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Abstract 
 

Although it is known that facing a dynamically changing sensory stream, people’s perceptual 

decisions could be influenced not only by individual past stimuli, but also by extracted 

summary statistics of the stimuli, the effects of these long-term influences are 

underexplored. In the present thesis, I explored the impact of past stimulus statistics on two 

distinct types of visual decisions. In the first line of research, in Chapters 2-3, I focused on 

visual explorative decisions via eye-movements and investigated whether hidden statistical 

structures of complex scenes could influence visual exploration.  I found that spatial 

regularities of visual stimuli influenced explorative eye-movement patterns, that this effect 

emerged over time, and it could predict the success in learning the underlying structure of 

the input. These findings suggest a strong relationship between visual exploration and 

learning, during which the two processes continuously influence each other.  I also showed 

how this relationship depended on the explicit vs. implicit nature of the task. In the second 

line of research, in Chapters 4-5, I explored long-term statistical influences in perceptual 

decision making. To this end, I tested the influence of past probabilities of appearance on 

discrimination judgments about ambiguous stimuli. I found that statistics of past stimulus 

strongly influenced perceptual decisions independently of the well-documented short-term 

sequential effects.  This past influence depended on the change-dynamics between long-

term and recent stimulus probabilities, sometimes resulting in locally irrational biases. Taken 

together, the results in these two research domains are consistent with a framework, in 

which past stimulus statistics are perpetually and automatically built into complex internal 

representations, which in turn, depending on the task and type of regularity, can dramatically 

influence visual decisions. 
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Chapter 1 

Past Influences on Perceptual Decisions and Eye-movements 

 

 

Introduction 

Intuitively, vision seems easy: we only need to open our eyes, look around, and we effortlessly see 

the world as it is. However, it has been recognized long ago, that the biological underpinnings of this 

smooth visual experience are very complex and there is a lot of a processing occurring under the 

hood. We don’t see the world exactly as it is, our visual system is susceptible to a large number of 

visual illusions, which in turn can reveal some of the internal mechanisms of visual processing 

(Gregory, 1970). The main reason for this deviation from faithful transmission of incoming sensory 

information is that our smooth visual experience is based on a process that integrates sensory 

information with a complex underlying internal model of the world that we spend years developing. 

The incorporation of this extensive knowledge into our momentary experience is what makes the 

usually effortless recognition of the huge variety of objects, faces, animals etc. possible. 

While the influence of past visual experience on current sensation is acknowledged by most cognitive 

scientists, there is less agreement on the details of this influence. The dominant approach is to treat 

vision as perceptual inference: the visual system is using the ambiguous perceptual information to 

guess the most likely true state of the world (Yuille & Kersten, 2006).  In this context, it is well-

documented that past visual experience can influence this inference at different time-scales: from 

seconds to years, it can affect elaborated decisions as well as fine-tune the details of low-level 

perceptual mechanisms (Sagi, 2011; Thompson & Burr, 2009).  Yet, both the nature of these effects 

on a longer time scale and the seamless integration of effects between different timescales are 

underexplored topics. 
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A second important aspect of human vision is that it is an active process (Hayhoe & Ballard, 2005). 

The amount of visual information that is continuously arriving to our eyes is so huge that we cannot 

fully process it. Therefore, a presumed set of attentional mechanisms is actively used to filter out the 

irrelevant aspects of the incoming stream. The foveated nature of the human eye makes the 

resolution at distinct parts of the visual field very different. As a consequence, where we focus our 

gaze has a strong influence on the amount of information we get from various parts of our 

surroundings. Our seemingly effortless eye-movements are in fact, continuously sampling our 

environment, selecting parts of our surroundings to receive more information from (Friston, Adams, 

Perrinet, & Breakspear, 2012).  Once again, the link between this active process and the emerging 

internal representations is a topic with many open questions. 

In this thesis, I will focus on the above two issues. The central argument of the thesis is that we build 

our visual experience continuously into our internal representations, which in turn influence 

subsequent momentary perceptual decisions. This influence has many manifestations, it shows up 

with or without a task, and it affects many aspects of visual processing, from visual discrimination to 

eye-movements. In the first part of this introductory chapter, I will review the most important 

findings of how past events influence vision, starting from short- and moving on to longer time-scales 

in perceptual decision making. In the second half, I will move on to reviewing how experience 

influences visual search and eye-movements. I will argue that a full treatment of visual exploration 

requires the integration of bottom-up and top-down information in a framework, which considers 

natural vision as an active sequential decision-making process. 

Perceptual Decision-Making 

Adaptation 

Anyone familiar with the situation of entering a dark room from outdoors has experienced that past 

illuminations levels influence currently perceived brightness. Similarly, if after looking at a waterfall 

for a couple of minutes we look away, we see the world going upwards (Barlow & Hill, 1963). After 

looking at a masculine face, a neutral face seems to be more feminine (C. Zhao, Seriès, Hancock, & 
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Bednar, 2011). After staring at a left tilted grating, an intermediate grating will be seen as tilted more 

to the right (Wolfe, 1984). What is common to all these phenomena is, that recent visual experience 

can bias our perceptual system to see the opposite in the current input (right after left, female after 

male, up after down, dark after bright).  These effects have all been loosely grouped under the label 

of adaptation, demonstrating the subjective nature of human visual experience in various contexts. 

Adaptation has also been described in other species (Vinken, Vogels, & Beeck, 2017), and it has been 

shown to have an influence at many different time-scales from milliseconds to days. While the 

dominant explanation for adaptation used to be neural fatigue, the various manifestations of the 

effect suggest that the term covers hugely different neural mechanisms (Thompson & Burr, 2009). 

One reason why similar effects can be described with such a diverse set of stimuli could be that 

encoding small differences in a large range is a fundamental task of a flexible visual system in all 

relevant dimensions.  Adaptation is typically classified as a negative recency effect, since it describes 

a phenomenon of biasing the coding of the input to the direction opposite from the viewer’s recent 

experience.  

Priming 

Another basic type of past influences on perception has been collectively described as priming 

(Tulving & Schacter, 1990). Unlike adaptation that describes a negative influence by recent past, 

priming refers to a positive effect, a facilitation of identifying stimuli that occurred recently.  Like 

adaptation, priming is also a very general term used to describe very different phenomena (eg. social 

vs. conceptual priming).  The findings relevant for the present thesis have been collectively described 

as perceptual priming (Treisman, 1992). The classic definition of perceptual priming is an automatic 

enhancement in processing features or locations that were recently relevant. Manifested by, for 

example,  enhanced feature based visual search (Maljkovic & Nakayama, 1994, 1996). For the sake of 

completeness, it is worth noting that while priming usually refers to a facilitating effect, negative 

priming has also been reported. This refers to the phenomenon, in which ignoring objects can make 

subsequent processing of the same objects slower (Tipper, 1985) . 

C
E

U
eT

D
C

ol
le

ct
io

n



13 
 

Serial Dependence 

While priming has been used to describe faster processing of repeated stimuli or features for a long 

time, in recent years, there has been a surge of interest in a related finding, showing that not only is 

the processing speed increased, but the perceived identity of the stimulus itself became biased 

toward the immediate past.  While adaptation is a prevalent mechanism enabling us to see changes 

in the sensory input efficiently, a complementary goal is to detect persistent items reliably. This can 

be achieved by relying on the fact that the world is more or less stable. However, it is not trivial to 

capitalize on this fact since our eyes are constantly moving (a few times every second), changing the 

input to any part of the visual cortex with each saccade.  A phenomenon that could underlie the 

stable perception of the constantly varying visual input has been recently described as serial 

dependence and was demonstrated with different stimuli (gratings, faces) (Fischer & Whitney, 2014; 

Liberman, Fischer, & Whitney, 2014). The main finding of this work is that perceptual estimates of 

the orientation of a grating are systematically biased toward the orientation of the immediately 

preceding trial (and to a weaker extent to the trials occurring before).  

Serial dependence has originally been described as a low-level perceptual phenomenon, however 

this claim has been challenged by a recent paper (Fritsche, Mostert, & de Lange, 2017). Fritsche and 

colleagues used a slightly modified version of the original paradigm (Fischer & Whitney, 2014) with a 

larger sample size, and found that previous stimuli had a negative influence (consistent with classic 

literature on the tilt after-effect) and a positive serial dependence that was the consequence of past 

decisions (Fritsche et al., 2017). The latter finding is line with another recent report (Akaishi, Umeda, 

Nagase, & Sakai, 2014), which found that perceived motion direction of random dots was positively 

influenced by recent  decisions. Decisions on easily distinguishable stimuli had a stronger influence 

on subsequent trials which was interpreted as a consequence of stimulus-independent internal 

states. Yet another recent paper (Bronfman et al., 2015) used the sequential sampling (Drift-

diffusion) framework, and investigated the mechanism by which choices could influence subsequent 

evidence accumulation both with low-level perceptual (luminance) and high-level (numerical 
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evidence) accumulation paradigms.  The main conclusion of this work was that choices not only 

affected subsequent decision criteria, but also the process of evidence accumulation itself by 

modulating the gain of the process. 

The paradigm of Fischer & Whitney decoupled motor responses from the actual choice by using a 

response bar, which started from a random orientation at each trial. In many experiments, however, 

motor responses and choices are in fact connected, which posits the question: What is their 

respective influence of these two on serial dependencies?  When both the effect of previous choices 

and motor responses was measured in a random dot motion paradigm, it was found that the motor 

responses only had a small -and not significant- influence on subsequent decisions, which were in 

turn strongly biased by past choices (Braun, Urai, & Donner, 2018). This finding is consistent with 

another recent paper, showing that most of the variability in perceptual decision making can be 

accounted for by noise in the inference mechanisms, while motor/selection noise accounts for only a 

small portion of response variance (Drugowitsch, Wyart, Devauchelle, & Koechlin, 2016).  

One specific stimulus domain where various recent past influences have been described is face 

perception. Initially only positive sequential effects had been found with face stimuli (Liberman et al., 

2014).  However, a more recent paper (Taubert, Alais, & Burr, 2016) reported that whether the effect 

of recent past in face perception was positive or negative depended on the facial attribute in 

question. Exactly the same stimulus could elicit a positive or a negative aftereffect depending on 

whether the task was to judge a stable (gender) or changing (mood) feature, with stable attributes 

eliciting positive, and changing attributes invoking negative aftereffects (Taubert et al., 2016). A 

related study showed that the same face stimuli could elicit an adaptation or a priming effect 

depending on whether they were followed by an ambiguous (adaptation), or by an unambiguous 

stimulus (priming) (Walther, Schweinberger, Kaiser, & Kovács, 2013). 

While the debate whether serial dependence is a consequence of past stimuli or decisions is ongoing, 

it is also unclear whether these past effects influence the momentary percept or the decision only. 
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Although in principle, past decisions might influence decisions only, it has been suggested that serial 

dependence directly affects perception (Cicchini, Mikellidou, & Burr, 2017) in line with recent fMRI 

results showing serial influences in V1 (St John-Saaltink, Kok, Lau, & de Lange, 2016).   

Hot Hand vs. Gambler’s fallacy 

While positive/negative serial effects have only recently became the focus of interest in 

psychophysics, in the decision-making literature similar effects have been known for a long time 

(Tversky & Kahneman, 1971) . The hot-hand illusion during decision-making refers to the expectation 

that a streak of events will continue (framed as series of successes originally), and gambler’s fallacy 

refers to the alternative expectation that an event having one of two possible outcomes will be 

followed next time by the alternative outcome.  These tendencies to expect events to repeat or to 

alternate more than what would be expected from a true Bernoulli process have been described as 

repetition/alternation biases, respectively. Whether one or the other bias is found depends on what 

people assume about the generating process of the sequence (B. D. Burns & Corpus, 2004). For 

example, having to judge how random a sequence of events is, people have completely different 

expectations depending on whether the sequence is generated by a human (e. g. basketball throws) 

or by a random process (coin flips).  Using event sequences with the exact same statistical properties, 

a Gambler’s fallacy effect was found in human behavior when the sequence was supposedly 

generated by a random process, and a Hot Hand effect appeared when it was supposed to be the 

outcome of human actions (Ayton & Fischer, 2004).   

Pattern Effects 

In forming expectations on how a sequence of events will be continued, people clearly do not 

assume that events are independent or Markov since, among other factors, the pattern of the last 

few trials strongly influences perceptual decisions. For example, people can be faster in responding 

to either repetitions or alternations of recent events, if the event fits into the pattern of the recent 

past  (Cho et al., 2002). Similarly, both repetitions and alternation responses become slower, when 

the pattern of recent events is violated.  While this behavior has been described as irrational or even 
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superstitious, in fact, it can be rational in the real world, where most events are not independent of 

the past (A. J. Yu & Cohen, 2008). A related effect was found in relation to the perceived illusory 

motion direction (Maloney, Dal Martello, Sahm, & Spillmann, 2005). Here, participants had to 

respond to the motion direction of sequences of unambiguous events, followed by an ambiguous 

event. Maloney and colleagues found that people judged the movement of the ambiguous event as a 

continuation of the recent past.  While in this experiment, the effect of past stimuli and decision 

were inseparable, Maloney and colleagues conducted a follow-up experiment, where participants did 

not have to respond to the inducers, only the ambiguous events.  They found that even without 

having had to respond to past stimuli, the stimuli itself elicited a pattern effect, albeit a weaker one - 

with the effect disappearing for repetition sequences and preserved for alternating sequences 

(Maloney et al., 2005). The finding that repetition sequence effects rely on past decisions, but an 

alternating sequence of stimuli is sufficient to elicit a negative effect, is consistent with the proposal 

of past stimuli having negative and past decisions positive recency effects (Fritsche et al., 2017). A 

further interesting finding from this paper is the temporal dependency of the positive recency effect, 

which becomes stronger with a longer stimulus-response interval (Fritsche et al., 2017), further 

confirming that positive recency arises from high-level decision processes and not from the stimulus 

itself (which is the same regardless of stimulus- response interval).  

Predictive Adaptation 

While the last few trials or seconds before the stimulus already have a large and somewhat 

controversial influence on perceptual decision making, effects on such a short time-scale are not the 

whole story of contextual interactions. Events from many seconds or several minutes before could 

also influence a current perceptual decision. Since the influence of the last few trials is already very 

complex, one can expect that it could be even more challenging to draw conclusions about influences 

on longer time-scales. An interesting attempt was made a few years ago to look at long term 

influences on adaptation, using the phenomena of tilt aftereffect and binocular rivalry (Chopin & 

Mamassian, 2012). The results of this study showed that the strength of the well-known tilt after-
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effect depended on long-term statistics, as if the perceptual system expected the statistics of recent 

experience to resemble past ones. The hypothesis that adaptation can be explained based on 

differences between recent probabilities and long-term prior probabilistic expectations is intriguing 

for many researchers treating perception as a Bayesian inference. However, the finding itself has 

proven to be controversial as the short-term negative influence combined with long-term random 

fluctuations of stimulus probability were sufficient to explain the obtained pattern of results (Chopin 

& Mamassian, 2013; Maus, Chaney, Liberman, & Whitney, 2013). It remains to be seen whether the 

perceptual system uses a certain period of past experience as a prior moving window based on which 

the statistics of sensory input is evaluated. 

Probability matching and base-rate effects  

Unlike in perception, the influence of long-term probabilities in the decision-making literature has 

been investigated for a long time.  It is known that while people are sensitive to probabilities of 

events, they usually fail to adopt a strategy that maximizes potential pay-offs. Instead of a 

maximization strategy (picking the most probable outcome all the time), a common finding is 

probability matching: if the probability of a certain event A is e. g. 70%, people will choose A 70% of 

the time. The extent to which probability matching or maximization manifests itself in the 

participants’ response can be strongly influenced by the framing of the problem. Faced with the 

same probabilistic outcomes in a gambling setup people are closer to maximizing, while facing a 

decision-making problem, a probability matching dominates their choices (Goodnow, 1955).  

In perceptual decisions making, making one stimulus more frequent (also called as elevating its base-

rate) in a binary discrimination task is a simple way to test the incorporation of probabilistic 

information. This approach was used in a categorization experiment, which found that people indeed 

incorporated this information into their judgments, with a bias to choose the more frequent option 

more often under perceptual uncertainty  (Bohil & Wismer, 2014). While the authors did not 

interpret their results that way, the findings seem to be consistent with a probability matching 

strategy. Using a more complex spatial localization task that required integration of auditory and 
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visual information, Wozny and colleagues found that the majority of people exhibit probability 

matching when trying to infer the cause of the observed sensory input (Wozny, Beierholm, & Shams, 

2010). 

While probability matching could be viewed as a fallacy, as it fails to maximize immediate rewards, in 

some cases it is rational if the potential learning benefits are taken into account. Faced with a binary 

choice problem, choosing Option 1 all the time does not provide any information about Option 2, so 

if the potential reward probabilities change over time or the decision maker is uncertain about the 

pay-off structure, choosing the less good option can be a rational strategy. Therefore, considering the 

necessity to learn, probability matching can be good strategy that balances the trade-off between 

exploitation and exploration: it can reap sufficient rewards but is still flexible enough to allow further 

learning (K. J. Burns & Demaree, 2009; Gaissmaier & Schooler, 2008). 

A further indication that probability matching should not be taken as an evidence of human 

irrationality comes from contrasting it with explicit reasoning studies. In probability estimation tasks, 

since the classic work of Tversky & Kahneman, it is known that people are remarkably insensitive to 

base-rate information (Kahneman & Tversky, 1972). Interestingly, presenting more information in an 

explicit probability estimation problem can facilitate ignorance of base-rates (Bar-Hillel, 1980). 

Therefore, considering the complete failure to use probabilities in reasoning, the incorporation of 

stimulus probabilities in perceptual decision-making with a probability matching strategy can be 

considered a remarkable feat and not a fallacy.  

Although it seems established that the brain stores and uses probabilistic information, even 

enthusiastic supporters of the “Bayesian Brain” concept do not claim that the brain is performing 

exact Bayesian inference as it is known to become intractable as the number of variables gets large. 

An influential potential solution posits that the brain uses sampling to represent probability 

distributions. Sampling is mentioned here since probability matching is exactly the expected outcome 

of sampling from a probability distribution (Sanborn & Chater, 2016). Therefore, further investigating 
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the mechanisms of probability matching could provide insights to the fundamental problems of 

representing and using probabilistic information in the brain. 

Perceptual and Statistical Learning 

While the influence of long-term probabilities on visual perception became a focus of interest only 

recently (Chopin & Mamassian, 2012), other long-term influences on perception have been 

investigated for a long time under the label of learning. The field of perceptual learning is 

investigating specific improvements in a low-level perceptual task over several days of practice. 

Specific means that for example, practicing orientation discrimination at a given orientation at some 

retinal location, can only increase performance around that particular angle and location (Sagi, 

2011). Interestingly, slight changes in the training regime can change that, as with a double training 

paradigm-with interleaved trials with a different task- the learning proved to be generalizable, 

casting some doubt on the prevalent low-level interpretations of perceptual learning (Xiao et al., 

2008). 

A different literature with potential long-term influences on perception arising from spatial or 

temporal regularities in the stimulus stream has been described as visual statistical learning (Fiser & 

Aslin, 2001). While statistical learning has been described as an automatic and implicit process, it 

does require attention to the stimuli to manifest (Toro, Sinnett, & Soto-Faraco, 2005; Turk-Browne, 

Jungé, & Scholl, 2005). Initially, it has not been clear whether the implicit knowledge acquired via 

familiarization and usually measured at subsequent familiarity test could influence perception.  

However, a recent study showed in a temporal statistical learning paradigm that people are faster in 

processing objects that have been predictable (Barakat, Seitz, & Shams, 2013). Interestingly, not only 

the processing speed of the participants but even their perceptual sensitivity (d’) was lower for 

elements which had been predictable due to the previous statistical learning training. Notably, the 

effect persisted even when the element was not predictable during test, only in the previous learning 

block, suggesting a general increase in sensitivity to predictable items as a consequence of statistical 

learning (Barakat et al., 2013). The fMRI literature also suggests that even task irrelevant-implicit 
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statistical learning can influence the neural responses to predictable items (Turk-Browne, Scholl, 

Johnson, & Chun, 2010). However, unlike in Barakat et al.’s (2013) behavioral study, the effects of 

predictability have only been investigated for the items that were actually more predictable in the 

fMRI study. Returning to the behavioral results of Barakat et al. (2013), it is remarkable that simply 

due to a stimulus being more predictable by the statistical structure of the input during learning, it 

becomes easier to detect later, even in test situations when it is not predicted by the preceding 

stimuli anymore. This posits a long-lasting effect on perceptual sensitivity by statistical learning. 

While the reasons for this phenomenon remain to be fully explained, the results make the theoretical 

line that separates statistical from perceptual learning fuzzy (Fiser, 2009; Gold & Stocker, 2017). 

A sensitive measure of statistical learning uses reaction times; accelerated responses to predictable 

events can show learning even when the statistical information is not recallable on a subsequent 

familiarity test (Kim, Seitz, Feenstra, & Shams, 2009). An alternative paradigm uses semi-predictable 

event sequences, with interleaved predictable and random events (Howard Jr & Howard, 1997; 

Nemeth, Janacsek, & Fiser, 2013). In this paradigm, a speeding up in responses to predictable parts of 

the sequence is the most common finding, without explicit awareness of any regularity in the 

sequence.  In a related study, the interaction between long-term stimulus predictability and recent 

patterns of input was measured (Wilder, Jones, Ahmed, Curran, & Mozer, 2013). The short-term 

influence of repetitions/alternations was measured similarly to the method used in Yu & Cohen 

(2008). However, unlike in previous studies, the long-term frequency of repetitions was also 

manipulated. Wilder et al.’s main finding was that effects on decision making due to long- and short-

term patterns interacted in an additive manner, and thereby the relative influence of short-term 

patterns was further enhanced by long-term influences, suggesting that people can simultaneously 

track environmental regularities on multiple time-scales (Wilder et al., 2013). 
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Long-term influences on neural responses  

There is a vast neuroscience literature on short-term influences of past stimuli, and it has been found 

that short-term effects could depend on long-term learning and expectations. For example, fMRI 

signals show that the prevalent effect of repetition suppression depends on the long-term probability 

of stimulus repetitions (C. Summerfield, Trittschuh, Monti, Mesulam, & Egner, 2008). In this 

experiment faces were used as stimuli, and repetition suppression was stronger when a face image 

was expected and weaker when its appearance was surprising given the long-term experience. While 

this result has since been replicated with faces (Kovács, Iffland, Vidnyánszky, & Greenlee, 2012), 

repetition-probability-dependent repetition suppression effects in fMRI signals were not found for 

common objects (Kovacs, Kaiser, Kaliukhovich, Vidnyanszky, & Vogels, 2013) nor with monkey single-

cell recordings (Kaliukhovich & Vogels, 2010). A possible resolution of this discrepancy was suggested 

by a study using a paradigm based on a regular alphabet and a novel font: the dependence of 

repetition suppression on long-term repetition probabilities emerged only for stimuli with which 

people had a vast amount of experience (Grotheer & Kovacs, 2014).  

Although the effect of long-term stimulus probability on single-cell responses at different areas is 

debated (Bell, Summerfield, Morin, Malecek, & Ungerleider, 2017; Vinken & Vogels, 2017), the 

emerging picture seems to suggest that while V1 responses  (in an oddball paradigm with rats) are 

only influenced by short-term adaptation, higher-level visual areas also show specific increase in 

neural response for rare stimuli (Vinken et al., 2017). Findings from the monkey IT cortex suggest 

that neurons in higher visual areas represent stimulus probability with reduced overall response but 

with enhanced information content for decoding highly probable stimuli (Bell, Summerfield, Morin, 

Malecek, & Ungerleider, 2016). Using an MVPA method, a human fMRI study showed that expected 

stimuli elicit a smaller overall BOLD response but a sharper stimulus representation already in the 

primary visual cortex  (Kok, Jehee, & de Lange, 2012). In sum, there exist ample evidence suggesting 

that past expectations influence the processing of visual stimuli in the brain, but a stark discrepancy 

emerged between results based on animal recordings and human fMRI data. While the human 
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literature reports influence of long-term expectations both at high level (C. Summerfield et al., 2008) 

and in early visual areas (Kok et al., 2012), the animal literature suggest that those influences appear 

only in higher areas (Vinken et al., 2017), or they can be completely absent (Kaliukhovich & Vogels, 

2010). 

Value Based Decision Making 

While the literature linking perceptual decision making and long-term probability effects is scarce 

(but see Bohil & Wismer, 2014; Chopin & Mamassian, 2012), there is a vast literature on learning 

effects in value-based decisions making (Behrens, Woolrich, Walton, & Rushworth, 2007; Schrater & 

Acuna, 2010; Steyvers, Lee, & Wagenmakers, 2009). Although there are obvious differences between 

value based- and perceptual decisions, investigating the two phenomena in the same framework 

could be fruitful, as there are remarkable similarities in the underlying mechanisms. In fact, an 

analogy between sampling sensory information and sampling from memory has been recently 

proposed (Shadlen & Shohamy, 2016). The idea of treating value-based and probability-related 

effects in the same framework is promoted by evidence that prior probability and economic value 

would bias perceptual decisions in a similar manner (Mulder, Wagenmakers, Ratcliff, Boekel, & 

Forstmann, 2012). Using a modeling approach based on drift-diffusion, several studies reported that 

both economic value and prior probability changed the starting point (bias) of the evidence 

accumulation process without affecting the speed of evidence accumulation itself (Mulder et al., 

2012; C. Summerfield & Koechlin, 2010).  This finding is in contrast with the short-term influences 

described above, which can modify the speed of evidence accumulation (Bronfman et al., 2015). 

Results from long-term effects in value-based decision-making show that people are not only capable 

of adapting to changes of the pay-off probabilities, but they can also learn the probability of changes, 

in other words, the volatility of the environment (Behrens et al., 2007). This can be achieved by 

changing the relative weighting of past vs. present information through adjusting the learning-rate: 

stable environments require a lower, while volatile environments a higher learning rate. Using a 

hierarchical modeling approach to a numerical prediction task, people were shown to increase their 
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learning rate when the prediction error was large and decrease it when the prediction error was 

small (Nassar, Wilson, Heasly, & Gold, 2010).  A possible explanation of this finding is that a large 

prediction error enables detecting a change-point in the environmental probabilities, and after the 

quick adjustment occurs due to enhanced learning, the learning rate can decay quickly to a low value 

to reflect that the conditions became stable again.  

Volatility and perceptual decision making 

In the past few years, there were several attempts to link the influence of environmental volatility to 

the problem of perceptual decision making (Glaze, Kable, & Gold, 2015; Norton, Fleming, Daw, & 

Landy, 2017; C. Summerfield, Behrens, & Koechlin, 2011). In this complex problem, the decision 

maker faces uncertainty at two distinct levels: first, there is uncertainty in the stimulus identity itself 

at any given moment; second, there is uncertainty in the stimulus probabilities or category 

boundaries, which can change over time. Studies using a random dot motion paradigm with within 

trial direction changes and a normative approach reported that when the conditions are stable, 

people can integrate evidence optimally (Glaze et al., 2015).  However, human behavior can be 

approximated better by a leaky accumulator in a volatile environment suggesting that people can 

take into account probability of changes in the environment as they accumulate evidence (Glaze et 

al., 2015). While traditional psychophysical approaches use Signal Detection Theory and 

psychometric curves to assess decision criteria from participants’ responses, human adults can also 

be explicitly queried about their decision criteria. This latter approach might obtain somewhat 

different thresholds from what would be inferred directly from the responses derived from SDT, 

Furthermore, different measures suggest different learning rates: decision criteria based on explicit 

queries were updated faster than criteria calculated from the actual responses in a categorization 

task (Norton et al., 2017).  However, explicitly query allows the trial-by-trial assessment of decision 

criteria, which would not be possible with the more conventional method. In a recent study, such an 

explicit querying approach was compared to traditional psychophysics measures in an orientation 

discrimination task embedded in both static and volatile environments (Norton et al., 2017).  As 
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expected, participants were faster to readjust when the conditions were dynamic. However, the 

results also showed that even when conditions were stable, people still adjusted their decision 

criteria continuously - and sub-optimally. Such a suboptimality can be a consequence of a rational 

decision making process, where the decision-maker is uncertain about the structure of the task 

(Schrater & Acuna, 2010). A very recent paper tried to disentangle individual differences in decision 

making in a volatile environment (Glaze, Filipowicz, Kable, Balasubramanian, & Gold, 2018). In this 

paradigm -as in a previous study of (Glaze et al., 2015) - people had to detect change points in the 

binary underlying source that places stimuli  at one of two positions corrupted by positional noise, 

and found that the variability of human decision making could be well explained by a bias-variance 

trade-off: some people  “overfitted” the noise in the data by adapting to random fluctuations in the 

underlying process, while others were insensitive to changes that could be informative about the 

underlying generative process. 

A related but somewhat less investigated field is the explicit estimation of environmental 

probabilities. In a recent experiment, participants had to estimate the proportion of differently 

colored items in a box, based on individually presented samples. The main finding was that while 

people made small adjustments to their probability estimates continuously (even when conditions 

were stable, as in: Norton et al., 2017), sometimes, they completely reset their estimate and 

discarded all information from the past.  This  behavior cannot be explained by the conventional 

high-learning rate models (Gallistel, Krishan, Liu, Miller, & Latham, 2014).  

Perception vs Decisions 

The studies above described different ways of how long-term past might influence perceptual 

decision-making. Many of these proposals used a shift in decision criteria or bias (as the starting 

point in drift diffusion) to incorporate these long-term expectations. This approach stems from Signal 

Detection Theory, separating perceptual decision making into a perceptual and decision phase 

(Stanislaw & Todorov, 1999). While this proved to be a fruitful approach, there are also suggestions 

that sensitivity and bias are in fact intimately related (Wei & Stocker, 2017). According to this 
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proposal, separating expectation effects based on whether they affect perceptual or post-perceptual 

decision processes might be impossible in many cases. Furthermore, there is ample evidence from 

neuroscience that top-down expectations influence early visual processing (Kok, Bains, van Mourik, 

Norris, & de Lange, 2016; for a review see: van Kerkoerle, Self, & Roelfsema, 2017). In contrast, an 

alternative proposal based on a behavioral approach  has suggested recently that expectations solely 

affect post-perceptual cognitive processes, and other top-down effects on perception can be 

explained away by attention or some other factors (Firestone & Scholl, 2014). While it is true that the 

separation between expectations and attention based top-down effect can be non-trivial, it has been 

shown that they affect neural representation of visual stimuli differently (J. Jiang, Summerfield, & 

Egner, 2013; Kok et al., 2012).  

  

Optimality of Perceptual Decisions 

A discussion in the literature relevant to this thesis deals with the question of whether people are 

Bayes optimal decision makers in the sense that they can combine prior expectations with uncertain 

sensory input in a statistically optimal fashion (Kersten, Mamassian, & Yuille, 2004). Unlike results in 

“cognitive” or economic decision making tasks, where people seem to be subject to a large number 

of biases and fallacies (Tversky & Kahneman, 1974), a first glance at the sensory-motor literature 

suggests that people are, indeed, optimal in perceptual decision making (Ernst & Banks, 2002; 

Körding & Wolpert, 2004). A more direct comparison of economic and motor decision-making 

suggests that the same pay-off odds can evoke different probability distortions depending on 

whether they are framed in a classic economic- or in a motor decision problem (Wu, Delgado, & 

Maloney, 2009). However, the evidence that people are optimal in integrating priors and likelihoods 

during sensory-motor decisions is mostly limited to stimuli with simple Gaussian probability 

distributions, while people have severe difficulties to learn and use more complicated prior 

distributions for guiding their perceptual decisions (Acerbi, Vijayakumar, & Wolpert, 2014). Thus, it is 

not clear how optimally humans can cope with more complicated prior distributions if at all. An 
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alternative reason why people were reported to behave sub-optimally in a perceptual experiment 

could be the artificial nature of the applied experimental paradigms, in which stimuli deviated greatly 

from what would be expected from the statistics of the natural environment.  

Summary on past influences in perceptual decision making 

To summarize findings from the various paradigms described above, previous trials influence 

perceptual decisions in different ways: past stimuli often elicit a negative, decisions a positive 

influence, with stimulus type, presentation time, and inter-trial interval as potentially crucial factors. 

This influence of the recent past is suboptimal if trials are independent, however it could be crucial in 

adjusting to changes when the environment is temporally correlated but volatile. Looking at the 

influence of the past at longer time-scales, most models assume a gradual discarding of the past that 

is implemented by the learning rate of e. g. reinforcement learning models, but sudden discarding of 

all past information has also been proposed (Gallistel et al., 2014). On the other hand, in a different 

framework, the long-term experience is not discarded, but instead used as a prior, based on which 

recent information is evaluated (Chopin & Mamassian, 2012). The exact relation between these 

models, and the extent to which differences in the experimental paradigms (eg.: stimulus timing, 

response method, feedback) could explain differences in how people handle past information in 

perceptual decisions making is unclear at present time.  

Despite the fact that most of cognitive psychology and psychophysics uses the assumption of 

independent experimental trials, the picture emerging from the literature is that sequential 

perceptual decision-making trials are anything but independent. There seems to be a complex 

looping interaction, where incoming stimuli and our momentary decisions about them - via internal 

representations - will influence the future perception of similar stimuli. These effects are relatively 

well explored in shorter time-scales – but not without controversies.  In contrast, there are only a 

few established findings from longer time-scales mostly from the last few years, while the exact 

relationship between short- and long-term effects in perceptual decision making is largely 

unresolved. 
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Visual Exploration 

Moving away from perceptual decision making, the field of visual attention and visual search has a 

number of relevant findings about the influence of past information on visual processing from 

various domains and experimental paradigms. Below, I will start by reviewing findings from simple 

visual search and move on to more complex real-life scenarios, continue with models of visual 

search, and finish with integrating the results on the active nature of vision into my survey. 

Visual Search 

Before the use of eye-tracking technology became prevalent, reaction times from searching for a 

target in an array of distractor stimuli could be used as indicators of visual search. Increasing the 

number of distractors usually makes the task harder, manifesting in longer search times. The extent 

to which search times change as a function of the number of distractors is called the search slope 

and is a dominant measure for studying visual search (Wolfe, 1998). Based on these search slopes 

measures, the provocative claim has been put forward that visual search has no memory at all 

(Horowitz & Wolfe, 1998). To support this surprising conclusion, the authors had analyzed visual 

search in a standard unchanging and dynamic search arrays. They found that search slopes were 

identical in dynamic and stable arrays, despite the past displays having no predictive power in 

dynamic arrays. This has been interpreted as support for the memory-less nature of search.  

However, a more careful look at the proportion of correct answers instead of search times challenges 

this claim (M. Peterson, Kramer, Wang, Irwin, & McCarley, 2001). Furthermore, moving away from 

search slopes and using eye-tracking data by analyzing the distribution of revisited location during 

exploration of similar search arrays suggests that visual search does have memory (M. Peterson et 

al., 2001). 

 

C
E

U
eT

D
C

ol
le

ct
io

n



28 
 

The effect of past probabilities can be easily investigated in visual search by making the target more 

frequent in an area of the screen. There is evidence from visual search times that people manifest 

probability matching when faced with biased target location probabilities (van der Heijden, 1989), 

suggesting that visual search is sensitive to environmental probabilities, but does not utilize this 

information in the naively optimal manner, which is line with several findings from perceptual 

decision making results described in the first part of this chapter. However, the influence on long-

term probabilities on visual search does not always manifest itself.  For example, although people are 

faster to react and make more saccades to the more frequent locations, when short-term 

probabilities are controlled for, these effects can be fully explained by repetition priming (Walthew & 

Gilchrist, 2006). Importantly, only slight modifications in the paradigm of Walthew & Gilchrist 

completely changed these results, and demonstrated that long-term target probabilities do attract 

visual search, even when short-term influences are controlled for (J. L. Jones & Kaschak, 2012).  Yet 

another study found that long-term probabilities affected visual search direction only when the 

target location probabilistically depended on the direction of saccades.  Without this gaze-contingent 

manipulation, a high probability of a region containing the target was insufficient to bias visual 

search (Paeye, Schütz, & Gegenfurtner, 2016). 

 

Contextual Cueing 

Beyond simple target probability effects, a paradigm that allows the investigation of more complex 

statistical influences on visual search is called contextual cueing.  In a typical contextual cueing 

paradigm, participants are responding to a target (eg: left/right oriented T) in an array of - seemingly 

randomly arranged- distractors. If the arrangement of some of the distractor arrays is repeating over 

time, people become faster in responding to targets within the repeating displays. This effect 

emerges even when participants are unable to tell apart repeating patterns from random ones, 

suggesting that visual search is a sensitive measure of implicit statistical knowledge about complex 

stimuli (Chun & Jiang, 1998). While the original finding was interpreted as faster deployment of visual 
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attention to targets predicted by the context, this explanation of the underlying mechanism has been 

challenged, as other factors such as response selection were indicated to play an important role in 

contextual cueing (Kunar, Flusberg, Horowitz, & Wolfe, 2007).  

More recently, a study using a similar paradigm of manipulating the probability of target occurrence 

at different areas of the screen found that participants responded faster to targets at the areas with 

high target appearance probability (Y. V Jiang, Won, & Swallow, 2014). This effect of spatial 

probability cueing on search times without explicit awareness also influenced a second measure of 

visual search, the location of the first saccade. This bias was relatively persistent as participants 

searched the initially rich quadrant above chance, even when the actual distribution of targets later 

during the experiment became balanced. The effect emerged both implicitly and explicitly and it 

proved to be persistent by surviving an explicit instruction about balanced test probabilities. 

Contextual cuing does not only work by facilitating search at a given spatial location but also by a 

spatial co-variation at different positions (Chun & Jiang, 1999). In this paradigm a large number of 

shapes and distractors were used, and the orientation of distractors was predictive of the target 

location. This predictive information facilitated visual search times, as compared to a random 

mapping, despite the location of search targets and distractors varying from trial to trial (Chun & 

Jiang, 1999). This result further suggests that visual search is sensitive to complex statistical 

relationships. 

 

Visual Search, Memory, Reading 

The next level of generalization requires switching from well-controlled but artificial search arrays, to 

studying visual search by using images of real-world scenes. A classic finding using such tasks is that 

the effect of bottom-up saliency is weaker, and top-down factors can dominate as people have 

strong expectations about what kind of objects to expect at different locations in real scenes (Loftus 

& Mackworth, 1978). In real world settings, different memory components influence search patterns 
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differently.  First, observers have semantic knowledge about typical locations of real world objects, 

which has an enormous influence on where they search for them (Võ & Wolfe, 2012). Second, 

observers might have episodic memories about the locations where they have seen a given target 

during an experiment. Interestingly, the influence of episodic memories on visual search in real world 

scenes can be weak: when observers searched for different objects in the same scene repeatedly, 

there was only a small advantage in search times (Võ & Wolfe, 2013). Not surprisingly, during 

repeated search for the same objects in the same scenes, the benefit of episodic experience was very 

strong (Võ & Wolfe, 2013), as saccades could go directly to the target if it was already encountered at 

a given location (J. J. Summerfield, Lepsien, Gitelman, Mesulam, & Nobre, 2006). 

While most research would agree that fixations and looking times are sensitive measures of memory-

related processes during search in real-world scenes, there seems to be a debate about the role of 

implicit and explicit memories in influencing eye-movements. A common finding is that eye-

movements are influenced by knowledge that is not available to conscious awareness/explicit report 

(a review: Hannula, 2010). However, other studies found that memory effects on eye-movements do 

not reflect implicit processes: looking times at manipulated parts of recently presented scenes  

(Smith & Squire, 2008) or even at previously studied images during old/new discrimination (Urgolites, 

Smith, & Squire, 2018) display learning effects only if those memories are also amenable for explicit 

reports.  Similar conclusions were drawn from experiment with children (Koski, Olson, & Newcombe, 

2013).  

The temporal order of earlier presentation of stimuli also influences the order of fixations when the 

same stimuli are presented simultaneously at different spatial locations (Ryan & Villate, 2009).  This 

suggests that eye-movements can be a sensitive measure of serial episodic experience. A specific 

domain that allows well-controlled investigations of eye-movements is reading. Reading studies have 

shown that eye-movements are not only sensitive to word frequency (Rayner & Raney, 1996),  but 

also to transitional probabilities between words (McDonald & Shillcock, 2003), suggesting that eye-

movements are a good potential measure of acquired statistical properties of the environment. 
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Visual attention, learning and prediction 

The above-mentioned memory effects on visual exploration can explain only a small fraction of the 

variance in eye-movements looking at either artificial or natural scenes, since there are many other 

factors that can influence the location of fixations. First, there are inherent biases when people do 

laboratory tasks on a computer, for example to look more at the middle of a scene (Tatler, 2007) or 

proceed with visual search from left to right (Spalek & Hammad, 2005). There are also domain 

specific biases, such as the typical fixation patterns observed when looking at faces (Walker-Smith, 

Gale, & Findlay, 2013). There are many top-down factors, which are hugely task dependent (Hayhoe 

& Ballard, 2005) , while without a task there is a strong influence of bottom-up/saliency driven 

effects on fixation locations (Parkhurst, Law, & Niebur, 2002). Investigating the interaction of 

bottom-up and top-down factors in saccade target selection it has been shown that with increasing 

saccade latency people are more influenced by the value of targets and less by visual saliency, 

confirming the intuition of stronger impact of bottom-up factors on faster actions (Schutz, 

Trommershauser, & Gegenfurtner, 2012). As all these different mechanisms can influence 

momentary eye-movements to a variable extent, it is challenging to quantify all of them for an 

integrated model of visual exploration of even simple artificial scenes, not to mention real world 

scenarios. Nevertheless, there have been several attempts towards modeling human visual attention 

during the exploration of artificial and natural scenes (for a review Borji & Itti, 2013).   

Using artificial scenes, and modeling only the number (and not the location) of fixations until a target 

is detected in visual noise, visual search was found to be close to optimal in selecting fixations that 

minimize uncertainty about the possible target locations (Najemnik & Geisler, 2005). Interestingly, 

for a near optimal performance in this task, it is sufficient to use a strategy based on the “inhibition 

of return”, and there is no need to integrate any other information across saccades. Although the 

work by Najemnik & Geisler was a breakthrough in the sense that it managed to link visual search to 

a Bayesian Ideal Observer, the limited scenario of searching for a single Gabor target in 1/f noise and 

the fact that it could assess only the number of fixations without their locations leaves many 
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questions open. A more complex approach modeling eye-movements in a visual discrimination task 

also found that sequential fixation locations were close to what followed from an optimal strategy 

(Renninger & Coughlan, 2007). However, a local uncertainty reduction model was sufficient to 

approximate this behavior: people looked at the regions of the scene they were the most uncertain 

about. The proposal that people use extrafoveal visual input to guide search optimally has been 

further challenged by an experiment which directly manipulated the availability of extrafoveal 

information (Morvan & Maloney, 2012).  By manipulating the eccentricity of the targets, these 

researchers found that humans were far from being optimal; in fact, they were not sensitive to the 

experimental manipulation at all.  The opposite conclusion has been reached by a study that used a 

similar approach but with events of different lengths instead of different eccentricities (Hoppe & 

Rothkopf, 2016). This paper found that people could adapt to task requirements and adjust their 

visual sampling behavior in order to maximize target detection performance given their limited 

perceptual sensitivity. A potential reason for the contradicting results could be that the failure to 

optimize was found with respect to fixation location, while the successful adaptation to task 

requirements required adjusting the length of the fixations (Hoppe & Rothkopf, 2016; Morvan & 

Maloney, 2012). Interestingly, a very recent study found that even the very basic behavior of timing 

visual blinks was adaptive to environmental regularities (Hoppe, Helfmann, & Rothkopf, 2018). 

Despite the fact that modeling human visual attention in simple search tasks is already quite 

challenging, there have been attempts to investigate visual attention to more complex influences 

arising from stimulus statistics. An interesting proposal built on visual search reaction times suggests 

that the presence of structured visual information could attract human visual attention (J. Zhao, Al-

Aidroos, & Turk-Browne, 2013). In a combined statistical learning and visual search paradigm, these 

authors found that the mere presence of statistical regularities can attract spatial attention more 

than areas containing only random stimuli (J. Zhao et al., 2013).  Notably, it has not been clarified 

whether this effect had an influence on eye-movements as well. It is interesting to contrast this 

finding with earlier proposals stating that unpredictability and surprise attract visual attention 
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(Duncan & Humphreys, 1989). One problem with this latter proposal is that the most unpredictable 

stimulus possible is pure white noise, which is clearly not the best candidate for attracting human 

visual attention. To account for the problem that purely predictability-based descriptions are not 

sufficient to describe the allocation of human attention, a Bayesian measure of surprise was 

developed based on Kullback-Leibler divergence, and was calculated on different features of real 

video clips (Itti & Baldi, 2009). The same videoclips were played to human observers as their eye-

movements were recorded, it was found that this Bayesian measure of surprise is a successful 

predictor of human visual attention, better than traditional saliency based metrics (Itti & Baldi, 

2009).  

Although they investigate similar questions with very different paradigms, there seems to be a 

fundamental contrast between the findings of Zhao et al (2013) and Itti & Baldi (2009). While Zhao’s 

work shows that regularities attract human attention, Itti & Baldi’s findings demonstrate that the 

more surprising an event is (i.e. the less regular it is), the more it will attract eye-movements. An 

intriguing idea to resolve this contradiction is that human observers prefer looking at input that is 

complex enough not be trivial, but no too complex or completely unpredictable. This idea was tested 

with human infants both with visual event sequences and auditory input, and it was found that infant 

pay attention the longest at event sequences that have an intermediate level of complexity as 

measured by information entropy (Kidd, Piantadosi, & Aslin, 2014, 2012). In a similar vein, another 

infant study found that anticipatory looking only occurs if the visual event is probabilistic, and not 

when it is fully deterministic, since presumably deterministic events do not carry enough information 

to be interesting (Téglás & Bonatti, 2016). Importantly, the proposal of Kidd et al. (2012) shifted the 

focus from pure stimulus complexity (i.e. information content) to information content relative to the 

knowledge of the observer. Unfortunately, their study did not measure learning, and therefore, could 

not test the whether the shift in internal knowledge of the observer has any effect on their behavior 

thereby confirming this preference for stimuli of intermediate complexity.  
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Despite the above described advances using eye-movements as indicators of human information 

gathering from the environment, an important hurdle in the exploration of active vision is that eye-

movements do not fully reflect what information is processed by the observer, as a lot of information 

can be gathered from the visual periphery. In fact, information from the visual periphery is one of the 

main underlying factors in the identification of saccadic targets (Yamamoto & Philbeck, 2013). In 

order to study how people sample information from the environment based solely on their internal 

representations, a possible solution is to use a gaze-contingent “window”.   In such a paradigm, 

participants have access to visual information only from the local vicinity of areas on the screen 

where they fixate, while the rest of the image is not displayed.  With this method, eye-movement 

patterns will be a true reflection of human information gathering as it is impossible to get 

information from the visual periphery at any time. This approach was used in a paradigm where 

participants had to perform a binary categorization of textures as stripy or patchy (Yang, Lengyel, & 

Wolpert, 2016).  Efficient distinguishing of these textures required exploratory eye movement 

patterns that were differentially influenced by the incoming visual information. The eye movements 

of the participants in the experiment largely followed the optimal strategy, and while their 

performance fell short of that of an ideal observer, the exploration patterns were remarkably similar 

to predictions from the ideal model, confirming that human are capable of efficient active sensing 

(Yang, Lengyel, et al., 2016). 

Active Learning 

The review above shows that while there is literature suggesting that people attend to informative 

parts of the sensory environment, these studies either did not measure learning or did not link 

learning to the attentional biases  (Kidd et al., 2014; Kidd, Piantadosi, et al., 2012; J. Zhao et al., 

2013). Therefore, these studies cannot address the question of whether and how these effects might 

emerge with experience, if at all. On the other hand, studies on active sensing showed that people 

can query the environment in a manner that maximizes information gain to solve a particular task on 

a given trial (Yang, Lengyel, et al., 2016). A missing point in the literature is the link between these 
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two phenomena: do people use their active sensing to maximize information gain even without an 

explicit task, and does this maximization emerge through experience?  It has been suggested that 

there is no need for an explicit task or rewards to initiate search for maximal information, since 

acquiring learnable information is itself a reward for humans (Gottlieb, Oudeyer, Lopes, & Baranes, 

2013).  There is also some fMRI evidence supporting this claim, showing that visual information that 

disambiguates perceptual uncertainty has a rewarding effect on the brain (Jepma, Verdonschot, van 

Steenbergen, Rombouts, & Nieuwenhuis, 2012).  

These findings on “information as reward” suggest that people could not only be capable of active 

sensing, which focuses on reducing uncertainty in a given moment (trial), but that they might also be 

active learners. As opposed to active sensing, an active learner would not only search efficiently to 

reduce uncertainty at a given trial but would also be capable of searching for information efficiently 

to reduce uncertainty over a longer period (across trials). This would require constantly integrating 

information from the sensory environment with the developing internal representations and 

changing search behavior accordingly. There is already some evidence based on a yes/no question 

game that people are capable of active searching: children asked questions that efficiently reduced 

the search space, in a manner that is sensitive to the environmental probabilities (Nelson, Divjak, 

Gudmundsdottir, Martignon, & Meder, 2014). However, it is important to distinguish between the 

concept of active learning as used in education, and the related but different computational notion 

used in the present thesis, which is coming from the machine learning literature (Winterbottom, 

2012). The educational concept simply posits that being actively engaged with the material facilitates 

learning more than passively receiving it. The computational approach proposes a reason for this 

learning advantage: when people are actively engaged with a material, they can select from the 

stimuli what is the most informative for them at the current stage of learning and that is why they 

can learn better.   
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Curiosity 

A human tendency to seek learnable information is related to curiosity, which might be a hard-to-

define concept, but is at the core of a rapidly emerging new area of research (Kidd & Hayden, 2015). 

The similarities between search for visual information and curiosity is apparent if we compare the 

above described findings about infant visual attention (Kidd et al., 2014; Kidd, Piantadosi, et al., 

2012) and findings about curiosity to answers to trivia questions. In the latter, an inverted U-shape 

relationship was found between confidence and curiosity: people’s desire to find out the answer to a 

question is the highest when they have and intermediate level of confidence about the answer (Kang 

et al., 2009). This pattern is remarkably similar to the findings of Kidd el al, (2012, 2014), where an 

inverted U-shape relationship was found between stimulus complexity and the length of maintaining 

attention.  Reinforcing this similarity between attention and curiosity, Kang et al.’s work (2009) linked 

curiosity to learning in a way that confirmed predictions of active learning theory: a few weeks later, 

participants remembered the information proportionally to the extent they were curious about it 

beforehand (Kang et al., 2009).  

Summary on visual exploration 

Taken together, the above described findings and theories suggest that people are inherently curious 

and active learners: if there is any useful structured information in the sensory environment, people 

pay attention to this usable part of the sensory input, and this attentional bias could facilitate their 

learning about that information selectively. In the case of vision, it is likely that this selection is done 

–at least partially- by eye-movements, which will influence what information the observer gets, and 

how the observer updates his/her internal representation of the environment. The updated 

representation, in turn, influences further information sampling, thus the two processes of learning 

and information sampling interact in a loop-like manner guided by the different parts of the sensory 

input that are more or less informative in the lights of the momentary internal representations and 

goals. While this proposal is intriguing, there is little experimental evidence to support its main claims 

about the loop between visual attention and learning. It is not even established whether there exists 
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such a constant rewarding effect of finding learnable information in the sensory input.  Furthermore, 

the extent to which people search for usable regularities in the input and the efficiency of this search 

is unknown. Finally, similarly to perceptual decision making, the sensitivity of visual search to 

sequential environmental statistics both on long- and short time-scales is largely unexplored.  
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Outlook on the goals of the thesis 

In this introductory chapter, I reviewed two broad research areas with their current results and open 

questions.  In my thesis, I will focus on two main topics related to these two areas: eye-movement-

related active learning during visual statistical learning (Study 1) and long terms serial effects in visual 

perceptual decision-making (Study 2).  

In the first domain (Chapter 2-3, Study 1, 6 Experiments), I will seek answers to the following 

questions: what is the relationship between learned statistics of the visual environment and visual 

search? Can people use implicitly learned regularities to guide eye-movements during visual 

exploration? Can eye-movements be used as an indicator of learning hidden regularities? Do 

interactions between learning regularities and visual search happen automatically, or do they rely on 

an explicit task?  What kind of statistical representations influence eye-movements? 

 In the second domain (Chapters 4-5, Study 2, 7 Experiments) I will explore the following questions: 

To what extent and time scale can past probabilities influence perceptual decision making? Is there 

an interaction between long-term probability influences and short-term serial effects? How are such 

interactions influenced by changes in stimulus probabilities over-time? Can change dynamics 

influence how people update their internal models on the statistics of the sensory input? 
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Chapter 2 

Active Statistical Learning 

 

 

 

Summary 

 

To investigate the learning process when people receive sensory input with underlying regularities, 

we combined statistical learning with eye-tracking in a set of three experiments. We used a novel 

gaze-contingent spatial statistical learning paradigm that enabled tracking the influence of stimulus 

statistics on visual exploration patterns. In the first experiment, using an explicit learning paradigm, 

we found that several different temporally emerging measures of visual exploration can predict 

learning performance, thereby validating our novel paradigm.  To test whether our findings 

generalize to implicit learning, we ran two additional experiments that were almost identical to 

Experiment 1, differing only in instructions (Experiment 2) or in instructions and length (Experiment 

3). Using Implicit instructions, we found that robust statistical knowledge can emerge without any 

easily detectable effect on eye-movements. However, based on a more sophisticated analysis of the 

eye movement statistics, we could still follow observers’ learning, identify the best implicit learners, 

and track a late emergence of direct eye movement patterns found during explicit learning.  These 

results suggest that there is a smooth link between implicit an explicit statistical learning, and that 

eye movements in our novel method are appropriate to trace this learning process and the transfer 

from implicit to explicit knowledge. 
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Introduction 

 

There is a vast literature on statistical learning documenting that human adults are capable of 

acquiring the regularities of the sensory input in the auditory, haptic (Conway & Christiansen, 2005) 

and visual modalities implicitly (Fiser & Aslin, 2001, 2002). Apart from adults, infants (Saffran, Aslin, 

& Newport, 1996)  and many different animals species (for a review: Santolin & Saffran, 2018) are 

also sensitive to the regularities of the environment. This broad spectrum of findings suggests that 

implicit statistical learning could be a crucial mechanism, which enables efficient processing of the 

probabilistic properties of the sensory input. However, despite the widely held assumption that 

statistical learning is a fundamental, automatic and modality independent mechanism, we know 

surprisingly little about how this mechanism works. Specifically, there are two intertwining main 

questions that prevent statistical learning from being coherently integrated in the larger scheme of 

human learning: first, its unclear relation to explicit learning, and second, lack of knowledge about 

the characteristics of its gradual emergence as the function of the sequentially accumulating sensory 

information.    

Regarding the first question, the literature of explicit and implicit learning is enormous (Ellis, 2009; 

Reber, Walkenfeld, & Hernstadt, 1991; Willingham & Goedert-Eschmann, 1999) , and even within the 

field of statistical learning there is some confusion on what is meant by implicit and explicit learning. 

Statistical learning is implicit, because the learner does not know about the existence and nature of 

regularities in advance and can only discover them over-time in an unsupervised manner. This is very 

different from explicit learning, where participants are instructed on what they are supposed to 

remember.  The representation that emerges via an implicit learning process might still become 

“conscious” and can still be similar to what is learned through an explicit task. However, the extent, 

to which the representations emerging via the two different learning processes are similar, and how 

they relate to the classic explicit/implicit memory division (Graf & Schacter, 1985) is unknown. A way 
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to assess the relationship of the learned representations could be to use different behavioral 

measures of learning, and asses if they are affected similarly by implicit/explicit learning. 

Relating to the second question, even if what is acquired via the two learning methods is alike, the 

process of learning is probably very different. Implicit learning could be more gradual, with a 

continuous incorporation of sensory information, while explicit learning could proceed in a more 

step-wise manner.  However, the actual similarities and differences between explicit and implicit 

learning dynamics are not known and could only be assessed by developing sensitive measures of 

learning processes.   

Regarding the emergence of implicit knowledge, the large majority of statistical learning paradigms 

uses a learning/training phase followed by a separate test phase. While this approach has been 

successful to show statistical learning in many different studies, it can reveal little about the learning 

process.  However, it is challenging to measure a learning in a continuous manner, and indeed, until 

recently, it has only rarely been attempted. One notable exception used a self-paced presentation 

method, to investigate how people learn temporal regularities in the order of appearance of shapes 

(Karuza, Farmer, Alex, Smith, & Jaeger, 2014). This study showed that the decrement in reaction 

times needed to identify predictable elements in a sequence followed the learning process. Similar 

methods could help to investigate learning dynamics by tracking how statistical representations 

emerge in individual participants’ behavior during learning and how these measures could predict 

the final learning outcome (Siegelman, Bogaerts, Christiansen, & Frost, 2017).  

The above described approach (Karuza et al., 2014) is suitable if the regularities in the sensory 

environment are temporal, which similarly to implicit learning studies (Nissen & Bullemer, 1987), 

makes reaction times a suitable measure of learning. However, in more realistic scenarios, people are 

faced with environmental regularities that are more complex than simple temporal order, since most 

visual stimuli also have spatial regularities. People are well-known to be sensitive to such regularities, 
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even for novel abstract shapes (Fiser & Aslin, 2001). While the original finding has been reported 

relatively long time ago, to date, little is known about the mechanisms of spatial statistical learning.  

An intriguing possibility is to use eye-movements during learning, which as a continuous measure 

could reveal some of the mechanisms. Yet, to our knowledge, no study has analyzed eye-movements 

during spatial statistical learning. This is surprising, as eye-movements are a widely used measure of 

attention and memory processes. It has been shown that eye-movements can be sensitive to 

memories that are not yet available for verbal report (Hannula, 2010; Hollingworth, Williams, & 

Henderson, 2001), thus it is feasible that looking patterns during spatial statistical learning could also 

indicate implicit learning processes. Other papers have found that eye-movements reflect learning 

effects only when the relevant memory trace is already explicitly reportable (Smith & Squire, 2008).  

This suggests that eye-movements could indicate the emergence of explicit knowledge during spatial 

statistical learning, but implicit representations might not have an effect on the eye-movements. 

 A potential difficulty with investigating statistical learning through eye-movements arises from the 

fact that people gain a lot of information form the visual periphery, making the link between eye-

movements and processed visual information non-trivial. In an experimental set-up, it is possible to 

make the link between processed visual input and eye-movements tighter, by using a gaze-

contingent presentation method, where little or no information is presented on the visual periphery, 

with stimuli appearing continuously wherever people focus their gaze. Such a manipulation makes 

eye-movements a measure of information gathering, and has been successfully used to study how 

people search for useful visual information during classifying noisy patterns (Yang, Lengyel, et al., 

2016).   

Following the exposition above, the goal of the current chapter is to investigate two questions. First, 

to establish whether a gaze contingent visual exploration paradigm is sensitive enough to measure 

the explicit and implicit learning of abstract spatial regularities in a unified manner.  Second, to clarify 

whether human implicit and explicit learning of statistical regularities proceeds in a similar manner. 
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We investigated these issues in a set of three spatial statistical learning experiments using eye-

tracking. In the first experiment, we introduced a novel gaze-contingent active spatial statistical 

learning method within an explicit learning paradigm, and quantified eye movement signatures 

during explicit statistical learning. In the second experiment, we investigated eye movement patterns 

on the same statistical structures while making the task implicit, therefore testing whether the 

paradigm is suitable to gain insights into the mechanisms of both explicit and implicit statistical 

learning. In the third experiment, which differed from the second one only in length, we examined 

whether extended exposure in an implicit setup would make eye movement behavior converge to 

that observed during explicit learning. 
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General Methods 

Stimuli and Structure 

The experiment was created in PsychoPy, on a Windows 7 PC with a 27” screen, with a resolution of 

1600*900 and refresh rate of 60Hz. A set of twelve abstract shapes was randomly divided into 6 pairs 

(Fig 2.1 A). The shapes within a pair had a fixed spatial orientation throughout the experiment: when 

one of the shapes in the pair were present in a scene, the other was always present, too, and the 

spatial relation between the two shapes was identical throughout the entire experiment. Two pairs 

were arranged horizontally, two vertically, one pair had a diagonal up and one diagonal down 

orientation. From the six pairs, scenes were created (Such as on Fig 2.1B), each containing 3 pairs on 

the 3 by 3 presentation grid. All possible scenes were created, with the constraint that each scene 

consisted of 1 horizontal, 1 vertical and 1 diagonal pair. This constraint results in 144 possible unique 

Figure 2.1. Stimuli and Procedure A-B). the paradigm of Fiser & Aslin (2001). A) 12 shapes are randomly arranged 
into 6 pairs:  2-vertical, 2-horizontal and 2-diagonal. B) One possible arrangement of 3 pairs on the presentation 
grid (144 possible arrangements) C) An example of what participants see in our paradigm. In this example the 
observer looked from the bottom-middle to the bottom-left cell.  If gaze was in the mid-region of the cell, that 
contained the image, the shape appeared, and remained visible at full contrast until gaze was in the cell. The shape 
in the previously visited cell gradually faded out over the course of 1.5 sec. Participants had 6 seconds to explore 
each scene. 

C. A. 

B. 
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scenes, identically to a previous study on visual spatial statistical learning (Fiser & Aslin, 2001). The 

probability of each cell containing a shape overall was 2/3, and each shape was present in half of the 

scenes. The presentation grid had a black frame and had a size of 810*810 pixels (~28.4 deg of visual 

angel), meaning each cell spanned approx. 9.62 visual angels vertically and horizontally. Images were 

presented within the central region of each cell spanning an area of 5.7*5.7 visual angles (as on Fig 

2.1C).  

Procedure 

The experiments were conducted in a dimly lit and sound attenuated room. A Tobii EyeX 60Hz eye-

tracker was calibrated using a seven-point calibration, from a viewing distance of 60cm. After 

calibration, participants completed ten 6-second-long practice trials. On each practice trial, 6 images 

were randomly selected from of a set of 12 images of dogs. The images were arranged at random 

locations inside the 3*3 grid and were revealed in a gaze contingent manner: the content of the cell 

was visible only when the location of the observer’s gaze was at the central region of the cell, 

otherwise the given cell was shown empty. Specifically, the content of a cell was revealed only if two 

subsequent eye position samples (taken approx. 15 ms apart) were within the central gaze 

contingent region of a cell (5.7*5.7 visual angels).  The goal of the practice trials was to familiarize 

participants with the method of using their gaze to reveal images in the grid. After the practice trials, 

calibration of the eye-tracker was double checked, and recalibrated if necessary, before the start of 

the learning phase. The trials in the learning phase were also 6-second-long, following the same the 

gaze contingent rule as during practice. The experiment had 144 unique trials that were presented in 

a randomized order once in Exp 1,2 and twice in Exp 3.  

Each trial started with an empty grid and a fixation point where the observers had to fixate to initiate 

the trial. The position of the fixation cross was pseudorandom-uniformly distributed, appearing at 

the middle of each cell of the 3 x 3 grid equal number of times across the experiment (16-times in 

Exps 1 ,2, 32-times in Exp 3).  Unlike previous spatial statistical learning studies, the full scenes were 

never visible at once.  Instead, individual shapes were revealed in a gaze-contingent manner, when 
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the participants’ gaze was at the mid-region of cell. After participants looked at a cell containing the 

shape, the shape was visible at full contrast until gaze was in the same cell, but gradually faded away 

becoming invisible in ~1.5 sec, if the participant looked away to another cell. The shapes did not start 

to fade away until the gaze was within the outer region of the same cell, but already not in the gaze-

contingent central region. If a participant visited three cells over a short period of time, after arriving 

to the third cell, the first shape abruptly disappeared, and the second started to fade out. Therefore, 

maximum two shapes of the grid were displayed at any given time and only one at full contrast. If the 

observer’s gaze was in the mid-region of a cell, which did not contain a shape in the given trial, a gray 

square (same size as the shape images) was revealed to show that the cell is empty to reduce the 

observer’s uncertainty whether s/he managed to fixate the cell. These gray cells remained visible 

until the trial was over, thereby ensuring that the end of each trial was easily noticeable. Participants 

were free to visit or revisit with their gaze any of the cells during the trial. When the trial was over 

after 6 seconds, all images disappeared, and after a 500ms inter-trial-interval the next fixation-cross 

appeared at one of the cells to initiate the next trial.   

At the end of the learning phase, after a short break, a two-interval forced choice (2-IFC) test session 

followed. Before the test, participants were instructed to select the more familiar pair based on what 

they have seen during the learning phase, and to concentrate on the combinations and not solely on 

the individual shapes.  For the test, 6 foil pairs (which did not appear in the same arrangement during 

learning) were created from the original shapes and were tested against each of the real pairs, 

resulting in 36 test trials, which were presented in a random order. The order of the real pair versus 

foil intervals on each trial was pseudo-randomly controlled: half of the trials started with a true pair, 

the other half with the foil. On each trial, participants had to select which pair was more familiar 

using the left/right arrow key for the 1st/2nd pairs respectively.  

Data Analysis & Measures 

All data was analyzed in Python, statistics were calculated using the SciPy and the scikit-learn 

libraries.  As the experimental set-up was gaze controlled using the central areas of the cells of the 
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presentation grid, eye-movement data was analyzed in a discretized manner, based on whether eye-

movement samples were within the gaze contingent region of one of the cells or not, since where 

exactly gaze fell within this region of interest had no functional consequence.  Looking into the non-

contingent outer regions of the cells had no influence on stimulus presentation.  On average 

participants made more than 7 (7.2 +/- 11) transitions per trial, adding up to more than 1000 

transition events over the course of the experiments. From these transition events, we selected the 

ones that are potentially learning related, in a way detailed below. Since the number of transitions 

could also change over time, we were interested in proportions and not the absolute number of the 

events. 

We separated the eye-movement transition data into two different measures, because they could 

indicate different behaviors: explorative looks and returns. Explorative looks were defined as 

transitions to cells for the first time on a trial. Returns were defined as transitions to cells that had 

already been visited before on the current trial. The difference between these events is important, 

since in case of returns, the participant could be more certain what s/he would see at a given 

location, since s/he had already seen it in the last couple of seconds. In case of explorative looks, no 

such information was available, the content was predictable only for shape pairs, and only if the 

participant had already learned about the spatial relationships between shapes. 

Within explorative looks, we wanted to separate transitions from shapes that could be indicative of 

statistical learning. Starting from a cell containing Shape1 there are three transition possibilities: 

X1. : Transition to another shape that is the pair of Shape1  

X2. : Transition to another shape (that is not the pair of Shape1) 

X3. : Transition to an empty cell 

We defined our measure as Pair Exploration Ratio: X1/(X1 + X2 + X3). 

                                                           
1 From here on, in the present thesis this format represents Mean +/- SD 
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From returns, we were only interested in events, when the gaze returns to a shape that had already 

been visited within the ongoing trial. We separated three such possible events: 

Y1: return to a shape directly from the other shape of the pair 

Y2: return to a shape from to another shape (that is not the pair) 

Y3. : return  to a shape from an empty cell 

We defined our measure as Pair Return Ratio: Y1/(Y1 + Y2 + Y3). 

We calculated both of these measures trial by trial for each participant. For analyzing and visualizing 

temporal changes, we split the data into consecutive equal-length bins of 36 trials each.  The above 

defined measures do not have a trivial chance level, as the probability of transitioning to a pair 

depends on the number of neighbors of the currently fixated cell, and also on the typical behavior of 

the participant. In order to obtain a chance-level we kept the exploration data as it was, and we 

randomly shuffled the order of the presented stimuli 100 times for each participant. We calculated 

our measures on each shuffled combination of exploration data and stimuli and averaged over 

shuffles and participants to obtain an overall chance. The advantage of this method is that effects of 

stimulus independent temporal patterns (eg.: exploring more cell over-time) in the exploration data 

are preserved in the chance measure. Since this is not an undisputable measure of chance, as there 

are similarities between the scenes which we shuffle, we do not base any of our main conclusions on 

this measure, but we include it as a baseline on the figures below. 

Since there are several different eye-movement measures that are partially correlated and predictive 

of familiarity test performance, we used cross-validated Lasso regression (Tibshirani, 1996) to select 

the relevant predictors and account for over-fitting. Lasso regularizes regression weights by a 

parameter λ times the absolute value of the predictor. We selected the value of λ by cross-validation, 

resulting in decreased regression weights. Lasso is useful for feature selection from correlated 

predictors as unlike Least squares or Ridge regression, predictors that cannot predict the hold-out 

sample will often have zero weights assigned (Tibshirani, 1996) . 
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For the correlational measures, apart from the Pearson correlation, we calculated the exact p values 

(randomization test), by randomly permuting the data (shuffling the X and Y pairing) 5000 times, 

calculating the r value for each permuted sample, and looking at where the obtained r value falls 

within the permuted distribution (two-tailed). The advantage of this method is the weaker sensitivity 

to outliers and non-normality in the data (Bishara & Hittner, 2012). In general, with this exact test we 

obtained p-values very similar to the results of Pearson correlation, always supporting the same 

conclusions.  

To obtain Bayes Factors (BF) for paired and between group t-test, we used the BayesFactor package 

(Rouder, Speckman, Sun, Morey, & Iverson, 2009) with a non-informative Jeffrey-Zellner-Siow Prior 

on possible effects sizes. To calculate Bayes Factors (BF) for correlations we used the JASP package 

(Wagenmakers et al., 2018) with a two-tailed test and again a uniform Jeffrey-Zellner-Siow prior. By 

convention, Bayes factors below 1/3 provide evidence for the null, in the range= [1/3, 3] insensitive, 

above 3 evidence for the alternative.  

For visualizing and interpreting our results, we separated participants into three groups based on 

performance on the familiarity test in the following way: Low Learners =< 58.3% (21 correct out of 36 

test trials)  < Medium Learners <  86.1% (31/36)=< High Learners. Our main conclusions are based on 

relationships between visual exploration data and test performance on the entire data-set, therefore 

are not affected by this grouping, which we used for demonstration purposes. 

Computational Modeling 

To obtain a measure that can be fitted to all gaze transitions, thereby not relying on the selection of 

certain events, and could determine the extent to which the exploration data of each participant is 

influenced by the pair structure, we developed a one-parameter computational model (M1). We 

compare this model to a random null model (M0). Since there are three type of statistical regularities 

in the stimuli (horizontal, vertical, and diagonal), we also developed a 3-parameter extension of M1: 
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Model 2 (M2), which is sensitive to direction specific influences.   Below we describe the models in 

detail. 

Model Description 

Null Model 

For the null model, we used the individual empirical transition probability matrix (See Fig 2.2A) over 

the course of the whole experiment for each participant separately to predict their gaze transitions. 

Eg: for a transition from Cell 1 to Cell2:  

 p(Cell2|Cell1)null= p(Cell2|Cell1)empirical    

To test how well the null model can predict the data, we calculated the natural logarithm-based 

likelihood of each transition, given the empirical transition probability matrix. We only included trials 

that had at least two transition events (≈97% of Trials). This model had no free parameters and, 

therefore, it represented how well the average behavior of each participant could predict his/her 

own single trial exploration data.  

 

Figure 2.2. Transition P-s for Null Model, Model Simulation. A) Average Transition Probability Matrix of Experiment 
1: average probability of transitions between the 9 cells of the grid, from cells on x-axis to cells on y axis. T: Top, 
M: Middle, B: Bottom, R: Right, L: Left, as an example: we can see that from the top-left cell (TL, first column) 
participants most often switch to the top-middle cell (TM). B) Example Simulation: One run of 120*2 simulated 
participants, each participant was simulated once with M0 that is based on the individual Transition Probability 
Matrix and once with M1 pair influence model, both models were fitted to both simulated data-sets trial by trial. 
The average per trial negative log likelihood difference between the fit of M0 and M1 is plotted for the two data 
set. As expected M1 always fits better (all dots are above zero).  When the data was simulated with M1, however, 
the benefit of fitting M1 is reliably greater, showing that these models can be separated participant-wise. The 
variance in the advantage of M1 in the simulated data-set can be explained by the fact that the empirically fitted 
alpha values were used for the simulation, varying across participants and trials. 
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Model 1: Overall Statistical Influence Model 

The M1 learning model used the same empirical transition probability matrix as the null model, but 

was extended with a single parameter: α.  This parameter represents pair-structure-bias, that is an 

increased probability of transitioning from each shape to its pair.  For example, if Cell 1 contained 

Shape5, and Cell 2 contained Shape7, and the two shapes formed a pair, the likelihood of transition 

was increased by α. 

Eg:  If shapes in Cell 1 and Cell2 belonged to the same pair:  

 p(Cell2|Cell1)   =  p(Cell2|Cell1) null. + α 

 Transitions probability from Cell1 to other cells remained as before:  

p(Cell3|Cell1)= p(Cell3|Cell1)null. 

Transition probabilities from each cell that contained a shape on a given trial were updated with α 

and then normalized. Transition probabilities from empty cells remained unchanged. We fitted the 

value of α trial by trial, by minimizing the negative log likelihood over the transitions observed on any 

given trial. To fit the model, we used the fminbound function of scipy with limiting the value of α in 

the 0-1 range2.   The goal of this model was to parametrize the extent to which participants look 

more within pairs, than what would be expected from average behavior. 

Alternatives: to confirm that the choice of null model is not responsible for our results, we fitted M1 

to a directed random walk null model yielding essentially the same results for the pair influence 

parameter α 3.  

                                                           
2 In the Appendix Fig.A.3 we consider an alternative by letting Alpha vary on a broader range, finding support 
for the same conclusions. 
3 Result of fitting M1 to a different M0 can be found in Appendix Fig A.1 & A.2. 
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Validating approach with Simulation 

To validate that we can separate the two models (M0 & M1), when the true underlying model is 

known, we conducted a simulation-based analysis. We generated data with both models using the 

empirical transition probability distribution of each participant from Experiments 1-3. For each trial, 

we simulated as many transitions as the participant had performed on that given trial. For simulating 

data with M1, for each simulated participant and trial, we used the empirically fitted α value of any 

given trial. We calculated the log-likelihood for both simulated data-sets under the M0 (Null model 

does not have to be fitted). We fitted M1 to both data-sets and calculated the log-likelihood of the fit.   

Since M1 includes M0 (if α=0, M1=M0), M1 always fits the data better, but the extent to which M1 fits 

better is highly dependent on whether it is the true underlying model (See Fig 2.2B). To perform 

model selection on whether M1 is better than M0 we used the likelihood ratio test, with the number 

free parameters as the number of fitted non-zero alphas (α>0.01) over all trials. The likelihood ratio 

test’s output is the p-value of the obtained likelihood difference under the null-model (with an 

assumption that nested models likelihood differences follow a Χ2 distribution, with degrees of 

freedom as the number of parameters M1-M0) (Huelsenbeck & Crandall, 1997). By using a threshold 

of p < 0.001, we identified whether each simulated participant is better fitted by M0 or M1. After 

repeating this process ten times for all 120*2 participants, the likelihood ratio test identified virtually 

all (119.9 +/- 0.3 out of 120) null model simulated participants as better fitted by the null model, and 

more than 90% of M1 (108.6 +/- 2.1 out of 120) simulated participants as better fitted by M1.  The 

reason for sometimes not recovering the generating M1 model for a few simulated participants was 

the often-low alpha values used in the simulation (since we used the empirically fitted values). 

Repeating the process by simulating the data with alpha values randomly sampled from the fitted 

values of high learners achieved a perfect recovery (120/120) of M1 as the better model for this 

simulated data-set. This success in separating M0 and M1 validates our approach and shows that we 

can draw participant-wise conclusions on whether their overall visual exploration data has been 

influenced by the pair structure of the stimuli.   
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Model 2: Specific Statistical Influence Model 

In Model 1 statistical influence is represented by a single parameter α, representing the overall effect 

of pair structure. Since on each trial there are three pairs with different orientations, it is likely that 

some observers use only some of this information, or that a participant would learn about these 

aspects of the stimuli during different parts of the experiment. In order to analyze the influence of 

the different orientations separately, we extended our M1 into a three-parameter model (M2). 

 

Cell1 Cell2 Cell3 

Cell4 Cell5 Cell6 

Cell7 Cell8 Cell9 

Table 2.1.: Numbering of cells in the 3*3 Grid 

In M2, transition probabilities between cells were updated in the way descried below: 

If on a given trial, shapes in Cell 1 and Cell2 (Cell numbers as in Table 2.1.)  were part of the same 

horizontal pair:  

p(Cell2|Cell1)   =  p(Cell2|Cell1)null. + α1 

If on a given trial shapes in Cell 1 and Cell4 were part of the same vertical pair:  

 p(Cell4|Cell1)   =  p(Cell4|Cell1)null. + α2 

If on a given trial shapes in Cell 1 and Cell5 were part of the same diagonal pair:  

 p(Cell5|Cell1)   =  p(Cell5|Cell1)null. + α3 

Transitions probabilities from Cell1 to other cells remained as before:  

p(Cell3|Cell1)= p(Cell3|Cell1)null. 

Transitions probabilities from all cells that contained shapes were updated with α1-3 on each trial and 

renormalized. Transition probabilities from empty cells remained unchanged. The values of α1-3 were 

fitted trial by trial by using the minimize function of scipy by minimizing the negative log(Likelihood) 
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over the gaze transitions of each trial. We only used trials with at least three transition events 

(≈>90% of trials). To test the predictive power of this analysis we separated the 36 test trials based 

on the orientation of the presented true pair. This separation yields 12-12-12 

horizontal/vertical/diagonal test trials, where the performance could be linked to the three 

parameters. 

 

Experiment 1: Explicit Active Statistical Learning  

Introduction 

To gain insight about the process of spatial statistical learning, we combined visual statistical learning 

with a novel gaze contingent presentation method. Experiment 1 had three main goals: 1) To test if 

people can learn the pair structure during visual statistical learning if the underlying generative 

structure of the scenes is explicitly defined for them but they can never see the full scenes at once, 

only parts of it presented in a gaze-contingent manner. 2) To investigate whether the (known or 

learned) pair structure influences visual exploration patterns. 3) To test if individual learning 

outcome of the subsequent familiarity test could be reliably predicted from visual exploration 

patterns.  

 Methods 

40 students (age: 25.5 +/- 4.6 years, 13 male, 35 Right Handed) participated in the study, after giving 

written informed consent. They were recruited via a Hungarian student organization and received 

~1500 HUF or food vouchers as compensation. No participants were excluded. We chose a relatively 

large sample size, as we expected considerable individual variability in learning outcome. 

Before the start of the learning phase, participants were told that their task was to pay attention and 

find several pairs of shapes in the scenes about which they will be questioned afterwards. They were 

also told that the pairs were defined so that their constituting shapes always appeared next to each 

other arranged either vertically, horizontally or diagonally. They were not told about other details on 
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how the scenes are constructed (such as the number of pairs or that each scene was constructed 

from one vertical, one horizontal and one diagonal pair). The learning phase consisted of the 144 

unique gaze-contingently presented scenes followed by 36 familiarity test trials4. 

 

Results 

Familiarity Test Performance 

 Mean performance in the 36 2-IFC familiarity test trial was 70.56 +/-18 %, clearly above chance 

(t39=7.09, p<.0001) (See Fig 2.3A). The distribution was not normal (Shapiro-Wills Test: .916, p=.006), 

suggesting that participants could be meaningfully separated into sub-groups based on their 

performance. 

Visual Exploration Behavior Descriptives 

The descriptive statistics provided in this section are the mean +/- SD across participants over the per 

trial average of each participant. These measures do not address our main research questions, but 

                                                           
4For the details of the stimuli and procedure, please see the General Methods above 

Figure 2.3. Test performance and transition predictability in Exp 1. A) Familiarity Test performance distribution in 
Exp 1. Mean/Median Performance: solid vertical black/gray lines, Chance: Dashed black line. Colors separate 
participants by familiarity test performance, with red, blue, green, as low medium and high learners 
respectively. B) Entropy of transition probability distributions shows that transitions from each cell were more 
unpredictable if the cell contained an object as opposed to when it was empty, excluding the possibility of a 
visual information independent scanning strategy. X-axis: The 9 cells of the presentation grid (eg: TL: top left, 
BR: bottom right)  , the solid lines are the log2 based entropy of transition probability distribution for each cell. 
The two lines separated based on whether the cell was empty or contained a shape. The dashed lines are 
predictions from a simulated scanner (description in main text). Transitions from the center (MM) are the most 
unpredictable, which can be explained by the highest number of adjacent cells.  Errorbars=SEM 
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since we introduce a novel gaze-contingent method under which participants were free to decide 

how they explore the scenes, these measures provide an overview of participants’ behavior in this 

paradigm. 

Number of visited cells and transitions 

Participants visited an average 6.93 +/- 1.5 of the 9 cells per trial (77% of cells in the grid). Since some 

of the cells were empty, the number of shapes seen was necessarily lower: 4.66 +/- 0.99 of the 6 

shapes, but the ratio was the same (77% of the shapes in the scene).  To test if the number of the 

visited cells changed over time, we fitted a linear regression with trial number as a predictor and 

number of visited cells as a dependent variable. The average slope in this analysis was greater than 

zero (t39=2.8103, p= .0077) showing that observers visited more cells over-time. The number of 

transitions did not directly follow from the number of visited cells as participants could return to a 

previously visited cell during a trial, which would, therefore, increase the number of transitions, but 

not the number of visited cells.  The average number of transitions made between cells in a trial was 

8.12 +/- 1.8, adding up to a total of 1169 +/- 259 transition per participant over the course of the 

whole experiment. The vast majority (95.1 +/- 2.2%) of transitions were made to adjacent cells. The 

most common transition to adjacent cells was horizontal (3.93 +/- 1.0 transition per trial), followed 

by vertical (2.77 +/- 0.82 per trial) and diagonal (1.01 +/- 0.38 per trial).  

Looking Times 

Average looking time at a single visit to gaze-contingent mid-region of a cell was 531 +/- 142 ms.   

Looking time were becoming shorter over time as shown by the slope which was significantly below 

zero (t39=3.6001, p=.0009). Notice, that this looking time does not necessarily reflect a single fixation, 

only the continuous time spent in the central region of a given cell before moving to a next location 

that could include a single fixation or a main fixation accompanied by several corrective fixations or 

even multiple fixations at different parts of same shape.  68.56 +/- 9.1 % of the overall looking 

duration was spent inside the gaze-contingent mid-regions, despite it only covered 1/3rd of the area 
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of the grid. The amount of time spent in the outer regions of the cells can be explained by the fact 

that the shapes, once uncovered, did not disappear while the gaze was in the outer region of the cell.  

Predictability of Transitions  

One possible strategy in a gaze-contingent setup is that participants scan the grid in some regular or 

random manner regardless of what they see inside the cells, and since shapes constituting pairs are 

visible more often next to each other in these scenes, participants passively learn this co-occurrence 

information.  To exclude this possibility of visual information-blind scanning, we separated the 

transition probability distribution from each cell depending on whether the cell, from where the 

transition was initiated was empty or contained a shape (Example of Transition P distribution on Fig 

2.2A). Next, we calculated the log2 -based entropy of these transition distributions to quantify how 

spread out each distribution was.  As expected, entropy was the highest in the middle cell of the grid, 

as there are more possible adjacent cells to transition to (Fig 2.3B). More importantly, the entropy of 

transitions was higher if the cell contained a shape, excluding a visual-input-independent scanning 

strategy (t39= 6.4809, p<.0001).  As a baseline for this measure, we calculated the same measure for 

simulated scanner model. The scanner model always searches horizontally first, then vertically, with 

left a to right, and top to bottom preference, furthermore it keeps track of the visited locations 

within a trial, and only returns to previously visited cells if all adjacent cells have already been visited 

on that trial. The scanner model was simulated for each participant on each trial, to visit the same 

number of cells as the participant did on that trials. The results of this comparison showed that 

participants behavior was far more unpredictable than simple scanning as can be seen by the 

difference between the simulated (dashed) and solid (empirical) lines on Fig 2.3B.  
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Statistical structure learning measures  

Pair Exploration Rate 

We have found that the proportion of explorative transitions (looking at a shape for the first time in a 

given trial5,6) made within pairs (i.e. so that the previous look in the trial was at the corresponding 

other shape of a pair) was correlated with learning (r38=0.3907, p=.0127, pexact= .01187, BF=3.947). 

Furthermore, the slope of this measure was also correlated with learning performance (r38= .5731, 

p=.0001, pexact= 0.0), showing that the more pair-exploration rate increased, the better participants 

learned the pairs. To confirm the temporally emerging pattern of this measure (Fig 2.4A-B), we 

analyzed it in temporal bins, finding that within pair exploration was not predictive of learning in the 

first half, but was highly predictive in the second half of the experiment (Quarter 1: r38= -0.105, p= 

.5179 pexact= .5180, BF=0.24; Q2: r38= .242 p= .1332, pexact= .1358 , BF=0.59; Q3 r38= .456,  p=.0031, 

pexact=.0022 , BF=13.36; Q4: r38= .498, p= .0011, pexact= .0006 , BF=33.8, Bonferroni corrected 

pcrit=.0125) .  

                                                           
5 for definition see General Methods 
6 For descriptive stats of these measures see Appendix Table A.1. 
7 Hereby on r denotes the Pearson correlation coefficient, with the p value, pexact denotes the exact p value 
obtained by permutation  
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Confirmatory Looks: Pair Return Rate 

To assess learning further, we calculated a different measure, the proportion of returns made within 

pairs8. Pair Return Rate was highly predictive of learning performance at the familiarity test 

(r38=.7014, p<.0001, pexact=0, BF=41036) (Fig 2.4 C-D). Unlike in the case of the previous measure, the 

slope of within-pair returns was not predictive of learning outcome (r38=.2852,  p=.0745, pexact=.0748) 

because for some participants, pair return rate increased fast in the middle part of the experiment 

and dropped-off toward the end (see Fig 2.4B vs. 2.4D). The reason for this pattern could be that 

after learning the pairs, it is not necessary to do confirmatory returns. Confirming this, looking at the 

correlation separately in time-bins, we have found that the within-pair returns were predictive of 

learning outcome early in the experiment (strongest in the second quarter), and lost some predicate 

power by the end (Correlation with learning in temporal quarters Q1: r38=.49 , p=.0013, pexact= 0.001, 

                                                           
8 for definition see General Methods 

Figure 2.4.: Pair structure influence on eye-movement measures in Exp 1. Both measures show a temporally 
emerging influence of pair structure that is predictive of familiarity test performance. A-B) Pair exploration rate 
A) Participants grouped by test performance (red-blue-green as low -medium-high learners).  Dashed line 
represents shuffled chance.  Each bin contains 36 consecutive trials.  B) Pair Exploration Rate of five Example 
individual high learners. C-D) Pair Return rate C) Participants grouped by learning performance.  D) Example 
high learners (same participants as in B). While pair exploration rate tends to increase until the end for most 
high learners, return rate often drops at the end, suggesting that the pairs had already been confidently 
acquired. Error bars: SEM. 
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BF=28.31; Q2: r38=.6155  p<.0001, pexact=0, BF=1082.99;   Q3: r38= .5827, p=.0001, pexact=0, BF=357.76; 

Q4: r38=.5601,  p=.0002, pexact=0, BF=178.77; Corrected pcrit=.0125).   

 

 

Model Based Analysis of Overall Statistical Influence 

We have found that the α value of M1, representing increased overall looking within pairs, could 

predict familiarity test performance (r38=.4865, p=.0015, pexact=.0008, BF=26.1).  This effect emerged 

over time (Fig 2.5A), since there was no predictive power of M1 α at the beginning first half of the 

experiment, and strong links in the second half end (Correlation with learning in temporal quarters 

Q1: r38=.25, p=.1247, pexact= .1264, BF=0.62; Q2: r38=.23,  p=.1545, pexact= .1492 BF=0.52;   Q3: r38= .53, 

p=.0004, pexact= .0002 BF=84.18; Q4: r38=.48, p=.0015 pexact=.0006 BF=24.91; Corrected α=.0125). As 

Fig 2.5B shows the advantage of fitting M1 was very similar in high learners (green) to data which was 

simulated by using the pair influence model (yellow). We used the Likelihood Ratio test, to decide 

participant-wise whether M1 fitted the data better than M0 (Fig 2.5B). We have found that 10 

Figure 2.5 Model based assessment of pair-structure influence on visual exploration. A) Parameter alpha over 
time grouped by learning performance (color code as before) in Exp 1. We can see that visual exploration data of 
high learners over-time shows influence by the pair structure. B) Model fit:  Advantage of fitting M1 for Exps 1-3 
on simulated and real data. Real data is separated by learining performance as before, simulated data is shown 
for 2*40 simulated participants for each experiment (40 with no pair influence M0 simulation and 40 pair 
influence M1 simulation). High learners are better fitted by M1 to an extent very similar to M1 simulated data, 
confirming a true pair influence. The benefit in log(L) for low learners is very similar to M0 simulated data, 
showing that it is a consequence of fitting a more complex model and does not represent true influence by the 
statistical structure. (Y axis is the difference in negative log likelihood under M0 and under M1. Implicit Long data 
has larger values because -log(L) is summed across trials).   
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participants were better fitted by M1
9

.  Out of these 10 participants, 7 were high learners (7/11 high 

learners) and 3 were medium learners (3/10), further confirming that better learners are more 

influenced by statistical structure (See Fig 2.5B), while none of low-learners’ (N=19) exploration 

patterns showed an influence of the stimulus statistics according to the model selection10.  

Table 2.2: Combined prediction of Learning.  Lasso (top in each cell) and Least Square regression (bottom) 
weights for predicting test performance for five measures of visual exploration for experiments 1-3. Grey marks 
the strongest predictor for each experiment.  In column 1, λ is the regularization parameter selected by cross-
validation. The first two predictors are descripitives of visual exploration: N Cells =average number of visited cells 
per trial, N Returns=average number of visited cells per trial. The remaining three predictors are based on pair 
structure: Pair Exp R.  = Pair Exploration Rate as defined above, Pair Ret. R.= Pair Return Rate as defined above, 
M1 α is the average value of the pair influence parameter. 

 

Combined Prediction of Learning 

Although the eye-movement-based measures above showed a strong correlation with learning, 

inevitably, they were also correlated with each other to some extent. Therefore, it is important to 

analyze their respective contributions.  We used five potentially relevant predictors: Number of 

Visited Cells, Number of Returns, Pair Exploration Rate, Pair Return Rate, and the α parameter from 

our M1 model, with familiarity test performance as the dependent variable. These five predictors 

could explain 50.1% of variance in test performance. To account for potential over-fitting and select 

                                                           
9 Figure on model selection results in Appendix Fig. A.4 

 

↓Exp    Predictor: β N Cells β N Returns β PairExp. R. β Pair Ret. R. β M1 α 

Exp1 Explicit 

Lasso (λ=0.093) 

Least Square 

 

-0. 

0.0804 

 

0 

-0.0515 

 

-0. 

-0.2119 

 

0.6087 

0.7545   

 

0. 

0.1497 

Exp2 Implicit Short  

Lasso (λ=0.095) 

Least Square 

 

0. 

0.2546 

 

0.043 

0.0418 

 

0. 

-0.0719 

 

0.033 

0.0592 

 

0.2709 

0.5728 

Exp3 Implicit Long 

Lasso (λ=0.103) 

Least Square 

 

0. 

0.1953 

 

0.115 

0.1537   

 

0.2849 

0.2659   

 

0.1952 

0.167    

 

0.0214 

0.2465 
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the sufficient predictors, we calculated the cross-validated Lasso regression on the same dataset. 

This analysis revealed that after regularization, 48.34% of variance could still be explained.  All that 

predictive power could be accounted for by Pair Return Rate (β=0.6087), other predictors had zero 

weights assigned (See Table 2.2. above) showing that they could not explain additional variance 

reliably. The spatial-statistics-related measure of pair return rate was a better predictor of test 

performance than the general descriptive measures of exploration behavior (such as number of 

visited cells or returns), showing that good learners did not necessarily explore more or return more 

often to already visited cells, but instead, used the structure of the scenes to guide their eye-

movements.   

Model Based Analysis of Specific Statistical Influence 

In order to test whether eye-movements could predict what is learned in a more specific manner, we 

fitted M2 with parameters α1-3 representing different orientations and tested whether it could predict 

familiarity test-performance on the three pair orientations. We found that the fitted values of α1-3 

could predict performance in an orientation specific manner for all three orientations (Fig 2.6). The 

relationship was strongest for vertical pairs (Fig 2.6B), demonstrating that the more eye-movements 

were influenced by the vertical pair structure, the better performance was on test trials where the 

vertical pairs were queried.  These effects were temporally emerging, as the slope of these 

Figure 2.6. Predicting the content of learning from eye-movements in Experiment 1. This figure shows the link 
between pair influence and specific test performance for horizontal (A), vertical (B) and diagonal (C) pairs.  This 
figure demonstrates, that the more eye-movements are affected by the pair structure for a given orientation (x-
axis), the better they perform on test items from that orientation (y-axis). Dots are individual participants, with 
the least square line and the value of the Pearson correlation. (BayesFactor values for the three correlations: 
BFhor=1.33 BFver= 10.21 BFdiag= 3.075) 
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measures11  was also predictive of direction specific learning outcome for the vertical (r38= .55, 

p=.0003) and diagonal orientations (r38= .34,  p=.0295), but not for the horizontal (r38= .06, p=.7057) 

pairs, where the pair specific influence seemed to emerge early on (see Appendix Fig A.5).  

 

Discussion  

In an active statistical learning experiment with explicit instructions, we have shown that people can 

learn the underlying statistical structure of the scenes, despite only being exposed to far less 

information at any given moment than in previous spatial statistical learning studies. We have also 

shown, that visual exploration patterns are influenced by statistical regularities between novel 

shapes.  Furthermore, we have shown that this effect emerges quickly over time and is highly 

successful in predicting individual learning outcome. The best predictor of test performance was 

based on confirmatory looks, which is most likely the consequence of explicit hypothesis testing. Of 

course, it is unclear from these results, whether observers learned the structure of the scenes and 

then used their explicit knowledge for the confirmatory looks (high correlation of performance and 

looks is a consequence of learning) or observers used their hypothesis testing to learn the pairs by 

looking back-and-forth (high correlation is a consequence of the process of active learning using 

confirmatory looks).  Most probably, these two aspects are difficult to separate.  In any case, these 

findings demonstrate that active statistical learning based on eye movement measures is a good 

paradigm to track the process of learning spatial regularities in visual exploration patterns. 

Furthermore, the link between the between the orientation specific influence (Model 2) and 

performance on different pair orientations suggests that eye-movements can not only be used as an 

overall predictor of test success, but even as a specific indicator of what is learned during statistical 

learning.  

                                                           
11 Linear Regression, using trial-number as predictor and the fitted values of α1-3 as dependent variable. 
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This experiment is somewhat similar to previous studies of human active information search, in a 

sense that participants had clear instructions regarding what the task was (look for pairs in our case), 

but no instructions about how to solve it. For example, previous studies have shown that children 

can efficiently ask questions to narrow a search space (Nelson et al., 2014), or adults can move their 

eyes effectively to reduce their uncertainty about a visual scene (Yang, Lengyel, et al., 2016). Our 

findings can be interpreted as a combination of these previous studies, since learning in our case not 

only requires eye-movements to collect information about scenes (as in Yang, Lengyel, et al., 2016), 

but also integrating information across trials (as in Nelson et al., 2014). Our task requires participants 

to integrate spatial relations between novel shapes both within and across trials, therefore, the 

statistical information can only be acquired across many trials. Hence the present results 

demonstrated that people use stimulus statistics during visual exploration in a situation that is more 

complex than in previous related work exploring human active information search.  

 

 

Experiment 2 and 3.: Implicit Active Statistical Learning  

 

Introduction 

In Exp 1. above, we demonstrated that our paradigm can track learning of arbitrary spatial 

relationships between novel shapes. Earlier evidence that people are capable of visual active sensing 

came from an experiment, where observers could guide their visual search by integrating 

information on a given trial to perform an explicitly defined discrimination judgement in a well-

defined task  (Yang, Lengyel, et al., 2016). In contrast, visual exploration in our experiment was 

influenced by abstract spatial relationships that could only be acquired across many trials. 

Nevertheless, this effect still emerged due to a relatively well-defined task, therefore, it could not 

reveal much about the mechanisms of classical statistical learning, which is usually considered to be 

an implicit and automatic mechanism. Even though Experiment 1 used the typical stimulus set of 

C
E

U
eT

D
C

ol
le

ct
io

n



65 
 

spatial statistical learning, it is possible that observers used explicit top-down mechanisms to learn 

that were different from the implicit mechanism required for discover the underlying structure of 

spatial regularities without external instruction. To address this possibility, we conducted 

Experiments 2 and 3 similarly to previous statistical learning experiments by not disclosing the 

regularities before the start of the experiment. Finding effects similar to those in Exp 1 without 

explicit instructions would confirm that people use statistical properties of visual scenes to guide 

exploration automatically, without a well-defined task. We expected such an agreement between 

explicit and implicit learning based on theories of active learning and curiosity reporting that people 

are inherently curious (Kang et al., 2009), and active learners (Gottlieb, Hayhoe, Hikosaka, & Rangel, 

2014), therefore, presumably they search for regularities in the input, even if they are not told to do 

so.  

We ran two experiments to investigate the process of active information search during implicit 

statistical learning and to test how learning performance and patterns of visual exploration are 

related. These two experiments differed only in the length of the training sequence: Exp 2 was had 

the same length as Exp 1, while Exp 3 was twice as long. Beyond this, these experiments had only one 

more difference compared to Experiment 1: the instructions did not uncover the underlying rule of 

the pair structures in the stimuli.  

Using two different lengths allowed us to test the causal relationship between the amount of 

experience, the emerging internal representation of the statistical structure, and the ability of this 

information to guide visual exploration as measured by the change in patterns of visual fixations. Our 

first hypothesis was that, during the process of learning, visual search patterns would become 

increasingly influenced by the statistical structure of the task, and that this influence will be stronger 

in those participants who learned more about the structure of the stimulus stream. Our second 

hypothesis was that the eye-movement measures of learning we established in Experiment 1 could 

also track implicit learning, and the patterns of implicit learning would converge over-time to those in 

Experiment 1. 
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Methods 

Participants: 

80 students were recruited via a local student organization or via an online system. Participants 

received monetary or food voucher compensation of approximately 1500 HUF (~5 euros).  The 

participants gave informed consent before the experiments, were naive to the purpose of the study 

and had never participated in other statistical learning experiments before. Half of the participants 

(Age: 22.1 +/- 2.8 years, 38 right handed ,13 male) completed Experiment 2 (the Short Experiment), 

the other half (Age: 23 +/- 5.5 years, 36 right handed, 10 male) were tested in Experiment 3 (the Long 

experiment). One additional participant was excluded as upon completing Exp 2 revealed not being 

naïve about visual statistical learning. 

Procedure: 

In the Short Experiment (Exp 2), stimuli and the procedure were identical to those in Experiment 1 

using 144 trials of unique scenes displayed in a gaze-contingent manner for 6 seconds (see the details 

above). The learning phase in the Long Experiment (Exp 3) was twice as long as in Exp 1-2, with a 

brief break in the middle: during each half, each unique scene was presented once in a different 

random order.  The total duration of the learning phase was approximately 16 minutes in the Short 

and 32 mins in the Long experiment. 

The main difference from Experiment 1 was the instructions the participants received: before the 

learning phase, they were instructed to pay attention, explore the scenes and try to remember what 

they saw. They were also told that after the first part, they would have to answer questions about 

what they saw, but they were not told anything about pairs or possible statistical regularities. During 

the short break in the middle of the Long Experiment, participants were kindly asked to continue 

paying attention, and were reminded again that they would be quizzed after the learning phase.   
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Data Analysis 

The same analyses were performed as the ones used in Exp 1 and detailed in the General Methods. 

For visualizing temporal changes, we used 36 trial long-bins, yielding 4 bins in the Short and 8 bins in 

the Long Experiment. 

Results 

Familiarity Test Performance 

Learning was measured on the 36 2-IFC familiarity trials. In the Implicit Short Experiment, mean 

learning performance was 65.9 +/- 14.59%, which was significantly higher than chance of 50% (t39= 

6.8055 p<.0001) (See Fig 2.7).  In the Implicit Long Experiment, mean learning performance was 

69.65 +/- 16.19%, which was also significantly above chance (t39= 7.581 p<.0001).  The average 

performance was not significantly different between the two experiments (t78=1.0744, p= .2859, 

BF=.38).  The distribution of performance did not deviate from normal (Shapiro-Wills: Short = .989  

p=.959; Long= 0.961  p=.18) in any of the experiments. 

 

Figure 2.7: Familiarity Test Performance distribution in Exp 2 & 3. A) Exp2-Short Implicit B) Exp3-Long Implicit 
Mean Performance (Solid Black) Median performance (Solid Gray Line) is very similar, but the Long Experiment 
had a higher proportion of good learners, similarly to Exp 1 on Fig 2.3A.  Dashed black line: chance. Colors 
separate participants by familiarity test performance, with red, blue, green, as low, medium and high learners 
respectively. 
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Visual Exploration Behavior Descriptives 

Again, these measures do not address our main questions of interest, but since we use a novel 

paradigm where participants were free to choose their strategy without a well-defined task, we 

wanted to give an overview of behavior. 

Number of visited cells 

In the Implicit Short Experiment, participants visited 6.627 +/- 1.546 cells per trial out of the possible 

9, while in the Implicit Long this average was 6.061 +/- 1.558. The number of visited cells /trial did 

not differ significantly across the two experiments (t78=1.612, p= .111 BF=.71).  The average number 

of shapes seen was necessarily lower (Implicit Short = 4.447+/- 1.027, Implicit Long = 4.071+/-1.04) 

than the number of visited cells.  We used Linear Regression for each participant separately to 

predict the number of visited cells over time by the trial number. The mean of the individually 

obtained slopes were significantly above zero for both experiments (Implicit Short t39= 2.3963, 

p=.0215; Implicit Long t39= 3.0706 p=. 0039), confirming that the average number of visited cells was 

increasing over-time regardless whether the raw or the binned data was analyzed.  

Looking Times 

The mean looking time at the gaze contingent middle region of a cell in the Implicit Short experiment 

was 656 +/- 239 ms while in the Implicit Long it was 736 +/- 277ms. The difference in mean looking 

times was not significantly different between the two experiments (t78= 0.8651, p=.3896, BF=.3216), 

but they were significantly longer than in the Explicit experiment above (Exp - Imp short: t78 =2.811, 

p= .0062, Exp-Imp Long: t78=4.108 p<.0001). Looking times became shorter over time: the slope was 

significantly below zero in both experiments (Short t39=3.0291, p= .004; Long t39=4.005, p=.0003). 

Thus, participants looked less to each shape and, at the same time, fixated on more shapes as the 

training session progressed in both experiment without any noticeable difference between the short 

and long training.   More than 70% of the overall looking time was spent within the gaze-contingent 
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mid-regions despite the fact that it constitutes only approx. 1/3rd of the total area of the grid 

(Short=74.05 +/- 6.6%, Long=72.05 +/- 13%).  

 

Cell Transitions 

The mean number of transitions/trial between cells in Implicit Short it was 7.36+/- 1.71, while in the 

Implicit Long it was 6.43 +/- 1.86. The vast majority of transitions was made to adjacent cells (Short: 

93.6 +/- 3.9%; Long 93.8 +/- 3% of transitions). The most common transition orientation in both 

experiments was horizontal (Num. horizontal transition per trial: Short= 3.68 +/- 1.05, Long= 2.98 +/- 

1.15) followed by vertical (Num. vertical trans. per trial Short = 2.35 +/- 0.84, Long = 2.25 +/- 0.62) 

and diagonal (Num. diag. trans. per trial Short= 0.85 +/- 0.45, Long= 0.8 +/- 0.41). The total number 

of transition events over the course of the whole experiment for a participant was 1059 +/- 246 and 

1851 +/- 535 for the short and long experiments, respectively. 
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Predictability of Transitions  

We found that, in both experiments, the entropy of transitions was higher if the cells contained a 

shape compared to cases with empty cells (Implicit Short t39=6.9333, p<.0001; Implicit Long: t39= 

6.4809, p<.0001) (Fig 2.8). This confirmed that the information content of the cells influenced 

exploration: eye movement transitions were more unpredictable if the cell contained a shape and 

more stereotypical if it did not. Hence, the visual input influences where people direct their next 

fixation. 

Figure 2.8:  Entropy of Transition Distributions for Exp2 (A) and Exp3 (B): From Each Position on the Grid (x-
axis), we calculated the entropy of transition distributions, separated by whether the cells contained an 
object (blue) or is empty (orange). Solid lines are the actual data averaged across participants, dashed lines 
are results from simulated scanner model. Error bars are SEM (not visible for scanner model). We can see 
that people are more unpredictable than what would be expected from scanning. Unlike the scanner model, 
whether the cell contains something influences the predictability of behaviour: how people continue 
exploration is more predictable if a cell is empty.  (X-axis: cells from Top-Left (TL) to Bottom-Right (BR), T: 
Top, B: Bottom, L: Left, R: Right, M: Middle)  
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Learning Related Measures 

Pair Exploration Rate  

Our main measure of interest was whether and how people used the information about pairs to 

guide their visual exploration. We found that the Pair Exploration Rate correlated with the amount of 

learning in the Long Experiment (r38 =.5513, p=.0002, pexact=.0004, BF=138.5 Fig 2.9B), but not in the 

Short Experiment (r38 =.1654, p=.3079, pexact=.31, BF=0.325 Fig 2.9A). As the first half of the Long 

Experiment is identical to the entire learning phase of the Short Experiment, predictive relationships 

in the first half of the Long experiment should resemble the ones in the Short experiment. To test 

this, we looked at the same correlation measure in 36 trial long temporal bins for both experiments. 

None of the time-bins of the Implicit Short experiment were significantly predictive of learning, and 

similarly, none of the bins from the first half of the Long experiment show a significant correlation 

Figure 2.9: Pair Exploration Rate over time in the Short -Exp2 (A) and Long - Exp3 (B) experiments. High learners in 
the Long experiment gradually started to use statistical information to guide visual exploration. Participants are 
grouped by performance with red, blue and green as low, medium and high learners. Dashed Line represents 
shuffled chance. C) Correlation of Pair Exploration Rate with familiarty test performance  for each time bin for 
the two experiments shows that only in the 2nd half of Exp 3 there is a strong relationship between looking 
patterns and learning. The top table contains the r values of the correlation, the bottom table the exact p values 
obtained by permutation. Dark gray background: significant correlations after Bonferroni correction (Exp 2 
pcrit=.0125, Exp3, pcrit =.00625) (Bayes Factor Values for the correlation at each temporal bin in Exp 2: BFQ1=0.27, 
BFQ2=0.2 , BFQ3=1.8, BFQ4=0.2. In Exp 3: BFE1=0.6, BFE2=0.95, BFE3=0.23, BFE4=0.21, BFE5=195.73, BFE6=79.47, 
BFE7=32.01, BFE8=215.97) 
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(See Table Fig 2.9 C).  On the other hand, in the second half of the Long Experiment, all time-bins 

were predictive of learning outcome (See Table on Fig 2.9 C), despite using a conservative Bonferroni 

corrected alpha level. To confirm that there was a link between the change in the within-pair 

exploration rate and learning, we calculated the slope of this rate, as this measure did not require 

binning the data. The slope of Pair Exploration Rate was strongly correlated with learning in the Long 

Experiment (r38=.4737, p=.002, pexact=.0008), but not in the Short Experiment (r38=0.0333, p=.8383, 

pexact= .8416). The Long result suggests that we can track learning through the eye-movements since 

they can predict learning performance on the subsequent familiarity test. Interestingly, the Short 

correlational result remained non-significant even though the magnitude of learning after the Short 

and Long training was virtually indistinguishable (65.9% vs. 69.6%).  This indicates that the interaction 

between eye movements and the amount of learning is not a direct one and that the indirect effect 

Figure 2.10:  Pair Return Rate over time in experiments 2 & 3. A) In the Short Experiment there was no significant 
learning related change in this measure, while in the  Long Experiment (B), it became highly predicitve of 
familiarity test performance in the seond half. Each bin contains 36 consecutive trials. Participants are grouped 
by performance as low, medium and high learners denoted by red, blue and green colors, respectively. Dashed 
line represents shuffled chance level. C) Correlation of Pair Return Rate with familiarty test performance for each 
time bin for the two experiments. The top table are the r values of the correlation, the bottom the exact p values 
obtained by permutation. Dark gray background : significant correlations (Exp 2 pcrit=.0125, Exp 3 pcrit =.00625) ) 
(Bayes Factor Values for the correlation at each bin Exp 2: BFQ1=0.19, BFQ2=0.22 , BFQ3=0.48, BFQ4=0.28, Exp 3: 
BFE1=0.46, BFE2=0.68, BFE3=0.68, BFE4=0.6, BFE5=0.65, BFE6=21.34, BFE7=26.19, BFE8=2.25) 
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only emerges after certain amount of implicit learning has already taken place. 

 

Confirmatory Looks: Pair Return Rate 

We calculated a different measure, the proportion of returns made within pairs, which only includes 

looks that are made to cells that had already been visited on a trial. Similarly, to Pair Exploration 

Rate, we found a correlation with learning in the Long experiment (r38 =.5433, p=.0003, pexact=.0004, 

BF=110.3) that was stronger in the second half (Fig 2.10B). In the Short experiment there was no 

correlation with learning (r38 = 0.1824, p=.26, pexact=.2528, BF=0.36 Fig 2.10A).  Looking at the 

temporal patterns confirms these results, with no predictive influence in any of the bins in the Short 

or in the first half of the Long Experiment (Fig 2.10C). The bins of the Long experiment became 

predictive of learning in the second half (Fig 2.10C). Similarly, to Exp 1, the slope of this measure was 

not predictive of learning in either experiment (Short r38= .0793, p= .6266, pexact= .617; Long r38= 

.2761, p= .0846, pexact= .0834). 

Model Based analysis of Statistical Influence 

Overall, the α parameter of the M1 model was correlated with learning performance in the Implicit 

Short experiment (r38=0.383, p= .0147, pexact=.01299, BF=3.473). Analyzing this effect separately in 

subsequent temporal bins showed that the influence of pairs on the exploration data emerges over-

time (See Fig 2.11 A,C). The correlation with learning performance was not significant for the Long 

Experiment overall (r38=0.252, p = .1171, pexact= .1192, BF=0.644) due to the complete absence of 

such effect in the first half of training, but a strong relationship emerged in the second half as can be 

seen from the binned analysis (See Fig 2.11 B,C). The model selection showed that 8 and 9 

participants in the Short and Long Experiment, respectively, are better fitted by M1 than M0
12. This 

classification was highly dependent on learning performance as the group of participants classified 

better by M1 included 75% of high learners for both experiments (Short: 3/4, Long: 6/8), less than 

                                                           
12 For individual model selection results, see  Appendix Fig A.4 
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1/5th of medium learners (Short: 3/16; Long: 2/17), and below 10% of non-learners (Short: 2/20, 

Long: 1/15).  

   

Combined Prediction of Learning 

Since there are several different behavioral measures that could be related to learning, we wanted to 

see their respective contributions in predicting familiarity test performance. To achieve this, we first 

analyzed test performance with a Multiple Linear Regression with the same five predictors (including 

descriptive and pair structure related measures of visual exploration) as in Experiment 1. With a 

linear-regression based approach, these five predictors could explain 39.3% of variance in the Long 

Experiment, while only 17.89 % in the Short Experiment. To select the relevant ones of these features 

Figure 2.11. Model based assessment of Pair influence.  Alpha parameter of M1 over time in Exp 2 (A) and Exp 3 
(B) Over time, high learners’ (green) exploration patterns became more influenced by the pair structure of the 
task in both Experiments. Unlike the previous measures on Figs 2.8-2.9 this effect was also highly significant by 
the end in the Short experiment. There was no overall influence for medium (blue) and low (red) learners. C) 
Correlation of M1 alpha with familiarty test performance for each time bin for the two experiments. The top 
table are the r values of the correlation, the bottom the exact p values obtained by permutation. Dark gray 
background : significant correlations, after bonferroni correction (Exp 2 pcrit=.0125, Exp3 pcrit =.00625) (Bayes 
Factor Values for the correlation at each bin Exp 2: BFQ1=0.39, BFQ2=0.73, BFQ3=2.68, BFQ4=6.92, Exp 3: BFE1=0.22, 
BFE2=0.49, BFE3=0.39, BFE4=0.2, BFE5=0.71, BFE6=17.179, BFE7=1.22, BFE8=7.34) 
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and to prevent over-fitting, we analyzed the same data with cross-validated Lasso as in Experiment 1. 

This analysis found that 36.3% of variance could still be explained in the Long-Experiment, and 

15.84% of variance was explainable in the Short Experiment (See Table 2.2.). 

 In the Long experiment, the most important predictor was Pair Exploration Ratio (β=0.2849), 

followed by Pair Return Ratio (β=.1952), with the other predictors assigned smaller, but non-zero 

weights (see Table 2.2.).  In the Short Experiment, M1 α was by far the most relevant predictor 

(β=.2709), with the other predictors largely irrelevant. Overall, this analysis shows that visual 

exploration measures related to the statistical structure of the task successfully quantify learning 

after about half an hour of experience (Long), but the same measures are unable to predict the 

robust learning performance after 10-15 minutes (Short), where only the model parameter α is 

successful in explaining some of the variance. This shows, that similarly to Experiment 1, spatial-

statistics-related influences on eye-movements are better predictors of learning than descriptive 

measures of visual exploration:  successful learners use the structure of the scenes to guide eye-

Figure 2.12: Eye-movement based prediction of specific learning outcome in Exp 2 & 3. Direction specific 
relationship between eye-movements (M2 α1-3 x-axis) and familiarity test performance (y-axis) for the horizontal 
/vertical/diagonal orientations (as Hor./Ver./Diag.) for the Implicit Short (A-C) and Long (D-F) Experiments. Least 
square regression line and Pearson correlation is shown on each figure. Vertical and Horizontal test performance 
had a tight link with vertical/horizontal eye-movements in Exp 3 (BFhor = 919.7, BFver = 16877) but no relationship in 
Exp 2 (BFhor =0.24, BFver =0.21). For diagonal pairs, this relationship was marginally significant for both Experiments, 
due to a few strong outliers, who demonstrated both strong diagonal pair influence on the eye-movements and 
performed well on diagonal test pairs (Exp2 BFdiag=1.01, Exp3 BFdiag=1.9).  

C
E

U
eT

D
C

ol
le

ct
io

n



76 
 

movements, without necessarily visiting- or returning to more cells.   

 

Specific Model Based Prediction of Learning 

To test whether the content of learning has a specific effect on the eye-movements, we separated 

statistical influence into three parameters in M2 (α1-3 corresponding to horizontal/vertical/diagonal 

orientations) and used it to predict test performance on the three orientations. We found that in the 

Short Experiment, eye-movements had no predictive power for any of the orientations (Fig 2.12 A-C) 

(apart for one strong outlier for diagonal orientation). In contrast, in the Long Experiment, both for 

horizonal and vertical pairs, there was a tight relationship (Pearson r >.6) between statistical 

influence and performance: a stronger influence of horizontal/vertical pair structure on visual 

exploration (as measured by α1 & α2) predicts better familiarity test responses on horizontal/vertical 

pairs (stats on Fig 2.12 D-E). This effect was also marginally significant for the diagonal pairs (Fig 2.12 

F), with some high performing outliers showing a tight relationship, but no link for most participants. 

This connection in the Long Experiment was temporally emerging as, all three orientations replicating 

findings from the Explicit Experiment, the slopes of α2  and α3 were predictive of test performance on 

vertical (r38= .33, p=.0403) and diagonal pairs (r38=.41, p=.0088) respectively, but not the slope of α1 

for horizontal pairs (r38= -.01, p= .9734), where the influence seemed to emerge early on (see also 

Appendix Fig A.5).   This relationship between the increase in pair influence and test performance 

was absent for all three orientations in the Short Experiment (horizontal: r38= .26, p=.1013; vertical: 

r38=.11 , p=.5131; diagonal: r38= .185, p=.253). Taken together, the results using M2 demonstrate that 

given sufficient time, the content of learning about statistical scenes can be predicted from eye-

movements. 
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Discussion 

Using two implicit active visual statistical learning experiments, we showed that despite robust 

statistical learning performance, after ~15 minutes of learning, most participants’ visual exploration 

patterns were not influenced by this acquired regularity. However, given sufficient time, not only 

good learning performance but also the content of learning could be predicted from visual 

exploration patterns. These findings demonstrate that knowledge emerging from implicit statistical 

learning about the spatial relationships between novel objects can guide visual exploration. 

It is interesting to contrast the findings suggested by our different measures. The raw behavioral 

data, based on selecting potentially learning related behaviors, suggests no influence of learning 

related changes in the Implicit Short experiment. Nevertheless, analyzing the same data with a more 

sensitive model-based approach, we could find learning related changes. Interestingly, while the 

same model was also predictive of learning in the Implicit Long and Explicit experiments, in those 

cases, the behavioral measures were dominant, better predictors of test performance suggesting 

that such a more sensitive model-based measure is beneficial early in the learning. A caveat is that 

M1 did not show any learning effects in the first half of the Implicit Long experiment. This is 

somewhat puzzling, given that the first half of the Long experiment was identical to the Short 

experiment, apart from the fact that the participants knew that the experiment will be longer. 

Beyond random fluctuation across subject pools, we suspect that in the Long Experiment, 

participants did not focus as much in the first half as participants in the Short Experiment did, since 

they knew they had plenty of time was ahead. Nevertheless, participants benefited significantly from 

the longer learning phase in Exp 3 as shown by a higher proportion of good learners (20% of 

participants in Exp 3 vs 10% in Exp 2). Of course, we cannot be sure whether these good learners in 

Exp 3 would have been the best performers after completing the first half, but based on test 

performance in Exp 2, we can assume, that a subset of participants had already acquired an implicit 

representation of the statistical structure that was good enough to perform almost as well as at the 
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end of the long trial. This implicit representation might have contributed to the emergence of eye 

movement patterns in the second half of exploration trials that were reminiscent to those in the 

Explicit experiment, and unlike in the Short-Experiment, could specifically predict test performance 

on the different orientations (using M2). 

To our knowledge, this is the first study to reveal information about the process of spatial statistical 

learning. Previous attempts to explain the time course of visual statistical knowledge were confined 

to temporal statistical learning (Bertels, Boursain, Destrebecqz, & Gaillard, 2014; Karuza et al., 2014). 

Our Short Experiment shows that there is a strong implicit knowledge already after ~15 minutes, but 

this knowledge had no influence on the eye-movements for the vast majority of participants, apart 

from few very successful learners. Our Long Experiment revealed that after this Implicit 

representation has been built, in the second half of the learning phase, it started to influence visual 

exploration. Therefore, these two experiments together suggest a sequence of “statistical knowledge 

first, influence on visual exploration later” as a plausible relationship between statistical learning and 

eye-movements. What our study could not reveal was the nature of the emerging statistical 

knowledge for Implicit learners, since for most participants we found no influence on eye-

movements, despite the reasonably good test performance. In line with previous studies (Turk-

Browne et al., 2005),  a parsimonious explanation of our finding is that a statistical representation 

emerges early on from paying attention to the stimuli, without any influence on eye movement 

behavior, and this pattern initially neither depends on nor influences patterns of active information 

search.  However, given sufficient time for good learners, the two processes seem to become 

intimately related, where a gradual influence by the pair structure on looking patterns boosts 

successful learning, which in turn could make influence on looking patterns even stronger in a loop-

like manner. 
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General Discussion 

 

In three statistical learning experiments combined with eye tracking, we investigated the relationship 

between the acquisition of statistical information and visual exploration. The first experiment 

introduced a novel a gaze-contingent spatial statistical learning paradigm and showed that our 

measures can successfully track and predict the explicit learning of spatial regularities in the eye-

movement data. The second and third experiments investigated implicit statistical learning using the 

same stimuli and two different learning-phase lengths. First, we extended our findings from 

Experiment 1 by showing that the same measures can track the transfer from implicit to explicit 

knowledge and predict individual learning success. Second, we found, that given extended exposure 

(Exp 3) eye-movements can predict what is learned about complex statistical scenes, suggesting a 

tight link between the development of internal statistical representations and looking patterns. 

Finally, we found that a strong statistical representation can be learned without any influence on 

eye-movements (Exp 2), suggesting that statistical learning relies on a multitude of statistical 

information provided by the scenes, many of which is not intimately linked to eye movements 

initially.  

Our results across the three experiments show some remarkable patterns. There are several 

similarities between the patterns of the Explicit (Exp1) and of the second half of the Long Implicit 

(Exp3) experiments. First, we confirmed our claim on another large sample that the four different 

exploration measures (pair exploration rate, pair return rate, overall model-based pair influence/M1, 

specific model based-based pair influence/M2) are reliable eye-movement-based predictors of 

learning, with very similar temporal emergence pattern between the Explicit and the second half of 

the Long Implicit Experiments. Second, we found a high proportion of very good learners (85%+ test 

performance) with about 1/5-1/4th of participants falling into this category both in the Explicit and 

Long Implicit experiments, while only 1/10th of participants reached that criterion in the Short 
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Implicit experiment. Taken together, these measures suggest that both the exploration behavior and 

the acquired statistical knowledge are very similar in the second half of the Implicit Long and in the 

Explicit Experiments.  

We found this intricate relationship between the emergence of statistical knowledge, and its 

influence on visual exploration using several measures between these two experiments, while we 

sidestepped the question of what the nature of the representation that emerges through this active 

learning process is. It is possible that despite the implicit task, after some learning has taken place, 

observers realized that there were pairs which could facilitate the emergence of statistics related 

patterns in exploration behavior, especially in the Long Experiment. Thus their performance 

measured in the final familiarity test might not be the outcome of a pure implicit process, echoing 

some recent findings in the literature (Bertels et al., 2014; Bertels, Franco, & Destrebecqz, 2012), but 

contradicting some other earlier reports (Kim et al., 2009; Turk-Browne et al., 2005). Nevertheless, 

based on the high performance and the above described similarities between the Implicit Long and 

Explicit experiments, we think that what see in the Implicit Long Experiment is the transfer from 

implicit to Explicit representation.  

Previous studies on memory-related eye-movements show that eye-movements can reflect 

memories about the relative spatial locations of objects. For example, it has been found that the 

relative but not the absolute locations of objects determine whether the patterns of eye-movements 

reflect previously seen configurations (Ryan & Villate, 2009). However, in these previous 

experiments, memory was probed immediately after stimulus presentation, and there was no need 

to integrate information across multiple trials, suggesting that those experiments have only 

measured visual short-term memory. Our study is completely novel in the sense that it shows that 

eye-movements can be used to probe spatial relationships between shapes that can only be acquired 

over many trials. 
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Our model-based method proved to be a more sensitive measure of statistical influences on 

exploration than the raw behavioral measures due to its relative sensitivity to within-pair transitions 

at a given location compared to average behavior. Furthermore, we were also able to link variability 

in what is learned to the directional influences on eye-movements using Model 2. One obvious 

shortcoming, however, is that we fitted a three-parameter pair-influence model (M2) and used it to 

predict performance on each orientation, despite having six different pairs (two for each 

orientation). In the current data set, it is difficult to link looking patterns to success in identifying 

certain unique pairs at test. The main reason for this difficulty is that high learners responded to 

almost all test trial correctly, making the success rate at the different pairs equally 100%.  This ceiling 

effect makes the prediction of learning success for a specific pair, given the number of times it was 

seen, impossible. Separation of pairs based on performance for medium learners is possible, 

however, most medium learners showed only weak overall structure related effects. Therefore, eye-

movement based within subject prediction of learning success on unique statistical learning pairs 

remains to be a challenge for future research.  

Eye-movements and statistical learning 

To our best knowledge, our results are among the first to provide evidence about the role of eye-

movements during statistical learning. One exception analyzed eye-movements in an infant statistical 

word-referent learning paradigm, finding notable differences in the eye-movement patterns of good 

a bad learners’ (C. Yu & Smith, 2011). However, due to the limitations of infant studies, both 

familiarization, and test of this work was based on eye-movements, and unlike our study, it could not 

link an eye-movement-independent measure to eye-movements.  Therefore, it could not show that 

eye-movements can reflect generalizable statistical knowledge. A similar paradigm was tested with 

adults using explicit instructions, offering a simple ‘propose then verify’ model as an explanation for 

explicit word-referent learning (Trueswell, Medina, Hafri, & Gleitman, 2013), suggesting that learning 

that proceeds by only keeping in mind one hypothesis at a time. It is possible that participants use 

similar strategies in our Explicit paradigm, where they explicitly hypothesize certain combinations, 
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which they can confirm or falsify later. An indication of such a hypothesis testing strategy could be 

returns to pairs, which were by far the best predictor of learning in Explicit experiment. In 

experiments 2-3, explorative transitions (Exp 2) and overall pair influence measured by our model 

(Exp 1) had tighter link with learning, suggesting that different strategies were dominating learning in 

the Implicit experiments.  Previously, in the implicit statistical learning literature, there were 

attempts to link visual attention to statistical learning using reaction times. However, that line of 

research could only show that the mere presence of regularities can attract attention without being 

able to establish a link with individual learning outcome (R. Q. Yu & Zhao, 2015; J. Zhao et al., 2013). 

Therefore, our study is the first to link learning to eye-movements in implicit statistical learning.  

It is interesting to scrutinize our findings in relation to the proposed inverse u-shape relationship 

between stimulus predictability and visual attention (Kidd, Piantadosi, et al., 2012).  According to our 

results, better learning arises from and/or results in an increased search for predictable structures. 

According to Kidd et al.’s logic, if a fully predictive relationship is acquired, that should result in a 

weaker attentional bias. Indeed, we see this pattern in our data of a few participants in Experiment 1 

(Fig 2.4D), but our task is complex enough so that most participants do not reach the level of 

knowledge that would render the relationships between pairs of shapes as completely predictable. 

Therefore, the weakening effect implied by Kidd et al.’s (2012) proposal, is probably not strong 

enough to dominate the overall proportion-of-returns to pairs, as the measurement for the majority 

of the participants is still increasing across the entire duration despite the drop toward the end for a 

few observers. Given some even longer learning period, it is possible that the drop-offs by the end of 

learning would dominate the observers’ behavior and they would explore less across pairs after 

acquiring full knowledge of the relationship between the shapes. On the other hand, due to the 

heterogeneity of learning patterns and test performance across participants, finding such an inverse 

u-shape pattern in the exploration data over time could prove to be a difficult challenge for future 

research. 
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Future Directions 

Our methods could not detect learning related changes in eye-movements for most implicit learners. 

Although a likely reason is that there are no such effects, it is also possible that such effects are 

present, but they do not affect exploration patterns, but other measures of eye-movements. It would 

be interesting to consider different eye-movement related measures and see if they could show pair 

related learning effects in implicit learners. One possibility is looking times, which following the logic 

of Karuza et al (2014), could become shorter for predictable shapes once they are learned. However, 

the challenge is that the opposite prediction can also be expected: during learning of predictive 

relationships, looking at a pair could elicit longer looking times initially, while the time-course of 

these effect could vary across participants.   

Our data analysis models proved to be a sensitive measure of pair structure influences in the eye-

movement data, however, by design they were not learning models that could provide insight into 

the process of information acquisition. In order to model the learning process itself, something along 

the lines of a Bayesian Chunk Learner (Orban, Fiser, Aslin, & Lengyel, 2008) could be used. The 

Bayesian Chunk Learner has been successful in explaining spatial statistical learning in different 

paradigms, but only in scenarios where the full statistical scenes were presented at once to the 

observers. It remains to be seen whether such a model could be constrained by the exploration data 

of human observers and predict individual learning outcome.  

Conclusions 

We showed that eye-movements are a sensitive measure, which correlate with and, therefore, could 

be used for predicting the learning of spatial regularities. We also provided some evidence that this 

method presumably tracks the transfer from implicit to a more explicit internal representation. 

However, statistical learning is an automatic process, which can be robust without any effect on 

visual exploration. These findings also speak to studies of human information search, showing that 

people can use arbitrary spatial relationships of novel stimuli to guide visual exploration. However, 
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such influences were mostly confined to successful learners, leaving the problem whether fully 

implicit statistical learning influences eye-movements as an open question for future research. 
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Chapter 3.  

The link between Statistical Learning, Eye-movements and Working 

Memory 
 

 

 

 

Summary 

In this chapter, we investigated eye-movements in three visual statistical learning experiments, while 

participants performed a working memory task in parallel. In Experiments 4-5, we used a gaze-

contingent spatial statistical learning paradigm to show that while participants used the global 

structure of the scenes to guide visual exploration, they were not affected by the local pair structure 

of the scenes. Furthermore, we also showed that working memory and statistical learning were 

linked suggesting that working memory capacity could be used as a continuous indicator of statistical 

learning. Using a temporal statistical learning paradigm in Experiment 6, we demonstrated that eye-

movements represented a sensitive measure of statistical regularities even when observers showed 

no evidence of learning during a subsequent familiarity test.  
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Introduction 

 

In many statistical learning studies (Fiser & Aslin, 2001, 2002; Saffran, Johnson, Aslin, & Newport, 

1999), just as in our Experiment 2-3 of Chapter 2, learning emerges without participants receiving 

specific instructions on what to do exactly with the stimuli. We used this approach successfully in the 

previous chapter to establish learning related influences on gaze contingent exploration patterns.  

However, we found a large individual variability both in terms of learning performance (as measured 

by the familiarity test) and in the statistical influences on eye-movements. An important reason 

behind such variability could be the open-ended nature of the task, which allowed participants to 

freely choose how exactly they engage with the stimuli.  One potential way to reduce this variability 

is to include a well-defined task that the observer has to perform, which is unrelated to the statistical 

structure of interest, but ensures that the observer’s attention is maintained on the stimuli. Similar 

approaches have been used before successfully to measure the learning of temporal- (Turk-Browne 

et al., 2005; J. Zhao et al., 2013) and  spatial regularities (Chun & Jiang, 1998).  A second advantage of 

having an independent task, while unbeknownst to the participants, the stimuli have regularities, is 

that responses related to the task might be used to track learning itself (Chun & Jiang, 1998; Howard 

Jr & Howard, 1997; Karuza et al., 2014). A third advantage is that this method can provide insights 

about the interaction between the explicit task and statistical learning. Interestingly, these 

advantages were not explored extensively before.  For example, despite fact that some of the 

measures in the studies mentioned above relied on visual search, little is known about whether those 

effect are mediated via overt attention, since eye-movements were not tracked in most experiments 

(R. Q. Yu & Zhao, 2015; J. Zhao et al., 2013).  

A good candidate for a parallel task performed during implicit statistical learning is the one-back task 

testing working memory performance (Owen, McMillan, Laird, & Bullmore, 2005). First, a simple one-

back memory task requires continuous engagement with the stimuli, but only occasional 
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interruptions of the stimulus presentation stream. Second and more importantly, abilities to perform 

in working-memory tasks have been shown before to correlate with learning performance. 

Specifically, several studies reported that when associations between sensory elements are learned 

in an implicit manner, observers demonstrate an increased working memory capacity for compound 

stimuli containing the associated pairs, presumably because the co-occurring elements are stored in 

the memory more efficiently as chunks (Brady, Konkle, & Alvarez, 2009; Brady, Störmer, & Alvarez, 

2016). Therefore, a working memory task running in parallel while eye-movements are measured 

during statistical learning could not only keep people engaged with the stimuli, but it could also be 

used as a measure of the chunk learning process itself.  However, at present time it is underexplored 

what type of regularities working memory capacity can benefit from. Furthermore, it is unknown 

whether adding such a task would impact statistical influences on eye-movements. To explore these 

questions, we ran the next three visual statistical learning experiments while the participants 

performed a parallel working memory task at the time of exposure.  

  

Experiments 4-5: Active Statistical Learning and Working Memory 

 

Introduction 

Previous studies used a parallel visual search task to measure implicit learning of the global 

arrangement of identical elements predicting a single target (Chun & Jiang, 1999) or predictive 

temporal relationships between novel shapes (J. Zhao et al., 2013). Meanwhile, a different study 

showed that working memory capacity is sensitive to learned regularities  (Brady et al., 2009). 

However, the regularities in this latter study were easily distinguishable as they did not require 

segmenting complex scenes or sequences of stimuli in an unsupervised manner as is necessary in 

typical visual statistical learning studies.  There are only a few published papers linking these two 

research directions by exploring whether the kind of associations that are regularly used in statistical 
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learning studies would also able to enhance working memory capacity by enabling chunked 

representations (Nassar, Helmers, & Frank, 2018). Moreover, none of these explored the link of 

these phenomena to eye-movements.   

We had three main goals with combining active statistical learning with a working memory task: 1) To 

confirm that people can learn about the spatial statistical structure despite the potentially taxing 

parallel task.   2) To test whether working memory performance can indicate the progression of 

statistical learning with more complex stimuli than the one used by Brady et al (2009), which did not 

required unsupervised segmentation across trials. 3) To see what kind of statistical information is 

learned and whether this learning influences the patterns of visual exploration. 

In order to achieve the first goal in Exp 4, we combined the active statistical learning paradigm of 

Chapter 2 with interleaved memory probes. In order have a clear baseline for the 2nd and 3rd goals, 

we ran a control experiment (Exp 5), in which we kept the global structure of the scenes intact but 

shuffled the shapes within the overall silhouette. This manipulation allowed us to test two levels of 

statistical complexity (pair structure vs global structure) with respect to their respective influence on 

visual exploration and working memory performance.  

 

Methods 

Participants 

Participants gave informed consent before the start of the experiment and received 1500 HUF worth 

of food vouchers as compensation.  41 students completed Exp 4, from which one participant was 

excluded because of not exploring the scenes and had an average looking time to central cell regions 

over 3 seconds (Group Mean +/- SD = 539 +/- 114 msec), leaving a final sample of 40 (13 male, 35 

Right Handed).  37 students (9 male, 34 Right Handed) completed Exp 5 without any exclusion. 

Stimuli  
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In Experiment 4, the stimuli were the same as in Experiments 1-3, with 144 unique scenes (Fig 3.1 A-

B). In Experiment 5, the stimuli were the same, but the arrangement within the scenes was randomly 

selected: the same scenes were used as in Experiment 4, however the position of the shapes within 

the scenes was shuffled on each trial scenes (Fig 3.1 A,C). This way, the outline of the scenes was 

identical to those in Exp 4, but the position of shapes within the scenes was unpredictable. 

Importantly, this manipulation also left the joint appearance probability of the shapes unchanged: 

shapes forming pairs were always present in the same scenes, but they were not predictive of each 

other’s relative spatial location. 

Working Memory Task 

The stream of active exploration trials was occasionally interrupted by working memory probes. On 

these probes, all 12 shapes were simultaneously presented at the two sides (6-6 on each side) of the 

presentation grid. The order of the 12 shapes on the working memory probes was randomly selected 

for each participant but did not change within the experiment. Participants had to use the mouse to 

select the six objects that had been present on the immediately preceding exploration trial. They had 

unlimited time to perform this selection and received no feedback on their choices. There were 14 

working memory trials pseudo-randomly interleaved within the 144 exploration trials. The same 

Figure 3.1. Structure of Exp 4 & 5 A) Example Statistical Learning Pair Structure. B) A statistical learning scene 
assembled from three pairs in A, as used in Exp 4. (and Exps 1-3.) C) Example scene of Exp 5. Locations of 
shapes from the same three pairs are shuffled while keeping the original overall silhouette. This way, the global 
structure of the scene is intact, without any spatial predictive power for individual shapes. 
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pseudo-randomization was used for each participant, to avoid unnecessary variability across 

participants. Two additional memory trials were included: after the last exploration trial and after the 

exploration trial following the first memory trial (6th trial), resulting in a total number of 16 memory 

trials. The goal of including two subsequent memory probes early on was to encourage participants 

to pay attention even immediately after memory trials. Later memory trials did not follow 

subsequent learning trials.  

Familiarity Test 

In both experiments we used the same 36 trial two-interval forced choice familiarity test as in Exps 1-

3, with the 6 real pairs tested against 6 foil pairs. This was an especially challenging test in Exp 5, 

since participants could not use the spatial arrangement of the real pairs as a cue. In Exp 5, the only 

information to learn which shapes form pairs was that pairs of shapes were always present in the 

same scenes albeit at unpredictable locations, while other shapes were co-present on maximum 50% 

of scenes. However, this regularity in Exp 5 was very hard to notice since the shapes forming a pair 

would not be adjacent on most of the trials, and thus they would not be visible together due to the 

gaze-contingent set-up. 

Procedure 

After calibrating the eye-tracker, participants performed 15 practice trials, during which they 

familiarized themselves with the exploration of the scenes in a gaze-contingent manner by revealing 

randomly selected images of dogs on the 3 by 3 presentation grid (as in Exps 1-3). The practice 

exploration was interrupted three times with practice working memory probes, providing feedback 

on the number of correct choices after each memory trial. After the practice, the calibration of the 

eye-tracker was double-checked and if necessary recalibrated, and next, the main experiment 

started. Participants were told to pay attention, explore the scenes and perform the working 

memory task as well as they could. They were not told about any regularities, nor that they will have 

to answer some additional test questions after the exposure presentations.  
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Data Analysis 

On the visual exploration data of Exp 4, we have performed the same analyses that were described in 

the General Methods section of Chapter 2. Although the stimuli of Exp 5 had no spatially predictive 

pairs, we calculated the same measures as for the other experiments, as if the pairs were in their 

original positions (before the shuffling). This way, Exp 5 gave us a baseline for pair transition 

measures: the proportion of looks within positions that contain pairs in Exp 4, but without an actual 

pair structure. 

In order to assess the knowledge of Global Statistical Structure, we introduce a novel measure, based 

on three types of transition from a given shape: 

X1. : Transition to the other shape of the pair the shape belonged to 

X2. : Transition to another shape (that is not the other shape of the pair) 

X3. : Transition to an empty cell 

We defined our new measure, the Shape Exploration Rate as: (X1 +X2)/(X1 + X2 + X3).  This measure is 

sensitive to the global structure, without being sensitive to the internal pair structure.  

To obtain a chance level, we randomly paired the visual exploration data with the presented stimuli 

100 times for each participant and calculated the above-defined measure for each shuffled data set.  

Finally, we averaged over the 100 simulated values to get an individual chance level. 

To compare measures between groups with largely different sample size, we used the 

permutation/randomization test (Craig & Fisher, 1936). First, the overall dataset was randomly 

divided into groups two (same as the original sample-sizes, without replacement) 5000 times. The 

difference between the groups was calculated for each permutation. Afterwards, we determined 

where the actual measured difference fell within the distribution of permutated differences, to 

obtain a p value. 
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Results 

Familiarity Test Performance 

On the 2-IFC familiarity test in Exp 4, participants demonstrated a robust learning (63.47 +/- 17.6% 

Correct; Difference from chance: t39=4.781, p<.0001, BF=866.15) (Fig 3.2A). Performance on 

experiment 5 was slightly but significantly above chance (55.86 +/- 14.01% Correct, Difference from 

Chance t36=2.499, p=.0171, BF=2.66) (Fig 3.2B). Performance in Exp 4 was significantly better than in 

Exp 5 (t75=2.0605, p=.0428, BF=1.44). 

Working Memory Performance 

In both experiments, participants performed the working memory task significantly better than 

chance (Exp 4 t39= 10.9014, p<.0001; Exp 5 t37=11.598, p<.0001).  On average, they selected 4.02 +/- 

0.59 correct images in Exp 4. and 3.94 +/- .48 in Exp 5, thus their performance was not different in 

the two experiments (t75=.677, p=.5007, BF=.29) (Fig 3.3A). To test whether participants’ 

performance was changing over time, we fitted a least square regression line to the individual 

working memory performance for each subject with trial number as the predictor.  The mean slope 

of the regression line was positive in Exp 4 (t39=3.535, p=.0011, BF=28.79), indicating that 

participants’ performance was improving over-time (Fig 3.3B). In Exp 5, the overall trend was also 

positive, but it fell short of significance (t36=1.7457, p=.0894, BF=0.7). The slopes between the two 

Figure 3.2 Familiarity Test Performance Distribution Exp 4 & 5 A) Exp 4 B) Exp 5. Participants are grouped into Low, 
Medium and High Learners as Red/Blue/Green. Vertical Solid Black/Grey Line: Mean/Median, Vertical Dashed 
Line: Chance. Performance was highly above change in Exp 4, with a significantly better performance than Exp 5, 
where the performance was still slightly above chance (stats in main text). 
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experiments were not significantly different (t75=1.6124, p= .1111, BF= .722), with Bayes Factor 

suggesting that data is insensitive. The reasons for this could be that some participants improved 

over-time in the working memory task in Exp 5, for reasons unrelated to the pair structure. 

 

Relationship of Working Memory and Statistical Learning performance 

In Exp 4, good learners on the familiarity test, were also better in the working memory task (r38=.423, 

p=.0066, pexact=. 0046, BF=6.938). All groups started from the same level of working memory 

performance (Fig 3.3C), suggesting that the relationship is in fact related to learning, and not just a 

general influence of attention or effort. This is further supported by the fact that in Exp 5, we found 

no relationship between statistical learning and working memory performance (r35=-.011, p=.9484, 

Figure 3.3. Working Memory Task Performance in Exp 4 & 5 A) WM task perf. over time (16 trials interleaved 
into the 144 exploration trials) for Exp 4-5 (impWM-impWMshuf). Overall performance was not different 
between the experiments.  B) Slope of WM performance was significantly above chance in Exp 4 but not in Exp 
5, though the difference was not significantly different.   C) Working memory performance in Exp 4, grouped by 
familiarity test performance. Though initially everyone was at the same level, good statistical learners improved 
in the working memory task over time D). No relationship between familiarity test performance and working 
memory task was found in Exp 5. Colors represent Low Medium and High learners as in Fig 3.2.   Errorbars: SEM 
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pexact=.9492, BF=0.205, Fig 3.3D), suggesting that for this correlation the presence of the pair 

structure necessary. 

Descriptives of Visual Exploration 

Average looking time at the gaze contingent mid-region of cells was 539 +/- 115 msec in Exp 4 and 

559 +/- 107 msec in Exp 5. Notably, these looking times were shorter and consequently the number 

of visited cells was larger than those reported for the Implicit Experiments (Exp 2 & 3: 656 and 736 

ms), but very similar to the Explicit Experiment (Exp1: 531ms) of Chapter 2. This suggests that giving 

participants a well-defined task encouraged them to explore the scenes faster. Similarly, the number 

of transitions was not different between the two experiments.  Participants made 8.39 +/- 1.32 

transitions between cells per trial in Exp 4, and 8.18 +/- 1.42 transitions in Exp 5, adding up roughly to 

about 1200 transition events over the course of the Experiments (Total Number of Transition Events: 

Exp 4= 1207.4 +/- 190.1, Exp 5=1177.9 +/- 205.0).  Importantly, as in Experiments 1-3, entropy-based 

based analysis showed that transitions were more unpredictable if they were initiated from cells that 

contained an object at any given trial as opposed to empty cells (Exp 4= t39=9.6859 p<.0001, Exp 5 

t36=9.056 p<.0001).  
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Pair Structure effects on Visual Exploration 

Pair Transition Measures 

To measure the effect of pair learning on the eye-movements, we calculated Pair Exploration Rate 

(Fig 3.4A-B) and Pair Return Rate13. Neither measure showed pair-structure-related changes in Exps 4 

or 5, nor could they predict performance on the familiarity test (Correlation test performance: Pair 

Expl. Rat: Exp 4: r38=.1632, p=.3144, pexact=.3270, BF=0.32; Exp 5: r35=-0.1513, p=.3715 pexact= .366.  

BF=0.3;  Pair Ret. Rat: Exp 4: r38= 0.138,  p=.3953, pexact= .3954  , BF=0.28 ; Exp 5: r35= .043, p= .7988 

pexact= .808 , BF=0.21). Furthermore, the measures in Exp 4 were not significantly different from Exp 5 

(Pair Exploration Rate: t75=1.1306, p=.2618 BF=0.41; Pair Return Rate: t75=1.8195, p=.0728, BF=0.98), 

suggesting that the values in Exp 4 (Fig 3.4A) are a consequence of exploring the silhouettes and do 

not reflect any influence by the pairs. 

                                                           
13 For definition of measures see General Methods in Chapter 2, for descriptive stats Appendix Table A.1. 

Figure 3.4. Pair Structure influence in Exps 4 & 5. There was no learning influence of the pair structure in either of 
the experiments. A) Pair Exploration Rate in Exp 4 B) Pair Exploration Rate in Exp 5. C) Model based pair influence 
in Exp 4. D)  Model based pair influence in Exp 5. Colors: familiarity test performance as before. Error bars: SEM, 
Green line on B & D is a single participant. Dashed Black line on A-B: shuffled chance.   

A B 

C D 

C
E

U
eT

D
C

ol
le

ct
io

n



96 
 

Model based Results 

We have fitted the pair-influence model (M1) to the exploration data of Exp 4, which was used in 

Experiments 1-3 in Chapter 2, and found no relationship between learning and the value of the pair 

structure sensitivity parameter α (r38=-0.113, p=.4891, pexact=.4964 BF=0.25, Fig, 3.4C).  We did not 

find any correlation between α and learning in Experiment 5 either (r35=0.004, p= .9796, pexact= .9794, 

BF=0.2;  Fig, 3.4D), but this was expected as there was no spatial pair structure in the stimuli of this 

experiment.  For this reason, whatever fitted values we found, it could only be a consequence of 

over-fitting and cannot reflect a true influence of a statistical structure.  The fitted values of α were 

not different between the two experiments (t75=0.5944, p=.554 BF= .28), despite the prominent 

contrast between the pair-based structure of Experiment 4 and the “pair-less” baseline structure of 

Exp 5.  This is a further confirmation that the pair structure in Experiment 4 had no or minimal 

influence on participants’ explorations.  

↓ Exp. Predictor: β N Cells β N Returns β PairExp. R. β Pair Ret. R. β M1 α 

WM - Exp 4  

Lasso (λ =.292) 

Least Square 

 

0. 

0.111 

 

0. 

0.2483 

 

0. 

0.1486 

 

0. 

0.0198 

 

-0. 

-0.0669 

WMshuffled - Exp 5  

Lasso (λ=.266 ) 

Least Square 

 

0. 

0.0817 

 

0. 

0.2179 

 

-0. 

-0.1198 

 

0. 

-0.0016 

 

-0. 

-0.0434 

Table 3.1. Combined prediction of learning.  Lasso (top in each cell) and Least square (bottom) regression weights 
for five predictors of visual exploration (as described in main text). The regularized Lasso regression shows, that 
unlike in Exp 1-3, none of the 5 visual exploration-based predictors could reliably predict familiarity test 
performance in Exps 4-5. The regularization parameter λ was selected with cross-validation. Values are rounded 
to four decimals.  

Combined Prediction of Statistical Learning 

Using a linear regression approach, with five measures of exploration behavior as predictors (Num of 

Visited Cell, Num of Return, Pair Exploration Rate, Pair Return Rate, M1 α), we have found that about 

10% of variance familiarity performance could be predicted (Exp 4=11.82%, Exp5= 8.137%). However, 

the cross-validated Lasso regression showed, that after regularization none of the variance in 
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familiarity test performance can be predicted with these measures, with zero regularized weights for 

all five predictors for both experiments (Table 3.1). 

 

Evidence of Global Structure Learning 

 

In order to measure the effect of knowledge about the global silhouette of scenes, we calculated the 

proportion of explorative transitions from a shape to another shape (Shape Exploration Rate as 

defined in the Data Analysis Section).  We have found that in both experiments, explorative 

transition within shapes were more frequent than what would be expected by chance (Exp 4 t39= 

6.6321, p<.0001; Exp 5 t35=4.7539, p<.0001, Fig 3.5), showing that participants use the global 

structure of the scenes in order to find the stimuli more effectively (this is also supported by the 

analysis in the next section). This effect was not linked to individual learning success, as shown by the 

lack of significant correlation with performance on the final familiarity test (Exp 4 r38=.2229, p=.1668 

pexact=.1698 BF=0.5; Exp5 r35=0.1115, p=.5113, pexact= .5162, BF=0.25). Meanwhile, the same measure 

was highly predictive of working memory task performance in Exp 5 (r35=0.4388, p=.0066, 

pexact=.0074, Bonferroni corrected pcrit=.0125, BF=7.14), but not significantly in Exp 4 (r38=0.2151, 

p=.1826, pexact=.1807, BF=0.46). This suggests that better usage of the global structure of scenes 

Figure 3.5. Global Structure influence in Exp 4 & 5. A) Shape Exploration Rate in Exp 4 B) Shape Exploration Rate 
in Exp 5. In both Experiments participants made more transitions within shapes than what would be expected by 
the shuffled chance. This suggests that they used the silhouette structure, to find more shapes. Note that the 
sample size in the blue group in B is modest (N=8), which could underlie the large drop in the third temporal bin. 
Errorbars: SEM 
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during exploration helped performing well in the working memory task in Exp 5, while in Exp 4 

working memory performance benefited from the pair regularities as described above. 

Contrasting Measures Across Experiments 

The combination of measures used for quantifying the influence of the pair and the global structure 

show very different patterns across our five active statistical learning experiments (Fig 3.6).  The 

global structure of the scenes, measured as looking proportion within shapes (regardless of pair 

structure), had the strongest effect in the Implicit Working Memory Experiment (Exp 4), while the 

influence of pairs was the weakest in the same experiment comparable to that of the control Exp 5, 

which had no pair structure to rely upon. Meanwhile, the pair structure had the highest effect on the 

Explicit pair test (Exp 1) and influenced participants equally strongly in the Long Implicit setup (Exp 3) 

with a notably less effect of global structure in the latter.  Participants in the Short Implicit 

Figure 3.6: Pair vs. Global structure. Contrasting Measures Across Experiments 1-5. X axis: Shape Exploration 
Rate: reflecting global knowledge of scene statistics. Y-axis: M1 alpha representing pair influence on 
exploration behaviour. The dots are averaged across participants in Experiments 1-5.  While pair influence was 
the lowest in the working memory experiments, the influence of global structure was the strongest.  Errorbars: 
SEM for the two measures. 

 

C
E

U
eT

D
C

ol
le

ct
io

n



99 
 

experiment (Exp 2) relied somewhat less on the pair structure than in the Long Implicit experiment 

(Exp 3), but equally little on global silhouette information.  

To test whether these are meaningful differences, we focused our analysis on the three experiments 

with pair structure and implicit instructions (i.e.: instructions not revealing the pair structure): Exps 

2,3 and 4. We compared the results of Exp 4 with a working memory task to the combined data set of 

the other two Implicit Experiments having no working memory tasks. We found that while in Exp 4 

the influence of global structure was significantly higher (t118=2.7811 p=.0063, Permutation Test 

p=.0064, BF=6.13), the influence of pairs (M1 α) was significantly below the other two experiments 

(t118=3.7406, p= .0003, Permutation Test p=0, BF=86.65). This confirms that while in the working 

memory experiment, participants were highly engaged with the scenes, they focused significantly 

more on the overall global structure of the stimuli than in Exps 2-3 resulting in high looking 

proportions between shapes. At the same time, these looking patterns were barely influenced by the 

pairs presented on any given trial, in a striking contrast with the strategies applied in Exps 2 and 3.  

 

Discussion  

We found that people can acquire spatial statistical regularities during active exploration with a 

parallel working memory task. We also found that statistics can be learned and utilized at different 

levels. In our task, two distinct types of statistical information were present: the general structure of 

overall silhouettes of scenes (Exp 4 & 5) and the particular pair structures of the components of the 

scenes (Exp 4 only).  Each of these was uniquely linked to the parallel working memory task. Generic 

silhouette learning helped in Exp 5 to explore shapes above chance, boosting working memory 

performance. The pair structure provided an additional benefit for WM performance in Experiment 

4, as suggested by two different measures: 1. temporal improvement in memory performance 2. 

better working memory predicted better statistical learning on the familiarity test. Nevertheless, in 

contrast to Exps 1-3, in Exp 4, we found no influence of the pair-structure learning on the visual 
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exploration patterns, only an effect of the global statistical structure of the presented scene 

silhouettes.  

These results indicate an intriguing dichotomy: while learning of all useful statistics during training 

can be reliably confirmed via measurements of performance and correlations, the eye movements 

are influenced by these statistics only to the extent to which they are relevant for efficient execution 

of the task at hand.  Specifically, both global shape and pair structures helped in remembering 

elements of the scenes, therefore, they both were acquired.  However, the task of remembering as 

many individual shapes as possible did not require enhanced exploration within pairs. Once the pairs 

had already been learned, upon looking at one of the shapes, the location and identity of the pair 

was already known, hence the memory task could be solved without looking systematically to both 

shapes within pairs.  In this case, uncertainty about the scenes would be reduced to a greater extent 

by looking at other locations, thus the within-pair attraction did not emerge in the eye movement 

patterns.  The intriguing question of what is needed to find eye-movement-related effects within an 

unrelated parallel task will be addressed by the next experiment. 

In principle, the increasing working memory performance in Exp 4 (Fig. 3.3B), could be explained 

either by the fact that memory capacity benefits from the statistical structure (Brady et al., 2009), or 

by a simple learning effect that people get better in the task over time. If the improvement were 

solely due to general learning with time (getting better at the task), then participants of Exp 5 would 

also be expected to show a significant benefit. The lack of such a significant improvement in the 

performances in Exp 5 (Fig 3.3.B) suggests that the pair structure was a crucial requirement for 

reliable improvement in the working memory task.  This link between statistical learning and working 

memory performance is further supported by the significant correlation between working memory 

and familiarity test performance in Exp 4.  The lack of such relationship in Exp 5 rules out the option 

that attention or motivation by itself could establish such a relationship between the two measures. 

Instead, a more parsimonious explanation of this correlation is that it is a consequence of statistical 

learning that, as a common underlying factor, boosts both working memory and familiarity test 
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performance. Therefore, our findings extend those described by Brady et al (2009), by showing that 

even when discovery of statistical structure requires segmenting complex novel scenes implicitly, 

working memory still benefits from learning about those regularities. 
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Experiment 6.: Eye-movements are attracted by temporal regularities 

 

In Chapter 2, we found two conditions when learning statistical structures could influence eye 

movements: either there was an explicit task that directed the observer’s attention and hence eye 

movements to the statistical structure in question (Exp 1), or there was no task, so after an extensive 

exposure, observers begin to benefit from the underlying structure (Exp 3 and to some extent Exp2). 

In Experiment 4 of the present chapter, we used an unrelated task, and found that while the pair 

structure was learned, it did not influence eye movements.  What is the explanation of these 

opposite results? 

 One possibility is that such eye movement effects can only manifest themselves when participants 

are either informed explicitly about the structure or they are not controlled by any parallel task. An 

alternative possibility is that structure-related eye-movement effects could still be present even in a 

working memory paradigm, but, the setup of Exp 4 hindered their manifestation. It is conceivable 

that with simpler statistical structure and measurements of eye movement changes (e. g. increasing 

looking duration to certain areas), it would be possible to demonstrate structure-related eye 

movements even in the presence of an unrelated parallel task. This could be achieved with some 

parts of a scene being more random, while other parts containing more regularity: a statistical 

influence in such a paradigm would not require specific patterns of eye movements, only more 

looking at the area with regularities- as in preferential looking paradigms.   

Demonstrating an effect of statistical structure on eye movements in such a setup would be 

significant because, instead of a rigid top-down relationship in which it is always the task that defines 

eye-movements, it would suggest a more dynamic balance between the complexity of the 

environmental statistics and the malleability of the active learning system.  Depending on how much 

statistical structure there is in the environment, how developed the internal representation of this 
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structure and how complex the task at hand are, eye movement might be controlled to a different 

extent by the different factors, of which the task itself is only one. 

A suitable method to test this has been described recently (J. Zhao et al., 2013).  This study found 

that attention was implicitly attracted by visual event sequences containing transitional regularities, 

but the experimenters only assessed participants’ response times and did not measure their eye-

movements during the trials. Specifically, participants passively observed 4 continuously running 

parallel streams of visual shapes in four quadrants of the screen. The streams were frequently 

interrupted by a visual search array, appearing at the locations of the stimulus streams. The 

observer’s task was to find a target and decide whether it was left- of right-oriented. Unbeknownst 

to the participants, images in three out of four visual streams were presented in a random order, 

while the fourth stream contained statistical regularities in the transitions between shapes. The 

regularities were similarly to previous temporal statistical learning experiments (Barakat et al., 2013; 

Fiser & Aslin, 2002). The main finding of Zhao et al (2013) was that participants were faster to 

respond to the target if it appeared at the location with statistical structure. This was the first study 

to show that attention was biased by the mere presence of regularities in the input. However, an 

alternative explanation for the results of Zhao et al (2013) could be that participants did not attend 

more to the location of the structured stream, but the search targets were more easily 

distinguishable at the structured locations: if a sequence is more predictable, the search target could 

more pop-out at the regular location regardless of attention. The previously reported effect of 

contextual cuing relies on very similar measures – and very different statistical information- and it 

has been shown to influence eye-movements (M. S. Peterson & Kramer, 2001).  However, that study 

has also been criticized on the basis of not really reflecting attentional guidance only faster response 

selection (Kunar et al., 2007). 

 To rule out such a pop-out based explanation and test if attention is biased by regularities, it would 

be informative to have a continuous measure of attention in a similar paradigm. An obvious 

candidate is eye-movements, as they are a common measure of overt attention orienting. Therefore, 
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if attention is influenced by regularities, it is expected that this effect will show up in overt attention 

and will be measurable by gaze location. Interestingly, statistical influences on eye-movements had 

only been shown with simpler manipulations, such as high probability of target appearance in one 

region of screen (Y. V Jiang et al., 2014) and not with complex transitional regularities. 

The assumption underlying the attentional bias to regularities is that this effect subserves learning: 

for a sequence to attract attention, it should be learnable but not too easily learnable (Kidd, Palmeri, 

& Aslin, 2012).  The low learning performance (around 54% correct responses on the familiarity test) 

reported by Zhao et al (2013) suggests that the sequences used in this paradigm are not too simple, 

so they likely attract attention for a long time. Given that a structured sequence is clearly less 

complex than a random sequence and that separating a structured sequence from a random one 

takes time, this paradigm is a good candidate to demonstrate an eye-movement-based attentional 

bias to regularities.  If bias to regularities is related to learning, it should be possible to link individual 

biases in attention to learning. On the other hand, if statistics of the stimulus sequence is fully 

acquired by the observer, attentional biases might not persist any longer. One study investigated the 

complex temporal relationship between exposure time to statistical regularities and the emerging 

selective bias to attend more those regularities (R. Q. Yu & Zhao, 2015). This study used a modified 

version of the paradigm in (J. Zhao et al., 2013) by manipulating the location or presence of statistical 

regularities over time. The main finding of the study was that the attentional bias towards locations 

containing regularities persisted even after those regularities already vanished (R. Q. Yu & Zhao, 

2015). However, the exact link between attention and learning was not established in this research, 

therefore, it is not known whether there is any direct relationship between the temporal bias to 

regularities and learning. One problem with the design of the Yu & Zhao (2015) study is that each 

participant might had a different learning curve, therefore, looking at the averaged learning across 

blocks of trials and participants might have hid many of the potentially learning related temporal 

variability in behavior.  
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To investigate whether the looking location preferred by the observer is influenced by the 

regularities at that location, we adapted the paradigm of Zhao et al. (2013). Because the complexity 

of the design and the low learning performance in the original paradigm, we decreased the number 

of stimulus streams to one structured and one random. Additionally, we changed the parallel task, to 

one that encourages participants to pay attention to the stimuli.  We expected that people will look 

more to the stimulus stream containing regularities, and we also expected that the strength of this 

effect will predict learning success on the subsequent familiarity test. 

Figure 3.7. Stimuli and Structure of Exp 6 A) 2 set of 9 stimuli (1 set of shapes -1 set of Chinese characters, 
background grid was not present in the experiment) were used for the experiments. One of the sets was 
arranged into triplets, (top left). Stimuli within a triplet always followed each other. The other set of 
shapes appeared in a random order. B) The streams were presented in parallel at the two sides of the 
screen (shape presentation time and ITI both 750ms). During the intertrial interval, the squares were 
visible with a blank inside. The actual distance of the two squares relative to the size of the squares was 
larger than on this figure, covering an area of 22.4 visual angles. 
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Methods 

Participants 

32 students (11 Male, 3 left handed, mean age 22.5, range 18-40 y) participated in the experiment. 

None of the participants spoke or studied Chinese. The selected sample size was more than 25% 

larger than sample size in previous similar paradigms (N=22-25 in R. Q. Yu & Zhao, 2015; J. Zhao et 

al., 2013) to gain more power.  

 

 

Stimuli 

Two sets of 9 shapes were used for the experiment. One set of shapes was selected from simple 

Chinese characters, the others were abstract shapes commonly used in visual statistical learning 

experiments (Fig 3.7A).   For each participant, one set of shapes was always divided into 3 triplets of 

three shapes.  We used a 15” screen 60Hz screen for stimulus presentation with a resolution of 

1280*1024. Two streams of shapes were presented at the left/right sides of the screen in parallel on 

a gray background (Fig 3.7B). The center of the two streams was 23.75 cm apart, which covered 22.4 

degrees of visual angle, since the viewing distance was 60 cm. 

Procedure 

Before the start of the experiment participants practiced the task (described in detail below) with 

different stimuli (drawings of common objects), which were presented in a random order at the 

left/right side of the screen. After the practice, the eye-tracker (Tobii 50 Hz) was calibrated with a 15-

point calibration. Before the experiment started, participants were instructed to pay attention and 

perform the working memory task, but they were not given any specific instructions about where to 

look. They were not told about possible regularities in the stimuli. Participants used a chin-rest 

during the course of the experiment. 
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A random stream of shapes on one side and structured at the other was presented for 450 trials. The 

side (L/R) and the stimulus type (abstract shape vs Chinese character), which contained the 

regularities was counterbalanced across participants. The images were presented at 400 pixels left or 

right from center, and were surrounded by a black square, which was constantly visible and had a 

size of 160*160 pixels. Following the presentation times used by Zhao et el (2013), both stimulus 

presentation time and the inter-trial interval was 750ms.  

In one of the streams, the shapes had a random order with a constraint that individual shapes could 

never repeat immediately and the number of times each shape was presented was balanced overall 

(9 shapes repeated 150 times).  The structured stream consisted of triplets, meaning shapes within a 

triplet always followed each other in fully predictable order.  Triplets could never repeat twice in a 

row immediately. We balanced the number of times a triplet was presented (overall 150 

repetitions/triplet).  

The presentation stream was interrupted 36 times with memory probes: these probes were pseudo-

randomly interspersed after 8-12 trials. At each memory probe, a shape was presented centrally, and 

participants had to decide whether it was the immediately preceding shape at one of the sides 

(answer: left/right arrow for the two sides) or it was not present on the previous trial (answer: up 

arrow key). Each shape was used as a memory probe twice over the course of the experiment, once 

immediately after it was presented as the member of the stream (correct target) and once as a 

“distractor” when it was not present on the screen immediately before the memory probe (incorrect 

target). Since we were interested in eye-movements while participants observed the streams of 

uninterrupted stimuli, we decreased the number of the interleaved probes relative to the Zhao et al. 

(2013) study. Therefore, our working memory probe trials were not aimed at replicating the reaction 

time findings of that study. The primary goal of the memory probes was to ensure that participants’ 

attention was maintained at the two streams of shapes. Potentially, these memory probes could also 

be used to assess influences of statistical structure on working memory performance. 
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After the 450 trials of stimulus presentation and the memory probes were over, participants had to 

perform a two-interval forced choice familiarity test.  Participants did not know in advance that there 

would be such a test. In this test, the three real triplets were tested against three foil triplets. The foil 

triplets were assembled from the stimuli of the structured stream, but the shapes were arranged in 

an order that never occurred during training. Shapes kept their temporal position within the foil 

triplets (eg.: if a shape was the first element in a true triplet during presentation, it was also a first 

element in the foil triplets, combined with shapes from different true triplets). Stimuli during the 

familiarity test were presented centrally and had the same presentation time and ITI as the stimuli 

during training (750 ms). Each triplet was tested against each foil twice resulting in 18 familiarity test 

trials. Half of test trials started with the true triplet, the other half with the foil. No feedback was 

given.  

 

Data Analysis 

No participants’ data was excluded from the analysis of the study, but gaze data was only used from 

samples, for which the eye-tracker had a valid measurement of both eyes, as assessed by the 

software toolbox Talk2Tobii.  This criterion meant that 92 +/- 6.6% of collected gaze data could be 

analyzed during stimulus presentation.  If a trial had less than 25% valid data, it was excluded from 

further analysis, this resulted in the exclusion of an average of 2.5 trials per participant (.057% of 

trials).  

There exist a large number of eye-movement-based measures of memory in the literature: number 

of fixations, fixation duration, proportion of fixations in area of interest, proportion of viewing time 

etc. (for a comprehensive list, see: Hannula, 2010). Since we had no clear hypothesis about which of 

these measures would be affected by our manipulation, we were seeking for a single measure that 

could assess in an integrative manner the different ways people might engage more with one stream 

of the stimuli than with the other one. Moreover, we used the recorded eye positions, instead of a 
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fixation-based approach, because defining fixations is problematic and thus introduces an additional 

subjective factor to the analysis. We chose calculating the mean looking location at each trial and 

averaged this measure over all trials for each participant separately to have an individual measure of 

overall visual preference.  

Statistics were calculated using Matlab, SPSS  and the JASP package  (Wagenmakers et al., 2018). 

 

Results 

Familiarity Test Performance 

Overall participants responded correctly to 52.43 +/- 12.4% of trials (Fig 3.8A), which is not 

significantly different from the chance of 50% (t31=1.11, p=.2752 BF= 0.3316). Since the distribution 

of correct responses was not normal (Shapiro Wilk=.92, p=.0206), we used bootstrapping to obtain a 

95% confidence interval, which includes chance: 48.1-56.8%. This confidence interval, however, also 

contains the performance reported by a previous similar study (54 +/- 7.9% test performance in Zhao 

et al 2013). 

A B 

Figure 3.8. Task Performance in Exp 6. A) Working Memory (WM) and Familiarity Test Performance:  The 1-back 
memory task (x-axis) and the final familiarity test (y-axis). Dashed lines, chance for the two tasks. Blue dots: 
individual data. Red: Mean+/-SEM of performance for both tasks. The performance on the WM task was highly 
above chance, the performance on the familiarity test was not different from chance. The relationship between 
the two tasks (grey line: least squares) was numerically positive, though not significant. B) Working memory 
performance depending on whether the stimulus was from the random (x-axis) or the structured stream (y-axis).  
The average performance on the two tasks was the same, but with a large individual variability in whether they 
do better with one type of stimulus or the other.   (black solid line=identity) 
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Working Memory Task Performance 

Participants’ mean performance on the memory task was 71.35 +/- 8.21 % (Fig 3.8A) highly above 

the chance of 1/3 (t31= 26.1936 p=0).  Although knowing the statistical structure of the triplets could 

make the working memory task easier, there was no significant correlation between performance on 

the memory task and on the familiarity test (r30=.26 p=.1484, BF=.598).  Performance on the stimuli 

coming from the random or the structured stream was identical on average (Fig 3.8B, mean 

difference equal=0, t31=0, p=1, BF= 0.19). The difference in performance between the structured and 

random stream shapes was also not affected by the side (F1,28=0.432, p=.5166 η2=.015) or whether 

the Chinese or the abstract shape containing stream contained the regularities (F1,28=0.276, p=.6033 

η2=.01).  This shows that in the current paradigm the performance in the working memory task was 

not affected by representations of statistical regularity. 

Descriptives of Eye-Movement Data 

The trial length of 750ms allowed participants to saccade to both shapes at the two sides during a 

trial, but they could also look at only one of the stimuli or stay at the fixation cross while inspecting 

stimuli at the two sides peripherally. Since participants were free to pick between these strategies, 

there was considerable individual variability in their behavior. The most common strategy was to 

look at only one of the stimuli during a trial (43.26 +/- 17.73 % of trials), closely followed by looking 

at both stimuli (42.49 +/- 21.84 % of trials). Participants did not look at any of the two cells containing 

the stimuli on 13.47+/-21.31% of the trials. 

  

Statistical Structure Influence on Eye-movement data 

To measure the influence of the stimulus stream’s statistical structure on average looking location, 

we used a balanced 2*2 ANOVA, where the two factors were statistical structure (structured vs 

random) and stimulus type (abstract shape vs Chinese character). We have found that both the 
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stimulus type and statistical structure had a significant main effect (Structure: F1,28 =4.5, p=.0429 η2 

=.138; Stimulus Type: F1,28 =6.82, p=.0143 η2 = .196) with no significant interaction (F1,28 =.02, p=.8896, 

η2 =.001) (See Fig 3.9).  This indicates that position of looking at each trial was attracted by the 

statistical structure of stream. To see whether this overall effect was present from the beginning, we 

repeated the same analysis for the first 30 trials of the data and found no significant effects for either 

factor (Structure: F1,28 =1.407, p=.2450 η2 =.048; Stimulus Type: F1,28 =.53, p=.4722 η2 =.019, 

Interaction: F1,28 =1.692, p=.2043 η2 =.057). The absence of the effect at the beginning of the 

experiment suggests that the attraction of gaze emerged over time due to learning and it could not 

be explained by an unrelated bias. 

Unrelated to our main research questions, the average looking location was closer to the left side of 

the screen (Fig 3.9, Mean Looking Location from Center: -28.01 +/- 81.61 pixels, F1,28= 4.794, p= .037, 

η2 =.146). This left bias in the data is not surprising, since the participants could look at the shapes 

presented at the two sides in the order they preferred. Starting the inspection on the left more often 

is consistent with a well-known tendency to proceed with visual search from left to right (Spalek & 

Hammad, 2005). 

 

Figure 3.9: Statistical Influence on Eye-movements. Average looking location was influenced 
by both statistical structure and looking location with no interaction between the two 
factors.  This demonstrates that preferential looking location was attracted by statistical 
structure. (X- axis: St - Statistical Structure, Ch=Chinese Shapes, L-Left, R-Right) (Error bars: 
SEM) 
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Discussion  

Using a temporal statistical learning paradigm with different areas of the screen containing 

structured and random streams of stimuli, we have shown that people prefer to look more to regions 

that contain statistical regularities. The lack of learning in the subsequent familiarity test suggests 

that looking location bias can be a sensitive measure that indicates an influence of visual stimulus 

statistics even before that knowledge could be detected in a familiarity test. This is somewhat 

surprising as familiarity test is usually considered to be a sensitive measure that can show memory in 

situations where explicit recall would be at chance (Yonelinas, 2001).  In contrast, infant studies have 

used preferential looking to assess otherwise hard-to-measure knowledge for a long time (Spelke, 

1985).  

Our findings expand the findings of the previous study of (J. Zhao et al., 2013) suggesting that the 

attentional bias towards regularities they reported can be detected in eye-movement behavior. This 

confirms that previously reported reaction time results indicating attentional attraction were not due 

to a pop-out mechanism because of the violation of a learned sequence or easier response selection 

(Kunar et al., 2007), but due to an overt attentional bias that can be measured by eye-movements.  

Since eye-movements represent a continuous measure of oriented attention, they could be used for 

measuring potential changes in attentional biases over-time (R. Q. Yu & Zhao, 2015).  Our original 

goal was to link the individual variability in the temporal changes in data to individual learning 

outcome.  Unfortunately, the low familiarity test performance did not allow such an analysis. The 

lack of learning might seem surprising given the low number and highly predictive stimulus order in 

the structured stream. Moreover, the participants were clearly engaged with the stimuli enough to 

perform a memory task well above chance. However, the presentation of a parallel random stream 

could completely overshadow the discovery of the temporal regularities in the structured stream.  

This detrimental effect of mixing random and structured stimuli has been shown in previous studies 

(Jungé, Scholl, & Chun, 2007), albeit in a set-up where the random stimuli preceded the presentation 
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of structured input (as if predisposing people not to look for structure). It appears that parallel 

presentation of structured and random input has a similar effect. 

We used a parallel working memory task, but we did not find an influence of stimulus statistics on 

working memory performance based on two measures.  First, performance on the 1-back task was 

identical regardless whether the stimulus was from the structured or the random stream. This is 

surprising since it shows that the spatial attention bias, unlike the reaction time advantage shown by 

Zhao et al (2013), does not influence task performance across the spatial locations. Second, unlike in 

Experiment 4 with the spatial paradigm, we found no correlation between working memory and 

familiarity test performance, probably because of the low overall learning performance.  These 

results have to take with caution though as the effects were extremely weak, and stronger learning 

and/or more sensitive measurement of the interaction might change the picture. 

We have shown, that the presence of regularities attracts overt attention, even in the absence of 

clear evidence of learning those regularities. This confirms that eye-movement measures are a good 

candidate for investigating implicit learning processes, which can be more sensitive than a parallel 

working memory task. The low overall performance in the familiarity test, however, suggests that 

this specific paradigm is not suitable to investigate individual learning patterns without further 

improvement.  
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General Discussion 

Across a set of visual statistical learning experiments with a parallel working memory task, we have 

investigated the relationship between eye-movements, working memory performance and statistical 

learning. In Exp 4, we showed that implicit knowledge of statistical structure can emerge in parallel 

with improvements in a parallel working memory task that is related to that statistical structure, 

even without any detectable effect of the pair structure on eye movements.  In contrast, in Exp 6, we 

have found that presence of regularities can affect eye-movements in the absence of recallable 

learning at the subsequent familiarity test. This supports earlier findings that eye-movements could 

detect memory processes that otherwise could not be recalled (Hannula, 2010; Hollingworth et al., 

2001) .  

There are profound differences between the paradigms we used that could underlie these opposing 

results. While in both experiments participants were free to look wherever they wanted within the 

screen, in Exp 6, such a variation in looking position had no further functional relevance beyond side 

preference, while in Exp 4 it determined stimulus presentation gaze-contingently. It is possible that 

eye-movements are a more sensitive measurement of memory if they freely guided and not tied to 

the stimulus presentation. This would contradict a previous study, that showed probabilistic 

influences on eye-movements only manifest if target presentation is gaze-contingent (Paeye et al., 

2016). 

 To test if the presence/lack of gaze-contingent manipulation is partially responsible for the different 

results across experiments, the manipulation could be reversed: Exp 6 could be tested in a gaze-

contingent set-up, while Exps 4-5 could be tested with a non-gaze contingent presentation. In theory, 

it is possible that such a manipulation would reverse the findings. However, since there was no 

“recallable” learning in Exp 6, making that paradigm gaze-contingent could further harm learning 

effects.  Another option would be to test Exps 4-5 without a gaze contingent manipulation, with the 

C
E

U
eT

D
C

ol
le

ct
io

n



115 
 

whole scene visible at once. The problem with such an approach is that seeing shapes of pairs 

together by utilizing the visual periphery could completely abolish the learning-related influences on 

the eye-movements we observed in Chapter 2 as well as the global structure influences described in 

the current chapter. Resolving the contradiction above requires the future development of a non-

gaze contingent eye-movements measuring method that can be used to track spatial statistical 

learning.  

To sum up, we have shown that cognitive processes affected by the acquisition of statistical 

information from visual scenes depend on both the type of regularities in the scenes and the 

requirements of the task executed in parallel.  Preferential looking location can indicate the discovery 

of statistical regularities during performing a working memory task, even before that knowledge 

could be recalled on a subsequent familiarity test, suggesting that eye-movements can be a sensitive 

measure of learning. On the other hand, we also found an opposite outcome, in which the learning of 

spatial regularities did not influence eye-movements, while it was linked to working memory through 

increased capacity that indicated better learning performance. 
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Chapter 4 

Effects of Past Probabilities on Perceptual Decision Making: Exps 1-4 

 

 

 

 

Summary 

In a set of four visual discrimination experiments we investigated how past stimulus appearance 

probabilities influence perceptual decision making. We found that human perceptual discrimination 

was influenced not only by short-term, but independently and equally strongly by long-term changes 

in stimulus probabilities. The long-term effects could easily overwrite the short-term ones and could 

elicit a counterintuitive bias against making the locally more rational choice. In Experiments 1-4, we 

show that same local stimulus statistics across many dozens of trials can elicit very different 

preferences depending on the long-term experience, and more specifically, these effects depend on 

the relative values of short- and long-term summary statistics capturing stimulus probabilities.  
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Introduction 

How do we integrate uncertain sensory input with our expectations from the statistics of long-term 

experience? An intriguing proposal, which treats perception as an unconscious Bayesian inference 

(Kersten et al., 2004; Weiss, Simoncelli, & Adelson, 2002) posits that the past serves as a prior basis, 

which is combined with the likelihood of uncertain sensory evidence to reach a rational 

interpretation of the current input. This approach has been rapidly gaining influence, as a number of 

seminal papers demonstrated that human behavior can be quantitively captured within the Bayesian 

framework. Specifically, people have been shown to integrate uncertain sensory evidence with 

probabilistic expectations in a manner that can be described as near Bayes optimal (Ernst & Banks, 

2002; Körding & Wolpert, 2004). However, the literature is still divided on this issue as there are 

reported instances of human behavior falling short of Bayes-optimal integration (Ackermann & 

Landy, 2014). This discrepancy led to proposals that extended the benchmark for optimality by 

imposing realistic computational limitations (Vul, Goodman, Griffiths, & Tenenbaum, 2014) or 

suggested to switch focus away from optimality altogether (Rahnev & Denison, 2018). 

There exists a different line of research that goes beyond the canonical approach of combining long-

term statistics and current sensory input and demonstrates an interaction between long-term 

experience and recent statistics, which together influence momentary perception (Chopin & 

Mamassian, 2012). The main idea of this approach is that the difference between recent input and 

long-term experience will determine current expectations about the momentary input, as current 

statistics should resemble prior models. While the proposal is intriguing, it has proven to be 

controversial (Maus et al., 2013). For instance, Bohil and Wismer (2014) have shown that while 

momentary decisions are biased by the base-rate of long-term experience, there is no interaction 

between past and momentary statistics. Using reaction times, an additive interaction between long-

term and recent experience has been described: people are influenced by both long-term and recent 

experience and they are the fastest if recent statistics resemble long-term expectations (Wilder et al., 
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2013). While in the last few years there has been a surge of interest in short-term serial influences of 

past stimuli and decisions (Cicchini et al., 2017; Fischer & Whitney, 2014; Fritsche et al., 2017; 

Liberman et al., 2014), there are virtually no studies exploring whether these effects have anything to 

do with the above described long-term influences. 

The impact of long-term experience likely depends on whether conditions are stable: in volatile 

environments people should care less about long-term experience, since they are less predictive of 

the momentary conditions. Indeed, using a reinforcement learning framework, several studies have 

shown that people can adjust their reliance on past experience, depending on whether they perceive 

the environment as changing (Behrens et al., 2007; Nassar et al., 2010). Furthermore, during 

sequential perceptual decision making, people are more prone to adjust decision boundaries if 

conditions are volatile (Norton et al., 2017). However, there is no agreement about the best model to 

capture human behavior in such perceptual decision-making tasks in volatile environments, as very 

different models emerge as best predictors of behavior, even within the same participant (C. 

Summerfield et al., 2011). The reason why sometimes a simple working memory model captures the 

experimental data better, while in other cases a reinforcement learning or a Bayesian model prevails, 

remains to be resolved (Norton et al., 2017; C. Summerfield et al., 2011).  

This brief literature review demonstrates that while both long-term and recent stimulus statistics are 

important factors in perceptual decisions, their exact relationship is yet unclear. To address this 

knowledge gap in the literature we conducted a series of visual discrimination experiments. The 

general logic of the experiments was to provide a training block with feedback to form long-term 

probabilistic expectations, followed by a test block (feedback absent) that both set up the observer’s 

recent experience and assessed his/her decision-making performance. Across a series of three 

experiments, the test session had the same unbalanced structure (one of two alternatives appeared 

with a higher probability than the other), but we manipulated the training probabilities (i.e. the 

appearance probability of the objects during training). In a fourth experiment we assessed the role of 

long-term probabilities when the momentary probability conditions were balanced. Our design 
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allowed us to separate long-term and current statistical influences and to validate our main 

hypothesis: long-term expectations from the training block should strongly influence the participants’ 

decision during the test session and the extent of this effect should depend on the change between 

appearance probabilities during training and test. 

Methods 

Stimuli and Procedure  

Two shapes out of a set of 11 were randomly selected for each participant to serve as the 

discrimination stimuli. On each trial, the stimulus of size of 204*204 pixels (≈ 4.7 visual angle) was 

presented centrally (circa 4.7 visual angles) on an iMac 27” (2560*1440) using Psychophysics Matlab 

toolbox. Participants watched a screen in a dimly lit room at a viewing distance of 60 cm and used 

the left/right buttons of the keyboard to provide responses as to which shape they saw on the given 

trial. Instructions emphasized accuracy over reaction times but did ask for timely responses as there 

was an upper limit of four seconds to respond. The instructions did not mention stimulus 

probabilities or changes in the task structure. Trials were presented on a grey background display 

within a blue “box”, a 256*256 pixels large blue square, spanning approximately 5.7 visual angles.  

On each trial, one of the two shapes was presented embedded in Gaussian noise for 200 ms, while 

the thin frame of the box (12 pixels wide) remained visible (Fig 4.1A). After the stimulus disappeared, 

the center of the box turned white until the participant responded. After the response, the box 

reverted to blue until the next stimulus. The interval from the response to the next stimulus (RSI) was 

sampled randomly from a normal distribution with mean=1100 ms and SD=100 ms. 

 During the training block, negative feedback was given after each mistake (in the form of red 

exclamation marks) and no positive feedback after correct responses. During the test block there was 

only feedback if participants made a mistake on the 1/8th lowest noise trials in order to maintain 

attention (performance was over 90% in these trials, totaling to approximately 1% of test trials with 

feedback).  
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At each trial, varying levels of Gaussian noise were added to the grayscale stimulus (Fig 4.1B). The 

training started at a low noise level, and the variance of the Gaussian noise was gradually increased 

with a “2up/2down” adaptive staircase procedure. The training lasted for 200 trials, to have an 

estimate of discrimination threshold.  After 15-30 seconds of break, a 300-trial long test phase 

followed, where the Gaussian noise was sampled uniformly-randomly between low noise and the 

threshold reached during training.  

The appearance probability (AP) of the two shapes was manipulated across the four experiments. 

Three experiments (Exps. 1-3) had a biased 65% AP during test, meaning that one of the shapes 

appeared 65% of the time during the trials.  These three experiments differed only in their AP during 

training phase (Exp. 1=50, Exp. 2=65, Exp. 3=75%, Fig 4.2A). A fourth experiment used a biased 

training with 75% AP during training but a balanced 50-50% AP during test.  

Participants 

80 Hungarian students (18-30 year old) participated in Exps. 1-4 (20 in each experiment) and received 

monetary compensation. The participants gave informed consent before the start of the experiment 

and were unaware as to the purpose of the study. Four additional students completed one of the 

experiments but were excluded: three participants (1-1-1 from Exp. 1,2,4) due to chance level 

performance (below 60% on the easiest 1/3rd of trials), suggesting that they either did not pay 

attention or did not understand the task. One additional participant was excluded from Exp 1 

because of a very strong bias to give the same response all the time (3 SDs above the mean).  

Data Analysis 

 

Psychometric Curves 

To generate psychometric curves, we fitted a sigmoid function to the response proportions divided 

into three noise bins, according to the equation below: 
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Ψ(𝑥; 𝛼, 𝛽, 𝜆) = 𝜆 + (1 − 2𝜆)𝐹(𝑥; 𝛼, 𝛽) 
 

Here, Ψ represents the proportion of ”frequent” responses, and χ is the noisy stimulus, encoded as 

(-3,-2,-1)  for rare stimuli with low, medium, and high noise, and (1,2,3) for frequent stimuli with 

high, medium, and low noise. F is the cumulative normal distribution with mean=α and SD=β. The 

parameter α is the threshold (or PSE, point of subjective equivalence), representing the bias of the 

observer. The parameter β is the slope, which reflects perceptual sensitivity. These two parameters 

were fitted to the individual data, using Matlab and the fminsearch function. We fixed the stimulus 

independent lapse rate (λ) at .01, similarly to previous related work (Fritsche et al., 2017). 

 

Logistic Regression Modelling 

Since the basic psychometric curve ignores inter-trial influences (Fründ, Wichmann, & Macke, 2014), 

we turned to logistic regression models including past events as predictors. This can be interpreted 

as an extension of the psychometric curve with inter-trial influences, used in many previous papers 

investigating past influences on perceptual decisions (eg: Braun et al., 2018; Norton et al., 2017). We 

fitted the logistic regression individually, to investigate the key factors influencing each participant’s 

responses. This analysis was performed in Python using the scikit-learn library (Pedregosa et al., 

2011). Since the stimulus presented on a given trial has the strongest influence on the response, we 

used a model containing the current stimulus only as a null model. Stimulus noise was encoded in the 

model on a linear scale14 between -1 and 1 and not binned as for the psychometric curves. We 

compared the null model based on the present stimulus to more complex models that use various 

combinations of the bias term representing all long-term effects, together with the previous 

response and previous stimulus in one or two of the previous trials as predictors.  Calculated values 

of log likelihood, cross-validated likelihood, Bayesian Information Criterion (BIC), Akaike Information 

Criterion (AIC), and the small sample corrected AIC (AICc) were used to compare goodness of fit 

                                                           
14 see additional analysis on justifying the linear encoding of noise in Appendix Text B.1. 
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across models. For cross validation, we repeatedly fitted the model on batches of 95% of trials that 

were randomly selected and tested it on the remaining 5%.  

We performed a simulation analysis in order to determine which measure of goodness-of-fit 

described above was most likely to distinguish true generating model from the alternative models. 

For this, we simulated responses of the 12 candidate models to the stimulus sequence presented to 

each participant during Exps. 1-7 (see details of Exps. 5-7 in Chapter 5) and evaluated the models’ 

performance. The 12 models included all combinations of the following regressors: Present Stimulus 

(null: 0), Bias (B), Previous Decision (D1), Previous two Decisions (D2), Previous Stimulus (S), and the 

full model with all five parameters (F). During the simulations, first, parameter values for each 

simulated participant were sampled from a normal distribution with mean and SD of the model fitted 

to the empirical data set. Next, the 12 candidate models were fitted to each data sequence and the 

four measures of model fit were calculated for each measure (AIC, AICcorr, BIC, Cross-validated 

likelihood-CVLL, See Appendix Figure B.1.). The entire fitting process was repeated 20 times. For each 

model fit measure, based on all simulated participants’ data, we calculated the percentage (from 

20*12 runs) with which the best fitted model was the true generating model: the AIC/AICc measures 

based either on total or on the mean of individual likelihoods performed at 100%, while CVLL and 

individually-fitted BIC both performed at ≈71%, and BIC fitted on total likelihood performed at ≈33% 

(chance=8.33%). Thus, our analysis based on recovering parameters of simulated data showed that 

AIC/AICc was the most accurate measure for finding the true model on our dataset (Suppl Fig 4). 

Therefore, we applied this measure for performing the actual model selections in this study by fitting 

each candidate model individually to the full dataset and selecting the best model according to AIC.  

We note that the best model based on the cross-validated likelihood measure was very similar to 

that obtained with AIC. 

To compare the relative significance of the various predictors in any given model, we standardized 

the logistic regression weights by multiplying the absolute value of the weights with the SD of the 

predictors (Menard, 2004).  This ensured that the beta weights did not depend on the scale of 
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encoding the predictors and their predictive power could be directly compared. This method was 

used instead of the customary way of standardizing the data to z-scores before fitting the model, 

because standardizing would remove the bias, which was one of our main measures of interest.  We 

validated our standardized method by using a range of different values to encode the different 

predictors and confirming that the relative beta values remained the same. The regression weights 

across studies were compared by standard one-way ANOVA significance test. For descriptive 

statistics on the fitted model parameters for Exps. 1-7 see Appendix Table B.1. 

Recent Past Influences 

To analyze the interaction of the recent past and long-term probabilities in the raw data, we needed 

a measure of the recent probabilities.  To this end, we binned the response of each trial into one of 

four bins depending on the number of times the frequent shape was selected as the response in the 

3 trials preceding the current one (0,1,2 or 3 frequent responses during the last 3 trials). To perform 

this analysis, we used a mixed ANOVA with recent past as the repeated factor and the experiments 

as a between subject factor. Two participants in Exp 3 were excluded from the analysis due to a 

missing data point in one of the bins (because they did not have a sequence of 3 rare responses 

throughout the 300 trial test session). 

Confidence Intervals 

Confidence intervals were obtained by bootstrapping across participants 5000 times, calculating the 

mean of each bootstrapped sample, and taking the 2.5% and 97.5% percentile values of the obtained 

distribution of bootstrapped means. 

Reaction Time Analysis 

To test our measure of interest, we compared median reaction times for frequent vs. rare responses 

with t-tests. When the data presented strong outliers in the data (Fig 4.4D), we also report 

nonparametric tests (Wilcoxon signed rank test). Descriptives for all experiments alongside both t-

test and Wilcoxon signed rank test can be found in Appendix Table B.5. for Exps. 1-7. 
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Bayes-Factors 

To obtain Bayes factors (BF) for between group comparisons we used an uniform distribution of 

possible differences between groups (Dienes, 2014). For comparing decision bias across groups, we 

used a maximum difference of 1, since the group values change in the range of [-0.5 +0.5]. However, 

as the value of the BF depends on the maximum possible difference, we re-calculated the Bayes 

factor with smaller (.7) and higher value (1.5) for maximum difference, finding support for the same 

conclusions. The reaction time analysis of differences across groups used a 250 ms maximum 

difference across groups. To calculate BF for 2-sampled comparisons, we used the BayesFactor 

package with a non-informative Jeffrey-Zellner-Siow prior on the value of effect size (Rouder et al., 

2009). We used the convention that BFs smaller than 1/3 provide evidence for the null, between 1/3-

3 are inconclusive, while BFs larger than 3 provide evidence for the alternative hypothesis. 
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Results of Experiments 1-3 

 

Model Selection Results 

The AIC-based model selection analysis showed that the best model to predict participants’ 

responses included a bias term, the current stimulus and the previous two decisions (Fig 4.1C). While 

the previous stimulus had a small negative influence on the current answer, the improvement in 

model fit was not sufficient to include it in the full model. Absolute standardized regression weights 

Figure 4.1. General Methods and Model Selection A) Trial: Stimuli were presented in noise within a ”box” for 200 
msec. The response was followed by next stimulus after ~1100 msec. B) The experiment was divided into a 
training block with feedback, and test with no feedback. During test, noise level was sampled randomly on each 
trial. We were interested in the influence of immediate, recent and long-term past statistics in their influence on 
momentary perceptual decisions. C) We found that the best model to describe the data (star) apart from the 
current stimulus, included a Bias term, and two decisions (D2) from the immediate past. (S1=stimulus on 
previous trial) Blue: parameters from Immediate Past, Red: Long-term influence. Hatched: Long-term and 
immediate past Influences.  D)  Respective contributions of different factors in determining momentary choices.  
The present stimulus (Pres. S.) had the strongest influence on the decision, with a strong influence of long-term 
past represented by the bias term, followed by the previous decisions (D-1) and the decision two trials ago (D-2). 
Descriptive statistics are reported in Appendix Table B.1. 
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allowed us to quantify the relative contribution of each factor on perceptual decision making.  As it 

should, the current stimulus was the most important determinant of momentary choices (Fig 4.1D, 

Appendix Table B.1). From the other predictors, the bias term had the largest influence on choices, 

followed by the previous two decisions. In what follows we will demonstrate how this strong decision 

bias can be explained by long-term stimulus probability changes of the training and test block.  

 

Descriptive statistics of Behavior 

On average, participants responded correctly on about 70% of trials (Mean +/- SD Exp. 1 = 70.01+/-

6.45%; Exp. 2= 70.96+/- 6.58 %; Exp. 3= 72.58 +/- 8 %). Performance was highly noise dependent 

changing from about 80% performance at the lowest 1/3th lowest Noise level to about 60% at 1/3 

highest noise trials (Fig 4.2B).   

Sensitivity, as measured by the slope of the Psychometric function, was not different across 

experiments (Fig 4.2C, ANOVA F2,57=.235 p=.791 η2=.008). Median response times from stimulus 

onset were 796 +/- 156 ms in Exp. 1, 709 +/-  159 ms in Exp. 2 and 784 +/- 191 ms in Exp. 3.   

Strong long-term influences on decisions 

Figure 4.2: Experiments 1-3. A) Structure of Experiments 1-3, experiments differed in training AP and had 
identical test AP.  B) Correct Response Proportions as a function of noise (Color code as in A, Errorbar: SEM) P of 
correct answers was highly noise dependent, falling from over 80% at low noise, to about 60% at high noise. C) 
Response probabilities (dots+-SEM) and Psychometric curves during test were strongly manipulated by training 
probability in Exps. 1-3 (color code as in A). X-axis represents the rare and frequent stimulus at different noise 
levels. Y-axis, the probability of choosing the frequent shape. Dashed line: unbiased prediction (with average 
empirical sensitivity). 
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We have found that long-term probabilities strongly influenced decision preference: the bias of the 

psychometric curve (PSE) was significantly modulated by the summary statistics of the training block 

(F2,57=11.213, p<.0001, η2 =.282, Fig4.2C). Analyzing the effect experiment-wise, we have found that 

after balanced training conditions, increasing the AP to 65% (Experiment 1) resulted in a 

counterintuitive decision preference towards the rare element (PSE shift: t19= 3.4228, p= .002915).  

The effect cannot be a consequence of perceptual adaptation or an alternation bias, as it is also 

highly significant in our logistic model, which accounts for short-term influences (Logistic Model Bias: 

t19 =4.431, p =.0003, BF=109.316) (Fig 4.4A).  This effect emerged over time since it was absent in the 

initial 30 trials (t19=0.3105, p=.7595, BF=.24, see also Fig 5.4A) and was most likely the consequence 

of the difference from long-term experience. This is further supported by Exp 2, as when the AP-s did 

not change between training and test, there was no overall decision bias (PSE shift: t19=1.4668 p= 

.1588, Model Bias: t19 =0.6227, p =.5409, BF=0.28). Furthermore, if the change from training was in 

the opposite direction (in Exp. 3), this resulted in the opposite effect, a highly significant preference 

for the frequent element (PSE shift: t19=3.3142, p= .0036; Model Bias: t19=2.7457, p = .0129, BF=4.16).  

These long-term effects were stable, with no significant change in bias between the first and second 

half of test in any of the three experiments, demonstrating a lasting effect of long-term probabilities 

(Exp. 1 t19= 0.302, p=.7659 BF= 0.24, Exp. 2: t19=1.5843, p=.1296 BF= 0.68, Exp. 3: t19= 0.9889, 

                                                           
15 Descriptives on PSE in Appendix Table B.2. 
16 Descriptives on Model Bias in Appendix Table B.3 

Figure 4.3. Immediate past and long-term 

probabilities had an additive influence on decisions. 
The more often a shape was chosen in the recent 
past (last 3 trials-x-axis) the higher the probability of 
choosing it on the current trial (y-axis). This effect 
was very similar in Exps 1-3, but was shifted by the 
long-term probabilities, without an interaction 
between these two factors, showing that short-term 
influences and long-term biases influence perceptual 
decisions independently. Color code: Experiments 
1,2,3=light, medium, dark blue. Error bars (SEM) 
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p=.3351, BF= .36).  

 

Figure 4.4. Contrast of Decision Bias and Response Times. A) Mean model Bias form Logistic Regression for Exp 1-
4 (x-axis). The change from training to test in appearance probabilities was the main determinant of choice bias 
B) RT difference (rare-freq.), in all experiments median “frequent” responses were faster. Notice the contrast for 
Exp 1 (50-65) between the RT and decision bias. The RT effect was the weakest in Exp 4, where the momentary 
p-s were balanced, and “frequent” was defined based on training. C) Model bias distribution for Exps. 1-4.  D) RT 
difference distributions for Exps. 1-4. Because of the outliers in RT, we report non-parametric test results as well.  
(Error bars=SEM) 

 

 

Independence of immediate past and long-term influences  

Decisions were also influenced by recent choices, with a tendency to repeat recently frequent 

answers. We analyzed the probability of a frequent response, given the occurrence rate of frequent 

answers in the immediately preceding three trials, finding very similar patterns across experiments. 

Analyzing this effect with a mixed ANOVA showed that both recent past probability (within subject 

F3,165=14.883, p<.0001, η2=.213), and long-term probabilities (between subject F2,55=10.375, p=.0002, 
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η2=.274) had a significant influence on response probabilities with no interaction between the two 

factors (F6,165=.452, p=.8426, η2=.016) (Fig 4.3). The logistic model further confirmed the 

independence of recent and long-term influences: weights of the immediately previous responses 

were not different across experiments 1-3 (One-way ANOVA, F2,57 = 1.0424, p=.3592, η2=0.035).  

Comparing Long Term influences on Decisions and Response Times 

Interestingly, reaction times showed a very different pattern from the decision preferences described 

above. In experiments 1-3 with 65% test AP, median reaction times were faster to the currently more 

frequent element, suggesting higher sensitivity to momentary probabilities and weaker long-term 

influences (Fig 4.4B, Exp. 1 RT difference Frequent-Rare: Z = 3.0239, p=.0025, BF= 9.8 Exp 2:  Z= 

1.9786, p=.0479, BF=0.9 Exp. 3: t19=3.4559, p=.0026, BF=15.817).  

 

Balanced Test Sanity Check- Exp 4 

In an additional experiment (Exp. 4), we assessed the role of past probabilities, when the conditions 

during test were balanced (Fig 4.5).  In Experiment 4, there was 75% AP training, which was identical 

to Exp 3. This was followed by a balanced test where both stimuli had equal probability of 

                                                           
17 Response Time descriptives in Appendix Table B.5. 

  

Figure 4.5. Experiment 4. A) Probability structure: the experiment had a balanced test, but a biased training 
(75%). B) Probability of Correct Responses as a function of Noise. C) Response proportions by noise and 
stimulus type (dots) and Psychometric curve reveal a strong bias toward the stimulus that had been frequent 
during training. Dashed line: unbiased prediction with average sensitivity. Exps. 1-3 in opaque in the 
background as comparison.   
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occurrence. Otherwise, the paradigm was identical to Experiments 1-3. During the test we assessed 

whether participants prefer the stimulus that had been frequent during the preceding training 

session. We have found a strong preference toward the previously frequent element, as shown by 

both the Psychometric Curve (t19=4.8758, p=.0001, Fig 4.5C) and the logistic model bias (t19= 2.7406, 

p=.013, BF=4.12 Fig 4.4A).  In line with Exps. 1-3, this effect was stable with no significant change 

between the first and second half of the test session (t19=0.4865, p=.6322 BF=.26). 

Assessing reaction times in Exp 4, we found that participants were faster in giving “frequent” 

responses, but not significantly so (Fig 4.4B, Z= 1.6053, p= .1084, BF=1.01). This shows that despite 

the fact that participants demonstrated the strongest decision bias in Exp. 4, among Exps. 1-4, this 

was not sufficient to elicit a robust reaction time difference due to the balanced momentary 

probabilities. This result supports the claim that, in comparison to decisions, influence of past 

probabilities is weaker on reaction times. 

 

Discussion 

Using a set of perceptual discrimination experiments, we demonstrated that past stimulus 

probabilities strongly influence perceptual decision making: the exact same base-rate appearance 

probability could elicit an opposing decision bias, depending on differences in long-term experience.  

While base rate influences have been previously used in perceptual categorization studies, only an 

attractive influence of past probabilities has been described: participants were biased toward 

choosing the previously more frequent category (Bohil & Wismer, 2014). Our Experiment 3 and 4 

replicates that unsurprising finding, but also extends it by showing that depending on the direction of 

probability change, a preference for even the rare category can emerge. The underlying cause of the 

complex pattern of results we observed could be the way in which humans integrate supervised and 

unsupervised information, an aspect that is largely ignored in most studies of perceptual decision 

making (an expection: Gibson, Rogers, & Zhu, 2013).  A semi-supervised sequence of information 
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could lead to the surprising interactions between long-term and current statistics. The supervised 

parts could help forming a stable internal representation, which is updated with unsupervised recent 

experience in sometimes locally “irrational” manner. In the following, we further explore the novel 

insights gained by of our results. 

The lagged logistic modeling approach allowed us to quantify short-term influences. Results 

confirmed previous findings assigning short-term positive serial influence to past decisions and a 

negative, perceptual adaptation like effect to previous stimuli (Fritsche et al., 2017). However, these 

complex short-term serial effects were unrelated to our main manipulation of long-term 

probabilities. Hence, our findings complement previous proposals focusing on short-term effects 

only, which suggested that short-term positive serial effects could underlie the stable perception of 

the environment (Fischer & Whitney, 2014). We found that long-term effects, even as simple as 

appearance rates, can influence perceptual decisions as strongly as short-term effects.  Importantly, 

this effect was completely involuntary, since the observers were not asked to consider anything but 

the present trial and they were not aware of any of the appearance probability shifts occurring 

during the experiments. Thus, our overarching conclusion is that short- and long-term statistics 

automatically and continuously influence every momentary human decision, and the final effect will 

be inevitably shaped by the various contextual aspects of the task.  

Perhaps the most surprising finding of the current results is that long-term influences can be so 

strong that within a particular context, they can bias people against choosing a locally more frequent 

stimulus.  This causes us to examine previous perceptual decisions making studies under a new light 

as they have only shown a positive influence of the past, i.e. bias towards stimuli that that had been 

more frequent (Bohil & Wismer, 2014).  Long-term influences were considered to be positive effects 

enhancing the preference toward the stimulus (Chopin & Mamassian, 2012) or pattern (Wilder et al., 

2013) that had been more frequent in the past.  Rather than being a simple positive baseline, our 

results suggest that at any time, there could be more than one such effect, they could emerge at 
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multiple time scales, and they could interact in complex manner producing opposing types of 

aggregate biases (positive or negative) depending on the relative strengths of the effects. 

We found a dissociation between the influence of long-term and immediate past influences on 

perceptual decisions. Such a dissociation is corroborated by another study showing that explicitly 

cued probabilities affect the threshold, but recent trials the sensitivity of perceptual decisions 

(Kaneko & Sakai, 2015). One of the main novel aspect of our paradigm is that long-term influences 

are arising from a long implicit period of experiencing changing stimulus appearance probabilities 

and not from an explicit cue which signals which is the most likely stimulus as in most previous 

studies (Kaneko & Sakai, 2015; Mulder et al., 2012).  

Another notable finding is that under particular circumstances response times and decisions are 

affected in opposing ways by stimulus statistics. Particularly, we have shown that long-term 

influences were specific to decisions, as opposed to reactions times, which are more sensitive to 

current probabilities. The differing effect of probabilities on reaction-times and decisions can be 

interpreted in the framework of the drift diffusion model (Ratcliff & Rouder, 1998). Specifically, it has 

been proposed that one can conceptualize long-term effects as a biased starting points in the 

diffusion process (Mulder et al., 2012), while short-term influences affect the process of evidence 

accumulation, manifesting in faster reaction times for recently frequent elements (Urai, Gee, & 

Donner, 2018).   However, to obtain a similar dissociation to that in Exp 1 (decision bias opposing 

reaction time advantage), both a bias in the starting point and asymmetric evidence accumulation 

rates would be required (Appendix B.2 Fig & Text). Moreover, the different noise levels would also 

require across-trial variability in the drift-rate. Allowing all these parameters to vary would make 

drift-diffusion an overly flexible model, enabling it to fit almost any pattern of choice and reactions 

times (M. Jones & Dzhafarov, 2014). Furthermore, even though the model in which recent trials can 

influence the starting point  of the drift rate/prior probabilities (i.e. bias) might look convincing, some 

authors suggested that prior probabilities might affect the drift rate itself (Hanks, Mazurek, Kiani, 

C
E

U
eT

D
C

ol
le

ct
io

n



133 
 

Hopp, & Shadlen, 2011), suggesting that the effect of expectations on uncertain sensory evidence 

accumulation might be more integrated. 

Our results from Experiment 1 are somewhat puzzling: why do participants prefer the rare stimulus? 

Experiments 2 and 3 show that the difference in long-term probabilities is a key factor. However, 

these experiments cannot explain why such irrational behavior arises in Exp 1 in the first place.  In 

theory, participants could adapt to the new changed stimulus statistics resulting in a higher 

proportion of correct responses. Instead, what seems to happen is that people readjust their internal 

representation of the stimulus sequence in a highly irrational way. The cause of this readjustment is 

presumably a discrepancy between their expectations (balanced stimulus probabilities) and the 

observed unbalanced stimulus sequence at the beginning of the test phase. From the perspective of 

the observer, this discrepancy could arise for two different reasons: I. One of the stimuli is more 

frequent (change in prior). II. They are better able to detect one of the stimuli (change in likelihood), 

probably because it is less noisy18.  If the participant followed explanation I., the internal 

representation should be adjusted in the opposite direction, and we would not have found a 

preference for the rare stimulus. This suggests that participants in fact followed explanation II by 

wrongly assuming a weaker ability to detect noisy stimuli from the rare category, resulting in a bias 

toward choosing it more often. This suggests that the withdrawal of feedback, combined with a shift 

in probabilities, could be a main underlying factor in the results of Exp. 1. We will test this hypothesis 

in Chapter 5. 

To sum up, perceptual decisions are influenced by the difference between recent and long-term 

probabilities, independently from short-term serial influences. This pattern of results is specific to 

decisions, with reaction times more sensitive to current probabilities. People adjust their internal 

                                                           
18 A model-based approach to this explanation is detailed in the General Discussion Chapter. 
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models of stimulus distributions after changes in environmental probabilities, sometimes resulting in 

locally irrational biases.  
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Chapter 5 

Change-dependent weighting of past probabilities: Exps. 5-7 
 

 

 

Summary 

In a set of three visual discrimination experiments we examined how changes in stimulus 

probabilities influence the way humans’ update their reliance on past probabilistic information. We 

demonstrate that reliance on past statistics is highly dependent on the dynamics of the change in the 

latent parameter of appearance probability, not only and not even mostly on its slow cumulative 

statistics across individual trials.  In particular, we show in Exp 5 that gradual changes in the AP at the 

transition from the training to test session do not elicit the striking integration of information about 

past probabilities found in Chapter 4. In contrast, a sudden transient apparent shift in stimulus 

statistics without any true long-term changes can elicit an equally strong and lasting bias on 

perceptual decision making to those evoked by true changes in Chapter 4 (Exps. 6-7). We also show 

that these effects are specific to decision, as response times remain more sensitive to momentary 

stimulus probabilities as in the previous experiments. 
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Introduction 

The canonical approach to investigating human perceptual decision making is based on simple stimuli 

(random dot motions coherence, oriented Gabors, textures), steady state conditions (collecting 

responses under identical circumstances with repetitive trials, in which only one parameter is 

changing), the assumption of i.i.d. data  (each trial can be investigated independently from any other 

trial, Green & Swets, 1966; Stanislaw & Todorov, 1999) and the idea that any adjustment in the 

process is implemented by gradual learning across many trials (Rescorla & Wagner, 1972). The 

underlying assumption of this approach is that perceptual decisions are essentially momentary-

stimulus-driven as long as the task is simple and well-specified. The existence of adaptation effects 

(Thompson & Burr, 2009), the traditional priming effects (Treisman, 1992), and the more recently 

scrutinized serial decision making effects (Fischer & Whitney, 2014; Fritsche et al., 2017) has been 

acknowledged for a long time, but according to the common wisdom, these dynamic effects were of 

secondary importance when investigating the underlying process of truly perceptual decisions.  

While under the simplest conditions these assumptions might hold, it is becoming increasingly clear 

that even minute changes to the quality of the stimulus or the nature of the task can lead to 

unexpected violations, which in many cases calls into question the existence of purely stimulus 

driven perceptual decisions. Specifically, in Chapter 4 we showed that as long as the quality of the 

sensory information is degraded, long-term effects influence decisions well beyond what was 

expected from the results of the idealized setup.  In the present chapter we will take a look at the 

non-dynamical assumption of the canonical approach and seek to answer whether the long-term 

summary statistics that can influence decisions so powerfully, indeed, emerge by gradual small-step 

integration based on past experiences.   

To investigate this issue, one needs to manipulate the dynamics of changes in stimulus statistics and 

measure their effect on decision making. Previous results showed that people reacted to the 
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dynamics of changes in stimulus probabilities by adjusting their learning rate according to the 

perceived volatility of the environment (Behrens et al., 2007; Nassar et al., 2010).  While these results 

speak to the dynamics of learning, they approach the issue from a particular direction, the general 

volatility of the stimulus generating process.  Instead, we were interested in exploring the effect of 

changes in a more event-based manner by assessing the effects of individual changes spotted by the 

observer implicitly.  

In the experiments of Chapter 4, there was one notable change point at the transition from the 

practice to the test session, when the appearance probabilities of the shapes changed, the noise 

applied to individual trials switched from staircase to random, and the observers stopped receiving 

continuous feedback. We found a strong effect of this one change point on the observers’ decision-

making behavior, suggesting that the change-point might be the crucial underlying factor of obtained 

results. 

Therefore, in the current chapter we conducted three experiments, manipulating both stimulus 

probabilities and change dynamics in different manner and assessing the effect of these 

manipulations on the observers’ behavior. Exp. 5 used the same probabilities as Exp. 1, but unlike in 

Exp. 1, where the change was abrupt, the change from 50 to 65% in Exp 5 was introduced gradually. 

Exp. 6 used balanced 50-50% probabilities both during training and test but had a sudden shift in 

stimulus probabilities at the beginning of test (similarly to Exp. 1), from which the AP gradually 

returned to baseline (unlike Exp. 1). Exp. 7 replicated Exp 6 using slightly different parameter settings 

in order to ensure the generalizability of the effect. 

 

Eliminating long-term effects by gradual changes: Experiment 5 

The rationale of Experiment 5 was to test whether changing the APs between the training and test 

conditions abruptly vs. gradually made any difference in the observers’ decision making.  Being able 

to influence the observer’s behavior by simply changing the dynamics by which the steady state of 
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the test condition was achieved would cast serious doubt on whether the simplified canonical 

approach to decision making could help identify the nature of the underlying process. We expected 

to find that people adjust their internal representation of the task/stimulus structure if they 

experience a gradual change to a smaller extent relative what we found with a sudden change.  

 

Methods 

Experiment 5 followed closely the procedure of Exps. 1-4 (Fig 4.1).  Specifically, the first 200 trials 

(training) were presented with feedback, and an adaptive staircase procedure was used. Next, the 

test session followed with 400 trials instead of 300 used in Exps. 1-4.  The additional trials were 

introduced because the change in stimulus appearance probabilities occurred throughout the first 80 

trials (Fig 5.1A), therefore, we needed a longer test session to have the same number of trials after 

the change. 

Gradual stimulus appearance probability changes were pseudo-randomly controlled in four 20-trial-

long periods: out of the first 20 trials, 10-10 showed the “frequent” vs. “infrequent” shape in a 

randomized order, and the ratio changed gradually to 11-9, 12-8, and finally to 13-7 in the next of 60 

trials. The 13-7 ratio corresponds to 65% appearance probability for the frequent element. After the 

initial 80 trials (during which the change had occurred), the appearance probability remained at 65% 

without a pseudo-random control of the sequence.  In all other respects, Experiment 5 was identical 

to the first four experiments. 

Participants 

20 students (18-30 years old) completed the experiment after giving informed consent and received 

monetary compensation. 

Analysis 

To test our main question of interest, we used 300 test trials for data analysis (as in Exps. 1-4) after 

discarding the first 80 trials of the test sequence, during which the gradual shift occurred. 
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Psychometric curves and the logistic regression weights including recent past influences were fitted 

individually the same way as for Exps. 1-4. Since model selection was performed on the combined 

dataset from Exps. 1-7, we used the same logistic model including an intercept, the current stimulus, 

and the previous two decisions.  

Results 

Descriptive statistics of Behavior 

The overall performance in Exp 5 was very similar to those in the four base experiments: participants 

responded correctly on 71.36 +/- 6.3 % of trials (Fig 5.1B). As in the earlier experiments, the 

performance was highly noise-dependent with performance dropping from over 90% at the easiest 

1/3rd of trials (83.05 +/- 6.75 %) to about 60% at highest noise level (62.74 +/- 6.3 %). The median 

response times were on average 753 +/- 76 ms. Sensitivity, as measured by the slope of the 

psychometric curve was not different from Exp 1 (t38=0.4636, p=.6456, 5.1C).  

 

 

Figure 5.1. Experiment 5. A) Probability structure of Exp 5 (yellow) compared to Exp 1 (blue). Both experiments 
had a balanced training followed by a 65% test. However, unlike in Exp1, in Exp 5 the change took place 
gradually over the course of 80 trials. We used 300 trials after the change had happened in Exp 5. and 
compared it to the entire 300 trial test session of Exp 1. B) Performance in Exp 1 & 5. C) Response proportions 
as a function of stimulus and noise (dots) and the fitted psychometric curves in (lines) in Exp 1 & 5. Errorbars: 
SEM. C
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Long-term influences on decisions 

In Exp 5, after the gradual change, there was no overall preference for either stimulus (Figs 5.1C, 

5.2A) (Model Bias, t19=0.0073, p=.9943, BF= 0.23). This suggests that since there was no noticeable 

change in stimulus statistics, participants did not adjust decision criteria and just responded to the 

presented stimuli in an unbiased manner. This result is in stark contrast with the outcome of Exp 1, 

where the same training and steady probabilities during test elicited a strong compensation effect, 

leading to a significantly different bias from that in Exp 5 (t38=2.913, p= .006, BF=20.04). This effect 

was stable during the test session, with no significant change between the first and second half of 

the test session (t19= 1.122,   p=.2758, BF=0.40).  
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Long Term influences on Response Times 

In contrast to decision patterns, we found that after the gradual change, reaction times were faster 

for the frequent element in Exp 5 by 56 ms on average (Fig 5.2B RT Difference Frequent-Rare: 

t19=4.22, p=.0005, BF=71.6), similarly to Experiments 1-3, where the mean speed-up values were 49 

ms, 36 ms and 78 ms, respectively.  Further, there was no statistical difference between Exp 1 and 

Exp 5 in terms of this reaction time speed-up for frequent responses (t38=0.1474, p=.883, BF= .1202). 

This shows that the same momentary probabilities elicited a very similar reaction time pattern, 

regardless of the past change dynamics. 

Figure 5.2 Reaction times and decisions are differently affected by change dynamics. A) Decision bias for 
Experiments 5,6, and 7 with Exp1 as comparison. Large majority of participants were strongly biased against 
choosing the locally more frequent shape during the stable period of Exp 6-7, while there was no overall 
preference in Exp 5. B) Reaction Time Differences. Rare-Frequent. When the momentary probabilities were 
unbalanced, participants were faster to respond with the frequent option (Exp 1, Exp 5), with no difference 
with balanced momentary probabilities (Exp 6, Exp 7). C) Distribution of biases in Exps 1,5,6, and 7. D) 
Distribution of RT differences in Exps 1,5,6, and 7. (Error bars: SEM) 
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Inducing a long-term effect by a sudden change without shifting appearance 

probabilities 

Experiment 6 

 

In Exp 5, after eliminating the notable shift in the appearance probabilities of shapes at the boundary 

of the training and test sessions, we found that observers exhibited no evidence of adjusting their 

behavior despite the strong difference between the true appearance probabilities in the training and 

test periods.  Although this indicates a paramount role for a clearly detectable change point in the 

observed sequence in how observers adapt to the statistics of their environment, the scope of this 

effect is not clear. Specifically, Exp. 5 showed that gradual build-up can eliminate the shift in the 

observers’ bias. However, is it possible for a well-positioned sudden change to force the observer to 

adjust his/her bias despite having no true change in the appearance probabilities at all? How strong 

can this effect be? How long would it last? In Experiment 6, we provide an answer to these questions. 

 

Methods  

Exp 6 was almost identical to Exp 5 with one crucial difference: after the 200-trial training session 

with 50-50% appearance probabilities (APs), at the beginning of the test session, the APs jumped to 

65-35%, and then gradually returned to the 50-50% level (Fig 5.3A). Specifically, in the first 20 trials 

of the test session, 13 vs. 7 “frequent” and “infrequent” shapes were shown, respectively, in a 

randomized order. As mentioned above, this ratio corresponds to 65% appearance probability for the 

frequent element, imitating a strong shift in the AP in favor of one of the shapes. However, in the 

following three sets of 20 trials, this ratio was gradually changed back to 12-8, 11-9, and finally 10-10 
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ratios, arriving to the same chance performance experienced during the training period. As before, 

the order of appearance within the 20 trials was pseudo-randomized.  In other words, except for 60 

trials at the beginning of the test session, the entire training and the entire test session provided 

strong cumulative evidence that the two shapes appeared with equal chance.  Even within the 60 

manipulated trials there was only a brief 20-trial long period when the two shapes complied with the 

65-35%, after which there was a gradual decay to 50-50%.  In all other aspects, Experiment 6 was 

identical to Experiments 1-5 (Fig 4.1). 

Participants 

22 students (18-30 year old) completed the experiment after giving informed consent, with 2 

exclusions due to chance performance (below 53% correct overall) leaving a final sample of 20.  

Analysis 

Once again, we used 300 test trials for data analysis (as in Exp 5) after discarding the first 60 trials of 

the test sequence, where the gradual shift occurred. For those 300 trials, we followed the same 

procedure in fitting the psychometric curves and calculating the logistic regressions weights as in 

Exps 1-5.  

Figure 5.3 Experiment 6. A) Structure of Exp 6 (brown) compared to Exp 1 (blue). In Exp 6, there was a sudden 
change to AP=.65 frequent at the beginning of the test block, which gradually disappeared over the course of 60 
trials. B) Performance in Exp 6 was highly noise dependent, similarly to Exp 1 and the other previous 
experiments. C) Response Probabilities as a function of stimulus and noise, and psychometric curves in Exp 1 & 
6. The fitted functions were almost completely of the top of each other. After the change happened, decision in 
Exp 6 showed a strong preference for the stimulus that had been rare during the training just as in Exp. 1. (Black 
dashed line indicates the no-bias condition. Error bars: SEM) 
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Results 

Descriptive statistics of Behavior 

Overall accuracy was 72.15 +/- 8.53%. Performance was highly noise dependent with performance 

dropping from about 85% at the easiest 1/3th of trials (84.15 +/- 10.37%) to about 60% at high noise 

(62.44+/- 7.46 %) (5.3B). Median response time was 739 +/- 121ms on average. Sensitivity (as 

measured by the slope of psychometric function) was not significantly different either from 

Experiment 5 (t38=0. 4578, p=.6497), or from Exp 1 (t38=0.7257, p=.4725).  

Long-term influences on decisions 

In Experiment 6, we found a significant preference away from stimulus that was frequent during the 

transient probability shift, after the change happened (Figs 5.2B & 5.3C, Model Bias: t19=4.1714, 

p=.0005, BF=64.96).  This effect emerged over time as observers still demonstrated a tendency of 

bias to the direction of the locally frequent shape during the initial exposure to the unbalanced 

sequence at the beginning of the test sequence, in the first 30 test trials (t19=1.9862, p=.0616, BF= 

Figure 5.4: Emergence and Temporal Stability of Long-term effects. In Exps 1,6,7(A, B, C) during first experiencing 
an unbalanced stimulus sequence (initial 30 trials at the beginning of test), observers were unbiased (Exp1-A) or 
demonstrated a tendency to prefer the frequent stimulus (Exp 6,7, B,C). Upon some experience with unbalanced 
probabilities, they started to prefer the rare stimulus, regardless if probabilities stayed unbalanced (Exp 1) or 
returned to 50-50 (Exp 6,7). This compensation like effect was stable, with a significant preference for rare 
stimuli after several minutes of balanced experience by the second half of test session (Exp 6,7). Init.30.: Initial 
30 trials of test session. 1stH: 1st Half of test session, 2ndH: 2nd half of test session. (for Exp 1 this constitutes the 
halves of the whole test session, for Exp 6&7 it is the initial 30 trials from the beginning of test, and the two 
halves of the 300 trials after the change took place). (For descriptives on this data for Exps 1-7 see Appendix 
Table B.4.)   
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1.181, Fig 5.4B). After the shift to prefer the locally rare shape took place, the effect was stable 

during the entire test session, with no significant change between the first and second half of trials 

(t19=0.9304, p=.3638, BF=.3409, Fig 5.4B). Overall, the bias of the observers was significantly different 

from that in Experiment 5 (t38=2.8965, p=.0062; BF=20.0075) and virtually identical to that obtained 

by the original setup in Experiment 1 (t38=.1229, p=.9028, BF=.1564).  

Long Term influences on Response Times 

In contrast to Experiment 1 and 5 we have found no overall difference in RT of the stable period 

between the previously frequent and rare responses (Fig 5.2B t19= 0.3058, p=.7631, BF=0.2419) 

despite the clear decision bias. This is also in line with our findings from Exp 4, confirming that a bias 

resulting from past probabilities is not sufficient to elicit a strong reaction time-difference, if the 

current probabilities are balanced.  

 

Scaling of change-point-related effects: Experiment 7 

 

In Exps 5 and 6, we found a very strong effect of information provided immediately after the point of 

a sudden change in conditions. Since such a dynamic effect influencing perceptual decision making 

has not been reported before, the nature of such an effect is unknown at present.  We ran 

Experiment 7 with two purposes in mind. First, we wanted to replicate the results of Experiment 6 

and thus to confirm the pivotal role of detected or assumed changes on perceptual decisions. 

Second, we wanted to assess how precise this process was: Would the immediately detected new 

local information be proportionally incorporated in the observer’s decision behavior?  

 

                                                           
19 Appendix Table B.5.for descriptive stats 
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Methods  

Experiment 7 was a slightly modified version of Experiment 6, in which the sudden change in 

appearance probabilities at the beginning of the test session was larger, jumping to 75-25% instead 

of 65-35%. This means that the subsequent return to the 50-50% baseline took 100 rather than 60 

trials as in Experiment 6, starting with 15-5 ratio in the first set of 20 trials and eliminating the 

difference by steps of 1 in following sets of 20 trials (Fig 5.5A). In all other aspects, Experiment 7 was 

identical to Experiments 1-6 (Fig 4.1).   

Participants 

25 Participants (18-30 year old) completed the experiment after giving consent, out of which 4 were 

excluded leaving a final sample of 21.  Three participants were excluded due to chance performance 

(below 60% at low noise), one because of a surprisingly high performance, over 90% correct overall 

and 100% correct at high noise, leaving very few trials to calculate our measures of interest, since 

bias measures are impossible to calculate if the answer is always veridical.20  

Analysis 

Once again, we used 300 test trials for data analysis (as in Exps 5-6) after discounting the first 100 

trials of the test sequence, where the gradual shift occurred. For those 300 trials, we followed the 

same procedure in fitting the psychometric curves and calculating the logistic regressions weights as 

in Experiments 1-6.  

                                                           
20 So high performance could be achieved if the subject did not pay attention during training, resulting in a 
underestimated ability to distinguish the stimuli.  

Figure 5.5. Experiment 7: A) Probability structure of Exp. 7, vs. Exps. 1 & 6. A strong initial change (to AP=.75) 
returned to a balanced probability over the course of 100 trials in Exp. 7. We compared the periods after the 
change had happened. B) Performance in Exp. 7 was highly noise dependent, with Exp. 6 and Exp. 1 as 
comparison (thin lines). C) The effect of this stronger change on response bias was very similar in Exp 7 to those 
in Exps. 6 & 1 as shown by the response proportions (dots) and the fitted psychometric curves (thin lines).  Black 
dashed line indicates the no-bias. Error bars: SEM 
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Results 

Descriptive statistics of Behavior 

Performance was 71.18+/- 6.41% on average, and highly noise dependent with performance 

dropping from over 85% at the easiest 1/3rd of trials (87.02+/- 6.92%) to about 60% at highest noise 

level (61.87 +/-7.5 %) (Fig 5.5B). Median response time was on average 761 +/- 132 ms. Sensitivity 

was not significantly different from Exp. 6 (Fig 5.5C Slope of Exp 6 vs. 7: t39=1.3494, p= .185). 

Long-term influences on decisions 

Replicating the main finding from Exp6, in Exp 7, we found a significant bias away from stimulus that 

was frequent during the transient probability shift. (Fig 5.2B & 5.5C, Model Bias: t20= 3.4377, 

p=.0026, BF=15.22). The effect emerged over time since it was absent initially at the beginning of the 

test (t20=1.326, p=.1998, BF=0.49, Fig 5.4C) but was stable throughout the balanced period of the test 

session after the change happened, with no systematic change between the first and second half of 

the test session (t20=1.1126, p=.279, BF=.393). This long-term effect was very similar to that obtained 

in Exps. 6 and 1 (Model Bias Difference Exp7 vs Exp6: t39= 0.0186, p= .9852 BF= .168; Exp7 vs Exp1 t= 

.0899, p=.9288 BF= .171), and significantly different from Exp 5 (t39 = 2.5939, p=.0133, BF= 9.64).  This 

finding confirms that a transient shift in stimulus probabilities under high uncertainty is sufficient to 

bias subsequent perceptual decisions. The very similar overall magnitude of the effect found in Exps. 

6 and 7 attests that this effect does not simply scale proportionally with the magnitude of the sudden 

perceived shift.   

Long Term influences on Response Times 

 The RT results of Exp. 7 replicated the corresponding findings in Exp. 6 as well. We found no overall 

difference in RT of the stable period between the previously frequent and rare objects (Fig 5.2B, t20= 

1.3357, p=.1966, BF=0.49) despite the clear decision bias.  
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Table 5.1: Predicting Decisions Bias and RT in Exps. 1-7. To select from correlated experimental parameters as 
predictors, we used Lasso regression separately to fit our main measures of interest. Training AP only had three 
possible values (.5, .65,.75) Test AP only had two values (.5,.65). Overall AP change was simply the difference 
Test AP-Train AP. Sudden AP change was encoded based on the sudden difference between training and test 
(For Exp 5,6,7: 0,.15,.25). For the Experiments 1-4, “Overall AP change” and “Sudden AP change” had equal 
values (since the only available value was “sudden”). We fitted the model using the sk-learn library. The value of 
the cross-validated regularization parameter alpha is shown in table for each dependent measure. The 
regularized model could explain almost 30% of variance in decision bias (r2=0.27). The response time analysis 
could explain about 13.5% of variance. The proportion of variance explained was highly constrained (for both RT 
and Bias) by the ability of a categorical variable (experimental manipulations) to predict a measure on a 
continuous scale. (Gray background: best predictors) 

Combined Prediction of RT and Choice in Exps. 1-7  

We wanted to test the extent to which our different experimental manipulations predicted our 

measures in a combined model on the entire data set.  To achieve this, Cross-Validated Lasso 

regression (Tibshirani, 1996) was used with the main experimental parameters as predictors (Training 

AP, Test AP, Overall Probability Change, Sudden Probability Change Table 5.1) to fit the individual 

decision bias and reaction time differences. The sudden probability change was by far the most 

important determinant of choice bias (regularized weight β= -0.3331) while the training probability 

had a small additional predictive power (Table 5.1). This shows that a sudden increase in probability 

between training and test predicts a stronger preference for the rare element. In contrast, using the 

same regressors to predict reaction times, we found that the test probability was the best predictor 

(β=.2783), followed by the sudden probability change (β= -.1741).  This shows that the higher the test 

probability, the faster participants were in responding to frequent elements. This analysis confirms 

the dissociation between momentary probabilities and sudden probability changes in their respective 

 Predictors’ Weights 

↓Dependent Var  Training AP Test AP Overall AP 
Change 

Sudden AP change 

Decision Bias  

alpha= .09816 

β= 0.1076 β=0. β=-0. β = -0.3331 

RT (rare-freq) 

alpha= . 0169 

β=0. β= 0.2783 β=0. β=-0.1741 
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influence on response times and decisions, with reactions time being more sensitive to momentary 

probabilities, and decision bias to sudden probability changes. 

Discussion  

We have found that a sudden shift in stimulus probabilities is necessary (Exp. 1 vs. Exp. 5) and 

sufficient (Exps 6,7) to elicit a lasting preference for the locally rare element. The results of Exps. 6-7 

are especially striking as stimulus probabilities were balanced for most of the experiments, still a 

transient shift in stimulus probabilities could elicit a lasting irrational bias toward the previously rare 

stimulus. Reaction times showed a very different pattern, with a strong influence of the current 

probabilities in Exp 5, and no clear patterns during the balanced period of Exps. 6 & 7.  

It is interesting to contrast the response time and decision bias patterns across the whole set of 

experiments in Chapters 4 and 5. The difference is best demonstrated by Experiments 1 and 5, as 

both experiments had the same 65% test session with the change dynamics being the only 

difference, and yet in Exp 1 there was a strong decision bias towards the rare elements, with a clear 

response time advantage for the frequent element. In contrast, the decision bias was largely absent 

in Exp. 4, despite very similar reaction time patterns. While these experiments show that response 

times and decisions are sensitive to different manipulations, they are obviously not independent. 

Looking at response time differences and decision bias across the full dataset (Exps. 1-7) shows that 

there is a highly significant correlation between the two measures (r139=.401, p<.0001). Therefore, 

our results show that despite the fact that these measures are correlated on the individual level, they 

are sensitive to stimulus statistics on different time-scales. 

We have suggested that the explanation for the results of Exp. 1 could be a wrongly adjusted internal 

model of the statistical properties of the stimulus sequence after a change in stimulus probabilities. 

Experiments 5-7 confirm this assumption and provide a compelling explanation, namely that internal 

representations are readjusted as a consequence of the sudden discrepancy between long-term and 

current probabilities. Exp. 5 shows that a gradual shift is insufficient to elicit such an effect, since if 

C
E

U
eT

D
C

ol
le

ct
io

n



150 
 

there is no sudden discrepancy between long-term expectations and current statistics, there is no 

need to readjust the internal model. Experiments 6 and 7 confirm the crucial importance of sudden 

stimulus probability shifts in readjusting the internal model: a sudden discrepancy in stimulus 

probabilities elicits a readjustment in how people interpret these noisy stimuli: instead of noticing 

the change in AP, participants change their model of their ability to detect these noisy stimuli21. This 

readjusted model is used afterwards, when unbeknownst to the participant, the experiment has 

returned to a balanced stimulus structure.  

This explanation can be linked to findings on volatility influences in decision making (Behrens et al., 

2007; Glaze et al., 2015). Those studies have shown that a discrepancy between past and current 

stimulus statistics trigger an increase in learning rate that facilitates the learning of the changed 

statistics. Our experiments also show that a shift in statistics promotes learning about the new 

conditions, however, the unsupervised nature of the task elicits a change in the internal model that is 

irrational, resulting in suboptimal performance. Therefore, the absence of feedback during the test is 

also likely to contribute to the novel pattern of results that is completely unlike the previous results 

of the reinforcement learning literature (Nassar et al., 2010). 

Taken together, these findings reveal that change dynamics are a key factor in determining how 

people use their internal representation of stimulus statistics to bias perceptual decisions. Sudden 

changes elicit an adjustment of the internal model, while unnoticeable gradual changes do not elicit 

an update of the internal representation for a long time even when it would be warranted by long-

term accumulation of local evidence.    

 

 

 

 

                                                           
21 See more on this explanation in the General Discussion Chapter 
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Chapter 6 

General Discussion 
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Active learning as sequential decision making 

In this thesis, we presented two main lines of research, one on eye-movement-based active 

statistical learning (Chapters 2-3), and the other one on sequential perceptual decision making 

(Chapters 4-5), in a largely separate manner. Indeed, the paradigms and measures applied in these 

two research projects were very distinctive, thus warranting their separate treatment to a certain 

extent. However, scrutinizing the underlying processes revealed that, in fact, they represent two 

intimately entangled aspects of an overarching phenomenon. Active exploration and sequential 

decision making are not only related, but active exploration can be interpreted as a special version of 

sequential decision making. In the following section I will elaborate the intuition behind relating 

these two research areas. 

In an active experimental set-up, just as during natural visual behavior, each saccade is a decision in 

itself, which is influenced by both the current sensory input, but also by representations of past 

stimuli and past eye-movements (Hayhoe & Ballard, 2005; Posner, Rafal, Choate, & Vaughan, 1985). 

This is reminiscent of perceptual decision making, where the sequence of past decisions and stimuli 

influence how the momentary stimulus is interpreted (Fritsche et al., 2017; Maloney et al., 2005). 

However, in the active set-up, multiple layers of complexity are added to the process due to a 

recurrent processing loop, since each explorative decision on the next fixation influences the sensory 

input that will arrive in the next moment, as well as the future state of the decision-maker (Yang, 

Wolpert, & Lengyel, 2016).  Importantly, this connection between past and future states in the active 

set-up is closer to the complexity of real life than that of a simple sequential perceptual decision-

making process is.  Outside of the lab, every deliberate or implicit decision about which part of a 

painting to look at, which road to take at the intersection, or which lunch menu to buy will affect 

both the available sensory input and future possible actions.  In comparison, most laboratory 

sequential decision-making tasks are hugely simplified versions of the natural active set-up: decisions 

do not affect future stimuli, only the interpretation of those stimuli via internal states, and in most 
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cognitive psychology experiments, even the effect of internal states is ignored by assuming 

independent trials. 

  

We are not the first to propose a link between these areas. For example, Ahmad and colleagues 

suggested that active sensing could be treated as a Bayesian sequential decision making problem 

(Ahmad, Jolla, & Yu, 2013). In this theoretical approach, the authors successfully formalized visual 

search as sequential decision-making using a Markov Decision Process model (Ahmad et al., 2013).  

Linking a Markov Decision Process to actual experimental data had also been attempted recently  

(Hoppe & Rothkopf, 2017).  Hoppe & Rothkopf (2017) showed that people can plan multiple saccades 

ahead and select their fixation targets differently depending on the available time, as if they 

optimized the trade-off between immediate and later information.   

Active learning as ecological decision making 

While the above studies are remarkable steps in modeling the sequential nature of visual 

exploration, they are still confined to the limited scenario of searching for a single noisy target. This 

setup is simpler by orders of magnitude than our active statistical learning task (Chapter 2,3), since 

our task required integrating information both during and across individual trials.  This difference can 

be conceptualized as the distinction between active sensing and active learning. Both the theoretical 

(Ahmad et al., 2013) and the experimental (Hoppe & Rothkopf, 2017; Najemnik & Geisler, 2005) 

approaches investigating visual search in the past used the framework of active sensing: information 

had to be integrated and exploited only within a single trial. In contrast, in our task, stimuli on any 

single trial cannot reveal anything about the underlying structure, thus, successful active exploration 

can only emerge in an active learning framework, i.e. if the observer can benefit from information 

integrated across multiple trials. In active sensing, the prior probabilities of the environment are 

assumed to be known (Yang, Wolpert, et al., 2016), which might be the case for single target visual 

search (Hoppe & Rothkopf, 2017; Najemnik & Geisler, 2005) or binary discrimination (Yang, Lengyel, 
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et al., 2016). In a more complex scenario, good decisions cannot be based on solely the momentary 

stimulus but must be learned via interactions with the environment. This suggests an interpretation 

whereby visual decisions have to rely on an internal model, which must be continuously learned and 

updated based on the sensory input. Thus, efficient decisions are only possible if expectations are 

well-tuned to the statistical properties of the environment (Fiser, Berkes, Orbán, & Lengyel, 2010). In 

an active set-up, this implies a loop-like interaction between exploration and learning, where 

knowledge acquired will influence where the observer looks next, but also the position where the 

observer looks will influence what can s/he will learn. This framework points to an integrated view in 

which learning and attention are in a continuous interaction (Chun & Turk-Browne, 2007). 

 In order to fully understand active learning, one must first address the preliminary question of how 

people can learn the relevant statistics of their surroundings. The simplest answer is that in most 

scenarios people receive feedback on whether their actions were successful or not. Accordingly, in 

many experimental designs, feedback is used to learn about the structure of the task (eg: Behrens et 

al., 2007; Glaze et al., 2015). In real life, however, many of our actions do not have an outcome that 

is immediately available and can be easily distinguished as rewarding or punishing.  Mimicking such a 

natural scenario, after most decisions in the experiments of the current thesis, there is no immediate 

nor even delayed feedback. What can drive learning in unsupervised scenarios of this sort? From the 

psychological perspective the answer is curiosity (Kang et al., 2009; Kidd & Hayden, 2015), which 

might be implemented in the brain via the intrinsic reward for information that reduces uncertainty 

(Foley, Kelly, Mhatre, Lopes, & Gottlieb, 2017; Jepma et al., 2012). We expect that this rewarding 

influence of information could be important in motivating our participants to discover and learn the 

regularities of the stimuli even if they cannot achieve any immediate reward by doing so. 
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Active statistical learning in the light of active learning theory  

 

The theory outlined above appears almost self-evident, people are active learners (Gottlieb, 2012), 

and visual attention and learning continuously influence each other (Chun & Turk-Browne, 2007). On 

a closer look, however, there is only limited evidence that human visual behavior is well described by 

the predictions of these theories. Very little is known about how environmental statistics influence 

visual attention, how such effects are related to learning those regularities, and how these 

interactions between learning and visual attention depend on task, supervision, and the types of 

regularities. This is why we conducted Study 1 using a basic spatial statistical learning paradigm (Fiser 

& Aslin, 2001) and embedded in a novel gaze-contingent active exploration set-up (Chapter 2) to 

make sure that eye-movements are tightly linked to sampled visual information.  

Our main finding was that implicitly and explicitly learned spatial regularities guide visual exploration, 

showing that statistical representation effects on eye-movements emerge via learning even without 

explicit guidance. To our knowledge this is the first study to show such complex statistical learning 

effects on explorative visual decision.  What can these findings tell about our theoretical 

understanding of humans as active learners? The fact that implicitly acquired spatial stimulus 

regularities influence eye-movement patterns shows that explorative visual decisions do, in fact, rely 

on statistical representations available only by learning over a longer period. Furthermore, we found 

that a learned representation of the environment could not only guide visual exploration, but                                                                     

also predicted learning on the subsequent test. This suggests that, once learned, stimulus statistics 

influence visual exploration, but in turn visual exploration enhances the learning those regularities. 

The complexity of this effect is far beyond previous results on active sensing (Hoppe & Rothkopf, 

2017; Najemnik & Geisler, 2005; Yang, Lengyel, et al., 2016), since in our task these regularities could 

only be acquired across many trials, and still, stimuli appearing at different locations could bias the 

direction of visual exploration.   
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Our results also stress the relevance of the task on the manifestation of these effects. We showed 

that active exploration uses the hidden underlying statistical structure of the environment only when 

this structure is relevant for the task (Chapter 2: Exp 1- Explicit), or when learning is guided by an 

implicit, possibly curiosity driven, process (Chapter 2, Exps. 2-3, Implicit). However, when the task is 

unrelated to the regularities, learning effects prompted by the statistical structure are suppressed 

and do not dominate active exploration (Chapter 3, Exp 4-Working Memory), despite the fact that 

the regularities are learned nevertheless. 

Further investigation of the link between learning and active exploration suggests that while                                                                                                                             

initially learning influences visual exploration, it is only later that the two processes become 

intimately tied together. Our design using explicit instructions (Chapter2/Exp1) could start with a 

hypothesis testing process (Trueswell et al., 2013) and the experimentally observed direct gaze 

returns in this setup could signal testing of potential regularities consistent with the hypothesis. 

However, in any case, it is difficult to investigate the causality of these processes as learning can 

exert its influence on gaze directions only via looking behavior at the pair level, which makes it a 

“chicken or the egg” problem to some extent.  

To investigate the causal link between active exploration and learning, previous studies played back 

the exploration data of previous participants to passive observers and analyzed whether seeing the 

same stimuli can result in similar performance as actively exploring them (Markant & Gureckis, 

2014). A similar approach could be applied to test whether passively observing the same scenes vs. 

active exploration leads to a similar learning performance. Same performance by observational 

learning and active exploration would suggest that eye-movements are only a consequence- and not 

a prerequisite of learning. In contrast, the theory of active learning predicts that observing somebody 

else’s exploration data would hinder performance (especially in the explicit scenario). Intuitively, the 

exploration patterns used by a previous observer at any given trial should not be helpful for the 

learner since the previous observer was most probably at a different stage of acquiring 

environmental regularities. In addition, since passively observing the scenes is a very distinct kind of 

C
E

U
eT

D
C

ol
le

ct
io

n



158 
 

behavior than active exploration (for example, it is likely less engaging), any resulting difference in 

performance may reflect motivational or attentional factors. This could make direct comparisons 

between learning via active exploration vs. “learning via observing another’s exploration” 

problematic. 

Across all three experiments of Chapter 2, influences of environmental statistics on eye-movements 

became stronger over time, and such a tighter link between statistics and eye-movements predicted 

better learning performance on the subsequent familiarity test. Thus, our results confirm the general 

predictions of the theoretical account of active learning.  Meanwhile, there are more specific 

predictions not addressed directly through the current experiments, which can nevertheless be 

speculated about in the light of our results. For example, the active learning account postulates that 

attention should be directed to stimuli in order to maximally reduce uncertainty about the 

environment based on what is informative at the current state of learning (Settles, 2010; Yang, 

Wolpert, et al., 2016). This predicts that once knowledge about a statistical relationship (e.g.: a 

spatial pair) is fully acquired, further looking at a given pair does not provide any extra information 

for the learner about this specific statistical rule. Hence, following our paradigm, after every pair is 

learned, attention should not be directed in accordance with the statistical structure. Our design was 

not aimed at testing primarily this “inverse u-shaped” dynamic between attention and learning (Kang 

et al., 2009; Kidd, Piantadosi, et al., 2012), but we still observed evidence indicative of this pattern in 

some explicit learners (Exp 1 in Chapter 2). It is very likely that most participants were still at the 

upward part of the theoretical “inverse u-shaped” curve, and thus did not reach a level of confidence 

in the statistical structure that would start weakening these influences. It is also true that our stimuli 

in Chapter 2 were built exclusively of pairs, thus once the pair structure was fully acquired, there was 

nothing else to learn from the presented stimuli. It would be interesting to include not fully 

predictive pairs with higher-order statistical structure in a similar statistical learning paradigm to test 

whether once the simple pair knowledge is learned, eye-movements would begin to explore these 

more complex relationships. This could pave the ground to research exploring whether depending on 
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the state of the internal model of the environment, different kind of information would attract 

attention at different times in accordance with the current need/stage of the learning process. 

It also remains open for future research if the approaches successful in modeling active sensing 

(Ahmad et al., 2013; Hoppe & Rothkopf, 2017; Yang, Lengyel, et al., 2016) could also be applied to 

our active exploration data. Such an inquiry could reveal the extent to which explorative eye-

movements correspond to the predictions of an optimal active learning model, which is trying to 

reduce uncertainty about the environmental structure over a longer period of time (across many 

trials). Establishing such a link could show that explorative actions are aimed at acquiring relevant 

statistical representations of the environment, which in turn could boost successful subsequent 

learning and actions.  

Modeling the learning of environmental regularities 

In the second half of the thesis (Chapters 4-5) we focused on sequential perceptual decision-making. 

In this area, sizeable effort has been directed recently at short-term inter-trial influences on the 

order of few seconds (Akaishi et al., 2014; Cicchini et al., 2017; Fischer & Whitney, 2014; Fritsche et 

al., 2017).  However, our main interest was in the largely ignored past influences emerging over a 

longer period (5-15 minutes). We have shown that past stimulus probabilities strongly influence 

perceptual decisions, and that the extent of this influence depends on the presence of sudden shifts 

in stimulus statistics, sometimes resulting in locally irrational decision biases.  

Similarly to some of the previous reinforcement learning studies (Behrens et al., 2007; Nassar et al., 

2010), we have also found that changes in stimulus distributions play a crucial role in the update of 

internal models. However, participants’ behavior around the change point was very different in our 

experiments due to the unsupervised nature of the task: our findings were often in direct opposition 

to what would be expected based on gradual learning of single environmental parameter with 

feedback (Behrens et al., 2007; Rescorla & Wagner, 1972). Specifically, we have found that sudden 
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shifts in stimulus probabilities can elicit a lasting and seemingly counter-intuitive preference toward 

the locally rare element (Chapters 4-5).  

Superficially, our results are somewhat similar to those of Chopin & Mamassian (2012) since both 

studies describe an influence of both long- and short-term probabilistic experience. However, they 

report that the negative influence (adaptation) of the immediate past is modulated by differences 

from long-term experience, as if the current perceptual decisions were balancing the long- and short-

term past (Chopin & Mamassian, 2012). In contrast, we showed that changing probabilities over time 

set up a long-term bias, which acts independently of the attractive influence of decisions from the 

immediate past. Our framework suggests that the momentary bias does not balance the long-term 

and immediate past, rather it is just a consequence of these two largely independent influences.    

Since the previous models mentioned above cannot explain our findings, we propose a more 

principled explanation based on a Bayesian Observer Model below. To introduce the model, we start 

with an example demonstrating the omnipresent uncertainty that is ubiquitous in visual decision 

making.  It is well known that the same visual input can result in very different interpretations 

depending on context (Gregory, 1970). Imagine walking in a foreign forest on a foggy night, while 

trying not to bump into anything. Suddenly, you realize that you see fewer trees ahead of you. The 

reason for this could be that there are, in fact, fewer trees and you are approaching the end of the 

forest or, alternatively, the fog might have become heavier hiding some of the trees from view. In 

other words, attributing the noticed changes to different parts of the observer’s model, specifically 

either to the prior term (frequency of trees) or the likelihood term (more noise on perceiving trees), 

can account equally well the novel visual experience. Depending on which of the two hidden causes 

the observed change is attributed to, the adequate action can be the opposite (i.e.: either walk faster 

to get out quickly or slower to compensate for the increased difficulty). This example is analogous to 

our task, when a sudden change in the observed frequency of one stimulus type can be attributed to 

a change in appearance probability or alternatively, to a weaker ability to perceive stimuli from the 

rare category, which leads to opposing decision biases for higher performance. 
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It is often difficult to separate whether people rely on an altered prior or likelihood (or a mixture of 

the two) since, the data might be explained equally well by both type of changes (Laquitaine & 

Gardner, 2018). However, in our case, had participants changed their prior on appearance 

probability, they would have changed it in the direction opposite from the actual stimulus probability 

change experienced locally (since they would prefer the rare stimulus), which is a rather 

unreasonable thing to do. This suggests that they might have changed their likelihood/noise model. 

 Why would participants modify the noise model instead of changing their prior? We propose that 

they choose changing the likelihood because they are highly uncertain in their ability to perceive 

these noisy stimuli, while they do not have any reason to expect that prior probabilities would 

change. Our follow-up preliminary findings show that this is in fact, a likely explanation. Training 

people with volatile stimulus probabilities in a slightly modified version of the original paradigm used 

in Chapter 4 made people more prone to change their priors on appearance frequencies (Koblinger, 

Arató, & Fiser, 2018). This result suggests a framework, in which people change parameters of their 

internal model of the task in an uncertainty-weighted manner similarly to the strategy implemented 

during optimal cue combination (Ernst & Banks, 2002). If the observer is highly uncertain about 

her/his ability to perceive the noisy stimuli but had stable balanced training, the likelihood (noise) 

part of the internal model is updated (as in Chapter 4-5). If she/he is more uncertain about the 

stimulus appearance probabilities, she/he is more willing to update the prior of the internal model, 

resulting in an adaptation to changed stimulus probabilities (Koblinger et al., 2018).  Therefore, the 

uncertainty attached to different components of the internal representation of the environmental 

statistics can explain how these representations are updated under changing circumstances.  

Role of uncertainty in past probability effects 

Since the model described above suggests that uncertainty plays a crucial role in our findings, it 

would be very useful to look at measures of confidence/uncertainty and see if they are in fact 

sensitive to the changes in task conditions in the way forecasted above.  An approach that had recent 
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success in linking subjective uncertainty to sequential perceptual decision-making biases used pupil 

size as a measure. Pupil size based uncertainty, which is related to a general arousal state of the 

brain, affects both short-term serial influences (Urai, Braun, & Donner, 2017), and adjustments to 

long-term stimulus statistics changes (Krishnamurthy, Nassar, Sarode, & Gold, 2017) during 

perceptual decision making. The main idea is that depending on the level of uncertainty participants 

integrate past and current trials differently. This approach applied to short-term influences found 

that higher uncertainty increased the tendency to alternate responses (Urai et al., 2017), while 

regarding the long-term changes, larger pupil size reliably predicted a smaller decision bias 

(Krishnamurthy et al., 2017). It would be pertinent to look at similar effects with our paradigm to 

detect if potential individual differences in bias could be linked to confidence related changes. In line 

with the above finding of (Krishnamurthy et al., 2017), we expect that, after the period of changing 

probability resulting in an increased uncertainty, the participants who readjusted their internal 

model would be more uncertain. This would lead to an increased willingness to adapt to changes in 

stimulus probabilities, resulting in a smaller bias. Naturally, some participants would exhibit more 

variability in their behavior, and thus adapt their internal model to the changed statistics, while 

others stay more rigid, resulting in stronger bias by long-term probabilities (Glaze et al., 2018).  It 

remains to be seen whether such pupil-size-based assessment of uncertainty could link individual 

variability in adapting to changing probabilities to the predicted bias-variance trade-off across 

participants (Glaze et al., 2018).   

Such an uncertainty-dependent updating could form a link between our two main lines of inquiry as 

uncertainty could play a pivotal role at different levels in both paradigms. In Study 2, there was a 

large uncertainty about momentary stimulus identity (as it was jointly influenced by noise and 

appearance probabilities). In contrast, in Study 1, there was no uncertainty about the stimulus at the 

currently fixated location, however there was a large uncertainty about the contents of the other 

areas of the scene. By learning the predictive spatial regularities of pairs, the observer’s uncertainty 

in predicted states of the scenes should decrease. To confirm such a link between subjective 
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uncertainty and spatial statistical learning in Study 1, pupil size measure can be once again a useful 

tool. If scenes that violate the learned statistical structure are introduced into the stimulus 

presentation steam, they should elicit pupil size changes in a learning-dependent manner 

(Kloosterman et al., 2015). 

 

Sampling of episodic experience 

A recent line of research argues that human explorative decisions are influenced by reminders of 

past contexts: episodic experience is sampled to modulate momentary choices (Bornstein, Khaw, 

Shohamy, & Daw, 2017; Bornstein & Norman, 2017).  The same experimental paradigm has also been 

applied to perceptual decision making, showing that samples of episodic experience can bias 

evidence accumulation as well (Bornstein, Aly, et al., 2017). These experiments used reminders of 

past stimulus contexts, thereby enhancing the retrieval of particular episodic experiences, which in 

turn influence momentary perceptual decisions based on their stimulus association strength. This 

integrated view on memory retrieval and perceptual decision making is in line with the proposal of a 

recent review paper suggesting a parallel between sampling sensory information and sampling from 

memory (Shadlen & Shohamy, 2016).  

Our experiments in Chapters 4-5 did not use explicit reminders of past contexts, but we posit that 

certain periods of past experience (after the change-points) were deemed more significant. We 

hypothesize that samples of information collected during this critical period were stored/used with a 

higher weight than later samples. In essence, it can be argued that our experimental paradigm can be 

likened to the integrated view above by claiming that the context in our case was heavily determined 

by the change-points. Since there were no more drastic shifts in stimulus statistics during our 

experiment, participants implicitly assumed that they remained in the same context afterwards, and 

therefore, during the formation of their perceptual decisions they relied more heavily on the samples 

collected soon after the change.   
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 Since the explicitness of the reminders are not a necessary feature for the integrated theory arguing 

for past episodic influence, this approach could be integrated with our findings. It remains to be seen 

whether predictions from this proposed approach using the idea of sampling from the critical period 

could be disentangled from or merged with the predictions of the “changing internal model 

parameters” account outlined above. If validated with behavioral data, this would be an interesting 

theoretical advancement arguing that people sample the summary statistics of past trials similarly to 

episodic content. 

 

Links to reasoning   

In Chapter 4, we have shown a remarkable misuse of stimulus probabilities in perceptual decision 

making. While, to our knowledge, this finding is novel in the domain of perceptual decision-making, it 

has interesting links to the reasoning and categorization literature. In reasoning studies, the misuse 

of probabilities has been known for a long-time, the classical finding being the ignorance of base-rate 

probabilities (Bar-Hillel, 1980; Kahneman & Tversky, 1972). However, it has also been shown that, 

depending on the context, people can use base-rate information appropriately or can exhibit a 

counter-intuitive inverse base-rate effect (Johansen, Fouquet, & Shanks, 2007; Medin & Edelson, 

1988). This surprising inverse base-rate effect has been first described with a medical classification 

paradigm, showing that people judge novel ambiguous combinations of symptoms as manifestations 

of a disease with the lower base-rate (Medin & Edelson, 1988).   

Our findings can be considered as an inverse base-rate effect in perceptual decision making, since 

noisy stimuli are erroneously judged as belonging to the rare category.  While this is a remarkable 

similarity, indeed, the differences are also profound. First, in the medical categorization studies, 

participants were explicitly trained with unequal base-rates, whereas our effects emerged after a 

balanced training and unequal rates were introduced only during the unsupervised test. Second, a 

crucial component of the inverse base-rate effect is the introduction of novel symptom combinations 

C
E

U
eT

D
C

ol
le

ct
io

n



165 
 

at test (Kruschke, 1996). In contrast, our paradigm uses the same noisy stimuli during training and 

test, making it unlikely that high-level reasoning would underlie our findings.  

Despite these differences, a finding has been described in a very recent study investigating how 

unequal base-rates affect categorization judgments that could form a link between our study and the 

inverse base-rate effect (Levari et al., 2018). Similar to the results of Exp 1 in Chapter 4, these authors 

found that making a stimulus more frequent can bias people away from choosing it, a phenomenon 

they named “prevalence-induced concept change”. They found that such probability changes 

affected the categorization of a wide range of stimuli, from colors to facial expressions and even 

ethical judgments.  

While the described effect was achieved with an extreme probability shift (6% of trials from the rare 

category), the underlying phenomenon could be of a similar nature to the one we report in our 

studies. Levari et al. (2018) described their findings as if the “concept” of threat or colors changed 

due to the manipulation of the probabilities. We think a more principled explanation of their findings 

is a general influence of probability changes on how people categorize ambiguous visual stimuli, 

similarly to our results in Chapter 4. Imbalanced base-rates could make people uncertain about their 

ability to distinguish these ambiguous stimuli (uncertainty in the likelihood/noise model), therefore, 

they update their noise model instead of updating the prior, resulting in a compensatory choice bias. 

If there are similar underlying mechanisms between these two studies, those could form an 

interesting link between the domains of perceptual decision making and explicit categorization. In 

addition, our method of using temporary sudden shifts to elicit a lasting change in decision criteria 

could also extend the findings of Levari et al., by showing that their findings are not a sole 

consequence of a short-term compensatory bias.  

While decisions about high-level concepts such as faces had been shown to be amenable to the same 

sequential biases on a short time-scale as low-level perceptual stimuli (Fischer & Whitney, 2014; 

Liberman et al., 2014), the link between high-level and low-level influences related to long-term 
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probabilities have been largely ignored in the literature. Our work paves the road to future research 

that could focus on whether the link between probability shift eliciting high-level biases could work 

similarly to those found with low-level biases, and whether more delicate changes similar to those in 

in Chapter 4 and much less drastic than those in Levari et al. (2018) could elicit lasting influences in 

already balanced periods, as in Chapter 5. 
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Conclusions 

Environmental statistics are continuously built into internal representations. These internal 

representations, in turn, influence visual decisions continuously at multiple time-scales. Eye-

movement-based explorative decisions are influenced by complex spatial regularities, in a close 

interaction with learning, suggesting an integrated view on memory and visuo-spatial attention. At 

the same time, depending on the task, learning of complex regularities can take place without 

influencing eye-movements, confirming the automatic manifestation of statistical learning.  

Perceptual decisions about the identity of ambiguous visual stimuli are strongly influenced by 

probabilities of past occurrences. This influence depends on perceived changes in the environmental 

statistics, thereby pointing to a pivotal role of change dynamics in how past stimulus statistics 

influence the interpretation of momentary visual input.   Taken together, this thesis advances our 

understanding of how past environmental regularities influence visual decisions under various 

conditions. We have shown that past statistical influences can scaffold successful interaction with the 

environment, however in other high uncertainty scenarios, past influences can lead to a wrongly 

adjusted internal model which can hinder performance. Past statistical biases might not always be 

beneficial in an experimental set-up, but they are important in real life, where successful interaction 

with our surroundings is only possible if expectations are well tuned to the regularities we encounter 

in our daily lives. Good decisions are only possible if they are based on appropriate estimations on 

how the world works. 

C
E

U
eT

D
C

ol
le

ct
io

n



168 
 

  

C
E

U
eT

D
C

ol
le

ct
io

n



169 
 

 

Appendix A  

Additional Analysis for Chapters 2-3 

 

 

Appendix Figure. A.1. Model fit likelihood with different null models. To make sure that choice of null model is not 
responsible for our main results, we consider an alternative here which uses a random walk instead of the 
individual transition probability distribution (for Exps 2,1,3). As expected fitting M1 to an individual random null 
model (Solid line) fits the data better than using a general random null model (Dashed line). Y-axis is the negative 
log likelihood/trial after fitting M1. Individual null model is based on the individual empirical transition 
probability distribution as in the main text. Random null model is a random walk with 99% probability to 
adjacent cells and 1% to other non-adjacent cells. The probability of the different directions of transitions to 
adjacent cells was based on the empirical data-set (horizontal=.51, vertical=.36, or diagonal=.13, to other 
cells=.01). The average -log(L) is increasing over time, since it is the sum of the log likelihood on each trial, and 
participants performed more transition over time.  
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Appendix Figure A.2. Pair influence with alternative null models.  The M1 alpha parameter measuring pair 
influence was barely influenced by the choice of null model. The individual alpha values are binned by time and 
test performance as before for Exps 2,1,3. Solid line is the individual null model (as in main text), dashed is the 
random walk as defined on Appendix Fig A.1. This figure shows that the values of the pair influence parameter 
alpha are mostly very similar regardless of the choice of null model (despite the considerable difference in the 
log(L) of the fit as seen on the previous figure. 

Appendix Figure. A.3. Fitting M1 with larger alpha range. Alpha was constrained on the range [ -1, 2] instead of 
[0,1] as in the main text. The correlation with familiarity test performance (shown on each figure) is significant 
for Exps 1-3. Furthermore, we can see that pair influence is very close to zero in the working memory 
experiments.  Thus, how the values of alpha are constrained, influences the magnitude of fitted values, but the 
correlations with learning are very similar to those reported in the main text (or stronger in the case of the Long 
Implicit Experiment)  
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Appendix Figure. A.4. Model Selection Results for Exp 1-3, Color shows which model fits the overall 
exploration data of each participants better, as a function of pair transition rate (x-axis) and familiarity test 
performance(y-axis). Participants who are better fitted by M1 tend to be high learners, who make lot of 
within pair transitions, however, the model is sensitive to pair influences where the overall transition rate 
does not show a difference from other participants. X axis: pair transition rate (N transitions within 
pairs/total number of transitions, not used in the main text) For this visualization we use this measure as 
this shows the closest relationship with our M1 alpha parameter. Yellow: participants better fitted with M1, 
Blue Better fitted by M0. Horizontal lines show thresholds for grouping by familiarity test performance as in 
the main text. We can conclude that in all three Exps mostly high learners are fitted better by M1. 

Appendix Figure. A.5. Specific pair influence over-time in Exps 1-3.  Temporal direction specific pair 
influence for Exps 1,2,3 (Top,Middle,Bottom) for Horizontal-Vertical-Diagonal (Left, Middle, Right) 
statistical influence parameter α1-3 from M2. Time is shown on the x-axis, pair structure influence on y-axis, 
participants grouped by performance as before. Pearson correlation values are shown between pair 
influence parameter(α1-3) and test performance on each direction, for each time-bin. Early emergence of 
Horizontal pair influence was true for Exp 1 & 3, which was followed by Vertical and Diagonal for both 
groups. No significant influence was found for any of the time-bins for any of the directions for Exp 2. 
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Appendix Table A.1. Descriptives of the statistical influence measures for Exps 1-5 on the overall data-set. These 
four measures were used to describe statistical influences in Chapters 2-3.  Mean +/- SD 

  

Experiment Pair Exploration 
Rate 

Pair Return Rate M1 alpha Shape 
Exploration Rate 

1 Explicit  0.255 +/- 0.05 0.275 +/- 0.1 0.16 +/- 0.09 0.631 +/- 0.03 

2 Short Implicit 0.24 +/- 0.04 0.225 +/- 0.04 0.134 +/- 0.07 0.624 +/- 0.02 

3 Long Implicit 0.235 +/- 0.05 0.232 +/- 0.08 0.162 +/- 0.07 0.623 +/- 0.03 

4 Implicit WM 0.255 +/- 0.03 0.273 +/- 0.06 0.103 +/- 0.03 0.636 +/- 0.01 

5 Imp. WMshuf. 0.248 +/- 0.03 0.25 +/- 0.05 0.099 +/- 0.03 0.63 +/- 0.02 
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Appendix B 

Additional Analysis for Chapters 4-5 

 

  

Appendix Figure B.1. Validation of approach with simulation. Answers of 12 candidate models to the stimulus 
sequence presented to all participants of Exps 1-8 were evaluated, where the models included all 
combinations of Present Stimulus (null: 0), Bias (B), Previous Decision (D1), Previous two Decisions (D2), 
Previous Stimulus (S), and the full model with all 4 parameters (F). Results from a randomly selected round of 
simulation (12 generating * 12 fitted model to the stimulus sequence of all participants). Color code: best 
model=dark blue, worst model=dark red. For each generating model on the Y axis, a black dot shows the best 
Fitted model. Dots along the diagonal indicate when the true underlying model was found.  AIC was the most 
accurate in finding the true mode (more info in Supplementary text), results of individually calculated and 
corrected AIC showed identical conclusions with the Total AIC, therefore we only show the latter. A) AIC 
calculated from total likelihood (divided by number of participants) B) Mean of Cross-Validated Negative Log 
Likelihood calculated individually C) BIC from total likelihood (divided by number of  participants)  D) Mean of 
individually calculated BIC. 
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Appendix Table B.1. Logistic Model fit parameters on the overall data-set. These are the mean and absolute 
weights of the best fitting model with four parameters as selected on Fig 4.1C. Decision -1 &-2 refer to the 
previous decision and the decision two trials ago. Confidence intervals were obtained by bootstrapping 5000 
times.  On the overall dataset average bias is close to 0, looking at the absolute weights shows it has the second 
strongest influence on decisions. The predictor weights were standardized according to the method described in 
the main text to make the values comparable regardless of the scale of encoding the predictors 

 

 

Appendix Text B.1. 

Validation of Noise Model 

 To confirm that characteristics of the randomly selected shape stimuli and the Gaussian additive 

noise used in the experiment did not contribute to our results, we investigated how noise could 

affect the encoding of stimuli in our experiments. We used the N-dimensional pixel space for this 

analysis, where N denotes the number of pixels in the stimulus image and hence, each of the two 

noise-free target shape images as well as any noisy version of those images defined individual single 

points in the space. For each participant and each trial, we calculated the distance in this pixel space 

between the two noise-free targets and the noisy stimulus presented in the trial by projecting the 

noisy stimulus position onto the vector connecting the two noise-free targets in the pixel space.  

While the addition of random noise to the shape images in each trial introduced variability in the 

location where the projected line bisected the vector between the two targets, this location did not 

correlate with the participant’s response bias. As a second control, instead of using a simple linear 

metric to quantify the noise levels based on the percentage perturbed pixels, we encoded the noise 

level of the stimuli based on vector distance obtained from the projection described above and 

replicated our analysis with the logistic regression model (Fig 4.1) with this encoding. The two 

 Bias Current Stimulus Decisions -1 Decision -2 

Mean Weights 

CI 

-0.05 

[-0.14,  0.04] 

1.104  

[ 1.04,  1.17] 

0.189  

[ 0.13,  0.24] 

0.202  

[ 0.17,  0.24] 

Absolute Weights 

CI 

0.427  

[ 0.37,  0.49] 

1.104  

[ 1.04,  1.17] 

0.312  

[ 0.27,  0.35] 

0.2429  

[ 0.22,  0.27] 
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encoding methods yielded very similar results with the original linear encoding of noise performing 

slightly better in explaining the participants responses (obtaining a higher negative log likelihood).  

Based on these results, systematic biases in the noise model or interaction between target shapes 

and noisy stimuli could not explain our main results. 

 

 

Appendix Text B.2. 

Drift Diffusion Model 

In order to capture the RT and decision bias asymmetry in our data we independently manipulated 

two parameters in the standard DDM model (Ratcliff & Rouder, 1998). We simulated data with trial-

by-trial DDM to the stimulus sequence of each participant from Exps 1-3, and fitted the above used 

logistic regression model to the simulated data. To fit the decision bias we manipulated the starting 

value of the diffusion process. In order to capture the opposing bias in RT-s, we scaled the 

accumulation rate of the diffusion process asymmetrically for the two stimuli. A simulation with the 

Appendix Figure B.2. Result patterns of Exps 3,2,1 replicated by drift diffusion model simulation (note the 
reverse order). A) Bias obtained from simulated data (Color code from dark to light blue Exp3, Exp2, Exp1) B) 
Results of RT differences in the simulated data. An asymmetric drift rate (faster drift for frequent stimulus) and 
a biased starting position could reproduce the main pattern of the findings in Exps 1-3, most notably the 
opposing effects on RT and decision bias in Exp 1. The same asymmetric scaling of the drift rate was used for 
each bar of the above figures, while the value of starting positions of the DDM were selected as noted on the x 
axis. The simulated RT results do not include non-decision time that would compress the differences between 
the three RT bars making them more similar to human results. (see detailed description in Supplementary 
Text) 
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starting value biased toward the rare element but with faster accumulation rate toward the frequent 

element could reproduce the main trend of our findings in Experiments 1-3 (Suppl Fig. 5). 
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Psychometric  
PSE 

Experiment P 
Structure 

df Mean  CI t-test t t-test p Cohen’s 
d 

Bayes 
Factor 

Exp 1 50-65 19 0.5581 0.2616    
0.8854 

3.4228 
 

.0029 0.7654 14.79 

Exp 2 65-65 19 -
0.3419 

-0.7936    
0.1039 

1.4668 
 

.1588 -0.3280 .59 

Exp 3 75-65 19 -
1.5722 

-2.5611 
-0.7718 

3.3142 
 

.0036 -0.7411 11.99 

Exp 4 75-50 19 -
1.4927 

-2.0547 
-0.8735 

4.8758 
 

.0001 -1.0903 266.46 

Exp 5 50-65Gr 19 -
0.6184 

-1.3496 
-0.0377 

1.7578 
 

.0949 -0.3931 .85 

Exp 6 50-65-50Gr 19 0.6428 0.2229    
1.1156 

2.7514 
 

.0127 0.6152 4.2 

Exp 7 50-75-50Gr 20 0.4184 0.0360    
0.7884 

2.1013 .0485 0.4585 1.4 

Appendix Table B.2. Point of subjective equivalence (PSE) of psychometric curves for experiments 1-7 with 
descriptive stats and statistical tests whether the average observer was biased in each experiment. CI is obtained 
via bootstrapping. d is effect size (Cohen’s d). Bayes Factor. Here higher numbers mean a stronger preference 
for the rare stimulus in each experiment. 

 

Logistic 
Model Bias 

Mean  CI t-test t t-test p Cohen’s d Bayes 
Factor 

Exp 1 -0.336 -0.4815,  
-0.1907 

4.431 .0003 0.9908, 109.3  

Exp 2 -0.058 -0.2468,   
0.1123 

0.6227 .5409 0.1392 0.28 

Exp 3 0.338 0.1077,  
0.5816 

2.7457 .0129 0.614  4.16 

Exp 4 0.418 0.1367,  
0.7208 

2.7406 .0130 0.6128  4.12 

Exp 5 -0.001 -0.1539,  
0.1669 

0.0073 .9943 0.0016 .23 

Exp 6 -0.35 -0.514 ,  
-0.196 

4.1714 .0005 0.9328 64.96 

Exp 7 -0.347 -0.5394,  
-0.1514 

3.4377 .0026 0.7502 15.22 

Appendix Table B.3. Logistic model bias for Exps 1-7 with descriptive stats and statistical tests whether the 
overall bias is different from zero.  Values below zero represent a bias toward the rare, above zero toward the 
frequent stimulus (unlike in the previous table with PSE) 
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Logistic Model Bias 
over-time 

Initial  1st Half  2nd Half 

Exp 1  Mean 
CI 

0.049  
[-0.26  0.35] 

-0.303 
[-0.46 -0.14] 

-0.326 
[-0.48 -0.17] 

Exp 2 Mean 
CI 

0.381 
[ 0.11  0.65] 

0.04 
[-0.15  0.24] 

-0.129 
[-0.33  0.07] 

Exp 3 Mean 
CI 

0.57 
[ 0.31  0.8 ] 

0.409 
[ 0.17  0.63] 

0.309 
[0.06  0.57] 

Exp 4 Mean 
CI 

0.36 
[-0.   0.7] 

0.387 
[ 0.13  0.66] 

0.423 
[ 0.14  0.72] 

Exp 5 Mean 
CI 

0.1 
[-0.18  0.36] 

0.092 
[-0.12  0.34] 

0.001 
[-0.14  0.16] 

Exp 6 Mean 
CI 

0.213 
[ 0.01  0.42] 

-0.269 
[-0.47 -0.07] 

-0.373 
[-0.52 -0.23] 

Exp 7 Mean 
CI 

0.172 
[-0.08  0.42] 

-0.373 
[-0.55 -0.2 ] 

-0.277 
[-0.49 -0.07] 

Appendix Table B.4. Decision Bias over-time for Exps 1-7. Initial is calculated based on the first 30 trials of the test 
block, to see the bias during initial test exposure. 1st and 2nd half are the two halves of the entire test sessions for 
Exps 1-4, and the two halves of the 300 trial period after the gradual change for Exps 5-7. Confidence intervals 
were obtained by bootstrapping. Values below zero represent bias toward the rare, above zero toward the 
frequent stimulus. 

 

 

RTdiff Mean 
(ms)  

CI 
(boostrap) 

t-test t t-test p Effect 
size (d) 

Wilcoxon 
Z 

Wilcoxon 
p  

BF 

Exp 1 53.198 20.2194 
83.2898 

3.2096 .0046 0.7177 3.0239 .0025 9.82 

Exp 2 29.975 -3.8205 
60.4835 

1.8 .0878 0.4025 1.9786 .0479 0.9 

Exp 3 74.318 35.8719 
117.955 

3.4559 .0026 0.7728 3.0239 .0025 15.77 

Exp 4 33.985 0.0889 
67.7941 

1.937 .0678 0.4331 1.6053 .1084 1.1 

Exp 5 56.335 32.1521 
82.6002 

4.2201 .0005 0.9436 3.4346 .0006 71.61 

Exp 6 3.882 -28.7359 
19.7899 

0.3058 .7631 0.0684 0.2987 .7652 0.24 

Exp 7 13.893 -33.9326 
5.8561 

1.3357 .1966 0.2915 1.3034 .1924 0.49 

Appendix Table B.5. Descriptives of reaction time difference (rare-frequent), higher values mean bigger 
advantage of frequent responses. CI is obtained by bootstrapping. In testing whether the data is different from 
zero, we report both t-test and non-parametric statistics, since there were some strong outliers in the RT data as 
can be seen in Fig 4.4D. Bayes factor is calculated from t-value. 
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