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ABSTRACT

We investigate some applications of convexity and differential equations to study on

the planar Lp-Minkowski problem for 0 < p < 1 and the minimum time function, in

particular. We first establish necessary and sufficient conditions for the existence of so-

lutions to the asymmetric Lp- Minkowski problem in R2 for 0 < p < 1, which amounts

to solve a Monge-Ampère type differential equation on S1 in the regular case. In ad-

dition, we investigate the ϕ-convexity of the epigraph of the minimum time function

T associated with a nonlinear control system with a general closed target under the

condition that the sublevel sets of T are ϕ0-convex for some appropriate nonnegative

constant ϕ0, where ϕ is a continuous function which can be computed explicitly. This

property of T is proved based on some suitable sensitivity relation results. We also

provide some sufficient conditions for convexity of sublevel sets of T . Furthermore,

we provide an invariant result for the set of non-Lipschitz points of the minimum time

function.
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INTRODUCTION

It is fundamental that differential equations and convexity are widely studied for their

applications in pure and applied mathematics, physics, engineering, and in many

other fields. In this thesis, we are interested in using them to study the planar Lp-

Minkowski problem for 0 < p < 1 and the minimum time function for a nonlinear

control system, in particular.

The classical Minkowski problem is one of the cornerstones of the Brunn-Minkowski

theory. The problem asks for necessary and sufficient conditions on a Borel measure µ

on Sn−1 that guarantee the existence of a convex body such that its surface area mea-

sure is µ (see Gardner [Gar06], Gruber [Gru07] or Schneider [Sch14] for reference).

Let K be a convex body in Rn, that is, a compact convex set with nonempty interior.

The surface area measure SK on Sn−1 is defined for a Borel set ω ⊂ Sn−1 by

SK(ω) =

∫
x∈ν−1

K (ω)

dHn−1(x)

where Hn−1 denotes the (n− 1)-dimensional Hausdorff measure normalized in a way

such that it coincides with the Lebesgue measure on Rn−1 and νK(x) stands for exterior

unit normal to the boundary, bdK, of K at the boundary point x, which is unique

for Hn−1 almost all x ∈ bdK. The classical Minkowski existence theorem, due to

Minkowski himself in the case of polytopes or discrete measures and to Alexandrov

for the general case, states that a Borel measure µ on Sn−1 is the surface area measure

of a convex body if and only if the measure of any open hemisphere is positive and∫
Sn−1

udµ(u) = 0.

The solution is unique up to translation. If the measure µ has a density function f

with respect to Hn−1 on Sn−1, then the solution amounts to solve a Monge-Ampère

type differential equation

det(∇2h+ hI) = nf

3
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Introduction 4

on Sn−1 where h is the unknown non-negative function on Sn−1 to be found (the sup-

port function), ∇2h denotes the Hessian matrix of h with respect to an orthonormal

frame on Sn−1, and I is the identity matrix. In this case, even the regularity of the solu-

tion is well understood, see Lewy [Lew38], Nirenberg [Nir53], Cheng and Yau [CY76],

Pogorelov [Pog78], and Caffarelli [Caf90].

The Lp- Minkowski problem is a central problem within the Lp- Brunn-Minkowski

theory. The study of the so called Lp- surface area measure for any p ∈ R as initiated

by Lutwak [Lut93]. For a convex compact set K in Rn, let hK be its support function,

which is hK(u) := max{〈x, u〉 : x ∈ K} for u ∈ Rn where 〈·, ·〉 stands for the Euclidean

scalar product. Let Kno denote the family of convex bodies in Rn containing the origin

o. For p ≤ 1 and K ∈ Kno , the Lp-surface area measure of K is defined by

dSK,p = h1−p
K dSK .

In particular, if ω ⊂ Sn−1 is Borel, then

SK,p(ω) =

∫
x∈ν−1

K (ω)

〈x, νK(x)〉1−pdHn−1(x).

For p > 1, the same formula dSK,p = h1−p
K dSK defines the Lp-surface area measure,

only one needs to assume that either o ∈ intK, or o ∈ bdK and
∫
Sn−1 h

1−p
K dSK < ∞.

The case p = 1 corresponds to the surface area measure SK , and p = 0 is corresponding

to the so called cone volume measure.

TheLp- surface area measure has been intensively investigated in the recent decades,

see, for example, [Ale42, BGMN05, CG02, GM77, Hab12, HP14b, HP14a, HL14, Lud03,

Lud10, LR10, LYZ00a, LYZ00b, LYZ02a, LYZ04b, LZ97, Nao07, NR03, Pao06, PW12].

In [Lut93], Lutwak posed the associated Lp- Minkowski problem for p ≥ 1 which ex-

tends the classical Minkowski problem. If p > 1 and p 6= n, then the Lp- Minkowski

problem is solved by Chou, Wang [CW06], Guan, Lin [GL] and Hug, Lutwak, Yang,

Zhang [HLYZ05]. In addition, the Lp- Minkowski problem for p < 1 was publicized

by a series of talks by Lutwak in the 1990’s. The Lp- Minkowski problem is the clas-

sical Minkowski problem when p = 1, while the Lp- Minkowski problem is the so
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5 Introduction

called logarithmic Minkowski problem when p = 0, see, for example, [BH16, BLYZ13,

BLYZ12, BLYZ15, Lud03, Lud10, LR10, Nao07, NR03, Pao06, Sta02, Sta03, Zhu14].

The Lp- Minkowski problem is interesting for all real p, and has been studied by Lut-

wak [Lut93], Lut-wak and Oliker [LO95], Chou and Wang [CW06], Guan and Lin [GL],

Hug, etal. [HLYZ05], Böröczky, et al. [BLYZ13]. Additional references regarding the

Lp- Minkowski problem and Minkowski-type problems can be found, for example,

in [Che06, GG02, GM77, Hab12, HL05, HLYZ10, HMS04, Jia10, Kla04, LW13, Lut93,

LO95, LYZ04a, Min97, Sta02, Sta03, Zhu15a, Zhu15b]. Applications of the solutions

to the Lp- Minkowski problem can be found in, e.g., [And99, And03, Cho85, Zha99,

GH86, LYZ02b, CLYZ09, HS09b, Hui84, Iva13, HS09a, HSX12, Wan12].

For a given real number p, Lp-Minkowski problem asks for necessary and suf-

ficient conditions on a finite Borel measure µ on Sn−1 to ensure that it is the Lp-

surface area measure of a convex body in Rn. Besides discrete measures correspond-

ing to polytopes, an important special case is when

dµ = f dHn−1

for some nonnegative measurable function f on Sn−1. If p < 1 and this equation holds,

then the Lp-Minkowski problem amounts to solve the Monge-Ampère type equation

h1−p det(∇2h+ hI) = nf

where h is the unknown non-negative function on Sn−1 to be found (the support func-

tion),∇2h again denotes the Hessian matrix of h with respect to an orthonormal frame

on Sn−1, and I is again the identity matrix. If n = 2, then we may assume that both h

and f are nonnegative periodic functions on R with period 2π. In this case the corre-

sponding differential equation is

h1−p(h′′ + h) = 2f.

After earlier work by V. Umanskiy [Uma03] and W. Chen [Che06], the previous equa-

tion in the π-periodic case that corresponds to planar origin symmetric convex bodies
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Introduction 6

has been thoroughly investigated by M.Y. Jiang [Jia10] if p > −2, and by M.N. Ivaki

[Iva13] if p = −2 (the ”critical case”).

For p ∈ (1,∞) \ {n}, it has been handled for the general case by Chou, Wang

[CW06], Guan, Lin [GL], Hug, Lutwak, Yang, and Zhang [HLYZ05]. They established

that a Borel measure µ on Sn−1 is the Lp- surface area of a convex body in Rn if and

only if µ is not concentrated on a closed hemisphere.

The Lp-Minkowski problem in full generality is still in question for p ∈ (−∞, 1] ∪

{n}. For p ∈ (0, 1), some particular cases have been taken care of. Zhu [Zhu15b]

solved the Lp-Minkowski problem for polytopes, stating that for p ∈ (0, 1) and n ≥ 2,

a non-trivial discrete Borel measure µ on Sn−1 is the Lp-surface area measure of a

polytope P in Rn containing the origin in its interior if and only if µ is not concen-

trated on any closed hemisphere. Another result was given by Haberl, Lutwak, Yang,

and Zhang [HLYZ10] for even measures, or equivalently, for origin symmetric convex

bodies. They confirmed that for p ∈ (0, 1) and n ≥ 2, a non-trivial bounded even Borel

measure µ on Sn−1 is the Lp-surface area measure of an origin symmetric K ∈ Kno with

o ∈ intK if and only if µ is not concentrated on any great subsphere. In addition,

the case when µ has a positive density function is handled by Chou, Wang [CW06].

They proved that if p ∈ (−n, 1), n ≥ 2, and µ is a Borel measure on Sn−1 satisfying

dµ = f dHn−1 where f is bounded and infu∈Sn−1 f(u) > 0, then µ is the Lp-surface area

measure of a convex body K ∈ Kno . Here, we note that if p ∈ (2 − n, 1), then there

exists K ∈ Kno with o ∈ bdK such that dSK,p = f dHn−1 for a positive continuous

f : Sn−1 → R (see Example 1.3.5).

In Chapter 2 of this thesis, we concentrate on the case p ∈ (0, 1). It is our main

goal to solve the planar Lp- Minkowski problem in full generality if p ∈ (0, 1). More

precisely, denoting by suppµ the support of the measure µ on S1, we aim to prove the

following.

Theorem 0.0.1. For p ∈ (0, 1) and a non-trivial finite Borel measure µ on S1, µ is the Lp-

surface area measure of a convex body K ∈ K2
o if and only if suppµ does not consist of a

pair of antipodal vectors.

C
E

U
eT

D
C

ol
le

ct
io

n



7 Introduction

It is worth mentioning that our method of proving this theorem fails to apply to

higher dimensions (see Example 2.1.2), unfortunately. For a general n dimensional

Euclidean space, recently, it was proved by Chen, Li, Zhu [CLZ] that for p ∈ (0, 1) and

any n ≥ 2, every non-trivial bounded Borel measure µ on Sn−1 not concentrated on

any great subsphere is the Lp-surface area measure of a convex body in Rn.

Let F : Rn ⇒ Rn be a Lipschitz continuous sublinear multifunction and K be a

closed subset in Rn. We consider the minimum time function with the target K for the

differential inclusion

(1)

 y′(t) ∈ F (y(t)) a.e. t > 0,

y(0) = x ∈ Rn.

A trajectory (starting from x) of F is an absolutely continuous arc y(·) that satisfies

(1). By y′(t), we mean the derivative of y(·) at the time t and it is the right derivative if

t = 0.

The time optimal control problem for the differential inclusion (1) is a problem in

which the goal is to steer an initial point x ∈ Rn to the target K in minimum time,

denoted by T (x), along trajectories of F . T (x) could be +∞ if there is no trajectory

starting from x can reach K. The function x 7→ T (x) is called the minimum time func-

tion, i.e.,

T (x) := inf{t > 0 : ∃y(·) satisfying (1) with y(0) = x and y(t) ∈ K},

with inf ∅ = +∞.

The regularity of the minumum time function is a classical and widely studied

topic in control theory (see, e.g., [HL69, CS95, CS04, CFS00, CMW06, CN10, Ngu10,

CN11, CN13, CMW12, CNN14, FN15, CN15, Ngu16] and references therein), for lin-

ear control systems, i.e., F is of the form F (x) = {Ax+ u : u ∈ U} where A is an n× n

matrix and U is a compact convex subset of Rn, in particular. It is well known that the

locally Lipschitz continuity of T is established if Petrov’s controllability condition is sat-
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Introduction 8

isfied (see [CS95]). However, in general, T is not everywhere differentiable. Therefore,

it is natural to identify a new type of regularity of T in situations where the locally

Lipschitz continuity of T can be relaxed.

Colombo, Marigonda, and Wolenski [CMW06], proved that for a linear control

system with a convex target, the epigraph of T satisfies an external sphere condition

with locally uniform radius, provided that T is continuous; this property, for general

sets, is referred as positive reach, proximal smoothness or ϕ-convex. In particular, convex

sets and sets with C1,1-boundary are ϕ-convex. It is known that functions with ϕ-

convex epigraphs are semiconvex if and only if they are locally Lipschitz, and they

have several fine properties (see, e.g., Colombo and Marigonda [CM06]). We note

that under the appropriate assumptions in [CMW06], the convexity of sublevel sets of

T is obtained, (see Proposition 3.1 in [CMW06]), and this property of sublevel sets is

essential to ensure that the ϕ-convexity of the epigraph of T is established, apparently.

Colombo and Nguyen [CN13] proved that for two dimensional nonlinear affine control

systems: F (x) = {f(x) + g(x)u : u ∈ U} with f : R2 → R2, g : R2 → M2×m(R), U =

[−1, 1]m, m = 1, 2, andK = {o}, the epigraph of T is ϕ-convex in a small neighborhood

of the origin. As a matter of fact, they used the convexity of sublevel sets of T (in

small times) and the fact that every sufficiency close to the origin point is optimal.

Motivated by the results in [CMW06, CN13], Nguyen [Ngu16] proved, under suitable

assumptions, that if sublevel sets of T are ϕ0-convex for some suitable nonnegative

number ϕ0, then there exists a continuous function ϕ such that the epigraph of T

is ϕ-convex. Nguyen [Ngu16] studied the case of differential inclusions (1) where F

may not admit a smooth parameterization. It is assumed in Nguyen [Ngu16] that the

maximized Hamiltionian,

H(x, p) := maxv∈F (x)〈v, p〉,

satisfies the following assumption

(H) ∇pH(x, p) exists and is Lipschitz in x on B(o, r), uniformly for p ∈ Rn \ {o}, for

every r > 0.

This assumption, however, is not fulfilled in [CMW06] and [CN13]. Indeed, we point

C
E

U
eT

D
C

ol
le

ct
io

n



9 Introduction

out, in the following example, that the assumptions in [CMW06] are satisfied but

assumption (H). Therefore, the ϕ- convexity result in [Ngu16] does not cover the

coressponding results in [CMW06] and [CN13].

We consider the minimum time function to reach the origin for the following linear

control system

y′ = Ay +Bu,

where A is an n×nmatrix, B is an n×mmatrix and u ∈ U := [−1, 1]m with 1 ≤ m ≤ n.

Assume B = [b1, · · · , bm] and u = (u1, · · · , um)> where b1, · · · , bm are columns of the

matrix B. Assume further that the normality condition is satisfied, i.e.,

rank[bi, Abi, · · · , An−1bi] = n, ∀i = 1, · · · ,m.

Then all assumptions in [CMW06] are fulfilled. In this case, the maximized Hamilto-

nian is computed as follows: for x, p ∈ Rn

H(x, p) = maxu∈U〈Ax+Bu, p〉

= 〈Ax, p〉+ maxu∈U

m∑
i=1

〈biui, p〉

= 〈Ax, p〉+
m∑
i=1

|〈bi, p〉|.

It is obvious that if p is such that 〈bi, p〉 = 0 for all i = 1, · · · ,m, then H(x, ·) is not

differentiable at p. In other words, (H) is not satisfied if rankB < n.

In Chapter 3, it is our purpose to prove a similar ϕ-convexity result for the epi-

graph of T for nonlinear control systems under assumptions in which (H) is not nec-

essarily satisfied. More precisely, considering the minimum time function T for the

nonlinear control system
y′(t) = f(y(t), u(t)) a.e. t > 0,

u(t) ∈ U a.e. t ≥ 0,

y(0) = x,

we show that if sublevel sets of T are ϕ0-convex for some constant ϕ0 ≥ 0, then there

exists a continuous function ϕ such that the epigraph of T is ϕ-convex. Unlike the
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Introduction 10

proofs in [CMW06, CN13, Ngu16] where only the existence of the function ϕ is ac-

complished, we compute ϕ explicitly. Our proof relies on suitable sensitivity relation

results.

Sensitivity relations are also widely studied in control theory for their various ap-

plication such as to optimality conditions and regularity of the value functions. The

dual arc satisfying an inclusion of an appropriate generalized gradient of the value

function is included. For the minimal time problem, Cannarsa, Frankowska, and

Sinestrari [CFS00] initiated investigating the sensitivity relations for smooth param-

eterized systems with the target having an interior sphere condition. Later, sensitiv-

ity relations have been widely studied for differential inclusions (see, e.g., [CMN15],

[CS15], [CNN14], [FN15], [Ngu16], and references therein). It is shown by Frankowska

and Nguyen [FN15] that the proximal subdifferential of T propagates along optimal

trajectories except at the terminal points. Similar results confirming that the prox-

imal subdifferential of T propagates wholly along optimal trajectories was given by

Nguyen [Ngu16]. The tool used in the proofs is the relationship between normals to

the epigraph and to sublevel sets of T via the value at relevant points of the minimized

Hamiltonian h : Rn × Rn → R associated with the previous differential inclusion de-

fined by

h(x, ζ) = min
u∈F (x)

〈u, ζ〉, ∀x, ζ ∈ Rn.

Using the tool as in [Ngu16], we prove the similar sensitivity relation results for

nonlinear control system but using different approach from [CNN14] or [Ngu14] un-

der the condition that (H) is not necessarily satisfied.

This thesis consists of three chapters and one appendix. In Chapter 1, we fix the

notation and recall some definitions as well as preliminary statements needed in the

sequel. Some basic concepts related to convexity and nonsmooth analysis, the Lp-

Minkowski problem, nonlinear control systems, and the minimum time function are

recollected. We also prove some important properties of measures on a sphere and

investigate some properties of the solution to the system (1.8), in order to support our
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11 Introduction

main results in the following chapters.

Chapter 2 deals with the planar Lp- Minkowski problem for 0 < p < 1. More pre-

cisely, necessary and sufficient conditions for the existence of solutions to the asym-

metric Lp- Minkowski problem in R2 is established for 0 < p < 1. We prove, for

0 < p < 1, that whenever a non-trivial bounded Borel measure on the unit circle has

its support consisting no pair of antipodal vectors, there always exists a convex body

containing the origin for which that measure is its Lp-surface area measure. The first

part of this chapter shows how the problem is handled in the case when the measure

of any open semicircle is positive while the last part presents the method to deal with

the case when the support of the measure is concentrated on a closed semicircle. The

results in this chapter can also be found in [BT17].

In Chapter 3, we study the relationship between sublevel sets and the epigraph of

the minimum time function T for a nonlinear control system with a general closed

target, see also in [NT]. The main purpose of this chapter is presented in Section

3.2. We establish that if the sublevel sets of T are ϕ0-convex for some appropriate

nonnegative constant ϕ0, then the epigraph of T is ϕ-convex where ϕ is a continuous

function which can be computed explicitly. In order to do that, we provide some

suitable sensitivity relations as in Section 3.1, including inclusions for normal cones

to the epigraph and to the sublevel sets of the minimum time function. We note that

the minimum time function may not be (locally) Lipschitz when epi(T ) is ϕ-convex.

In this case, we can characterize the set S of non-Lipschitz points of T . Moreover,

we prove that the set S is invariant for optimal trajectories, i.e., if y(·) is an optimal

trajectory starting at a point x in S then y(t) ∈ S for all 0 ≤ t < T (x). This extends the

corresponding in [CNN14] with much shorter proof.

The appendix gives a clear explanation for our remark given below Theorem 1.3.2

accomplished by Zhu [Zhu15b].
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Chapter 1 PRELIMINARIES

1.1 Notation

This section is devoted to fix our notation and collect some basic definitions used

throughout this thesis. We shall work in n-dimensional real Euclidean vector space,

Rn, with origin o, standard scalar product 〈·, ·〉, and induced norm ‖·‖. We also use 〈·, ·〉

to denote the scalar product on Rn × R, which is given by 〈(x, η), (y, β)〉 = 〈x, y〉+ ηβ,

and ‖ · ‖ to denote the associate norm, accordingly. By Hm, m ≤ n, we mean the m-

dimensional Hausdorff measure normalized in a way such that it coincides with the

Lebesgue measure on Rm.

For any A ⊂ Rn, linA and affA stand for the linear hull and affine hull of A, respec-

tively. For x, y ∈ Rn, we denote by [x, y] the closed segment with end points x and y,

i.e., [x, y] := {λx + (1 − λ)y : 0 ≤ λ ≤ 1}. Given A,B ⊂ Rn and λ ∈ R, we define

A + B := {a + b : a ∈ A, b ∈ B} and λA := {λa : a ∈ A}. We denote by clA, intA, and

bdA, respectively, the closure, interior, and boundary of the subset A in Rn.

For a real matrix M ∈ Rn×m,m ∈ Z+, we write M> for its transpose and ‖M‖ for

its norm, as a linear operator. For a function f : Rn × Rm → Rk associating to each

x ∈ Rn, y ∈ Rm an element in Rk, we denote by Df its Jacobian matrix and by Dxf ,

Dyf its associated partial Jacobians.

We shall also use the following metric notions. For any two points x, y ∈ Rn and

a nonempty subset A in Rn, ‖x − y‖ is the distance between x and y and dA(x) :=

inf{‖x − y‖ : y ∈ A} is the distance of x from A. For a nonempty bounded subset

A in R, the diameter of A is defined by diamA := sup{‖x − y‖ : x, y ∈ A}. The set

Bn := {x ∈ Rn : ‖x‖ ≤ 1} is the unit ball and Sn−1 := {x ∈ Rn : ‖x‖ = 1} is the unit

sphere of Rn. By B(x, r), we denote the open ball, {u ∈ Rn : ‖u − x‖ < r}, centered at

x with radius r > 0.

13
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1.2. BASIC CONVEXITY AND NONSMOOTH ANALYSIS 14

1.2 Basic convexity and nonsmooth analysis

We recall some basic concepts of convex analysis and nonsmooth analysis which can

be found in, e.g., [CLSW98] and [Roc72]. We first recall that a subset A in Rn is convex

if for any two points x, y ∈ A, it also contains the segment [x, y]. We denote by convA

the convex hull of A. A nonempty, compact (bounded), convex subset of Rn is called a

convex body, as a central notion of Chapter 2. By Kno we denote the family of convex

bodies in Rn containing the origin o, and by Kn(o) we mean the family of convex bodies

in Kno containing the origin in interiors.

A function f : Rn → R̄ := R ∪ {−∞,∞} is said to be convex if it is proper, which

means that {f = −∞} = ∅ and {f =∞} 6= Rn, and if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all x, y ∈ Rn and for λ ∈ [0, 1].

For a nonempty closed convex subset K in Rn, the support function of K, hK , is

defined by hK(u) := max{〈x, u〉 : x ∈ K} for u ∈ Rn. Clearly, hK(λu) = hλK(u) for any

nonnegative number λ and if K 6= Rn, then hK(·) is convex.

The Hausdorff distance of the nonempty compact subsets K and L in Rn is defined

by

δ(K,L) := min{λ ≥ 0 : K ⊂ L+ λBn, L ⊂ K + λBn},

which turns out to be equal to max{hK(u)−hL(u) : u ∈ Sn−1} and be a metric on Cn, the

set of nonempty compact subsets of Rn. It is well known that the metric space (Cn, δ)

is complete (e.g., see Schneider [Sch14]). Consequently, the following fundamental

result is stated.

Theorem 1.2.1 (Blaschke selection theorem). Every bounded sequence of convex bodies

has a subsequence that converges to a convex body.

Let K be a closed subset in Rn. Given x ∈ K and v ∈ Rn, we say that v is a proximal

normal to K at x if there exists a nonnegative constant σ depending on x and v such
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15 1.2. BASIC CONVEXITY AND NONSMOOTH ANALYSIS

that 〈v, y − x〉 ≤ σ‖y − x‖2 for all y ∈ K. We denote the set of all proximal normals

to K at x by NP
K(x) and call it the proximal normal cone to K at x. Equivalently, v

is a proximal normal to K at x if there exist positive constants C and η such that

〈v, y − x〉 ≤ C‖y − x‖2 for all y ∈ B(x, η) ∩ K. We note that if K is convex, then the

proximal normal cone to K at x coincides with the normal cone in the sense of convex

analysis.

Let f : Ω→ R∪{+∞}, where Ω is an open subset in Rn, be an extended real-valued

function, the affective domain of f is the set dom(f) := {x ∈ Ω : f(x) < +∞} and the

epigraph of f is the set epi(f) := {(x, β) ∈ Ω × R : x ∈ dom(f), β ≥ f(x)}. We say

that f is lower semicontinuous at x0 ∈ Rn if for every ε > 0, there is a neighborhood

U of x0 such that f(x) ≥ f(x0) − ε for all x in U when f(x0) < +∞ and f(x) tends to

+∞ as x tends to x0 when f(x0) = +∞. In other words, lim
x→x0

inff(x) ≥ f(x0). We say

that f is lower semicontinuous if it is so at every x0 in Ω. We observe that if f is lower

semicontinuous then its sublevel sets are closed.

Given a lower semicontinuous function f and let x ∈ dom(f), the proximal subdif-

ferential of f at x is defined by

∂Pf(x) := {v ∈ Rn : (v,−1) ∈ NP
epi(f)(x, f(x))}.

An element of ∂Pf(x) is called a proximal subgradient of f at x. Equivalently, by saying

that v belongs to ∂Pf(x) we mean there exist positive constants c and δ such that

f(y) − f(x) − 〈v, y − x〉 ≥ −c‖y − x‖2 for all y ∈ B(x, δ). The horizontal proximal

subdifferential of f at x is defined by

∂∞f(x) := {v ∈ Rn : (v, 0) ∈ NP
epi(f)(x, f(x))}.

which consists of all proximal horizontal subgradients of f at x.

Definition 1.2.2. Suppose K ⊂ Rn is closed and ϕ : K → [0,+∞) is continuous. We say

that K is ϕ-convex if for all x ∈ bdK we have

〈v, y − x〉 ≤ ϕ(x)‖v‖‖y − x‖2
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1.3. THE LP - MINKOWSKI PROBLEM 16

for all y ∈ K and all v ∈ NP
K(x). By ϕ0-convexity, we mean ϕ-convexity with ϕ ≡ ϕ0.

Clearly, we can see that for the case when ϕ is trivial, Definition 1.2.2 deduces to

the definition of the convexity of K. Equivalently rephrasing, ϕ-convexity is a gener-

alization of convexity. Moreover, if the boundary of K is the graph of a C1,1 function

then K is ϕ-convex with ϕ being a suitable constant function.

Let f : Rn → R ∪ {+∞} be a lower semicontinuous function. It is convenient to

state the ϕ-convexity of the epigraph of f in view of Definition 1.2.2. The epigraph of

f is ϕ-convex if there exists a continuous function ϕ such that for all x ∈ dom(f), we

have

〈(ζ, η), (y, β)− (x, f(x))〉 ≤ ϕ(x)‖(ζ, η)‖(‖y − x‖2 + |β − f(x)|2)

for all y ∈ dom(f), β ≥ f(y) and (ζ, η) ∈ NP
epi(f)(x, f(x)).

It is worth mentioning that functions whose epigraphs are ϕ-convex enjoy good

regularity properties that are similar to properties of convex functions (see [CM06]).

1.3 The Lp- Minkowski problem

For a given convex body K in Rn, we define the surface area measure, SK , of K to be

a Borel measure on the unit sphere, Sn−1, such that for a Borel ω ⊂ Sn−1 (see, e.g.,

Schneider [Sch14]), we have

SK(ω) =

∫
x∈ν−1

K (ω)

dHn−1(x),

where νK : db′K → Sn−1 is the Gauss map of K, defined on db′K, the set of boundary

points in dbK that have a unique exterior unit normal. For a given number p ≤ 1 and

a given convex body K ∈ Kno , the Lp-surface area measure is defined by

dSK,p = h1−p
K dSK .

In particular, if ω ⊂ Sn−1 is Borel, then

(1.1) SK,p(ω) =

∫
x∈ν−1

K (ω)

〈x, νK(x)〉1−pdHn−1(x).
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17 1.3. THE LP - MINKOWSKI PROBLEM

In the case when p = 1, it is corresponding to the surface area measure SK while

p = 0 corresponds to the so called cone volume measure. For p > 1, the Lp-surface area

measure is defined by the same formula, dSK,p = h1−p
K dSK , only one needs to assume

that either o ∈ intK, or o ∈ bdK and
∫
Sn−1 h

1−p
K dSK <∞.

The Lp-Minkowski problem is posed as follows: Given a real number p, what are

the necessary and sufficient conditions on a finite Borel measure µ on Sn−1 to ensure

that µ is the Lp- surface area measure of a convex body in Rn?

For the case when p being different from n ranges over (1,∞), the Lp-Minkowski

problem has been solved by Chou, Wang [CW06], Guan, Lin [GL], Hug, Lutwak, Yang,

and Zhang [HLYZ05].

Theorem 1.3.1 (Chou, Wang, Guan, Lin, Hug, Lutwak, Yang, and Zhang). If p > 1 and

p 6= n, then a Borel measure µ on Sn−1 is the Lp- surface area of a convex body in Rn if and

only if µ is not concentrated on a closed hemisphere.

Naturally, it has been calling attention to the question about whether or not the

Lp-Minkowski problem has a solution for the case when p ∈ (−∞, 1] ∪ {n}. We first

notice that for p ∈ (0, 1), the Lp-Minkowski problem for polytopes has been solved by

Zhu [Zhu15b]. Here, polytope is the notion for a convex hull of a finite set having

positive n-dimensional volume.

Theorem 1.3.2 (Zhu). For p ∈ (0, 1) and n ≥ 2, a non-trivial discrete Borel measure

µ on Sn−1 is the Lp-surface area measure of a polytope P ∈ Kn(o) if and only if µ is not

concentrated on any closed hemisphere.

It is worth remarking, for the measure µ and the polytope P as in Theorem 1.3.2,

that ifG is a subgroup inO(n) such that µ({Au}) = µ({u}) for any u ∈ Sn−1 andA ∈ G,

then one may assume that AP = P for any A ∈ G, as we explain in the Appendix.

In addition, the Lp-Minkowski problem for even measures, or equivalently, for

origin symmetric convex bodies, was also answered for p ∈ (0, 1). Haberl, Lutwak,

Yang, and Zhang [HLYZ10] stated the following result.
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1.3. THE LP - MINKOWSKI PROBLEM 18

Theorem 1.3.3 (Haberl, Lutwak, Yang, and Zhang). For p ∈ (0, 1) and n ≥ 2, a non-

trivial bounded even Borel measure µ on Sn−1 is the Lp-surface area measure of an origin

symmetric K ∈ Kn(o) if and only if µ is not concentrated on any great subsphere.

Regrading the Lp-Minkowski problem, besides discrete measures corresponding to

polytopes, an important special case is when

(1.2) dµ = f dHn−1

for some nonnegative measurable function f on Sn−1. If p < 1 and (1.2) is satisfied,

then the Lp-Minkowski problem amounts to solving the Monge-Amper type equation

(1.3) h1−p det(∇2h+ hI) = nf

where h stands for the unknown nonnegative function on Sn−1 to be found (the sup-

port function), ∇2h denotes the Hessian matrix of h with respect to an orthonormal

frame on Sn−1, and I is the identity matrix.

For the particular case when n = 2, we may assume that both h and f are nonnega-

tive periodic functions on R with period 2π. In this case the corresponding differential

equation is

(1.4) h1−p(h′′ + h) = 2f.

For p ∈ (−n, 1), Chou and Wang [CW06] handled the Lp-Minkowski problem in

Rn, n ≥ 2, under the condition that µ has a positive density function.

Theorem 1.3.4 (Chou, Wang). If p ∈ (−n, 1), n ≥ 2, and µ is a Borel measure on Sn−1

satisfying (1.2) where f is bounded and infu∈Sn−1 f(u) > 0, then µ is the Lp-surface area

measure of a convex body K ∈ Kno .

We end this section by giving an example of a Borel measure µ on Sn−1 being

not concentrated on a closed hemisphere such that the origin is a boundary point

of a convex body K for which dSK,p = f dHn−1 for a positive continuous function

f : Sn−1 → R. This example is based on Example 4.1 of Hug, Lutwak, Yang, and
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19 1.3. THE LP - MINKOWSKI PROBLEM

Zhang [HLYZ05], examples in the preprint of Guan, Lin [GL], and in Chou, Wang

[CW06].

Example 1.3.5. If p ∈ (2 − n, 1), then there exists K ∈ Kno with C2 boundary having

o ∈ bdK such that dSK,p = f dHn−1 for a positive continuous f : Sn−1 → R.

We fix a vector v ∈ Sn−1 and set Bn−1 := v⊥ ∩ Bn. For any x ∈ v⊥ and any t ∈ R, we

write the point (x, t) = x+ tv. For

q =
2(n− 1)

n+ p− 2
> 2,

we consider the C2 function g(x) := ‖x‖q on Bn−1. We define the convex body K in Rn

with C2 boundary in a way such that o ∈ bdK and the graph {(x, g(x)) : x ∈ Bn−1} of g

above Bn−1 is a subset of bdK. We may assume that bdK has positive Gauß curvature at

each z ∈ bdK\{o}.

We observe that K is strictly convex and −v is the exterior unit normal at o, and hence

SK({−v}) = 0. If z ∈ bdK, then we write ν(z) for the exterior unit normal at z, and

κ(ν(z)) for the Gauß curvature at z, therefore even if κ(−v) = 0, we have

dSK = κ−1 dHn−1.

In turn, we deduce that

(1.5) dSK,p = h1−p
K κ−1 dHn−1.

Let x ∈ Bn−1 satisfy 0 < ‖x‖ < 1 and let z = (x, g(x)). Hence, κ(ν(z)) > 0. We

observe that ∇g(x) = q‖x‖q−2x and ν(z) = a(x)−1(∇g(x),−1) where a(x) is defined to be

a(x) := (1 + ‖∇g(x)‖2)1/2. In particular, writing u = ν(z), we have

hK(u) = 〈u, z〉 = a(x)−1 (〈∇g(x), x〉 − g(x)) = a(x)−1(q − 1)‖x‖q.

In addition,

κ(u) = a(x)−(n+1) det(∇2g(x)) = (q − 1)qn−1a(x)−(n+1)‖x‖(q−2)(n−1).
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1.4. SOME PROPERTIES OF MEASURES ON A SPHERE 20

Therefore, the Radon-Nikodym derivative in (1.5) is

hK(u)1−pκ(u)−1 = (q − 1)−pq1−na(x)n+p‖x‖q(1−p)−(q−2)(n−1) = (q − 1)−pq1−na(x)n+p.

Since a(·) is a continuous and positive function on Bn−1, we deduce that SK,p has a positive

and continous Radon-Nikodym derivative f with respect to Hn−1 on Sn−1.

1.4 Some properties of measures on a sphere

In this section, we present some basic properties of measures on Sn−1 which will be

taken into account for technical use in Chapter 2. For any unit vector v in Sn−1 and

any number t in [0, 1), we define Ω(v, t) to be the subset {u ∈ Sn−1 : 〈u, v〉 > t} of Sn−1.

In particular, Ω(v, 0) is the open hemisphere centered at v.

Lemma 1.4.1. If µ is a finite Borel measure on Sn−1 such that the measure of any open

hemisphere is positive, then there exists δ ∈ (0, 1
2
) such that for any v ∈ Sn−1,

µ (Ω(v, δ)) > δ.

It is remarkable that δ can possibly be chosen to be small enough to ensure also

µ(Sn−1) < 1/δ.

Proof. Suppose, to the contrary, that for any k ∈ N, k > 1, there exists a vector uk

in Sn−1 for which the µ measure of Ω(uk, 1/k) is at most 1/k. It follows from the

compactness of Sn−1 that there is a subsequence of {uk}, denoted by {ukj}, converging

to some unit vector u.

Since the µ measure of the open hemisphere centered at u is positive, there exists

τ := cosα for α ∈
(
0, π

2

)
such that the µ measure of Ω(u, τ) is positive. Obviously, there

is a sufficiently large kj ∈ N such that the µ measure of Ω(u, τ) is greater than 1/kj ,

1
kj
< cos π+2α

4
, and the angle θ between ukj and u is at most π−2α

4
. Since

cos(α + θ) ≥ cos

(
α +

π − 2α

4

)
= cos

π + 2α

4
>

1

kj
,

the spherical triangle inequality yields that Ω(u, τ) is contained in Ω(ukj , 1/kj). In
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21 1.4. SOME PROPERTIES OF MEASURES ON A SPHERE

other words, we obtain

µ

(
Ω

(
ukj ,

1

kj

))
≥ µ (Ω(u, τ)) >

1

kj
,

which is a contradiction to the definition of uk.

We recall that the sequence of convex compact sets Km is said to converge to a

convex compact set K in Rn if

lim
m→∞

max{u ∈ Sn−1 : ‖hKm(u)− hK(u)‖} = 0.

We also note that the surface area measure can be extended to compact convex sets

(see Schneider [Sch14]). Let K be a compact convex set in Rn. If dimK ≤ n − 2, then

SK is the constant zero measure. In addition, if dimK = n− 1 and v ∈ Sn−1 is normal

to aff K, then SK is concentrated on {±v} and SK({v}) = SK({−v}) = Hn−1(K).

Lemma 1.4.2. If ϕ : [0,∞)→ [0,∞) is continuous and the sequence of compact convex sets

Km with o ∈ Km tends to the convex compact set K in Rn, then the measures ϕ◦hKm dSKm

tend weakly to ϕ ◦ hK dSK .

Proof. Since o ∈ Km for all m, we have o ∈ K. As hKm tends uniformly to hK on Sn−1,

ϕ ◦ hKm converges uniformly to ϕ ◦ hK for any continuous function ϕ : [0,∞) 7→ [0,∞)

and it follows that fϕ ◦ hKm tends uniformly to fϕ ◦ hK as well for any f ∈ C(Sn−1).

The continuity and boundedness of ϕ ◦hKm : Sn−1 → [0,∞) and ϕ ◦hK : Sn−1 → [0,∞)

follow from the continuity of ϕ and hKm , the compactness of Sn−1, and the uniform

convergence of {ϕ ◦ hKm}, respectively.

These imply that for any m and any f ∈ C(Sn−1), we have

lim
m→∞

∫
Sn−1

f(u)ϕ ◦ hKm(u)SKm(du) =

∫
Sn−1

f(u)ϕ ◦ hK(u)SKm(du).

Moreover, since SKm tends weakly to SK according to Theorem 4.2.1 in Schneider

[Sch14], we conclude that for all f ∈ C(Sn−1),

lim
m→∞

∫
Sn−1

f(u)ϕ ◦ hK(u)SKm(du) =

∫
Sn−1

f(u)ϕ ◦ hK(u)SK(du).
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1.4. SOME PROPERTIES OF MEASURES ON A SPHERE 22

Paying attention to the case when p ≤ 1, we can apply Lemma 1.4.2 to obtain an

essential statement which will be used in Section 2.1.

Corollary 1.4.3. If p ≤ 1 and a sequence of compact convex sets Km with o ∈ Km tends to

the compact convex set K in Rn, then SKm,p tends weakly to SK,p.

We recall that the positive hull of the vectors u1, . . . , uk in Rn is the set of all positive

combinations of u1, . . . , uk, namely,

pos{u1, . . . , uk} := {λ1u1 + . . .+ λkuk : λ1, . . . , λk ≥ 0}.

Lemma 1.4.4. If x ∈ Rn, u1, . . . , uk ∈ Sn−1, and u ∈ Sn−1 ∩ pos{u1, . . . , uk} satisfy that

〈ui, x〉 ≥ 0 for i = 1, . . . , k, then

〈u, x〉 ≥ min{〈u1, x〉, . . . , 〈uk, x〉}.

Proof. Since the unit sphere is convex, there exist nonnegative constants λ1, ..., λk with

λ1 + ... + λk ≥ 1 such that u is a positive combination of u1, . . . , uk represented by

u = λ1u1 + ...+ λkuk.

Hence,

〈u, x〉 =
k∑
i=1

λi〈ui, x〉 ≥ min{〈u1, x〉, . . . , 〈uk, x〉}
k∑
i=1

λi ≥ min{〈u1, x〉, . . . , 〈uk, x〉}.

For a planar convex body K in R2, we say that the two boundary points of K, x1

and x2, are opposite if there exists an exterior normal u ∈ S1 at x1 such that −u is an

exterior unit normal at x2. If the boundary points of K, x1 and x2, are not opposite,

then we denote by σ(K, x1, x2) the arc of bdK connecting x1 and x2 not containing

any opposite points. It is possible that x1 = x2. Obviously, it is observable that if

x ∈ σ(K, x1, x2)\{x1, x2}, then

(1.6) νK(x) ∈ pos{νK(x1), νK(x2)}.

The following estimate is for technical use later in the proof of Proposition 2.1.1.

The statement is given by applying observation (1.6) above together with Lemma 1.4.4.

C
E

U
eT

D
C

ol
le

ct
io

n



23 1.5. NONLINEAR CONTROL SYSTEMS

Claim 1.4.5. For p < 1, a planar convex body K in R2, and non-opposite x1, x2 ∈ bdK, if

〈x1, νK(x2)〉 > 0 and 〈x2 − x1, u〉 > 0 for u ∈ S1, then

min{hK(νK(x1)), 〈x1, νK(x2)〉}1−p〈x2 − x1, u〉 ≤
∫
S1
h1−p
K dSK .

Proof. As 〈x1, νK(x1)〉 = hK(νK(x1)), if x ∈ σ(K, x1, x2) is a smooth point, then (1.6)

and Lemma 1.4.4 yield

〈x, νK(x)〉 ≥ 〈x1, νK(x)〉 ≥ min{hK(νK(x1)), 〈x1, νK(x2)〉}.

Therefore,∫
S1
h1−p
K dSK =

∫
bdK

〈x, νK(x)〉1−p dH1(x) >

∫
σ(K,x1,x2)

〈x, νK(x)〉1−p dH1(x)

≥ min{hK(νK(x1)), 〈x1, νK(x2)〉}1−pH1(σ(K, x1, x2)),

and finally Claim 1.4.5 follows from the fact that H1(σ(K, x1, x2)) ≥ 〈x2 − x1, u〉.

1.5 Nonlinear control systems

We begin this section by introducing the control system in order to define the min-

imum time function minimizing a functional depending only on the final endpoint

of the trajectory. Standards references are in [CS04]. The definition of a nonlinear

control system is given as the following.

Definition 1.5.1. A control system is a pair (f ;U) where U is a nonempty closed subset in

Rm and f : Rn×U → Rn is a continuous function. The set U is called the control set, while

f is called the dynamics of the system. The state equation associated with the system is

(1.7)


y′(t) = f(y(t), u(t)) a.e. t > 0,

u(t) ∈ U a.e. t ≥ 0,

y(0) = x,

where u : [0,∞)→ Rm is a measure function. The function u is called a control strategy or

simply a control. The solution of (1.7) is called the trajectory of the system corresponding

to the initial condition y(0) = x and to the control u.
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1.5. NONLINEAR CONTROL SYSTEMS 24

In Chapter 3, we require the following assumptions on the function f and the

control set U :

(A1) U is compact and f(x,U) is convex for every x ∈ Rn.

(A2) f : Rn × U → Rn is continuous and satisfies

‖f(x, u)− f(y, u)‖ ≤ L‖x− y‖ for all x, y ∈ Rn, u ∈ U ,

and for a positive constant L.

(A3) The differential of f with respect to the first variable Dxf exists everywhere, is

continuous with respect to both x and u, and satisfies

‖Dxf(x, u)−Dxf(y, u)‖ ≤ L1‖x− y‖ for all x, y ∈ Rn, u ∈ U ,

and for a positive constant L1.

We denote by Uad the set of admissible controls, i.e., the set of all measure functions

u : [0,∞) → Rm such that u(t) ∈ U a.e. t ≥ 0. According to the theory of ordinary

differential equations, it is well known that the existence of a unique global solution

to the state equation (1.7), denoted by yx,u(·), corresponding to any u(·) ∈ Uad and any

x ∈ Rn, is sufficiently ensured whenever the assumption (A2) is satisfied. We also

observe that under assumptions (A1) and (A2), the continuity of the function f leads

to

‖f(x, u)‖ ≤ C + L‖x‖

for every x ∈ Rn and u ∈ U , where C = max{f(o, u) : u ∈ U}. As a consequence,

the attainable set AT (x) from x in time T , AT (x) := {yx,u(t) : t ≤ T, u(·) ∈ Uad} is

bounded for every x ∈ Rn and finite T . For studying the properties of the minimum

time function, assumption (A3) plays an essential role as we can see in Section 1.6 and

Chapter 3.

We end this section by recalling some basic properties of the solution of (1.7) and

presenting some estimates for the solution of (1.8) below. These results will be used
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25 1.6. MINIMUM TIME FUNCTION

in Chapter 3. We denote K1 := maxu∈U‖f(o, u)‖ and K2 := maxu∈U‖Dxf(o, u)‖. The

following elementary estimates are established by Colombo and Nguyen [CN10].

Lemma 1.5.2. [Colombo and Nguyen] Assume (A1) - (A3). Let y(t) := yx,u(t) be the

solution of (1.7). The following estimates hold for all t > 0:

(i) ‖y(t)− x‖ ≤ 1
L

(L‖x‖+K1)(eLt − 1) ≤ (L‖x‖+K1)eLtt.

(ii) ‖y(t)‖ ≤ eLt‖x‖+ K1

L
(eLt − 1).

(iii) ‖f(y(t), u(t))‖ ≤ (L‖x‖+K1)eLt.

(iv) ||Dxf(y(t), u(t))|| ≤ L1e
Lt‖x‖+ L1K1

L
(eLt − 1) +K2.

Lemma 1.5.3. Assume (A1) - (A3). Let y(t) := yx,u(t) be the solution of (1.7). Let p(·) be

the solution of

(1.8)

 p′(t) = −Dxf(y(t), u(t))>p(t) a.e. t > 0,

p(0) = p0 ∈ Rn.

Then for t > 0, we have

(i) ‖p(t)‖ ≤ el(x,t)t‖p0‖ and

(ii) ‖p(t)− p0‖ ≤ l(x, t)el(x,t)tt‖p0‖

where

l(x, t) = L1e
Lt‖x‖+

L1K1

L
(eLt − 1) +K2.

Proof. One can prove easily by using Lemma 1.5.2 and Theorem 2.2.1, p. 23 in [BP07].

1.6 Minimum time function

It is the purpose of this section to the introduction to the center notions of Chapter

3, the minimum time function and related notation. Further studies on the minimum

time function can be found in, e.g., [CS04]. Together with the control system (1.7) as
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1.6. MINIMUM TIME FUNCTION 26

in Section 1.5, we now consider a nonempty closed set K ⊂ Rn, which we shall call the

target. For a given point x ∈ Rn \ K and u(·) ∈ Uad, we define

θ(x, u) := min{t ≥ 0 : yx,u(t) ∈ K}.

Obviously, θ(x, u) ∈ [0,+∞] and θ(x, u) is the time at which the trajectory yx,u(·)

reaches the target for the first time provided θ(x, u) < +∞. The minimum time function

T : Rn → R determining the minimum time T (x) to reach K from x is defined by

(1.9) T (x) := inf{θ(x, u) : u(·) ∈ Uad}.

The infimum in (1.9) is not established in general. However, it is proven as in

Theorem 8.1.2 in [CS04] that the infimum is obtained when the dynamic of the control

system and the control set satisfy the conditions (A1) and (A2).

Theorem 1.6.1. Assume that the control system satisfies (A1) and (A2). Then

T (x) = min{θ(x, u) : u(·) ∈ Uad}.

When the infimum in (1.9) is attained, a minimizing control, say ū(·), is called

an optimal control for x and the corresponding trajectory yx,ū(·) is called an optimal

trajectory for x, or we simply call (y(·), u(·)) an optimal pair for x.

The minimum time function T satisfies the so-called Dynamic Programming Prin-

ciple. This important property of T is demonstrated in [CS04] and will be used in

Section 3.1.

Theorem 1.6.2. Assume that U is compact and (A2) holds. Then

T (x) = t+ inf{T (y) : y ∈ At(x)}

for every x ∈ Rn \ K and t ∈ [0, T (x)]. Equivalently, for all u(·) ∈ Uad, the function

t 7→ t+ T (yx,u(t)) is increasing on [0, T (x)].

Moreover, if yx,u(·) is an optimal trajectory then t 7→ t + T (yx,u(t)) is constant on

[0, T (x)], i.e.,

T (yx,u(t)) = t− s+ T (yx,u(s)) for 0 ≤ s ≤ t ≤ T (x).
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27 1.6. MINIMUM TIME FUNCTION

For any t > 0, we denote byR(t) the t-sublevel set of the function T , that is,R(t) :=

{x ∈ Rn : T (x) ≤ t}, and by R the set of points which can be steered to the target

in finite time, i.e., R := {x ∈ Rn : T (x) < +∞}. R is called the reachable set and,

obviously, R = ∪t>0R(t).
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Chapter 2 ON THE PLANAR Lp- MINKOWSKI PROBLEM

In this chapter, we aim to give necessary and sufficient conditions for the existence of

solutions to the asymmetric Lp- Minkowski problem in R2 for 0 < p < 1. We establish,

as in Theorem 2.0.1, that the planar Lp- Minkowski problem, p ∈ (0, 1), in full general-

ity has a solution whose support does not contain a pair of antipodal vectors. Given a

non-zero finite Borel measure µ on S1, the idea behind the planar Lp- Minkowski prob-

lem, p ∈ (0, 1), is to distinguish the possibilities of whether or not the support of µ is

concentrated on a closed semicircle. Section 2.1 deals with the case when the measure

is not concentrated on a closed semicircle, or in other words, the measure of any open

semicircle is positive, based on the important statement in Proposition 2.1.1. Section

2.2 deals with the other case when the measure is concentrated on a closed semicircle

based on the fact stated in Lemma 2.2.1. Our main goal is to establish:

Theorem 2.0.1. For p ∈ (0, 1) and a non-trivial finite Borel measure µ on S1, µ is the Lp-

surface area measure of a convex body K ∈ K2
o if and only if suppµ does not consist of a

pair of antipodal vectors.

Remark 2.0.2. For the µ and K as in Theorem 2.0.1, if G is a finite subgroup in O(2) such

that µ(Aω) = µ(ω) for every Borel ω ⊂ S1 and A ∈ G, then one may assume that AK = K

for any A ∈ G.

Corollary 2.0.3. For p ∈ (0, 1) and every nonnegative 2π-periodic function f ∈ L1([0, 2π]),

the differential equation (1.4) has a nonnegative 2π-periodic weak solution.

Remark If the f in (1.4) is even, or is periodic with respect to 2π/k for an integer

k ≥ 2, then the solution h can be also chosen even, or periodic with respect to 2π/k,

respectively.

29
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2.1. THE MEASURE OF ANY OPEN SEMICIRCLE IS POSITIVE 30

2.1 The measure of any open semicircle is positive

Let p ∈ (0, 1) and let µ be a finite Borel measure on S1 such that the measure of any

open semicircle is positive. Following from Lemma 1.4.1, there is a constant δ ∈ (0, 1
2
)

depending on µ for which the measure of Ω(v, δ) is greater than δ where we may as-

sume that µ(S1) < 1/δ. We construct a sequence {µm} of discrete Borel measures on

S1 converging weakly to µ such that the µm measure of any open semicircle is positive

for each m. It is the easiest way to construct the sequence by identifying R2 with C.

For m ≥ 3, we write ujm = e2ijπ/m , i =
√
−1, for j = 1, . . . ,m, and we define µm to be

the measure having the support {u1m, . . . , umm} with

µm({ujm}) =
1

m2
+ µ

(
{eit : (j − 1)2π/m < t ≤ j2π/m}

)
for j = 1, . . . ,m.

According to Zhu [Zhu15b], there exists a polygon Pm containing the origin as its

interior point satisfying dµm = h1−p
Pm

dSPm for each m. Lemma 1.4.2 then allows us to

assume that for each m,

(2.1)
∫
S1
h1−p
Pm

dSPm < 1/δ.

In order to prove our statement given in Theorem 2.0.1 for the case when the mea-

sure of any open semicircle is positive, the boundedness of {Pm} is essentially re-

quired. The following proposition is devoted to verify this significant property of the

sequence {Pm}.

Proposition 2.1.1. {Pm} is bounded.

Proof. We assume that the diameters of Pm, dm := diamPm, tend to infinity as m tends

to ∞, and seek a contradiction. Choose ym, zm ∈ Pm such that ‖zm − ym‖ = dm and

‖zm‖ ≥ ‖ym‖. We denote by vm the unit vector (zm − ym)/‖zm − ym‖ and let wm ∈ S1

be orthogonal to vm. We observe that vm and −vm are exterior normals of Pm at zm and

ym, respectively, as [ym, zm] is a diameter of Pm. It follows that 〈zm, vm〉 ≥ dm/2. By

possibly taking subsequences, we may assume that vm tends to some ṽ ∈ S1. According
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31 2.1. THE MEASURE OF ANY OPEN SEMICIRCLE IS POSITIVE

to Lemma 1.4.1 and Lemma 1.4.2, if m is large, then

(2.2)
∫

Ω(−vm,δ/2)

h1−p
Pm

dSPm > δ/2.

More precisely, as µ (Ω(−ṽ, δ)) > δ by Lemma 1.4.1, applying Lemma 1.4.2 with a

continuous function g : S1 → [0, 1] defined by

g(x) =

 1, if x ∈ Ω(−ṽ, δ),

0, if x 6∈ Ω(−ṽ, 3δ/4),

we obtain

µm (Ω (−ṽ, 3δ/4)) ≥
∫
S1
gdµm

m→∞−−−→
∫
S1
gdµ ≥ µ(Ω(−ṽ, δ)) > δ.

That is, µm (Ω (−ṽ, 3δ/4)) > δ/2 for sufficiently large m. Here, the number 3δ/4 only

plays a role as any other positive constant in (1/2, 1) so that the similar inequality to

the previous one turns out to have δ/2 as the smaller value. In addition to the previous

inequality, we observe that if m is large enough so that the angle between −ṽ and −vm

is at most arccos δ
2
− arccos 3δ

4
, then Ω (−ṽ, 3δ/4) ⊂ Ω (−vm, δ/2). Hence, we obtain

µm (Ω (−vm, δ/2)) > δ
2

as desired.

Let am and bm be boundary points of Pm such that 〈am − bm, wm〉 is positive and

〈am, vm〉 and 〈bm, vm〉 are both exactly equal to dm/4. Consequently, we also deduce

that [am, bm] ∩ intPm 6= ∅ for the segment [am, bm]. Our observation about the values

of the support function at the exterior unit normals at am and bm is a positive one.

Indeed, because 〈zm − am, vm〉 ≥ dm/4 and 〈zm − bm, vm〉 ≥ dm/4 by the definitions of

zm, am, and bm, it follows from (2.1) and Claim 1.4.5 with x1 = am, x1 = bm, alternately,

x2 = zm, and u = vm that there exists a positive constant c1 depending on µ and p such

that if m is large, then

(2.3) hPm(νPm(am)) ≤ c1d
−1
1−p
m and hPm(νPm(bm)) ≤ c1d

−1
1−p
m .

Our intermediate goal is to indicate that νPm(am) and νPm(bm) point essentially to

C
E

U
eT

D
C

ol
le

ct
io

n



2.1. THE MEASURE OF ANY OPEN SEMICIRCLE IS POSITIVE 32

the same direction as wm and −wm, respectively, or in other words,

lim
m→∞

〈νPm(am), vm〉 = lim
m→∞

〈νPm(bm), vm〉 = 0.

We shall frequently use the fact that 〈νPm(x0), x0 − x〉 is nonnegative for all boundary

points x0 and for all points x in Pm. Particularly, 〈νPm(am), wm〉 and 〈νPm(bm),−wm〉

are both positive for 〈νPm(am), am − bm〉 and 〈νPm(bm), bm − am〉 are positive as well,

respectively, by the fact above and [am, bm] ∩ intPm 6= ∅. We also keep in mind that as

{vm, wm} is an orthogonal system by definition, any point x in R2 can be represented

as x = 〈x, vm〉vm + 〈x,wm〉wm.

First of all, we establish some basic properties of νPm(am) and νPm(bm) with respect

to the orthogonal systems {vm, wm} and {vm,−wm}, respectively. We achieve the initial

statement that for any Pm,

(2.4)
|〈νPm(am), vm〉|
〈νPm(am), wm〉

≤ 〈am − zm, wm〉
dm/4

and
|〈νPm(bm), vm〉|
〈νPm(bm),−wm〉

≤ 〈bm − zm,−wm〉
dm/4

.

More specifically, since the roles of am together with wm and bm together with −wm

are ”symmetric”, it suffices that the statement about νPm(am) is verified. We notice

that 〈am − zm, vm〉 ≤ −dm/4, as a remark of the definition of am. In the case when

〈νPm(am), vm〉 is nonnegative, we obtain

0 ≤ 〈νPm(am), am − zm〉

= 〈νPm(am), vm〉〈am − zm, vm〉+ 〈νPm(am), wm〉〈am − zm, wm〉

≤ −〈νPm(am), vm〉(dm/4) + 〈νPm(am), wm〉〈am − zm, wm〉,

which yields our desired inequality. Otherwise, in the case when 〈νPm(am),−vm〉 is

nonnegative, using 〈am − ym,−vm〉 ≤ −dm/4, 〈am − ym, wm〉 = 〈am − zm, wm〉, we

deduce

0 ≤ 〈νPm(am), am − ym〉

= 〈νPm(am),−vm〉〈am − ym,−vm〉+ 〈νPm(am), wm〉〈am − ym, wm〉

≤ −〈νPm(am),−vm〉(dm/4) + 〈νPm(am), wm〉〈am − ym, wm〉,
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33 2.1. THE MEASURE OF ANY OPEN SEMICIRCLE IS POSITIVE

and in turn completely verify the first inequality in (2.4).

Consequently, our previous observation (2.4) gives a clear version of the ”position”

of νPm(am) and νPm(bm) with respect to wm and −wm, respectively. More precisely, for

any Pm, we have

(2.5) 〈νPm(am), wm〉 >
1

5
and 〈νPm(bm),−wm〉 >

1

5
.

Indeed, let γm stand for the angle formed by the vectors νPm(am) and wm. Seeing that

〈am−zm, wm〉 ≤ dm follows from ‖am−zm‖ ≤ dm, we evidently conclude from the first

inequality in (2.4) that tan γm ≤ 4. Therefore,

〈νPm(am), wm〉 = cos γm = (1 + tan2 γm)−1/2 ≥ 1√
17

>
1

5
.

The statement about νPm(bm) in (2.5) can be similarly verified as a consequence of the

second inequality in (2.4).

Secondly, our first observation about the ”position” of νPm(am) and νPm(bm) with

respect to vm is revealed. For the sake of simplicity, we denote tm := 〈zm, vm〉, sm :=

−〈ym, vm〉, and rm := 〈zm, wm〉 = 〈ym, wm〉 for each m. Then we deduce, by definition,

that tm is at least dm/2 and sm is positive, and also observe that zm = tmvm + rmwm

and ym = −smvm + rmwm for each m. Possibly interchanging wm with −wm and the

role of am and bm, without loss of generality, we may assume that rm is nonnegative.

Based on the fact that 〈νPm(am), zm〉 is at most 〈νPm(am), am〉, we can easily see that if

〈νPm(am), vm〉 is nonnegative, then the first inequalities in (2.3) and (2.5) imply

rm
5
< tm〈νPm(am), vm〉+ rm〈νPm(am), wm〉 = 〈νPm(am), zm〉 ≤ c1d

−1
1−p
m ,

which in turn gives a upper bound for rm as well as a upper bound for 〈νPm(am), vm〉

for tm ≥ dm/2, with respect to dm. Similarly, if 〈νPm(am),−vm〉 is positive, then

again, according to (2.3), (2.5), and the fact that 〈νPm(am), ym〉 is less than or equal

to 〈νPm(am), am〉, we have

rm
5
< sm〈νPm(am),−vm〉+ rm〈νPm(am), wm〉 = 〈νPm(am), ym〉 ≤ c1d

−1
1−p
m ,
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2.1. THE MEASURE OF ANY OPEN SEMICIRCLE IS POSITIVE 34

and conclude that {rm} is bounded from above, with respect to dm. In other words,

we say that there exists a positive constant c2 depending on µ and p such that if m is large,

then

(2.6) rm ≤ c2d
−1
1−p
m .

We consider the case when 〈νPm(bm), vm〉 is nonnegative. As 〈νPm(bm),−wm〉 is posi-

tive and less than or equal to 1 and 〈νPm(bm), zm〉 is at most 〈νPm(bm), bm〉, the second

inequality in (2.3) implies

tm〈νPm(bm), vm〉 − rm〈νPm(bm),−wm〉 = 〈νPm(bm), zm〉 ≤ c1d
−1
1−p
m ,

which leads to 〈νPm(bm), vm〉 ≤ 2(c1 + c2)d
p−2
1−p
m because of (2.6) and tm ≥ dm/2. In

summary, our current statement is established that there exist positive constants c3 and

c4 depending on µ and p such that if m is large, then

(2.7) 〈νPm(am), vm〉 ≤ c3d
p−2
1−p
m and 〈νPm(bm), vm〉 ≤ c4d

p−2
1−p
m .

Finally, we are at the stage to reach our intermediate goal where our observation

about the lower bounds of 〈νPm(am), vm〉 and 〈νPm(bm), vm〉 is achieved. We claim that

there exist positive constants c5 and c6 depending on µ and p such that if m is large, then

(2.8) 〈νPm(am), vm〉 ≥ −c5d
p−1

3−3p+p2
−1

m and 〈νPm(bm), vm〉 ≥ −c6d
p−1

3−3p+p2
−1

m .

As a matter of fact, according to our observation (2.4) above, our claim is equivalent

to saying that there exist positive constants c7 and c8 depending on µ and p such that

αm := 〈am − zm, wm〉 ≤ c7d
p−1

3−3p+p2

m provided 〈νPm(am), vm〉 < 0, and

βm := 〈bm − zm,−wm〉 ≤ c8d
p−1

3−3p+p2

m provided 〈νPm(bm), vm〉 < 0.

We begin with estimating αm with note that αm ≤
√

15
4
dm follows from ‖am−zm‖ ≤ dm

and |〈am − zm, vm〉| ≥ dm/4. We denote ηm :=
(
αm

dm

) 1−p
2−p

, which turns out to be at most(√
15
4

) 1−p
2−p

. The constant ηm here is chosen in a way such that the following calculations

will lead to the same estimate up to a constant factor. We consider the unit vector em
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35 2.1. THE MEASURE OF ANY OPEN SEMICIRCLE IS POSITIVE

such that 〈em, vm〉 = ηm and 〈em, wm〉 is positive. It is obvious that

〈em, wm〉 ≥ c9 :=

(
1−

(√
15/4

) 2(1−p)
2−p

) 1
2

.

There exist a boundary point a′m in σ(Pm, am, zm) such that wm is an exterior unit nor-

mal of Pm at a′m and a boundary point ãm in σ(Pm, a
′
m, zm) such that em is an exte-

rior unit normal of Pm at ãm. In particular, we may assume that νPm(a′m) = wm and

νPm(ãm) = em. Thus, as 〈zm, wm〉 is nonnegative, we have

〈a′m, wm〉 ≥ 〈a′m − zm, wm〉 = hPm(wm)− 〈zm, wm〉 ≥ 〈am − zm, wm〉 = αm.

We distinguish two cases. The first case is when 〈ãm − zm, wm〉 < αm/2. Since both of

〈a′m, wm〉 and 〈em, wm〉 are positive, 〈a′m, vm〉 ≥ dm/4, 〈em, vm〉 = ηm, and dm ≥ αm, we

deduce that 〈a′m, em〉 ≥ αm/4 from

〈a′m, em〉 = 〈a′m, vm〉〈em, vm〉+ 〈a′m, wm〉〈em, wm〉 ≥ (dm/4)ηm = 1
4
α

1−p
2−p
m d

1
2−p
m .

Moreover, hPm(wm) ≥ αm, then we observe that min{hPm(wm), 〈a′m, em〉} ≥ αm/4. See-

ing that 〈ãm − a′m, wm〉 < −αm/2 by our assumption, we obtain

0 ≤ 〈ãm − a′m, em〉 = 〈ãm − a′m, vm〉〈em, vm〉+ 〈ãm − a′m, wm〉〈em, wm〉

≤ 〈ãm − a′m, vm〉ηm −
c9αm

2
,

and consequently,

〈ãm − a′m, vm〉 ≥
c9αm
2ηm

=
c9

2
α

1
2−p
m d

1−p
2−p
m .

Thus, an appropriate positive constant c7 and hence c5 can be achieved from

(αm
4

)1−p c9

2
α

1
2−p
m d

1−p
2−p
m <

1

δ
,

by taking into account (2.1) and Claim 1.4.5 with x1 = a′m, x2 = ãm, and u = vm.

The other case is when 〈ãm − zm, wm〉 ≥ αm/2. Now as 〈zm, em〉 ≥ (dm/4)ηm by

〈zm, wm〉 ≥ 0, hPm(vm) ≥ dm/2 yields

min{hPm(vm), 〈zm, em〉} ≥ (dm/4)ηm =
1

4
α

1−p
2−p
m d

1
2−p
m .
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2.1. THE MEASURE OF ANY OPEN SEMICIRCLE IS POSITIVE 36

Therefore, we can apply Claim 1.4.5 with x1 = zm, x2 = ãm, and u = wm, and use (2.1)

in order to obtain (
1

4
α

1−p
2−p
m d

1
2−p
m

)1−p
αm
2
<

1

δ
,

which gives the desired lower bound for {〈νPm(am), vm〉}.

Next, we turn to the statement about {〈νPm(bm), vm〉} where the argument is sim-

ilar to the argument for {〈νPm(am), vm〉} with an important remark that 〈zm,−wm〉 is

negative. For this, we will keep in mind that 〈zm,−wm〉 = −rm > −c2d
−1
1−p
m according to

(2.7). If βm is less than d
p−1

3−3p+p2

m , then we are done proving the second statement. There-

fore, we assume otherwise that βm ≥ d
p−1

3−3p+p2

m . Since −1
1−p <

p−1
3−3p+p2

, we may suppose

that m is sufficiently large to ensure

(2.9) βm ≥ d
p−1

3−3p+p2

m > 4c2d
−1
1−p
m ≥ 4rm.

In particular, if m is sufficiently large, then

(2.10) 〈bm,−wm〉 ≥
3βm

4
.

Since ‖bm − zm‖ ≤ dm and |〈bm − zm, vm〉| ≥ dm/4 yield βm ≤
√

15
4
dm, we have

θm :=

(
βm
dm

) 1−p
2−p

≤

(√
15

4

) 1−p
2−p

< 1.

As above, we choose the constant θm in a way such that the calculations below will

lead to the same estimate up to a constant factor. We consider the vector fm ∈ S1 such

that 〈fm, vm〉 = θm and 〈fm,−wm〉 is positive. The choice of fm leads to 〈fm,−wm〉 ≥ c9

where c9 being positive and depending on p is given as above. The existence of a

boundary point b′m in σ(Pm, bm, zm) such that −wm is an exterior unit normal of Pm at

b′m and a boundary point b̃m in σ(Pm, b
′
m, zm) for which fm is an exterior unit normal

of Pm at b̃m is guaranteed. In particular, we may assume that νPm(b′m) = −wm and

νPm(b̃m) = fm. It is worth mentioning that

〈b′m − zm,−wm〉 = hPm(−wm)− 〈zm,−wm〉 ≥ 〈bm − zm,−wm〉 ≥ βm.

Again, we shall consider two cases. We first assume that 〈b̃m−zm,−wm〉 < βm/2. Since

C
E

U
eT

D
C

ol
le

ct
io

n



37 2.1. THE MEASURE OF ANY OPEN SEMICIRCLE IS POSITIVE

both of 〈b′m,−wm〉 and 〈fm,−wm〉 are positive, 〈b′m, vm〉 ≥ dm/4, 〈fm, vm〉 = θm, and

dm ≥ βm, we deduce that 〈b′m, fm〉 ≥ βm/4 from

〈b′m, fm〉 = 〈b′m, vm〉〈fm, vm〉+ 〈b′m,−wm〉〈fm,−wm〉 ≥ (dm/4)θm = 1
4
β

1−p
2−p
m d

1
2−p
m .

In addition, hPm(−wm) is at least 3βm/4 by (2.10), as a consequence of it, we observe

that min{hPm(−wm), 〈b′m, fm〉} ≥ βm/4. Because 〈b̃m − b′m,−wm〉 < −βm/2 by our as-

sumption, it holds

0 ≤ 〈b̃m − b′m, fm〉 = 〈b̃m − b′m, vm〉〈fm, vm〉+ 〈b̃m − b′m,−wm〉〈fm,−wm〉

≤ 〈b̃m − b′m, vm〉θm −
c9βm

2
,

and hence,

〈b̃m − b′m, vm〉 ≥
c9βm
2θm

=
c9

2
β

1
2−p
m d

1−p
2−p
m .

Therefore, applying (2.1) and Claim 1.4.5 with x1 = b′m, x2 = b̃m, and u = vm, we get(
βm
4

)1−p
c9

2
β

1
2−p
m d

1−p
2−p
m <

1

δ
,

and in turn conclude the desired inequality. Now we assume 〈b̃m − zm,−wm〉 ≥ βm/2.

In this case, (2.7) implies

〈zm, fm〉 = 〈zm, vm〉〈fm, vm〉+ 〈zm,−wm〉〈fm,−wm〉 ≥ (dm/4)θm − c2d
−1
1−p
m .

Here, by the definition of θm and (2.9), we note that for sufficiently large m,

dmθm = dm

(
βm
dm

) 1−p
2−p

= β
1−p
2−p
m d

1
2−p
m ≥

(
4c2d

−1
1−p
m

) 1−p
2−p

d
1

2−p
m = (4c2)

1−p
2−p > 8c2d

−1
1−p
m .

Thus, 〈zm, fm〉 ≥ (dm/8)θm. This observation together with hPm(vm) ≥ dm/2 yield

min{hPm(vm), 〈zm, fm〉} ≥ (dm/8)θm =
1

8
β

1−p
2−p
m d

1
2−p
m .

Therefore, we complete verifying our claim (2.8) by obtaining an appropriate lower

bound for {〈νPm(bm), vm〉} from
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2.1. THE MEASURE OF ANY OPEN SEMICIRCLE IS POSITIVE 38

(
1

8
β

1−p
2−p
m d

1
2−p
m

)1−p
βm
2
<

1

δ
,

when (2.1) is sued and Claim 1.4.5 is applied with x1 = zm, x2 = b̃m, and u = −wm.

Eventually, based on our previous observations, we are in the position to estimate

the µm measures of Ω(−vm, δ/2) in view of its definition. In order to do that, we denote

by a∗m the boundary point of Pm maximizing 〈a∗m, wm〉 under the condition that the

γm ∈ S1 with 〈γm,−vm〉 = δ/2 and 〈γm, wm〉 > 0 is an exterior unit normal at a∗m, and

by b∗m the boundary point of Pm maximizing 〈b∗m,−wm〉 under the condition that the

ξm ∈ S1 with 〈ξm,−vm〉 = δ/2 and 〈ξm,−wm〉 > 0 is an exterior unit normal at b∗m. More

precisely, we aim to investigate

(2.11)
∫

Ω(−vm,δ/2)

h1−p
Pm

dSPm =

∫
σ(Pm,a∗m,b

∗
m)

〈x, νPm(x)〉1−p dH1(x).

For our purpose, it is desirable to evaluate H1(σ(Pm, a
∗
m, b

∗
m)), which can conveniently

be considered by comparing with 〈a∗m−b∗m, wm〉 according to the definition of a∗m and b∗m

together the fact that vm and wm are orthogonal. We are going on the right track with

the following auxiliary observation: there exist positive constants c10 and c11 depending

on µ and p such that if m is large, then

(2.12) 〈a∗m − ym, wm〉 ≤ c10d
−1
1−p
m and 〈b∗m − ym,−wm〉 ≤ c11d

−1
1−p
m .

To verify this claim, we first remark that 〈ym, wm〉 = rm being nonnegative yields

〈a∗m − ym, wm〉 ≤ 〈a∗m, wm〉.

This means that in order to establish the first inequality in (2.12), it is sufficient to

have an appropriate upper bound for 〈a∗m, wm〉. Owing to the fact that 〈a∗m − ym, vm〉

and 〈a∗m − ym, wm〉 are both nonnegative, we have

0 ≤ 〈a∗m − ym, γm〉 = 〈a∗m − ym, vm〉〈γm, vm〉+ 〈a∗m − ym, wm〉〈γm, wm〉

≤ −δ
2
〈a∗m − ym, vm〉+ 〈a∗m − ym, wm〉.

C
E

U
eT

D
C

ol
le

ct
io

n



39 2.1. THE MEASURE OF ANY OPEN SEMICIRCLE IS POSITIVE

Consequently,

(2.13) 〈a∗m − ym, vm〉 ≤
2

δ
〈a∗m − ym, wm〉 ≤

2

δ
〈a∗m, wm〉.

Moreover, for the fact that

hPm(νPm(am)) ≥ 〈a∗m, νPm(am)〉 = 〈a∗m, vm〉〈νPm(am), vm〉+ 〈a∗m, wm〉〈νPm(am), wm〉,

it follows from (2.3) and (2.5) that

(2.14) c1d
−1
1−p
m ≥ hPm(νPm(am)) ≥ 〈a∗m, vm〉〈νPm(am), vm〉+ 〈a∗m, wm〉/5.

We shall consider the following three cases according to the signs of 〈a∗m, vm〉 and

〈νPm(am), vm〉. The first case is when 〈a∗m, vm〉 and 〈νPm(am), vm〉 share the same signs,

i.e., 〈a∗m, vm〉〈νPm(am), vm〉 is nonnegative. In this case, our argument is directly verified

by (2.14). Another case is when 〈a∗m, vm〉 is positive while 〈νPm(am), vm〉 is negative. For

this case, we notice that the inequality (2.13) implies 〈a∗m, vm〉 ≤ 2
δ
〈a∗m, wm〉 for 〈ym, vm〉

is non-positive. Furthermore, as |〈νPm(am), vm〉| < δ
20

for sufficiently large m according

to (2.8), we conclude from (2.14) that

c1d
−1
1−p
m ≥ −2

δ
〈a∗m, wm〉

δ

20
+
〈a∗m, wm〉

5
=
〈a∗m, wm〉

10
,

which gives an appropriate c10. We come to the last case when 〈a∗m, vm〉 is negative

and 〈νPm(am), vm〉 is positive. In this case, it is worth recalling that 〈a∗m, vm〉 ≥ −dm on

the one hand and 〈νPm(am), vm〉 < c3d
p−2
1−p
m by (2.7) on the other hand. Therefore, (2.14)

yields

c1d
−1
1−p
m ≥ −dmc3d

p−2
1−p
m +

〈a∗m, wm〉
5

= −c3d
−1
1−p
m +

〈a∗m, wm〉
5

,

and then completely verifies the first inequality in (2.12).

Now we turn to the second argument in (2.12) where we may assume that

〈b∗m − ym,−wm〉 ≥ 2c2d
−1
1−p
m ,

since otherwise we are readily done with c11 = 2c2. Inasmuch 〈b∗m − ym,−wm〉 is less
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2.1. THE MEASURE OF ANY OPEN SEMICIRCLE IS POSITIVE 40

than or equal to 〈b∗m,−wm〉+ c2d
−1
1−p
m according to (2.7), we have

〈b∗ − ym,−wm〉 ≤ 2〈b∗m,−wm〉.

By this observation, we can confirm the statement about b∗m by using similar argument

to the previous one.

Based on the fact thatH1(σ(Pm, a
∗
m, b

∗
m)) ≤ 2

δ
〈a∗m−b∗m, wm〉, our estimate (2.12) leads

to

H1(σ(Pm, a
∗
m, b

∗
m)) ≤ 2(c10 + c11)

δ
d
−1
1−p
m

for sufficiently large m. As a consequence, we use (2.2), (2.11), and the fact that

〈x, νPm(x)〉 ≤ dm for any boundary point x of Pm, to conclude

δ

2
≤ d1−p

m H1(σ(Pm, a
∗
m, b

∗
m)) ≤ 2(c10 + c11)

δ
d1−p
m d

−1
1−p
m =

2(c10 + c11)

δ
d

p(p−2)
1−p

m

for sufficiently large m, which turns out to be absurd as p(p−2)
1−p is negative and dm tends

to infinity. This contradiction ends the proof of Proposition 2.1.1.

Now we turn to the proof of Theorem 2.0.1 if the measure of any open semicir-

cle is positive. Since the sequence {Pm} is bounded and each Pm contains the origin

according to Proposition 2.1.1, the Blaschke selection theorem 1.2.1 provides a subse-

quence {Pm′} converging to a compact convex set K containing the origin. It follows

from Corollary 1.4.3 that SPm′ ,p
tends weakly to SK,p. However, µm′ = SPm′ ,p

tends

weakly to µ by construction. Therefore, µ = SK,p. Since any open semicircle of S1 has

positive µ measure, we conclude that K has nonempty interior.

Finally, we pay our attention to Remark 2.0.2. Given G to be a finite subgroup of

O(2) such that µ(Aω) = µ(ω) for any Borel ω ⊂ S1 and A ∈ G. The idea is that for

large m, we subdivide S1 into arcs of length less than 2π/m in a way such that the

subdivision is symmetric with respect to G and each endpoint has µ measure 0.

We fix a regular l-gon Q, l ≥ 3, whose vertices lie on S1 such that G is a subgroup of
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41 2.1. THE MEASURE OF ANY OPEN SEMICIRCLE IS POSITIVE

the symmetry group ofQ. In addition, we consider the set Σ of atoms of µ, namely, the

set of all unit vectors u ∈ S1 such that µ({u}) is positive. In particular, Σ is countable.

For m ≥ 2, we denote by Qm the regular polygon with lm vertices such that all

vertices of Q are vertices of Qm, and denote by Gm the symmetry group of Qm. We

observe that Gm contains rotations by angle 2π
lm

. We write Σm for the set obtained from

repeated applications of the elements of Gm to the elements of Σ. We note that Σm is

countable, as well. For a fixed x0 ∈ S1\Σm, we consider the orbit Gmx0 = {Ax0 : A ∈

Gm} and let Im be the set of open arcs of S1 that are the components of S1\Gmx0. We

observe that Gmx0 is disjoint from Σm and, consequently, µ(σ) = µ(clσ) for σ ∈ Im.

Now we define µm. It is concentrated on the set of midpoints of all σ ∈ Im and the

µm measure of the midpoints of a σ ∈ Im is µ(σ). In particular, µm is invariant under

Gm and hence, µm is invariant under G. Since the length of each arc in Im is at most

2π
lm

, we deduce that µu tends weakly to µ.

According to the remark after Theorem 1.3.2 due to Zhu [Zhu15b], we may assume

that each Pm is invariant under G. The argument above shows that some subsequence

of {Pm} tends to a convex body K satisfying SK,p = µ and readily K is invariant under

G.

Unfortunately, the proof of Theorem 2.0.1 we present does not extend to higher

dimensions. Apparently, regarding the planar Lp-Minkowski problem when p ranges

over the interval (0, 1), the most important key is the following statement: If 0 < p < 1,

µ is a bounded Borel measures on S1 such that the µ measure of any open semicircle is

positive, and {Pm} ⊂ K2
(o) is a sequence of convex bodies such that SPm,p tends weakly

to µ, then it is bounded. However, this statement fails to hold for higher dimensions.

The following Example 2.1.2 is evidence of its failure in n = 3 dimension where the

solution to the Lp-Minkowski problem exists without requiring the boundedness of

the sequence {Pm}.

Example 2.1.2. For p ∈ (0, 1), there exist a measure µ on S2 ensuring that any open hemi-

sphere has positive measure and an unbounded sequence of polytopes {Pm} ⊂ K3
(o) in R3
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2.1. THE MEASURE OF ANY OPEN SEMICIRCLE IS POSITIVE 42

such that SPm,p converges weakly to µ.

More specific details are given as in the following. For x1, . . . , xk ∈ R3, we write

[x1, . . . , xk] for their convex hull. We denote by u0, u1, u2, u
+, and u− the vectors (1, 0, 0),(

−1√
2
, 1√

2
, 0
)

,
(
−1√

2
, −1√

2
, 0
)

, (0, 0, 1), and (0, 0,−1), respectively, and we define the discrete

measure µ on S2 to have suppµ = {u0, u1, u2, u
+, u−} with

µ({u0}) = 8, µ({u1}) = µ({u2}) = 2
p
2 , µ({u+}) = µ({u−}) = 3.

Obviously, any open hemisphere has positive measure.

For m ≥ 2 and am := m−(2−p), we set

v1,m = (0,m, 0), v+
1,m = (m, 2m, am), v−1,m = (m, 2m,−am),

v2,m = (0,−m, 0), v+
2,m = (m,−2m, am), v−2,m = (m,−2m,−am),

and denote by P̃m their convex hull. The exterior unit normals of the facets of P̃m,

F0,m := [v+
i,m, v

−
i,m]i=1,2, F1,m := [v1,m, v

+
1,m, v

−
1,m], and F2,m := [v2,m, v

+
2,m, v

−
2,m] are, respec-

tively, the unit vectors u0, u1, and u2, which are independent of m. In addition, P̃m

has two more facets, F+
m = [v1,m, v2,m, v

+
1,m, v

+
2,m] and F−m = [v1,m, v2,m, v

−
1,m, v

−
2,m], whose

exterior unit normals are, respectively,

u+
m =

(
−am√
a2
m +m2

, 0,
m√

a2
m +m2

)
and u−m =

(
−am√
a2
m +m2

, 0,
−m√
a2
m +m2

)
,

which satisfy limm→∞ u
+
m = u+ and limm→∞ u

−
m = u−.

For i = 1, 2, we have hP̃m
(u0) = m, hP̃m

(u1) = hP̃m
(u2) = m√

2
, and hP̃m

(u+
m) =

hP̃m
(u−m) = 0. It implies that

SP̃m,p
({u0}) = hP̃m

(u0)1−pH2(F0,m) = m1−p8mam = 8 and

SP̃m,p
({ui}) = hP̃m

(ui)
1−pH2(Fi,m) =

(
m√

2

)1−p√
2mam = 2

p
2 for i = 1, 2.

Now we translate P̃m in order to alter SP̃m,p
({u+

m}). We define positive constants tm in

a way such that Pm = P̃m − tmu0 satisfy

hPm(u+
m) = m

−2
1−p .
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43 2.2. THE MEASURE IS CONCENTRATED ON A CLOSED SEMICIRCLE

It follows that

m
−2
1−p = hPm(u+

m) = tm〈u+
m, u0〉 =

tmam√
m2 + a2

m

>
tm

2m3−p .

We observe that r = 3 − p − 2
1−p < 3 − 2 = 1 if p ∈ (0, 1) and, as its consequence,

limm→∞ tm/m = 0. We deduce that

lim
m→∞

SPm,p({u0}) = 8,

lim
m→∞

SPm,p({ui}) = 2
p
2 for i = 1, 2, and

lim
m→∞

SPm,p({u+
m}) = lim

m→∞
hPm(u+

m)1−pH2(F+
m) = lim

m→∞
m−23m

√
m2 + a2

m = 3.

Therefore, SPm,p tends weakly to µ.

2.2 The measure is concentrated on a closed semicircle

Dealing with the case when there is a possibility that Lp- surface area measure of a

convex body K containing the origin of an open semicircle can be equal to zero, we

first show that it cannot be supported on two antipodal points.

Lemma 2.2.1. If K ∈ K2
o, then suppSK,p is not a pair of antipodal points.

Proof. We suppose that suppSK,p = {v,−v} for some unit vector v ∈ S1 and seek a

contradiction. Let w ∈ S1 be orthogonal to v.

If o ∈ intK, then suppSK,p = suppSK , which is not contained in any closed

semicircle. Therefore, o ∈ bdK. Let C be the exterior normal cone at o, namely,

C ∩ S1 = {u ∈ S1 : hK(u) = 0}. Since suppSK,p = {v,−v}, hK(v) and hK(−v) are

both positive and it follows that neither v nor −v belong to C. Thus, we may assume

possibly after replacing w with −w that C ∩ S1 is contained in Ω(−w, 0). It leads to

the observation that hK(u) is positive for any u in Ω(w, 0), and since SK(Ω(w, 0)) is

positive, it also follows that

SK,p(Ω(w, 0)) =

∫
Ω(w,0)

h1−p
K dSK > 0.
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2.2. THE MEASURE IS CONCENTRATED ON A CLOSED SEMICIRCLE 44

This contradicts to suppSK,p = {v,−v} and then completes the proof of Lemma 2.2.1.

Let µ be a non-trivial measure on S1 that is concentrated on a closed semicircle

σ of S1 connecting the unit vectors v and −v in S1 such that suppµ is not a pair of

antipodal points. We may assume that for the w ∈ σ orthogonal to v, we have either

suppµ = {w} or

(2.15) w ∈ int pos(suppµ).

We consider the case when suppµ = {w}. Let the unit vectors w1 and w2 in S1 be

such that w1 + w2 = −w and let K0 be the regular triangle

K0 = {x ∈ R2 : 〈x,w1〉 ≤ 0, 〈x,w2〉 ≤ 0, 〈x,w〉 ≤ 1}.

For λ = µ({w})/SK0,p({w}) and λ0 = λ
1

2−p , we have Sλ0K0,p = µ.

Now we consider the other case when w ∈ int pos(suppµ). We denote by A the

reflection through the line lin v. We define a measure µ̃ on S1 by

µ̃(ω) = µ(ω) + µ(Aω) for Borel sets ω ⊂ S1.

We observe that µ̃ is invariant under A,

µ̃(ω) = µ(ω) if ω ⊂ Ω(w, 0),

µ̃({v}) = 2µ({v}), and

µ̃({−v}) = 2µ({−v}).

It follows from w ∈ int pos(suppµ) that there is not any closed semicircle containing

supp µ̃. We deduce from the previous section, where the case when the measure of any

open semicircle is positive has been already proved, that there exists a convex body

K̃ ∈ K2
o invariant under A for which SK̃,p = µ̃.
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45 2.2. THE MEASURE IS CONCENTRATED ON A CLOSED SEMICIRCLE

We claim that

(2.16) SK,p = µ for K = {x ∈ K̃ : 〈x,w〉 ≥ 0}.

For any convex body M and any unit vector u ∈ S1, we write F (M,u) := {x ∈ M :

〈x, u〉 = hM(u)} for the face of M with exterior unit normal u and for any x, y ∈ R2,

we write [x, y] for the convex hull of x and y, which is a segment if x 6= y. Since K̃ is

invariant under A, there exist nonnegative numbers t and s such that tv and −sv are

boundary points of K̃, and the exterior normals at tv and −sv are v and −v, respec-

tively. In addition, H1(F (K̃, v)) = 2H1(F (K, v)), H1(F (K̃,−v)) = 2H1(F (K,−v)),

and F (K,−w) = [tv,−sv].

To prove (2.16), first we observe that by definition and have

µ({v}) =
µ̃({v})

2
=
hK̃(v)1−pH1(F (K̃, v))

2
= hK(v)1−pH1(F (K, v)) = SK,p({v}),

and, similarly, µ({−v}) = SK,p({−v}). Next (1.1) yields that

SK,p(Ω(−w, 0)) =

∫
[tv,−sv]

〈x,w〉1−p dH1(x) = 0 = µ(Ω(−w, 0)).

Finally, if ω ⊂ Ω(w, 0), then ν−1

K̃
(ω) = ν−1

K (ω), which yields

µ(ω) = µ̃(ω) = SK̃,p(ω) = SK,p(ω),

and in turn (2.16).

Therefore, all we are left to do is to check the symmetries of µ. Actually, the only

possible symmetry is the reflection B through linw. In this case, µ̃ is also invariant

under B and hence, we may assume that K̃ is also invariant under B. We conclude

that K is invariant under B, completing the proof of Theorem 2.0.1.
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Chapter 3 ON THE MINIMUM TIME FUNCTION

The purpose of the present chapter is to study the ϕ-convexity of the epigraph of the

minimum function T for a nonlinear control system with a general closed target, pro-

vided that the sublevel sets of T are ϕ0-convex for some nonnegative constant ϕ0. This

property of the minimum time function T will be demonstrated in Section 3.2 via the

relationship between the sublevel sets and the epigraph of T . The most important key

is the appropriate sensitivity relation results stated in Section 3.1.

For given function f : Rn × U → Rn and control set U ⊂ Rm, we consider the

nonlinear control system

(3.1)


y′(t) = f(y(t), u(t)) a.e. t > 0,

u(t) ∈ U a.e. t > 0,

y(0) = x,

The global existence of a unique solution to (3.1) is ensured by the following essential

assumptions on the function f and the control set U :

(A1) U is compact and f(x,U) is convex for every x ∈ Rn.

(A2) f : Rn × U → Rn is continuous and satisfies

‖f(x, u)− f(y, u)‖ ≤ L‖x− y‖ for all x, y ∈ Rn, u ∈ U ,

and for a positive constant L.

(A3) The differential of f with respect to the x variable Dxf exists everywhere, is

continuous with respect to both x and u, and satisfies

‖Dxf(x, u)−Dxf(y, u)‖ ≤ L1‖x− y‖ for all x, y ∈ Rn, u ∈ U ,

and for a positive constant L1.

47
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3.1. SENSITIVITY RELATIONS 48

For a given nonempty closed target K ⊂ Rn, we define the minimum time function

T , which is well-defined under the assumptions (A1) - (A3) (see ([CS04])), as in Section

1.6. Throughout this chapter, the notations are also referred to those in Section 1.5 and

Section 1.6.

3.1 Sensitivity relations

Sensitivity relations, which consist of the dual arc satisfying an inclusion of an appro-

priate generalized gradient of the value function, are widely studied on the minimal

time problem (see, e.g., [CFS00], [CMN15], [CS15], [CNN14], [FN15], [Ngu16], and

references therein). In this section, dealing with the minimum time function T asso-

ciated with the nonlinear control system (3.1), we present similar propagation results

concerning with both the proximal subdifferential and the proximal horizontal subd-

ifferential of T , which play an important role in Section 3.2. We prove inclusions for

normal cones to the epigraph and to the sublevel sets of the minimum time function.

As a consequence, we come to conclusion that the proximal subdifferential and the

proximal horizontal subdifferential of T propagate wholly along optimal trajectories.

Although the result is similar to the result given in [Ngu16] where the author deals

with the minimum time function for differential inclusions, we work under different

assumptions and use different techniques. With regard to the nonlinear control sys-

tem (3.1), under assumptions (A1)-(A3), the sensitivity relations are given in Theorem

3.1.4 based on the characterization of the proximal subdifferential and the horizon-

tal proximal subdifferential of T as well as the relationship between normals to the

epigraph and to sublevel sets of T via the value at relevant points of the minimized

Hamiltonian h : Rn × Rn → R associated with the control system (3.1) defined by

h(x, ζ) = min
u∈U
〈ζ, f(x, u)〉 ∀x, ζ ∈ Rn.

We first recall the characterization of the proximal subdifferential and the horizon-

tal proximal subdifferential of T at a point outside the target given by Wolenski and
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49 3.1. SENSITIVITY RELATIONS

Yu [WY98] and Nguyen [Ngu16].

Theorem 3.1.1 (Wolenski, Yu, and Nguyen). Assume (A1) - (A3). Let x ∈ R \ K. We

have

(i) ∂PT (x) = NP
R(T (x))(x) ∩ {ζ ∈ Rn : h(x, ζ) = −1}.

(ii) ∂∞T (x) = NP
R(T (x))(x) ∩ {ζ ∈ Rn : h(x, ζ) = 0}.

Another useful variational result, established by Nguyen [Ngu16], is a connection

between normal cones to sublevel sets and to the epigraph of the minimum time func-

tion T .

Theorem 3.1.2 (Nguyen). Assume (A1) - (A3). Let x ∈ R \ K.

(i) If ζ ∈ NP
R(T (x))(x), then (ζ, h(x, ζ)) ∈ NP

epi(T )(x, T (x)).

(ii) If ζ ∈ Rn and η ∈ R satisfy (ζ, η) ∈ NP
epi(T )(x, T (x)), then η ≤ 0, ζ ∈ NP

R(T (x))(x),

and h(x, ζ) = η.

We also recall the Maximum Principle in the following form, see, e.g., [CFS00].

Theorem 3.1.3. Assume (A1) - (A4). Let x ∈ R \ K and let u(·) be an optimal control for

x and y(·) := yx,u(·) be the corresponding optimal trajectory. Let ζ ∈ NP
K (y(T (x))). Then

the solution of the system p′(t) = −Dxf(y(t), u(t))>p(t) a.e. t ∈ [0, T (x)]

p(T (x)) = ζ

satisfies

〈f(y(t), u(t)), p(t)〉 = h(y(t), p(t)) a.e. t ∈ [0, T (x)].

Here, a non-trivial absolutely continuous function p(·) satisfying the system above

in Theorem 3.1.3 is called a dual arc associated to the optimal trajectory yx,u(·).

The following sensitivity relations are the main result of this section. To demon-

strate these relations, we need to take the results given in Theorem 3.1.1 and Theorem

3.1.2 into account.
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3.1. SENSITIVITY RELATIONS 50

Theorem 3.1.4. Assume (A1) - (A3). Let x ∈ R \ K and let (y(·), w(·)) be an optimal pair

for x. Let p : [0, T (x)]→ Rn be a solution of the equation

(3.2) p′(t) = −Dxf(y(t), w(t))>p(t) a.e. t ∈ [0, T (x)].

We have the following.

(i) If (p(0), h(x, p(0))) ∈ NP
epi(T )(x, T (x)), then

(p(t), h(y(t), p(t))) ∈ NP
epi(T )(y(t), T (y(t))) for all t ∈ [0, T (x))

and

h(y(t), p(t)) = h(x, p(0)) for all t ∈ [0, T (x)].

(ii) If p(0) ∈ NP
R(T (x))(x), then for all t ∈ [0, T (x)],

p(t) ∈ NP
R(T (y(t)))(y(t)) and h(y(t), p(t)) = h(x, p(0)).

(iii) If p(0) ∈ ∂PT (x), then for all t ∈ [0, T (x)],

p(t) ∈ ∂PT (y(t)) and h(y(t), p(t)) = −1.

(iv) If p(0) ∈ ∂∞T (x), then for all t ∈ [0, T (x)],

p(t) ∈ ∂∞T (y(t)) and h(y(t), p(t)) = 0.

Proof. We first remark that if p(·) is a solution of the equation (3.2) then either p(t) = o

for all t ∈ [0, T (x)] or p(t) 6= o for all t ∈ [0, T (x)]. Moreover, there is a positive constant

K such that ‖p(t)‖ ≤ K for all t ∈ [0, T (x)].

(i) In the case when p(·) is trivial, our conclusion is obvious. We now consider the

case that p(·) is non-trivial. For the sake of simplicity, we shall denote α := h(x, p(0)).

Since (p(0), α) is an element of NP
epi(T )(x, T (x)) according to our assumption, by defini-

tion of the proximal normal cone, there exist positive constants c and η such that

(3.3) 〈p(0), y − x〉+ α(β − T (x)) ≤ c(‖y − x‖2 + |β − T (x)|2)
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51 3.1. SENSITIVITY RELATIONS

for all y ∈ B(x, η) and β ≥ T (y). We now fix t ∈ [0, T (x)). Let u ∈ B(o, η) and let yu(·)

denote the solution of the system y′u(s) = f(yu(s), w(s))

yu(t) = y(t) + u
a.e. s ∈ [0, T (x)].

The Lipschitz continuity of f implies that for all s ∈ [0, T (x)],

‖yu(s)− y(s)‖ =

∥∥∥∥∫ t

s

(y′u(τ)− y′(τ))dτ + y(t)− yu(t)
∥∥∥∥

≤ ‖u‖+

∫ t

s

‖f(yu(τ), w(τ))− f(y(τ), w(τ))‖dτ

≤ ‖u‖+ L

∫ t

s

‖yu(τ)− y(τ)‖dτ.

Consequently, by Gronwall’s lemma, there exists a constant κ > 1 independent of u

such that

(3.4) ‖yu(s)− y(s)‖ ≤ κ‖u‖ for all s ∈ [0, T (x)].

Moreover, we have

〈p(t), yu(t)− y(t)〉 − 〈p(0), yu(0)− y(0)〉 =

∫ t

0

d

ds
〈p(s), yh(s)− y(s)〉ds.

We first decompose the formula under the integral in the right hand side of this equal-

ity by the differentiation rule for a combined function, then use (3.2), and finally apply

conjugate symmetry property of the inner product in order to obtain that the left hand

side of the previous equality can be represented to be

(3.5)
∫ t

0

〈−p(s), Dxf(y(s), w(s))(yu(s)− y(s)) + f(yu(s), w(s))− f(y(s), w(s))〉ds.

We consider the inner product under the integral (3.5) when keeping in mind that the

term f(yu(s), w(s))− f(y(s), w(s)) can be represented in a form of a integral as

f(yu(s), w(s))− f(y(s), w(s)) = (yu(s)− y(s))

∫ 1

0

−Dxf(y(s) + τ(yu(s)− y(s)), w(s))dτ

In addition to applying Cauchy–Schwarz inequality for the inner product in (3.5)

where Dxf(y(s), w(s)) will be necessarily put under the integral as in the revised form

C
E

U
eT

D
C

ol
le

ct
io

n



3.1. SENSITIVITY RELATIONS 52

of f(yu(s), w(s))− f(y(s), w(s)) mentioned above and recalling that ‖p(s)‖ is bounded

above by K on [0, T (x)], we take assumption (A3) into account to finally deduce that

〈p(t), yu(t)− y(t)〉 − 〈p(0), yu(0)− y(0)〉 ≤ KL1

∫ t

0

‖yu(s)− y(s)‖2ds

∫ 1

0

τdτ.

According to (3.4), there exists a positive constant C1 independent of u and t for which

(3.6) 〈p(t), yu(t)− y(t)〉 − 〈p(0), yu(0)− y(0)〉 ≤ C1‖u‖2.

We can choose η > 0 sufficiently small such that yu([0, t])∩K = ∅ for all u ∈ B(o, η).

The dynamic programming principle 1.6.2 leads to

(3.7) T (x) = T (y(t)) + t and T (yu(0)) ≤ T (yu(t)) + t.

Let β̄ ≥ T (yu(t)). It follows from (3.7) that

T (yu(0)) ≤ β̄ + T (x)− T (y(t)).

We substitute y and β by yu(0) and β̄ + T (x) − T (y(t)) in (3.3), respectively, while

keeping in mind that x = y(0), to obtain

(3.8) 〈p(0), yu(0)− y(0)〉+ α(β̄ − T (y(t)) ≤ c(‖yu(0)− y(0)‖2 + |β̄ − T (y(t))|2).

By simply adding and subtracting 〈p(0), yu(0) − y(0)〉, according to our observations

(3.4), (3.6), and (3.8), we have

〈p(t), yu(t)− y(t)〉 ≤ −α(β̄ − T (y(t))) + (C1 + cκ)
(
‖u‖2 + |β̄ − T (y(t))|2

)
,

and as a consequence,

〈p(t), yu(t)− y(t)〉+ α(β̄ − T (y(t))) ≤ (C1 + cκ)(‖yu(t)− y(t)‖2 + |β̄ − T (y(t)|2).

This means that for any u ∈ B(o, η) and any β̄ ≥ T (y(t) + u), it holds

〈p(t), u〉+ α(β̄ − T (y(t))) ≤ (C1 + cκ)(‖u‖2 + |β̄ − T (y(t)|2).

In other words, (p(t), α) is an element in NP
epi(T )(y(t), T (y(t))). Thus, we deduce from
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53 3.1. SENSITIVITY RELATIONS

Theorem 3.1.2 that h(y(t), p(t)) = α. Our desired argument follows from the fact that

t ∈ [0, T (x)) is chosen arbitrarily and from the continuity of h.

(ii) Since p(0) is an element of NP
R(T (x))(x), it follows from Theorem 3.1.2 that

(p(0), h(x, p(0))) belongs toNP
epi(T )(x, T (x)). Thus, (i) guarantees that (p(t), h(y(t), p(t)))

is an element of NP
epi(T )(y(t), T (y(t))) for all t ∈ [0, T (x)) and h(y(t), p(t)) = h(x, p(0))

for all t ∈ [0, T (x)]. Again, Theorem 3.1.2 points out that p(t) belongs toNP
R(T (y(t)))(y(t))

for any t ∈ [0, T (x)). It is left to show that p(T (x)) is actually an element ofNP
K (y(T (x))).

As p(0) is contained in NP
R(T (x))(x) according to our assumption, by the definition of

the proximal normal cone, there are positive constants C0 and η0 such that

(3.9) 〈p(0), y − x〉 ≤ C0‖y − x‖2 ∀y ∈ R(T (x)) ∩B(x, η0).

Let z ∈ K ∩ B(y(T (x)), η0) and set v := z − y(T (x)) ∈ B(o, η0). We denote by xv(·) the

solution of the system x′v(s) = f(xv(s), w(s))

xv(T (x)) = y(T (x)) + v
a.e. s ∈ [0, T (x)].

We observe that T (xv(0)) ≤ T (x), which means xv(0) is contained in R(T (x)).

Having similar argument as in the proof of (i), we can see the existence of positive

constants C2 and C3 such that

(3.10) ‖xv(s)− y(s)‖ ≤ C2‖v‖ ∀ s ∈ [0, T (x)]

and

(3.11) 〈p(T (x)), xv(T (x))− y(T (x))〉 − 〈p(0), xv(0)− y(0)〉 ≤ C3‖v‖2.

By simply adding and subtracting 〈p(0), xv(0) − y(0)〉 with note that z = xv(T (x)), we

take (3.9), (3.10), and (3.11) into account to conclude that

〈p(T (x)), z − y(T (x))〉 ≤ (C3 + C0C
2
2)‖v‖2 = (C3 + C0C

2
2)‖z − y(T (x))‖2,

or in other words, p(T (x)) is contained in NP
K (y(T (x))).
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3.2. RELATIONSHIP BETWEEN SUBLEVEL SETS AND THE EPIGRAPH 54

(iii) and (iv) follow from Theorem 3.1.1 and (ii).

We end this section by stating the following corollary, as a consequence of Theo-

rem 3.1.4 and the Maximum Principle given in Theorem 3.1.3. This corollary will be

needed in Section 3.2.

Corollary 3.1.5. Assume (A1) - (A3). Let x ∈ R\K and let (y(·), w(·)) be an optimal pair

for x. Assume NP
R(T (x))(x) 6= {o}. Let o 6= ζ ∈ NP

R(T (x))(x) and p : [0, T (x)] → Rn be the

solution of the system p′(t) = −Dxf(y(t), w(t))>p(t) a.e. t ∈ [0, T (x)].

p(0) = ζ

Then we have

〈f(y(t), w(t)), p(t)〉 = h(y(t), p(t)) a.e. t ∈ [0, T (x)].

Proof. Since p(0) = ζ is an element of NP
R(T (x))(x) according to Theorem 3.1.4 (ii), we

observe that ζ1 := p(T (x)) belongs to NP
K (y(T (x))). Thus, p(·) is the unique solution of

the equation  p′(t) = −Dxf(y(t), w(t))>p(t) a.e. t ∈ [0, T (x)]

p(T (x)) = ζ1 ∈ NP
K (y(T (x))).

Therefore, by Maximum Principle 3.1.3, we obtain

h(y(t), p(t)) = 〈p(t), f(y(t), w(t))〉 a.e. t ∈ [0, T (x)].

3.2 Relationship between sublevel sets and the epigraph

In this section, we present the main result of this chapter, namely, the relationship be-

tween sublevel sets and the epigraph of the minimum time function associating with

the nonlinear control system (3.1). More precisely, we show that the epigraph of T is

ϕ-convex for some appropriate continuous function ϕ, provided that the sublevel sets
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of T are ϕ0-convex for some nonnegative constant ϕ0. Our main goal is to construct

a continuous function ϕ in view of Definition 1.2.2, based on the suitable sensitivity

relation results given in Section 3.1 and the ϕ0-convexity of the sublevel sets of T . The

function ϕ is explicitly computed as in Theorem 3.2.1.

Given a positive number σ, we denote by S(σ) the set R(σ) \ K. For a subset O

of Rn, let T|O : O → Rn stand for the restriction of T on O, i.e., T|O(x) = T (x) for all

x ∈ O. The following assumptions will be needed.

(Q1) There is a nonnegative constant ϕ0 such that R(t) is ϕ0-convex for all t ∈ [0, σ].

(Q2) T is continuous on S(σ).

Theorem 3.2.1. Assume (A1) - (A3) and (Q1) - (Q2). Then there exists a continuous

function ϕ, which can be computed explicitly, such that the epigraph of T|S(σ) is ϕ-convex.

Proof. We shall construct a continuous function ϕ ensuring that for any x and y in

S(σ), any β ≥ T (y), and any element (ζ, α) of NP
epi(T )(x, T (x)), it holds

(3.12) 〈(ζ, α), (y − x, β − T (x))〉 ≤ ϕ(x)‖(ζ, α)‖(‖y − x‖2 + |β − T (x)|2).

We first note that if (ζ, α) belongs toNP
epi(T )(x, T (x)), then ζ is an element ofNP

R(T (x))(x)

and h(x, ζ) = α, according to Theorem 3.1.2.

For the sake of simplicity, we denote by ϕi : Rn × [0,∞) → [0,∞), i = 1, ..., 7, the

following functions.

ϕ1(x, t) := 2
(
ϕ0[1 + (L‖x‖+K1)2e2Lt] + L[(L‖x‖+K1)eLt + 1]

)
,

ϕ2(x, t) := 2
(
ϕ0[1 + (L‖x‖+ L+K1)2e2L] + L[(L‖x‖+ L+K1)eL + 1]

)
,

ϕ3(x, t) :=
(
L1e

Lt‖x‖+ L1K1(eLt−1)
L

+K2

)
el(x,t)t,

ϕ4(x, t) := ϕ3(x, t)[1 + (L‖x‖+K1)eLt],

ϕ5(x, t) := ϕ0e
l(x,t)t[1 + (L‖x‖+K1)eLt],

ϕ6(x, t) := l(x, t)el(x,t)t(L‖x‖+K1)eLt, and

ϕ7(x, t) := max{ϕ0, ϕ4(x, t) + ϕ5(x, t) + ϕ6(x, t)}
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3.2. RELATIONSHIP BETWEEN SUBLEVEL SETS AND THE EPIGRAPH 56

where K1 := maxu∈U‖f(o, u)‖ and K2 := maxu∈U‖Dxf(o, u)‖ and l(x, t) is defined as in

Lemma 1.5.3.

Now, we define ϕ : S(σ)→ [0,∞) by ϕ(x) := max{ϕ2(x, T (x)), 2, ϕ7(x, T (x))}. Then

ϕ(·) is continuous on S(σ) as T is continuous.

It is sufficient to verify (3.12). We begin with the special case when ζ = o. In the

case, we observe that α = 0. Obviously, our inequality holds true. We pay attention

to the case when ζ 6= o. For any x in S(σ), we denote by r the value T (x) and by

(y(·), w(·)) an optimal pair for x. Let p : [0, T (x)] → Rn stand for the solution of the

system

(3.13)

 p′(t) = −Dxf(y(t), w(t))>p(t)

p(0) = ζ
a.e. t ∈ [0, r].

We shall continue to verity (3.12) based on the fact that for any pair x and y in S(σ),

there are only two possibilities in the comparison between T (x) and T (y), namely,

T (y) ≥ T (x) and T (y) < T (x).

We first assume that T (y) ≥ T (x). We denote by (ȳ(·), w̄(·)) an optimal pair for

y and set y1 := ȳ(r1) where r1 := T (y) − T (x). According to Lemma 1.5.2 (i), for all

s ∈ [0, r1],

(3.14) ‖y − ȳ(s)‖ = ‖ȳ(s)− ȳ(0)‖ ≤ (L‖y‖+K1)eLss ≤ (L‖y‖+K1)eLr1r1.

As 〈ζ, y − x〉 = 〈ζ, y − y1〉 + 〈ζ, y1 − x〉, we shall estimate 〈ζ, y − x〉 via 〈ζ, y − y1〉 and

〈ζ, y1 − x〉. Since y1 ∈ R(r) and R(r) is ϕ0-convex, using the triangle inequality for

norm and (3.14), we have

〈ζ, y1 − x〉 ≤ 2ϕ0‖ζ‖(‖y − x‖2 + ‖y − y1‖2)

≤ 2ϕ0‖ζ‖
(
‖y − x‖2 + (L‖y‖+K1)2e2Lr1r2

1

)
≤ 2ϕ0‖ζ‖

(
1 + (L‖y‖+K1)2e2Lr1

)
(‖y − x‖2 + r2

1).(3.15)

In addition, observing that 〈ζ, y − y1〉 = 〈ζ, ȳ(0) − ȳ(r1)〉, using the definition of ȳ(·),

the definition of h(·), Cauchy-Schwarz inequality, the triangle inequality for norm,
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and the assumption (A2), we deduce from (3.14) that

〈ζ, y − y1〉 = −
∫ r1

0

〈ζ, ȳ′(s)〉ds

= −
∫ r1

0

〈ζ, f(ȳ(s), w̄(s))〉ds

= −
∫ r1

0

〈ζ, f(x, w̄(s))〉ds+

∫ r1

0

〈ζ, f(x, w̄(s))− f(ȳ(s), w̄(s))〉ds

≤ −h(x, ζ)r1 + L‖ζ‖
∫ r1

0

‖ȳ(s)− x‖ds

≤ −h(x, ζ)r1 + L‖ζ‖
∫ r1

0

(‖ȳ(s)− y‖+ ‖y − x‖)ds

≤ −αr1 + L‖ζ‖‖y − x‖r1 + L‖ζ‖
∫ r1

0

(L‖y‖+K1)eLr1r1ds

≤ −αr1 + L‖ζ‖‖y − x‖r1 + L‖ζ‖(L‖y‖+K1)eLr1r2
1

≤ −αr1 + 2L‖ζ‖
[
(L‖y‖+K1)eLr1 + 1

] (
‖y − x‖2 + r2

1

)
.(3.16)

By some simple computation, our observations (3.15) and (3.16) lead to

〈ζ, y − x〉 = 〈ζ, y − y1〉+ 〈ζ, y1 − x〉

= −α(T (y)− T (x)) + ϕ1(y, r1)‖ζ‖(‖y − x‖2 + |T (y)− T (x)|2).(3.17)

We notice that if ‖y − x‖ + |T (y) − T (x)| ≤ 1, then ‖y‖ ≤ ‖x‖ + 1 and 0 ≤ r1 =

T (y)− T (x) ≤ 1. It follows that

(3.18) ϕ1(y, r1) ≤ ϕ2(x, r).

Otherwise, if ‖y − x‖+ |T (y)− T (x)| > 1, then

〈ζ, y − x〉+ α(T (y)− T (x)) ≤ ‖(ζ, α)‖(‖y − x‖+ |T (y)− T (x)|)

≤ 2‖(ζ, α)‖(‖y − x‖2 + |T (y)− T (x)|2).(3.19)

According to (3.17) - (3.19) and the definition of ϕ, we obtain

(3.20) 〈ζ, y − x〉+ α(T (y)− T (x)) ≤ ϕ(x)‖(ζ, α)‖(‖y − x‖2 + |T (y)− T (x)|2)

for T (y) ≥ T (x).

Recalling that α = h(x, ζ) is non-positive by Theorem 3.1.2, we deduce from (3.20)
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that

(3.21) 〈(ζ, α), (y − x, β − T (x))〉 ≤ ϕ(x)‖(ζ, α)‖(‖y − x‖2 + |β − T (x)|2)

for β ≥ T (y) ≥ T (x).

Finally, we assume that T (y) < T (x). Since y ∈ R(r) andR(r) is ϕ0-convex, it holds

(3.22) 〈ζ, y − x〉 ≤ ϕ0‖ζ‖‖y − x‖2.

It follows from α ≤ 0 that for all β ≥ T (x) > T (y),

(3.23) 〈ζ, y − x〉+ α(β − T (x)) ≤ ϕ0‖(ζ, α)‖(‖y − x‖2 + |β − T (x)|2).

We suppose that T (y) ≤ β ≤ T (x) and set x1 := y(r2) where r2 := T (x)− β. Since

〈ζ, y − x〉 = 〈ζ − p(r2), y − x1〉+ 〈p(r2), y − x1〉+ 〈ζ, x1 − x〉,

we shall estimate 〈ζ, y − x〉 via 〈ζ − p(r2), y − x1〉, 〈p(r2), y − x1〉, and 〈ζ, x1 − x〉 with

note that

(3.24) ‖y − x1‖ ≤ ‖y − x‖+ ‖x− x1‖ ≤ ‖y − x‖+ (L‖x‖+K1)eLr2r2.

by Lemma 1.5.2. Recalling that ζ = p(0), we can revise 〈ζ − p(r2), y − x1〉 to be of the

form −
∫ r2

0
〈p′(s), y − x1〉ds. Using the definition of p(·), Cauchy-Schwarz inequalities,

applying Lemma 1.5.2 and 1.5.3, and taking (3.24) into account, by simple calculation,

we obtain

〈ζ − p(r2), y − x1〉 =

∫ r2

0

〈Dxf(y(s), w(s))>p(s), y − x1〉ds

≤
∫ r2

0

‖Dxf(y(s), w(s))‖‖p(s)‖‖y − x1‖ds

≤
(
L1e

Lr2‖x‖+
L1K1(eLr2 − 1)

L
+K2

)
el(x,r2)r2‖p(0)‖‖y − x1‖r2

≤ ϕ3(x, r2)‖ζ‖
(
‖y − x‖r2 + (L‖x‖+K1)eLr2r2

2

)
≤ ϕ4(x, r)‖ζ‖(‖y − x‖2 + r2

2).(3.25)

Regarding 〈p(r2), y − x1〉 , we remark that p(r2) belongs to NP
R(T (x1))(x1) following
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from Theorem 3.1.4 (ii). Thus, by ϕ0-convexity, using Lemma 1.5.3 and (3.24), we

deduce

〈p(r2), y − x1〉 ≤ ϕ0‖p(r2)‖|y − x1|2

≤ ϕ0e
l(x,r2)r2‖p(0)‖[‖y − x‖+ (L‖x‖+K1)eLr2r2]2

≤ ϕ5(x, r)‖ζ‖(‖y − x‖2 + r2
2).(3.26)

To estimate 〈ζ, x1 − x〉, using the definition of y(·), the definition of h(·), Cauchy-

Schwarz inequality, and Lemma 1.5.3, we achieve

〈ζ, x1 − x〉 =

∫ r2

0

〈ζ, y′(s)〉ds

=

∫ r2

0

〈p(s), f(y(s), w(s))〉ds+

∫ r2

0

〈p(0)− p(s), f(y(s), w(s))〉ds

≤
∫ r2

0

h(y(s), p(s))ds+

∫ r2

0

‖p(s)− p(0)‖‖f(y(s), w(s))‖ds

≤ h(x, ζ)r2 +

∫ r2

0

l(x, r2)el(x,r2)r2r2‖p(0)‖(L‖x‖+K1)eLr2ds

= h(x, ζ)r2 + l(x, r2)el(x,r2)r2(L‖x‖+K1)eLr2‖ζ‖r2
2

≤ h(x, ζ)r2 + ϕ6(x, r)‖ζ‖r2
2.(3.27)

Combining our observations (3.25)- (3.27), we get

〈ζ, y − x〉 ≤ h(x, ζ)r2 + (ϕ4(x, r) + ϕ5(x, r) + ϕ6(x, r))‖ζ‖(‖y − x‖2 + r2
2),

which leads to

(3.28) 〈(ζ, α), (y − x, β − T (x))〉 ≤ ϕ7(x, r)‖(ζ, α)‖(‖y − x‖2 + |β − T (x)|2)

for all T (x) ≥ β ≥ T (y). Therefore, it follows from (3.23) and (3.28) that

(3.29) 〈(ζ, α), (y − x, β − T (x))〉 ≤ ϕ7(x, r)‖(ζ, α)‖(‖y − x‖2 + |β − T (x)|2)

for β ≥ T (y) and T (y) < T (x).

By combining (3.21) and (3.29), we are completely done verifying (3.12).

We continue this section by presenting some examples in which assumption (Q1) is
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satisfied for ϕ0 = 0 and for some positive number σ, i.e., there is some positive number

σ such that R(t) is convex for any t ∈ [0, σ]. These examples are based on Proposition

3.1 of Colombo, Marigonda, and Wolenski [CMW06], and Theorem 5.1 of Colombo

and Nguyen [CN13].

Example 3.2.2. Let f : Rn×U → Rn be defined by f(x, u) = Ax+uwhere U is a nonempty

compact convex subset of Rn and A ∈Mn×n(R). If the target K is a closed convex subset in

Rn, then R(t) is convex for any positive t.

Example 3.2.3. Let K = {0} and let f : R2 × [−1, 1]m → R2, m = 1, 2, be defined by

f(x, u) = `(x) + g(x)u where ` : R2 → R2 and g : R2 → M2×m(R) are of class C1,1 (with

Lipschitz constant L) and satisfy

(i) `(o) = o,

(ii) rank[gi(o), D`(o)gi(o)] = 2, for i = 1,m where g = (g1, gm),

(iii) Dg(o) = o.

Then there exists a positive constant τ depending only on L, f(o), and g(o) such that R(t)

is strictly convex for any t ∈ [0, τ ].

Definition 3.2.4. Let F : Rn ⇒ Rn be a set-valued map. We say that F is convex if and

only if for all x, y ∈ Rn and λ ∈ [0, 1], we have

λF (x) + (1− λ)F (y) ⊂ F (λx+ (1− λ)y).

Here, we give a simple example of a convex multifunction F : Rn ⇒ Rn. Define

F (x) := {Ax + g(x)u : u ∈ U} where A is an n× n matrix, g : Rn → (0,∞) is concave,

and U ⊂ Rn satisfies tU ⊂ sU if 0 < t ≤ s. For all x, y ∈ Rn and λ ∈ [0, 1], we have

λF (x) + (1− λ)F (y) = λ(Ax+ g(x)U) + (1− λ)(Ay + g(y)U)

= A(λx+ (1− λ)y) + (λg(x) + (1− λ)g(y))U

⊂ A(λx+ (1− λ)y) + g(λx+ (1− λ)y)U = F (λx+ (1− λ)y).

Thus F is convex.
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The following statement points out that the convexity of the sublevel sets of T for

the control system (3.1) is ensured when F (·) := {f(·, u) : u ∈ U} is convex with f and

U satisfy the assumptions (A1)-(A3).

Proposition 3.2.5. Consider the control system (3.1) with a nonempty closed convex target

K, and f and U satisfy (A1)- (A3). Define F : Rn ⇒ Rn by F (x) = {f(x, u) : u ∈ U} for

all x ∈ Rn. If F is convex, then R(t) is convex for any t > 0.

Proof. We fix T > 0 and consider the control system

(3.30)

 y′(t) ∈ −F (y(t)) a.e. t > 0

y(0) = x.

Set

A(T ) := {y(T ) : y(·) solves (3.30) withx ∈ K}.

We first show that A(T ) is convex. For this, we note that the set of all trajectories of

(3.30) is convex, i.e., if y1(·) and y2(·) are trajectories of (3.30) with y1(0) = x1 ∈ K and

y2(0) = x2 ∈ K then for λ ∈ [0, 1], the curve y(·) := λy1(·) + (1 − λ)y2(·) is a trajectory

of (3.30) with y(0) = λx1 + (1− λ)x2 ∈ K. Indeed, by the convexity of F , for a.e. t > 0

y′(t) = λy′1(t) + (1− λ)y′2(t) ∈ −[λF (y1(t)) + (1− λ)F (y2(t))]

⊂ −F (λy1(t) + (1− λ)y2(t)) = −F (y(t)).

Observe that

(i) A(T ) ⊂ R(T ),

(ii) bdR(T ) ⊂ A(T ).

Since A(T ) is convex, we conclude that R(T ) is convex. Here we use the fact that if

A,B ⊂ Rn, A ⊂ B, bdB ⊂ A and A is convex, then B is convex (see [Ngu16]).

Corollary 3.2.6. Consider the control system (3.1) with a nonempty closed convex target

K, and f and U satisfy (A1)- (A3). Assume that F : Rn ⇒ Rn defined by F (x) = {f(x, u) :

u ∈ U} for all x ∈ Rn is convex. For any σ > 0, if T is continuous in S(σ), then there exists

a continuous function ϕ such that the epigraph of T|S(σ) is ϕ-convex.
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The minimum time function T may not be Lipschitz in the case the epigraph of T

is ϕ-convex. However, as in [CNN14], we can characterize the set of points where the

(locally) Lipschitz continuity of T is not guaranteed. We end this section by extending

the corresponding results for linear and two dimensional affine control systems and

singleton targets given in [CNN14] to more general setting.

Proposition 3.2.7. Assume (A1) - (A3) and (Q1) - (Q2). T is not Lipschitz at x ∈ S(σ) if

and only if there exists o 6= ζ ∈ Rn such that h(x, ζ) = 0 and ζ ∈ NP
R(T (x))(x).

Proof. We note that under our assumptions, according to Theorem 3.2.1, the epigraph

of T |S(σ) is ϕ - convex. In this case, the proximal normal cone and the Fréchet normal

cone to the epigraph of T |S(σ) at (x, T (x)) with x ∈ S(σ) coincide. By Theorem 9.13

in [RW98], T is not Lipschitz at x if and only if ∂∞T (x) 6= {o}. It is equivalent to, by

Theorem 3.1.1,

NP
R(T (x))(x) ∩ {ζ ∈ Rn : h(x, ζ) = 0} 6= {o}.

The proof is complete.

Set

(3.31) S := {x ∈ S(σ) : ∃ζ ∈ Rn, ζ 6= o such that h(x, ζ) = 0}.

We observe that S is the set of all non-Lipschitz points of T in S(σ). In the next

result, we show that S is invariant for optimal trajectories. This extends Proposition

5.1 in [CNN14] to more general setting with a much shorter proof.

Proposition 3.2.8. Assume (A1) - (A3) and (Q1) - (Q2) and let S be defined according to

(3.31). Then S is invariant for optimal trajectories.

Proof. We are going to prove that if x ∈ S and y(·) is an optimal trajectory for x then

y(t) ∈ S for all 0 ≤ t < T (x). Since x ∈ S, by Proposition 3.2.7, there exists o 6= ζ ∈ Rn

such that h(x, ζ) = 0 and ζ ∈ NP
R(T (x))(x). Let p : [0, T (x)] → Rn be the solution of the

system  p′(t) = −Dxf(y(t), w(t))>p(t) a.e. t ∈ [0, T (x)]

p(T (x)) = ζ.
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Then p(t) 6= o for all t ∈ [0, T (x)] and by Theorem 3.1.4 we have p(t) ∈ NP
R(T (y(t)))(y(t))

and h(y(t), p(t)) = h(x, ζ) = 0 for all t ∈ [0, T (x)]. This emplies y(t) ∈ S for all

0 ≤ t < T (x).
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APPENDIX

Let p ∈ (0, 1), let µ be a discrete measure on Sn−1 such that any open hemisphere has

positive measure, and let G be a subgroup in O(n) such that µ({Au}) = µ({u}) for any

unit vector u in Sn−1 and any A ∈ G. We review the proof of Theorem 1.3.2 due to Zhu

[Zhu15b] to show that for the polytope P with o ∈ intP and SP,p = µ, one may even

assume that AP = P for every A ∈ G.

We set suppµ = {u1, . . . , uN} and αi = µ({ui}) > 0 for i = 1, . . . , N , and we denote

by

PG(u1, . . . , uN)

the family of n-dimensional polytopes whose exterior unit normals are among u1, . . . , uN

and are G invariant. In particular, if P ∈ PG(u1, . . . , uN) and A ∈ G, then hP (Aui) =

hP (ui) for i = 1, . . . , N .

In order to find the a polytope P0 ∈ PG(u1, . . . , uN) with SP0,p = µ, following Zhu

[Zhu15b], we consider

ΦP (ξ) =

∫
Sn−1

hpP−ξ dµ =
N∑
i=1

αi(hP (ui)− 〈ξ, ui〉)p

for P ∈ PG(u1, . . . , uN) and ξ ∈ P , and show that the extremal problem

inf

{
sup
ξ∈P

ΦP (ξ) : P ∈ PG(u1, . . . , uN) and V (P ) = 1

}
has a solution that is a dilated copy of P0.

According to Lemma 3.1 and Lemma 3.2 in [Zhu15b], if P ∈ PG(u1, . . . , uN), then

there exists a unique ξ(P ) ∈ intP such that

sup
ξ∈P

ΦP (ξ) = ΦP (ξ(P )).

The uniqueness of ξ(P ) yields that

Aξ(P ) = ξ(P ) for A ∈ G.

65
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We deduce from Lemma 3.3 in [Zhu15b] that ξ(P ) is a continuous function of P .

Let PGN(u1, . . . , uN) be the family of all P ∈ PG(u1, . . . , uN) with N facets. Based

on Lemma 3.4 and Lemma 3.5 in [Zhu15b], slightly modifying the argument for

Lemma 3.6 in [Zhu15b], we deduce the existence of P̃ ∈ PGN(u1, . . . , uN) with V (P̃ ) = 1

such that

ΦP̃ (ξ(P̃ )) = inf
{

ΦP (ξ(P )) : P ∈ PG(u1, . . . , uN) and V (P ) = 1
}
.

The only change in the argument in the argument for Lemma 3.6 in [Zhu15b] is mak-

ing the definition of Pδ G invariant. So supposing that dimF (P̃ , ui0) ≤ n − 2, let

I ⊂ {1, . . . , N} be defined by

{Aui0 : A ∈ G} = {ui : i ∈ I}.

Therefore, for small δ > 0, we set

Pδ = {x ∈ P : 〈x, ui〉 ≤ hP̃ (ui)− δ for i ∈ I}.

The rest of the argument for Lemma 3.6 in [Zhu15b] carries over.

Finally, in the proof of Theorem 4.1 in [Zhu15b], the only necessary change is that

for the numbers δ1, . . . , δN , we assume that for any A ∈ G and i ∈ {1, . . . , N}, if uj =

Aui, then δj = δi.
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[BLYZ15] K. J. Böröczky, E. Lutwak, D. Yang, and G. Zhang. Affine images of

isotropic measures. J. Differential. Geom., 99:407–442, 2015.

[BP07] A. Bressan and B. Piccoli. Introduction to the Mathematical Theory of Con-

trol. Appl. Math. 2, Amer. Inst. Math. Sci., Springfield, MO, 2007.
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