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Abstract

In this thesis, we will introduce truth-valuational semantics for modal logic and compare it

to standard, Kripke-style model-theoretic semantics. We will show the detailed proofs for

the soundness and semi-strong (roughly, restricted to finite premise sets) completeness of

the truth-valuational propositional modal semantics for the logic K relative to the prefixed

propositional modal tableau system K, and will sketch extensions to the logics/systems

T , B, K4 , S4 and S5 . Afterwards, we will sketch three different ways of how one can

strengthen the semi-strong completeness theorems for these logics to strong completeness,

and will evaluate the pros and cons of each approach. We conclude that a proper solution

remains forthcoming.
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What is dispensable simply is not of

the essence.

Hugues Leblanc

1 Introduction

Practically every introductory or philosophy of logic book starts out by characterizing logic

in a rough and ready way as the discipline that concerns itself with arguments and their

correctness. So logic is about ‘tell[ing] good arguments from bad arguments’ (Tomassi 1999,

2), ‘it is the study of what constitutes correct reasoning’ (Klenk 2002, 2), it is ‘the systematic

study of principles of correct reasoning’ (Jacquette 2002, 2), it is about ‘logical consequence’

(Sider 2010, 1), it is ‘the science of deduction’ (Jeffrey 2006, 1), it is ‘a handbook (of a highly

sophisticated kind, to be sure) for drawing inferences’ (Leblanc 1973a, 241), it is ‘the study

of valid arguments’ (Newton-Smith 1985, 1) (cf. (Hodges 1991, 13)), it is ‘concerned with the

principles of valid inference’ (Kneale and Kneale 1962, 1) and its aim is ‘to discriminate valid

from invalid arguments’ (Haack 1978, 1). With validity, the last three definitions already

imply that logic has to do with truth, at least as long as it concerns arguments (i.e., that

if the premises are true, then the conclusion must be true as well). According to Dummet

(1973, 432), Frege went so far (and Russell followed him) as to claim that the object of study

in logic is truth itself, at least logical truth (cf. Sider (2010, 2)). But, as Dummett (1973,

432-3) also writes:

The traditional answer to the question what is the subject-matter of logic is,

however, that it is, not truth, but inference, or, more properly, the relation of

logical consequence. This was the received opinion all through the doldrums of

1
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logic, until the subject was revitalized by Frege; and it is, surely, the correct view.

Note that Dummett’s main point, as he goes on to explain, is not that one should not

have an account of validity which captures the semantic aspect of logical consequence, or

an account of logical truth (which is really just a special case of the former). Rather, the

problem, according to him, is that Frege’s axiomatic approach to deduction took logical truths

as basic in proof theory, which then had to be corrected by Gentzen’s sequent calculi and

natural deduction, both being deductive systems with only inference rules, as is demanded

by what logic’s proper subject-matter is. As Gentzen (1964, 288) himself writes:

My starting point was this: The formalization of logical deduction, especially as

it has been developed by Frege, Russell, and Hilbert, is rather far removed from

the forms of deduction used in practice in mathematical proofs. Considerable

formal advantages are achieved in return. I intended, first of all, to set up a

formal system which came as close as possible to actual reasoning. The result

was a “calculus of natural deduction”.

Insofar as the tableau method, which will be used in this thesis, does away with axioms

and makes use only of inference rules, Dummett’s criticism is eluded (in contrast to, e.g., the

Frege-Hilbert style axiomatic approach Leblanc uses in his publications on truth-valuational

semantics). The tableau method is also an intuitive modelling of a natural way of reasoning,

different from the kind of reasoning natural deduction models. Specifically, it models the

way we reason when we think of validity as the fact that if the premises are true, then the

conclusion cannot be false, so if we suppose that the premises are true and the conclusion is

false, we will run into a contradiction, i.e., no such example will be forthcoming.1

1Beth (1969, 40), the inventor of tableaux writes that together with him, Hintikka too ‘stresses the
interpretation of all proofs of logical truth as proofs of impossibility of counter-examples’. More generally, in
his paper, similar to what has been said here, he argues that there are two different but equivalent methods of
proving logical consequence, one through straightforward derivation (natural deduction), the other through
trying systematically to find a counter-example (tableaux).

2
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However, this is not the main point. What needs to be emphasized is that in all of the

above definitions, logic, even in its semantic (as opposed to its syntactic) conception, is at

most concerned with logical truths (whatever one takes those to be) and truth-value relations

between sentences. Let us call this the canonical conception, or what Leblanc (1973a, 241)

called ‘logic straight’.

Propositional logic is closest in its semantics to the canonical conception. In checking

for the validity of arguments, we look at truth-value assignments, or what we have called

truth-valuations, and check whether the conclusion is true under all valuations that make

the premises true. If not, the argument is invalid. Logical truth is then simply a formula

which is true under all assignments, or more closely to the canonical conception, they are

conclusions which are true no matter the premises.

With model-theoretic semantics for different logics, we seem to leave behind propositional

purity. The most straightforward example of this is first-order logic. According to the tradi-

tional Tarskian conception, in giving an account of truth-value relations between sentences

in a first-order language, one needs to posit a model, which consists of a non-empty set of

objects (the domain) and an interpretation function, which interprets the expressions of the

language in relation to the domain. Of course, the most straightforward aspect of this is

when an interpretation function takes a name and outputs its ‘referent’ in the domain.

Such a model can be thought of as supplying the necessary mathematical machinery to

give an account of what is needed, i.e., a logical semantics, an account of truth-value relations

between sentences of the language.2 But insofar as that machinery posits something over

and above what is needed, it is not essential for a semantics of logic, and if it is dispensable,

2More radically, it can be viewed as the universal form of semantics proper, of any account of meaning,
where meaning is construed as something ‘whereby symbols are associated with aspects of the world’, as
Lewis held in his General Semantics (1970, 19). This is a much more robust claim, where models are not
viewed as a necessary evil for giving an account of truth-value relations in logical semantics, but an essential
part to any semantics. Cf. Quine’s different but equally radical view about Tarskian semantics in his (1948)
and (1969).

3
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we should dispense with it. And indeed, this can be done, as Leblanc showed in his (1976)

and (2001).

Given that propositional modal logic is a close cousin of first-order logic3 it is no surprise

that we have a similar problem in the former as in the latter. The importance of Kripke’s

seminal papers on modal logics was precisely that they successfully adapted the Tarskian

model-theoretic framework for providing a semantics for different modal logics, which were

then also easily extendible to first-order modal logics. At the same time, by giving an account

of truth-value relations between sentences with model-theoretic machinery, it again involved

something over and above what was needed, i.e., models, and as we will show, something

over and above what was necessary.4

In this thesis, I will follow the research programme initiated by Leblanc around 50 years

ago, which aimed to reformulate any model-theoretic semantics for a given logic into a

non-model-theoretic, truth-valuational one. I will prove the weak completeness of truth-

valuational semantics for the propositional modal logic K (sketching the extensions to T ,

K4 , B , S4 , S5 ) relative to the Fitting-style prefixed modal propositional tableau system K

(and the corresponding extensions), and will show three ways to extend such results to strong

completeness. Completeness proofs for different axiomatic systems can be found in Dunn’s

(1973), Leblanc’s (1976) and Ben-Yami’s (MS). We will return to these in due course, but a

full account of similarities and differences will not be possible in the confines of these pages.

The thesis will also provide a more in-depth analysis of truth-valuational semantics for

propositional modal logics than can be found in the literature. It will identify a problem for

truth-valuational semantics related to the tableaux method (or a problem for the tableaux

method related to truth-valuational semantics, depending on how one may construe it),

3We think here mainly of the equisatifiability theorem that a modal formula is satisfiable in a Kripke
model iff its ‘standard translation’ into the ‘first-order correspondence language’ is satisfiable in the same
model now thought of as a first-order one. For details, see, e.g., Blackburn and van Benthem’s (2007).

4Interestingly, though not outright hostile, Quine also had reservations with Kripke’s modal-theoretic
semantics given in terms of possible worlds, which he voiced in his less well-known (1972) book review.
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one that is surprisingly hard, if even possible, to overcome. The problem will underline a

non-trivial difference between model-theoretic and truth-valuational semantics: the lack of

equivalents to distinct but indistinguishable ‘possible worlds’ in the latter.

Remark. Besides truth-valuational semantics, there are several other ‘non-standard’ or ‘al-

ternative’ approaches to the semantics of modal logics. For a short overview of these, see

Section 7 of Blackburn and Van Benthem’s (2007). An alternative to the usual algebraic

approach to modal logics can be found in Agudelo-Agudelo and Carnielli’s (2017). Un-

fortunately, due to length constraints we cannot discuss here the formal and philosophical

similarities and differences of these.

5
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2 Syntax

We first introduce the language we will be working with. The language L of propositional

modal logic is an enrichment of standard propositional logic. It is based on the following

alphabet.

Definition 1 (Alphabet of L). The alphabet A of L is the union of all members of the

ordered quadruple < V ar, Log,Mod, Pun >.

1. The set V ar = {p1, p2, p3, . . . , pn, . . . } contains ℵ0 propositional variables.

2. The set Log = {¬,∨,∧,→} contains the logical connectives ‘not’, ‘or’, ‘and’ and ‘if

then’, respectively.

3. The set Mod = {�,♦} contains the two modal operators ‘necessarily’ and ‘possibly’,

respectively.

4. The set Pun = {(, )} consists of the ‘left parenthesis’ and the ‘right parenthesis’.

In the following, the metavariables P,Q,R, S, . . . will range over propositional variables,

while the metavariables X, Y, Z, . . . will range over arbitrary formulas. The set of our for-

mulas is given by the following definition.

Definition 2 (Formulas of L). The set of formulas F of L is a subset of all finite strings

over the alphabet of L, characterized as follows.

1. All propositional variables in V ar are in F .

6
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2. If X is in F , so is ¬X.

3. If X and Y are in F , so are (X ∨ Y ), (X ∧ Y ) and (X → Y ).

4. If X is in F , then so are �X and ♦X.

5. Nothing else is in F .

We will at times call members of V ar atomic formulas or, when it is clear from the

context, simply variables, and in general, we will call a literal every propositional variable P

or its negation ¬P . Later on, it will be convenient to consider the connectives and operators

not only as signs occurring in complex formulas but as syntactic operations which output

these complex formulas from their constituent formula(s). Thus, if ◦2 is any two-place

connective, whenever we apply the function ◦2f on two formulas X and Y , which maps them

to X ◦2Y , we write ◦2f (X, Y ) = X ◦2Y , and similarly for one-place connectives and operators.

Given any set S of formulas and the syntactic operations defined on some members of S,

< S, ◦1f1 , ◦
2
f1
, ..., ◦1fn , ◦

2
fm
> will be denoted by S, and we will call S a syntax.

We also define the complexity of our formulas.

Definition 3 (Complexity of Formulas). The complexity of formulas of F is given by the

function c : F → N, defined recursively for any P,X, Y as follows:

1. For any propositional variable P in F , c(P ) = 0.

2. If c(X) = n, then c(¬X), c(�X) and c(♦X) are all n+ 1.

3. If c(X) = n1 and c(Y ) = n2, c(X ∨ Y ), c(X ∧ Y ) and c(X → Y ) are all n1 + n2 + 1.

Later on, it will be important to know what cardinality of propositional variables occur

in a given set of formulas, and what cardinality of variables are omitted. Given that the set

of all variables of the language is denumerably infinite (i.e., ℵ0), we will use the following

terminology:

Definition 4 (Omitting Variables). Given any set S of formulas of the language L, we say S

7
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omits ℵ0 variables iff there are ℵ0 propositional variables of L not occurring in any formula

in S.

Note that since any formula is finite, it is trivial that ℵ0 propositional variables do not

occur in any one of them, hence the definition’s restriction to sets only.

Related to this, a propositional modal language as defined above can be extended to

another propositional modal language just by adding new propositional variables to it. We

will call this a variable extension.

Definition 5 (Variable Extension). If L1 is a propositional modal language as in Definitions

1 and 2 with ℵ0 propositional variables in V ar1, then by the variable extension L2 of L1, we

mean the language L2 which results from adding ℵ0 new variables p′1, ..., p
′
n, ... to V ar1.

Then, we have the following trivial proposition.

Proposition 6. Given any set S of formulas of L1, in every variable extension L2 of L1,

the same set S of formulas omits ℵ0 variables.

We may arrive at a similar proposition through a different technique, which is lengthier

but does not require extending to new languages. What we want to prove is that if S is

any set of formulas, there is a set of formulas syntactically isomorphic to it that omits ℵ0

variables.

Take a function u : N+ → N+ defined by u(n) = 2n− 1.

Proposition 7. The function u is injective from N+ to N+, and bijective between N+ and

its proper subset of all uneven natural numbers Nu.

Proof. We do not prove this here as it is lengthy and tedious.

We can then define what we will call a ‘variable rewrite’.
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Definition 8 (Variable Rewrite). By a variable rewrite, we mean the function R : F → F

defined recursively on the complexity of formulas in F as follows. As the base case, for any

propositional variable pn, set R(pn) = pu(n). Then, suppose R(X) is defined for formulas

up to complexity n − 1. We define n as follows. If ◦1 is any one-place connective or modal

operator and X is a formula of form (◦1Y ), set R(¬Y ) = ¬R(Y ). If ◦2 is any two-place

propositional connective and X is of form (Y ◦2 Z), then set R(Y ◦2 Z) = R(Y ) ◦2 R(Z).

Finally, by the variable rewrite of a set of formulas S, we mean the variable rewrite R(X)

of all X ∈ S. We will sometimes call a variable rewrite R(X) itself, i.e., the output formula

of R given an input formula X.

We then have the following proposition.

Proposition 9. If X is any formula, then any variable rewrite R(X) of X is of the same

complexity as X.

Proof. The proof is by induction on the complexity of X. We won’t show it here.

Proposition 10. The variable rewrite R is a bijective function from any set of formulas S

to R(S).

Proof. We have to show that R is both injective and surjective. Trivially, since R(S) is the

variable rewrite of S, i.e., for all X, X ∈ R(S) iff there is a Y ∈ S such that R(Y ) = X,

R : S → R(S) is surjective. That the function is injective is harder to show.

The proof is by double induction on the complexity of formulas X and Y .1 What we

will show is that whenever R(X) = R(Y ), X = Y , or equivalently, whenever X 6= Y ,

R(X) 6= R(Y ), by showing it first for c(X) = c(Y ) = 0, then showing that if the hypothesis

holds for c(X) = n and c(Y ) = m, then it holds for c(X) = n and c(Y ) = m + 1, and it

holds for c(X) = n+ 1 and c(Y ) = m.

1More can be found on double induction in Gunderson’s (2014, sect. 3.5).
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Take the base case. Then, X is pn and Y is pk. Suppose pn 6= pk. Then, n 6= k. By

definition of R, R(pn) 6= R(pk).

Suppose the hypothesis holds for c(X) = n and c(Y ) = m. We show it for the pairs

< n,m+ 1 > and < n+ 1,m >.

1. Take c(X) = n, c(Y ) = m + 1 first. Suppose X 6= Y . Suppose c(X) 6= c(Y ), i.e.,

n 6= m + 1. By Proposition 9, for any Z, c[Z] = c[R(Z)]. Since c(X) 6= c(Y ),

c[R(X)] 6= c[R(Y )], so obviously, R(X) 6= R(Y ).

While still supposing X 6= Y , suppose c(X) = c(Y ), i.e., n = m+ 1. Then, c[R(X)] =

c[R(Y )]. By the definition of formulas, R(X) = R(Y ) iff both R(X) and R(Y ) are gov-

erned by the same connective or operator and their immediate constituent formula(s)

are identical, i.e., R(X) = ◦1R(Z1) and R(Y ) = ◦1R(Z2), where R(Z1) = R(Z2), or

R(X) = R(Z1) ◦2 R(Z3) and R(Y ) = R(Z2) ◦2 R(Z4), where R(Z1) = R(Z2) and

R(Z3) = R(Z4).

(a) Suppose R(X) = ◦1R(Z1) and R(Y ) = ◦1R(Z2). Then, since Z1 and Z2 are of

smaller complexity than X and Y , the hypothesis holds, so Z1 = Z2. But then

since X = ◦1Z1 and Y = ◦1Z2, X = Y contra hypothesis.

(b) Suppose R(X) = R(Z1) ◦2 R(Z3) and R(Y ) = R(Z2) ◦2 R(Z4), where R(Z1) =

R(Z2) and R(Z3) = R(Z4). Then again, since Z1, Z2, Z3, Z4 are of smaller com-

plexity than X and Y , the hypothesis holds, so Z1 = Z2 and Z3 = Z4. But then

since X = Z1 ◦2 Z3 and Y = Z2 ◦2 Z4, X = Y contra hypothesis.

2. The reasoning is similar the other way around.

This concludes the proof.

We may now prove the isomorphism we wanted.
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Proposition 11. Given any set S of formulas and its variable rewrite R(S), call it S∗,

the syntax S, built on S with the syntactic operations defined on some elements of S, is

isomorphic to S∗ built with the same operations on S∗. In fact, it is R that induces an

isomorphism R : S→ S∗.

Proof. The proof is simple. By Proposition 10, we already know that R : S → S∗ is

bijective. Since the syntactic operations of S∗ are given by the identity function from those

of S, there is a one-to-one correspondence between the two. Thus, we only need to show that

R[◦1f (X)] = ◦1f (R[X]) and R[◦2f (X, Y )] = ◦2f (R[X], R[Y ]), whenever ◦1f is defined on some

X ∈ S or ◦2f on some X, Y ∈ S.

The first part is by induction on the complexity of X, where X is in the set of outputs

for ◦1f . Then, X is of form ◦1Y , so ◦1f is defined on Y and its output for it is X.

1. Take the base case, where ◦1f (P ) = ◦1P . We want to show that R[◦1f (P )] = ◦1f (R[P ]).

By Definition 8, R[◦1f (P )] = ◦1f (R[P ]).

2. Suppose the hypothesis holds for any formula of complexity n. We show it for n + 1.

We want to show that R[◦1f (X)] = ◦1f (R[X]). By Definition 8, R[◦1f (X)] = ◦1f (R[X]).

The second part is also by induction on the complexity of X, but this time X being in

the set of outputs for ◦2f . Then, X is of form Y ◦2 Z, so ◦2f is defined on Y and Z and its

output for the pair is X.

1. Take the base case, where ◦2f (P,Q) = P ◦2 Q. We want to show that R[◦2f (P,Q)] =

◦2f (R[P ], R[Q]). By Definition 8, R[◦2f (P,Q)] = ◦2f (R[P ], R[Q]).

2. Suppose the hypothesis holds for any formula of complexity n. We show it for n + 1.

We want to show that R[◦2f (Y, Z)] = ◦2f (R[Y ], R[Z]). By Definition 8, R[◦2f (Y, Z)] =

◦2f (R[Y ], R[Z]).

11
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This concludes the proof.

Finally, we have the following trivial consequence of the propositions above.

Proposition 12. If S is any set of formulas of L that does not omit ℵ0 variables of L, the

variable rewrite R(S) of S (which is syntactically isomorphic to S) does omit ℵ0 variables

of L, namely, every variable indexed by an even number.

Note that S may be F , in which case we have that the set of all formulas can be rewritten

into a set which omits ℵ0 propositional variables.

12
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3 Semantics

In this chapter, we will introduce two semantics. The first is a variant of the standard,

modal-theoretic or Kripke one (which can be found in its classic formulation in his (1963)).

The second takes inspiration from Leblanc’s truth-valuational semantics from his (1973b)

(see also his (1973a) and (1976)), Dunn’s (1973), and Ben-Yami’s (MS).

Note that even though we do not part ways with the word ‘semantics’, the semantics

presented here does not give an account of the meaning of sentences of the language as a

semantics for any natural language would (purport to) do, nor it should aspire to do so. It

merely gives an account of truth-value relations between sentences of the language.

3.1 Model-Theoretic Semantics

In the following, we will introduce the standard, model-theoretic or Kripke semantics for

propositional modal logic, which uses ‘possible worlds’ in its models. All definitions, termi-

nology and notation are from Fitting and Mendelsohn’s (1998), unless otherwise noted.

Definition 13 (Frame). A modal frame is an ordered double (pair, for short) < G,R >,

where G is a non-empty set whose members are traditionally called ‘possible worlds’, and

R is a binary relation defined on G, generally called the ‘accessibility relation’. If Γ and ∆

are possible worlds and ΓR∆ holds, we say that ∆ is accessible to Γ, or that ∆ is possible
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relative to Γ.

In the following, the metavariables Γ,∆,Θ, . . . will range over members of G.

Definition 14 (Model). A (modal propositional) modelM is an ordered triple < G,R,
>,

where G and R are as before and 
 is a binary relation between members of G and members

of V ar. If Γ is a possible world, P is any propositional variable and Γ 
 P holds, we say

that P is true at the possible world Γ. If, instead, Γ 1 P holds, we say that P is false at Γ.

Definition 15 (Truth in a Model). Take any model M. We extend the relation 
 to

arbitrary formulas of F as follows. For each Γ in G:

1. Γ 
 ¬X iff Γ 1 X.

2. Γ 
 (X ∨ Y ) iff Γ 
 X or Γ 
 Y .

3. Γ 
 (X ∧ Y ) iff Γ 
 X and Γ 
 Y .

4. Γ 
 (X → Y ) iff Γ 1 X or Γ 
 Y .

5. Γ 
 �X iff for every ∆ ∈ G, if ΓR∆, then ∆ 
 X.

6. Γ 
 ♦X iff there is a ∆ ∈ G such that ΓR∆ and ∆ 
 X.

We will also introduce a definition of our own which will prove to be helpful later on

when we discuss the parallels between propositional logic and modal propositional logic.

Definition 16 (U -model). A U -model is a propositional modal model such that for all

Γ,∆ ∈ G, if for all P , Γ 
 P if and only if ∆ 
 P , then Γ = ∆.

How should one introduce the modal equivalent of truth-functional tautology and first-

order validity? As expected, by the above definition of truth in a model, we know that all

truth-functional tautologies will be true at all worlds in all models. The modal case, however,

is less obvious. Importantly, by relativising the validity of modal formulas to specific classes

of frames, we can consider a variety of different valid formulas. Thus, given a class of frames
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L defined by certain frame conditions on the accessibility relation R, we say that a formula

is L-valid if it is true at all worlds in all models ‘based on’ such frames. Compare this with

first-order logic. There, a valid formula is defined as one which is true in all models. This

can be adapted to modal propositional logic as is if by ‘truth in a model’, we mean a formula

being true at every world of every model. Since this disregards frame conditions altogether,

it is equivalent to saying that such formulas are L-valid, where L is the class of all frames,

i.e., we do not specify any conditions to be met by frames. The class of all frames and the

logic determined by the class are both called K. We say that formulas which are true in

all models based on any frame are K-valid, and the logic K is just the set of all K-valid

formulas. In essence, K allows us to regard any truth-functional tautology as necessary,

i.e., for any truth-functional tautology X, �X is K-valid. Note that by definition, K-valid

formulas are also L-valid for any class L of frames since L ⊆ K. For any classes L1 and L2

of frames, if L1 ⊆ L2, L2 is said to be a sublogic of L1.

Definition 17 (L-validity). A model M =< G,R,
> is based on the frame < G,R >. A

formula X is valid in a model M if it is true at every world Γ ∈ G of M. A formula X is

valid in a frame if it is valid in every model based on that frame. Then, if L is a class of

frames, X is L-valid iff X is valid in every frame in L. If X is L-valid, we write �LM
X.

Parallel to first-order logic, we can also define LM -satisfiability. We want our definition

to follow the first-order theorems that X is valid iff ¬X is not satisfiable. The following is

not in Fitting and Mendelsohn’s (1998), but standard in the literature.

Definition 18 (LM -Satisfiability for Formulas). A formula X is LM -satisfiable iff there is

a model M based on a member of a class of frames L where there is a Γ ∈ G such that

Γ 
 X. Then, a set S of formulas is LM -satisfiable iff all X ∈ S are LM -satisfiable at the

same world of the same model.

In general, as exemplified above, we use the subscript M to differentiate model theoretic
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definitions and abbreviations from their truth-valuational equivalents (with subscript v).

However, we will omit such subscripts at will if context disambiguates which is intended.

We may also omit the explicit specification of the logic under consideration if no ambiguity

results.

The above mentioned theorem follows immediately from the definitions. The proof is

mine.

Proposition 19. A formula X is L-valid iff ¬X is not LM -satisfiable.

Proof. From left to right. Suppose that a formula X is L-valid. Suppose also that ¬X is

LM -satisfiable. Then, by the first, X is true at all worlds in all models based on an L-frame.

By the second, there is a model based on an L-frame in which there is a world at which ¬X

is true. By Definition 15, we have a contradiction. From right to left. Suppose that ¬X is

not LM -satisfiable. Then, there is no world in any model based on an L-frame where ¬X is

true. Equivalently, X is true at all worlds in all models based on an L-frame. By Definition

17 then, X is L-valid.

The most well-known classes of frames and their logics are based on some simple condi-

tions.

Definition 20 (Properties of Frames). A frame < G,R > is:

1. reflexive if ΓRΓ, for all Γ ∈ G;

2. symmetric if ΓR∆ then ∆RΓ, for every Γ,∆ ∈ G;

3. transitive if ΓR∆ and ∆RΩ then ΓRΩ, for every Γ,∆,Ω ∈ G;

These properties of frames then combine to give the frame conditions presented in Table

1 that each determine a class and a logic.1

1Of course, these are not all. For a fairly long list of modal logics, their corresponding axioms and frame
conditions, see Hughes and Cresswell’s (1996). As they note, ‘any normal modal system may be defined by
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Logic Frame Conditions

K no conditions

T reflexive

B reflexive, symmetric

K4 transitive

S4 reflexive, transitive

S5 reflexive, symmetric, transitive

Table 1: Modal Logics and Frame Conditions

3.2 Truth-Valuational Semantics

In the truth-valuational approach to the semantics of modal propositional logic, we do away

with models altogether. Instead, we revert to the truth-value assignments of the semantics

of standard propositional logic and extend the approach to modal cases. Take first the

propositional case. We rely on the definitions, terminology and notation of Smullyan’s

(1995) with some inessential tweaks. We first introduce a set P = {t, f} with elements True

and False, respectively. We then define a valuation for a set of formulas as follows.

Definition 21 (Valuation). For any set S of formulas, by a valuation v we mean a function

v : S → P . For any X ∈ S, if v(X) = t, we say that X is true under v and if v(X) = f , we

say that X is false under v. The value v(X) under v (i.e., t or f) is called the truth value

of X under v.

Two valuations of a set S can agree and disagree on formulas and are identical or distinct

relative to that.

Definition 22 (Agreement and Distinctness). Two valuations v1 and v2 agree on a formula

X iff v1(X) = v2(X), and disagree otherwise. Two valuations agree on a set S of formulas iff

a list of axioms’ in addition to K (and the same is true for non-normal modal systems where K need not
be included). In turn, with regards to the semantics, we may always ask what logic the class L of frames
determines.
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they agree on all members of S, and disagree otherwise. Then, two valuations are identical

relative to S if they both agree on S, and are distinct relative to S otherwise. If two valuations

agree on the set F of all formulas of the language, then they are identical simpliciter.

In classical propositional logic and modal propositional logic, we are interested only in

Boolean valuations, which are defined as follows.

Definition 23 (Boolean Valuation). By a Boolean valuation vB we mean a valuation v of

F of L for which the following conditions hold for any X, Y ∈ F .

1. v(¬X) = t iff v(X) = f .

2. v(X ∧ Y ) = t iff v(X) = t and v(Y ) = t.

3. v(X ∨ Y ) = f iff v(X) = f and v(Y ) = f .

4. v(X → Y ) = f iff v(X) = t and v(Y ) = f .

From now on, we only concern ourselves with Boolean valuations, thus any valuation

v mentioned will be understood to be a Boolean one. Note that the non-modal cases in

Definition 15 parallel those in Definition 23. In particular, to any Boolean valuation v of the

non-modal subset FP of the set of all formulas F of our language, there corresponds a (in

fact, several) propositional modal model such that for some Γ ∈ G, if X ∈ FP is assigned

t by v, then X is true at Γ. Take a special model of this kind, Mprop. The model Mprop

is a U -model and, again, such that corresponding to every distinct valuation v of FP , there

is a member Γ of G such that for any X, if v(X) = t then for the corresponding Γ ∈ G,

Γ 
 X, and Γ 1 X otherwise. By the definition of U -model, in Mprop, for any distinct

Boolean valuation v there corresponds exactly one possible world, i.e., the cardinality of all

distinct valuations of FP equals the cardinality of G in Mprop. From propositional logic,

we know that if the cardinality of the set of all propositional variables that figure in any

formula of FP is n, then there are 2n distinct valuations for both the propositional variable
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subset of FP and FP itself. Now note that FP is the set of all non-modal formulas of our

language. Accordingly, it has ℵ0 many atomic variables and there are 2ℵ0 distinct Boolean

valuations of FP . Since 2ℵ0 = c, there are continuum many distinct Boolean valuations

FP and by our definition of Mprop, |G| = c as well. The model Mprop here has all the

possible worlds that can be qualitatively distinguished in the propositional setting with ℵ0

many atomic propositions. In other words, any additional possible world will be atomically

indistinguishable from one that is already in the model. Naturally, this puts an upper bound

on the cardinality of U -models.

What we see from the above considerations is that with any model M, the elements in

G are, restricted to non-modal cases, nothing over and above different Boolean valuations

for the set FP . In other words, whenever we consider a possible world (in the propositional

setting), we consider a world in which some atomic propositions may have different truth

values from those in the actual world (and consequently, the relevant complex propositions

do too). We write ‘may’ because there is no limit on how many atomically indistinguishable

possible worlds we can have in a model, i.e., there can be possible worlds Γ,∆ ∈ G such

that Γ 
 X iff ∆ 
 X, from which it clearly follows that Γ 
 P iff ∆ 
 P . As we will see

below, in general, even though the two semantics are strongly equivalent, this possibility of

arbitrarily many atomically indistinguishable yet distinct possible worlds does not have a

parallel that holds unconditionally for the truth-valuational account.

Ending the digression, if we want to do away with models altogether, we still have to give

a truth-valuational account of modal formulas as well, i.e., the whole of F . We already know

that in model-theoretic semantics, possible worlds function as different (but not necessarily

distinct) Boolean valuations. The account of modal formulas is more elaborate however,

since in the model-theoretic account, whether or not a modal formula is true at a given

world depends not only on other worlds but whether those worlds are accessible or not.

Thus, we have to give a truth-valuational account of the accessibility relation R as well. The
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most straightforward way of doing this is by taking a set V instead of G that has valuations

as its elements. Then, we lose the relation 
 but retain R as a relation defined on V . We

can now specify what a valuational framework, the truth-valuational equivalent of a Kripke

model is.

Definition 24 (Valuational Framework). A valuational framework Fv is a pair < V ,Rv >,

where V is a non-empty set of modal valuation functions and Rv is a binary relation defined

on V . If vM1 and vM2 are both in V and vM1RvvM2 , we say that vM2 is an alternative valuation

to vM1 .
2

Definition 25 (Modal Valuation). A modal valuation vM of the set of formulas F of L

relative to a modal valuational framework Fv is a Boolean valuation v1 ∈ V for F for which

the following additional conditions hold for any X and v2 ∈ V .

1. v1(�X) = t iff for all modal valuations v2 ∈ V , if v1Rvv2, then v2(X) = t and f

otherwise.

2. v1(♦X) = t iff there is a modal valuation v2 ∈ V such that v1Rvv2 and v2(X) = t and

f otherwise.

We then define how truth-values are assigned to formulas. The method comes from

Ben-Yami’s (MS).

Definition 26 (Value Assignment). Truth-values for formulas relative to a valuational

framework Fv are assigned recursively as follows.

1. As the base case, we assign truth-values to all propositional variables in S under all

modal valuations vM ∈ V .

2. Then, we assign truth-values to all complex formulas (¬X), (X ∧ Y ), (X ∨ Y ) and

(X → Y ) per our rules in Definition 25, if we have not assigned a truth-value to them

before, but have already assigned truth-values to both X and Y at an earlier stage.

2The terminology ‘alternative to’, with which we designate the relation Rv, comes from Hintikka’s (1969).
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3. Then, we assign truth-values to all complex formulas �X and ♦X if we have not

assigned a truth-value to them before, but have already assigned a truth-value to X

at an earlier stage.

4. We repeat the process until we have assigned a truth-value to every formula in S under

any vM ∈ V .

We can now define the truth-valuational equivalent of L-validity. As an extension of the

standard propositional case, we will call it an L-modal tautology.

Definition 27 (L-Modal Tautology). Suppose L is a class of valuational frameworks. Then,

we call any Fv in L an L-valuational framework. We say that a formula X is an L-modal

tautology iff it is true under all valuations vM ∈ V in all L-valuational frameworks. If X is

an L-modal tautology, we write �Lv X.

Note that this definition is somewhat different from the model-theoretic version in Defini-

tion 17 since there, L is specified to be a class of frames, not a class of models, which are the

model-theoretic equivalents of valuational frameworks. The relevant classes of valuational

frameworks for the logics considered in this thesis can be given by taking the appropriate

classes of all valuational frameworks where Rv satisfies some specific properties (e.g., tran-

sitivity, reflexivity, etc.). We could also define the exact truth-valuational equivalents of the

definitions of 17 involving frames, but it would take more elaborate constructions.3

Take, for example, T . Per T , the relation Rv is reflexive. Accordingly, the class T has

as members all valuational frameworks where Rv is reflexive. Take an arbitrary valuational

framework where Rv is reflexive and V is any non-empty set of modal valuations. If we prove

that a given formula X is true under every modal valuation vM ∈ V for such a valuational

3We can do the following. Take any Kripke frame F =< G,R > as before. Introduce a labelling function
L : G → V∞, where V∞ is the set of all modal valuations. Then, given a frame F , take the set FFv to
contain all admissible valuational frameworks Fv =< V,Rv >, where for any Fv, there is an L such that
V = {vM : ∃Γ ∈ G such that L (Γ) = vM} and if ΓR∆, then L (Γ)RvL (∆).
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frame, we prove that it is true under any modal valuation of any valuational frame where

Rv is as specified by T . Thus, we prove that X is a T -modal tautology.

Proposition 28. Any formula of the form X → ♦X is a T -modal tautology.

Proof. Take an arbitrary valuational frame Fv with Rv being reflexive as specified by T .

Then, for all vM ∈ V , vMRvvM . Take an arbitrary valuation vM1 ∈ V and suppose that

vM1(X) = t. For ♦X to be true under vM1 , there has to be at least one modal valuation vM2

such that vM1RvvM2 and vM2(X) = t. Suppose vM1 = vM2 . By T , we know that vM1RvvM2

holds. We also know that vM1(X) = t, thus vM2(X) = t also. Therefore, vM1(X → ♦X) =

t.

We also have the sublogic relation in the truth-valuational approach.

Definition 29 (Sublogic). For any L1 and L2, if L1 ⊆ L2, then L2 is a sublogic of L1.

Note that by Definition 27, X is an L-modal tautology iff it is true under all vM in all

L-valuational frameworks. Then, if X is an L2-modal tautology and the sublogic relation is

as before, then X is also an L1-modal tautology, hence the terminology.

We can also define L-satisfiability for our truth-valuational account. Later on, we will

consider another definition for a different type of expressions.

Definition 30 (Simple Lv-Satisfiability). A formula X is Lv-satisfiable iff there is an L-

valuational framework Fv and a vM ∈ V such that vM(X) = t. Then, a set S of formulas is

Lv-satisfiable iff all members of S are Lv-satisfiable under the same modal valuation vM .

With definitions of L-modal tautology and Lv-satisfiability at hand, we can go on to

prove the truth-valuational equivalent of Proposition 19.

Proposition 31. X is an L-modal tautology iff ¬X is not Lv-satisfiable.
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Proof. Suppose first that X is an L-modal tautology and ¬X is satisfiable. Then, by Defini-

tion 27, in all valuational frameworks of L, for all modal valuations vM ∈ V , vM(X) = t, and

thus vM(¬X) = f also. By Definition 30, if ¬X is satisfiable, there is a valuational framework

of L where there is a vM ∈ V such that vM(¬X) = t. We arrive at a contradiction.

Suppose second that ¬X is not satisfiable and X is not an L-modal tautology. First, by

Definition 30, there is no valuational framework Fv of L with a modal valuation vM ∈ V such

that vM(¬X) = t. Thus, for any modal valuation vM ∈ V , vM(¬X) = f . But, we also know

that X is not an L-modal tautology, so by Definition 27, there is at least one valuational

framework Fv of L with a vM ∈ V such that vM(X) = f , i.e., vM(¬X) = t. We have our

contradiction again.

We go on to define semantic entailment. Since modal logic departs significantly from

the concept of entailment in propositional logic, take the latter first. In propositional logic,

semantic entailment is given as follows (see, e.g., Smullyan’s (1995, p. 12)):

Definition 32 (Propositional Semantic Entailment). A set S of formulas semantically entail

a formula X iff for every valuation v, if v(Y ) = t for every Y ∈ S, then v(X) = t also.

In the modal case, things are more complicated: we essentially have two notions of

semantic entailment which can also combine. Fitting and Mendelsohn (1998), following the

convention in the literature, call these ‘local’ and ‘global’ assumptions or premises. The

definition, adapted to our truth-valuational account is as follows:

Definition 33 (Modal Semantic Entailment). If S and U are sets of formulas and X is a

formula, X is a consequence in L of S as global assumptions and U as local assumptions iff

for every L-valuational framework where members of S are a modal tautology and for every

modal valuation vM ∈ V under which all members of U evaluate to t, vM(X) = t. In such

cases, we write S �Lv U ⇒ X.
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More explicitly, when looking at modal semantic entailment, we first take all L-valuational

frameworks. Then, we take a subset of all L-valuational frameworks where under all vM ∈ V ,

all members of S evaluate to t. Then, for each of these frameworks, we take all those vM ∈ V

where all members of U evaluate to t. Finally, if X also evaluates to t under those vM

where all members of U do, then X is semantically L-entailed by S as global and U as local

assumptions. Note that we can model several possible circumstances with this definition.

Most importantly, whether S or U is non-empty is not specified. Thus, we can have either

S, U or both empty, the last one corresponding to the definition of an L-modal tautology.

We show it, and a few other examples.

Proposition 34. �L X iff ∅ �L ∅ ⇒ X.

Proof. The proposition is true by definition. The left hand side says that in every L-

valuational framework, X evaluates to t under all modal valuations in V . According to

the right hand side, we take every L-valuational framework where all members of ∅ are a

modal tautology, i.e., true under all modal valuations. Since ∅ has no members, it is vacu-

ously true that all of its members are true under all modal valuations in any L-valuational

framework. We proceed to local assumptions. Again, for each framework, it is vacuously

true that all members of ∅ evaluate to t under any vM ∈ V . Then, ∅ �L ∅ ⇒ X if X is true

under all modal valuations in any L-valuational framework.

Then, whenever we have ∅ �L ∅ ⇒ X, we can just write �L X. Now the other two

cases. Suppose U = ∅. Again, we can omit ∅ and write S �L X. Then in all L-valuational

frameworks where S is a set of modal tautologies, X is a modal tautology also. Take the

following example.

Proposition 35. S �K �(X ∨ Y ), where S is the set of all formulas of form X ∨ Y .

Proof. First, we take the set of all K-valuational frameworks. Then, we take that subset Q

of such a set where for any Fv, for all vM ∈ V , vM(X ∨ Y ) = t. By Definition 29, K is a
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sublogic of the logic defined by Q. By Definition 25, vM1 [�(X ∨ Y )] = t iff for all vM2 , if

vM1RvvM2 , then vM2(X ∨ Y ) = t. Now take an arbitrary vM1 ∈ V from an arbitrary Fv of

Q. If there is no vM2 ∈ V such that vM1RvvM2 , then vM1 [�(X ∨ Y )] = t is trivially true.

Alternatively, given that for all vM ∈ V of any Fv of Q, vM(X ∨ Y ) = t, if for any vM2 ,

vM1RvvM2 , then vM2(X ∨ Y ) = t. Thus, vM1 [�(X ∨ Y )] = t.

We now move on to S �L U ⇒ X, where S = ∅. We can then write �L U ⇒ X. We give

an example where the relation does not hold.

Proposition 36. 2K X ⇒ ♦X

Proof. Suppose that �K X ⇒ ♦X. Then for all K-valuational frameworks, for any vM ∈ V ,

if vM(X) = t, then vM(♦X) = t also. Now take the K-valuational framework with exactly

one vM ∈ V . Set vM(X) = t and take vMRvvM to be false. Then, vM(♦X) = f , contra

supposition.

We can establish two results that carry over straightforwardly from the propositional

case.

Proposition 37 (Local Semantic Deduction Theorem). S �L U ∪ {X} ⇒ Y iff S �L U ⇒

(X → Y ).

Proof. From left to right. Suppose that S �L U∪{X} ⇒ Y is true. Then, at all L-valuational

frameworks where all members of S are modal tautologies, under all vM where the members

of U ∪ {X} evaluate to t, Y also does. Then, we take the same set of frameworks. Take an

arbitrary vM ∈ V where all elements of U evaluate to t. To establish that vM(X → Y ) = t,

we have to show that if vM(X) = t, then vM(Y ) = t also does. By our supposition, we

know that if all elements of U evaluate to t and X also does, then Y does also. Thus,

S �L U ⇒ (X → Y ).
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From right to left. Suppose that S �L U ⇒ (X → Y ). Then, at all L-valuational

frameworks where all members of S are a modal tautology, under all vM where all members of

U evaluate to t, (X → Y ) also does. Equivalently, whenever vM(X) = t, vM(Y ) = t. Now we

take the same set of L-valuational frameworks where all members of S are a modal tautology

and form the union U ∪ {X}. By our supposition, we already know that for any vM , if all

members of U evaluate to t and X does too, then Y does too. Thus, S �L U ∪{X} ⇒ Y .

The global semantic deduction theorem is not so straightforward, but can be proved

syntactically through the completeness theorem.

Proposition 38 (Monotonicity). If S1 ⊆ S2, U1 ⊆ U2 and L1 is a sublogic of L2, then if

S1 �L1 U1 ⇒ X, then S2 �L2 U2 ⇒ X.

Proof. Suppose that S1 ⊆ S2, U1 ⊆ U2 and L1 is a sublogic of L2. Suppose also that

S1 �L1 U1 ⇒ X. Then, for all L1 valuational frameworks Fv where every member of S1 is a

modal tautology, for all vM ∈ V of Fv, if all members of U1 evaluate to t, then X also. We

extend S1 to S2 and U1 to U2. Since S1 ⊆ S2, U1 ⊆ U2 and L1 is a sublogic of L2, we first

consider the subset of all L1-valuational frameworks which determine the logic L2. Then,

we consider a subset of the set Q1 of all L1-valuational frameworks where all members of S1

are modal tautologies, precisely that one where all members of S2 \S1 are modal tautologies

also, call it Q2. Similarly, we take that subset R2 of all vM ∈ V where all members of U1

evaluate to t (call it R1), where all members of U2 \ U1 also evaluate to t. Since we know

that S1 �L1 U1 ⇒ X, we know that at any member of Q1, under any member of R1, X

evaluates to t. Note that we want to look at L2-valuational frameworks, but both Q1 and Q2

are defined as subsets of all L1-valuational frameworks. We know that Q2 is a subset of Q1.

Then, we take the intersection of Q2 and all L2-valuational frameworks, Q3. Then, we still

have a subset of Q1. Then, we take the subset R2 of R1. Since at any member of Q1, under

any member of R1, X evaluates to t and any members of Q3 and R2 are also members of Q1
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and R1, respectively, then at any member of Q3, under any member of R2, X evaluates to

t also. Thus, S2 �L2 U2 ⇒ X.

Finally, we need to extend the notion of satisfiability to include global and local premise

sets.

Definition 39 (Lv-Satisfiability for Sets of Global and Local Premises). A formula X is

Lv-satisfiable together with a set S of global and a set U of local premises iff there is an

L-valuational framework Fv where under any vM , for any Z ∈ S, vM(Z) = t, and a vM ∈ V

such that for any Y ∈ U , vM(Y ) = t and vM(X) = t also. Then, the simple Lv-satisfiability

for a set of formulas S is Lv satisfiability for the set S construed as the set of local premises.

We then have the following:

Proposition 40. X is L-entailed by the global premise set S and local premise set U iff the

global premise set S, the local premise set U and ¬X are not Lv-satisfiable.

Proof. Suppose first that X is L-entailed by the global premise set S and local premise set U

and that the global premise set S, the local premise set U and ¬X are Lv-satisfiable. Then,

by Definition 33, in all valuational frameworks in L where all members of S are true under

vM ∈ V , for all modal valuations vM ∈ V , if vM(Y ) = t for every Y ∈ U , then vM(X) = t

also. Thus, vM(¬X) = f also. By Definition 39, if the global premise set S, the local premise

set U and ¬X are satisfiable, there is a valuational framework in L where all members of

S are true under every vM ∈ V , and where there is a vM ∈ V such that for every Y ∈ U ,

vM(Y ) = t and vM(¬X) = t also. We arrive at a contradiction.

Suppose second that the global premise set S, the local premise set U and ¬X are not

Lv-satisfiable and X is not L-entailed by the global premise set S and local premise set U .

First, by Definition 39, there is no valuational framework Fv in L where under every vM ∈ V ,

vM(Z) = t for every Z ∈ S with a modal valuation vM ∈ V such that vM(Y ) = t for every
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Y ∈ U and vM(¬X) = t also. Thus, for any modal valuation vM ∈ V , vM(¬X) = f . But,

we also know that X is not L-entailed by the global premise set S and local premise set U ,

so by Definition 33, there is at least one valuational framework Fv in L where every Z ∈ U

is true under every vM ∈ V and with a vM ∈ V such that for every Y ∈ U , vM(Y ) = t, but

vM(X) = f , i.e., vM(¬X) = t. We have our contradiction again.

3.3 Leblanc, Dunn, and Ben-Yami

As mentioned above, the truth-valuational account presented here is based on Leblanc’s

(1976), Dunn’s (1973), and Ben-Yami’s (MS) approach. It differs from Leblanc’s (cf. Kripke’s

(1959)) and one of Dunn’s semantics in that modal valuations assign truth-values directly

to all formulas of the language, not just to the atomic ones. In his other semantics from the

same paper, Dunn presents an account where modal valuations assign truth-values directly

to all formulas of the language, similar to the one here and that of Ben-Yami, though in the

end, his semantics is rather different than ours and Ben-Yami’s.4

Leblanc, Dunn, and Ben-Yami also give different accounts of how valuations relate to

each other. Leblanc’s is essentially the same as we have presented above, and which parallels

the Kripkean account. We will continue using it going forward, but will remain agnostic as

to what the best conception is philosophically. Dunn shows that his definition (which, again,

can be found in his (1973), cf. Goble’s (1973)) is equivalent to the Leblanc-Kripke one. And

it can also be shown that moving back and forth between the account presented above and

that of Ben-Yami is also (at least formally) trivial.

We do it as follows. Instead of defining the Rv relation between valuations, for any modal

4This formulation may be somewhat misleading. Naturally, it is not the case that in the end, there are
formulas of the language which do not receive a truth-value under a valuation. Rather, the question is
whether we take the set of valuations of a valuational framework as a set of atomic valuations, which are
then extended according to the rules, or a set of valuations simpliciter, which then need not be extended,
but the set of valuations and the relation on the set in the framework already have to conform to each other.
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valuation vM , Ben-Yami defines an assignment set SvM . This assignment set gives us the

valuations alternative to a given one. Take the approach with the relation Rv. Then we

have expressions of the form Rv(vM1 , vM2). We can then define the assignment set SvM1
for a

modal valuation vM1 by noting that any modal valuation vM2 is in SvM1
ifRv(vM1 , vM2) holds.

Or we can say that given the assignment set SvM1
for a modal valuation vM1 , Rv(vM1 , vM2)

holds if every vM2 is in SvM1
.
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4 The Tableau Proof Method

The proof systems described in the following come from Fitting’s seminal work in the field

encompassing several decades. For details, see his (1972), (1983), (1993), (1998) and (2007).

The main idea for prefixed modal tableaux came from Fitch’s (1966), with significant mate-

rial coming from Smullyan’s classic work on first-order tableaux (1995, originally published

in 1968), which in turn already relied on first-order Hintikka sets for completeness (see Hin-

tikka’s (1955)).1

Before proceeding, we give some background on trees. The terminology and definitions

are adapted to prefixed tableaux from Smullyan’s (1995). Tableau proofs are trees of the

mathematical kind. A tree T is defined by three things. First, we need a set P of points of

our tree. Second, we have a function l : P → N+. If l(x) = n, we say that the level of x

is n. There is a unique point p1 such that l(p1) = 1 which is called the origin of the tree.

Finally, we have a binary relation xRy defined on P , which gives us the predecessor/successor

relation if the following conditions are met. Except p1, every point has a unique predecessor.

Finally, for all x, y ∈ P , if xRy then l(y) = l(x) + 1.

Now for some terminology. If a point has no successor, it is called an end point. If it

has only one successor, it is a simple point, if it has more than one successor, a junction

1There has been intense collaboration between the authors mentioned in this thesis. Dunn wrote his PhD
under the supervision of Belnap, with whom he wrote their famous (1968) paper criticizing substitutional
quantification. In his (1976), Leblanc came up with a way of countenancing that criticism with help from
Hintikka. Both Dunn and Fitting reviewed Leblanc’s (1976). Finally, Fitting was a PhD student of Smullyan.
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point. By the descendents of a point p, we mean the immediate successors of p, their

immediate successors, and so on. Naturally, trees have branches. First, a path is any finite

or denumerably infinite sequence of points, where the first point in the sequence is the origin

point and any point is a predecessor of the next (if any) in the sequence. By Px we mean

a finite path whose last point is x. A path is maximal if it has a last point which is an

end point of T or if it is infinite. A branch is just a maximal path. If we want to speak

of the first, second, third, etc. successors of a junction point (where the point at most has

denumerably many successors), we need an ordered tree. Thus, we need to specify a function

s which maps to every junction point x a sequence s(x) of all the successors of x without

repetition. Finally, by a dyadic tree, we mean a tree with junction points that have exactly

2 successors. With ordered dyadic trees, we can speak of the left successor and the right

successor of any junction point. Any dyadic tree is said to be finitely generated, since any

point has only finitely many successors (namely, 0, 1 or 2). However, not every dyadic tree

is finite in the sense that it has finitely many points. We will return to this.

Next, we look at how to actually construct trees from the origin with repeated applications

of syntactic rules. In our system, we only concern ourselves with dyadic trees. Any deduction

rule either adds to an end point x a sole successor in the conjunctive case or a left successor

and a right successor in the disjunctive case. This is called adjunction. In the conjunctive and

modal cases, by an adjunction of a point y that is outside of our tree T as the sole successor

of point x we mean adding y to the set P , specifying that xRy holds and extending our

function l by defining l(y) = l(x) + 1. In the disjunctive cases, by an adjunction of points

y1 and y2 that are outside of our tree T as the successors of point x, we mean adding both

y1 and y2 to the set P , specifying that the relation R holds between both x and y1 and x

and y2 and extending the function l by l(y1) = l(y2) = l(x) + 1. Finally, we also extend our

ordering function s such that s(x) =< y1, y2 >, i.e., y1 becomes the left successor of x and

y2 the right.
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The points of our proof trees are prefixed formulas. Intuitively, a prefix tells us what

‘possible world’ or modal valuation we are considering. Prefixed tableaux, i.e., tableaux

with prefixed formulas for different modal logics were developed by Fitting in his (1972) and

(1983).

Definition 41 (Prefixed Formula). A prefixed formula is an expression of the form ωX,

where X is a formula and ω is a finite sequence of integers (separated by points for unam-

biguous human parsing) called a prefix.

4.1 K -Tableau Rules

To shorten our proofs, we introduce Smullyan and Fitting’s unified notation. We will sort

our rules into four categories. C-rules will include the conjunctive cases, D-rules will include

the disjunctive cases, P-rules will include the K-possibility cases and N-rules will include

the K-necessity cases. As mentioned above, modal cases are similar to conjunctive cases in

that they do not involve ‘branching’. In all four categories, our rules will involve specifying

for a prefixed formula of form ωα, ωβ, ωγ or ωδ, respectively, what pairs of formulas of form

ωα1, ωα2 we can adjoin to ωα either by themselves or successively, what pairs of formulas of

form ωβ1 and ωβ2 we can adjoin to ωβ at once and what formulas of form ω.nγs and ω.nδs

we can adjoin to ωγ and ωδ as sole successor, respectively. From now on, we will continue

to use this notation to refer to such cases throughout.

Definition 42 (Modal Conjunctive Rules). A conjunctive rule is called a Type-C rule. For

any prefix ω, if some ωα occurs on some branch Py, where α is of one of the four forms

specified in Table 2 below, one may adjoin either ωα1 or ωα2 as sole successor to y (usually,

we do both successively).
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ωα ωα1 ωα2

ωX ∧ Y ωX ωY

ω¬(X ∨ Y ) ω¬X ω¬Y
ω¬(X → Y ) ωX ω¬Y
ω¬¬X ωX ωX

Table 2: Type-C Deduction Rules

Proposition 43. Given any valuational framework Fv, for any α, α1, α2, vM(α) = t iff

vM(α1) = t and vM(α2) = t.

Proof. We show one. We need to prove that vM(X ∧ Y ) = t iff vM(X) = t and vM(Y ) = t.

Since modal valuations are Boolean, this is true by definition. The rest is shown similarly.

Definition 44 (Modal Disjunctive Rules). A disjunctive rule is called a Type-D rule. For

any prefix ω, if some ωβ occurs on some branch Py, where β is of one of the four forms

specified in Table 3 below, one may simultaneously adjoin ωβ1 as left successor and ωβ2 as

right successor to y.

ωβ ωβ1 ωβ2

ωX ∨ Y ωX ωY

ω¬(X ∧ Y ) ω¬X ω¬Y
ωX → Y ω¬X ωY

Table 3: Type-D Deduction Rules

Proposition 45. Given any valuational framework Fv, for any β, β1, β2, vM(β) = t iff

vM(β1) = t or vM(β2) = t.

Proof. Again, we show one. We need to prove that vM(X ∨ Y ) = t iff vM(X) = t or

vM(Y ) = t. Again, since modal valuations are Boolean, this is true by definition. The rest

is shown similarly.
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Definition 46 (K-Possibility Rules). A K-possibility rule is called a Type-P rule. If some

ωγ occurs on some branch Py, where γ is of one of the two forms specified in Table 4 below,

one may adjoin ω.nγs as sole successor to y, if the prefix ω.n is new to the branch.

ωγ ω.nγs

ω♦X ω.nX

ω¬�X ω.n¬X

Table 4: Type-P Deduction Rules

Proposition 47. Given any valuational framework Fv, for any γ, γs, vM1, vM1(γ) = t iff

there is a vM2 such that vM1RvvM2 and vM2(γs) = t.

Proof. Again, we show only one. We need to show that vM1(♦X) = t iff there is a vM2 such

that vM1RvvM2 and vM2(X) = t. By Definition 25, this holds. The other case is similar

Definition 48 (K-Necessity Rule). A K-necessity rule is called a Type-N rule. If some ωδ

occurs on some branch Py, where δ is of one of the two forms specified in Table 5 below, one

may adjoin ω.nδs as sole successor to y, if the prefix ω.n already occurs on the branch.

ωδ ω.nδs

ω�X ω.nX

ω¬♦X ω.n¬X

Table 5: Type-N Deduction Rules

Proposition 49. Given any valuational framework Fv, for any δ, δs, vM1, vM1(δ) = t iff for

all vM2, if vM1RvvM2, then vM2(δs) = t.

Proof. Again, we show only one. We need to show that vM1(δ) = t iff for all vM2 , if vM1RvvM2 ,

then vM2(δs) = t. By Definition 25, this holds. The other case is similar.
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Finally, we present two rules for adding premises to a tableau, one for global premises

and one for local ones.

Definition 50 (Global Rule). A global rule is a Type-G rule. If the set S contains all global

assumptions, then we can adjoin ωX to any branch ψ of our tableau, where X ∈ S and ω is

not new to the branch.

Definition 51 (Local Rule). A local rule is a Type-L rule. If the set U contains all local

assumptions, then we can adjoin 1 X to any branch ψ of our tableau, where X ∈ U .

Importantly, every formula of our language is either a literal, or of form α, β, γ or δ.

Proposition 52. Every formula X is either of form P , ¬P , α, β, γ or δ.

Proof. The proof is by induction on the complexity of X. Take the base case. Then, X

is of complexity 0, i.e., X is P . Thus, our hypothesis holds. Take the case of formulas of

complexity 1. Then, X is either ¬P , P ∧Q (α), P ∨Q (β), P → Q (β), ♦P (γ) or �P (δ).

Then, again, our hypothesis holds.

Suppose the hypothesis holds for all formulas up to complexity n. We then show it for

formulas of complexity n+ 1. We take each case one by one.

1. Any negation of a formula ¬X (c(¬X) > 1) is either of form ¬¬Y (α), ¬(Y ∧ Z) (β),

¬(Y ∨ Z) (α), ¬(Y → Z) (α), ¬(�Y ) (γ) or ¬(♦Y ) (δ). Then, our hypothesis holds.

2. Any conjunction X ∧ Y of two formulas is of form α, so the hypothesis holds.

3. Any disjunction X ∨ Y of two formulas is of form β, so the hypothesis holds.

4. Any conditional X → Y of two formulas is of form β, so the hypothesis holds.

5. Any formula of form ♦X is of form γ, so the hypothesis holds.

6. Any formula of form �X is of form δ, so the hypothesis holds.
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4.2 Extensions to Other Systems

We sketch how to extend our system to stronger modal logics. After introducing these

extensions, we will return back to K for our further proofs, but will note extensions to

stronger systems throughout.

There are several different ways to accomodate different logics in the modal tableau

system. I will use a simple one from Fitting and Mendelsohn’s (1998) (which is, in turn,

based on Massacci’s (1994) and Goré’s (1999)), where one adds additional rules to the already

presented K-ones. Different combinations of rules will result in different systems, parallel

to the axiomatic treatment of modal propositional logic. In fact, the introduced rules will

show important parallels to the appropriate axioms of the same name. The additional rules

only concern formulas of form δ.

Definition 53 (Additional Necessity Rules). Depending on the system used, if some ωδ (T,

4) or ω.nδ (B, 4r) occurs on some branch Py, where they are as specified by the rules in

Table 6 below, then one may adjoin the corresponding ωδs (T, B) or ω.nδ4s (4) or ωδ4s (4r)

as sole successor to y, if the prefix ω (T, B, 4r) or ω.n (4) already occurs on the branch.

T

ωδ ωδs

ω�X ωX

ω¬♦X ω¬X
B

ω.nδ ωδs

ω.n�X ωX

ω.n¬♦X ω¬X

4

ωδ ω.nδ4s

ω�X ω.n�X

ω¬♦X ω.n¬♦X
4r

ω.nδ ωδ4s

ω.n�X ω�X

ω.n¬♦X ω¬♦X

Table 6: Additional Deduction Rules

The system T results from adding the T-rule to the system K (i.e., to the K-rules), K4

by adding rule 4 to the system K, B by adding the B-rule and the 4-rule to the system K,

S4 by adding the 4-rule to the system T , and S5 by adding the 4r rule to the system S4 .
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4.3 Central Notions

We adapt some additional terminology and definitions from Smullyan’s (1995). Every de-

duction step in our tableau proofs is a direct extension of a tree. By the direct L-extension

of the ordered dyadic tree T1 to the ordered dyadic tree T2, where the points of both are

occurences of prefixed formulas, we mean that T2 was obtained by exactly one application

of the rules appropriate for L. We can now define what a modal tableau for a formula is.

Definition 54 (L-Modal Tableau). By a finite L-modal tableau T for a formula X from

the set of global premises S and the set of local premises U we mean an ordered dyadic tree

with occurences of prefixed formulas as points that is defined inductively as follows. Every

1-point tree with occurences of prefixed formulas as points with 1 X at its origin is a finite

modal tableau for X. If T1 is a finite modal tableau for X and T2 is a direct L-extension of

it, then T2 is also a finite modal tableau for X. Nothing else is a finite modal tableau for X.

In other words, T is a finite modal tableau for a formula X from the set of global premises

S and the set of local premises U iff there is a finite sequence < T1, T2, . . . , Tn = T >, where

T1 is a 1-point tree whose sole point is 1 X and for each i < n, Ti+1 is a direct L-extension

of Ti. By an infinite modal tableau T , we mean the union tree of the infinite sequence

< T1, T2, . . . , Tn, . . . >, where for each n, Tn+1 is a direct L-extension of Tn.

Naturally, not every modal tableau is a proof of X from S as global and U as local

premises and we need one additional definition to specify what makes a modal tableau for

X from S as global and U as local premises a tableau proof of Y from S as global and U as

local premises.

Definition 55 (Closure). A branch of a modal tableau is closed if it contains both ωX and

ω¬X for some formula X. If a branch is not closed, it is open. A tableau is closed if every

branch of it is closed.
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Definition 56 (L-Tableau Proof). A closed L-modal tableau for 1 ¬X from S as global and

U as local premises is an L-tableau proof of X from S as global and U as local premises. If

X has an L-tableau proof from S as global and U as local premises, it is L-deducible from S

and U . If X is L-deducible from S as global and U as local premises, we write S `L U ⇒ X,

and if either S or U is empty, we write `L U ⇒ X or S `L X. If X is L-deducible with S

and U empty, we say that X is a theorem of L and write `L X.

Before continuing, we provide two examples (Example 1 [p. 38], and Example 2 [p. 39])

of modal tableau proofs. Example 1 shows the necessitation of a theorem of propositional

logic (one half of a DeMorgan Law) using just K-rules, Example 2 shows a possible interplay

between the axiomatic approach and tableau, giving a proof of S `K U ⇒ Z, where S =

{�X → X : X ∈ F}, i.e., all instances of the axiom T , and U = {�Y,�(Y → Z)}.

We next need to prove Kőnig’s Lemma, a result from the Hungarian mathematician

Dénes Kőnig. The proof is Kőnig’s original, as presented by Smullyan in his (1995).

Proposition 57 (Kőnig’s Lemma). Any finitely generated infinite tableau T has at least one

infinite branch.

`K �((¬X ∨ ¬Y )→ ¬(X ∧ Y ))

1.
2.
3.
4.
5.
6.
7.

8.

1 ¬�((¬X ∨ ¬Y )→ ¬(X ∧ Y ))
1.1 ¬((¬X ∨ ¬Y )→ ¬(X ∧ Y ))

1.1 (¬X ∨ ¬Y )
1.1 ¬¬(X ∧ Y )

1.1 X ∧ Y
1.1 X
1.1 Y

1.1 ¬X
⊗
6,8

1.1 ¬Y
⊗
7,8

Pr.
1 P -type rule
2 C-type rule
2 C-type rule
4 C-type rule
5 C-type rule
5 C-type rule

3 D-type rule

Example 1: Tableau Proof of a Proposition
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{�X → X : X ∈ F} `K {�Y,�(Y → Z)} ⇒ Z

1.
2.
3.
4.
5.

6.

7.

8.
9.
10.
11.
12.

1 ¬Z
1 �Y

1 �(Y → Z)
1 �Y → Y

1 �(Y → Z)→ (Y → Z)

1 ¬�(Y → Z)

1.1 ¬(Y → Z)
1.1 Y → Z
⊗

11, 12

1 Y → Z

1 ¬Y

1 ¬�Y
1.1 ¬Y
1.1 Y
⊗

9, 10

1 Y
⊗
7,8

1 Z
⊗
1, 7

Pr.
L-type rule
L-type rule
G-type rule
G-type rule

5 D-type rule

6 D-type rule

4 D-type rule
8 P -type rule
2 N -type rule
6 P -type rule
3 N -type rule

Example 2: Tableau Proof of an Argument

Proof. We introduce some new terminology. A point of a tree is good if it has infinitely

many descendents. It is called bad if it has only finitely many descendents. We know by

hypothesis that T has infintely many points. Thus, the origin must be good.

Then, we go on to note that every good point p must have at least one good descendent,

since for any tree that is finitely generated, the immediate successors of any point p are also

finite. The descendents of p are the finite number of immediate successors of p and their

successors. Thus, there must be at least one immediate successor to p which has infinitely

many descendants and thus is itself good.

Keeping this in mind, our origin point p1 has a good descendent p2, which in turn has a

good descendent p3 and so on. We thus generate an infinite branch.

Then, we have the following proposition:
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Proposition 58. If X has an L-tableau proof from S as global and U as local premises, X

has a finite L-tableau proof from S as global and U as local premises.

Proof. Suppose X has a tableau proof T from S as global and U as local premises. T is

either finite or infinite. If it is finite, then X has a finite tableau proof. If it is infinite, then

we have an infinite tableau T where for every branch ψ, we have a pair of points < x, y >

at levels l(x) and l(y) where l(x) < l(y) such that we have ωX at x and ω¬X at y or ω¬X

at x and ωX at y. By Proposition 57, T has at least one infinite branch. Again, since T is

closed, for each infinite branch ψ, we have our pair of points < x, y > at some finite levels

l(x) and l(y) which close the branch. Then, we can stop constructing any infinite ψ after

l(y) many levels, still resulting in a closed tableau. Thus, X has a tableau proof T1 from S

as global and U as local assumptions with only finite long branches. Then, by the converse

of Proposition 57, T1 is not infinite or not finitely generated. Since any modal tableau is

finitely generated, T1 is not infinite. Thus, X has a finite tableau proof from S as global and

U as local premises.
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5 Soundness

The soundness proof is based on a straightforward induction on tableau construction steps.

However, due to the large number of branch extension rules, and the fact that tableux are

trees with junction points, the actual proof is somewhat lengthy and elaborate. The general

strategy of it comes from Fitting’s (1983).

First, we define satisfiability for a set of prefixed formulas.

Definition 59 (K-Satisfiability for Prefixed Formulas). A set of prefixed formulas S is K-

satisfiable in the valuational framework Fv =< V ,Rv > iff there is a way, Θ, of assigning to

each prefix ω that occurs in some element of S some modal valuation Θ(ω) ∈ V such that:

1. If ω and ω.n both occur as prefixes in our set S, then Θ(ω)RvΘ(ω.n) holds, i.e., Θ(ω.n)

is an alternative possible valuation relative to Θ(ω).

2. If ωX is in S, then Θ(ω)(X) = t, i.e., X is true under the modal valuation Θ(ω).

A tableau branch is satisfiable if the set of prefixed formulas on it is satisfiable in some

valuational framework. A tableau itself is satisfiable if some branch of it is satisfiable.

Remark. In extending to the general, L-satisfiability of a set of prefixed formulas following

the systems we introduced above, we only need to introduce some additional conditions for

prefixes as specified by the logic L under consideration. If the logic under consideration is

reflexive, then for any ω occuring as a prefix in any formula in S, θ(ω)Rvθ(ω), if symmetric
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and ω.n also occurs in S, then θ(ω.n)Rvθ(ω), and if transitive and ω.ω1 also occurs in S,

then θ(ω)Rvθ(ω.ω1).

To make our proofs less complicated, we define premise or P-satisfiable branches and

tableaux:

Definition 60 (P -Satisfiability). Suppose S is a set of local and U is a set of global premises.

A branch ψ of an L-modal tableau T is said to be P-satisfiable iff it is L-satisfiable together

with every 1 Y for each Y ∈ S and every ωZ for each Z ∈ U and ω that occurs on ψ. A

tableau is P -satisfiable if one of its branches is.

We need one more lemma to prove the soundness theorem. Again, both this and the

soundness proof itself are truth-valuational variants of those found in Fitting’s (1983).

Proposition 61. A closed tableau is not satisfiable.

Proof. Suppose we have a modal tableau that is both closed and satisfiable. By Definition 59,

there is a branch of the tableau that is itself satisfiable. Form a set S of the prefixed formulas

that are on the satisfiable branch. Then, there is valuational framework in which that set is

satisfiable. Suppose it is satisfiable in the valuational framework Fv = < V ,Rv >, using the

mapping Θ of prefixes to modal valuations in V . Since the tableau is closed, by Definition

55, every branch of it is, and in particular, our satisfiable one as well. Thus, S also has as

members for some prefix ω and some formula X both ωX and ω¬X. But then, by Definition

59, there is a modal valuation vM ∈ V such that Θ(ω) = vM and vM(X) = vM(¬X) = t,

which is impossible.

Proposition 62 (Soundness). If S and U are sets of formulas and X is any formula, then

if S `K U ⇒ X, then S �Kv U ⇒ X.

Proof. The proof is by contradiction. Suppose that S `K U ⇒ X, but not S �K U ⇒ X.

Then, we have a finite closed K-modal tableau T with S as global and U as local assumptions

with 1 ¬X at its origin. We also know by our supposition that S 2K U ⇒ X.
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Thus, there is a K-valuational framework Fv where any member of S evaluates to t under

all modal valuations vM , with a specific modal valuation vM1 such that for any member Y

of U , vM1(Y ) = t, but not X, i.e., vM1(¬X) = t. We set θ(1) = vM1 . Thus, we know that

1 ¬X and all prefixed formulas of form 1 Y for all Y ∈ U are K-satisfiable in Fv with θ as

defined and additionally, for any Z ∈ S and vM ∈ V , vM(Z) = t (and thus, given any θ, ω

and Z ∈ S, θ(ω) = vM such that vM(Z) = t).

We show that any finite tableau T ∗ for 1 ¬X with S as global and U as local premises

is satisfiable together with all prefixed formulas of form 1 Y for all Y ∈ U and of form ωZ

for all ω occuring on the relevant open branch and all Z ∈ S (i.e., it is P -satisfiable) in a

valuational framework Fv where for all vM ∈ V , vM(Z) = t for all Z ∈ S. The proof is by

induction on the number of tableaux in the tableaux formation sequence < T1, ..., Tn = T ∗ >,

where given i > 1, each Ti is a direct extension of Ti−1 and T1 is the tableau with the sole

point 1 ¬X at the origin.

Take the base case. Then, we have a tableau with the sole point 1 ¬X at the origin.

Then, by the above, it is P -satisfiable in a Fv as specified above.

Suppose the inductive hypothesis holds up to any sequence with n-many tableaux. Then,

we show it for the sequence with n+1 many tableaux, i.e., when Tn+1 = T ∗. By the induction

hypothesis, Tn is P -satisfiable in Fv, and thus, at least one of its branches is P -satisfiable in

a Fv where under every vM , any Z ∈ S receives t and under vM1 , any Y ∈ U receives t also,

along with ¬X. Suppose that the P -satisfiable branch is ψ. Then, we look at each possible

direct extension of Tn to Tn+1 one by one.

1. Suppose a formula of form ωα occurs on ψ and we apply a rule of type C to ψ. Then,

either ωα1 or ωα2 is adjoined to the end of ψ. Since ψ is P -satisfiable in the appropriate

Fv where under any vM , for any Z ∈ S, vM(Z) = t, and ωα occurs on it, we know

that there are modal valuations vM , vM1 ∈ V such that Θ(1) = vM1 , Θ(ω) = vM ,
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vM(α) = vM(Z) = t for all Z ∈ S and vM1(Y ) = vM1(Z) = t for all Y ∈ U and Z ∈ S.

By Proposition 43, vM(α) = t iff vM(α1) = t and vM(α2) = t. Thus, either way, we

have a P -satisfiable branch. Then, we have a P -satisfiable tableau.

2. Suppose a formula of form ωβ occurs on ψ and we apply a rule of type D to ψ. Then,

we adjoin ωβ1 and ωβ2 simultaneously as left and right successors. We get two new

branches, ψ1 with end point ωβ1 and ψ2 with end point ωβ2. Again, since ψ is P -

satisfiable in the appropriate Fv as before, and ωβ occurs on it, we know that there is

a modal valuation vM ∈ V such that Θ(ω) = vM and vM(β) = t. By Proposition 45,

vM(β) = t iff vM(β1) = t or vM(β2) = t. In the first case, ψ1 is P -satisfiable, in the

second case, ψ2 is P -satisfiable. Either way, we still have a branch that is P -satisfiable

and therefore, our tableau is still P -satisfiable.

3. Suppose a formula of form ωγ occurs on ψ and we apply a rule of type P to ψ. Then, we

adjoin ω.nγs, where ω.n did not occur previously on the branch. Accordingly, Θ(ω.n)

is not defined. As before, since ψ is P -satisfiable in the appropriate Fv as before, and

ωγ occurs on it, we know that there is a modal valuation vM ∈ V such that Θ(ω) = vM

and vM(γ) = t. Then, by Proposition 47, there is a modal valuation vM2 ∈ V , such

that vMRvvM2 and vM2(γs) = t.

We go on to define a new mapping, Θ′, the following way. For all prefixes occuring in

ψ, let Θ′ be the same as Θ and set Θ′(ω.n) to vM2 (since it was previously undefined).

Since Θ and Θ′ agree on all the prefixes occurring on ψ, Θ′(ω) is also vM and Θ′(1) is

also vM1 . We already defined Θ′(ω.n) = vM2 and know that vMRvvM2 and vM2(γs) = t.

Thus, Θ′(ω)RvΘ
′(ω.n) and γs is true under Θ′(ω.n), which is vM2 . It follows that

extending the branch ψ with any instance of a rule of Type C will result in a branch

that is P -satisfiable in the desired Fv, using the mapping Θ′ instead of the original Θ.

Then, we still have a P -satisfiable tableau.
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4. Suppose a formula of form ωδ occurs on ψ and we apply a rule of type N to ψ. Then, we

adjoin ω.nδs, where ω.n already occured previously on the branch and Θ(ω.n) is thus

already defined. By Definition 59, we also know that ω.n is such that Θ(ω)RvΘ(ω.n).

Again, since ψ is P -satisfiable in the appropriate Fv as before, and ωδ occurs on it,

we know that there is a modal valuation vM ∈ V such that Θ(ω) = vM and vM(δ) = t.

Then, by Proposition 47, for all modal valuations vM2 ∈ V , if vMRvvM2 , then vM2(δs) =

t. Since Θ(ω.n) is just such a vM2 , δs is true under Θ(ω.n). Accordingly, it follows that

extending the branch ψ with any instance of a rule of Type D will result in a branch

that is P -satisfiable. Then, we still have a P -satisfiable tableau.

5. Suppose we extend a P -satisfiable branch ψ of our tableau with our type L rule. Then,

we add a formula of form 1 Y , where Y ∈ U . As before, we know that ψ is P -satisfiable

in the appropriate Fv. But then the resulting branch is still P -satisfiable, and thus the

tableau also.

6. Suppose we extend a P -satisfiable branch ψ of our tableau with our type G rule. Then,

we add a formula of form ωZ, where ω already occurs as a prefix at a point of the

branch ψ and Z ∈ S. As before, we know that ψ is P -satisfiable in the appropriate

Fv. But then the resulting branch is still P -satisfiable, and thus the tableau also.

7. Finally, if we apply any rule to a branch ψ′ other than the P -satisfiable ψ, we still have

a P -satisfiable tableau.

This concludes the inductive part of the proof. By S `K U ⇒ X and Proposition 58, we

know we have a finite closed K-modal tableau T with S as global and U as local assumptions

with 1 ¬X at its origin. But by the above, T is also P -satisfiable in an appropriate Fv. We

have a contradiction.
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Remark. Extensions to different systems are done by adding the appropriate rules as ad-

ditional cases to the proof. We show one. Let us suppose the system is K4 . Then, we

add the case for the application of rule 4. Thus, if a formula of form ωδ occurs on ψ, we

may adjoin ω.nδ4s as well, where ω.n already occured on the branch. By Definition 59, we

know that ω.n is such that Θ(ω)RvΘ(ω.n). Since ψ is P -satisfiable and ωδ occurs on it, we

know that there is a modal valuation vM ∈ V such that Θ(ω) = vM and vM(δ) = t. Since

our valuational framework Fv is transitive, we have that for any vM2 such that vMRvvM2 ,

vM2(δ
4
S) = t. For suppose vM2(δ

4
S) = f . Then, there is a valuation vM3 such that vM2RvvM3

and vM3(δs) = f . But note that by transitivity, we have that vMRvvM3 , and by Proposition

47, for all modal valuations vM1 ∈ V , if vMRvvM1 , then vM1(δs) = t, which is a contradiction.

Thus, vM2(δ
4
S) = t for all vM2 . Since Θ(ω.n) is just such a vM2 , δ

4
s is true under Θ(ω.n). The

rest is as before but with K4 instead of K.

This concludes the proof of soundness.
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6 Semi-Strong Completeness

In the following, we will prove the completeness of our tableau system K relative to the

truth-valuational semantics we introduced earlier. The definitions and proofs are, again, the

truth-valuational variants of those found in Fitting’s (1983), with some important changes.

The completeness presented here is semi-strong in that it only applies to sets of premises

(more precisely, any union of local and global premise sets) which omit ℵ0 propositional

variables.

In essence, the strategy for the proof is the usual for completeness theorems in general.

What we want to show is that whenever a set of formulas is syntactically consistent (here,

this just means that the tableau does not close), then it is satisfiable. But there is also

an important difference between the method found here and those used in Henkin-style

constructions.

With tableaux, we specify an algorithm, and the tableau itself builds (or rather, we show

that it would be able to build) the syntactic equivalent of a counter-valuational framework

for each invalid argument through the systematic application of the tableau rules. This is

a natural way to go about proving the appropriate satisfiability result, since tableaux are

already syntactic counter-framework building ‘frameworks’, though naturally, when a person

uses them, she is the one building the appropriate syntactic counter-framework in the given

‘framework’ of rules, not the algorithm. In contrast, Henkin’s extension lemma specifies
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an algorithm that saturates any consistent set upwards to larger and larger consistent sets.

By referring to consistency, at each step, we ensure that no contradiction can be derived

from the extended set, and this way, we refer to actual proofs inside the system, or more

precisely, the lack of specific proofs. But this is far more abstract than with tableaux, where

the construction of the appropriate set by the algorithm takes place entirely inside the proof

system, specifying for each case how to construct the sole modal tableau branch constituting

the set.

More precisely, given the specific algorithm, the tableau can at most build the syntactic

equivalent of a fragment of a counter-framework, but a fragment of which we can be sure,

following Hintikka’s work (see his (1969), which builds on his (1955)), that it encodes enough

information to be extendible to a full counter-framework. Accordingly, let us start with the

definition of modal Hintikka sets.

Definition 63 (K-Modal Hintikka Set). By a K-modal Hintikka set or downward saturated

set, we mean a set S↓ of prefixed formulas such that the following conditions hold for any

ωα, ωβ, ωγ, ωδ in S↓:

1. No prefixed propositional variable ωP and its negation ω¬P are both in S↓.

2. If ωα is in S↓, then so are ωα1 and ωα2.

3. If ωβ is in S↓, then so is ωβ1 or ωβ2.

4. If ωγ is in S↓, so is ω.nγs for some n.

5. If ωδ is in S↓, so is ω.nδs for every ω.n that occurs in an element of S↓.

Remark. Extensions to different systems is straightforward. For every rule that comes with

the given system, we add the relevant additional condition. Continuing our example of K4 ,

given the rule 4, we add that if ωδ is in S↓, then so is ω.nδ4s for every ω.n that occurs in an

element of S↓. Note how this relates to Condition 5.
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Since in this chapter, we only talk about K-modal Hintikka sets in the main body,

we will just write ‘Hintikka set’ whenever we refer to them. Such sets may differ from

logic to logic, as noted above. We go on to introduce a systematic procedure to create

modal tableaux. Our systematic procedure ensures that every open branch (if any) of the

constructed modal tableau will constitute a Hintikka set. In the following, we will introduce

a ‘bookkeeping device’ by designating certain occurences of prefixed formulas as ‘used’. In

practice, this can be thought of as putting a little mark next to occurences of prefixed

formulas in our proofs after we have applied the appropriate rules to them so that we do

not get confused and know what is left to do. Mathematically, they are used to define a

systematic construction algorithm. The specifics are given by the definition of systematic

tableau below. The method was first introduced by Smullyan and adapted to modal logic by

Fitting. In fact, the systematic construction of first-order tableau introduced by Smullyan

in his (1995) is very close to the modal construction. This is no coincidence, since the modal

operators play a role similar to quantifiers in first-order logic. The following algorithm comes

from Fitting’s (1972) and (1983) without modification.

Definition 64 (Systematic Tableau). A modal tableau T with global and local assump-

tions for a formula X is called systematic iff the tableau is constructed as follows. First,

take S to be the set of all global assumptions whose members are arranged in a sequence

A1, A2, A3, . . ., and U to be the set of local assumptions whose members are arranged in a

sequence B1, B2, B3, . . .. We construct our tableau as follows:

1. As a base case, put our formula at the origin as 1 X.

2. Suppose we have completed the nth stage. Then, we adjoin to the end of each open

branch ψ ωAi for each i ≤ n and all prefixes ω occuring on ψ, and 1 Bn also, if they

are not on ψ already. If the tableau we have constructed is closed, then stop. Also, if

all X ∈ U appear as 1 X on every open branch and all Y ∈ S appear on every open
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branch as ωY for every ω on that branch and every occurrence of each formula of form

ωα, ωβ, ωγ, ωδ has been used, then stop.

3. If none of the above, we take the leftmost unused point x of minimal level (i.e., the

smallest n, such that l(x) = n) which appears on at least one open branch. Then, for

every open branch ψ that passes through the point x:

(a) If x is an ωα, we extend the branch ψ by adjoining α1 and α2 successively.

(b) If x is an ωβ, we extend the branch ψ simultaneously to two branches ψ1 and ψ2,

adjoining β1 in the first case and adjoining β2 in the second case.

(c) If x is an ωγ, we extend the branch ψ by adjoining ω.nγs, where n is the smallest

integer such that ω.nγs does not occur on the branch.

(d) If x is an ωδ, we extend the branch ψ by adjoining ω.nδs for each ω.n that already

occurs on the branch and we repeat ωδ once more.

If we have done the above for each open branch through x, we declare the occurrence of the

formula at x to be used. This concludes the n+ 1st stage.

Remark. Again, we do not have to make significant changes to our systematic procedure to

accomodate extensions to different logics. The only thing we have to change is condition 3.

(d) of the above definition according to the additional necessity rules of the system L. Let

us continue with K4 . Then, we change condition 3. (d) to the following: If x is an ωδ, we

extend the branch ψ by adjoining ω.nδs one after the other for each ω.n that already occurs

on the branch, and we also adjoin ω.nδ4s for each ω.n that already occurs on the branch, and

then we repeat ωδ once more.

Note that this results in an extension of our tableau rules since we repeat formulas to

enable ‘bookkeeping’. This makes no difference. In fact, if we want to prove the decidability

of K-systems, we lose it (see Fitting’s (1983, 410-416)). If the systematic tableau T did
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not close but stopped constructing because all points of it were used up, T is a finished

systematic tableau. If T did not close but ran on infinitely, it is called an infinite systematic

tableau. Otherwise, T is a closed systematic tableau.

From Kőnig’s Lemma and the definition of a systematic modal tableau, we immediately

have the following.

Proposition 65. Any infinite systematic modal tableau is open.

Proof. Suppose T is an infinite systematic modal tableau. Then, by Kőnig’s Lemma, T has

at least one infinite branch. However, if T is also closed, then every branch of it is of finite

length, since we stop constructing our systematic tableau when all of its branches close at

some stage n. We have a contradiction.

We need to prove that the systematic procedure of Fitting actually produces the Hintikka

sets we want. The proof is mine.

Proposition 66. For any finished or infinite systematic K-modal tableau T for X, every

open branch ψ of T constitutes a Hintikka set S↓ which has as members all Y ∈ U as 1 Y

and all Z ∈ S as ωZ for any ω that occurs in S↓.

Proof. By contraposition, if there is an open branch ψ of T which does not constitute a

Hintikka set S↓ which has as members all Y ∈ U as 1 Y and all Z ∈ S as ωZ for any ω that

occurs in S↓, then T is not a finished or infinite systematic K-modal tableau. We show that

our systematic construction does not stop as long as T has an open branch that does not

constitute a Hintikka set S↓ which has as members all Y ∈ U as 1 Y and all Z ∈ S as ωZ

for every ω that occurs in S↓.

Take the base case. We put 1 X at the origin. Since our tableau is not closed, we do not

stop. If both S and U are empty and X is of form P or ¬P (i.e., a literal), we stop and the

set constitutes a Hintikka set. If X is not a literal, then 1 X has not yet been used and if S
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or U or both are non-empty, then we do not have all X ∈ U as 1 X and all Y ∈ S as ωY

for every ω on the open branch, thus in either or both cases, we do not stop.

Now take the nth stage. We either stop if our tableau closes or if all points have been

used and all X ∈ U appear as 1 X on every open branch and all Y ∈ S appear on every

open branch as ωY for every ω on that branch. If our tableau closes, we do not have any

open branch left. If all points have been used and all X ∈ U appear as 1 X on every open

branch and all Y ∈ S appear on every open branch as ωY for every ω on that branch, then

for any open branch ψ, we have the following for any ω and occurrence of formulas of form

α, β, γ, δ and their successors as by our rules (including all X ∈ U that appear as 1 X on

the branch and all Y ∈ S that appear on the branch as ωY for every ω on that branch):

1. If ωα is on ψ, then so are α1 and α2, otherwise that point has not been used.

2. If ωβ is on ψ, then so is either β1 or β2, otherwise that point has not been used.

3. If ωγ is on ψ, then ω.nγs is also on ψ, for some n, otherwise that point has not been

used.

4. Finally, if ωδ is on ψ, then ω.nδs is also on ψ, for every ω.n that occurs on ψ, otherwise

that point has not been used.

Clearly, ψ constitutes a Hintikka set in this case which is such that all X ∈ U appear as 1 X

on ψ and all Y ∈ S appear on ψ as ωY for every ω on ψ. If the construction of our tableau

did not stop at any n by either closing or using up all points (including all X ∈ U as they

appear as 1 X on every open branch and all Y ∈ S as they appear on every open branch as

ωY for every ω on that branch), then it is constructed infinitely. By infinite construction, we

ensure that any open branch constitutes a Hintikka set which is such that all X ∈ U appear

as 1 X on any open branch and all Y ∈ S appear on any open branch as ωY for every ω on

that open branch (and any such open branch is, naturally, itself infinite).

Finally, note that since ψ is open, no pair of formulas ωX and ω¬X are in the Hintikka
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set S↓, and thus no pair of formulas ωP and ω¬P are in S↓.

Remark. Extending to different systems is trivial. We merely have to add the relevant

additions to clause 4 paralleling the relevant additions in Definition 64.

Finally, we move to the essential part of our completeness proof, a proposition that is the

modal equivalent of Hintikka’s Lemma for first-order logic (see Smullyan’s (1995)). As in

first-order logic, the lemma shows that any Hintikka set is satisfiable. Smullyan uses a kind of

term-model to construct a model for first-order logic while proving Hintikka’s Lemma, while

Fitting uses a ‘prefix’ model for this. Note that while prefixes may be (or more precisely,

stand for) possible worlds in some abstract sense, modal valuations are functions and most

definitely not prefixes. Our construction will reflect this. The construction will also reflect

an additional difference between model-theoretic and truth-valuational semantics, which also

explains our initial restriction to semi -strong completeness.

As mentioned, in valuational frameworks, every modal valuation needs to be distinguish-

able if distinct in at least one value of a formula. In Fitting’s proof, in essence, we build a

model for the Hintikka set S↓ by taking every propositional variable in the set to be true

at the world ω (each prefix taken as a ‘possible world’ of the model) by which the formula

is prefixed in the set, and otherwise take all other propositional variables to be false at the

relevant ω (whether they occur in S↓ or not). However, there is a seeming problem with

adapting the equivalent construction for truth-valuation semantics, for so far, we have found

no proof that makes sure each constructed valutional framework would be an admissible one,

where every valuation is distinguishable if distinct.1

Accordingly, in the following, we will ensure that each constructed valuation comes out

distinguishable from any other. Incidentally, the technique requires that each open branch

omit ℵ0 variables, hence our restriction. Note that since tableaux are analytic, we do not have

1We will discuss this problem more in the next two chapters.
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any Cut rule. Thus, any branch of a tableau T may contain at most as many propositional

variables as those in the union of the premise sets and the singleton set of the conclusion

itself. Of course, since the conclusion is always a finite formula, if the union of the premise

sets omits ℵ0 propositional variables, the union of the premise sets and the singleton set of

the conclusion also omits ℵ0 variables. This is why when talking of semi-strong completeness,

we talk of a restriction to just those premise sets whose union omits ℵ0 variables, which then

entails that any Hintikka set S↓ constituted by an open branch ψ of a systematic tableaux

T omits ℵ0 variables too.

Keeping the above in mind, let us present the proof.

Proposition 67 (Hintikka’s Lemma). If S↓ is a Hintikka set that omits ℵ0 propositional

variables, then S↓ is K-satisfiable.

Proof. To prove the above proposition, we need to construct a valuational framework Fv for

S↓ in which it is K-satisfiable. We do it as follows.

First, take the (denumerably infinite) set Q of the variables that do not occur in S↓ and

suppose they are ordered p1, p2, .... Suppose the (at most denumerably infinite) set O of all

ω occurring in S↓ is ordered ω1, ω2, ....

For every prefix ω that occurs in any formula in S↓, we introduce a function vω : F →

{t, f}. For any prefix ω and propositional variable P occurring in S↓, if ωP ∈ S↓, we set

vω(P ) = t, and if ωP /∈ S↓, we set vω(P ) = f . Then, for any ωn ∈ O and pk ∈ Q, set

vωn(pk) = t if k ≤ n, and set vωn(pk) = f if n < k. Then, every vω ∈ V is atomically distinct.

Finally, if ω1 and ω2 occur in some prefixed formulas in S↓, we set vω1Rvvω2 iff ω1 is of

form ω and ω2 is of form ω.n. We thus construct a valuational framework Fv =< V ,Rv >,

where V = {vω : ω occurs in S↓} and Rv is as we defined.

Next, we want to show that for each formula X and prefix ω, if ωX ∈ S↓, then vω(X) = t,

i.e., X is true under vω. The proof is by induction on the complexity of the formula X.
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Take the base case. Then, X is a propositional variable, i.e., P . By definition, if ωP ∈ S↓,

vω(P ) = t.

Take one form of formulas of complexity 1, that of ¬P , separately. Since S↓ is a Hintikka

set, if ω¬P ∈ S↓, ωP /∈ S↓, thus vω(P ) = f . Then, by Definition 25, vω(¬P ) = t.

Suppose that our hypothesis holds for formulas up to complexity n. Then, we show it

for all formulas of complexity n+ 1. We take each case in turn.

1. Suppose X is a formula of form α. Then, since S↓ is a Hintikka set, if ωα is in S↓, so are

ωα1 and ωα2. Both are of complexity less than α, thus, by our induction hypothesis,

both are true under vω. But then so is α, by Definition 25.

2. Suppose X is a formula of form β. Then, again, if ωβ is in S↓, so is one of ωβ1 or ωβ2.

Again, both are of complexity less than β, thus, by the induction hypothesis, either is

true under vω if it is in S↓. But then so is β, by Definition 25.

3. Suppose X is a formula of form γ. Then, if ωγ is in S↓, so is ω.nγs for some n. Since γs

is of smaller complexity than γ, vω.n(γs) = t, and by the above construction, vωRnvω.n.

But then vω(γ) = t, by Definition 25.

4. Suppose X is a formula of form δ. Again, if ωδ is in S↓, so is ω.nδs for all ω.n that

occurs in S↓. Since δs is of smaller complexity than δ, vω.n(δs) = t for every vω.n, and

by the above construction, vωRvvω.n and for no other prefix ω1 we have vωRvvω1 . But

then vω(δ) = t, again, by Definition 25.

This concludes the inductive part of the proof. Finally, if we take Fv as specified above and

set Θ(ω) = vω, S↓ is clearly K-satisfiable.

Remark. In extending to a different system L, we have to construct the relevant L-valuational

framework in which our set is L-satisfiable. Let us continue with K4 , which is determined

by the set of K-valuational frameworks with transitivity. First, we change the definition of

the relation Rv used in the proof as follows: if ω and ω.n occur in some prefixed formulas in

55

C
E

U
eT

D
C

ol
le

ct
io

n



S, we set vωRvvω.n and if ω.ω1 also occurs in some prefixed formula in S↓, we set vωRvvω.ω1

(in this case, such a definition is redundant, but not for all systems, so we give it like this).

This ensures that the constructed valuational framework is a K4 one.

Now for its members. As before, we only have to change clause 4. We first want to show

that if ωδ occurs in S↓, we have ω.ω1δs and ω.ω1δ
4
s for any ω.ω1 that occurs in S↓. We use

induction on the number of integers occurring in ω1. Take the base case. Then, since S↓ is

a K4 -modal Hintikka set, we have that if ωδ is in S↓, so is ω.nδs and ω.nδ4s for all ω.n that

occurs in S↓. Now suppose our induction hypothesis holds for any ω1 occuring in S↓ with

at most k many occurrences of integers. Then, we prove it for k + 1. Since we have ω.ω1δ
4
s

with ω1 having k many occurrences of integers, and it is a formula of form ωδ, we also have

ω.ω1.nδs and ω.ω1.nδ
4
s for every ω.ω1.n that occurs in S↓. This concludes the induction.

Thus, we have ω.ω1δs for any ω.ω1 that occurs in S↓. Then, since δs is of smaller

complexity than δ, for any ω.ω1 occuring in S↓, we have that vω.ω1(δs) = t, and by the

definition of Rv, we know that ωRvω.ω1 and for no other prefixes ω2 we have vωRvvω2 .

Then, by Definition 25, vω(δ) = t. The proof is similar for other systems.

We now have to put together our results, but the hard part is over. Given our sketches

above for extending to different systems, the L-equivalents of the following propositions and

proofs are trivial variants of what is presented for K. Indeed, there is nothing more to do

than replace every occurrence of K with L to arrive at them.

Proposition 68. In any finished systematic K-modal tableau, every open branch that omits

ℵ0 propositional variables is K-satisfiable.

Proof. Follows immediately from Propositions 66 and 67.

The next proof is entirely mine.

Proposition 69. X has a K-tableau proof from S as global and U as local premises iff it

has a systematic K-tableau proof with S as global and U as local premises.
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Proof. From left to right. Suppose X has a K-tableau proof from S as global and U as local

premises but does not have a systematic K-tableau proof from S as global and U as local

premises. Then, there is a tableau T from S as global and U as local premises with 1 ¬X

at the origin whose branches all close. However, there is a systematic tableau TS from S as

global and U as local premises with 1 ¬X at the origin which has an open branch ψ such

that all members Y of U occur as 1 Y and all members Z of S occur as ωZ on ψ for every

ω that occurs on ψ. We know that ψ is K-satisfiable and importantly, since 1 ¬X occurs on

ψ and all members Y of U occur as 1 Y and all members Z of S occur as ωZ on ψ for every

ω that occurs on ψ, the sets of local and global assumptions together with the negation of

X is also K-satisfiable. By assumption, X has a K-tableau proof from S as global and U as

local premises, and by the Soundness Theorem, if X has a K-tableau proof from S as global

and U as local premises, X is K-entailed by the global premises S and local premises U .

But we have just shown that the sets S and U together with ¬X are satisfiable. We have a

contradiction. From right to left, it is trivial. If X has a systematic K-tableau proof from S

as global and U as local premises, then it has a K-tableau proof from S as global and U as

local premises, namely, the systematic one.

Then, we can finally prove completeness.

Proposition 70 (Semi-Strong Tableau Completeness for K). For any formula X, global

premises S and local premises U whose union omits ℵ0 propositional variables, if S �Kv

U ⇒ X, then S `K U ⇒ X.

Proof. In (other) words, we want to show that if X is K-entailed by S as global and U as

local premises, then X has a tableau proof from S as global and U as local premises using the

K rules. Suppose X is K-entailed by S as global and U as local premises. By Proposition

69, X has a K-tableau proof from S as global and U as local premises iff it has a systematic

K-tableau proof from S as global and U as local premises. Let T be a finished or infinite
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systematic modal tableau for ¬X with S as global and U as local premises. If T contained

an open branch ψ, then by Proposition 68, the set that constitutes ψ would be satisfiable.

Then, 1 ¬X being at the origin and thus on every branch, and all members Y of U occurring

on any open branch as 1 Y and all members Z of S occurring on any open branch as ωZ for

any ω that occurs on the branch means that the global and local premises together with the

negation of the conclusion are satisfiable. Thus, there is a valuational framework Fv with Rv

as specified by K where all formulas in the global premise set S are true under all vM ∈ V

and a vM ∈ V (specifically, v1) such that vM(¬X) = t and additionally, vM(Y ) = t for any

Y in the local premise set U . We have a contradiction. Therefore, T with S as global and

U as local premises must close.

This concludes our semi-strong completeness proof. Then, we immediately have the

following:

Proposition 71 (Semi-Strong Correctness for Truth-Valuational Semantics). For any for-

mula X, global premise set S and local premise set U whose union omits ℵ0 propositional

variables, S �Kv U ⇒ X iff S `K U ⇒ X.

As corollaries, we also have compactness and the Löwenheim-Skolem property for our

systems.

Proposition 72 (Compactness). For any formula X, global premise set S1 and local premise

set U1 whose union omits ℵ0 variables, there are finite subsets S2 ⊆ S1 and U2 ⊆ U1 such

that if S1 �Kv U1 ⇒ X, then S2 �Kv U2 ⇒ X.

Proof. We trivially have syntactic compactness, since by Proposition 58, if X has a tableau

proof from S as global and U as local premises, X has a finite tableau proof from S as global

and U as local premises, where only some finite subsets of S and U occur in the proof, and

the tableau closes (by definition of a tableau proof). Thus, we have that for any formula

58

C
E

U
eT

D
C

ol
le

ct
io

n



X, global premise set S1 and local premise set U1 whose union omits ℵ0 variables, there are

finite subsets S2 ⊆ S1 and U2 ⊆ U1 such that if S1 `K U1 ⇒ X, then S2 `K U2 ⇒ X. By

the Correctness Theorem, we immediately have that if S1 �Kv U1 ⇒ X, then S2 �Kv U2 ⇒

X.

Proposition 73 (Löwenheim-Skolem Property). If a formula X is K-satisfiable at all, it is

K-satisfiable in a valuational framework Fv with at most ℵ0 modal valuations.

Proof. We know that if X is K-satisfiable, ¬X is not a K-modal tautology. Thus, by the

Correctness Theorem, ¬¬X does not have a closed K-tableau. Then, ¬¬X (and thus, X

too) has a systematic K-tableau that is open. As shown above, any open branch of a K-

tableau constitutes a K-Hintikka set S↓, and since any branch has at most ℵ0 points, and at

each point exactly one prefixed formula, there are at most ℵ0 prefixes occurring in any K-

Hintikka set. By Hintikka’s lemma, any such set is K-satisfiable in a valuational framework

which has the same cardinality of modal valuations as prefixes occurring in S↓.

Through Fitting, we already have strong, and a fortiori semi-strong correctness for model

theoretic semantics, i.e, the following:

Proposition 74 (Strong Correctness for Model-Theoretic Semantics). For any formula X,

global premise set S and local premise set U , S �KM
U ⇒ X iff S `K U ⇒ X.

Then, we have semi-strong semantic equivalence between our two semantics.

Proposition 75 (Semi-Strong Semantic Equivalence). For any formula X, global premise

set S and local premise set U whose union omits ℵ0 propositional variables, S �Kv U ⇒ X

iff S �KM
U ⇒ X
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7 Three Ways to Strong Completeness

In the following, we will lift our restriction on premise sets and will accept any sets of local

and global premises in our proofs. The resultant problems can be countenanced by taking

at least three diverging approaches. However, taking any of these three roads results in

non-trivial consequences for our semantics.

Before moving on, note the following very important fact. Using the valuational equiva-

lents of canonical models, i.e., canonical frameworks (see Fitting’s (2007) for the exact model

theoretic definitions and proofs), where for each maximal L-consistent set of an axiomatic

(or natural deduction) L-system, there corresponds a modal valuation in V of Fv, and where

Fv is in L, we can prove the strong completeness of any one of the logics we have considered

above relative to their corresponding axiomatic (or natural deduction) systems through the

fact that every L-consistent set can be extended to a complete and L-consistent set, whose

corresponding valuational framework is in V of the canonical framework Fv.
1

Such a completeness proof works because every valuation in V of the canonical framework

Fv is provably pairwise distinguishable from any other valuation in V . The model-theoretic

version of this kind of a completeness proof then immediately gives us an expressibility

result for model-theoretic semantics that is not well-advertised in the literature, but an

1It is not clear whether the construction of Makinson’s (1966), which produces somewhat smaller models
than the full canonical one, can be made to work with truth-valuational semantics. Again, one would have
to show that during the construction, we do not suppose that some indistinguishable valuations are distinct.
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expressibility result that is crucial for the truth-valuational approach.

Proposition 76 (An Expressibility Result). If L is K, T , K4 , B, S4 or S5 , no satisfiable

set S of propositional modal formulas can express a difference between an L-model which has

distinct but indistinguishable worlds and an L-model which does not have any.

Proof. Given any set S of formulas, if S is L-satisfiable at all, then S is L-satisfiable in

the canonical L-model M. For suppose this is not the case. Then, S is L-satisfiable but it

cannot be satisfied in M. We know that every L-consistent set of sentences is satisfiable in

M. Then, by our supposition, S is L-inconsistent. Then, both X and ¬X can be derived

from it. Trivially, no L-inconsistent set is satisfiable, contra supposition. Thus, S is L-

satisfiable in the canonical L-model M, which by definition only has distinguishable worlds

as distinct.

The problem with prefixed modal tableaux is that its completeness proof, as we have

seen, does not use complete consistent sets or canonical valuational frameworks. Instead,

for any Hintikka set S↓, the construction found in the proof builds a valuational framework

in which S↓ can be satisfied. That the constructed framework is admissible was, in the

previous section, ensured by carefully setting the values of propositional variables so that each

valuation of any valuational framework is atomically distinct from any other. This required

that the Hintikka set omit ℵ0 propositional variables, hence the restriction on premise sets.

However, now that we lifted the restriction, the problem presents itself anew. If we want

strong completeness, we need to ensure that the constructed frameworks for our Hintikka

sets are admissible. But if the set does not omit ℵ0 variables, this cannot be done the way

we have done above.2

2Note that we have no proof (i.e., a counterexample) that the truth-valuational equivalent of Fitting’s
original construction produces inadmissible valuational frameworks. However, we do not have a proof to the
contrary either, that every framework constructed is admissible.
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Let us see how we can answer this challenge three different ways, and what problems

they each introduce.

7.1 Extending the Language

The most straightforward way of making sure Hintikka’s lemma goes through is by freeing

up ℵ0 propositional variables. An obvious way to do this is simply by taking the initial

language L1 we are working with and taking its variable extension L2.
3

The proof is exactly as before up to Proposition 67, i.e., Hintikka’s lemma. However,

instead of moving straight to our construction, we first extend the language L1 in which

our L-modal Hintikka set S↓ is formulated to the variable extension L2 of L1. Clearly,

since |V ar2 \ V ar1| = ℵ0, and only members of V ar1 occur in S↓, whether or not S↓ omits

deumerably infinite many variables relative to L1, it omits ℵ0 variables relative to L2.

Moving on to Hintikka’s lemma, the proof is exactly as before. Skipping to the relevant

part, we again can assign values to our propositional variables relative to the relevant vω in

a way that they each come out atomically distinct from any other in V , since in L2, we again

have enough variables to do this for each (at most ℵ0) vω.

However, this comes at a price, a price that proponents of truth-valuational semantics

know all too well. For note that even though it is not mentioned, it is implicit in the definition

of validity and satisfiability that we have the initial language L1 in mind. Thus, we have to

redefine both. We give it for the most general definitions, which subsume weaker ones.

Definition 77 (Modal Semantic Entailment for Variable Extensions). If S and U are sets

of formulas and X is a formula formulated in L1, X is a consequence in L of S as global

assumptions and U as local assumptions iff in every variable extension L2 of L1, for every

3The basic idea comes from Dunn and Belnap’s (1968), who propose it for substitutional first-order
semantics (cf. Dunn’s (1973)).
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L-valuational framework where all members of S are a modal tautology and for every modal

valuation vM ∈ V under which all members of U evaluate to t, vM(X) = t.

Definition 78 (Lv-Satisfiability for Variable Extensions). A formula X is Lv-satisfiable

together with a set S of global and a set U of local premises formulated in L1 iff there is

a variable extension L2 of L1, an L-valuational framework Fv where under any vM , for any

Z ∈ S, vM(Z) = t, and a vM ∈ V such that for any Y ∈ U , vM(Y ) = t and vM(X) = t also.

In first-order logic, philosophers and logicians have provided, or at least tried to provide,

reason to accept such extensions (there, extensions with terms, not propositional variables)

and the redefined validity and satisfiability notions along with them. An important part of

this defence was the fact that in first-order logic, due to ω-inconsistent theories, the semantics

gives the wrong results in general relative to all standard systems.

Similarly, if variable extensions were generally required for any strong completeness proof

with the truth-valuational approach relative to the standard systems, they could be taken as

a non-trivial consequence of it, as in first-order logic. The question, then, would be whether

the truth-valuational approach provides sufficiently strong reasons against model-theoretic

semantics even in conjunction with this consequence, similarly as in the debate concerning

first-order logic.

Now if together with one of Dunn’s (1973) semantics, we want to hold that there are no

irreducible modal facts, then variable extensions are required even for an axiomatic proof

system with a canonical framework type completeness proof, which provides a prima facie

strong case that variable extensions are a general consequence of a correct account of that

semantics, and are perhaps philosophically defensible on some ground along with the whole

approach.

However, given that even strong completeness goes through if a canonical framework-type

proof is available for a deductive system on the truth-valuational approach, such a general
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consequence cannot be established, for such a completeness result demonstrates that the

semantics itself is fine – the problem is with some specific systems and their completeness

proofs. Then, redefining entailment and satisfiability, the central notions of logic, just for the

sake of one specific type of completeness proofs, which are required for one specific type of

deductive systems, seems completely indefensible. But seeing that we would rather not part

with the tableaux method either, as it is a very intuitive, easy-to-use and powerful system,

we are at an impasse.

7.2 Rewriting the Hintikka Set

One can also free up ℵ0 variables by rewriting the Hintikka set in a specific way.4 In fact,

we have already specified how to do this. Given any modal Hintikka set S↓, take its variable

rewrite R(S↓).5 We already know that the resultant set R(S↓) is syntactically isomorphic to

S↓, and it omits ℵ0 variables, namely, all the variables indexed by an even number.

Again, such a move enables us to take the proof of Proposition 67 exactly as it occurs in

the section on semi-strong completeness, given the fact that for each Hintikka set S↓, there

corresponds a Hintikka set R(S↓) which omits ℵ0 variables, regardless of whether S↓ omits

ℵ0 variables or not.

However, as before, we again have to redefine validity and satisfiability for our proof to

show something relevant relative to the semantics. To make the following definitions more

universal, we will generalize the definition of a rewrite function so that it applies to any

function R : F → F (where F is the set of all formulas of the language) which uniformly

substitutes all occurences of propositional variables in a formula for some specific other

4The basic idea comes from Leblanc’s (1976), who introduces it as an alternative in substitutional first-
order semantics to extending the language as specified by Dunn and Belnap in their (1968). As can be seen,
such a dilemma for substitutional (and therefore, truth-valuational) first-order semantics reproduces itself
for truth-valuational modal logic.

5If we want to be really precise, the variable rewrite R(ωX) of a prefixed formula ωX is just ωR(X).
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propositional variables, and which, when extended, as before, to R : P(F) → P(F), is

such that if R(S) = S∗, then R induces an isomorphism between the syntaxes S and S∗,

and moreover, for any set S, R(S) omits ℵ0 variables of the language. Clearly, the rewrite

function R we have been working with is such a function.

Definition 79 (Modal Semantic Entailment for Rewrites). If S and U are sets of formulas

and X is a formula, X is a rewrite consequence in L of S as global assumptions and U as

local assumptions iff R(X) is a standard consequence in L of R(S) as global assumptions

and R(U) as local assumptions.

Definition 80 (Lv-Satisfiability for Rewrites). A formula X is rewrite Lv-satisfiable together

with a set S of global and a set U of local premises iff the formula R(X) is standard Lv-

satisfiable together with the set R(S) of global and the set R(U) of local premises.

As can be seen, such a definition is ‘parasitic’ on the standard definitions of validity and

satisfiability given in Section 3.2. The substantial content of the definitions is not changed,

but whenever we are evaluating a given argument, we need to take its variable rewrite and

evaluate that argument, which definitely omits ℵ0 variables.

As before, such a move works formally, but the price to pay is high for again, given the

fact of strong completeness for axiomatic systems, it is not a general consequence of the

semantics that we require these modifications, while the redefined central semantic notions

of logic are as general as it gets.

7.3 Indexing Valuations

The third and final way to strong completeness is probably the most natural and straight-

forward. We simply introduce more structure into our frameworks, thereby countenancing
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the seemingly coincidental fact that valuations are functions and no two functions assigning

the same values to all their inputs can be distinct.6

We give the following definition of indexed valuational frameworks.

Definition 81 (Indexed Valuational Frameworks). An indexed valuational framework F i
v is

a pair < V ,Rv >, where V is any subset of the Cartesian product V i × S, where V i is the

set of all indexed modal valuations and S is a non-empty set of any cardinality κ, provided

that if v1 and v2 are in V , then if v1 =< v1, ω > and v2 =< v2, ω >, then v1 = v2, and thus

v1 = v2 (i.e., the structure models an injection). As before, Rv is a binary relation defined

on V . If v1 and v2 are both in V and v1Rvv2, we say that v2 is a (possible) alternative

valuation pair to v2.

The above construction ensures that every modal valuation gets its own prefix, distinct

from the prefix of any other valuation. Let us go forward.

Definition 82 (Indexed Modal Valuation). An indexed modal valuation v1 in v1 =< v1, ω1 >

relative to an indexed valuational framework F i
v is a Boolean valuation, for which the fol-

lowing additional conditions hold for any X and v2 of any v2 =< v2, ω2 > in V .

1. v1(�X) = t iff for any indexed modal valuation v2 in any v2 =< v2, ω2 > in V , if

v1Rvv2, then v2(X) = t and f otherwise.

2. v1(♦X) = t iff there is an indexed modal valuation v2 in a v2 =< v2, ω2 > in V such

that v1Rvv2 and v2(X) = t and f otherwise.

Everything else is a relatively straightforward extension of the above. We define indexed

Lv-satisfiability.

6Again, the basic idea comes from Leblanc’s (1976), who refers to Montague as its originator. Leblanc
uses it to prove completeness for first-order modal logics other than S5 where each valuation needs to be
atomically distinct.
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Definition 83 (Indexed Lv-Satisfiability). A formula X is indexed Lv-satisfiable together

with a set S of global and a set U of local premises iff there is an indexed L-valuational

framework F i
v where under any vM of any v of V , for any Z ∈ S, vM(Z) = t, and a v ∈ V

such that v =< vM , ω >, and for any Y ∈ U , vM(Y ) = t and vM(X) = t also.

Moving on to Hintikka’s lemma, this time we need to change some things in the proof.

As one might have suspected all along, we have been using the ω symbol in our definitions

above since in the following proof, prefixes will stand in as indexes of the indexed modal

valuations (i.e., the second members of the ordered pairs).

Proposition 84 (Hintikka’s Lemma). If S↓ is a Hintikka set, then S↓ is indexed K-satisfiable

in an indexed valuational framework.

Proof. To prove the above proposition, we need to construct an indexed valuational frame-

work Fv for S↓ in which it is K-satisfiable. We do it as follows.

For every prefix ω that occurs in any formula in S↓, we introduce an indexed valuation-

prefix pair vω =< vω, ω >, where vω : F → {t, f}. For any prefix ω and propositional

variable P , if ωP ∈ S↓, we set the output of vω of vω to t for the input P , and if ωP /∈ S↓,

we set the output of vω of vω to f for the input P .

Finally, if ω1 and ω2 occur in some prefixed formulas in S↓, we set vω1Rvvω2 iff ω1 is

of form ω and ω2 is of form ω.n. We thus construct an indexed valuational framework

F i
v =< V ,Rv >, where V = {vω : ω occurs in S↓}, vω =< vω, ω >, and Rv is as we defined.

Again, we want to show that for each formulaX and prefix ω, if ωX ∈ S↓, then vω(X) = t,

i.e., X is true under vω. The proof is by induction on the complexity of the formula X as

before. We do not write it out again.

With some modifications, the above construction returns to Fitting’s original. Such a

move is feasible since indexed valuational framework ensure that there is one-to-one cor-

respondence between the set of all Kripke models and the set of all indexed valuational
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frameworks. This may be construed as either a positive or a negative result. If we think of

the restriction on unindexed valuational frameworks regarding distinct and indistinguishable

valuations as an inessential consequence of truth-valuational semantics that obtains merely

because of the accidental mathematical fact that we model formally the different truth-values

formulas may take by functions, then indexed modal valuations are the obvious solution.

Yet, one may reason in the opposite direction as well. If we think that it is an essential

consequence of truth-valuational semantics for modal logics that there can be no distinct but

indistinguishable valuations, e.g., because we construe valuations as alternative assignments

of truth-values to sentences, and it makes no sense to consider an assignment of truth-values

that is identical to another, distinct one as an alternative to it, then the use of indexed

valuational frameworks gives us the wrong results. If we follow this line of thought, employing

pairs in place of valuations seem more like dishonest formal trickery than a substantial result.

Accordingly, we conclude that if one wants to retain this non-trivial difference between

truth-valuational and model-theoretic semantics, the method presented in this section is not

the right one.
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8 Conclusion and Further Research

As we have argued in the previous section, we seem to have no straightforward way to estab-

lish strong completeness for our semantics relative to tableaux systems. We will now specify

more abstractly what properties we require from our constructions. The discussion will

be in model-theoretic terms, for the required properties lead to set-theoretic contradictions

in truth-valuational semantics if not satisfied by a framework, while their model-theoretic

equivalents only restrict the set of all models to a subset of them.

As discussed above, truth-valuational semantics does not admit distinct valuations which

assign the same truth-values to all formulas, i.e., which are indistinguishable relative to a

valuational framework. Accordingly, we first define the corresponding (though a bit more

general) notion of modal indistinguishability for modal-theoretic semantics.

Definition 85 (Modal Indistinguishability). Two points Γ and ∆ in G of M and G ′ of

M′ are modally indistinguishable iff M,Γ 
 X iff M′,∆ 
 X. If Γ and ∆ are modally

indistinguishable, we write M,Γ!M′,∆. If we have M,Γ!M,∆, we say that Γ and

∆ are modally indistinguishable restricted to the model M.

Then, we give the definition of the admissibility property A .

Definition 86 (Admissibility Property). A model M =< G,R,
> has the admissibility

property A iff given the partitioning of G under ! (! being restricted to M), for any
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Γ in an equivalence class E1, we have that if ΓR∆, where ∆ ∈ E2, then for each Π ∈ E1,

there is an Υ in E2 such that ΠRΥ.

We can show that if a valuational framework does not have the equivalent of A , it leads

to a contradiction. Equivalently, only models with the property A have ‘corresponding’

valuational frameworks.

Proposition 87. Any valuational framework Fv has the truth-valuational equivalent of A .

Proof. Suppose Fv is a valuational framework, where there are two valutions vM1 and vM2

such that vM1(X) = t iff vM2(X) = t, there is a vM3 such that vM1RvvM3 , and there is no vM4

such that vM4(X) = t iff vM3(X) = t and vM2RvvM4 . Then, we know that vM1 = vM2 , and

since vM1RvvM3 , vM2RvvM3 . But we also know there is no valuation vM4 such that vM4 = vM3

and vM2RvM4 . But vM3 = vM3 , so it is both alternative and not alternative to vM2 .

For each model M with admissibility property A , we can establish a model contraction

theorem, which contracts any such model into one which does not have modally indistin-

guishable but distinct worlds, but where any point and its contraction in the contracted

model are modally indistinguishable. Then, one can construct for each contracted model a

corresponding valuational framework.

Thus, what we need to establish is either that there is a construction which builds models

with the property A (that also retain the properties of R through contraction) or that there

can be no such construction. If the latter holds, then we may reason two ways. We may

either try and alter the tableaux systems themselves while retaining their desired metalogical

properties, and if this is not possible, just accept the limited results, or we may argue that

given such a result, the truth-valuational approach is not worth pursuing further. Since any

S5 model has the property A by definition, we know that Fitting’s original construction is

sufficient to establish the desired result. So far, we have no parallel results for other systems.

70

C
E

U
eT

D
C

ol
le

ct
io

n



References

Agudelo-Agudelo, JC, and Walter Carnielli. 2017. “Polynomial ring calculus for modalities.”

Journal of Logic and Computation 27 (6): 1853–1870.

Ben-Yami, Hanoch. n.d. Truth and Proof without Models. Unpublished manuscript.

Beth, E. W. 1969. “Semantic Entailment and Formal Derivability.” In Philosophy of Math-

ematics (Readings in Philosophy), edited by Jaakko Hintikka, 9–41. Oxford: Oxford

University Press.

Blackburn, Patrick, and Johan van Benthem. 2007. “Modal Logic: A Semantic Perspec-

tive.” In Handbook of Modal Logic, edited by Patrick Blackburn, Johan van Benthem,

and Frank Wolter, Volume 3 of Studies in Logic and Practical Reasoning, 1–84. Ams-

terdam: Elsevier.

Dummett, Michael. 1973. Frege: Philosophy of Language. New York: Harper & Row.

Dunn, J. Michael. 1973. “A Truth Value Semantics for Modal Logic.” In Truth, Syntax and

Modality: Proceedings of the Temple University Conference on Alternative Semantics,

edited by Hugues Leblanc, 87–100. Amsterdam: North-Holland.

Dunn, J. Michael, and Nuel D. Belnap. 1968. “The Substitution Interpretation of the

Quantifiers.” Noûs 2 (2): 177–185.
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