regular

projection of knots (links) onto the 2-dimensional Euclidean space, meaning that the pro-

jection is injective everywhere except finitely many points, called crossing points, where the

knot projection crosses itself once. To understand the knot (link), we need to clarify cross-

ing points, so the over-strand must be distinguished from the under-strand. We can do it

with creating break in the strand going underneath. The resulting diagram is a knot (link)

projection with the additional data about crossing points. We call this diagram knot (link)

diagram. To become familiar with knots and links, in following we give some depictions of

most well-known knots and link.
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2

right-handed left-handed Figure eight knot Hopf link

trefoil trefoil

Generally, when we study on knots or links, we have an orientation on them and orientation

of a knot or a link is crucial to study them. Now we have some basic definitions and notions

about knots.

Definition 1.2. The reverse r K of an oriented knot K is simply the same knot with the oppo-

site orientation.

Definition 1.3. The mirror-image m(K ) of a knot K is obtained by reflecting it in a plane in

R3.

To obtain the diagram of the mirror image of knot K we change all the crossing points of dia-

gram of K . For example, right-handed and left-handed trefoil are mirror image of each other.

Crossing points are significant for our knot definition. We can have two kind of crossing point

either one segment pass under of other segment or vice versa. Based on these positions, we

assign sign to crossing points so either we have positive or negative crossing point. We can

see definition of positive and negative crossing point at following figures.

!−−> positive crossing

"−−> negative crossing

We denote n to be the number of crossings of knot or link, n+ to be the number of positive

crossings and n− to be the number of negative crossings.

Definition 1.4. The writhe w(D) of a diagram D of an oriented knot or link is the number

of total number of positive crossings minus total number of negative crossings i.e w(D) =
n+−n−.

We can see these numbers on some different knots and links as in the example below.

Equivalence between objects is widely used in mathematics. We generally use isomorphism

class to study objects . For instance, we call two groups are the equivalent when we have

isomorphism between them. Similarly, we have equivalences between knots. Although we

have some different kind of equivalence between knots, in this paper we use only one of

them.

Definition 1.5. Two knots K1 and K2 are ambient isotopic, if there is a smooth map F :

S3x[0,1] → S3 such that Fx = F|S3x{x} is diffeomorphism for each x ∈ [0,1], F0 = i d and F1(K1) =
K2.
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3

Since we are interested in knot diagrams more than knot itself, we need to understand by just

studying on knot diagrams whether two given knots are equivalent or not. Before goint to see

theorem about this, we need some definitions which we will use at the theorem.

Definition 1.6. Planar isotopy of knot projection is continuous deformation of projection

plane.

We have three local moves on link diagram which are the crucial for the following theorem.

We call these moves as Reidemeister moves and they can be seen in the figure below.

In order to investigate the equivalence in links the following theorem will be used.

Theorem 1.7. We call two links are ambient isotopic in S3 if and only if they are related by the

finite number of Reidemeister moves and planar isotopy.

Definition 1.8. A knot invariant is a property of a knot diagram that does not change under

Reidemeister moves, hence it depends only on the knot (and not the chosen diagram).

For instance, the writhe number is not a knot invariant whereas we will see that the Jones

polynomial and Khovanov homology will be knot invariants .

1.2 The Jones Polynomial

In this section, we define the Jones polynomial which is one of the famous knot polynomials.

For defining the Jones polynomial we need to define bracket polynomial.

Definition 1.9. The Kauffman bracket is a function from unoriented link diagrams in the

oriented plane to Laurent polynomial with integer coefficients in q . It maps a diagram D to

〈D〉 ∈ Z[q, q−1] and it is characterised by

1. 〈;〉 = 1

2. 〈D t©〉= (q−1 +q)〈D〉

3. 〈0〉 = 〈1〉−q〈H〉

In this definition , D is a diagram , ; is empty diagram , 〈D〉 is polynomial of the knot and the

circle is the unknot without any crossings.

Now we can check what happens to this bracket definition when we apply Reidemeister

moves . We start with (R1).

〈 〉 = 〈 〉−q〈 〉 = (q +q−1)〈 〉−q〈 〉 = q−1〈 〉
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4

〈 〉 = 〈 〉−q〈 〉 = 〈 〉−q(q +q−1)〈 〉 =−q2〈 〉
For (R2) we have

〈 〉 = 〈 〉−q〈 〉−q〈 〉+q2〈 〉 = 〈H〉−q(q+q−1)〈H〉+q2〈H〉−q〈 〉 =−q〈 〉
.

For (R3) we show.

〈 〉 = 〈 〉
We have

〈 〉 = 〈 〉 -q 〈 〉 and 〈 〉 = 〈 〉 -q〈 〉
If we apply (R2) to the 〈 〉 and 〈 〉 we get 〈 〉 so we can say that 〈 〉 = 〈 〉 .

Regarding −q 〈 〉 and -q〈 〉 , since we can create planar isotopy between these two

we can say -q 〈 〉 = -q〈 〉. That gives us with the following equality.

〈 〉 = 〈 〉
As a result, we see that our bracket definition is not knot invariant under Reidemeister moves

but actually it is almost knot invariant. In order to make this definition knot invariant, we

have to get rid of q−1 and q2. So, multiplying 〈D〉 with (−1)n−qn+−2n− cancels out these factors

and the remaining polynomial becomes a knot invariant. Now let us write this definition

properly.

Definition 1.10. The unnormalized Jones polynomial of link is

Ĵ (D) = (−1)n−qn+−2n−〈D〉

For this paper we need the unnormalized Jones polynomial, but we also have the normalized

Jones polynomial J (D) = Ĵ (D)(q+q−1)−1. Now we defined the Jones polynomial but how can

we find the Jones polynomial of any knot D ? We have 0-smoothing 1 and 1-smoothing

H of 0 . We have smoothings α ∈ {0,1}n , when we apply these different smoothings to

our diagram, we have n-dimensional cube . We have just union of circles at the vertices of

our cubes at the final stage. To compute the unnormalized Jones polynomial, we replace

each union of k-circles with a term (−1)rαqrα(q +q−1)kα , where rα is the “height” of a α, the

number of 1-smoothings, and kα is the number of circles in smoothing α. We then sum all

these terms over all α ∈ {0,1}n . In the end, we have the following formula.

Ĵ (D) = ∑
α∈{0,1}n

(−1)rα+n−qn+−2n−qrα(q +q−1)kα

Let us do one example about finding the normalized Jones polynomial of trefoil knot :

Example 1.11. Let us find J (&) of & (right-trefoil)
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5

(q +q−1)2 - 3q(q +q−1) + 3q2(q +q−1)2 - q3(q +q−1)3

= q−2 +1+q2 −q6 → Ĵ (&) = 〈&〉 ·(−1)n− qn+−2n−
−−−−−−−−−−−−−−→
(with (n+,n−) = (3,0))

= q +q3 +q5 −q9

J (&) = q +q3 +q5 −q9 ·(q+q−1)−1

−−−−−−−→ J (&) = q2 +q6 −q8.

Also it be good to see the Jones polynomial of the left-hand trefoil (mirror image of the right-

hand trefoil). Let us see it:

(q +q−1)3 - 3q(q +q−1)2 + 3q2(q +q−1) - q3(q +q−1)2

= (q +q−1)(q−2 −q4 −1) → Ĵ (&) = 〈&〉 ·(−1)n− qn+−2n−
−−−−−−−−−−−−−−→
(with (n+,n−) = (0,3))

= (q +q−1)(q−2 −q4 −1)q−6

J (&) = (q +q−1)(q−2 −q4 −1)q−6 ·(q+q−1)−1

−−−−−−−→ J (&) = q−2 +q−6 −q−8.

As we know the right-handed and the left-handed trefoil are mirror image of each other and
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we found their Jones polynomials. It is easy to observe that if we put q−1 in the right-handed

trefoil’s Jones polynomial, we get the left-handed trefoil’s Jones polynomial. Actually this is

not coincidence we have the following lemma.

Lemma 1.12. Suppose we have a knot K and its mirror image m(K ), then J (K )(q) = J (m(K )(q−1)

Proof. See [1] Lemma 3.2.

After these basic information about the Jones polynomial now we turn to homological alge-

bra.

1.3 Introduction to homological algebra

Homological algebra is a branch of mathematics that helps to study topology with algebraic

tools. In particular, we are using it in homology. Now we see some basic concepts of homo-

logical algebra which we use later . We begin with chain complexes.

Definition 1.13. A chain complex (C•,d•) is a sequence of modules · · · C−2,C−1,C0,C1,C2 · · ·
connected by homomorphism dn : Cn →Cn−1 where dn−1 ◦dn = 0. We call (C ′•,d•) subcom-

plex of (C•,d•), if C ′
i submodule of Ci and dn(C ′

n) ⊂C ′
n−1.

As all in other mathematical objects, we have maps between chain complexes.

Definition 1.14. Let (C•,d•) and (C ′•,d ′•) be chain complexes, a chain map F : C• → C ′• is a

sequence of map {Fn : Cn → C ′
n} such that Fn−1 ◦dn = d ′

n ◦Fn . In other words, the following

diagram should be commutative.

Cn Cn−1

C ′
n C ′

n−1

dn

Fn Fn−1

d ′
n

Chain complexes are crucial in defining and studying homology. The proposition given be-

low make our proofs easy in this paper .

Proposition 1.15. A Chain map F : C• →C ′• induces a homomorphism between the homology

groups of these two complexes.

In mathematics generally, we have isomorphism between objects and we can define similar

concepts here, we can define chain homotopy between two chain maps.

Definition 1.16. Let f and g be chain maps between (C•,d•) and (C ′•,d ′•). Chain homotopy

φ between f and g is a sequence of morphism φn : Cn → C ′
n+1 such that fn − gn = d ′

n+1 ◦
φn +φn−1 ◦ dn . We call f and g are chain-homotopic chain maps and denote it f ' g .

We have equivalence between chain complexes also.
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Definition 1.17. Suppose we have chain complexes A and B , we call chain complexes A and

B are homotopy equivalent if and only if we have chain maps f : (A•,d•) → (B•,d ′•) and

g : (B•,d ′•) → (A•,d•) such that f ◦ g ' i dB• and g ◦ f ' i dA• .

Two chain homotopic maps induce homomorphism between homology of these chains. Do

we have any relation between induced map f∗ and g∗ where chain maps are chain homotopic

? Next proposition shows us this relation.

Proposition 1.18. If we have f and g chain-homotopic chain maps, their induced maps f∗
and g∗ are the same on homology groups (i.e f∗ = g∗).

Now we have one important theorem which is crucial in many proofs.

Definition 1.19. Suppose M1, M2, · · · , Mn are modules over the fixed ring R and P1,P2, · · · ,Pn

are module homomorphisms. We say that

M1
P1−→ M2

P2−→ M3 · · · Pn−1−−−→ Mn

is an exact sequence if Im(Pn−1) = K er (Pn).

Definition 1.20. Suppose A,B and C are modules over the fixed ring R we say that

0 → A
i−→ B

p−→C → 0

is a short exact sequence, if i is monomorphism , p is epimorphism and Im(i ) = K er (p).

In particular, we can define short exact sequence for chain complex category when we take

A,B and C as chain complexes.

Definition 1.21. Suppose A,B and C are chain complexes and i and p are chain maps. We

say that sequence

0 → A
i−→ B

p−→C → 0

is short exact sequence if the induced sequence of maps

0 → An
in−→ Bn

pn−−→Cn → 0

is a short exact sequence of modules.

In a similar way we can define long exact sequence for modules.

Definition 1.22. Long exact sequence is a exact sequence where we have infinitely many

modules in sequence.

We can define exact sequence for cochain complexes similarly, we just need to replace chain

complexes with cochain complexes. Now we can use these definitions to state the theorem.
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Theorem 1.23. Suppose A,B and C are chain complexes and we have short exact sequence of

complexes given by:

0 → A
i−→ B

j−→C → 0,

then we obtain a long homology sequence of homology groups

· · ·Hn(A)
i∗−→ Hn(B)

j∗−→ Hn(C )
δ−→ Hn−1(A)

i∗−→ Hn−1(B)
j∗−→ Hn−1(C )

δ−→ ·· ·

Proof. Alan Hatcher Algebraic Topology [2], Theorem 2.16 .

Actually this theorem is also true for cochain complexes and the proof is similar to 1.23.

Theorem 1.24. Suppose A,B and C are cochain complexes and we have a short exact sequence

of complexes given by

0 → A
i−→ B

j−→C → 0

then we can obtain long cohomology sequence of cohomology groups

· · ·H n(A)
i∗−→ H n(B)

j∗−→ H n(C )
δ−→ H n+1(A)

i∗−→ H n+1(B)
j∗−→ H n+1(C )

δ−→ ·· ·

Now assume that we have two graded cochain complexes E and F can we write new cochain

complex with using E and F ?

Definition 1.25. Let E and F be graded cochain complexes and let E
f−→ F be a chain map that

preserves gradings. The mapping cone is a chain complex given in a degree k by

Cone( f )k = Ek
⊕

Fk−1

with differential

∂Cone( f ) =
(
−∂E 0

f ∂F

)
: Cone( f )k →Cone( f )k+1.

Now we can write the following lemma.

Lemma 1.26. We have a short exact sequence which include Cone( f )

0 → F [1]
i−→Cone( f )

p−→ E → 0

where F [1]n = Fn−1 , i (a) = (0, a) for a ∈ F and p(e ′, a′) = −e ′, so we can get a long exact

sequence by the theorem 1.24

· · ·→ H d (E)
H(f)−−−→ H d (F )

i∗−→ H d (Cone( f ))
p∗−→ H d+1(E) →···

Now we see the definition of graded and bigraded vector spaces which is crucial for the defi-

nition of the Khovanov homology.

Definition 1.27. We say that the vector space V is a graded vector space, if V can be de-

composed into the direct sum of the form V = ⊕
n∈N

Vn where Vn is a vector space for any n.

Elements of Vn are called homogeneous element of degree n.
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The q dimension for this new vector space is qdi mV :=∑
m

qmdi mVm . Note that qdi mV is a

polynomial in q .

Example 1.28. Suppose we have field F and we have grading vector space F−1
⊕

F1, then

qdi m(F−1
⊕

F1) = q +q−1.

Note that since 0 ∈ Vn for all n, we can say that it has any degree. Most famous example for

the graded vector spaces is set of all polynomials in one variable. As we know we have some

operations on vector spaces. We can define these operations on graded vector space too.

Definition 1.29. Given two graded vector space V and W , we can define their direct sum

with grading

(V
⊕

W )i =Vi
⊕

Wi

Similarly, we can define tensor product on graded vector space.

Definition 1.30. Given two graded vector space V and W , we can define their tensor product

with grading

(V ⊗W )n = ⊕
k+l=n

Vk ⊗Wl

where k, l ,n ∈N.

Proposition 1.31. Given Zgraded vector spaces V and W we have three properties :

1. qdi m(V
⊕

W ) = qdi m(V )+qdi m(W )

2. qdi m(V ⊗W ) = qdi m(V ).qdi m(W )

3. qdi m(V {l }) = q l .qdi m(V ) where V {l }k =Vk−l

Proof. 1.

qdi m(V
⊕

W ) =∑
k

qk di m(V
⊕

W )k

=∑
k

qk di m(Vk

⊕
Wk )

=∑
k

qk di m(Vk )+∑
k

qk di m(Wk )

= qdi m(V )+qdi m(W )
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2.

qdi m(V ⊗W ) =∑
k

qk di m(V ⊗W )k

=∑
k

qk di m(
⊕

j+l=k
V j ⊗Wl )

=∑
k

qk
∑

j+l=k
di m(V j ).di m(Wl )

=∑
k

∑
j+l=k

q j .q l di m(V j ).di m(Wl )

=∑
j

∑
l

q j di m(V j ).q l di m(Wl )

= qdi m(V ).qdi m(W )

3.

qdi m(V {l }) =∑
k

qk di m(Vk−l )

= q l
∑
k

qk−l di m(Vk−l )

= q l qdi m(V )

In this paper we generally use bigraded vector space. In the following, we see its definition.

Definition 1.32. A bigraded vector space V is a vector space that can be written as a direct

sum of vector spaces which are indexed by Z
⊕
Z :

V = ⊕
(i , j )∈Z⊕

Z
Vi , j .

1.4 Definiton of Khovanov homology

Remark 1.33. Although we call it Khovanov homology, actually it is cohomology .

Before going to the definition of the Khovanov homology, we define Khovanov bracket. The

definition is similar to Kaufmann bracket definition. By using Kaufmann Bracket definition,

we define the Jones polynomial and to define the Khovanov homology we will use the Kho-

vanov Bracket.

Definition 1.34. Given an oriented link diagram L, Khovanov Bracket JLK is a chain complex

of graded vector space and can be axiomatized by three axioms as follows.

1. J;K= 0 →Z/2Z→ 0

2. J©tLK=V ⊗ JLK

3. J0K= F
(
0 → J1K d→ JHK{1} → 0

)
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Here V is a graded vector space with q dimension q + q−1 , the {1} operator is the degree

shift operation which means in short V {l }m =Vm−l . First axioms says that Khovanov bracket

of empty diagram is complex which just has 0 and Z/2Z . Second axiom says that if we

have diagram D which can be written as a disjoint sum of circle and diagram L then we

just need to find diagram of L to find complex of diagram D . Third axiom is about flatten

operation F which takes a double complex to single complex by taking direct sum along di-

agonals. More preciesly, third one says that if we have diagram D1 and D0 which can be

obtained by respectively for 1 and 0 smoothing of i th crossing of D then we have C i ,∗(D) =
C i ,∗(D0)+C i−1,∗(D1){1} and we can see this in the following figure.

d i will be defined later, which will be the boundary map in the Khovanov homology.

In our Khovanov homology definition, we define V as a two dimensional graded vector

space generated by v+ and v− where deg v+ = 1 and deg v− = −1. Recall that we have 2n

smoothings and n crossing points in our diagram. We associate the graded vector space

Vα =V ⊗kα {rα+n+−2n−} to each α ∈ {0,1}n where,

kα = the number of circles in the smoothing α,

rα = the number of 1 in α,

n+ = number of positive crossings in L,

n− = number of negative crossings in L,

Now we can define our modules of our new chain complexes.

C i ,∗(D) = ⊕
α∈{0,1}n

i=rα−n−

Vα

With this definition of C i ,∗(D) we have a chain complex. Now let us see one example. How

can we get C i ,∗(D) when D is the Hopf link?

Example 1.35. For the Hopf link with its orientation, we know n+ = 0 , n− = 2.
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As we can see C−2,∗ =V ⊗2 {−4} , C−1,∗ =V {−3}⊕V {−3} and C 0,∗ =V ⊗2 {−2}.

Later we will define boundary map from C i ,∗(D) to C i+1,∗(D).

Now we talk about why we have ′∗′at C i ,∗(D). Let us put j instead of ′∗′ so we have C i , j (D).

An element of C i , j (D) is said to have homological grading i and q-grading j . In other words,

for v ∈ Vα ⊂C i , j (D) we say v has homological grading i and q−grading j where i = rα−n− ,

j = deg (v)+ i +n+−n−.

Warning. Since not every v ∈ C i ,∗ have degree we can say that not every v ∈ C i ,∗(D) have

q-grading . For example, v−⊕ v+ ∈ C i ,∗ does not have any q- grading. Only homogeneous

elements have q-grading.

1.4.1 Definition of boundary map for Khovanov homology

In this section, we define boundary map and we check it is indeed boundary map. From now

on for simplicity we study over the field F2.

We define map dε where ε edge of our cube which we obtained from smoothings of our dia-

gram. ε can be labeled by sequences in {0,1,∗} where height of the ε is denoted by |ε| and is

defined by the number of ’1’ in domain of the dε. We can turn edges into arrows by the rule

∗= 0 gives the tail and ∗= 1 gives the head.

Definition 1.36. Now for ε, we define dε to be function :

Vα
dε−→Vα′

where α and α′ is just different by one digit where α has 0 whereas α′ has 1 at this different

digit. dε is i d on the tensor factor corresponding to the circles that are not effected from

smoothing. If two circles merge to one circle, dε is linear maps ′m′ on these two circles

whereas if we divide one circle into two circles, dε is linear map ′∆′ on this circle.

From each vertex of the cube we go to vertex at next column at our cube. For example, we

define d001∗000 from V0010000 to V0011000. On the other hand, we do not have maps between
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two vertex if ′1′ goes to ′0′ at the other vertex. For instance, we we do not have a map from

V100 to V011.

Now let us define m on V ⊗V . The map m is linear map and since we do not have canon-

ical order on circles, we can define it commutatively i.e m(a ⊗b) = m(b ⊗a).

Definition 1.37. The map ε defined by the following rules

m : V ⊗V →V

v+⊗ v+ → v+
v+⊗ v− → v−
v−⊗ v+ → v−
v−⊗ v− → 0

and it can be extended linearly on V ⊗V .

Here we can see v+ is the identity element for the map m.

Now let us define∆ on V . Again since we have no canonical order on circles, we want∆ to be

co-commutative.

Definition 1.38. The map ∆ can be defined by the following rules

∆ : V →V ⊗V

v+ → v+⊗ v−+ v−⊗ v+
v− → v−⊗ v−
and it can be extended linearly on V .

Now we can define d i : C i ,∗(D) →C i+1,∗(D).

Definition 1.39. For v ∈Vα ⊂C i ,∗(D)

d i (v) = ∑
ε

t ai l (ε)=α
dε(v)

From this definition we can observe that for any v ∈Vα ⊂C i ,∗(D), i (d î(v)) = i (v)+1. Now

we check what happens to q gradings of elements of Vα, when we apply m and∆. Note that all

base elements {v+⊗v+, v+⊗v−, v−⊗v+, v−⊗v−} have homology grading i at this computation.

For v+⊗ v+ we have j (v+⊗ v+) = deg (v+⊗ v+)+ i +n+−n−. When we apply m to v+⊗ v+,

we get i + 1. On the other hand deg (v+) = 1 whereas deg (v+ ⊗ v+) = 2. Besides, we have

deg (v+⊗ v+)−1 = deg (v+) so

j (m(v+⊗ v+)) = i +1+deg (v+⊗ v+)−1+n+−n− = i +deg (v+⊗ v+)+n+−n− = j (v+⊗ v+)

Similarly, we can see that for other three elements {v+⊗ v−, v−⊗ v+, v−⊗ v−}. m protects q-

degree because everytime when we apply m, we have i + 1 and deg (v)− 1. Hence we get

j (m(v)) = i +1+deg (v)−1+n+−n− = j (v). Note that deg(0) can be anything. We can do the

same computation for ∆.

j (∆(v+)) = i +1+deg (v+)−1+n+−n− = j (v+)

j (∆(v−)) = i +1+deg (v−)−1+n+−n− = j (v−)
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Furthermore, d r (v) is direct sum of m(v) and ∆(v). Since these maps do not change q grad-

ing, their direct sum have the same q grading as m(v) and ∆(v).

Proposition 1.40. Suppose V is a graded vector space and v ∈ V ⊗
n where v is homogeneous

element, then j (d r (v)) = j (v).

Example 1.41. At this example we can see domain and range of dε for right-handed trefoil.

Now we need to check that d i is indeed boundary map. In other words, we need to show

d r ◦ d r−1 = 0. We prove it case by case. Again for simplicity let us do it in F2.

Warning. We show that d r is sum of i d function, m and ∆. In proof we will not show i d on

the figures. It can be easily seen from figure where it is i d .

Lemma 1.42. d r ◦ d r−1 = 0.

Proof. There are three options. We have two function m and∆ so we have positions as below.

For the first position, we have three cases. In the first case, we have four disjoint circles in

a domain of two m. For the second case, we have two circles in the domain of two m so they

have same domain. For the final case, we have three circles. One of the circle is in domain of

both m.

For the second position, we have two cases. For the first case, we have two circles in the

domain of two∆. For the second case, two∆ have the same domain they have just one circle.

For the third position, we have two cases. For the first case, we have three circles and we have

disjoint domain. For the second case, m and ∆ have one common circle in their domains.In

other words, we have two circles where one of them is domain of ∆. In total, we have seven
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cases. Now we start to investigate each of them separately. In the proof, we give number to

each circles and each functions. In each case, at the end of case we can see figure which helps

us to understand case better.

case 1. : In this case, we have 4 circles. V1 ⊗V2 is domain of m1 whereas V3 ⊗V4 is domain of

m2. Now let us see what we have at V11. Since m is commutative (i.e m(v−⊗v+) = m(v+⊗v−)),

it is enough to check three bases elements {v1+⊗v2+, v1−⊗v2+, v1−⊗v2−}. Let v1+⊗v2+ ∈ V1⊗V2 we

have

(i d ◦m1 (v1+⊗ v2+) + m4◦ i d (v1+⊗ v2+) = i d (v5+) + m4(v8+⊗ v9+) = v12+ + v12+ = 0 on V11.

Similarly, for v1−⊗ v2+ we have

(i d ◦m1 (v1−⊗ v2+) + m4◦ i d (v1−⊗ v2+)) = i d (v5−) + m4(v8−⊗ v9+) = v12− + v12− = 0 at V11.

Lastly, since m(v−⊗ v−) = 0 we have 0 at V11 for (v1−⊗ v2−).

We can say the same thing for V12 as we get the same result just by changing the numbers for

circles.

case 2. In this case, we have just 2 circles so our two functions have the same domain. Again

since m is commutative, it is enough to check whether ∆1 ◦m1 + ∆2 ◦m2 = 0 or not for {v1+⊗
v2+, v1−⊗ v2+, v1−⊗ v2−}. Let us begin with v1+⊗ v2+
∆1 ◦m1(v1+⊗ v2+) + ∆2 ◦m2(v1+⊗ v2+) = ∆1(v3+) + ∆2(v4+) = 2(v5+⊗ v6−+ v5−⊗ v6+) = 0.

Similarly, for v1−⊗ v2+ we have

∆1 ◦m1(v1−⊗ v2+) + ∆2 ◦m2(v1−⊗ v2+) = ∆1(v3+) + ∆2(v4+) = 0 as we shoved above .

For v1−⊗ v2−, since m(v−⊗ v−) = 0 any (∆◦m)(v−⊗ v−) = 0.

case 3. : In this case, we have 3 circles but one of them is in both domain. V1⊗V2 are domain

of m1 and V2⊗V3 are domain of m2. Let us begin with basis in the form of (a1⊗v2+⊗b2) where

a,b ∈ {v+, v−}. Since v+ is identity element for m we have

m3(i d(a1)⊗m1(v2+⊗b2)) + m4(m2(a1 ⊗ v2+)⊗b2) = m3(a4 ⊗b5) + m4(a6 ⊗b7) this equation

can be equal to 2v8+, 2v8− or 0+0 but as a result it is equal to 0 in all cases which depend on a1

and b2.
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Now we check bases which we have v2− in the middle. For v1−⊗ v2−⊗ v3− we have

m3(i d(v1−)⊗m1(v2−⊗ v3−)) + m4(m2(v1−⊗ v2−)⊗ v3−) = m3(v4−⊗0) + m4(0⊗ v7−) =0

For v1+⊗ v2−⊗ v3− again we have

m3(i d(v1+)⊗m1(v2−⊗v3−)) + m4(m2(v1+⊗v2−)⊗v3−) = m3(v4+⊗0) + m4(v6−⊗v7−) = 0+0 = 0 and

it is the same for v1−⊗ v2−⊗ v3+.

Finally, we can check v1+⊗ v2−⊗ v3+ ,

m3(i d(v1+)⊗m1(v2−⊗v3+)) + m4(m2(v1+⊗v2−)⊗v3+) = m3(v4−⊗v5+) + m4(v6−⊗v7+) = v8−+v8− = 0

case 4. :In this case, we have two circles. V1 is domain of∆1 and V2 is domain of∆2. We check

the result on just V9 ⊗V10 because on V11 ⊗V12 computation is the same .

Let us begin with v1−.

id ◦ (∆1(v1−)) + ∆4 ◦ id (v1−) = id(v3−⊗ v4−) + ∆4(v6−) = v9−⊗ v10− + v9−⊗ v10− = 0.

Next one is v1+.

id ◦ (∆1(v1+)) +∆4 ◦ id (v1+) = id(v3+⊗v4−+v3−⊗v4+) +∆4(v6+) = (v9+⊗v10− +v9−⊗v10+ ) + (v9+⊗v10− +
v9−⊗ v10+ ) = 0.

case 5. In this case, we have just one circle and again we begin with v1−.

∆2(∆1(v1−)) + ∆4(∆3(v1−)) = ∆2(v2−⊗ v3−) + ∆4(v4−⊗ v5−) = id(v2−) ⊗∆2(v3−) + ∆4(v4−)⊗ id(v5−) =
v6−⊗ v7−⊗ v8− + v6−⊗ v7−⊗ v8− = 0.

Now we compute result for v1+.

∆2(∆1(v1+))+∆4(∆3(v1+))=∆2(v2+⊗v3−+v2−⊗v3+)+∆4(v4+⊗v5−+v4−⊗v5+)= id(v2+)⊗∆2(v3−)+id(v2−)

⊗ ∆2(v3+) + ∆4(v4+) ⊗ id(v5−) + ∆(v4−) ⊗ id(v5+) = v6+⊗ v7−⊗ v8−+ v6−⊗ v7+⊗ v8−+ v6−⊗ v7−⊗ v8+ +
v6+⊗ v7−⊗ v8−+ v6−⊗ v7+⊗ v8− + v6−⊗ v7−⊗ v8+ = 0.C
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case 6. : In this case, we have 2 circles. V1 ⊗V2 is domain of m1 and V2 is domain of ∆1. We

check four bases separately. Let us begin with v1−⊗ v2− .

∆2(m1(v1−⊗ v2−))+m2(i d(v1−)⊗∆1(v2−)) =∆2(0)+m2(v4−⊗ v5−)⊗ i d(v6−) = 0+0⊗ v8− = 0.

Secondly, let us check v1+⊗ v2− . We have

∆2(m1(v1+⊗v2−))+m2(i d(v1+)⊗∆1(v2−)) =∆2(v3−)+m2(v4+⊗v5−⊗v6−) = v7−⊗v8−+m2(v4+⊗v5−)⊗
i d(v6−) = v7−⊗ v8−+ v7−⊗ v8− = 0.

Thirdly , next base element is v1−⊗ v2+ .

∆2(m1(v1−⊗v2+))+m2(v4−⊗∆1(v2+)) =∆2(v3−)+m2(v4−⊗v5+⊗v6−+v4−⊗v5−⊗v6+) = v7−⊗v8−+m(v4−⊗
v5+)⊗ i d(v6−)+m(v4−⊗ v5−)⊗ i d(v6+) = v7−⊗ v8−+ v7−⊗ v8−+0⊗ v8+ = v7−⊗ v8−+ v7−⊗ v8− = 0.

Finally, let us check v1+⊗ v2+ .

∆2(m1(v1+⊗ v2+))+m2(v4+⊗∆1(v2+))+ = ∆2(v3+) + m2(v4+⊗ v5+)⊗ i d(v6−)+m(v4+⊗ v5−)⊗ i d(v6+)

= 2(v7+⊗ v8−) + 2(v7−⊗ v8+)= 0.

case 7. : In this case, we have 3 circles. V1 ⊗V2 is domain of m1 whereas V3is domain of

∆1.Firstly, We compute result just on V10 so we just have m2 +m1. For v−⊗ v− since m(v−⊗
v−) = 0, result is 0 on V10. Furthermore, m is commutative so we can just compute v+ ⊗
v−, v+⊗ v+.

Firstly , v1+⊗ v2− so

i d ◦m1(v1+⊗v2−)+m2◦i d(v1+⊗v2−) = i d(v4−) + m2(v6+⊗v7−) = v10− +v10− = 0. Next one is v1+⊗v2+.

i d ◦m1(v1+⊗ v2+)+m2 ◦ i d(v1+⊗ v2+) = i d(v4+) + m2(v6+⊗ v7+) = v10+ + v10+ = 0.

Redarding to V11 ⊗V12, we have ∆1 +∆2. Now let us check for v3−
i d(∆1(v3−))+∆2(i d(v3−)) = i d(v6−⊗ v7−)+∆2(v5−) = v11− ⊗ v12− + v11− ⊗ v12− = 0.

Now we compute v3+
i d(∆1(v3+))+∆2(i d(v3+)) = i d(v6+⊗ v7−+ v6−⊗ v7+)+∆2(v5+) = v11+ ⊗ v12− + v11− ⊗ v12+ + v11+ ⊗ v12− +
v11− ⊗ v12+ = 0.
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This proof shows that d i is indeed boundary map. We have already defined sequence of

C i ,∗(L) for a link diagram L, hence we have a chain complex. We can compute the Khovanov

homology anymore. At this Khovanov homology, we have some important definition. For

example, Euler characteristic. The graded Euler characteristic for this complex is∑
r

(−1)r qdi mH r (D)

which is equal to the unnormalized Jones polynomial of the knot diagram (D).

Proof. [3] Theorem 1.

Now it is time to see one example about the Khovanov homology. How can we find Kho-

vanov homology groups of Hopf link).

Example 1.43. Let us compute the homology of C∗,∗( ). As we can see at example 1.35, we

have just only three non-trivial terms :

0
d−→C−2,∗())

d−→C−1,∗())
d−→C 0,∗())

d−→ 0

More explicitly this can be rewritten as a chain :

Now we provide table to show cycles and boundaries and homology of the Hopf link.
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Homologies -2 -1 0

cycles { v−⊗ v++ v+⊗ v−, v−⊗ v−} { v−⊗ v−}, {v+⊗ v+}
{ v−⊗ v−}, {v−⊗ v+}

{ v+⊗ v−}, {v+⊗ v+}

Boundaries none { v−⊗ v−}, {v+⊗ v+} { v−⊗ v−}, {v−⊗ v++ v+⊗ v−}

Homology { v−⊗ v++ v+⊗ v−}, {v−⊗ v−} none { v+⊗ v+}, {v−⊗ v+}

q- degrees -4,-6 0.-2

As a result, we have H−2,−4 = H−2,−6 = H0,0 = H0,−2 = F where F is field we study in.

Now we can think about what happens if we change orientation on one component of the

Hopf link. We have the Hopf link with different orientation as in the following figure .

Since we have n+ = 2 and n− = 0 for this orientation, we have chain complex as below

0
d−→C 0,∗())

d−→C 1,∗())
d−→C 2,∗())

d−→ 0

where C 0,∗ =V ⊗V , C 1,∗ =V
⊕

V and C 2,∗ =V ⊗V and maps between them are the same as

in the above 1.43. Homology table is similar to the table above.

Homologies 0 1 2

cycles { v−⊗ v++ v+⊗ v−, v−⊗ v−} { v−⊗ v−}, {v+⊗ v+}
{ v−⊗ v−}, {v−⊗ v+}

{ v+⊗ v−}, {v+⊗ v+}

Boundaries none { v−⊗ v−}, {v+⊗ v+} { v−⊗ v−}, {v−⊗ v++ v+⊗ v−}

Homology { v−⊗ v++ v+⊗ v−}, {v−⊗ v−} none { v+⊗ v+}, {v−⊗ v+}

q- degrees 2,0 6.4

Now let‘s compute euler characteristic of Hopf link at 1.43.

χ( ) = (−1)−2qdi mH−2(D)+ (−1)0qdi mH 0(D) = q−6 +q−4 +q−2 +q0

whereas we have

q6 +q4 +q2 +q0

as the Euler characteristic of the Hopf link . Actually, if we have link with 2 components

and if we change orientation of one component, we had relation between their Euler char-

acteristic polynomial. We can explain this relation like that if we replace q−1 with q in one

polynomial, we get other polynomial. On the other hand, for a knot this is not true because

when we change orientation on the knot we are not changing n+ or n− so we do not change

any grading.

So far we have seen the Jones polynomial and the Khovanov homology. Both of these are knot

invariants but the Khovanov homology is stronger knot invariant than the Jones polynomial.

This means that we can find two knots which have the same Jones polynomial whereas their

Khovanov homology groups are different. In the following figure, we see two knots which

they have the same Jones polynomial but their Khovanov homology are different. For com-

putation of their Jones polynomials and Khovanov homology groups see [4] page 17 Example

3.2.
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Example 1.44.

1.4.2 Reiedemeister moves

We know that if we have X and Y topological space and if they are homeomorphic then ho-

mology group of them is the same. We are expecting the same thing here also, but in knot

theory we have the Reidemeister moves instead of homeomorphism. Now we show that if we

have two equivalent knots, their Khovanov homology is the same.

1.4.2.1 Invariance of Khovanov homology under R1

At this section we use some figures but instead of using figures again and again we assign

them letters and we use these letters instead of figures. Say A = , B = and C = .

Actually, diagram A is just local part of diagram link. In the proof, I will say A instead of link

diagram. We can say the same for B and C .

Now we show H(A) ∼= H(C )

Lemma 1.45. H(A) ∼= H(C )

To begin with , if [|A|] represented by n-dimensional cube then [|B |] and [|C |] represented

by (n − 1)- dimensional cube. If we apply "0" smoothing to the A it will be [|B |] and if we

apply "1" smoothing to [|A|], it will be [|C |]. Between [|B |] and [|C |] we always have a map

m because [|B |] always have one more circle than [|C |] . Now we show that actually this m is

chain map.

Theorem 1.46. m : [|B |] → [|C |][1] is chain map . In other words, d r ◦ m = m ◦ d r .

Proof. Since d r consists sum of m and∆, it is enough to show m ◦ m = m ◦ m and∆ ◦ m = m

◦ ∆. m ◦ m = m ◦ m is obvious . For ∆ ◦ m = m ◦ ∆ look at case 6 .

Assume that we have C i ,∗(A) and we know that it is direct sum of Vα for different α where

different α have the same number 1 smoothing. Now suppose that we have α1 = 0k1k2...kn ,

it is easy to see that we can get Vα1 if we apply resolution α2 = k1k2...kn to the diagram B .

Similarly, if we have α3 = 1k1k2...kn , we can get Vα3 from diagram C with applying resolution

α4 = k1k2...kn . As a consequence, we can say that ifα starts with 0 than Vα belongs to C k,∗(B)

and if α starts with 1 then it belongs to C l ,∗(C ). This shows that C i ,∗(A) =C k,∗(B)
⊕

C l ,∗(C ).

Diagram A and B have the same number negative crossing. Hence rα1 = rα2 and k = i . Re-

garding l , since rα3 = rα4 +1, we have l = i −1 Furthermore, we have chain map
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m : [|B |] m−→ [|C |][1]. Therefore, we can see [|A|] as a cone(m). This will make our proof easy

at this section.

We know that for every circle we assign vector space V =< v−, v+ >. Now let us assign V ′ =<
v+ > instead of V =< v−, v+ > to the special circle ′o′ which can be seen in the figure and

denote this chain complex by [|B |]v+ . It is obviously subcomplex of [|B |]. Now let us define

[|A′|] a subcomplex of [|A|]. It is a mapping cone of m where we have m : [|B |]v+
m−→ [|C |][1].

Theorem 1.47. [|A′|] is acyclic (i.e [|A′|] has no homology)

Before starting prove this claim, we need to prove that the map

m : [|B |]v+ → [|C |][1]

is an isomorphism.

Claim. m is an isomorphism.

Proof. To begin with , m(· · ·−⊗−⊗·· ·−⊗v+) = ·· ·−⊗−⊗·· ·−⊗−. In short, m takes elements

which has v+ at the end and sends it to elements which have the same components without

v+ at the end. It is obviously one-to-one .

It is onto. Because if we take an element a ∈ [|C |][1] then m(a ⊗ v+) = a.

m(a1 ⊗ v++a2 ⊗ v+) = a1 +a2 = m(a1 ⊗ v+)+m(a2 ⊗ v+).

so m is linear, one-to-one and onto. Therefore, it is isomorphism between [|B |]v+ and [|C |][1].

Proof. of 1.47

As we know [|A′|] is a mapping cone. By the lemma 1.26 we have exact sequence below

· · ·→ H d ([|B |]v+)
H(m)−−−→ H d ([|C |]) → H d (Cone(m)) → H d+1([|B |]v+) → H d+1([|C |]) · · ·

Since m is an isomorphism, H(m) is also isomorphism. Hence we have exact sequence as

below

H d ([|B |]v+)
H(m)−−−→ H d ([|C |]) → H d (Cone(m)) → H d+1([|B |]v+)

H(m)−−−→ H d+1([|C |])

Since H(m) is an isomorphism, we have exact sequence as below

H d ([|C |]) 0−→ H d (Cone(m))
0−→ H d+1([|B |]v+)

and by exactness H d (cone(m)) = 0 for all d .

This means [|A′|] is acyclic. Again with using 1.26 we can prove the following lemma.

Lemma 1.48.

H d ([|A|]) ∼= H d ([|A|])/[|A′|])
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Proof. We have short exact sequence below

0 → [|A′|] i−→ [|A|] p−→ [|A|]/[|A′|] → 0

and again we get long exact sequence as below by 1.26

→ H d ([|A′|]) → H d ([|A|]) → H d ([|A|]/[|A′|] → H d+1([|A′|])

We just showed that A′ is acyclic i.e H d (A′) = 0 for all d . We have exact sequence like below

0 → H d ([|A|]) → H d ([|A|]/[|A′|] → 0

By exactness of sequence

H d ([|A|]) ∼= H d ([|A|])/[|A′|])
for all d .

Claim. [|A|]/[|A′|] ∼= [|C |][1].

Proof. We know [|A|] = [|B |]⊕ [|C |][1] and [|A′|] = [|B |]v+ ⊕ [|C |][1] we can define map

φ : [|A|] → [|B |]v+

(v+−⊗·· · )⊗ [|C |][1] → 0

(v−−⊗·· ·−)⊗ [|C |][1] → (v−−⊗·· ·−)

where (v+−⊗·· ·−) and (v−−⊗·· ·−) ∈ [|B |].
Here φ is obviously onto and we have [|A′|] as a kernel of φ. Therefore we have [|A|]/[|A′|] ∼=
[|B |]/(v+ = 0). By the Khovanov bracket [|B |]/(v+ = 0) = < v− > ⊗ [|C |]. We know that

< v− > ⊗ [|C |][1] ∼= [|C |][1].

Now we have this 0 → [|A′|] i−→ [|A|] p−→ [|A|]/[|A′|] → 0

if we apply H functor to this sequence, we get a long exact sequence again. Since H d ([|A′|]) =
0 for all d , we have

H d ([|A|]) ∼= H d ([|C |]) (1.1)

At the beginnig, we had the diagrams A and C which we can pass from diagram A to

diagram C with Reidemeister 1 move and we showed H([|A|]) ∼= H([|C |]). This means that if

we apply (R1) to any diagrams, we get diagrams which has the same Khovanov homology .

As a consequence, this shows that the Khovanov homology is an invariant under R1.

1.4.2.2 Invariance of Khovanov homology under R2

At this case we also assign letters to figures so say D1 = and D2 = . Now we can prove

invariance of Khovanov homology under R2.
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Proof. For computing H([|D1|]) we define complex C and C ′ as below

,

Here we can observe that C ′ is really subcomplex of C because left upper corner and right

upper corner of C ′ are subcomplex of left upper and right upper corners of C respectively.

Furthermore, since Im(m) ∈ [| |] in C ′, we say that C ′ is really subcomplex of C . We have

the basic following claim.

Claim. C ′ is acyclic

Proof. Actually, proof is the same as in (R1). See 1.4.2.1

Now we have C /C ′ complex

Claim. ∆ is bijective in C /C ′.

Proof. ∆ has one circle in its domain and two circles in codomain. Let us say that one of the

circle in codomain (say that first circle) is circle which can be seen in . We also know

that we kill v+ in V which assigned for first circle. We have v− ⊗ v− and v− ⊗ v+ as a base

elements of codomain of ∆ because v+ = 0 in the first circle. Image of ∆ is a vector space

which generated by v−⊗v− and v−⊗v++v+⊗v−. Since v+ = 0, we have v−⊗v− and v−⊗v+
as generators of Im(∆), hence ∆ is onto. In addition to that, since ∆ is linear, onto and its

domain and codomain have the same dimension, it should be one-to-one. As a result, ∆ is

bijective.

Now let us define C ′′′ subcomplex of C /C ′ . It consists all α ∈ [|D2|] and all pairs of the

form (β,d∗0o∆−1(β)) where β=∆(α). We have it as below
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We have δ : α→ (β,τ(β)). Since ∆ is one-to-one and onto, δ is also one-to-one and onto .

Now we can see C ′′′ as mapping cone of α and (β,τ(β)). We have map δ between them which

is an isomorphism so C ′′′ is acyclic.

Now let us look at C /C ′/C ′′′. Since we take regular α ∈ [|D2|] , lower left corner of C /C ′/C ′′′ is

zero. In addition to that, we are killing (β,τ(β) in v+=0
⊕

[| |]. We know that for any

vector spaces V1 and V2 and for f : V1 →V2 linear map f , we have V1 ⊕V2/{x, f (x)} ∼= V2.

We can generalize this from vector spaces to the chain complex. Because in the Khovanov

homology we have vector spaces as modules of our chains so we can apply this vector argu-

ment to all our chain members. As a result, when we kill (β,τ(β)) in v+=0
⊕

[| |],
we have H([|C /C ′/C ′′′|]) ∼= H([| |]). Finally, we say that H([|D1|]) = H(C ) and since C ′ is

acyclic, we can say H(C ) ∼= H(C /C ′). Furthermore, We showed C ′′′ is acyclic.

H(C /C ′) ∼= H(C /C ′/C ′′′) ∼= H([| |]). Hence H([|D1|]) ∼= H([| |]).

Finally, we can say that if we have diagrams and if we apply R2 to this diagram the new dia-

gram will have the same Khovanov homology as the old one. In short, the Khovanov homol-

ogy is invariant under R2.

1.4.2.3 Invariance of Khovanov homology under R3

Let us begin with smoothing two sides of (R3) :

It is easy to observe that the bottom layers of these two cubes correspond to smoothings

of and since these two diagrams are planar isotopic these two layers are
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isomorphic. Furthermore, top layers corresponds to smoothings of and and

top layers are also isomorphic .

Now proof is the similar to the proof of invariance of (R2). Define C ′ and C ′′′ similarly as

we did it in proof of (R2) within the top layers of both cubes. For example, for the left cube

above we have C ′ as below

When we take out quotient by its C ′ and C ′′′ of both cubes we get two cubes as below

These two cubes are isomorphic where we have map φ between these two cubes. It acts

on as i d on bottom layer and sends pair (β1,γ1) to (β2,γ2) at upper layer. It is obviously

isomorphism at bottom level because it is just i d at bottom level. As we mentioned earlier,

upper layers of the two cubes which we have in the beginning of the proof are isomorphic so

when we take quotient by their C ′ and C ′′′ of both cubes, this isomorphism will be protected.

In other words, φ is isomorphism for upper layer also.

We check ifφ is isomorphism between two complexes or not for it, we need to showφ◦∂=
∂◦φwhere d is a boundary map. In our cases since we have zero for left and right corner at top

level, to show φ◦∂= ∂◦φ we need to show τ1 ◦d1,∗01 = d2,∗01 and d1,∗10 = τ2 ◦d2,∗01. We just
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prove τ1◦d1,∗01 = d2,∗01. The other one can be prove similarly. Now we can write τ1 = d1◦∆−1

where d1 is a map between and . We know d1,∗01 is equal to∆ and additionally it is one-

to-one. Therefore we have τ1 ◦d1,∗01 = d1 ◦∆−1 ◦d1,∗01. Since and are planar isotopic,

we say that their chain complexes are isomorphic also, hence we deduce that∆−1◦d1,∗01 = i d .

Furthermore, since [| |] and [| |] are isomorphic, [| |] and [| |] are also isomorphic.

Therefore d1 = d2,∗01. As a result, we showed τ1 ◦d1,∗01 = d1 ◦∆−1 ◦d1,∗01.
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Chapter 2

Khovanov Homology And Slice Genus

In this chapter, we will use Khovanov homology to define the knot invariant s(K ) and we will

prove two main theorems. Before theorems we need some definitions.

Definition 2.1. Slice genus of smooth knot K in S3 is the least integer g such that K is the

boundary of a connected, orientable 2-manifold S of genus g embedded in the 4-ball D4

bounded by S3. It is Denoted by g∗(K ).

Theorem 2.2. |s(K )| ≤ 2g∗(K ) .

Definition 2.3. Given two links L0 ⊂ Sn and L1 ⊂ Sn . We say L0 and L1 are concordant

if there exist an embedding f : L0 × [0,1] → Sn × [0,1] such that f (L0 × {0}) = L0 × {0} and

f (L0 × {1}) = L1 × {1}.

Knot Concordance is an equivalence relation on the set of knots. Furthermore, knot con-

cordance class form an abelian group under the connected sum operation. We denote this

group by Conc(S3). For more information see [5]

Theorem 2.4. The map s induces a homomorphism from Conc(S3) to Z. .

2.1 Lee homology

Lee homology uses similar contruction for modules but we have m′ and ∆′ instead of m and

∆. Actually the underlying modules are the same for both Lee homology and Khovanov ho-

mology but the maps m′ : V ⊗V →V and ∆′ : V →V ⊗V are different. They are given by

m′(v+⊗ v+) = m′(v−⊗ v−) = v+ ∆′(v+) = v+⊗ v−+ v−⊗ v+
m′(v+⊗ v−) = m′(v−⊗ v+) = v− ∆′(v−) = v−⊗ v−+ v+⊗ v+
we have below equalities.

m′ = m +Φm

∆′ =∆+Φ∆
See page 3 of [6]. We denote the resulting chain complex by C K h′(L) and homology by K h′(L).

As we remember, we have {v+, v−} as basis for V . Let’s have a = v−+ v+ and b = v−− v+,

27
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{a,b} is also base for V . With respect to this basis, we have

m′(a ⊗a) = 2a ∆′(a) = a ⊗a

m′(a ⊗b) = m′(b ⊗a) = 0 ∆′(b) = b ⊗b

m′(b ⊗b) =−2b

We have basis {a,b} with respect to this basis we can prove the following theorem

Theorem 2.5. K h′(L) has rank 2n , where n is the components of link L.

Proof. [6] Theorem 5.1

Actually, this theorem tell us that we have a bijection between the possible orientations

on a link L and generators of K h′(L), which we refer to as canonical generators. We can see

this bijection as follows. Given an orientation o of L, let Do be the corresponding oriented

resolution, which means resolution will respect orientation. We label the circles in Do with

a and b according to the following rule. To each circle C we assign a mod 2 invariant. We

are doing it as follows. Draw a ray in the plane from C to infinity, it can be in any direction,

and take the number of it intersect the other circles mod 2. To this number, we add 1 if C has

counterclockwise orientation, and 0 if it does not. Label C by a if the resulting invariant is 0,

by b if it is 1. We denote the resulting state by s0.

We have an important observation about orientation as follows.

Lemma 2.6. Suppose there is a region in the state diagram for so containing exactly two seg-

ments, as shown in the figure below. Then either the orientations of the two are the same and

the labels are different (like part a of the figure) or the orientations are different and the labels

are the same (like part b of the figure).

Proof. We have three cases, the first one is that we have just one circle. Two segments belong

to the same circle so we have just one label with different orientations like part b of the figure.

The Second case is the case where segments belong to two circles, one of which is contained

inside the other one. Firstly, assume that we have different orientations for the two circle and

suppose that the circle which is inside the other one has counterclockwise orientation. Since

it intersects other circles one time and since it has counterclockwise orientation, we have a

for this circle. Similarly, the outer circle have a also. And by the same logic, if we chance

orientations of circle, we have b for each circle. As a result, we have different orientations but

same label for circles. Next, assume that we have same orientation on two circles and let’s say
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that we have counterclockwise orientation on them since inner circle intersects outer one

once and since it has counterclockwise orientation, it has label a whereas outer circle has

b. If we change orientations on circles, we will have b for inner and a for outer circle. Third

case is the case where segments belong to two circle, neither of which is contained inside

the other. Let’s say that we have same orientation on both of them, then they will intersect

each other with the same mod 2 number and since they have same orientation, segment

labels will be the same. What if we have different orientation on circles ? Their intersection

number of each other will be the same as we did previously one but since they have different

orientation, one of them will have label a and other b.

Corollary 2.7. If two circles in the state diagram for s0 share a crossing, they have different

labels.

Proof. Since we resolve crossing point with the orientation preserving way, resulted two cir-

cles should have same orientation.

2.2 Definition and basic properties of the Invariant

Before making formal definition of the invariant, we need some information about filtrations.

Suppose C is chain complex. A finite length filtration of C is a sequence of subcomplexes

0 =Cn ⊂Cn−1 ⊂Cn−2 ⊂ ·· · ⊂Cm =C

We associate grading to this kind of filtration as follows: x ∈ C has grading i if and only if x ∈
Ci but x ∉ Ci−1. If f : C −→ C ′ is a map between two filtered chain complexes , we say that f

respects the filtration if f (Ci ) ⊂C ′
i . More generally, we say that f is filtered map of degree k if

f (Ci ) ⊂C ′
i+k . A filtration {Ci } induces filtration {Si } on H∗(C ) defined as follows : a class [x]

in H∗(C ) is in Si if and only if it has representative which is in {Ci }. If f : C −→ C ′ is a filtered

chain map of degree k, it is easy to see that induced map f∗ : H∗(C ) −→ H∗(C ′) is also filtered

of degree k. Now let us denote by s grading on K h′(K ) induced by the q grading on C K h′(K ).

We can see this induced q grading as follows.

We have q grading on C K h′(K ). This means we have filtration on C i K h′(K ) (i th module of

our chain complex). Now let’s define

F j (C i K h′(K )) = span{v ∈C i K h′(K )|qdeg (v) ≥ j }

and we have filtration

{0} · · · ⊂ F j+1(C i K h′(K )) ⊂ F j (C i K h′(K )) ⊂ ·· · ⊂C i K h′(K )

Now we see how we can reduce this filtration to H i
Lee (K ). Since dLee keeps q grading same or

increase it by four, we have

dLee : C i K h′(K ) −→C i+1K h′(K )

dLee : F j (C i K h′(K )) −→ F j (C i+1K h′(K ))⊕F j+4(C i+1K h′(K )) ⊂ F j (C i+1K h′(K ))
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Let π : K er dLee −→ H i
Lee (K ) be the projection.

Note that K er dLee ⊂C i K h′(K ). Now let’s define

F j (H i
Lee ) =π(K er dLee ∩F j (C i K h′(K )))

As a result, we have filtration

{0} · · ·F j+1(H i
Lee ) ⊂ F j (H i

Lee ) ⊂ ·· · ⊂ H i
Lee

Using this q grading we have

Definition 2.8.

smi n(K ) = mi n{s(x)|x ∈ K h′(K ), x 6= 0}

smax (K ) = max{s(x)|x ∈ K h′(K ), x 6= 0}

For unknot U , in C K h′(U ) we have just V in our complex. Note that j (v+) = 1 and j (v−) =
−1, so we have smax (U ) = 1 and smi n(U ) =−1.

2.2.0.1 The invariant s

In this section we define invariant s.

Proposition 2.9.

smax (K ) = smi n(K )+2

which justifies

Definition 2.10.

s(K ) = smax (K )−1 = smi n(K )+1

Before proving the proposition, we need some lemmas and results.

Lemma 2.11. Let n be the number of components of L. We have orientation o and ō where

they are opposite to each other. There is a direct sum decomposition K h′(L) ∼= K h′
o(L)⊕K h′

e (L),

where K h′
o(L) is generated by all states with q grading congruent to 2+n mod 4, K h′

e (L) is

generated by all states with q grading congruent to n mod 4. If o is an orientation on L then

so + sō is contained in one of two summands, and so − sō is contained in other.

We will use the following lemma to prove Lemma 2.11

Lemma 2.12. Denote number of components of the link by |L|. All elements of the chain com-

plexes have degree equal to |L| mod 2.

Proof. Let s ∈ S(D) be a state and m = v±⊗·· ·⊗v± ∈Cs . Let m have k+ times v+ and k− times

v− factors. As we know j (m) = i (m)+deg (m)+n+−n− = rα−n−+k+−k−+n+−n−. (Note

that rα is number of 1 in smoothingα andα is smoothing which has diagram s after resolving
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link diagram. Since k+−k− ≡ k++k− ≡ #k(s) mod 2 where #k(s) denote the number of circle

in the state s and rα−n−+n+−n− ≡ rα+n− mod 2, we have j (m) =rα+n++#k(s) . We know

that we need to resolve each crossing point to go from the link diagram to the Seifert state

so and we know that each oriented resolution changes number of link components by one.

In other words, we have link diagram with |L| components and we get k(so) after resolving

n crossing points. As a result, we have |L| +n = k(so). When we go from any state s to so , it

is still true that at each crossing number of components(circles) change by one so we have

rα+k(s) = rα′+k(so) whereα′ is smoothing for so . Now we have j (m) =rα+n++#k(s)= j (m) =
rα′ +n++#k(so). We know that rα′ = n− so j (m) =rα+n++#k(s) = j (m) = n−+n++#k(so) =
n +#k(so) = |L| mod 2.

Corollary 2.13. For any knot K homogeneous elements in C K ′h(K ) have odd q degree.

Proof. of Lemma 2.11

As we know we can write

m′ = m +Φm

∆′ =∆+Φ∆
We know that m and ∆ do not change q grading but Φm and Φ∆ increase q grading by 4.

We showed that for any homogeneous element m, j (m) = |L| mod 2. This means that any

homogeneous element has q grading |L| mod 4 or |L|+2 mod 4 so we can write

C (D) =Co(D)⊕Ce (D)

Where Co(D) contains all elements with q degree with q grading congruent to 2+|L| mod 4

and Ce (D) contains all elements with q degree with q grading congruent to |L| mod 4. Since

we know that boundary map will act on these two chain complexes Co(D) and Ce (D), we can

say

K h′(L) ∼= K h′
o(L)⊕K h′

e (L)

This proves the first statement of lemma 2.11. Now we will show that so + sō and s0 − sō have

different q degree in mod 4 and difference is 2 mod 4.

Lemma 2.14. so + sō is the sum of monomials where we have even number of v+ in these

monomials. Where as so − sō is the sum of monomials where we have odd number of v+ in

these monomials.

Proof. We use induction on number of circles in the diagram of so and sō . Assume that we

have just 1 circle, then so + sō = 2v− and so − sō = 2v+. The lemma is true for 1 circle. Now

assume that we have k +1 circles and we know for k circles the lemma is true. Let’s say for k

circles m = a⊗b⊗·· ·⊗b and n = b⊗a⊗·· ·a. (Note that m and n are tensor product of a and

b k times, so what we wrote as m and n is just example). Now take so = a ⊗m and sō = b ⊗n.

We have

so + sō = v+⊗ (m −n)+ v−⊗ (m +n)

By induction, we know that m +n is the sum of monomials where we have even number of

v+ in these monomials and m −n is the sum of monomials where we have even number of
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v+ in these monomials so so + sō = v+⊗(m−n)+v−⊗(m+n) is the sum of monomials where

we have even number of v+ in these monomials. Proof is the same when we take so = b ⊗m

and sō = a ⊗n. Also proof for so − sō is similar.

Now we can say that monomials with even number of v+ are the base for one of the two

chain complexes and monomials with odd number of v+ are the base for other chain com-

plex. As a result, so + sō and so − sō are in the different chain complexes.

Corollary 2.15. s(so) = s(sō) = smi n(K )

Proof. We know that [so] and [sō] are basis for Lee homology of knot K . Now assume that we

have [x] ∈ K h′(K ) with the property s([x]) < s(so) Since di mK h′(K ) = 2 {[so − sō], [so + sō]} is

also base for K h′(K ) so we can write [x] as a linear sum of [so + sō] and [so − sō]. We have

s([x]) = s([so + sō]+ [so − sō]) = s(2[so]) = s([so])

which contradicts with our assumption s([x]) < s(so) so s(so) = s(sō) = smi n(K )

Corollary 2.16. smax (K ) > smi n(K )

Proof. We showed that [so + sō] and [so − sō] have different q degree this means at least one

of them greater than smi n(K ).

Lemma 2.17. For knots K1 and K2, there is short exact sequence

0 → K h′(K1#K2)
p∗−→ K h′(K1)⊗K h′(K2)

∂−→ K h′(K1#K2) → 0

The maps p∗ and ∂ are filtered of degree -1.

Proof. See [7] Lemma 3.8.

Now we can prove proposition 2.9

Proof. Consider the exact sequence of the previous lemma and let K1 = K and K2 =U , .

Denote the canonical generators by sa and sb we label these generators by label of circle near

the connected sum and denote the canonical generators of U by a and b. We can assume

that Smax = s(sa − sb). From figure A below, we can see that ∂((sa − sb)⊗a) = sa . (We should

remember that m′(b⊗a) = 0). We know by the Lemma 2.17 that ∂ is of degree -1 and s(a) =−1.

We can say that

s(sa − sb)⊗a) ≤ smi n +1

smax −1 ≤ smi n +1

we know smi n ≤ smax −1 ≤ smi n +1. Since smi n and smax are odd, we have

smax −1 = smi n +1.
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Figure A

∂

2.2.0.2 Properties of s

we check how s behave with respect to the mirror image and direct sum.

Proposition 2.18. Let K̄ be the mirror image of K. Then we have

smax (K̄ ) =−smi n(K )

smi n(K̄ ) =−smax (K )

s(K̄ ) =−s(K )

Proof. Suppose that C is a filtered chain complex with filtration C = C0 ⊃ C1 ⊃ C2 · · · ⊃ Cn =
{0}. Then the dual complex C∗ has filtration {0} =C∗

0 ⊂C∗
−1 ⊂ ·· · ⊂C∗−n =C∗, where

C∗
−i = {x ∈ C∗|〈x , y〉 = 0,∀y ∈ Ci }. Firstly, we see that Ci (K ) ' C−i (K̄ ). To see this, let D be

a diagram of K and D̄ be a diagram of K̄ . Assume that α is a resolution for D and α′ is a

resolution for D̄ where α′ is acquired by changing every digit of α. In other words, change

digit if it is 1 in α to 0 to get α′ or 0 to 1. We observe n − rα = rα′ . Furthermore, we know that

positive crossing point in D is negative crossing point at D̄ . Then we have

i = rα−n− = n − rα′ −n− = n+− rα′

But for α′ , n− = n+ of α. We have

n+− rα′ = n−− rα′ =−i .

As a result Ci (K ) =C−i (K̄ ). Secondly, we have isomorphism

V →V ∗

v± → v∗
∓

It extends to an isomorphism V ⊗·· ·⊗V →V ∗⊗·· ·⊗V ∗, so we have an ismorphism C−i (K ) '
Ci (K )∗. Let’s denote this isomorphism by Φ. Finally, we need to check if the isomorphism is

compatible with boundary map. Assume that we have s and s′ two adjacent states and α and

α′ for their smoothing respectively. Assume that we have merging map between states s and

s′ so we have Cα(K̄ )
m−→Cα′(K̄ ) , Cα′(K̄ )

∆−→Cα(K̄ ) and the isomorphismΦ between C−i (K ) and

Ci (K ) sends m to ∆∗, Cα′(K̄ )∗ ∆∗
−−→ Cα(K̄ ). Now we have m and ∆∗ as boundary maps, so we

have ∆∗ ◦Φ = Φ ◦m. This implies C K h(K̄ ) ' (C K h(K ))∗. Now we have isomorphism, since

we have filtration on {0} =C∗
0 ⊂C∗

−1 ⊂ ·· · ⊂C∗−n =C∗. (Note that we have reverse filtration on

C∗) so smax (K ) =−smi n(K̄ ) and smi n(K ) =−smax K̄ .

Proposition 2.19. s(K1#K2) = s(K1)+ s(K2).
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Proof. We will use the short exact sequence of Lemma 2.17. Denote the canonical generators

of Ki by si
a and si

b , according to label of circle near the connected sum. We can see that p∗
will send the canonical generator of K h′(K1#K2) to s1

a ⊗ s2
b . Since we know that p∗ has degree

-1, we have

s(so)−1 ≤ s(s1
a ⊗ s2

b)

Furthermore, because of grading on tensor product of chain complexes we have s(s1
a ⊗ s2

b) ≤
smi n(K1)+ smi n(K2). As a result, we have

smi n(K1#K2)−1 ≤ smi n(K1)+ smi n(K2).

Now we apply same argument to K̄1 and K̄2 and we know that smi n(K ) =−smax (K̄ ), so we get

smax (K1#K2)+1 ≥ smax (K1)+ smax (K2).

By converting max to min it is easy to see that

smi n(K1#K2)−1 ≥ smi n(K1)+ smi n(K2).

Thus we have

smi n(K1#K2) = smi n(K1)+ smi n(K2)+1

smax (K1#K2) = smax (K1)+ smax (K2)−1

which proves the proposition.

2.2.0.3 Behaviour under cobordisms

Let L0 and L1 be two links in R3. An oriented cobordism from L0 to L1 is a smooth, oriented,

compact, properly embedded surface S ⊂ R3 × [0,1] with S ∩R3 × {i } = Li . In this section,

we define and study a map φS : K h′(Lo) → K h′(L1) induced by such a cobordism. We can

write the cobordism as a composition of elementary cobordism where elementary cobor-

dism can be subdivided by two moves : Reidemeister moves which we already know the map

and Morse moves which can be seen on the figure below.

Now we will assign function φS : K h′(Lo) → K h′(L1). We want φS to be functorial. In

other words, given a cobordism S = S1 ∪S2 · · ·∪Sk , then we want φS = φSk ◦ . . .φS1 . Suppose

that S is a given cobordism corresponding to the i -th Reidemeister move or its inverse then

we define φS to be p ′
i∗ or its inverse. For details of definition of p ′

i∗ look at [6] page 5. We
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can see that p ′
i∗ is degree of 0. For proof of statement of p ′

i∗ is degree of 0 see [7] section

6. If S is an elementary cobordism corresponding to a Morse move then we take φS to be

the map induced by γ : C K h′(L0) → C K h′(L1). In other words, if the move corresponds to

the addition of a 0-handle or a 2-handle, we apply function ι′ : Q→ V , ι(1) = (a − b)/2 or

ε : V → Q, ε′(a) = ε′(b) = 1 respectively. If the move correspondens to the addition of 1-

handle, the induced map is m′ or ∆′ depending on whether the move results in a merge or a

split at the vertex in question. We can also say φS is a filtered map of degree 1 for a 0-handle

and 2-handle addition and degree -1 for a 1-handle.

The map φS behaves nicely with respect to canonical generators.

Proposition 2.20. Suppose S is an oriented cobordism from L0 to L1 which is weakly con-

nected, in the sense that every component of S has boundary component in L0. Then φS([So0 ])

is nonzero multiple φS([So1 ]).

Proof. See page 11 proposition 4.1 of [7]

Corollary 2.21. if S is connected cobordism between knots K0 and K1 then ΦS is an isomor-

phism.

Proof. Fix orientation o on S. Then we have {So0 ,Sō0 } as basis for K h′(K0). We show that ΦS

sends basis to

{k1So1 ,k2Sō1 }

where k1,k2 ∈Qwhich is basis for K h′(K1) soΦS is isomorphism.

Now we can prove one main theorem.

Proof. of Theorem 2.2 Assume that we have a knot K ⊂ S3 which bounds an oriented surface

of genus g . Then there is an orientable connected cobordism of Euler characteristic −2g

between K and unknot U in R3 × [0,1]. Let x ∈ K h′(K )0 be a class which has maximal degree.

Since ΦS is an isomorphism, ΦS(x) is not zero and since ΦS has degree −2g , we can say that

s(ΦS(x)) ≥ s(x)−2g . We know smax (U ) = 1, so we have s(ΦS(x)) ≤ 1. It follows that s(x) ≤
1+ 2g , so smax (K ) ≤ 1+ 2g and s(K ) ≤ 2g . To show that s(K ) ≥ −2g , we need to apply the

same argumment to K̄ and we need to use the fact that s(K ) =−s(K̄ ).
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Chapter 3

Khovanov homology and topological
quantum field theory

In this chapter we talk about the connection between Khovanov homology and topological

quantum field theory. We will see some definitions about the cobordism category and Frobe-

nius algebras.

Definition 3.1. Given two closed (n-1)-dimensional manifoldsΣ0 andΣ1, an (oriented) cobor-

dism from Σ0 and Σ1 is an (oriented) n-dimensional manifold M together with the maps

Σ0 −→ M ←−Σ1

such that Σ0 maps diffeomorphically onto the in-boundary of M and Σ1 maps diffeomorphi-

cally onto the out-boundary of M .

Of couse we have many cobordism between Σ0 and Σ1 so we need equivalence between

cobordisms. Two cobordisms M and M ′ from Σ0 to Σ1 are called equivalent if there exists a

diffeomorphism from M to M ′ making the diagram below commutative

Σ
0

Σ1

M

M'

≃

Now we need composition of cobordism. Given one cobordism M0 from Σ0 to Σ1 and M1

from Σ1 to Σ2, then the composition M0M1 can be obtained by gluing M0 to M1 along Σ1. It

is a cobordism from Σ0 to Σ2. Now we can define the cobordism category.

Definition 3.2. The category of nCob. The objects of nCob are (n-1)- dimensional closed ori-

ented manifolds. Given two objects Σ0 and Σ1, the morphisms from Σ0 to Σ1 are equivalence

classes of cobordisms from Σ0 to Σ1.

36
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Now we can talk about Topological quantum field theory. Roughly, TQFT takes as input

spaces and space-times (i.e cobordisms) and associates to them state spaces and time evolu-

tion operators. The space is modelled as a closed (n-1)- dimensional manifold, while space-

time is an n-dimensional manifold whose boundary represents time 0 and time 1. The state

space is a vector space, and a time evolution operator is simply a linear map from the state

space of time 0 to the state space of time 1.

Definition 3.3. A topological quantum field theory is a functor F from nCob to V ectk where

V ectk is the category of vector spaces over k. For an (n-1)-dimensional manifold Σ, F (Σ) is a

vector space and for a cobordism M between Σ0 and Σ1, F (M) is a linear map between F (Σ0)

and F (Σ1). The functor F should satisfy the following properies:

1. if Σ=Σ0 ∪Σ1 then F (Σ) = F (Σ0)⊗F (Σ1)

2. F (Σ∗) = F (Σ)∗ where Σ∗ is manifold Σwith opposite orientation and F (Σ)∗ denotes the

dual vector space.

3. For the empty (n-1)-dimensional manifolds Σ, F (Σ) =k.

Next, we can talk about Frobenius algebra.

Definition 3.4. A unital associative k-algebra is a k-vector space with two k-linear maps

µ : A⊗ A −→ A η :k−→ A

(multiplication and unit map) satisfying the associativity law and the unit law:

µ(µ⊗η) =µ(η⊗µ) µ(η(1)⊗ I dA) = I dA =µ(I da ⊗η(1))

Definition 3.5. A finite-dimensional, unital, associative algebra A defined over a field k is

said to be a Frobenius algebra if A is equipped with a linear functional

δ : A −→k

such that the kernel of δ contains no nonzero ideal of A.

Equivalently, if A can be equipped with a nondegenrate bilinear formσ : A×A −→k that satisfy

the following equation σ(a.b,c) =σ(a,b.c).

With this definition we can define the comultiplication ∆ : A −→ A ⊗ A by ∆(v) = ∑
i v ′

i ⊗ v ′′
i

being the unique element such that for all w ∈ A, µ(v, w) =∑
i v ′

i < v ′′
i , w >.

Some examples for Frobenius algebra.

1. Let A be a finite division ring over k. Since a divison ring has no nontrivial left ideal,

any nonzero linear map A −→kwill make A a Frobenius algebra.

2. Any matrix ring M atn(k) is a Frobenius algebra with the usual trace map δ : M atn(k) −→
k.
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3. A =k[x]/(x2) is a Frobenius algebra with linear functional

δ : A −→k

1 −→ 0

x −→ 1

3.0.0.1 TQFT and Frobenius algebra

There is a deep relation between topological quantum field theories and Frobenius algebras:

They determine each other. If we have a topological quantum field theory then we can write

a Frobenius algebra and it is true for vice versa. Assume that we have a TQFT from 2cob to

V ectk, then we can write a Frobenius algebra from scratch.

• take a circle and send it to the vector space A via TQFT.

−→ A

and we can define multiplication, comultiplication, unit map and linear map via TQFT

as below.

• −→ I d : A −→ A

• −→ δ : A −→k

• −→ η :k−→ A

• −→ µ : A⊗ A −→ A

• −→ ∆ : A −→ A⊗ A

If we know a Frobenius algebra, we can find a TQFT also,hence

Theorem 3.6. The category of Frobenius algebras and the category of topological quantum

field theories are equivalent.

Proof. [8]

3.0.0.2 TQFT and Khovanov homology

In Khovanov homology, we have circles after we resolve our knot diagram, we can see these

circles as 1-dimensional closed manifolds and we have cobordism between any 1-dimensional

manifold. A TQFT takes a circle and sends it to a vector space V and it takes cobordisms and

sends to our maps m and ∆. Furthermore, we have

ε : V −→ k

v+ −→ 0

v− −→ 1.
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It can be seen that a vector space V in Khovanov homology is a Frobenius algebra with multi-

plication map m, comultiplication map∆ and map ε. It is obvious that V is a k algebra and it

is easy to see that ker of ε has no nonzero left ideal. Kernel of ε is the one dimensional vector

space which is generated by v+. We have v+ in any non-trivial ideal in kernel of ε. We know

m(v−⊗ v+) = v−, so v− is also in any non-trivial ideal. This means that any non-trivial ideal

is equal to V . This is a contradiction because V is not in the kernel of ε. As a result, the kernel

of ε has no non-trivial left ideal so V is Frobenius algebra.
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