CEU eTD Collection

COLORINGS, PERFECT SETS AND GAMES ON
GENERALIZED BAIRE SPACES

by

Dorottya Sziraki

Submitted to
Central European University

Department of Mathematics and its Applications

In partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Supervisor: Professor Gabor Sagi

« ¥
A

- CEU

v
44>

Budapest, Hungary
2018



CEU eTD Collection

Dorottya Szirdki: Colorings, Perfect Sets and Games on Generalized Baire Spaces, (©) 2018
All rights reserved.



CEU eTD Collection

In memory of my father, Istvin



uona9||0o dla N3D



CEU eTD Collection

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deep gratitude to my supervisor, Gabor
Sagi for his valuable advice, guidance and patient support. His enthusiasm, optimism
and confidence in my research inspired me and gave me confidence.

I would like to express my sincere gratitude to Jouko Vaanénen for the valuable
discussions and for his help and support during my research visit to the University of
Helsinki. I would also like to thank all the members of the Helsinki Logic Group for
their warm hospitality during my stay. This visit was invaluable to my research and to
the completion of this thesis.

In addition, I would like to thank Philipp Schlicht, Tapani Hyttinen, Philipp Liicke,
Menachem Magidor, and Lajos Soukup for valuable discussions on topics related to this
thesis. I would also like to thank the many many set theorists and logicians in Budapest
and around the world who have contributed to the completion of this thesis by asking
interesting questions and offering useful feedback and suggestions, or have influenced,
inspired, supported and encouraged me along the way. The list includes Hajnal Andréka,
Natasha Dobrinen, Sakaé Fuchino, Alexa Gopaulsingh, Daisuke Ikegami, Istvan Juhész,
Yurii Khomskii, Juliette Kennedy, Mohamed Khaled Khalifa, Benedikt Lowe, Istvan
Németi, Ildiké Sain, Andras Simon, Boban Velickovi¢, and many many others.

I am very thankful to the examiners, Barnabas Farkas and Tapani Hyttinen, for their
time and effort reading and refereeing this thesis.

My sincere thanks go to the faculty and staff of the Department of Mathematics
and its Applications of the Central European University and the Alfréd Rényi Institute
of Mathematics for supporting me during my PhD studies. I am especially grateful to
Melinda Baldzs, Karoly Boroczky and Elvira Kadvany for their kind assistance in all
matters big and small related to my studies.

I gratefully acknowledge the support of the Hungarian National Research, Devel-
opment and Innovation Office grant number 113047. I would also like to thank the
Central European University Budapest Foundation for supporting my research visit to
the University of Helsinki.

Last but not least, I would like to extend my warmest thanks to my friends and

family for their encouragement and support.



uona9||0o dla N3D



CEU eTD Collection

CONTENTS

1 Introduction 1
1.1 Preliminaries and Notation . . . . . . .. .. ... .. ... ... ..... 6
1.1.1 The sk-Baire Space . . . . . . . . ... 8
1.1.2 Trees. . . . . o o o o e e 11
2 Perfect Sets and Games 17
2.1 Perfect and Scattered Subsets of the x-Baire Space . . . . . . . . ... .. 18
2.1.1 Vi&ananen’s Perfect Set Game . . . . . . .. ... ... ... 19
2.1.2 The k-Perfect Set Property and Véaénanen’s Cantor-Bendixson
Theorem . . . . . . . . . . . e 24
2.1.3 A Cut-and-Choose Game . . . . . . . . ... ... ... ...... 26
2.1.4 Perfect and Scattered Trees . . . . . . . . . ... ... ... ... 28
2.2 Generalizing the Cantor-Bendixson Hierarchy via Games . ... ... .. 39
2.2.1 The Cantor-Bendixson Hierarchy for Subsets of the xk-Baire Space . 40
2.2.2 Cantor-Bendixson Hierarchies for Subtrees of <fx . . . ... ... 42
2.3 Density in Itself for the xk-Baire Space . . . . . . .. ... ... ... ... 50
3 Open Colorings on Generalized Baire Spaces 59
3.1 Open Coloring Axioms for Subsets of the x-Baire Space . . . .. ... .. 60
3.2 Games for Open Colorings . . . . . . . .. . ... .. .. ... 70
3.2.1 A Cut-and-Choose Game for Open Colorings . . . . . .. ... .. 71
3.2.2 Games for Open Colorings Played on Trees . . . . . . ... .. .. 74
3.2.3 Games Generalizing Vadnanen’s Perfect Set Game . . . . . . . .. 80
324 Gamesoflengthw . .. .. ... .. 94
4 Dichotomies for XJ(k) Relations 101
4.1 The x-Silver Dichotomy for X9(x) Equivalence Relations . . . ... ... 107
4.2 A Cantor-Bendixson Theorem for Independent Subsets of Infinitely many
S9(k) Relations . . . . . o oo 113
4.3 Elementary Embeddability on Models of size k. . . . . . . ... .. ... 121

Bibliography 135



uona9||0o dla N3D



CEU eTD Collection

INTRODUCTION

Let x be an uncountable regular cardinal such that k<" = k holds. The generalized
Baire space for k, or the k-Baire space for short, is the set “x of functions f : Kk — &

equipped with the bounded topology, i.e., the topology given by the basic open sets
Ny={z€"k:sCux}

associated to functions s : @ — & for ordinals o < k. The generalized Cantor space 2 is
defined analogously.

A systematic study of the descriptive set theory of generalized Baire spaces was
initiated by Alan Mekler and Jouko Vadnanen [MV93,VAai91], and extended by many
prominent researchers. Descreptive set theory in this uncountable setting can look very
different from classical descriptive set theory. Whether the uncountable versions of clas-
sical theorems hold or not often depends on which additional axioms are assumed besides
the usual ZFC axioms of set theory. Thus, these questions are closely related to several
areas of set theory, such as infinitary combinatorics and large cardinal axioms, and can
lead to a better understanding of the influence of such axioms. One of the main mo-
tivations behind these investigations is model theoretic. Models with domain x can be
coded, in a natural way, as elements of the k-Cantor space, and some model theoretic
properties can be reformulated as topological or descripitve set theoretic properties of
this space. In particular, the study of these spaces provides a framework for the classifi-
cation of uncountable models, which is one of the central themes in model theory. See,

for example, [MV93, Vaa95, FHK14] for more on these connections.

One main theme of this thesis is the investigation, for the generalized Baire spaces " x,
of the uncountable analogues of perfect set theorems and classical dichotomy theorems
concerning colorings (or equivalently, graphs and hypergraphs) on the lower levels of the
r-Borel hierarchy.

In the uncountable setting, the failure of these dichotomies is consistent with ZFC
in many cases. Consider, for example, the simplest such dichotomy, the x-perfect set
property for closed subsets of the x-Baire space. This is the statement that any closed

subset X C " of cardinality at least xT contains a r-perfect subset. (The concept
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of k-perfectness [VAd91] is a natural analogue of the concept of perfectness for subsets
of Polish spaces). The existence of xk-Kurepa trees, or more generally, weak x-Kurepa
trees, implies the failure of the x-perfect set property for closed subsets [MV93, FHIK14].
Therefore this dichotomy fails if V' = L holds [FHK14]. Furthermore, by an argument
of Robert Solovay [Jec71], this simplest dichotomy implies that x* is an inaccessible
cardinal in Godel’s universe L. Thus, all of the dichotomies studied in this work also
imply the inacessibility of x* in L. Conversely, after Lévy-collapsing an inaccessible
cardinal A > k to kT, the s-perfect set property holds for all closed subsets, and in fact,

for all subsets of " definable from a k-sequence of ordinals [Sch17].

There are, in fact, a few different notions of perfectness for the k-Baire space in
literature. These generalize equivalent definitions of perfectness for the Baire space
from the classical setting. Although no longer equivalent in the uncountable case, these
concepts are often interchangeable. For example, they lead to equivalent definitions of
the k-perfect set property, and are also equivalent with respect to most of the dichotomies
studied in this work.

Perfectness, and also scatterdness, was first generalized for subsets of the k-Baire
space by Jouko Vadnénen in [VAa91]. Vaadndnen defined the concepts of y-perfectness
and ~y-scatteredness for infinite ordinals v < k and subsets X of the x-Baire space based
on a game of length v played on X. A stronger notion of k-perfectness is also widely
used: a subset of the k-Baire space is k-perfect in this stronger sense iff it can be obtained
as the set of k-branches of a <r-closed subtree T of <"k in which the set of splitting
nodes is cofinal. By its definition, this concept corresponds to a (strong) notion of k-
perfectness for subtrees T of <*k. Concepts of y-perfectness and y-scatteredness (where
w < v < k) for subtrees T' of <"k which correspond more closely to Vadnianen’s notions

can be defined based on versions of cut-and-choose games played on the trees T' [Gall6].

In the first part of Chapter 2, we detail connections between these different gener-
alizations of perfectness and scatteredness and the games underlying their definitions.
For instance, we observe that similarly to the stronger notions of k-perfectness, a subset
of the k-Baire space is k-perfect (in the sense of [VAd91]) iff it can be obtained as the
set of k-branches of a k-perfect tree (in the sense of [Gall6]). This connection does not
neccessarily hold for x-scattered trees and sets.

Our observations lead to equivalent characterizations of the k-perfect set property
for closed subsets of the k-Baire space in terms of these games. In particular, we show
that Vé&ndnen’s generalized Cantor-Bendixson theorem [Vid9l] is equivalent to the
k-perfect set property for closed subsets of the x-Baire space. This also implies that
Vaiananen’s generalized Cantor-Bendixson theorem is equiconsistent with the existence

of an inaccessible cardinal above x; this equiconsistency result was first shown in [Gall6].
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The consistency of this Cantor-Bendixson theorem was originally obtained in [VA491]

relative to the existence of a measurable cardinal above k.

In Chapter 2, we also consider different notions of density in itself for subsets of the
r-Baire space which are given by the notions of perfectness studied here. We show that

the statement
“every subset of ®k of cardinality >k has a k-dense in itself subset”

follows from a hypothesis I%(x). It will be shown in a future joint paper by Philipp
Schlicht and the author [SS] that I¥(x) is consistent assuming the consistency of the
existence of a weakly compact cardinal above x; thus, the consistency of the above
statement also follows from this assumption. Previously, this statement was known to
follow from a hypothesis I (x) which is equiconsistent with the existence of a measurable
cardinal above &, by a result of Jouko Vaanénen’s [Vaia91, Theorem 1]. The hypothesis

IY(k) is a weaker version of 17 (k).

In Chapter 3, we introduce the uncountable analogue of Todorcevi¢’s Open Coloring
Axiom for subsets of the x-Baire space and its perfect set version. We study the latter
dichotomy more closely. Given a set X C "k, a binary coloring on X is any subset R of
[X]?. Such a coloring R may be identified in a natural way with a symmetric irreflexive
binary relation R’ on X; R is an open coloring iff R’ is an open subset of X x X. A
partition [X]? = Ro U Ry is open iff Ry is an open coloring on X. For a subset X of
the x-Baire space, we let OCA,(X) and OCA}(X) denote the following statements.

OCA,(X): for every open partition [X]?> = Ry U Ry, either X is a union
of k many Rj-homogeneous sets, or there exists an Rp-homogeneous set of

cardinality xT.

OCA%(X): for every open partition [X]? = RyU Ry, either X is a union of

many Ri-homogeneous sets, or there exists a k-perfect Rg-homogeneous set.

The Open Coloring Axiom (OCA) was introduced by Todoréevié¢ [Tod89]. It states
that OCA(X) = OCA,(X) holds for all subsets X of the Baire space “w. (See also
[ARS85]). Since its introduction, the Open Coloring Axiom and its influence on the
structure of the real line has become an important area of investigation; see for example
[Tod89, TF95, Fen93, Vel92]. The property OCA*(X) = OCAJ (X) for subsets X of the
Baire space was introduced in [Fen93], and, in particular, was shown to hold for analytic
sets.

We obtain the consistency of the x-version of Feng’s above result, relative to the
existence of an inaccessible cardinal above k. More precisely, we prove that after Lévy-
collapsing an inaccessible A >  to ™+, OCA%(21(x)) holds; that is, OCA*(X) holds for
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all k-analytic subsets X of the x-Baire space. This result implies that OCA% (21 (k)) is
equiconsistent with the existence of an inaccessible cardinal above k.

We furthermore show that for an arbitrary subset X of the x-Baire space, OCA} (X)
is equivalent to the determinacy, for all open colorings R C [X]?, of a cut and choose
game associated to R.

We also investigate analogues for open colorings of the games generalizing perfectness
considered in Chapter 2. We give some equivalent formulations of OCA*(Z1(k)) in
terms of these games. For example, we prove that OCA*(X1(k)) is equivalent to a
natural analogue, for open colorings, of Jouko Vaaninen’s generalized Cantor-Bendixson

theorem.

In [VAd91], Jouko Vééndnen gave a generalization of the Cantor-Bendixson hierarchy
for subsets of the k-Baire space. This is done by considering modified versions, associ-
ated to trees without k-branches, of the perfect set game defined in [Vaa91]. Thus, in
the uncountable setting, the class of trees without x-branches plays a role analogous to
that of the class of ordinals in the classical setting. In this approach, ordinals correspond
to well-founded trees; specifically, the o level of the Cantor-Bendixson hierarchy cor-
responds to the game associated to the canonical well-founded tree of rank a. Similar
methods are used, for example, in [Hyt87,Hyt90,HV90] to study transfinite Ehrenfeucht-
Fraissé games and infinitary languages, and in [OV93] to study the analogue of inductive
definitions, in general, for non well-founded trees.

In Chapter 2, we also discuss how the Cantor-Bendixson hierarchy can be generalized
for subtrees T of <k, by considering analogous modifications of the games generalizing
perfectness for trees T and using adaptations of the approach in [VAd91].

In Chapter 3, we also consider analogues, for open colorings, of the games used
to generalize the Cantor-Bendixson hierarhcy for subsets of the x-Baire space and for
subtrees of <#k. These games allow trees without k-branches to generalize different
ranks associated to open colorings, leading to different generalized hierarchies. We prove
comparison theorems for these games which show how the levels of the corresponding
generalized hierarchies are related to each other. For example, in the specific case of
the trivial coloring, these comparison theorems imply the following. Let X be a closed
subset of the k-Baire space, and let T" be the tree of initial segments of X. Then the
levels of the generalized Cantor-Bendixson hierarchies for X are always contained in (the

set of k-branches of) the levels of the generalized Cantor-Bendixson hierarhies for 7.

In Chapter 4, we consider dichotomies for independent subsets with respect to given
finitary 39(k) relations on subsets X of the x-Baire space, and to families of at most &
many such relations. Naturally, these can be reformulated as dichotomies for homoge-

neous subsets with respect to given (families of) TI(x) colorings on X.
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In the first part of Chapter 4, we consider the s-Silver dichotomy for £9(x) equiv-
alence relations E on (k) subsets X of the s-Baire space (i.e., the statement that if
such an equivalence relation E has at least kT many equivalence classes, then E has
r-perfectly many equivalence classes). The s-Silver dichotomy for Borel equivalence re-
lations on the k-Baire space has been an active area of investigation. For example, it was
shown that the k-Silver dichotomy fails for Al(x) equivalence relations [Fril4], and that
V = L implies the failure of the s-Silver dichotomy for k-Borel equivalence relations in a
strong sense [FHK 14, FK15]. In the other direction, the k-Silver dichotomy for x-Borel
equivalence relations is consistent relative to the existence of 0% [Fril4].

We show that after Lévy-collapsing an inaccessible cardinal A > x to k™, the x-Silver
dichotomy holds for X9(x) equivalence relations on 31(k) subsets of the x-Baire space.
This implies that the s-Silver dichotomy for X9(x) equivalence relations on X1 (k) sets

is equiconsistent with the existence of an inaccessible cardinal above k.

In the remainder of Chapter 4, we consider dichotomies for families R of at most &
many X9(k) relations (of arbitrary finite arity) on subsets of the x-Baire space. Our
starting point is the following “perfect set property” for independent subsets with respect

to such families of relations on k-analytic subsets of the x-Baire space.

PIF,.(Z1(k)): if R is a collection of k many finitary 39(k) relations on a
k-analytic set X C "k and X has an R-independent subset of cardinality
kT, then X has a k-perfect R-independent subset.

By a joint result of Jouko Viininen and the author [SV17], PIF,(£1(k)) is consistent
relative to the existence of a measurable cardinal above k.

The countable version PIF,,(21) of this dichotomy holds by a result of Martin Dolezal
and Wieslaw Kubis [DK16]. (See also [Kub03,She99] where specific cases of these results
are shown.) In fact, they obtain PIF,(X}) as a corollary of the following statement
(which is also shown in [DIK16]):

if R is a countable family of finitary 39 relations on a Polish space X and
X has an R-independent subset of Cantor-Bendixson rank > ~ for every
countable ordinal v, then X has a perfect R-independent subset.

We show that a statement which may be viewed as a k-version of the above result
holds assuming only either {, or the inaccessibility of . In fact, it is enough to assume
a slightly weaker combinatorial principle DJ, than ¢, which also holds whenever k is
inaccessible (DJ, will be defined in Chapter 4). In more detail, we show that roughly
the following holds, assuming DI,:

if R is a family of k many finitary £9(k) relations on a closed set X C "k

and X has R-independent subsets “on all levels of the generalized Cantor-
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Bendizson hierarchy for player 117, then X has a rk-perfect R-independent

subset.

As a corollary of our arguments, we obtain stronger versions of a joint result of Jouko
Viininen and the author [SV17]. In particular, our results imply that PIF.(X1(k)) is
consistent relative to the existence of a weakly compact cardinal above x.

In the last section of the Chapter 4, we obtain as a special case of PIF,(21(k)) a
model theoretic dichotomy which is motivated by the spectrum problem. The contents

of this last section can be found in [SV17, Section 3].

1.1 Preliminaries and Notation

The notation and terminology we use is mostly standard; see e.g. [Jec03]. The Greek
letters «, 3,7, 9,7, & usually denote ordinals, and Ord denotes the class of all ordinals.
We denote by Succ the class of successor ordinals, and Lim denotes the class of limit
ordinals. Given ordinals a < (3, we use the notation [a,3) = {y < 8 : @ < v} and
(o, B) ={y < B:a <~} etc.

The Greek letters A, k, i, denote cardinals. In subsequent chapters, x typically
denotes a cardinal such that k<% = k.

For a set X, we let P(X) denote the powerset of X. If y is a cardinal, then [X]"
denotes the set of subsets of X which are of cardinality u, and [X]<# denotes the set of

subsets of X of cardinality < p. For v € Ord, we also use the following notation:
(X]L ={(ii<y) €' X 1oy #j foralli <j <n},

[X];WZB%[X]QZ (z;:i<B)ePX: B <yand x; #x; for all i < j < B}.

Given a set X, we let idx denote the identity function on X. If f is a function
Y C dom(f) and Z C ran(f), then f[Y] denotes the pointwise image of Y under f,
and f~1[Z] denotes the preimage of Z. For an ordinal 7, we let X denote the set of
functions f with dom(f) = v and ran(f) C X. We let 97X =, “X. If p, A are
cardinals, then A<# denotes the cardinality of <#\. If Y is any set, 1 < n < w and

X C ™Y then we let pX denote the projection of X onto the first n coordinates, i.e.,

pX = {(xo,...,xn—1) €Y : there exists y € Y such that (zo,...,zn—1,y) € X}.

If X is any set, then Sym(X) denotes the permutation group of X, and we use Inj(X)
to denote the monoid of all injective functions from X into X. Let n < w. An n-ary
relation R on X is symmetric iff (zo,...,zn—1) € R implies (z,(), .-, Tpm-1)) € R for

all permutations p € Sym(n).
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We say that an n-ary relation R on X is irreflexive iff R C [X ];Lé, that is, iff for all

(x0,...,Tn—1) € R we have x; # z; for all i < j < n.

We say that an n-ary relation R on X is reflerive iff its complement "X — R is
irreflexive, that is, iff for all (zg,...,zp—1) € "X such that z; = x; for some i < j <n
we have (xq,...,2p—1) € R.

Given a partial order P = (P, <p) We confuse P with P when <p is clear from the
context. We also write | and < instead of Lp and <p in this case. Let p € P. We
denote by predp(p) the set of predecessors of p, i.e., predp(p) = {s € P : s <p p}.
We let succp(p) denote the set of successors of p, i.e., succp(p) = {s € P : s >p p}.
Lastly, we denote by Py, the set of all ¢ € P which are comparable with p. Thus,

Py, = predp(p) U {p} U succp(p).

Definition 1.1. Let P = (P, <p) be a partial order, let Q C P and let k be a cardinal.

(1) P is <k-closed iff every decreasing sequence of length < k has a lower bound.

(2) Q is a <k-closed subset of P iff the partial order (@, <p[Q x Q) is <k-closed, i.e.,
iff every <p-decreasing sequence of length < k of elements of @) has a lower bound
in Q.

(3) @ is a dense subset of P iff for every p € P, there exists ¢ € @ such that ¢ <p p.

Definition 1.2. Given an infinite cardinal x and a partial order P, we let G, (IP) denote
the following game of length . Two players I and II take turns building a decreasing
sequence (ro @ a < k) of elements of I°. Player II plays in all even rounds 2a < k
(including limit rounds and round 0, where she must play 79 = 1p) and player I plays
in all odd rounds 2a + 1 < k. Player II wins a run of the game if she can play legally
in all rounds 2a < k.

Typically, given a run (r, : @ < k) we denote the sequence of moves of player II by
(Pa = T2.q : @ < k), and we denote the sequence of moves of player I by (go = 72.0+41 :
a < K).

A partial order P is <k-strategically closed iff player IT has a winning strategy
in G, (PP).
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1.1.1 The x-Baire Space

In this subsection, we assume & is an uncountable cardinal such that <% =  holds.

Definition 1.3. The generalized Baire space for k, or the k-Baire space for short, is
the set "k of functions f : kK — k equipped with the bounded topology, i.e., the topology
given by the basic open sets
Ny={ze"k:s5sCuz}
associated to functions s : a — k for ordinals a < k.
The bounded topology on the set ©2 of functions f : k — 2 is defined analogously.
The generalized Cantor space #2, or k-Cantor space, is the set *2 equipped with the

bounded topology.

Unless otherwise mentioned, we assume that “x and "2 are equipped with the
bounded topology throughout this work. (Thus, we also use *x and "2 to denote the

generalized Baire and Cantor spaces for «.)

If 2 < n < w, then the set "("k) is equipped with the product topology (given by
the bounded topology on “k), and subsets X C "("k) are equipped with the subspace
topology.

Observe that the space "(*k) is homeomorphic to “k (by an argument analogous to

the proof in the classical case).

Notation. We denote by €, the collection of closed subsets of the x-Baire space.
Given a subset X of "k, we let X denote the closure of X, and we let Int(X) denote
its interior.
If X CY C "k, then we let x7 and Inty (X) denote the closure and interior of X

relative to Y.

The hypothesis k<% = k is usually assumed when working with the x-Baire and

k-Cantor space, because it implies that these spaces have some nice properties.

Fact 1.4 (see [FHK14]). If k<% = k is assumed, then the following hold for the x-Baire

space and the x-Cantor space.

(1) The standard bases of both spaces are of size k and consist of clopen sets.
(2)
(3) The intersection (resp. union) of < x many open (closed) sets is open (closed).
(4)

There exists a dense subset of size k.

The x-Baire category theorem holds; that is, the intersection of kK many open dense

sets is dense.

Definition 1.5. Given a topological space X, the collection of k-Borel subsets of X is the
smallest set which contains the open subsets of X and is closed under complementation

and taking unions and intersections of at most x many sets.
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Specifically, we will be interested in the second level of the xk-Borel hierarchy.
Definition 1.6. Let X be a topological space, and let Y C X.

(1) Y is a £9(k) subset of X iff it is the union of at most x many closed subsets of X.
(2) Y is a TI9(k) subset of X iff it is the intersection of at most £ many open subsets
of X.

Definition 1.7 ([MV93]). Let 1 <n < w, and let X C "("k).

(1) X is a Bi(k), or k-analytic, set iff X is the projection pY of a closed subset
Y C n+1 (IQH)'

(2) X is a ITi(k) set iff its complement (k) — X is a 31(k) set.

(3) X is a Al(k) set iff it is both a X}(x) set and a IT}(x) set.

Fact 1.8 ([FHK14]). A subset X C "(®k) is B1(x) set if and only if X is continuous

image of a closed subset of the x-Baire space.

Fact 1.9. All x-Borel subsets of *(x) are Al(k) sets [MV93]. However, there exists
a Al(k) subset of “k which is not a x-Borel set [FHK14].

We remark that an even stronger concept of Borel sets (that of Borel* sets) was also

introduced for the x-Baire space in [MV93] using a game theoretic definition.
Definition 1.10. Let X be a topological space.

(1) A subset C of X is k-compact iff any open cover of C has a subcover of size < k.
(2) A subset C of X is a K, subset iff it can be written as the union of at most x

many k-compact subsets.

Definition 1.11. Suppose X is a topological space. We say that R C "X is an open
(n-ary) relation on X iff R is an open subset of the product space "X.
The concept of closed relations, TI(k) relations, £9(k) relations, r-Borel relations, etc.,

can be defined analogously.

Definition 1.12. Given aset X and 1 < n < w, an (n-ary) coloring on X is an arbitrary
subset R of [X]".

An n-ary coloring R can be identified, in a natural way, with a symmetric irreflexive
relation R C [X]7}, i.e., with

R ={(zo,...,2n-1) €"X : {x0,...,70n_1} € R}.
Suppose X is a topological space.

(1) We say that R is an open coloring on X iff R’ is an open relation on X.
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n

(2) We say that R is a closed coloring on X iff R’ is a relatively closed subset of [X]",

(or equivalently, iff [X]™ — R is an open coloring on X).

(3) The concept of II9(x) colorings, £9(k) colorings, etc., can be defined analogously
to the concept of open colorings: that is, a coloring R on X is TI(k) (resp. £9(k),
etc.) iff R is a TI9(x) (resp. X9(x), etc.) relation on X.

We say a partition [X]™ = Ry U Ry is open (resp. closed, etc.) iff Ry is an open (closed,

etc.) coloring on X.
Definition 1.13. Suppose X is an arbitrary set and Y C X.
(1) Given an n-ary coloring Ry on X, we say Y is Ry-homogeneous iff [Y]" C Ry.

(2) Let R be an n-ary relation on X. We say Y is R-homogeneous iff [Y], C R, i.e.,
iff for all pairwise different yo,...,yn—1 € Y we have (yo,...,yn—1) € R.
We say Y C X is R-independent iff Y is ("X — R)-homogeneous, or equivalently,
iff for all pairwise different yo,...,yn—1 € Y we have (yo,...,yn—1) ¢ R.

(3) If R is a family of finitary relations on X, then Y is defined to be R-independent
iff Y is R-independent for each R € R.

(4) If R = (R, : a < ) is a sequence of finitary relations on X, then Y is defined to
be R-independent iff Y is independent w.r.t. {Ry : o < K}.

Colorings Ry C [X]" can be identified with partitions [X]" = Ry U R;. In later

chapters of this work (and especially in Chapter 3), we will also identify partitions
[X ]n = RyUR;

with the symmetric reflexive n-ary relation R} on "X defined by Ry, i.e., with

R} = {(z0,...,2n-1) €"X : {mo,...2n_1} € Ry or ; = z; for some i < j < n}.

Thus, an open (resp. ITJ(k), etc.) m-ary coloring Ry on X will be identified with the
closed (resp. X9(k), etc.) symmetric reflexive n-ary relation R} defined by its com-
plement. Note that homogeneous subsets of open colorings correspond to independent

subsets of closed relations (etc.) under this identification.
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1.1.2 Trees

A tree is a partially ordered set (T, <) such that the set of predecessors of any element
t € T is well-ordered by <7, and T has a unique minimal element, called the root of T'.
We confuse the tree (T, <7) with its domain 7" whenever <7 is clear from the context.
We also write < and L instead of <7 and L7 in this case. We use T, S, U, ... and
t, s, u,... to denote trees.

If T is a tree, then its elements ¢ € T are also called nodes. If t € T, then htp(t)
denotes the height of ¢, i.e., the order type of pred,(T"). The a'® level of T consists of
the nodes ¢t € T of height . The height ht(T") of the tree T' is the minimal « such that
the ™ level of T is empty. Thus, ht(T) = sup{htp(t) + 1:t € T}.

A subtree of T' is a subset 7" C T with the induced order which is downwards closed,
ie.ift eT"andteT and t <pt', thentecT.

A branch of a tree T is a maximal chain of T, (i.e., a maximal linearly ordered subset
of T'). We let Branch(T') denote the set of all branches of T". The length of a branch b
is the order type of b. An a-branch is a branch of length a.

We let T, denotes the class of trees ¢ such that every branch of ¢ has length <a. We
denote by 7T o the class of trees T' € 7, of size <.

Trees in T, are also called well-founded trees. Well-founded trees correspond, in a

natural way, to ordinals (see Example 1.18 below).

Definition 1.14. Let T and 7" be arbitrary trees. We write
T<T
if there is an order-preserving map f : T — 1", i.e., a map f such that
s <p t implies f(s) <7 f(t) for all s,t € T.
Wewrite T =T if T <T'and T' < T.

Note that < is a partial ordering on the class of all trees. When restricted to 7, it
can be viewed as a substitute for the ordering of ordinals. Specifically, the restriction
of < to well-founded trees is equivalent to the ordering of the ordinals. The partial
ordering < on 7, can be quite complicated in the case of uncountable cardinals x; see
for example [HV90,MV93, Vaags, Vaall].

The o-operation on trees, defined below, is originally due to Kurepa [[Kur56]. It can

be seen as a generalization of the successor operation on ordinals.

Definition 1.15. For a tree T, let o1 denote the tree of all ascending sequences of

elements of T ordered by end extension. That is, 07" consists of sequences (tg : 8 < )
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such that « is an ordinal and t, <7 tg for all v < 8 < a. The ordering is defined as

follows:
(sg: <) <or (tg: B < ) iff 6 < avand sg =tg for all § < 6.
Lemma 1.16 (Kurepa [Kur56]). If T' is a tree, then
T < oT,

t.e., T <oT and oT L T.

See for example [Viill, Lemma 9.55] for a proof. With the o-operation, one can
define a stronger ordering of trees: for trees T and T", let T < T" iff T < T’. Note
that T < T" implies T < T” by the above lemma, and that < is well-founded [HV90].

We remark that there is an equivalent characterization of the partial orders T' < T

and T < T using a comparison game between trees [HV90]; see also [VAdll, p. 256].
Fact 1.17. Let £ be a limit ordinal, and let k, A be cardinals. Then

(1) T¢ is closed under the o-operation.
(2) Tax is closed under o if and only if A< = X\. If £ is not a cardinal, then 7 ¢ is
closed under ¢ if and only if ¢l = ).

Suppose T' is a well-founded tree. The rank rkp(t) of nodes t € T is defined by
recursion as follows: rkp(t) = sup{rkr(s) : ¢t <p s}. The rank rk(T) of a well-founded
tree T is the rank of its root.

There is a canonical way of associating, to any ordinal «, a well-founded tree of

rank «. This is described in the example below.

Example 1.18. For any ordinal «, let b, denote the tree of descending sequences of

elements of «, ordered by end extension. That is, b, consists of sequences of the form
(g, 1y ooy p—1) such that a>ap>ar> ... > Qg
The ordering is defined as follows:
(ag, a1,y an—1) <p, (Bo,B1s-- s Pm—1) iff n <m and a; = B; for all i < n.

The root of b, is the empty sequence.

The tree b, is well-founded and has rank «. Moreover, if T is a well-founded tree of
rank «, then T' = b,,.

Notice that b, < bg if and only if a < 3. We also have ob, = by11 (and therefore
also by < by if and only if o < f3).
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There is another natural way to associate a tree to an ordinal a: consider the tree
which consists of a single branch of length . We will also denote this tree with the

symbol «.
There is a natural supremum and an infimum for sets of trees with respect to <.

These can be defined as follows.

Definition 1.19. If {7 : i € I'} is a family of trees, then let
DT
iel
denote the tree which consists of a union of disjoint copies of the trees T; (i € I),

identified at the root.

It is easy to see that @, ; T; is the supremum of {T; : i € I} with respect to <, in
the following sense: for any tree 7', we have that 7' > @,.; T; if and only if T' > T; for
all i € 1.

Example 1.20. The x-fan is the tree
fo= @ a
a<k

That is, f,; consists of branches of all lengths <« joined at the root. We denote the set
of its nodes by
{af: B<a <k},
where af = 0 and aj = (a, ) for all 0 < B < a < k. The ordering is defined as follows:
o <
iff either we have o =« and § < § or we have 8 =§ = 0.
When « is clear from the context, we will write f instead of fjx.

The following operation, which was introduced by by Todorcevi¢ [Tod81], gives the

infimum of a family of trees with respect to <.

Definition 1.21. For a family {7} : i € I} of trees, we define the tree ),.; T; as follows:
®TZ = {<tz 11 € I) € 1L /T; - htTi(ti) = htT].(tj) for all 4,5 € [},
icl
(tiziel)<(u;:iel) iff t; <w,; foralliel.

It is not hard to show that ), ;T; is in fact the infimum of {T; : i € I}, ie,
that if 7" is any tree, then T' < @,;T; if and only if T < T; for all i € I. (See
e.g. [HV90, Lemma 2.5] for a short proof.)
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The infimum of two trees S and T is denoted by S ® T, and their supremum is
denoted by S ® T

We will also need the following “arithmetic” operations on trees. These operations

generalize, in a sense, the addition and multiplication of ordinals.

Definition 1.22. For arbitrary trees S and T, we let
S+T

be the tree obtained from S by adding a copy of T" at the end of each branch of S.

More precisely, the domain of S + T consists of the nodes of S and nodes of the
form (b,t) where b € Branch(S) and t € T. The ordering is as follows: for all s,s" € S,
b,/ € Branch(S) and t,t' € T we write

(b,t) < (W, ¢') iff b=V andt <yt
we write s < (b,t) iff s € b and we write s < & iff s <g ¢
Note that b, 4 bg = bgy, holds for any ordinals o and S.
Definition 1.23. If S and T are arbitrary trees, then the tree
S-T

is obtained from T by replacing every node ¢ € T' with a copy of S.
More precisely, the domain of S - T is

{(g,s,t): s €S, t €T, and g : predp(t) — Branch(S)}.
The order is defined as follows:

(g,t,8) < (¢, ¥,

iff we have t <p t/, g = ¢’ |pred(t) and either we have t = ¢’ and s <g s’ or we have
t <pt and s € g(t).

For example, b, - bg = b,.g holds for any ordinals a and 3. As another example,
observe that T-n=T+T -(n—1)foralll<n<wand T -w=, ., T n.

Fact 1.24. Let k be a regular cardinal. Then 7, is closed under all the operations

+, -, P and Q.

Definition 1.25. A tree T is reflexive iff for every t € T we have T' < {s € T : t <7 s}.
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Specifically, if v € Ord, then the tree denoted by ~ (which consists of one branch of
length ) is reflexive if and only if v is an indecomposable ordinal, i.e., iff o+ = for

all a < 7.

Fact 1.26 (from [Huu9l, HT91]; see also p. 8 of [VAid95]). If k, A are uncountable
cardinals and S € 7Ty 4, then there exists a reflexive tree T' € Ty , such that S <T.

For more on the structure of trees and its role in infinitary logic and the descriptive set
theory of the k-Baire space, see for example [HV90, MV93, V4495, TV99,DV04, Vaall].

Definition 1.27. Let x be a regular uncountable cardinal.

(1) A tree T is a r-tree iff ht(T') = k and every level of T is of cardinality < k.

(2) k has the tree property iff every k-tree has a r-branch.

Fact 1.28 (see e.g. Lemma 9.26 of [Jec03]). A cardinal k is weakly compact if and only

if k is inaccessible and has the tree property.

Trees and Closed Finitary Relations on the x-Baire Space

We write <"k to denote the tree (<"k, C), as well as its underlying domain. A subtree
of <"k is (by definition) a downwards closed subset T' of <%k ordered by C. Given a
subtree T of <*k, we also use T to denote its domain.

If T is a subtree of <*k and ¢ € T', then we write ht(¢) = htp(t) = dom(¢).

Notation. If T is a subtree of <k and 1 < n < w, then we let T®" denote the ® of n
disjoint copies of T'. That is,

T = {(to,...,tn_1) € "T : ht(tg) = ---ht(t,_1)},
and is ordered as follows:
(toy- - ytn-1) < (S0y.--,8n—1) iff t; Cs; for all i <mn.
We also write T'®@ T when n = 2, and we let T®! =T
By definition, a subtree of T®" is a downwards closed subset S C "7 such that
ht(sp) = ... =ht(s,—1) forall (sg,...,Sn—-1) € S,

equipped with the induced ordering. We will also confuse such trees with their domains.
If S is a subtree of (<*k)®" and s = (sg,...,8,—1) € S, then we use the notation
ht(s) = htg(s) = dom(sy).
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Definition 1.29. Given a subtree S is a subtree of (<%x)®" where 1 < n < w, we let
[S] =A{(z0,...,2n-1) €"("K) : (xola,...zp_1]a) € Sforalla€ek}.
We identify [S] with the set of k-branches of S.

Observe that [S] is a closed subset of "("k). Specifically, if T' is a subtree of <"k,
then [T is a closed subset of "k, and if S is a subtree of T®", then [S] is a closed n-ary
relation on [T] (i.e., [S] is a closed subset of "[T7).

Conversely, suppose R C "("k), where 1 <n < w. We let

Tr = {(zole,...,xn_1la) : (xg,...,2,) € R and a < K}.

Then we have [Tg] = R. Thus, R is a closed subset of "(“x) if and only if R = [S] for a

subtree S of (<Fk)®".

Definition 1.30. Let 1 < n < w. We say that a subtree S of (<%x)®" is pruned iff for
every s € S, there exists a k-branch = € [S] which extends s (that is, if s = (sg, ..., Sn—1)

and x = (zg,...,Tp_1), then s; C z; for all i < n).

Clearly, Tg is a pruned tree for all R C "("k).

Suppose T is a subtree of <*x and t € T.. We let
[tlr = {t} Usuccr(t) ={ueT:t Cu}.
In the case T = <"k, we omit it, i.e., we just write
[t] ={ue < r:t Cul
We use T} to denote the set of nodes u € T" which are comparable with ¢.

Definition 1.31. Suppose that T is a subtree of <*x and t € T..

(1) tis a splitting node of T iff t has at least two direct successors in T'.
(2) tis a cofinally splitting node of T iff for all & < k there exists successors ug, uq of ¢
in T such that ht(ug), ht(u;) > § and up L u;.

Definition 1.32. Given a subtree T' of <"k, we say that T is a <k-closed tree iff the
partial order (T, D) is <k-closed, i.e., iff every increasing sequence in 7" of length <

has an upper bound in T.
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PERFECT SETS AND GAMES

In the first part of the chapter, we consider different generalizations of the notions of
perfectness and of scatteredness for the x-Baire space "k associated to an uncountable
cardinal k = k<*. The concepts of y-perfectness and vy-scatteredness for infinite ordinals
v < k and subsets X of the k-Baire space was first introduced by Jouko Va#nenen,
based on a game of length « played on X [Vad91]. A stronger notion of k-perfectness
for subsets of “k is also widely used, and corresponds, by definition, to a notion of
k-perfectness for subtrees of <Fk (see Definition 2.1). Concepts of ~-perfectness and
v-scatteredness (where w < v < k) for subtrees T' of <*x which correspond more closely
to Véddnanen’s notions can be defined based on certain cut-and-choose games played on
the trees T [Gall6]. In the classical setting, all these concepts correspond to equivalent
definitions of perfectness and scatteredness for the Baire space. However, they are no
longer equivalent in the uncountable setting.

In Section 2.1, we detail connections between these notions of perfectness and scat-
teredness and the games underlying their definitions. Our observations lead to equivalent
characterizations of the x-perfect set property for closed subsets of the xk-Baire space in
terms of these games.

For example, we show that Jouko Vaénanen’s generalized Cantor-Bendixson theo-
rem [Vaa91] is in fact equivalent to the x-perfect set property for closed subsets of the
k-Baire space. In particular, this implies that Vadnéanen’s generalized Cantor-Bendixson
theorem is equiconsistent with the existence of an inaccessible cardinal above k; this
equiconsistency result was first shown in [Gall6]. The consistency of this generalized
Cantor-Bendixson theorem was originally obtained in [Vad91], relative to the existence

of a measurable cardinal above k.

In Section 2.2, we discuss how the Cantor-Bendixson hierarchy can be generalized
for subtrees T of <%k. This is done by considering modified versions, associated to
trees without x-branches, of the games studied in Section 2.1. Thus, in the uncountable
setting, trees without k-branches play a role analogous to that of ordinals in the clas-
sical setting. The methods in Section 2.2 are similar to those used in [Vad91], where

the Cantor-Bendixson hierarchy was generalized for subsets of the k-Baire space. In
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Chapter 3, we will obtain results, in a more general case, about how the levels of these

different generalized Cantor-Bendixson hierarchies compare to each other.

In the last part of the chapter, we study notions of density in itself for the x-Baire
space which correspond to the notions of perfectness considered in the previous sections.
We show that the statement

“every subset of ®k of cardinality >k has a k-dense in itself subset”

follows from a hypothesis I¥(x). It will be shown in a future joint paper by Philipp
Schlicht and the author [SS] that I (k) is consistent relative to the existence of a weakly
compact cardinal above x; thus, so is the above statement. Previously, this statement was
known to be consistent relative to the existence of a measurable cardinal above x [Vaa9l,
Theorem 1].

Many of the proofs in this chapter are based on simple observations or are modifi-
cations of known arguments. Nevertheless, the author feels that when combined, they

may shed light on interesting connections between the concepts studied in this work.

Throughout the chapter, we assume that x is an uncountable cardinal such that

<

k<" = k unless otherwise mentioned.

2.1 Perfect and Scattered Subsets of the x-Baire Space

The notion of perfectness was originally generalized for subsets of the k-Baire space by
Jouko Véaananen [Vaadl], based on games of length w < v < k (see Definitions 2.2 and
2.3 below). There is also another widely used definition of k-perfectness which leads
to a slightly stronger notion (see e.g. [Sch17, Kov09, Fril4, LMS16]; see also Definition
2.1 and Example 2.6). These two notions of k-perfect sets are often interchangeable.
For instance, they lead to equivalent definitions of the k-perfect set property or of the
k-Silver dichotomy. More generally, the two concepts are interchangeable in questions
dealing with the existence of k-perfect independent sets with respect to families of finitary
relations on the x-Baire space. (See Proposition 2.5 and Corollary 2.10 below.)

In this work, we use the definition of k-perfect sets (and of ~-perfect sets when
w <y < k) given in [Vaa91]. In order to avoid ambiguity, we use the phrase “strongly

k-perfect” for the stronger notion, the definition of which is given right below.

Recall that a subtree T' of <k is <k-closed iff every increasing sequence in T of
length < x has an upper bound in 7. A node t € T is a splitting node of T iff ¢ has at

least two direct successors in 7.
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Definition 2.1. Suppose k is an infinite cardinal with x = k<F.

(1) We say that a subtree T of <k is a strongly r-perfect tree if it is <x-closed and
its set of splitting nodes is cofinal (i.e. every node of T is extended by a splitting
node of 7).

(2) We say a subset X of "k is a strongly r-perfect set if X = [T] for a strongly
k-perfect tree T'.

Thus, X is strongly r-perfect iff X is closed and Tx is a k-perfect tree (where
Tx = {zla: z € X, a < Kk} is the tree of initial segments of elements of X.) Clearly,
strong w-perfectness is equivalent to perfectness for subtrees of <“w and for subsets of
the Baire space “w. (Recall e.g. from [Kec95] that a subtree T C <“w is defined to be
a perfect tree iff its set of splitting nodes is cofinal, and that a subset X of the Baire
space “w is perfect if and only if X = [T] for a perfect tree T'.)

2.1.1 Vaananen’s Perfect Set Game

We now turn to the notion of ~-perfectness, for sets X C *k and ordinals w < v < &,
as it was defined by Jouko Vaanénen in [Vad91]. This notion is based on the following

game.

Definition 2.2 (from [Vid91]). Suppose X C "k and v < k. The game V,(X), of
length ~, is played as follows.

I 50 (51 - 504

II =« T .. Ta

In each round, player II first chooses an element x, € X. Then, player I chooses an
ordinal é, < k (and thus chooses a basic open neighborhood of ).
Player I has to choose d, so that dg < d, for all 8 < «, and player II has to choose

T in such a way that for all 8 < a,
2303 = To[0g and xo # 3.

Player IT wins this run of the game if she can play legally in all rounds a < ~; otherwise
player I wins.

For an arbitrary x € ", the game V, (X, x) is defined just like V,(X), except player
IT has to start the game with xp = = (and thus z¢ ¢ X is allowed).

We note that the definition of V, (X, z) given here is slightly different from but equivalent
to the one in [VAa91].



CEU eTD Collection

20 2. PERFECT SETS AND GAMES

Definition 2.3 (from [Vad91]). Let w < v < k and X C *k. The ~y-kernel of X is
defined to be

Ker,(X) = {z € "s : player II has a winning strategy in V, (X, z)}.
A nonempty set X is y-perfect iff X = Ker,(X).

Let X C "k. Notice that Ker,(X) is closed and is a subset of X. Thus, X is a
v-perfect set iff X is closed and player II has a winning strategy in V., (X, ) for all
x € X. The set Ker,(X) contains all y-perfect subsets of X. In the v = w case, X is
w-perfect if and only if X is a perfect set in the original sense (i.e., iff X is closed and
has no isolated points).

By the Gale-Stewart theorem, V,(X,z) (and V, (X)) is determined for all X C "k
and x € X. However, this may not remain true for V, (X, z) if v > w. See [Vii9l, p. 189

and Theorem 2] for counterexamples; see also [Gall6, Section 1.5].

It is not hard to see that Ker, (X) is a s-perfect set, and, more generally Ker. (X) is
a y-perfect set whenever + is an indecomposable ordinal (i.e. o+ v =~ for all a < 7).
However, this is not necessarily the case for ordinals of the form v 4 1, where ~ is

indecomposable, as the next example shows.

Example 2.4. For all infinite ¢ < &, let
Zs = {z € "2 : the order type of {«: z(a) = 0} is < §}.

If 4 is indecomposable, then Keryy1(Zy41) = Z, and therefore Ker,41(Z,41) is not
(v + 1)-perfect (it is, however, ~-perfect).
We remark that on [Vad91, p. 189], this example is used to show that y-perfectness

implies (7 4 1)-perfectness if and only if v is a decomposable ordinal.

Notice that a strongly k-perfect set is also a k-perfect set. More generally, a closed
set X C "k that is a union of strongly s-perfect sets is x-perfect. By Proposition 2.5
below, the converse also holds. We note that, in essence, this connection between k-
perfectness and strong k-perfectness was observed already in [Vaa91] (see the proofs of
Proposition 1 and Lemma 1 therein). A different formulation of item (1) below can also
be found in [Gall6] (see Proposition 1.2.12 therein). See also [Sch17, Lemma 2.5].

Proposition 2.5 (essentially [Vaadl], [Gall6]). Let X be a closed subset of the k-Baire

space.

1
& Kere(X) =U{Z C X : Z is a strongly k-perfect set}.
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(2) X is a k-perfect set if and only if there exists a collection {X; : i € I} of strongly
rk-perfect sets such that X = J;c; X;.

In particular, a k-perfect set has cardinality 2. Proposition 2.5 will follow from

Proposition 2.69 below (see Corollary 2.70). We give a sketch of the proof below.

Proof (sketch). Item (2) follows immediately from item (1). To see item (1), suppose
Z C X is strongly k-perfect and suppose x € Z. Let T' = T,. It is straightforward to
construct a winning strategy 7 for player IT in V. (Z, z), using the fact that the tree T is
strongly x-perfect. Player II uses the fact that the set of splitting nodes of 7" is cofinal
to define her moves in successor rounds of the game, and the <k-closure of T to define
her moves in limit rounds of the game. Then 7 is also a winning strategy for player I1
in V. (X, ), and so x € Ker,(X).

Conversely, suppose x € X NKer,(X). Let 7 be a winning strategy for player IT in
Vi(X,z). A strongly k-perfect tree T C T'x can be constructed by having player IT use
T repeatedly in response to different partial plays of player I. The nodes of T will be
initial segments of moves of player II. (For details on the construction, see the proof
of Proposition 2.69.) The set Z = [T] will be a strongly s-perfect subset of X with
T € Z. O

The following example witnesses that the two notions of k-perfectness do not coincide
if kK is uncountable. It is a straightforward generalization from the x = w; case of an

exmaple of Taneli Huuskonen’s.

Example 2.6 (Huuskonen, [Vii91]). For a cardinal w < p < k, let
Xy={ze"3: {a <k:z(a) =2} < pu}.
Then X, is a k-perfect set which is not strongly x-perfect.

Let X be a subset of the k-Baire space. By Proposition 2.5, X has a x-perfect subset
if and only if X has a strongly k-perfect subset. Below are some further equivalent

formulations of this requirement which will be utilized in this work.

Definition 2.7. A map e : <"2 — <k is a perfect embedding iff the following hold for
all t,u € <F2:

(i) ¢ C w implies e(t) C e(u);
(i) e(t™0) Le(t™1).

The perfect embedding e is continuous iff e(t) = J{e(ta) : a < ht(t)} for all t € <Fx
such that ht(¢) € Lim.
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Notice that if e is perfect embedding, then e is injective and ¢ L u implies e(t) L e(u)

for all t,u € <#2. The following observation also clearly holds.
Claim 2.8. Suppose e : <2 — T is a perfect embedding into a subtree T of <"rk. Then
T, ={t € <"k :t Ce(u) for some u € <2}

is a strongly k-perfect subtree of T. Conversely, if T has a strongly k-perfect subtree,

then there exists a continuous perfect embedding e : <*2 — T.

Proposition 2.5, Claim 2.8 and [LMS16, Lemma 2.9] and [Fril4, Proposition 2] yield
the following reformulations of a set containing a k-perfect subset. We will often use
the equivalence of these statements in our later arguments. In particular, we will typ-
ically use statements (3) and (4) below (and statements (1) and (2) in Corollary 2.10)

interchangeably.
Lemma 2.9. The following statements are equivalent for any subset X of k.

(1) There exists a continous perfect embedding e such that [T¢] C X.
(2) There exists a perfect embedding e such that [Te] C X.

(3) X contains a k-perfect subset.

(4) X contains a strongly k-perfect subset.

(5) There exists a continuous injection ¢ : "2 — X.

(6) There exists a Borel injection ¢ : "2 — X.

Proof. The first four statements are equivalent by Proposition 2.5 and Claim 2.8. It is
clear that they imply item (5), and that item (5) implies item (6). For the implications
(5)=(1) and (6)=-(1), we refer the reader to the proofs of [LMS16, Lemma 2.9] and
[Fril4, Proposition 2]. O

The equivalence of items (3)-(6) above imply that the existence of x-perfect inde-

pendent subsets w.r.t. families of finitary relations can be reformulated as follows.

Corollary 2.10. Suppose X C "k and R is a family of finitary relations on X. Then

the following are equivalent.

(1) X contains a k-perfect R-independent subset.

(2) X contains a strongly k-perfect R-independent subset.

(3) There exists a continuous injection ¢ : "2 — X such that ran(t) is R-independent.
(4) There exists a Borel injection ¢ : "2 — X such that ran(t) is R-independent.



CEU eTD Collection

2.1. PERFECT AND SCATTERED SUBSETS OF THE «-BAIRE SPACE 23

Recall that a topological space X is scattered iff every subset Y C X contains an
isolated point. The game V,(X,z) can also be used to generalize the concept of scat-

teredness for subsets X of the xk-Baire space.

Definition 2.11 (from [Vad9l]). Suppose X C “k and w < 7 < k. The y-scattered
part of X is defined to be

Scy(X) = {z € X : player I has a winning strategy in V, (X, z)}.
The set X is y-scattered iff X = Sc,(X).

Thus, X is vy-scattered if and only if player I wins V,(X). Observe that Sc,(X)
is a relatively open and scattered subset of X. The set Zs defined in Example 2.4 is
d + l-scattered but d-perfect [VAA91].

Proposition 2.12 (Proposition 3 in [Vii91]). Let X C *k. If |X| < &, then X is

Kk-scattered.

Proof. Suppose X = {y, : @ < k} and let x € X. The strategy of player I in V. (X, z)
is to choose d, in each round « in such a way that x4 [0y # Yo [0 holds if x4 # Yo, and
Ta [0a # Ya—1]0a also holds if a € Succ and 241 = yo—1. Suppose that player IT wins
a run of V. (X, z) where player I uses this strategy (i.e., suppose she can play legally in
ZTa[0a-
Then z € X although z # y, for all a < &, which is a contradiction. O

all rounds). Let z € " be the function determined by this run, ie., z = (J,,

The converse of Proposition 2.12 is implied by the k-perfect set property for closed
subsets of the k-Baire space and is therefore consistent relative to the existence of an
inaccessible cardinal A > x (see Subsection 2.1.2 below). Its consistency (in the x = w;
case, relative to the existence of a measurable cardinal) was first obtained in [VA391]; it
follows from Theorem 4 therein.

The failure of the converse of Proposition 2.12 is consistent with GCH in the k = w;
case (assuming the consistency of ZFC), by [Vaadl, Theorem 3].

The following example shows that it is not enough to assume that | X| < k in Propo-
sition 2.12.

Example 2.13. Let
Yy = {y € <72 : there exists a < k such that y(a) = 0 whenever a < 3 < k}.
Clearly, |Yp| = x and Yy C Ker,(Y0).

We refer the reader to [Vaa9l, p. 189 and 192] for an example of a closed set
X C“lwy of cardinality | X| = 2% such that Sc(X) =0 for all v < w;.
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2.1.2 The kx-Perfect Set Property and Vaananen’s Cantor-Bendixson

Theorem

We say that the k-perfect set property holds for a subset X of the k-Baire space if either
|X| < k or X has a k-perfect subset. We let PSP, (X) denote the statement that the
k-perfect set property holds for X. (Note that the notions of k-perfect sets and strongly
k-perfect sets are interchangeable in this definition.)

For a collection I' of subsets of the x-Baire space, PSP, (I') denotes the statement
that PSP, (X) holds for all X € T.

Recall that C, denotes the collection of closed subsets of the x-Baire space.

Remark 2.14. By results in [FHK 14, Jec71,Sch17] recalled below, PSP, (C,) is equicon-
sistent with the existence of an inaccessible cardinal above k (and so is the statement
that PSP, (X) holds for all sets X C “k definable from a k-sequence of ordinals). This
fact is also of interest for the purposes of this thesis because PSP, (C) is a special case
of many of the dichotomies studied here. In the sequel, we may sometimes use this fact
without explicitly referring to these results or to this remark.

A subtree T of <"k is defined to be a weak k-Kurepa tree if ht(T) = &, |[T]| > k and
the a'™ level TN %k of T is of size < |a| for stationarily many a < k. If T is a weak
k-Kurepa tree, then the s-perfect set property fails for [T]; see [FHIK14, Section 4.2]
or [Liic12, Section 7]. And so, the existence of weak r-Kurepa trees implies that the -
perfect set property cannot hold for all closed subsets of the x-Baire space. Specifically,
V = L implies that the PSP, (C,) fails for all uncountable regular , by [Fril4, Lemma 4].
We note that the idea of using Kurepa trees to obtain counterexamples to the N;-perfect
set property had already appeared in [Vaa91] and [MV93].

Thus, PSP, (C,) implies that there are no k-Kurepa trees, and therefore also implies
that kT is an inaccessible cardinal in L by a result of Robert Solovay; see [Jec71, Sec-
tions 3 and 4].

Conversely, by a result of Philipp Schlicht, the x-perfect set property holds for all
subsets of the x-Baire space which are definable from a k-sequence of ordinals after
Lévy-collapsing an inaccessible A > & to x* [Sch17]. (In the case of PSP, (X}(x)), this
result already follows from a simpler argument also due to Philipp Schlicht; see [Liic12,

Proposition 9.9]. It is also a special case of our Theorem 3.14 below.)

In [Vaa91], Jouko Véédndnen obtained the consistency (relative to the existence of a
measurable cardinal above k), of the following generalized Cantor-Bendixson theorem

for closed subsets of the x-Baire space:

every set X € G, can be written as a disjoint union

X =Ker,(X)USck(X), where [Sce(X)|<k. (2.1)
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This property may also be seen as a strong form of the determinacy of the games V,, (X, x)
for closed sets X € G, and = € X.

A straightforward generalization from the xk = wy case of [Vad91, Theorem 4] shows
that the set theoretical hypothesis I7 (k) implies the Cantor-Bendixson theorem (2.1).
The hypothesis I7 (k) is equiconsistent with the existence of a measurable cardinal above
k. (See Definition 2.74 for the definition of I™(k), and see also the remarks following it.)

By a result of Geoff Galgon’s, (2.1) holds already after Lévy-collapsing an inaccessible
cardinal A > k to kT [Gall6, Proposition 1.4.4].

Motivated by these results, we show in Proposition 2.16 below that the Cantor-
Bendixson theorem (2.1) is in fact equivalent to PSP, (C,). While the proof is based on
a few simple observations, it may be interesting to note that (2.1) follows already from
PSP, (Cx) and does not need other combinatorial properties of I7(x) or of the Lévy-

collapse.

The notion of k-condensation points, defined below, will be useful in the proof of the
equivalence of the properties in Proposition 2.16. Its relation to Ker, (X) and PSP (C)

noted in Proposition 2.16 may also be interesting in its own right.

Definition 2.15. If X C *k and x € X, then x is a k-condensation point of X iff
| X N Nyjo| >k for all a < k.

We let CP,(X) denote the set of k-condensation points of X.
Proposition 2.16. The following statements are equivalent.
(1) PSP.(Cx) holds.

(2) If X € @, then Ker,(X) = CP,(X), i.e., Ker(X) is the set of k-condensation
points of X.

(8)  Every X € G, can be written as a disjoint union

X =Kerg(X)USck(X), where [Sce(X)|<k. (2.1)

Proposition 2.16 implies that the statements (2) and (3) are also equiconsistent with

the existence of an inaccessible cardinal above k.

The proof of Proposition 2.16 is based on the following observation (which holds
whether or not PSP, (X) is assumed).

Claim 2.17. If X is a closed subset of "k, then

Ker,(X) C CP.(X); X — CP,(X) C Scu(X); | X — CPL(X)| < k.
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Proof. First, suppose z € Ker,(X). If § < &, then x € Ker, (X N Ns) and therefore
|X N Nyp5| = 2% by Proposition 2.5. Therefore z € CP.(X).

If x € X is not a condensation point of X, then there exists an a(z) < k such that
|X N Nyja(z)| < k. This implies, by Proposition 2.12, that x € Sci (X N Ngcra(x)) and
therefore x € Sc.(X). This also implies the last statement of the claim because there

are at most k<% = k possibilities for z|a(z). O

Proof of Proposition 2.16. Clearly, the generalized Cantor-Bendixson theorem (2.1)
implies that PSP, (C,) holds.

Now, assume PSP, (C,), and let x € CP(X). For all § < k, the set X NNy5 is closed
and has cardinality > x, and therefore contains a k-perfect subset X5, by PSP, (Cx) (or
more specifically, by PSP, (X N Ng5)). Player II has the following winning strategy
in Vi(X,z): if the first move of player I is dy < k, then player II uses her winning
strategy in V,;(Xs,) to define her moves in rounds o > 1 of V. (X, ). Thus, by Claim 2.17,
PSP, (Cx) implies that Ker,(X) = CP,(X) for all X € C,.

Lastly, suppose X € €, and Ker,(X) = CP,(X). Then, by the fact that Ker,(X)
and Sc,(X) are disjoint and by Claim 2.17, we also have Sc,(X) = X — CP,(X). Thus,

X =Ker,(X)USck(X) and [Scu(X)|=|X — CP(X)| < k.
This shows that item (2) implies the generalized Cantor-Bendixson theorem (2.1). [

Remark 2.18. The argument in the proof of Proposition 2.16 also shows that the

following statements are equivalent for any closed set X C “x.

(1) PSP.(X N Ny) holds for all s € <Fk.

(2) Kerg(X) = CP.(X), or in other words, Ker,(X) is the set of k-condensation points
of X.

(3) X = Kery(X)USck(X), and [Sck(X) | < k.

2.1.3 A Cut-and-Choose Game

The k-perfect set property can be characterized by the following cut-and-choose game
Gi(X) of length k. The game G*(X) is the straightforward generalization of the perfect
set game for subsets of reals; see e.g. [Kec95, Section 21.A]). For subsets X of the x-
Cantor space "2, the game G (X) is equivalent to the k-perfect set game G, (X) studied
in [Kov09]. (However, we have reversed the role of the players for technical reasons.)
The equivalence of the two games can be shown using a straightforward modification of
the argument in the countable case (see e.g. [Kec95, Exercise 21.3]), but it also follows
from [KKov09, Lemma 7.2.2] and Proposition 2.20 right below.
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Definition 2.19. For a subset X of the x-Baire space, the game G*(X) of length  is
played as follows.

I 10 11 e la
II ud, ug ul, ul Ugy s Ugy
Player II starts each round by playing v, u} € <*x (and thus chooses basic open subsets
of the k-Baire space). Player I then plays i, € 2 (and thus chooses between uY and u},).

Player 1I has to satisfy the requirement that

0,1 is
Ugys Ug, 2 Ug

for all B < . We also require that

1L u, if o € Suce, and

U,
ud if o € Lim U {0}.

Q= Qo

=Uu

The nodes u’e produced during a given run define an element z = Ua<r ule of the
k-Baire space. Player 11 wins the run if x € X.
For a node t € <"k, the game G} (X, t) is defined just as G;:(X), except player IT has

to start the game with uf = uj = ¢.

Note that we would obtain an equivalent game if we required uQ 1 ul instead at
limit rounds and round 0. In the case of G*(X), the requirement u?, = u} in these rounds

is a technical detail which will be convenient later.

The next proposition shows that for all sets X C "k, the k-perfect set property
PSP, (X) is equivalent to the determinacy of G(X). Its analogue for the game G%,(X)
and sets X C "2 appears in [Kov09, Lemma 2.2.2].

Proposition 2.20 (essentially Lemma 7.2.2 of [Kov09] for the game G(X)). Let X be

a subset of the k-Baire space.

(1) Player I has a winning strategy in G:(X) iff | X| < k.
(2) Player 11 has a winning strategy in G:(X) iff X contains a k-perfect subset.

Thus, PSP (X) holds if and only if G£(X) is determined.

Proposition 2.20 is a special case of Proposition 3.20 below (and is also stated as
Corollary 3.23). We sketch the proofs of item (2) and the easier direction of item (1).

Proof (sketch). Item (2) is implied by the following observation. A winning strategy

for player IT in G (X) determines, in a natural way, a perfect embedding e : <*2 — <fg



CEU eTD Collection

28 2. PERFECT SETS AND GAMES

such that [T.] C X. Conversely, a perfect embedding e with [T¢] C X determines a
winning strategy for player IT'in G (X). (See Remark 2.6 for a more detailed formulation
of this observation.)

Now, suppose that X = {z, : @ < k}. Player I can play in successor rounds « + 1 of
G (X) in a way that guarantees the following: if x is the element of “x produced during
a given run, then x # z, for all & < k. (More specifically, player I can choose iq41 < 2
so that x, 2 uifq_l by the rule u9; L ul,,.) Thus, # ¢ X holds whenever  is obtained
from a run where player I uses this strategy. The converse direction can be shown using
a special case of the argument in the proof of Proposition 3.20. This special case of the

proof is also analogous to of the argument in [Kov09, Lemma 7.2.2]. O

Remark 2.21. Notice that for any X C "k and ¢t € <"k, the games Gf(X,t) and
G:(X N Ny) are equivalent. Thus, by Proposition 2.20,

(1) Player I has a winning strategy in G5 (X, ) iff | X N Ny| < k.
(2) Player II has a winning strategy in G (X, ) iff X N N; contains a k-perfect subset.

2.1.4 Perfect and Scattered Trees

In this subsection, we consider notions of x-perfectness and k-scatteredness for subtrees T
of <k which are given by certain cut-and-choose games played on such trees T'. At the
end of the subsection, we summarize some equivalent formulations of the k-perfect set
property for closed subsets of the x-Baire space which are obtained in this and previous
subsections (see Corollary 2.40).

The notions of k-perfect and k-scattered trees T are defined with the help of (a refor-
mulation of) the game G/ ([T]). This leads to a slightly weaker notion of k-perfectness for
trees than the usual one (i.e., strong x-perfectness; see Corollary 2.27 and Example 2.28).
With this weaker notion, the following holds for all subsets X C *k (see Corollary 2.29):

X is k-perfect if and only if X = [T for a k-perfect tree T

In the case of ordinals w < v < k, notions of ~-perfectness and ~-scatteredness for
subtrees T of <"k and infinite ordinals v < k were introduced by Geoff Galgon [Gall6]
based on a strong cut-and-choose game of length v played on T (see Definitions 2.32
and 2.33).

When v = &, the two games are, in fact, equivalent by Proposition 2.35. (Thus, the
two definitions of xk-perfectness and x-scatteredness for trees given by these games are

also equivalent.)
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Let T be a subtree of <¥x. Because [T] is a closed set, player II wins a given run
of G*([T)]) if and only if she can play nodes u®,ul € T legally in all rounds a < k.
Thus, G/ ([T]) can be reformulated as the following game G*(T'). (See Proposition 2.24
and its proof.) This reformulation allows for versions of length v < x of the game to

also be defined.

Definition 2.22. Let T be a subtree of ~*x, and let v < x. The game G3(T') has v

rounds and is played as follows.

I 10 i1 e o

11 ug,u(l] u(l),u% ul, ul
In each round, player II first plays nodes u%, ul, € T' (and thus chooses basic open subsets
of [T]). Player I then plays i, € 2 (and thus chooses between u?, and u]). Player IT has
to play so that

ug, u}l i uga
for all 8 < . We also require that
ud 1w

L if a € Succ, and
=u} if a € Lim U {0}.

0o Qo

U,

Player II wins a run of the game if she can play legally in all rounds « < +; otherwise
player I wins.
For a node t € T, the game G(T',t) is defined just as G3(7'), except player II has to

start the game with u) = u} = t.
Definition 2.23. Let T be a subtree of <*x, and suppose w < v < k.

Ker’(T') = {t € T': player IT has a winning strategy in GJ(7t)}.

Sci(T) = {t € T': player I has a winning strategy in GJ(7,t)}.

We say that nonempty tree T' is k-perfect ifft T = Ker)(T'). A tree T is k-scattered iff
T = Sci(T).

Observe that Ker} (T) is a k-perfect subtree of 7" which contains all k-perfect subtrees
of T. In the kK = w case, a subtree T" of ““w is w-perfect if and only if T is a perfect tree
in the classical sense (i.e., iff its set of splitting nodes is cofinal).

Note that if s € Sci(T) and s Ct € T, then ¢t € Sci(T). We let N(Sci(T)) denote
the relatively open subset of [T'] determined by Sc},(7') in the natural way:

N(Se(T)) = ULN; : 5 € Se(T)} 1 [7]
= {x € [T] : there exists s € Sc;,(T") such that s C z}.
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The game G,(T') is determined by the Gale-Stewart theorem. For w < v < k however,
there is no reason why G7(T) should be determined. By the next proposition and by
Proposition 2.20, G (T') is determined if and only PSP, ([T]) holds (see Corollary 2.26
below).

Proposition 2.24. Let T be a subtree of <"k. Then G'([T]) is equivalent to G:(T), and
Gi([T],t) is equivalent to Gi(T',t) for any nodet € T

Proof. Observe that, because [T] is a closed set, player IT wins a given (legal) run
r={((ul,ul),iq : @ < k) of GX([T)]) if and only if u2,ul € T for all @ < k. Thus, a given
sequence 1 = {(uQ,ul),io : @ < k) is a run of G([T]) where player II (resp. player I)

wins iff 7 is a run of G¥(T") where player II (resp. player I) wins. O

Recall that CP,(X) denotes the set of k-condensation points of a set X C "x.

<K

Corollary 2.25. Suppose T is a subtree o K.
(1) Sci(T)={t €T :|[T]NN| < K},
(2) N(Sci(T)) = [T] = CPx([T1).
(3) Kery(T) ={t € T : [T] N N; has a (strongly) k-perfect subset} (2.2)
={t € T : T}; contains a strongly k-perfect subtree}. (2.3)

(4) [Kerf(T)] © CPL([T]).
Note that by item (2) and Claim 2.17, [N(Sci(T))| < k.

Proof. Item (1) and the equality (2.2) in item (3) follows from Proposition 2.24 and
Proposition 2.20. These clearly imply items (2) and (3).

The equality of the sets in (2.2) and (2.3) follows from the observation that [T"] C [T]
implies 7" C T whenever T” is a pruned tree.

We note that it is simple prove that Ker: (7)) is equal to the set in (2.3) directly,
using the following observation: if ¢ € T, then winning strategies for player II in G (T, t)
correspond, in a natural way, to perfect embeddings e : <*2 — T such that e(()) = ¢ (see
Remark 2.30 below). O

Corollary 2.26. The following statements are equivalent.

(1) PSP, (Cx) (i.e., the k-perfect set property holds for all closed subsets of "k ).
(2) For all sutrees T of "k,
T = Kery(T) U Sci(T),

or equivalently, G:(T,t) is determined for allt € T.
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Note that a strongly s-perfect tree is also k-perfect. More generally, a tree which is
the union of strongly k-perfect trees is also k-perfect. The converse of this statement

also holds, by the next corollary.
Corollary 2.27. Suppose T is a subtree of ~"k.
(1) Ker’(T)=U{T" C T : T is a strongly k-perfect subtree of T'}.

(2) T is a k-perfect tree if and only if there exists a collection {T, : o < K} of strongly
k-perfect subtrees of T' such that

T= U Ta

a<k

Proof. The first statement is a reformulation of item (3) of Corollary 2.25. The second

statement follows from and the first one and the assumption k<" = k. O

The following example shows that a x-perfect tree may not be strongly k-perfect.

Example 2.28 (Huuskonen, [VAd91]). This is a reformulation of Example 2.6. For a
cardinal w < p < K, let

T,={te<"3: {a<r:tla)=2} <u}
Then T}, is a k-perfect tree that is not strongly s-perfect. Note that [T,] = X,, (where
X, is defined as in Example 2.6).
Proposition 2.5 and Corollary 2.27 imply the following.
Corollary 2.29. For any subtree T of <"k,
Ker,([T]) = [Kerg(T)].
Thus, T is a k-perfect tree if and only if [T] is a k-perfect set.

Thus, with the weaker notion of k-perfectness for trees considered in this subsection,

we have that
a set X C "k is a k-perfect set if and only if X = [T] for a k-perfect tree T.
Proof. By Proposition 2.5 and Corollary 2.27,

Ker,([T]) = U{[T"] : T" is a strongly s-perfect subtree of T'} (2.4)
= [U{T" : T" is a strongly r-perfect subtree of T'}| = [Kerj(T)].  (2.5)

To see the equality of the sets in (2.4) and (2.5), suppose = € [Ker),(7)]. Then by (2.5),
there exits, for all a < k, a strongly x-perfect tree Ty, such that x[a € T, and all the
nodes of T, are comparable with z[a. The tree T" = |J, ., T is a strongly s-perfect
subtree of T such that z € [T']. The other direction is clear. O
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By Corollary 2.29, Ker, (X) = [Ker}(Tx)] holds for all subsets X of "x. Let W
be a set which consists of isolated branches splitting off from each node of <%2; for
instance, let

W={ze"3:|a<k:z(a)e 2} <k}
Then W is discrete and therefore x-scattered. However, W = *2 U W, implying that

[Ker} (Tw)] = Ker, (W) = 2.

Remark 2.30. Let w < v < k and let T be a subtree of <®x. Winning strategies for
player II in g;(T) correspond, in a natural way, to embeddings e : <72 — 2 such that

t C s implies e(t) C e(s) and e(s—0) L e(s™1) for all t, s € <72. (2.6)
Winning strategies for player IT in G3(T',t) correspond to embeddings e : <72 — T' with
e(0) =t

such that (2.6) holds. In particular, winning strategies for player I in G (7, t) correspond
to such perfect embeddings e : <¥2 — T with e(}) = t.

We give a more detailed description of this correspondence because it is used in
many of our arguments. If 7 is a winning strategy for player II in G} (T'), then a map
er : <72 — T satisfying (2.6) can be defined in the following way. Suppose a < 7 and
s € “2. Let

(W, ul) =7 ((z% : B <a)) where i341 = s(B) whenever 8+ 1 < a and
ig =0 for all £ € Lim N a.

Let
s(a—1)

er(s) = ull if @ € Suce, andlet e, (s) =’ if o€ Lim.

If e : <72 — T satisfies (2.6), then one can define, in a similar way, a winning strategy

7(e) for player IT in G3(T') such that e, () = e.

The example below shows that when v < &, the game G3(7T') would not lead to a

satisfactory definition of y-perfectness.
Example 2.31. For w <~ < k, let
Sy ={t€~"2:t(a) =0 for all @ > ~}.

Then [S,] is a discrete set, but S, = Ker’(S,).
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A notion of v-perfectness and ~y-scatteredness of subtrees T' of <*x was introduced
by Geoff Galgon based on a game G-(T') [Gall6]. The game G, (7)) is played like G3(T'),
except player I also plays ordinals §, < k at the end of each round, in ascending order.
The nodes u?, 115 ul 41 € T that player IT plays in rounds a+ 1 have to agree on the first
8o coordinates, i.e., ud | 6o = ul q[0a.

Example 2.31 shows that this modification is indeed necessarry for the game to lead
to a reasonable notion of y-perfectness for ordinals v < k. When ~ = &, the two games
are equivalent, and therefore lead to the same notion of x-perfectness and x-scatteredness

(see Proposition 2.35 below).

Definition 2.32. (from [Gall6]) Let T' be a subtree of <k, and let v < k. The game
G,(T') has v rounds and is played as follows.

1 10, 00 1,01 o, O

11 ud, ud ul, ul ud, ul
In each round, player II first plays nodes u%, ul, € T’ (and thus chooses basic open subsets
of [T]). Player I then plays ordinals i, < 2 and d, < K.

Player I has to play d, in such a way that 6, > dg for all 8 < «, and Player II has
to play so that

ug, u}l 2 uzﬁﬂ

for all 8 < a. In successor rounds o = o’ + 1, player IT also has to make sure that

0 1 0 _ 1
Ugry1 L gy and  wg 1[0 = Ugr i1 [0ar.

In rounds a € Lim U {0}, she has to play so that u? = u). Player IT wins a run of the
game if she can play legally in all rounds a < ; otherwise player I wins.

For a node t € T, the game G, (7, t) is defined just as G, (T'), except player II has to
start the game with u) = u} = t.

Definition 2.33 (from [Gall6]). Let T be a subtree of <*k and let w < v < k. The
~v-kernel of T is defined to be

Ker,(T) = {t € T : player II has a winning strategy in G,(T,t)}.
The v-scattered part of T is defined to be
Scy(T) = {t € T': player I has a winning strategy in G, (7' t)}.

A nonempty tree T is a y-perfect tree iff T' = Ker,(T'). A tree T is a y-scattered tree iff
T = Sc,(T).
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Note that 7' is a vy-scattered tree if and only if player I wins G,(T'), and if and only
if ) € Scy(T). We denote by N(Sc,(T)) the relatively open subset of [T'] determined by
Scy(T), i.e.,

N(Scyx(T)) = U{Ns : s € Sc(T)} N [T]
= {x € [T] : there exists s € Sc,(T) such that s C z}.

Note that Ker,(T") is a subtree of T" which contains all y-perfect subtrees of T'. If v
is an indecomposable ordinal, then Ker. (T") is a y-perfect tree. The next example shows

that this may not hold for decomposable ordinals.

Example 2.34 (from [Vaa91]). This is a reformulation of Example 2.4. For any infinite
ordinal ¢ < &, let

Us = {u € <#2: the order type of {a : u(a) =0} is < J}.

If v is indecomposable, then the tree U, is y-perfect but not (v + 1)-perfect. Therefore
Kery41(Uy41) = Uy is not (v + 1)-perfect.
Note that, if w < § < &, then [Us] = Zs (where Zs is the set defined in Example 2.4).

The determinacy of the games G,(T,t) was investigated in [Gall6]; see Section 1.5
therein. We note that in Geoff Galgon’s original definition of these games in [Gall6],
the requirement u® | u} is made at limit rounds a as well (instead of u? = ul, as in
Definition 2.32). Thus, the game G(T,t,vy + 1) from [Gall6] is equivalent to the game
Gy+2(T,t) used here. When 7 is a limit ordinal, the two games G(T',t,) (from [Gall6])
and G, (T, t) are equivalent.

We require 2 = u}, in limit rounds o because with this definition, the games G (T)
and V,(T') can be compared: G,(T) is always easier for player IT to win and harder for
player I to win than V,([T7]); see Proposition 2.53. (This is also the reason behind the

analogous rule in the definitions of G3(7') and G;:(T').)

It is clear from the definitions that GJ(7,t) is easier for player IT to win and harder
for player I to win than G,(T',t). Example 2.31 shows that when v < &, the converse of
this statement does not hold, i.e., the two games may not be equivalent. The tree S,

defined in that example is such that
Ker? (S,) = Sy = Scy(S,) -

In fact, the set [S,] of its k-branches is discrete.

We note that if p is a regular cardinal and x = u*, then G, 41(T) and G (T) are
equivalent for player I whenever the set of splitting nodes of T is cofinal and each level
of T has size < p [Gall6, Corollary 1.5.9]. (We remark that [Gall6, Corollary 1.5.9]
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actually states this for the games G(T',(, u + 1) considered there. However, observe that
if the set of splitting nodes of T' is cofinal and v < , then G,1(7T") is equivalent to
Gu+2(T) and is therefore also equivalent to G(T,0, i+ 1).)

If v = k, the two games G(T,t) and G.(T,t) are equivalent (for both players) by
the proposition below, and therefore lead to the same notion of k-perfectness and -

scatteredness for trees.

Proposition 2.35. Let T be a subtree of <"k. Then the games G:(T,t) and G (T,t)
are equivalent for all t € T. That is,

Ker(T) = Ker.(T) and Sci(T) = Sce(T) .

Thus, T is k-perfect in the sense of Definition 2.23 if and only if T is k-perfect in the

sense of Definition 2.353, and the analogous statement holds for k-scatteredness.

We note that this proposition also follows from Corollaries 2.25 and 2.27, and [Gall6,
Propositions 1.2.13, 1.2.14 and 1.5.18]. The proof below shows the equivalence of the
two games directly. The idea behind it will also be used in a later argument proving a
stronger statement (see the Proposition 2.60; see also Remark 2.36. The proof will be

given, in a slightly more general form, as the proof of Proposition 3.30).

Proof. We describe the proof of the two directions that do not follow immediately from
the definitions. The moves in G, = G.(T,t) will be denoted by ul,ul, i, and d,, as
usual. The moves in G = G*(T,t). will be denoted by v2, v} and 4.

The idea, in both cases, is that while the players play the first o + 1 rounds of Gy,
they play the first 6, + 1 rounds of G;. If

(U((S)a+17 ’Uga—i—l)
is a legal move for player II in round d, + 1 of G, then
vgaH [0 = /U(%a“!‘l [ar and /U((S)a“!‘l 1 U§a+1- (2.7)

(Note that the first equation also holds in round 4, instead of d, + 1, but the second
statement may not hold if 4, € Lim.) Thus, player I is able to play in G in such a way

that the moves
0 1 0 1
(ua+17ua+l) = (véa+lvv§a+1)
will also be a legal moves for player II in rounds a + 1 of G,. For limit rounds «, the

players play the first 7, = sup{dg + 1 : f < o} many rounds of G; while they play the

first o rounds in G,.
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In more detail, suppose 7 is a winning strategy for player II in G}. Let a < &, and

suppose player I has played (ig, 65 : f < a) in G so far. Let

ng =sup{dg +1: 5 < B}

for all f < a (note that in successor rounds 3 = 3’ + 1, we have ng = dg + 1). The
strategy of player II in round « of G, is to play

(ugm uzlx) = (’Uga,’l),l?a),

0
Na

7 and player I plays

where the moves v; and v,lia are obtained from a partial run of G where player IT uses

i;ﬁ =g for all 8 < «, and
i, =0 for all n < n, such that 7 # ng for any 8 < a.

Note that 7, < & for all & < & (here, we use that d3 < & for all 5 < x and that & is

regular). Therefore player IT can indeed define (u?,u)) in each round a < & of G, in the

way described above. This move is legal because (2.7) holds whenever a € Succ, and
ul, = vf]a ) U:;;B = u? (2.8)

holds for all 8 < a and ¢ < 2. Thus, the strategy just defined is a winning strategy for
player IT in G.

Using the same idea, we now describe a winning strategy for player I in G assuming
he has a winning strategy p in G,. Suppose 1 < k, and suppose that player IT has
played ((v?,v!) : € < n) in G so far. Using p, player I can define ordinals a < k and

€) Ve

(ng < k: f < «) and a partial run
<(u%,ué),i5,55 B < a>
of G such that the following hold. Player I defines the moves ig and d3 according to p,
we have ng = sup{dz +1: ' < 8} for all § < o, and « is the ordinal such that
ng < n < e forall B < a.

Lastly, (u%,u};) = (vg ﬁ,v% ﬁ) for all 8 < «a. Note that « is a successor ordinal by the

continuity of the function oo + 1 — x; 8+ 1g. Thus, we have
Na—-1 <1 < Na-

The strategy of player I in round 7 of G} is to play

if n =ng—1, and

iy = 1’7704—1

1

I % 3%

=0 if n>mnq—1.
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Ungs U
8 ng
they are legal moves in rounds ng of G%. (This is true by (2.7) and because (2.8) holds

The moves (u%, ué) = ( ) are legal for player II in rounds 8 < k of G, as long as
by the choice of the if]’s.) Thus, if player II were able to win a run of G where player
I uses this strategy, then she would be able to win a run of G, where player I uses p,

contradicting the assumption that p is a winning strategy. O

Remark 2.36. As Example 2.31 shows, if v < &, then there exists a tree S, such that
player I wins G(T') (equivalently, he wins G,(T',t) for all t € T'), but player IT wins
Gy(T,t) for all t € S,,.

However, there is a “modified version of G(7',t)” which is easier for player I to win
and harder for player IT to win than G, (7, t). The idea is that in this “modified game”,
player I gets to decide v times how many additional rounds &, of G}(7,t) the players
should play. That is, player I first chooses an ordinal £ < k, and then the players
play & rounds of G (T, t). Next, player I chooses £ < k, and the players play & more
rounds of Gf(T,t) (continuing from the position they were in after the first £y rounds).
In general, for each o < =, player I first chooses an ordinal £, < k, and then the two
players play &, more rounds of G:(7T,t). Thus, the players play £ = ¥,<,{, rounds of
G:(T,t) altogether. Player IT wins a run of this modified game if she can play legally in
all & many rounds of G (T, t).

This remark will be made precise with the help of the games defined in the next

section, in Proposition 2.60.

In the corollary below, we summarize the connections between the k-kernels and
the k-scattered parts of a given subtree T' of <"k and its set [T] of x-branches. These
connections follow from Corollaries 2.25 and 2.29, Claim 2.17., and Proposition 2.35.

Recall that CP,(X) denotes the set of k-condensation points of a subset X of the

k-Baire space.
Corollary 2.37. Suppose T is a subtree of ~"k.
Ker([T]) = [Kery(T')] = [Keri(T)] € CP([T]); (2.9)
Scx([T]) 2 N(Scx(T)) = N(Sci(T)) = [T] = CPx([T]) - (2.10)
Furthermore, the following statements are equivalent.

(1) PSP.([T] N N¢) holds for allt € T.
(2) Kern([TD = CPH([T])'
(3) Equality holds everywhere in (2.9) and (2.10). That is,

Ker,([T]) = [Kerx(T)] = [Keri(T)] = CP([T]);

Scu([T]) = N(Scx(T)) = N(Sci(T)) = [T] = CPx([T1) -
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Specifically, given a subtree T of <Fk,
Ker,([T]) = [Kerg(T)]
always holds. If PSP, (C,), then Sc,([T]) = N(Sck(T')) also holds.

Question 2.38. For which cardinals x = k<", which infinite ordinals v < x and which
families 7 of subtrees of <*x do either of the following statements hold or consistently
hold:

(1) Kery([T]) = [Ker,(T)] for all trees T € T;
(2) Scy([T]) = N(Scy(T)) for all subtrees T' € T7?

We note that by Proposition 2.53 below,
Kery([T]) € [Kery(T)]  and  Scy([T]) 2 N(Scy(T))
hold for all cardinals k = k<", all infinite v < x and all subtrees T' of <"k.

Conjecture 2.39. Suppose k has the tree property and T is a k-tree (for example,
suppose k is weakly compact and T is a subtree of <"2).
Then Ker,([T]) = [Ker,(T")] holds for all limit ordinals v € x N Lim. Furthermore,

[Ker,1(T)] € Ker, ([T))

holds for all ordinals v < k and all subtrees T of <"k.

We note that by [Gall6, Corollary 1.1.60], statements (1) and (2) in the question
above hold for v = w whenever k is a weakly compact cardinal.
See Question 2.54 and Conjecture 2.55 for a more general version of the above ques-

tion and conjecture.

In the corollary below, we summarize some equivalent formulations of PSP, (C)
(i.e., the k-perfect set property for closed subsets of “k) which are given in or implied by
Propositions 2.16, 2.35 and Corollary 2.37. It may be interesting to note that the decom-
position theorems for closed sets X C *k and for subtrees T' of <"k given in items (2)
and (3) below are in fact equivalent with PSP, (C,).

Corollary 2.40. The following statements are equivalent.
(1) PSP (Cy) holds.
(2) Every closed subset X of "k can be written as a disjoint union

X =Kerg(X)USck(X), where [Scx(X)| < k.
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(8) Every subtree T of <"k can be written as a disjoint union
T =Ker,(T) USck(T).
That is, G (T, t) is determined for every subtree T of <"k and everyt € T.

(4) If T is a subtree of <"k, then
Ker (7)) = [Kero(T)] = [Kerf(T)] = CPo([T)

Sc([T]) = N(Scx(T)) = N(Sci(T)) = [T] = CPx([T1) -

Note again that the games G.(7,t) and G (T, t) are equivalent, and therefore their
role is interchageable in item (3).
By the above corallary, each of the statements (2)-(4) is also equiconsistent with the

existence of an inaccessible cardinal above k (see Remark 2.14).

2.2 Generalizing the Cantor-Bendixson Hierarchy via

Games

Recall that 7, denotes the class of trees without branches of length >x. We begin this
section by recalling from [Vad91] how trees t € 7, can be used to generalize the Cantor-
Bendixson hierarchy for subsets X of the k-Baire space. This is done via modified
versions V(X)) of the games V,;(X) associated to trees t € 7. In this approach, ordinals
correspond to well-founded trees; specifically, the ot level of the Cantor-Bendixson
hierarchy for a set X corresponds to the game W, (X) (where b, is the canonical well-
founded tree of rank «).

In the second part of the section, we consider analogous modifications of G¢(T') and
Gy (T) of the games G.(T) and G)(T") for trees t of height < k. We describe how these
games can be used to generalize the Cantor-Bendixson hierarchy for subtrees T of <F.

We also mention some of our results from Section 3.2 about how the levels of the
generalized Cantor-Bendixson hierarchies discussed in this section compare to each other.
(These will be proven in a slightly more general form in Section 3.2.)

We remark that the methods described in this section are adaptations of methods
used in e.g. [Hyt87, Hyt90, HV90] to study transfinite Ehrenfeucht-Fraissé games and
infinitary languages; see also [Vada95, Vaall]. Similar methods are also used in [OV93]

to study the analogue of inductive definitions, in general, for non well-founded trees.
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2.2.1 The Cantor-Bendixson Hierarchy for Subsets of the x-Baire Space

Let t be a tree of height < x and suppose X C "k. The game Vy(X) (defined right
below) is like V;(X), except that at the beginning of each round «, player I also plays
a node t, € t, in such a way that the t,’s form an ascending chain in t. The tree t acts
like a clock for player I: in order to win a run, he must make sure player 11 cannot move
legally before he runs out of nodes in t. That is, player II wins a run if and only if she

can continue playing legally as long as player I can move up the tree ¢.

Definition 2.41 (from [Vad9l]). Let t € T4, and let X C *k. The game V¢(X) is
played as follows.

I to (50 t1 0 e ta Ou

11 o T .. To

At the beginning of each round, player I plays an element ¢, € t such that tg < t,
for all 8 < «. Next, player II chooses an element z, € X. Lastly, player I chooses an
ordinal é, < k.

Player I has to choose d, so that dg < d, for all 8 < a, and player II has to choose

T in such a way that for all 8 < a,
Toldg = xgldg and xo # x3.

The first player who cannot play legally loses the run, and the other player wins. (In
other words, if player I cannot play t, legally, then he loses this run and player IT wins.
If player IT cannot play x, legally, then she loses this run and player I wins.)

For an arbitrary x € "k, the game V;(X, x) is defined just like V;(X), except player IT
has to start the game with zp = x (and thus z¢ ¢ X is allowed).

Notice that if ¢ is the tree which consists of a single branch of length ~, then V;(X)
is equivalent to V,(X). (Recall that this tree ¢ is also denoted by v.) If t and u are
trees such that ¢ < u (i.e., there exists an order preserving map f : ¢t — u), then V;(X)
is easier is for player I to win and harder for player IT to win than V,(X).

By the Gale-Stewart theorem, V;(X) is determined whenever ¢ has height < w. (This

may not be the case when ht(¢) > w, however.)

Definition 2.42 (from [Vid91]). For any subset X C "k and any tree t € Ty.y1, we let

Kery(X) = {z € "k : player IT has a winning strategy in V¢(X, z)};
Sct(X) = {x € X : player I has a winning strategy in V:(X,x)}.

A nonempty set X is t-perfect iff X = Ker¢(X). A set X is t-scattered iff X = Sc¢(X).
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The set Sc,(X) is a relatively open and t-scattered subset of X. If X C "k, then
Ker¢(X) is a closed subset of “x, and therefore a t-perfect set is always closed.

Observe that the set Kery(X) is t-perfect if the tree t is reflexive, (i.e., iff for every
t € t, T can be mapped in an order preserving way into the set {s € T : t <p s}).
Example 2.4 shows that Keri(X) may not be t-perfect if ¢ is not reflexive (note that
the tree which consists of one branch of length « is reflexive iff v is an indecomposable

ordinal).

If X is a topological space (specifically, if X is a subset of “x), the o™ Cantor-

Bendizson derivative of X (a € Ord) is defined, using recursion, as follows:

X0 = Xx,
X (ot = {1: € X : 2 is a limit point of X(O‘)},
X® =N Xx@ if ¢ e Lim.

a<é

The Cantor-Bendizson rank rkcp(X) of X is the unique ordinal o with X (@) = X (e+1),

If X is a closed subset of “k, then the (w-)perfect kernel of X can be expressed as
Ker,(X) = N{X@ : a < tkep(X)}.

If X C "k is arbitrary, then [ {X(O‘) ta <tkep(X)} = X NKer,(X) and is equal to
the largest dense in itself subset of X. The (w-)scattered part of X can be expressed as
Scw(X) =U{X - X :a <1kep(X)}.

Recall from Example 1.18 that b, is the tree of descending sequences of elements

of a, ordered by end extension.
Claim 2.43 (from [Vaadl]). If X C "k, then
X =Kerp, (X)NX = X — Scp, (X)
for all ordinals oo. Therefore
Ker,(X) =N {Kers(X) : t € T, }, and Scw(X) = U {Sce(X) : t € To,}.

Proof. The first statement can be seen easily by induction on «. The second statement
follows from the first one by the fact that if ¢ € 7, then there exists an ordinal a such
that ¢t < b, (as mentioned in Example 1.18). In the case that X is not closed, we also
use the observation that Ker;(X) = Kery(X) N X holds for any tree t (see Claim 2.66
below). O



CEU eTD Collection

42 2. PERFECT SETS AND GAMES

The following result is the uncountable analogue of Claim 2.43. It is stated in Theo-

rem 5 of [VAa91]. It also follows as a special case from Theorems 2.1 and 2.2 in [Hyt90].

Theorem 2.44 ([VAa91,Hyt90]). If X is a subset of the k-Baire space, then
Ker,(X) = N {Ker¢(X) : t € To.}, and Scw(X) = U {Sct(X) : t € Ty}

Thus, the x-perfect kernel Ker,(X) of a closed subset X of the x-Baire space can be

obtained as the intersection of the levels
Kery(X) (teTs)

of a “generalized Cantor-Bendixson hierarchy” for player II, associated to X.
For arbitrary subsets X C “r, the largest x-dense in itself subset Ker,(X)NX of X

(see Section 2.3) can be obtained as the intersection of the levels
Kery(X) N X (teTs).

The analogous statement holds for player I as well (by Theorem 2.44): X — Sci(X)

is the intersection of the levels
X — Sci(X) (teTy)

of a “generalized Cantor-Bendixson hierarchy” for player I, associated to X.
As noted in [VA491], it is possible to prove analogous representation theorems for

arbitrary trees t (instead of k); see [OV93] for similar results.

2.2.2 Cantor-Bendixson Hierarchies for Subtrees of <"k

Suppose t is a tree of height <k and T is a subtree of <"x. The following game G¢(T')
is like G, (T), except player I also plays nodes (in ascending order) from the “clock-
tree” t. To distinguish between the two different roles trees can play when considering
the games G¢(T'), we always use S, T, U ... to denote subtrees of <"x, and we denote

the “clock-trees” by s, &, u....

Definition 2.45. Let T be a subtree of <"k, and let ¢t € T,.11. The game G;(T') is played

as follows.

I to i0,50 t1 i1,51 . to Z.ouéa
11 ud, ug uf, ul Ug,, Up,
At the beginning of each round, player I plays a node ¢, € t such that {g < ¢, holds for
all B < a. Next, player II plays v, ul € T, and lastly, player I plays ordinals i, < 2
and J, < K.
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Player I has to play 6, in such a way that d, > 63 for all 3 < «, and player II has

to play so that

0,1 ip
Ugys Up, 2 Ug

for all 8 < a. In successor rounds o = o/ + 1, player IT also has to make sure that
ug/H 1 u}l/H and ug/ﬂ [0 = ué/ﬂ [0/

In rounds « € Lim U {0}, she has to play so that u® = ul. The first player who cannot
play legally loses the round, and the other player wins.
For a node t € T', the game G¢(T,t) is defined just like G;(T") except player IT has to

start the game with u) = u} = t.
Definition 2.46. Suppose T is a subtree of <"k and t € T.11. We let

Kery(T) = {t € T : player II has a winning strategy in G¢(7,t)};
Sct(T') = {t € T': player I has a winning strategy in G¢(7,t)}.

We say that a nonempty tree T is t-perfect iff T = Kery(T'). A tree T is t-scattered iff
T = SCt(T)

Observe that Kery(T) is a subtree of T, and if s € Sc(T') and ¢t € T extends s, then
t € Sc¢(T). Thus, T is t-scattered if and only if () € Sci(T') and if and only if player I
wins G¢(T). Again, Ker(T') is a t-perfect subtree if ¢ is reflexive, but this may fail for
non-reflexive trees t (by e.g. Example 2.34).

By the proposition below, the k-perfect kernel Ker,(T') of a subtree T of <*k can be
represented as the intersection of the levels of a “generalized Cantor-Bendixson hierar-
chy” for player IT and T. We show the analogous representation theorem for player I as

well, and in the case of limit ordinals £ < k.

Proposition 2.47. If T is a subtree of ~"x and & < k is a limit ordinal, then
Kere(T) = N {Kery(T) : t € T¢}, and Sce(T) = U {Sce(T) : t € Te}.
Note that the second equation is equivalent to the following claim:
T —Sce(T) ={T —Scy(T) : t € T¢} .

We note that in the case that £ is a cardinal, the statement of Proposition 2.47 follows
as a special case of [Hyt90, Theorems 2.1 and 2.2]. The proof below is analogous to the
proofs of [Hyt90, Theorems 2.1 and 2.2] and of [Vad91, Theorem 5]. It is also similar to
arguments in e.g. [HV90,0V93, Vaill]. We give a detailed proof for completeness, and

because some later arguments will be modifications of this one.
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Proof. We prove the direction in each of the above equalities that is not immediately
clear.

First, suppose that s € T — Kerg(T'). We need to find a tree u’ € T¢ such that player
IT does not win G,/(T, s). Let u be the tree which consists of pairs (v + 1,7) such that
v < ¢ and 7 is a winning strategy for player II in G,41(T,s). The tree u is ordered by
end-extension; that is

(v+1,7) < (Y +1,7)

iff v <~ and 7 agrees with 7/ in the first v rounds of G,11(7, s). Observe that u € T¢;

indeed, a ¢-branch of u would determine a winning strategy for player IT in G¢(T), s).
Claim 2.48. Suppose t is a tree. Then player IT wins G¢(T, s) if and only if t < w.

Proof of Claim 2.48. Suppose 7 is a winning strategy for player IT in G¢(7, s). Then 7
determines an order preserving map f :t — u; t — (v + 1,7¢) as follows. If ¢ € ¢, then
let v+ be the order type of pred,(t), and let 7 be the strategy for player IT in G,,41(T, s)
which is obtained, roughly, by restricting 7 to pred,(¢) U {t}. That is, if (tg: f < ) is

the sequence of elements of pred,(t) U {t} in ascending order, then let
Tt(<(55,7;5 : ﬂ < a}) = T(<tﬂ,(5ﬂ,i5 : ﬁ < a>A<toé>)

for all legal partial plays (ds,ig : f < «) of player I in G,,11(7T,s). Clearly, 7 is a
winning strategy for IT in G, 1(7, s), and the map f is order preserving.

To see the other direction, it is enough to define a winning strategy 7 for player II
in Gy (T,s). Suppose p = (ug,ds,ig : f < )" (uq) is a legal partial play of player I
in G¢(T), s), and that t, = (Ya+1,7a)- Then let

7(p) = 1o ({98,153 : B < a)).

Note that 7(p) is well defined because a < 7,. It is clear that, with this definition, 7 is
a winning strategy for IT in G¢(7, s). This completes the proof of Claim 2.48.

Consider the tree v’ = ou (the tree of ascending chains in u; see Definition 1.15).
Then we have u < v’ and v’ € T¢ (by Lemma 1.16 and Fact 1.17). Therefore, by

Claim 2.48, the tree u’ is as required.

Now, suppose p is a winning strategy for player Iin G¢(T',t). Let s, be the tree which
consists of legal partial plays (ug : 8 < «) of player IT in G¢(7,t) against the strategy p.
(That is, s, consists of those partial plays of successor length of IT against p where she has
not lost yet.) The tree s, is ordered by end extension (i.e., (ug: 8 < a) < (uj: 8 <a)
if and only if a < o/ and ug = uj for all 8 < a).

Because p is a winning strategy for player I, s, does not have any branches of length &.
Indeed, such a branch would define a run of G¢(7',t) in which player I uses p, but player

IT wins. Thus, s = 05, is also a tree in T¢. It is therefore enough to show the following.
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Claim 2.49. Player I has a winning strategy in G¢(T,t).

Proof of Claim 2.49. Player I obtains a winning strategy in Gs(7',t) by copying the
partial plays of player IT into s’ and defining the rest of his moves dg, ig using p.

In more detail, suppose that player IT has played (ug : 8 < «) in G4(T,t) so far.
Then pg = (up : ' < ) € sp, and therefore player I can play

ta=(pg:B<a)c€s.
If o € Succ, then player I also lets (iq—1,0a—1) = p({ug : B < ). O

The games G¢(T') for well-founded trees ¢t € 7, lead to the notion of Cantor-Bendixson
derivatives for subtrees T of <"k given in Definition 2.50 below. We note that Defini-
tion 2.50 was motivated by, but is different from, the notion of Cantor-Bendixson deriva-
tives (for subtrees of "k) given in [Gall6, Definition 1.1.45]. We chose this definition
precisely because it implies that the o'® derivative T(®) corresponds to the game Gy, (T')
(in the sense of Claim 2.51 below).

We also note that the verbatim analogue of the definition of Cantor-Bendixson deriva-
tives of subtrees of “w (found e.g. in [Kec95, Exercise 6.15]) will not give a satisfactory

notion of Cantor-Bendixson derivatives; see Remark 2.59 below.

A node t of a subtree T of <"k is a cofinally splitting node of T iff for all § < k there

exists successors ug, u; of ¢ in 7" such that ht(ug), ht(ui) > and ug L uy.

Definition 2.50. Suppose T is a subtree of k. The ott Cantor-Bendizson derivative

of T (a € Ord) is defined, using recursion, as follows:

7O =T,
Tlatl) = {t € T : t is a cofinally splitting node of T(O‘)},
T® = N 7@ if ¢ € Lim.

a<é
The Cantor-Bendizson rank rkop(T) of T is the unique ordinal a with (@) = platl),
It is easy to show, by induction on «, that the following statement holds.
Claim 2.51. Suppose T is a subtree of ~"k. For all ordinals o, we have
T(®) = Kery, (T) = T — Scp, (T).
Corollary 2.52. Suppose T is a subtree of "r. We have

Ker,(T) = N {Kery(T) : t € T} = N{T : @ < tkep(T) };
Scw(T) = U{Sce(T) s t € To} = U{T — T : a < tkep(T) ).
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Proof. This statement follows from Proposition 2.47, Claim 2.51, and Definition 2.50
(and the fact that if ¢t € 7, then ¢ < b,, for some ordinal «). O

Proposition 2.53 below gives the compares the levels Kery(T') and T' — Sct(T") of the
generalized Cantor-Bendixson hierarchies for a subtree T' of <%k and the levels of the

hierarchies associated to its set [T'] of k-branches.

Proposition 2.53. Suppose T is a subtree of <"k and t € Toy1. If x € [T] and t C x,
then Gi(T,t) is easier for player II to win and harder for player I to win than Vi([T)], z).
That s,

Ker([T]) C [Ker(T)] and Sct([T]) 2 N(Sce(T)) .

Note that the second statement holds iff [T'] — Sc¢([T]) C [T — Sce(T)].

The proposition implies that if [T if a ¢t-perfect set and 7" is a pruned, then 7" is a
t-perfect tree. If T is a t-scattered tree, then [T is a t-scattered set.

We will prove a more general version of Proposition 2.53 in Subsection 3.2.3.

Question 2.54. For which cardinals k = k<", which trees t € 7, and which families T

of subtrees of <*xk do either of the following statements hold or consistently hold:

(1) Ker([T]) = [Kery(T)] for all trees T' € T;
(2) Sce([T]) = N(Sce(T)) for all subtrees T' € T7?

Conjecture 2.55. Suppose k has the tree property and T is a k-tree (for example,
suppose K is weakly compact and T is a subtree of <%2). If every branch of a tree t € Ty,
is of limit length, then Ker([T]) = [Ker¢(T')] holds.

The above question and conjecture are the analagoues of Question 2.38 and Conjec-
ture 2.39 for trees t € 7.

We now consider the game G (T') which is like G (T') except player I also plays nodes
in a “clock-tree” t of height < k. The games G;(7,t) may be used to give a different
possible generalization of the Cantor-Bendixson hierarchy for subtrees T' of <%« (though

not in the straightforward way; see Remarks 2.59 and 2.64).

Definition 2.56. Suppose T is a subtree of <%k and ¢t € T.41. The game G (T) is
played as follows.

I ¢ 0 t1 1 R ta la

0,1 0,1 0,1
11 Ug, Ug Uy, Uy Ugy s Ugy
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At the beginning of each round, player I plays a node t,, € t such that ¢tz < ¢, holds for
all B < a. Next, player IT plays v, ul € T. Lastly, player I chooses between u? and u},
by playing i, < 2.

Player IT has to play in such a way that

0,1 ip
Uy, Uy 2 U

for all 8 < «. She also has to make sure that

ud L ul if a € Succ, and
ud =ul if a € Lim U {0}.

co po

The first player who cannot play legally loses the round, and the other player wins.
For a node ¢t € T, the game G; (7', t) is defined just like G/ (T") except player II has

to start the game with u) = uj = t.

Definition 2.57. Suppose T is a subtree of <"k and t € T.11. We let

Kerj(T) = {t € T : player II has a winning strategy in G; (T, t)};
Sc;(T) = {t € T : player I has a winning strategy in G; (T',t)}.

It can be seen immediately from the definitions that G;(7") is harder for player I to

win and easier for player IT to win than G¢(7"). More precisely, we have the following.
Claim 2.58. If T is a subtree of <"k and t € T,y1, then
Sc; (T) € Sce(T) and Kery (T) 2 Kery(T) .

In other words, let t € t. If player I wins G;(T,t), then he wins G¢(T,t). If player II
wins G¢(T,t), then she wins G (T,1).

Example 2.31 shows that the games G;(T,t) and G; (T, t) are not necessarily equiva-

lent, even when t = v < k.

Remark 2.59. Example 2.31 also implies that the games G; (T') do not lead to a
satisfactory generalization of Cantor-Bendixson derivatives for subtrees T' of <Fx.

Given a subtree T' of <®x we define, recursively,

T(w,0) _ T,
Twetl) = {t e T . ¢ is a splitting node of T(w’o‘)},

T8 = N 7w if ¢ € Lim.
a<é
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It is easy to see by induction that
T = Kerj (T) =T — Scj, (T).
holds for all ordinals «. Thus, if S, is the tree defined in Example 2.31, then
S. = Ker},(S,,) = Ker}_(S.) = S{w®

holds for all ordinals «, even though [S,] is a discrete set. This shows that the above
derivatives are not a satisfactory generalization of Cantor-Bendixson derivatives.

We note that the definition of the derivatives T is also the verbatim analogue
of the definition, in the k = w case, of Cantor-Bendixson derivatives for subtrees of “w
(found e.g. in [Kec95, Exercise 6.15]).

In Remark 2.36, we commented that there is a “modified version of G}(T',¢)” which
is easier for player I to win and harder for player II to win than G, (T, t). We now make
(a more general version of) the above statement precise.

Let f denote the k-fan, i.e., the tree which consists of branches of all lengths <k
joined at the root. For any tree t, we let f -t be the tree which is obtained from ¢ by
replacing each node t € t with a copy of f. (See Example 1.20 and Definition 1.23 for
the precise definitions of f = f, and of f -t.) Note that if ¢ € T, then f -t € T, by
Fact 1.24.

Proposition 2.60. Suppose T is a subtree of <"rk. It t is a tree of height < k, then
Sci(T') € Sch.4(T) and Kery(T) 2 Ker}.,(T).

In other words, G¢(T,t) is harder for player I to win and easier for player I1 to win than
G5 4(T.t) for allt € T.

This proposition is a special case of Proposition 3.30, which will be proven in Sec-
tion 3.2. The idea of the proof is similar to the one behind the proof of Proposition 2.35
(the t = k case). The proof also uses the following observation. During one round of
Ge(T,t) where player I plays t € ¢, he can play an arbitrary number £ < x of rounds
in g},t(T, t) by playing the nodes in a branch (of length &) of the copy of f which re-
places t. Thus, player I can play as many rounds as needed in a run of g;,t (T, t) while
the first o rounds of a run of G(7,¢) are being played. This also shows that G} ,(T’?)
is equivalent to the “modified game” described in Remark 2.36 when ¢ = ~, and that a

similar statement holds for trees t in general.

Corollary 2.61. Suppose t € Toy1 and t = f-t. If T is any subtree of <"k, then the
games Gf (T,t) and G¢(T,t) are equivalent for allt € T, i.e.,

Sc; (T) = Sce(T) and Kery (T) = Ker(T) .

Specifically, the games G:(T,t) and G..(T,t) are equivalent for allt € T.
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Example 2.62. We give an example of a tree t € T, such that t = f -t. We write
fl=Ffandlet fP=f"1. fifl <n<w. Let

=&,

n<w

and let t = f“. It is clear that f -t =t, and we have t € T, due to Fact 1.24.

The next corollary follows either as a special case of [Hyt90, Theorems 2.1 and 2.1]
or from Propositions 2.47 and 2.60. (We also use the fact that ¢t € 7,; implies f-t € Ty.)

Corollary 2.63. If T is a subtree of <"k, then
Kery(T) = N{Ker}4(T) : t € To} = N{Ker;(T) : t € To},
Sci(T) = U{Sch4(T) : t € To} = U{Sc;(T) - t € Ty}
Remark 2.64. The games g;lt(T, t) may be used to give a different possible generaliza-
tion of the Cantor-Bendixson hierarchy for subtrees T of <*x. Proposition 2.60 shows

that the alternate hierarchies (for both players I and II) are stronger than the original

ones, in the sense that
Ker},(T') C Kery(T) and T —Scp4(T) CT — Sey(T)

holds at all levels of the hierarchies (i.e., for all t € T,,).

These games may also be used to give an alternate, stronger, notion of t-perfectness
for subtrees T of <"k, and an alternate, weaker, notion of t-scatteredness.

In the well-founded case, these modified games lead to the following Cantor-Bendixson

derivatives for subtrees T' of <*k. Given a subtree T of <"k, let
T" = () Kerg(T).
That is, ¢ € T iff player IT wins G¢(T,t) for all < k, and iff (by Remark 2.30) for all
€ < K, there exists an embedding e : <¢2 — T such that
t C s implies e(t) C e(s) and e(s0) L e(s™1) for all t, s € <2.
For a subtree T of <k, we define, recursively,

T =71, plet) — () ) = ) 7 if o € Lim.

[B<a

Y

Then the following statements hold:
T = Kery,, (1) =T — Schy, (1) for all a < k;
Ker}.,(T) =T — Sc},(T) = N{T®* : a € Ord}.

(This can be shown by e.g. modifying the proof of Proposition 3.30, i.e., the slightly

more general version of Proposition 2.60.)
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2.3 Density in Itself for the x-Baire Space

In this section, we consider notions of density in itself for the k-Baire space which
correspond to the notions of perfectness considered in the previous sections. We show
that the statement

“every subset of ®k of cardinality >k has a s-dense in itself subset”

follows from a hypothesis I¥(x). In a future joint paper by Philipp Schlicht and the
author [SS], it will be shown that I"(k) is consistent assuming the consistency of the
existence of a weakly compact cardinal A > k; thus, the consistency of the above state-
ment also follows from this assumption. Previously, (an equivalent formulation of) this
statement was known to follow from a hypothesis I7 (k) which is equiconsistent with the
existence of a measurable cardinal A\ > k, by a result of Jouko Vaananen’s [VAid91, The-

orem 1]. The hypothesis I¥(k) is a weaker version of I~ (k).

The notions of strong x-perfectness and t-perfectness, for trees t of height < k, lead
to the following possible generalizations of density in itself for subsets of the x-Baire

space.
Definition 2.65. Let X C "k and let £ be a tree of height < k.

(1) We say X is strongly k-dense in itself if X is a strongly s-perfect set.
(2) We say X is t-dense in itself if X is a t-perfect set.

Specifically, if w < v < k, then X is y-dense in itself iff X is v-perfect. Clearly, a
subset X of “k is w-dense in itself if and only if it is dense in itself (in the original sense,
i.e., iff X contains no isolated points). The set Yj defined in Example 2.13 is k-dense in
itself and is of cardinality k.

The notions of k-density in itself and strong k-density in itself are often interchange-

able; see Proposition 2.69 and Corollary 2.72.

The following observation is immediate from the definition of Ker;(X). As a corol-

lary, we obtain an equivalent definition of ¢t-density in itself.
Claim 2.66. Suppose t € T.41 and every branch of t is infinite. If X C "k, then

(1) every x € Kery(X) is a limit point of X NKery(X),
(2) and therefore
Kery(X) = X NKer(X).

Corollary 2.67. Suppose t € T,11 and every branch of t is infinite. A subset X C "k
1s t-dense in itself if and only if
X C Ker(X)
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i.e., iff player I has a winning strategy in V¢(X,x) for all x € X.

Proof. If X C Ker¢(X), then X = Kers(X) by Claim 2.66 and therefore X is t-dense
in itself. To see the other direction, suppose X is t-perfect. Let z € X, and let 7 be
a winning strategy for player II in V; (Y, :n) Using 7 and the density of X in the set
X = Kery (Y), it is easy to define a winning strategy for player IT in V(X z). O

Remark 2.68. Let v < k be an indecomposable ordinal, and let X C *k. Then
Ker,(X) is v-perfect, and therefore X N Ker,(X) is y-dense in itself by Claim 2.66.
By Corollary 2.67, X N Ker,(X) is the largest v-dense in itself subset of X. (Note
that, specifically, these observations hold for v = k). However, this may not hold for
decomposable ordinals v, as Example 2.4 shows.

More generally, suppose t is a reflexive tree of height < k (see Definition 1.25). Then
X NKer¢(X) is t-dense in itself and is the largest t-dense in itself subset of X. Thus,

X has a t-dense in itself subset iff X NKery(X) #0

and therefore if and only if player IT wins V¢(X).

Recall that by Example 2.6, the notions of k-perfectness and strong r-perfectness
are not equivalent, and therefore neither are the two corresponding notions of x-density

in itself. However, the following connection holds between the two notions.

Proposition 2.69. Let X be a subset of the k-Baire space.

1
& X NKerg(X)=U{Y C X :Y is strongly k-dense in itself}.

(2) X is k-dense in itself if and only if there exists a collection {X; : i € I} of strongly
k-dense in itself sets such that X = J;c; Xi.

We prove this proposition in detail, because some of the proofs in later parts of the
thesis will be similar to the argument presented here. The construction in the proof
(of the strongly r-perfect tree T') is a modification of the construction in the proof
of [Sch17, Lemma 2.5]. The idea behind it is, in essence, the same as in the proof

of [Vaa9l, Proposition 1].

Proof of Proposition 2.69. Item (2) follows immediately from item (1). To see item
(1), first observe that a set Y C "k is strongly k-dense in itself if and only it the tree
Ty (of initial segments of elements of Y') is a strongly k-perfect tree. (This is because
Y = [Ty].)

Suppose Y C X is strongly x-dense in itself and z € Y. Then it is straightforward
to construct a winning strategy 7 for player II in V. (Y, z), using the fact that Ty is a
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strongly k-perfect tree. Player IT uses the fact that the set of splitting nodes of Ty is
cofinal to define her moves in successor rounds of the game, and the <x-closure of Ty
to define her moves in limit rounds of the game. Clearly, 7 is also a winning strategy for
player IT in V. (X, z), and so = € Ker,(X).

Conversely, suppose x € X N Ker,(X). Let 7 be a winning strategy for player IT in
Vi (X, z). We define a strongly r-perfect tree T by having player IT use 7 repeatedly in
response to different partial plays of player I. The nodes of T will be initial segments of
moves of player II. We also make sure that all the moves of player II obtained during
the construction of 7' end up being k-branches of T'. Thus, the set Y of all such moves
of IT will be a k-dense in itself set with z € Y.

In more detail, we construct (us, zs,ds : s € <¥2) such that us € <"k, x5 € X, and
ds < k, and the following items hold for all s, € <#2. (An explanation of the last item
will be given right below).

IS

S S 7

(i)
(i) if
(iii) up~0 L up—~1.
(iv) s = 7({ds18 : B < ht(s), s(8) = 1)).

C s, then u, C ug;

By item (iv), x5 is obtained from a partial run

(Ts18,0s18 1 B < ht(s),s(8) = 1) (zs)

of Vi (X, x) where player IT uses the strategy 7. These partial runs split exactly for those
s € <2 such that s = r1 for some 7 € <¥2 or s is the union of nodes of the form r 1.
If s = r71, then the partial run for r is extended by player I playing 9,, and player 11
choosing x4 using 7. Whenever s is the union of nodes of the form 1 (and therefore
ht(s) € Lim), the partial run is extended by player IT choosing x5 using .

If s = 70, then the partial run for s does not extend the partial run for r, and so

rs = x,. More generally,
if s D r and s(a) = 0 for all a € [ht(r), ht(s)), then zs = ;. (2.11)

To see that this recursive construction can indeed be done, it is enough to check the
following: if @ < k and (u,, x,, 0, : v € <*2) have been constructed and (z : s € *2) are

as in item (iv), then

(a) Tr—0 7é Tr—1
(b) if r & s, then u, & =
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for all s € *2 and r € <*2. Item (a) follows immediately by the above observations. If
s(B) = 0 for all 5 € [ht(r),«), then (b) holds by ((2.11)). Otherwise, let 5 > ht(r) be
such that s(8) = 1. Then by (iv) and induction,

Ts 2 Zsip [ 55[,8 = Usip 2 Uy

By (a) and (b), 05 and thus us can be chosen for all s € *2 in such a way that items (i)
to (iii) hold.

Once the recursive construction is complete, we let
T={usla:s€ <"2,a<k} and Y ={zs5:s€ "2}

Then Y C X and x € Y, and T is a strongly k-perfect tree by items (ii) and (iii). Notice
that by (2.11), x5 € [T] for all s € <*2, and therefore Y C [T]. Conversely, T' C Ty by
item (i). Thus, Ty = T, showing that the set Y is strongly x-dense in itself. O

Corollary 2.70. For any subset X C "k,

Ker(X) ={Y : Y C X and Y is strongly k-dense in itself }
={Y : Y C X and Y is a strongly k-perfect set}.

Proof. This follows from Proposition 2.69, Claim 2.66 and the observation that the set
on the right hand side of the above equation is a closed set. (If = is in the closure of the
set on the right hand side, then there exists, for all & < k, a strongly x-dense in itself
set Yo € X N Nyjo. Let Y = Y,. Then Y is a strongly k-dense in itself subset

a<k T«

of X,and x €Y.) O

The following statement is the same as Proposition 2.5. As mentioned there, this
was in essence observed already in [Vdda9l]. A different formulation of item (1) can
be found in [Gall6].

Corollary 2.71 (essentially [Vaa91], [Gall6]). Let X be a subset of the k-Baire space.
(1) If X is closed, then
Ker(X) =U{Z C X : Z is a strongly k-perfect set}.

(2) X is a k-perfect set iff X is closed and there exists a collection {X; : i € I} of
strongly k-perfect sets such that X = |J;c; Xi.

By Proposition 2.69 and Remark 2.68, we have the following equivalent characteri-

zations of a set containing a k-dense in itself subset.
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Corollary 2.72. If X C "k, then the following statements are equivalent.

(1) X contains a k-strongly dense in itself subset.
(2) X contains a k-dense in itself subset.

(3) X NKer,(X) # 0.

(4) Player IT wins V(X).

In the remainder of this section, we consider a “k-dense in itself subset property” for

arbitrary subsets X of the k-Baire space.
Definition 2.73. We let DISP,, denote the following statement.
DISP,: every subset X of "k of cardinality >x™ has a x-dense in itself subset.

Notice that DISP, implies that the x-perfect set property holds for closed subsets
of the x-Baire space. Therefore the consistency strength of DISP, is at least that of
the existence of an inaccessible cardinal A > k. A straightforward generalization (from
the k = w; case) of [Vaa91l, Theorem 1| shows that that DISP,; is implied by a hypoth-
esis I7 (k) (defined below) which is equiconsistent with the existence of a measurable
cardinal A > k.

We note that by a result of Philipp Schlicht [Sch17], after Lévy-collapsing an inacces-
sible A > k to kT, every subset of ®x which is definable from a x-sequence of ordinals has
a r-perfect (and therefore r-dense in itself) subset. Thus, the statement that PSP, (X)
holds for all sets X C "k is consistent with DC, relative to the existence of an inacces-
sible above x [Sch17], and therefore so is DISP.

We show in this section that DISP, is implied by a weaker version I"(k) of I™(k),
which is consistent (with ZFC) assuming the consistency of the existence of a weakly
compact cardinal A > k. (See Definition 2.75 and Theorem 2.76 below.) Therefore
the consistency strength of DISP,, lies between the existence of an inaccessible cardinal

above k and the existence of a weakly compact cardinal above &.
Definition 2.74 (from [SV17]). We let I7 (k) denote the following hypothesis.

I7(k): there exists a k*-complete normal ideal Z on k™ such that the partial

order (ZT,C) contains a dense <k-closed subset.

This hypothesis is the modification of the hypothesis I(k), introduced in [HS81],
which is appropriate for limit cardinals x. (We note that I(k) is the same statement
as I7(kT).) See also [GJM78,MSV93,STV93] and [Vii91] where the specific case of
I(w) is considered.

If k is a regular cardinal and A > k is measurable, then Lévy-collapsing A to x™

yields a model of ZFC in which I7 (k) holds. The corresponding statement for I(x) is
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an unpublished result of Richard Laver. The proofs can be reconstructed from the I(w)

case, which is shown in [GJMT78].

We define a weaker version I%(k) of the hypothesis I™ (k) which already holds after
Lévy-collapsing a weakly compact cardinal A > k to k™.

By a A-model, we mean a transitive model M of ZFC~ (ZFC without the power set
axiom) such that |[M| =X\, A\ € M and <*M C M. We denote by H(\) the collection of
sets which are hereditarily of cardinality < A.

Definition 2.75 (from [SS]). We denote by I¥(x) the following hypothesis:

I(k): for every X € H(x™T), there exists a k-model M with X € M, and
there exists a kT-complete ideal Z on k™ such that Z C M and (Z+ N M, C)

contains a dense <k-closed subset.

The next theorem is a joint result of Philipp Schlicht and the author; its proof will

appear in a future joint paper [SS].

Theorem 2.76 ([SS]). Suppose k is a regular uncountable cardinal, X > Kk is weakly
compact, and G is Col(k, < \)-generic. Then I(k) holds in V[G].

It may be interesting to note that I"(x) implies that £<" = k, the usual cardinality

assumption made about x when considering the x-Baire space.
Claim 2.77. Let k be a cardinal. If I(k) holds, then k<" = k.

Proof. This argument is a straightforward analogue of the proof of the fact that I(w)
implies CH which is found on [STV93, p. 1413].

Suppose, seeking a contradiction, that I¥(x) holds and k<% > k. Then there exists
a < k and A C %k such that |A] = kT. By I¥(k), we can fix a x™-model M such that
an enumeration of A is in M, and we can fix a k*-complete ideal Z C M NP(A) and a
dense <k-closed subset K of Zt N M.

It is easy to construct a continuous increasing sequence (tg € <"k : f < a) and a

decreasing sequence (Ag € K : § < «) such that
Ag C Ny, for all 8 < a.

(We use the rT-completeness of Z and the density of K at successor stages of the
construction and the fact that K is <r-closed at limit stages.)

Then g<a Aa isin I+ and has at most one element, contradiction. O

We now show that I¥(x) implies the property DISP,. Notice that (Z+ N M, C)

contains a dense <k-closed subset if and only if player II has a winning tactic 7 in
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the game G,((Z™ N M,C)) in the sense that in each round o < r in the game, the
move T(<YB ' B < a)) of player IT depends only on the intersection ﬂﬁ <o Yp of the
moves Yp of player I so far. In particular, this statement implies that (ZT N M, C) is a
<k-strategically closed partial order (see Definition 1.2.)

Proposition 2.78. Suppose that IV (k) holds. Then DISP,; holds, i.e., every set X C "k

of cardinality >k has a k-dense in itself subset.

Proof. This argument is a straightforward strenghening of the proof of [Vaa91l, Theo-
rem 1].

Suppose I"(k) holds. Let X be a subset of the k-Baire space of cardinality >x*;
we may assume that |X| = k*. Let M be a x™-model such that an enumeration of X
is in M, and let Z C M be a x'-complete ideal on X such that (Z+ N M, C) is <k-
strategically closed. (As remarked in the paragraph right above this proposition, the
existence of such M and Z is implied by I"(k).)

Using a winning strategy 7 for player IT in G,(ZT N M) = G.((ZT N M,C)), we
define a winning strategy for player IT in V,(X), as described below. This latter winning
strategy can then be used to obtain a x-dense in itself subset of X; see Corollary 2.72.

The following concept is needed to describe the winning strategy of player II. Given
Y C X and z € Y, we say that x is an Z-point of Y iff all basic open neighborhoods U
of x satisfy Y NU € ZT.

Claim 2.79. Every Y € Z% has an Z-point.

Proof of Claim 2.79. Assume that Y C X has no Z-points. Then, for all z € Y, we
can choose a basic open neighborhood U, of x such that Y NU, € Z. Thus, since there
are k<" = k basic open sets, Y is a union of < k many elements of Z. Therefore Y € 7

by the x*-completeness of Z.

Let (X, : a < k) denote the sequence of moves of player IT in G.(Z* N M) and let
(Y, : a < k) denote the sequence of moves of player I.

Player IT has the following winning strategy in V,(X). She lets x¢ be any Z-point of
Xo = 7(0) C X. If the next move of player I in V,(X) is dy < K, then in G,(ZT N M)
let player I play Yo = (Ngo1s, N Xo) — {x0}. Notice that for all Z € M and for all basic
open sets Ny (where s € <"k), we have NN Z = {y € Z : s C y} € M. Specifically,
Xy € M and therefore Yy € M. Since z is an Z-point of X, this implies Yy € ZT N M.
Then player IT can let X; = T(<Y0>) and let z7 be any Z-point of X7.

In general, player II obtains her sequence (x, : a < k) of moves in V,(X) by
simultaneously playing a run (Xz,Y3 : 8 < k) of G.(ZT N M) using her winning strat-
egy 7T, where the moves Y3 of player I are determined by his moves in V,(X). More

specifically, if & < x and player I has played (dg : S < «) so far in V,(X), then let
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Vg = (Nuyps, N Xg) — {ap} for all f < a, and let Xo = 7((Y3: 8 < a)). Player II then

h

chooses an arbitrary Z-point z, of X, as her o™ move in V,(X). O

By the previous proposition and Theorem 2.76, we have the following.

Corollary 2.80. Suppose k is a reqular uncountable cardinal, A > k is weakly compact,
and G is Col(k, < \)-generic. Then DISP,, holds in V[G].

Thus, the consistency strength of DISP,; lies between cardinal the existence of an

inaccessible above x and a weakly compact cardinal above k.
Question 2.81. What is the consistency strength of DISP,; ?

Observe that the statement DISP,, implies the following statement:

every subset X C "k can be written as a union

of the k-dense in itself set X N Ker,(X) and a set of cardinality < k. (2.12)

However, there is no reason why DISP, (or (2.12)) should imply the determinacy, for
all X C "k and all x € X, of the games V,.(X, x).

Question 2.82. Is it consistent that the games V, (X, x) are determined for all subsets X
of the k-Baire space and all x € X7

Question 2.83. Is the following Cantor-Bendixson theorem for all subsets of the x-Baire

space consistent?

Every subset X C "k can be written as a disjoint union

X = (X NKerg(X))USck(X), where [Scq(X)]|<k. (2.13)

The statement (2.13) can also be viewed as a strong form of the statement DISP,;, or
as a strong form of the determincacy of the games V, (X, z) for all subsets X C "k and
all x € X.
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OPEN COLORINGS ON
(GENERALIZED BAIRE SPACES

In the first part of this chapter, we look at an uncountable analogue OCA,(X) of the
Open Coloring Axiom for subsets X of the x-Baire space. We investigate more closely a
natural variant OCAJ (X)), concerning the existence of k-perfect homogeneous sets (the
definitions of both OCA,(X) and OCAJ,(X) are found at the beginning of Section 3.1.)
The first main result of this chapter, Theorem 3.14, states that after Lévy-collapsing an
inaccessible A > x to kT, OCAZ(X1(x)) holds; that is, OCA’(X) holds for all k-analytic
subsets X of ®x. (Thus, OCA(X1(x)) also holds in this model). This result implies

that OCA% (21(k)) is equiconsistent with the existence of an inaccessible cardinal A > k.

In the second part of this chapter, we study analogues for open colorings of the games
considered in Chapter 2. We first show that for arbitrary subsets X of the x-Baire space,
OCA(X) is equivalent to the determinacy, for all open colorings Ry C [X]?, of a cut
and choose game associated to Ry (see Proposition 3.20).

We then study games which allow trees without x-branches to generalize different
ranks associated to open colorings, leading to different generalized hierarchies for subsets
of "k and for subtrees of <*x. We prove comparison theorems which show how the levels
of these different generalized hierarchies are related to each other. At the very end of
the chapter, we investigate the behavior of the x-length version of these games. We give
some equivalent formulations of OCA%(21(k)) in terms of these games. In particular,
we show that OCA%(Z1(k)) is equivalent to a natural analogue, for open colorings, of

Jouko Vaéananen’s generalized Cantor-Bendixson theorem.

We assume « is an uncountable cardinal such that k<% = x throughout the chapter,
unless otherwise mentioned.

Let X C ®k. An open coloring Rg C [X]? on X can be identified with the open par-
tition [X]? = RoU Ry. The coloring Ry can also be identified with the closed symmetric

binary relation R} on X defined by its complement, i.e., with

Ry = {(z,y) € X*: {2,y} ¢ Ry or z = y}.

Thus, the questions studied in this chapter can be reformulated, equivalently, in terms of

either binary open colorings on X, open partitions of [X]?, or closed binary relations on X
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(for subsets X of the k-Baire space). We will use these formulations interchangeably

throughout the chapter.

3.1 Open Coloring Axioms for Subsets of the k-Baire Space

Definition 3.1. Suppose x is a cardinal such that k<* = k and X C "k. We let
OCA,(X) denote the following statement.

OCA,(X): for every open partition [X]?> = Ry U Ry, either X is a union
of K many Rj-homogeneous sets, or there exists an Rp-homogeneous set of

cardinality x*.

If I is a collection of subsets of “x, then OCA,(I") denotes the statement that OCA,(X)
holds for all X €T

Definition 3.2. Suppose x is a cardinal such that k<" = k and X C "k. We let
OCA}(X) denote the following statement.

OCAZ%(X): for every open partition [X]? = RyU Ry, either X is a union of

many Rj-homogeneous sets, or there exists a x-perfect Ryp-homogeneous set.

If T is a collection of subsets of “x, then OCAJ,(I") denotes the statement that OCA}(X)
holds for all X e T'.

Thus, OCAJ(X) is the variant of OCA,(X) where, instead of an Rp-homogeneous
subset of size k™, one looks for a k-perfect Rg-homogeneous subset. In particular,
OCA,(X) is implied by OCAJ(X).

The Open Coloring Axiom (OCA) was introduced by Todorcevi¢ [Tod89]. It states
that OCA(X) = OCA,(X) holds for all subsets X of the Baire space “w. (A weaker
but symmetric version of the Open Coloring Axiom was introduced in [ARS85]). Since
its introduction, the Open Coloring Axiom and its influence on the structure of the
real line has become an important area of investigation; see for example [Tod89, TF95,
Fen93, Vel92]. The property OCA*(X) = OCA}(X) for subsets X of the Baire space
was studied in e.g. [Fen93] and [TF95, Chapter 10].

In this section, we study OCA}(X) and OCA,(X) for subsets X of the x-Baire space
(for uncountable cardinals k = £<%). The main result of this section, Theorem 3.14,
states that after Lévy-collapsing an inaccessible A > x to kT, OCAZ(X) holds for all
k-analytic (i.e., £1(x)) subsets X C *x (and therefore so does OCA,(X)).

Theorem 3.14. Suppose that k is an uncountable regular cardinal, A > K is inaccessible,
and G is Col(k, <\)-generic. Then OCAY(X1(k)) holds in V[G].
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We remark that in the original x = w case, OCA*(X1) already holds in ZFC [Fen93,
Theorem 1.1].

Note that OCA%(X1(k)) implies PSP(21(k)), i.e., that the k-perfect set property
holds for X1(x) subsets of the x-Baire space. This latter statement is equiconsistent
with the existence of an inaccessible cardinal above x [FHK14,Jec71,Sch17] (see Remark
2.14). Thus, our Theorem 3.14 implies that OCA¥(21(k)) is also equiconsistent with

the existence of an inaccessible cardinal above k.

Recall that G, denotes the family of all closed subsets of the x-Baire space. We
begin this section by describing two examples which show that the “dual version” of
OCA,(Cy) does not hold, and neither does the analogue of OCA,(Cy) for n > 2.

The first example, Example 3.3, shows that the “dual” of OCA(C,) does not hold.
That is,

there exists a closed set X C ®k and a partition [X]? = Ro U Ry such
that Ry is a closed subset of [X]?, every Ro-homogeneous subset of X is of

cardinality <, but X is not a union of kK many R;-homogeneous sets.

Example 3.3 is generalized from [Jec03, Exercise 29.9]. We note that in the original Kk = w
case, [Jec03, Exercise 29.9] gives an example of a IT} subset X C “w for which the dual of
OCA(X) does not hold. The uncountable analogue given in Example 3.3 below, however,
provides a closed subset X C "k as a counterexample. See [TF'95, Proposition 10.1] for
an example of a closed coloring of the whole Baire space “w showing that the dual of
OCA(“w) does not hold.

For a partially ordered set Q and regular cardinals p, v, say that Q has a (u,v)-gap

if there exist sequences (aq : @ < p1) and (b, : @ < v) in Q such that

(i) for all @ <o’ < pand B < ' < v we have aq <g a, <g by <o bg,
ii) but there is no ¢ € @ such that a, <g ¢ <g bg for all a < p and § < v
Q QYg

In particular, Q has no (1,1)-gaps iff Q is dense. If u is any regular cardinal, then Q
has no (p,0)-gaps iff the cofinality of Q is > u.

Notice that if Q is a linear order, then Q has no (u,v)-gaps for any two regular
cardinals u, v < k if and only if Q is a k-saturated dense linear order without endpoints.
Thus, by the assumption k<" = k, there exists a linear order Q = (Q, <g) of size x such

that Q has no (i, v)-gaps for any two regular cardinals p, v < k.

Example 3.3. Let Q = (@, <g) be a linear order of size |Q| = £ which has no (u,v)-
gaps for any regular cardinals u, v < k. Then P(Q) can be identified with the x-Cantor

space "2 in a natural way. Consider

X ={yeP(Q):<glyxyis a well-order}.
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Because k = k<" is uncountable, X is a closed subset of P(Q).
Define a partition [X]? = Ry U R; by letting, for all {z,y} € [X]?,

) = =
{z,yt € Ry iff zCyoryCux

and letting Ry = [X]? — Ro. Clearly, Ry is a closed subset of [X]?, and X does not have
an Ro-homogeneous subset of size k7.

Assume, seeking a contradiction, that X = | X, for Ri-homogeneous sub-

a<k
sets X,. Using that Q has no (u,v)-gaps whenever pu, v < K, one can recursively define
a C-increasing chain (z, € X : @ < k) and a <g-decreasing chain (g, € @ : @ < k) such
that sup x, < g, and, whenever possible, x, € X,.

Let x =

construction. But we also have {z3,2} € Ry, implying that X3 is not R;-homogeneous

Zo. By our assumption, x € Xz for some 3 < k. Then xg € Xg by the

a<k

after all.
Example 3.4 shows that the 3-dimensional analogue of OCA,(*2) fails. That is,

there exists an open partition [*2]2 = RgUR; such that every Ro-homogeneous

set is of cardinality <k, but #2 is not a union of x many R;-homogeneous sets.

In fact, in the example below, every Ry homogeneous set has at most 4 elements. This

example is the uncountable analogue of an example on [TF95, p. 80].

Example 3.4. Consider the set
C={zre"2:2(a) =0 for all &« € x N Lim and for a = 0}.

Then C'is a closed subset of 2 which is homeomorphic to *2.

We use the following notation for the purposes of this example: if z,y € "k and
x # y, then let

A(z,y) = min{a < k : z(a) # y(a)}.

If x,y € C and x # y, then A(z,y) € Succ, by definition, and therefore A(x,y) —1 is de-
fined. Observe that for all pairwise distinct z,y, z € C, the set {A(z,y), Ay, 2), A(z,x)}
contains exactly 2 elements and if A(x,y) = A(y, z) = a, then a < A(z, z).

Define a partition [C]3 = Ry U Ry by letting, for all {x,y, z} € [C]?,

{z,y,2} € Ry iff
Hz(Az,y) — 1), y(Ay,2) — 1), 2(A(z,2) = 1) }| = 2.

Observe that Ry is a relatively clopen and dense subset of [C]3. This fact implies that

any Rj-homogeneous set H is a nowhere dense subset of C. To see the last statement,
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suppose H C C' is R; homogeneous, and let s € T (i.e., s is an initial segment of an
element of C). We need to find a node s’ € Ty extending s such that Ny N H = ().
Because Ry is a relatively open dense subset of [C]?, there exist sq, 51,52 € T¢ extending
s such that Ny, x N5, x N, C K. By the Ri-homogeneity of H, there exists i < 3 such
that N,, N H = 0.

Note that the x-Baire category theorem holds for C' (because C' is homeomorphic to
2% and by k<% = k). Thus, by the observation above, C' cannot be a union of x many
R1-homogeneous subsets.

Now, assume that H is a subset of C' which has at least 5 elements. We will show
that H is not Rgp-homogeneous. Indeed, because |H| > 5, there exist pairwise distinct

elements xg, x1, T2, r3 € H and ordinals oy > ag > ag such that

a1 = A(JJ[),ZUl),
ag = A(wo, x2) = A(z1,22),
az = A(zo, v3) = A(z1, 23) = A(z2, 23).
Let 0 < i@ < j < 3 be such that zg(o; — 1) = xo(ey;j — 1). It is easy to check that

{xo,2;,x;} € Ki. This witnesses that H is not Rp-homogeneous.

In the remainder of this section, we will work with the following equivalent version
of OCAY(X):

if R is a closed symmetric binary relation on X, then either X is a union of

k many R-homogeneous sets, or there exists a k-perfect R-independent set.

One can also reformulate OCA,(X) in an analogous manner.
Note that the notions of k-perfectness and strong rk-perfectness are interchangeable

in OCA}(X) (see Corollary 2.10).
Lemma 3.5. Let X,Y C "k. Suppose f : "k — "k is continuous and f[X] =Y.

(1) If OCA.(X) holds, then so does OCA.(Y).
(2) If OCAJ(X) holds, then so does OCAJ(Y).

Specifically, if OCA*(C,) holds, then so does OCA¥(Z1(k)).
Proof. For a binary relation R on Y, let

R ={(z,y) € X x X : (f(2),f(y)) € Ror f(z) = f(y)}-

That is, R’ is the inverse image of RUidy under the continuous function X x X — Y xY,
(x,y) — (f(x), f(y)). Thus, R’ is a closed symmetric relation on X whenever R is a

closed symmetric relation on Y.
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The image f[Z] of any R’-homogeneous set Z is R-homogeneous. If Z C X is R/-
independent then f[Z] is R-independent, and, by the definition of R/, f|Z is injective.
These observations imply item (1) immediately.

To see item (2), suppose X has a k-perfect R’-independent subset. Then (by Corol-
lary 2.10) there exists a continuous injection g : ®2 — X whose image is R’-independent.
By the above observations, f o g is a continuous injection of “2 into Y whose image is

R-independent, and therefore Y has a s-perfect subset (again using Corollary 2.10). [

Recall from pages 15 and 16 that given 1 < n < w and R C "("k), R is a closed
n-ary relation on "k if and only if R = [S] for a subtree S of (<*£)®" and if and only if
R = [S] for a pruned subtree S of (<Fx)®".

We will use either the following well-known result or the idea behind its proof a

number of times in our later arguments.

Lemma 3.6. Let P be a <k-strategically closed partial order. Suppose that S is a subtree
of (<Fk)®" T where n < w. Let T be a subtree of <Fk, and let tg,...,t, € T.

(1) (Folklore; see [Liic12, Proposition 7.3]) If [S] = 0, then P I+ [S] = 0.
(2) IthO X ... thnﬂ[S] :Q), thenIPlFNtU X ... thnﬂ[S] :®

Proof. Suppose that p € P and oy, . ..o, are P-names such that p I- (09, ...,0,) € [S].
Using a winning strategy 7 for player II in the game G,(PP), it is straightforward to
define a strictly increasing chain ((t5,...,t%) : @ < k) of elements of S and decreasing
chains (p, : @ < k) and (g4 : @ < K) of elements of P below p such that the following

statements hold for all o < &:

() pa =7((g5: B <))
(i) ga Ik t8‘+1 CogA...ANtOFL C oy
(iii) if o € Lim, then ¢§ = Uz, tf for all ¢ < n.

Note that item (i) implies that (pa,qa @ @ < k) is a run of G, (IP) where player IT uses
the strategy 7.

By items (i)-(iii), we have p, IF t¥ C o; for all @ < k and ¢ < n, and therefore
(tg,...,t5) € S. Thus, by letting t; = |J
(to, ..., tn) € [S].

Item (2) is the special case of item (1) for the tree T}y, x ... x T, N.S. Note that
[Tty % .. X Ty, NS] = [Ty % ... x T, ] N [S] = Ny x ... x Ny, N[S]. (Recall that T,

denotes the subtree of 7" which consists of the nodes comparable with ¢;.) O

acr ts for all i < m, we obtain the branch

to

In the remainder of this section, T usually denotes a subtree of <%k, and S usually

denotes a subtree of <"k ® <Fk. Thus, [T] is a closed subset of the x-Baire space and [5]
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is a closed binary relation on the x-Baire space (and [S] N ([T] x [T]) is a closed binary
relation on [T]). We often assume that S is also a symmetric binary relation on <*
in this case, we say that S a symmetric subtree of <"k ® <®k. This assumption implies

that [S] is a symmetric binary relation on “k; if S is pruned, the converse also holds.

K3

In the case of closed binary relations on closed subsets of the k-Baire space, the
existence of a k-perfect independent subset can be characterized in terms of trees.
Recall that for any t € <"k, we let [t] = {v € <"k :v D t}.

Definition 3.7. Suppose t,u € <Fk.
(i) If R is a binary relation on "k, then let
tlpu f  (NixNy)NR=0and (N, x N\ )NR=0 and ¢t L u.
(ii) If S is a subtree of <Fx x <k, then let
tlgu iff ([t x[u])NnS =0 and ([u] x[t]))NS =0 and ¢t L u.

Note that these definitions are absolute between transitive models of ZFC. If ht(t) =
ht(u), then ¢ Lg w holds if and only if we have (¢,u) ¢ S, (u,t) ¢ S and u # t. Moreover,

t Lgu implies ¢ Lligu, and

t Liggu implies ¢t Lgu whenever S is a pruned tree.

Definition 3.8. Let R be a binary relation on ®x. A map e : <®2 — <Fg is a perfect

R-embedding iff for all t,u € <"2, we have

(i) t C w implies e(t) C e(u) and
(i) e(t™0) Lre(t™1).

Note that perfect R-embeddings are perfect embeddings (see Definition 2.7). When
R = () (and more generally whenever R C idx,), a map e is a perfect R-embedding if

and only if e is a perfect embedding.

Definition 3.9. Let S be a subtree of <k ® <Fx. A map e : <F2 — <Fk is a perfect

S-embedding iff for all t,u € <2, we have

(i) t C w implies e(t) C e(u) and
(i) e(t™0) Lge(t™1).

If a map e is a perfect S-embedding, then e is a perfect [S]-embedding. The converse

holds whenever [S] is a pruned tree.
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Recall that for a perfect embedding e : <2 — <%k, we denote by T, the (strongly)

k-perfect tree determined by e; that is
T, ={t € <"k :t C e(u) for some u € <"2}.

Recall also, from Corollary 2.10, that if R is a finitary relation on a set X C "k, then
X has a k-perfect R-independent subset if and only if X has a strongly x-perfect R-
independent subset. We will often use this fact without mentioning it in the remainder

of the section.

Lemma 3.10. Suppose that R is a binary relation on "k, T is a subtree of <"k, and S

is a subtree of <Fk ® <Fk.

(1) Ife: <2 — <Fk is a perfect R-embedding, then [T,] is a k-perfect R-independent set.
(2) If e: <"2 — T is a perfect S-embedding, then

[Te] is a k-perfect [S]-independent subset of [T,

in every transitive model M D'V of ZFC such that (<F2)M = (<r2)V.
(8) Conversely, if [T] has a k-perfect [S]-independent subset then there exists a perfect
[S]-embedding e : <%2 — T. If S is pruned, then e is also a perfect S-embedding.

Items (2) and (3) imply that if [T has a k-perfect [S]-independent subset and S is
pruned, then [T'] has a k-perfect [S]-independent subset in every model M O V of ZFC

with the same <2 as V.

Proof. Item (1) is clear. Item (2) follows from item (1), by noting that the formula
expressing “e is a perfect S-embedding into T is absolute between transitive models
of ZFC with the same <2, and so is the definition of the tree T.. To see item (3),
suppose that 7" is a strongly k-perfect tree such that [7'] C X and is [S]-independent.
Using that [S] is a closed relation, it is straightforward to define a perfect [S]-embedding
e:<f2 — T’ If S is pruned, the map e is also a perfect S-embedding. O

The homogeneity of a closed set with respect to a closed finitary relation can also be

characterized in terms of trees.

Definition 3.11. Let S be a subtree of (<%x)®". We say that a subtree H of <"k is an

S-homogeneous tree iff for all pairwise incomparable tq,...,t,_1 € H we have

([to] X ... X [ta_1]) N S # 0. (3.1)
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Notice that if ht(¢g) = ... = ht(¢,—1), then (3.1) holds if and only if (tg,...,tn—1) ¢ S.
If H is an S-homogeneous tree, then the set [H]| is [S]-homogeneous. The converse of
this statement holds as well whenever H is a pruned tree.

The formula expressing “H is an S-homogeneous tree” is absolute between transitive

models of ZFC. Therefore, if H is an S-homogeneous tree, then
[H] is an [S]-homogeneous set

in any transitive model of ZFC containing V.
Suppose S is a symmetric subtree of <fx ® <Fx (thus, S is a symmetric binary

relation on <Fx). Then

H is S-homogeneous iff we have h fg b’ for all h,h' € H.

We now turn to proving the main result of this section, Theorem 3.14, which states
that OCA*(21(k)) holds after Lévy-collapsing an inaccessible A > & to x*. The next
lemma, which is the key step in the argument, can be stated for <k-strategically closed

forcings in general.

Lemma 3.12. Let T be a subtree of <"k, let S be a symmetric subtree of T @ T, and
suppose that P is a <k-strategically closed notion of forcing. Then at least one of the

following holds:
(1) P forces that
[T)=U{[H]: H €V, H is an S-homogeneous subtree of T'},

(2) [T] has a k-perfect [S]-independent subset, in any transitive model M 2OV of ZFC
such that (<F2)M = (<r2)V,

If S is pruned and there exists a p € IP which adds an element of "2 then exactly one of

the above items holds.

See also Proposition 4.12 below.

Proof. First, assume that p € P forces "2 € V and that S is pruned. We show that
in this case, items (1) and (2) cannot both hold. Note that by [Liic12, Lemma 7.6], our
first assumption implies that p |- [T'] € V whenever T” is a k-perfect tree. Let G be
P-generic with p € G. If item (2) holds, then by Lemma 3.10, there exists a k-perfect
subtree T" of T such that [T”] is [S]-independent in both V' and V[G]. We show that if

item (1) is also assumed, then [T']V1) C V| contradicting [Liic12, Lemma 7.6].
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To this end, suppose H € V is an S-homogeneous subtree of T. Then [H] is [S]-
homogeneous in both V' and V[G], and therefore |[T'] N [H]| < 1 holds in both V
and V[G]. Using Lemma 3.6 and the fact that [T'] N [H] = [T" N H|, we obtain

V= |T'IN[H]| =1 ifand only if VI[G] E |[T']N[H]| =1,

Thus, [T'NH]VIE C V for all S-homogeneous subtrees H € V of T. Therefore if item (1)
holds, then [T"]VIE] C V.

To see the first part of the theorem, suppose that item (1) does not hold. Then there

exists a P-name o and py € P such that
pol-o e ([T)—U{[H]: H €V, HCT is an S-homogeneous subtree}). (3.2)

Let 7 be a winning strategy for player IT in G.(IP). We construct, recursively, sequences
(ty €T :u € <"2), (py €P:ue€ <"2) and (g, € P : u € <72, ht(u) € Succ) such that
the following hold for all u,v € <F2:

(1) uw Cwviff t, Cty;
(i) tu~o0 Ls tu—1;
(iil) py Ik ty C o3

(iv) qv—0,qu—~1 < py and py = 7((quja+1 : @ + 1 < ht(w))) for all u # 0.

Item (iv) implies that for all z € *2, (Pgjas Gejat1 @ @ < k) is a run of G, (IP) in which
player IT uses the strategy 7.

By the first two items, the embedding <*2 — T'; u ~ ¢, is a perfect S-embedding.
Thus, by Lemma 3.10, [T] has a k-perfect [S]-independent subset, in any transitive model
M DV of ZFC with the same <2 as V.

Let u € <2 and assume that t,, p, have been constructed for all v & u and that g,
has been constructed whenever ht(v) is successor. Let ty = (), and let py satisfy (3.2).
If ht(u) is a limit ordinal, we can let ¢, = (J{ty, : v & u} and we can define p, using
the winning strategy 7 so that (iv) holds. For all v & u, we have p, < p, and therefore
Py IFty, Co. Thus, p, IFt, Co.

Now, assume that ht(u) is successor, and v = v"4 for v ¢ w and i € 2. For an
arbitrary p € P, define the subtree T® of T as follows:

TP ={teT:(3g<p)qlFtCo}.

Notice that p IF o € [T(p)], and therefore T® is not S-homogeneous whenever p < Dp-
Furthermore, if p IF ¢t C o for some t € T, then T® C Tt (i.e. all nodes in T®) are

comparable with t).
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Specifically, T"») C T; ¢, and T (Pv) is not S-homogeneous, so there exist ty—g, ty~1 €
T®) and gy~0,gu—~1 € P such that

tv~0 Ls ty~1 and  ty~; D ty, Gu~i < py and gy~ I-ty,~; € o for i < 2.

Finally, define p,~;i = 7((q(v~i)jat1 : @ + 1 < ht(v) + 1)) for i < 2. Then items (i) to

(iv) are satisfied by construction. O

Recall that a subset X of ®x is 21(k) iff X = pY for a closed subset Y C "k x "k,

where pY denotes the projection of Y onto the first coordinate.

Corollary 3.13. Suppose that P is a <k-strategically closed partial order which forces
|(2)V| = k. Then IP forces the following:

if T,S € V are such that T is a subtree of <"k and S is a symmetric subtree
of (<"Kk) ® (<"k), then either p[T] is a union of k many [S]-homogeneous

sets, or there exists a k-perfect [S]-independent set.

Proof. By Lemma 3.12, P forces the version of the above statement in which “p[T]” is
replaced by “[T]”. More specifically, if item (1) of Lemma 3.12 holds for trees T, S € V as
above, then P forces that [T] is a union of k = |*2NV| many [S]-homogeneous sets. Oth-
erwise, item (2) holds, and so IP forces that [T'] has a r-perfect [S]-independent subset.

Therefore, by Lemma 3.5, P also forces the original version of the above statement. [

Theorem 3.14. Suppose that k is an uncountable reqular cardinal, X > K is inaccessible,
and G is Col(k, <\)-generic. Then OCA*(X1(k)) holds in V]G].

Proof. Working in V[G], suppose that R is a closed symmetric binary relation on a
31(k) subset X of ®k. Let T be a subtree of <"k such that X = p[T] and let S be a
symmetric subtree of (<"k) ® (<"k) such that R = [S] N (X x X). Because Col(k, <))
satisfies the A-chain condition, there exists v < A such that 7" and S have Col(k, <7)-
names, and therefore 7' and S are in V[G,], where G, = G N Col(k, <7y). Thus, the
conclusion of the theorem holds in the case of X = p[T] and R = [S] N (X x X) by
Corollary 3.13 applied to V[G,] and P = Col(k, [y, \)). O

Let X be a subset of the x-Baire space. Then OCAJ,(X) implies PSP (X), i.e., the
r-perfect set property for X. (This can be seen by considering the closed binary relation
R = idy, or equivalently, the trivial partition of [X]? where the open part of the partition
is Ry = [X]?). Specifically, OCA* (Z1(k)) implies that PSP, (21(k)) holds.

Thus, by results in [FHIK14] and a result of Robert Solovay [Jec71], OCA%(Z1(k))
implies that k™ is inaccessible in L (see Remark 2.14). This fact and Theorem 3.14 leads

us to the following equiconsistency result.
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Corollary 3.15. Let k be an uncountable cardinal with k<% = k. Then the following

statements are equiconsistent.

(1) There exists an inaccessible cardinal A\ > k.
(2) OCAY(Z{(k)).

Question 3.16. Does PSP, (Xi(k)) imply OCA%(X1(x))? Does PSP, (C,) imply
OCA}(Z}(r))?

Recall that C, denotes the collection of closed subsets of the xk-Baire space. While
OCAZ(€,) implies OCA% (21 (k)) by Proposition 3.5 (and thus also implies PSP, (21 (k))),
there is no reason, to the best knowledge of the author, that PSP (C,) should imply
PSP, (21(k)) (see [KLLS16, Question 3.35]).

In the classical case, after Lévy-collapsing an inaccessible cardinal to wy, OCA*(X)
holds for all subsets X C “w definable from a countable sequence of ordinals [Fen93].
Furthermore, after Lévy-collapsing an inaccessible A > x to k*, PSP, (X) holds for all
subsets X of the k-Baire space which are definable from a k-sequence of ordinals [Sch17,
Theorem 2.19].

Conjecture 3.17. If A > k is inaccessible and G is Col(k, <\)-generic, then in V[G],
OCAY(X) holds for all subsets X C "k definable from a k-sequence of ordinals.

Question 3.18. Let OCA,, denote the statement that OCA,(X) holds for all subsets
X of the k-Baire space. Is OCA consistent?

If the answer to the above question is affirmative, it would be interesting to see how

OCA, influences the structure of the x-Baire space.

3.2 Games for Open Colorings

In this section, we consider certain games associated to binary open colorings of subsets
of the k-Baire space. These games are natural analogues of games discussed in Chapter 2.

As mentioned at the beginning of the chapter, a binary open coloring on a set X
corresponds to the closed binary relation on X which is determined by its compliment.
We therefore formulate the definition of the games and our results in terms of closed

binary relations instead of open colorings.
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3.2.1 A Cut-and-Choose Game for Open Colorings

Let X C "k. The game G} (X, R) defined below is the analogue of the x-perfect set
game G (X) for binary relations R on X. We show that the determinacy of the games
G:(X, R) for all closed binary relations R is equivalent to OCAJ (X).

Recall the definition of the relation 1 g from Definition 3.7.

Definition 3.19. Let R be a binary relation on a subset X of the x-Baire space. The
game G (X, R) of length & is played as follows.

I i0 i1 o
0,1 0,1
II Ug, U uy, Uj Uy, Ug,

Player II starts each round by playing v, ul € <"k such that for all 8 < a and i < 2

) o

we have u?, D uzﬁﬁ . She also has to make sure that

ul Lpul if o € Suce, and

ul = ul if o € Lim U {0}.

« o

Player I then chooses between u® and u), by playing i, € 2.
The nodes ue produced during a given run define an element = = < u’e of the

r-Baire space. Player II wins the run if x € X.

In the case of R = () (or more generally, when R C idx) ud Lg ul is equivalent to
u? 1 ul. Thus, G#(X, R) is equivalent to the game G(X) in this case.

The game G (X, R) is the uncountable version of a game of length w, associated to
closed binary relations R subsets X of the Baire space, which was studied in [Fen93].

The next proposition is the uncountable analogue of [Fen93, Lemmas 3.1 and 3.2].

Proposition 3.20. Let X be a subset of the k-Baire space, and suppose R is a closed

symmetric binary relation on X.

(1) Player 1 has a winning strategy in G (X, R) if and only if X is the union of K
many R-homogeneous sets.

(2) Player I has a winning strategy in G} (X, R) if and only if X has a k-perfect
R-independent set.

Thus, OCA},(X) is equivalent to the statement that G (X, R) is determined for all closed

binary relations R on X.

Proof. By an argument similar to the one in Remark 2.30, a winning strategy for

player IT in G(X, R) determines, in a natural way, a perfect R-embedding e such that
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[Te] € X. Conversely, a perfect R-embedding e with [T¢] C X determines a winning
strategy for player II. This observation implies item (2) immediately (by Lemma 3.10).

To see item (1), suppose first that X =
The strategy of player I is to choose i,+1 € 2 in such a way that

a<r Xa Where each X, is R-homogeneous.

Xa N Nuia-ﬂ =0

a+1
in each successor round o + 1 < k. (This can be done by the homogeneity of X, and
because u3+1 1R uéﬂ.) Now, suppose = = (J ., ule € Fk is produced during a run
of G} (X, R) where player I uses this strategy. Then for all & < k, we have = ¢ X, by
T2 uf;jll Thus, = ¢ X, implying that player I wins this run of the game.
We now prove the converse direction. The argument presented here is similar to (the
uncountable version of) the arguments in [Fen93, Lemma 3.2] and [Kec95, Theorem 21.1],
and also to the proof of [Kov09, Lemma 7.2.2].

Suppose that p is a winning strategy of player I in G (X, R). We say that
p= <(u%,ué), ig:fB< a>
is a good position iff p is a legal partial run of G (X, R) of length o < k in which I has
played according to p. We let I(p) denote the length of p, i.e., I(p) = a. The element of
<fk determined by the partial run p is denoted by u(p), i.e.,
ulp) = U uIlBﬁ.
B<l(p)

Note that if I(p) = 8+ 1, then u(p) = u;ﬁ.

Let x € "k be arbitrary. We say that p is a good position for x iff p is a good position

and
x 2 u(p).

A good position p for = is a mazximal good position for x iff there does not exist a good

position p’ for  such that p’ 2 p.
Claim 3.21. If x € X, then there exists a mazimal good position for x.

Proof of Claim 3.21. The empty sequence is a good position for x, by convention.
Suppose there is no maximal good position for z, i.e., every good position for x has a
proper extension that is also a good position for . Then one can define, recursively, a run
of G} (X, R) where player I uses p and which produces z (i.e. if the run is <(u%, ué), ig :
B8 < /@>, then x = U/B <k uiﬁﬁ. At limit stages of the recursion, one uses the following
observation. If (pg : f < &) is a strictly increasing chain of good positions for y and
¢ € Lim, then p = U5<§ pg is also a good position for y). Because p is a winning strategy
for I, this implies x ¢ X. Thus, the statement of the claim holds.
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Claim 3.22. Suppose p is a good position for x and let o = l(p).

(1) If p is a maximal good position for x, then « is a successor ordinal.
(2) p is a mazimal good position for x if and only if for every legal move (ud,ul) of

player 11 in response to p,
p(p™(( g,ué))) = lq, implies x 2 ule.

Proof of Claim 3.22. To see item (1), suppose a = I(p) is a limit ordinal. Let

u? = ul = u(p) and let

P =p"((ud,ud), p(p7 ((ug, ud)))-

Then p’ is a good position for x which extends p, so p cannot be maximal.
Item (2) is clear, using the fact that u2 L ul holds for all legal moves (ul,ul), by

item (1). This ends the proof of Claim 3.22.

For each good position p of G¥(X, R), let
X, ={z € X : pis a maximal good position for z}.

Then X = [J{X, : pis a good position}, by Claim 3.21. Note that there are at most

k<

® = k many good positions of G (X, R).

We show that if p is a good position, then X, is R-homogeneous. This implies, by
our earlier observations, that X is a union of x many R-homogeneous sets and therefore
completes the proof of the theorem.

Suppose that p is a good position and X, is not R-homogeneous. Let zg,z1 € X, be
such that (zo,71) ¢ R and zo # 71. Let a = I(p). Using the facts that X, C N, and
that R is a closed and symmetric relation, we can find u®,u} € <%k such that x; D u’,
for ¢ € 2 and
ud Lpul and ud, ul D u(p)

that is, (u2,ul) is a legal response of player II to p. Let i, = p(p“(( g,ua») Then

x;, 2 ule, implying, by item (2) of Claim 3.22, that p is not a maximal good position

)

for x;,. This contradicts the assumption that z;, € X,. O

The following corollary is the special case of Proposition 3.20 for R = () (and is also

stated as Proposition 2.20).
Corollary 3.23 (essentially Lemma 7.2.2 of [[Kov09] for the game G;(X)). Let X C "k.

(1) Player I has a winning strategy in G:(X) iff | X| < k.
(2) Player I has a winning strategy in G:(X) iff X has a k-perfect subset.



CEU eTD Collection

74 3. OPEN COLORINGS ON GENERALIZED BAIRE SPACES

Thus, G:(X) is determined iff the k-perfect set property holds for X .
Proposition 3.20 and Theorem 3.14 yield the following statement.

Corollary 3.24. Suppose that k is an uncountable reqular cardinal, X > K is inaccessible,
and G is Col(k,<\)-generic. Then, the game G*(X,R) is determined for all $1(x)

subsets X C "k and all closed symmetric binary relations R on X.

3.2.2 Games for Open Colorings Played on Trees

In this subsection, we consider games G; (T, R) and G¢(T, R) played on subtrees T' of <"k
associated to binary relations R on [T]. These games allow trees ¢t without s-branches
to generalize certain ranks associated to binary relations on closed subsets of the x-Baire
space. They are the natural analogues of games considered in Subsection 2.2.2.

We prove comparison theorems for these games, the special cases of which were
mentioned in Subsection 2.2.2.

Specifically, in the t = k case, the games G(T, R) and G.(T, R) are equivalent as a
corollary of our results, and G:(T, R) is a reformulation of the game G ([T, R) defined
in the previous subsection. Therefore OCA¥(21(k)) can be reformulated in terms of the

determinacy of these games.

Definition 3.25. Let T be a subtree of <"k, and suppose that R is a binary relation
on [T]. If t is a tree of height < x, then the game G/ (T, R) is played as follows.

I to ’io t 11 A tao la

11 ud, ud ul, ul ul, ul
In the first half of each round, player I plays a node ¢, € t and in such a way that
ts < tq for all B < a. In the second half of the round, player II first plays ud, ul € T,
and player I then chooses between u, and u), by playing i, < 2.

Player IT has to play in such a way that

ug, ué ) u;B

for all B < «. For successor ordinals o, we also require that

ud Lpul if o € Suce, and

ud = ul if o € Lim U {0}.

« «

The first player who cannot play legally loses the round, and the other player wins.
(In other words, if player I cannot play ¢, legally, then he loses this run and player II

wins. If player IT cannot play ul,ul legally, then she loses this run and player I wins.)
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For a node t € T, the game G; (T, R, t) is defined just like G; (T, R) except player II
has to start the game with u) = u} = t.

When R = () (or more generally, whenever R C id(p)), the game G; (T, R) is equivalent
to G (T).

Recall that we also denote by « the tree which consists of a branch of length . In
the t = v case, GJ(T, R) is equivalent to a game of length « in which the two players
plays u!, and i, according to the above rules and player II wins a run iff she can play
legally in all v rounds. In particular, G3(7,0) is equivalent to the game G3(7') defined
in Definition 2.22.

If t and u are trees such that ¢ < w (i.e., there exists an order preserving map
f:t—wu), then G/ (T, R) is easier is for player I to win and harder for player II to win
than G (T, R).

Note that if ¢ has height < w, then G} (T, R) is determined by the Gale-Stewart

theorem.

Proposition 3.26. Let T be a subtree of <"k. Then G:(|T], R) is equivalent to G:(T, R),
and G ([T, R, t) is equivalent to G(T, R,t) for any node t € T

Proposition 3.26 can be proven using the straightforward analogue of the argument

in the proof of Proposition 2.24.

Definition 3.27. Let T be a subtree of <"k, and suppose that R is a binary relation
on [T]. If t is a tree of height < k, then the game G;(T, R) is played as follows.

I to i0,50 t1 i1,51 - to ia,éa
11 ud, ud uf, ul Ug,, U,
In the first half of each round, player I plays a node t, € t and in such a way that
tg < to for all B < a. In the second half of the round, player II first plays ul,ul €T,
and player I then plays ordinals i, < 2 and d, < K.
Player I has to choose d, so that 6, > dg for all 8 < «, and player II has to choose
so that

0o 1 L¢]
Ugys Up, 2 Ug

for all 5 < a. For successor ordinals « = o/ + 1, player II also has to make sure that
0 1 0 1
Ugr11 LR Uy 1 and Uy 100 = Uy 100

At limit rounds « and in round a = 0, she has to play so that uY = u!. The first player

who cannot play legally loses the round, and the other player wins.
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For a node t € T, the game G¢(T, R,t) is defined just like G¢(7', R) except player II

has to start the game with uf = u} = ¢.

Definition 3.28. Suppose T is a subtree of <"k and R is a binary relation on [T]. For

any tree t of height < k, we let

Ker;(T,R) = {t € T': player IT has a winning strategy in G/ (T, R, t)};
Sc; (T, R) = {t € T : player I has a winning strategy in G; (T, R,t)};

Keri(T,R) = {t € T : player II has a winning strategy in G¢(T, R,t)};
Sct(T,R) = {t € T : player I has a winning strategy in G¢(T, R, t)}.

Observe that Ker; (T, R) and Ker¢(7T, R) are subtrees of 1. Suppose that either
S =Sc;(T,R) or S=Sc(T,R).

If se€ S and t € T extends s, then t € S. We let N(S) be the relatively open subset of
[T'] determined by S, i.e.,

N(S)=U{Ns:se€S}N[T]
= {z € [T] : there exists s € S such that s C z}.

Note that when R = () (or whenever R C id[T]), all the above concepts reduce to the

analogous concepts defined in Subsection 2.2.2.

It is immediately seen that G (X, R,t) is harder for player I to win and easier for

player IT to win than G¢(X, R,t). More precisely, we have the following.

Claim 3.29. Suppose T is a subtree of <"k and R is a binary relation on [T|. If t is a
tree of height < k, then

Sc; (T, R) C Sc(T, R) and Ker{ (T, R) O Ker¢(T, R) .

The two games G; (T, R, t) and G¢(T, R, t) are not neccessarily equivalent, even when
R = () and t = -, where v < k. For instance, the tree S, defined in Example 2.31 is
such that

Ker?(S,,0) = S, = Sc,(S5,0) .

However, as a corollary of the next proposition (see Corollary 3.31 below), the two games
are equivalent when ¢ = k and also for certain trees t € 7.

Recall from Example 1.20 that the xk-fan f is the tree which consists of branches of
all lengths <« joined at the root. That is,

f=®oa

a<k
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We use ag to denote the B element of the branch of length a. Specifically, ag = af for
all 0 < v < a < k.

If t is a tree, then f -t denotes the tree which is obtained from t by replacing each
node t € t with a copy of f (see Definition 1.23 for a precise definition.) Nodes of f - ¢

can be represented as
(9,a3,1)

where 8 < a < Kk, t € t and ¢ : pred,(t) — k. We will also think of g(¢') as the branch
of f of lenght g(t').

Proposition 3.30. Suppose T is a subtree of <"k and R is a binary relation on [T).
If t is a tree of height < k, then

Sct(T, R) C Scp.4(T, R) and Kery(T, R) 2 Kery (T, R) .

In other words, G¢(T, R) is harder for player I to win and easier for player I1 to win
than G} (T, R) for allt € T.

Proof. The moves in G = G¢(T, R,t) will be denoted by t4, v, ul, i, and &4, as usual.
The moves in G* = g;_t(T, R, t) will be denoted by ¢, v2, v} and .

We describe the idea behind the proof first. A more precise argument can be found
a few paragraphs below. This proof combines the argument proving Proposition 2.35
(which is the special case of this proposition for ¢t = k and R = () with the following
observation. During one round of G where player I plays t,, € ¢, he can play an arbitrary
number ¢ < k of rounds in G* by playing the nodes (in ascending order) of the branch

of length & in the copy of f which replaces t,. Player I can therefore make sure that
Na =sup{dsg +1: 8 < a}

many rounds of G* are played while the first o rounds of G are being played.
Notice that if

(Ugﬁﬂa U§B+1)

is a legal move for player II in round g1 = dg + 1 of G*, then

”gﬁﬂ [0p = v(%/j—l-l 108 and Ugﬁl Lr U%ﬁl' (3:3)

*

p in G* in such a way that the moves

Thus, player I is able to choose his moves ¢

0 1 0 1
(Ugs1,Upp1) = (U55+17U6ﬁ+1)

will also be a legal moves for player IT in rounds 8+ 1 of G.
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In more detail, suppose 7 is a winning strategy for player IT in G*. Let o < k and

suppose that player I has played tg, ig and dg (where § < «) and ¢, so far in G. Let

ng =sup{dg +1: 5 < B}

for all B < . Note that ng < & for all 8 < « (by the regularity of x and by dg < k).
The strategy of player II in round o < x in G is to play

(U ttg) = (U, vy,);

0
No

7 and player I plays as follows. Let 8 < «a. Player I plays

where the moves vy and v}h are obtained from a partial run of G* where player II uses

7 = iﬁ and

1, =0 in rounds 7 such that ng <n < ng41.

Let {3 < k be such that
ng + & = np+1-

In rounds 7 such that ng < n < ng41, player I also plays the nodes (in ascending order)
of the branch of length £z in the copy of f which replaces t3. That is, player I plays

* 1
ty = (9p,a¢" tp)

for all £ < £g and n =g + . Here, gg : predy(tg) — & is defined by letting g(ts) = &g/
for all 8 < . (Thus, g(tg) corresponds to the branch of length £ in the copy of f
replacing tg.) In round 74, player I plays

t:;a = (gou a(l]a ta)a

where g, : pred(to) — £ is defined by letting g(tg) = &g for all §’ < a.
Note that af = ag for all £ < k, and therefore this strategy is well-defined. The move
1

(ul,ul) is legal for player IT in round a of G because (3.3) holds whenever a € Succ,

and because

ul, = vf?a 2 v:,ﬁ = ufﬂf (3.4)
holds for all 8 < a and i < 2. Therefore the strategy just defined is a winning strategy

for player II in G.

Using the same idea, we now describe a winning strategy for player one in G* assuming
he has a winning strategy p in G. Suppose 1 < k, and suppose that player II has played
(W9, v}) : € < m) in a Tun of G* so far (in a legal way). Using p, player I can define
ordinals a < K, (ng < k: B < ) and (g < Kk : f < ) and a partial run

r= <t5, (u%,ué),iﬁ,éﬁ B < a> T (ta)
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of G such that the following hold. Player I plays according to p in r, we have ng =
sup{dg +1: ' < B} for all § < «, and « is the ordinal such that

ng < n < e forall B < a.

(Note that the roles of 7 and « are slightly different here than in the proof of Proposition

2.35.) Furthermore, (u%,ué) = (v?,ﬁ,v%g) and

ng + &8 = Np+1

for all 8 < a. Observe that if n < n, or n € Succ, then a € Succ by the continuity of
the function oo +1 — k; 8+ 73.

The strategy of player I in round 7 of G* is defined as follows. If n = 1, then player
I plays

t:; = (Qa,a(lbta),

where g, : predy(to) — & is defined by letting g(t3) = {3 for all 5 < a.

If n < N, then let £ < ,—1 be such that n = 17,-1+& and let go—1 = go [predy(ta—1).
In this case, player I plays

ty = (ga,l,aga’l,to{,l).

If n € Succ, then player I also plays
by 1 = lpa_y ifn—1=mnq-1, and

1

I *x 3%

_1:0 1f7’]—1>77a71

The move ¢, is well-defined and legal (i.e. t, > t, for all ' < 1) because a} = ag

holds for all £ < k and tb < tg holds for the moves tg of player I in rounds ' < f < «
of the partial run r. The latter statement is true because player 1 plays according to his
winning strategy p in 7, and because all the moves of player II are legal in r (by (3.3)
and because (3.4) holds by the choice of the i*’s in rounds € < 7.) Thus, the strategy

just described is a winning strategy for player I in G*. O

The previous proposition and Proposition 3.26 imply the following statements.

Corollary 3.31. Suppose t is a tree of height < Kk such thatt = f-t. LetT be a subtree
of <"k, and let R be a binary relation on [T.
Then the games G¢(T, R,t) and Gf (T, R,t) are equivalent for allt € T. That is,

Sct(T, R) = Sc; (T, R) and Ker(T, R) = Ker; (T, R) .
Specifically, the games
Gx(T,R,t) and Gi(T,R,t) and Gi([T), R, t)

are all equivalent for every node t € T.



CEU eTD Collection

80 3. OPEN COLORINGS ON GENERALIZED BAIRE SPACES

For instance, the tree t = f* defined in Example 2.62 is such that t € T, and t = f-t.
Corollary 3.32. If T is a subtree of <"k and R is a closed binary relation on [T], then

Ker,(T,R) = Ker.(T,R) = {t € T : [T] N Ny has a k-perfect R-independent subset};
Sck(T,R) = Sci(T,R) = {t € T : [T] N Ny is the union of

k many R-homogeneous subsets}.

Corollary 3.32 follows from Corollary 3.31 and Proposition 3.20. It implies (together
with Proposition 3.5) that OCA%(X}(k)) can be reformulated in terms of the determi-
nacy of the games G (7', R, t) and G..(T, R, t) in the following way. Recall that C,, denotes

the family of closed subsets of the x-Baire space.
Corollary 3.33. The following statements are equivalent:

(1) OCA(Z1(k)).
(2) OCAL(Cy).
(3) If T is a subtree of <"k and R is a closed symmetric binary relation on [T, then

T = Ker’(T,R) USc (T, R) ,

i.e., the game G:(T, R,t) is determined for everyt € T
(4) If T is a subtree of <"k and R is a closed symmetric binary relation on [T, then

T = Ker, (T, R) USc.(T,R),

i.e., the game G (T, R,t) is determined for everyt € T.

3.2.3 Games Generalizing Vaananen’s Perfect Set Game

Suppose X C "k, R is a symmetric binary relation on X, and ¢ is a tree of height < k.
Below, we define two possible generalizations of the game V¢(X). These allow trees t
without k-branches to generalize two different notions of ranks associated to binary
relations on subsets of the x-Baire space, leading to two different generalized hierarchies.
We prove comparison theorems for the games defined here and in the previous subsection,

showing how the levels of the corresponding generalized hierarchies are related.

The first game V} (X, R) considered in this subsection is the same game as Vi(X),
except for the following: in successor rounds a = 8 + 1, player II also has to make sure

that (g, z4) ¢ R holds as well.
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Definition 3.34. Suppose R is a symmetric binary relation on a set X C "k. For any
tree t of height < k, the game V} (X, R) is played as follows.

I to 50 t 51 e to 604

11 xQ 1 . T

In the first half of each round, player I plays a node t, € t and in such a way
that t3 < t, for all f < o In the second half of the round, player II first plays an
element x, € X. Then, player I plays an ordinal d, < x (and thus chooses a basic open
neighborhood of z,,).

Player I has to choose d, so that dg < d,, for all 8 < «, and player II has to choose

T in such a way that for all § < «a,
g0 = xo[0g and x4 # 3.
At successor ordinals o = § + 1, we also require that

(zg, wg+1) ¢ R

The first player who cannot play legally loses the run, and the other player wins.
For an arbitrary x € "k, the game th (X, R,z) is defined just like th (X, R), except
player IT has to start the game with xop = = (and thus z¢ ¢ X is allowed).

Note that if R C id,, then the game V} (X, R) is equivalent to Vi(X).

The second version, VZ(X, R), differs from V} (X, R) as follows. In successor rounds
a = B+1, player II picks two distinct elements 2 and x! from the open set determined
by the partial run so far, in such a way that (22, 2l) ¢ R and 20 # 2.. At the end of
the round, player I chooses one of these elements, by playing i, € 2. Note that in this
version, ¢, can be equal to the element xgﬁ played in the previous round for either ¢ = 0
or i = 1. (At limit rounds and at round 0, player II picks one element z¥ = . from the

open set determined so far.)

Definition 3.35. Suppose R is a symmetric binary relation on a set X C “x. For any
tree t of height < k, the game VZ(X, R) is played as follows.

I to 1:0,(50 t i1,61 . ta ia,éa

0 .1 0 .1 0 .1
11 Zp, T x3, 2] o, T

In the first half of each round, player I plays a node ¢, € t and in such a way that
tg <t forall B < a.
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In the second half of the round, player II first plays plays elements 20, z! € X.
Then, player I plays ordinals i, < 2 and J, < & (and thus chooses between 20 and !,
and also chooses a basic open neighborhood of x%). Player I has to choose d, so that

85 < 64 for all B < a. Player II has to choose z9, ! in such a way that

z) 105 = 210 = x,0p.
In successor rounds «, player II also has to make sure that
o # v and (9,75) ¢ R.

In limit rounds o and in round a = 0, she has to play so that 20 = x}. The first player
who cannot move legally loses the run, and the other player wins.

For an arbitrary = € ®r, the game VZ(X, R, z) is defined just like VZ(X, R), except
player IT has to start the game with ) = 2§ = = (and thus zo ¢ X is allowed).

Definition 3.36. Suppose R is a symmetric binary relation on a set X C “k.

Ker(X,R) = {z € "« : player II has a winning strategy in V} (X, R, z)}.
Sci(X,R) = {x € X : player I has a winning strategy in Vi (X, R,z)}.

Ker?(X,R) = {z € "x : player II has a winning strategy in V(X, R, z)}.
Sc?(X,R) = {x € X : player I has a winning strategy in VZ(X, R, z)}.

Note that Sc;(X, R) is a relatively open subsets of X, and Ker7(X, R) is a closed
subset of ®x. However, Sc;(X, R) may not be relatively open in X, and Kerj(X, R)
may not be closed (even when X and R are closed), as Example 3.37 below shows.
Example 3.37 also shows that it is possible to have Ker} (X, R) = §) and Ker?(X, R) # 0.

The set Kerj (X, R) contains all ¢t-perfect R-independent subsets of X (and also
contains all t-dense in itself R-independent subsets of X. This fact follows from Corol-
lary 2.67 and the observation that if Y C X is R-independent and y € Y, then the games
Vi(Y,y) and VL (Y, R,y) are equivalent). Therefore, by Proposition 3.39 below, the same
statement holds for Ker?(X, R).

If t is a reflexive tree (see Definition 1.25), then Ker(X, R) is a t-perfect set and
Ker} (X, R) is t-dense in itself. For the first statement, we use that V(X r) is equivalent
to V2(X,idx,z) by Proposition 3.46, and is therefore easier for player IT to win than
V2(X,R,r). Example 2.4 shows that these statements may not hold when ¢ is not

reflexive, even for R = idx.
Example 3.37. Let 2 € "k, and let (X, : @ < k) be a sequence of disjoint closed sets

such that Xo € Nygjo — {20} Let

X ={z}U U Xa.

a<k
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Then X is a closed set, and

R=(XxX)— U (XoaxXp)

a<k

is a closed symmetric relation on X.

(1) First, suppose that X, is t-perfect for every a < k. Then

Kerj(X,R) = | Xo =X — {20} and Sc;(X,R) = {zo}.

a<k

Thus, Ker} (X, R) is not closed, and Sc} (X, R) is not a relatively open subset of X.
Note that
Ker?(X,R) = X and Sc(X,R)=0.

(2) Now, suppose that (7, : @ < k) is an enumeration of the set of indecomposable
ordinals 7 < k such that for each indecomposable ordinal v < &, the set {a < & :

Yo =7} is cofinal in k.

Suppose that for all o < k, X, is yo-perfect and 7, + 1-scattered. (For instance,
for each o < &, let X, be a closed subset of N, which is homeomorphic to the
set Z,, defined in Example 2.4.)

Then for the s-fan f (defined in Example 1.20), we have
Ker}(X,R) =0 Sck(X,R) =X

Ker}(X, R) ={xo} Sc(X,R) =X — {xo}.

Let R be a symmetric binary relation on a set X C “x. Proposition 3.38 below shows
that, for i = 1, 2, the sets

Ker’ (X, R) and X —Sc’(X,R)
can be represented as an intersection of the levels
Keri(X, R) and X — Sci(X,R) (teT) (3.5)

of the generalized hierarchy given by the games V; (X, R, z). Analogous statements also
hold for the games G¢(T, R, t) and G/ (T, R,t) considered in the previous subsection.
Proposition 3.38 follows from [Hyt90, Theorems 2.1 and 2.2] as a special case. (It can
also be shown directly using the straightforward analogue of the proof of Proposition 2.47
detailed herein; however, this analogue is a special case of the proof [Hyt90, Theorems 2.1
and 2.2].) The last statements of Proposition 3.38 also make use of the comparison results
from the previous subsection, and the fact that t € T, implies f -t € T, (where f is the

k-fan).
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Proposition 3.38. Suppose X C "k and R is a symmetric binary relation on X.

Forie€1,2, we have
Kerl,(X,R) = N {Ker}(X,R): t € T.}, and Sci(X,R)=U{Sci(X,R):te T.}.
Now, suppose T is a subtree of <"k and R is a binary relation on [T]. Then we have

Ker (T, R) = Ker, (T, R) = N {Kere(T,R) : t € T.} = {Ker;(T,R) : t € T..},
Sci(T,R) = Scy (T, R) = J{Sct(T,R) : t € T.} = J{Sc;(T,R) : t € T} .

Let T be a subtree of <Fk, let X C [T, and suppose R is a symmetric binary relation
on [T]. In the rest of this subsection, we show how the levels (3.5) of the hierarchies

given by the games V} (X, R, r) and V?(X, R, x) compare to each other, and to the levels
Ker¢(T, R) and T — Sc¢(T, R) (teTs)

of the generalized hierarchy given by the games G;(T, R,t). These results can be refor-
mulated as statements comparing how difficult it is for player I or player II to win the
games V} (X, R, x), V}(X, R,z) and G¢(T, R,t) (when t C ).

Comparisons of the games G¢(7T, R,t) and G/ (T, R,t) were discussed in Subsection
3.2.2. At the end of this subsection, in Corollary 3.48, we summarize the comparison

results obtained here and in Subsection 3.2.2.

We first show in the next two propositions that V}(X, R, x) is always harder for
player IT to win and easier for player I to win then VZ(X, R, x). When R is an equivalence
relation, the converse also holds by Proposition 3.46, i.e., the two games are equivalent
in this case. Example 3.37 shows that this may not be the case otherwise (even for
closed X and R).

Proposition 3.39. Suppose R is a symmetric binary relation on a set X C "k and t is
a tree of height < k. Then

Ker; (X, R) C Ker?(X, R),
i.e., if v € X and player 1T wins V} (X, R, z), then player IT wins V?(X, R, ).

Proof. Suppose player II has a winning strategy 7 in V! = V}(X, R, x). We describe
a winning strategy for player IT in V? = VZ(X, R,z). The moves of player I in V! will
be denoted by by t,, and §’,. The moves of player IT in V! will be denoted by y, or

sometimes by y/, or y~. (The moves in V2 will be denoted by tq, 22, zL, 64 and i,, as

) )
usual.)
We describe the first few steps of the strategy in order for the idea behind it to be

more clear. A more precise description can be found a few paragraphs below.
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Suppose player I starts V2 by playing tg. Then, in V!, let player I play t) = to. The
first move of player IT in V? is (20, 29) = (x,z) by definition (and her first move in V*

is yo = z). If the next moves of player I in V? are i, 6 and ¢1, then in V2, let player IT
play

w1 =11 = 7({to, do, t1)).

Let i1, 81 and tp denote the next moves of player I in V2. If i; = 1, then let player II
play

i — T(<t03 5Uatl>)7
= yy = 7({to, b0, t1,01,t2)).

= ylll :T(<t07513t2>)'

More generally, suppose that player I has played ig4; = 0 in V? for all successor ordinals
B+ 1 < a. (Note that the value of ig at limit rounds § will not be used when defining
the strategy of player II in V2.) Then player II plays

= Yy = T(<t075a—17t0c>)

in V2 in the case that o € Succ. If a € Lim, then player IT plays 29 =z}, = yo .
If, at some point, player I plays i, = 1 in a successor round « of V2 (and he has been

playing ig11 = 0 in successor rounds so far), then player II plays

5524.1 = =T§f =Y = T(<t0a 5&71,7504))

wi—i—l = Y2 = T(<t0a5a717ta35aata+1>)-

In general, player II obtains her move 2%, in V? from a partial run of V! where she
uses 7 and the sequence ¢, of the moves of player I is determined by the moves player
I has played in V? so far.

More precisely, suppose that the moves tg, (x%,x}g), dg, ig (where § < a) and t,
have been played so far in V2. In the course of the recursive construction of the strategy,

partial plays q% of player I in V! have also been defined for all 3 < a and i < 2 (in such
a way that x% = T(qé) and qé D q;ff/ for all 3 < 8 < a.)
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The strategy of player II in round « of V? is to play

) =7(q)) and  x) =7(q),

where the partial play ¢/, of player I in V! is defined as follows. If a € Succ, then

Q=qr and g, =g (ba-1.ta)

That is, the partial run of V! which determines 2 is not extended from the partial run

for glo=!

o7, and therefore

0 _ ia—l
Ty =TS 1.

The partial run for m(ll is obtained by playing one more round of V! where player I plays
Sa—1 and t, and player IT uses 7. This implies that 20 # x! and (29,z)) ¢ R.

Suppose that o € Lim. If {f+1 < o : ig4; = 1} is cofinal in «, then let ¢ = U5<a q}f,
i.e., ¢ is the partial play of player I in V! defined so far. Let

Thus, 20 = x) is obtained from ¢ by player I also playing t, and player II responding
according to 7.
Otherwise, there exists f < a such that ig/; = 0 for all 3 < 8’ < a. In this case, let

Go = o = 45 -
In other words, the partial run for 9 = z! is not extended from the partial run for a:;ﬁ ,
and therefore
2l =zl = :UZBB .
We remark that the above statement is true for 29 in general (i.e., in successor rounds
a as well as limit rounds). That is, if player I has been playing ig 11 = 0 in successor

rounds 8 < B’ + 1 < a, then by the above construction, ¢° = qgﬁ and therefore

0 _ 8
Ty =g .

Furthermore, the partial run ¢’, of player I in V! consists of the following moves of player
Iin V2

0g, tg+1 for successor rounds 3 + 1 < « such that ig4 1 =1,

ty for limit rounds v < « such that {# +1 < v :igy; = 1} is cofinal in v, and

oty to ifi=1.

Thus, because 7 is a winning strategy for player IT in V!, player II can always define

20 =7(¢%) and x!, = 7(¢l) in a legal way based on the moves player I has played in V?

a =
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so far. (The fact that (22, }) is a legal move can be seen easily from the construction.

Specifically, ¢!, was constructed in such a way that
% D) iﬁ d 7 iﬁ
o 2 45, and therefore g, 2 x4 [dg

holds for all 8 < o and ¢ < 2.) This implies that the strategy just described is indeed a
winning strategy for player II in V2. O

We remark that the above argument is in fact similar to the argument found in the
proof of Proposition 2.69. In particular, consider V2 = V%(X, R, x), i.e., the t = 7y case.
Then, using the notation found in the above proof and in the proof of Proposition 2.69,

the following holds for all & < v and j < 2:
aziy =T, = T(<55 (B <, si(B8) = 1>),

where s; € “2 is defined as follows. Let s;(8) = igqy for all § with §+1 < a. If
a € Succ, then let sj(a — 1) = j. (Note that s) = s; when « € Lim).

Proposition 3.40. Suppose R is a symmetric binary relation on a set X C "k and t is
a tree of height < k. Then
Sc; (X, R) 2 Scj (X, R),

i.e., if v € X and player I wins V3(X, R, x), then player I wins Vi (X, R, x).

In order to prove Proposition 3.40, we first define the concept of mazimal good
positions of the game V?(X, R, ) for elements y € X, analogously to the G*(X, R)
case (see the proof of Proposition 3.20). We also state some claims that will be needed
in the proof.

In the next few paragraphs and Claims 3.41 and 3.42, let p denote a fixed winning
strategy of player I in VZ(X, R, ).

A p-good position, or simply a good position, is a legal partial or complete run of
V3(X, R, )

p = (ts: (s wp), 09,05 : B < &) (te)

in which I has played according to p. (Note that good positions can also be complete
runs of the game in this case). Let I(p) denote the lenght of p, i.e., I(p) = £ using the

above notation. We let u(p) be the sequence in <"k determined by p, i.e.,

ulp) = U a:/i;[(sg.
B<l(p)

Note that if I(p) = 8 + 1, then u(p) = 37236 [d5.
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Let y,y’ € "k be arbitrary. We say that p is a good position for y iff p is a good
position and y 2 u(p). Observe that

(1) pis a good position for y iff u(p) = y[dp)—1;
(2) pis a good position for y and ' iff (y,y’) is a legal move of player IT in response
to p.

A good position p for y is a mazximal good position for y iff there does not exist a
good position p’ for y such that p’ O p. Note that a maximal good position for y can
also be a full run of the game which player I has won (using p).

Claims 3.41 and 3.42 below are similar to Claims 3.21 and 3.22 (found in the proof
of Proposition 3.20). They will be needed in our proof of Proposition 3.40.

Claim 3.41. If pg is a good position for y, then there exists a maximal good position p

for y such that p D pyg.

Proof. Suppose there is no maximal good position for y extending pg, i.e., every such
good position for y has a proper extension which is also a good position for y. Then
one can define, recursively, a run of V?(X, R,z) extending py in which player I uses
p, but which player IT wins. (At limit stages of the recursion, one uses the following
observation. Suppose (pg : 3 < &) is a strictly increasing chain of good positions for y
and ¢ € Lim. Let p = B<e DB Then either p is a run of the game which player II has
won, or there exists ¢ € ¢ such that p™(t) is a good position for y.) This contradicts the
fact that p is a winning strategy for player 1. O

Claim 3.42. Suppose p is a maximal good position for y. Then

(1) U(p) is a successor ordinal.

(2) Suppose p is a good position fory', and let

/

P =07y Y) t1) i) tip) 1)

where 4y (,), 0y(py and ty) 41 are determined by p. Then p’ is a good position for iy’ .

Proof. Suppose [(p) is a limit ordinal. Then (y,y) is a response of player II to p. Let

/

P =Y 1) i) Oip) i) +1)

where i), 0y(p) and #;(,)41 are determined by p. Then p’ is a good position for y which

p)’
extends p, so p cannot be maximal.
Item (2) is immediate from the definitions and the fact that, because [(p) is a suc-

cessor ordinal, x?(p) #* xll(p) holds for all legal responses (w?(p), ull(p)) of player Il to p. O
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We are now ready to prove Proposition 3.40.

Proof of Proposition 3.40. Suppose that player I has a winning strategy p in V? =
VZ(X, R, z). Player I obtains his winning strategy in V! = V} (X, R, ) by playing a run
of V? using p. The moves in V! will be denoted by by ¢/, y and &’,. (The moves in V2
will be denoted by t, 20,2}, 6, and i,, as usual.)

We describe the first few steps of the strategy in order for the idea behind it to be
more clear. A more precise description can be found a few paragraphs below.

Player I starts V! by playing t/, = to, where tq is his first move in V? according to
p. By definition, the first move of player IT in V! is yg = z, and her first move in V? is
(x,z). Player I defines his next moves in V! by using p in V? and by having player IT
play in such a way that eventually, a maximal good position p; for yg = z is reached.
At this point, player I defines his next moves &) and #} in V! to be the last moves he
played in py; that is, 0y = d(p,)—1 and t) = ty;,)-

If player II plays y; in V! next, then player I repeats the above method for y; to
define 0] and t,. However, to make sure that ¢, >t} and §] > ¢, player I first defines
a good position p,, 2 p1 (of length I(ph) = I(p1) + 1) by having IT respond with (yo,y1)
to p1 and then using p. This p), is a good position for y; by the maximality of p; for
yo and Claim 3.42. Therefore, by Claim 3.41, there exists a good position ps O pf, and
player I can define 0] and t} to be the last moves he played in ps.

In general, player I obtains his winning strategy in V! by repeating this method as

long as player II can play y, legally in V2.

More precisely, suppose that player IT has played (yz : f < «) in V! so far. In the
course of the recursive construction, a strictly increasing chain (pg : 8 < «) of p-good
positions of V? has also been built.

Player I defines his moves ¢/, and ¢/, _; (if &« € Succ) by constructing a p-good position
pa of V2 in such a way that the following hold.

(i) pa is a proper extension of pg for all § < .
(ii) pq is a maximal good position for y,—1 if o € Succ.
(iii) Suppose y, is a legal move for player IT in V!. Then there exists a legal move for

player IT in V? in response to ps; namely,

(Ya—1,Ya) s such a legal move if a € Suce, and

(Yo, Yo) i such a legal move if a € Lim or o = 0.

In other words, p, is a good position for y,.
Once p, has been constructed, player I plays the following moves in V'

0p—1 = Oi(pa)—1 if o € Succ, to = ti(pa)-
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These moves are legal by item (i). (Note that [(ps) € Succ whenever a € Succ, by item
(ii) and Claim 3.42). Item (iii) implies that as long as player IT can keep playing in
a round of V! where player I uses this strategy, she can keep playing in the run of V2
(where player I uses p). Thus, because p is a winning strategy for player I in V2, player
IT will lose the round of V! eventually, and player I will win (if we can show that the
Po’s can indeed be constructed).

We now show that p, can be constructed, for each round a of V!. For o = 0, let
po = (to)-

Suppose a = 3+ 1. Then pg has already been defined in such a way that items (i)
to (iii) hold for pg. By item (iii), pg can be extended to a good position p, (of length
I(p,,) = l(pg) + 1) by playing one more round of V2 where player II plays

(yg—1,yp) if B € Succ, and
(ys,yp) if f € Limor f=0.
and player I plays by p. Observe that p), is a good position for yg = yo—1. If 5 € Succ,
this holds by the maximality of ps for ys_; and Claim 3.42. Thus, by Claim 3.41, there

exists a maximal good position p, for yg = yo—1 such that

Pa 2 Dy 2 Dp-

If « is a limit ordinal, then let

Pa = U p,BA<t>,
B<a

where ¢ is the response, according to p, of player I to the partial play (J G<a DB of V2.
(Thus, typ,) =t.)

In this way, p, can be constructed so that items (i) and (ii) hold. Item (iii) follows
from item (ii) and the definition of dj; (for 8 < ). In more detail, suppose y, is a legal
move of player IT in V! and let 3 < a. Because pgi; is a good position for yz and
8 = 0y

pas1)—1s We have

w(ppi1) = Ysl0ipys1)—1 = Y8105 C Ya-
Thus, u(pa) = Ugcq u(Ps+1) C Ya, i-e., pa is a good position for yq. O

Recall that Ker?(X, R) is a closed subset of “x and Sci(X, R) is a relatively open
subset of X. Propositions 3.39 and 3.40 therefore imply the following statement.

Corollary 3.43. If R is a symmetric binary relation on a set X C "k and t is a tree of
height < k, then

Ker} (X, R) C Ker}(X, R) and  Intx(Sci(X,R)) 2 Sci(X,R).
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As we will see in Subsection 3.2.4, we have Kerl (X, R) = Ker?(X, R) for all closed
X C gk and all closed symmetric binary relations R on X. Moreover, if OCA* (21 (x))
holds, then Intx (Sc(X, R)) = ScZ(X,R) holds for all closed X C “x and R C ?X.
Example 3.37 shows that neither of the above statements holds for the x-fan f (and it

is also easy to construct counterexamples for all well-founded trees t € 7y,).

Question 3.44. For which trees t € 7, do either of the following statements hold or
consistently hold:

(1) Kerj(X, R) = Ker(X, R) for all closed X C “x and all closed symmetric binary
relations R on X;
(2) Intx (Sci(X,R)) = Scj(X,R) for all closed X C "k and all closed symmetric

binary relations R on X?

Is it consistent that Sci(X,R) C Intx (Sck(X, R)) for some closed X C *x and closed
symmetric R C 2X7?

Conjecture 3.45. Statement (1) holds for a tree t € Ty, if and only if t =1+t (where
1+t denotes the tree which is obtained by adding a single node r below t; thus, r is the
root of 1 +t. See Definition 1.22).

Specifically, statement (1) holds for all infinite ordinals v < k.

Proposition 3.46. Suppose E is an equivalence relation on a set X C "k and t is a
tree of height < k. Then the games Vi (X, E,x) and V}(X, E, ) are equivalent, i.e.,

Ker; (X, E) = Ker}(X, F) and Sci(X,E) =Sc}(X,E).

Specifically, the game VZ(X,idx,z) is equivalent to V}(X,idx,x) and is therefore also
equivalent to V¢(X, x).

Consequently, this statement also holds whenever E is a symmetric and transitive

binary relation.

Proof. We will prove the two inclusions that do not follow from Propositions 3.39
and 3.40.

First, we describe a winning strategy for player IT in V! = V}(X, E, x), assuming
she has a winning strategy 7 in V2 = V2(X, E, z). The idea is that in each round a of
V! player II plays one of the moves she has played in the ath round of a simultaneous
run of V? where she uses 7 (i.e. she plays either z, = azg or ¥, = x)). She can play
legally in this way in each round because F is an equivalence relation.

In more detail, player IT starts V! with 2y = 2. To define her in strategy in round

a > 0 of V!, suppose that tg (for all 8 < «) and x4, dz (for all 3 < a) have been played
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so far in V!. In the recursive construction of the strategy, moves ig for player I in V?
have also been defined for all 8 < a. Let 22 and z! be obtained from a partial run of

V2 where player II responds according to 7 to these moves of player I that is,
(xg,x}x) = T(<t5,(55,’i5 B < 04>A<ta>).

If @ = B+1 is a successsor ordinal, then by (z2,z1) ¢ F and the transitivity of F, there

(e 2 ke

exists i, < 2 such that
(x5, 2%) ¢ E.

Let z, = 2%, and let player I play i, at the end of the ath round of V2. If « is a limit
ordinal, let x, = 20 and let player I play i, = 0 at the end of the ath round of V2.
Using essentially the same argument, we describe a winning strategy for player I in
V? assuming he has a winning strategy p in V!. Player I obtains this strategy by playing
a simultaneous run of V! where he uses p and player II plays Tg = xgﬂ in all rounds S.
In the ath round of V2, player I plays the same moves ¢, and 6, as in the ath round of
a run of V!, and also plays i, in the following way. Suppose player II has just played

20 and xl. Then, if « = 8+ 1, we let i, be such that (x;‘*,xf;) ¢ F (such an i, exists

by the transitivity of £ and by(2,z) ¢ E). If a is limit, then we let i, = 0. O

Suppose R is a closed binary relation on a subset X = [T of the k-Baire space.

Proposition 3.47 below gives the connection between the levels
Kery(T,R) and T — Sci(T,R)

of the generalized hierarchy given by the games G¢(7', R,t) and the levels
Ker?(X,R) and X —Sci(X,R)

of the generalized hierarchy given by the games VZ(X, R, z).

Proposition 3.47. Suppose T is a subtree of <"k, and R is a closed symmetric binary

relation on [T]. We have
Ker?([T], R) C [Ker¢(T, R)] and Sc2([T], R) D N(Sce(T, R)).

In other words, let X = [T]. Then VZ(X, R, x) is easier for player I to win and harder
for player II to win than G¢(T R, u) whenever u C z € X.

Thus, a similar connection also holds for the levels of the generalized hierarchy given
by the games V} (X, R, x).
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Proof. Let G = G¢(T, R,u), and let V? = V}(X,R,z) (where u C x € X). We will
denote the moves in G by ¢, u®, ul, 8/ and i’,. We will denote the moves in V? by t,,
20 2l 6, and ig, as usual.

First, we describe a winning strategy for player II in G assuming she has a winning
strategy 7 in V2. The strategy of player II in G will be to play, legally, initial segments
u, of her moves z¥, in a simultaneous run of V2 where she uses 7.

In more detail, player II plays ug = u} = u in round a = 0. Suppose a > 0, and
suppose that tj, ufg, 5s 1 (where 8 < a and i = 0,1) and ¢, have been played in G so
far. Let 29 and x} be obtained from a partial run of V in which player IT uses 7 and

player I plays ig = i} and

dg = max(%,ht(u%), ht(ué))

for all 8 < a and tg = t’ﬁ for all 8 < a. The strategy of player IT in G is to choose uQ

and v}, so that

ugCuggxg for all 3 < and 2= 0,1, and

0 1
u, Lru, whenever a € Succ.

The latter condition can be ensured since R is closed and (22, x)) ¢ R whenever a is a
successor ordinal.

Conversely, suppose player I has a winning strategy p in G. By essentially the same
argument as the one just described, player I can obtain a winning strategy in V? by

using p in G. That is, the strategy of player I in V? is to play t, = t/,, iq = i, and
S = (8, h(u2), bt (ul),

where t/, IB’ zg are the moves of player I in the simultaneous run of G where he uses p
and in which player IT plays (legally) initial segments u%, u}g of the moves CL‘%, x}} played
by II in V2. O

In the corollary below, we sum up our results from this and the previous subsection
about how the levels of the different generalized hierarchies associated to binary rela-
tions (or equivalently, to binary open colorings) compare to each other. The corollary
summarizes the results in Propositions 3.39, 3.40, 3.47 and Claim 3.29, in the case of
closed binary relations on closed subsets of the k-Baire space.

<K

Corollary 3.48. Suppose T is a subtree o k, and R is a closed symmetric binary

relation on [T]. If t is an arbitrary tree of height < k, then the following hold.
Ker}(T], B) C Ker? ([T, R) C [Ker,(T, R)] C [Kerj(T, R)];

S (IT], R) 2 Sc; ([T], R) 2 N(Sce(T, R)) 2 N(Sc (T, R)).
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In other words, if v € [T] and t C x, then each of the games
Vi([T],R.x), VT, Rz),  G(T,Rt),  G{(T,R,t)
1 harder for player II to win and easier for player 1 to win than the one after it.

Note that some of the comparisons in Proposition 3.48 hold for arbitrary binary
relations on arbitrary subsets (see Propositions 3.39, 3.40), and that in some cases, the

converse statement also holds (see Propositions 3.46, 3.30 and Corollary 3.31).

3.2.4 Games of length

As we have seen in Subsection 3.2.2, the games G, (T, R,t), G:(T, R, t), and G ([T], R, t)
are equivalent for all subtrees of <"k, ¢ € T and binary relations R on [T]. Therefore
OCA%(X1(k)) is equivalent to the determinacy of the above games for all such T, t and
closed binary relations R (by Proposition 3.20; see Corollaries 3.31 to 3.33).

In this subsection, we consider winning conditions for both players in the games
VH(X,R) and V?(X, R), in the case of closed (symmetric) binary relations R on X.
We give some further reformulations of OCA¥*(21(k)) in terms of the above games.
In particular, we show that OCA¥(31(k)) is equivalent to an analogue, for closed bi-
nary relations, of Jouko Vaénénen’s Cantor-Bendixson theorem [Vaa91, Theorem 4]; see

Corollary 3.56.

Proposition 3.49. Let X C *k, and let R be a closed symmetric binary relation on X.

If X is a union of < k many R-homogeneous subsets, then
X =Scl(X,R) =Sc2(X,R),
or equivalently, player I wins the games V(X, R) and V3(X, R).

This proposition follows from Corollaries 3.48 and 3.32. We give a simpler direct
proof below, using diagonal arguments similar to the ones in the proofs of Propositions
3.20 and 2.12.

Proof. First, observe that under the assumptions of the proposition, X can be written

as the union

X=UYa

a<k

of closed R-homogeneous sets Y,,. (This is because R is a closed subset of 2(*k). There-

fore, if Y is R-homogeneous, then Y xY =Y x Y C R, i.e., Y is also R-homogeneous.)
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The strategy of player I in V2(X, R) is to choose iq11 and d,41 in each successor
round « + 1 as follows. If player II has played (22 11 zl +1) legally, then by the homo-
geneity of Yy, there exits in41 < 2 such that xzfjll ¢ Y,. Thus, because Y, is a closed

set, player I can choose d,41 so that
if g1 =2 [ Gag1, then Ny, NYy=0. (3.6)

Suppose player IT wins a run of V?(X, R) in which player I uses this strategy. Let
T = Uyep Uat1 be the element of "k produced during the given run. Then z € X.
However, (3.6) implies x ¢ Y, for each a < k, contradiction.

The strategy of player I in V!(X, R) is to choose d, in such a way that the following
conditions are satisfied, in each round « where player IT has played x,, legally. If 2, ¢ Y,
then

N, 5aﬂYa:@

al

holds, and if o € Succ and z,_1 € Y,_1, then
Naxa [0 N Ya—l = (Z)

also holds. (These conditions can be ensured because for all f < K, Y is a closed
and R-homogeneous set and (x3_1,25) ¢ R holds if xg is a legal move for player II.)
Assuming player IT wins a run of V! (X, R) where player I uses this strategy, we obtain
Zo [0y is in X, but is not an

a contradiction similarly to the previous case: = (J,,

element of Y, for any a < k. O

We note that by [VAd91, Theorem 3], the converse of Proposition 3.49 consistently
fails for k = w; (and R = idx). However, the converse of Proposition 3.49 is implied by
OCAZ (21(k)) and is therefore consistent relative to the existence of an inaccessible A > &
(by Theorem 3.14).

Definition 3.50. For any X C "k and binary relation R on X, let
CP.(X,R)={x € X :for all a <&,

X N Nyjq is not the union of x many R-homogeneous sets}.

The following statement can be obtained from Proposition 3.49 using an argument

analogous to the one found in the proof of Claim 2.17.

Corollary 3.51. If R is a closed symmetric binary relation on a closed subset X of the
k-Baire space, then 1 1
X — CP,(X,R) CSc,.(X,R), Sc.(X,R).

However, a stronger version of the above corollary follows from Corollaries 3.32
and 3.48, and the fact that Sc2(X, R) is always an open subset of X.
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Corollary 3.52. Suppose T is a subtree of <"k and R is a closed symmetric binary

relation on [T]. Then

Int[T] (SC}:([T]’ R)) 2 SCi([T], R) 2
2 N(Scu(T, R)) = N(Sci(T, R)) = [T] — CPx([T], R). (3.7)

The set Ker?(X, R) is s-perfect, and Ker! (X, R) is x-dense in itself. (The analogue
also holds for all reflexive trees t of height < k; see the remarks in the paragraphs after
Definition 3.36.) Item (1) of Example 3.37 shows that Ker.(X, R) may not be closed,

even when X and R are closed.

Proposition 3.53. If R is a closed symmetric binary relation on a set X C "k, then
X NKert(X,R) = U{Y C X :Y is R-independent and r-dense in itself}.
Specifically, if X is a closed set, then
Ker:(X,R) = U{Y C X : Y is R-independent and r-perfect}.

Note that the second statement is equivalent to the claim that Ker. (X, R) is the
union of all strongly k-perfect R-independent subsets of X. The first statement can also
be reformulated similarly, as a claim about the strongly x-dense in itself R-independent
subsets of X.

Proof. Suppose that Y C X is R-independent and s-dense in itself. Then V1(Y, R, ) is
equivalent to Vi (Y,y) for all y € Y. Thus, by Claim 2.67, we have Y C Ker,(Y)N X C
Kerl (X, R)N X. This also implies that Ker! (X, R) contains all s-perfect R-independent
subsets of X.

The other direction, in both equalities, follows from the argument below. Suppose
r € Kerl (X, R). By modifying the construction in the proof of Proposition 2.69 in a
straightforward manner, it is easy to define (us,xs,d0s : s € <¥2) such that us € <"k,

s € X, and d; < K, and the following items hold for all s,r € <F2.

(1) Us = s )
(i) if r C s, then u, C ug;
(iii) ur~0 Lg ur—1.
(iv) zs = 7((ds15 : B < ht(s),s(8) = 1)).

Let Y = {5 : s € <¥2}. Then e : <F2 — <Fk; s > u is a perfect R-embedding with
T. = Ty. (Recall that by definition, Ty is the tree of initial segments of elements of Y’

and T, is the strongly k-perfect tree of initial segments of elements of ran(e).) Thus,
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Y is a k-dense in itself set, and Y = [T.] is R-independent (and strongly r-perfect).
Furthermore, x € Y C X, and if z € X, then Y C X. This shows the required direction

in both statements of the proposition. O

Proposition 3.54. Suppose T is a subtree of <"k and R is a R is a closed symmetric
binary relation on [T|. Then
Kery ([T}, R) = Ker}([T], R) =
= [Ker, (T, R)] = [Ker;(T,R)] € CP.(X,R). (3.8)

Proof. All of the inclusions C in the first three equalities hold by Corollary 3.48. Thus,

it is enough to show that
[Ker’ (T, R)] C Ker.([T], R) and [Keri(T, R)] C CP.([T],R)

Suppose z € [Ker} (T, R)]. Then for all o < k, there exists a perfect R-embedding
eq : <"2 — T such that eq(0)) = x[a. This implies that Ny N [T] has a a k-perfect
R-independent subset X, = [T¢,] for all @« < k. Thus, by Proposition 3.53, we have
x € Kerl([T)], R).

For all a < K, X, is not the union of k-many R-homogeneous subsets, and therefore

z € CP([T],R). O

In the next two corollaries, we give some equivalent formulations of OCA*(X1k)
which are implied by the results in this subsection and by Corollary 3.33.

Recall that C, denotes the collection of closed subsets of the x-Baire space.

Corollary 3.55. The following statements are equivalent.

(1) OCAL(Z](k)).

(2) OCAL(Cy).

(3) If R is a closed symmetric binary relation on a closed subset X C "k, then

Ker:(X,R) = Ker?(X,R) = CP.(X,R).
(4) If T is a subtree of <"k and R is a closed symmetric binary relation on [T, then
equality holds everywhere in (3.7) and in (3.8), i.e.,
Ker} ([T], R) = Ker2([T], R) = [Ker(T, R)] = [Ker}(T, R)] = CP([T], R),

Intpr) (Sch ([T, R)) = Sci([T], R) = N(Scx(T, R)) = N(ScL(T, R)) =
= [T] - CP/{([TLR)'
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Proof. By Proposition 3.5, OCA%(C,) is equivalent to OCA* (X}(k))

Now, suppose OCAJ(C,) holds, and let X and R be as in item (3). By Proposi-
tion 3.54, it is enough to show that CP.(X,R) C Kerl([T], R) to see that item (3)
holds. Let # € CPy(X,R). Then for all & < &, the closed set X N Ny, contains a
r-perfect R-independent subset by OCA*(C,). This implies = € Ker!([T], R) by Propo-
sition 3.53.

It is easy to see that item (3) implies item (4), using Corollary 3.52, Proposition 3.54
and the fact that e.g. the sets Ker?([T], R) and Sc2([T], R) are disjoint. O

Corollary 3.56. The following statements are equivalent.
(1) OCAL(Z](k)).
(2) OCAL(Cy).
(3) If T is a subtree of <"k and R is a closed symmetric binary relation on [T, then
T =Ker,(T, R) USc,(T, R),

i.e., the game G, (T, R,t) is determined for allt € T.
(In this statement, the role of G..(T, R) can also be replaced with G(T, R)).

(4) If R is a closed symmetric binary relation on a closed subset X C "k, then
X =Ker?(X,R) USc(X, R)
and Sc2(X, R) is the union of k many R-homogeneous sets.

Note that if X is a closed subset of “x, then Ker?(X, R) is the closure of the union
of all the k-perfect subsets of X, by Propositions 3.53 and 3.54.

Item (4) in Corollary 3.56 can be viewed as the analogue of Jouko Véénénen’s Cantor-
Bendixson theorem [VAd91, Theorem 4] for closed binary relations on closed subsets of
the k-Baire space. It can also be viewed as a strong form of the determinacy of the
games V2(X, R, ).

By Corollary 3.15, each of the statements in Corollaries 3.55 and 3.56 is equiconsistent

with the existence of an inaccessible cardinal above k.

Proof of Corollary 3.56. The first three statements are equivalent by Corollary 3.33.
The last statement clearly implies OCA(C), and follows from item (4) of Corollary 3.55.
O
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It would be interesting to see if the role of the games V2(X, R) in item (4) of Corol-
lary 3.56 could be replaced with the role of the games V! (X, R).
Question 3.57. Does OCA(C,) imply the following statement?
If R is a closed symmetric binary relation on a closed subset X C "k, then
X = Ker.(X,R) USc(X,R),
where Scl(X, R) is a union of £ many R-homogeneous sets.

If not, is this statement consistent?
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DICHOTOMIES FOR X9(k)
RELATIONS

In the first part of the chapter, we consider the x-Silver dichotomy for 39(k) equivalence
relations on X1 (k) subsets of the x-Baire space (where x is an uncountable cardinal such
that k<" = k).

Let X be a subset of the x-Baire space, and let I' be a collection of binary relations

on X. The g-Silver dichotomy for I is the following statement:

if an equivalence relation ' € ' has at least x™ many equivalence classes,
then E has k-perfectly many equivalence classes (i.e., there exists a k-perfect
set Z C X such that (y,z) ¢ E for all distinct y, z € Z).

Thus, the x-Silver dichotomy for £(k) (resp. r-Borel, Ak(k), etc.) (equivalence) rela-
tions on X is the above statement in the case when T is the collection of 39(k) (k-Borel,
Al(k), etc.) subsets of X x X.

Observe right away that the s-Silver dichotomy for 39(k) equivalence relations on *x
implies the x-perfect set property for closed subsets of “x, and therefore also implies the
inaccessability of kT in L (see Remark 2.14. Thus, this observation also holds for x-Borel
equivalence relations).

Recently, a considerable effort has been made to investigate set theoretical conditions
implying (the consistency of) the satisfaction or the failure of the k-Silver dichotomy
for Borel equivalence relations on the k-Baire space. The x-Silver dichotomy fails for
Al(k) equivalence relations [Fril4]. Furhtermore, V = L implies the failure of the x-
Silver dichotomy for k-Borel equivalence relations in a strong sense [FHK 14, FK15]. In
the other direction, if x is an inaccessible cardinal, then the x-Silver dichotomy holds
for isomorphism relations [FHK 14, Theorem 36]. By [Fril4], the s-Silver dichotomy for
r-Borel equivalence relations is consistent relative to the existence of 0%,

In Section 4.1, we show that after Lévy-collapsing an inaccessible cardinal A > &
to kT, the k-Silver dichotomy holds for £9(k) equivalence relations on 31 (k) subsets of
the x-Baire space; see Theorem 4.14. Thus, the k-Silver dichotomy for 39(x) equivalence
relations on 31 (k) sets is equiconsistent with the existence of an inaccessible cardinal

above k.
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In Section 4.2, we consider dichotomies for families R of (at most) x many fini-
tary 29(k) relations on subsets of the x-Baire space. Our starting point is the following
“perfect set property” for independent subsets with respect to such families on k-analytic

subsets of the x-Baire space.

Definition 4.1. Given a subset X of the x-Baire space, let PIF,(X) denote the following

statement:

PIF.(X): if R is a collection of <k many finitary X9(x) relations on X
and X has an R-independent subset of cardinality x*, then X has a x-perfect
R-independent subset.

If T is a collection of subsets of the x-Baire space, then PIF,(T") denotes the statement
that PIF,(X) holds for every X €T

By a joint result of Jouko Vééndnen and the author [SV17, Theorem 2.4], the di-
chotomy PIF(X1(k)) follows from the hypothesis I~ (k) (see Definition 2.74) and is
therefore consistent relative to the existence of a measurable cardinal A > k. Note that
PIF,(2{(k)) implies the r-perfect set property for closed subsets of the x-Baire space,

and thus its consistency strength is at least that of the existence of an inaccessible A > k.

The countable version PIF,,(21) of this dichotomy holds by a result of Martin Dolezal
and Wieslaw Kubig [DK16]. The special case of PIF,,(21) for one finitary £9(x) relation
is shown in [Kub03], and the special case for one X9(k) binary relation on a Polish space
is also mentioned in [She99, Remark 1.14].

In the classical setting, PIF,,(31) is implied by [DK16, Theorem 1.1], which states

the following (in the special case of Polish spaces).
Suppose R is a countable family of finitary X9 relations on a Polish space X .

If X has an R-independent subset of Cantor-Bendizson rank > ~ for every
countable ordinal v, then X has a perfect R-independent subset.

In Section 4.2, we show that a statement which may be viewed as a k-version of
[DK16, Theorem 1.1] holds whenewer ¢, holds or x is inaccessible. In fact, it follows
from a slightly weaker principle DI, than ¢, which also holds whenever « is inaccessible
(see Definition 4.2 below).

The main result of Section 4.2, Theorem 4.33, states roughly the following.

Suppose DI, holds and R is a family of <k many finitary X9(x) relations

on a closed subset X of the k-Baire space.

If X has R-independent subsets “on all levels of the generalized Cantor-
Bendizson hierarchy for player 117, then X has a rk-perfect R-independent

subset.
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As a corollary of our arguments, we obtain stronger versions of the main result,
Theorem 2.4, of [SV17]. In particular, our results imply that PIF,(31(k)) is consistent
relative to the existence of a weakly compact cardinal above k. (See Corallaries 4.32, 4.35
and 4.36.)

We note that the arguments presented in Section 4.2 use, in part, methods similar
to those used in e.g. [Hyt90,HV90,0V93,Vad9l] and in Section 2.2.

In the last part of the chapter, Section 4.3, we obtain a model theoretic dichotomy
which is motivated by the spectrum problem as a special case of PIF,(X1(k)). The

contents of this section can be found in [SV17, Section 3].

Note that all the questions and results in this chapter can be reformulated in terms

of homogeneous subsets w.r.t. IIY(x) colorings on subsets of the x-Baire space.

We now state some definitions and technical lemmas which will be used later in the
chapter. Throughout this chapter, we assume as usual that x is an uncountable cardinal
such that k<" = k.

The combinatorial principle DI, defined below, is similar to but slightly weaker than
Q. In particular, it also holds when & is inaccessible. Recall that for any set X and any
ordinal v,

(X]L ={(ziti<) €"X 1oy #aj foralli < j <},

and

(X]5" = BL<J X1,

{(xi:i<6>EBX:B<’yandxi7éxjforalli<j<5}.

Definition 4.2. For a regular x > X, we let DJ,; be the statement:

There exists a sequence (A, : a < k) of sets Ay C [*2]<% such that

(i) |Aa| < K for all @ < K, and
(ii) for all (zq,...,xm) € [F2]<Y, the set

{a<k:(zolay...,znla) € Ay}
is cofinal in .

The sequence (A, : a < k) is called a DI, -sequence.

We also consider the version of this combinatorial principle where the A,’s consist

of tuples of a fixed length n, where 1 <n < w.
Definition 4.3. For a regular k > Ry and 1 < n < w, we let DI,;(n) be the statement:

There exists a sequence (A, : a < k) of sets A, C [*2]" such that
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(i) |Aal < K for all @ < k, and
(i) for all (zo,...,zp—1) € [*2]", the set

{a<k:(zola,...,xn_1la) € Ay}
is cofinal in .
The sequence (A, : a < k) is called a DI, (n)-sequence.

Claim 4.4. Let k be a reqular uncountable cardinal.

(1) If Oy holds or k is inaccessible, then DI, holds.
(2) DI, holds if and only if DI,;(n) holds for all 1 <n < w.
(3) DIi(n) implies k<" = k.

Proof. If x is inaccessible, then the sets A, = [*2]<“ witness that DJ,; holds. Also, Ok
implies DI, by [Kunll, Chapter II, Exercise 53]. Item (2) is immediate. Item (3) can be

obtained by the same argument as the one proving the analogous statement for ¢,. [

If k is a successor cardinal, then ¢, is equivalent to DI, and also to DI, (n) for all
1 <n < w, by [Pio84, Theorem 4]. (The specific case for k = X; was shown in [Dev79].)
Furthermore, if we replace “|Ay| < £” by “|Aa| < @” for some a < & in the definitions
above, then we obtain principles that are also equivalent to ¢, whenever k is weakly
inaccessible [Mat87].

We also note that for successor cardinals k > N1, the assumption k<% = x implies that
O« holds [Shel0], and therefore so does DI,. (Thus, the equivalence of these principles

also follows from [Shel0] for successor cardinals k > R.)

Under the assumption DI, the existence of k-perfect independent sets with respect
to a family of x-many closed relations can be characterized on the level of trees.

We use the following notation. Suppose that 8 = (S, : @ < J) is a sequence such
that for all a < §, S, is a subtree of (<*k)®" for some 1 < n, < w (see p. 15 for the
definition of the notation 7®™). We let

R(8) = ([Sa] : @ < 8).

Thus, R(8) is a sequence of closed finitary relations on the x-Baire space.

If there exists 1 < n < w such that n, = n for all a < §, then we let

[8] = U{[Sa] - e < 6}

Observe that when 6 = &, [§] is a X9(k) n-ary relation on the x-Baire space, and when
d < K, [8] is a closed n-ary relation. In general, |J{[Sa] : o < ¢} is a set of finitary

sequences of elements of the xk-Baire space.
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Definition 4.5. Assume that R = (R, : @ < k) is a sequence such that R, is an ny-ary
relation on the k-Baire space, where 1 < n, < &, for all @ < k. Let A = (A, : a < K)
be a sequence such that A, C [*2]<¥ for all a < k.

Let v < k be an infinite ordinal, and let T be a subtree of <*k. An (R, .A)-embedding
of height ~ into T' is an embedding

e: <72 5T

such that the following items hold for all ¢,s € <72 and a < 7.

(i) If t C s then e(t) C e(s), and if t L s, then e(t) L e(s).
(ii) For all 8 < v and all tuples (o, ...,tn;—1) € Aq we have

Ne(tg) X ... X Ne(tnﬂ—l) N Rg = 0.

Suppose 8 = (S, : @ < k) is a sequence such that S, is a subtree of (<%x)®" for all
a < K. Then an (R(8), . A)-embedding is also called an (8, .A)-embedding.
When v = &, we will also say “perfect (R, A)-embedding” or “perfect (8,.A)-embedding”.

Specifically, a perfect (R, .A)-embedding is a perfect embedding, by item (i) of the
definition. If A is a DI;-sequence, then a perfect (R,.4)-embedding determines a k-
perfect R-independent set in a natural way (see Lemma 4.6 below). The v < k case of
the above notion will be useful in the arguments in Section 4.2 below.

Recall that for a perfect embedding e : <2 — T, T, denotes the (strongly) x-perfect
subtree of T' defined by e; that is,

T, ={t € <"k :t C e(s) for some s € <"2}.

Lemma 4.6. Let A = (A, : o < k) be a DI;-sequence. Let R = (R : o < K) and
(ng : a < k) be sequences such that 1 < n, < w and Ry is an ny-ary relation on *k for
all < k. Let 8 = (Sy : aw < K) be such that S, is a pruned subtree of (<*k)®" for all

a < k. Suppose
e:<"2 T

is an embedding into a subtree T of <Fk.

Then the following statements hold.

(1) If e is a perfect (R, A)-embedding, then [T.] is a k-perfect R-independent subset

of [T1.
(2) If e is a perfect (8,.A)-embedding, then

[Te] is a k-perfect R(8)-independent subset of [T]

in any transitive model M D'V of ZFC such that (<"2)M = (<#2)V.
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(3) Conversely, if [T] has a k-perfect R(8)-independent subset, then there exists a
perfect (8, A)-embedding e : <2 — T.

All of the above statements are also true for sequences (A, : a < K) witnessing that
DI (n) holds and families R of n-ary relations (where 1 <n < w).

Items (2) and (3) imply that if [T] has a x-perfect R(8)-independent subset and
8 consists of pruned trees, then [T] has a x-perfect R(8)-independent subset in every
model M D V of ZFC with the same <%2 as V.

Proof. To see the first statement, it is enough to show that [T¢] is an R-independent
set. Suppose that 8 < x and (2¢,...,%Tnz-1) € [#2]"8. Then there exists a@ > (3 such
that (xo [, ..., Zns-1 ) € Ay. Thus, by item (ii) of Definition 4.5, we have that
(e(xo),---,e(zn-1)) ¢ Rg (where e(x;) = Ug,, tz;1p is the branch of [T;] defined by ;).
Therefore [T¢] is indeed R-independent.

The second statement follows from the first one and the observation that whenever
R = R(8), the following requirement is equivalent to item (ii) of Definition 4.5 and is

absolute:
(le(to)] x ... % [e(tns—1)]) N Sg =0 for all B < a and (to,...,tn;—1) € Aa.

(where for any u € <"x, [u] denotes the set of nodes v € <Fx such that v D u}).
Conversely, suppose [T] has a s-perfect R(8)-independent subset. Let 7" be a
strongly k-perfect subtree of T' such that [T'] is R(8)-independent. Using the facts
that R, = [Sq] is closed and |A,| < & for all o < k, it is straightforward to construct a
perfect (8,.A)-embedding e : <*2 — T".
The same arguments can be used in the case of DI, (n)-sequences (4, : @ < k) and

families R of n-ary relations. O

Recall the definition of the dichotomy PIF,(X), for sets X C “k, from p. 102. Note
that the r-Silver dichotomy for £9(x) equivalence relations on a X is a special case
of PIF.(X).

Lemma 4.7. Let X, Y C *k. Suppose f : "k — "k is continuous and f[X] =Y.

(1) If PIF(X) holds, then so does PIF(Y).
(2) The k-Silver dichotomy for £9(k) equivalence relations on X implies the r-Silver

dichotomy for £Y(k) equivalence relations on'Y .

Specifically, PIF,(C,) implies PIF,(X}(x)), and the analogoue of this statement
holds for the s-Silver dichotomy for 39(k) equivalence relations. (Recall that C,; denotes

the collection of all closed subsets of the x-Baire space.)
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Proof. The following argument is similar to the proof of Proposition 3.5, and implies
both items (1) and (2).
Let R be a family of finitary relations on Y such that idy € R. If 1 < n < w, then

define, for each n-ary relation R € R, the following n-ary relation R’ on X:

R = {(xo,...,azn_l) e"X: (f(xg),...,f(:zn_l)) € R}.

In other words, R’ is the inverse image of R under the continuous function "X — "Y;
(w0, yxp—1) = (f(z0),- .., f(xn—1). Thus, R is a X9(k) relation on X whenever R is

a 2Y(k) relation on Y, and if R is an equivalence relation, then so is R'. Let
R'={R :ReR}.

On the one hand, if Z C Y is an R-independent set of cardinality x*, then any
Z' C X such that f[Z'] = Z and f]Z' is injective is an R’-independent subset of X of
cardinality k.

On the other hand, if X has a k-perfect R'-independent subset, then (by Corol-
lary 2.10) there exists a continuous injection g : #2 — X whose image is R’-independent.
Notice that fog: "2 — Y is a continuous injection whose image is R-independent, by
the definition of R and the assumption idy € R. Therefore Y has an R-independent
k-perfect subset (again using Corollary 2.10). O

4.1 The s-Silver Dichotomy for X(x) Equivalence

Relations

In this section, we show that after Lévy-collapsing an inaccessible A\ > k to k™, the k-
Silver dichotomy holds for X9(x) equivalence relations on 31(k) subsets of the x-Baire
space. This result is proved in Theorem 4.14 below.

To establish Theorem 4.14, we first prove a series of preparatory lemmas. We state
some lemmas in a more general form than needed for our main result.

If P is a partial order and I is an arbitrary set, then P! denotes the full support
product IL;c;P. Note that if P is <k-strategically closed, then so is . We let §; denote
the canonical name for the i*" coordinate of the P/-generic filter for any i € I (if I is

not clear from the context, then we write ¢/ instead of ;).

Lemma 4.8. Assume that DI, (n) holds. Let T be a subtree of <"r. Let n < w and let
8 = (Sa : a < K) be a sequence of subtrees of T®".
Suppose that P is a < k-strategically closed notion of forcing and o is a P-name for

a new branch of T such that

P" I (6%, ...,091) & [8].
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Then [T has a k-perfect [8]-independent subset, in any transitive model M 2OV of ZFC
such that (<F2)M = (<r2)V,

Proof. Let A= (A, : a < k) be a DI, (n)-sequence, and let T be a winning strategy for
player IT in G,(IP). We define recursively (t, € T : u € <*2) and (py,r, € P : u € <F2)
and also (g, € P : u € "2, ht(u) € Succ) such that the following hold for all u,v € <F2

and a < k:

(i) if w C v, then t, C t, and if u L v, then ¢, L t,;
(ii) for all (ug,...,up—1) € Ay and v < a we have

Ntuo X ... X Nt“’n—l M [S’y] = Q’

(iii) 7y IF ty C o
(iv) py > T4 > Gqu—~i > py whenever i € 2 and u C v;
(V) pu=T({quja+1 : @+ 1 < ht(u))).

Items (iv) and (v) imply that for all z € "2, (pyia, Gejat+1 : @ < k) is a run of G4(IP) in
which player IT uses the strategy 7.

The first two items ensure that <*T" — T; u +— t, is a perfect (8,.A)-embedding,.
Thus, by Lemma 4.6, [T'] has an [8]-independent subset, in any transitive model M C V'
of ZFC which has the same <2 as V.

To see that ¢y, py,r, and g, as described above can indeed be built, let ¢y = () and
let pp = r9 = 7(0) = 1p. Now, fix @ < k and suppose that t,, p,, 7, and ¢, have been
defined for all v € <*2. We first construct (p, : u € *2), and if « is a successor ordinal,
we also construct (g, : u € *2). Simultaneously, we construct nodes t,, € T for all u € “2
such that the following hold for all u,v € 2 with u # v and all 8 < a:

ty, Lt

u v

th, D tus, pu lFt, Co.

If « is a limit ordinal and v € <2, we let t, = Uﬁ <o turp and we define p, using
the winning strategy 7 so that (iv) holds. Suppose a = §+ 1 and v € #2. Because
ry I (t, € o € [T] and o ¢ V) by our assumptions, there exist g,~o,q~1 < 7 and
t)~o,t~1 2ty such that

th—~o L th~q, and  qu~;IFt,~, C o fori<?2.

We define p,—~, py—~1 using the strategy 7 so that (iv) holds.
Lastly, the assumptions of the proposition and by applying Lemma 4.9 (found below)

for the index set I = “2 and for each tree S, such that v < a, we have

P2 |- {09 : u € %2} is [$]a]-independent,
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where [8a] = U{[S,] : ¥ < a}. Because |A,| < k and [8 | a] is closed, there exist
ry € P and t, € T such that item (ii) holds and r,, < p, and 7, IF ¢, C o for all u € A,.
Finally, for all u € *2\ A,, we let 7, = p, and ¢}, = t,,. This construction guarantees

that all four required items are fulfilled. O

Lemma 4.9. Let T be a subtree of <Fr and let S be a subtree of T®™ where n < w.
Suppose that P is a <k-strategically closed notion of forcing and o is a P-name for a
new branch of T. Let I be an arbitrary set.

Then each of the following items implies the items below it:

(1) P (0,9) ¢ [9] for all g € [[T]NV]";
(2) P™IF (0%, ..., 0%1) & [S];
(3) PLI-{o% :ic I} is [S]-independent.

Proof. First, assume that item (1) holds. Let p = (po,...,pn—1) € P™. We have to find
7= (ro,...,mn_1) < P which forces that (g%, ... o9-1) ¢ [S].

Using the fact that p; I o € [T]\ V for all 1 < j < n, we build, by recursion on
1 < j < n decreasing sequences (Q‘é € P : o < k) and strictly increasing sequences
<tﬂ € T : a < k) such that the following hold: qg = pj, and for all @ < Kk we have
q& I+ t& C o, and té- 1 t? for all 1 < i < j. (The last condition can be ensured because

we have pj IFo ¢ V.) We let
vi= Ut

a<k
for all 1 < j <n. Then yi,...,y,—1 € V are pairwise different, and so, by the assump-
tions of the lemma, pg IF (o, y1,...,yn—1) ¢ [S]. Therefore we can choose rg < pg and
t1,...,tn—1 € T such that

Niy X ... X Ny, N[S] =0, ro Ik to C o, t; Cyjforall<j<n.
Now, for all 1 < j < n, let a;; be such that t; C téj and let r; = qgéj_ Then
F=(ro,....,7n—1) <P and  Tltg Co%, .ty Codnt.

By item (2) of Lemma 3.6 for P", we also have that 7 Ik Ny, x ... x Ny, _, N[S] =0, and
therefore 7 I (090, ..., g9-1) ¢ [S], as required.

Now, assume that item (2) holds, and let I be an arbitrary set. If |I| < n, then the
conclusion follows from the definition of [S]-independence. Suppose |I| > n, and let g
be P!-generic. Suppose that ig,...,i,_1 € I are pairwise distinct. Then, denoting by g;
the projection of g onto the i*" coordinate (for all i € I), we have that Gip X .. X Gi,
is P™-generic. Thus, by item (2) and the absoluteness of “(zg,...,z,—1) € [s]” between

transitive models of ZFC,

Vigl = (0%0,...,0%n-1) ¢ [5]
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for all pairwise distinct g, ...,i,—1 € I, or in other words, the conclusion of item (3)
holds. (Note that this proof also works for the p-support product of copies of P, for any
infinite cardinal p.) O

Lemmas 4.8 and 4.9 imply the following fact. Let P be a <k-strategically closed
forcing, and let R be a family of x many closed finitary relations on a closed subset [T]
of the k-Baire space. If P adds a new branch which is “independent from V”, then
there already exists a k-perfect R-independent set in V. More precisely, the following

corollary holds.

Corollary 4.10. Suppose DI (n) holds and T, 8 and P are as in Lemma /.8. If o is a

P-name for a new branch of T such that
P IF (0,7) ¢ [8] for ally € [[T]NV]" ",

then [T'] has a k-perfect [8]-independent subset, in any transitive model M 2OV of ZFC
such that (<F2)M = (<r2)V,

Remark 4.11. By Lemma 4.9 and a straightforward modification of the proof of
Lemma 4.8, we can obtain the analogue of the above corollary for families R of k many
39(k) finitary relations (instead of just one such relation). More precisely, the following

statement holds.

Assume DI,. Let T be a subtree of <"k and let 8 = (S, : a < K) be a
sequence such that for all & < K, S, is a subtree of T®", where 1 < ny, < w.

If P is a <k-strategically closed notion of forcing and o is a P-name for
a new branch of T such that

Pk (0,7) ¢ U [Sal forallye [[T]NV]™,

a<k

then [T'] has a k-perfect [8]-independent subset, in any transitive model M O 'V
of ZFC such that (<"2)M = (<r2)V.

If 8 consists of only one closed binary relation, then the assumption DI (2) can be

omitted in Lemma 4.8 and in Corollary 4.10, by the next proposition.

Proposition 4.12. Let T be a subtree of <"k, let S be a subtree of T @ T. Suppose that
P is a <k-strategically closed notion of forcing and o is a P-name for a new branch

of T. Then each of the following items implies the items below it.

(1) P I (o,y) ¢ [S] for ally € [T]NV.
(2) P2IF (o%,0%) ¢ [S].
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(3) Pl-o ¢ \U{[H]: HeV, H is an S-homogeneous subtree of T'}.
(4) [T] has a k-perfect [S]-independent subset, in any transitive model M 2OV of ZFC
such that (<F2)M = (<r2)V,

Furthermore, if [S] is an equivalence relation, then the first three items are equivalent.

Recall that by Lemma 3.12, if [P also forces that ®2 Z V', then items (3) and (4) above

are equivalent.

Proof. Item (3) implies item (4) by Lemma 3.12, and item (1) implies item (2) by
Lemma 4.9. Suppose that item (3) is false. Then there exists p € P and an S-
homogeneous subtree H € V of T such that p IF ¢ € H. Then (p,p) forces that
(0% 091) € [H] x [H] C [9], and therefore item (2) does not hold.

Now, suppose that [S] is an equivalence relation, and suppose item (1) is false. Let
y € V and p € P be such that p IF (0,y) € [S]. Define the tree S(y) C T by letting for
allteT,

teS(y) iff (¢,ylht(t)) € S.

Then we have x € [S(y)] iff (x,y) € [S] for all x € "k, in any transitive model of ZFC
containing V. This implies on the one hand that p IF o € [S(y)]. On the other hand,
because [S] is an equivalence relation, it implies that [S(y)] is an [S]-homogeneous set.
This means that S(y) is an S-homogeneous subtree of T' (because S(y) is pruned). Also,
S(y) € V, and so it witnesses that item (3) does not hold. O

The next corollary says, roughly, that in certain forcing extensions, “the x-Silver
dichotomy holds for £9(x) binary relations E on ¥1(k) subsets X of the x-Baire space
such that X and F can be coded in V”.

Recall that for any Y C “x x "k, we denote by pY the projection of Y onto the first

coordinate.

Corollary 4.13. Assume DI, (2). If P is a <k-strategically closed forcing which forces
that |(2%)V| = &, then P forces the following:

if T € V is a subtree of <"k, E is an equivalence relation on p[T]| and
E =1[8] N (p|T] x p[T]) for a sequence 8 € V' of subtrees of (<"k) @ (<"k),

then either E has < k many equivalence classes or E has k-perfectly many

equivalence classes.

Proof. We use an argument similar to the proof of Corollary 3.13. By Lemma 4.7, it
is enough to prove that P forces the version of the above statement in which “p[T]” is
replaced by “[T]”. We can also assume that 8 is a sequence of subtrees of ' ® T', and
so, B = [§]
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Let T, 8 € V be as above. If
P IF for all = € [T there exists y € [T]" such that (z,y) € [8],

then P forces that [$] has at most |(2%)"| = k many equivalence classes. Otherwise, [T]
has a k-perfect [S]-independent subset in any transitive model M D V of ZFC with the
same <"2 as V, by Corollary 4.10 (applied to the partial order P<, = {¢g € P : ¢ <p p}
for a suitable p € P). Thus, P forces that [T'] has a k-perfect [$]-independent subset. [

Theorem 4.14. Suppose that k is an uncountable reqular cardinal, X > kK s inaccessible,
and G is Col(k, <\)-generic. Then in V|G|, the r-Silver dichotomy holds for all £9(x)

equivalence relations on 31 (k)-analytic subsets of "k.

Proof. Similarly to the proof of Theorem 3.14, let E € V[G] be an X3(k) equivalence
relation on a X1(k) subset X of the s-Baire space. Take a subtree T of <"k for which
X = p[T] and let 8 be a sequence of subtrees of (<"£)®(<"k) such that E = [§]N(X x X).
Observe that 8 can be coded as a subset of k x <fk. Thus, since Col(k, <)) satisfies
the A-chain condition, there exists 0 < 7 < X such that 7,8 € VI[G,] where G, =
GNCol(k, <7). One can now obtain the conclusion of the theorem in the case of X = p[T]
and E = [8] N (X x X) by applying Corollary 3.13 for V[G,] and P = Col(k, [y, \)).
Note that ¢, holds in V[G,], and therefore so does DI, (2). O

Corollary 4.15. Let k be an uncountable cardinal with k< = k. The following state-

ments are equiconsistent.

(1) There exists an inaccessible cardinal A > k.
(2) The k-Silver dichotomy holds for all £9(k) equivalence relations on X1(k) subsets

of the k-Baire space.

Question 4.16. What is the consistency strength of the x-Silver dichotomy for x-Borel

equivalence relations on the x-Baire space?

By a result of Philipp Schlicht [Sch17], PSP, (X) holds for all subsets X of the x-
Baire space which are definable from a x-sequence of ordinals after Lévy-collapsing an

inaccessible cardinal A > k to x*. In light of this result, we ask the following question.

Question 4.17. After Lévy-collapsing an inaccessible cardinal A > x to ™, does the
k-Silver dichotomy hold for X9(x)-equivalence relations on subsets X C *k definable

from a k-sequence of ordinals?
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4.2 A Cantor-Bendixson Theorem for Independent
Subsets of Infinitely many 39(x) Relations

In this section, we consider dichotomies for collections of finitary X9(x) relations on
closed subsets of the x-Baire space.

The main result of this section, Theorem 4.33, is roughly the following statement.

Suppose DI, holds and R is a collection of <k many finitary X9(x) relations

on a closed subset X of the k-Baire space.

If X has R-independent subsets “on all levels of the generalized Cantor-
Bendizson hierarchy for player I1” (in the sense of Theorem 2./4), then X

has a k-perfect R-independent subset.

Theorem 4.33 is the uncountable version of a result of Martin Dolezal and Wieslaw
Kubis [DK16].

As a corollary of some of our arguments proving Theorem 4.33, we also obtain
stronger versions of the main result in [SV17]; see Corollaries 4.32, 4.35 and 4.36.

The arguments presented in this section are in part based on methods used, for
example, in [Hyt90, HV90,0V93,Viia9l] and in Section 2.2.

Given a subset X C "k, we can think of its complement ("x — X) as a unary relation
on the x-Baire space. A subset Y of the x-Baire space is (“x — X)-independent if and
only if Y C X. If X is closed, then (" — X) is open and is therefore a 39(x) unary
relation on “x. Thus, our results can be stated in terms of families R of finitary relations

on the whole k-Baire space.

We begin this section by showing that the following holds for arbitrary families R
of finitary relations on the k-Baire space: if there exist R-independent sets Y C “k on
all levels of the generalized Cantor-Bendixson hierarchy for player IT (in the sense of
Theorem 2.44), then there exists a x-dense in itself R-independent subset. A similar
statement for player I will also be obtained.

Recall that for any ordinal £, 7¢ denotes the class of trees ¢ such that every branch
of t has length <{. If A is a cardinal, then 7\ ¢ denotes the class of trees t € T¢ of
cardinality <A.

Proposition 4.18. Suppose R is a set of finitary relations on "k. Then the following

statements are equivalent.

(1) There exists an R-independent k-dense in itself subset of "k.
(2) There exists an R-independent set Y C "k such that player IT wins Vi (Y').
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(8) For all trees t € T, there exists an R-independent set Y C "k such that
Kere(Y)NY # 0,

i.e., player II wins V¢(Y).
If the third statement does not hold, then there exists a tree t' € Tax ., showing this.

The first two statements are equivalent by Corollary 2.72, and they clearly imply the
third one. We note that (by Remark 2.68 and Fact 1.26), the third statement is also

equivalent to the claim that
for all t € 7T, there exists a t-dense in itself R-independent subset of "k.

In order to prove the equivalence of the statements (2) and (3), we first define the tree
t(R) of winning strategies for player II in short games V,41(Y") played on R-independent

subsets Y of “k.

Definition 4.19. Suppose R is a set of finitary relations on “k. Let ¢(R) denote the

tree which consists of pairs (v + 1, 7) where v < &, and

there exists an R-independent set Y C “k such that 7

is a winning strategy for player II in V,11(Y).

Welet (y+1, 7) < (7' +1, 7) if and only if v <4/ and 7’ agrees with 7 in the first v+ 1

rounds of V,11("k), i.e.,
(g B<a)=7(0s:8<a))
for all legal partial plays (dg : 8 < «) of player I of length < .

Definition 4.20. Suppose (y + 1, 7) is a pair such that v < x and 7 is a winning for
player IT in Vy1("K).

We denote by Y(,41 ;) the set of moves that 7 defines for player II in V,11("k)
in response to all possible legal partial plays of player I. That is, we let

Yigsrn = {7 (85 : 8 <)) : @ < v and

(65 : B < a) is an increasing sequence of ordinals below .}

Thus, Y(y41,7) is the minimal set X such that 7 is a winning strategy for IT in V. 41(X).

Claim 4.21. Suppose that R is a set of finitary relations on "k, and that (v+1, 7) and
(v + 1, 7) are as in Definition 4.20. Then
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(1) (v+1, 7) € t(R) if and only if Y141, 7) is R-independent;

(2) if (v+1,7) < (Y +1,7) then Yiyq1,7) C Yiyrg1, 7).

When stating Claims 4.22 to 4.24, we assume R denotes a fixed set of finitary relations

on the k-Baire space.
Note that, by definition, ¢(R) € Tx1.

Claim 4.22. The tree t(R) has a k-branch if and only if player IT wins V(Y') for some
R-independent Y C "k.

Thus, t(R) has a k-branch iff there exists an R-independent x-dense in itself set.

Proof. Suppose t(R) has a branch b = (t, : a < k) of length k. Using the notation
defined in Definition 4.20, the set Y;, is R-independent for all « < &, and we have
Yy, €Yy, forall 3 < a < k. This implies that the set Y = J{Y;, : @ < k} is R-
independent, and the branch b defines a winning strategy for player II in V,(Y'). The

other direction is clear. O

Claim 4.23. [ft(R) € Ty, then |t(R)| < 2~.

Proof. This statement follows directly from the definition of ¢(R) (and the assumption

Kk<f = k), by counting. O]

Claim 4.24. Suppose t is a tree. If player I1 wins V4(Y') for some R-independent
setY C*k, then t <t(R).

Proof. Let 7 be a winning strategy for player IT in V;(Y'), where Y is R-independent.
Analogously to the proof of Claim 2.48, we construct amap f : t — t(R); t — (v +17).
That is, we let v; be the order type of pred,(¢), and we obtain the strategy 7; for player IT
in V,,41(Y") by restricting 7 to pred,(t)U{t}. In more detail, if (t5 : 8 < ) is the sequence

of elements of pred,(t) U {t} in ascending order, then we define
Tt(<55 A< a>) = T((lfg,éﬂ A< a>A<ta>)

for all legal partial plays (dg : B < «) of player I in V,,1(Y). By its definition,
(41, ) € t(R). It is also easy to check that the map f is indeed order preserving. [

Proof of Proposition 4.18. Suppose there is no R-independent x-dense in itself sub-
set of “k. Then, by Claims 4.22 and 4.23, we have t(R) € T2~ . Thus, the tree

t'=0(t(R))

of ascending chains of ¢(R) is also in Tax , (see Definition 1.15 and Fact 1.17). By
Claim 4.24 and Lemma 1.16, player II does not win Vy(Y) for any R-independent
set Y C k. O
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The next example shows that the converse of Claim 4.24 does not hold.

Example 4.25. Consider the closed set X and the closed binary relation R C 2X
defined in item (2) of Example 3.37, and let R = {"x — X, R}.

Using the notation in Example 3.37, a set Y C X is R-independent if and only if
Y C X, for some a < k. Recall that X, is y,-perfect and (7, + 1)-scattered, where
(Va : @ < K) is an enumeration of the set of indecomposable ordinals v < k.

Therefore, t(R) = f,

but any R-independent set Y is f-scattered (i.e., player I wins V¢(Y'). Here, f denotes
the k-fan).

Remark 4.26. The statement ¢t < ¢(R) is equivalent, for all trees ¢, to a slightly weaker
statement than the condition in Claim 4.24.

If t € Tit1, and b € Branch(t), then let Y{; -y denote the set of moves that 7 defines
for player IT in response to all those legal partial plays of player I in V¢("x) in which he
chooses all his moves tg € t from the branch b. That is, let

Yoo, ry = {7 ({ts, 05 : B < )" (ta)) 1 ¢ <,
(dg : B < «) is an increasing sequence of ordinals below k,
(tg : B < ) is an increasing sequence of nodes in b.}
Equivalently, Y(; ;) is the minimal set X such that 7 is a winning strategy for IT in V;(X)
(where b also denotes the subtree of ¢ which consists of the nodes in the branch b). With
this notation, the following statement holds.
If t is a tree, then t < t(R) if and only if
player 11 has a winning strategy 7 in V¢("k) such that
Y, r) is R-independent for all b € Branch(t). (4.1)
The proof of Claim 4.24 shows that (4.1) implies t < t(R), for all trees ¢t. To see the
other direction, it is enough to show that (4.1) holds for the tree t = t(R). We define
a winning strategy for player II in V;("k) as follows. If p = (t3,05 : B < ) (ta) is a
legal partial play of player I in V¢("k), and t4 = (Ya+1,7a), Then let
7(p) = 1a({0p : B < @)).

Note that 7(p) is well defined because o < 7,. Clearly, 7 is a winning strategy for
player IT in V;("k).
Suppose that b = (t, : @ < §) is a branch of t = t(R), and to = (Yo + 1, 7). Then

Yv(bﬂ 7—) = 96 }/(’Yot‘i‘lﬂ'a) .

By Claim 4.21, this implies that Y, ;) is R-independent. Thus, 7 shows that (4.1) holds.
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We show below that a stamtement analogous to Proposition 4.18 also holds for

player I.

Proposition 4.27. Suppose R is a set of finitary relations on "k. Then the following

statements are equivalent.

(1) Every R-independent subset of "k is k-scattered.
(2) There exists a tree s € T, such that every R-independent subset of "k is s-scattered.

Note that in the classical case, a set is scattered if and only if it has no dense in
itself subsets. Thus, for kK = w and families of finitary relations on the Baire space,

Propositions 4.18 and 4.27 are equivalent.

Proof of Proposition 4.27. It is clear that item (2) implies item (1).

To see the other direction, let Y C "k be an arbitrary R-independent set, and fix a
winning strategy p(Y') for player Iin V;(Y'). We let s,y denote the tree which consists
of legal partial plays (zg : 8 < a) of player IT in V. (Y) against p(Y) (that is, s,y
consists of those partial plays of IT of successor length against p(Y) where she has not
lost yet). Then, s,y) € T, because otherwise, player IT would win a run of V;(Y") where

player I uses p. Therefore the tree
Sy = 08p(y)

of ascending chains in s,y is also in 7. Player I wins Vs, (Y): he obtains a winning
strategy by copying the sequences of moves of player IT into sy, and defining his moves dg
using p(Y) (see the proof of Claim 2.49 for a detailed definition of the winning strategy
in an analogous case).

Now, let
s = Q{sy :Y is a R-independent subset of "x};

that is, s is the supremum of the trees sy for all R-independent subsets Y C "k (see
Definition 1.19). Then s € 7., and player I wins Vs(Y') for all R-independent subsets Y’

of the k-Baire space. O

We now consider the case when R consists of x many finitary 39(k) relations on a
closed subset X of the x-Baire space (of arbitrary arity). Observe that it is equivalent
to assume (when considering R-independent sets) that all the relations in R are closed

relations on the whole xk-Baire space. (Firstly, if R = | R, for a set of closed n-ary

a<k
relations Ry, then a set Y C "k is R-independent if and only if Y is independent w.r.t.
{Rq : @ < k}. Secondly, Y C X if and only if Y is (" — X)-independent. If X is closed,

then (“x — X) is open and is therefore a £9(x) unary relation on *x.)
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Thus, in the rest of this section, we will often be assuming that
R=(Ry:a<Kk)

is a sequence of closed relations R, on "k (of arbitrary finite arity). We will also confuse
R with {R, : @ < k} at times.

Definition 4.28. Suppose that R = (R, : a < k) is a sequence of finitary relations
on "k, and that A = (A, : @ < k) is a sequence such that A, C [*2]<% for all « < k.
We let u(R, .A) denote the tree which consists of pairs (7+ 1, e) such that v < x and

e: <vtlg _y <kg
is an (R, .A)-embedding (see Definition 4.5). The tree u(R,.A) is ordered by letting
(v+1,e) < (¢ +1,¢€) iff vy <4 and ¢ | <Tl2=ec.

Note that u(R,.A) is a tree of height < k. Furthermore, if s is inaccessible and
u(R,.A) has no k-branches, then |u(R,.A)| < k. (Note that this latter statement may
not hold for ¢(R).)

Claim 4.29. Suppose that A is a DI;-sequence and that R is a sequence of length k of

closed finitary relations on “k. Then
u(R,.A) has a k-branch iff there exists a k-perfect R-independent Y C "k.

Proof. This statement follows from the observation that u(R,.A) has a k-branch if and

only if there exists a perfect (R, .A)-embedding and Lemma 4.6. O

Lemma 4.30. If A is a DI;-sequence and R = (R, : o < K) is a sequence of closed

finitary relations on "k, then
t(R) <u(R,A).

Proof. Suppose that (y+ 1,7) € ¢(R). Let Y be an R-independent set such that 7 is
a winning strategy for player IT in V,1(Y).

We define an (R, .A)-embedding e, of height v + 1 by modifying (the first v + 1
stages of) the construction in the proof of Proposition 2.69. In more detail, we construct
(us, 5,05 : 8 € =72) such that us € <Fk, x5 € Y, and 65 < r, and the following items
hold for all s,7 € <72 and all a < 7:

(i) us = z5[ds;
(ii) if r C s, then u, C ug;
(iii) if r L s, then u, L ug;
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(iv) for all B < a and all tuples (so,...,8n,-1) € Ao (Where ng is the arity of Rpg),

we have

N,

Us(
(v) x5 =7((d5 : B < ht(s),s(8) = 1)).
The last item states that x4 is obtained from a partial run
(215,015 : B < hit(s),s(8) = 1) ()

of Vi (Y') where player II uses the strategy 7.

><~--><Nusnﬁ,1ﬂR,8:®5

Note that condition (iv) can be guaranteed in each stage o < =y of the construction
because the elements (x5 € Y : s € “2) are pairwise different (this can be guaranteed as in
the proof of Proposition 2.69 at successor stages and is automatic at limit stages). Thus,
by the R-independence of Y and by |A,| < K, we can choose the ordinals (s : s € “2)
high enough for item (iv) to hold.

Conditions (ii) to (iv) imply that the map

er 1 572 — <Fr defined by letting er(s) = us for all s € <79
is an (R, A)-embedding. That is, (v + 1, e;) € ©u(R,.A). The map
fit(R) > u(R,A); (v+1L,7)—(v+1,er)
is order preserving by items (i) and (v). O

Remark 4.31. Let R and A be as in Lemma 4.30. By Remark 2.30, the tree u(R,.A)
can be embedded in an order preserving way into the tree of winning strategies for
player IT in short games GZ ,;(<"«). In fact, denoting by u'(R,.A) the image of u(R,.A)
under this embedding, we have

uw(R,A) =u'(R,A).
The tree u/(R,.A) consists of pairs (y+1,7’) such that v < x and 7’ is a winning strategy
for player IT in G7, | (<"k) such that 7’ satisfies the statement corresponding to item (ii)
in Definition 4.5 (or equivalently, to item (iv) in the proof of Lemma 4.30).
The order preserving embedding f defined in the proof of Lemma 4.30 corresponds
to the order preserving embedding of u/'(R,.A) into ¢(R) which is determined by the
proofs of Propositions 3.39 and 3.47.

Claims 4.22, 4.29 and Lemma 4.30 (and the observation above Definition 4.28) imply

the following statement immediately.

Corollary 4.32. Assume DJ,. Let R be a collection of < many finitary $9(r) relations
on a closed subset X of the k-Baire space.
If X has a k-dense in itself R-independent subset, then X has a k-perfect R-inde-

pendent subset.
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Let R be a collection of <x many XY(x) relations on the x-Baire space. The next
theorem, which is the main result of this section, states roughly that under the as-
sumption DI, the existence of R-independent sets Y C "k on all levels of the gen-
eralized Cantor-Bendixson hierarchy for player II implies the existence of a x-perfect

R-independent subset.

Theorem 4.33. Assume DI,;. Let R be a collection of <r many finitary X9(k) relations
on a closed subset X of the k-Baire space.

Then exactly one of the following statements holds.

(1) X has a k-perfect R-independent subset.
(2) There exists a tree w € Tas,, such that player II does not win Vo (Y') for any
R-independent set’ Y C X.

If Kk is inaccessible and the second statement holds, then there exists a tree u € Ty

witnessing this.

Proof. Proposition 4.18 and Corollary 4.32 imly immediately that statement (2) holds
iff statement (1) does not hold.

Suppose « is inaccessible, and let A denote a DI,-sequence. As observed above
Definition 4.28, we can assume that R consists of kx many closed finitary relations on

the whole k-Baire space. If statement (2) holds, then the tree
u=ou(R,A)
has no s-branches by Claim 4.29. This implies |u| = |u(R, A) |<" = &. O

Question 4.34. In Theorem 4.33, can we have |u| < & for any cardinal kK with k<% = &
(i.e., even when x is not inaccessible)?

In Proposition 4.27, can we have |s| < 2% or even |s| < k?

The next corollary follows from Corollary 4.32 and Proposition 4.7. Recall that
DISP,, is the following statement:

every subset of ®x of cardinality x™ has a k-dense in itself subset.
Corollary 4.35. Assume DJ,. If DISP, holds, then PIF(X1(k)) also holds, i.e.,

if R is a collection of <k many finitary X9(x) relations on a £1(k) subset X
of "k and X has an R-independent subset of cardinality k™, then X has a

k-perfect R-independent subset.
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The above corollary, Proposition 2.78 and Theorem 2.76 imply the following stronger

version of the main result, Theorem 2.4, of [SV17].

Corollary 4.36. (1) The assumptions 1" (k) and DI, imply that PIF,(21(k)) holds.
(2) Specifically, if A > kK is weakly compact and G is Col(k,<\)-generic, then
PIF,.(21(k)) holds in V[G].

We note that [SV17, Theorem 2.4] states that if I7(x) holds and either & is inaccessi-
ble or ¢ holds, then PIF,(2}(x)) holds (or rather, the special case of PIF,(X}(x)) for
one finitary 39(k) relation holds). Thus, [SV17, Theorem 2.4] implies that PIF,(X}(x))
is consistent relative to the existence of a measurable cardinal A > k. The above corol-
lary shows that it is already consistent relative to the existence of a weakly compact
cardinal A > k.

Because PIF,(21(k)) implies the s-perfect set property for 31(k) sets, its consis-
tency strength is at least that of the existence of an inaccessible cardinal above k (see
Remark 2.14).

Question 4.37. What is the consistency strength of PIF.(X}(x))? In particular,

is PIF,(21(k)) consistent relative to the existence of an inaccessible cardinal A > k?

In the classical countable case, PIF,(ITI3) does not hold: there exists a binary IT9
relation R on the Cantor space “2 such that every maximal R-independent set has
cardinality N; but there are no perfect R-independent subsets [She99]; see also [KV12]

where a concrete example of such a binary relation is given.

Question 4.38. Is PIF,(TI(x)) false (in ZFC)? If not, is the failure of PIF, (II9(k))

consistent?

Question 4.39. Can DI, be weakened or omitted in the main results of this section?

4.3 Elementary Embeddability on Models of size «

In this section, we obtain as a special special case of PIF,(21(k)) a model theoretic
dichotomy which is motivated by the spectrum problem.

Before stating the main result, Theorem 4.43, of this section, we introduce some
notation and terminology to be used here. We also give some possible motivation behind

Theorem 4.43, and define some concepts necessary for stating it.

Notation. We will use the following notation in the rest of this section. Recall that
Sym(k) denotes the permutation group of £ and that we write Inj(x) for the monoid of
all injective functions of k. We denote by ¢, the product topology on the set " (where

the set « is given the discrete topology).
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The symbol L denotes a fixed first order language which contains only relation sym-
bols and is of size at most k. However, the arguments below also work in the case
of languages which have infinitary relations of arity < k. We assume the language L
has k many variables, the sequence of which is denoted by (v; : i € k). The symbols
A, B, etc. are used to denote L-structures whose domains are A, B, etc. The set of
all L-structures with domain & is denoted by Modl. Given a structure A € ModZ, we

identify A-valuations with elements of “x.

If i and X are cardinals such that w < p < A < k™ and p < &, then L Ap denotes the
infinitary language which allows conjunctions and disjunctions of < A many formulas and
quantification over < p many variables (see, e.g., Definitions 1.1.2 and 1.1.3 of [Dic75]
for the precise definition of L),-formulas or, alternatively, Definitions 9.12 and 9.13
of [Vdill]). In particular, note that by definition, an Lj,-formula contains < p many
free variables, from {v; : ¢ € k}. The concept of the subformulas of a formula ¢ € L, +, is
defined by induction on the complexity of ¢ as usual (see, e.g., Definition 1.3.1 of [Dic75]
or [Vaall, p. 234]). Note that if ¢ is obtained as ¢ = A @, then any ¢ € @ is defined to
be a subformula of ¢, but A ®, where ® C ®, is not a subformula.

For ¢ € L.+, and h € "k, we denote by s,p the formula obtained from ¢ by
simultaneously substituting, for all ¢ € k, the variable vy, ;) for the variable v;. We say
that a set F' of L, +,.-formulas is closed under substitution if for any ¢ € F and h € "k

<K

we have spp € F. Note that since k<% = &, closing a nonempty set of formulas of L,.+,

of size < k under substitution leads to a set of formulas of size k.

We denote by X1(L,+,) the set of second order formulas of the form IR ¢(R), where
R is a set of < k many symbols disjoint from the original vocabulary and ¢(R) is an
L, +, formula in the expanded language.

Given a sentence 1) € X1(L,+,), we let Mod}f denote the set of models of ¢ with

domain k.

We now give some motivation for and state the main result of this section, Theo-
rem 4.43. Let ¢ denote a fixed sentence in X1(L,+,). One obtains interesting questions
by considering, instead of the number of non-isomorphic models in Mod}f, the possible
sizes of sets of models in Modf which are pairwise non-elementarily embeddable, as in
for example [Bal89, She89]. More generally, the role of elementary embeddings may be
replaced by embeddings preserving (in the sense of (4.2) in Definition 4.41) “nice” sets
of formulas, possibly of some extension of first order logic.

We consider the case when the “nice” sets of formulas to be preserved are fragments

of L,+,; this concept is defined below.
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Definition 4.40. A fragment of L+, is a set F' C L+, of size |F| = k such that

(i) F contains all atomic formulas,
(ii) F is closed under negation and taking subformulas, and

(iii) F is closed under substitution of variables.

Examples of fragments of L, +, include the set of all first order formulas, the set At of
all atomic formulas and their negations, the infinitary logics L), where w < pu < XA <&,
and the n-variable fragments of these logics.

In the case of fragments F' C L.+, and sentences ¢ € F, the set of models of 1
together with F-embeddings (i.e., the embeddings preserving F') forms an abstract ele-
mentary class, and the corresponding version of the above question has been studied in
e.g. [She09]. To the best knowledge of the author, this question has not been studied
yet in the case fragments of L.+, which are not subsets of L,.+,,.

Note that if f is an embedding between elements of Modf (preserving a fragment
of L,.+,), then f € Inj(k). We ask what happens when, in the above questions, the
role of Inj(k) is replaced by a certain subset H of Inj(k), i.e., when Mod¥ is considered
up to only the embeddings which are in H (and preserve the given fragment of L, +,.).
Notice that when H is a subgroup of Sym(k), the above question reduces to considering
models up to isomorphisms in H. By introducing the set H of “allowed embeddings”
as an extra parameter, we may study explicitly the role the topological properties of H

play in these questions.

Definition 4.41. Suppose F' is a fragment of L +,, H C Inj(k), and A,B € Modj,:j.
We say that a map h € "k is an F'-embedding of A into B iff we have

AE ¢la] iff B ¢lhod] for all ¢ € F and valutations a € k. (4.2)

We say that A is (F, H)-embeddable into B iff there exists an F-embedding h € H
of A into B.

In the special case when H is a subgroup of Sym(k), we say that A is H-isomorphic
to B iff there exists an isomorphism h € H between A and B.

Let F' be an arbitrary fragment of L, +,.. Note that any F-embedding h € "k of A
into B must be an embedding of A into B, and in particular, we must have h € Inj(k).
If h € Sym(k), then h is an F-embedding if and only if A is an isomorphism.

If H is a subgroup of Sym(k), then H-isomorphism is an equivalence relation on
ModZ, and if H is a submonoid of Inj(r), then (F, H)-embeddability on ModZ is a
partial order. (However, there is no reason for this to hold when H is an arbitrary
subset of Inj(k)).



CEU eTD Collection

124 4. DICHOTOMIES FOR () RELATIONS

Example 4.42. We give some examples of fragments F' and the corresponding notions
of (F, H)-embeddability.

e When F'is the set At of atomic formulas and their negations, (F, H)-embeddability
is the same as H-embeddability, i.e., embeddability by elements of H.

e When F' = L, (F, H)-embeddability is the same as H -elementary embeddability,
i.e., elementary embeddability by elements of H.

e I'=1L,, is a fragment, given cardinals w < p < X\ < k.

e Suppose w < 1 < A < k. By definition, the n variable fragment of Ly, or equiva-
lently of L), consists of those formulas which use only the variables vg,...,vy_1.
In this case, the corresponding fragment F' is the set of those L),-formulas which
contain at most n (arbitrary) variables from {v; : i € k}. We denote this frag-
ment F' by LY .

Recall that a subset C' of a topological space is defined to be x-compact iff any open
cover of C has a subcover of size < k, and C' is K, iff it can be written as the union of
at most K many x-compact subsets.

In the next theorem, which is the main result of this section, we obtain as a special
case of PIF, (31 (x)) a dichotomy about Mod¥ up to (F, H)-embeddability, for K, subsets
H of the k-Baire space and fragments F' of L, +,. In the case of certain fragments, it is
enough to assume that H is a K, subset of the product space (*k,t,,) (where tp, is the

product topology on the set ®x obtained by equipping x with the discrete topology).

Theorem 4.43. Suppose PIF.(X1(k)) holds. Let H C Inj(k), let F be a fragment of
L.+, and let 1 be a sentence of X1(L,.+,). Suppose that either

(1) H is a K, subset of the k-Baire space, or
(2) H is a K, subset of the product space ("k,tp) and F C L, +,,.

If there are at least k™ many pairwise non (F, H)-embeddable models in Mod}f, then

there are k-perfectly many such models.

Theorem 4.43 can be seen as the uncountable version of [SS12, Theorems 5.8 and 5.9].
We note that these two cited theorems of [SS12] also follow from [Kub03, Corollary 2.13]
or from [She99, Remark 1.14].

In order to prove Theorem 4.43, we have to first show that for any fragment F' and
K, subset H of the s-Baire space, Mod? can be coded as a 31 (k) subset of the x-Cantor
space on which (F, H)-embeddability is a X9(x) binary relation (and when F C L, .+,
this holds even when H is K, only with respect to the product topology t,;). This is
done by considering the k-Borel refinement ¢z induced by F' of the canonical topology

used to study the deep connections between model theory and generalized descriptive set
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theory (see [MV93] and, e.g., [VA495] and [FHK14]), and generalizing to the uncountable
case an argument in [Mor70]. These arguments allow us to obtain the dichotomy in
Theorem 4.43 as a special case of PIF,(21(k)). In Theorem 4.43, the word “s-perfect”
may refer to the topology ¢tz induced by any fragment F’ of L, +, (see Corollary 4.54);

specifically, it may also refer to the canonical topology.

We remark that when & is a non-weakly compact cardinal, PIF,(21(k)) implies that
there are no K, subsets of the k-Baire space other than those of size < k. However,
K, sets of size > k exist in the case of the product space ("k,t,), or in the case of the
k-Baire space when & is weakly compact. (See Propositions 4.44 and 4.45.)

One possible motivation for investigating the above questions for K, subsets H, even
in the case of the x-Baire topology for x non-weakly compact, is the following. Let F
be a fixed fragment of L, .+, and equip Mod}f with the topology tr described above.
Consider, for each H C Inj(k), the (F, H)-embeddability relation Rf; viewed as a subset
of Modff X Mod’,f. Specifically, the relation Rﬁ i) of F-embeddability corresponds to
the original question where the set of “allowed” embeddings “has not been restricted”.
Because the standard base of the space (Mod}f, tr) is of size k, it is possible to construct
a subset (even a submonoid) H of Inj(k) of size < k such that R} is dense in R i)
On the one hand, the density of RZ in Rf; () TOAY be interpreted, on an intuitive level,
to mean that “the action of H on ModY¥ is locally similar to the action of Inj(x)”. On
the other hand, |H| < k and is therefore a K,; subset of the x-Baire space, which implies
that our model theoretic dichotomy result Theorem 4.43 is applicable in this case as

well.

Proposition 4.44 (by Corollary 2.8 in [LMS16]). Suppose k is not weakly compact.
Then PSP (C,) implies that the K,, subsets of the k-Baire space are exactly those of size
at most K.

Thus, PIF.(X1(k)) also implies that the K, subsets of the k-Baire space are exactly

those of size at most k.

Examples of subsets H of the set "k which are k-compact subsets of the product
space ("k,ty) but are not K, subsets of the x-Baire space, even when PSP, (C,) is not
assumed, include by [LMS16, Lemma 2.2] (and Tychonoff’s theorem) the set H = #2

and, more generally, sets of the form H = []._._1I,, where I, € [k]<" and I, is finite

a<k
except for < kK many a < k. (See [Lip13] and the references therein for when this last

assumption can be weakened.)

Notice that K subsets of the x-Baire space are always K, subsets of (“x, t,;) as well,
due to the fact that the x-Baire topology on the set “x is finer than the product topol-

ogy tpr. When k is a weakly compact cardinal, the converse also holds. Proposition 4.45
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below gives a characterization of the K subsets of "k.

A subset H of "k is bounded iff there exists an x € "k such that h(8) < z(5) for all
h e H and 8 < k.

A subset H of "k is eventually bounded iff there exists an x € "k such that for
all h € H, we have h<*z (i.e., there exists an a < k such that h(3) < z(8) for all
a < B < k).

Observe that a union of x many bounded sets is eventually bounded.

Proposition 4.45. Suppose k is a weakly compact cardinal. Given any set H C "k, the

following statements are equivalent.

(1) H is a K, subset of the k-Baire space.
(2) H is a K, subset of the product space ("k,tp).
(3) H is a £9(k) subset of the r-Baire space which is eventually bounded.

Proof. The equivalence of the first and third items follows from [LMS16, Lemma 2.6],
and, as just noted, the second item is implied by the first one.

The third item can be obtained from the second using the fact that a k-compact
subset C' of (“k,tpy) is closed in the x-Baire topology and is bounded. This fact can
be proven by modifying standard arguments from the countable case (see e.g. [Kec95,
Exercise 4.11]). In more detail, suppose that C' C *k is k-compact in the product
topology tp,. If we take any a < s (and we denote by Ny, )} the set {y € "k : y(a) =
v} € tpy for all y < k), the family

{N{aqy 17 <k and CN Ny 7 0}

is a disjoint ¢,-open cover of C, and must therefore be of size < k. Thus, we can define
a function z € "k by letting z(a) = sup{y < £ : C'N Ny(q)} # 0} for all @ < &, and =
witnesses that C' is bounded.

To see that C' is closed in the xk-Baire topology, let z € *k — C. We can choose, for all
y € C, disjoint neighborhoods Uy, V), € t;,; of z and y respectively. By the x-compactness
of C, the ty-open cover {V, : y € C} of C can be refined to a subcover {V, : y € I}

of size < k. Then the intersection U = (), .; U, is disjoint from C, contains z, and is

yel
open in the k-Baire topology (because the x-Baire topology is finer than ¢, and is closed

under intersections of size < k). O

Remark 4.46. A model of ZFC in which & is weakly compact (in fact, supercompact)
and I (k) holds (and therefore so does PIF.(X1(x))) can be obtained starting out from
a situation in which x is supercompact and there exists a weakly compact A > k, in
the following way. Before Lévy-collapsing A\ to k™, one first applies the Laver prepara-

tion [Lav78] to make the supercompactness of x indestructible by any <x-directed closed
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forcing. If we would also like to have 2% > kT together with I'(k) for a supercompact
k, we force after the Laver-preparation with Col(k, <) x Add(k, ) for some p > A.
We would like to thank Menachem Magidor for suggesting the arguments found in this

remark.
A fragment F' C L, .+, induces a topology tr on the set Modﬁ in a natural way.

Definition 4.47. Given a formula ¢ and a valuation a € "k, we let
Mod, (¢, a) = {A € Mod% : A = p[a]}.

We let tr denote the topology on Mod£ which is obtained by taking arbitrary unions of

intersections of < k many sets from the collection
br = {Mod,(p,a): ¢ € F,a € "k},

and we let Mod p = (ModZ, tr).

Given a sentence ¢ € X1(L,+,) we denote by Mod}{i the subspace of the Mod
with domain Mod}f. In other words, Ewa? is obtained by equipping Mod}_f with the

topology tg.

The canonical topological space used to study the connections between model theory
and the generalized Baire space is Mod ¢, and it is homeomorphic to the Cantor space *2;
see [MV93, V4495, FHK14].

An advantage of working with ¢ instead of ¢, is that (F, H)-embeddability induces
a “tp-continuous action” of H on Mod? and is therefore a X3(x) binary relation on
Mod }{i (see Proposition 4.55 and the proof of Theorem 4.43 below). This fact is needed

in order to obtain our model theoretic dichotomy as a special case of PIF.(21(k))).

As a first step towards proving Theorem 4.43, we show that for an arbitrary frag-
ment F, the space Mod  is homeomorphic to a TI9(k) subset Xg of #2. Our proof is
essentially a generalization from the countable case of an argument in [Mor70]. Note
that a bijection between x and F' allows us to define the generalized Cantor topology
on 2. In fact, since s is regular (by <" = k), another basis for this topology is
{N, : p € ®2 for some ® € [F]~"}, where N, = {z € 2 : p C z}, and therefore this

topology does not depend on the chosen bijection.

Definition 4.48. Given a fragment F' of L, +,., define a map ip : Modﬁ — 2 as
follows: if A € ModZ%, then let ip(A) € F'2 be such that

ir(A)(p) =1 iff A pfidg]

for all p € F. We denote by Xg the image of ip.
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Claim 4.49. For any fragmet F' of L, +,., the map ip : Modﬁ — 2 is injective.

Proof. If A, B are different structures in ModZ, then there exists a formula ¢ in At (the
set of all atomic formulas and their negations) such that A | ¢lids] and B £~ ¢[id].

Then
ir(A)(g) = 1, and ip(B)() = 0.

This implies, using the fact that At C F' by Definition 4.40, that ip(A) # ip(B). O

Proposition 4.50. If F is a fragment of L.+, then Xp is a TI(k) subset of the Cantor
space F2, and ip is a homeomorphism from Mod p onto its image Xp (where Xp is given

the subspace topology).

Proof. Because F'is closed under substitution, the collection bg from which the topology
tp is obtained is in fact equal to {Mod,(p,id,) : ¢ € F'}. Using this, it is not hard to
see that the injection ¢ is a homeomorphism between Mod r and its image Xp.

To see that X C £'2is TI(k), we define the following subsets of £'2. For any h € "k,
we denote by supp(h) the set of those a € k for which h(a) # . We let

Xo={zel2:2(y)=1iff z(—~) =0 for all ¢ € F};
X1:{xeF2:if¢€Fand¢:/\@forsome®e[FF“,
then z(y) = 1 iff for all p € & we have z(p) = 1};
Xo={ret2:if¢p € Fand ¢ =I(vs: B € I)p where ¢ € F and I € [x]<",
then z(¢p) = 1 iff x(spp) =1
for some h € "k such that supp(h) C I'};
X3 = {2z €2 foralli,j € k we have z(v; = v;) = 1 iff i = j}.

Let X denote the intersection of the sets X; for ¢ < 4. We claim that the X;’s are
all TI(x) subsets of 2 and show this in detail for X;. For 1) = A ® € F, the set

Xllyw ={zxecf2:2(¢)=1and z(p) =1 for all p € B} = ﬂ(p Niws,1),(0,1)}
pe

is TI9(k), while the set

Xﬁw ={z € Fo. z(1) = 0 and x(p) = 0 for some p € ¢} = U(I) N{(,0),(,0)}
o€

is open. Therefore X = ﬂ{XRw U Xll’w 1) = \N® € F} is also a IT(k) subset of the
Cantor space 2. That Xy, Xy and X3 are also II(x) can be seen similarly; in the
case of Xy, one has to use the fact that [{spp : h € "k}| < k holds because ¢ has < K

variables and K<F = k.
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Therefore the intersection X of the X;’s is also IIJ(k), and it remains to see that
Xp = X. It is straightforward to show that for any A € ModL, we have ip(A) € X,
and so Xp C X. For the other direction, first observe that if z,y € X and xz[At = y[At,
then « = y also holds, by an easy induction on the complexity of formulas. Suppose
x € X is arbitrary. We wish to define a model A € ModL such that & = ir(A); by the
above observation, it is enough to require that z[At = ip(A)[At. Clearly, the L-model
A whose domain is x and whose relations are defined by letting, for each n-ary relation

symbol R of L and ay,...,a, € K,
(o1, ...,an) € RYiff 2(R(vay, - .. Va,)) = 1,
satisfies these requirements. ]
Given a sentence ¢ € X1(L,+,.), we let
X% = {ir(A) : A€ Mod?};
that is, X? is the set of elements of X corresponding to models of .

Corollary 4.51. If v is a sentence of £1(L,.+,) and F is a fragment of L+, then
X? s a 2%(/43) subset of ¥'2. Furthermore, the map iF[Mod}@ is a homeomorphism from

Mm{% onto its image X% equipped with the subspace topology.

Proof. As we have seen at the beginning of the previous proof, it is enough to show
that X% is 31(k). First, in the case when ¢ € F (and therefore is an L, ,-sentence),
we have Xﬁ = X N Ny,1)y- Thus, Xg is a TI9(x) subset of £'2 by Proposition 4.50.
Now, in general, suppose that 1 is the sentence IRp(R). Let F’ be the fragment
generated (in the expanded language) by F U {¢(R)} U R. Then we have that Xﬁ is
the image of the ITJ(x) set X7, under the continuous map Flog 3 F9 g z|F and is
therefore 31 (k). (Equivalently, Mod jfﬂ is the image of Mod ¥, under the continuous map
defined by taking the L-reducts of models for the expanded language.) O

Definition 4.52. We say that v has k-perfectly many non (F, H)-embeddable models iff
Mod}f has a tp-perfect subset which is independent with respect to the binary relation
of (F, H)-embeddability on ModY.

Note that the term “tp-perfect” makes sense since Mod % is homeomorphic to a subset
of the k-Baire space.

As Corollary 4.54 below shows, the choice of the fragment that generates the topology
on Mod’,f is actually irrelevant in the above definition. That is, given any fragments F, F’

of L,.+,., a sentence 1 has k-perfectly many non (F, H)-embeddable models if and only if
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Modf has a tpr-perfect subset which is independent with respect to the binary relation
of (F, H)-embeddability on ModY.

Below, by a tp-Borel subset of Mod}f, we mean a k-Borel subset of Mod ﬁ, and a map
f: X — Mod¥ (where X is a topological space) is tp-Borel iff the inverse images of
tp-Borel subsets of Mod? are x-Borel subsets of X.

Proposition 4.53. Let F and F’ be arbitrary fragments of L, +,..

(1) A subset of ModY is tp-Borel iff it is tpr-Borel.
(2) A map f:"%2 — Mod? is tp-Borel iff it is tp-Borel.

Proof. An easy induction shows that for any ¢ € L+, (and therefore for any ¢ € F')
and valuation a € "k, the set Mod,(p,a) is tp-Borel. Consequently, all ¢z-Borel sets
are tp-Borel sets as well. By symmetry, we have item (1), of which item (2) is a direct

consequence. [

By Corollary 2.10, the space Modf has a tp-perfect R-independent set if and only if
there exists a tp-Borel injection ¢ : 2 — Mod¥ such that ran(s) is R-independent. This

fact and Proposition 4.53 immediately imply that the following statement.

Corollary 4.54. Let F and F' be arbitrary fragments of L,+., and suppose R is a
binary relation on Modf. Then Modf has a tp-perfect R-independent subset if and only
if it has a tp-perfect R-independent set.

We obtain Theorem 4.43 as a special case of the Proposition 4.55 below.

For H a topological space, X any set and S C H x X x X, let Rg be the projection
of S onto X x X, i.e.,

Rs ={(z,y) : (h,z,y) € S for some h € H}.

Specifically, for the action a of a group H on X, R, is the orbit equivalence relation.

Proposition 4.55. Suppose PIF . (21(k)) holds. Let X be a ¥1(k) subset of the r-Baire
space (equipped with the subspace topology) and let H be an arbitrary K, topological space.

(1) If S C H x X x X is closed, then either all Rg-independent sets have size < k or
there is a k-perfect Rg-independent set.
(2) If H is a group that acts continuously on X, then there are either < k many or

k-perfectly many orbits.

Proof. A generalization of a standard argument from the countable case [Gao09, Exer-

cise 3.4.2] shows that if H is a k-compact topological space, then Rg is a closed subset
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of X x X. In more detail, let (z,y) € X x X — Rg be arbitrary. Because S is closed, we
can choose for all h € H open sets U, C H and V;, C X x X such that

(hyx,y) eUp, x V; CHX X x X — 8.

By the x-compactness of H, there exists a set I € [H]<" such that H = Uner Un. Then
V = \her Va is an open subset of X x X such that (z,y) € V€ X x X — Rg.

Thus Rg is indeed closed in the case H is k-compact, implying that if H is K, then
Rg is a X9(k) binary relation on X. Thus, item (1) follows from PIF.(2}(x)). Item (2)

is a special case of item (1). O

We now prove the main theorem of this section.

Theorem 4.43 Suppose PIF.(21(k)) holds. Let H C Inj(k), let F be a fragment of
L.+, and let ¢ be a sentence of X1(L,.+,). Suppose that either

(1) H is a K, subset of the k-Baire space, or
(2) H is a K, subset of the product space ("k,tp) and F' C L, +,.

If there are at least kT many pairwise non (F, H)-embeddable models in Mod?, then

there are k-perfectly many such models.

Proof. We start with the proof of item (1). Thus, we assume that H is given the
subspace topology induced by the k-Baire space and X}ﬁ is equipped with the subspace
topology induced by the generalized Cantor space 2.

Define the subset S of H x X% X X? by letting, for any h € H and A, B € Modf,

(h,ip(B),ip(A)) € S iff h witnesses that A is
(F, H)-embeddable into 5.

Then, since F' is closed under substitution and negation, (h,ip(B),irp(A)) € S iff for
all formulas ¢ in F', A |= ¢[id,] implies that B |= ¢[h oidy], or equivalently that B |=
spplidg]. Therefore

S ={(h,y,x) € H x X% X X# : forall ¢ € F, z(p) =1 implies y(spp) = 1}.

Claim 4.56. S is a closed subset of H X Xg X X%.

Proof of Claim 4.56. We prove that the complement U = H X X% X X? — S is open.
Suppose that (h,y,x) € U, or in other words, there exists ¢ € F such that z(p) =1
and y(spp) = 0. Then, since the set A(p) of free variables of ¢ is of size < &, the set
N1 = Npja@p) N H is an open subset of H. Furthermore, h' € Ny implies that for all
S Xﬁ, we have z(sp @) = z(spp). Thus, denoting by Ny and N3 the open subsets of



CEU eTD Collection

132 4. DICHOTOMIES FOR () RELATIONS

X% determined by the conditions z(¢) = 1 and z(spp) = 0, respectively, we obtain an
open neighborhood Ny x Na x N3 of (h,y,x) which is also a subset of U. This completes
the proof of Claim 4.56.

Clearly, the projection Rg of S onto X? X X? is the relation corresponding to (F, H)-
embeddability on ModY (i.e., (ir(B),ir(A)) € Rg iff A is F-embeddable into B by H).
By Corollary 4.51, X% is a X1 (k) subset of the generalized Cantor space ©'2, and H is
a K, topological space by the assumption of item (1). Thus, by Proposition 4.55, we

have the required conclusion.

To see item (2), we equip H with the subspace topology induced by the product
topology tpr on the set "k. As before, X% is given the subspace topology induced by
the generalized Cantor space 2, and the set S is defined as above. Then, using the

assumption F' C L+, of item (2), one can show that
S is a closed subset of the space H x X% X X%.

This can be seen by using the argument in the proof of Claim 4.56 and taking note of
the fact that, since the set of free variables of any ¢ € F' is finite by the assumption
F C L.+, the set denoted by Nj in the proof of Claim 4.56 is an open subset of H even
when the topology on H is inherited from the product space ("k, tp).

Furthermore, H is a K, topological space by the first assumption of item (2), and
X% is a X1(x) subset of the generalized Cantor space £'2 by Corollary 4.51. Therefore

Proposition 4.55 can again be applied to obtain the required conclusion. O

Remark 4.57. Suppose that ® is an arbitrary s-sized subset of L+ .-formulas which
is closed under substitution. For a subset H of “k, consider the models in Mod}f up to
maps h € H which preserve the formulas in ® (i.e., maps h : A — B such that for all
¢ € ® and valuations a € "A, if A = p[a] then B = ¢[h o a]. Note that in this case,
such maps h need not be injective). Using the topology tp, where F' is the fragment
generated by ®, the proof of Theorem 4.43 can be generalized to yield an analogous
statement about the “number of models” up to such maps. This version seems to cover
all natural generalizations of Theorem 4.43.

Specifically, when & is the set of those atomic formulas which do not contain the =
symbol, a map h preserves ® iff it is a homomorphism. Therefore PIF,(21(k)) implies
the following statement: if H is a K, subset of the product space ("k,ty) and there
are at least K+ many models in Modf such that no h € H is a homomorphism from one

into another, then there are k-perfectly many such models.
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In the next corollary, we list some special cases of Theorem 4.43.

Corollary 4.58. Assume PIF,(X1(k)). Suppose that H C Inj(x), and let ¢ be a

sentence of 21 (Ly+,)-

(1) Suppose H is a K,, subset of the product space ("k,tp). If there are at least K+
many patrwise non H-embeddable models in Mod}f, then there is a k-perfect set of
such models.

(2) The above also holds for H-embeddability, as well as (F, H)-embeddability when F'
is either Ly, or LY , and n <w < A < k.

(3) Suppose H is a K, subset of the k-Baire space. Then the same statement holds
for (L, H)-embeddability, where w < p < X < k.

(4) Now, suppose that H is a subgroup of Sym(k) which is K, again in the product
topology tpr. If there are k™ many pairwise non H-isomorphic models in Modf,

then there is a k-perfect set of such models.

Question 4.59. What is the consistency strength of the dichotomies in Proposition 4.55
and Theorem 4.437

In particular, are these dichotomies equiconsistent with the existence of an inacces-
sible cardinal A > k7

Do they imply, or are they equiconsistent with PIF, (X1(x))?
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