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Preface

Limits of �nite structures is a topic that has been rapidly developing over the last two
decades. The common theme of building limiting theories has been present in probability
theory, extremal graph theory and group theory, just to name the areas closest to the scope
of this thesis.

The extremal graph theory side is interested in dense graphs. This line of research was
initiated by Chayes, Borgs, Lovász, T. Sós and Vesztergombi [Bor+08], and through the
works of the aforementioned authors together with Szegedy and Schrijver expanded rapidly
during the mid to late 2000s. A thorough treatment of these results can be found in Large
Networks and Graph Limits by László Lovász [Lov12].

The notion local convergence of sparse graphs was introduced by Benjamini and Schramm
in [BS01]. The consequent notion of unimodularity and the Mass Transport Principle were at
the heart of the hugely in�uential works of Aldous, Benjamini, Lyons, Peres and Schramm.

Convergence of bounded degree graphs has natural connection to the study of �nitely
generated groups. So�c groups were introduced by Gromov and named by Weiss as the
groups that can be approximated by �nite models. It turned out that so�city is really
equivalent to the Cayley graph being a Benjamini-Schramm limit of �nite Schreier graphs
in the labeled sense. Many long standing questions from group theory have been solved
for so�c groups, for example Gottschalk's surjunctivity conjecture by Gromov [Gro99], and
Kaplansky's direct �niteness conjecture by Elek and Szabó [ES04]. Lewis Bowen's work
[Bow10] de�ning so�c entropy and using it to distinguish Bernoulli shifts over free groups
opened up lines of research in dynamics that were widely thought to be inaccessible since the
work of Ornstein and Weiss in the 1980s. It is a central open problem of the �eld whether
all countable groups are so�c or not.

The shared philosophy of all these areas is that the limiting language creates a connection
between the combinatorial nature of the �nite structures and the analytic properties of the
limiting objects. In many cases the tools available for the �nite and in�nite worlds reinforce
each other and lead to surprising results, new notions and interesting questions.

In this thesis we exhibit examples of this approach in the �eld of measured group theory,
where the main objects of interest are probability measure preserving (p.m.p.) actions of
groups. These arise naturally as limiting objects in the sparse graph limit theory.

In Chapter 1 we investigate invariant random subgroups (IRS's) in groups acting on
rooted trees. A random subgroup of a discrete group Γ is said to be an IRS, if its distribution
is invariant with respect to conjugation by elements of Γ.

The limiting behavior takes place between the �nite levels of our tree and its boundary
consisting of in�nite rays. We can connect the ergodic theory of the boundary and the
combinatorics of the group acting on �nite levels. We obtain an understanding of IRS's
under certain branching conditions and �nd interesting new behavior.

To be more precise let Altf (T ) denote the group of �nitary even automorphisms of the
d-ary rooted tree T . We prove that a nontrivial ergodic IRS of Altf (T ) that acts without
�xed points on the boundary of T contains a level stabilizer, in particular it is the random
conjugate of a �nite index subgroup. This resembles a rigidity result on IRS's of higher rank
simple Lie groups [Abé+17].

When one allows �xed points on the boundary the picture becomes more complicated,
but we retain a degree of control over all IRS's. Applying the technique to branch groups we
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PREFACE

prove that an ergodic IRS in a �nitary regular branch group contains the derived subgroup
of a generalized rigid level stabilizer. This in turn resembles a result of Vershik [Ver12] on
the IRS's of FSym(N), the group of permutations of a countable set moving �nitely many
points.

We also prove that every weakly branch group has continuum many distinct atomless
ergodic IRS's. This extends a result of Benli, Grigorchuk and Nagnibeda who exhibit a
group of intermediate growth with this property.

Chapter 1 is based on the preprint [BT18] submitted to Ergodic Theory and Dynamical
Systems. It is joint work with fellow CEU PhD student Ferenc Bencs.

In Chapter 2 we analyze the rank gradient of �nitely generated groups with respect to
sequences of subgroups of �nite index that do not necessarily form a chain. The key tool
here is connecting the notion of cost [Gab00] to the combinatorial cost [Ele07] through the
limiting theory of local-global convergence in Theorem 2.1.1. Our combinatorial argument
gives a semicontinuity result in the in�nite setting.

As an application we generalize several results that were only known for chains before.
In particular, we show that for a �nitely generated group Γ with �xed price c, every Farber
sequence has rank gradient c − 1. Intuitively a sequence of �nite index subgroups (Hn)

is Farber if it approximates the group in the sense that the �nite quotient spaces Γ/Hn

become better and better models of the Cayley graph of Γ locally. By adapting Lackenby's
trichotomy theorem in [Lac05] to this setting, we also show that in a �nitely presented
amenable group, every sequence of subgroups with index tending to in�nity has vanishing
rank gradient. Chapter 2 is based on the preprint [AT17]. It is joint work with my advisor
Miklós Abért.

Chapter 3 reports on ongoing research investigating the distortion function of p.m.p.
actions. The distortion function is a secondary invariant associated to the cost, it was
introduced by Abért, Gelander and Nikolov in [AGN17], who studied it for right angled
groups in order to control the growth of torsion homology along Farber sequences.

This direction of research is a natural extension of Chapter 2. The main di�culty which
prevents us from getting stronger results in Chapter 2 is the fact that even though we might
�nd cheaper and cheaper ways of generating group actions, we have no control over the
increasing complexity, that is the bi-Lipschitz constant. One de�nes the distortion function
to measure this smallest necessary bi-Lipschitz constant when being ε close to the cost.

In Chapter 3 we �rst study how the distortion function relates to weak containment.
The arguments of Abért and Weiss as well as those of Chapter 2 give a monotonicity result,
although one has to take care at the countable set of discontinuity points of our functions.

We then compute the distortion function of actions of Zd. It turns out that these have
di�erent growth types for all d ∈ N. This in particular implies that the distortion function
is not an orbit equivalence invariant.

We also bound the distortion function of all lamplighter groups with �nitely many states
of lamps over in�nite base groups by a logarithmic function.

It is an open problem to exhibit a p.m.p. action of a �nitely generated group with an
exponentially growing distortion function.
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1
Invariant random subgroups of

groups acting on rooted trees

This chapter is based on the preprint [BT18] sumbitted to Ergodic Theory and Dynamical
Systems. It is joint work with Ferenc Bencs.

Abstract

We investigate invariant random subgroups in groups acting on rooted trees. Let
Altf (T ) be the group of �nitary even automorphisms of the d-ary rooted tree T .
We prove that a nontrivial ergodic IRS of Altf (T ) that acts without �xed points
on the boundary of T contains a level stabilizer, in particular it is the random
conjugate of a �nite index subgroup.
Applying the technique to branch groups we prove that an ergodic IRS in a �nitary
regular branch group contains the derived subgroup of a generalized rigid level
stabilizer. We also prove that every weakly branch group has continuum many
distinct atomless ergodic IRS's. This extends a result of Benli, Grigorchuk and
Nagnibeda who exhibit a group of intermediate growth with this property.
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CHAPTER 1

1.1 Introduction

For a countable discrete group Γ let SubΓ denote the compact space of subgroups H ≤ Γ,
with the topology induced by the product topology on {0, 1}Γ. The group Γ acts on SubΓ

by conjugation. An invariant random subgroup (IRS) of Γ is a Borel probability measure on
SubΓ that is invariant with respect to the action of Γ.

Examples include Dirac measures on normal subgroups and uniform random conjugates
of �nite index subgroups. More generally, for any p.m.p. action Γ y (X,µ) on a Borel
probability space (X,µ), the stabilizer StabΓ(x) of a µ-random point x de�nes an IRS of Γ.
Abért, Glasner and Virág [AGV14] proved that all IRS's of Γ can be realized this way.

A number of recent papers have been studying the IRS's of certain countable discrete
groups. Vershik [Ver12] characterized the ergodic IRS's of the group FSym(N) of �nitary
permutations of a countable set. In [Abé+17] the authors investigate IRS's in lattices of
Lie groups. Bowen [Bow12] and Bowen-Grigorchuk-Shavchenko [BGK15] showed that there
exists a large �zoo� of IRS's of non-abelian free groups and the lamplighter groups (Z/pZ)n oZ
respectively. Thomas and Tucker-Drob [TT14; TT18] classi�ed the ergodic IRS's of strictly
diagonal limits of �nite symmetric groups and inductive limits of �nite alternating groups.
Dudko and Medynets [DM17] extend this in certain cases to blockdiagonal limits of �nite
symmetric groups.

In this chapter we study the IRS's of groups of automorphisms of rooted trees. Let T be
the in�nite d-ary rooted tree, and let Aut(T ) denote the group of automorphisms of T .

An elementary automorphism applies a permutation to the children of a given vertex, and
moves the underlying subtrees accordingly. The group of �nitary automorphisms Autf (T ) is
generated by the elementary automorphisms. The �nitary alternating automorphism group

Altf (T ) is the one generated by even elementary automorphisms.
The group Aut(T ) comes together with a natural measure preserving action. The bound-

ary of T � denoted ∂T � is the space of in�nite rays of T . It is a compact metric space with
a continuous Aut(T ) action and an ergodic invariant measure µ∂T .

For some natural classes of groups IRS's tend to behave like normal subgroups. In
[Abé+17] the Margulis Normal Subgroup Theorem is extended to IRS's, it is shown that
every nontrivial ergodic IRS of a lattice in a higher rank simple Lie group is a random
conjugate of a �nite index subgroup. On the other hand, the �nitary alternating permutation
group FAlt(N) is simple, in particular it has no �nite index subgroups, but as Vershik shows
in [Ver12] it admits continuum many ergodic IRS's.

The group Altf (T ) is an interesting mixture of these two worlds. It is both locally
�nite and residually �nite, and all its nontrivial normal subgroups are level stabilizers. The
Margulis Normal Subgroup Theorem does not extend to IRS's, as the stabilizer of a random
boundary point gives an in�nite index ergodic IRS. However, once we restrict our attention
to IRS's without �xed points, the picture changes.

Theorem 1.1.1. Let H be a �xed point free ergodic IRS of Altf (T ), with d ≥ 5. Then H
is the uniform random conjugate of a �nite index subgroup. In other words H contains a
level stabilizer.

Note, that an IRS H is �xed point free if it has no �xed points on ∂T almost surely. In
general let Fix(H) denote the closed subset of �xed points of H on ∂T .
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IRS'S OF GROUPS ACTING ON ROOTED TREES

When we do not assume �xed point freeness IRS's of Altf (T ) start to behave like the
ones in FAlt(N). In the case of FAlt(N), any nontrivial ergodic IRS contains a speci�c
(random) subgroup that arises by partitioning the base space in an invariant random way
and then taking the direct sum of deterministic subgroups on the parts. We proceed to
de�ne a (random) subgroup of Altf (T ) which highly resembles these subgroups.

T

TC T0

T1 T2

T3 T4 T5

Figure 1: Decomposition of T with respect to C

Every closed subset C ⊆ ∂T corresponds to a rooted subtree TC with no leaves. The
complement of TC in T is a union of subtrees T0, T1, . . . as in Figure 1. Choose an integer
mi for each Ti, and let Lmi(Ti) stand for the mth

i level of the tree Ti. We de�ne L
(
C, (mi)

)

to be the direct sum of level stabilizers in the Ti:

L
(
C, (mi)

)
=
⊕

i∈N
StabAltf (T )

(
Lmi(Ti)

)
.

It is easy to see that Fix
(
L
(
C, (mi)

))
= C. We call such an L

(
C, (mi)

)
a generalized

congruence subgroup with respect to the �xed point set C.
Let C̃ be the translate of C with a Haar-random element from the compact group

Alt(T ) = Altf (T ). Then L
(
C̃, (mi)

)
becomes an ergodic IRS of Altf (T ) with �xed point set

C̃.

Theorem 1.1.2. Let H be an ergodic IRS of Altf (T ), with d ≥ 5. Then Fix(H) is the
Haar-random translate of a �xed closed subset C. Moreover, there exists (mi) such that the
generalized congruence subgroup L

(
Fix(H), (mi)

)
is contained in H almost surely.

We can exploit our methods to prove new results on branch groups as well. We postpone
the formal de�nition of branch groups to Section 1.2. The examples to keep in mind are the
groups Autf (T ), Altf (T ) and groups de�ned by �nite automata, such as the �rst Grigorchuk
group G.

In [DG14] Dudko and Grigorchuk show that branch groups admit in�nitely many distinct
atomless (continuous) ergodic IRS's. In the ergodic case being atomless means that the
measure is not supported on a �nite set. In [BGN15] Benli, Grigorchuk and Nagnibeda
exhibit a group of intermediate growth UΛ with continuum many distinct atomless ergodic
IRS's. We are able to �nd continuum many such IRS's in weakly branch groups in general.

Theorem 1.1.3. Every weakly branch group admits continuum many distinct atomless
ergodic IRS's.
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CHAPTER 1

Note that the universal Grigorchuk group UΛ in [BGN15] is not weakly branch, as it is
not transitive on the levels. Nevertheless, by its construction it factors onto branch groups,
which by Theorem 1.1.3 have continuum many distinct atomless ergodic IRS's, and those
can be lifted to distinct IRS's of UΛ. Thus Theorem 1.1.3 gives an alternate proof of the
main result of [BGN15].

A key ingredient in Theorems 1.1.1 and 1.1.2 is to analyze the orbit-closures of IRS's on
∂T . For any subgroup L ≤ Aut(T ) taking the closures of orbits of L gives an equivalence
relation on ∂T , that is L acts minimally on each class. It turns out that nontrivial orbit-
closures of IRS's are necessarily clopen.

Theorem 1.1.4. Let H be an ergodic IRS of a countable regular branch group Γ. Then
almost surely all orbit-closures of H on ∂T that are not �xed points are clopen. In particular
if H is �xed point free, then H has �nitely many orbit-closures on ∂T almost surely.

In a group Γ the rigid stabilizer of a vertex v ∈ V (T ) is the set RstΓ(v) ⊆ Γ of automor-
phisms that �x all vertices except the descendants of v. The rigid stabilizer of the level Ln
is

RstΓ(Ln) =
∏

v∈Ln

RstΓ(v).

In [Gri00, Theorem 4] Grigorchuk showed that nontrivial normal subgroups in branch
groups contain the derived subgroup Rst′Γ

(
Lm(T )

)
for some m ∈ N. Our next theorem can

be thought of as a generalization of this statement for �nitary regular branch groups.
Using the decomposition of T with respect to C above we can de�ne a generalized rigid

level stabilizer L(C,mi) by taking the direct sum of the rigid level stabilizers RstΓ

(
Lmi(Ti)

)

instead of the StabΓ

(
Lmi(Ti)

)
we used before. The next theorem generalizes Theorem 1.1.1

and Theorem 1.1.2 for �nitary regular branch groups.

Theorem 1.1.5. Let Γ be a �nitary regular branch group, and let H be a nontrivial ergodic
IRS of Γ. Then Fix(H) is the Haar-random translate of a closed subset C with an element
from Γ. Also there exists (mi) such that H almost surely contains the derived subgroup
L′
(
Fix(H), (mi)

)
of a generalized rigid level stabilizer. In particular if H is �xed point free,

then H almost surely contains Rst′Γ
(
Lm(T )

)
for some m ∈ N.

Already in the case of Autf (T ) with d = 2 the abelianization of Autf (T ) equals (Z/2Z)N.
This itself gives rise to a lot of IRS's, which makes the following consequence of Theorem
1.1.5 somewhat surprising.

Theorem 1.1.6. All ergodic �xed point free IRS's in �nitary regular branch groups are
supported on �nitely many subgroups, and therefore are the uniform random conjugates of
a subgroup with �nite index normalizer.

One can think of Theorem 1.1.6 as a dual of Theorem 1.1.3. Also note that merely
containing Rst′Γ

(
Lm(T )

)
does not imply �nite index normalizer.

In the Grigorchuk group G the elements are not �nitary. In this case our methods yield
a weaker result on the closures of IRS's.

Theorem 1.1.7. Let Γ be a countable regular branch group, and let H be a nontrivial
ergodic IRS of Γ. Then there exists (mi) such that H contains the derived subgroup
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IRS'S OF GROUPS ACTING ON ROOTED TREES

L′
(
Fix(H), (mi)

)
of a generalized rigid level stabilizer almost surely, where the elements of

the rigid stabilizers in L
(
Fix(H), (mi)

)
can be chosen from Γ instead of Γ.

However, classifying IRS's of the discrete Grigorchuk group G is still open.

Problem 1.1.8. What are the (�xed point free) ergodic IRS's of the �rst Grigorchuk group
G? Is it true, that a �xed point free ergodic IRS of G contains a congruence subgroup almost
surely?

The structure of the chapter is as follows. We introduce the basic notions in Section
1.2 and state some lemmas leading towards Theorem 1.1.4. In Section 1.3 we investigate
the actions of IRS's on the boundary and prove Theorems 1.1.3 and 1.1.4. Section 1.4 is
dedicated to understanding the structure of IRS's in �nitary regular branch groups and
proving Theorem 1.1.5. We show how Theorems 1.1.6 and 1.1.7 follow from our earlier
results in Section 1.5. In the Appendix we prove a few technical details that we postpone
during the exposition.

1.2 Preliminaries

In this section we introduce the basic notions discussed in this chapter. Notation mostly
follows [BG�03], which we recommend as an introduction to automorphisms of rooted trees
and branch groups.

1.2.1 Automorphisms of rooted trees

Let T be a locally �nite tree rooted at o, and let dT denote the graph distance on T . For
any vertex v the parent of v is the unique neighbor u of v with dT (u, o) = dT (v, o) − 1.
Accordingly, the children of u are all the neighbors v of u with dT (v, o) = dT (u, o). Similarly
we use the phrases ancestors and descendants of a vertex v to refer to vertices that can be
reached from v by taking some number of steps towards or away from the root respectively.
The nth level of T is the set of vertices Ln = {v ∈ V (T ) | dT (v, o) = n}.

To e�ectively talk about automorphisms of a rooted tree T one has to distinguish the
vertices. For any vertex v we �x an ordering of the children of v. In the case of the d-
ary tree this corresponds to thinking of T as the set of �nite length words Y ∗ over the
alphabet Y with d letters. The empty word represents the root, and the parent of any word
w1w2 . . . wn is w1w2 . . . wn−1. Being an ancestor of v corresponds to being a pre�x of the
word corresponding to v.

An automorphism of T (which preserves the root) corresponds to a permutation of the
words which preserves the pre�x relation. For an element γ ∈ Aut(T ) and a word w ∈ Y ∗
we denote by wγ the image of w under γ. For a letter y ∈ Y we have (wy)γ = wγy′ where
y′ is a uniquely determined letter in Y . The map y 7→ y′ is a permutation of Y , we refer to
it as the vertex permutation of γ at w and denote it (w)γ.

Considering all the vertex permutations
(
(w)γ

)
w∈Y ∗ gives us the portrait of γ, which

is a decoration of the vertices of T with elements from the symmetric group Sd. In turn
any assignment of these vertex permutations � that is, every possible portrait � gives an
automorphism of T . Note that one has to perform these vertex permutations �from bottom
to top�.
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CHAPTER 1

An automorphism γ is �nitary, if it has �nitely many nontrivial vertex permutations. It
is alternating, if all are from the alternating group Ad.

Let Swr(n)
d denote the n-times iterated permutational wreath product of the symmetric

group Sd. That is, let [d] = {1, . . . , d} and set

S
wr(n)
d = ((Sd o[d] . . .) o[d] Sd) o[d] Sd︸ ︷︷ ︸

n

.

Then Swr(n)
d is isomorphic to the automorphism group of the d-ary rooted tree of depth

n. These groups can be embedded in Aut(T ) as acting on the �rst n levels. The group
Autf is the union of these embedded �nite groups. The full automorphism group Aut(T )

however is isomorphic to the projective limit lim←−S
wr(n)
d with the projections being the natural

restrictions of the permutations.
The groups Altf (T ) and Alt(T ) are in a similar relationship with the �nite groups Awr(n)

d .

1.2.2 The boundary of T

The boundary of T is the set of in�nite paths starting from o, and is denoted ∂T . For two
distinct paths p1 = (u0, u1, . . .) and p2 = (v0, v1, . . .) with un, vn ∈ Ln their distance is
de�ned to be

d∂T (p1, p2) =
1

2k
, where k = max{n | un = vn}.

Two in�nite paths are close it they have a long common initial segment. This distance turns
∂T into a compact, totally disconnected metric space.

The shadow of v on ∂T , denoted by Sh(v) is the set of paths passing through v. Similarly
the shadow of v on Ln is the set ShLn(v) of descendants of v in Ln. The sets Sh(v) form a
basis for the topology of ∂T . De�ne the probability measure µ∂T by setting its value on this
basis:

µ∂T
(
Sh(v)

)
=

1

dn
for every v ∈ Ln.

A µ∂T -random point of ∂T is a random in�nite word (w1w2 . . .) with each letter chosen
uniformly from the set Y .

As γ ∈ Aut(T ) permutes the vertices, it induces a bijection on ∂T , so we have an action
of Aut(T ) on ∂T . This action is by isometries and preserves the measure µ∂T .

The objects in relation of the tree considered in here include vertices v ∈ V (T ), points
x ∈ ∂T , closed subsets C ⊆ ∂T and later 3-colorings of the vertices ϕ : V (T ) → {r, g, b}.
For any such object z let zγ denote its translate by γ.

1.2.3 Topology on Aut(T )

We equip Aut(T ) with the topology of pointwise convergence. This can be metrized by the
following distance:

dAut(T )(γ1, γ2) =
1

2k
, where k = max{n | γ1|Ln = γ2|Ln}.

Two automorphisms are close if they act the same way on a deep level of T . This metric
turns Aut(T ) into a compact, totally disconnected group.
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IRS'S OF GROUPS ACTING ON ROOTED TREES

The action Aut(T ) y ∂T is continuous in the �rst coordinate as well. For any subgroup
H ≤ Aut(T ) the set Fix(H) is closed in ∂T , and similarly for any set C ⊆ ∂T its pointwise
stabilizer StabΓ(C) is closed in Aut(T ).

For a subgroup Γ ≤ Aut(T ) its closure Γ is a closed subgroup of Aut(T ), and therefore
it is compact. We note that Autf (T ) = Aut(T ) and Altf (T ) = Alt(T ). Even though the
groups Γ we are considering are discrete, their closures in Aut(T ) always carry a unique
Haar probability measure.

For any object z in relation to the tree we write z̃ for its Haar random translate, that is
zγ where γ ∈ Γ is chosen randomly according to the Haar measure.

1.2.4 Fixed points and orbit-closures in ∂T

We aim to understand the IRS's of Γ through their actions on ∂T . The �rst step is to look
at the set of �xed points. The boundary (∂T, d∂T ) is a compact metric space, so let (C, dH)

denote the compact space of closed subsets of ∂T with the Hausdor� metric.

Lemma 1.2.1. The map H 7→ Fix(H) is a measurable and Γ-equivariant map from SubΓ

to (C, dH).

Equivariance is trivial, while the proof of the measurability is a standard argument. We
postpone it to the Appendix.

Lemma 1.2.1 implies that the �xed points of the IRS constitute a Γ-invariant random
closed subset of ∂T . We will also consider the orbit-closures of the subgroup on ∂T . For
a subgroup H ≤ Aut(T ) let OH denote the set of orbit-closures of the action H y ∂T . It
is easy to see that OH is a partition of ∂T into closed subsets. Note that all �xed points
are orbit-closures. Denote by O the space of all possible orbit-closure partitions on ∂T , i.e.
O = {OH | H ≤ Aut(T )}. This O is a subset of all the possible partitions of ∂T .

As earlier, we would like to argue that the map H 7→ OH is a measurable map, with
respect to the appropriate measurable structure on O. This allows us to associate to our
IRS a Γ-invariant random partition (into closed subsets) of ∂T . We will then analyze these
invariant random objects on the boundary.

To this end we introduce a metric on the space O. Denote by OH,Ln the partition of Ln
into H-orbits. As Ln is �nite, there is no need to take closure here.

De�nition. Let P = OH ∈ O be the orbit-closure partition of H and n ∈ N. Then let Pn
be the orbit-structure of H on Ln, i.e.

Pn = OH,Ln .

For P 6= Q ∈ O let

dO(P,Q) = min
n∈N

{
1

2n
∣∣ Pn = Qn

}
.

Observe that if Pn = Qn, then Pn−1 = Qn−1, so the above distance measures how deep
one has to go in the tree to see that two partitions are distinct. This de�nition turns (O, dO)

into a metric space. To check that distinct points cannot have zero distance we argue that if
x = (v0, v1, . . .) and y = (u0, u1, . . .) are two rays such that vn and un are in the same orbit
in Ln for all n, then y is indeed in the closure of the orbit of x.

The group Aut(T ) acts on O in a natural way by shifting the sets of the partition. The
resulting partition is again in O because (OH)γ = OHγ for γ ∈ Aut(T ).
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CHAPTER 1

Lemma 1.2.2. The map H 7→ OH is measurable and Γ-equivariant.

Again, equivariance is obvious, and measurability is proved in the Appendix.

1.2.5 Invariant random objects on ∂T

Now we study invariant random closed subsets and partitions on the boundary. We show
that the invariance can be extended to Γ, which carries a Haar measure. Ergodic objects
turn out to be random translates according to this Haar measure.

Lemma 1.2.3. Every Γ-invariant random closed subset of ∂T is in fact Γ-invariant. Similarly
a Γ-invariant random P ⊆ O is Γ-invariant.

Proof. Let P (C) denote the set of probability measures on C. The action of Γ on ∂T gives
rise to a translation action on (C, dH), which in turn gives rise to an action on P (C).

We claim that this action Γ×P (C)→ P (C) is continuous in both coordinates with respect
to the pointwise convergence topology on Γ and the weak star topology on P (C).

The weak topology on P (C) is metrizable by the Lévy - Prokhorov metric, which is
de�ned as follows:

π(µ, ν) = inf{ε > 0 | µ(A) ≤ ν(Aε) + ε, and ν(A) ≤ µ(Aε) + ε for all A ⊆ C Borel}.

Here Aε denotes the set elements of C with dH distance at most ε from A.
If γ1 and γ2 agree on the �rst n levels of T , then for every x ∈ ∂T we have d(γ1x, γ2x) ≤

1/2n. This implies, that for a compact set C ∈ C we have

dH(γ1C, γ2C) ≤ 1/2n.

This in turn implies that for all A ⊆ C Borel we have γ1A ⊆ γ2A
1/2n and vice versa.

This means, that
(
(γ1)∗µ

)
(A) = µ(γ−1

1 A) ≤ µ(γ−1
2 A1/2n) =

(
(γ2)∗µ

)
(A1/2n), so as

a consequence π
(
(γ1)∗µ, (γ2)∗µ

)
≤ 1/2n. That is, the action is continuous in the �rst

coordinate.
Continuity in the second coordinate is an easy exercise, as it turns out that the elements

of Γ act by isometries on (∂T, d∂T ), (C, dH) and
(
P (C), π

)
respectively.

As Γ is a dense subset of Γ, by continuity we can say that if some µ ∈ P (C) is Γ-invariant
then it is also Γ-invariant, thus proving the statement for invariant random closed subsets.

The proof for invariant random partitions follows the exact same steps after substituting
(C, dH) with (O, dO) everywhere.

Remark. The fact that the same lemma holds with the same proof for closed subsets and
partitions is not a coincidence. A closed subset C can be thought of as a partition into the
two sets C and Cc (the complement might not be closed). While it is not generally true that
this partition is in O � it might not arise as an orbit-closure partition of some H ⊆ Aut(T )

� but it still can be approximated on the �nite levels. Indeed de�ne Cn to be the set of
vertices v on Ln with Sh(v) ∩ C 6= ∅. The Cn correspond to the (1/2n)-neighborhoods of
C in ∂T , and so the Hausdor� distance of closed subsets coincides with the distance dO we
could de�ne using these Cn.

Lemma 1.2.4. Any ergodic Γ-invariant random closed subset of ∂T is the γ translate of
a �xed closed subset C, where γ ∈ Γ is a uniform random element chosen according to
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IRS'S OF GROUPS ACTING ON ROOTED TREES

the Haar measure. Similarly an ergodic Γ-invariant partition from O is the Haar-random
translate of some �xed P ∈ O.

Proof. We introduce an equivalence relation on closed subsets of ∂T : we say that C1 ∼ C2

if and only if there is an automorphism γ ∈ Γ such that Cγ1 = C2. Let [C] denote the
equivalence class of C.

De�ne the following metric on equivalence classes that measures how well one can overlap
two arbitrary sets from the classes:

d([C1], [C2]) = min
γ∈Γ
{dH(Cγ1 , C2)}.

The minimum exists by compactness of Γ, and standard arguments using the fact that
Γ acts by isometries on (C, dH) show that this is well de�ned and indeed a metric.

The function C → [C] is measurable (in fact continuous) and Γ-invariant, hence it is
almost surely a constant by the ergodicity of the measure.

In other words the measure is concentrated on one equivalence class, say [C]. However
[C] is a homogeneous space of Γ, i.e. the action of Γ on [C] is the same as Γ y Γ/StabΓ(C).
StabΓ(C) is a closed and therefore compact subgroup of Γ, and as such Γ/StabΓ(C) carries a
unique invariant measure. Of course picking a random translate of C is an invariant measure,
so the two must coincide.

The result for partitions again follows word for word, by writing P for C and (O, dO) for
(C, dH) everywhere.

Remark. A way to put the previous lemmas into a general framework is the following: let
G be a metrizable compact group acting continuously on a compact metric space (X, d) and
let Γ ≤ G be a dense subgroup. Then any Γ-invariant measure on X is also G-invariant.
Moreover if the metric d is G-compatible, then any ergodic Γ-invariant measure on X has
the distribution of a random G-translate of a �x element in X.

If the IRS H ≤ Γ is ergodic, then so is the associated invariant random closed subset.
This means that Fix(H) is the random translate of a �xed closed subset C. Similarly OH is
the random translate of some partition P .

1.2.6 Branch Groups

For a vertex v of T let Tv denote the induced subtree of T on v and its descendants. We denote
by StabΓ(v) the stabilizer of v in Γ. Every γ ∈ StabΓ(v) acts on Tv by an automorphism,
which we denote γv. Then Uv = {γv | γ ∈ StabΓ(v)} is a subgroup of Aut(Tv). Uv is the
group of automorphisms of Tv that are realized by some element of Γ.

The trees we are considering are regular, so Tv is canonically isomorphic to T . (The
isomorphism preserves the ordering of the vertices on each level. If we think of the vertices
as �nite words over a �xed alphabet, then this isomorphism just deletes the initial segment
of each word in Tv.) This identi�cation of the trees allows us to compare the action of G
on T to the action of Uv on Tv. In particular we say that Γ is a self-similar group, if Uv is
equal to G for all v ∈ V (T ) (under the above identi�cation of the trees they act on).

For a vertex v ∈ V (T ) let RstΓ(v) denote the rigid stabilizer of v, that is the subgroup of
elements of Γ that �x every vertex except the descendants of v. Clearly RstΓ(v) ≤ StabΓ(v).
For a subset of vertices V ⊆ Ln the rigid stabilizer of the set is RstΓ(V ) =

∏
v∈V RstΓ(v).
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CHAPTER 1

Throughout the chapter we will be able to prove statements in varying levels of generality,
so we introduce several notions of branching. In all cases we assume Γ to be transitive on all
levels. We say that Γ is weakly branch, if all rigid vertex stabilizers RstΓ(v) are nontrivial.
We say that the group Γ is branch, if for all n the rigid level stabilizer RstΓ(Ln) is a �nite
index subgroup of Γ. Finally we de�ne regular branch groups.

De�nition. Suppose the self-similar group Γ has a �nite index subgroup K. The group Kd

is a subgroup of Aut(T ), each component acting independently on Tvi where {v1, . . . , vd} are
the vertices on L1. We say that Γ is a regular branch group over K, if K contains Kd as a
�nite index subgroup.

In self-similar groups the action on any subtree Tv is the same as on T , however for some
v1, v2 ∈ Ln we might not be able to move Tv1 and Tv2 independently. This independence
(up to �nite index) is what we required in the de�nition above. The following lemma is
straightforward and we leave the proof to the reader.

Lemma 1.2.5. Having �nite index and being a direct product remains to be true after
taking closures:

1. Let K ⊆ Γ be a subgroup of �nite index. Then K is a �nite index subgroup of Γ;

2. K × · · · ×K︸ ︷︷ ︸
d

= K × · · · ×K︸ ︷︷ ︸
d

.

1.3 Fixed points and orbit-closures of IRS's

In this section we prove Theorems 1.1.3 and 1.1.4. To a closed subset C on the boundary
one can associate two natural subgroup of Γ, the pointwise stabilizer of C and the setwise
stabilizer of C. The pointwise stabilizer gives us a big �zoo� of IRS's when we choose C as a
Γ-invariant closed subset, proving Theorem 1.1.3. The setwise stabilizer will play a key role
in the proof of Theorem 1.1.4.

In order to investigate these stabilizers we introduce a coloring to encode C on the tree
T . The coloring will help analyzing the Haar random translate C̃.

1.3.1 Closed subsets of the boundary

To every closed subset of the boundary C ⊆ ∂T we associate a vertex coloring ϕ : V (T ) →
{r, g, b} with 3 colors: red, green and blue. If a vertex has its shadow completely in C, then
color it red. If it has its entire shadow in the complement of C, then color it blue. Otherwise
color it green.

ϕ(v) =





r, if Sh(v) ⊆ C;

b, if Sh(v) ∩ C = ∅;
g, otherwise.

All descendants of a red vertex are red, and similarly all descendants of blue vertices are
blue. On the other hand all ancestors of a green vertex are green.

C being clopen is equivalent to saying that after some level all vertices are either red or
blue. So if C is not clopen, then there are green vertices on all the levels. Using König's
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IRS'S OF GROUPS ACTING ON ROOTED TREES

lemma we see that there is an in�nite ray with vertices colored green. This ray corresponds
to a boundary point of C. As the complement of C is open, we get that every vertex on this
in�nite ray has a blue descendant.

Lemma 1.3.1. Let Γ ⊆ Aut(T ) be a group of automorphisms that is transitive on every
level. Let ϕ : V (T )→ {r, g, b} be a vertex coloring with the colors red, green and blue, and
suppose it satis�es the above properties, namely:

1. descendants of red and blue vertices are red and blue respectively;

2. ancestors of green vertices are green; (This formally follows from 1.)

3. there is an in�nite ray (u0, u1, . . .) of green vertices such that for each ui there exists
some descendant of ui which is blue.

Then ϕ has in�nitely many Γ-translates.

Proof. The root u0 is colored green. It has a blue descendant, say on the level n1. We
denote this blue descendant wn1 . By the transitivity assumption there is some γ1 ∈ Γ, such
that γ1(wn1) = un1 . Furthermore, un1 has a blue descendant, on some level n2, we denote
it wn2 . We choose γ2 ∈ Γ such that γ1(wn1) = un1 , and so on. One can easily check, that
moving ϕ with the di�erent γi yields di�erent colorings. Indeed ϕγi(unj ) = g for all j < i,
and ϕγi(uni) = b, and this shows that the ϕγi are pairwise distinct. See Figure 2.

ϕ

u0

un1

un2

un3

wn1

wn2

wn3

ϕγ1

u0

un1

ϕγ2

u0

un1

un2

ϕγ3

u0

un1

un2

un3

Figure 2: Distinct colorings

Corollary 1.3.2. Let Γ and ϕ be as in Lemma 1.3.1. Then the uniform (Haar) random
Γ-translate of ϕ is an atomless measure on the space of all 3-vertex-colorings.

Proof. If there was some translate ϕg, g ∈ Γ which occurred with positive probability, then
all its Γ-translates would occur with the same positive probability. Furthermore ϕg would
also satisfy the assumptions of Lemma 1.3.1, which then implies that it has in�nitely many
Γ-translates, and they would have in�nite total measure, which is a contradiction.

Corollary 1.3.3. If C is not clopen, then its random Γ-translate C̃ is an atomless measure
on (C, dH).

22

C
E

U
eT

D
C

ol
le

ct
io

n



CHAPTER 1

1.3.2 Continuum many distinct atomless ergodic IRS's in

weakly branch groups

Proof of Theorem 1.1.3. We argue that for any closed subset C ⊆ ∂T the random
subgroup StabΓ(C̃) is an ergodic IRS. This follows from C̃ being an ergodic invariant random
closed subset.

We also claim that if [C1] 6= [C2], then the corresponding IRS's are distinct. To prove
this we �rst observe that in weakly branch groups taking the stabilizer StabΓ(C) of a closed
subset C, and then looking at the �xed points of that subset we get back C.

Lemma 1.3.4. For any C ⊆ ∂T closed we have Fix
(
StabΓ(C)

)
= C.

Proof. The key idea � present in [BGN15, Proposition 8] and earlier works credited there �
is to show, that for any x /∈ C, with x = (u0, u1, . . .) we can �nd some n large enough such
that Sh(un) ∩ C = ∅, and some γ ∈ RstΓ(un) with xγ 6= x.

Indeed such an n exists as the complement of C is open. By weak branching there exists
some γ0 ∈ RstΓ(un) moving some descendant of u denoted v to v′ 6= v on Lm, m ≥ n. By
transitivity we can �nd some η ∈ StabΓ(un) with v = uηm. Now uηγ0η

−1

m = (v′)η
−1 6= um, so

γ = ηγ0η
−1 ∈ RstΓ(un), and xγ 6= x as witnessed on Lm.

As Sh(un) ∩ C = ∅ we have RstΓ(un) ⊆ StabΓ(C). The existence of γ shows that
x /∈ Fix

(
StabΓ(C)

)
, which implies Fix

(
StabΓ(C)

)
⊆ C, which is the nontrivial inclusion.

To show that [C1] 6= [C2] implies that StabΓ(C̃1) and StabΓ(C̃2) distinct simply consider
the function H 7→ [Fix(H)] on ergodic IRS's. Using Lemma 1.3.4 we have

[
Fix
(
StabΓ(C̃1)

)]
= [C̃1] = [C1].

This implies that the constructed IRS are distinct. By Corollary 1.3.3 we know that if
C is not clopen then C̃ is atomless. Then Lemma 1.3.4 implies that StabΓC̃ is an atomless
IRS.

There are continuum many non-Γ-equivalent closed (but not clopen) subsets of ∂T , as
one can construct a closed subset Cr with µ∂T (Cr) = r for any r ∈ [0, 1], and if r is irrational
then C is not clopen.

1.3.3 Random colorings in regular branch groups

We proceed to prove a stronger versions of Corollary 1.3.2 for the case when the group is
regular branch.

Let Γ be a regular branch group over K. Consider the �nite index subgroup Kdn ≤
StabΓ(Ln) = ∩v∈LnStabΓ(v), and let {t1, . . . , tl} be a transversal to Kdn in Γ. We can think
of a random element γ of Γ as γ = γ0 · k, where γ0 is chosen uniformly from the transversal
and k is chosen according to the Haar measure on Kdn .

Take ϕ to be a 3-vertex-coloring as in Lemma 1.3.1. Let ϕ̃ = ϕγ denote the translate
of ϕ by the Haar random group element γ. Conditioning on γ0 = ti we get a conditional
distribution (ϕ̃|γ0 = ti). Note that this random coloring is always the same up to the
nth level, and ti already determines where the random translate of the in�nite green ray
(u0, u1, . . . ) intersects Ln, namely at v = utin .

Lemma 1.3.5. The restriction of the random coloring (ϕ̃|γ0 = ti) to Tv is atomless.

23

C
E

U
eT

D
C

ol
le

ct
io

n



IRS'S OF GROUPS ACTING ON ROOTED TREES

Proof. The coloring ϕti restricted to Tv satis�es the assumptions of Lemma 1.3.1. Hence
its Γ-orbit is in�nite. As K is �nite index in Γ, its K orbit is also in�nite. Hence when it
is randomly translated with an element from K (corresponding to v in K

dn
) the resulting

random coloring is atomless.

Lemma 1.3.6. Fix any isomorphism f : V (Tv) → V (Tv′) between Tv and Tv′ for some
v′ ∈ Ln. Then the probability that f respects the colorings we get by restricting (ϕ̃|γ0 = ti)

to Tv and Tv′ respectively is 0.

P
[(

(ϕ̃|γ0 = ti)|Tv
)f

= (ϕ̃|γ0 = ti)|Tv′
]

= 0.

Proof. The restricted colorings ϕti |Tv and ϕti |Tv′ are translated by the random elements
k1, k2 ∈ K respectively. These k1 and k2 are independent since they are two coordinates of
a Haar random element from K

dn
. Furthermore we know from Lemma 1.3.5 that (ϕti |Tv)k1

is atomless, and hence
(
(ϕti |Tv)k1

)f is also atomless. This together with the independence
of k1 and k2 implies that

P
[(

(ϕti |Tv)k1
)f

= (ϕti |Tv′ )
k2
]

= 0.

1.3.4 Proof of Theorem 1.1.4

The idea of the proof is to show that taking the setwise stabilizer of a Haar random translate
C̃ of a closed but not clopen subset C has a �xed point in C̃. With some considerations one
can apply this to the orbit-closures of H, which are setwise stabilized by H.

Proposition 1.3.7. Let Γ be a countable regular branch group over K. Suppose C is a
closed subset of ∂T . Consider the IRS L ≤ Γ obtained by taking the setwise stabilizer of
C̃, which is the uniform Γ-translate of C. If C is not clopen, then L has a �xed point in C̃
almost surely.

Proof. Associate the coloring ϕ : V (T ) → {r, g, b} to C as before: vertices with shadows
contained in C are colored red, vertices with shadows in the complement are colored blue,
everything else is colored green. As automorphisms move the set C the coloring moves with
it.

Choose a point x0 ∈ ∂T which is on the boundary of C, that is x0 ∈ C \ int(C). Being
a boundary point means that every vertex on the path (u0, u1, . . .) corresponding to x0 is
green, and we can �nd a blue vertex among the descendants of ui for all i.

Let C̃, ϕ̃ and x̃0 denote the uniform random translates of C, ϕ and x0 respectively.
Fix an element η ∈ Γ. We will study the probability that η stabilizes C̃ and does not �x

x̃0, and conclude that it is 0. If η stabilizes C̃ then it preserves ϕ̃.
First assume η is �nitary, that is we can �nd a level n with vertices Ln = {v1, . . . , vdn}

such that η moves the subtrees Tvi hanging o� the nth level rigidly. The condition that x̃0

is moved has to be witnessed on Ln. Assume v1, . . . , vl are moved by η and vl+1, . . . , vdn are
�xed.

Let us assume that ϕ̃ is preserved by η, and the ray corresponding to x̃0 is moved by η.
Then x̃0 ∩Ln = vi for some i ≤ l with vj = ηvi 6= vi. Conditioning on this vi we are looking
for the probability that (ϕ̃|Tvi )

η = ϕ̃|Tvj . However, as the colorings are uniform random
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translates on Tvi and Tvj respectively, the probability of the coloring appearing in the exact
same way under two points is 0. In the case of Γ = Altf (T ) this is an easy consequence of
Corollary 1.3.2. There are �nitely many choices of vi, so the probability of moving x̃0 while
stabilizing C̃ is 0.

As Γ is countable this means that with probability 1 the whole setwise stabilizer of C̃
�xes x̃0.

In the general case when Γ is a regular branch group we condition on γ0 = ti as in
Lemma 1.3.6, and with f the canonical isomorphism between Tvi and Tvj we conclude that
the conditional probability of η preserving (ϕ̃|γ0 = ti) is 0. There are �nitely many choices
for ti, so again we conclude that the probability of moving x̃0 while stabilizing C̃ is 0.

When η is not �nitary there are two points where the above argument fails:

i) the trees Tvi are not moved rigidly;

ii) the nth level might not witness that x̃0 is moved by η.

Notice however that i) is not a real problem as we have �xed η and this �xes an isomor-
phism between Tvi and Tvj . The full generality of Lemma 1.3.6 (with f = η|Tvi→Tvj ) ensures
that the probability of randomizing η-compatible colorings for Tvi and Tvj is 0 even if γ is
not �nitary.

To work our way around ii) we notice that the probability of x̃0 being moved by η but this
not being witnessed on Ln tends to 0 as n→∞. The set of �xed points of η is the decreasing
intersection of the shadows of its �xed points on the �nite levels. So the probability of x̃0

being in the shadow of the �xed points of Ln but outside Fix(η) converges to 0. This means
that repeating the argument for all n ∈ N we get P[η moves x̃0, but preserves ϕ̃] = 0.

Proof of Theorem 1.1.4. By ergodicity and Lemma 1.2.4 we know that there exists a
P ∈ O, such that P̃ has the same distribution as OH . Let us choose a closed set C which is
not a single point from the partition P . We aim to use Proposition 1.3.7 to conclude that
C is clopen. For that we will couple H and C̃ such that H ≤ L holds almost surely, where
L is the setwise stabilizer IRS of C̃. Then H moving all points of C implies the same for L,
which then through Proposition 1.3.7 implies that C is clopen.

Let X = (P,C) ∈ O×C. Consider the diagonal action of Γ on O×C. Let X̃ be the Haar
random translate of X. This way we obtained that the �rst coordinate of X̃ has the same
distribution as OH , the second coordinate has the same distribution as C̃, and the second
coordinate is always a closed subset in the partition given by the �rst coordinate.

Now we use the transfer theorem (see Theorem 6.10. of [Kal02]) to obtain a random

element CH of C, such that (OH , CH)
d
= X̃. The �rst coordinate of X̃ always contains the

second, therefore CH ∈ OH and clearly CH
d
= C̃. Choosing L to be the setwise stabilizer of

CH concludes the proof.

1.4 IRS's in regular branch groups

Our goal is to understand all IRS's H of Γ. Let C̃ = Fix(H). Lemmas 1.2.3 and 1.2.4 tell
us that C̃ is the γ translate of a �xed closed subset C ⊆ ∂T , where γ ∈ Γ is Haar random.
First we exhibit some concrete examples which are worth to keep in mind and to motivate
the decomposition of the tree in Subsection 1.4.2. We study the action of H on the parts
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in Subsection 1.4.3. The last two subsections contain the proof of the main theorem of this
chapter.

1.4.1 Examples

We show a few examples to keep in mind. For simplicity let d = 5, and Γ = Altf (T ).
Recall that in this group the normal subgroups are the level stabilizers StabΓ(Ln), and the
quotients are the �nite groups Awr(n)

d .

Example 1.4.1. Pick n ∈ N, and a �nite subgroup L ≤ A
wr(n)
d . Let L̃ be the uniform

random conjugate of L in A
wr(n)
d , and H be the preimage of L̃ under the quotient map,

that is H = L̃ · StabΓ(Ln). Then H is an ergodic �xed point free IRS of Γ. Note that this
construction also works if G is only eventually d-ary, i.e. vertices on the �rst few levels might
have di�erent number of children.

Theorem 1.1.1 states that all ergodic �xed point free IRS of Altf (T ) are listed in Example
1.4.1. We give a very broad outline of the proof for this case in the hope that it makes the
subsequent proof of the stronger Theorem 1.1.5 more transparent and motivates Proposition
1.4.6 that we state beforehand.

Outline of proof of Theorem 1.1.1. By Theorem 1.1.4 we know that an ergodic �xed
point free IRS H has �nitely many clopen orbit-closures on the boundary. A deep enough
level Lk0 witnesses this partition into clopen sets, and H acts transitively on the di�erent
parts on each Ln with n ≥ k0.

This means that we can �nd �xed elements supported above some level Lk (k ≥ k0)
generating the orbits on Lk0 that are in H with positive probability. In the �nite groups
A

wr(n)
d (with n ≥ k ) this property translates to having a �xed subgroup L containing many

conjugates of �xed elements. One can show that if n is su�ciently large this implies L
containing a whole level stabilizer Stab

A
wr(n)
d

(Lm) for some m ≥ k which does not depend

on the choice of n.
Using that Altf (T ) is the union of the Awr(n)

d with some additional analysis of ergodic
components one can show that actually H contains StabAltf (T )(Lm) almost surely.

Example 1.4.2. Pick a random point x ∈ ∂T , this will be the single �xed point of the IRS
H. Deleting the edges of the ray (u0, u1, . . .) corresponding to x from T we get in�nitely
many disjoint trees, where the roots un have degree 4, while the rest of the vertices have 5

children. Pick any �xed point free IRS for each of these trees as in example 1.4.1, randomize
them independently and take their direct sum to be H. This construction works with other
random �xed point sets instead of a single point as well.

Example 1.4.3. A modi�cation of the previous example is the following. Let x ∈ ∂T be
random as before, and do the exact same thing for all the trees hanging of the ray (u0, u1, . . .)

except for the �rst two, T1 and T2 rooted at u0 and u1 respectively. The �nitary alternating
automorphism groups of these trees are Altf (T ) oA4. Now pick an (ergodic) �xed point free
IRS of the �nitary alternating and bi-root-preserving automorphism group of T1∪T2, which is
(Altf (T )oA4)×(Altf (T )oA4), and use this to randomize H on T1∪T2. We will show that this
is di�erent from the previous examples. When we pick an IRS of (Altf (T )oA4)×(Altf (T )oA4)

we pick some n ∈ N, assume that the stabilizers of the nth levels in T1 and T2 are in the
IRS, and pick a random conjugate of some L ≤ (Altf (T ) o A4) × (Altf (T ) o A4) to extend
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the stabilizer. If we pick for example L =
{

(γ, γ) | γ ∈ (Altf (T ) o A4)}, then the IRS we
construct will not be the direct product of IRS's on the two components, because the �top�
parts of the subgroups are coupled together. Taking a random conjugate of L makes the
coupling random as well, but nonetheless in every realization of H there is some nontrivial
dependence between the actions of H on T1 and T2.

1.4.2 Decomposition of T

The set of �xed points C̃ corresponds to a subtree T
C̃
, which is the union of all the rays

corresponding to the points of C̃. All elements of H �x all vertices of the tree T
C̃
, so

understanding H requires us to focus on the rest of T .
We will decompose T according to the subtree T

C̃
. Note that the following decomposition

is slightly di�erent to the one in the introduction as it is easier to work with.
On Ln denote the set of �xed vertices Fn = V (T

C̃
) ∩ Ln. Remove all edges E(T

C̃
) from

T , the remaining graph T ′ is a union of trees.

T

T
C̃ T̃0 T̃1 T̃2

Figure 3: Decomposition of T with respect to C̃

Let T̃0 be the connected component of T ′ containing the root of T . In other words it is
the tree starting at the root in T ′. In general let T̃n be constructed as follows. The �rst n
levels on T̃n will be the same as the �rst n levels of T

C̃
, and beyond that select the connected

components of T ′ containing the vertices of Fn. The vertices of T̃n are exactly the vertices
of T that can be reached from the root by taking n steps in T

C̃
and then some number of

steps in T ′. See Figure 3.
The boundary ∂T decomposes as well. Clearly ∂T

C̃
= C̃, and

∂T = C̃ ∪ ∂T̃0 ∪ ∂T̃1 ∪ . . .

Each ∂T̃i is H-invariant, and a clopen and therefore compact subset of ∂T . It is the
union of clopen orbit-closures from OH because of Theorem 1.1.4, so it is the union of �ntely
many.

In the remaining part of this section we will prove that for any C ∈ OH there exists some
number m∗ ∈ N and a subset Cm∗ ⊆ Lm∗ with Sh(Cm∗) = C such that Rst′Γ(Cm∗) ≤ H.
This m∗ does not depend on the realization of OH , only on the equivalence class [C].
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IRS'S OF GROUPS ACTING ON ROOTED TREES

Using this for the �nitely many orbit-closures that constitute ∂T̃i and taking a maximum
yields that for some mi ≥ i we have Rst′Γ

(
Lmi(T̃i)

)
⊆ H. Knowing this for all i yields

⊕

i∈N
Rst′Γ

(
Lmi(T̃i)

)
⊆ H,

which is equivalent to the statement of Theorem 1.1.5.

1.4.3 The action of H on the T̃i

Before we turn to proving Theorem 1.1.5 we argue that all IRS's resemble the previous
examples in the sense that their projections on the T̃n are �xed point free IRS's in StabΓ(T̃n).

While the T̃n are random, the isomorphism type of each T̃n is always the same because of
ergodicity, and T̃n can appear in �nitely many Γ-equivalent ways in T . Let T 1

n , T
2
n , . . . T

l(n)
n

denote the possible realizations of T̃n, and note that P[T̃n = T in] is the same for all i ∈
{1, . . . , l(n)}.

Let ϕn : H → StabΓ(T̃n) denote the restriction function:

ϕn(h) = h|
T̃n
.

The function ϕn is also random, but it only depends on T̃n, so once we condition H on
T̃n the function ϕn is well de�ned.

Proposition 1.4.4. The random subgroup ϕn
(
(H | T̃n = T in)

)
is a �xed point free IRS in

StabΓ(T in).

Proof. For a �xed subgroup L ≤ Γ let Tn(L) denote the deterministic subtree de�ned the
same way as T̃n was for H. The set {L ≤ Γ | Tn(L) = T in} is invariant under the conjugation
action of StabΓ(T in) ≤ Γ, so the invariance of the random subgroup H implies the invariance
of the conditioned subgroup (H | T̃n = T in). This IRS is �xed point free because all �xed
points of H are in T

C̃
.

Remark. One might be tempted to prove the more general Theorem 1.1.5 by �rst proving
the more transparent �xed point free case and then using Proposition 1.4.4 on the individual
subtrees, where H acts �xed point freely. However, we do not see this approach to work.
Instead with some mild additional technical di�culties we present the proof for the more
general case.

1.4.4 IRS's in �nite subgroups of Γ

Let Γn stand for the elements of Γ that only have nontrivial vertex permutations above Ln.

Lemma 1.4.5. For n large enough we have [Γn : (K ∩ Γn)] ≤ [Γ : K].

Proof. Fix a transversal for K. All elements in the transversal are �nitary, so choose n
such that all are supported above Ln. Then the translates of (K ∩ Γn) with this transversal
cover Γn.

Let γ ∈ Γ, and v ∈ Lk. The section of γ at v is the automorphism [γ]v we get by
restricting the portrait of γ to the rooted subtree Tv consisting of v and its descendants. That
is, the vertex permutations of [γ]v are (u)γ for every u ∈ Tv and the identity permutation
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otherwise. We think of [γ]v as the automorphism on Tv carried out by γ before all the vertex
permutations above the level Lk take place.

Suppose s ∈ Γk, and let L ⊆ Γn where k < n. Let L̃ denote the uniform random Γn-
conjugate of L, which is an IRS of Γn. Furthermore, assume that P[s ∈ L̃] ≥ c > 0, which is
equivalent to ∣∣{γ ∈ Γn | sγ ∈ L}

∣∣
|Γn|

≥ c.

Let R ⊆ Γn be a transversal for the subgroup RstΓn(Lk). By choosing the optimal one,
we can �nd γ̄ ∈ R such that

∣∣∣
{

(σv1 , . . . , σvdk ) ∈ RstΓn(Lk)
∣∣ sγ̄(σv1 ,...,σvdk

) ∈ L
}∣∣∣

|RstΓn(Lk)|
≥ c. (1.1)

Here (σv1 , . . . , σvdk ) stands for the element of RstΓn(Lk) that pointwise �xes Lk, and has
sections σvi ∈ RstΓn(vi) at the vertices vi ∈ Lk.

Let s̄ = sγ̄ , and let the cycles of s̄ on Lk be C1, . . . , Cr and let Ci = (ui1u
i
2 . . . u

i
l(i)),

l(i) denotes the length of the cycle Ci, and s̄(uij) = uij+1. We use the convention that
uil(i)+1 = ui1. Assume that l(1) ≥ l(2) ≥ . . . ≥ l(r) and let t be the largest index for which
l(t) ≥ 3. Then C = C1 ∪ . . . ∪ Ct ⊆ Lk is the union of s̄-orbits of length at least 3 on Lk.

The next proposition shows that if n is large enough, then L has to contain the double
commutator of some rigid level stabilizer under C, where the depth of this level does not
depend on n.

Proposition 1.4.6. Let k, s and c be �xed. Then there exists some m > k and n0 > m such
that for any n ≥ n0, L and corresponding γ̄ satisfying (1.1) above we have Rst′′Γn

(
ShLm(C)

)
⊆

L.

Proof. Let σ = (σv1 , . . . , σvdk ). Fix σvi for all vi /∈ C, and let the rest of the coordinates σuij
vary over RstΓn(uij). Choosing a maximum over all choices of the �xed σvi we can assume
that

∣∣∣
{

(σuij
)
r,l(i)
i,j=1 ∈ RstΓn(C)

∣∣ s̄σ ∈ L
}∣∣∣

|RstΓn(C)| ≥ c.

Consider the conjugates s̄σ, more precisely what their sections are at the vertices uij :

[
s̄

(σv1 ,...,σvdk
)
]
uij

= σuij
· (σuij+1

)−1. (1.2)

Fix one η = (ηv1 , . . . , ηvdn−1 ) ∈ RstΓn(Lk) with ηvi = σvi for all vi /∈ C and s̄η ∈ L. Let
σuij

run through RstΓn(uij), and consider s̄σ · (s̄η)−1. All these elements �x Lk pointwise,
and their sections are

[
s̄σ · (s̄η)−1

]
uij

= σuij
· (σuij+1

)−1 ·
(
ηuij
· (ηuij+1

)−1
)−1

.

Observe that the sections are trivial over vi /∈ C.
We will discard one vertex from each Ci, and focus on the sections we see on the rest.

Let Di = Ci \ {ui1}.
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Consider the sections of s̄σ at the vertices in Di as the sections (σui1
, . . . , σui

l(i)
) run

through RstΓn(Ci). We claim that the sections
(

[s̄σ]ui2
, . . . , [s̄σ]ui

l(i)

)
run through RstΓn(Di).

Indeed, given any sections
(

[s̄σ]uij

)l(i)
j=2

, and any choice of σui2 we can sequentially choose

the σuij+1
according to (1.2) to get the given sections at j = 2, 3, . . . , l(i). The last choice is

σui1
, which ensures [s̄σ]ui

l(i)
is correct. The last remaining section [s̄σ]ui1

is already determined

at this point, so we cannot hope to surject onto the whole RstΓn(Ci).
We can do this independently for each Di. Let

D =
⋃

i

Di.

The sections of s̄σ over the index set D give RstΓn(D) as the sections (σuij
) run through

RstΓn(C).
The fact that a �xed positive proportion of these conjugates are in L ensures that when

we consider s̄σ · (s̄η)−1 we get that a �xed proportion of the elements of RstΓn(D) are seen
in L0, where L0 ⊆ StabL(Lk) is the set of elements with trivial sections outside C. Let
πD : StabL(Lk)→ ΓDn−k denote the projection to the coordinates in D. Formally we get

∣∣πD(L0)
∣∣ ≥ c · |RstΓn(D)|.

We have πD(L0) ≤ (Γn−k)
|D|. Since (K ∩ Γn−k)

|D| ≤ RstΓn(D), using Lemma 1.4.5 we
get that the index of πD(L0) in Γ

|D|
n−k is bounded:

[
(Γn−k)

|D| : πD(L0)
]
≤
⌈

1

c

⌉
· [Γ : K]|D|.

This means we can �nd some N C (Γn−k)
|D| such that N ≤ πD(L0) and

[
(Γn−k)

|D| : N
]
≤
(⌈

1

c

⌉
· [Γ : K]|D|

)
!

The bound on the index of N does not depend on n, only on k, s and c. The bounded
index ensures, that we can �nd some m0 such that for each index u ∈ D we can �nd an
element ϕ ∈ N such that πu(ϕ) /∈ StabΓnk

(
Lm0(Tu)

)
. Let m = k + m0. Choose n0 > m

such that Γn0−k acts transitively on Lm0(Tu).
Using Grigorchuk's standard argument from [BG�03, Lemma 5.3] and [Gri00, Theorem

4] we pick some w ∈ Lm0(Tu) not �xed by ϕ, elements f and g from RstΓn(uw) and argue
that the commutator [[ϕ, f ], g] = [f, g] is in N . This shows Rst′Γn(uw) ⊆ N . If n ≥ n0 then
Gn−k is transitive on Lm0(Tu), so we get

Rst′Γn
(
Lm0(Tu)

)
⊆ N.

Repeating the argument of the previous paragraph for all u ∈ D we get

Rst′Γn
(
ShLm(D)

)
⊆ N ⊆ πD(L0).

We now repeat this discussion, but we discard di�erent points from the orbits: let Ei =

(Ci) \ {ui2} and E =
⋃
iEi. We have
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Rst′Γn
(
ShLm(E)

)
⊆ πE(L0).

We claim that Rst′′Γn
(
ShLm(D ∩E)

)
⊆ L. Indeed, let uij ∈ Ci, j 6= 1, 2. By the above we

see that for any ϕ ∈ Rst′Γn
(
ShLm(uij)

)
we have h1 ∈ L0 such that πD(h1)uij

= ϕ and all other
coordinates of πD(h1) are the identity. Similarly we have h2 ∈ L0 such that πE(h2)uij

= ψ

and all other coordinates of πE(h1) are the identity. Since Lk \ D and Lk \ E are disjoint
the commutator [h1, h2] ∈ L0 has all identity coordinates except for the one corresponding
to uij which is [ϕ,ψ].

We have managed to take care of the points uij where j 6= 1, 2. To cover the remaining
points as well we need one more way to discard points from the orbits. Namely F , where we
discard the third vertex ui3 from every Ci. Using the fact that (D∩E)∪(E∩F )∪(D∩F ) = C

we get that Rst′′Γn
(
ShLm(C)

)
⊆ L, which �nishes the proof.

1.4.5 Proof of the main result

Proof of Theorem 1.1.5. During the proof we will have to choose deeper and deeper
levels in T . For the convenience of the reader we summarized these choices in Figure 4.

Let Γn ⊆ Γ denote the elements of Γ that are supported on the �rst n levels. Suppose
that H is an ergodic IRS of Γ.

By Theorem 1.1.4 we know that the all nontrivial orbit-closures of H on ∂T are clopen.
For every clopen set C there exists a smallest integer kC such that C is the union of shadows
of points on LkC . Clearly kC does not change when C is translated by some automorphism.
For the random subgroup H and a �xed k0 ∈ N we can collect the clopen sets C from
OH with kC < k0, let CH,k0 be the union of these. This set moves together with H when
conjugating by some γ ∈ Γ:

CHγ ,k0 = (CH,k0)γ .

For n ≥ k0 let Vn ⊂ Ln be the set of points whose shadow make up CH,k0 . As CH,k0
moves with H, so does Vn. Vk0 is a union of orbits of H, let those orbits be denoted V i

k0
,

where i ∈ {1, . . . , j} and

Vk0 =

j⋃

i=1

V i
k0 .

Let V i
n = ShLn(V i

k0
). The fact that H acts minimally on the components of CH,k0

translates to saying that H acts transitively on each V i
n. Notice that since we collected

clopen sets C with kC strictly less then k0 we ensured that V i
k0

contains at least d points for
all i.

For every realization of H we can choose �nitely many elements of H that already show
that H acts transitively on the V i

k0
. These �nitely many elements are all �nitary, so there

is some nH , which might depend on the realization of H, such that all those �nitely many
elements are in ΓnH .

This function nH is not necessarily conjugation-invariant, so it need not be constant
merely by ergodicity. However one can �nd some k ≥ k0 such that the V i

k0
are distinct orbits

of Hk = H ∩Γk on Lk0 with probability 1− ε. This k is a deterministic number, it does not
depend on the realization of H.
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IRS'S OF GROUPS ACTING ON ROOTED TREES

Enlist all the possible subsets S1, . . . , SN of Γk that generate a realization of the V i
k0

as
orbits on Lk0 . Clearly there are �nitely many. The probability that Si ⊆ H cannot always
be 0, otherwise we would contradict the previous paragraph. So we can �nd some �nite set
S of elements of Γk and some sets U ik0 ⊆ Lk0 such that the U ik0 are a realization of the V i

k0
,

S is in H with probability p > 0 and the U ik0 are orbits of S.
By replacing S with 〈S〉 we may assume that S is a subgroup of Γk, as S ⊆ H and

〈S〉 ⊆ H are the same events.

k0
1)

k2)

m5)

m∗6)

Vk0

S3,4)

1) k0 sees CH,k0

2) Hk acts transitively on V i
k0

with prob. 1− ε

3) S ≤ Γk and P[S ⊆ H] = p > 0

4) V i
k0
∈ OS,k0 and S has long

cycles

5) m given for S, k, γ and c = p/2

6) Rst′Γ(Lm∗) ⊆ Rst′′Γ(Lm)

H y V i
k0

transitive

Appendix Lemma 6.3.

Proposition 4.6.

[BG�03, Lemma 5.3.]

Proposition 4.6.

P[Rst′′Γn
(Vm) ⊆ Hn] ≥ p

2 ergodicity
P[Rst′′Γ(Vm) ⊆ H] = 1

6)
Rst′Γ(Vm) ⊆ H a.s.

Figure 4: Choice of levels

As |U ik0 | ≥ d, we know that all vertices of Uk0 are moved by some s ∈ S. As a consequence
the same holds for Uk: for every vertex v ∈ Uk there is some s ∈ S such that v 6= vs.
However, we will need a stronger technical assumption on S to make our argument work.
We will assume that for every v ∈ Uk we can �nd some s ∈ S such that v, vs and vs

2
are

distinct, that is v is part of a cycle of length at least 3 in the cycle decomposition of s. In
Lemma 1.6.3 in the Appendix we show that one can indeed �nd such a k and S.

Let Hn = H ∩Γn, for n ≥ k. The random subgroup Hn is clearly an IRS of Γn, however
it need not be ergodic, i.e. the uniform random conjugate of a �xed subgroup in Γn. As
S ≤ Γk ≤ Γn we have P[S ≤ Hn] = p.

Lemma 1.4.7. In the ergodic decomposition of Hn the measure of components that contain
S with probability at least p/2 is at least p/2.

Proof. Denote the ergodic components of Hn by H1
n, . . . ,H

r
n. Assume H i

n has weight qi in
the decomposition, and contains S with probability pi. By ordering appropriately we can
also assume p1, . . . , pl ≤ p/2 and pl+1, . . . pr < p/2.

p =

r∑

i=1

qipi =

(
l∑

i=1

qi

)
· 1 +

(
r∑

i=l+1

qi

)
· p

2
≤
(

l∑

i=1

qi

)
+
p

2
,

p

2
≤

l∑

i=1

qi.

32

C
E

U
eT

D
C

ol
le

ct
io

n



CHAPTER 1

So the weight of components containing S with probability at least p/2 is at least p/2.

Choose an ergodic component of Hn which contains S with probability at least p/2. This
ergodic component is the uniform random conjugate of a �xed subgroup L ≤ Γn.

We have P[S ∈ L̃] ≥ p/2 > 0. In other words L contains at least a p/2 proportion of the
Γn-conjugates of S. By a �maximum is at least as large as the average� argument we can
�nd some γ̄ from the transversal of RstΓn(Lk) such that

∣∣∣∣
{

(σv1 , . . . , σvdk ) ∈ RstΓn(Lk)
∣∣ Sγ̄(σv1 ,...,σvdk

) ∈ L
}∣∣∣∣

|RstΓn(Lk)|
≥ p

2
.

We now use Proposition 1.4.6 for all s ∈ S with k, γ̄ de�ned above and c = p/2. As the
cycles of length at least 3 of elements of Sγ̄ cover (Uk)

γ̄ we get that for some �xed m and
large enough n we have

Rst′′Γn
(
(Um)γ̄

)
⊆ L.

It is clear that (Uk0)γ is the realization of Vk0 corresponding to the realization L of Hn, so
we (almost surely) have Rst′′Γn(Vm) ⊆ L̃. By Lemma 1.4.7 this means that

P
[
Rst′′Γn(Vm) ⊆ Hn

]
≥ p

2
.

As
(
Rst′′Γn(Vm) ⊆ Hn

)
⇔
(
Rst′′Γn(Vm) ⊆ H

)
we have

P
[
Rst′′Γn(Vm) ⊆ H

]
≥ p

2
.

We get this for all n large enough. Since Rst′′Γn(Vm) ⊆ Rst′′Γn+1
(Vm) the events in question

form a decreasing chain, and for the intersection we get

P
[
Rst′′Γ(Vm) ⊆ H

]
≥ p

2
.

As H is ergodic the above implies

P
[
Rst′′Γ(Vm) ⊆ H

]
= 1.

Clearly Rst′′Γ(Lm) C Γ, so using [BG�03, Lemma 5.3] we can �nd some m∗ ≥ m such that
Rst′Γ(Lm∗) ⊆ Rst′′Γ(Lm). This also means that Rst′Γ(Vm∗) ⊆ Rst′′Γ(Vm), so

P
[
Rst′Γ(Vm∗) ⊆ H

]
= 1.

The number m∗ only depended on the IRS H and the choice of k0. Repeating this
argument for all k0 ∈ N covers all clopen sets from OH , which as discussed in part 1.4.2
proves Theorem 1.1.5.

1.5 Corollaries of Theorem 1.1.5

In this section we prove Theorem 1.1.6 and sketch the proof of Theorem 1.1.7.
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1.5.1 Fixed point free IRS's

To motivate the following result let us recall Theorem 1.1.1, which states that any ergodic
IRS of Altf (T ) with d ≥ 5 contains a whole level stabilizer, in particular H is a random
conjugate of a �nite indexed subgroup. In other words the measure de�ning the IRS is
atomic. As it turns out the �xed point free case of Theorem 1.1.5 implies this for �xed point
free ergodic IRS's of countable, �nitary regular branch groups as well.

Proof of Theorem 1.1.6. By Theorem 1.1.5 we know that an ergodic almost surely �xed
point free IRS H contains Rst′Γ(Lm) for some m ∈ N.

IRS's of Γ containing the normal subgroup Rst′Γ(Lm) are in one-to-one correspondence
with IRS's of the quotient G = Γ/Rst′Γ(Lm), which in this case is of the form Ao F where
A is the abelian group RstΓ(Lm)/Rst′Γ(Lm), and F is the �nite group Γ/RstΓ(Lm). As Γ is
assumed to �nitary both Γ and G are countable.

Let Ĥ = H/Rst′Γ(Lm) ≤ G be the image of H in G. It is an ergodic IRS of G. Let
Ĥ0 = Ĥ ∩ A, which is also an ergodic IRS of G. We see that Ĥ0 ⊆ A is an ergodic random
subgroup with distribution invariant under conjugation by elements of G. As A is abelian
and F �nite, it is clearly the uniform random F -conjugate of some subgroup L0 ≤ A. This
shows that Ĥ0 can only obtain �nitely many possible values.

We claim that once Ĥ0 is �xed, there are only countably many possible choices for Ĥ.
Indeed we have to choose a coset of Ĥ0 in G for all f ∈ F , which can do in only countably
many di�erent ways.

This shows that the support of Ĥ is countable, but there is no ergodic invariant measure
on a countably in�nite set, so the support is �nite.

1.5.2 IRS's in non-�nitary branch groups

In this subsection we will sketch the proof of Theorem 1.1.7. This theorem is not a direct
consequence (as far as we see) of Theorem 1.1.5, but one can alter the proof to obtain the
desired theorem. First of all let us �x πn : Γ → S

wr(n)
d to be the projection from Γ to the

automorphism group of the d-ary tree of depth n, which is the restriction of elements to the
�rst n levels. The main conceptional di�erence is that we are trying to understand the group
Γ through the groups πn(Γ) instead of Γn. The statement that we conclude in this case is
weaker.

Our aim is to present only the spine of the proof, as the reasoning is very similar to the
proof of Theorem 1.1.5 and we leave the details to the reader. In fact some technical details
such as the ergodicity of Hn and the fact that Hn already acts transitively on the V i

n makes
this proof easier.

Proof of Theorem 1.1.7. Let Gn = πn(Γ), �x k ∈ N and let CH,k be the union of clopen
orbit-closures C from OH in ∂T with kC < k. For any n ≥ k let Vn ⊆ Ln be the set of points
whose shadow make up CH,k. We can decompose Vk into H-orbits, denoted by

Vk = ∪ji=1V
i
k .

Observe that for any realization of H one can �nd at most |Vk| many elements in H that
already show that H acts transitively on each V i

k . This means that we can �nd an S ⊂ Γ of

34

C
E

U
eT

D
C

ol
le

ct
io

n



CHAPTER 1

size at most |Vk|, such that S generates a realization of Vk on Lk and

P[S ⊆ H] = p > 0.

Denote by U ik the realization of V i
k generated by S. As before we can ensure that for

any v ∈ Uk there is an s ∈ S, such that v, vs and vs
2
are distinct by replacing k and S if

necessary. (See the Remark after the proof of Lemma 1.6.3 in the Appendix.)
For every n let Hn = πn(H) ≤ Gn. The random subgroup Hn is an ergodic IRS of Gn,

therefore there exists an Ln ≤ Gn such that Hn is an uniform random conjugate of Ln. Since

P[πn(S) ⊆ L̃n] = P[πn(S) ⊆ Hn] ≥ p,

we have an element γ from the transversal of RstGn(Lk) in Gn such that
∣∣∣∣
{

(σv1 , . . . , σvdk ) ∈ RstGn(Lk)
∣∣ πn(S)

γ̄(σv1 ,...,σvdk
) ∈ Ln

}∣∣∣∣
|RstGn(Lk)|

≥ p.

By following the argument in Proposition 1.4.6 but replacing Γn by Gn one can prove
that there exists some m such that for any n large enough

Rst′′Gn((Um)γ̄) ⊆ Ln.

Therefore
P[Rst′′Gn(Vm) ⊆ Hn] ≥ p > 0,

which by ergodicity implies
P[Rst′′Gn(Vm) ⊆ Hn] = 1.

Again we can �nd an m∗ ≥ m, such that Rst′Γ(Vm∗) ⊆ Rst′′Γ(Vm), therefore

P[πn(Rst′Γ(Vm∗)) ⊆ πn(H)] = 1.

This means that for any g ∈ Rst′Γ(Vm∗) there exists a sequence hn ∈ H, such that
πn(hn) = πn(g), which implies that Rst′Γ(Vm∗) ⊆ H with probability 1.

On the other hand Rst′Γ(Vm∗) ⊇ RstΓ(Vm∗)
′
. We claim that RstΓ(Vm∗) = RstΓ(Vm∗).

Indeed, RstΓ(Lm∗) is �nite index in Γ which implies that it is open. Using this one can show
that RstΓ(Lm∗) = RstΓ(Lm∗), which implies the same for Vm∗ ⊆ Lm∗ .

Putting this together we get
Rst′

Γ
(Vm∗) ⊆ H

with probability 1.

Note that this result on closures is possibly weaker than our earlier results. It is not clear
even in the �xed point free case in Altf (T ) if for some L ≤ Altf (T ) the closure L containing
a level stabilizer implies the same for L.

Problem 1.5.1. Let L ≤ Altf (T ) be a subgroup such that πn(L) = A
wr(n)
d for all n. Does

it follow that L = Altf (T )?

In other words: is there a subgroup L 6= Altf (T ) which is dense in Alt(T )? We saw that
this cannot happen with positive probability when L is invariant random.
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IRS'S OF GROUPS ACTING ON ROOTED TREES

The answer to Problem 1.5.1 is negative in the case of Aut(T ). In the case of the
binary tree let L be the subgroup of elements with an even number of nontrivial vertex
permutations. Generally for arbitrary d let L be the subgroup of elements whose vertex
permutations multiply up to an alternating element. This L is not the whole group, yet
dense in Aut(T ). Of course the really relevant question in this case would involve the
containment of derived subgroups of level stabilizers.

1.6 Appendix

In this section we prove the technical statements that we postponed during the rest of this
chapter.

1.6.1 Measurability of maps

Proof of Lemma 1.2.1.

A closed subset C can be approximated on the �nite levels. De�ne Cn to be the set of
vertices v on Ln with Sh(v) ∩ C 6= ∅. The Cn correspond to the (1/2n)-neighborhoods of C
in ∂T .

We show that any preimage of a ball in (C, dH) is measurable in SubΓ. Let C ∈ C and
n ∈ N be �xed. Then the ball

B1/2n(C) = {C ′ ∈ C | Cn = C ′n},

therefore its preimage is

X = {H ∈ SubΓ | Fix(H)n = Cn}.

We say that a �nite subset S ⊆ Γ witnesses Cn, if the subgroup they generate has no
�xed points in Ln \Cn. Clearly every Cn has a witness of cardinality at most |Ln \Cn|. Let
WCn be the set of possible witnesses of Cn of size at most |Ln \ Cn|:

WCn =
{
S ⊆ Γ

∣∣ |S| ≤ |Ln \ Cn| and S has no �xed points in Ln \ Cn
}
.

Let us de�ne FCn ⊆ Γ to be the set of forbidden group elements, which do not �x Cn.
These are the elements that cannot be in any H ∈ X.

Observe that both WCn and FCn are countable, since Γ is countable, and X can be
obtained as

X =
⋃

S∈WCn

⋂

g∈FCn

{H ∈ SubΓ | S ⊆ H, g /∈ H}.

The sets {H ∈ SubΓ | S ⊆ H, g /∈ H} are cylinder sets in the topology of SubΓ, so the
above expression shows that X is measurable.

Proof of Lemma 1.2.2.

To prove that the map is measurable, it is enough to show that any preimage of a ball is
measurable in SubΓ. So let P ∈ O and n ∈ N be �xed. Then the ball

B1/2n(P ) = {Q ∈ O | Qn = Pn},
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therefore its preimage is
X = {H ∈ SubΓ | (OH)n = Pn}.

We say that a �nite subset S ⊆ Γ witnesses Pn, if the subgroup they generate induces
the same orbits on Ln, that is O〈S〉,Ln = Pn. Clearly every Pn has a witness of cardinality
at most |Ln|. Let WPn be the set of possible witnesses of Pn of size at most |Ln|:

WPn =
{
S ⊆ Γ

∣∣ |S| ≤ |Ln| and O〈S〉,Ln = Pn
}
.

Let us de�ne FPn ⊆ Γ to be the set of forbidden group elements, which do not preserve
Pn. In other words these are the elements that cannot be in any H ∈ X.

Observe that both WPn and FPn are countable, since Γ is countable, and X can be
obtained as

X =
⋃

S∈WPn

⋂

g∈FPn

{H ∈ SubΓ | S ⊆ H, g /∈ H}.

The sets {H ∈ SubΓ | S ⊆ H, g /∈ H} are cylinder sets in the topology of SubΓ, so the
above expression shows that X is measurable.

1.6.2 Technical assumption in Theorem 1.1.5

First we prove a lemma on intersection probabilities.

Lemma 1.6.1. Let B1, . . . Br be measurable subsets of the standard probability space (X,µ)

with µ(Bj) = p for all j, and r = d2/pe. Then there is some pair (j, l) such that µ(Bj∩Bl) ≥
p3/6.

Proof. Let χB denote the characteristic function of the measurable set B. Let Dl denote
the set of points in X that are covered by at least l sets from B1, . . . Br. Then

r∑

j=1

χBj =

r∑

l=1

χDl ,

∫

X

r∑

j=1

χBj dµ =

r∑

j=1

µ(Bj) = rp,

rp =

∫

X

r∑

l=1

χDl dµ =
r∑

l=1

µ(Dl).

We have D1 ⊇ D2 . . . ⊇ Dr, so 1 ≥ µ(D1) ≥ µ(D2) . . . ≥ µ(Dr).

rp =
r∑

l=1

µ(Dl) ≤ 1 + (r − 1)µ(D2).

µ(D2) ≥ rp− 1

r − 1
.

The set D2 is covered by the Bj ∩Bl, so
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max
j,l

µ(Bj ∩Bl) ≥
µ(D2)(

r
2

) ≥ rp− 1(
r
2

)
(r − 1)

≥ 1((
2
p

+1
)(

2
p

)
2

)(
2
p

) ≥
p3

2(p+ 2)
≥ p3

6
.

We also prove that one can �nd a lot of elements of order at least 3 in weakly branch
groups.

Lemma 1.6.2. Let G be a weakly branch group. Then for any v ∈ T there is a g ∈ RstG(v)

of order at least 3.

Proof. As G is weakly branch, RstG(v) is not the trivial group. By contradiction let
us assume that any nontrivial element of RstG(v) has order 2. Let a nontrivial element
g ∈ RstG(v) be �xed. We can �nd descendants u1 6= u2 of v, such that ug1 = u2 . Let us
choose a nontrivial element h ∈ RstG(u1). As h ∈ RstG(v), by our assumption it has order
2.

We claim that hg ∈ RstG(v) has order at least three. To prove this we will �nd a vertex
which has an orbit of size at least 3. Let w1 6= w2 descendants of u1, such that wh1 = w2.
Since g maps descendants of u1 to descendants of u2, we have whg1 = wg2 = t2 6= w1, w2.

Then w(hg)2

1 = thg2 = tg2 = w2 6= w1. We see that w1, w
hg
1 and w(hg)2

1 are pairwise distinct,
therefore the order of hg is at least 3.

Now we will prove that the technical assumption we assumed in the proof of Theorem
1.1.5 can be satis�ed. We remind the reader that in the setting of Theorem 1.1.5 the following
were established:

(1) The random sets (V k0
1 , . . . V k0

j ) are orbits of H on Lk0 ;

(2) Sh(V k0
1 ), . . . ,Sh(V k0

j ) are orbit-closures of H on ∂T and their union is CH,k0 almost
surely;

(3) S ≤ Γk is a �nite subgroups with p = P[S ⊆ H] positive;

(4) (Uk01 , . . . Uk0j ) are a realization of (V k0
1 , . . . V k0

j ), and S acts transitively on the Uk0i .

(5) V n
i = ShLn(V k0

i ) and Uni = ShLn(Uk0i ).

Lemma 1.6.3. By possibly replacing k, S and p we can assume that for every u ∈ Uki we
can �nd some s ∈ S such that u, us and us

2
are distinct.

Remark. In the case when d is not a power of 2 it can be shown that Lemma 1.6.3 is implied
by the earlier properties, simply because a transitive permutation group with all nontrivial
elements being �xed point free and of order 2 can only exist on 2k points. For the case when
d is a power of 2 however we can only show Lemma 1.6.3 by a probabilistic argument and
by increasing k and S if necessary.
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Proof. Assume that there is an s ∈ S which admits a long cycle � that is a cycle of length
at least 3 � on Uki for some i. In this �rst case we de�ne k′ such that Hk′ acts transitively
on all the V k

i with probability 1− p/2. Then

P[S ⊆ Hk′ and Hk′ is transitive on the V k
i ] ≥ p

2
> 0.

If S ⊆ Hk′ then the V k
i are realized as the Uki . Now we enlist all subsets S′l in Γk′ that

contain S and act transitively on the Uki . There are �nitely many, so we can �nd some S′

with

P[S′ ⊆ Hk′ ] ≥ p′ > 0.

We can assume S′ to be a subgroup, and by having s ∈ S′ we will show that long cycles
of S′ cover Uki . Indeed, by conjugating s one can move the cycle around in Uki , and by the
transitivity of S′ we get that the whole of Uki is covered. This in turn implies that long
cycles of S′ cover Uk

′
i as well.

If on the other hand S acts on Uki by involutions, we will increase k and S while keeping
p positive such that the �rst case holds.

Let r = d2/pe. Furthermore let k′ > k such that the shadow of a vertex v ∈ Uki on Lk′
contains at least r vertices, namely {v1, v2, . . . , vr, . . .} ⊆ Uk′i . Let γ1, γ2, . . . , γr ∈ Γk′+t such
that γi ∈ RstΓk′+t(vi) and γi has order at least 3 by Lemma 1.6.2, i.e. γi has a long cycle on
Lk′+t.

As H is an IRS we have

P[Sγj ⊆ H] = P[S ⊆ H] = p.

By Lemma 1.6.1 we can �nd some j, l such that

P
[
(Sγj ∪ Sγl) ⊆ H

]
≥ p3

6
.

Set S′ = 〈Sγj ∪ Sγl〉. Pick some s ∈ S which moves v ∈ Lk. It is easy to check that
sγj · (sγl)−1 ∈ S′ ∩ RstΓk′+t(Lk) has nontrivial sections only at vj , vl, vsj and vsl , and these
sections are some conjugates of γj and γl, and therefore sγj · (sγl)−1 has a long cycle on
Lk′+t. So replacing S by S′, k by k′ + t and p by p3/6 we get to the �rst case.

Repeating the argument for the �rst case at most j times we make sure that all U ik are
covered by long cycles, which �nishes the proof.

Remark. For the proof of Theorem 1.1.7 one can modify this proof such that instead of
Γn, Hk = Γn ∩H and S ⊆ Γn we use Gn = πn(Γ), Hn = πn(H) and πn(S) ⊆ Gn. Another
di�erence is that Hn automatically acts transitively on all the V n

i , so there is no need to
distinguish between k0 and k.
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2
Uniform rank gradient, cost and

local-global convergence

This chapter is based on the preprint [AT17]. It is joint work with Miklós Abért.

Abstract

We analyze the rank gradient of �nitely generated groups with respect to sequences
of subgroups of �nite index that do not necessarily form a chain, by connecting it
to the cost of p.m.p. actions. We generalize several results that were only known for
chains before. The connection is made by the notion of local-global convergence.
In particular, we show that for a �nitely generated group Γ with �xed price c, every
Farber sequence has rank gradient c− 1. By adapting Lackenby's trichotomy theo-
rem to this setting, we also show that in a �nitely presented amenable group, every
sequence of subgroups with index tending to in�nity has vanishing rank gradient.
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UNIFORM RANK GRADIENT, COST AND LOCAL-GLOBAL

CONVERGENCE

2.1 Introduction

For a �nitely generated group Γ let d(Γ) denote the minimal number of generators (or rank)
of Γ. For a subgroup H ≤ Γ of �nite index let

r(Γ, H) = (d(H)− 1)/ |Γ : H| .

The rank gradient of Γ with respect to a sequence (Γn) of �nite index subgroups is de�ned
to be

RG(Γ, (Γn)) = lim
n→∞

r(Γ,Γn)

when this limit exists. This notion has been introduced by Lackenby [Lac05] and further
investigated in the literature, mainly for chains of subgroups. Recall that a chain in Γ is a
decreasing sequence Γ = Γ0 > Γ1 > . . . of subgroups of �nite index in Γ. In this case, it is
easy to see that r(Γ,Γn) is non-increasing and so the limit exists.

The main goal of this chapter is to o�er a general framework for understanding the rank
gradient of an arbitrary sequence of subgroups in Γ using the cost of probability measure
preserving (p.m.p.) actions of Γ. For chains this has been done by the �rst author and
Nikolov in [AN12]. In arbitrary sequences were analyzed for a special class of groups called
right angled groups.

Let (Gn) be a sequence of �nite graphs with an absolute degree bound. We de�ne the
edge density as

e(Gn) = lim
n→∞

|E(Gn)|
|V (Gn)|

when this limit exists and the lower edge density e to be the lim inf of the same sequence. A
rewiring of (Gn) is another sequence of graphs Hn on the same vertex set as of Gn, such that
the bi-Lipshitz distortion of the maps idV (Gn) stay bounded in n. The combinatorial cost

cc(Gn) is de�ned as the in�mum of the lower edge densities of possible rewirings of (Gn).
This notion has been introduced by Elek [Ele07] as a discrete analogue of the notion of cost.

Our �rst result shows that actually combinatorial cost is more than an analogue and,
when making an additional convergence assumption, it can be expressed as the cost of a
limiting graphing.

Local-global convergence of graphs has been introduced by Bollobás and Riordan [BR11]
under the name partition metric, while the limiting object and most of the known results
were obtained by Hatami, Lovász and Szegedy [HLS14]. On the group theory side, the
notion is related to the work of Kechris on weak containment, see [Kec10] and [AE12]. We
postpone its de�nition to Section 2.2. For now, it su�ces to know that every sequence has a
convergent subsequence and that the limit is a graphing in the sense of Gaboriau [Gab00].

Theorem 2.1.1. Let Gn be a local-global convergent graph sequence. Then we have

cost(limGn) = cc(Gn).

Moreover, one can choose rewirings such that the limit de�ning the edge density exists.

Note that similar results to Theorem 2.1.1 and its consequences (until Corollary 2.1.5)
have been obtained independently by A. Carderi, D. Gaboriau and M. de la Salle [CGS17,
p. 2017].
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CHAPTER 2

This result can be e�ectively used to give direct proofs of results on combinatorial cost
using the already established theory of cost. For instance, Theorem 2.1.1 immediately implies
the following theorem of Elek [Ele07].

Corollary 2.1.2. Let Gn be a graph sequence with girth tending to in�nity such that e(Gn)

exists. Then we have
cc(Gn) = e(Gn).

Indeed, by the girth assumption, any subsequential local-global limit of Gn will be a
so called treeing and by Gaboriau [Gab00], the cost of a treeing equals its expected degree
divided by two.

In Theorem 2.1.1, our graphs a priori have nothing to do with groups. When they do
come from a so�c approximation of Γ, the limiting graphing gives rise to an essentially free
probability measure preserving action of Γ, that is unique up to weak equivalence in the
sense of Kechris [Kec10]. This case of local-global convergence has been analyzed by the
�rst author and Elek [AE11].

Following Gaboriau, we say that Γ has �xed price c, if every essentially free probability
measure preserving action of Γ has cost c. Applying Theorem 2.1.1 gives us the following
new result.

Theorem 2.1.3. Let Γ be a �nitely generated group of �xed price c. Then

cc(Gn) = c

for any so�c approximation (Gn) of Γ.

This gives an alternate proof of another result of Elek [Ele07] that for an amenable group
Γ, any so�c approximation of Γ has combinatorial cost 1. Indeed, by the Ornstein-Weiss
theorem [OW80], amenable groups have �xed price 1.

A sequence of subgroups is Farber, if the quotient Schreier graphs Sch(Γ,Γn, S) form a
so�c approximation of Γ. We can now connect the cost to the rank gradient as follows.

Theorem 2.1.4. Let Γ be a �nitely generated group of �xed price c. Then we have

RG(Γ, (Γn)) = c− 1

for any Farber sequence (Γn) in Γ.

The same result is proved in [AN12] for Farber chains. Also, in [AGN17] it is proved that
any Farber sequence in a right angled group has rank gradient zero. Right angled groups
have �xed price 1 by Gaboriau [Gab00], so this now immediately follows from Theorem 2.1.4.
Since amenable groups also have �xed price 1, we get the following.

Corollary 2.1.5. Let Γ be a �nitely generated amenable group. Then we have

RG(Γ, (Γn)) = 0

for any Farber sequence (Γn) in Γ.

When the sequence is not Farber, Corollary 2.1.5 is clearly not true, already for the
standard lamplighter group (see [AJN11]). However, one can show that it still holds for
�nitely presented amenable groups.
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CONVERGENCE

Theorem 2.1.6. Let Γ be a �nitely presented amenable group. Then we have

RG(Γ, (Γn)) = 0

for any sequence (Γn) of distinct subgroups in Γ.

Behind this is the following extension of [AJN11] that generalized a theorem of Lackenby
for normal chains [Lac05].

We call a sequence of �nite graphs Gn dispersive if for any subsequential local-global
limit G of Gn, G has no strongly ergodic component of positive measure. For the notion of
strong ergodicity and a graph theoretic reformulation see Section 2.5.

Theorem 2.1.7. Let Γ be a �nitely presented group generated by a �nite symmetric set S.
Let (Γn) be an arbitrary sequence of subgroups of �nite index in Γ. Then at least one of the
following holds:

1) the sequence Sch(Γ,Γn, S) is not dispersive;

2) RG(Γ, (Γn)) = 0;

3) there exists some n such that Γn decomposes as a non-trivial amalgamated product.

We show that sequences in amenable groups are dispersive, and clearly they cannot
decompose as a non-trivial amalgamated product. Thus Theorem 2.1.6 follows as a corollary
of Theorem 2.1.7. Note that for a chain of subgroups, being dispersive is equivalent to
saying that the limiting pro�nite action is not strongly ergodic. Hence, Theorem 2.1.7
implies [AJN11, Theorem 3]. When the Γn are normal in Γ, being dispersive is equivalent to
saying that (Γn) has no subsequence with Lubotzky's property (τ). So Theorem 2.1.7 also
generalizes Lackenby's trichotomy theorem [Lac05, Theorem 1.1.].

The structure of the chapter is as follows. In Section 2.2 we de�ne the basic notions and
state some lemmas that we need for our main result. In Section 2.3 we prove Theorems 2.1.1
and 2.1.3. We introduce the analogous notions and results for group actions in Section 2.4
and prove Theorem 2.1.4. We prove the results on �nitely presented groups in Section 2.5.
Finally, in Section 2.6 we list some open problems and suggest further directions of research.

2.2 Preliminaries

In this section we de�ne the basic objects of investigation of this chapter and state some
known results.

2.2.1 Local-global convergence

Let Ur denote the set of connected, rooted graphs with radius at most r with all degrees
bounded by some integer D. For any graph G, if we pick a vertex v ∈ V (G) and look at
its r-neighborhood BG(r, v) rooted at v we get an element of Ur. Picking v uniformly at
random gives us a probability measure on Ur which we will denote PG,r, and refer to as the
r-neighborhood statistics of G.
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CHAPTER 2

For any �nite set X let M(X) denote the set of probability measures on X. We say that
a sequence of graphs (Gn) is locally (or Benjamini-Schramm) convergent, if for any r the
sequence of probability measures PGn,r ∈M(Ur) converge to a limit distribution as n→∞.

We will work with a more re�ned notion of convergence, and following notation from
[HLS14] we introduce a colored version of the neighborhood statistics. Let K(k,G) =

{
ϕ :

V (G) → {1, . . . , k}
}
denote the set of k-colorings of the vertices of G. Let Ukr denote the

set of rooted, connected, k-colored graphs of radius at most r. For any coloring ϕ ∈ K(k,G)

we can associate a colored neighborhood statistic PG,r[ϕ] ∈ M(Ukr ) as before, by choosing
a uniform random vertex v, and then considering its r-neighborhood BG(r, v), this time
together with the coloring ϕ|BG(r,v).

For η1, η2 ∈M(Ukr ) let

dTV (η1, η2) = sup
A⊆Ukr

|η1(A)− η2(A)|.

Note that dTV is the total variation distance. As we are operating in a �nite dimensional
space all the usual norms are equivalent.

Intuitively, a sequence of graphs (Gn) is local-global convergent if for any r, k ∈ N and
for i, j large enough the colored neighborhood distribution PGi,r[ϕ] for any k-coloring ϕ can
be approximately modeled on Gj , that is we can �nd some coloring ψ such that PGi,r[ϕ] and
PGj ,r[ψ] are arbitrarily close.

For a �nite graph G let QkG,r denote the �nite set of possible colored neighborhood
statistics arising from a graph G:

QkG,r =
{
PG,r[ϕ] | ϕ ∈ K(k,G)

}
⊆M(Ukr ).

De�nition 2.2.1. We say that a sequence of graphs (Gn) is local-global convergent if for
every r, k ∈ N the compact sets (QkGn,r) converge in the Hausdor� distance on

(
M(Ukr ), dTV

)
.

In [HLS14] the authors show that every sequence of bounded degree graphs has a locally-
globally convergent subsequence, and that graphings can be considered as the limit objects
of convergent sequences.

De�nition 2.2.2 ([HLS14] De�nition 3.1). Let X be a Polish topological space and let µ
be a probability measure on the Borel sets in X. A graphing (with degree bound D) is a
graph G on V (G) = X with Borel edge set E(G) ⊂ X ×X in which all degrees are at most
D and ∫

A
e(x,B) dµ(x) =

∫

B
e(x,A) dµ(x) (2.1)

for all measurable sets A,B ⊆ X, where e(x, S) is the number of edges from x ∈ X to
S ⊆ X.

Every �nite graph G is a graphing with X = V (G) and µ the uniform distribution on
V (G).

The colored neighborhood statistics PG,r[ϕ] can easily be de�ned for a graphing G, pro-
vided that the coloring ϕ : X → {1, . . . , k} is chosen to be Borel. We pick a random vertex
x ∈ X according to µ, and consider its colored r-neighborhood in G.
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As opposed to the �nite case we now have to take the closure of all possible such statistics
in order to obtain a compact set. Let

QkG,r =
{
PG,r[ϕ] | ϕ : V (G)→ {1, . . . , k} Borel

}dTV ⊆M(Ukr ).

The graphing G is a local-global limit of the sequence (Gn) if QkGn,r → QkG,r in the
Hausdor� distance for all r and k.

We say that two graphings G and H are local-global equivalent, if the sets QkG,r and Q
k
H,r

are the same. Note that the limit is unique only up to local-global equivalence. Although
we will only be dealing with sequences of �nite graphs, observe that the above de�nition of
convergence makes sense for sequences of graphings as well.

2.2.2 Cost

For a graphing G and a vertex x ∈ X let [x]G denote the connected component of x in G.
For two graphings G and H on the same vertex set X we write G ∼ H if they have the same
connected components, that is [x]G = [x]H µ-almost surely.

Let RG ⊆ X ×X denote the measurable equivalence relation generated by G, where two
points are in the same equivalence class if they are in the same connected component of G.
Clearly G ∼ H if and only if RG = RH up to measure zero. Note that every component of
G is countable.

We will introduce a way of measuring edge sets of graphings. Let µ̃ be the measure on
X ×X obtained the following way. For a measurable subset C ⊆ X ×X let

µ̃(C) =

∫

X
#
{
y | (x, y) ∈ C, y ∈ [x]G

}
dµ(x).

In other words on each �ber {x} × X we consider the counting measure concentrated on
{x} × [x]G , and integrate these with respect to µ on the �rst coordinate.

This measure µ̃ is σ-�nite, it is concentrated on RG , and it is easy to see that in fact it
only depends on the relation RG . We can similarly de�ne µ̃′ by taking the counting measures
on the �bers [x]G and integrate with respect to µ over the second coordinate. A standard
argument shows that condition (2.1) in De�nition 2.2.2 is equivalent to µ̃ = µ̃′.

The cost of G is de�ned to be

cost(G) =
1

2
inf
{
µ̃
(
E(H)

) ∣∣ H ∼ G
}
.

The normalization factor 1
2 is included to account for counting every edge twice and to ensure

coherence with [Gab00]. Note that the µ̃ measure of the edge set of a graphing is half the
expected degree of a µ-random point. It is clear that if H ∼ G, then their cost is the same,
in fact the cost only depends on RG .

The following lemma proved in [Gab00] sheds some light on the bi-Lipschitz condition
used in the de�nition of combinatorial cost. We will also use it in the proof of Theorem
2.1.1.

Lemma 2.2.3 (Gaboriau). Let G be a graphing. For every ε > 0 there exists some integer
L and some H ∼ G such that µ̃

(
E(H)

)
< cost(G) + ε and G and H are L-bi-Lipschitz
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CHAPTER 2

equivalent, that is the graph metrics they de�ne on the connected components are within a
factor of L from each other.

2.2.3 Combinatorial cost

The combinatorial analogue of cost for sequences of graphs is due to Elek [Ele07]. Let (Gn)

be a sequence of graphs with |V (Gn)| → ∞, and degree bounded by D. The sequence (Hn)

is a rewiring of (Gn) � which we will denote (Hn) ∼ (Gn) � if they have the same vertex
set, and the distances de�ned by the graphs are uniformly bi-Lipschitz equvialent, that is
V (Gn) = V (Hn) and there exists some natural number L such that for all n ∈ N

1

L
dHn(x, y) ≤ dGn(x, y) ≤ LdHn(x, y) for all x, y ∈ V (Gn).

The lower edge density of a graph sequence is de�ned as follows.

e
(
(Hn)

)
= lim inf

n→∞

|E(Hn)|
|V (Hn)| .

De�nition 2.2.4. The combinatorial cost of a sequence (Gn) is the in�mum of the lower
edge densities of its rewirings:

cc
(
(Gn)

)
= inf

{
e
(
(Hn)

) ∣∣ (Hn) ∼ (Gn)
}
.

2.3 The cost of a local-global limit

In this section we will prove Theorems 2.1.1 and 2.1.3.

2.3.1 Proof of the main result

We aim to show that the combinatorial cost of a locally-globally convergent graph sequence
is equal to the cost of its limit. The idea of the proof is that if there is a cheap rewiring of
the sequence (Gn), then we can encode it into a coloring which then can be modeled with
small error on the limit graphing G. Using this coloring on the limit we can reconstruct a
cheap graphing that (after some small modi�cation) spans the same connected components
as G. In order to make this reconstruction process possible we will need to break the possible
local symmetries of the graphs.

Proof of Theorem 2.1.1. Fix ε > 0 and suppose that (Hn) is an L-rewiring of Gn such that
e(Hn) < cc(Gn) + ε. Set r = L2 + 1, R = 2r.

As the degrees of the Gn are bounded by D, there is a constant k such that each Gn can
be vertex colored by k colors so that no two vertices within distance 2R have the same color.
Fix such a coloring ηn : V (Gn) → {1, . . . , k} for each Gn. The role of these ηn is merely to
break all possible symmetries of the R-neighborhoods.

For each vertex v ∈ V (Gn) de�ne its type to be the following data. Let (αv, ηv) denote the
colored R-neighborhood of v in Gn, that is BGn(R, v) rooted at v, together with ηn|BGn (R,v).
Let Fv denote the set of edges of Hn that connect two vertices from BGn(R, v). The type
of v is the triple (αv, ηv, Fv). We think of this as a rooted, vertex colored graph with some
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extra distinguished edges (Fv) indicated. Note that ηv assigns distinct colors to the vertices
of αv.

Let T denote the set of all possible types. Note that |T | is �nite, as k and R are �xed.
Now assigning each vertex its type can be considered as a coloring of V (Gn) by |T | colors.
Let ϕn denote this coloring:

ϕn : V (Gn)→ T, ϕn(v) = (αv, ηv, Fv) for all v ∈ V (Gn).

Observe that ηn is a function of ϕn: for all v ∈ V (Gn), ηn(v) equals the color of the root of
ϕn.

For any vertex v ∈ V (Gn) the edge (v, u) ∈ E(Gn) connecting v to its neighbor u can
be traversed using at most L edges of Hn. Choose a shortest path between v and u in
Hn. Because the length of the steps on the edges of Hn are bounded by L in terms of the
graph distance in Gn the r = L2 + 1-neighborhood of v in Gn already contains this shortest
path. This holds for all neighbors u. This fact will be re�ected in the type of v, namely for
every neighbor of the root of αv there will be a path of length at most L using edges from
Fv connecting the root to the neighbor. We will refer to this property by saying that Fv
witnesses L-bi-Lipschitz equivalence at the root.

Since the Gn converge locally-globally to G if we choose n large enough, we can �nd a
Borel coloring ϕ : X → T such that

dTV
(
PGn,r[ϕn], PG,r[ϕ]

)
< δ,

that is we can model the local statistics of ϕn on G with at most δ error. Choose δ such that
δ(D + 1

2D
L) < ε.

The type of x gives a suggestion on how to construct a cheap graphing around x, which
is Fx, the collection of distiguished edges. The idea is to consider the r-neighborhood of x
in G, and choose the edges of some graphing H locally according to Fx. This H would have
the same connected components as G because Fx witnesses bi-Lipschitz equivalence at the
root, and would be cheap because the expected H-degree of a point is close to the expceted
Fv-degree of the root in PGn,r[ϕn]. The problem is that the r-neighborhood of x in G is a
priori not the same as what the type of x suggests it is.

However, we will show that the above idea works for most of the points, and after a slight
modi�cation the resulting graphing will be a cheap generating graphing of the relation RG .

First we construct a Borel coloring η : X → {1, . . . , k} from ϕ imitating the way the ηn
could be recovered from the ϕn. Let x ∈ X, and let ϕ(x) = (αx, ηx, Fx) be the type assigned
to x by ϕ. The type suggests a color for the root, namely ηx(o) where o is the root of αx.
So we set η(x) = ηx(o). Observe that ηx is a coloring of the rooted graph αx, and a priori
neither αx nor ηx has anything to do with the structure of G. The value η(x) on the other
hand is a concrete color from {1, . . . , k} that is assigned to the point x ∈ X.

It will turn out that that for most points x ∈ X, their η-colored neighborhood in G is
the same as the colored neighborhood (αx, ηx) suggested by thier type ϕ(x), and η breaks
the possible local symmetries of G by being injective on the neighborhood. We de�ne Y1 as
the set of points where this does not hold up to distance r:

Y1 =
{
x ∈ X

∣∣∣
(
BG(r, x), η|BG(r,x)

)
�
(
Bαx(r, o), ηx|Bαx (r,o)

)}
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⋃{
x ∈ X

∣∣∣ η|BG(r,x) is not injective
}
.

For any x outside Y1 we can identify Bαx(r, o) with BG(r, x) using their colorings. For
any v ∈ V (αx) there exists a unique y ∈ BG(r, x) with η(y) = ηx(v). Such a y exists because
of the isomorphism, and the injectivity of the colorings implies uniqueness. Later on we will
denote this unique y by yx,v. The identi�cation works the other way around as well, for
every y in BG(r, x) we can �nd a unique v ∈ V (αx) such that ηx(v) = η(y). Let us denote
this unique v by vx,y.

We use this identi�cation to reconstruct our rewiring on G. De�ne the edges of a graphing
H0 around x ∈ X \ Y1 as follows: for every edge (o, v) ∈ Fx that connects the root o of αx
with some other point v ∈ V (αx) we include the edge (x, yx,v) in H0.

Recall that we aim to show that H0 (with some small later adjustments) spans the same
connected components as G.
De�nition 2.3.1 (Perfect points). Call a point x ∈ X perfect, if the following conditions
hold:

1) Fx witnesses L-bilipchitz equivalence at the root;

2) all the edges in Fx that ϕ suggests in Bαx(r, o) are indeed chosen to be in the edge set
of H0.

For a type ϕ(x), which is a rooted graph of radius R = 2r with some additional dec-
orations we write ϕ(x)|r for the graph where we simply forget everthing outside radius r.
Similarly when v ∈ Bαx(r, o) write ϕ(x)|r,v for the rooted, decorated graph we get by con-
sidering v as the root, and then forgetting everything outside radius r from v.

De�nition 2.3.2 (Problematic points). Let Y2 be the set of points where one of the following
holds.

i) ϕ does not witness the bi-Lipschitz connectivity at the root;

ii) ϕ fails to capture the local η-colored structure (up to distance R);

iii) η is not injective up to radius R;

iv) there is some y close to x where ϕ(y)|r di�ers from ϕ(x)|r,yx .

We call these points problematic.

Y2 =
{
x ∈ X

∣∣∣ Fx does not witness bi-Lipschitz equivalence at the root
}

⋃{
x ∈ X

∣∣∣ (BG,R(x), η|BG,R(x)
) � (αx, ηx)

}

⋃{
x ∈ X

∣∣∣ η|BG,R(x)
is not injective

}

⋃{
x ∈ X \ Y1

∣∣∣ ∃v ∈ Bαx(r, o) s.t. ϕ(x)|r,v � ϕ(vx)|r
}
.

The next lemma shows that because no such incoherencies happen in Gn the measure of
the problematic points will be small. Also note that Y1 ⊂ Y2, as in Y2 we include all points
where the local structure is not captured up to distance R instead of r.

Lemma 2.3.3. The points in (X \ Y2) are perfect and µ(Y2) < δ.
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Proof. The PGn,r[ϕn] and PG,r[ϕ] are probability distributions on the set UTR of rooted,
T -colored graphs of radius at most R, where T is the set of all possible types.

Let (β, oβ, ψ) denote such a graph with root oβ and coloring ψ : V (β) → T . For a
vertex u ∈ V (β) its type ψ(u) ∈ T is the rooted k-colored graph (αv, ηv) with the additional
distingushed edges Fv. There is some root oαv of αv, and this way we de�ne the coloring
ηψ : V (β) → {1, . . . , k} by ηψ(v) = ηv(oαv). This ηψ is de�ned from ψ the same way as η
(on X) is de�ned from ϕ. Now let (β, oβ, ψ) be random with distribution PGn,r[ϕn], then

PPGn,R[ϕn]

[
(αoβ , ηoβ ) ∼= (β, ηψ)

]
= 1.

The above equality just restates that the type encodes the local colored structure (specif-
ically the color of the root), but this formulation shows that this property will be inherited
with small error when the total variation distance is small.

This isomorphism again enables us to identify αoβ with β. For any v ∈ V (αoβ ) write
yoβ ,v for the unique y ∈ V (β) for which ηoβ (v) = ηψ(y).

We restate that (Hn) is a rewiring by saying that the distinguished edges witness the
L-bi-Lipschitz equivalence at the root:

PPGn,R[ϕn]

[
Foβ witnesses L-bi-Lipschitz equivalence at the root

]
= 1.

We also restate the fact that the type of v, which is all the information up to distance
R = 2r, includes all the information in the r-neighborhood of some other point u, provided
that u is within distance r from v.

PPGn,R[ϕn]

[
ψ(oβ)|r,v ∼= ψ(yoβ ,v)|r for all v ∈ V

(
Bαoβ (r, oαoβ )

)]
= 1.

Finally we restate that η distinguishes all points in the R-neighborhoods.

PPGn,R[ϕn] [ηψ is injective] = 1.

We see that the four events together hold with probability 1 with respect to PGn,R[ϕn].
Since PG,r[ϕ] is close to PGn,R[ϕn] we get that the same holds for ϕ and G with probability
at least 1− δ, which implies µ(Y2) < δ.

If x ∈ X \ Y2 and y ∈ BG(r, x) then y ∈ X \ Y1, which means all the distinguished edges
starting from y suggested by ϕ(y) are indeed in H0, and by the de�nition of Y2 we know that
these are exactly the ones that ϕ(x) would suggest. It is also clear that Fx has to witness
generation, as otherwise x would be in Y2. This implies that x is perfect.

Adding all the edges leaving the points in Y2 we get H:

H = H0 ∪
{

(x, y) ∈ E(G)
∣∣ x ∈ Y2, y ∈ X

}
.

Lemma 2.3.4. H has the same connected components as G, and

µ̃
(
E(H)

)
≤ |E(Hn)|
|V (Hn)| + ε.
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Proof. H will have the same connected components as G, because for any edge (x, y) ∈ E(G)

where x is perfect the connection is witnessed by the r-neighborhood of x. If x is not perfect,
then x ∈ Y2, so (x, y) ∈ E(H) by de�nition.

We now aim to show that H is indeed a cheap generator for the equivalence relation.

µ̃
(
E(H)

)
≤ µ̃

(
E(H0)

)
+ µ̃

(
{(x, y) ∈ E(G) | x ∈ Y2, y ∈ X}

)
≤

≤ µ̃
(
E(H0)

)
+ δD.

For every point x ∈ X let degFx(o) denote the number of edges in Fx leaving the root
of αx. It also makes sense to talk about the expectation of this F -degree with respect to
colored neighborhood statistics, as the F -degree of the root can be determined from its type.

µ̃
(
E(H0)

)
=

1

2

∫

X
degH0

(x) dµ ≤ 1

2

∫

X
degFx(o) dµ =

1

2
EPG,r[ϕ]

[
degF (o)

]
≤

≤ 1

2

(
EPGn,r[ϕn]

[
degF (o)

]
+ δDL

)
=
|E(Hn)|
|V (Hn)| +

1

2
δDL.

Here we used the fact that there can be no more thanDL edges leaving the root in Fv (because
of the bi-Lipschitz condition), and that the two distributions are close in total variation.
Putting all this together and using that we chose δ to ensure that δ(D + (1/2)DL) < ε we
get

µ̃
(
E(H)

)
≤ |E(Hn)|
|V (Hn)| + ε.

By the choice of (Hn) we can assume that

|E(Hn)|
|V (Hn)| ≤ cc(Gn) + 2ε,

which implies µ̃(E(H)) < cc(Gn) + 3ε. This shows the inequality cost(G) ≤ cc(Gn).
The other inequality is proved exactly the same way. The condition that (Hn) is a

rewiring was only used to ensure that the bi-Lipschitz constant L does not depend on n,
only on ε. To prove that cost(G) ≥ cc(Gn) we start by picking a cheap L-bi-Lipschitz
generator for the single graphing G using Lemma 2.2.3, and by local-global convergence we
know that for n large enough we can copy it to Gn with small error.

As for any large enough n and m the graphs Gn and Gm are arbitrarily close in the
local-global topology we can do the same copying argument between the two. We �x the
constant L �rst, and then choose n and m accordingly. This shows that (for all L) the
rewirings (Hn) can indeed be choosen such that the limits de�ning the edge densities exist.
This �nishes the proof of Theorem 2.1.1.

2.3.2 So�c approximations

Using Theorem 2.1.1 we will show that so�c approximations of a group with �xed price c
have combinatorial cost c as well.
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Proof of Theorem 2.1.3. The sequence Gn of S-edge-labeled graphs converges to Cay(Γ, S)

in the Benjamini-Schramm sense, so any subsequential local-global limit will be a graphing
of an essentially free action of Γ, which by the �xed price assumption implies that it has cost
c.

First pick a locally-globally convergent subsequence Gnk with limit G1.

cc(Gn) ≤ cc(Gnk) = cost(G1) = c.

Now assume that cc(Gn) < c. We pick an L large enough such that there is some L-
bi-Lipschitz rewiring (Hn) with e(Hn) < c. As e is de�ned by a liminf we can choose a
subsequence nl such that

lim
|E(Hnl)|
|V (Hnl)|

< c.

Now by passing to a further subsequence we can assume that the (Gnl) converge locally-
globally to some G2. The Hnl witness that cc(Gnl) < c, while local-global convergence
implies cc(Gnl) = cost(G2) = c by Theorem 2.1.1. This is clearly a contradiction, hence
cc(Gn) = c.

2.4 Group actions

The same notions and results exist in the world of measure preserving group actions, where
convergence with respect to the weak containment topology takes the place of local-global
convergence. The analogous de�nitions and statements will be introduced in this section.

2.4.1 Groupoid cost

Let Γ be a �nitely generated group, generated by the �nite symmetric set S = S−1. Let
(X,µ) be either a standard Borel probability space or X a �nite set with µ the uniform
measure on X. A probability p.m.p. action f of Γ is a homomorphism from Γ to the group
of measure preserving transformations of (X,µ). The image of some γ ∈ Γ under this
homomorphism will be denoted by fγ .

Any such p.m.p. action gives rise to a groupoid denoted Mf : endow Γ with the discrete
topology and counting measure, consider Mf = X ×Γ with the product Borel structure and
product measure µ̃. We also de�ne a partial product on X×Γ: (x1, γ1) · (x2, γ2) = (x1, γ1γ2)

whenever x2 = fγ1(x1). The inverse is de�ned by (x, γ)−1 = (fγ(x), γ−1), and so X × Γ

becomes a groupoid with respect to this partial product. We think of the element (x, γ) as
an arrow pointing from x to fγ(x), with the arrow labeled by γ.

The notion of a generating subset of the groupoid is just as one would expect it: a subset
generates, if all elements of Mf can be written as a product of elements and their inverses
chosen from the subset.

For A,B ⊆Mf we will write

A ·B = {a · b | a ∈ A, b ∈ B, and a · b is de�ned}.
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Also let E = X × {e}, where e is the identity element of Γ. Using our notation A generates
Mf if and only if

Mf =
∞⋃

n=1

(A ∪A−1 ∪ E)n.

The groupoid cost of f is

gcost(f) = inf{µ̃(A) | A generates Mf}.

The generators S of the group give rise to a speci�c generating subset of Mf , namely
XS = X × S. We will say that a generating subset A is L-bi-Lipschitz, if all the elements of
XS can be generated by using at most L arrows from A and vice versa. More precisely we
require that

XS ⊆ (A ∪A−1 ∪ E)L, and A ⊆ (XS ∪X−1
S ∪ E)L.

Note that while the actual value of the bi-Lipschitz constant L may depend on the choice of
S, the property of A being a bi-Lipschitz generating subset (with some bi-Lipschitz constant)
does not.

In this setting Lemma 2.2.3 was stated by Abért and Nikolov [AN12]. It says that by
paying an arbitrarily small amount, we can choose the generating subset to be bi-Lipschitz.
That is, for any ε > 0 there exists some integer L and an L-bi-Lipschitz generating subset
A ⊆Mf such that µ̃(A) < gcost(f) + ε.

2.4.2 The weak containment topology

The notion of weak containment of actions was introduced by Kechris [Kec10]. The topology
described below on the weak equivalence classes was de�ned by Abért and Elek in [AE11] and
then studied further by Carderi in [Car15]. They showed that the topology of local-global
convergence is a compact topology on the weak equivalence classes of actions.

For an action f of the group Γ and a point x ∈ X the Γ-orbit of x admits a Schreier
graph structure: for two points y, z ∈ Γx in the orbit draw an oriented edge from y to z
labeled by some s ∈ S if fs(y) = z. Denote this graph by Sch(Γ, f, x).

The only di�erence compared to the local-global convergence of graph sequences and
graphings is that in this case we consider the neighborhoods in the Schreier graphs together
with the edge labeling by the generators S.

To an action f we again associate a set Qkf,r that is the closure of all local statistics
arising from Borel k-colorings with respect to the total variation distance. We say that an
action f weakly contains another action g (denoted f � g) if Qkg,r ⊆ Qkf,r for all r and k.
This means that all colorings of g can be modeled on f with arbitrarily small error. The
actions are weakly equivalent if they both weakly contain the other, that is Qkg,r = Qkf,r

Convergence with respect to the weak containment topology is de�ned by the convergence
of Qkfn,r for all r, k as compact sets with respect to the Hausdor� distance. The intuitive
meaning of this convergence is the same as the one for local-global convergence. Abért and
Elek showed that the topology induced by this convergence notion is compact, in particular
every convergent sequence has a limit [AE11].

Kechris showed that if f and g are free p.m.p. actions and f � g, then cost(Rf ) ≤
cost(Rg) [Kec10, Corollary 10.14]. Here Rf denotes the orbit equivalence relation generated
by the action f . Abért and Weiss extended this beyond free actions in [AW13]: for any
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actions with f � g the groupoid cost satis�es gcost(f) ≤ gcost(g). This implies that
the groupoid cost is well de�ned on weak equivalence classes, and studying the continuity
properties of the groupoid cost with respect to the weak containment topology makes sense.

2.4.3 The groupoid cost of weak containment limits

Following the proof of Theorem 2.1.1 we get a result for group actions.

Proposition 2.4.1. Suppose that the sequence f1, f2, . . . of p.m.p. actions is convergent in
the weak containment topology to the p.m.p. action f . Then

lim sup
n→∞

gcost(fn) ≤ gcost(f). (2.2)

This is a semicontinuity result for the groupoid cost with respect to the weak containment
topology. The proof follows exactly the same steps as in Theorem 2.1.1: we choose a cheap
bi-Lipschitz generating set for the groupoid Mf , record all local information into a coloring
of X, modell this coloring on the fn when n is large enough with some small error and build
a cheap generating set for Mfn by decoding the coloring.

The whole process is actually slightly easier in this setting, because there is no need to
break the local symmetries of the graphs as the Schreier edge labeling already takes care of
that. As we are not imposing a uniform bound on the complexity of generation by talking
about �combinatorial groupoid cost�, we only get an inequality.

However, for the inequality we only need that colorings of f can be modeled with small
error on the fn, and we don't have to require it the other way around. That is, if the
sequence �asymptotically weakly contains� f , then we have (2.2). This can be thought of
as an asymptotic version of the monotonicity results by Kechris [Kec10], and Abért-Weiss
[AW13].

Remark (The ultraproduct technique). These results, together with Theorem 1 for
graphings of free p.m.p. actions can be obtained by using the ultraproduct techniques intro-
duced in [AE11] and [Car15], Carderi's result on ultraproduct actions being weakly equivalent
to some standard action and the monotonicity results of Kechris and Abért-Weiss.

If one modi�es (the somewhat arbitrary) choice of lower edge density in the de�nition of
the combinatorial cost to edge density along an ultra�lter ω by taking an ultralimit instead
of a liminf, then this modi�ed combinatorial cost of the sequence will equal the cost of the
ultraproduct graphing.

2.4.4 Rank gradient in groups with �xed price

We need one further tool to prove Theorem 2.1.4. The following lemma is stated in [AGN17,
Lemma 21].

Lemma 2.4.2. Let Γ be a countable group, and H a subgroup of �nite index in Γ. Let f
be the right coset action of Γ on Γ/H. Then we have

r(Γ, H) =
rank(H)− 1

|Γ : H| = gcost(f)− 1.
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Proof of Theorem 2.1.4. First we show that lim inf r(Γ,Γn) ≥ c−1. We select a subsequence
Γnk such that r(Γ,Γnk) converges to the liminf. Taking the diagonal product of the corre-
sponding group actions fnk we get an action f of Γ that factors onto each fnk , which implies
gcost(f) ≤ gcost(fnk) for every nk. The measure of the set of �xed points of a group element
can only increase for factros, which implies that f is essentially free because of the Farber
condition. Using Lemma 2.4.2 and gcost(f) = c we get

lim
k→∞

r(Γ,Γnk) = lim
k→∞

(gcost(fnk)− 1) ≥ gcost(f)− 1 = c− 1.

Similarly we can choose a subsequence such that

lim sup r(Γ,Γn) = lim r(Γ,Γnl).

By passing to a further subsequence we can also assume that the actions fnl converge in the
weak containment topology to some action f̂ . This limit is essentially free by the Farber
condition, so gcost(f̂) = c. Using Proposition 2.4.1 we get

lim
l→∞

r(Γ,Γnl) = lim
l→∞

(gcost(fnl)− 1) ≤ gcost(f̂)− 1 = c− 1.

Remark (alternative proof). The second part of the proof can be obtained without Propo-
sition 2.4.1 � which we only sketched � by using a result from [AGN17].

After choosing a subsequence such that lim sup r(Γ,Γn) = lim r(Γ,Γnl), [AGN17, Theo-
rem 8] states that lim r(Γ,Γnl) ≤ cc

(
Sch(Γ,Γnl , S)

)
− 1. Using Theorem 2.1.3 we get

lim
l→∞

r(Γ,Γnl) ≤ cc
(
Sch(Γ,Γnl , S)

)
− 1 = c− 1.

2.5 The trichotomy theorem

In this section we introduce strong ergodicity, and prove the results on �nitely presented
groups.

2.5.1 Strong ergodicity

Let f be a p.m.p. action of the countable group Γ on a standard Borel space (X,µ). A
sequence An of measurable subsets is called almost invariant, if

lim
n→∞

µ(fγAn4An) = 0, for all γ ∈ Γ.

The action f is strongly ergodic, if for any almost invariant sequence An we have

lim
n→∞

µ(An)
(
1− µ(An)

)
= 1.

We will make use of the following result of Abért and Weiss [AW13, Theorem 3].
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Theorem 2.5.1. Let f be an ergodic p.m.p. action of a countable group Γ on a standard
Borel space (X,µ). If f is not strongly ergodic, then f is weakly equivalent to f × I,which
is the diagonal action on (X,µ)× [0, 1] with Γ acting trivially on the second coordinate.

2.5.2 Dispersive actions

Let Sch(Γ,Γn, S) be a sequence of Schreier graphs, and let fn denote the corresponding
�nite actions. We call the sequence Sch(Γ,Γn, S) dispersive if for any subsequential weak
containment limit f of fn, f has no strongly ergodic, ergodic component of positive measure.

Lemma 2.5.2. Let Γ be a group generated by the �nite set S and Γn a sequence of subgroups
such that the corresponding Schreier graphs Sch(Γ,Γn, S) form a dispersive sequence. Then
for every ε > 0 and k ∈ N we can �nd some n such that the vertex set V of Sch(Γ,Γn, S)

can be partitioned into k sets A1, . . . , Ak such that

1. 1
k − ε ≤

|Ai|
|V | ≤ 1

k + ε for all Ai,

2.
∑ |SAi \Ai| < ε|V |.

Proof. Pick a subsequence Γnl such that the Sch(Γ,Γnl , S) converge in the weak containment
topology to some Γ action f on a standard Borel space (X,µ). As the sequence is dispersive
we know that f has no strongly egrodic, ergodic components of positive measure.

We claim that X can be partitioned into k disjoined Borel sets B1, . . . , Bk of approxi-
mately equal measure that are almost invariant, namely

∑

s∈S

∑

1≤i≤k
µ(sAi \Ai) < ε/2.

Assume �rst that f is ergodic. Then it is not strongly ergodic, and we can use Theorem
2.5.1. The base space of f × I can be easily partitioned into k invariant subsets, speci�cally
B′i = (X,µ)×[(i−1)/k, i/k]. Weak equivalence guarantees that this partition can be modeled
with arbitrarily small error (e.g. ε/2) for f on the set X, and thus we have the desired Bi.

When f is not ergodic the we can divide X into two invariant sets X1 and X2 of positive
measure. If f is ergodic on one of the Xi, then it is not strongly ergodic on that part and
hence we can use the above argument to partion that Xi. If f is not ergodic on Xi, then we
can again divide it into invariant subsets of positive measure.

Since all positive measure ergodic components are not strongly ergodic, we can continue
this procedure and �nd a partition into some tiny (measure ε/100) invariant sets and some
non-strongy-ergodic components, which we can partition into almost invariant sets. Putting
these blocks together into k sets we can get an almost invariant partition into pieces with
measure in [1/k − ε/2, 1/k + ε/2].

Now since f is a limit, for some nl large enough we can model the partition B1, . . . , Bk
with error ε/2 on Sch(Γ,Γnl , S), and get the desired Ai.

2.5.3 Finitely presented groups

We now brie�y discuss how we will present �nite index subgroups of �nitely presented groups.
Notation and general framework follows [AJN11].

Let Γ = 〈S | R〉 be a �nitely presented group, and H ⊆ Γ a �nite index subgroup. Let T
denote a spanning tree of the Schreier graph Sch(Γ, H, S). We select a transversal T for the
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subgroup H as follows: for each coset γH we consider the unique path in Sch(Γ, H, S) from
the root H to γH, and select the corresponding S-word to be in T . This T is called the left
Schreier transversal corresponding to T with respect to S. For a group element γ ∈ Γ let γ̃
denote the unique element in T such that γH = γ̃H.

For every edge e = (γH, sγH) of Sch(Γ, H, S) we put T (e) = (s̃γ)−1sγ̃. It is known that
the {T (e)} belong to and generate H. Note that if e ∈ E(T ), then T (e) = 1.

For a relation r = sl . . . s1 ∈ R and group element t ∈ T let rt = t−1rt. This rt is an
element of H, and can be considered as a word in the T (e): rt = T (el) . . . T (e1), where
ei = (si−1 . . . s1tH, si . . . s1tH). We are going to use the fact that these relations give a
presentation of H:

H =
〈
{T (e)}e∈E(Sch(Γ,H,S))\E(T ) | {rt}r∈R,t∈T

〉
.

Suppose a group H has subgroups Hi ⊆ H (1 ≤ i ≤ k) which all contain a �xed subgroup
L and H ∼= ∗LHi. We say that this decomposition is non-trivial, if L has index at least 3 in
at least two of the subgroups.

Proof of Theorem 2.1.7. Assume that Sch(Γ,Γn, S) is dispersive and RG(Γ, (Γn)) > 0. We
will show that some Γn decomposes as a non-trivial amalgamated product. We can pass to
a subsequence and assume that

d(Γn)− 1

[Γ : Γn]
> c > 0 for all n.

Choose an integer k such that

(
3

2
|S|+ 1

)
1

k
≤ c/2.

Let M be the sum of the lengths of the relations in R. As the sequence is dispersive,
using Lemma 2.5.2 we can choose some n such that the vertex set V

(
Sch(Γ,Γn, S)

)
can be

split into the disjoint union of k sets A1, . . . , Ak such that

1. [Γ:Γn]
k − [Γ:Γn]

2k < |Aj | < [Γ:Γn]
k + [Γ:Γn]

2k for all j ∈ {1, . . . , k} and

2. |∂(A1, . . . , Ak)| < 1
k(1+M2)

[Γ : Γn], where

∂(A1, . . . , Ak) =
{
e ∈ E

(
Sch(Γ,Γn, S)

) ∣∣ e = (x, y), x ∈ Aj , y ∈ Al, j 6= l
}
.

As we have [Γ : Γn]→∞ we can also make sure that we choose n large enough so that

k − 1

[Γ : Γn]
≤ c/2.

Put H = Γn and follow the above construction for a presentation of H. Note that∣∣V
(
Sch(Γ, H, S)

)∣∣ = [Γ : H].
De�ne Y to be the collection of generators T (e) that share a relation with an inbetween

edge. More precisely let T (e) ∈ Y if either e ∈ ∂(A1, . . . , Ak) or there exists a relation
rt = T (e1)±1 . . . T (el)

±1 for which some ej ∈ ∂(A1, . . . , Ak) and some em = e. Let Xi be the
set of generators T (e) for which both endpoints of e are in Ai.

De�ne the subgroups L = 〈Y 〉 and Hi = 〈Y ∪Xi〉. Clearly L ≤ Hi for all i.
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Lemma 2.5.3. H decomposes as the amalgamated product of the Hj over L, H ∼= ∗LHi.

We postpone the proof of the lemma, and show that this decomposition is non-trivial.
Suppose that L has index at most 3 in H1, H2, . . . ,Hk−1. Then each of these Hi (1 ≤ i ≤
k − 1) are generated by L and at most 1 other element. Thus H is generated by Hk (which
includes L) and at most k − 1 other elements, d(H) ≤ d(Hk) + k − 1.

It is easy to bound the cardinality of |Xk|:

|Xk| ≤ |S||Ak| ≤ |S|
(

[Γ : H]

k
+

[Γ : H]

2k

)
.

Let r = sl . . . s1 be a relation of Γ of lenght l. Note that there are at most l|∂(A1, . . . , Ak)|
di�erent lifts rg̃ = T (e1)±1 . . . T (el)

±1 of r for which some ej ∈ ∂(A1, . . . , Ak). Also for each
such relation of H we have at most l generators T (e) of H that are getting into Y . Thus,
if {lj} is the set of lenghts of the relations of Γ (so M =

∑
lj), then we can bound the

cardinality of Y .

|Y | ≤ |∂(A1, . . . , Ak)|(1 +
∑

l2j ) ≤ |∂(A1, . . . , Ak)|(1 +M2) ≤ [Γ : H]

k
.

Putting our bounds together we get

d(H) ≤ d(Hk) + k − 1 ≤ |Xk|+ |Y |+ k − 1 ≤
(

3

2
|S|+ 1

)
[Γ : H]

k
+ k − 1.

This however gives an upper bound on the rank quotient at H:

d(H)− 1

[Γ : H]
≤
(

3

2
|S|+ 1

)
1

k
+

k − 1

[Γ : H]
≤ c/2 + c/2 = c.

This contradicts our assumption that each such quotient is more than c, hence the decom-
position is non-trivial.

Proof of Lemma 2.5.3. The argument follows the one in [AJN11, Section 3].
Consider the following sets of relations. LetRi be the set of all the rt = T (e1)±1 . . . T (el)

±1

where either all ej have both endpoints in Ai or some ej is in ∂(A1, . . . , Ak). Now Ri ∪Rj is
the same set R̄ for all pairs (i, j), that is the relations having an inbetween edge. De�ne the
groups Ti by the presentations 〈Xi ∪ Y | Ri〉, let T̄ = 〈Y | R̄〉. We have a homomorphisms
φj : T̄ → Ti by the inclusion of Y into Xi∪Y . From the presentations we see that H ∼= ∗T̄Ti.

Each Ti surjects onto Hi (and T̄ surjects onto L) by mapping the abstract generators to
their counterparts in H. By the universal property of the amalgamated product one can see
H ∼= ∗LHi.

Proposition 2.5.4. For a countable amenable group Γ all sequences (Γn) of distinct �nite
index subgroups are dispersive.

Proof. It is a result of Schmidt [Sch81, Theorem 2.4] that amenable groups admit no strongly
ergodic actions. If any subsequential limit would have an ergodic component of positive mea-
sure that is strongly ergodic, then restricting the action to that component would contradict
[Sch81].

58

C
E

U
eT

D
C

ol
le

ct
io

n



CHAPTER 2

As amenable groups cannot decompose as non-trivial amalgamated products this proves
Theorem 2.1.6.

2.6 Open problems

Note that an even stronger form of Theorem 2.1.4 would simply express the rank gradient of
a local-global convergent sequence as the cost of the limiting graphing of the sequence. As
of this moment, we do not know how to prove or disprove this. The obstacle is that combi-
natorial cost handles sequences of generating sets with a bounded complexity with respect
to some standard generating set. A priori, it could happen that actual small generating sets
over the sequence need a very aggressive growth of complexity, and the local-global metric is
too weak to connect such generating sets over the sequence. This is the same obstacle that
makes the proof of Theorem 2.1.7 somewhat tricky.

The following problem connects two well-known unsolved problems, one in ergodic theory,
the other in 3-manifold theory.

Problem 2.6.1. Let Γ be a �nitely generated group. Does there exist c such that for any
Farber sequence (Γn) in Γ, we have RG(Γ, (Γn)) = c?

Equivalently, one can ask whether RG(Γ, (Γn)) exists for any Farber sequence (Γn) in
Γ. Indeed, an advantage of Farber sequences over Farber chains is that they are closed to
merging.

By Theorem 2.1.4, a negative answer to Problem 2.6.1 would immediately give a negative
answer to the Fixed Price problem of Gaboriau [Gab00], that asks whether for an arbitrary
countable group Γ, all essentially free p.m.p. actions of Γ have the same cost. A positive
answer, on the other hand, would speci�cally show that in a �nitely generated group, any
two normal chains with trivial intersection have the same rank gradient, which by [AN12]
would then solve the strong Rank vs Heegaard genus problem on hyperbolic 3-manifolds.

One possible approach to Problem 2.6.1 is through graph theory as follows. Let G be a
�nite, connected graph with maximal degree D. For L ≥ 1 let

cL(G) = min
H

|E(H)|
|V (G)|

where H runs through all rewirings of G with bi-Lipschitz constant at most L. It is easy to
see that

1− o(1) ≤ cL(G) ≤ D.

The following problem is related to the Fixed Price problem of Gaboriau.

Problem 2.6.2. Let (Gn) be a Benjamini-Schramm convergent sequence of graphs of bounded
degree. Does cL(Gn) converge for every L ≥ 1?

The connection is one sided.

Proposition 2.6.3. An a�rmative solution of Problem 2.6.2 implies an a�rmative solution
of Problem 2.6.1.

Note, however, that this problem seems to be a real strenghtening. Indeed, it could
happen that for two large graphs G1 and G2 that are very close in the Benjamini-Schramm
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topology, one can �nd a cheap rewiring of G1 with a bi-Lipschitz constant L1 but only do
the same to G2 with a much bigger constant.

Problem 2.6.4. Let Γ be a �nitely presented group generated by a �nite symmetric set S.
Let (Γn) be a sequence of subgroups of �nite index in Γ and let Gn = Sch(Γ,Γn, S). Assume
that no Γn decomposes as a non-trivial amalgamated product and that the sequence (Gn) is
dispersive. Is it true that cc(Gn) = 1?

In Theorem 2.1.7 we show that the rank gradient of (Γn) must vanish.
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3
The distortion function

Abstract

We study the distortion function of p.m.p. actions. We investigate its behavior with
respect to weak containment, and observe monotonicity outside a countable set of
discontinuity points. We compute the distortion function of free actions of Zd up
to constant multiple, and conclude that the distortion function distinguishes them.
For lamplighter groups we establish a logarithmic bound on the distortion function
in case the lamps have �nitely many states and the lamplighter walks on a �nitely
generated in�nite group.
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THE DISTORTION FUNCTION

3.1 Preliminaries

The distortion function of p.m.p. actions was introduced in [AGN17]. It is an invariant of
group actions that is related to the cost, so our setting will be the same as in Subsection
2.4.1.

Let f be a p.m.p. action of the �nitely generated group Γ on the standard Borel probabil-
ity space (X,µ), and letMf denote the associated measured groupoid. Fix a �nite generating
set S, and write

XS = {(x, s) ∈Mf | x ∈ X, s ∈ S}

and
E = {(x, e) ∈Mf | x ∈ X}.

Recall that we say a generating subset A ⊆Mf is L-bi-Lipschitz if

XS ⊆ (A ∪A−1 ∪ E)L and A ⊆ (XS ∪X−1
S ∪ E)L.

The distortion function measures how large one has to chose the bi-Lipschitz constant as
we are getting closer and closer to the cost.

De�nition 3.1.1 (distortion function). For all positive x de�ne δf (x) to be the least integer
L such that there is an L-bi-Lipschitz generating set A ⊆Mf with µ̃(A) ≤ gcost(f) + x.

To make notation more compact we introduce the bi-Lipschitz distance of two generating
sets A,B ⊆Mf :

dL(A,B) = inf{k | B ⊆ (A ∪A−1 ∪ E)k, and A ⊆ (B ∪B−1 ∪ E)k}.

This way we can write the distortion function as

δf (x) = inf
A⊆Mf generating

µ̃(A)≤gcost(f)+x

dL(A,XS).

The distance of two generating subsets might be in�nite, but as we discussed in Subsection
2.4.1 one can always assume bi-Lipschitz generation by paying an arbitrarily small amount.
In other words δf (ε) is �nite for any ε > 0.

To sum up, we see that the distortion function is actually de�ned on R+, takes positive
integer values and it is clearly monotone decreasing.

It is also clear that δf depends on the choice of the generating set S, but only up to a
constant multiple. For this reason we suppress S from the notation. It will either be �xed,
or the results will not depend on its choice.

3.1.1 Monotonicity with respect to weak containment

As we have seen in the proof of Theorem 2.1.1 and Proposition 2.4.1, weak containment
of group actions allows one to copy generating subsets with little error. Notice that during
this procedure the bi-Lipschitz constant does not increase, which we express in the following
proposition.

Proposition 3.1.2. Let Γ be a group with a �xed �nite generating set S. Let f and g be
actions of Γ on the standard Borel probability space (X,µ). Let A ⊆Mf be an L-bi-Lipschitz
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generating set, and assume f � g. Then for any ε > 0 there is a B ⊆ Mg L-bi-Lipschitz
generating set with µ̃g(B) ≤ µ̃f (A) + ε.

This means we can relate the distortion functions of free actions of a �xed price group.

Corollary 3.1.3. Assume Γ = 〈S〉 has �xed price. If f, g are free actions with f � g then
δg(x+ ε) ≤ δf (x) for all x, ε ∈ R+.

The �xed price assumption ensures that f and g have the same cost, so the distortion
functions measure the necessary complexity as we are approaching the same number.

It would be inviting to state that if f and g are weakly equivalent then their distortion
functions (with respect to a �xed S) are the same. However we can see in Corollary 3.1.3
that there is a slight issue preventing this: we are only able to bound δg(x + ε) instead of
δg(x).

Nonetheless our functions are integer valued and monotone decreasing. This means that
apart from a countable set of discontinuity points we can still relate δf and δg.

Corollary 3.1.4. Let Γ be as before, assumed to have �xed price. Let f, g be weakly
equivalent free actions of Γ. Assume that D ⊆ R+ is the set of discontinuity points of
f . Then the set of discontinuity points of g is also D, and δf (x) = δg(x) for all x ∈ R+ \D.

If one could prove continuity of the distortion function from right or left the above
corollary would of course extend to D.

Problem 3.1.5. Is the distortion function of a free p.m.p. action always right (always left)
continuous?

The problem with the discontinuity points is not a signi�cant issue, as we will generally
only consider distortion functions up to constant multiple. For real valued functions h, g we
will denote equivalence up to constant multiple by h � g. That is

h � g ⇔ ∃C > 0 s.t.
1

C
g ≤ h ≤ Cg.

3.2 Distortion of Zd

In this section we will investigate the distortion function of free actions of Zd. For amenable
groups there is only one weak equivalence class of free actions. In fact this property charac-
terizes amenability, see [Kec10, Proposition 13.2]. Our result is the following.

Theorem 3.2.1. For any free action f of Zd we have

δf (x) �
(

1

x

) 1
2d

.

Before proceeding to the proof of Theorem 3.2.1 we state a quick corollary.

Corollary 3.2.2. The distortion function distinguishes the actions of Zd for di�erent d. In
particular the distortion function is not an orbit equivalence invariant.

In the remainder of this section we prove Theorem 3.2.1. The upper bound is established
in Proposition 3.2.4. By the characterization of amenability mentioned above it su�ces to �nd
one free p.m.p. action with the desired distortion. The lower bound is proved in Proposition
3.2.9.
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THE DISTORTION FUNCTION

3.2.1 Connection to invariant processes

For our construction proving the upper bound it will be more convenient to think of invariant
random rewirings on the Cayley graph of Zd as opposed to measurable subsets of groupoids
associated to free actions.

De�nition 3.2.3. An invariant random L-rewiring of a group Γ with �xed generating set S
is a random L-rewiring H of the countable graph Cay(Γ, S) whose distribution is invariant
under the translation action of Γ. We say H is aperiodic, if the rewiring almost surely has
no translational symmetries.

It is a standard argument to associate essentially free p.m.p. actions to aperiodic invariant
random processes.

In our situation we can de�ne Rew(Γ, S, L) to be the space of all L-rewirings of Cay(Γ, S).
This space carries a rooted distance and an action of Γ by translation of the set of edges
constituting the rewiring. This action is by homeomorphisms.

An invariant random L-rewiring is simply a Borel probability measure on Rew(Γ, S, L)

that is Γ-invariant. If the random rewiring is aperiodic the action will be essentially free with
respect to the measure.

3.2.2 Construction for the upper bound

Using the connection above the following proposition will su�ce to �nd an upper bound in
Theorem 3.2.1. By the average degree of an invariant random rewiring we mean the expected
degree of the identity element.

Proposition 3.2.4. Let L ∈ N arbitrary. There exists an invariant random aperiodic
rewiring H of Zd with bi-Lipschitz constant (4d+ 1)L such that H has average degree

2 +
2d− 2

L2d
.

Proof. First we construct an aperiodic random rewiring H0 which will be invariant only with
respect to the �nite index subgroup L2 · Zd ≤ Zd. Then taking H to be a uniform random
translate of H0 will give invariance under the whole Zd.

The vertex set of H0 will be V = Zd. The edge set of H0 will consist of two types of
edges: short and long. The short edges will simply be edges of Zd, while the long edges will
connect certain vertices that are at distance L in a vertical or horizontal direction.

We will introduce edges in a grid-like way, and to that end we denote by V2 = (L2) · Zd
the vectors with all coordinates divisible by L2. Similarly let V1 = L ·Zd denote the vectors
with all coordinates divisible by L. Clearly V2 ⊆ V1.

At �rst we introduce long edges between vertices in V1 to form an �L-by-L grid� on V2.
More precisely, let i ∈ {1, . . . d} be an arbitrary coordinate, and let ei denote the standard
unit vector in the i-th coordinate. For any vector v = (v1, . . . , vd) ∈ V1 such that L2 | vj for
all other coordinates j 6= i and L | vi we connect v to v+Lei and v−Lei. We do this for all
coordinates i.

The second step, still using long edges, is �lling in the cubes of our grid by a spanning
tree. We will do this randomly and independently for all cubes, in order to get aperiodicity.

For v ∈ V1 let [v]2 ∈ V2 denote the vector we get by decreasing each coordinate vi to the
greatest number ui ≤ vi with L2 | ui. That is [v]2 = (u1, . . . , ud) ∈ V2 and vi−L2 < ui ≤ vi.
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Fix u ∈ V2. We will connect the vertices v ∈ V1 \ V2 with [v]2 = u by a random spanning
tree. First randomly choose an ordering of the coordinates {1, . . . , d}, say i comes before j
in the ordering if σ(i) < σ(j) for a uniform random permutation σ : {1, . . . , d} → {1, . . . , d}.

Let v ∈ V1\V2 with [v]2 = u, and we look at the �rst coordinate i in our random ordering
such that L2 - vi. Introduce an edge from v to v − Lei. This way we make sure that from
any such v we can reach u in at most d(L− 1) steps. The ordering is chosen independently
for all u ∈ V2, so H0 becomes aperiodic.

We claim that one can get from any v ∈ V1 to any of its L-neighbors v′ = v ± Lei using
at most (d(L− 1) + L+ d(L− 1)) ≤ (2d+ 1)L long edges. Indeed from v and v′ we can get
to [v]2 and [v′]2 in d(L − 1) steps, and either [v′]2 = [v]2, or [v′]2 = [v]2 ± L2ei. In the �rst
case we have nothing to do, while in the second we can get from [v]2 to [v′]2 using L long
edges.

The last step is to repeat the same spanning tree trick for vertices v ∈ V \ V1, but this
time with short edges. There is no need to do this at random anymore, as we already broke
all symmetries.

We connect each such v to v − ei, where i is the �rst coordinate with L - vi. We denote
by [v]1 the vector (u1, . . . , ud) ∈ V1 with vi−L < ui ≤ vi. From any v ∈ V we can reach [v]1
in at most d(L− 1) steps, and so we can get from any v to any neighboring vector v′ in at
most d(L− 1) + (2d+ 1)L+ d(L− 1) ≤ (4d+ 1)L steps.

As the edges we used are of length at most L we have shown that this H0 is indeed a
rewiring with bi-Lipschitz constant (4d+ 1)L.

It is also clear that the distribution of H0 is L2 ·Zd-invariant, because of the i.i.d. choice
of the spanning trees.

To compute the average degree we can look at the average of degrees in the {0, . . . , (L2−
1)}d cube. At �rst disregarding the edges going out we see a spanning tree, which has (L2)d−1

edges. The contribution of these edges to the average degree is

2
(
(L2)d − 1

)

(L2)d
.

There are 2d outgoing edges, because of the grid we placed in the �rst step. These contribute
(2d)/(L2)d to the average degree. In total the average degree is

2 +
2d− 2

L2d
.

3.2.3 The lower bound

Now we turn to proving a lower bound on the distortion of Zd actions. First we show that
any individual L-rewiring has to include an L2-by-L2 grid in a topological sense. This gives
us su�ciently many edges that are inessential for connectedness, and get a lower bound on
the degree when averaging over Følner sets. Then we use a pointwise ergodic theorem for
amenable groups to obtain our result on invariant random rewirings.

Lemma 3.2.5. Let Fn be a Følner sequence for the amenable, bounded degree graph G. If
H is an L-rewiring of G, then Fn is also a Følner sequence for H.
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THE DISTORTION FUNCTION

Proof. By our assumption

lim
n→∞

|∂GE (Fn)|
|Fn|

= 0.

We investigate the number ak of edges of H leaving Fn that traverse distance k in G. Every
such edge corresponds to a path of length k that uses an edge from ∂GE (Fn) along the way.
Thus we get

ak ≤ k · |∂GE (Fn)| ·Dk−1.

Here D stands for the degree bound of G. Summing for all k ≤ L we get

|∂HE (Fn)| ≤
L∑

k=1

k · |∂GE (Fn)| ·Dk−1 = C(L,D) · |∂GE (Fn)|.

The constant C does not depend on n, so we get

lim
n→∞

|∂HE (Fn)|
|Fn|

= 0.

Lemma 3.2.6. Let H be an L-rewiring of Zd. Set K = 4L2 + 1, and let B be a K-by-K
box in Zd. We claim that we can delete (d− 2)2d−1 + 1 edges of H inside B while preserving
connectedness of H.

Proof. First we outline the proof when d = 2. For the convenience of the reader the main
objects of the proof are outlined on Figure 1. The proof for the higher dimensional case will
be similar.

Without loss of generality we assume F to be the box {0, . . . , 4L2 +1}×{0, . . . , 4L2 +1}.
We have to show that we can delete 1 edge of H inside F , so we need to �nd a cycle
inside H. Consider the 4 verices u = (L2, L2), v = (L2, 2L2 + 1), w = (2L2 + 1, L2) and
z = (2L2 + 1, 2L2 + 1).

The vertices u and v are of distance 2L2 + 1 in Zd, connected by a unique path Pu,v.
Let Pu,v = (u0, u1, . . . , uL2+1), with u0 = u and uL2+1 = v. As H is a rewiring for each
(ui, ui+1) there is a path Qui,ui+1 in H of length at most L. Moreover, this path stays within
distance L2 of the edge (ui, ui+1). Concatenating these paths and erasing possible cycles or
backtracking gives rise to a path Q̃u,v in H connecting u and v which stays within distance
L2 of Pu,v. We repeat this argument for the pairs (v, z), (z, w) and (w, u).

The paths Q̃u,v, Q̃v,z, Q̃z,w and Q̃w,u concatenate to a returning walk W in H inside
the tubular L2-neighborhood of the square Pu,v ∪ Pv,z ∪ Pz,w ∪ Pw,u. This walk is clearly
not nullhomotopic, hence we �nd a cycle after removal of backtracking. This cycle is clearly
inside F .

In higher dimension we consider the edge graph C of a d-dimensional cube. The graph
C has 2d vertices and (d− 1)2d−1 edges.

In Zd we also consider a d-dimensional cube with sides L2 + 1, and build the paths Qu,v
between neighboring vertices. This way we get a continuous map from C to F which is a local
embedding everywhere except maybe the vertices of C. Moreover every Qu,v path contains
an edge eu,v that is not in the union of the other paths, simply because all other Qu′,v′ paths
stay close to their respective Pu′,v′ .
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Figure 1: Finding a cycle

We select the complement of a spanning tree of C. This has (d − 1)2d−1 − (2d − 1) =

(d−2)2d−1 +1 edges. We can delete the edge eu,v corresponding to all selected edges without
breaking connectedness.

Lemma 3.2.7. Let H be an L-rewiring of Zd. Then the average degree of H is at least

2 +
d− 2

(2L2 + 1)d
.

By average degree of an individual rewiring we mean the limit of the average of degrees
along a Følner sequence. When H is a random instance of an invariant random rewiring
this limit exists with probability 1. For general H our proof shows that the liminf is at least
2 + (d− 2)/(2L2 + 1)d.

Proof. We will choose a Følner sequence Fn in Zd and compute the limit

lim
n→∞

∑
v∈Fn degH(v)

|Fn|
.

Let Hn be the graph we get by collapsing the entire complement of Fn to one point v∗.
This graph is connected, and
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THE DISTORTION FUNCTION

∑
v∈Fn degH(v)

|Fn|
=

2|E(Hn)| − degHn(v∗)

|Fn|
=

2|E(Hn)| − |∂HE (Fn)|
|Fn|

.

By Lemma 3.2.5 we have

lim
n→∞

|∂HE (Fn)|
|Fn|

= 0.

Let K = 4L2 + 1, and let Fn be a box with sides of size K · n. By tiling Fn with nd

K-by-K boxes and using Lemma 3.2.6 we can delete nd
(
(d − 2)2d−1 + 1

)
edges preserving

connectedness of Hn.
This implies that there are at least |Fn|+nd

(
(d−2)2d−1 +1

)
edges in Hn, so the average

degree is at least

2 +
2nd
(
(d− 2)2d−1 + 1

)
(
(4L2 + 1)n

)d ≥ 2 +
d− 2

(2L2 + 1)d
.

3.2.4 The ergodic theorem

We will use the pointwise ergodic theorem of Lindenstrauss for amenable groups from [Lin01].
Let G act ergodically on a measure space (X,µ), and let ϕ ∈ L1(X,µ). For a �nite subset

F ⊆ G we denote the average of ϕ from x ∈ X over F to be

A(F,ϕ)(x) =
1

|F |
∑

g∈F
ϕ(gx).

In G is amenable, the Følner sequence Fn is said to be tempered, if there is a C > 0 such
that for all n ∣∣∣∣∣∣

⋃

k≤n
F−1
k Fn

∣∣∣∣∣∣
≤ C|Fn+1|.

Theorem 3.2.8 (Lindenstauss, Theorem 1.3 in [Lin01]). Let G be an amenable group acting
ergodically on a measure space (X,µ), and let Fn be a tempered Følner sequence. Then for
any ϕ ∈ L1(X,µ),

lim
n→∞

A(Fn, ϕ)(x) =

∫
ϕ(x) dµ(x) for µ-a.e. x ∈ X.

Using Theorem 3.2.8 component-wise we can connect the average of degrees over a Følner
sequence to the expected degree of the root in an invariant random rewiring. The following
proposition is a direct corollary of Proposition 3.2.7.

Proposition 3.2.9. An invariant random L-rewiring of Zd has average degree at least

2 +
2(d− 1)

(2L2 + 1)d
.

Remark. The theorem of Lindenstrauss assumes the Følner sequence to be tempered, but
this is satis�ed by the sets chosen in the proof of Lemma 3.2.7.
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In fact we can get by with the weaker [Lin01, Theorem 1.1], which only states convergence
in L1. Indeed, by analyzing the proof of Lemma 3.2.7 we can see that the lower bounds on
the average degrees are uniform among all L-rewirings.

3.2.5 Computing the distortion

Now we put together Propositions 3.2.4 and 3.2.9 to prove Theorem 3.2.1.

Proof of Theorem 3.2.1. Proposition 3.2.4 shows that if we aim to �nd a rewiring which gets
(d − 1)/L2d close to the cost we can keep the bi-Lipschitz constant as low as (4d + 1)L, so
letting x = (d− 1)/L2d we get

L =

(
d− 1

x

) 1
2d

.

Turning this around for the distortion we get

δf (x) ≤ (4d+ 1)

(
d− 1

x

) 1
2d

+ 1.

The (+1) at the end of our bound is added because the distortion is integer valued. This
is more convenient than using the ceiling function, and since we are only interested in the
growth up to multiplicative constants it will not matter anyway.

On the other hand Proposition 3.2.9 shows that an L-rewiring cannot get closer to the
cost than

d− 1

(2L2 + 1)d
.

For L large enough we have

d− 1

(2L2 + 1)d
≤ d− 2

(2L2)d
.

Letting x = (d− 2)/(2L2)d we compute what this implies for the distortion, namely

L =
1√
2

(d− 2)
1
2d

(
1

x

) 1
2d

.

So for x small enough

1√
2

(d− 2)
1
2d

(
1

x

) 1
2d

≤ δf (x) ≤ (4d+ 1)(d− 1)
1
2d

(
1

x

) 1
2d

+ 1.

This concludes our proof of Theorem 3.2.1.

3.2.6 Distortion with subgraphings

It is a natural question to ask what happens if in the de�nition of cost we restrict our
attention to generating subgraphings, or in the group action setting sets A which are chosen
as subsets of XS . It is still an open question whether or not one can �nd a free p.m.p. action
of a group where the two notions of cost are distinct.

For the distortion function considering only subsets of XS for generation immediately
reduces the bi-Lipschitz condition to the one-sided containment
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THE DISTORTION FUNCTION

XS ⊆ (A ∪A−1 ∪ E)L.

Without repeating the details we would like to point out that the methods of Propositions
3.2.4 and 3.2.9 still work, but the results will be slightly di�erent.

In the construction the long edges can no longer be used, so instead we can introduce
an L-by-L grid of short edges. When establishing the lower bound we can use (4L+ 1)-by-
(4L+ 1) cubes because of the stronger condition. Otherwise repeating the same arguments
one gets the following.

Proposition 3.2.10. If one only considers generating subsets A ⊆ XS in the de�nition of
groupoid cost and the distortion function, then the distortion function of any free p.m.p.
action f of Zd becomes

δ′f (x) �
(

1

x

) 1
d

.

3.3 Distortion of lamplighter groups

In this section we turn our attention to lamplighter groups.

3.3.1 Lamplighter groups

A lamplighter group is the wreath product Γ = G oB =
⊕

B GoB, where B and G are the
base and lamp groups respectively. We will assume both B and G to be �nitely generated,
and think of G oB as a lamplighter moving around the graph Cay(B,SB) and changing the
status of lamps (described by G) positioned at every vertex.

Formally elements of Γ can be written as pairs (ϕ, b), with ϕ : B → G having �nitely
many x ∈ B with ϕ(x) 6= eG, and b ∈ B. The action of b on the functions ϕ is by translation.

The natural way to �nitely generate Γ is allowing the lamplighter to walk around on the
base graph with elements of SB and to adjust the lamps where he currently is by applying
elements of SG. That is, we embed B into Γ via the map b 7→ (ε, b) where ε is the constant
identity map on B. We also embed G into Γ via the map g 7→ (ϕg, eB) where

ϕg(x) =





g if x = eB,

eG if x 6= eB.

To ease notation from now on we will think of B and G as subgroups of Γ embedded as
above. Now the natural generating set for Γ is simply SΓ = SB ∪ SG.

Our next theorem bounds the distortion of lamplighters when G is �nite.

Theorem 3.3.1. Let G be �nite and B = 〈SB〉 �nitely generated and in�nite. Let Γ = G oB
and f be a free p.m.p. action of Γ. Then δf (x) ≤ C · log(1/x) for some C ∈ R.

Under the above assumptions Γ has �xed price 1. This is because
⊕

B G has enough com-
mutation to have �xed price 1, and as such Γ has an in�nite �xed price 1 normal subgroup,
which implies that Γ itself has �xed price 1. We will not go into more details here, as our
construction for the C · log(1/x) distortion will also imply �xed price 1.
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CHAPTER 3

Γ is not necessarily amenable, so not all free actions are weakly equivalent. Instead we
will make use of a result of Abért and Weiss [AW13, Theorem 1], stating that all free actions
weakly contain Bernoulli actions. Using the monotonicity of the distortion function it su�ces
to prove Theorem 3.3.1 for some Bernoulli action.

In the random process language this translates to constructing a factor of i.i.d. L-rewiring
of Cay(Γ, SΓ) with su�ciently small average degree.

3.3.2 Factor of i.i.d. rewirings

We will consider the Bernoulli shift of Γ with base space
(
[0, 1], u

)
where u is the uniform

measure. That is the space [0, 1]Γ with the measure uΓ. The natural translation action of Γ

obviously preserves the product measure.
As before, let Rew(Γ, S, L) denote the space of L-rewirings of Γ. A random rewiring is

a measure µ on Rew(Γ, S, L). We say that µ is a factor of i.i.d. if we can �nd a measurable
map ψ : [0, 1]Γ → Rew(Γ, S, L) that intertwines both the actions and the measures:

γψ(ω) = ψ(γω) for a.e. ω ∈ [0, 1]Γ, and ψ∗(uΓ) = µ.

Since uΓ is invariant with respect to the Γ action any factor of it is also invariant.
Intuitively we can think of factor of i.i.d. rewirings as having independent uniform random

decorations on the vertices of Cay(Γ, SΓ) and then deciding for each pair of vertices if they
are connected in the rewiring. However the decision has to be deterministic, based on what
the labeled graph looks like, �rooted� at the pair.

Even more informally, every possible edge just looks around. Based on what the SΓ-edge-
labeled and [0, 1]-vertex-decorated graph looks like from there, it makes a decision whether
or not it should belong to the rewiring. All edges use the same rule, so if they see the same,
their decision has to be the same.

If we have a factor of i.i.d. rewiring µ, then we can use it to de�ne a measurable rewiring
of the space

(
[0, 1]Γ, uΓ

)
. We de�ne a generating set A of the groupoid [0, 1]Γ×Γ. For γ ∈ Γ

set (ω, γ) ∈ A if in the rewiring ψ(ω) the arrow labeled by γ starting from the identity is
chosen to be in the rewiring. The measurability of this generating set is provided by the
rewiring being factor of i.i.d. and half the expected degree of the identity in µ will be the
measure of A.

In the rest of this chapter we focus on constructing factor of i.i.d. rewirings of lamplighter
groups such that the expected degree and the distortion are both reasonably small.

3.3.3 Constructing factor of i.i.d. rewirings

We proceed to describe our construction. Fix n ∈ N as a radius around the lamplighter, and
group up the elements of Γ into equivalence classes. Two elements γ1, γ2 ∈ Γ are equivalent
if the lamplighter is at the same position and the status of the lamps agrees outside the ball
of radius n around the lamplighter. Formally γ1 ∼ γ2 if γ1 · γ−1

2 = (ϕ, eB) with ϕ(b) = eG
for all b /∈ BCay(B,SB)(n, e).

Let N = |BCay(B,SB)(n, e)| denote the size of the n-ball in Cay(B,SB). Every equivalence
class contains |G|N group elements.

We subdivide the classes based on the (n− 1)-neighborhood of the marker. We say two
elements γ1, γ2 of Γ are strongly equivalent, if the lamp con�gurations agree outside the ball

71

C
E

U
eT

D
C

ol
le

ct
io

n



THE DISTORTION FUNCTION

of radius (n−1) around the marker. (We still assume the marker to be positioned at the same
place.) Formally this means γ1 ·γ−1

2 = (ϕ, eB) with ϕ(b) = eG for all b /∈ BCay(B,SB)(n−1, e).
Let N ′ = |BCay(B,SB)(n− 1, e)| denote the size of the (n− 1)-ball in Cay(B,SB).

Proposition 3.3.2. There exists a factor of i.i.d. (2N · |G|+ 1)-rewiring of Cay(Γ, SΓ) with
average degree at most

2 +
4|SB|
|G|N ′ .

Before we turn to the proof we need a lemma on spanning trees of Cartesian powers of
�nite Cayley graphs. The Cartesian product of two graphs Gi = (Vi, Ei), i ∈ {1, 2} is de�ned
on the vertex set V1× V2. The pairs (u1, u2) and (v1, v2) are connected if either u1 = v1 and
(u2, v2) ∈ E2, or u2 = v2 and (u1, v1) ∈ E1.

Lemma 3.3.3. Let G = 〈SG〉 be a �nite group, and let CN denote the N -fold Cartesian
power of Cay(G,SG). Then we can �nd a spanning tree TN of CN and a vertex oN ∈ CN
which can be reached from any vertex of CN using at most N · |G|/2 edges from TN .

Proof. First start with any spanning tree T1 of C1 = Cay(G,SG). Let K denote the smallest
integer such that one can �nd a vertex o1 ∈ Cay(G,SG) with all other vertices being of
distance at most K from o1 in T1.

We claim K ≤
⌊
|G|/2

⌋
. We continue to remove leaves of the tree T1 until we are left with

either a single vertex o1, or a single edge whose either endpoint su�ces as o1. Using the fact
that in each step we remove at least 2 vertices shows our claim, and that our bound is sharp
exactly when T1 is a path.

When N = 2 we construct T2 by copying T1 to all vertical subgraphs {u} × C1
∼= C1,

and connecting them by a further horizontal copy of T1 on the subgraph C1 × {o1}. We set
o2 = (o1, o1). From any point (u, v) we can get to (u, o1) in T2 with at most K steps using
the appropriate vertical T1 tree. Then we can get to (o1, o1) with at most K steps using the
horizontal T1. That is, we can move to o2 with at most 2K steps.

For general N we de�ne TN and oN recursively, and proceed by induction. We copy TN−1

to all subgraphs {v} ×CN−1, connect them by a copy of T1 on the graph C1 × {oN−1}, and
set oN = (o1, oN−1). The above argument shows that we can get to oN in K + (N − 1)K ≤
N · |G|/2 steps.

Corollary 3.3.4. In the setting of Lemma 3.3.3 we can construct the spanning tree TN and
the vertex oN as a factor or i.i.d. random process using uniform [0, 1] labels such that oN
can be reached from any vertex of CN using at most N · |G|/2 edges from TN .

Proof. We can make our construction into an invariant random process by simply listing all
translates of (TN , oN ) by Aut(CN ), and choosing one uniformly at random. On �nite graphs
any invariant process is a factor of i.i.d. process as well.

Remark. Observe that in fact the proof of Lemma 3.3.3 shows more. For each N we set
KN to be the smallest integer such that there is a spanning tree TN of CN , and a vertex
oN ∈ CN with all other vertices at most distance KN in TN from oN . We argued that
KN+1 ≤ KN +K1, but in fact the same idea yields KN+M ≤ KN +KM . So in fact KN as a
sequence is subadditive, so Fekete's lemma implies that KN/N converges. For our purposes
though it is enough to see that it is bounded.
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Proof of Proposition 3.3.2. On each equivalence class [γ] introduce the �nite graph C[γ] by
connecting elements where the status of the lamps di�ers only at one position by some
g ∈ SG. This di�erence need not happen at the position of the lamplighter, but by the
de�nition of equivalence it must happen within distance n of it. In the case when G = Z2

this is simply an N -dimensional cube, and in general it is the N -fold Cartesian power of
Cay(G,SG).

Each edge of C[γ] travels distance at most 2n+ 1 with respect to the standard generators
of Γ, as we can take n steps with the lamplighter to the position we need to change, apply
the change and walk back.

We will choose spanning trees of these C[γ], and then connect them by adding edges
between the classes. Both will be factor of i.i.d. constructions, so their union will also be a
factor of i.i.d. Indeed, a uniform [0, 1] label as a measure space is isomorphic to [0, 1]2, so
we can assume to have two i.i.d. random labels per vertex, and use them for the �rst and
second part of the construction respectively.

An important observation is that the equivalence classes form an invariant partition with
respect to the Γ action on Cay(Γ, SΓ). Generators from SG do not move the lamplighter,
and only change the lamp at the marker, so they only permute within the classes. On the
other hand generators from SB move the lamplighter and the whole lamp con�guration with
it, so the classes themselves are permuted, but being equivalent remains invariant.

Each element γ can identify its whole equivalence class, which is inside some bounded
radius ball in Cay(Γ, SΓ). Using the random labels on these vertices and Corollary 3.3.4 we
can get a random spanning tree with a distinguished vertex on each equivalence class. The
fact that the equivalence classes form an invariant partition ensures that the union of all the
spanning trees is a factor of i.i.d. spanning forest.

For the second part of our construction in each strong equivalence class we chose a point
uniformly at random � this is factor of i.i.d. � from where we include the edges labeled by s
and s−1. This concludes our construction.

The following two lemmas contain the computation of the bi-Lipschitz constant and the
average degree, thus �nishing the proof of our proposition.

Lemma 3.3.5. The random graph constructed in Proposition 3.3.2 is connected and is a
2N · |G|+ 1 rewiring of Cay(Γ, SΓ).

Proof. Indeed the edges labeled by SG connect vertices within the equivalence classes, so
their endpoints can be connected using at most N · |G| edges from the spanning forest.

The edges labeled by SB are a bit more tricky. Fix s ∈ SB. From any vertex γ = (ϕ, b)

we take at most N · |G| steps to reach a strongly equivalent vertex (ϕ′, b) where the edge
labeled by s is included. That means we rearranged the lamps within distance n at most
N · |G| times such that in the end we got a con�guration ϕ′ which agrees with ϕ within
distance (n− 1) of the marker b.

We move along the edge labeled s starting from (ϕ′, b), which means we move the marker
to b · s. Then we plan to move from (ϕ′, b · s) to (ϕ, b · s), so we claim the two are equivalent.
Indeed, as ϕ and ϕ′ agree outside the (n− 1)-ball around b they also agree outside the ball
of radius n around b · s. This means we can �x the di�erence between (ϕ′, b · s) and (ϕ, b · s)
using the spanning tree on the equivalence class, which we can do using at most N · |G|
edges.
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THE DISTORTION FUNCTION

The above path used at most 2N · |G| + 1 edges. Collecting our constants we see that
the random spanning subgraph has bi-Lipschitz distortion at most max{2n+ 1, N · |G|, 2N ·
|G|+ 1} = 2N · |G|+ 1.

Lemma 3.3.6. The average degree of the random graph constructed in Proposition 3.3.2 is
at most

2 +
4|SB|
|G|N ′ .

Proof. The spanning forest contributes an average degree of

2
|G|N − 1

|G|N .

We also include 2|SB| edges for each strong equivalence class. The number of strong equiv-
alence classes inside one equivalence class is |G|N−N ′ . The total average degree is

2
|G|N − 1

|G|N + 2
2|SB| · |G|N−N

′

|G|N ≤ 2 +
4|SB|
|G|N ′ .

3.3.4 Bounding the distortion in lamplighters

Proposition 3.3.2 almost su�ces to show Theorem 3.3.1, as we can trivially bound N in
terms of N ′, namely N ≤ |SB| ·N . There is a slight problem however, namely that we only
constructed cheap rewirings for the bi-Lipschitz constants 2N · |G|+ 1. Recall that N is the
size of the ball of radius n in the Cayley graph of the base group. As we increase n the gaps
between the corresponding N are typically unbounded.

In our proof however we can replaceN andN ′ as follows. Instead of the ballBCay(B,SB)(n−
1, e) we consider a �xed subset F ⊆ BCay(B,SB)(n − 1, e), and de�ne strong equivalence as
having the same con�guration outside the F -window around the lamplighter. Formally this
means γ1 · γ−1

2 = (ϕ, eB) with ϕ(b) = eG for all b /∈ F . We de�ne equivalence similarly,
but with the window F · SB instead of using BCay(B,SB)(n, e). As before we have the trivial
bound on the size, |F · SB| ≤ |F | · |SB|. For every integer L we can choose some F with
|F | = L within the ball of radius L − 1, which leads to the following strengthening of our
proposition.

Proposition 3.3.7. For any L ∈ N there exists a factor of i.i.d. (2L · |SB| · |G|+ 1)-rewiring
of Cay(Γ, SΓ) with average degree at most

2 +
4|SB|
|G|L .

Proof of Theorem 3.3.1. We use Proposition 3.3.7. The distortion is at most 2L·|SB|·|G|+1,
while the average degree is at most 2+4|SB|/|G|L. As we get this for all L the gaps between
our bi-Lipschitz constants are bounded by 2|SB| · |G|. If we set y = 2|SB|/|G|L we get

L = log|G|

(
2|SB|
y

)
.
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Running L through N, for these speci�c y we get

δf (y) ≤ 2 · |SB| · |G| log|G|

(
2|SB|
y

)
+ 1.

In general using the monotonicity of δf (x) and the bounded gap between the integer
values we get for all x that

δf (x) ≤ 2 · |SB| · |G| log|G|

(
2|SB|
x

)
+ 1 + 2|SB| · |G|.

This concludes our proof of Theorem 3.3.1.
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