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Abstract

The main theme of the thesis is the investigation of Turan-type problems in graphs and
hypergraphs. A big part of it is focused on studying Turdn numbers of Berge and linear
cycles in hypergraphs. In addition, we investigate behaviour of linear cycles in 3-uniform
hypergraphs and observe some Turan-type problems for graphs.

The thesis is divided into 6 chapters. The first chapter contains the background on Turén
type problems in graphs and hypergraphs, as well as describes characteristics of linear cycles
in 3-uniform hypergraphs.

In the second chapter we study behaviour of linear cycles in 3-uniform hypergraphs.
Gyarfas, Gyéri and Simonovits proved that if a 3-uniform hypergraph H has no linear cy-
cles, then a(H) > w The hypergraph consisting of vertex disjoint copies of complete
hypergraphs K3 shows that equality can hold. They asked whether a(H) can be improved
if we exclude K3 as a subhypergraph and whether such a hypergraph is 2-colorable. We
answer these questions affirmatively by showing that if a 3-uniform linear cycle-free hyper-
graph H, contains no subhypergraph K2, then it is 2-colorable. Therefore, a(H) > [@1
Furthermore, we show that this bound is sharp. We also determine the exact upper-bound
on minimum degree in linear cycle-free hypergraphs. These results are based on the paper
“3-uniform hypergraphs and linear cycles” co-authored with Gyé&ri and Methuku.

Gyarfas and Sarkozy conjectured that the following extension of the well-known theorem
of Posa holds: One can partition every k-uniform hypergraph H into at most «(H) linear
cycles (here, as in Posa’s theorem, vertices and subsets of hyperedges are accepted as linear
cycles). We show that their conjecture would be true for & = 3, if we allowed the linear cycles
to be just edge-disjoint, instead of being vertex-disjoint, thus proving a weaker version of the
conjecture. The proof is based on the paper “A note on the Linear Cycle Cover Conjecture
of Gyarfas and Sarkoézy” co-authored with Gyéri and Methuku.

In Chapter [3] we investigate hypergraph Turan problems of Berge cycles and linear cy-
cles. Given a family of 3-uniform hypergraphs F, the linear Turan number of F, denoted
exi™(n, F), is the maximum number of hyperedges in an F-free 3-uniform linear hypergraph
on n vertices. exs(n, F) denotes the Turan number of F for 3-uniform hypergraphs. We give
an upper bound of exz(n,C5), which significantly improves the previous bound determined
by Gyéri and Bollobés. In the linear case, we determine asymptotically sharp bounds and
show that ex{"(n,Cs) = ﬁn?’/ 2 asymptotically, by giving a new construction and prov-
ing the corresponding upper bound. We also show that asymptotics of ex{"(n, Cy) is same
as exj"(n, {Cs, Cy}), strengthening the theorem of Lazebnik and Verstraéte. In the same
chapter we provide constructions of 3-uniform hypergraphs without linear cycle of given odd
length, which in special cases, gives us a lower bound with the matching order of magnitude
of the upper bound provided by Collier-Cartaino, Graber and Jiang [I4]. This chapter is
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based on the papers “Asymptotics for Turdn numbers of cycles in 3-uniform linear hyper-
graphs” and “3-uniform hypergraphs without a cycle of length five” co-authored with Gydri
and Methuku.

In the fourth chapter we study generalized Turan problems. The main question is to
determine ex(n, K3, C5), where ex(n, K3, C5) denotes the maximum possible number of copies
of K3 in a Cs-free graph on n vertices. Bollobas and Gyéri initiated the study and showed
that ﬁ(l—i—o(l))n?’/2 < ex(n, K3,C5) < 2(140(1))n*?. Alon and Shikhelman improved this

result by reducing the constant in the upper-bound to @ In this chapter we introduce a new
approach and further improve this bound showing that ex(n, K3,C5) < (1 + 0(1))3\1/ n3/2.
We also give a short proof for slightly weaker bound, based on the paper "A note on the
maximum number of triangles in a Cs-free graph" co-authored by Gyéri, Methuku, and Salia.
In the last part of the chapter, we give a new upper bound for maximum number of edges
in a graph without C5 and induced Cj as a subgraph, which slightly improves the previous
bound given by Ergemlidze, Gy&ri and Methuku. This chapter is mainly based on the paper

“Triangles in Cj-free graphs and Hypergraphs of Girth Six” co-authored with Methuku.

In Chapter [5] we investigate 15-year old question asked by Mubayi and Verstraéte. Let
t,n be integers with n > 3t,t > 3. Let KQt denote the triple system consisting of 2¢ triples
{a} UE, {b}UE, {a} UEy {b}UE,,.. {a} U Ey, {b} U E}, where a, b are distinct elements
and Fi, ..., F, are pairwise disjoint 2—element sets that are disjoint from {a,b}. About 15
years ago Mubayi and Verstraéte proved that ex(n, Kéi)) <t (g‘), they showed that g(t) :=
lim,, ., ex(n, Kéi)) / (g) and that 221 < g(t) < t*. and asked if one could determine the
growth rate of g(t). we prove that, g(t) = ©(t'*°V), as t — co. This shows that their lower
bound is close to the truth. More precisely, we prove that ex(n, Kéi)) < (15tlogt + 40t) n?
for any ¢ > 2. The chapter is based on the paper “New bounds for a hypergraph Bipartite
Turan problem” co-authored with Jiang and Methuku.

In Chapter [] we study another Turan-type problem. For a fixed graph F' the rainbow
Turdn number of F, ex*(n, F'), is the maximum number of edges in a graph on n vertices
that has a proper edge-coloring with no rainbow copy of F. Johnston, Palmer and Sarkar
proved in [53] that for any positive integer k gn < ex*(n, Pri1) < [BkHW n. In this chapter
we show that the rainbow Turan number of a path with k& 4 1 edges is less than (% + 2)
improving an earlier estimate of Johnston, Palmer and Sarkar. The proof is based on the
paper “On the Rainbow Turan number of paths” co-authored with Gyéri and Methuku.
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Chapter 1

Introduction

The Turdn number ex(n,F) is the maximum number of edges in an F-free graph on n
vertices. Extremal graph theory studies Turan numbers of various graphs. Investigation of
this type of problem dates back to 1907, when Mantel [63] proved that the maximum possible

number of edges in triangle-free graphs on n vertices is at most {%J The complete bipartite

graph with parts of sizes {%J and (%W is a construction for lower bound. It was only years

after, when Turan initated systematic studying of similar problems, he proved:

Theorem 1.1 (Turan [71]). The mazimum number of edges in a graph on n vertices with
no K1 is at most (1 —Hn

t) 2
The matching lower bound comes from the construction, which is a complete t-partite

graph with part sizes being as close as possible. Clearly, each part will be of size either PJ

t
or [4].
For a graph G, the chromatic number x(G) is the smallest number of colors needed to
color the vertex set of GG so that no two adjacent vertices share the same color.
For any non-bipartite forbidden graph F, ex(n, F') has order of magnitude n?, moreover
Erdés, Stone and Simonovits |21} 23] showed that asymptotics of the Turdn number of a
graph is determined by its chromatic number only.

Theorem 1.2 (Erdés, Stone, Simonovits [21], 23]). For a graph F with x(F') > 3 we have

,n2
ex(n, F) = (1 — X(Fl)_l) 2 +o(n?).

It is fascinating that this one theorem takes care of the huge class of Turéan problems.
Since then, the study has been mainly directed to the so-called ‘degenerate’ case, i.e., when
the forbidden graph is bipartite. Kévari, S6s and Turédn considered one of the most natural
degenerate cases and estimated the Turan number of a complete bipartite graph K, with
parts of sizes s and t.

Theorem 1.3 (Kévari, T.Sos, Turan [58]). Let Ky, denote the complete bipartite graph with
s and t vertices in its color-classes. Then

1 1
ex(n, Kg;) < 5 /t —1n*"t + O(n)
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Clearly, it makes sense to use this theorem for s < ¢ as it is a better estimation this
way. Kollar, Ronyai and Szab6 [56] provided a lower bound, which matches the order of
magnitude of the upper bound, whenever ¢ > s!, and later Alon, Ronyai, and Szabo [5]
provided a matching lower bound if ¢ is sufficiently big compared to s, more specifically
when ¢t > (s — 1)L

A very interesting and widely used special case of the theorem is when s =t = 2,
i.e. estimating the Turdn number of K52, which also happens to be a 4-cycle. The theorem
clearly implies that

ex(n,Cy) < (1+ 0(1));713/2.

One would wonder if there exists a matching lower bound and the answer is it does. The
construction for the lower bound is following:

Construction. Let p be a prime number and n = p*> — 1. Let the vertex set be non-zero
pairs (x,y) of the residues modulo p. As the edge set we take distinct pairs of vertices (x,y)
and (a,b) such that ax 4+ by = 1 (modulo p).

If there is a cycle of length 4 in the constructed graph, then there are vertices (a, b), (u,v),
(a/,b") and (u'v') such that au + bv = au’ + bv' = a'u + b'v = a'v/ + b'v' = 1. So the system
of equations ax + by = 1 and a’x + b'y = 1 have two distinct pairs of solutions, which is
impossible. So the constructed graph is Cy-free.

For each (a,b) the equation ax + by = 1 has p solutions and at least p — 1 of them is
different from (a,b). This implies that the number of edges of the constructed graph is at
least £ (p*—1)(p—1), so ex(p?—1,C4) > £(p*—1)(p—1). By the fact, that prime numbers are
"densely’ distributed in integers, we can extend the lower bound for an arbitrary n, therefore,
we get ex(n, Cy) > (14 o(1))in%2.

The next natural step in understanding Turédn numbers of bipartite graphs is to determine
extremal number of cycles of even length.

Theorem 1.4 (Bondy, Simonovits [10]). For any k > 2, we have
ex(n, Co) = O(n'+#).

For k = 2,3 and b, it is proven that the upper bound (the order of magnitude) can not
be improved, but generally, whether the upper bound is sharp or not, remains as one of the
most intriguing open questions in extremal graph theory.

1.1 Generalized Turdn numbers

Since forming of Turén theory, people generalized classical Turédn problems in many ways,
one class of these generalizations officially carries the name generalized Turdn numbers. In
this section we overview this topic.

Unsurprisingly, we start this topic by a problem provided by Erdds [24]. Erdés has made
several conjectures concerning triangles and pentagons, one of them is following:
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Conjecture 1.5 (Erdgs). The number of cycles of length 5 in a triangle-free graph on n
vertices is at most (n/5)° and equality holds for the blown-up pentagon if 5 | n.

It was only recently, that the conjecture was proven by Hatami, Hladky, Kral, Norine,
and Razborov [51] and independently by Grzesik [43)].

For graphs F' and H, let ex(n, H, F') denote the maximum possible number of copies
of H in an F-free graph on n vertices. These types of problems are called generalized
Turdn problems and the study of them began after Gyéri and Bollobas [8] considered the
similar problem to Conjecture [I.5] they estimated the number of triangles in graphs without
pentagons.

Theorem 1.6 (Gydri, Bollobas [§]).

(1+ 0(1))3\1/3713/2 < ex(n, Ky, C5) < (1 + 0(1))2713/2.

Their lower bound comes from the following construction: Take a Cy-free bipartite graph
Go on n/3 + n/3 vertices with about (n/3)%? edges and double each vertex in one of the
color classes (each corresponding edge will also be doubled) and add an edge joining the old
and the new copy of each vertex to produce a graph G. It is easy to see that G is Cs-free
and it contains (n/3)%? triangles.

More systematic study of the function ex(n, H, F) was initiated by Alon and Shikhelman
in [4], where they improved the result of Bollobas and Gyéri by showing that ex(n, Cs, C5) <
(1+ 0(1))@713/ 2. This bound was further improved in [33] by Ergemlidze, Gy6ri, Methuku
and Salia and then very recently in [26], by Ergemlidze and Methuku, who showed that
ex(n, Cs, Cs) < (14 0(1))0.232n*2. We provide the proof of this result in Chapter

Clearly, unlike classical Turan problems, determining the order of magnitude of gener-
alized Turan numbers is not trivial for non-bipartite forbidden graphs. Gyéri and Li [45]
provided bounds on number of triangles in Cy-free graphs. They proved

Theorem 1.7 (Gyéri, Li [45]).

- (2k — 1)(16k — 2)

eX(n7 Cs, CQk—i—l) 3

ex(n, Ca).

The lower bound contains more than (S) exbip(lf—fl, {C4,Cs,...,Co}) triangles, where
eXpip(n, F) denotes the maximum number of edges in an F-free bipartite graph on n vertices.
Below we consider the corresponding construction:

Take a maximum size bipartite graph H(Xy,Y) where |Xo| = [Y| = 47 such that
Cy,Cq,...,Co ¢ H. To get the desired graph G, "blow up" the vertices in Xy, i.e., for
every vertex x € X, replace x by k vertices x1, s, ..., 2, joined to each other and to all
neighbors of z (in the graph H). The set of these new vertices is denoted by X, and clearly
| X[ =k|Xol, ie., [XUY|= k5 + 15, so the resulting graph G has n vertices. This graph
G contains many cycles of length 3,4, ...,2k, but it can be easily checked that if there is a
cycle of length 2k +1 in GG, after contracting back the vertices of the blown up set, we would

find an even cycle of length at most 2k 4+ 1 in H, which is a contradiction.

4
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Now let us count the number of triangles in G. For simplicity we count the number
of triangles with one vertex in Y and two vertices in X, as most of the triangles are of
this type. It is easy to see that each edge of H is replaced by a clique of size k£ + 1 in
G, therefore there is at least (';)e(H ) triangles with one vertex in Y. So this construc-
tion gives us a lower bound (g) exbip(lf—fl, {C4,Cs,...,Co1}). We know that the func-
tions expip (25, {C4, Cs, - - ., Capgr}), ex(£4,{Cs, C6, ..., Copy1}) and ex(2, Copy) are es-
sentially the same, therefore, this construction proves that Theorem [1.7]is very close to being
sharp.

1.2 Turan problems in hypergraphs

Counting triangles in graphs is closely related to counting hyperedges in 3-uniform hyper-
graphs. This leads us to another closely related topic, which is one of the main themes of
the thesis, Turdn numbers of hypergraphs.

A hypergraph H = (V| F) is a family E of distinct subsets of a finite set V. The members
of E are called hyperedges and the elements of V' are called vertices. A hypergraph is called
r-uniform if each member of E has size r. A hypergraph H = (V| E) is called linear if every
two hyperedges have at most one vertex in common.

For a family of forbidden r-uniform hyergraphs F the Turdan number ex, (n, F) denotes the
maximum number of hyperedges in an r-uniform hypergraph on n vertices with no element
of F as a subhypergraph. For convenience, whenever F = {F'} consists of a single forbidden
hypergraph, we write ex,(n, F) instead of ex,(n, {F'}).

The linear Turdn number ex!™(n, F) is the maximum number of hyperedges in an r-
uniform linear hypergraph on n vertices with no element of F as a subhypergraph.

A very natural and widely studied topic is Turan numbers of cycles in hypergraphs.
Unlike graphs, there are several types of cycles in hypergraphs, most common of them would
be Berge cycles and linear cycles.

Definition 1.8. For an integer k > 2, a Berge cycle of length k, denoted by Cy, is an
alternating sequence vihyvahsy . .. vghyvy of distinct vertices and edges such that {v;, vy 1} C h;
for1<i<k—1, and {vg,v1} C hy.

A linear cycle (often also called a loose cycle) in a hypergraph is a Berge cycle where only
the cyclically consecutive hyperedges intersect and they intersect in exactly one vertex.

It is worth noting that even in linear hypergraphs, Berge and linear cycles differ from each
other. Although, in the case of cycles of length 3, in linear hypergraphs these two classes
coincide, so linear Turdn number of Berge triangle is the same as linear Turan number of
linear triangle. Determining exy™(n, C3) is basically equivalent to the famous (6, 3)-problem,
which is a special case of a general problem of Brown, Erd&s, and Sés. The famous theorem
of Ruzsa and Szemerédi states:

Theorem 1.9 (Ruzsa, Szemerédi [68]). There exists a constant ¢ > 0 for which we have

_ c

n" Vi < egh™(n, Cs) = o(n?).

5
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The systematic study of Turan numbers of Berge cycles started with the investigation
of Berge triangles by Gy6ri [47], who proved that the maximum number of hyperedges in a
Berge triangle-free 3-uniform hypergraph on n vertices is at most n?/8. The construction for
lower bound is following: Take 3 disjoint sets, A = {a1,as,...,a,/4}, A" = {d},d), ... ,a;/4}
and B = {by,b,...,b,2}. The hypergraph H, whose vertex set is AU A’ U B and the edge
set is {a;,al,b; | 1 <i<n/4,1 <j<n/2},is Berge triangle-free and has n?/8 hyperedges.
There is an informal, but convenient way to see this construction. First we take a complete
bipartite graph and then we make a copy of each vertex on one side, this way we create a
triple corresponding each edge of the original bipartite graph and we assign hyperedges to
these triples. It is worth noting that this type of hypergraph extension of a graph is quite
common and we will come across similarly obtained hypergraphs throughout this thesis.

The study of Berge cycle-free hypergraphs were continued by Bollobas and Gydéri [§],
who showed that n*/?2/3v/3 < exs(n, C5) < v2n%? + 4.5n. Very recently, this estimate was
considerably improved by Ergemlidze, Gy6ri and Methuku [29]. They also considered [30] the
analogous question for linear hypergraphs and proved that exi®(n,Cs) = ﬁn?’/ 24+ 0(n).
Surprisingly, even though the lower bound here is the same as the lower bound in the
Bollobas-Gyéri theorem, the hypergraph they construct in order to establish their lower
bound is very different from the hypergraph used in the Bollobas-Gyéri theorem. The latter
is far from being linear. We discuss more details about these problems and provide proofs
for some of them in Chapter [3|

Gyéri and Lemons considered a more general question and estimated Turédn number of
Berge cycles of any given length.

Theorem 1.10 (Gyéri, Lemons, [46, 44]). For r > 2, we have ex,(n, Cy) = O(n'T1/Y).
For r > 3, we have ex,(n, Cy 1) = O(n'+/1).

Recently, Fiiredi, Kostochka and Luo [39] proved similar results for Berge cycles. Instead
of forbidding Berge cycles of fixed length they forbid all Berge cycles of length at least k.

Theorem 1.1 (Fiiredi, Kostochka, Luo [39]). Let r > 3 and k > r+ 3, and suppose H is an
n-vertex r-graph with no Berge cycle of length k or longer. Then e(H) < Z—:;(k_1>.

r

Moreover, Kostochka and Luo [57] found bounds for £ < r — 1 and for k = r. For the
remaining two cases k = r+2 and k = r+1, Fiiredi, Kostochka and Luo [39] conjectured that
a similar statement as that of Theorem holds. Recently, Ergemlidze, Gyd&ri, Methuku,
Tompkins, Salia and Zamora [35] proved these conjectures.

Apart from cycles, we consider a hypergraph Turan problem of following extension of a
complete bipartite graph.

Let Kéft) denote the r-uniform hypergraph consisting of 2¢ hyperedges {a} U Ej, {b} U
Ey,{a} UEy, {b} UFE,, ..., {a}UE;,{b} U E,, where a, b are distinct vertices and Fi,..., F;
are pairwise disjoint (r — 1)-uniform sets that are disjoint from {a,b}. For more clarity,
in Figure we see an example of K2(33) (Note that in Figure triangles correspond to
hyperedges)
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Figure 1.1: Example of Ké?})

Definition 1.11. For alln > r > 3, let f.(n) denote the mazimum number of edges in an
n-vertex r-uniform hypergraph containing no four edges A, B,C, D with AUB = CUD and
ANB=CND=1.

Note that f3(n) = ex(n,Ké?Q)), and in general f.(n) < ex(n, K(TQ)). Erdss [17] asked

whether f,(n) = O(n"™) when r > 3. Erdés and Frankl proved that f,(n) = O(n'~z) but
they never published it. Later Fiiredi [36] answered Erdés’ question affirmatively.

Theorem 1.12 (Fiiredi [36]). For all integers n,r with r > 3 and n > 2r,

(Z:D . {n;lJ < f.(n) <3.5<Tf1>.

The lower bound is obtained by taking the family of all r-element subsets of [n] :=
{1,2,...,n} containing a fixed element, say 1, and adding to the family any collection of
L”T_lJ pairwise disjoint r-element subsets not containing 1. For r = 3, Fiiredi also gave
an alternative lower bound construction using Steiner systems. An (n,r,t)-Steiner system
S(n,r,t)is an r-uniform hypergraph on [n] in which every ¢-element subset of [n] is contained
in exactly one hyperedge. Fiiredi observed that if we replace every hyperedge in S(n,5,2)

by all its 3-element subsets then the resulting triple system has (g) triples and contains no

copy of Ké?’Q) This slightly improves the lower bound in Theorem [1.12| for » = 3 to (g),
for those n for which S(n,5,2) exists. The upper bound in Theorem [1.12| was improved by
Mubayi and Verstraéte [64] to 3(721) + O(n"=%). They obtain this bound by first showing
f3(n) = ex(n, K§32)) < 3(}) +6n, and then combining it with a simple reduction lemma. This
was later improved to f3(n) < %(g) by Pikhurko and Verstraéte [65].

Motivated by Fiiredi’s work, Mubayi and Verstraéte [64] initiated the study of the general

problem of determining ex(n, K. ért)) for any t > 2.
Theorem 1.13. t > 2 and n > 2t

ex(n, Ké‘?t)) <t (Z) :

Morover, for infinitely many n,
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Mubayi and Verstraéte noted that g(t) := lim, . ex(n, Kéi)) /(%) exists and raised the
question of determining the growth rate of ¢g(t). Ergemlidze, Jiang and Methuku [27] deter-
mined ¢(¢) within a margin of logt factor. The proof is provided in Chapter

1.3 Linear cycle-free 3-uniform hypergraphs

In this section we again consider extremal hypergraph problems, but instead of estimating
the number of hyperedges of hypergraphs without particular forbidden structures, we observe
some properties.

Much like the graph case (as a graph without a cycle is a forest), a hypergraph without
a Berge cycle is a disjoint union of linear trees (a linear forest), where a linear tree is
a hypergraph obtained from a vertex by repeatedly adding hyperedges that intersect the
previous hypergraph in exactly one vertex. The same is true for linear cycle-free linear
hypergraphs, but things are not as straightforward when we forbid just linear cycles in
hypergraphs. The second chapter of the thesis is dedicated to understanding more about
linear cycle-free 3-uniform hypergraphs.

It comes as no surprise, that problems in hypergraphs often arise from natural extension
of similar graph problems. Below we address several of them.

An independent set of a hypergraph H is a set of vertices that contain no hyperedges of
H. Let a(H) denote the size of a largest independent set of H and we call it the independence
number of H. A well-known theorem of Posa [67] states that the vertex set of every graph G
can be partitioned into at most «(G) cycles where o(G) denotes the independence number
of G (where a vertex or an edge is accepted as a cycle). Gyéarfas and Sarkozy [49] conjectured
that the following extension of Pdsa’s theorem holds.

Conjecture 1.14 (Gyarfas, Sarkozy [49]). One can partition every k-uniform hypergraph
H into at most a(H) linear cycles, hyperedges and subsets of hyperedges.

While the original conjecture stays open, in [49] Gyarfas and Sarkozy proved a weaker
form of the conjecture, where they used weak cycles instead of linear cycles. In weak cycles
only consecutive hyperedges are allowed to intersect, but unlike linear cycles, the intersection
can be more than a single vertex. Recently, Ergemlidze, Gyo6ri and Methuku [32] proved
another weaker version of the conjecture, where they showed that every 3-uniform hypergraph
can be covered with at most «(H) edge-disjoint linear cycles. Proof of this theorem is
provided in Chapter 2]

Motivated by solving Conjecture [I.14] Gyarfas, Gyori and Simonovits showed that the
conjecture holds for linear cycle-free 3-uniform hypergraphs. Before stating the theorem we
need a definition of a chromatic number for hypergraphs.

For a hypergraph H a chromatic number x(H) is the smallest number of colors needed
to color the vertex set of H so that there is no hyperedge of H with all of its vertices sharing
the same color.
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Theorem 1.2 (Gyéarfas, Gyori, Simonovits [48]). If H is a 3-uniform hypergraph without
linear cycles then it can be partitioned into a(H) linear cycles, hyperedges and subsets of
hyperedges. Moreover x(H) < 3.

Unlike the equivalent graph problem, Theorem is far from being trivial. Gyéarfas,
Gy6ri and Simonovits further investigated the relation between linear cycles and independent
number of 3-uniform hypergraphs.

Theorem 1.3 (Gyarfas, Gydri, Simonovits [48]). If H is a 3-uniform hypergraph without
linear cycles on n vertices then o(H) > 2n.

The hypergraph consisting of vertex disjoint copies of K7 (a complete 3-uniform hyper-
graph on 5 vertices) shows that equality can hold in Theorem|[1.3] Gyarfas, Gy6ri, Simonovits
asked whether the lower bound of a(H) can be improved if we exclude K2 as a subhyper-
graph and whether such hypergraph is 2-colorable. Ergemlidze, Gy6ri and Methuku [28]
answered these questions affirmatively. The proof is provided in Chapter 2]

1.4 Rainbow Turan numbers

In this section, we overview the study of rainbow Turédn numbers, which effectively merges
classical Turan problems with the extremal problems on edge-colorings of graphs.

A graph is properly edge-colored if every pair of incident edges have distinct colors. An
edge-colored graph is called rainbow if all its edges have different colors.

Given a graph F', the rainbow Turdn number of F is defined as the maximum number of
edges in a graph on n vertices that has a proper edge-coloring with no rainbow copy of F,
and it is denoted by ex*(n, F'). Clearly, ex(n, F') < ex*(n, F).

The special case of the Canonical Ramsey Theorem of Erdés and Rado [22], says that
any proper edge-coloring of K, contains a rainbow K, as a subgraph, provided that n is
sufficiently large in relation to m. Motivated by this, Alon, Jiang, Miller and Pritikin [3]
introduced a problem of finding a rainbow copy of a graph H in a coloring of K,, in which
each color appears at most m times at each vertex. The rainbow Turén problem is a natural
extension of this problem.

The systematic study of rainbow Turdn numbers was initiated in [55] by Keevash, Mubayi,
Sudakov and Verstraéte. Before stating their result, we need a definition:

We say that a graph G is color-critical if there exists an edge e € E(G) such that
X(G\ €) = x(G) — 1 (note that the definition is non-standard).

Proposition 1.15 (Keevash, Mubayi, Sudakov, Verstraéte.). For a non-bipartite graph F
we have
ex*(n, F) = ex(n, F) + o(n?).

Morover, if G is color critical then ex*(n, F') = ex(n, F) for large enough n.
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For every bipartite graph F' with a maximum degree of s in one of the parts, they proved
ex*(n, F') = O(n®>7/*). This matches the upper bound for the (usual) Turan numbers of
such graphs.

Keevash, Mubayi, Sudakov and Verstraéte also studied the rainbow Turédn problem for
even cycles. More precisely, they showed that

ex*(n, Cor) = Q(n'+1/F).

For this they used the construction of large Bj-sets of Bose and Chowla [11]- it is conjectured
that the same lower bound holds for ex*(n, Cy;) and is a well-known difficult open problem
in extremal graph theory. They also proved the matching upper bound in the case of the six-
cycle Cg, so it is known that ex*(n, Cg) = O(n*/?) = ex(n, Cs). However, interestingly, they
showed that ex*(n, Cj) is asymptotically larger than ex(n,Cs) by a multiplicative constant.
Recently, Das, Lee and Sudakov [15] showed that

ex*(n, Czk) _ O(n1+(1+ez) 1nk)7
where ¢, — 0 as kK — oo.

Johnston, Palmer and Sarkar continued studying by investigating rainbow Turan numbers
of matchings, paths and forests of stars. Let M}, denote a matching of size k, and let P, denote
a path of length k. In [53], Johnston, Palmer and Sarkar showed that for sufficiently large n,
perhaps surprisingly, ex*(n, My) = ex(n, My). They also showed that ex*(n, P;) < [?”“2—’21 n.
Recently, Ergemlidze, Methuku and Gydri [34] improved the upper bound of ex*(n, P;) and
we provide the proof in Chapter@.

10
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Chapter 2

3-uniform hypergraphs and linear cycles

2.1 Introduction

A hypergraph H is 2 colorable if there is a coloring of the vertices of H such that there
is no monochromatic hyperedge in H. We denote the complete 3-uniform hypergraph on 5
vertices by K?2. Throughout the chapter, we mostly use the terminology introduced in [48].

Definition 2.1. A linear tree is a hypergraph obtained from a vertex by repeatedly adding
hyperedges that intersect the previous hypergraph in exactly one vertex. A linear path is a
linear tree built so that the next hyperedge always intersects the previous hyperedge in a vertex
of degree one.

A linear cycle is obtained from a linear path of at least two edges, by adding an edge that
intersects the first and the last edges of the linear path in one of their degree one vertices.

A skeleton T in H is a linear subtree of H which cannot be extended to a larger linear
subtree by adding a hyperedge e of H for which |eNV(T)| = 1.

Recall that an independent set of a hypergraph H is a set of vertices that contain no
hyperedges of H. a(H) denotes the size of a largest independent set of H and we call it the
independence number of H.

Gyarfas, Gyori and Simonovits [48] initiated the study of linear cycle-free hypergraphs
by showing,

Theorem 2.1 (Gyéarfas, Gy6ri, Simonovits [48|). If H is a 3-uniform hypergraph on n
vertices without linear cycles, then it is 3-colorable. Moreover, a(H) < 2?"

We proved,

Theorem 2.2 (E., Gy6ri, Methuku [28]). Let H be a 3-uniform hypergraph without linear
cycles, and no K2 as a sub-hypergraph. Then it is 2-colorable.

Corollary 2.2. Let H be a 3-uniform hypergraph without linear cycles, and no K3 as a
sub-hypergraph. Then a(H) > [§] and it is sharp.

11
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Indeed, from Theorem , it trivially follows that a(H) > [§]. The hypergraph H, on
n vertices obtained from the following construction shows that this inequality is sharp. Let
Hj be the hypergraph on 3 vertices vy, ve, v3 such that vivevg € E(H3) and let Hy be the
complete 3-uniform hypergraph K3 on 4 vertices vy, va, v3,v4. Now for each 3 < i < n —2
let us define the hypergraph H; o such that V(H,; ) := V(H;)U{viy1,v;12} and E(H; o) :=
E(H;) U Ui {vip1vi12v;}. If 0 is even, we start this iterative process with the hypergraph
H, and if n is odd, we start with H3. Notice that a(H;y2) = a(H;) + 1 for each i, which
implies that a(H,) = [5].

Given a 3-uniform hypergraph H, if v € V(H) the link of v in H is defined as the graph
with vertex set V(H) and edge set {(x,y) : (v,x,y) € E(H)}. The strong degree d*(v) for
v € V is the maximum number of independent edges in the link of v. The degree of v € V
is simply the number of hyperedges of H containing v.

Theorem 2.3 (Gyarfas, Gydri, Simonovits [48|). Suppose that H is a 3-uniform hypergraph
with d*(v) > 3 for allv € V.. Then H contains a linear cycle.

We showed,

Theorem 2.4 (E., Gy6ri, Methuku [28]). Let H be a 3-uniform hypergraph on n > 10
vertices without linear cycles. Then, there is a vertex whose degree is at most n — 2.

We remark that on 9 vertices there is a 3-uniform hypergraph without linear cycles where
the degree of every vertex is 8. This hypergraph H is defined by taking a copy of K3 on
vertices {uy,uz, vy, v2} and a vertex disjoint copy of K2 such that ujusz, vivex € E(H) for
each z € V(K?) and there are no other hyperedges in H.

Also notice that Theorem[2.4]cannot be improved because there is a 3-uniform hypergraph
H', with E(H') := {zab | {a,b} € V(H') \ {x}}, in which every vertex has degree at least
n—2.

In this chapter we investigate one more problem which describes a connection between
the independence number and linear cycles. Recall from Chapter [I} that a theorem of Pésa
[67] states that the vertex set of every graph G can be partitioned into at most «(G) cycles
(where a vertex or an edge is accepted as a cycle). Gyarfas and Sarkozy [49] conjectured
that the following extension of Pésa’s theorem holds: One can partition every k-uniform
hypergraph H into at most «(H) linear cycles (here, as in Posa’s theorem, vertices and
subsets of hyperedges are accepted as linear cycles).

We show their conjecture is true for k& = 3 provided we allow the linear cycles to be
edge-disjoint, instead of being vertex-disjoint.

Theorem 2.5 (E., Gy6ri, Methuku [32]). If H is a 3-uniform hypergraph, then its vertex set
can be covered by at most a(H) edge-disjoint linear cycles (where we accept a single vertex
or a hyperedge as a linear cycle).

Our proof uses induction on «a(H). However, perhaps surprisingly, in order to make
induction work, our main idea is to allow the hypergraph H to contain hyperedges of size
2 (in addition to hyperedges of size 3). First we will delete some vertices, and add certain

12
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hyperedges of size 2 into the remaining hypergraph so as to ensure the independence number
of the remaining hypergraph is smaller than that of H. Then applying induction we will
find edge-disjoint linear cycles (which may contain these added hyperedges) covering the
remaining hypergraph. It will turn out that the added hyperedges behave nicely, allowing
us to construct edge-disjoint linear cycles in H covering all of its vertices.

This Chapter is organized as follows: In Section [2.2] we prove Theorem [2.2] using our main
lemma - Lemma (which is proved in Section . In Section we prove Theorem
2.4l Finally in Section [2.4] we present the proof of Theorem [2.5]

2.2 Proof of Theorem

Let H be our 3-uniform hypergraph without linear cycles. From now on, we write the
hyperedge {a,b,c} € E(H) as abc for convenience.

Definition 2.3. Given a vertex v € V(H) and a hyperedge abc € E(H), we say that v is
“strongly associated" to abc if at least two of the three edges vab, vbe, vea are in E(H) . We
say that v is “weakly associated" to abc if exactly one of the three edges vab, vbc, vca is in
E(H). We say that v is associated to abc if it is either strongly or weakly associated.

The set of pairs {{z,y} C {a,b,c} | vay € E(H)} is called the “support” of v in abe,
denoted Sqpe(V).

Definition 2.4 (thick pair). For any two vertices, a,b € V(H), we call the pair {a,b} “thick"
if there are at least two different hyperedges each containing {a,b}. We call a hyperedge abc
“thick" if all the pairs {a,b}, {b,c} and {c,a} are thick.

Lemma 2.5. If abc € E(H) is a thick hyperedge, then the set of vertices associated to it
consists of one of the following

1. FExactly two vertices that are strongly associated to abe.

2. Exactly one vertex that is strongly associated to abc and vertices wy, ws, ..., Wy, such
that each w; is weakly associated to abc and |J;Sape(w;)| = 1. (It is possible that m = 0,
i.e., no such w; exists).

Proof. If there is no vertex strongly associated to abc, then since abc is thick, we must have
3 distinct vertices vy, vo, v3 such that vyab, vebe, v3ca € E(H), a linear cycle, a contradiction.
So there must be a vertex strongly associated to abc.

Now we show that if there are two vertices p,q strongly associated to a hyperedge
abc € E(H), then there are no other vertices associated to abc. Suppose by contradic-
tion that there are such vertices. Then, among these vertices there is a vertex r such that
|Sabe(P) U Sape(q) U Sape(r)| = 3 since abe is thick. Now consider the bipartite graph whose
two color classes are {p,q,r} and {{a,b},{b,c},{c,a}} where v € {p,q,r} is connected to
{z,y} € {{a,b},{b,c},{c,a}} if vey € E(H). It can be easily checked that Hall’s condition
holds for the color class {p, ¢, 7} and so there exists a matching between the two color classes,
but this produces a linear cycle (of size 3) in H, a contradiction.

13
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So the only remaining possibility is that abc has exactly one vertex which is strongly
associated to it and maybe some other vertices wy,ws, ..., w,, that are weakly associated
to it. We only have to show that |U;sae(w;)| = 1. Suppose by contradiction that there
are vertices w; and w; such that their supports in abc are different. Let sqp.(w;) = {{a,b}}
and sqp.(w;) = {{b, c}} without loss of generality. Then, since abc is thick, there is a vertex
v such that v # w;, v # w; and acv € E(H). Now, acv, abw;, bcw; is a linear cycle, a
contradiction. O

Lemma 2.6 (Main Lemma). Let T' be a linear tree. Then there exists a coloring of V(T),
such that the hypergraph induced by V (T') is properly colored and for each vertex v € V(H) \
V(T) where v is strongly associated to some hyperedge of T, there exists a coloring of v such
that hyperedges vab with a,b € V(T) are properly colored, and for each remaining vertex
v e V(H)\V(T) the hyperedges vab with a,b € V(T') are properly colored regardless of the
color of v.

Before we prove this lemma, we will show how to prove Theorem using it.

Observation 2.7. Let w € V(T'). Notice that the above lemma holds even if we add the extra
condition that the color of w is given.

Now we prove our main theorem using this lemma.

Proof of Theorem [2.2] Let T} be any skeleton of H. Then there exists a coloring of T} given
by Lemma [2.6] Let U; C V(H) \ V(T1) be the set of all vertices such that each u € Uj is
strongly associated to some hyperedge of 7. If |U;| = 0, then by Lemma all the vertices
of V(H)\V(T1) can be colored arbitrarily such that the hyperedges vab with a,b € V (T}) are
properly colored. Also, since T} is a skeleton, there are no hyperedges vry where v € V(T7)
and z,y € V(H)\V(T1). Therefore, the vertices of V(H)\V (1) can be colored independently
from vertices of V(77) and so we have the same problem for the subhypergraph induced by
V(H)\ V(T1). So we can assume that |U;| # 0. Now let us define a sequence of linear trees
T, Ts,...,T;, Tisq, . .., T, recursively as follows: Let U; C V(H) \ U;ZlV(Y}) be the set of
vertices where each u € Uj; is strongly associated to some hyperedge of U;_;T; and let T;4
be the skeleton in the subhypergraph induced by V/(H) \ U_,V(T}) which contains at least
one vertex from U; (we continue this procedure as long as |U;| # 0; so |Uy,| = 0). In fact,
we will show that |V (T;41) NU;| = 1. Let H; denote the subhypergraph of H induced by
V().
Claim 2.8. For each 1 < i < m — 1, there is a linear path in H; between any two vertices

u,v € V(H;). Moreover, V(T;11) N U; consists of only one vertex and this vertex can be
strongly associated to hyperedge(s) of Ts for exactly one 1 < s < 1.

Proof of Claim 2.§. We prove the claim by induction on i. For ¢ = 1, the statement is
trivial. Assume the statement is true for ¢ = k. First we will show that there is a linear path
between u € V(T1) NUy and any v € V(Hy). Let abc € E(T}) (for some 1 < s < k) be the
hyperedge in Uz?:lTj that is strongly associated to u. Consider the shortest linear path P;
containing v and a vertex of {a,b,c} (in case, v € {a,b,c}, Py consists of just v). Clearly,

14
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P, cannot contain all 3 of the vertices a, b, ¢ since it is a shortest path. If P; contains only
one vertex from {a, b, c}, say a w.l.o.g, then since u is strongly associated to abe, either uac
or uab is in Hjy1, which together with P; gives us a linear path from u to v as desired. If
P, contains two vertices of {a, b, ¢}, say a,b w.l.o.g, then either uac or ubc is in Hyyq which
together with P; gives us a linear path from u to v. Notice that this path contains only one
vertex from Tj.;. Since there is a linear path between every 2 vertices of Tj; we have a
linear path between any vertex of Tj,; and any vertex of Hy. By the induction hypothesis
there is a linear path between any two vertices of H; and so we have proved the first part of
the claim.

Now assume by contradiction that there are two vertices u,u’ € V(Ty1) N Uy. Let pgr
be the hyperedge in U;?:lTj that is strongly associated to u'. Consider the shortest linear
path P, containing u and a vertex of {p,q,r}. By the same argument as before, we can
assume that P, contains at most two vertices of {p,q,r} and there is a hyperedge e such
that Py U e is a linear path between u and u’ which doesn’t contain any other vertices of
Ty41. However, Py U e together with the linear path between u and v’ in T}, gives us a
linear cycle, a contradiction.

So V (Tk+1)NUy, consists of only vertex, say u. If u is strongly associated to two hyperedges
hy € T, and hy € T, (where r # s and r,s < k), then the shortest linear path P between
hy and hs consists of at least one hyperedge. By a similar argument as before, there are
hyperedges ey, e containing u such that P, e; and es form a linear cycle, a contradiction. [

We will show that for each 1 < k < m, Hy is properly colored such that each T;, + < k
is colored according to Lemma [2.6, For k = 1 the above statement is trivially true. Let us
assume that the statement is true for k£ and show that it is true for £ + 1.

By the above claim V(T 1) N Uy consists of only one vertex u and this vertex is strongly
associated to hyperedge(s) of Ty for exactly one 1 < s < k. Also, it is easy to see that if
uab € Hyyy and a,b € V(Hy) then a,b € V(T;) for some i < k. If i = s and a,b € V(Tj),
then we know by Lemma that there exists a color for u, say ¢ such that hyperedges
uab are properly colored. Let us color u by c¢. If i # s, and a,b € V(T;) then regardless
of the color of u the hyperedges uab are colored properly due to Lemma [2.6] Since the set
of vertices that are strongly associated to hyperedges of T}, is disjoint from V(Hy) (the
already colored part), we can apply Lemma to color T} such that u is still colored with
¢ by Observation 2.7 Therefore, we have shown that Hj; is properly colored such that
each T;, » < k + 1 is colored according to Lemma 2.6, as desired and so we have statement
for H,, by induction.

In the remaining vertices, namely V(H) \ V(H,,), since there are no strongly associated
vertices, by Lemma they can be colored independently from H,, and we now have a
smaller vertex set: V(H) \ V(H,,) to color. Therefore, by induction on number of vertices
we may color H properly. O
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2.2.1 Proof of Lemma (Main Lemma)

let abc € E(T) and let u € V(T') be a vertex that’s strongly associated to abc. Then there
is a hyperedge uvw of the skeleton such that |{u,v,w} N {a,b,c}| = 1 because otherwise
w.l.o.g there is a linear path P in T between u and a which doesn’t contain b and ¢. Since u
is strongly associated to abc, either uab or uac is a hyperedge of H. This hyperedge together
with P produces a linear cycle in H, a contradiction.

We identify some sets of vertices of size 5 which play an important role in the forthcoming
proof.

Definition 2.9. Let hy = abc, hy = bde where hy, hy € E(T'). If there is no hyperedge h € H
such that |h N (hy U ho)| = 2, then the set of vertices {a,b,c,d, e} is called a Special Block
of T.

Claim 2.10. Let hy = abc, hy = bde where hy, hy € E(T') are thick hyperedges. If abe, cbd €
E(H) orabd,cbe € E(H), then {a,b,c,d,e} is a Special Block.

Proof of Claim 2.10. It’s easy to see that if {z,y} € {a,c,d,e} then either hy, hy and zyz
or l1,ly and xyz will create linear cycle. So the only cases that are left to be considered are
{z,y} = {d,b} or {z,y} = {e,b}. Since {d, e} is a thick pair either dea or dec is a hyperedge
in H. W.lo.g. let’s say dec € E(H). Then in either of the two remaining cases, xyz along
with abc and dec will create a linear cycle, a contradiction. O]

Claim 2.11. Let hy, hy € E(T) be thick hyperedges. If there are two vertices of hy which are
strongly associated to hy, then hy U hy is a Special Block.

Proof of Claim 2.11]. We know that |h; N he| = 1 since a vertex of hy is strongly associated
to hy. Let hy = abc and hy = dbe. So d and e are strongly associated to h;. Assume
by contradiction that there exists a hyperedge xyz € H such that {z,y} C {a,b,c,d, e}
and z ¢ {a,b,c,d,e}. First let us observe that {z,y} ¢ {a,b,c} because the hyperedge
abc already has two vertices d, e strongly associated to it and hence cannot have any other
vertex associated to it due to Lemma So if we consider the bipartite graph whose color
classes are {d, e} and {{a, b}, {b,c}} where v € {d, e} is connected to {z,y} € {{a,b},{b,c}}
if vey € E(H), it’s easy to see that Hall’s condition holds for this bipartite graph. Hence
there is a matching. So either abe, cbd € E(H) or abd, cbe € E(H). Now, by applying Claim
2.10} we can conclude that {a,b,c,d, e} is a Special Block. ]

If a hyperedge h is strongly associated to a vertex of another hyperedge h’, then it is easy
to see that there is a vertex in A which is associated to h’. Therefore, the above claim implies
that vertices of hy U hy can’t be strongly associated to any hyperedge of E(T') \ {hq, ho}.

Since the hypergraph induced on {a,b,c,d, e} is not K2, it is easy to see that there is a
proper coloring ¢ : {a,b,c,d, e} — {1,2}.

Claim 2.12. Assume that hy = abc, hy = bde and {a, b, c,d, e} is a Special Block of T. Let
To, Ty, Te, Ty, T, be mazimal linear subtrees of T such that V(T,) N{a,b,c,d,e} = {x} where
x €{a,b,c,d,e}. Then, if Lemma holds for each T, where x € {a,b,c,d, e} and coloring
c:{a,b,c,d, e} — {1,2} is given, then it holds for T as well.
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Observation 2.13. 1t is easy to see that V(T,,)NV(T,) = 0 for any distinct z,y € {a,b, ¢, d, e}
and Uxe{a,b,c,d,e}E(Tx) U {hl, hg} = E(T)

Proof of Claim [2.12] First we show that the hypergraph induced on V(T') is properly col-
ored. Let v be a vertex which is strongly associated to a hyperedge h of T, for some
x € {a,b,c,d,e}. If visin T, we know that there is a hyperedge h’ of T' which contains
v such that |hNA/| = 1. Since V(T,) N V(T,) = 0, b’ € E(T,) U {hi, he}. But we showed
that the vertices of h; Uhy can’t be strongly associated to any hyperedge of E(T')\ {hi, ha}.
So v € V(T,). Since we assumed that Lemma holds for T, by using Observation
for T, we have that the vertices of V(T') \ V(T,) and the vertices of V(T}) can be colored
independently. This implies that the hypergraph induced by V(T') is properly colored.

Let v € V(H)\ V(T). First assume that v is not strongly associated to any hyperedge of
T and let p,q € V(T') be arbitrary. We have to show that vpq is properly colored regardless
of the color of v. If p, ¢ € T, for some x € {a,b,c,d, e} then we are done because we assumed
Lemma holds for T,. So, let p € T, and ¢ € T, for some distinct z,y € {a,b,c,d,e}.
Since both p and ¢ can’t be in S (by definition of S), the smallest linear path between p
and ¢ in T has 2 hyperedges. This linear path, together with vpg forms a linear cycle, a
contradiction.

Now assume that v is strongly associated to a hyperedge of T'. If v is strongly associated
to hyperedges hy, h, of T such that h, € E(T,) and h, € E(T,), then it is easy find a linear
cycle using the minimal linear path in 7" between h, and h,. This implies that there is a
unique = € {a,b,c,d, e} such that v is strongly associated to hyperedge(s) of only T,. As
we showed in the previous paragraph if vpg € E(H) then both p and ¢ are in T}, for some
y € {a,b,c,d,e}. If y # z, then we know that hyperedges vpgq are properly colored regardless
of the color of v by applying Lemma 8 to T,. If y = x, then by applying Lemma 8 to T,
again, there is a coloring of v such that hyperedges vpq are properly colored, as desired. []

So applying Claim recursively, it suffices to prove Lemma for a linear subtree T’
of H which has no Special Block. So from now on, we may assume that there is no Special
Block in T'.

We will now construct a special graph G by following the steps in the Construction
below, one after another. This graph will be connected, and its vertex set and edge set
satisfy: V(Gr) = V(T) and if ab € E(Gr) then there exists a vertex x € V(T') such that
abr € E(T). We will then show later that this graph G is actually a tree and that a
proper 2-coloring of G will give us a proper 2-coloring of the hypergraph induced on V (T')
as demanded by Lemma [2.6]

Construction. 1. For every two hyperedges abe, ebd € E(T), where abc is a thick hyper-
edge which is strongly associated to the vertex e of ebd then,

(a) add eb to E(Gr).
(b) add ac to E(Gr) if ace € E(H) (note that they may have been already added).

2. For every abc € E(T), if abc is a hyperedge of T and vab is a hyperedge of H such that
v is weakly associated to abc, then add ab to E(Gr).
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3. For every two hyperedges abc,ebd € E(T) which are stongly associated to a vertex
ve V(H)\V(T), if acv (respectively edv) is a hyperedge of H, then add ac to E(Gr)
(respectively ed € E(Gr)).

4. After completing the above steps, for every hyperedge abc € E(T) we do the following.
If abe is thick, and less than two of the three pairs ab, bc, ca are in E(Gr) we add some
more pairs arbitrarily so that E(Gr) has exactly two pairs from ab, b, ca. If abe is not
thick, we add pairs from ab,bc, ca in a way that the only remaining pair is not thick.

Now we claim the following.
Claim 2.14. Gt is a tree and so it can be properly colored.

Before we prove the above claim, we will show that it implies Lemma [2.6]

First let us prove that the proper coloring of G gives us a proper coloring of the subhy-
pergraph induced by V(7T'). Since V(Gr) = V(T'), a proper coloring of G gives us a proper
coloring of the hyperedges of T. Therefore, it suffices to prove that for every hyperedge
abc € E(T), the hyperedges xyv where z,y € {a,b,c} and v € V(T) \ {a,b,c} are properly
colored. If abe is not thick, then it is easy to see that xy (which has to be a thick pair) must
be in G (due to point 4 in the construction of Gr) which means that « and y have different
colors and so the hyperedge zyv is properly colored, as desired. If abe is thick, then v must
be associated to abe. If v is weakly associated to abc, then by the construction of G (point
2), zy must be in G and so xywv is properly colored again. If v is strongly associated to abc,
then v belongs to a neighboring hyperedge of abc in T. W.l.o.g assume that vbw € E(T).
By the above construction of G, we have bv,ac € E(Gr). So b and v have different colors
and a and c have different colors. Therefore, all the hyperedges vry are properly colored.
So the subhypergraph induced by V(T') is properly colored.

Now let v € V(H)\ V(T). We will show that v satisfies the properties of Lemma [2.6] If
v is not strongly associated to any hyperedge of T', then for every zyv € E(H), zy € E(Gr)
and so v can be colored arbitrarily. So assume that v is strongly associated to hyperedges
hi,ha, ..., hy of T. We consider two cases. If k& > 2, then we claim that |h; N h;| # 0 for
every i, € {1,2,..., k} because otherwise we can find a linear cycle using the shortest linear
path between h; and h; and v. Since h; are hyperedges of a linear tree, and every two of them
have a common point, there is a vertex o such that N;h; = {o}. Let us use different colors for
v and o. If xy & h; for any i, then as we saw before xyv is properly colored independent of
the color of v. So zy € h; for some i. If 0 € {x,y}, then since o and v are colored differently,
xyv is colored properly. If o & {x,y}, then by the construction of G (see point 3), zy is in
G and so zyv is properly colored, as desired. So the only remaining case is if £ = 1. In this
case, the hyperedge h; has two vertices of the same color and if we color v differently from
this color, hyperedges vy are properly colored. This completes the proof of Lemma [2.6]

Proof of Claim [2.14] Assume by contradiction that G has a cycle. Since T is a linear tree,
this cycle has to a triangle abc where abc € E(T) is a thick hyperedge. First observe that
none of the pairs ab, be, ca were added during point 4 of the construction of Gy. We now
consider different cases for how abc could be formed.
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Case 1. One of the pairs ab, bc, ca was added by Construction 1b.

W.lo.g generality let the pair added by Construction 1b was ac. Then, there exists
a hyperedge bde € E(T) such that d is strongly associated to abc and acd € E(H). So
either abd or bed is in E(H). Clearly, there is no w ¢ {a,b,c,d, e} such that wab or wbc
is a hyperedge of H for otherwise we have a linear cycle. So the only vertices that can be
associated to abc are d and e. Since abc is thick, ab, bc are thick pairs. If either bce or abe
is in E(H), then the conditions of Hall’s theorem hold for the bipartite graph whose color
classes are {ab,bc} and {d,e} where zy € {ab,bc} is connected to z € {d, e} if and only
if xzyz € F(H). So there is a matching and by Claim , we have a contradiction since
we assumed there is no Special Block of T'. So assume that bce, abe ¢ E(H). So the only
hyperedges (besides abc) containing ab and be are abd and bed which implies that ab and be
were not added by Construction 1b, 2 and 3. So both ab and bc were added by Construction
la. Assume that bc was added because either b or ¢ was strongly associated to a hyperedge
h'. This means that A’ is thick and h’ = dbe because otherwise we have wbc € E(H) for some
w & {a,b,c,d, e}, a contradiction. So c¢ is strongly associated to bde. Similarly, a is strongly
associated to bde. So by Claim , {a,b,c,d, e} is a Special Block, a contradiction.

So from now on, we can assume that Construction 1b was never used to add the pairs
ab, be, ca.

Case 2. One of the pairs ab, be, ca was added by Construction 3.

W.lo.g let us say ac was added by Construction 3. Then, there is a hyperedge bde €
E(T) and v € V(H) \ V(T) such that v is strongly associated to both hyperedges abc,
bed and acv € E(H). Since ab is a thick-pair, there is a vertex w ¢ {a,b,c} such that
abw € E(H). lf w & {a,b,c,d,e,v} then since acv, wab € E(H) and one of bev, bdv € E(H),
they form a linear cycle, a contradiction. If w = e, then since abe,acv € E(H) and one of
bdv,dev € E(H), we have a linear cycle again, a contradiction. Similarly w # d. Therefore,
w = v. So the only hyperedge besides abc which contains ab, is abv. Similarly, the only
hyperedge besides abc which contains bc is bev. This implies that ab and bc were not added
by Construction 1, 2 and 4. Also, it’s easy to see that they were not added by Construction 3,
otherwise v would have been strongly associated to a hyperedge of T" which is not a neighbor
of ebd, which is a contradiction.

So the only reminaing case is when ab, bc, ca are added by Construction 1la or 2.

Case 3. ab, bc, ca were added by Construction la or 2.

Two of the pairs ab, be, ca cannot be added by Construction 2 due to Lemma 2.5 There-
fore, we have two subcases: Either exactly one of ab, bc, ca was added by Construction 2 and
the other two were added by Construction la or all of them were added by Construction 1la.

Assume that all of the pairs ab, be, ca were added by Construction la. Let zy € {ab, be, ca}.
Let us say zy was added because there is a thick hyperedge h,, € E(T) which is strongly
associated to either x or y. If any two of the there hyperedges hup, hoe, heq are the same, then
by Claim [2.11 we have a Special Block in T, a contradiction. Therefore, h.y # hpe # heq-
But then, we have hyperedges abvy, acvy,bcvs € E(H) where vy € hgp, V2 € hpe, U3 € hge
which form a linear cycle, a contradiction.
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Now assume that one of the pairs ab, bc, ca was added by Construction 2 and the other two
were added by Construction la. W.l.o.g assume that ab and bc were added by Construction
la and ca by Construction 2. Let us say ab (respectively bc) was added because there is a thick
hyperedge hq, € E(T') (respectively hy. € E(T')) which is strongly associated to either a or b
(respectively b or ¢). So there are vertices v1 € hg, and ve € hy. such that abvy, bevy € E(H).
If hyp = hye, then by Claim we have a Special Block in T, a contradiction. So hgp # hye.
Let us say ac was added because there is a vertex w weakly associated to abc such that
wac € E(H). If w # vy and w # vy, then we have a linear cycle, namely acw, abvy, bcvs,
a contradiction. So let us assume w.l.o.g that w = v;. Let hy, = viex where x is either a
or b. If x = b, then hy, viac, bcvy is a linear cycle, a contradiction. If x = a, then clearly b
is strongly associated to hq, = vize. So either the hyperedge abe € E(H) or bev; € E(H).
This hyperedge together with acv; and bcv, gives us a linear cycle, a contradiction. O

2.3  Proof of Theorem 2.4

Let H be a 3-uniform hypergraph without any linear cycles. First let us assume that there
are no vertices u,v € V(H) such that for every z € V(H) \ {u,v}, wvx € E(H) and show
that Theorem [2.4) holds in this case whenever |V (H)| > 6.

We distinguish some cases.

Case 1. There are no vertices u,v € V(H) such that wox € E(H) for every x € V(H) and
V(H)| > 6.

Let P = {poqop1, Prq1P2, P2@2P3, - - - Pk—10k—1Pk } be a longest linear path of H such that
Poqop1 is the first and pr_1qr_1pr is the last hyperedge of the path. Consider a skeleton
containing P. The set of hyperedges of this skeleton incident on p; (respectively py_1)
except pyqips is called as a windmill at p; (respectively py_1) and the size of this set is called
the size of the windmill. Thus there are two windmills corresponding to P and the skeleton
containing it. Among all the skeletons of maximum size which contain P, let us take a
skeleton T" such that the size of the smaller windmill is minimum. W.l.o.g. we may assume
that the smaller windmill is at p;.

Lemma 2.15. Any hyperedge abc € E(T) is strongly associated to at most one vertex of
V(H)\V(T).

Proof. Suppose by contradiction that abc € E(T) is strongly associated to two vertices
vi,vg € V(H) \ V(T). Consider the bipartite graph whose color classes are {vy,v,} and
{ab, be, ca} where v € {vy,v5} and zy € {ab, be, ca} are adjacent iff vey € E(H). Then it
can be easily seen that there is a matching saturating {vy, ve} between the two color classes.
If we replace abc by the two hyperedges corresponding to this matching we will get a skeleton
of bigger size contradicting the fact that 7" has maximum size. O

We have the following corollary of the above lemma.
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Corollary 2.16. Let |V(H)\ V(T)| =t and let degree of v € V(T) in the subhypergraph of
H induced by V(T) be dr(v). Then the degree of any vertex v € V(T') which is in exactly
one hyperedge of T, is at most dr(v) +t + 1.

Let us call the subtree of T" which contains the hyperedges of T incident to v as a star
of T'at v € V(T). Considering the pairs covered by the hyperedges of T' as a graph G(T),
for any v € V(T') the pairs {z,y} that are at equal distance from v in G(T') are called pairs
opposite to v. Clearly, every hyperedge of T' has exactly one pair opposite to v. We have
the following simple lemmas which are stated without proofs.

Lemma 2.17. Let v € V(T) and vab € E(H) be such that {a,b} does not intersect the star
atve V(T). Then {a,b} is a pair opposite to v in T.

Lemma 2.18. Let pogox € E(H) and let us consider the linear path between x and py. Let
P’ be the subpath of this linear path without the starting and ending hyperedges (i.e., not
including the two hyperedges which contain py and x). Then, for any y,z € V(P'), we have

poyz & E(H).
Case 1.1. The size of the smaller windmill is at least 2.

We will show that the degree of py is at most n — 2. If z is in V/(T') \ {p1, o, ¢}, then
we claim that pogor € E(H) because if z is in the windmill around p; then the linear path
P can be extended. If x is not in the windmill around p; then by replacing the hyperedge
Poqop1 With pogox will decrease the size of the smaller windmill contradicting the assumption
that the size of the smaller windmill is minimum.

The hyperedges containing py are of the following two types. We will count them sepa-
rately.

First, let us count the number of hyperedges of the type pop1x where x € V(T) \ {qo}-
Since pop1 can’t be opposite to any z € V(T) \ {g}, by Lemma [2.17, pop1 must intersect
the star at x. This means that = should be contained in the star at p;. So the number
of hyperedges of the type popiz where x € V(T) \ {q} is 2w; where w; is the size of the
windmill at p;. Let wy be the size of the windmill at px_1 (So wy < ws).

Now, let us count the number of hyperedges of the type poxy where z,y € V(T)\{p1, q0}
Since xy doesn’t intersect the star at py, by Lemma [2.17] xy is opposite to po. If xy is a pair

of the hyperedge of either windmill then we can extend P by pory, a contradiction. So the
V(T)— (2w1+1) 2wy __ (n—t)— (2w1+1) 2w2

number of such zy pairs is at most
Then the total degree of py in the subhypergraph induced by V(T),

(n—t)—(2w1+1)—2w2'

dr(po) < 142w, +

2
Thus by Corollary the degree of pg is at most
—1)— (2 1)—2 t+ 2w, — 2 3 t+3
1+2w1+(n ) (U2J1+ ) w2+t+1:n+ + w; wy + Sn+2+ '

So we are done unless "3 > n — 1, which simplifies to n —t = [V(T)| < 5 and this is
considered in Case 1.3.
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Case 1.2. The size of the smaller windmall is 1.

There are three types of hyperedges in H that contain py: hyperedges of the type poqoz,
poyz and popiw. We always consider the hyperedge pogop: as of the type poqox. Let r be
the number of hyperedges in H of the type pogoxr where = € V(H) \ {po, o} and let s be the
number of hyperedges in H of the type poyz where y,z € V(H) \ {po, q0, 1}

Lemma 2.19. r + s < n — 2 and if equality holds then poprqr—1 € E(H).

Proof. First we claim that r +s < n — s. Since {y, z} doesn’t intersect the star at pg, by
Lemma [2.17, the pair {y, z} is opposite to py. We claim that if pyyz € E(H) then the pair
{y, z} must be contained in the linear path P. It is easy to see that since {y, z} is opposite
to po, either both y and z are contained in P or both of them are not in P. In the latter
case, P can be extended by adding the hyperedge poyz, contradicting the maximality of P.

Now consider the pair {y1, 21} closest to py such that poy121 € E(H). By Lemma [2.18]
the farthest x € P from py such that pogor € F(H) can be either y; or z; but no later. This
means that every vertex in V(H) \ {po, g0} belongs to at most one hyperedge of the type
Pogox OF Poyz except y1, z1. Sor+2s <n — 2+ 2 =n, as desired.

Since r+s < n—s, we are done if s > 2 and so we can assume s < 1. By our assumption
that there are no vertices u,v € V(H) such that for every z € V(H) \ {u,v}, woxr € E(H),
we have r <n—3. So,r+s<n—3+1=mn-—2, as desired. If r+ s =n — 2, then we must
have s > 1. That is, there exists an edge of the type poyz where y,z € V(H) \ {po, g0, 1}
Since the pair {y, z} must be opposite to py and is contained in P, if {y, z} # prqr_1 then by
Lemma 2.18 poqopr, Pogoqr—1 & E(H). So the vertices pg, gx—1 do not belong to a hyperedge
of the type pogoxr or poyz. So, by the same argument as before, r +2s <n—4+2=n — 2
which is a contradiction since we assumed r +s =n — 2 and s > 1. O

Case 1.2.1. There is a hyperedge of type poqox € E(H) where x € V(T) \ {po, p1, P2, 0, q1}-

In this case, we claim that number of hyperedges of the type popiy in H where y €
V(H) \ {po,qo,p1} is at most 1 and if such a hyperedge exists then y is either ps or ¢.
Assume by contradiction that pop1y’ € E(H) where y' # qo. Let P; be a linear path in
T between (and including) x and p;. If v/ & Py, then pogox, pop1y’ and P; form a linear
cycle. Soy' € Py. Since {pg, p1} cannot be an opposite pair of any vertex on P; except qg, by
Lemma[2.17, {po, p1} must intersect the star at y’. So ' is either ps or ¢;. If both hyperedges
pop1p2 and pop1q1 are in H then pogox, Pr \ {p1p2¢1} and one of these two hyperedges form
a linear cycle. Therefore the desired claim follows.

If both hyperedges popip2, popi1¢q1 are not in H, the degree of pgy is r + s and by Lemma
2.19, r + s < n—2 and so Theorem holds. Therefore, from now on, we may assume that
exactly one of the two hyperedges popip2, popi1qi is in H. If r + s is strictly less than n — 2
then degree of py is at most n — 2 and Theorem holds again. So we also assume that
r+s=n—2. By Lemma[2.19)if r + s = n — 2, then popyqr—1 € E(H). It follows that the
size of the windmill at p,_; is 1 because if it is more than 1, then the linear path P can be
extended by adding poprgr—1 to it. Therefore the size of the windmills at p,_; and p; are
both 1. By symmetry, if we define " and s’ for p, as we defined r and s for py, Lemma [2.19)

22



CEU eTD Collection

holds for them. Since a hyperedge of the type prqr_1x exists, namely prqr_1po, by the same
argument as before we can assume that ' + s’ = n — 2 and so poqopr € E(H). By Lemma
for py, it is easy to see that s’ < 1. So 7’ > n — 3. We know that pop1y € E(H) where
y is either py or 1. Now poqopk, pop1y and either prgr_1y or prqr_1p1 (one of them exists
because ' > n — 3) form a linear cycle, a contradiction.

Case 1.2.2. There is no hyperedge of type poqor € E(H) where x € V(T)\{po, p1, D2, 90, q1}-

Let dy be the degree of pg in the subhypergraph of H induced by {po, p1, p2, g0, ¢1 }. Clearly
do < 6. If prgx_1po € E(H) (so the size of the windmill at py_; is 1), then by symmetry
(by looking at pj instead of py) we are done by the previous case. So we can assume that
Prar—1po & E(H).

If there is a vertex v € V(H)\ V(T') which is strongly associated to poqop1, then we claim
that dy < 4 because if either pggops or pogoq: is in H, then it is easy to check that we have a
linear cycle. Let |V(H) \ V(T')| =t. So the degree of py in the subhypergraph of H induced
by T, dr(po) < do + "‘TH (here we used prqr_1po € E(H)). By Corollary , degree of pg

is at most
do—I—n_;_?—Ft—l—lS n—l—t+3.
Then, Theorem holds unless %”3 > n — 1 which simplifies to n — ¢t < 5 and this is
considered in Case 1.3.
If there is no vertex v € V(H) \ V(T') which is strongly associated to pogop1, then degree
of po is at most dr(po) +t. And, dr(py) < dp + ”_TH So, degree of pg is at most

n—t—17 n+t—7
dO‘f‘T—f—tSdO‘f‘Ta

and Theorem holds unless dy + %’5_7 > n — 1 which simplifies to dy > ”_Tt*‘r’ If
n —t > 7 then dy > 6 which is impossible. So we may assume n —t < 7. The case n —t <5
is considered in Case 1.3. Since n — ¢ is odd (the number of vertices in the skeleton is odd)
we only have to deal with the case when n — ¢ = 7. In this case the size of the skeleton
T is 3 and since the size of the smaller windmill is 1, 7" consists only of a linear path of
size 3. In this case, dy = 6. By the same argument, the degree of ¢y in the subhypergraph
induced by {po, p1,p2, 9,1} is 6. By symmetry the degree of p3 in the subhypergraph of
H induced by {ps, ¢2,p2,q1,p1} is also 6 and so pop1g1, P12, pspeqi € E(H) form a linear
cycle, a contradiction.

Case 1.3. |V(T)| <5 for a skeleton T of H.

Let T be a skeleton of H where |V(T)| < 5 and we want to show that Thoerem [2.4| holds.
Since |V(T)| is odd, either |V(T')| =3 or |V/(T)| = 5.

First assume |V(T')| = 3 and let T consist of one hyperedge abc. Consider the trace
graph G, where {z,y} € E(G,) if and only if axy € E(H). Now notice that if there are two
edges pq,rs € E(G,) that are disjoint then apq,ars € E(H) form a skeleton on 5 vertices,
a contradiction. So every two edges of G, have a common vertex. It is easy to see that the
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set of edges of such a graph is either a star (a graph where all the edges have a common
vertex) or a triangle. Notice that there may be some isolated vertices in the graph. Since
V(G,)| = |[V(H)| =1 > 5, we have |E(G,)| < |[V(G,)| — 1. So the degree of a in H is
|E(Go)| < |V(G,)| —1=|V(H)| — 2 as desired.

Now let |[V(T)| =5 and E(T) = {ajasb, c1cob}. Since V(H) > 6, |V(H) \ V(T)| # 0 We

consider two cases.

Case 1.3.1. There is no vertex in V(H)\V(T) which is strongly associated to any hyperedge
of T.

Since H is connected and T is a skeleton, there must be an edge zyv where z,y € V(7))
andv € V(H)\V(T). By assumption we know that v is not strongly associated to any edge of
T. So the degree of v in the subhypergraph induced on V(T)U{v} is at most 2. Now consider
the trace graph G, on the vertex set V(G,) := V(H)\ (V(T)U{v}) where ab € E(G,) if and
only if abv € E(H). Now notice that if there are two edges pq,rs € E(G,) that are disjoint
then vpq,vrs,vry € E(H) form a skeleton on 7 vertices, a contradiction. So every two
edges of G, have a common vertex and so F(G,) is either a triangle or a star. In either case,
|E(Gy)] < |V(G,)|. So the degree of v is at most 2+ |E(G,)| < 24|V (G,)| = 24+n—6 = n—4.

Case 1.3.2. There is a vertex v € V(H) \ V(T') which is strongly associated to a hyperedge
of T.

Assume without loss of generality that v is strongly associated to ajasb. So vba; € E(H)
for some i € {1,2} which implies that there is no hyperedge vry with z,y € V(H)\ (V(T)U
{v}) because otherwise vzy, vba;, beicy form a skeleton on 7 vertices. If v is not strongly
associated to bcycg, then the degree of v is at most 1+3 = 4 and we are done since we assumed
V(H) > 6. Therefore, we may assume v is strongly associated to bcicy and so vbe; € E(H)
for some j € {1,2}. Now it is easy to see that there are no hyperedges ajascy and cicoay for
any k € {1,2} because otherwise we have a linear cycle. If any of the vertices {a1, as, ¢, ¢}
have degree at most 2 in the subhypergraph induced by V(T'), then by Corollary , the
degree of this vertex in H is at most 2+t + 1 =1t + 3 where V(H) \ V(T) = t. and we are
done because V(H) =t + 5. So we may assume that all of the vertices {ay, as, ¢y, c2} have
degree at least 3 in the subhypergraph induced by V(T'). It is easy to see that the only way
this degree condition is met for the vertex a; is if a;bc1, a;bcy € E(H) for each i € {1,2}. This
implies that ajaqv, cicov € E(H) because otherwise we have a linear cycle. So the degree of
v is at most 4 and we are done because V(H) > 6.

Case 2. If there are vertices u,v € V(H) such that wox € E(H) for every x € V(H).

If we assume by contradiction that Theorem does not hold, then by the previous
section, whenever |V (H)| > 6 we know that there are vertices u,v € V(H) such that
wvx € E(H) for every x € V(H).

Lemma 2.20. Let H be a 3-uniform linear cycle free hypergraph. If the degree of every
vertex in H is at least V(H) — 1 where |V (H)| > 6, then there is a subhypergraph Hy where
degree of every vertex in Hy is at least V(Hy) + 1 and V(Hy) = V(H) — 4.
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Proof. Let |V(H)| = n. Let u,v € V(H) such that wow € E(H) for every w € V(H). Since
degree of u is at least n — 1, there must a hyperedge zyu where x,y € V(H)\ {u,v}. If there
is a hyperedge xab € E(H) where a,b € V(H) \ {u,v,x,y}, then the hyperedges, uva, rab
and zyu form a linear cycle, a contradiction. Therefore, y € {a, b}.

Consider the trace graph G, , where {p,q} € E(G,,) if and only if either pqu € E(H)
or pqu € E(H). Let the degree of z in G, be d and let the corresponding edges be
TY1, TY2, - . ., TYq. 1 d > 2 and zyu,xy;v € E(H) where i # j, then zyu, xyv and uva
where a € {u,v,y;,y;, x} form a linear cycle. So if d > 2, then either zy,u € E(H) for every
1 <i<dorzyv e E(H) for every 1 <i < d. W.lLo.g assume the former. Consider the case
when d > 3. We know that if zab € E(H) with a,b € V(H)\ {u,v,z} then y; € {a,b}. So it
follows that y1, 99, ..., yq € {a, b}, which is impossible when d > 3. Therefore, zab ¢ E(H)
where a,b € V(H)\{u,v,z} and so the degree of x is d+1 < n—3+1 = n—2, a contradiction.
Now consider the case when d = 2. In this case, we can have zy,y, € E(H). So the degree
of z is at most d 4+ 2 = 4 a contradiction since n > 6. Therefore we conclude that d = 1. In
this case we claim that zy,a € E(H) for every a € V(H) \ {z,y1} because otherwise degree
of x is at most n — 2. Let the subhypergraph induced by V(H) \ {u,v,z,y1} be Hy. It is
easy to see that if abu € E(H) for a,b € V(Hy) then the hyperedges abu, uvz, rya form a
linear cycle, a contradiction. Similarly, abv, abx,aby ¢ E(H). So the degree of a vertex in
Hy is at least n — 1 — 2 = V(Hy) + 1, as desired. O

Actually, we will use the following simple corollary obtained by repeated applications of
the lemma above.

Corollary 2.21. If H; is a subhypergraph of H where degree of each vertex in V (H;) is at least
|V (H))| + n;, where ny > —1, then it has a subhypergraph Hy 1 such that the degree of every
vertex in V (Hj41) is at least |V (Hj11)|+ni41, where iy = my+2 and |V (Hiyq)| = |V (H))|—4.

Assume by contradiction that Theorem does not hold. That is, there is a hypergraph
H := H, on n vertices where degree of every vertex is at least n — 1 and n > 10. Then by
using Corollary [2.21] there is an [ such that [V (H,;)| < 5 and the degree of every vertex in H,
is at least |V (H;)| + 3 (notice that since n > 10, we must have [ > 3), which is impossible.

2.4 Proof of Theorem 2.5

We call a hypergraph mized if it can contain hyperedges of both sizes 2 and 3. A linear
cycle in a mixed hypergraph is still defined according to Definition 2.1 We will in fact prove
our theorem for mixed hypergraphs (which is clearly a bigger class of hypergraphs than
3-uniform hypergraphs). More precisely, we will prove the following stronger theorem.

Theorem 2.22. If H is a mized hypergraph, then its vertex set V(H) can be covered by at
most o(H) edge-disjoint linear cycles (where we accept a single vertex or a hyperedge as a
linear cycle).
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Proof. We prove the theorem by induction on «(H). If [V(H)| =1 or 2, then the statement
is trivial. If |V(H)| > 3 and a(H) = 1, then H contains all possible edges of size 2 and there
is a Hamiltonian cycle consisting only of edges of size 2, which is of course a linear cycle
covering V (H).

Let a(H) > 1. If E(H) =0, then a(H) = V(H) and the statement of our theorem holds
trivially since we accept each vertex as a linear cycle. If F(H) # (), then let P be a longest
linear path in H consisting of hyperedges hg, hy,...,h (I > 0). If h; is of size 3, then let
h; = v;v;y1u;1 and if it is of size 2, then let h; = v;v;41. A linear subpath of P starting
at vy (i.e., a path consisting of hyperedges ho, h1, ..., h; for some j <) is called an initial
segment of P. Let C' be a linear cycle in H which contains the longest initial segment of P.
If there is no linear cycle containing hg, then we simply let C' = hy.

Let us denote the subhypergraph of H induced on V(H)\V(C) by H\C. Let R = {vguy |
{vk,ug} C V(P)\ V(C) and vovguy € E(H)} be the set of red edges. Let us construct a
new hypergraph H' where V(H') = V(H)\V(C) and E(H') = E(H \ C)U R. We will show
that a(H') < «(H) and any linear cycle cover of H' can be extended to a linear cycle cover
of H by adding C' and extending the red edges by vy.

The following claim shows that the independence number of H’ is smaller than the
independence number of H. This fact will later allow us to apply induction.

Claim 2.23. If I is an independent set in H', then I Uwvy is an independent set in H.

Proof. Suppose by contradiction that h C (I Uwg) for some h € E(H). Then, clearly vy € h
because otherwise I is not an independent set in H’. Now let us consider different cases
depending on the size of AN (V(P)\ V(C)). If [N (V(P)\ V(C))| = 0 then, by adding h
to P, we can produce a longer path than P, a contradiction. If |h N (V(P) \ V(C))| =1, let
hn (V(P)\V(C)) = {z}. Then the linear subpath of P between vy and z together with h
forms a linear cycle which contains a larger initial segment of P than C', a contradiction. If
b (V(P)\V(C))| = 2, then let AN (V(P)\ V(C)) = {x,y}. Let us take smallest i and
j such that x € h; and y € h; (i.e., if € h; N h;4y then let us take h;). If ¢ # j, say i < j
without loss of generality, then the linear subpath of P between vy and x together with A
forms a linear cycle with longer initial segment of P than C, a contradiction. Therefore,
i = j but in this case, {z,y} is a red edge and so at most one of them can be contained in
I, contradicting the assumption that h = vozry C (I Uvg). Hence, I U vy is an independent
set in H, as desired. O

The following claim will allow us to construct linear cycles in H from red edges.

Claim 2.24. The set of hyperedges of every linear cycle in H' contains at most one red edge.

Proof. Suppose by contradiction that there is a linear cycle C’ in H' containing at least
two hyperedges which are red edges. Then there is a linear subpath P’ of C’ consisting of
hyperedges hy, b}, ..., hl, such that hy := vsus and hl, := v;u; (where s > t) are red edges
but h}, is not a red edge for any 1 < k < m — 1. Let us first take the smallest i such
that V(P') N h; # () and then the smallest j such that A} N h; # (). It is easy to see that

[V(P") N hi| < 2 (since i was smallest). If |} N h;| = 1, then the linear cycle consisting
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of hyperedges A}, ..., h;- and h;, h;_1,...,ho and vgvsus contains a larger initial segment of

P than C (as h; N h; € V(P)\ V(C)), a contradiction. If |h; N h;| = 2, then notice that
R, 1 N hi| = 1. Now the linear cycle consisting of the hyperedges h;, 1, h;, »,...,h},; and
hi,hi_1, ..., hg and vovsu, contains a larger initial segment of P than C', a contradiction. [J

By Claim 2.23] a(H') < a(H) — 1. So by induction hypothesis, V (H’) can be covered by
at most o(H) — 1 edge-disjoint linear cycles (where we accept a single vertex or a hyperedge
as a linear cycle). Now let us replace each red edge {x,y} with the hyperedge zyvy of H.
Claim ensures that in each of these linear cycles, at most one of the hyperedges is a
red edge. Therefore, it is easy to see that after the above replacement, linear cycles of H’
remain as linear cycles in H and they cover V(H') = V(H)\ V(C). Now the linear cycle C,
together with these linear cycles give us at most a(H) — 1+ 1 = «a(H) edge-disjoint linear
cycles covering V(H ), completing the proof. O
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Chapter 3

Asymptotics for Turan numbers of cycles
in 3-uniform hypergraphs

3.1 Introduction

Recall that a Berge cycle of length k£ > 2, denoted by Cj, is an alternating sequence of
distinct vertices and distinct edges of the form vy, hy, vs, ho, ..., vg, hy where v;,v;11 € h; for
each i € {1,2,...,k — 1} and v, v; € hy. (Note that if a hypergraph does not contain a
Berge-C, then it is linear.) This definition of a hypergraph cycle is the classical definition
due to Berge. More generally, if F' = (V(F), E(F)) is a graph and Q = (V(Q), E(Q)) is a
hypergraph, then we say Q is Berge-F' if there is a bijection ¢ : E(F) — E(Q) such that
e C ¢(e) for all e € E(F). In other words, given a graph F' we can obtain a Berge-F' by
replacing each edge of I’ with a hyperedge that contains it.

The systematic study of the Turan numbers of Berge cycles started with the study of
Berge triangles by Gyéri [47], and continued with the study of Berge five cycles by Bollobéas
and Gy¢ri [9] who showed the following.

Theorem 3.1 (Bollobas, Gyéri [9]). We have,

3/2
(1+ 0(1));\/§ < exs(n,Cs) < V2n*? 4 4.5n.

The following construction of Bollobéas and Gyé&ri shows the lower bound in Theorem [3.1}

Bollobds-Gydri Example. Take a Cy-free bipartite graph Gy with n/3 vertices in each
part and (14 o(1))(n/3)%? edges. In one part, replace each vertex u of Gy by a pair of two
new vertices u; and us, and add the triple ujusv for each edge uv of Gy. It is easy to check
that the resulting hypergraph H does not contain a Berge cycle of length 5. Moreover, the
number of hyperedges in H is the same as the number of edges in Gy.

In this chapter, we improve Theorem as follows.
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Theorem 3.2 (E., Gy6ri, Methuku [29]). We have,

exs(n, Cs) < 0.254n? + O(n).

Roughly speaking, our proof idea is to analyze the structure of Berge-C's-free hypergraphs,
and use this structure to efficiently limit the number of paths of length 3 in the 2-shadow;
which is then combined with the lower bound on the number of paths of length 3 provided
by the Blakley-Roy inequality [7].

Naturally, we also consider forbidding Berge k-cycles in linear hypergraphs. For k > 2,
Fiiredi and Ozkahya [40] showed exi™(n, Copy1) < 2kn'*1/* 4 9kn. In fact it is shown in
[46], 40] that exs(n, Coryr) < O(n'T/*). For the even case it is easy to show exi®(n, Cy) <
ex(n, Co) = O(n'*™/*) by selecting a pair from each hyperedge of a Coj-free 3-uniform linear
hypergraph. A (Berge) path of length £ is an alternating sequence of distinct vertices and
distinct edges of the form vy, hg, vy, h1,v9, ho, ..., Uk_1, ht_1, v Where v;, v;11 € h; for each
i€{0,1,2,...,k—1}. Below we concentrate on the linear Turan numbers of C3, Cy and Cs.

As discussed in Chapter [1| determining exi®(n, C3) was settled by Ruzsa and Szemerédi
2— < :
[68], showing that n~ Vieen < exi®(n, C3) = o(n?) for some constant ¢ > 0.

Only a handful of results are known about the asymptotic behaviour of Turdn numbers
for hypergraphs. In this chapter, we focus on determining the asymptotics of exi®(n, Cj)
by giving a new construction, and a new proof of the upper bound which introduces some
important ideas. We also determine the asymptotics of exi®(n, Cy) and construct 3-uniform
linear hypergraphs avoiding linear cycles of given odd length(s).

The following is one of the main results in this chapter.

Theorem 3.3 (E., Gy6ri, Methuku [30]).

exi®(n, Cs) = L713/2 + O(n).

3v3

To show the lower bound in the above theorem we give the following construction. For
the sake of convenience we usually drop floors and ceilings of various quantities in the con-
struction below, and in the rest of the chapter, as it does not effect the asymptotics.

Construction of a Cs-free linear hypergraph H: For each 1 < t < /n/3, let
L, ={l,L ... 7lt\/n_/3} and R, = {rt,rk, ... ’Tt\/n_/?,}' Let B={v;; |1 <14,j <y/n/3}. The
n/3
vertex set of H is V(H) = igl (Li U R;) U B and the edge set of H is E(H) = {v;lir}
Ui 5 € B and 1 S t S \/n/3}.
n3/2

Clearly |V(H)| = n and |E(H)| = {7 and H is linear. It is easy to check that H is

Cs-free but this is proved in a more general setting in Theorem [3.5]
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Lazebnik and Verstraéte [59] showed that

n3/2

exgn(n, {03, O4}) = T + O(?’L) (31)

This was remarkable especially considering the fact that the asymptotics for the correspond-
ing extremal function for graphs ex(n, {Cs, C4}) is not known and is a long standing problem
of Erdss [18]. Erdds and Simonovits [19] conjectured that ex(n,{Cs,Cy4}) = expip(n, Cy)
while Allen, Keevash, Sudakov, and Verstraéte [I] conjectured that this is not true.

In this chapter we strengthen the above mentioned result of Lazebnik and Verstraéte
[59], by showing that their upper bound in (3.1]) still holds even if the Cs-free condition is
dropped. This shows exi®(n, Cy) ~ exi®(n, {C3,C4}), as detailed below.

Theorem 3.4 (E., Gy6ri, Methuku [30]).

, 1 n  n®?
exi(n, Cy) < gnvn +9+ 5= 6 +O(n).
The lower bound ex}"(n, Cy) > in/? — 1 /n follows from (3.I)). (Note that the construc-
tion from [59] showing this lower bound is Cs-free as well.) Therefore,

. n3/2
exi®(n, Cy) = ra + O(n).

The last result of this chapter shows strong connection between Turan numbers of even
cycles in graphs and linear Turdn numbers of linear cycles of odd length in 3-uniform hyper-
graphs. This is explained below, after introducing some definitions.

A linear cycle Ci™ of length k > 3 is an alternating sequence vy, hy,vo, ha, ..., Uy, hy, of
distinct vertices and distinct hyperedges such that h;Nh; 1 = {v;11} foreachi € {1,2,... k—
1}, i Nhy = {vi} and b Nh; =0 if 1 < |j—i| < k—1. (A linear path can be defined

similarly.) The vertices vy, v, ..., v are called the basic vertices of O} and the graph with
the edge set {viva, Vv, . .., Up_ 10k, V01 } is called the basic cycle of CHm.

Let Cj, and Cj™ denote the set of (Berge) cycles C; and the set of linear cycles C/®| respec-
tively, where [ has the same parity as k and 2 < [ < k. In particular, in Theorem we will
be interested in the sets Cop—o = {C5, C4, C, . .., Cop_o} and C3,, = {CY™, CE», ..., C3r 4 ).
Note that the (Berge) cycle Cy corresponds to two hyperedges that share at least 2 vertices,
so a hypergraph is linear if and only if it is Cy-free. In particular, for graphs (i.e., 2-uniform
hypergraphs) the Cy-free condition does not impose any restriction, and there is no difference
between a (Berge) cycle C; and a linear cycle C}™.

Recall that Bondy and Simonovits [10] showed that for & > 2, ex(n, Cq;) < cen'tE for
all sufficiently large n. Improvements to the constant factor ¢, are made in [72] 66}, [13]. The
girth of a graph is the length of a shortest cycle contained in the graph. For k = 2,3, 5,
constructions of Cy-free graphs on n vertices with Q(n'*+) edges are known: Benson [6] and
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Singleton [69] constructed a bipartite Cs-free graph with (14-0(1))(n/2)*? edges and Benson
[6] constructed a bipartite Cio-free graph with (14-0(1))(n/2)%/° edges. For k & {2,3,5} it is
not known if the order of magnitude of ex(n, Cy;) is ©(n'*+). The best known lower bound
is due to Lazebnik, Ustimenko and Woldar [60], who showed that there exist graphs of girth
more than 2k + 1 containing Q(nHﬁ) edges where k£ > 2 is fixed, e = 0 if £ is odd and
e = 1if k is even.

Recently Collier-Cartaino, Graber and Jiang [14] showed that for all [ > 3, exi®(n, Ci") <
1
O(nHW). In fact, they proved the same upper bound for all r-uniform hypergraphs with
r > 3. However, it is not known if C}™-free linear 3-uniform hypergraphs on n vertices with
1
Q(n'"T7T) hyperedges exist. It is mentioned in [I4] that the best known lower bound
exti™(n, ™) > Q(n'*T1), (32)
was observed by Verstraéte, by taking a random subgraph of a Steiner triple system.

If | = 2k+1is odd, then we are able to construct a Cin '1-free 3-uniform linear hypergraph

on n vertices with Q(n**#) hyperedges whenever a Caj,_o-frec graph with Q(nHﬁ) edges

exists. More precisely, we show:

Theorem 3.5 (E., Gydri, Methuku [30]). Let expip(n, Cox—2) > (1+0(1))c (%)a = Q(n%) for
some c,a > 0. Then,

: ; ac a—1 -3 1 1
e, Cit) = (L+ o) 255 - ()t E = ).

If 2k — 2 = 2, then by definition Co,_9 = {C5}, so in this case the Co;_o-free condition
does not impose any restriction. Thus in order to bound expi,(n,Cs) from below, one can
take a complete balanced bipartite graph. Therefore, using ¢ = 1 and o = 2 in the above
theorem, we get exi®(n,Ci) > (1 + 0(1))33—\;; Since a 3-uniform linear hypergraph which is
both CY"-free and Ci"-free is (Berge) Cj-free, this also provides the desired lower bound in
Theorem [3.3] As we mentioned before, in the cases 2k — 2 = 4,6, 10, it is known that ¢ = 1
and o = 1+ ﬁ by the work of Benson and Singleton and for all £ > 2, it is known that
a=1+ ﬁ by the work of Lazebnik, Ustimenko and Woldar, where ¢ = 0 if k£ is odd
and € = 1 if k is even; so substituting these in Theorem and combining it with the upper
bound of Collier-Cartaino, Graber and Jiang, we get the following corollary.

Corollary 3.1. For k =2,3,4,6, we have ex3”(n,Ch, ) > (1 + o(l))%(k%l)”%.
Therefore, in these cases,

exi®(n, Cli2, ) = O(n! 7).

Moreover, for k > 2, we have
lin lin I 52—
exz"(n, Copyq) = Qn 515,

where € = 0 if k is odd and € =1 if k is even.

31



CEU eTD Collection

The above corollary provides an improvement of the lower bound in (3.2)) for linear cycles
of odd length.

Structure of the chapter: In the next section we introduce some notation that is used
through out the chapter. In Section we prove the theorem In Section [3.3] we prove the
upper bound of Theorem and in Section we prove Theorem [3.4] Finally, in Section
3.5 we prove Theorem

Notations and Definitions

We introduce some important notations and definitions used throughout the chapter.

e Length of a path is the number of edges in the path.

e For convenience, an edge {a, b} of a graph or a pair of vertices a, b is referred to as ab.
A hyperedge {a, b, c} is written simply as abe.

e For a hypergraph H (or a graph G), for convenience, we sometimes use H (or G) to
denote the edge set of the hypergraph H (or G respectively). Thus the number of
edges in H is |H|.

e Given a graph GG and a subset of its vertices S, let the subgraph of G induced by S be
denoted by G[S].

e For a hypergraph H, let 0H = {ab | ab C e € E(H)} denote its 2-shadow graph.
e The first neighborhood of v in H is defined as

N (v) ={x € V(H)\ {v} | v,z € h for some h € E(H)}
and the second neighborhood of v in H is

N (v) = {x € V(H)\(N(v)U{v}) | 3h € E(H) such that = € h and hON{ (v) # 0}.

e For a hypergraph H and v € V(H), we denote the degree of v in H by d(v). We write
d (v) instead of d(v) when it is important to emphasize the underlying hypergraph.

e For a hypergraph H and a pair of vertices u,v € V(H), let codeg(v,u) denote the
number of hyperedges of H containing the pair {u, v}.

3.2 Proof of Theorem [3.2

Let H be a hypergraph on n vertices without a Berge 5-cycle and let G = JH be the
2-shadow of H. First we introduce some definitions.

Definition 3.2. A pair xy € OH is called thin if codeg(zy) = 1, otherwise it is called fat.
We say a hyperedge abc € H is thin if at least two of the pairs ab, bc, ac are thin.
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Definition 3.3. We say a set of hyperedges (or a hypergraph) is tightly-connected if it can
be obtained by starting with a hyperedge and adding hyperedges one by one, such that every
added hyperedge intersects with one of the previous hyperedges in 2 vertices.

Definition 3.4. A block in H is a maximal set of tightly-connected hyperedges.

Definition 3.5. For a block B, a maximal subhypergraph of B without containing thin
hyperedges is called the core of the block.

Let K3 denote the complete 3-uniform hypergraph on 4 vertices. A crown of size k is a set
of k£ > 1 hyperedges of the form abcy, abcs, . . ., abcy. Below we define 2 specific hypergraphs:

e Let I} be a hypergraph consisting of exactly 3 hyperedges on 4 vertices (i.e., K3 minus
an edge).

e For distinct vertices a, b, ¢, d and o, let F5 be the hypergraph consisting of hyperedges
oab, obc, ocd and oda.

Lemma 3.6. Let B be a block of H, and let B be a core of B. Then B is either O, K, Fy, Iy
or a crown of size k for some k > 1.

Proof. It B = (), we are done, so let us assume B # (). Since B is tightly-connected and it can
be obtained by adding thin hyperedges to B, it is easy to see that B is also tightly-connected.
Thus if B has at most two hyperedges, then it is a crown of size 1 or 2 and we are done.
Therefore, in the rest of the proof we will assume that B contains at least 3 hyperedges.

If B contains at most 4 vertices then it is easy to see that B is either K} or Fy. So assume
that B has at least 5 vertices (and at least 3 hyperedges). Since B is not a crown, there exists
a tight path of length 3, say abc, bed, cde. Since abe is in the core, one of the pairs ab or ac is
fat, so there exists a hyperedge h # abc containing either ab or ac. Similarly there exists a
hyperedge f # cde and f contains ed or ec. If h = f then B O F,. However, it is easy to see
that Iy cannot be extended to a larger tightly-connected set of hyperedges without creating
a Berge 5-cycle, so in this case B = Fy. If h # f then the hyperedges h, abe, bed, cde, f create
a Berge 5-cycle in H, a contradiction. This completes the proof of the lemma. O

Observation 3.7. Let B be a block of H and let B be the core of B. If B = () then the block
B is a crown, and if B # () then every fat pair of B is contained in 0B.
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Edge Decomposition of G = 0H. We define a decomposition D of the edges of G into
paths of length 2, triangles and K}’s such as follows:
Let B be a block of H and B be its core.

If B=0, then B is a crown-block {abcy, abes, . .., abey} (for some k > 1); we partition 9B
into the triangle abc; and paths ac;b where 2 <1 < k.

If B # 0, then our plan is to first partition OB \ 0B. If abc € B\ B, then abc is a thin
hyperedge, so it contains at least 2 thin pairs, say ab and bc. We claim that the pair ac is
in 0B. Indeed, ac has to be a fat pair, otherwise the block B consists of only one hyperedge
abe, so B = () contradicting the assumption. So by Observation ac has to be a pair in
0B. For every abc € B\ B such that ab and bc are thin pairs, add the 2-path abc to the
edge decomposition D. This partitions all the edges in 9B \ 0B into paths of length 2. So
all we have left is to partition the edges of 0B.

e If B is a crown {abcy, abey, . .., abc,} for some k > 1, then we partition 0B into the
triangle abc; and paths ac;b where 2 <1 < k.
o If B=F, = {abc,bcd, acd} then we partition OB into 2-paths abc, bde and cad.

o If B = F, = {oab, obc,ocd,oda} then we partition OB into 2-paths abo, bco, cdo and
dao.

e Finally, if B = K} = {abc, abd, acd,bcd} then we partition OB as Ky, i.e., we add
0B = K, as an element of D.

Clearly, by Lemma [3.6| we have no other cases left. Thus all of the edges of the graph G
are partitioned into paths of length 2, triangles and K,’s.

Observation 3.8.
(a) If D is a triangle that belongs to D, then there is a hyperedge h € H such that D = Oh.
(b) If abc is a 2-path that belongs to D, then abc € H. Moreover ac is a fat pair.

(c) If D is a K, that belongs to D, then there exists F' = K} C H such that D = JF.

Let oy |G| and a9 |G| be the number of edges of G that are contained in triangles and

2-paths of the edge-decomposition D of G, respectively. So (1 — a3 — a3) |G| edges of G
belong to the K,’s in D.

Claim 3.9. We hawve,

(05} (6] 2(1 — (1 — OéQ))
H=(=2+22 .
|H| <3+2+ 3 |Gl

Proof. Let B be a block with the core B. Recall that for each hyperedge h € B\ B, we have
added exactly one 2-path or a triangle to D.

Moreover, because of the way we partitioned 0B, it is easy to check that in all of the
cases except when B = K3, the number of hyperedges of B is the same as the number of
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elements of D that OB is partitioned into; these elements being 2-paths and triangles. On
the other hand, if B = K73, then the number of hyperedges of B is 4 but we added only one
element to D (namely Kj).

This shows that the number of hyperedges of H is equal to the number of elements of D
that are 2-paths or triangles plus the number of hyperedges which are in copies of K3 in H,
i.e., 4 times the number of K,’s in D. Since «; |G| edges of G are in 2-paths, the number of
elements of D that are 2-paths is a; |G| /2. Similarly, the number of elements of D that are
triangles is as |G| /3, and the number of Ky’s in D is (1 — a; — az) |G| /6. Combining this
with the discussion above finishes the proof of the claim. m

The link of a vertex v is the graph consisting of the edges {uw | uvw € H} and is denoted
by L,.

Claim 3.10. |L,| < 2|N;(v)|.

Proof. First let us notice that there is no path of length 5 in L,. Indeed, otherwise, there
exist vertices vg, vq, ..., vs such that vv;_qv; € H for each 1 < i <5 which means there is a
Berge 5-cycle in H formed by the hyperedges containing the pairs vvy, v1vs, Vov3, V34, V4V, &
contradiction. So by the Erdds-Gallai theorem |L,| < 251 [Ny (v)], proving the claim. O

Lemma 3.11. Let v € V(H) be an arbitrary vertex, then the number of edges in G|[N;(v)]
is less than 8 |N1(v)].

Proof. Let G, be a subgraph of G on a vertex set Ni(v), such that xy € G, if and only
if there exists a vertex z # v such that zyz € H. Then each edge of G[N;(v)] belongs
to either L, or G,, so |G[N;(v)]| < |L,| + |G,|. Combining this with Claim [3.10] we get
|G[N7(v)]| < |Gy| + 2| N1(v)]. So it suffices to prove that |G, | < 6 |Ny(v)].

First we will prove that there is no path of length 12 in G,. Let us assume by con-
tradiction that P = vg,vq,...,v12 is a path in GG,,. Since for each pair of vertices v;, v;11,
there is a hyperedge v;v; 12 in H where x # v, we can conclude that there is a subsequence
Ug, U7, . .., Ug Of Vg, V1, ..., V12 and a sequence of distinct hyperedges hq, ho, . .., hg, such that
ui—u; C h; and v ¢ h; for each 1 < ¢ < 6. Since g, us,ug € Ni(v) there exist hyper-
edges fi, f2, f3 € H such that vug C f1, vuz C fo and vug C f3. Clearly, either f; # fo
or fo # f3. In the first case the hyperedges fi,hy,ho, hs, fo, and in the second case the
hyperedges f, ha, hs, hg, f3 form a Berge 5-cycle in H, a contradiction.

Therefore, there is no path of length 12 in G,, so by the Erdgs-Gallai theorem, the
number of edges in G,, is at most =+ | Ny (v)| < 6 |Ny(v)], as required. O

3.2.1 Relating the hypergraph degree to the degree in the shadow

For a vertex v € V(H) = V(G), let d(v) denote the degree of v in H and let dg(v) denote
the degree of v in G (i.e., dg(v) is the degree in the shadow).
Clearly dg(v) < 2d(v). Moreover, d(v) = |L,| and dg(v) = |[Ni(v)]. So by Claim [3.10]
we have
dg(v)

2

< d(v) < 2dg(v). (3.3)
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Let d and dg be the average degrees of H and G respectively.

Suppose there is a vertex v of H, such that d(v) < d/3. Then we may delete v and all
the edges incident to v from H to obtain a graph H’ whose average degree is more than
3(nd/3 —d/3)/(n — 1) = d. Then it is easy to see that if the theorem holds for H’', then it
holds for H as well. Repeating this procedure, we may assume that for every vertex v of H,
d(v) > d/3. Therefore, by (3.3), we may assume that the degree of every vertex of G is at
least d/6.

3.2.2 Counting paths of length 3

Definition 3.12. A 2-path in OH is called bad if both of its edges are contained in a triangle
of OH , otherwise it is called good.

Lemma 3.13. For any vertex v € V(G) and a set M C Ni(v), let P be the set of the good
2-paths vay such that x € M. Let M' = {y | vey € P} then |P| < 2|M'| + 48dg(v).

Proof. Let Bp = {zy | x € M,y € M',zy € G} be a bipartite graph, clearly |Bp| = |P|.
Let E = {zyz € H | z,y € Ni(v),codeg(z,y) < 2}. By Lemma 3.11] |E| < 2 8|Ny(v)]
so the number of edges of 2-shadow of F is |0F| < 48 |N;(v)|. Let B = {zy € Bp | 3z €
V(H),zyz € H\ E}. Then clearly,

|B| = [Bp| — [0E| = [P| — 48 |N1(v)| = [P| — 48dg(v). (3.4)

Let dg(x) denote the degree of a vertex x in the graph B.

Claim 3.14. For every y € M’ such that dg(y) = k > 3, there exists a set of k — 2 vertices
Sy € M’ such that Vw € S, we have dg(w) = 1. Moreover, S, NS, =0 for anyy # z € M’

(with dg(y),dg(z) > 3).

Proof. Let yxy,yxs,...,yxr € B be the edges of B incident to y. For each 1 < 7 < £k let
f; € H be a hyperedge such that vx; C f;. For each yx; € B clearly there is a hyperedge

We claim that for each 1 <7 <k, w; € M’. It is easy to see that w; € Ny(v) or w; € M’
(because vx;w; is a 2-path in G). Assume for a contradiction that w; € N;(v), then since
yr;w; ¢ E we have, codeg(z;,w;) > 3. Let f € H be a hyperedge such that vw; C f. Now
take j # i such that z; # w;. If f; # f then since codeg(x;, w;) > 3 there exists a hyperedge
h O x;w; such that h # f and h # z;w,y, then the hyperedges f,h, z,w;y, yr;w;, f; form a
Berge 5-cycle. So f; = f, therefore f; # f;. Similarly in this case, there exists a hyperedge
h D z;w; such that h # f; and h # z,w;y, therefore the hyperedges f;, h, z,w;y, yx;w;, f;
form a Berge 5-cycle, a contradiction. So we proved that w; € M’ for each 1 < i < k.

Claim. For all but at most 2 of the w;’s (where 1 <i < k), we have dg(w;) = 1.

Proof. It dg(w;) = 1 for all 1 < i < k then we are done, so we may assume that there is
1 <4 < k such that dg(w;) # 1.
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For each 1 <i <k, w; € M" and x;w; € O(H \ E) (because z;w;y € H \ E), so it is clear
that dg(w;) > 1. So dg(w;) > 1. Then there is a vertex © € M \ {x;} such that w;x € B. Let
f,h € H be hyperedges with w;x € h and zv € f. If there are j,l € {1,2,...,k} \ {i} such
that x,z; and z; are all different from each other, then clearly, either f # f; or f # fi, so
without loss of generality we may assume f # f;. Then the hyperedges f, h, w;x;y, yw;z;, f;
create a Berge cycle of length 5, a contradiction. So there are no j, 1 € {1,2,...,k}\{i} such
that z,x; and z; are all different from each other. Clearly this is only possible when k < 4
and there is a j € {1,2,3} \ {i} such that x = z;. Let [ € {1,2,3}\ {4,j}. If f; # f then
the hyperedges f;, h, w;z;y, ywix;, fi form a Berge 5-cycle. Therefore f; = f;. So we proved
that dp(w;) # 1 implies that k£ = 3 and for {j,{} = {1,2,3}\ {i}, we have f; = f;. So if
dp(w;) # 1 and dg(w;) # 1 we have f; = f; and f; = f, which is impossible. So dp(w;) = 1.
So we proved that if for any 1 < i < k, dg(w;) # 1 then k = 3 and all but at most 2 of the
vertices in {wy, wq, w3} have degree 1 in the graph B, as desired. n

We claim that for any ¢ # j where dg(w;) = dp(w;) = 1 we have w; # w;. Indeed, if
there exists ¢ # j such that w; = w; then w;z; and w;z; are both adjacent to w; in the graph
B which contradicts to dg(w;) = 1. So using the above claim, we conclude that the set
{wy,ws, ..., w} contains at least k — 2 distinct elements with each having degree one in the
graph B, so we can set S, to be the set of these k — 2 elements. (Then of course YVw; € S,
we have dg(w;) = 1.)

Now we have to prove that for each z # y we have S, NS, = (). Assume by contradiction
that w; € S, NS, for some z # y. That is, there is some hyperedge uw;z € H \ E where
u € M, moreover u = x; otherwise dg(w;) > 1. So we have a hyperedge z;w;z € H\ E
for some z € M'\ {y}. Let j,l € {1,2,...,k} \ {i} such that j # [. Recall that z;v C f;
and z;v C f;. Clearly either f; # f; or f; # fi so without loss of generality we can assume
fj # fi- Then it is easy to see that the hyperedges f;, z,w,y, yr,w;, w;zz;, f; are all different
and they create a Berge 5-cycle (z;w;y # yx;w; because x; # w;). O

For each x € M’ with dg(z) = k > 3, let S, be defined as in Claim[3.14] Then the average
of the degrees of the vertices in S, U {z} in Bis (k+|S.|)/(k—1) = 2k —2)(k—1) = 2.
Since the sets S, Uz (with z € M’', dg(z) > 3) are disjoint, we can conclude that average
degree of the set M’ is at most 2. Therefore 2|M’| > |B|. So by we have 2 |M'| >
|B| > |P| — 48ds(V'), which completes the proof of the lemma. O

Claim 3.15. We may assume that the maximum degree in the graph G is less than 160y/n
when n is large enough.

Proof. Let v be an arbitrary vertex with dg(v) = Cd for some constant C' > 0. Let P be
the set of the good 2-paths starting from the vertex v. Then applying Lemma with
M = Ny(v) and M’ = {y | voy € P}, we have |P| < 2|M’| + 48dg(v) < 2n + 48 - Cd. Since
the minimum degree in G is at least d/6, the number of (ordered) 2-paths starting from v is
at least d(v) - (d/6 —1) = Cd - (d/6 —1). Notice that the number of (ordered) bad 2-paths
starting at v is the number of 2-paths vzy such that =,y € N;(v). So by Lemma , this
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is at most 2-8 | Ny (v)| = 16Cd, so the number of good 2-paths is at least C'd - (d/6 — 17). So
|P| > Cd-(d/6 — 17). Thus we have

Cd-(d/6 —17) < |P| < 2n + 48C4d.

So Cd(d/6 — 65) < 2n. Therefore, 6C(d/6 — 65)? < 2n, ie., d < 6/n/3C + 390, so
5 n3/2 nd/2
[H| = nd/3 < 2n\/n/3C + 130n. 1f C > 36 we get that |H| < 27= +130n = 2% 4 O(n),
proving Theorem [3.2] So we may assume C' < 36.
Theorem [3.1] implies that

|H| = nd/3 < V2n*?* + 4.5n, (3.5)

so d < 3v/2y/n +13.5. So combining this with the fact that C' < 36, we have dg(v) = Cd <
108v/2y/n + 486 < 1604/n for large enough n. O

Combining Lemma [3.13] and Claim [3.15], we obtain the following.

Lemma 3.16. For any vertez v € V(G) and a set M C Ny(v), let P be the set of good
2-paths vy such that x € M. Let M' = {y | vxy € P} then |P| < 2|M’| + 7680/n when n
18 large enough.

Definition 3.17. A 3-path g, x1, x2, x3 is called good if both 2-paths xg, x1, Ts and x1, T2, T3
are good 2-paths.

Claim 3.18. The number of (ordered) good 3-paths in G is at least nE‘é — Coyn®/?dg for some
constant Cy > 0 (for large enough n).

Proof. First we will prove that the number of (ordered) 3-walks that are not good 3-paths
is at most 5440n*/%d.

For any vertex x € V(H) if a path yxz is a bad 2-path then zy is an edge of G, so the
number of (ordered) bad 2-paths whose middle vertex is z, is at most 2 times the number of
edges in G[Ni(z)], which is less than 2 - 8 |Ni(z)| = 16dg(z) by Lemma [3.11] The number
of 2-walks which are not 2-paths and whose middle vertex is x is exactly dg(x). So the total
number of (ordered) 2-walks that are not good 2-paths is at most 3,y (m) 17de(z) = 17ndg.

Notice that, by definition, any (ordered) 3-walk that is not a good 3-path must contain
a 2-walk that is not a good 2-path. Moreover, if xyz is a 2-walk that is not a good 2-path,
then the number of 3-walks in G containing it is at most dg(z) + dg(z) < 3204y/n (for large
enough n) by Claim Therefore, the total number of (ordered) 3-walks that are not
good 3-paths is at most 17nd - 320y/n = 5440n3/%d.

By the Blakley-Roy inequality, the total number of (ordered) 3-walks in G is at least naé.
By the above discussion, all but at most 5440n%2d of them are good 3-paths, so letting
Coy = 5440 completes the proof of the claim. O

Claim 3.19. Let {a,b,c} be the vertezx set of a triangle that belongs to D. (By Observation
(a) abc € H.) Then the number of good 3-paths whose first edge is ab, bc or ca is at most
8n + Ci+/n for some constant Cy and for large enough n.
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Proof. Let Sap. = Ni(a) N Ni(b) N Ni(c). For each {z,y} C {a,b,c}, let Sy, = Ni(z) N
Ni(y) \ {a,b,c}. For each z € {a,b,c}, let S, = Ny(x) \ (N1(y) U N1(2) U {a,b,c}) where
(.2} = {a,b,c}\ {}.

For each x € {a,b,c}, let P, be the set of good 2-paths xuv where u € S,. Let S, =
{v | zuv € P,}. For each {z,y} C {a,b,c}, let Py, be the set of good 2-paths zuv and yuv
where u € Syy. Let S, = {v | zuv € Py }.

Let {z,y} C {a,b,c} and z = {a,b,c} \ {z,y}. Notice that each 2-path yuv € P,y
(xuv € Pyy), is contained in exactly one good 3-path zyuwv (respectively zzuv) whose first
edge is in the triangle abc. Indeed, since u € Sy, xyuv (respectively yzuv) is not a good
3-path. Therefore, the number of good 3-paths whose first edge is in the triangle abc, and
whose third vertex is in S, is |Pyy|. The number of paths in P,, that start with the vertex

S:,,| +7680y/n, by Lemma [3.16, Similarly, the number of paths in P, that
start with the vertex y is less than 2|5 | + 7680y/n. Since every path in P,, starts with

either z or y, we have |P,,| < 4|9, | 4+ 15360y/n. Therefore, for any {z,y} C {a,b,c}, the
number of good 3-paths whose first edge is in the triangle abc, and whose third vertex is in
Sry 18 less than 4|, | +15360/n.

In total, the number of good 3-paths whose first edge is in the triangle abc and whose
third vertex is in Sy, U Sp. U Sy is at most

x is less than 2

(150 ] + 1Shel +1S5el) + 46080v/n. (3.6)

Let z € {a,b,c} and {y, 2z} = {a,b,c} \ {z}. For any 2-path zuv € P, there are 2 good
3-paths with the first edge in the triangle abc, namely yruv and zzxuv. So the total number
of 3-paths whose first edge is in the triangle abc and whose third vertex is in S, U S, U S, is
2(|Pa| + |Py| + |Pc|), which is at most

40155+ 1Sy] + [SL]) + 46080+/n, (3.7)

by Lemma [3.16]
Now we will prove that every vertex is in at most 2 of the sets S/, S}, S, S!,,S)., Sh...

Let us assume by contradiction that a vertex v € V(G) \ {a,b,c} is in at least 3 of them.
We claim that there do not exist 3 vertices u, € Ni(a) \ {b,c}, wp, € Ni(b) \ {a,c} and
ue € Ni(c) \ {a, b} such that zu,v is a good 3-path for each = € {a, b, c}. Indeed, otherwise,
consider hyperedges h,, h,, containing the pairs au, and u,v respectively (since au,v is a good
2-path, note that h, # h/), and hyperedges hy, hj, h., h., containing the pairs buy, uyv, cu,, w0
respectively. Then either h! # hj or hl, # hl, say hl # hj without loss of generality. Then
the hyperedges hg, hl,, hj, hy, abc create a Berge 5-cycle in H, a contradiction, proving that it
is impossible to have 3 vertices u, € Ny(a)\ {b, c}, up € N1(b)\ {a,c} and u. € Ny(c)\ {a, b}
with the above mentioned property. Without loss of generality let us assume that there is no
vertex u, € Ny(a)\{b, ¢} such that au,v is a good 2-path — in other words, v ¢ S, US!, US! .
However, since we assumed that v is contained in at least 3 of the sets S.,, S}, S., Sl Spes Shes

we can conclude that v is contained in all 3 of the sets S;, S, S;., i.e., there are vertices
up € Sp,Ue. € Se,u € Sy such that vuyb, vu.c, vub, vuc are good 2-paths. Using a similar
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argument as before, if vu € h, vu, € hy and vu. € h., without loss of generality we can
assume that h # hy, so the hyperedges abc,h,h, together with hyperedges containing uc and
upb form a Berge 5-cycle in H, a contradiction.

So we proved that

218, U Sy U S U Sy U Sy U Sl 2 190] + [Sp] + [Se] + [0 + [Shel + 15|

This together with (3.6) and (3.7, we get that the number of good 3-paths whose first edge
is in the triangle abc is at most

8|S/ US,US US,US,. US| +92160v/n < 8n + Civ/n
for C; = 92160 and large enough n, finishing the proof of the claim. m

Claim 3.20. Let P = abc be a 2-path and P € D. (By Observation (b) abc € H.)
Then the number of good 3-paths whose first edge is ab or be is at most 4n + Cyv/n for some
constant Cy > 0 and large enough n.

Proof. First we bound the number of 3-paths whose first edge is ab. Let Sy, = Ni(a) N N(b).
Let S, = Ni(a) \ (N1(b) U {b}) and S, = Ny(b) \ (Ni(a) U {a}). For each = € {a,b}, let P,
be the set of good 2-paths zuv where u € S,, and let S! = {v | zuv € P,}. The set of good
3-paths whose first edge is ab is P, U Py, because the third vertex of a good 3-path starting
with an edge ab can not belong to Ni(a) N Ny(b) by the definition of a good 3-path.

We claim that |S/, N S;| < 1604/n. Let us assume by contradiction that vg,vy,...v, €
S! N Sy for k > 160y/n. For each vertex v; where 0 < i < k, there are vertices a; € S, and
b; € Sy such that aa;v;, bb;v; are good 2-paths. For each 0 < ¢ < k, the hyperedge a,;v;b; is
in H, otherwise we can find distinct hyperedges containing the pairs aa;, a;v;, v;b;, b;b and
these hyperedges together with abe, would form a Berge 5-cycle in H, a contradiction. We
claim that there are j,l € {0,1,...,k} such that a; # @, otherwise there is a vertex x
such that © = a; for each 0 < ¢ < k. Then zv; € G for each 0 < i < k, so we get that
de(z) > k > 160,/n which contradicts Claim [3.15]

So there are j,1 € {0,1,...,k} such that a; # a; and a;v;b;, b, € H. By observation
3.8| (b), there is a hyperedge h # abc such that ac C h. Clearly either a; ¢ h or a; ¢ h.
Without loss of generality let a; ¢ h, so there is a hyperedge h, with aa; C h, # h. Let
hy D b;b, then the hyperedges abc, h, hq,a;v;b;, hy form a Berge 5-cycle, a contradiction,
proving that S/ N S}| < 160+/n.

Notice that |S| 4 |S;| = |S, U Sj| +|S% N Sp| < n+ 160y/n. So by Lemma [3.16, we have

Pal + [Py < 2(|S%| + |SL]) + 2 - 7680+/n < 2(n + 160v/n) + 2 - 7680/ = 2n + 15680/n

for large enough n. So the number of good 3-paths whose first edge is ab is at most 2n +
156804/n. By the same argument, the number of good 3-paths whose first edge is be is at
most 2n + 156804/n. Their sum is at most 4n + Coy/n for Cy = 31360 and large enough n,
as desired. O]
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Claim 3.21. Let {a,b,c,d} be the vertex set of a K, that belongs to D. Let F = K3 be a
hypergraph on the vertex set {a,b,c,d}. (By Observation (¢c) F'C H.) Then the number
of good 3-paths whose first edge belongs to OF is at most 6n+Cs/n for some constant C3 > 0
and large enough n.

Proof. First, let us observe that there is no Berge path of length 2,3 or 4 between distinct
vertices z,y € {a,b, c¢,d} in the hypergraph H\ F', because otherwise this Berge path together
with some edges of F' will form a Berge 5-cycle in H. This implies, that there is no path of
length 3 or 4 between z and y in G \ F, because otherwise we would find a Berge path of
length 2,3 or 4 between x and y in H \ F.

Let S = {u € V(H) \ {a,b,¢c,d} | H{z,y} C {a,b,c,d},u € Ni(z) N Ni(y)}. For each
x € {a,b,c,d}, let S, = Ny(z) \ (SU{a,b,c,d}). Let Ps be the set of good 2-paths zuv
where z € {a,b,c,d} and u € S. Let 8" = {v | xzuv € Pg}. For each x € {a,b,c,d}, let P,
be the set of good 2-paths zuv where u € S, and let S, = {v | zuv € P, }.

Let v € S’. By definition, there exists a pair of vertices {x,y} C {a,b,c,d} and a vertex
u, such that ruv and yuv are good 2-paths.

Suppose that zu'v is a 2-path different from zuv and yuv where z € {a,b,c,d}. If v’ = u
then z ¢ {z,y} so there is a Berge 2-path between = and y or between = and z in H \ F,
which is impossible. So u # u/. Either z # x or z # y, without loss of generality let us
assume that z # z. Then zu'vux is a path of length 4 in G \ OF, a contradiction. So for any
v € S’ there are only 2 paths of P, UP,UP.UP,;UPs that contain v as an end vertex — both
of which are in Pg — which means that v ¢ S/ US; US.US), so S'N(S,US,US.US,) = 0.
Moreover,

Ps| <215|. (3.8)

We claim that S/ and S} are disjoint. Indeed, otherwise, if v € S/ NS} there exists z € S,
and y € S, such that vza and vyb are paths in G, so there is a 4-path axvyb between vertices
of F'in G\ OF, a contradiction. Similarly we can prove that S!,S;, 5. and S/, are pairwise
disjoint. This shows that the sets S, 5., .5;, S. and S}, are pairwise disjoint. So we have

|S"U S U S, U S U Syl = [S| + [Sg] + S| + [92] + 154l (3.9)

By Lemma 510, we have [Py + [Py + [Pl + [Pal < 20|+ )|+ ]S/ +Sy]) +4- 7630,/
Combining this inequality with (3.8)), we get

[Ps| 4 |Pa| + [Po] 4 |Pe| + |Pal < 25| 4+ 2(|S,| + |Sh| + |52 + [S4]) + 4 - 7680+/n.  (3.10)

Combining (3.9) with (3.10) we get
|Ps|+|Pa|+|Po|+|Pe|+|Pal <2|S"US,US, US.U S +30720y/n < 2n+30720y/n, (3.11)

for large enough n.

Each 2-path in Ps U P, U P, U P, UP,; can be extended to at most three good 3-paths
whose first edge is in F. (For example, auv € P, can be extended to bauv, cauv and dauv.)
On the other hand, every good 3-path whose first edge is in F must contain a 2-path of
P, UP,UP.UP,;UPs as a subpath. So the number of good 3-paths whose first edge is in OF
is at most 3|P, UP, UP.UPgUPs| = 3(|Ps| + |Pa| + |Ps| + |Pc| + [Pa|) which is at most
6n + Csy/n by (3.11)), for C5 = 92160 and large enough n, proving the desired claim. ]
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3.2.3 Combining bounds on the number of 3-paths

Recall that oy |G|, a2 |G|, (1 — a1 — az) |G| are the number of edges of G that are contained
in triangles, 2-paths and Kj’s of the edge-decomposition D of G, respectively. Then the
number of triangles, 2-paths and K4’s in D is oy |G| /3, a2 |G| /2 and (1 — oy — o) |G| /6
respectively. Therefore, using Claim [3.19] Claim and Claim [3.21] the total number of
(ordered) good 3-paths in G is at most

— —CY2)

5 G| (6n + C5v/n) <

1
% |G| (8n + C1v/n) + % |G| (4n + Cav/n) + (

8
s|G|n(fjf+2a2+<1—a1—a2>)+<01+02+03M|G|=

3/2
) +(Cy + Cy + O5) —2C,

- n2EG (50&1 + 3a + 3
B 2

2 3
Combining this with the fact that the number of good 3-paths is at least na?é — Con®?d
(see Claim [3.18)), we get
n3/2d,

>+(Cl+(]2+(]3) 5

nQEG (50&1 + 3ag + 3

73 J—
d., — Con®?d, <
e — Mo de = Ty 3

Rearranging and dividing by ndg on both sides, we get

aég (50&1+2(12+3>n+(01+022+03)\/E+OO\/E

Using the fact that (5ay + 3ag +3)/6 > 1/2, it follows that

EQGS <5061+3062+3)n<1+(Cl—i—CQ—\;ﬁCg)—i‘QC())

So letting Cy = (Cy + Cy + C3) + 2C, we have,

— C4 50&1 + 30[2 +3 C4 \/50&1 + 3@2 + 3
do <414+ —4/ — 1 3.12
e R (R R e VAR
for large enough n. By Claim [3.9, we have
o 9 2(1 — oy — ) 4 — 204 —aynda
H < — — = .
H| < S o)+ 2oy TN T g 272 maand

Combining this with (3.12)) we get

04 ) (4 — 201 — O./Q) \/5()(1 + 3as + 3n3/2
2/n 12 6 ’

|H| < <1+
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for sufficiently large n. So we have

(4 — 20[1 — 042) \/50&1 + 3&2 + 371,3/2
12 6 ‘

The right hand side is maximized when a; = 0 and ay = 2/3, so we have

exz(n, Cs) < (14 0o(1))

4-2/3
12

exz(n,Cs) < (1+o(1)) \/an < (1+0(1))0.2536n°/2.

This finishes the proof.

3.3 (5-free linear hypergraphs: Proof of the upper bound
in Theorem 3.3

Let H be a 3-uniform linear hypergraph on n vertices containing no C5. Let d and d,,q,
denote the average degree and maximum degree of a vertex in H, respectively. We will show
that we may assume H has minimum degree at least d/3. Indeed, if there is a vertex whose
degree less than one-third of the average degree in the hypergraph, we delete it and all the
hyperedges incident to it. Notice that this will not decrease the average degree. We repeat
this procedure as long as we can and eventually we obtain a (non-empty) hypergraph H’
with n' < n vertices and average degree d’ > d and minimum degree at least d/3. It is easy
to see that if d' < \/n’/3+ C then d < /n/3 + C (for a constant C' > 0) proving Theorem
. So from now on we will assume H has minimum degree at least d/3. Our goal is to
upper bound d.

The following claim shows that for any vertex v, the number of hyperedges h € E(H
with ‘h NN (v)’ > 2 is small provided d(v) is small. This is useful for proving Claim [3.23]
Using this and the fact that the minimum degree is at least d/3, we will show in Claim [3.25|
that we may assume the maximum degree in H is small.

Claim 3.22. Letv € V(H). Then the number of hyperedges h € E(H) with ’h N NlH(v)‘ > 2
is at most 6d(v).

Proof of Claim [3:22. We construct an auxiliary graph G; whose vertex set is N{’(v) in the
following way: From each hyperedge h € E(H) with ‘h N NlH(v)' > 2 and v € h, we select

exactly one pair zy C h N N{(v) arbitrarily. We claim that there is no 7-vertex path in G|.
Suppose for the sake of a contradiction that there is a path vyvov3v4v5v6v7 in G1. Then, one of
the two hyperedges v1v4v, v4v70 is not in E(H) as the hypergraph is linear. Suppose without
loss of generality that viv4v € E(H), so there are two different hyperedges h, h’ such that
vi,v € h and vy, v € h'. These two hyperedges together with the 3 hyperedges containing
V19, UoU3, 34 create a five cycle in H (note that they are different by our construction), a
contradiction. So there is no path on seven vertices in G; and so by Erdés-Gallai theorem,

G contains at most 52 [V(G1)| < 2.5(2d(v)) = 5d(v) edges, which implies that the number

of hyperedges h € E(H) with ’h N NlH(v)‘ > 2 is at most 5d(v) + d(v) = 6d(v). O
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Using the previous claim we will show the following claim.

Claim 3.23. Let v € V(H). Then,

NG ()| > > d(x) - 18d(v).

zeNH (v)

Proof of Claim [3.23. First let us count the number of hyperedges h € FE(H) such that
’hﬂNlH('u)‘ =1 and ‘hﬂNQH(v)' = 2. Let Gy = (N (v), E(G5)) be an auxiliary graph
whose edge set F(Gs) = {zy | 3h € E(H),’hﬂNlH(v)’ =1, hﬂNf(v)‘ = 2and z,y €
h N Ni(v)}. Let hy,ho, ..., hyy) be the hyperedges containing v. Now we color an edge

xy € E(Gs) with the color i if x,y € h and h N h; # (. Since the hypergraph is linear this
gives a coloring of all the edges of Gs.

Claim 3.24. If there are three edges ab,bc,cd € E(Gy) (where a might be the same as d),
then the color of ab is the same as the color of cd.

Proof of Claim [3.24] Suppose that they have different colors ¢ and j respectively. Then,
the hyperedges in H containing ab, bc, cd, together with h; and h; form a five cycle, a
contradiction. O

We claim that G5 is triangle-free. Suppose for the sake of a contradiction that there is a
triangle, say abc, in G5. Then by Claim [3.24]it is easy to see that all the edges of this triangle
must have the same color, say color 7. Therefore, at least two of the three hyperedges of H
containing ab, bc, ca must contain the same vertex of h;. This is impossible since H is linear.

We claim that if vjvovs ... v, is a cycle of length & > 4 in G5, then every vertex in it
has degree exactly 2. Suppose without loss of generality that vsw € E(G2) where w # vs,
w # vy. Since Gy is triangle free, w # v, and w # vs (note that if & = 4, then vs = v;). By
Claim [3.24] the color of vjv, is the same as the colors of v3vy and vsw. Also, the color of
U405 is the same as the colors of v3w and vevs. This implies that the edges vous, V3w, v3vy
must have the same color, which is a contradiction since the hypergraph is linear. Thus, G4
is a disjoint union of cycles and trees. So |E(Gs)| < |V (Gq)| = NZH(’U)‘

Since Y ,eni(v) d() is at most the number of edges in G plus three times the number

of hyperedges h € E(H) with ’h N NIH(U)‘ > 2, applying Claim [3.22{ we have

> d(@) < [N (0)] + 3(6d(v)),

zeNH (v)
completing the proof of the claim. n

Using the above claim we will show Theorem holds if d,,4, > 6d. We do not optimize
the constant multiplying d here.

Claim 3.25. We may assume dyq. < 6d for large enough n (i.e., whenever n > 34992).
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Proof. Suppose that v € V(H) and d(v) = dyee > 6d. Recall that H has minimum degree
at least g. Then by Claim ,

N ()| > > d(x) — 18d(v ]NH )| — 18d(v) =

zeNH (v)

= §(2d(v)> —18d(v) = (2; - 18) ~d(v) > (2361 - 18) -6d > 3d°

if d > 108. That is, if d > 108, then 3d? < \NH \ < n which implies that

nd 1
— < —n?’/Q,
3 7 3V3

as required. On the other hand, if d < 108, then

|E(H)| =

nd 1
E(H)| = — < 36n < —=n?/?

for n > 34992, proving Theorem [3.3] O

In the next definition, for each hyperedge of H we identify a subhypergraph of H cor-
responding to this hyperedge. (We will later see that this subhypergraph has a negligible
fraction of the hyperedges of H.)

Definition 3.26. For abc € E(H), the subhypergraph H!, of H consists of the hyperedges
h = uwww € E(H) such that h N {a,b,c} = 0 and h satisfies at least one of the following

properties.
1. 3z € {a,b,c} such that ’h N NlH(x)‘ > 2.
2. hn (N{(a) " NI (b) N N (c)) #0.
3. {z,y,2} ={a,b,c} and u € NI (z) N N (y) and v € N (2).

Definition 3.27. Let Hg,,. be the subhypergraph of H defined by V(Hype) = V(H) and
E(Huwe) = E(H) \ E(H!,.). That is, Hu. is the hypergraph obtained after deleting all the
hyperedges of H which are in E(H.,.).

The following claim shows that the number of hyperedges in H/,_ is small.

Claim 3.28. Let abc € E(H). Then

|E( abc)| < 25dmaw
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Proof. By Claim|3.22] the number of hyperedges h € E(H) satisfying property 1 of Definition
.20] is at most
6d(a) + 6d(b) + 6d(c) < 18d,4-

Now we estimate the number of hyperedges satisfying property 2 of Definition [3.26] .
First let us show that ‘NlH (a) N NE(b) N NF ﬂ < 1 which implies that the number of
hyperedges satisfying property 2 of Definition is at most d,,q,. Assume for the sake of a
contradiction that {u,v} € N (a) NN (b)N NE (c). Then by linearity of H, it is impossible
that wva, uvb, uvc € E(H). Without loss of generality, assume that uwva ¢ E(H). Then it is
easy to see that the pairs ua, av, vc, cb, bu are contained in distinct hyperedges by linearity
of H, creating a C5 in H, a contradiction.

Now we estimate the number of hyperedges satisfying property 3 of Definition [3.26] Fix
x,y, z such that {z,y, 2} = {a, b, c}. We will show that for each v € N (z), there is at most
one hyperedge containing v and a vertex from N{(z) N N{(y). Assume for the sake of a
contradiction that there are two different hyperedges ujvw;, usvws € E(H ) such that uy, us €
NHE(z) n N (y) and v € N (z). Now it is easy to see that the pairs uix, Ty, yus, usv, vty
are contained in five distinct hyperedges since H is linear and u;vw;, usvws are disjoint from
abe, so there is a C5 in H, a contradiction. So for each choice of z € {a,b, ¢} the number of
hyperedges satisfying property 3 of Definition |3.26|is at most ‘NlH (z)‘ So the total number
of hyperedges satisfying property 3 of Definition [3.26|is at most

N (@)| + [N (1) + [N (0)| < 2(d(a) + d(b) + d(c)) < 6dmas-
Adding up these estimates, we get the desired bound in our claim. O

A 3-link in H is a set of 3 hyperedges hy, ho, hy € E(H) such that hy Nhy # 0, hoNhs # ()
and hy N hy = (. The hyperedges h; and hsz are called terminal hyperedges of this 3-link.
(Notice that a given 3-link defines four different Berge paths because each end vertex can be
chosen in two ways. Also note that a 3-link is simply the set of hyperedges of a linear path
of length three.)

Given a hypergraph H and abc € E(H), let pap.(H) denote the number of 3-links in H
in which abc is a terminal hyperedge and let p(H) denote the total number of 3-links in H.
Notice ]

p(H) =5 Z pabc<H>'
abceE(H)

In Section , we prove an upper bound on p(H) and in Section , we prove a lower
bound on p(H) and combine it with the upper bound to obtain the desired bound on d.

3.3.1 Upper bounding p(H)

For any given abc € E(H), the following claim upper bounds the number of 3-links in H in
which abe is a terminal hyperedge by a little bit more than 2 |V (H)].
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Claim 3.29. Let abc € E(H). Then,
Pave(H) < 2|V (H)| + 273d 4z

Proof of Claim |3.29. First we show that most of the 3-links of H are in H ..

Claim 3.30. We have,
pabc(H) S pabc(Habc) + 225dmax

Proof. Consider h € E(H) \ E(Hu.) = E(H,,.). Note that h N {a,b,c¢} = (. The number
of 3-links containing both abc and h is at most 9 since the number of hyperedges in H that
intersect both h and abc is at most 9 as H is linear. Therefore the total number of 3-links in
H containing abc and a hyperedge of E(H) \ E(Hup.) is at most 9 |E(H.,.)| < 9(25dmaz) =
225d,mq, by Claim which implies that pape(H) < Pave(Hape) + 225dmaz, as required. [

For x € {a,b,c}, let H, be a subhypergraph of H,,. whose edge set is E(H,) = Ef U Ej
where Ef = {h € E(Hue) | © € hand h # abc} and Ef = {h € E(Hy.) | 3V € E{,x ¢
h and hNA # 0} and its vertex set is V(H,) = {v € V(Huw.) | 3h € E(H,) and v € h}. Note
that |E?| = df=(z) = df(x) — 1 and every hyperedge in E¥ contains exactly two vertices
of N{=(2) and every hyperedge in E% contains one vertex of N/'*(x) and two vertices of
Ny (x) because hyperedges containing more than one vertex of N;*(z) do not belong to
Hpe (since they are in H.,. by property 1 of Definition and thus, do not belong to H,.

We will show that the number of ordered pairs (z, h) such that z € {a,b,c} and h € E}
is equal to pape(Hape) by showing a bijection between the set of ordered pairs (z, h) such that
x € {a,b,c} and h € E5 and the set of 3-links in H,,. where abc is a terminal hyperedge.
To each 3-link abc, h', h in Hg,. where abc N h = () and b’ Nabe = {x}, let us associate the
ordered pair (x,h). Clearly x € {a,b,c} and h € E5. Now consider an ordered pair (z, h)
where z € {a,b,c} and h € E%. Then h contains exactly one vertex u € N{*(z), so there is
a unique hyperedge h' € E(H) containing the pair uzx. Therefore, there is a unique 3-link in
Hpe associated to (x, h), namely abe, I, h, establishing the required bijection. So,

Pave(Have) = |{(2, h) | x € {a,b,c},h € E5}| = Y |E5]. (3.13)
z€{a,b,c}
Now our aim is to upper bound pap(Hape) in terms of 3 gcqap.e} Nf= ()],

upper bounded in Claim |3.31}
Substituting v = x and H = H, in Claim [3.23] we get, ’NQ = ’ > Y yente (g d He (y) —

18dH=(x) for each = € {a, b, c}. Now since yene (2) d(y) = 2 |E}|+|E3|, we have | Ny ™ ( )'
2|EY| + |E5| — 184"+ (x). So by (3.13),
S INgE@)| = Y QIEf+IES|-18d" () = Y (2|Bf[—18d" (2))+Pase( Have)-

z€{a,b,c} z€{a,b,c} z€{a,b,c}

Since |Ef| = df=(z) = d*(x) — 1, we have 2 |E¥| — 18dH=(x) = —16(d" (z) — 1). So,
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’Nfﬁ(l‘)‘ Z —16 Z (dH( ) )+pabc(Habc) Z _48(dmaz_1>+pabc(Habc)‘ (314)

z€{a,b,c} z€{a,b,c}

Now we want to upper bound Y ,cqape) |Na* ($)) by 2|V (H)].

Claim 3.31. Each vertezv € V(H) belongs to at most two of the sets N3 (a), Ny (b), N&(c).
So
S N ()| < 2 (v
ze{a,b,c}

Proof. Suppose for the sake of a contradiction that there exists a vertex v € V(H) which is
in all three sets N2'(a), Ny (b), NF“(¢). Then for each z € {a,b, ¢}, there exists h, € E¥
such that v € h,.

First let us assume h, = hy = h, = h and let h, "N (z) = {v, } for each = € {a,b, c}. If
v, = vp = v then hN (N (a) NN (b) N N{(c)) # 0, so by property 2 of Definition [3.26] 1 €
E(H],.)so h & E(Hu.) 2 E3, a contradiction. If v, = v, # v, for some {z,y, 2} = {a,b, c}
then by property 3 of Definition m h & E(Hue) 2 E3, a contradiction again. Therefore,
Va, Uy, Ve are distinct. Moreover, for each x € {a,b,c}, v, € Ny*(z) and v € Ny (z).
However, since N (z) and NQHE(:B) are disjoint for each = € {a,b,c} by definition (see the
Notation section for the precise definition of first and second neighborhoods), v is different
from v,, v, and v.. So v, v,, vy, V. € h, a contradiction since h is a hyperedge of size 3.

So there exist x,y € {a, b, c} such that h, # h,. Also, there exist h), € EY, h; € E{ such
that h, VA, # 0 and h, N h;, # (). Now it is easy to see that the hyperedges hx, hy, h.,, h,,, abc

form a Cj, a contradiction, proving the claim. O

Nit= (m)) < 2|V(H)|. Combining this with (3.14), we get

So by Claim [3.31}, Y e fab,c}

pabc(Habc) - 48(dmax - 1) < Z ‘NHx ‘ < 2 |V( )| (315)
z€{a,b,c}

Therefore, by Claim and the above inequality, we have
pabc(H) S pabc(Habc) + 225dma:{: S 2 |V(H)| + 48(dmax - 1) + 225dmax S 2 |V(H)| + 273dmaza
completing the proof of Claim [3.29| O
So by Claim |3.29 we have

CVH)| + 273dmas) [E(H)] (3.16)

I\DM—‘

p(H) =3 Z pabc(H)

abceE(H)

By Claim we can assume d,,,, < 6d. Using this in the above inequality we obtain,

2|V (H)| + 1638d) |E(H)| = (n + 819d) T;d (3.17)

L\D\}—t

p(H) <
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3.3.2 Lower bounding p(H)

We introduce some definitions that are needed in the rest of our proof where we establish a
lower bound on p(H) and combine it with the upper bound in (3.17)).

A walk of length k in a graph is a sequence vgegvi€y ... vp_1€x_1v; of vertices and edges
such that e; = vv;.1 for 0 < ¢ < k. For convenience we simply denote such a walk by
Vo1 - . . Vp_1Uk. A walk is called unordered if vgv; . .. vp_1v, and vRUL_1 . . . V1V are considered
as the same walk. From now on, unless otherwise stated, we only consider unordered walks.
A path is a walk with no repeated vertices or edges. Blakley and Roy [7] proved a matrix
version of Holder’s inequality, which implies that any graph G with average degree d“ has at
least as many walks of a given length as a d“-regular graph on the same number of vertices.

We will now prove a lower bound on p(H). Consider the shadow graph 0H of H. The
number of edges in OH is equal to 3|E(H)| = 3% = nd. Then the average degree of a
vertex in OH is d°" = 2d, and the maximum degree A% in 0H is at most 2d,,q, < 12d by
Claim Applying the Blakley-Roy inequality [7] to the graph OH, we obtain that there

are at least $n(d?")? (unordered) walks of length 3 in H. Then there are at least

5n(dﬁH)S o 3n<A6H)2

paths of length 3 in OH as there are at most 3n(A%7)? walks that are not paths. Indeed, if
V1903, is a walk that is not a path, then there exists a repeated vertex v in the walk such
that either v; = v3 = v or v = v4 = v or v; = v4 = v. Since v can be chosen in n ways and
the other two vertices of the walk are adjacent to v, we can choose them in at most (A%H)2
different ways.

A path in OH is called a rainbow path if the edges of the path are contained in distinct
hyperedges of H. If a path abed is not rainbow then there are two (consecutive) edges in it
that are contained in the same hyperedge of H. So there are two hyperedges h,h' € E(H),
h N K # () such the path abed is contained in the 2-shadow of h,h'. Now we estimate the
number of non-rainbow paths.

We can choose these pairs h,h' € E(H) in Y ,evm (dHQ(”)) ways and for a fixed pair
h,h' € E(H), it is easy to see that the path abed can chosen in 8 different ways in the
2-shadow of h,h'. Therefore, the number of non-rainbow paths in 0H is at most

dH(U) 2 2 2
> 8 < An(dpmaz)” < 4n(6d)° = 144nd-.
veV(H) 2

So the number of rainbow paths in 0H is at least

1
§n(d@H)?’ — 3n(A%")? — 144nd® = 5n(2d)3 — 3n(12d)* — 144nd? = 4nd® — 576nd>.
Since each 3-link in H produces 4 rainbow paths in 0H, the number of rainbow paths in
OH is 4p(H). So, 4p(H) > 4nd® — 576nd>. That is,

p(H) > nd® — 144nd>.
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Combining this with (3.17)), we get
d
nd® — 144nd* < p(H) < (n + 819d)%.

Simplifying, we get d? — 144d < (n + 819d)/3. That is,
J< /2_{_ 1738894_&
— V3 4 2

nd n n 173889 417 1
|E(H)|:3_3'< + >:n3/2+0(n),

3v3
completing the proof of Theorem [3.3]

So,

3 4 * 2

3.4 ()-free linear hypergraphs: Proof of Theorem (3.4

Let H be a 3-uniform linear hypergraph on n vertices containing no (Berge) Cy. Let d denote
the average degree of a vertex in H.

Outline of the proof: Our plan is to first upper bound D eeNH (v) 2d(x) for each fixed
v € V(H), which as the following claim shows, is not much more than n. Then we estimate
Svev (i) YzeNH (v) 2d(z) in two different ways to get the desired bound on d.

Claim 3.32. For every v € V(H), we have
> 2d(z) < n+ 12d(v).

zeNH (v)

Proof. First we show that most of the hyperedges incident to z € N (v) contain only one
vertex from N{(v).

Claim 3.33. For any given © € N (v), the number of hyperedges h € E(H) containing x
such that ‘h N NlH(v)‘ > 2 is at most 3.

Proof. Suppose for a contradiction that there is a vertex x € N (v) which is contained in 4
hyperedges h such that ‘h N NE (v)’ > 2. One of them is the hyperedge containing x and v.
Let hq, hs, hs be the other 3 hyperedges. Then it is easy to see that two of these hyperedges
intersect two different hyperedges incident to v, and these four hyperedges form a C, in H,
a contradiction. O

For each # € N (v), let E, = {h € E(H) | hn Nf(v) = {x}}. Note that any
hyperedge of E, does not contain v, so it contains exactly two vertices from NJ(v). Let
S, ={w e NF(v)|3h € E, with w € h}. Then |S,| = 2|E,| since H is linear. Notice that
|E.| > d(x) — 3 by Claim [3.33] so

|S;| > 2d(z) — 6. (3.18)

The following claim shows that the sets {S, | z € N{/(v)} do not overlap too much.

20
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Claim 3.34. Let x,y € N (v) be distinct vertices. If zyv & E(H) then S, NS, =0 and if
xyv € E(H) then |S, NS, <2.

Proof. Take x,y € N (v) with = # y. Let h,, h, € E(H) be hyperedges incident to v such
that © € h, and y € h,. First suppose h, # h,. Then it is easy to see that S, NS, = 0
because otherwise hg, h, and the two hyperedges containing xw,yw for some w € S, NS,
form a Cj, a contradiction.

Now suppose h, = h,. We claim that |S, N.S,| < 2. Suppose for the sake of a contradic-
tion that there are 3 distinct vertices vy, vo,v3 € S; N S,. Then it is easy to see that there
exist 4,5 € {1,2,3} such that neither v;v;x nor v;v;y is a hyperedge in H. So there are two
different hyperedges hi, hy € E, such that zv; € hy and zv; € hy. Similarly there are two
different hyperedges h',h, € E, such that yv; € h} and yv; € h}. As E, N E, = 0, the
hyperedges hy, ha, b, b}, are distinct and form a Cj, a contradiction. m

We will upper bound Y ey (y) [S:]. It follows from Claim W that each vertex w €

NI (v) belongs to at most two of the sets in {S, | x € N (v)}. Moreover, w belongs to two
sets S,, S, € {S: | * € NH(v)} only if there exists a unique pair p,q € N{(v) such that
pqu € E(H) and for any such pair p,q with pqv € E(H), there are at most 2 vertices w
with w € S, S,. So there are at most 2d(v) vertices in N3’(v) that are counted twice in the
summation >,ey# (y) |S:[. That is,

N @)= X 18] 2d(w). (3.19)

zeNH (v)
As NH(v) and N (v) are disjoint, we have n > ‘NQH(U)‘ + ‘NlH(U)‘ So by (3.19)),
n> 3 1S —2dw) + NI ()| = Y |8 —2d(v) +2dw) = Y [S.]. (3.20)
zeNH (v) zeNH (v) zeNH (v)

Combining this with (3.18]), we get

n> 3 —6)= Y 2d@)—6|N(v)|= Y 2d@)—-12d(v), (321)

xGNH('U) zeNH (v) zeNH (v)
completing the proof of Claim [3.32] O]

We now estimate 3 vev () Yoent (v) 2d(x) in two different ways. On the one hand, by
Claim [3.32]

YooY 2d(z) < Y. (n+12d(v)) = n® + 12nd. (3.22)

veV (H) zeNH (v) veV(H)

On the other hand,

o> 2 Z 2d(v) - 2d(v) = > 4d(v)* > 4dnd’. (3.23)

veEV(H) zeNH (v) veV(H veV (H)
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The last inequality follows from the Cauchy-Schwarz inequality. Finally, combining ((3.22)
and - we get 4nd®> < n? + 12nd. Dividing by n, we have 4d®> < n + 12d, so d <
2(v/n+ 9+ 3). Therefore,

BH) =" <

n
e 94 —
3 n -+ +2,

@\H

proving Theorem [3.4]

3.5 Proof of Theorem [3.5: Construction

We prove Theorem by constructing a linear hypergraph H below, and then we show that
it is i ,-free. Finally, we count the number of hyperedges in it.

Construction of H: Let G = (V(G), E(G)) be a Co,_o-free bipartite graph (i.e., girth
at least 2k) on z vertices. Let the two color classes of G be L = {ly,ls,...1,,} and R =
{ri,ma, ..., 1., } where z = z; + 2s.

Now we construct a hypergraph H = (V(H), E(H)) based on G. Let ¢ be an integer.
For each 1 <t < ¢, let L, = {I{,l5,... I} } and R, = {r{,r5,...,7,}. Let B = {v;; |
1 <i<2z,1<j<zandlr; € E(G)}. (Note that |B| = |E(G)| as We only create a

vertex in B if the corresponding edge exists in G.) Now let V(H) = U L; U U R, UB

and E(H) = {v lir} | vi; € Band l;r; € E(G)and 1 <t < g}, Clearly H is a linear
hypergraph.

Proof that H is CJ ,-free: Suppose for the sake of a contradiction that H contains
Chn .1, alinear cycle of length 2k" + 1 for some k' < k.

Since the basic cycle of Cy5_; is of odd length it must contain at least one vertex in B.
(Note that here we used that the length of the linear cycle is odd.)

First let us assume that the basic cycle of C35,, contains exactly one vertex z € B.
Then U LU U R; U z contains all the basic vertices of Cy_ ;. For X C V(H), let H[X]
denote the subhypergraph in H induced by X. Notice that x is a cut vertex in the 2-shadow
of H [ U LU U R; U z]. Therefore, there exists a ¢ such that the basic vertices of C3 .,

belong to Ly U Rt Ux. Let zu and zv be the two edges incident to x in the basic cycle of
C35 1. However, by construction the hyperedge containing zu is the same as the hyperedge
containing zv, which is impossible since C3). | is a linear cycle. Therefore, there are at least

two basic vertices of C§_, in B.
Let ¢1,c2,...,¢s be the basic vertices of C35,; in B and let us suppose that they are

ordered such that the subpaths P, ;1 of the basic cycle of Cgi,?, 41 from ¢; to ¢4, are pairwise
edge-disjoint for 1 < i < s (addition in the subscript is taken modulo s from now on).
Note that s > 2 by the previous paragraph and s < k' because for each ¢, the subpath
P ;11 contains at least two edges. It is easy to see that for each 1 < ¢ < s, there exists
a t such that V(P;11) € Lt U Ry U {ci, iy} Let P, be a path in G with the edge set
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{lars | i1 € E(Pii41) for some t} for 1 < i < s. Clearly, ‘E(PZ’ZH)’ = |E(P,;+1)] —2 > 0.
For each ¢;, there exists 1 < o; < 21, 1 < 3; < 25 such that ¢; = v,, 5. Let e; = l,,75, for
each 1 <i <'s, and let ef = I/ rj for each 1 <t < ¢. Notice that P/,,, is a path in G
and e; € E(G). Moreover, F;;,, is a path between a vertex of ¢; and a vertex of e;; and if
E(F)i/,iJrl) = @, then e; N €itr1 7é @

Claim 3.35. The paths P/, (for 1 < i < s) cannot contain any of the edges e; (for
1 <j <s). Moreover, for any 1 <i # j < s, the paths P;,,, and P}, ., are edge-disjoint.

Proof. Assume for the sake of contradiction a path P/, (for some 1 <14 < s) contains an
edge ¢; (for some 1 < j < s). This implies there exists ¢t with 1 < t < ¢, such that 6;
is contained in P, 1, so €/ is contained the basic cycle of Cyy,,. Then the (only) hyper-
edge containing e}, namely I, 75 va, 5, = Iy, 7j,¢; is a hyperedge of the linear cycle Con .
However, by definition of a linear cycle, the basic cycle must use exactly two vertices of any
hyperedge of its linear cycle, a contradiction. Therefore the paths P;;,;, 1 <i < s, cannot
contain any of the edges e; (for 1 < j <'s).

Now we will show that for any 1 <i #j <s, P/, and P}, are edge-disjoint. Suppose
for a contradiction that lors € E(P]; 1) N E(Pj ;) for some 1 < a <z and 1 < 8 < 2.
Then there exist ¢t # t' such that lf)rg and lgrg are two disjoint edges of the basic cycle
of C3% ... However, lirgvaﬁ,lfirg’va,g € E(H), which is impossible since the hyperedges
containing disjoint edges of the basic cycle of a linear cycle must also be disjoint, by the
definition of a linear cycle. O]

Recall that by definition, the first vertex of P; ;i1 is ¢;. So the first edge of P, ;1 is
contained in a hyperedge of the form 62’ Uc; for some ¢ (indeed all the hyperedges containing
¢; are of this form). This means the second vertex of P;;y; is contained in e}, so the first
vertex of P ., is contained in e;. Similarly, the last vertex of P/ , ; is also contained in e;.
Therefore, the last vertex of P/_; ; and the first vertex of P, ; are both contained in e;. If
these vertices are different, then we call e; a connecting edge. So using Claim [3.35] the edges
of U;E(P,,,) together with the connecting edges form a circuit C in G (i.e., a cycle where
vertices may repeat but edges do not repeat).

Now we claim that C is non-empty and contains at most 2k —1 edges. Indeed, the number

of edges of C is at least 7, ‘E(Pl’l H)‘. Moreover, as the number of connecting edges is at
most s, the number of edges in C is at most 77, ‘E(P{Hl)‘ + s. Since Y5, ’E(PZ’ZH)‘ =
S | E(Pis1)| —2s =2k +1—2s, and 2 < s < K/, it is easily seen that C is non-empty
and contains at most 2k’ +1 — s < 2k' — 1 < 2k — 1 edges, as claimed. (Let us remark that
here the fact that the length of the linear cycle Chy | is odd played a crucial role in ensuring
that the circuit C is non-empty —indeed, if the length is even, it is possible that F(F/,,,) is
empty for each i.)
Since every non-empty circuit contains a cycle, we obtain a cycle of length at most 2k —1
in (G, a contradiction, as desired.

Bounding ex}"(n,Cii, ;) from below: We assumed expip(2, Cop—2) > (14 0(1))c(2/2)*
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for some ¢, > 0. So there is a Coi_s-free bipartite graph G on z vertices with

z (0%
B(G)| = (1+0(1))c<§> . (3.24)
Let H be the Cin ' -free hypergraph constructed based on G (as described in the Con-
struction above). Then the number of hyperedges in H is |E(G)| - ¢. So we have
in in n- |E(G)|
(0, Clp) 2 1BUD] = 1B@)] -0 > @) |2 @)

Q=

né, we obtain that

Substituting (3.24)) in (3.25)) and choosing z = (1 + o(1)) ( 2;2(2:11)))

|=

. o ac a—1 e,
0. Cit) = L+ o)) 5 (o) T,

completing the proof of Theorem [3.5]
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Chapter 4

Triangles in Cs-free graphs and
Hypergraphs of Girth Six

4.1 Introduction

Motivated by a conjecture of Erdgs [16] on the maximum possible number of pentagons in a
triangle-free graph, Bollobas and Gydri [§] initiated the study of the natural converse of this
problem. Let ex(n, K3, C5) denote the maximum possible number of triangles in a graph on
n vertices without containing a cycle of length five as a subgraph. Bollobas and Gydri [§]
showed that

(1+ 0(1))3\1/3713/2 <ex(n,K; Cs) < (1+ 0(1))2713/2. (4.1)

Their lower bound comes from the following example: Take a Cy-free bipartite graph G

on n/3 + n/3 vertices with about (n/3)3/? edges and double each vertex in one of the color

classes and add an edge joining the old and the new copy to produce a graph GG. Then, it is
easy to check that G contains no Cs and it has (n/3)%? triangles.

Recently, Fiiredi and Ozkahya [38] gave a simpler proof showing a slighly weaker upper

bound of v/3n3/2 4 O(n). Alon and Shikhelman [4] improved these results by showing that

ex(n, K3, Cs) < (1 + 0(1))\25713/2. (4.2)

E., Gy6ri, Methuku and Salia [33] recently showed that

Theorem 4.1. (E., Gydri, Methuku, Salia [33])
1
VK5, C5) < (14 0(1)—=n®/2.
caln. K. Ca) < (14 (1) 3 =n

In this chapter our aim is to introduce a new approach and use it to improve two old
results and prove a new one. Our approach consists of carefully counting paths of length 5 (or
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paths of length 3) by making use of the structure of certain subgraphs. Roughly speaking,
we are able to efficiently bound the number of 5-paths if its middle edge lies in a dense
subgraph (for e.g., in a Kj). We expect this approach to have further applications.

The main result of this chapter improves the previous estimates (4.1)), (4.2) and theorem
[4.1] on the maximum possible number of triangles in a Cs-free graph, as follows.

Theorem 4.2 (E., Methuku [26]). We have,

ex(n, K3,C5) < (14 0(1)) 3/2,

1
—n
3v2

Given a hypergraph H, its 2-shadow is the graph consisting of the edges {ab | ab C e €
E(H)}. Applying our approach to the 2-shadow of a hypergraph of girth 6, we prove the
following result.

Theorem 4.3 (E., Methuku [26]). Let H be an r-uniform hypergraph of girth 6. Then
3/2

[E(H)| < (1+ 0(1))m-

Let us mention a related result of Lazebnik and Verstraéte [59] which states the following.
If H is an r-uniform hypergraph of girth 5, then

n3/2
r(r—1)
Note that Theorem shows that if a (Berge) cycle of length 5 is also forbidden, then

the above bound can be improved by a factor of y/r. It would be interesting to determine
whether there is a matching construction for the bound in Theorem [4.3] at least when r = 3.

In Section 4.3.2] we show a close connection between Theorem and Theorem [4.3]
and prove that the estimate in Theorem can be slightly improved using Theorem [4.3]
However, to illustrate the main ideas of the proof of Theorem [4.2] we decided to state
Theorem [4.2]in a slightly weaker form.

[E(H)] < (1+0(1))

Loh, Tait, Timmons and Zhou [61] introduced the problem of simultaneously forbidding
an induced copy of a graph and a (not necessarily induced) copy of another graph. A graph
is called induced- F-free if it does not contain an induced copy of F'. They asked the following
question: What is the largest size of an induced-C)-free and Cs-free graph on n vertices?
They noted that the example showing the lower bound in (4.1]) is in fact induced-Cy-free and
Cs-free, thus it gives a lower bound of (1 4 0(1))%713/ 2. (If the “induced-Cy-free" condition
is replaced by “Cjy-free" condition, then Erdds and Simonovits [19] showed that the answer
is (1+ 0(1))ﬁn3/ 2) In [31I], Gy6ri and the current authors determined (asymptotically)
the maximum size of an induced- K ;-free and Cy11-free graph on n vertices in all the cases
except in the case when s =t = 2 and k = 2 (i.e., the question stated above), and in this
case an upper bound of only n?/?2 /2 was proven [31]. Here we show that using our approach
one can slightly improve this upper bound.
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Theorem 4.4 (E., Methuku [26]). If a graph G is Cs-free and induced-Cy-free, then

3/2
2V2

Structure of the chapter: In Section [4.2] we prove Theorem [£.2] In Section [4.3] we
prove Theorem and show how it can be used to slightly improve Theorem [4.2] Finally
in Section [4.4] we prove Theorem [4.4]

Notation: Given a graph G and a vertex v of G, let N;(v) and Ny(v) denote the first
neighborhood and the second neighborhood of v respectively.

For a vertex v of G, let d(v) be the degree of v. The average degree of a graph G is
denoted by d(G), or simply d if it is clear from the context. The maximum degree of a graph
G is denoted by dpar(G) or simply dpaz-

A walk or path usually referes to an unordered one, unless specified otherwise. That is,
a walk or path vivvy... v, is considered equivalent to vpvg_1vs. .. v1.

[E(G)] < (1 +0(1))

4.2 Number of triangles in a Cs-free graph: Proof of The-
orem and

Let G be a Cs-free graph with maximum possible number of triangles. We may assume
that each edge of G is contained in a triangle, because otherwise, we can delete it without
changing the number of triangles. Two triangles T',T" are said to be in the same block if
they either share an edge or if there is a sequence of triangles T, 71,15, ..., T,, T' where each
triangle of this sequence shares an edge with the previous one (except the first one of course).
It is easy to see that all the triangles in GG are partitioned uniquely into blocks. Notice that
any two blocks of GG are edge-disjoint. Below we will characterize the blocks of G.

A block of the form {abcy,abes, ..., abey} where k > 1, is called a crown-block (i.e.,
a collection of triangles containing the same edge) and a block consisting of all triangles
contained in the complete graph Ky is called a K4-block. See Figure [4.1]

Figure 4.1: An example of a crown-block and a K,-block

The following claim was proved in [33]. We repeat its proof for completeness.

Claim 4.1. FEvery block of G is either a crown-block or a K4-block.
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Proof. If a block contains only one or two triangles, then it is easy to see that it is a crown-
block. So we may assume that a block of G' contains at least three triangles and let abcy, abcy
be some two triangles in it. We claim that if beyx or acyx is a triangle in G which is different
from abcy, then © = co. Indeed, if x # co, then the vertices a,x, ¢, b, co contain a Cs, a
contradiction. Similarly, if beaz or acsx is a triangle in G which is different from abcs, then
Tr = Cq.

Therefore, if ac; or be; (for i@ = 1,2) is contained in two triangles, then abcicy forms
a K. However, then there is no triangle in G which shares an edge with this K4 and is
not contained in it because if there is such a triangle, then it is easy to find a C5 in G, a
contradiction. So in this case, the block is a Kj-block, and we are done.

So we can assume that whenever abcy, abcy are two triangles then the edges acy, bey, acs, beo
are each contained in exactly one triangle. Therefore, any other triangle which shares an
edge with either abc; or abcy must contain ab. Let abes be such a triangle. Then applying the
same argument as before for the triangles abcy, abcs one can conclude that the edges acs, bes
are contained in exactly one triangle and so, any other triangle of G which shares an edge
with one of the triangles abcy, abcs, abcs must contain ab again. So by induction, it is easy
to see that all of the triangles in this block must contain ab. Therefore, it is a crown-block,
as needed. ]

4.2.1 Proof of Theorem [4.1]
Claim 4.2. The edges of any Cy in G are contained in only one block of G.

Proof. Let zyzw be a 4-cycle in G. Every edge of G is contained in a triangle. So in
particular, let xyu be a triangle containing the edge zy. If u & {z,y, z,w} then uzwzy is a
Cs, a contradiction. Therefore, u = z or u = w. So either xyz and yzw or ryw and ywz are
triangles of GG. In both cases, the two triangles share an edge, so they belong to the same
block. Hence, all four edges of xyzw lie in the same block. O

We are now ready to prove the theorem using the above claims. We want to select a
Cy-free subgraph Gy of G such that the number of edges in GGy is the same as the number
of triangles in G. By Claim the edge set of every Cy is completely contained in some
block of GG. So in order to make sure the selected subgraph Gy is Cy-free, it suffices to make
sure the edges selected from each block of G do not contain a Cy, which is done as follows:
From each crown-block {abcy, abes, ..., abeg}, we select the edges acy,ac,. .., acy to be in
Go. From each Ky-block abed we select the edges ab, be, ac, ad to be in Gy (since every block
is either a crown-block or a Kj4-block by Claim 4.1 we have dealt with all the blocks of
(). Finally, notice that the number of selected edges in each block is exactly the number
of triangles in that block. Moreover, since blocks are edge-disjoint, we never select the same
edge twice. Therefore, as every triangle of G is contained in some block, the total number
of triangles in G is the same as the number of edges in Gy. On the other hand, as Gj is
Cy-free and also Cs-free (as it is a subgraph of (), we can use the theorem of Erdds and
Simonovits [19], which states that the maximum possible number of edges in a graph on n
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vertices containing no Cy or Cj as a subgraph is at most ?1@(1 + 0(1))n%2. So we get that

the number of edges in Gy is at most 575(1 + o(1))n*?2, completing the proof of Theorem
zmil

4.2.2 Proof of Theorem [4.2]

Edge Decomposition of GG: We define a decomposition D of the edges of GG into paths of
length 2, triangles and K4’s, as follows: Since each edge of G belongs to a triangle, and all
the triangles of G are partitioned into blocks, it follows that the edges of G are partitioned
into blocks as well. Moreover, by Claim [4.1], edges of G can be decomposed into crown-blocks
and K4-blocks. We further partition the edges of each crown-block {abcy, abes, . . ., abey} (for
some k > 1) into the triangle abe; and paths ac;b where 2 < i < k. This gives the desired
decomposition D of E(G).

Claim 4.3. Let u,v be two non-adjacent vertices of G. Then the number of paths of length 2
between u and v is at most two. Moreover, if uxv and uyv are the paths of length 2 between
u and v, then x and y are adjacent.

Proof. First let us prove the second part of the claim. Since we assumed every edge is
contained in a triangle and u and v are not adjacent, there is a vertex w # v such that uzrw
is a triangle. If w # y, then wwzvy is a C5, a contradiction. So w = y, so x and y are
adjacent, as desired.

Now suppose that there are 3 distinct vertices x,y, z such that uxv, uyv,uzv are paths
of length 2 between v and v. Then x and y are adjacent by the discussion in the previous

paragraph. Therefore uzyvz is a Cs in GG, a contradiction, proving the claim. O
Let t(v) be the number of triangles containing a vertex v and let +(G) =t = > cv () %
Observe that number of triangles in G is nt/3. Our goal is to bound ¢ from above.
First we claim that for any vertex v of G,
t(v) < d(v) < 2t(v). (4.3)

Indeed, d(v) < 2t(v) simply follows by noting that every edge is in a triangle. Now notice
that t(v) is equal to the number of edges contained in the first neighborhood of v (denoted
by Ni(v)). Moreover, there is no path of length three in the subgraph induced by Ni(v)
because otherwise there is a C5 in G. So by Erddés-Gallai theorem, the number of edges
contained in Ny (v) is at most 25% | Ny (v)| = d(v). Therefore, t(v) < d(v).

Note that by adding up for all the vertices v € V(G) and dividing by n, we get

t<d<2t. (4.4)

Suppose there is a vertex v of G, such that ¢(v) < ¢/3. Then we may delete v and all the
edges incident to v from G to obtain a graph G’ such that ¢t(G’) > 3(nt/3 —t/3)/(n — 1) =
t(G). Then it is easy to see that if the theorem holds for G’ then it holds for G as well.
Repeating this procedure, we may assume that for every vertex v of G, t(v) > t/3. Therefore,
by (4.3), we may assume that the degree of every vertex of G is at least ¢/3.
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Claim 4.4. We may assume that dpa.(G) < 6v/3/n.
Proof. Suppose that there is a vertex v such that d(v) > 6v/3y/n. The sum of degrees of

the vertices in N;(v) is at least W = @ as we assumed that the degree of every vertex
is at least ¢/3. The number of edges inside NV;(v) is t(v), which is at most d(v) by (4.3)).

Therefore the number of edges between Nj(v) and Ny(v) is at least @ —2d(v). Now notice

that any vertex in Ny(v) is incident to at most two of these edges by Claim . Therefore,
[Ny (v)] > 42— d(v).
Thus we have,

d(v)t
6

d(v)t - 6\/3\/5757

n > [Ni(v)] + |N2(v)| > d(v) + 6 6

~ d(v) =
which implies t < \/g . Therefore, the total number of triangles in G is less than %, proving
Theorem [4.2]

By the Blakley-Roy inequality, the number of (unordered) walks of length five in G is
nd®/2. First let us show that most of these walks are paths. Let vyvivv3v4v5 be a walk that
is not a path. Then v; = v; for some 7 < j. Fix some ¢ < j. Then there are n choices for
vp, and then at most d,,q, choices for every v, with £ < j — 1, then since v; = v;, there is
only choice for v; and again at most d,q, choices for every v, with £ > j+1. So in total the
number of walks that are not paths is at most (g)n(dmm)4 as there are (g) = 15 choices for
i,j. Thus the number of (unordered) paths of length five in G is at least nd®/2 — 15n(dpaz)*
From now, we refer to a path of length five as a 5-path.

We say a 5-path vgvivevzvgvs is bad if there exists an ¢ such that v;v;,1v;49 is a triangle
of G; otherwise it called good. Our aim is to show that the number of bad 5-paths is very
small. Let vgvivouzv4vs be a bad 5-path. Then there is an ¢ so that v;v; 10,49 is a triangle.
If we fix an ¢, there are at most 2nt choices for v;v; 110,19 as each of the nt/3 triangles
can be ordered in 3!= 6 ways, and there are at most d,,,, choices for every vertex v, with
k <1 or k > i+ 2. There are four choices for i. Therefore, the total number of 5-paths
that are bad is at most 8m€(dmm)3. This means that the number of good 5-paths is at
least nd®/2 — 15n(dpaz)* — 8nt(dpmes)®. By (4.1)), the number of triangles of G is at most
(14 0(1))22 " Since the number of triangles of G is nt/3, we have t < B(1+ o(1))n'/2.

1
Now using Claim [4.4] it follows that the number of good 5-paths is at least

nd®

5
- - 15n(6v/3v/n)* — 8nlfn1/2(6\/§\/ﬁ)3 > "g —Cnd, (4.5)

where C' is some positive constant.

Now we seek to bound the number of good 5-paths from above. Recall that we defined a
decomposition D of the edges of GG into three types of subgraphs: paths of length 2, triangles
and K,’s. We distingush three cases depending on which type of subgraph the middle edge
of a good 5-path belongs to, and bound the number of good 5-paths in each of those cases
separately in the following three claims.

A path of length two (or a 2-path) zyz is called good if x and z are not adjacent.
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Claim 4.5. Let abc be a 2-path of the edge-decomposition D. Then the number of good
5-paths in G whose middle edge is either ab or be is at most n?.

Proof. A good 5-path zypgzw whose middle edge is ab or bc contains good 2-paths, xyp, gzw
as subpaths (where pq is either ab or bec). Moreover, since xypgzw is a good 5-path and the
2-path abc is contained in the triangle abc (because of the way we defined the decomposition
D), it follows that =,y & {a,b,c} and z,w & {a,b, c}.

Let n, be the number of good 2-paths in G of the form azy where z,y & {a, b, c}, and let
ny, be the number of good 2-paths in G of the form bxy where z,y & {a,b,c}. We define n,
similarly. Then the number of good 5-paths whose middle edge is either ab or be is at most

Ng + Ny —|—nc>2

mm+mm=m@ﬁw&§( 5

We claim that for any fixed vertex y & {a,b, c}, there are at most two good 2-paths of
the form pry with p € {a,b,c} and x & {a,b, c}. If this claim is true, then n, +n, +n. < 2n,
so the right-hand-side of the above inequality is at most n?, proving Claim

It remains to prove this claim. Suppose for a contradiction that there are three such
good 2-paths, say, piz1y, p222y, psxsy. Notice that if p;x; is disjoint from p;x; for some
i,j € {1,2,3}, then p;p;x;yx; forms a Cs in G, a contradiction (note that here we used that
p; and p; are adjacent even when {p;, p;} = {a, ¢} because of the way we defined D). Thus
the edges pix1, poxo, p3x3 pair-wise intersect, which implies that either p; = ps = p3 = p
or ry = Ty = x3 = x (since py, pa, p3 € {a,b,c} and z1, 29,23 & {a,b,c}). The former case
is impossible by Claim and in the latter case, note that a,b,c, x forms a K, but this
contradicts the definition of D since abc was assumed to be a 2-path component of D and
no 2-path of D comes from a Ky-block of G. O

Claim 4.6. Let abc be a triangle of the edge-decomposition D. Then the number of good
5-paths in G whose middle edge is either ab, bc, ca is at most %.

Proof. The proof is very similar to that of the proof of Claim A good 5-path zypgzw
whose middle edge is ab, bc, ca contains good 2-paths, zyp, gzw as subpaths. Moreover, since
xypqzw is a good 5-path, it follows that x,y & {a,b,c} and z,w ¢ {a,b, c}.

Let n, be the number of good 2-paths in G of the form axy where z,y ¢ {a,b,c}, and
let ny, n. be defined similarly. Then the number of good 5-paths whose middle edge is ab, bc

or ca is at most
(Ng + np + ne)?

3
By the same argument as in the proof of Claim [4.5] it is easy to see that n,+ny+n. < 2n,
so the above inequality finishes the proof. n

NNy + MpNe + NeNg <

Claim 4.7. Let abed be a K4 of the edge-decompostion D. Then the number of good 5-paths
in G whose middle edge belongs to the K4 is at most %
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Proof. Notice that any good 5-path zypgzw contains good 2-paths, zyp, gzw as subpaths.
Suppose the middle edge of xypgzw belongs to the Ky, abcd. Then since xypqzw is a good
5-path, it follows that =,y & {a,b,c,d} and z,w & {a,b,c,d}.

Let n, be the number of good 2-paths in G of the form axy where z,y ¢ {a,b,c,d},
and let ny, n., ng be defined similarly. Then the number of good 5-paths whose middle edge
belongs to the Ky, abed is at most

3
Z nin; < =(ng +np + n. +ny)>. (4.6)
27‘7€{a7b767d} 8

To see that the above inequality is true one simply needs to expand and rearrange the
inequality > jefapedr (ni — nj)* > 0.

Using a similar argument as in the proof of Claim it is easy to see that for any fixed
vertex y & {a, b, ¢, d}, there are at most two good 2-paths of the form pry with p € {a,b, ¢, d}
and x & {a,b,c,d}. This implies that n, 4+ ny, + n. + ng < 2n, so using ([4.6), the proof is
complete. O

Now we are ready to bound the number of good 5-paths in G from above. Suppose the
number of edges of G is e(G), and let aye(G) and ase(G) be the number of edges of G that
are contained in triangles and 2-paths of the edge-decomposition D of GG, respectively. Let
a; + as = a. In other words, (1 — a)e(G) edges of G belong to the Ky’s in D. Then the

number of triangles and 2-paths in D is at most e(G) and %e(G) respectively and the
number of K,’s in D is at most %e(G). Therefore, using Claim , Claim and Claim
[4.7] the total number of good 5-paths in G is at most

1-— 3n? 11—
Ee(G)? + %e(G)n2 + ( 5 a)e - n ( 1 a>e(G)n2 = <8n d.
Combining this with the fact that the number of good 5-paths is at least nd®/2 — Cn?

(by @), we get

ay 4n? 14+a) 4

d> 1
%—Cn:” < ( —ga>n3d,

which simplifies to % < %Tﬂd—l— Cn*= (1 +0(1))%n2d. Here we used that d >t =

Q(v/n) (by (4.4)). Therefore,

1+«
4

1/4
d< (1+o(1)) ( ) /A (47)
Recall that when defining D we decomposed the edges of each crown-block into a triangle
and 2-paths. This means that the number of triangles of G' that belong to crown-blocks of

G is at most O‘leg(G) + O‘QZ(G) < aeéG), and the number of triangles that belong to Kj-blocks

of G is at most 4(1%)8(@. Therefore, the total number of triangles in G is at most
ae(G)  4(1—a)e(G) 44—« (4 —a)nd
= = — 4.
> 6 L 12 (4.8)
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Now using (4.7), we obtain that the number of triangles in G is at most

(1+0(1)) (1 . “)1/4 (4 ;2“)”3/2.

3/2

Now optimizing the coefficient of n*/¢ over 0 < a < 1, one obtains that it is maximized at
132

a =0, giving the desired upper bound of (14 o(1))55n

4.3 On hypergraphs of girth 6 and further improvement

In this section we will first study r-uniform hypergraphs of girth 6, and prove Theorem [£.3]
Then we use Theorem [4.3] to further (slightly) improve the estimate in Theorem [4.2] on the
number of triangles in a Cj-free graph.

4.3.1 Girth 6 hypergraphs: Proof of Theorem 4.3

Let d be the average degree of H. Our aim is to show that d < % If a vertex has

degree less than d/r, then we may delete it and the edges incident to it without decreasing
the average degree. So we may assume that the minimum degree of H, 6(H) > d/r.

Suppose there is a vertex v of degree ¢y/n for some constant ¢. Then the first neighbor-
hood N (v) := {z € V(H)\{v} | v,z € h for some h € E(H)} has size more than cy/n(r—1)
(since H is linear), and the second neighborhood N (v) = {z € V(H) \ (NZ(v) U {v}) |
Jdh € E(H) such that x € h and h N N (v) # (0} has size more than

2
ei(r — 1) x S(H)(r — 1) > ey/(r — 1) x =1 _ evnlr = )*d.

r T

Note that here we used that H has no cycles of length at most four. On the other hand, since
2
‘NQH(U)‘ < n, we have 220=1"d < implying that d < %\/ﬁ So if ¢ > =2 we have

r —1)2¢ r—17
3/2

—, which proves that the maximum

the desired bound on d. Thus, we may assume ¢ <
degree of H, dypae < :d_/i
Let OH denote the 2-shadow graph of H. Let d°" and d?Z_ denote the average degree

and maximum degree of OH, respectively. Note that since H is linear, d° = (r — 1)d and

d2 = (r — 1)dpae < 73/%\/n.
We say a 3-path voviv9vs in OH is bad if either {vg,vi,v9} C h or {vy,vs,v3} C h for
some hyperedge h € F(H); otherwise it is good.
By the Blakley-Roy inequality the total number of (ordered) 3-walks in OH is at least

n(d®")3. We claim that at most 3n(d2H )? of these 3-walks are not 3-paths. Indeed, suppose

max
VU vov3 is a 3-walk that is not a 3-path. Then then there exists a repeated vertex v in the

walk such that either vy = v = v or v;1 = v3 = v or vy = v3 = v. Since v can be chosen in
n ways and the other two vertices of the walk are adjacent to v, we can choose them in at
most (d%H )? different ways. Therefore, the number of (ordered) 3-paths in OH is at least

max

n<d8H>3 _ Bn(daH )2 > n<d8H>3 . Bn(r3/2\/ﬁ>2 _ n(dBH)3 332,

max
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We will show that most of these 3-paths are good by bounding the number of bad 3-paths.
Suppose V10903 is a bad 3-path. Then either {vg, v1, v2} or {vy, v2, v3} is contained in some
hyperedge h € E(H). In the first case, the number of choices for vovivs is |E(H)| (5)3! as

there are (g) ways to choose the vertices vy, vy, v, from a hyperedge of H and then 3! ways to

order them. And there are at most d®Z  choices for v3. The second case is similar. Therefore,

in total, the number of bad 3-paths in OH is at most 2|E(H)|(5)3!d0H, < 2mdp3q21 = <
2nr2d,,,.d?H < 2%712. So the number of (ordered) good 3-paths in OH is at least

max

5
P @ = (1P, (1)

n(d?")® — 3r3n? — 2
r_

where ¢, = 3r3 + %
The following claim is useful for upper bounding the number of (ordered) good 3-paths
in OH.

Claim 4.8. If C' is a cycle of length at most five in OH, then its vertex set is contained in
some hyperedge of H.

Proof. Let vy, v, ..., vk, v1 be a cycle of length k in OH (for some k < 5). For each i, let h;
be the hyperedge of H containing v;, v;11 (addition in the subscripts is taken modulo k). If
these k hyperedges are not all the same, there exists j, j' such that hj, hjyq, ..., hy are all
distinct but hji11 = h;. So these hyperedges form a cycle in H of length at most k£ < 5, a
contradiction. Therefore, hy = ho = ... = hy = h; then vy, vq,..., v, € h, as desired. O

In order to upper bound the number of (ordered) good 3-paths in OH, let us first fix a
hyperedge h of H, and bound the number of good 3-paths vovivev3 such that vy, v € h.

Claim 4.9. For any vertex v & h, there are at most (r — 1) good 3-paths vovivev such that
v, V1 € h.

Proof. Suppose vovivov and vyvjvye are good 3-paths with vy, vy, v, v] € h. Then vy, vy & h

because it would contradict the definition of a good 3-path. We will prove that v; = v} and
vy = V5.

Suppose v; # v;. Then depending on whether vy, = v} or not, either v;vjvivvy forms
a five-cycle or vivjv} forms a triangle in 9H. Then by Claim 4.8 vy, v}, v € h' for some
hyperedge ' € E(H). (Note that h’ # h, since vy ¢ h.) But then h and A" are two different
hyperedges of H that share at least two vertices, namely vy, v}, contradicting the fact that
H is linear. Thus vy = v].

Now if vy # v}, then vvav1v4 is a four-cycle in OH, so it must be contained in a hyperedge
of H, but this means the 3-path vyvivev is bad, a contradiction. Thus vy = vj.

In summary, any two good 3-paths vyvivev and vjvijviv with vy, vy, v, v] € h can only
differ in their first vertex, of which there are at most r — 1 choices, proving the claim. [

Claim [4.9] implies that for any fixed hyperedge h € E(H), there are at most (r — 1)n
good 3-paths vovivevs with vy, v1 € h. Therefore, the total number of good 3-paths in H is
2
at most |E(H)|(r — 1)n = r=0d~

r
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Combining this with (4.9)), we obtain (r — 1)3d®n — ¢,n? < M. Dividing through by
d and using that d = Q(y/n), we get (r — 1)3d*n < (1 + 0(1))(7"_;)”2
and rearranging, we get
Vn

and upon simplification

d<(1+4+o0(1))

so using |E(H)| = nd/r, completes the proof.

4.3.2 Further improving the estimate on ex(n, K3, C5)

Here we slightly improve Theorem by establishing a connection to girth 6 hypergraphs
and using Theorem [4.3]

Recall that in the proof of Theorem [1.2] G denotes a Cj-free graph, and (1—a)e(G) edges
of GG belong to the K,’s in the edge-decomposition D of G. Let us note that the vertex sets
of two different K,’s of G' do not share more than one vertex, since G is Cs-free. Consider
the 4-uniform hypergraph H formed by taking the vertex sets of all the K,’s of G. Then
notice that H is linear and if H contains a (Berge) cycle of length at most 5, then G contains
a Cs. Therefore, H is of girth 6. Therefore, by Theorem , H contains at most n3/2/24
hyperedges. Thus at most n¥2/24 x (;) = n*?/4 edges of G belong to the K,’s in the

edge-decomposition D. Therefore, (1 — a)e(G) < %/2, which implies d < 2(1@0{). Combining
this with (4.7)), we get

d< (1—0—0(1))min{2(11_a), (14;@)1/4} N

so using (4.8]), we obtain that the number of triangles in G is at most

(4—a) . 1 L+a\"" 4
(1+0(1)) D m1n{2(1_a),< 4> }n/.

The above function is maximized at o = 0.343171, proving that ex(n, K3, C5) < 0.231975n%/2.

4.4 (5-free and induced-C)-free graphs: Proof of Theo-
rem [4.4]

Let G be a Cjs-free graph on n vertices having no induced copies of Cy. Let Ga be the
subgraph of GG consisting of the edges that are contained in triangles of G, and let Gg be the
subgraph of GG consisting of the remaining edges of G. Since G is Cs-free and every edge of
it is contained in a triangle, by the same argument of the proof of Theorem [4.2] the triangles
of Ga can be partitioned into crown-blocks and Kjy-blocks. So there is a decomposition D
of the edges of G into paths of length 2, triangles and K,’s. First let us note that Claim
in the proof of Theorem {.2{still holds for G' (not just for G ), as shown below.
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Claim 4.10. Let u,v be two non-adjacent vertices of G. Then the number of paths of length
2 between u and v 1s at most two. Moreover, if uxv and uyv are the paths of length 2 between
u and v, then x and y are adjacent.

Proof. The second part of the claim is trivial since G' does not contain an induced copy of
Cy. To see the first part of the claim, suppose uxv, uyv, uzv are three distinct paths of length
2 in GG. Then x and y are adjacent, so uryvz is a C5 in (G, a contradiction. [

Our goal is to bound the average degree d of G. If a vertex has degree less than d/2,
then it may be deleted without decreasing the average degree of (G, so we may assume that
G has minimum degree at least d/2. Now using this fact and Claim , one can show that
the maximum degree of G is at most 104/n by repeating the same argument as in the proof
of Claim [4.4]

We say a 5-path vgvivevzvgvs is bad if there exists an ¢ such that v;v;,1v;,9 is a triangle
of G; otherwise it called good. Similarly, a 2-path abc is good if a and ¢ are not adjacent. By
the same argument as in the proof of Theorem , the number of (unordered) good 5-paths
in GG is at least

o ond (4.10)

for some constant C' > 0. Now we bound the number of good 5-paths in G from above. Let
|E(GA)| = a|E(G)] for some a > 0, so |[E(Gg)| = (1 — ) |[E(G)].

Claim 4.11. The number of good 5-paths in G whose middle edge is contained in Gg is at
most |E(Gg)| n®.

Proof. The proof is very similar to that of the proof of Claim A good 5-path zyabzw
whose middle edge ab is in Gg contains good 2-paths, xya, bzw as subpaths.

Let n, be the number of good 2-paths in G of the form axy where z,y # b, and let n,
be the number of good 2-paths in G of the form bxy where x,y # a. Then the number of
good 5-paths whose middle edge is ab is at most n,ny < (ng +ny)?/4. By the same argument
as in the proof of Claim [£.5] it is easy to see that n, + n, < 2n, so the number of good
5-paths whose middle edge is ab € E(Gg) at most n?. Adding these estimates for all the
edges ab € E(Gg) finishes the proof of the claim. O

Let us further assume that the number of edges of Ga that belong to paths of length 2,
triangles and Ky’s in its edge-decomposition D be oy |E(G)|, aq |E(G)|, a3 |E(G)|, respec-
tively. (Of course, a; + as + a3 = «a.) Since Claim holds, one can easily check that
the proofs of Claim [4.5] Claim [4.6] and Claim [£.7] are still valid, so these claims hold in the
current setting too. These claims, together with Claim .11} imply that the number of good
5-paths in G is at most

2 2
@ |E2(G)|n2+az IE?)(G>|4Q+043|£;<G>|33+|E(GS)W < O‘|]52<G)‘n2+(1_a) |E(G)|n”.

We will now bound the right-hand-side of the above inequality by carefully selecting a
Cs-free, and Cy-free subgraph G’ of G, as follows: We select all the edges of Gg and the
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following edges from Ga: From each crown-block {abcy, abey, . . ., abey} of Ga, we select the
edges acy, acy, ..., ac; to be in G'. From each K,-block abed we select the edges ab, be, ac, ad
to be in G'.

By Claim [4.2] the edge set of every C} is completely contained in some block of G, and it
is easy to check that the selected edges in each block of Ga form a Cy-free graph. Therefore,
G’ is Cy-free. Since it is a subgraph of G, it is also Cs-free. Therefore, by a theorem of

Erdés and Simonovits [19], |[E(G")| < ﬁn?’/? On the other hand, since all the edges of

Gs and at least half the edges of G are selected, we have |E(G")| > |E(Gg)| + W =
(1 —a) |B(G)| + “EZ4 Therefore,

a|E(G)]

-0 < ST

2V/2

Therefore, by the discussion above, the number of good 5-paths in G is at most 2—\1/5713/ 2x

n? = 2\1[ n™2. Combining this with ([£.10), we get

nd®
na’ L e
p — o’ \/‘ !

SO ”gd (1 +0(1))2f 2

\/_
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Chapter 5

On a hypergraph bipartite Turan
problem

5.1 Introduction

An r-graph is an r-uniform hypergraph. Determining the asymptotic order of ex(n, F) is
generally very difficult. For an excellent survey on the study of hypergraph Turan numbers,
see [54]. In this chapter, we study a hypergraph Turédn problem that is motivated by the
study of Turdn numbers of complete bipartite graphs as well as by a question of Erdds.

Definition 5.1. Let r > 3 be an integer. Let G be a bipartite graph with an ordered biparti-
tion (X,Y). Suppose thatY = {y1,...,ym}. Let Yq,...,Y,, be disjoint sets of size r — 2 that
are disjoint from X UY . Let G(Xr’)y denote the r-graph with vertex set (X UY) U (U™, Y;)
and edge set U, {eUY; e € E(G),y; € e}.

Let s,t > 2 be positive integers. If G is the complete bipartite graph with an ordered
bipartition (X,Y) where | X|=s,|Y|=t, then let GY)y be denoted by K.

As mentioned in Chapter |1, Mubayi and Verstraéte [64] initiated the study of the general
problem of determining ex(n, th)) for any ¢t > 2. They showed that for any ¢t > 2 and n > 2t

ex(n, Kéi)) <t (Z) ,

n

and that for infinitely many n, ex(n, Kéi)) > 2t3—’1<2), where the lower bound is obtained by
replacing each hyperedge in S(n,2t+1,2) with all its 3-element subsets, where S(n,2t+1,2)
is an (n,r,t)-Steiner system.

Mubayi and Verstraéte noted that g(t) := lim,_, ex(n, Kéi)) /(%) exists and raised the
question of determining the growth rate of g(¢). It follows from their results that

2t — 1
—— < g(t) <t (5.1)
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In this chapter, we prove that as t — oo,
g(t) = 0t W), (5.2)
showing that their lower bound is close to the truth. More precisely, we prove the following.

Theorem 5.1 (E., Jiang, Methuku [27]). For any t > 2, we have

ex(n, Kéi)) < (15tlogt + 40t) n®.

Notation. Given a hypergraph (or a graph) H, throughout the Cha,tpre we also denote
the set of its edges by H. For example |H| denotes the number of edges of H. Given two
vertices x,y in a graph H, let Ny (z,y) denote the common neighborhood of x and y in H.
We drop the subscript H when the context is clear.

?t)-free hypergraphs

5.2 Proof of Theorem 5.1 Ké

We will use the a special case of a well-known result of Erdgs and Kleitman [25].

Lemma 5.2. Let H be a 3-graph on 3n vertices. Then H contains a 3-partite 3-graph, with
all parts of size n, and with at least % |H| hyperedges.

Let us define the sets A = {ay,a9,...,a,}, B ={b1,bo,...,b,} and C = {¢1,¢2,...,¢}.
Throughout the proof we define various 3-partite 3-graphs whose parts are A, B and C.

Suppose H is a KQ(?t)—free 3-partite 3-graph on 3n vertices with parts A, B and C. First
let us show that it suffices to prove the following inequality.

|H| < (30t logt + 80t)n>. (5.3)

It is easy to see that inequuity and Lemma together imply that any Kéi)—free 3-
graph on 3n vertices contains at most 2(30¢logt + 80¢)n® hyperedges, from which Theorem
would follow after replacing 3n by n.

In the remainder of the section, we will prove . Let us introduce the following notion
of sparsity.

Definition 5.3 (¢-sparse and g-dense pairs). Let q be a positive integer. Let G be a bipartite
graph with parts X, Y. Let x,y be two different vertices such that v,y € X or z,y € Y.
Then we call {x,y} a g-dense pair of G if |[N(z,y)| > q. We call {x,y} a g-sparse pair of
G if IN(z,y)| < q but x,y are still contained in a copy of Ks, in G. Note that it is possible
that {z,y} is neither q-sparse nor q-dense.

The following Procedure P(q) about making a bipartite graph K ,-free lies at the heart
of the proof. (We think of ¢ as the parameter of the Procedure P(q), that is changed
throughout the proof.)
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Procedure P(q): Making a graph K, ,-free

Input: A bipartite graph GG with parts A and B.
G+ G, ¢+ 1
F(z,y) < 0, D(x,y) + 0 and S(x,y) < 0 for every z,y € A and z,y € B.
while ¢ =1 do
U+ 0.
Step 1:

For each g-sparse pair {x,y} of G such that F(z,y) =0, let S(x,y) be the set of
vertices spanned by the g-dense pairs of G that are contained in Ng(z,y).

Let F(z,y) < {abe G |a € {z,y} and b € S(x,y)}, and let D(z,y) be a spanning
forest of the graph formed by the dense pairs of G that are contained in S(z,y).

If there exists an edge ab € G such that ab is contained in F(z,y) for at least ¢/2
different pairs {z,y}, where 2,y € A or x,y € B,

then G < G \ {ab} and ¢ + 1.
Step 2:

If there exists a set M of edges in G such that removing all of the edges of M from G
decreases the number of g-dense pairs by at least |M| /2,

then G < G\ M and ¢ + 1.
end while
G+ g
F'(z,y) « F(z,y) for every z,y € A and z,y € B.
D'(z,y) + D(z,y) for every z,y € A and z,y € B.
S’ (z,y) < S(x,y) for every x,y € A and z,y € B.
Output: The graph G’ and the sets F'(x,y), D'(z,y), S (z,y) for all x,y € A and z,y € B.

In the procedure P(q), initially for all the pairs {z,y} (with x,y € A and z,y € B)
the sets F(z,y), D(x,y), S(z,y) are set to be empty. Then as the edges are being deleted
during the procedure, possibly, new g¢-sparse pairs {x,y} are being created. When this
happens, Step 1 redefines the sets S(z,y), F(x,y), D(z,y) and gives them some non-empty
values. (They get non-empty values due to the fact that {x,y} is ¢-sparse, which implies
that {x,y} is contained in a copy of K3 4, so there is at least one g-dense pair in the common
neighborhood of z,y.) Therefore, these values stay unchanged throughout the rest of the
procedure.

Notice that at the point S(x,y) was redefined, the pair {z,y} was g-sparse, so number
of common neighbors is less than ¢q. Therefore, as S(z,y) is a subset of the common neigh-
borhood of = and y, we also have |S(z,y)| < gq. Moreover, since D(x,y) is defined as a
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spanning forest with the vertex set S(z,y), we have |D(z,y)| < |S(z,y)|. Also, it easily
follows from the definition of F(z,y) that |F(x,y)| = 2|S(z,y)|. Finally, notice that D(x,y)
does not contain any isolated vertices, because its vertex set S(z,y) spans all of its edges,
by definition. Therefore, |D(x,y)| > |S(z,y)|/2. At the end of the procedure, the sets
F(z,y),D(z,y),S(z,y) are renamed as F'(z,y),D'(x,y),S"(z,y). Note also that if a pair
{x,y} never becomes g-sparse in the process then S'(z,y) = D'(z,y) = F'(x,y) = 0.

Observation 5.4. For every x,y € A and x,y € B, we have
(1) 5"z, y)| < q.
(2) D'z, y)| < [5"(x, y)l-
3) [F(z,y)| = 2[5 (2, y)].
(4) |D'(z,y)| = |5"(z, )| /2.

For convenience, throughout the chapter we (informally) say that the sets F'(z,y),
D'(x,y), S'(z,y) are defined by applying Procedure P(q) to a graph G to obtain the graph
G’ instead of saying that the input to Procedure P(q) is G and the output is the graph G’
and the sets F'(z,y), D'(z,y), S'(x,y).

Claim 5.5. Let the sets F'(x,y), D'(z,y), S (z,y) (for z,y € A and z,y € B) be defined by
applying Procedure P(q) to a bipartite graph G to obtain G'. Let N(x,y) denote the number
of common neighbors of vertices x,y in the graph G. Then

[F" (2, )]

D<)l <

Moreover |F'(x,y)| < 2|N(z,y)|.

Proof. Combining the parts (3) and (4) of Observation[5.4] we have |F'(z,y)| /4 < |D'(z,y)|.
Combining the parts (1) and (2) of Observation [5.4] we obtain |D'(z,y)| < ¢, proving the
first part of the claim.

To prove the second part, notice that S'(z,y) is a common neighborhood of z,y in some
subgraph G of G, we have |5'(z,y)| < |N(z,y)|. Combining this with part (3) of Observation
[5.4] we obtain |F'(z,y)| < 2|N(z,y)|, as required. O

Finally, let us note the following properties of the graph obtained after applying the
procedure.

Observation 5.6. Let the sets F'(x,y), D'(x,y), S'(z,y) (for 2,y € Aand z,y € B) be defined
by applying Procedure P(q) to a bipartite graph G to obtain G'. Then

1. Every edge ab in G’ is contained in at most ¢/2 members of {F'(z,y) : z,y € A} and
in at most ¢/2 members of {F'(z,y) : z,y € B}.

2. For any set M of edges in G, removing the edges of M from G’ decreases the number
of g-dense pairs by less than |M| /2.
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Definition 5.7. Let H be a 3-partite 3-graph with parts A, B and C'.

For each 1 < i < n, let G;[H|(A, B) be the bipartite graph with parts A and B, whose
edge set is {ab | a € A,b € B,abc; € E(H)}. The graphs G;[H|(B,C) and G;[H|(A,C) are
defined similarly.

Definition 5.8 (Applying Procedure P(q) to a hypergraph). Let H be a 3-partite 3-graph
with parts A, B and C. We define the hypergraph H' as follows:

For each 1 < i < n, let G[H|(A, B), Gi[H]|(B,C), G;[H|(A,C) be the graphs obtained
by applying the procedure P(q) to the graphs G;[H|(A, B), G;[H](B,C), G;[H|(A, C) respec-
tively.

For each edge ab which was removed from G;[H|(A, B) by the procedure P(q) (i.e. ab €
Gi[H|(A, B)\ G;[H](A, B)) we remove the hyperedge abe; from H (it may have been removed
already). Similarly for each edge be (resp. ac) which was removed from G;[H|(B,C) (resp.
Gi[H](A,C)) by the procedure P(q) we remove the hyperedge a;bc (resp. abic) from H. Let
the resulting hypergraph be H'. More precisely,

H' = {aibjcy € H | a;b; € GY[H|(A, B), bjer, € Gi[H|(B,C), aicy € G[H](A,C)}.
We say H' is obtained from H by applying the Procedure P(q).

Remark 5.9. Let H' be obtained by applying the Procedure P(q) to the hypergraph H.
Then,

|H|—|H'| < Z (IG;[H](A, B)| — !G;[H]<A,B>|>+KZ< (IGs[H)(B,C)| — |G}[H](B, C)])
+ > (|GHH|(A, O)| — |Gi[H](A,C)]).

1<i<n

Indeed, if a;b;c;, € H \ H' then it is easy to see that a;b; € Gx[H|(4, B) \ G},[H|(A, B) or
bjcr € Gi[H|(B,C)\ Gi[H|(B, C) or aicy, € Gj[H](A,C)\ Gi[H](A,C).

Lemma 5.10. Let ¢ > 2 be an even integer and G be a bipartite graph with parts A and B.
Suppose G' is the graph obtained by applying Procedure P(q) to G. Then G’ is Ky ,-free.

Proof. Let us define a g-broom of size k to be a set of g-sparse pairs {zo, z;} (with 1 < j < k),
and a g¢-dense pair {y,z} such that {y,z} is contained in the common neighborhood of
xg,x; for every 1 < j < k. Note that either {zo,z,..., 24} € A and {y,z} C B or
{zo,21,...,2x} C B and {y, 2z} C A.

Claim 5.11. There is no q-broom of size q/2 in G'.
Proof. Suppose by contradiction that there is a set of g-sparse pairs {zg, z;} (with 1 < j <
q/2), and a g-dense pair {y, z} such that {y, z} is contained in the common neighborhood

of zp and x; for every 1 < j < ¢/2. Then the edge zoy is contained in the sets F'(zo, z;) for
every 1 < j < ¢/2, which contradicts Observation O
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Let us suppose for a contradiction (to Lemma that G’ contains a copy of Ky ,. Then
G' contains at least one g-dense pair. Without loss of generality we may assume there is a
¢-dense pair {a,a;} in A. Suppose {a,a;} (for 1 < j < p) are all the ¢-dense pairs of G’
containing the vertex a. For each 1 < j < p, let B; C B be the common neighborhood of a
and a; in G'. By definition, |B;j|> ¢ for 1 < j < p.

Claim 5.12. For any J C {1,2,...,p}, we have |U;jes B;j| > 21]J].

Proof. Let us assume for contradiction that there exists a J C {1,2,...,p} such that
\Ujes Bj| < 2]J|. Let G* be obtained from G’ by deleting all the edges from a to J;e;s B;.
For each j € J, the pair {a,a;} has no common neighbor in G* since we have removed all
the edges from a to B;. Thus the pair {a, a;} is not ¢g-dense in G*. So in forming G* from G’
the number of g-dense pairs decreases by at least |J|, while the number of edges decreases
by |Ujes B;|< 2|J] edges, contradicting Observation [5.6] O

Let B' = Ui<j<p B;. For each vertex v € B and let
J(v) :={j|ve B}

D(v) := {{v,u} | {v,u} is ¢-dense in G" and {v,u} C B; for some j € J(v)}.
In the next two claims, we will prove two useful inequalities concerning |J(v)| and | D(v)].

Claim 5.13. For each v € B', |J(v)| > 2|D(v)|.

Proof. Suppose for contradiction that there is a vertex v € B’ such that |J(v)| < 2|D(v)].
Let us delete all the edges of the form va;, j € J(v), from G’ and let the resulting graph be
G*. Since we deleted |J(v)| edges, by Observation the number of ¢g-dense pairs decreases
by less than |J(v)| /2 < |D(v)|. So there exists {v,u} € D(v) such that {v,u} is (still)
g-dense in G*. That is, |[N*(v,u)|> ¢, where N*(v,u) denotes the common neighborhood of
v and u in G*. Clearly each pair of vertices in N*(v,u) is contained in a copy of K, in G*
(and hence in G).

For each pair of vertices in N*(v,u), since it is contained in a copy of K,, in G, it
is either g-sparse or g-dense in G’. Note that a € N*(v,u). If all the pairs {a,x} with
x € N*(v,u) \ {a} are g-sparse in G’ then the set of these pairs together with {v,u} is a
g-broom of size at least ¢ — 1 > ¢/2 in G, which contradicts Claim [5.11] So there exists a
vertex © € N*(v,u) \ {a} such that {a,x} is ¢-dense in G'. Since v is adjacent to both a and
x, by the definition of J(v), x = a; for some j € J(v). However, by definition, in forming G*
we have removed vz from G’. This contradicts € N*(v,u) and completes the proof. O

Claim 5.14. 1
S D@25 3 1B

vEB’ 1<5<p
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Proof. Fix any j with 1 < j < p. Since {a,q;} is ¢-dense in G’, every pair {z,y} C B,
is contained in some copy of K, , and hence is either ¢-dense or g-sparse in G'. Let v be
any vertex in B; and let S(v) = {y € B; | {v,y} is ¢g-sparse in G'}. By definition, the
set {{v,y} | y € S(v)} together with {a,a;} is a g-broom of size |S(v)|. By Claim [5.11]
|S(v)|< ¢/2—1<|Bj| /2 — 1. Since |D(v)| + |S(v)| > |B,| — 1, we have

D) > 3 |B)| (5.4

Note that holds for every j =1,...,p and every v € B;.

Let us define an auxiliary bipartite graph G, with a bipartition ({1,2,...p}, B) in
which a vertex j € {1,...,p} is joined to a vertex y € B’ if and only if y € B;. Let J
be an arbitrary subset of {1,2,...,p}. The neighborhood of J in G, is precisely Ujes B;.
By Claim \Ujes Bj| > 2]J| > |J|. Since this holds for every J C {1,...,p}, by Hall’s
theorem [50] there exist distinct vertices w; € By, for j = 1,...,p. By (5.4), for every
jeA{1,....p},|D(w;)| > 5 |B;|. Hence

1
> D)= > [D(wy)| > 3 > 1Bl
veB’ 1<j<p 1<j<p

O

If we view {By, ..., B,} as a hypergraph on the vertex set B’, then the degree of a vertex
v € B’ in it is precisely |J(v)| and the degree sum formula yields

Yo=Y IBl. (5.5)

vEB’ 1<5<p

Using Claim and Claim we have
1
Y 1I@)> > 21D@)[ =2 > 5|Bil= > |Bil.

veB’ veB’ 1<i<p 1<j<p
which contradicts (5.5]). This completes proof of Lemma [5.10] ]

In the next subsection we will prove a general lemma about making an arbitrary hyper-
graph K o -free (for any given value of ¢). This lemma is used several times in the following
subsections.

5.2.1 Applying Procedure P(q) to an arbitrary hypergraph H

Let ¢ be an even integer and let ¢ > ¢t. Let H be an arbitrary Ké?q)—free 3-partite 3-graph
with parts A, B and C'. In this subsection we will prove the following lemma that estimates
the number of edges removed from the graphs G; = G;[H|(A, B) for 1 < i < n, when the
Procedure P(q) is applied to them. This lemma together with Remark will allow us to
estimate the number of edges removed from H when the Procedure P(q) is applied to it.

Throughout this subsection, N;(z,y) denotes the set of common neighbors of the vertices
x,y in the graph G;.
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Lemma 5.15. Let ¢ >t be an even integer. Let H be an arbitrary Kf’q) -free 3-partite 3-graph
with parts A, B and C. Let G; = G;|H|(A, B) for 1 <i <mn. For each 1 <i <n and any
x,y € Aorx,y€ B, let F/(x,y) be defined by applying the procedure P(q) to G; and let the
resulting graph be G%. Then,

5 |Gi\c:;|<j(z S Rt Y Y |F;<u,v>r)+zm2.

1<i<n u,weA 1<i<n u,weEB 1<i<n

Proof of Lemma |5.15] First let us prove the following claim.

Claim 5.16. Let u,v € A or u,v € B. Then {u,v} is q-dense in less than t of the graphs

Proof. Without loss of generality, suppose that u,v € A. Suppose for contradiction that
{u,v} is g-dense in t of the graphs G;, 1 < ¢ < n. Without loss of generality suppose
{u,v} is ¢-dense in Gy,...,G;. Then |N;(u,v)| > q >t for i =1,...,t. Therefore, we can
greedily choose t distinct vertices y1, ...,y such that for each i € [t],y; € N;(u,v). For each
i € [t], since y; € N;(u,v) we have uy;c;,vy;c; € E(H). However, the set of hyperedges
{uy;ci,vy;c; € E(H) | 1 <1 <t} forms a copy of Kéf)’t) in H, a contradiction. O

Note that when procedure P(q) is applied to G; (to obtain G%), Step 1 and Step 2 may
be applied several times (and each time one of these steps is applied it may delete an edge

For each ¢ € [n], let m; denote the number of g-dense pairs of G;. By Claim [5.16, we
know that each pair {u, v} with u,v € A or u,v € B, is ¢-dense in less than ¢ different graphs
G; (for 1 < i < n). Therefore,

S Y-+ % (t—1):2©(t_1). (5.6)

1<i<n u,vEA u,vEB

For each i € [n], let a; denote the total number of edges that were removed by Step 1
when procedure P(q) is applied to G; and f3; be the number of edges removed by Step 2
when procedure P(q) is applied to G;. Then «o; + f; = |G; \ G}], so X0 o + 30, 8 =

1 |G\ Gyl

First, we bound Y7, f;. Let i € [n]. Observe that whenever a set M of edges were
removed by Step 2 of Procedure P(q) applied to G;, the number of g-dense pairs decreased
by at least |M] /2. Hence 8; < 2m;. So summing up over all 1 < i < n, and using (5.6), we
get

Y Bi<2 > my<2n(n—1)(t—1) < 2tn”. (5.7)
1<i<n 1<i<n

Next, we bound >, o;. Let i € [n]. If an edge zy was removed from G; by Step 1 of
the procedure P(q) then there are vertices 21, 2s, . .., 24/2 such that xy € F/(z, z;) for every
Jje{1,2,...,q/2} or xy € F(y, z;) for every j € {1,2,...,¢/2}. So
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/<Z|F’uv\+ > ]F’uv)

u,vEA u,veEB

Therefore,
2
Z 042§< Z Z |Fz/(uav)‘+ Z Z |.F;<U,U)|>
1<i<n 4 \ 1<i<nuvea 1<i<n u,veB

This is equivalent to the following.

Y o <= <Z SOF (u,0) + Z\F'uv). (5.8)

1<i<n u,w€A 1<i<n u,veB 1<i<n

Combining this inequality with (5.7) completes the proof of Lemma [5.15] m

5.2.2 The overall plan

Let us define the sequence qo, q1,...,q; as follows. Let ¢y = 2! Where [ is an integer such
that gy = 2! < ¢? < 2! = 2¢y. For each 1 < j <k, let ¢; = %+ and ¢, > ¢t > %. Clearly

ZZ = 2F moreover

So we have
k <logt. (5.9)

Now we apply the procedure P(q) to the hypergraph H (recall Definition to obtain
a K g 4-free hypergraph Hy. For each 0 < j < k we obtain K}y, -free hypergraph H; 4
by applying the procedure P(g;41) to the hypergraph H;.

This way, in the end we will get a K 5,4 -free hypergraph Hj. In the following section,
we will upper bound |H| — |Hp|. Then in the next section, using the information that H; is
K 2,4,-free, we will upper bound |Hj; 1| — |H}| for each 0 < j < k. Then we sum up these
bounds to upper bound the total number of deleted edges (i.e., |H|— |Hg|) from H to obtain
Hy. Finally, we bound the size of Hy, which will provide us the desired bound on the size of
H.

5.2.3 Making H K, ,-free

First, we are going to prove an auxiliary lemma that is similar to Lemma A.4 of [64]. In an
edge-colored multigraph G, an s-frame is a collection of s edges all of different colors such
that it is possible to pick one endpoint from each edge with all the selected endpoints being
distinct.

Lemma 5.17. Let G be an edge-colored multigraph with e edges such that each edge has
multiplicity at most p and each color class has size at most q. If G contains no t-frame then
GI< (5Y)p + tq.
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Proof. Consider a maximum frame S, say with edges e;,...,es such that for every ¢ €

{1,2,...,s}, e; has color ¢ and that there exist 1 € e1,x9 € €a,...,25 € €5 with zy,..., x4
being distinct. By our assumption, s < ¢ — 1. Let f be any edge with a color not in [s].
Then both vertices of f must be in {z1,...,xs}, otherwise ey, ..., e, f give a larger frame,
a contradiction. On the other hand, each edge with both of its vertices in {x1,...,zs} has
multiplicity at most p. Hence there are at most (;)p edges with colors not in {1,2,...,s}.
The number of edges with color in {1,2,...,s} is at most sq by our assumption. So |G|<
Bp+sa< (5 )p+ta O

Let us recall that H is 3 partite Kéi)—free hypergraph with A, B, C. For convenience we
denote G; = G;[H](A, B) where 1 <i <mn. Foreach1 <i<nandanyz,y€ Aorz,y € B,
let F!(z,y), Di(z,y) and Si(x,y) be defined by applying the procedure P(gp) on G; and let
the obtained graph be G.

First, observe that t2/2 < gy < t? according to our definition.

Claim 5.18. Let u,v € A or u,v € B. Then Y 1<i<p | F](u,v)| < 663

Proof. Let D* be an edge-colored multigraph in which a pair of vertices e is an edge of color
i € [n] whenever e is an edge of D}(u,v). The number of edges of color ¢ in D* is |D}(u,v)|.
By Claim we have |D}(u,v)| < go. Hence the number of edges in each color class of D*
is less than qq.

Let xy be an arbitrary edge of D* and let I = {i € [n] | zy € D}(u,v)} . For each i € I,
the pair {x, y} is go-dense in G; by the definition of Dj(u,v). Therefore, by Claim [5.16] we
have |I| < t. So zy has multiplicity less than ¢ in D*. Since xy is arbitrary, the multiplicity
of each edge of D* is less than ¢.

Next, observe that D* contains no t-frame. Indeed, otherwise without loss of generality
we may assume that D* contains ¢ edges x1y1, . . ., :y;, where x;y; has color i for each i € [¢]
and yi, ...,y are distinct. For each i € [t] since z;y; € Dj(u,v), in particular y; € N;(u,v)
(where N;(u,v) denotes the common neighborhood of u and v in G;), which means that
uy;ci, vy;c; € H. But now, {uy;c;, vy;c; | i € [t]} forms a copy of KQ(?}), contradicting H being
Kz(i)—free.

Therefore, applying Lemma , we have |D*| < (tgl)t + tqo. By Claim we have

E!
S
4
So o
: t—1 3
3 |Fi(w )] S |Di(u,v)| = |D| < ( >t+tqo<t3,
1<i<n 4 1<i<n 2 2
which proves the claim. O

By Lemma |5.15 we have

) ’Gi\G;’<2<Z > F @)+ > > \E’(%’UH) +2tn”.

1<i<n 0 u,weA 1<i<n u,veEB 1<i1<n
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Combining it with Claim we get

> ]Gi\G§]<2(Z 6%+ 6t3>+2tn2.

1<i<n 0 \upcA u,vEB

Therefore, as gy > t%/2, we have

4
Y IG\Gi < 5 (12153 (")) + 2tn? < 26tn?.
1<i<n t 2
So,
Yo G\ Gl = > |Gi[H](A B)\ Gj[H](A, B)| < 26tn*.
1<i<n 1<i<n

By symmetry, using the same arguments, we have

> |Gi[H](B,C)\ Gi[H](B,C)| < 26tn”,

1<i<n

and
Z |Gi[H)(A, O) \ Gi[H](A,C)| < 26tn?.

1<i<n

Therefore, by Remark [5.9 we have

|H| — |Ho| < 78tn>. (5.10)

5.2.4 Making a K, -free hypergraph K, -free

In this subsection, we fix a j with 0 < 7 < k. Recall that H; is K1727qj—free, and H,y, is ob-
tained by applying the P(g;11) to H;. Our goal in this subsection is to estimate |H,;|—|H,+1].
The key difference between arguments in this subsection and in the previous subsection is
that now in addition to H; being Kéi)—free we can also utilize the fact that Hj is K 2 g -free.
In particular, this extra condition leads to Claim [5.19, which improves upon Claim [5.18
For convenience of notation, in this subsection, let G; = G;[H,|(4, B) for each 1 <1i < n.
For every 1 < i < n and every u,v € A or u,v € B let the sets F/(u,v) and Dj(u,v) be
defined by applying the procedure P(g;+1) to the graph G;, to obtain the graph Gi.

Claim 5.19. Let u,v € A or u,v € B. Then Y 1<i<n |F}(u,v)| < 2¢g;t.

Proof. For each i € [n] we denote the set of common neighbors of u, v in G; as N;(z,y). For
each i € [n], since Hj is K1 94-free, G; is Ky g -free and so |N;(u,v)| < g;.

Without loss of generality let us assume u,v € A. For each vertex w of B, let I, = {i €
{1,2,...,n} | w € Ni(u,v)}. We claim that |I,| < g;. Indeed, for each i € I,,, we have
uwe;, vwe; € Hj. So the set of hyperedges {vwc;, vwe; | @ € I,,} form a copy of Ky 51, in Hj.
Thus if |I,] > g;, then Hj contains a copy of K4, a contradiction. Therefore, |1, < g;,
as desired.
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Consider an auxiliary bipartite graph G 4y x with parts B and [n] where the vertex ¢ € [n]
is adjacent to b € B in Gyx if and only if b € N;(u,v). Then by the discussion in the
previous paragraph, each vertex w € B has degree || < g;, and each vertex i € [n] has
degree |N;(u,v)| < g;. In other words, the maximum degree in G 4y x is less than g;.

We claim that Gyx does not contain a matching of size t. Indeed, suppose for a
contradiction that the edges i1b;,,42b;,, ..., i:b; (ie., b, € Ny(u,v) for 1 <1 < t) form a
matching of size ¢ in G4y x. Then the set of hyperedges ub;,c;,, vb;,c;,, 1 <1 <1, form a copy
of Kéi) in H;, a contradiction, as desired.

Since G4y x does not contain a matching of size ¢, by the Konig-Egervary theorem it has a
vertex cover of size less than ¢. This fact combined with the fact that the maximum degree of
G aux is less than g;, implies that the number of edges of G 4y x is less than g;t. On the other
hand, the number of edges in Gayx is Yiep [Ni(u,v)|. Therefore, Y icp | Ni(u,v)| < gjt.
This, combined with the fact that for each i € [n], |N;(u,v)| > |F/(u,v)| /2 (see Claim [5.5)),
completes the proof of the lemma. O

By Lemma [5.15, we have

1<i<n j+1 \ uw,eA1<i<n u,w,€B 1<i<n

Now using Claim [5.19] we have

8q;t Atq.
Z G\ Gi| < 2 <n> +2tn® < inQ + 2tn?.
¢j+1\2 Qjt+1

1<i<n
Since g;j+1 = ¢;/2, we have

> G\ Gl < 8tn® + 2tn® = 10tn”.

1<i<n

So,
S GG = X [GIH)(AB)\ GIIH,)(A.B)| < 10"

1<i<n 1<i<n

By symmetry, using the same arguments, we have

S |GIH)(B,C) \ GLH,|(B,C)| < 10tn?,

1<i<n

and

S |GI[H)(A, C) \ GYH,)(A, O)| < 10tn2.

1<i<n

Therefore, by Remark [5.9) we have

|Hj‘ — ’Hj+1‘ < 30tn?. (511)

79



CEU eTD Collection

5.2.5 Putting it all together

By (5.10) and (5.11]) we have
| = | Hel = |H| — [Hol + 3 (|~ |Hysal) < 78tn? + k(30tn).

0<j<k
By (5.9) we have k£ <logt, so we obtain,
|H| — |Hy| < 78tn?* + 30t log tn?. (5.12)

Notice that Hy, is K o 4, -free and g, < 2t. Therefore Hy, is K 9 9-free. Moreover, we know
that the hypergraph Hy is 3-partite and Kéi)-free with parts A, B, C' (as it is a subhypergraph
of H). Now we bound the size of Hy.

Claim 5.20. We have |Hy| < 2tn?.

Proof. Suppose for a contradiction that |Hy| > 2tn? For any pair {a,b} of vertices with
a € Aand b€ B, let codeg(a,b) denote the number of hyperedges of Hy containing the pair
{a,b}. Then the number of copies of K53, in Hy of the form {abc,a’bc} where a,a’ € A,

be B,ce(Cis
codeg(b, c)
> ()

b,c
beB,ceC

As the average codegree (over all the pairs b € B, c € (') is more than 2¢, by convexity, this

expression is more than
2t\ o 5(n
> (2t -1 :

This means there exist a pair a,a’ € A and a set of (2t — 1)+ 1 > (t — 1)(2t — 1) + 1 pairs
S :={bc | b€ B,c € C} such that abc,a’bc € E(Hy) whenever bc € S. Let Gayx be a
bipartite graph whose edges are elements of S. Since Gapyx has |S| > (t —1)(2t — 1) + 1
edges, it either contains a matching M with ¢ edges or a vertex v of degree 2t (see Lemma
A.3 in [64] or the last paragraph of our proof of Claim for a proof). In the former case,

the set of all hyperedges of the form abc, a’bc with be € M, form a copy of Kéi) in H, a

contradiction. In the latter case, let uy, uo, ..., us be the neighbors of v in G4y x. Then the
set of hyperedges {avu;,a'vu; | 1 < i < 2t} form a copy of Kj29; in Hy, a contradiction
again. This completes the proof of the claim. n

Combining ((5.12)) with Claim [5.20] we have |H| < 80tn? + 30t log tn?, thus proving (5.3,
which implies Theorem [5.1], as desired.
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5.3 Remarks

Recall that given a bipartite graph G with an ordered bipartition (X,Y’), where ¥ =
{v1,-- - ym}, G(XT?Y is the r-graph with vertex set (XUY)U (U™, Y;) and edge set U7, {eUY; :
e € E(G),y; € e}, where Y,...,Y,, are disjoint (r — 2)-sets that are disjoint from X UY. A
standard reduction argument such as the one used in the proof of Theorem 1.4 in [64] can
be used to show the following.

Proposition 5.21. Let n,r > 3 be integers and G a bipartite graph with an ordered bipar-
tition (X,Y'). There exists a constant ¢, depending only on r such that

ex(n, GEQY) <en" % ex(n, GS?Y).

Thus, by Theorem and Proposition , for all » > 4, we have ex(n, th)) <

crtlogt(rfl) for some constant ¢,, depending only on 7. On the other hand, taking the fam-
ily of all r-element subsets of [n] containing a fixed element shows that ex(n, KQ(Q)) > ("))

Recall that in the r = 3 case, a better lower bound of Q(t(g)) was shown by Mubayi and
Verstraéte [64]. For r = 4, we are able to improve the lower bound to Q(¢(})) as follows.

Proposition 5.22. We have

t—1
ex(n, K§9) > (1 + o(1)——n"
Proof. (Sketch.) Consider a Kj;-free graph G with (1 + 0(1))@713/2 edges where each

vertex has degree (14 o(1))4/(t — 1)y/n. (Such a graph exists by a construction of Fiiredi
[38].) Let us a define a 4-graph H = {abed | ab,cd € G and ac,ad,be,bd ¢ G}. In other
words, let the edges of H be the vertex sets of induced 2-matchings in G. Via standard

counting, it is easy to show that |[H| = (14 o(1))tn3. It remains to show H is Kz(flt)—free.

8
Claim 5.23. If axyz,bxyz € H, then there is a vertex ¢ € {x,y, z} such that ac,bc € G.

Proof. By our assumption, {a,z,y, z} and {b, z,y, 2} both induce a 2-matching in G. With-
out loss of generality, suppose ax,yz € G. If bx € G then we are done. Otherwise, we have
by, xz € G or bz, xy € G, both contradicting {az,yz} being an induced matching in G. [

Suppose for contradiction that H has a copy of Kéflt) with edge set {az;y;z;, br;y;zi | 1 <
i < t}. By Claim for each 1 < i < ¢, there exists a vertex w; € {x;,y;, z;} such that
aw;, bw; € G. This yields a copy of Ky, in G, a contradiction. n

For r > 5, we do not yet have a lower bound that is asymptotically larger than (:j) It

would be interesting to narrow the gap between the lower and upper bounds on ex(n, KQ(T)).

It will be interesting to have a systematic study of the function ex(n, G(XT?Y). Mubayi
and Verstraéte [64] showed that ex(n,Kﬁi)) = O(n*Y*) and that if t > (s — 1)! > 0 then
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ex(n, K%) = Q(n3-%/%) and speculated that n32/* is the correct order of magnitude. The

S,

case when G is a tree is studied in [37], where the problem considered there is slightly
more general. The case when G is an even cycle has also been studied. Let C’Q(:) denote
GEQY where G is the even cycle Cy of length 2¢. It was shown by Jiang and Liu [52]

that clt(rfl) < ex(n, 053;1) < eot? (rfl), for some positive constants depending c¢1, ¢y on 7.
Using results in this chapter and new ideas, we are able to narrow the gap to clt(rfl) <

ex(n, 052) < cot? logt(rfl), for some positive constants ¢, ¢o depending on r.
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Chapter 6

On the Rainbow Turan number of paths

6.1 Introduction

For an integer k, let P, denote a path of length k, where the length of a path is defined as
the number of edges in it. Erd6s and Gallai [20] proved that ex(n, Pyt1) < £n; moreover,
they showed that if £+ 1 divides n, then the unique extremal graph is the vertex-disjoint
union of 5 copies of Kjy1.

On the other hand, Keevash, Mubayi, Sudakov and Verstraéte [55] showed that in some
cases, the rainbow Turdn number of P, can be strictly larger than the usual Turdn number
of P,.: Maamoun and Meyniel [62] gave an example of a proper coloring of K. containing no

rainbow path with 2% —1 edges. By taking a vertex-disjoint union of such Ky’s, Keevash et.

al. showed that ex*(n, Py_;) > (2;) LQ%J = (1+0(1))§i:§ ex(n, Py._1)—so ex*(n, Py._) is not
asymptotically equal to ex(n, Pox_;). They also mentioned that determining the asymptotic
behavior of ex*(n, Pyy1) is an interesting open problem, and stated the natural conjecture
that the optimal construction is a disjoint union of cliques of size ¢(k), where c(k) is chosen
as large as possible so that the cliques can be properly colored with no rainbow Pg,;. For
Py, this conjecture was disproved by Johnston, Palmer and Sarkar [53]: Since any properly
edge-colored K5 contains a rainbow Py, and K, does not contain a Py, the conjecture for P
would be that ex*(n, P,) ~ 2. But they show that in fact, ex*(n, Py) ~ 2n by showing a
proper edge-coloring of Ky 4 without rainbow P, and then taking g vertex-disjoint copies of

K, 4. For general k, they proved the following:

Theorem 6.1 (Johnston, Palmer and Sarkar [53]). For any positive integer k, we have

3k’+1w
n

k
SN s ex*(n, Ppy1) < {

We improve the above bound by showing the following:

Theorem 6.2 (E., Gyori, Methuku [34]). For any positive integer k, we have
9k
ex*(n, Pry1) < (7 + 2> n.

83



CEU eTD Collection

Let us remark that using the ideas introduced in this chapter, it is conceivable that
the upper bound can be further improved (at the cost of making the proof very involved).
However, it would be very interesting (and seems to be difficult) to prove an upper bound
less than kn or construct an example with kn edges.

We give a construction which shows that ex*(n, Pyr) > ex(n, Py) for any k > 2.

Construction. Let us first show a proper edge-coloring of Ko o1 (a complete bipartite
graph with parts A and B, each of size 2¥) with no rainbow P,x. The vertices of A and B are
both identified with the vectors F5. Each edge uv with u € A and v € B is assigned the color
c(uv) := v —v. Clearly this gives a proper edge-coloring of Ky ox. Moreover, if it contains
a rainbow path vovy ... v then such a path must use all of the colors from F§. Therefore
Z?ial c(v;vi+1) = 0. On the other hand, Z?ial c(Vivip1) = Z?ial(vi —V;11) = Vo —Vgr. Thus,
v9 — vor = 0. But notice that since the length of the path vgvy ... v is even, its terminal
vertices vy and vy are either both in A or they are both in B. So they could not have been
identified with the same vector in F§, a contradiction. Taking a vertex-disjoint union of such

Kox o’s we obtain that ex*(n, Py) > (27)? [n/281] = (1 + 0(1))237: ex(n, Pox).

Remark. This construction provides a counterexample to the above mentioned con-
jecture of Keevash, Mubayi, Sudakov and Verstraéte [55] whenever the largest clique that
can be properly colored without a rainbow Py has size 2. This is the case for k = 2, as
noted before. The question of determining whether this is the case for any £ > 3 remains
an interesting open question (see [2] for results in this direction).

Overview of the proof and organization. Let G be a graph which has a proper
edge-coloring with no rainbow Pj.;. By induction on the length of the path, we assume
there is a rainbow path vgv;...v, in G. Roughly speaking, we will show that the sum of
degrees of the terminal vertices of the path, vy and v, is small. Our strategy is to find a set

of distinct vertices M := {ay, b1, a9,ba, ..., am, by} C {vo,v1,...,v,} (whose size is as large
as possible) such that for each 1 < i < m, there is a rainbow path P of length k£ with a;
and b; as terminal vertices and V(P) = {vg,v1,...,vx}; then we show that there are not

many edges of G incident to the vertices of M, which will allow us to delete the vertices of
M from G and apply induction. To this end, we define the set " C {vg, v1,...,vx} as the
set of all vertices v € {vg, v1,..., v} where v is a terminal vertex of some rainbow path P
with V/(P) = {vg,v1,...,v}; we call T the set of terminal vertices. We will then find M as
a subset of T'; moreover, it will turn out that if the size of T" is large, then the size of M is
also large — therefore, the heart of the proof lies in showing that 7' is large.

In Section [6.2.1) we introduce the notation and prove some basic claims. Using these
claims, in Section we will show that T is large (i.e., that there are many terminal
vertices). Then in Section we will find the desired subset M of T (which has few edges

incident to it).
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6.2 Proof of Theorem [6.2

Let G be a graph on n vertices, and suppose it has a proper edge-coloring ¢ : E(G) — N
without a rainbow path of length k& + 1. Consider a longest rainbow path P* in G. We may
suppose it is of length k, otherwise we are done by induction on k. For the base case k =1,
notice that any path of length 2, has to be a rainbow path. Thus G can contain at most
2 < (2 4 2)n edges, so we are done.

6.2.1 Basic claims and Notation

In the rest of the chapter, the degree of a vertex v € V(G) be denoted by d(v).

Definition 6.1. Let P* = vgvy ... vx. Suppose the color of the edge v;_q1v; is c(v;_1v;) = ¢
for each 1 <1 < k. Let L and R denote the sets of colors of edges incident to vy and vy
respectively. (Notice that since the edges of G are colored properly, we have |L| = d(vy) and
|R| = d(vx).)

We define the following subsets of L, R and {c1,ca,...,cx} corresponding to P*.

o Let Loy (respectively R,.;) be the set of colors of the edges incident to vy (respectively
vg) and to a vertex outside P*.

Note that Loy C {c1,¢2,...,ck} and Ry C {c1,¢2,..., ¢}, otherwise we can extend
P* to a rainbow path longer than k in G.
e Let Ljy =L\ Loy and Ry, = R\ Row-

o Let Loyg = LN{cr oy ek} and Ly = L\ {c1,¢0, ... ek} Similarly, let Ryq =
Rﬂ {Cl,CQ, Ce ,Ck}, Rnew = R\ {Cl,CQ, RN ,Ck}.

o Let S;, = {c(vj_1v;) = ¢; | vov; € E(G) and c(vgvj) € Lpe, and2 < j < k} and
Sk = {c(vjvj41) = ¢jp1 | vev; € E(G) and c(vgvj) € Ryew and 0 < j < k — 2},
Notice that |SL| = |Lnpew| and |Sr| = | Rnew|-

o Let Lyiee = LN Sk and let Rye = RN SL. (Note that since Lpee C {c1,¢o,...,Cr}, we
have Lyice N Lpew = 0. Similarly Rpice N Rypew = 0.)

o Let Lres - Lm\ (Lnew U Lnice) = Lold\ (Lnice U Lout)7 and Rres = Rm \ (Rnew U Rnice) -
Rold \ (Rm'ce U Rout)-

Notation 6.2. For convenience, we let |L| = [ and |R| = r. Moreover, let |Loy| =
loutu‘Loldl = loldu‘Lnice‘ = lnicev|Lnew’ = lnew and |Rout| = 700ut7|Rold’ = Told7|Rnice’ =
Tnices ’Rnew‘ = Thnew-

Note that

d(UO) = lin + lout = lnew + lold =1
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and
d(vk) = Tin + Tout = Tnew + Told = 7

Now we prove some inequalities connecting the quantities defined in Definition for
the path P*.

Claim 6.3. L,,;,NSg = 0 = Rou N Sr. This implies that Loy N Lypice = 0 = Row N Ryice
(since Lpjce C Sr and Ryice C Sp).

Proof of Claim. Suppose for a contradiction that L, N Sk # 0. So there exists a vertex
w & {vo, v1, ..., v} such that c(vyv;) € Ryew and c(wuvg) = ¢(vjv;41) for some 0 < j < k—2.
Consider the path v 1v49... V401 ... vow. The set of colors of the edges in this path

is {c1,¢0, ... et \ {c(vjvjsr)} U {c(wwy), c(vkv;)} = {c1,c0,. .., e} U {c(vg;)}, so it is a
rainbow path of length £ + 1 in GG, a contradiction.
Similarly, by a symmetric argument, we have Ry N Sy, = 0. O

Claim 6.4. [ ,; < k — Tpew and Tour < k — Lpew.

Proof of Claim. By Claim , Loy N Sp = 0. Since both L., and Sk are subsets of
{c1,¢9,..., ¢k}, this implies, |Louwt| = lout < k — |Sr| = k — Thew, as desired. Similarly,
Tout S k - lnew~ D

We will prove Theorem [6.2| by induction on the number of vertices n. For the base cases,
note that for all n < k, the number of edges is trivially at most

n<k—n< %+2n
2) = 2 7 ’

so the statement of the theorem holds. If d(v) < % + 2 for some vertex v of GG, then we
delete v from G to obtain a graph G’ on n — 1 vertices. By induction hypothesis, the number
of edges in G’ is less than (% + 2)(n — 1). So the total number of edges in G is less than
(% 4 2)n, as desired.

Therefore, from now on, we assume that for all v € V(G),

d(v) > 97k + 2.

Since d(vg) =1 = loig + lnew and loq < k, we have that

lnew = 2k + 2. (6.1)
7
Similarly,
rnew 2 2,71{: —"_ 2' (6.2)

Claim 6.5. We have

4k
lm'ce + Tnice 2 7 + 4.
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Proof of Claim. First notice that L., N Sk = (0. Indeed, by definition, Ly N Sg = (Lyes N
LYNSg = Lies N (LN SR) = Lies N Lyice = 0. Moreover, by Claim Lowt N Sp = 0.
Therefore, we have (Lyes U Low) N Sp = 0. Moreover, (Lyes U Low) U Sr € {c1,¢2,. ..,k }-
Therefore, lies + lout < k — |Sr| = k — Tnew. On the other hand, by definition, les + lous >
(lin - lnew - lnice) + lout =1 lnew - lnice~ SO we have,

l - lnew - lnice S k — Thew-
By a symmetric argument, we get
T — Tnew — Thnice S k - lnew-

Adding the above two inequalities and rearranging, we get [ + 7 — lpice — Tnice < 2k, SO

4k
lnice + Thice Z l +r— 2k = d(v()) + d(vk) — 2k 2 7 + 47

as required. O

6.2.2 Finding many terminal vertices

Definition 6.6 (Set of terminal vertices). Let T' be the set of all verticesv € {vg, v, va, ..., Uk}
such that v is a terminal vertex of some rainbow path P with V(P) = {vg,v1,va, ..., Vs }.
For convenience, we will denote the size of T' by t.

The next lemma yields a lower bound on the number of terminal vertices and is crucial
to the proof of Theorem [6.2]

Lemma 6.7. We have 3k
T|=t> - + 2.

The rest of this subsection is devoted to the proof of Lemma [6.7}

Proof of Lemma [6.7]
Recall that P* = vgv; ... v, and ¢(vjv;41) = ¢;. First we prove a simple claim.

Claim 6.8. We may assume c(vgv1) & Lupice and c(vgvg_1) & Rupice. Moreover, if vovy is an
edge of G, we can assume c(vovg) &€ Lpew U Ryew.

Proof of Claim. First consider the case when vgvy is an edge of G. If c(vovg) € Lpew U Ruew,
then every vertex v; € T. Indeed, the path v;v;_1v;_o...VgURVE_1 ...v;41 iS & rainbow path
with v; as a terminal vertex. Thus [T| =k+1 > % + 2, and we are done. So we can assume
(Vo) € Lpew U Rpew. This implies that c(vov1) € Lpice and c(vgvr—1) € Ruice, because
c(vovy) € Sk and c(vgvg—1) &€ Sr.

Now if vy is not an edge of G, then again c(vovy) & Sk and c(vgvg_1) € Sr, so the claim
follows. ]
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Claim 6.9. If vyv; is an edge such that c¢(vov;) € Lpey then v;_y € T.

Proof of Claim. Consider the path v;_1v;_o...vv;v;11 ... v. Clearly it is a rainbow path of
length £ in which v;_; is a terminal vertex. O

Suppose vgv; is an edge such that c¢(vgv;) € Lyjce. Since ¢(vgvy) & Ryew, by the definition
of Lupice, there exists an integer j (with 1 < j < k — 2) such that c¢(vyvj) € Rpew and
c(vovs) = cvvjn) = ¢;.

Claim 6.10. If c(vov;) € Lyjce then vy € T or vy € T.

Moreover, let j be an integer (with 1 < j < k—2) such that c(viv;) € Rpew and c(vov;) =
c(vjj11) = ¢;-

If >4, thenv,_y €T, and if j <1 thenv; 1 €T.

Proof of Claim. Observe that since c(vgv;) € Lyice C Sgr, we have that c(v,v;) € Ryew (by
definition of Sg).

First let 7 > 4. In this case consider the path v;_1v;_2 ... VoVVit1 ... VjURVE_1 ... Vj41. It
is easy to see that the set of colors of the edges in this path is {c1, co, ..., cx }\ {c; }U{c(vjve) }
As ¢(vjvg) € Rpew, the path is rainbow with v;_; as a terminal vertex. So v;_y € T'.

If j < 4, then consider the path v 1vj49... 00001 ... VjUEVE_1 ... Viy1. It is easy to see
that the set of colors of the edges in this path is {c,ca, ..., cx} \ {cit1} U {c(vjur)}, so the
path is rainbow again, with v;; as a terminal vertex. So v, ; € T. O

By symmetry, one can see that the same arguments used in the proofs of Claim and
Claim [6.10] imply the following two statements.

Observation 6.11. If viv; is an edge such that c(vgv;) € Ryew then v € T.
If ¢(vgv;) € Rupice then v; 1 € T or v;41 € T.

Definition 6.12. Let b’ > b be the largest two integers such that c(vovy) € Lpew and c(vovy) €
Lyew. Similarly, let ' < a be the smallest two integers such that c(vxvy) € Rpew and
c(Vpvy) € Ryew-

Notation 6.13. For any integers, 0 <z <y < k, let
T ={v, €T |z <1<y},

and |T%Y| = %Y.
Notice that t = t%% = 2 + t"*~1 as vy and v, are both terminal vertices.

Now we will show that if a > b, then Lemma holds. Suppose a > b. Then by the
definition of a and b, we have

{i|2 <i<band c(v9v;) € Lpew}| = |Lnew| — 1 = lnew — 1.

By Claim we know that whenever c¢(vgv;) € Lyew, we have v; 1 € T. This shows that
t1971 > [ w — 1. Similarly, by a symmetric argument (using Observation [6.11]), we get
totlk=l > — 1. Therefore,

t=24 " =2 M P TR S 9 (Lew — 1) F (Trew — 1) = Lnew =+ Tnew-

88



CEU eTD Collection

Now using (6.1)) and (6.2)), we have

2k 2k 4k
t:lnew new = o 2 e 2=— 47
+r -T2 2=t

proving Lemma [6.7} Therefore, from now on, we always assume a < b.
Claim 6.14. If c(vgv;) € Lpew 07 c(Vk0;) € Rpew, and a <1 < b, thenv;_1 € T and vy, € T.

Proof of Claim. First suppose ¢(vgv;) € Lpew. Then by Claim , v;i_1 € T. We want to
show that v;,, € T

Observe that if i = a, then by Claim [6.9] again, we have v;;; € T because viv; € Rpew-
So let us assume a < ¢ and show that v;1; € T. Notice that there exists a* € {a,a’} (see
Definition for the definition of a and a’) such that c¢(vov;) # c(va+vy). Now consider the
path ves 11V 4o ... V;UIVL . .. Ve URUE_1 . . . V1. The set of colors of the edges in this path are
{c1,¢9, ... ek} \ {Car11, civ1} U {c(vov;), c(va=vg) }, and it is easy to check that all the colors
are different, so the path is rainbow with v;,; as a terminal vertex.

Now suppose ¢(vxv;) € Rpew. Then a similar argument (using Observation shows
that v;_; € T and v;;; € T again, completing the proof of the claim. O

Now we introduce some helpful notation.
Notation 6.15. For any integers, 0 < x <y <k, let

Lﬁizc/e = {C VoV;) € Lnice ‘ x S { S y},

nice

Ly ={c

new

(vovs)

RIJJ - {C(Uk’vi) S Rnice | X S { S y}:
(Uovi) S Lnew | iy S Z S y}a
(

RS = {c(vpvi) € Ruew | © < i <y},

new

.y | _ oy .Y | LY T, __ ]z, T, T,
MOI‘GOVGI‘, let |Lnice - lnice? |Rnice = Thice> ‘Lne%v| - lnezx/m |Rne%v’ - Tne%v'

Note that by definition of a and b, lyew = (%371 + 120 + 1 and e = 1 + 722 + rbiLE,

new

Using Claim [6.8] for any integer z, we have the following:
LY, = L%, and Rk = R (6.3)

nice nice nice nice

Moreover, by definition of L,y and Ryeyw, we have

L%2, = L%, and RZE = REE2, (64)

new new new new

Informally speaking, Claim [6.10] and Claim |6.14] assert that each edge e = vyv; such that
c(vo;) € Lyew U Lyice “creates” a terminal vertex x = v;_1 € T or x = v;41 € T (or sometimes
both). Similarly, (using Observation each edge e = vv; such that c(vyv;) € RyewU Ruice
“creates" a terminal vertex z = v;_y € T or & = v;41 € T (or both). In the next two claims, by
double counting the total number of such pairs (e, ), we prove lower bounds on the number
of terminal vertices in different ranges (i.e., %%~ t*1% and %) in terms of Luew, Tnews lnice
and 7pice-
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Claim 6.16. We have,

tO,afl 2

TO,a
0,a 0,a nice
(lmce + lnew + 2 > )

N | —

and

1 - lb,k
b+1,k , b,k ]
13 Z 5 (Tm'ce + T new + n2106> .

Proof of Claim. By Claim [6.10, and by the fact that there is only one j such that c(vyv;) €

R%2-1 it is easy to see that for all but at most one i, we have the following: if c¢(vov;) €

LY = L% (equality here follows from (6.3)), then v;_; € TH% ', So there are at least

nice nice
1% — 1 pairs (vov;, z) such that c(vov;) € Lo, and o = v;_y € TV 1,

If c(vgv;) € L%2, = L2%%, (equality here follows from (6.4)), then by Claim [6.9) v;; €

new new

Th%=1. So there are [2% pairs (vgv;, x) such that c(vov;) € L%% and x = v;_y € T 1,

Adding the previous two bounds, the total number of pairs (vov;, ) such that c(vov;) €
L% U L0 = 120 U L2 and o = v,y € TY ! is at least 13% — 1 4 [2¢ . This implies

nice réew nice new new"*
p— a . . .
tha=l > =¢ 1 4 (22 Therefore, using that vy is also a terminal vertex, we have

nice new"

tO,a—l > l2,a + l2,a

nice new"*

(6.5)

If c(vpv;) € RV then by Observation [6.11] there is a vertex @ € {v;_y, v; 11} such that

nice
0,a—1

x € T. So the number of pairs (vyv;, z) such that c(vxv;) € Rpje , T € {vi—1,v;1fandx € T,

is at least rg;Z; !. By the pigeonhole principle, either the number of pairs (vgv;, v;—1) with
c(vgy;) € R%*1 4,1 € T, or the number of pairs (vgvs, viy1) With c(vgv;) € R?l’ii;l,viﬂ eT,

nice
is at least 071 /2. In the first case, we get t%¢72 > r2%~1 /9 and in the second case, we get

nice

tha > TO’Q_I/Q. As t%e=1 > ¢0a=2 gnd ¢%e=1 > ¢t1e in both cases we have,

nice

0,a—1

zSO,afl 2 Tnice . (66)
2
Therefore, adding up (6.5) and (6.6), we get
0,a—1 0,a
r r
20T 2 It + L + o = it + I +

Note that the equality follows from (6.3), (6.4) and the fact that %% " = %% because
c(Ugvy) € Rpew. By a symmetric argument, we have

b+1,k b,k
b+1,k bk—2 | bk-2 | ‘nice bk b,k nice
2t Z Tnice + Thew + 2 = Thice + Thew + 2 :
This finishes the proof of the claim. O]

Now we prove a lower bound on .

Claim 6.17.

ta,b > (la+1,b—1 + ra—i—l,b—l + 2(la+l,b + T,a,bfl)> )

nice nice new new

o |
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Proof of Claim. Let us construct a set S of pairs (e, x) such that e € Lj, UR;, and x € T
with certain properties.

For every edge e such that c(e) € LEY™1 U RS Claim (and Observation
ensures that there is a vertex x € {v;_1,v;41} such that € T (in particular, z € T%%).
Add all such pairs (e,z) to S. Therefore, the number of pairs (e, z) added to S so far, is

JeLb=1 yat bl
nice nice
For every edge e such that c(e) € L& U R%-1 we have both v;_1,v;41 € T by Claim

6.14} we add both the pairs (e, v;_1) and (e, v;+1) to S. Therefore the number of pairs (e, z)
added to S in this step is 2(1¢F 10 4 ra0-1) Thus,

new new

S| = bt + e T 200+ e .

nice nice new new

Note that all the pairs (e,r) in S are such that z € T**. Moreover, for each x € T,
there are at most four pairs (e, z) in S. Therefore, we have

4ta,b Z |S| Z la—l—l,b—l + ,r,a+1,b—1 + 2([(14_171) + ’I"a’b_1>,

nice nice new new

finishing the proof of the claim. O]
By Claim and Claim [6.17], we have

0,a bk
ro l A
220001 ot TLRY 4ogpab > 9 (lﬁ;‘;e + 1% 4 “2 + bk bk “2>

a+1,b—1 a+1,b—1 a+1,b a,b—1
+lnice + Tnice + 2(lnew + Thew )

This implies,
4t Z lnice + Tnice + 21?&5;; + 2r§’elf)v + lg’ige + Tg’i’::e'

By the definition of @ and b, I%° = l,ew — 1 and % = r, — 1. So, we get

) “new n
0,a bk
4t Z lnice + T'nice + 2lnew + 2Tnew + lnice + Thice — 4

2 lnice + T'nice + 2(lnew + Tnew) - 4
Now by Claim and inequalities (6.1) and (6.2)), we get that

4k 2k 2k 12k
4> —+44+2(\ =+24+ —+2| -4 =— .
_7+ + <7+ +7+) - +38

Therefore,

t>—+2
_7+7

completing the proof of Lemma [6.7]
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6.2.3 Finding a large subset of vertices with few incident edges

Now we define an auxiliary graph H with the vertex set V(H) = T and edge set E(H) such
that ab € E(H) if and only if there is a rainbow path P in G with a and b as its terminal
vertices and V(P) = V(P*) = {vo, vy, ..., Uk}

Claim 6.18. The degree of every vertex w in H is at least 2k /7 + 2.

Proof of Claim. As w € V(H) = T, u is a terminal vertex. So there is a rainbow path
P = uguy ... ug in G such that ug = v and {ug, uy,...,ux} = {vo,v1,...,vr}. We define the
sets L, R, Lyew, Rnew corresponding to P in the same way as we did for P* (in Definition .
Moreover, since P* was defined as an arbitrary rainbow path of length £, holds for P
as well — i.e., |Rpew| = Tnew > 2k/7 4+ 2. We claim that if uiu; is an edge in G such that
c(urtj) € Rpew, then wu;iy € E(H). Indeed, consider the path wouy ... wjupug_1 ... uj11.
This is clearly a rainbow path with terminal vertices u = wy and u;41. So u and u;; are
adjacent in H, as required. This shows that degree of u in H is at least e > 2k/7 + 2, as
desired. O]

Size of a matching is defined as the number of edges in it. The following proposition is
folklore.

Proposition 6.19. Any graph G with minimum degree 5(G) has a matching of size
min {6(G), F/EG)J} .

We know that §(H) > 2 + 2 by Claim [6.18, Moreover |V (H)| = |T| = t. So applying
Proposition to the graph H and using Lemma [6.7], we obtain that the graph H contains
a matching M of size

. (2k t 3k
m := min {7 + 2, LQJ} > E7E (6.7)
Let the edges of M be a1by, asbs, ..., a,,b,,. Moreover, let
n; = {zy | 2y & E(G),x € {a;,b;} and y € {vg,v1,v9,..., 06} \ {a;,bi}}].
Claim 6.20. The number of edges in the subgraph of G induced by M 1is
2 m . m .
EGMDI = () = (X E 4 m] =o2m?—2m -3 2
2 =2 =2

Proof of Claim. Note that the sum ;n; counts each pair xy ¢ E(G) with xz,y € V(M)
exactly twice unless xy = a;b; for some i. Therefore, the number of pairs xy ¢ E(G) in the
subgraph of G' induced by M is at most }; %5* + m. Thus the number of edges of G in the

subgraph induced by M is at least (2;71 ) — (325 % +m), which implies the desired claim. [
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Claim 6.21. The sum of degrees of a; and b; in G is at most 3k — %

Proof of Claim. Since a;b; is an edge in the auxiliary graph H, there is a rainbow path
P = wyuy...u, in G such that uy = a;, ux = b; and {ug,uq,...,ur} = {vo,v1,..., v}
We define the sets L, R, Lin, Rin, Louts Routs Lnew; Fnew and the numbers 1, r, lin, T, lout, Tout
lnew, Thew corresponding to P in the same way as we did for P* (in Definition . Therefore,
degree of a; is | < l,ew + k. Similarly, degree of b; is at most 7w + k. So the sum of degrees

of a; and b; in G is at most
2k + lnew + Tnew- (6.8)

On the other hand, the sum of degrees of a; and b; in G is | + 1 = ljy + lout + Tin + Tout-
By Claim , this is at most (liy + 7in) + 5 — Tnew + £ — lnew = (lin + 7in) + 2k — lnew — Tnew-
Moreover, it is easy to see that [;, + i, < 2k —n; by the definition of n;. Therefore, the sum
of degrees of a; and b; in G is at most

2k — n; + 2k — Lyew — Tnew- (6.9)

Adding up and and dividing by 2, we get that the sum of degrees of a; and b; in

G is at most
(2k + 2k —n; +2k)  (6k —ny) _gp

2 N 2 2
as desired. ]

The sum Y, (d(a;)+d(b;)) counts each edge in the subgraph of G induced by M exactly
twice (note that here d(v) denotes the degree of the vertex v in G). Therefore, the number
of edges of G incident to the vertices of M is at most 37, (d(a;) + d(b;)) — |E(G[M])]. Now
using Claim [6.20] and Claim [6.21] the number of edges of G incident to the vertices of M is

at most

m

Z( ]{;_7)_ <2m2—2m—z7;i> = 3km —2m?* 4+ 2m = (3k + 2 — 2m)m

=1 =1

Now by ((6.7]), this is at most

k k k
Bk +2—2m)m < (3]@—1—2—2(?4))711:(97 —|—1>2m< (97+2>2m

We may delete the vertices of M from G to obtain a graph G’ on n — 2m vertices. By
induction hypothesis, G’ contains less than (2 + 2)(n — 2m) edges. Therefore, G contains

less than ok ok ok
(7—1—2) 2m + (7—1—2) (n—2m) = <7+2)n

edges, as desired. This completes the proof of Theorem [6.2]

93



CEU eTD Collection

Bibliography

[1] P. Allen, P. Keevash, B. Sudakov and J. Verstraéte. “Turan numbers of bipartite graphs
plus an odd cycle." Journal of Combinatorial Theory, Series B 106 (2014): 134-162.
B.1

[2] N. Alon, A. Pokrovskiy and B. Sudakov. Random subgraphs of properly edge-coloured
complete graphs and long rainbow cycles. Israel Journal of Mathematics (2017) 222.1,
317-331.

[3] N. Alon, T. Jiang, Z. Miller and D. Pritikin, Properly colored subgraphs and rainbow
subgraphs in edge-colorings with local constraints, Random Structures Algorithms 23

(2003), 409aAS433.
[4] N. Alon and C. Shikhelman, Many 7" copies in H-free graphs. Journal of Combinatorial
Theory, Series B 121 (2016) 146-172. [1.1]

[5] N. Alon, L. Rényai, and T. Szab6: Norm-graphs: variations and applications, J. Com-
bin. Theory Ser. B 76 (1999), 280-290.

[6] C. T. Benson. “Minimal regular graphs of girths eight and twelve." Canad. J. Math. 18
(1966), 1091-1094.

[7] R. G. Blakley and P. Roy. “A Holder type inequality for symmetric matrices with non-
negative entries." Proceedings of the American Mathematical Society 16.6 (1965): 1244-

1245. BT} B32
[8] B. Bollobas and E. Gyéri, Pentagons vs. triangles. Discrete Mathematics 308.19 (2008)

4332-4336. [L1) [0} [ BT

[9] B. Bollobas and E. Gy6ri. “Pentagons vs. triangles." Discrete Mathematics, 308 (19)
(2008), 4332-4336. [3.1],

[10] A. Bondy and M. Simonovits. “Cycles of even length in graphs." Journal of Combina-
torial Theory, Series B 16.2 (1974): 97-105. [1.4]

[11] R.C. Bose and S. Chowla. Theorems in the additive theory of numbers. Comment. Math.
Helv. (1962/1963) 37, 141-147.

[12] W.G. Brown, P. Erdés and V. S6s. “On the existence of triangulated spheres in 3-graphs
and related problems." Periodica Mathematica Hungaria 3 (1973), 221-228.

[13] B. Bukh and Z. Jiang. “A bound on the number of edges in graphs without an even
cycle." Combinatorics, Probability and Computing (2014): 1-15.

94



CEU eTD Collection

[14]

[15]

[16]

[17]

18]
[19]
[20]
[21]
22]
23]
[24]
[25]
[26]
27]
28]

[29]

C. Collier-Cartaino, N. Graber and T. Jiang. “Linear Turdn numbers of r-uniform linear
cycles and related Ramsey numbers." Combinatorics, Probability and Computing 27.3

(2018): 358-386. [(document )|,

S. Das, C. Lee and B. Sudakov. Rainbow Turan problem for even cycles. Furopean
Journal of Combinatorics (2013) 34, 905-915.

P. Erdés, On some problems in graph theory, combinatorial analysis and combinatorial
number theory. B. Bollobas (Ed.), Graph Theory and Combinatorics (Cambridge, 1983),
Academic Press, London (1984) 1-17.

P. Erdés, Problems and results in combinatorial analysis, Proceedings of the Eighth
Southeastern Conference on Combinatorics, Graph Theory and Computing, Louisana
State University, Baton Rouge, LA, 1977, Congressus Numerantium, Vol XIX, Utilitas
Mathematics, Winnipeg, Manchester, 1977, 3-12. |1.2

P. Erdés. “Some recent progress on extremal problems in graph theory.” Congr. Numer.
14 (1975), 3-14.

P. Erdés and M. Simonovits. “Compactness results in extremal graph theory.” Combi-
natorica 2 (1982), no. 3, 275-288. B.1] [4.1] [£.2.1],

P. Erd6s and T. Gallai. On maximal paths and circuits of graphs. Acta Mathematica
Academiae Scientiarum Hungaricae (1959) 10, 337-356.

P. Erdés and M. Simonovits. A limit theorem in graph theory. Studia Scientiarum
Mathematicarum Hungarica 1 (1965), 51-57. [1]

P. Erdés and R. Rado, A combinatorial theorem, J. London Math. Soc.25(1950), 249-
255. 4]

P. Erdgs, A. H. Stone. On the structure of linear graphs. Bulletin of the American
Mathematical Society 52 (1946), 1087-1091.

P. Erdés, On some problems in graph theory, combinatorical analysis and combinatorial
number theory, in: B. Bollobas (Ed.), Graph Theory Combin. pp. 1-17.

P. Erdés and D. Kleitman, On coloring graphs to maximize the proportion of multicol-
ored k-edges. J. Combinatorial Theory 5 (1968) 164-169.

B. Ergemlidze, A. Methuku. “Triangles in Cs-free graphs and hypergraphs of girth six.”
arXiv preprint arXiv:1811.11873 (2019). [L.1}

B. Ergemlidze, T. Jiang, A. Methuku. “New bounds for a hypergraph Bipartite Turan
problem.” arXiv preprint arXiv:1902.10258 (2019) [1.2]

B. Ergemlidze, E. Gy6ri, A. Methuku. “3-Uniform Hypergraphs and Linear Cycles”
SIAM Journal on Discrete Mathematics, 32(2), 9336A3950. (2018) , ,

B. Ergemlidze, E. Gyéri, A. Methuku. “3-uniform hypergraphs without a cycle of length
five.” arXiv preprint arXiv:1902.06257 (2019) [L.2]

95



CEU eTD Collection

[30] B. Ergemlidze, E. Gy6ri, A. Methuku. “Asymptotics for Turan numbers of cycles in
3-uniform linear hypergraphs.” Journal of Combinatorial Theory, Series A 163 (2019):

163-181. [, B3, B4, B

[31] B. Ergemlidze, E. Gyé6ri and A. Methuku. “Turan number of an induced complete bipar-
tite graph plus an odd cycle.” Combinatorics, Probability and Computing, (2018) 1-12.
4Tl

[32] B. Ergemlidze, E. Gy6ri, and A. Methuku “A note on the Linear Cycle Cover Conjecture
of Gyarfas and Sarkozy” The Electronic Journal of Combinatorics, 25.2, (2018): Paper
P2.29. [1.3]

[33] B. Ergemlidze, E. Gy6ri, A. Methuku and N. Salia. “A note on the maximum number
of triangles in a Cs-free graph.” Journal of Graph Theory, (2018) 1-4, In print. , ,
A1 A2

[34] B. Ergemlidze, E. Gy6ri and A. Methuku. On the Rainbow Turédn number of paths. the
electronic journal of combinatorics 26(1), P1.17, (2019). [L.4]

[35] B. Ergemlidze, E. Gydri, A. Methuku, C. Tompkins, N. Salia, O. Zamora. Avoiding long
Berge cycles, the missing cases k = r+1 and k = r+2. arXiv preprint arXiv:1808.07687.

[36] Z. Fiiredi, Hypergraphs in which all disjoint pairs have distinct unions. Combinatorica
4(2-3) (1984) 161-168. [1.2]

[37] Z. Fiiredi, T. Jiang, D. Mubayi, A. Kostochka, J. Verstraéte, The extremal number for
(a,b)-paths and other hypergraph trees, manuscript, 19 pp., April 12, 2018.

[38] Z. Fiiredi and L. Ozkahya. On 3-uniform hypergraphs without a cycle of a given length.
Discrete Applied Mathematics, 216, (2017) 582-588.

[39] Z. Fiiredi, A. Kostochka, R. Luo. Avoiding long Berge cycles. arXiv preprint
arXiv:1805.04195, (2018). [L.2] [L.1]

[40] Z. Fiiredi, and L. Ozkahya. “On 3-uniform hypergraphs without a cycle of a given
length.” Discrete Applied Mathematics, 216 (2017): 582-588.

[41] D. Gerbner and C. Palmer. “Extremal results for Berge-hypergraphs.” SIAM Journal
on Discrete Mathematics, 31.4 (2017): 2314-2327.

[42] D. Gerbner, A. Methuku and M. Vizer. “Asymptotics for the Turan number of Berge-
Ky ,.” arXiv preprint arXiv:1705.04134 (2017).

[43] A. Grzesik. On the maximum number of five-cycles in a triangle-free graph. Journal of
Combinatorial Theory, (Series B), 102(5) (2012), 1061-1066.

[44] E. Gyo6ri, N. Lemons. Hypergraphs with no cycle of a given length. Combinatorics,
Probability and Computing, 21(1-2), 193-201, 2012.

[45] E. Gyéri and H. Li, The maximum number of triangles in C2k+1-free graphs, textit-
Combinatorics, Probability and Computing 21 (1-2), 187aA$191, 2012. [1.1] [1.7]

96



CEU eTD Collection

[46] E. Gy6ri and N. Lemons. “3-uniform hypergraphs avoiding a given odd cycle.” Combi-
natorica 32.2 (2012): 187-203.

[47] E. Gyo6ri. Triangle-Free Hypergraphs. Combinatorics, Probability and Computing, 15
(1-2) (2006),185-191 . doi:10.1017/S0963548305007108. [1.2]

[48] A. Gyarfas, E. Gyori and M. Simonovits. “On 3-uniform hypergraphs without linear
cycles.” Journal of Combinatorics 7.1 (2016): 205-216. [1.2] [1.3] 2.1} 2.1}

[49] A. Gyarfas and G. Sarkozy “Monochromatic loose-cycle partitions in hypergraphs.” The
Electronic Journal of Combinatorics 21.2 (2014): 2-36. 1.14] [1.3]

[50] P. Hall, On Representatives of Subsets. J. London Math. Soc 10, (1935) 26-30.

[51] H. Hatami, J. Hladky, D. Kral, S. Norine, A. Razborov. On the number of pentagons

in triangle-free graphs. Journal of Combinatorial Theory, (Series A), 120 (3) (2013),
722-732. [l

[52] T. Jiang, X. Liu, Turan numbers of enlarged cycles, manuscript
[53] D. Johnston, C. Palmer and A. Sarkar. Rainbow Turan Problems for Paths and Forests

of Stars. The Electronic Journal of Combinatorics (2017) 24(1), 1-34. [(document)|, [1.4]
6161

[54] P. Keevash, Hypergraph Turan problems, Surveys in Combinatorics, Cambridge Uni-
versity Press, 2011, 83-140.

[55] P. Keevash, D. Mubayi, B. Sudakov and J. Verstraéte. Rainbow Turan problems. Com-
binatorics, Probability and Computing (2007) 16, 109-126. , ,

[56] J. Kollar, L. Ronyai, T. Szab6. Norm-graphs and Bipartite Turan numbers. Combina-
torical6 (1996), 399-406.

[57] A. Kostochka, R. Luo, On r-uniform hypergraphs with circumference less than r, arXiv
preprint arXiv:1807.04683 (2018). |1.2

[58] T. Kévari, V. Soés, P. Turdn. On a problem of K. Zarankiewicz. In  Colloquium Mathe-
maticae, 3(1), (1954), 50-57.

[59] F. Lazebnik and J. Verstraéte. On hypergraphs of girth five. Electron. J. Combin 10
(2003) R25. B} B0 B

[60] F. Lazebnik, V. A. Ustimenko and A. J. Woldar. “A new series of dense graphs of high
girth.” Bull. Amer. Math. Soc. 32 (1995), no. 1, 73-79.

[61] P. Loh, M. Tait, C. Timmons and R.M. Zhou. Induced Turan numbers. Combinatorics,
Probability and Computing, 27(2) (2017) 274-288.

[62] M. Maamoun and H. Meyniel. On a problem of G. Hahn about coloured Hamiltonian
paths in Ko:. Discrete Mathematics (1984) 51, 213-214. (6.1

[63] W. Mantel. Problem 28. Wiskundige Opgaven 10 (1907), 60-61.

97



CEU eTD Collection

[64] D. Mubayi and J. Verstraéte, A hypergraph extension of the bipartite Turan problem.

J. Combinatorial Theory, Series A 106.2 (2004): 237-253. [1.2] [p.1] p.2.5, .3 [p.3|

[65] O. Pikhurko, and J. Verstraéte, “The maximum size of hypergraphs without generalized
4-cycles.” J. Combinatorial Theory, Series A 116.3 (2009): 637-649.

[66] O. Pikhurko. “A note on the Turan function of even cycles.” Proceedings of the American
Mathematical Society 140.11 (2012): 3687-3692.

[67] L. Pésa “On the circuits of finite graphs.” Magyar Tud. Akad. Mat. Kutato Int. Kozl 8
(1963): 355-361.

[68] I. Ruzsa and E. Szemerédi. “Triple systems with no six points carrying three triangles.”
in Combinatorics, Keszthely, Collog. Math. Soc. J. Bolyai 18, Vol 11 (1976): 939-945.
L9 B.1]

[69] R. R. Singleton. “On minimal graphs of maximum even girth.” J. Combinatorial Theory

1 (1966), 306-332.

[70] C. Timmons. “On r-uniform linear hypergraphs with no Berge-Ks;.
arXiv:1609.03401 (2016).

[71] P. Turdn. On an extremal problem in graph theory. Matematikai és Fizikai Lapok (in
Hungarian), 48 (1941), 436-452.

[72] J. Verstraéte. “On arithmetic progressions of cycle lengths in graphs.” Combinatorics,
Probability and Computing 9.04 (2000): 369-373. [3.1

" arXiv preprint

98



	Introduction
	Generalized Turán numbers
	Turán problems in hypergraphs
	Linear cycle-free 3-uniform hypergraphs
	Rainbow Turán numbers

	3-uniform hypergraphs and linear cycles
	Introduction
	Proof of Theorem 2.2
	Proof of Lemma 2.6 (Main Lemma)

	Proof of Theorem 2.4
	Proof of Theorem 2.5

	Asymptotics for Turán numbers of cycles in 3-uniform hypergraphs
	Introduction
	Proof of Theorem 3.2
	Relating the hypergraph degree to the degree in the shadow
	Counting paths of length 3
	Combining bounds on the number of 3-paths

	C_5-free linear hypergraphs: Proof of the upper bound in Theorem 3.3
	Upper bounding p(H)
	Lower bounding p(H)

	C_4-free linear hypergraphs: Proof of Theorem 3.4
	Proof of Theorem 3.5: Construction

	Triangles in C_5-free graphs and Hypergraphs of Girth Six
	Introduction
	Number of triangles in a C_5-free graph: Proof of Theorem 4.1 and 4.2
	Proof of Theorem 4.1
	Proof of Theorem 4.2

	On hypergraphs of girth 6 and further improvement
	Girth 6 hypergraphs: Proof of Theorem 4.3
	Further improving the estimate on ex(n,K_3,C_5)

	C_5-free and induced-C_4-free graphs: Proof of Theorem 4.4

	On a hypergraph bipartite Turán problem
	Introduction
	Proof of Theorem 5.1: K_2,t^(3)-free hypergraphs
	Applying Procedure P(q) to an arbitrary hypergraph H
	The overall plan
	Making H K_1,2,q_0-free
	Making a K_1,2,q_j-free hypergraph K_1,2,q_j+1-free
	Putting it all together

	Remarks

	On the Rainbow Turán number of paths
	Introduction
	Proof of Theorem 6.2
	Basic claims and Notation
	Finding many terminal vertices
	Finding a large subset of vertices with few incident edges



