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Abstract

The main theme of the thesis is the investigation of Turán-type problems in graphs and
hypergraphs. A big part of it is focused on studying Turán numbers of Berge and linear
cycles in hypergraphs. In addition, we investigate behaviour of linear cycles in 3-uniform
hypergraphs and observe some Turán-type problems for graphs.

The thesis is divided into 6 chapters. The first chapter contains the background on Turán
type problems in graphs and hypergraphs, as well as describes characteristics of linear cycles
in 3-uniform hypergraphs.

In the second chapter we study behaviour of linear cycles in 3-uniform hypergraphs.
Gyárfás, Győri and Simonovits proved that if a 3-uniform hypergraph H has no linear cy-
cles, then α(H) ≥ 2|V (H)|

5
. The hypergraph consisting of vertex disjoint copies of complete

hypergraphs K3
5 shows that equality can hold. They asked whether α(H) can be improved

if we exclude K3
5 as a subhypergraph and whether such a hypergraph is 2-colorable. We

answer these questions affirmatively by showing that if a 3-uniform linear cycle-free hyper-
graph H, contains no subhypergraph K3

5 , then it is 2-colorable. Therefore, α(H) ≥ dV (H)
2
e.

Furthermore, we show that this bound is sharp. We also determine the exact upper-bound
on minimum degree in linear cycle-free hypergraphs. These results are based on the paper
“3-uniform hypergraphs and linear cycles” co-authored with Győri and Methuku.

Gyárfás and Sárközy conjectured that the following extension of the well-known theorem
of Pósa holds: One can partition every k-uniform hypergraph H into at most α(H) linear
cycles (here, as in Pósa’s theorem, vertices and subsets of hyperedges are accepted as linear
cycles). We show that their conjecture would be true for k = 3, if we allowed the linear cycles
to be just edge-disjoint, instead of being vertex-disjoint, thus proving a weaker version of the
conjecture. The proof is based on the paper “A note on the Linear Cycle Cover Conjecture
of Gyárfás and Sárközy” co-authored with Győri and Methuku.

In Chapter 3 we investigate hypergraph Turán problems of Berge cycles and linear cy-
cles. Given a family of 3-uniform hypergraphs F , the linear Turán number of F , denoted
exlin3 (n,F), is the maximum number of hyperedges in an F -free 3-uniform linear hypergraph
on n vertices. ex3(n,F) denotes the Turán number of F for 3-uniform hypergraphs. We give
an upper bound of ex3(n,C5), which significantly improves the previous bound determined
by Győri and Bollobás. In the linear case, we determine asymptotically sharp bounds and
show that exlin3 (n,C5) = 1

3
√

3
n3/2 asymptotically, by giving a new construction and prov-

ing the corresponding upper bound. We also show that asymptotics of exlin3 (n,C4) is same
as exlin3 (n, {C3, C4}), strengthening the theorem of Lazebnik and Verstraëte. In the same
chapter we provide constructions of 3-uniform hypergraphs without linear cycle of given odd
length, which in special cases, gives us a lower bound with the matching order of magnitude
of the upper bound provided by Collier-Cartaino, Graber and Jiang [14]. This chapter is
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based on the papers “Asymptotics for Turán numbers of cycles in 3-uniform linear hyper-
graphs” and “3-uniform hypergraphs without a cycle of length five” co-authored with Győri
and Methuku.

In the fourth chapter we study generalized Turán problems. The main question is to
determine ex(n,K3, C5), where ex(n,K3, C5) denotes the maximum possible number of copies
of K3 in a C5-free graph on n vertices. Bollobás and Győri initiated the study and showed
that 1

3
√

3
(1+o(1))n3/2 ≤ ex(n,K3, C5) ≤ 5

4
(1+o(1))n3/2. Alon and Shikhelman improved this

result by reducing the constant in the upper-bound to
√

3
2
. In this chapter we introduce a new

approach and further improve this bound showing that ex(n,K3, C5) < (1 + o(1)) 1
3
√

2
n3/2.

We also give a short proof for slightly weaker bound, based on the paper ”A note on the
maximum number of triangles in a C5-free graph" co-authored by Győri, Methuku, and Salia.
In the last part of the chapter, we give a new upper bound for maximum number of edges
in a graph without C5 and induced C4 as a subgraph, which slightly improves the previous
bound given by Ergemlidze, Győri and Methuku. This chapter is mainly based on the paper
“Triangles in C5-free graphs and Hypergraphs of Girth Six” co-authored with Methuku.

In Chapter 5 we investigate 15-year old question asked by Mubayi and Verstraëte. Let
t, n be integers with n ≥ 3t, t ≥ 3. Let K(3)

2,t denote the triple system consisting of 2t triples
{a}∪E1, {b}∪E1, {a}∪E2, {b}∪E2, . . . , {a}∪Et, {b}∪Et, where a, b are distinct elements
and E1, . . . , Et are pairwise disjoint 2-element sets that are disjoint from {a, b}. About 15

years ago Mubayi and Verstraëte proved that ex(n,K
(3)
2,t ) < t4

Ä
n
2

ä
, they showed that g(t) :=

limn→∞ ex(n,K
(3)
2,t )/

Ä
n
2

ä
and that 2t−1

3
≤ g(t) ≤ t4. and asked if one could determine the

growth rate of g(t). we prove that, g(t) = Θ(t1+o(1)), as t→∞. This shows that their lower
bound is close to the truth. More precisely, we prove that ex(n,K

(3)
2,t ) ≤ (15t log t+ 40t)n2

for any t ≥ 2. The chapter is based on the paper “New bounds for a hypergraph Bipartite
Turán problem” co-authored with Jiang and Methuku.

In Chapter 6 we study another Turán-type problem. For a fixed graph F the rainbow
Turán number of F , ex∗(n, F ), is the maximum number of edges in a graph on n vertices
that has a proper edge-coloring with no rainbow copy of F . Johnston, Palmer and Sarkar
proved in [53] that for any positive integer k k

2
n ≤ ex∗(n, Pk+1) ≤

†
3k+1

2

£
n. In this chapter

we show that the rainbow Turán number of a path with k + 1 edges is less than
Ä

9k
7

+ 2
ä
n,

improving an earlier estimate of Johnston, Palmer and Sarkar. The proof is based on the
paper “On the Rainbow Turán number of paths” co-authored with Győri and Methuku.
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Chapter 1

Introduction

The Turán number ex(n, F ) is the maximum number of edges in an F -free graph on n
vertices. Extremal graph theory studies Turán numbers of various graphs. Investigation of
this type of problem dates back to 1907, when Mantel [63] proved that the maximum possible
number of edges in triangle-free graphs on n vertices is at most

ö
n2

4

ù
. The complete bipartite

graph with parts of sizes
ö
n
2

ù
and

†
n
2

£
is a construction for lower bound. It was only years

after, when Turán initated systematic studying of similar problems, he proved:

Theorem 1.1 (Turán [71]). The maximum number of edges in a graph on n vertices with
no Kt+1 is at most

Ä
1− 1

t

ä
n2

2
.

The matching lower bound comes from the construction, which is a complete t-partite
graph with part sizes being as close as possible. Clearly, each part will be of size either

ö
n
t

ù
or
†
n
t

£
.

For a graph G, the chromatic number χ(G) is the smallest number of colors needed to
color the vertex set of G so that no two adjacent vertices share the same color.

For any non-bipartite forbidden graph F , ex(n, F ) has order of magnitude n2, moreover
Erdős, Stone and Simonovits [21, 23] showed that asymptotics of the Turán number of a
graph is determined by its chromatic number only.

Theorem 1.2 (Erdős, Stone, Simonovits [21, 23]). For a graph F with χ(F ) ≥ 3 we have
ex(n, F ) =

(
1− 1

χ(F )−1

)
n2

2
+ o(n2).

It is fascinating that this one theorem takes care of the huge class of Turán problems.
Since then, the study has been mainly directed to the so-called ‘degenerate’ case, i.e., when
the forbidden graph is bipartite. Kővári, Sós and Turán considered one of the most natural
degenerate cases and estimated the Turán number of a complete bipartite graph Ks,t with
parts of sizes s and t.

Theorem 1.3 (Kővári, T.Sós, Turán [58]). Let Ks,t denote the complete bipartite graph with
s and t vertices in its color-classes. Then

ex(n,Ks,t) ≤
1

2
s
√
t− 1n2− 1

t +O(n)

2
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Clearly, it makes sense to use this theorem for s < t as it is a better estimation this
way. Kollár, Rónyai and Szabó [56] provided a lower bound, which matches the order of
magnitude of the upper bound, whenever t > s!, and later Alon, Rónyai, and Szabó [5]
provided a matching lower bound if t is sufficiently big compared to s, more specifically
when t > (s− 1)!.

A very interesting and widely used special case of the theorem 1.3 is when s = t = 2,
i.e. estimating the Turán number of K2,2, which also happens to be a 4-cycle. The theorem
clearly implies that

ex(n,C4) ≤ (1 + o(1))
1

2
n3/2.

One would wonder if there exists a matching lower bound and the answer is it does. The
construction for the lower bound is following:

Construction. Let p be a prime number and n = p2 − 1. Let the vertex set be non-zero
pairs (x, y) of the residues modulo p. As the edge set we take distinct pairs of vertices (x, y)
and (a, b) such that ax+ by = 1 (modulo p).

If there is a cycle of length 4 in the constructed graph, then there are vertices (a, b), (u, v),
(a′, b′) and (u′v′) such that au + bv = au′ + bv′ = a′u + b′v = a′u′ + b′v′ = 1. So the system
of equations ax + by = 1 and a′x + b′y = 1 have two distinct pairs of solutions, which is
impossible. So the constructed graph is C4-free.

For each (a, b) the equation ax + by = 1 has p solutions and at least p − 1 of them is
different from (a, b). This implies that the number of edges of the constructed graph is at
least 1

2
(p2−1)(p−1), so ex(p2−1, C4) ≥ 1

2
(p2−1)(p−1). By the fact, that prime numbers are

’densely’ distributed in integers, we can extend the lower bound for an arbitrary n, therefore,
we get ex(n,C4) ≥ (1 + o(1))1

2
n3/2.

The next natural step in understanding Turán numbers of bipartite graphs is to determine
extremal number of cycles of even length.

Theorem 1.4 (Bondy, Simonovits [10]). For any k ≥ 2, we have

ex(n,C2k) = O(n1+ 1
k ).

For k = 2, 3 and 5, it is proven that the upper bound (the order of magnitude) can not
be improved, but generally, whether the upper bound is sharp or not, remains as one of the
most intriguing open questions in extremal graph theory.

1.1 Generalized Turán numbers
Since forming of Turán theory, people generalized classical Turán problems in many ways,
one class of these generalizations officially carries the name generalized Turán numbers. In
this section we overview this topic.

Unsurprisingly, we start this topic by a problem provided by Erdős [24]. Erdős has made
several conjectures concerning triangles and pentagons, one of them is following:

3
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Conjecture 1.5 (Erdős). The number of cycles of length 5 in a triangle-free graph on n
vertices is at most (n/5)5 and equality holds for the blown-up pentagon if 5 | n.

It was only recently, that the conjecture was proven by Hatami, Hladký, Král, Norine,
and Razborov [51] and independently by Grzesik [43].

For graphs F and H, let ex(n,H, F ) denote the maximum possible number of copies
of H in an F -free graph on n vertices. These types of problems are called generalized
Turán problems and the study of them began after Győri and Bollobás [8] considered the
similar problem to Conjecture 1.5, they estimated the number of triangles in graphs without
pentagons.

Theorem 1.6 (Győri, Bollobás [8]).

(1 + o(1))
1

3
√

3
n3/2 ≤ ex(n,K3, C5) ≤ (1 + o(1))

5

4
n3/2.

Their lower bound comes from the following construction: Take a C4-free bipartite graph
G0 on n/3 + n/3 vertices with about (n/3)3/2 edges and double each vertex in one of the
color classes (each corresponding edge will also be doubled) and add an edge joining the old
and the new copy of each vertex to produce a graph G. It is easy to see that G is C5-free
and it contains (n/3)3/2 triangles.

More systematic study of the function ex(n,H, F ) was initiated by Alon and Shikhelman
in [4], where they improved the result of Bollobás and Győri by showing that ex(n,C3, C5) ≤
(1 + o(1))

√
3

2
n3/2. This bound was further improved in [33] by Ergemlidze, Győri, Methuku

and Salia and then very recently in [26], by Ergemlidze and Methuku, who showed that
ex(n,C3, C5) < (1 + o(1))0.232n3/2. We provide the proof of this result in Chapter 4.

Clearly, unlike classical Turán problems, determining the order of magnitude of gener-
alized Turán numbers is not trivial for non-bipartite forbidden graphs. Győri and Li [45]
provided bounds on number of triangles in C2k-free graphs. They proved

Theorem 1.7 (Győri, Li [45]).

ex(n,C3, C2k+1) <
(2k − 1)(16k − 2)

3
ex(n,C2k).

The lower bound contains more than
Ä
k
2

ä
exbip(

2n
k+1

, {C4, C6, . . . , C2k}) triangles, where
exbip(n,F) denotes the maximum number of edges in an F -free bipartite graph on n vertices.
Below we consider the corresponding construction:

Take a maximum size bipartite graph H(X0, Y ) where |X0| = |Y | = n
k+1

such that
C4, C6, . . . , C2k /∈ H. To get the desired graph G, "blow up" the vertices in X0, i.e., for
every vertex x ∈ X0 replace x by k vertices x1, x2, . . . , xk joined to each other and to all
neighbors of x (in the graph H). The set of these new vertices is denoted by X, and clearly
|X| = k |X0|, i.e., |X ∪ Y | = k n

k+1
+ n

k+1
, so the resulting graph G has n vertices. This graph

G contains many cycles of length 3, 4, . . . , 2k, but it can be easily checked that if there is a
cycle of length 2k+ 1 in G, after contracting back the vertices of the blown up set, we would
find an even cycle of length at most 2k + 1 in H, which is a contradiction.

4
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Now let us count the number of triangles in G. For simplicity we count the number
of triangles with one vertex in Y and two vertices in X, as most of the triangles are of
this type. It is easy to see that each edge of H is replaced by a clique of size k + 1 in
G, therefore there is at least

Ä
k
2

ä
e(H) triangles with one vertex in Y . So this construc-

tion gives us a lower bound
Ä
k
2

ä
exbip(

2n
k+1

, {C4, C6, . . . , C2k+1}). We know that the func-
tions exbip(

2n
k+1

, {C4, C6, . . . , C2k+1}), ex( 2n
k+1

, {C4, C6, . . . , C2k+1}) and ex( 2n
k+1

, C2k+1) are es-
sentially the same, therefore, this construction proves that Theorem 1.7 is very close to being
sharp.

1.2 Turán problems in hypergraphs
Counting triangles in graphs is closely related to counting hyperedges in 3-uniform hyper-
graphs. This leads us to another closely related topic, which is one of the main themes of
the thesis, Turán numbers of hypergraphs.

A hypergraph H = (V,E) is a family E of distinct subsets of a finite set V . The members
of E are called hyperedges and the elements of V are called vertices. A hypergraph is called
r-uniform if each member of E has size r. A hypergraph H = (V,E) is called linear if every
two hyperedges have at most one vertex in common.

For a family of forbidden r-uniform hyergraphs F the Turán number exr(n,F) denotes the
maximum number of hyperedges in an r-uniform hypergraph on n vertices with no element
of F as a subhypergraph. For convenience, whenever F = {F} consists of a single forbidden
hypergraph, we write exr(n, F ) instead of exr(n, {F}).

The linear Turán number exlinr (n,F) is the maximum number of hyperedges in an r-
uniform linear hypergraph on n vertices with no element of F as a subhypergraph.

A very natural and widely studied topic is Turán numbers of cycles in hypergraphs.
Unlike graphs, there are several types of cycles in hypergraphs, most common of them would
be Berge cycles and linear cycles.

Definition 1.8. For an integer k ≥ 2, a Berge cycle of length k, denoted by Ck, is an
alternating sequence v1h1v2h2 . . . vkhkv1 of distinct vertices and edges such that {vi, vi+1} ⊆ hi
for 1 ≤ i ≤ k − 1, and {vk, v1} ⊆ hk.

A linear cycle (often also called a loose cycle) in a hypergraph is a Berge cycle where only
the cyclically consecutive hyperedges intersect and they intersect in exactly one vertex.

It is worth noting that even in linear hypergraphs, Berge and linear cycles differ from each
other. Although, in the case of cycles of length 3, in linear hypergraphs these two classes
coincide, so linear Turán number of Berge triangle is the same as linear Turán number of
linear triangle. Determining exlin3 (n,C3) is basically equivalent to the famous (6, 3)-problem,
which is a special case of a general problem of Brown, Erdős, and Sós. The famous theorem
of Ruzsa and Szemerédi states:

Theorem 1.9 (Ruzsa, Szemerédi [68]). There exists a constant c > 0 for which we have

n
2− c√

logn < exlin3 (n,C3) = o(n2).

5
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The systematic study of Turán numbers of Berge cycles started with the investigation
of Berge triangles by Győri [47], who proved that the maximum number of hyperedges in a
Berge triangle-free 3-uniform hypergraph on n vertices is at most n2/8. The construction for
lower bound is following: Take 3 disjoint sets, A = {a1, a2, . . . , an/4}, A′ = {a′1, a′2, . . . , a′n/4}
and B = {b1, b2, . . . , bn/2}. The hypergraph H, whose vertex set is A ∪A′ ∪B and the edge
set is {ai, a′i, bj | 1 ≤ i ≤ n/4, 1 ≤ j ≤ n/2}, is Berge triangle-free and has n2/8 hyperedges.
There is an informal, but convenient way to see this construction. First we take a complete
bipartite graph and then we make a copy of each vertex on one side, this way we create a
triple corresponding each edge of the original bipartite graph and we assign hyperedges to
these triples. It is worth noting that this type of hypergraph extension of a graph is quite
common and we will come across similarly obtained hypergraphs throughout this thesis.

The study of Berge cycle-free hypergraphs were continued by Bollobás and Győri [8],
who showed that n3/2/3

√
3 ≤ ex3(n,C5) ≤

√
2n3/2 + 4.5n. Very recently, this estimate was

considerably improved by Ergemlidze, Győri and Methuku [29]. They also considered [30] the
analogous question for linear hypergraphs and proved that exlin

3 (n,C5) = 1
3
√

3
n3/2 + O(n).

Surprisingly, even though the lower bound here is the same as the lower bound in the
Bollobás-Győri theorem, the hypergraph they construct in order to establish their lower
bound is very different from the hypergraph used in the Bollobás-Győri theorem. The latter
is far from being linear. We discuss more details about these problems and provide proofs
for some of them in Chapter 3.

Győri and Lemons considered a more general question and estimated Turán number of
Berge cycles of any given length.

Theorem 1.10 (Győri, Lemons, [46, 44]). For r ≥ 2, we have exr(n,C2l) = O(n1+1/l).
For r ≥ 3, we have exr(n,C2l+1) = O(n1+1/l).

Recently, Füredi, Kostochka and Luo [39] proved similar results for Berge cycles. Instead
of forbidding Berge cycles of fixed length they forbid all Berge cycles of length at least k.

Theorem 1.1 (Füredi, Kostochka, Luo [39]). Let r ≥ 3 and k ≥ r+ 3, and suppose H is an
n-vertex r-graph with no Berge cycle of length k or longer. Then e(H) ≤ n−1

k−2

Ä
k−1
r

ä
.

Moreover, Kostochka and Luo [57] found bounds for k ≤ r − 1 and for k = r. For the
remaining two cases k = r+2 and k = r+1, Füredi, Kostochka and Luo [39] conjectured that
a similar statement as that of Theorem 1.1 holds. Recently, Ergemlidze, Győri, Methuku,
Tompkins, Salia and Zamora [35] proved these conjectures.

Apart from cycles, we consider a hypergraph Turán problem of following extension of a
complete bipartite graph.

Let K(r)
2,t denote the r-uniform hypergraph consisting of 2t hyperedges {a} ∪ E1, {b} ∪

E1, {a} ∪E2, {b} ∪E2, . . . , {a} ∪Et, {b} ∪Et, where a, b are distinct vertices and E1, . . . , Et
are pairwise disjoint (r − 1)-uniform sets that are disjoint from {a, b}. For more clarity,
in Figure 1.1 we see an example of K(3)

2,3 . (Note that in Figure 1.1 triangles correspond to
hyperedges)
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Figure 1.1: Example of K(3)
2,3

Definition 1.11. For all n ≥ r ≥ 3, let fr(n) denote the maximum number of edges in an
n-vertex r-uniform hypergraph containing no four edges A,B,C,D with A∪B = C ∪D and
A ∩B = C ∩D = ∅.

Note that f3(n) = ex(n,K
(3)
2,2), and in general fr(n) ≤ ex(n,K

(r)
2,2). Erdős [17] asked

whether fr(n) = O(nr−1) when r ≥ 3. Erdős and Frankl proved that fr(n) = O(n1− 1
2 ) but

they never published it. Later Füredi [36] answered Erdős’ question affirmatively.

Theorem 1.12 (Füredi [36]). For all integers n, r with r ≥ 3 and n ≥ 2r,(
n− 1

r − 1

)
+

ú
n− 1

r

ü
≤ fr(n) < 3.5

(
n

r − 1

)
.

The lower bound is obtained by taking the family of all r-element subsets of [n] :=
{1, 2, . . . , n} containing a fixed element, say 1, and adding to the family any collection ofö
n−1
r

ù
pairwise disjoint r-element subsets not containing 1. For r = 3, Füredi also gave

an alternative lower bound construction using Steiner systems. An (n, r, t)-Steiner system
S(n, r, t) is an r-uniform hypergraph on [n] in which every t-element subset of [n] is contained
in exactly one hyperedge. Füredi observed that if we replace every hyperedge in S(n, 5, 2)
by all its 3-element subsets then the resulting triple system has

Ä
n
2

ä
triples and contains no

copy of K(3)
2,2 . This slightly improves the lower bound in Theorem 1.12 for r = 3 to

Ä
n
2

ä
,

for those n for which S(n, 5, 2) exists. The upper bound in Theorem 1.12 was improved by
Mubayi and Verstraëte [64] to 3

Ä
n
r−1

ä
+ O(nr−2). They obtain this bound by first showing

f3(n) = ex(n,K
(3)
2,2) < 3

Ä
n
2

ä
+6n, and then combining it with a simple reduction lemma. This

was later improved to f3(n) ≤ 13
9

Ä
n
2

ä
by Pikhurko and Verstraëte [65].

Motivated by Füredi’s work, Mubayi and Verstraëte [64] initiated the study of the general
problem of determining ex(n,K

(r)
2,t ) for any t ≥ 2.

Theorem 1.13. t ≥ 2 and n ≥ 2t

ex(n,K
(3)
2,t ) < t4

(
n

2

)
.

Morover, for infinitely many n,

ex(n,K
(3)
2,t ) ≥ 2t− 1

3

(
n

2

)
.
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Mubayi and Verstraëte noted that g(t) := limn→∞ ex(n,K
(3)
2,t )/

Ä
n
2

ä
exists and raised the

question of determining the growth rate of g(t). Ergemlidze, Jiang and Methuku [27] deter-
mined g(t) within a margin of log t factor. The proof is provided in Chapter 5.

1.3 Linear cycle-free 3-uniform hypergraphs
In this section we again consider extremal hypergraph problems, but instead of estimating
the number of hyperedges of hypergraphs without particular forbidden structures, we observe
some properties.

Much like the graph case (as a graph without a cycle is a forest), a hypergraph without
a Berge cycle is a disjoint union of linear trees (a linear forest), where a linear tree is
a hypergraph obtained from a vertex by repeatedly adding hyperedges that intersect the
previous hypergraph in exactly one vertex. The same is true for linear cycle-free linear
hypergraphs, but things are not as straightforward when we forbid just linear cycles in
hypergraphs. The second chapter of the thesis is dedicated to understanding more about
linear cycle-free 3-uniform hypergraphs.

It comes as no surprise, that problems in hypergraphs often arise from natural extension
of similar graph problems. Below we address several of them.

An independent set of a hypergraph H is a set of vertices that contain no hyperedges of
H. Let α(H) denote the size of a largest independent set ofH and we call it the independence
number of H. A well-known theorem of Pósa [67] states that the vertex set of every graph G
can be partitioned into at most α(G) cycles where α(G) denotes the independence number
of G (where a vertex or an edge is accepted as a cycle). Gyárfás and Sárközy [49] conjectured
that the following extension of Pósa’s theorem holds.

Conjecture 1.14 (Gyárfás, Sárközy [49]). One can partition every k-uniform hypergraph
H into at most α(H) linear cycles, hyperedges and subsets of hyperedges.

While the original conjecture stays open, in [49] Gyárfás and Sárközy proved a weaker
form of the conjecture, where they used weak cycles instead of linear cycles. In weak cycles
only consecutive hyperedges are allowed to intersect, but unlike linear cycles, the intersection
can be more than a single vertex. Recently, Ergemlidze, Győri and Methuku [32] proved
another weaker version of the conjecture, where they showed that every 3-uniform hypergraph
can be covered with at most α(H) edge-disjoint linear cycles. Proof of this theorem is
provided in Chapter 2.

Motivated by solving Conjecture 1.14, Gyárfás, Győri and Simonovits showed that the
conjecture holds for linear cycle-free 3-uniform hypergraphs. Before stating the theorem we
need a definition of a chromatic number for hypergraphs.

For a hypergraph H a chromatic number χ(H) is the smallest number of colors needed
to color the vertex set of H so that there is no hyperedge of H with all of its vertices sharing
the same color.
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Theorem 1.2 (Gyárfás, Győri, Simonovits [48]). If H is a 3-uniform hypergraph without
linear cycles then it can be partitioned into α(H) linear cycles, hyperedges and subsets of
hyperedges. Moreover χ(H) ≤ 3.

Unlike the equivalent graph problem, Theorem 1.2 is far from being trivial. Gyárfás,
Győri and Simonovits further investigated the relation between linear cycles and independent
number of 3-uniform hypergraphs.

Theorem 1.3 (Gyárfás, Győri, Simonovits [48]). If H is a 3-uniform hypergraph without
linear cycles on n vertices then α(H) ≥ 2

5
n.

The hypergraph consisting of vertex disjoint copies of K3
5 (a complete 3-uniform hyper-

graph on 5 vertices) shows that equality can hold in Theorem 1.3. Gyárfás, Győri, Simonovits
asked whether the lower bound of α(H) can be improved if we exclude K3

5 as a subhyper-
graph and whether such hypergraph is 2-colorable. Ergemlidze, Győri and Methuku [28]
answered these questions affirmatively. The proof is provided in Chapter 2.

1.4 Rainbow Turán numbers
In this section, we overview the study of rainbow Turán numbers, which effectively merges
classical Turán problems with the extremal problems on edge-colorings of graphs.

A graph is properly edge-colored if every pair of incident edges have distinct colors. An
edge-colored graph is called rainbow if all its edges have different colors.

Given a graph F , the rainbow Turán number of F is defined as the maximum number of
edges in a graph on n vertices that has a proper edge-coloring with no rainbow copy of F ,
and it is denoted by ex∗(n, F ). Clearly, ex(n, F ) ≤ ex∗(n, F ).

The special case of the Canonical Ramsey Theorem of Erdős and Rado [22], says that
any proper edge-coloring of Kn contains a rainbow Km as a subgraph, provided that n is
sufficiently large in relation to m. Motivated by this, Alon, Jiang, Miller and Pritikin [3]
introduced a problem of finding a rainbow copy of a graph H in a coloring of Kn in which
each color appears at most m times at each vertex. The rainbow Turán problem is a natural
extension of this problem.

The systematic study of rainbow Turán numbers was initiated in [55] by Keevash, Mubayi,
Sudakov and Verstraëte. Before stating their result, we need a definition:

We say that a graph G is color-critical if there exists an edge e ∈ E(G) such that
χ(G \ e) = χ(G)− 1 (note that the definition is non-standard).

Proposition 1.15 (Keevash, Mubayi, Sudakov, Verstraëte.). For a non-bipartite graph F
we have

ex∗(n, F ) = ex(n, F ) + o(n2).

Morover, if G is color critical then ex∗(n, F ) = ex(n, F ) for large enough n.
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For every bipartite graph F with a maximum degree of s in one of the parts, they proved
ex∗(n, F ) = O(n2−1/s). This matches the upper bound for the (usual) Turán numbers of
such graphs.

Keevash, Mubayi, Sudakov and Verstraëte also studied the rainbow Turán problem for
even cycles. More precisely, they showed that

ex∗(n,C2k) = Ω(n1+1/k).

For this they used the construction of large B∗k-sets of Bose and Chowla [11]– it is conjectured
that the same lower bound holds for ex∗(n,C2k) and is a well-known difficult open problem
in extremal graph theory. They also proved the matching upper bound in the case of the six-
cycle C6, so it is known that ex∗(n,C6) = Θ(n4/3) = ex(n,C6). However, interestingly, they
showed that ex∗(n,C6) is asymptotically larger than ex(n,C6) by a multiplicative constant.
Recently, Das, Lee and Sudakov [15] showed that

ex∗(n,C2k) = O(n1+
(1+εk) ln k

k ),

where εk → 0 as k →∞.
Johnston, Palmer and Sarkar continued studying by investigating rainbow Turán numbers

of matchings, paths and forests of stars. LetMk denote a matching of size k, and let Pk denote
a path of length k. In [53], Johnston, Palmer and Sarkar showed that for sufficiently large n,
perhaps surprisingly, ex∗(n,Mk) = ex(n,Mk). They also showed that ex∗(n, Pk) ≤

†
3k−2

2

£
n.

Recently, Ergemlidze, Methuku and Győri [34] improved the upper bound of ex∗(n, Pk) and
we provide the proof in Chapter(6).

10

C
E

U
eT

D
C

ol
le

ct
io

n



Chapter 2

3-uniform hypergraphs and linear cycles

2.1 Introduction
A hypergraph H is 2 colorable if there is a coloring of the vertices of H such that there
is no monochromatic hyperedge in H. We denote the complete 3-uniform hypergraph on 5
vertices by K3

5 . Throughout the chapter, we mostly use the terminology introduced in [48].

Definition 2.1. A linear tree is a hypergraph obtained from a vertex by repeatedly adding
hyperedges that intersect the previous hypergraph in exactly one vertex. A linear path is a
linear tree built so that the next hyperedge always intersects the previous hyperedge in a vertex
of degree one.

A linear cycle is obtained from a linear path of at least two edges, by adding an edge that
intersects the first and the last edges of the linear path in one of their degree one vertices.

A skeleton T in H is a linear subtree of H which cannot be extended to a larger linear
subtree by adding a hyperedge e of H for which |e ∩ V (T )| = 1.

Recall that an independent set of a hypergraph H is a set of vertices that contain no
hyperedges of H. α(H) denotes the size of a largest independent set of H and we call it the
independence number of H.

Gyárfás, Győri and Simonovits [48] initiated the study of linear cycle-free hypergraphs
by showing,

Theorem 2.1 (Gyárfás, Győri, Simonovits [48]). If H is a 3-uniform hypergraph on n
vertices without linear cycles, then it is 3-colorable. Moreover, α(H) ≤ 2n

5
.

We proved,

Theorem 2.2 (E., Győri, Methuku [28]). Let H be a 3-uniform hypergraph without linear
cycles, and no K3

5 as a sub-hypergraph. Then it is 2-colorable.

Corollary 2.2. Let H be a 3-uniform hypergraph without linear cycles, and no K3
5 as a

sub-hypergraph. Then α(H) ≥ dn
2
e and it is sharp.
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Indeed, from Theorem 2.2, it trivially follows that α(H) ≥ dn
2
e. The hypergraph Hn on

n vertices obtained from the following construction shows that this inequality is sharp. Let
H3 be the hypergraph on 3 vertices v1, v2, v3 such that v1v2v3 ∈ E(H3) and let H4 be the
complete 3-uniform hypergraph K3

4 on 4 vertices v1, v2, v3, v4. Now for each 3 ≤ i ≤ n − 2
let us define the hypergraph Hi+2 such that V (Hi+2) := V (Hi)∪{vi+1, vi+2} and E(Hi+2) :=
E(Hi) ∪ ∪ij=1{vi+1vi+2vj}. If n is even, we start this iterative process with the hypergraph
H4 and if n is odd, we start with H3. Notice that α(Hi+2) = α(Hi) + 1 for each i, which
implies that α(Hn) = dn

2
e.

Given a 3-uniform hypergraph H, if v ∈ V (H) the link of v in H is defined as the graph
with vertex set V (H) and edge set {(x, y) : (v, x, y) ∈ E(H)}. The strong degree d+(v) for
v ∈ V is the maximum number of independent edges in the link of v. The degree of v ∈ V
is simply the number of hyperedges of H containing v.

Theorem 2.3 (Gyárfás, Győri, Simonovits [48]). Suppose that H is a 3-uniform hypergraph
with d+(v) ≥ 3 for all v ∈ V . Then H contains a linear cycle.

We showed,

Theorem 2.4 (E., Győri, Methuku [28]). Let H be a 3-uniform hypergraph on n ≥ 10
vertices without linear cycles. Then, there is a vertex whose degree is at most n− 2.

We remark that on 9 vertices there is a 3-uniform hypergraph without linear cycles where
the degree of every vertex is 8. This hypergraph H is defined by taking a copy of K3

4 on
vertices {u1, u2, v1, v2} and a vertex disjoint copy of K3

5 such that u1u2x, v1v2x ∈ E(H) for
each x ∈ V (K3

5) and there are no other hyperedges in H.
Also notice that Theorem 2.4 cannot be improved because there is a 3-uniform hypergraph

H ′, with E(H ′) := {xab | {a, b} ∈ V (H ′) \ {x}}, in which every vertex has degree at least
n− 2.

In this chapter we investigate one more problem which describes a connection between
the independence number and linear cycles. Recall from Chapter 1, that a theorem of Pósa
[67] states that the vertex set of every graph G can be partitioned into at most α(G) cycles
(where a vertex or an edge is accepted as a cycle). Gyárfás and Sárközy [49] conjectured
that the following extension of Pósa’s theorem holds: One can partition every k-uniform
hypergraph H into at most α(H) linear cycles (here, as in Pósa’s theorem, vertices and
subsets of hyperedges are accepted as linear cycles).

We show their conjecture is true for k = 3 provided we allow the linear cycles to be
edge-disjoint, instead of being vertex-disjoint.

Theorem 2.5 (E., Győri, Methuku [32]). If H is a 3-uniform hypergraph, then its vertex set
can be covered by at most α(H) edge-disjoint linear cycles (where we accept a single vertex
or a hyperedge as a linear cycle).

Our proof uses induction on α(H). However, perhaps surprisingly, in order to make
induction work, our main idea is to allow the hypergraph H to contain hyperedges of size
2 (in addition to hyperedges of size 3). First we will delete some vertices, and add certain
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hyperedges of size 2 into the remaining hypergraph so as to ensure the independence number
of the remaining hypergraph is smaller than that of H. Then applying induction we will
find edge-disjoint linear cycles (which may contain these added hyperedges) covering the
remaining hypergraph. It will turn out that the added hyperedges behave nicely, allowing
us to construct edge-disjoint linear cycles in H covering all of its vertices.

This Chapter is organized as follows: In Section 2.2 we prove Theorem 2.2 using our main
lemma - Lemma 2.6 (which is proved in Section 2.2.1). In Section 2.3 we prove Theorem
2.4. Finally in Section 2.4, we present the proof of Theorem 2.5.

2.2 Proof of Theorem 2.2
Let H be our 3-uniform hypergraph without linear cycles. From now on, we write the
hyperedge {a, b, c} ∈ E(H) as abc for convenience.

Definition 2.3. Given a vertex v ∈ V (H) and a hyperedge abc ∈ E(H), we say that v is
“strongly associated" to abc if at least two of the three edges vab, vbc, vca are in E(H) . We
say that v is “weakly associated" to abc if exactly one of the three edges vab, vbc, vca is in
E(H). We say that v is associated to abc if it is either strongly or weakly associated.

The set of pairs {{x, y} ⊂ {a, b, c} | vxy ∈ E(H)} is called the “support" of v in abc,
denoted sabc(v).

Definition 2.4 (thick pair). For any two vertices, a, b ∈ V (H), we call the pair {a, b} “thick"
if there are at least two different hyperedges each containing {a, b}. We call a hyperedge abc
“thick" if all the pairs {a, b}, {b, c} and {c, a} are thick.

Lemma 2.5. If abc ∈ E(H) is a thick hyperedge, then the set of vertices associated to it
consists of one of the following

1. Exactly two vertices that are strongly associated to abc.

2. Exactly one vertex that is strongly associated to abc and vertices w1, w2, . . . , wm such
that each wi is weakly associated to abc and |∪isabc(wi)| = 1. (It is possible that m = 0,
i.e., no such wi exists).

Proof. If there is no vertex strongly associated to abc, then since abc is thick, we must have
3 distinct vertices v1, v2, v3 such that v1ab, v2bc, v3ca ∈ E(H), a linear cycle, a contradiction.
So there must be a vertex strongly associated to abc.

Now we show that if there are two vertices p, q strongly associated to a hyperedge
abc ∈ E(H), then there are no other vertices associated to abc. Suppose by contradic-
tion that there are such vertices. Then, among these vertices there is a vertex r such that
|sabc(p) ∪ sabc(q) ∪ sabc(r)| = 3 since abc is thick. Now consider the bipartite graph whose
two color classes are {p, q, r} and {{a, b}, {b, c}, {c, a}} where v ∈ {p, q, r} is connected to
{x, y} ∈ {{a, b}, {b, c}, {c, a}} if vxy ∈ E(H). It can be easily checked that Hall’s condition
holds for the color class {p, q, r} and so there exists a matching between the two color classes,
but this produces a linear cycle (of size 3) in H, a contradiction.
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So the only remaining possibility is that abc has exactly one vertex which is strongly
associated to it and maybe some other vertices w1, w2, . . . , wm that are weakly associated
to it. We only have to show that |∪isabc(wi)| = 1. Suppose by contradiction that there
are vertices wi and wj such that their supports in abc are different. Let sabc(wi) = {{a, b}}
and sabc(wj) = {{b, c}} without loss of generality. Then, since abc is thick, there is a vertex
v such that v 6= wi, v 6= wj and acv ∈ E(H). Now, acv, abwi, bcwj is a linear cycle, a
contradiction.

Lemma 2.6 (Main Lemma). Let T be a linear tree. Then there exists a coloring of V (T ),
such that the hypergraph induced by V (T ) is properly colored and for each vertex v ∈ V (H) \
V (T ) where v is strongly associated to some hyperedge of T , there exists a coloring of v such
that hyperedges vab with a, b ∈ V (T ) are properly colored, and for each remaining vertex
v ∈ V (H) \ V (T ) the hyperedges vab with a, b ∈ V (T ) are properly colored regardless of the
color of v.

Before we prove this lemma, we will show how to prove Theorem 2.2 using it.

Observation 2.7. Let w ∈ V (T ). Notice that the above lemma holds even if we add the extra
condition that the color of w is given.

Now we prove our main theorem using this lemma.

Proof of Theorem 2.2. Let T1 be any skeleton of H. Then there exists a coloring of T1 given
by Lemma 2.6. Let U1 ⊆ V (H) \ V (T1) be the set of all vertices such that each u ∈ U1 is
strongly associated to some hyperedge of T1. If |U1| = 0, then by Lemma 2.6 all the vertices
of V (H)\V (T1) can be colored arbitrarily such that the hyperedges vab with a, b ∈ V (T1) are
properly colored. Also, since T1 is a skeleton, there are no hyperedges vxy where v ∈ V (T1)
and x, y ∈ V (H)\V (T1). Therefore, the vertices of V (H)\V (T1) can be colored independently
from vertices of V (T1) and so we have the same problem for the subhypergraph induced by
V (H) \ V (T1). So we can assume that |U1| 6= 0. Now let us define a sequence of linear trees
T1, T2, . . . , Ti, Ti+1, . . . , Tm recursively as follows: Let Ui ⊆ V (H) \ ∪ij=1V (Tj) be the set of
vertices where each u ∈ Ui is strongly associated to some hyperedge of ∪ij=1Tj and let Ti+1

be the skeleton in the subhypergraph induced by V (H) \ ∪ij=1V (Tj) which contains at least
one vertex from Ui (we continue this procedure as long as |Ui| 6= 0; so |Um| = 0). In fact,
we will show that |V (Ti+1) ∩ Ui| = 1. Let Hi denote the subhypergraph of H induced by
∪ij=1V (Tj).

Claim 2.8. For each 1 ≤ i ≤ m − 1, there is a linear path in Hi between any two vertices
u, v ∈ V (Hi). Moreover, V (Ti+1) ∩ Ui consists of only one vertex and this vertex can be
strongly associated to hyperedge(s) of Ts for exactly one 1 ≤ s ≤ i.

Proof of Claim 2.8. We prove the claim by induction on i. For i = 1, the statement is
trivial. Assume the statement is true for i = k. First we will show that there is a linear path
between u ∈ V (Tk+1)∩Uk and any v ∈ V (Hk). Let abc ∈ E(Ts) (for some 1 ≤ s ≤ k) be the
hyperedge in ∪kj=1Tj that is strongly associated to u. Consider the shortest linear path P1

containing v and a vertex of {a, b, c} (in case, v ∈ {a, b, c}, P1 consists of just v). Clearly,
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P1 cannot contain all 3 of the vertices a, b, c since it is a shortest path. If P1 contains only
one vertex from {a, b, c}, say a w.l.o.g, then since u is strongly associated to abc, either uac
or uab is in Hk+1, which together with P1 gives us a linear path from u to v as desired. If
P1 contains two vertices of {a, b, c}, say a, b w.l.o.g, then either uac or ubc is in Hk+1 which
together with P1 gives us a linear path from u to v. Notice that this path contains only one
vertex from Tk+1. Since there is a linear path between every 2 vertices of Tk+1 we have a
linear path between any vertex of Tk+1 and any vertex of Hk. By the induction hypothesis
there is a linear path between any two vertices of Hk and so we have proved the first part of
the claim.

Now assume by contradiction that there are two vertices u, u′ ∈ V (Tk+1) ∩ Uk. Let pqr
be the hyperedge in ∪kj=1Tj that is strongly associated to u′. Consider the shortest linear
path P2 containing u and a vertex of {p, q, r}. By the same argument as before, we can
assume that P2 contains at most two vertices of {p, q, r} and there is a hyperedge e such
that P2 ∪ e is a linear path between u and u′ which doesn’t contain any other vertices of
Tk+1. However, P2 ∪ e together with the linear path between u and u′ in Tk+1 gives us a
linear cycle, a contradiction.

So V (Tk+1)∩Uk consists of only vertex, say u. If u is strongly associated to two hyperedges
h1 ∈ Tr and h2 ∈ Ts (where r 6= s and r, s ≤ k), then the shortest linear path P between
h1 and h2 consists of at least one hyperedge. By a similar argument as before, there are
hyperedges e1, e2 containing u such that P , e1 and e2 form a linear cycle, a contradiction.

We will show that for each 1 ≤ k ≤ m, Hk is properly colored such that each Ti, i ≤ k
is colored according to Lemma 2.6. For k = 1 the above statement is trivially true. Let us
assume that the statement is true for k and show that it is true for k + 1.

By the above claim V (Tk+1)∩Uk consists of only one vertex u and this vertex is strongly
associated to hyperedge(s) of Ts for exactly one 1 ≤ s ≤ k. Also, it is easy to see that if
uab ∈ Hk+1 and a, b ∈ V (Hk) then a, b ∈ V (Ti) for some i ≤ k. If i = s and a, b ∈ V (Ts),
then we know by Lemma 2.6 that there exists a color for u, say c such that hyperedges
uab are properly colored. Let us color u by c. If i 6= s, and a, b ∈ V (Ti) then regardless
of the color of u the hyperedges uab are colored properly due to Lemma 2.6. Since the set
of vertices that are strongly associated to hyperedges of Tk+1 is disjoint from V (Hk) (the
already colored part), we can apply Lemma 2.6 to color Tk+1 such that u is still colored with
c by Observation 2.7. Therefore, we have shown that Hk+1 is properly colored such that
each Ti, i ≤ k + 1 is colored according to Lemma 2.6, as desired and so we have statement
for Hm by induction.

In the remaining vertices, namely V (H) \ V (Hm), since there are no strongly associated
vertices, by Lemma 2.6 they can be colored independently from Hm and we now have a
smaller vertex set: V (H) \ V (Hm) to color. Therefore, by induction on number of vertices
we may color H properly.
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2.2.1 Proof of Lemma 2.6 (Main Lemma)

let abc ∈ E(T ) and let u ∈ V (T ) be a vertex that’s strongly associated to abc. Then there
is a hyperedge uvw of the skeleton such that |{u, v, w} ∩ {a, b, c}| = 1 because otherwise
w.l.o.g there is a linear path P in T between u and a which doesn’t contain b and c. Since u
is strongly associated to abc, either uab or uac is a hyperedge of H. This hyperedge together
with P produces a linear cycle in H, a contradiction.

We identify some sets of vertices of size 5 which play an important role in the forthcoming
proof.

Definition 2.9. Let h1 = abc, h2 = bde where h1, h2 ∈ E(T ). If there is no hyperedge h ∈ H
such that |h ∩ (h1 ∪ h2)| = 2, then the set of vertices {a, b, c, d, e} is called a Special Block
of T .

Claim 2.10. Let h1 = abc, h2 = bde where h1, h2 ∈ E(T ) are thick hyperedges. If abe, cbd ∈
E(H) or abd, cbe ∈ E(H), then {a, b, c, d, e} is a Special Block.

Proof of Claim 2.10. It’s easy to see that if {x, y} ∈ {a, c, d, e} then either h1, h2 and xyz
or l1, l2 and xyz will create linear cycle. So the only cases that are left to be considered are
{x, y} = {d, b} or {x, y} = {e, b}. Since {d, e} is a thick pair either dea or dec is a hyperedge
in H. W.l.o.g. let’s say dec ∈ E(H). Then in either of the two remaining cases, xyz along
with abc and dec will create a linear cycle, a contradiction.

Claim 2.11. Let h1, h2 ∈ E(T ) be thick hyperedges. If there are two vertices of h2 which are
strongly associated to h1, then h1 ∪ h2 is a Special Block.

Proof of Claim 2.11. We know that |h1 ∩ h2| = 1 since a vertex of h2 is strongly associated
to h1. Let h1 = abc and h2 = dbe. So d and e are strongly associated to h1. Assume
by contradiction that there exists a hyperedge xyz ∈ H such that {x, y} ⊂ {a, b, c, d, e}
and z 6∈ {a, b, c, d, e}. First let us observe that {x, y} 6⊂ {a, b, c} because the hyperedge
abc already has two vertices d, e strongly associated to it and hence cannot have any other
vertex associated to it due to Lemma 2.5. So if we consider the bipartite graph whose color
classes are {d, e} and {{a, b}, {b, c}} where v ∈ {d, e} is connected to {x, y} ∈ {{a, b}, {b, c}}
if vxy ∈ E(H), it’s easy to see that Hall’s condition holds for this bipartite graph. Hence
there is a matching. So either abe, cbd ∈ E(H) or abd, cbe ∈ E(H). Now, by applying Claim
2.10, we can conclude that {a, b, c, d, e} is a Special Block.

If a hyperedge h is strongly associated to a vertex of another hyperedge h′, then it is easy
to see that there is a vertex in h which is associated to h′. Therefore, the above claim implies
that vertices of h1 ∪ h2 can’t be strongly associated to any hyperedge of E(T ) \ {h1, h2}.

Since the hypergraph induced on {a, b, c, d, e} is not K3
5 , it is easy to see that there is a

proper coloring c : {a, b, c, d, e} 7→ {1, 2}.

Claim 2.12. Assume that h1 = abc, h2 = bde and {a, b, c, d, e} is a Special Block of T . Let
Ta, Tb, Tc, Td, Te be maximal linear subtrees of T such that V (Tx) ∩ {a, b, c, d, e} = {x} where
x ∈ {a, b, c, d, e}. Then, if Lemma 2.6 holds for each Tx, where x ∈ {a, b, c, d, e} and coloring
c : {a, b, c, d, e} 7→ {1, 2} is given, then it holds for T as well.
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Observation 2.13. It is easy to see that V (Tx)∩V (Ty) = ∅ for any distinct x, y ∈ {a, b, c, d, e}
and ∪x∈{a,b,c,d,e}E(Tx) ∪ {h1, h2} = E(T ).

Proof of Claim 2.12. First we show that the hypergraph induced on V (T ) is properly col-
ored. Let v be a vertex which is strongly associated to a hyperedge h of Tx for some
x ∈ {a, b, c, d, e}. If v is in T , we know that there is a hyperedge h′ of T which contains
v such that |h ∩ h′| = 1. Since V (Tx) ∩ V (Ty) = ∅, h′ ∈ E(Tx) ∪ {h1, h2}. But we showed
that the vertices of h1 ∪ h2 can’t be strongly associated to any hyperedge of E(T ) \ {h1, h2}.
So v ∈ V (Tx). Since we assumed that Lemma 2.6 holds for Tx, by using Observation 2.7
for Tx, we have that the vertices of V (T ) \ V (Tx) and the vertices of V (Tx) can be colored
independently. This implies that the hypergraph induced by V (T ) is properly colored.

Let v ∈ V (H) \V (T ). First assume that v is not strongly associated to any hyperedge of
T and let p, q ∈ V (T ) be arbitrary. We have to show that vpq is properly colored regardless
of the color of v. If p, q ∈ Tx for some x ∈ {a, b, c, d, e} then we are done because we assumed
Lemma 2.6 holds for Tx. So, let p ∈ Tx and q ∈ Ty for some distinct x, y ∈ {a, b, c, d, e}.
Since both p and q can’t be in S (by definition of S), the smallest linear path between p
and q in T has 2 hyperedges. This linear path, together with vpq forms a linear cycle, a
contradiction.

Now assume that v is strongly associated to a hyperedge of T . If v is strongly associated
to hyperedges hx, hy of T such that hx ∈ E(Tx) and hy ∈ E(Ty), then it is easy find a linear
cycle using the minimal linear path in T between hx and hy. This implies that there is a
unique x ∈ {a, b, c, d, e} such that v is strongly associated to hyperedge(s) of only Tx. As
we showed in the previous paragraph if vpq ∈ E(H) then both p and q are in Ty for some
y ∈ {a, b, c, d, e}. If y 6= x, then we know that hyperedges vpq are properly colored regardless
of the color of v by applying Lemma 8 to Ty. If y = x, then by applying Lemma 8 to Ty
again, there is a coloring of v such that hyperedges vpq are properly colored, as desired.

So applying Claim 2.12 recursively, it suffices to prove Lemma 2.6 for a linear subtree T
of H which has no Special Block. So from now on, we may assume that there is no Special
Block in T .

We will now construct a special graph GT by following the steps in the Construction
below, one after another. This graph will be connected, and its vertex set and edge set
satisfy: V (GT ) = V (T ) and if ab ∈ E(GT ) then there exists a vertex x ∈ V (T ) such that
abx ∈ E(T ). We will then show later that this graph GT is actually a tree and that a
proper 2-coloring of GT will give us a proper 2-coloring of the hypergraph induced on V (T )
as demanded by Lemma 2.6.

Construction. 1. For every two hyperedges abc, ebd ∈ E(T ), where abc is a thick hyper-
edge which is strongly associated to the vertex e of ebd then,

(a) add eb to E(GT ).
(b) add ac to E(GT ) if ace ∈ E(H) (note that they may have been already added).

2. For every abc ∈ E(T ), if abc is a hyperedge of T and vab is a hyperedge of H such that
v is weakly associated to abc, then add ab to E(GT ).
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3. For every two hyperedges abc, ebd ∈ E(T ) which are stongly associated to a vertex
v ∈ V (H) \ V (T ), if acv (respectively edv) is a hyperedge of H, then add ac to E(GT )
(respectively ed ∈ E(GT )).

4. After completing the above steps, for every hyperedge abc ∈ E(T ) we do the following.
If abc is thick, and less than two of the three pairs ab, bc, ca are in E(GT ) we add some
more pairs arbitrarily so that E(GT ) has exactly two pairs from ab, bc, ca. If abc is not
thick, we add pairs from ab, bc, ca in a way that the only remaining pair is not thick.

Now we claim the following.

Claim 2.14. GT is a tree and so it can be properly colored.

Before we prove the above claim, we will show that it implies Lemma 2.6.
First let us prove that the proper coloring of GT gives us a proper coloring of the subhy-

pergraph induced by V (T ). Since V (GT ) = V (T ), a proper coloring of GT gives us a proper
coloring of the hyperedges of T . Therefore, it suffices to prove that for every hyperedge
abc ∈ E(T ), the hyperedges xyv where x, y ∈ {a, b, c} and v ∈ V (T ) \ {a, b, c} are properly
colored. If abc is not thick, then it is easy to see that xy (which has to be a thick pair) must
be in GT (due to point 4 in the construction of GT ) which means that x and y have different
colors and so the hyperedge xyv is properly colored, as desired. If abc is thick, then v must
be associated to abc. If v is weakly associated to abc, then by the construction of GT (point
2), xy must be in GT and so xyv is properly colored again. If v is strongly associated to abc,
then v belongs to a neighboring hyperedge of abc in T . W.l.o.g assume that vbw ∈ E(T ).
By the above construction of GT , we have bv, ac ∈ E(GT ). So b and v have different colors
and a and c have different colors. Therefore, all the hyperedges vxy are properly colored.
So the subhypergraph induced by V (T ) is properly colored.

Now let v ∈ V (H) \ V (T ). We will show that v satisfies the properties of Lemma 2.6. If
v is not strongly associated to any hyperedge of T , then for every xyv ∈ E(H), xy ∈ E(GT )
and so v can be colored arbitrarily. So assume that v is strongly associated to hyperedges
h1, h2, . . . , hk of T . We consider two cases. If k ≥ 2, then we claim that |hi ∩ hj| 6= ∅ for
every i, j ∈ {1, 2, . . . , k} because otherwise we can find a linear cycle using the shortest linear
path between hi and hj and v. Since hi are hyperedges of a linear tree, and every two of them
have a common point, there is a vertex o such that ∩ihi = {o}. Let us use different colors for
v and o. If xy 6∈ hi for any i, then as we saw before xyv is properly colored independent of
the color of v. So xy ∈ hi for some i. If o ∈ {x, y}, then since o and v are colored differently,
xyv is colored properly. If o 6∈ {x, y}, then by the construction of GT (see point 3), xy is in
GT and so xyv is properly colored, as desired. So the only remaining case is if k = 1. In this
case, the hyperedge h1 has two vertices of the same color and if we color v differently from
this color, hyperedges vxy are properly colored. This completes the proof of Lemma 2.6.

Proof of Claim 2.14. Assume by contradiction that GT has a cycle. Since T is a linear tree,
this cycle has to a triangle abc where abc ∈ E(T ) is a thick hyperedge. First observe that
none of the pairs ab, bc, ca were added during point 4 of the construction of GT . We now
consider different cases for how abc could be formed.
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Case 1. One of the pairs ab, bc, ca was added by Construction 1b.
W.l.o.g generality let the pair added by Construction 1b was ac. Then, there exists

a hyperedge bde ∈ E(T ) such that d is strongly associated to abc and acd ∈ E(H). So
either abd or bcd is in E(H). Clearly, there is no w 6∈ {a, b, c, d, e} such that wab or wbc
is a hyperedge of H for otherwise we have a linear cycle. So the only vertices that can be
associated to abc are d and e. Since abc is thick, ab, bc are thick pairs. If either bce or abe
is in E(H), then the conditions of Hall’s theorem hold for the bipartite graph whose color
classes are {ab, bc} and {d, e} where xy ∈ {ab, bc} is connected to z ∈ {d, e} if and only
if xyz ∈ E(H). So there is a matching and by Claim 2.10, we have a contradiction since
we assumed there is no Special Block of T . So assume that bce, abe 6∈ E(H). So the only
hyperedges (besides abc) containing ab and bc are abd and bcd which implies that ab and bc
were not added by Construction 1b, 2 and 3. So both ab and bc were added by Construction
1a. Assume that bc was added because either b or c was strongly associated to a hyperedge
h′. This means that h′ is thick and h′ = dbe because otherwise we have wbc ∈ E(H) for some
w 6∈ {a, b, c, d, e}, a contradiction. So c is strongly associated to bde. Similarly, a is strongly
associated to bde. So by Claim 2.11, {a, b, c, d, e} is a Special Block, a contradiction.

So from now on, we can assume that Construction 1b was never used to add the pairs
ab, bc, ca.
Case 2. One of the pairs ab, bc, ca was added by Construction 3.

W.l.o.g let us say ac was added by Construction 3. Then, there is a hyperedge bde ∈
E(T ) and v ∈ V (H) \ V (T ) such that v is strongly associated to both hyperedges abc,
bed and acv ∈ E(H). Since ab is a thick-pair, there is a vertex w 6∈ {a, b, c} such that
abw ∈ E(H). If w 6∈ {a, b, c, d, e, v} then since acv, wab ∈ E(H) and one of bev, bdv ∈ E(H),
they form a linear cycle, a contradiction. If w = e, then since abe, acv ∈ E(H) and one of
bdv, dev ∈ E(H), we have a linear cycle again, a contradiction. Similarly w 6= d. Therefore,
w = v. So the only hyperedge besides abc which contains ab, is abv. Similarly, the only
hyperedge besides abc which contains bc is bcv. This implies that ab and bc were not added
by Construction 1, 2 and 4. Also, it’s easy to see that they were not added by Construction 3,
otherwise v would have been strongly associated to a hyperedge of T which is not a neighbor
of ebd, which is a contradiction.

So the only reminaing case is when ab, bc, ca are added by Construction 1a or 2.
Case 3. ab, bc, ca were added by Construction 1a or 2.

Two of the pairs ab, bc, ca cannot be added by Construction 2 due to Lemma 2.5. There-
fore, we have two subcases: Either exactly one of ab, bc, ca was added by Construction 2 and
the other two were added by Construction 1a or all of them were added by Construction 1a.

Assume that all of the pairs ab, bc, ca were added by Construction 1a. Let xy ∈ {ab, bc, ca}.
Let us say xy was added because there is a thick hyperedge hxy ∈ E(T ) which is strongly
associated to either x or y. If any two of the there hyperedges hab, hbc, hca are the same, then
by Claim 2.11, we have a Special Block in T , a contradiction. Therefore, hab 6= hbc 6= hca.
But then, we have hyperedges abv1, acv2, bcv3 ∈ E(H) where v1 ∈ hab, v2 ∈ hbc, v3 ∈ hac
which form a linear cycle, a contradiction.
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Now assume that one of the pairs ab, bc, ca was added by Construction 2 and the other two
were added by Construction 1a. W.l.o.g assume that ab and bc were added by Construction
1a and ca by Construction 2. Let us say ab (respectively bc) was added because there is a thick
hyperedge hab ∈ E(T ) (respectively hbc ∈ E(T )) which is strongly associated to either a or b
(respectively b or c). So there are vertices v1 ∈ hab and v2 ∈ hbc such that abv1, bcv2 ∈ E(H).
If hab = hbc, then by Claim 2.11 we have a Special Block in T , a contradiction. So hab 6= hbc.
Let us say ac was added because there is a vertex w weakly associated to abc such that
wac ∈ E(H). If w 6= v1 and w 6= v2, then we have a linear cycle, namely acw, abv1, bcv2,
a contradiction. So let us assume w.l.o.g that w = v1. Let hab = v1ex where x is either a
or b. If x = b, then hab, v1ac, bcv2 is a linear cycle, a contradiction. If x = a, then clearly b
is strongly associated to hab = v1xe. So either the hyperedge abe ∈ E(H) or bev1 ∈ E(H).
This hyperedge together with acv1 and bcv2 gives us a linear cycle, a contradiction.

2.3 Proof of Theorem 2.4
Let H be a 3-uniform hypergraph without any linear cycles. First let us assume that there
are no vertices u, v ∈ V (H) such that for every x ∈ V (H) \ {u, v}, uvx ∈ E(H) and show
that Theorem 2.4 holds in this case whenever |V (H)| ≥ 6.

We distinguish some cases.

Case 1. There are no vertices u, v ∈ V (H) such that uvx ∈ E(H) for every x ∈ V (H) and
|V (H)| ≥ 6.

Let P = {p0q0p1, p1q1p2, p2q2p3, . . . , pk−1qk−1pk} be a longest linear path of H such that
p0q0p1 is the first and pk−1qk−1pk is the last hyperedge of the path. Consider a skeleton
containing P . The set of hyperedges of this skeleton incident on p1 (respectively pk−1)
except p1q1p2 is called as a windmill at p1 (respectively pk−1) and the size of this set is called
the size of the windmill. Thus there are two windmills corresponding to P and the skeleton
containing it. Among all the skeletons of maximum size which contain P , let us take a
skeleton T such that the size of the smaller windmill is minimum. W.l.o.g. we may assume
that the smaller windmill is at p1.

Lemma 2.15. Any hyperedge abc ∈ E(T ) is strongly associated to at most one vertex of
V (H) \ V (T ).

Proof. Suppose by contradiction that abc ∈ E(T ) is strongly associated to two vertices
v1, v2 ∈ V (H) \ V (T ). Consider the bipartite graph whose color classes are {v1, v2} and
{ab, bc, ca} where v ∈ {v1, v2} and xy ∈ {ab, bc, ca} are adjacent iff vxy ∈ E(H). Then it
can be easily seen that there is a matching saturating {v1, v2} between the two color classes.
If we replace abc by the two hyperedges corresponding to this matching we will get a skeleton
of bigger size contradicting the fact that T has maximum size.

We have the following corollary of the above lemma.
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Corollary 2.16. Let |V (H) \ V (T )| = t and let degree of v ∈ V (T ) in the subhypergraph of
H induced by V (T ) be dT (v). Then the degree of any vertex v ∈ V (T ) which is in exactly
one hyperedge of T , is at most dT (v) + t+ 1.

Let us call the subtree of T which contains the hyperedges of T incident to v as a star
of T at v ∈ V (T ). Considering the pairs covered by the hyperedges of T as a graph G(T ),
for any v ∈ V (T ) the pairs {x, y} that are at equal distance from v in G(T ) are called pairs
opposite to v. Clearly, every hyperedge of T has exactly one pair opposite to v. We have
the following simple lemmas which are stated without proofs.

Lemma 2.17. Let v ∈ V (T ) and vab ∈ E(H) be such that {a, b} does not intersect the star
at v ∈ V (T ). Then {a, b} is a pair opposite to v in T .

Lemma 2.18. Let p0q0x ∈ E(H) and let us consider the linear path between x and p0. Let
P ′ be the subpath of this linear path without the starting and ending hyperedges (i.e., not
including the two hyperedges which contain p0 and x). Then, for any y, z ∈ V (P ′), we have
p0yz 6∈ E(H).

Case 1.1. The size of the smaller windmill is at least 2.

We will show that the degree of p0 is at most n − 2. If x is in V (T ) \ {p1, p0, q0}, then
we claim that p0q0x 6∈ E(H) because if x is in the windmill around p1 then the linear path
P can be extended. If x is not in the windmill around p1 then by replacing the hyperedge
p0q0p1 with p0q0x will decrease the size of the smaller windmill contradicting the assumption
that the size of the smaller windmill is minimum.

The hyperedges containing p0 are of the following two types. We will count them sepa-
rately.

First, let us count the number of hyperedges of the type p0p1x where x ∈ V (T ) \ {q0}.
Since p0p1 can’t be opposite to any x ∈ V (T ) \ {q0}, by Lemma 2.17, p0p1 must intersect
the star at x. This means that x should be contained in the star at p1. So the number
of hyperedges of the type p0p1x where x ∈ V (T ) \ {q0} is 2w1 where w1 is the size of the
windmill at p1. Let w2 be the size of the windmill at pk−1 (So w1 ≤ w2).

Now, let us count the number of hyperedges of the type p0xy where x, y ∈ V (T )\{p1, q0}.
Since xy doesn’t intersect the star at p0, by Lemma 2.17, xy is opposite to p0. If xy is a pair
of the hyperedge of either windmill then we can extend P by p0xy, a contradiction. So the
number of such xy pairs is at most V (T )−(2w1+1)−2w2

2
= (n−t)−(2w1+1)−2w2

2
.

Then the total degree of p0 in the subhypergraph induced by V (T ),

dT (p0) ≤ 1 + 2w1 +
(n− t)− (2w1 + 1)− 2w2

2
.

Thus by Corollary 2.16, the degree of p0 is at most

1 + 2w1 +
(n− t)− (2w1 + 1)− 2w2

2
+ t+ 1 =

n+ t+ 2w1 − 2w2 + 3

2
≤ n+ t+ 3

2
.

So we are done unless n+t+3
2
≥ n − 1, which simplifies to n − t = |V (T )| ≤ 5 and this is

considered in Case 1.3.
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Case 1.2. The size of the smaller windmill is 1.

There are three types of hyperedges in H that contain p0: hyperedges of the type p0q0x,
p0yz and p0p1w. We always consider the hyperedge p0q0p1 as of the type p0q0x. Let r be
the number of hyperedges in H of the type p0q0x where x ∈ V (H) \ {p0, q0} and let s be the
number of hyperedges in H of the type p0yz where y, z ∈ V (H) \ {p0, q0, p1}.

Lemma 2.19. r + s ≤ n− 2 and if equality holds then p0pkqk−1 ∈ E(H).

Proof. First we claim that r + s ≤ n − s. Since {y, z} doesn’t intersect the star at p0, by
Lemma 2.17, the pair {y, z} is opposite to p0. We claim that if p0yz ∈ E(H) then the pair
{y, z} must be contained in the linear path P . It is easy to see that since {y, z} is opposite
to p0, either both y and z are contained in P or both of them are not in P . In the latter
case, P can be extended by adding the hyperedge p0yz, contradicting the maximality of P .

Now consider the pair {y1, z1} closest to p0 such that p0y1z1 ∈ E(H). By Lemma 2.18,
the farthest x ∈ P from p0 such that p0q0x ∈ E(H) can be either y1 or z1 but no later. This
means that every vertex in V (H) \ {p0, q0} belongs to at most one hyperedge of the type
p0q0x or p0yz except y1, z1. So r + 2s ≤ n− 2 + 2 = n, as desired.

Since r+s ≤ n−s, we are done if s ≥ 2 and so we can assume s ≤ 1. By our assumption
that there are no vertices u, v ∈ V (H) such that for every x ∈ V (H) \ {u, v}, uvx ∈ E(H),
we have r ≤ n− 3. So, r+ s ≤ n− 3 + 1 = n− 2, as desired. If r+ s = n− 2, then we must
have s ≥ 1. That is, there exists an edge of the type p0yz where y, z ∈ V (H) \ {p0, q0, p1}.
Since the pair {y, z} must be opposite to p0 and is contained in P , if {y, z} 6= pkqk−1 then by
Lemma 2.18, p0q0pk, p0q0qk−1 6∈ E(H). So the vertices pk, qk−1 do not belong to a hyperedge
of the type p0q0x or p0yz. So, by the same argument as before, r + 2s ≤ n− 4 + 2 = n− 2
which is a contradiction since we assumed r + s = n− 2 and s ≥ 1.

Case 1.2.1. There is a hyperedge of type p0q0x ∈ E(H) where x ∈ V (T ) \ {p0, p1, p2, q0, q1}.

In this case, we claim that number of hyperedges of the type p0p1y in H where y ∈
V (H) \ {p0, q0, p1} is at most 1 and if such a hyperedge exists then y is either p2 or q1.
Assume by contradiction that p0p1y

′ ∈ E(H) where y′ 6= q0. Let P1 be a linear path in
T between (and including) x and p1. If y′ 6∈ P1, then p0q0x, p0p1y

′ and P1 form a linear
cycle. So y′ ∈ P1. Since {p0, p1} cannot be an opposite pair of any vertex on P1 except q0, by
Lemma 2.17, {p0, p1} must intersect the star at y′. So y′ is either p2 or q1. If both hyperedges
p0p1p2 and p0p1q1 are in H then p0q0x, P1 \ {p1p2q1} and one of these two hyperedges form
a linear cycle. Therefore the desired claim follows.

If both hyperedges p0p1p2, p0p1q1 are not in H, the degree of p0 is r + s and by Lemma
2.19, r+ s ≤ n− 2 and so Theorem 2.4 holds. Therefore, from now on, we may assume that
exactly one of the two hyperedges p0p1p2, p0p1q1 is in H. If r + s is strictly less than n− 2
then degree of p0 is at most n − 2 and Theorem 2.4 holds again. So we also assume that
r + s = n− 2. By Lemma 2.19 if r + s = n− 2, then p0pkqk−1 ∈ E(H). It follows that the
size of the windmill at pk−1 is 1 because if it is more than 1, then the linear path P can be
extended by adding p0pkqk−1 to it. Therefore the size of the windmills at pk−1 and p1 are
both 1. By symmetry, if we define r′ and s′ for pk as we defined r and s for p0, Lemma 2.19
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holds for them. Since a hyperedge of the type pkqk−1x exists, namely pkqk−1p0, by the same
argument as before we can assume that r′ + s′ = n − 2 and so p0q0pk ∈ E(H). By Lemma
2.18 for pk, it is easy to see that s′ ≤ 1. So r′ ≥ n− 3. We know that p0p1y ∈ E(H) where
y is either p2 or q1. Now p0q0pk, p0p1y and either pkqk−1y or pkqk−1p1 (one of them exists
because r′ ≥ n− 3) form a linear cycle, a contradiction.

Case 1.2.2. There is no hyperedge of type p0q0x ∈ E(H) where x ∈ V (T )\{p0, p1, p2, q0, q1}.

Let d0 be the degree of p0 in the subhypergraph ofH induced by {p0, p1, p2, q0, q1}. Clearly
d0 ≤ 6. If pkqk−1p0 ∈ E(H) (so the size of the windmill at pk−1 is 1), then by symmetry
(by looking at pk instead of p0) we are done by the previous case. So we can assume that
pkqk−1p0 6∈ E(H).

If there is a vertex v ∈ V (H)\V (T ) which is strongly associated to p0q0p1, then we claim
that d0 ≤ 4 because if either p0q0p2 or p0q0q1 is in H, then it is easy to check that we have a
linear cycle. Let |V (H) \ V (T )| = t. So the degree of p0 in the subhypergraph of H induced
by T , dT (p0) ≤ d0 + n−t−7

2
(here we used pkqk−1p0 6∈ E(H)). By Corollary 2.16, degree of p0

is at most
d0 +

n− t− 7

2
+ t+ 1 ≤ n+ t+ 3

2
.

Then, Theorem 2.4 holds unless n+t+3
2
≥ n − 1 which simplifies to n − t ≤ 5 and this is

considered in Case 1.3.
If there is no vertex v ∈ V (H) \ V (T ) which is strongly associated to p0q0p1, then degree

of p0 is at most dT (p0) + t. And, dT (p0) ≤ d0 + n−t−7
2

. So, degree of p0 is at most

d0 +
n− t− 7

2
+ t ≤ d0 +

n+ t− 7

2
,

and Theorem 2.4 holds unless d0 + n+t−7
2
≥ n − 1 which simplifies to d0 ≥ n−t+5

2
. If

n− t > 7 then d0 > 6 which is impossible. So we may assume n− t ≤ 7. The case n− t ≤ 5
is considered in Case 1.3. Since n− t is odd (the number of vertices in the skeleton is odd)
we only have to deal with the case when n − t = 7. In this case the size of the skeleton
T is 3 and since the size of the smaller windmill is 1, T consists only of a linear path of
size 3. In this case, d0 = 6. By the same argument, the degree of q0 in the subhypergraph
induced by {p0, p1, p2, q0, q1} is 6. By symmetry the degree of p3 in the subhypergraph of
H induced by {p3, q2, p2, q1, p1} is also 6 and so p0p1q1, q0p1p2, p3p2q1 ∈ E(H) form a linear
cycle, a contradiction.

Case 1.3. |V (T )| ≤ 5 for a skeleton T of H.

Let T be a skeleton of H where |V (T )| ≤ 5 and we want to show that Thoerem 2.4 holds.
Since |V (T )| is odd, either |V (T )| = 3 or |V (T )| = 5.

First assume |V (T )| = 3 and let T consist of one hyperedge abc. Consider the trace
graph Ga where {x, y} ∈ E(Ga) if and only if axy ∈ E(H). Now notice that if there are two
edges pq, rs ∈ E(Ga) that are disjoint then apq, ars ∈ E(H) form a skeleton on 5 vertices,
a contradiction. So every two edges of Ga have a common vertex. It is easy to see that the
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set of edges of such a graph is either a star (a graph where all the edges have a common
vertex) or a triangle. Notice that there may be some isolated vertices in the graph. Since
|V (Ga)| = |V (H)| − 1 ≥ 5, we have |E(Ga)| ≤ |V (Ga)| − 1. So the degree of a in H is
|E(Ga)| ≤ |V (Ga)| − 1 = |V (H)| − 2 as desired.

Now let |V (T )| = 5 and E(T ) = {a1a2b, c1c2b}. Since V (H) ≥ 6, |V (H) \ V (T )| 6= ∅ We
consider two cases.

Case 1.3.1. There is no vertex in V (H)\V (T ) which is strongly associated to any hyperedge
of T .

Since H is connected and T is a skeleton, there must be an edge xyv where x, y ∈ V (T )
and v ∈ V (H)\V (T ). By assumption we know that v is not strongly associated to any edge of
T . So the degree of v in the subhypergraph induced on V (T )∪{v} is at most 2. Now consider
the trace graph Gv on the vertex set V (Gv) := V (H)\ (V (T )∪{v}) where ab ∈ E(Gv) if and
only if abv ∈ E(H). Now notice that if there are two edges pq, rs ∈ E(Gv) that are disjoint
then vpq, vrs, vxy ∈ E(H) form a skeleton on 7 vertices, a contradiction. So every two
edges of Gv have a common vertex and so E(Gv) is either a triangle or a star. In either case,
|E(Gv)| ≤ |V (Gv)|. So the degree of v is at most 2+|E(Gv)| ≤ 2+|V (Gv)| = 2+n−6 = n−4.

Case 1.3.2. There is a vertex v ∈ V (H) \ V (T ) which is strongly associated to a hyperedge
of T .

Assume without loss of generality that v is strongly associated to a1a2b. So vbai ∈ E(H)
for some i ∈ {1, 2} which implies that there is no hyperedge vxy with x, y ∈ V (H) \ (V (T )∪
{v}) because otherwise vxy, vbai, bc1c2 form a skeleton on 7 vertices. If v is not strongly
associated to bc1c2, then the degree of v is at most 1+3 = 4 and we are done since we assumed
V (H) ≥ 6. Therefore, we may assume v is strongly associated to bc1c2 and so vbcj ∈ E(H)
for some j ∈ {1, 2}. Now it is easy to see that there are no hyperedges a1a2ck and c1c2ak for
any k ∈ {1, 2} because otherwise we have a linear cycle. If any of the vertices {a1, a2, c1, c2}
have degree at most 2 in the subhypergraph induced by V (T ), then by Corollary 2.16, the
degree of this vertex in H is at most 2 + t + 1 = t + 3 where V (H) \ V (T ) = t. and we are
done because V (H) = t + 5. So we may assume that all of the vertices {a1, a2, c1, c2} have
degree at least 3 in the subhypergraph induced by V (T ). It is easy to see that the only way
this degree condition is met for the vertex ai is if aibc1, aibc2 ∈ E(H) for each i ∈ {1, 2}. This
implies that a1a2v, c1c2v 6∈ E(H) because otherwise we have a linear cycle. So the degree of
v is at most 4 and we are done because V (H) ≥ 6.

Case 2. If there are vertices u, v ∈ V (H) such that uvx ∈ E(H) for every x ∈ V (H).

If we assume by contradiction that Theorem 2.4 does not hold, then by the previous
section, whenever |V (H)| ≥ 6 we know that there are vertices u, v ∈ V (H) such that
uvx ∈ E(H) for every x ∈ V (H).

Lemma 2.20. Let H be a 3-uniform linear cycle free hypergraph. If the degree of every
vertex in H is at least V (H)− 1 where |V (H)| ≥ 6, then there is a subhypergraph H0 where
degree of every vertex in H0 is at least V (H0) + 1 and V (H0) = V (H)− 4.
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Proof. Let |V (H)| = n. Let u, v ∈ V (H) such that uvw ∈ E(H) for every w ∈ V (H). Since
degree of u is at least n−1, there must a hyperedge xyu where x, y ∈ V (H)\{u, v}. If there
is a hyperedge xab ∈ E(H) where a, b ∈ V (H) \ {u, v, x, y}, then the hyperedges, uva, xab
and xyu form a linear cycle, a contradiction. Therefore, y ∈ {a, b}.

Consider the trace graph Gu,v where {p, q} ∈ E(Gu,v) if and only if either pqu ∈ E(H)
or pqv ∈ E(H). Let the degree of x in Gu,v be d and let the corresponding edges be
xy1, xy2, . . . , xyd. If d ≥ 2 and xyiu, xyjv ∈ E(H) where i 6= j, then xyiu, xyjv and uva
where a ∈ {u, v, yi, yj, x} form a linear cycle. So if d ≥ 2, then either xyiu ∈ E(H) for every
1 ≤ i ≤ d or xyiv ∈ E(H) for every 1 ≤ i ≤ d. W.l.o.g assume the former. Consider the case
when d ≥ 3. We know that if xab ∈ E(H) with a, b ∈ V (H) \ {u, v, x} then yi ∈ {a, b}. So it
follows that y1, y2, . . . , yd ∈ {a, b}, which is impossible when d ≥ 3. Therefore, xab 6∈ E(H)
where a, b ∈ V (H)\{u, v, x} and so the degree of x is d+1 ≤ n−3+1 = n−2, a contradiction.
Now consider the case when d = 2. In this case, we can have xy1y2 ∈ E(H). So the degree
of x is at most d+ 2 = 4 a contradiction since n ≥ 6. Therefore we conclude that d = 1. In
this case we claim that xy1a ∈ E(H) for every a ∈ V (H) \ {x, y1} because otherwise degree
of x is at most n − 2. Let the subhypergraph induced by V (H) \ {u, v, x, y1} be H0. It is
easy to see that if abu ∈ E(H) for a, b ∈ V (H0) then the hyperedges abu, uvx, xya form a
linear cycle, a contradiction. Similarly, abv, abx, aby 6∈ E(H). So the degree of a vertex in
H0 is at least n− 1− 2 = V (H0) + 1, as desired.

Actually, we will use the following simple corollary obtained by repeated applications of
the lemma above.

Corollary 2.21. If Hl is a subhypergraph of H where degree of each vertex in V (Hl) is at least
|V (Hl)|+ nl, where nl ≥ −1, then it has a subhypergraph Hl+1 such that the degree of every
vertex in V (Hl+1) is at least |V (Hl+1)|+nl+1, where nl+1 = nl+2 and |V (Hl+1)| = |V (Hl)|−4.

Assume by contradiction that Theorem 2.4 does not hold. That is, there is a hypergraph
H := H1 on n vertices where degree of every vertex is at least n − 1 and n ≥ 10. Then by
using Corollary 2.21, there is an l such that |V (Hl)| ≤ 5 and the degree of every vertex in Hl

is at least |V (Hl)|+ 3 (notice that since n ≥ 10, we must have l ≥ 3), which is impossible.

2.4 Proof of Theorem 2.5
We call a hypergraph mixed if it can contain hyperedges of both sizes 2 and 3. A linear
cycle in a mixed hypergraph is still defined according to Definition 2.1. We will in fact prove
our theorem for mixed hypergraphs (which is clearly a bigger class of hypergraphs than
3-uniform hypergraphs). More precisely, we will prove the following stronger theorem.

Theorem 2.22. If H is a mixed hypergraph, then its vertex set V (H) can be covered by at
most α(H) edge-disjoint linear cycles (where we accept a single vertex or a hyperedge as a
linear cycle).
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Proof. We prove the theorem by induction on α(H). If |V (H)| = 1 or 2, then the statement
is trivial. If |V (H)| ≥ 3 and α(H) = 1, then H contains all possible edges of size 2 and there
is a Hamiltonian cycle consisting only of edges of size 2, which is of course a linear cycle
covering V (H).

Let α(H) > 1. If E(H) = ∅, then α(H) = V (H) and the statement of our theorem holds
trivially since we accept each vertex as a linear cycle. If E(H) 6= ∅, then let P be a longest
linear path in H consisting of hyperedges h0, h1, . . . , hl (l ≥ 0). If hi is of size 3, then let
hi = vivi+1ui+1 and if it is of size 2, then let hi = vivi+1. A linear subpath of P starting
at v0 (i.e., a path consisting of hyperedges h0, h1, . . . , hj for some j ≤ l) is called an initial
segment of P . Let C be a linear cycle in H which contains the longest initial segment of P .
If there is no linear cycle containing h0, then we simply let C = h0.

Let us denote the subhypergraph of H induced on V (H)\V (C) by H\C. Let R = {vkuk |
{vk, uk} ⊆ V (P ) \ V (C) and v0vkuk ∈ E(H)} be the set of red edges. Let us construct a
new hypergraph H ′ where V (H ′) = V (H) \V (C) and E(H ′) = E(H \C)∪R. We will show
that α(H ′) < α(H) and any linear cycle cover of H ′ can be extended to a linear cycle cover
of H by adding C and extending the red edges by v0.

The following claim shows that the independence number of H ′ is smaller than the
independence number of H. This fact will later allow us to apply induction.

Claim 2.23. If I is an independent set in H ′, then I ∪ v0 is an independent set in H.

Proof. Suppose by contradiction that h ⊆ (I ∪ v0) for some h ∈ E(H). Then, clearly v0 ∈ h
because otherwise I is not an independent set in H ′. Now let us consider different cases
depending on the size of h ∩ (V (P ) \ V (C)). If |h ∩ (V (P ) \ V (C))| = 0 then, by adding h
to P , we can produce a longer path than P , a contradiction. If |h ∩ (V (P ) \ V (C))| = 1, let
h ∩ (V (P ) \ V (C)) = {x}. Then the linear subpath of P between v0 and x together with h
forms a linear cycle which contains a larger initial segment of P than C, a contradiction. If
|h ∩ (V (P ) \ V (C))| = 2, then let h ∩ (V (P ) \ V (C)) = {x, y}. Let us take smallest i and
j such that x ∈ hi and y ∈ hj (i.e., if x ∈ hi ∩ hi+1 then let us take hi). If i 6= j, say i < j
without loss of generality, then the linear subpath of P between v0 and x together with h
forms a linear cycle with longer initial segment of P than C, a contradiction. Therefore,
i = j but in this case, {x, y} is a red edge and so at most one of them can be contained in
I, contradicting the assumption that h = v0xy ⊆ (I ∪ v0). Hence, I ∪ v0 is an independent
set in H, as desired.

The following claim will allow us to construct linear cycles in H from red edges.

Claim 2.24. The set of hyperedges of every linear cycle in H ′ contains at most one red edge.

Proof. Suppose by contradiction that there is a linear cycle C ′ in H ′ containing at least
two hyperedges which are red edges. Then there is a linear subpath P ′ of C ′ consisting of
hyperedges h′0, h′1, . . . , h′m such that h′0 := vsus and h′m := vtut (where s > t) are red edges
but h′k is not a red edge for any 1 ≤ k ≤ m − 1. Let us first take the smallest i such
that V (P ′) ∩ hi 6= ∅ and then the smallest j such that h′j ∩ hi 6= ∅. It is easy to see that
|V (P ′) ∩ hi| ≤ 2 (since i was smallest). If

∣∣∣h′j ∩ hi∣∣∣ = 1, then the linear cycle consisting
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of hyperedges h′1, . . . , h′j and hi, hi−1, . . . , h0 and v0vsus contains a larger initial segment of
P than C (as h′j ∩ hi ∈ V (P ) \ V (C)), a contradiction. If

∣∣∣h′j ∩ hi∣∣∣ = 2, then notice that∣∣∣h′j+1 ∩ hi
∣∣∣ = 1. Now the linear cycle consisting of the hyperedges h′m−1, h

′
m−2, . . . , h

′
j+1 and

hi, hi−1, . . . , h0 and v0vtut contains a larger initial segment of P than C, a contradiction.

By Claim 2.23, α(H ′) ≤ α(H)− 1. So by induction hypothesis, V (H ′) can be covered by
at most α(H)− 1 edge-disjoint linear cycles (where we accept a single vertex or a hyperedge
as a linear cycle). Now let us replace each red edge {x, y} with the hyperedge xyv0 of H.
Claim 2.24 ensures that in each of these linear cycles, at most one of the hyperedges is a
red edge. Therefore, it is easy to see that after the above replacement, linear cycles of H ′
remain as linear cycles in H and they cover V (H ′) = V (H) \V (C). Now the linear cycle C,
together with these linear cycles give us at most α(H) − 1 + 1 = α(H) edge-disjoint linear
cycles covering V (H), completing the proof.
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Chapter 3

Asymptotics for Turán numbers of cycles
in 3-uniform hypergraphs

3.1 Introduction

Recall that a Berge cycle of length k ≥ 2, denoted by Ck, is an alternating sequence of
distinct vertices and distinct edges of the form v1, h1, v2, h2, . . . , vk, hk where vi, vi+1 ∈ hi for
each i ∈ {1, 2, . . . , k − 1} and vk, v1 ∈ hk. (Note that if a hypergraph does not contain a
Berge-C2, then it is linear.) This definition of a hypergraph cycle is the classical definition
due to Berge. More generally, if F = (V (F ), E(F )) is a graph and Q = (V (Q), E(Q)) is a
hypergraph, then we say Q is Berge-F if there is a bijection φ : E(F ) → E(Q) such that
e ⊆ φ(e) for all e ∈ E(F ). In other words, given a graph F we can obtain a Berge-F by
replacing each edge of F with a hyperedge that contains it.

The systematic study of the Turán numbers of Berge cycles started with the study of
Berge triangles by Győri [47], and continued with the study of Berge five cycles by Bollobás
and Győri [9] who showed the following.

Theorem 3.1 (Bollobás, Győri [9]). We have,

(1 + o(1))
n3/2

3
√

3
≤ ex3(n,C5) ≤

√
2n3/2 + 4.5n.

The following construction of Bollobás and Győri shows the lower bound in Theorem 3.1.

Bollobás-Győri Example. Take a C4-free bipartite graph G0 with n/3 vertices in each
part and (1 + o(1))(n/3)3/2 edges. In one part, replace each vertex u of G0 by a pair of two
new vertices u1 and u2, and add the triple u1u2v for each edge uv of G0. It is easy to check
that the resulting hypergraph H does not contain a Berge cycle of length 5. Moreover, the
number of hyperedges in H is the same as the number of edges in G0.

In this chapter, we improve Theorem 3.1 as follows.
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Theorem 3.2 (E., Győri, Methuku [29]). We have,

ex3(n,C5) < 0.254n3/2 +O(n).

Roughly speaking, our proof idea is to analyze the structure of Berge-C5-free hypergraphs,
and use this structure to efficiently limit the number of paths of length 3 in the 2-shadow;
which is then combined with the lower bound on the number of paths of length 3 provided
by the Blakley-Roy inequality [7].

Naturally, we also consider forbidding Berge k-cycles in linear hypergraphs. For k ≥ 2,
Füredi and Özkahya [40] showed exlin

3 (n,C2k+1) ≤ 2kn1+1/k + 9kn. In fact it is shown in
[46, 40] that ex3(n,C2k+1) ≤ O(n1+1/k). For the even case it is easy to show exlin

3 (n,C2k) ≤
ex(n,C2k) = O(n1+1/k) by selecting a pair from each hyperedge of a C2k-free 3-uniform linear
hypergraph. A (Berge) path of length k is an alternating sequence of distinct vertices and
distinct edges of the form v0, h0, v1, h1, v2, h2, . . . , vk−1, hk−1, vk where vi, vi+1 ∈ hi for each
i ∈ {0, 1, 2, . . . , k−1}. Below we concentrate on the linear Turán numbers of C3, C4 and C5.

As discussed in Chapter 1, determining exlin
3 (n,C3) was settled by Ruzsa and Szemerédi

[68], showing that n
2− c√

logn < exlin
3 (n,C3) = o(n2) for some constant c > 0.

Only a handful of results are known about the asymptotic behaviour of Turán numbers
for hypergraphs. In this chapter, we focus on determining the asymptotics of exlin

3 (n,C5)
by giving a new construction, and a new proof of the upper bound which introduces some
important ideas. We also determine the asymptotics of exlin

3 (n,C4) and construct 3-uniform
linear hypergraphs avoiding linear cycles of given odd length(s).

The following is one of the main results in this chapter.

Theorem 3.3 (E., Győri, Methuku [30]).

exlin
3 (n,C5) =

1

3
√

3
n3/2 +O(n).

To show the lower bound in the above theorem we give the following construction. For
the sake of convenience we usually drop floors and ceilings of various quantities in the con-
struction below, and in the rest of the chapter, as it does not effect the asymptotics.

Construction of a C5-free linear hypergraph H: For each 1 ≤ t ≤
»
n/3, let

Lt = {lt1, lt2, . . . , lt√n/3
} and Rt = {rt1, rt2, . . . , rt√n/3

}. Let B = {vi,j | 1 ≤ i, j ≤
»
n/3}. The

vertex set of H is V (H) =

√
n/3⋃
i=1

(Li ∪ Ri) ∪ B and the edge set of H is E(H) = {vi,jltirtj |

vi,j ∈ B and 1 ≤ t ≤
»
n/3}.

Clearly |V (H)| = n and |E(H)| = n3/2

3
√

3
and H is linear. It is easy to check that H is

C5-free but this is proved in a more general setting in Theorem 3.5.
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Lazebnik and Verstraëte [59] showed that

exlin
3 (n, {C3, C4}) =

n3/2

6
+O(n). (3.1)

This was remarkable especially considering the fact that the asymptotics for the correspond-
ing extremal function for graphs ex(n, {C3, C4}) is not known and is a long standing problem
of Erdős [18]. Erdős and Simonovits [19] conjectured that ex(n, {C3, C4}) = exbip(n,C4)
while Allen, Keevash, Sudakov, and Verstraëte [1] conjectured that this is not true.

In this chapter we strengthen the above mentioned result of Lazebnik and Verstraëte
[59], by showing that their upper bound in (3.1) still holds even if the C3-free condition is
dropped. This shows exlin

3 (n,C4) ∼ exlin
3 (n, {C3, C4}), as detailed below.

Theorem 3.4 (E., Győri, Methuku [30]).

exlin
3 (n,C4) ≤ 1

6
n
√
n+ 9 +

n

2
=
n3/2

6
+O(n).

The lower bound exlin
3 (n,C4) ≥ 1

6
n3/2− 1

6

√
n follows from (3.1). (Note that the construc-

tion from [59] showing this lower bound is C3-free as well.) Therefore,

exlin
3 (n,C4) =

n3/2

6
+O(n).

The last result of this chapter shows strong connection between Turán numbers of even
cycles in graphs and linear Turán numbers of linear cycles of odd length in 3-uniform hyper-
graphs. This is explained below, after introducing some definitions.

A linear cycle C lin
k of length k ≥ 3 is an alternating sequence v1, h1, v2, h2, ..., vk, hk of

distinct vertices and distinct hyperedges such that hi∩hi+1 = {vi+1} for each i ∈ {1, 2, . . . , k−
1}, h1 ∩ hk = {v1} and hi ∩ hj = ∅ if 1 < |j − i| < k − 1. (A linear path can be defined
similarly.) The vertices v1, v2, . . . , vk are called the basic vertices of C lin

k and the graph with
the edge set {v1v2, v2v3, . . . , vk−1vk, vkv1} is called the basic cycle of C lin

k .

Let Ck and Clin
k denote the set of (Berge) cycles Cl and the set of linear cycles C lin

l , respec-
tively, where l has the same parity as k and 2 ≤ l ≤ k. In particular, in Theorem 3.5 we will
be interested in the sets C2k−2 = {C2, C4, C6, . . . , C2k−2} and Clin

2k+1 = {C lin
3 , C lin

5 , . . . , C lin
2k+1}.

Note that the (Berge) cycle C2 corresponds to two hyperedges that share at least 2 vertices,
so a hypergraph is linear if and only if it is C2-free. In particular, for graphs (i.e., 2-uniform
hypergraphs) the C2-free condition does not impose any restriction, and there is no difference
between a (Berge) cycle Cl and a linear cycle C lin

l .

Recall that Bondy and Simonovits [10] showed that for k ≥ 2, ex(n,C2k) ≤ ckn
1+ 1

k for
all sufficiently large n. Improvements to the constant factor ck are made in [72, 66, 13]. The
girth of a graph is the length of a shortest cycle contained in the graph. For k = 2, 3, 5,
constructions of C2k-free graphs on n vertices with Ω(n1+ 1

k ) edges are known: Benson [6] and
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Singleton [69] constructed a bipartite C6-free graph with (1+o(1))(n/2)4/3 edges and Benson
[6] constructed a bipartite C10-free graph with (1 + o(1))(n/2)6/5 edges. For k 6∈ {2, 3, 5} it is
not known if the order of magnitude of ex(n,C2k) is Θ(n1+ 1

k ). The best known lower bound
is due to Lazebnik, Ustimenko and Woldar [60], who showed that there exist graphs of girth
more than 2k + 1 containing Ω(n1+ 2

3k−3+ε ) edges where k ≥ 2 is fixed, ε = 0 if k is odd and
ε = 1 if k is even.

Recently Collier-Cartaino, Graber and Jiang [14] showed that for all l ≥ 3, exlin
3 (n,C lin

l ) ≤
O(n1+ 1

bl/2c ). In fact, they proved the same upper bound for all r-uniform hypergraphs with
r ≥ 3. However, it is not known if C lin

l -free linear 3-uniform hypergraphs on n vertices with
Ω(n1+ 1

bl/2c ) hyperedges exist. It is mentioned in [14] that the best known lower bound

exlin
3 (n,C lin

l ) ≥ Ω(n1+ 1
l−1 ), (3.2)

was observed by Verstraëte, by taking a random subgraph of a Steiner triple system.

If l = 2k+1 is odd, then we are able to construct a Clin
2k+1-free 3-uniform linear hypergraph

on n vertices with Ω(n1+ 1
k ) hyperedges whenever a C2k−2-free graph with Ω(n1+ 1

k−1 ) edges
exists. More precisely, we show:

Theorem 3.5 (E., Győri, Methuku [30]). Let exbip(n, C2k−2) ≥ (1 + o(1))c
Ä
n
2

äα
= Ω(nα) for

some c, α > 0. Then,

exlin
3 (n, Clin

2k+1) ≥ (1 + o(1))
αc

4α− 2
·
Ç

α− 1

c(2α− 1)

å1− 1
α

n2− 1
α = Ω(n2− 1

α ).

If 2k − 2 = 2, then by definition C2k−2 = {C2}, so in this case the C2k−2-free condition
does not impose any restriction. Thus in order to bound exbip(n, C2) from below, one can
take a complete balanced bipartite graph. Therefore, using c = 1 and α = 2 in the above
theorem, we get exlin

3 (n, Clin
5 ) ≥ (1 + o(1))n

3/2

3
√

3
. Since a 3-uniform linear hypergraph which is

both C lin
3 -free and C lin

5 -free is (Berge) C5-free, this also provides the desired lower bound in
Theorem 3.3. As we mentioned before, in the cases 2k − 2 = 4, 6, 10, it is known that c = 1
and α = 1 + 1

k−1
by the work of Benson and Singleton and for all k ≥ 2, it is known that

α = 1 + 2
3k−6+ε

by the work of Lazebnik, Ustimenko and Woldar, where ε = 0 if k is odd
and ε = 1 if k is even; so substituting these in Theorem 3.5 and combining it with the upper
bound of Collier-Cartaino, Graber and Jiang, we get the following corollary.

Corollary 3.1. For k = 2, 3, 4, 6, we have exlin
3 (n, Clin

2k+1) ≥ (1 + o(1))k
2
( n
k+1

)1+ 1
k .

Therefore, in these cases,

exlin
3 (n, Clin

2k+1) = Θ(n1+ 1
k ).

Moreover, for k ≥ 2, we have

exlin
3 (n, Clin

2k+1) ≥ Ω(n1+ 2
3k−4+ε ),

where ε = 0 if k is odd and ε = 1 if k is even.
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The above corollary provides an improvement of the lower bound in (3.2) for linear cycles
of odd length.

Structure of the chapter: In the next section we introduce some notation that is used
through out the chapter. In Section 3.2 we prove the theorem 3.2 In Section 3.3, we prove the
upper bound of Theorem 3.3 and in Section 3.4, we prove Theorem 3.4. Finally, in Section
3.5 we prove Theorem 3.5.

Notations and Definitions

We introduce some important notations and definitions used throughout the chapter.

• Length of a path is the number of edges in the path.

• For convenience, an edge {a, b} of a graph or a pair of vertices a, b is referred to as ab.
A hyperedge {a, b, c} is written simply as abc.

• For a hypergraph H (or a graph G), for convenience, we sometimes use H (or G) to
denote the edge set of the hypergraph H (or G respectively). Thus the number of
edges in H is |H|.
• Given a graph G and a subset of its vertices S, let the subgraph of G induced by S be

denoted by G[S].

• For a hypergraph H, let ∂H = {ab | ab ⊂ e ∈ E(H)} denote its 2-shadow graph.

• The first neighborhood of v in H is defined as

NH
1 (v) = {x ∈ V (H) \ {v} | v, x ∈ h for some h ∈ E(H)}

and the second neighborhood of v in H is

NH
2 (v) = {x ∈ V (H)\(NH

1 (v)∪{v}) | ∃h ∈ E(H) such that x ∈ h and h∩NH
1 (v) 6= ∅}.

• For a hypergraph H and v ∈ V (H), we denote the degree of v in H by d(v). We write
dH(v) instead of d(v) when it is important to emphasize the underlying hypergraph.

• For a hypergraph H and a pair of vertices u, v ∈ V (H), let codeg(v, u) denote the
number of hyperedges of H containing the pair {u, v}.

3.2 Proof of Theorem 3.2
Let H be a hypergraph on n vertices without a Berge 5-cycle and let G = ∂H be the
2-shadow of H. First we introduce some definitions.

Definition 3.2. A pair xy ∈ ∂H is called thin if codeg(xy) = 1, otherwise it is called fat.
We say a hyperedge abc ∈ H is thin if at least two of the pairs ab, bc, ac are thin.
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Definition 3.3. We say a set of hyperedges (or a hypergraph) is tightly-connected if it can
be obtained by starting with a hyperedge and adding hyperedges one by one, such that every
added hyperedge intersects with one of the previous hyperedges in 2 vertices.

Definition 3.4. A block in H is a maximal set of tightly-connected hyperedges.

Definition 3.5. For a block B, a maximal subhypergraph of B without containing thin
hyperedges is called the core of the block.

Let K3
4 denote the complete 3-uniform hypergraph on 4 vertices. A crown of size k is a set

of k ≥ 1 hyperedges of the form abc1, abc2, . . . , abck. Below we define 2 specific hypergraphs:

• Let F1 be a hypergraph consisting of exactly 3 hyperedges on 4 vertices (i.e., K3
4 minus

an edge).

• For distinct vertices a, b, c, d and o, let F2 be the hypergraph consisting of hyperedges
oab, obc, ocd and oda.

Lemma 3.6. Let B be a block of H, and let B be a core of B. Then B is either ∅, K3
4 , F1, F2

or a crown of size k for some k ≥ 1.

Proof. If B = ∅, we are done, so let us assume B 6= ∅. Since B is tightly-connected and it can
be obtained by adding thin hyperedges to B, it is easy to see that B is also tightly-connected.
Thus if B has at most two hyperedges, then it is a crown of size 1 or 2 and we are done.
Therefore, in the rest of the proof we will assume that B contains at least 3 hyperedges.

If B contains at most 4 vertices then it is easy to see that B is either K3
4 or F1. So assume

that B has at least 5 vertices (and at least 3 hyperedges). Since B is not a crown, there exists
a tight path of length 3, say abc, bcd, cde. Since abc is in the core, one of the pairs ab or ac is
fat, so there exists a hyperedge h 6= abc containing either ab or ac. Similarly there exists a
hyperedge f 6= cde and f contains ed or ec. If h = f then B ⊇ F2. However, it is easy to see
that F2 cannot be extended to a larger tightly-connected set of hyperedges without creating
a Berge 5-cycle, so in this case B = F2. If h 6= f then the hyperedges h, abc, bcd, cde, f create
a Berge 5-cycle in H, a contradiction. This completes the proof of the lemma.

Observation 3.7. Let B be a block of H and let B be the core of B. If B = ∅ then the block
B is a crown, and if B 6= ∅ then every fat pair of B is contained in ∂B.
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Edge Decomposition of G = ∂H. We define a decomposition D of the edges of G into
paths of length 2, triangles and K4’s such as follows:
Let B be a block of H and B be its core.
If B = ∅, then B is a crown-block {abc1, abc2, . . . , abck} (for some k ≥ 1); we partition ∂B
into the triangle abc1 and paths acib where 2 ≤ i ≤ k.
If B 6= ∅, then our plan is to first partition ∂B \ ∂B. If abc ∈ B \ B, then abc is a thin
hyperedge, so it contains at least 2 thin pairs, say ab and bc. We claim that the pair ac is
in ∂B. Indeed, ac has to be a fat pair, otherwise the block B consists of only one hyperedge
abc, so B = ∅ contradicting the assumption. So by Observation 3.7, ac has to be a pair in
∂B. For every abc ∈ B \ B such that ab and bc are thin pairs, add the 2-path abc to the
edge decomposition D. This partitions all the edges in ∂B \ ∂B into paths of length 2. So
all we have left is to partition the edges of ∂B.

• If B is a crown {abc1, abc2, . . . , abck} for some k ≥ 1, then we partition ∂B into the
triangle abc1 and paths acib where 2 ≤ i ≤ k.

• If B = F1 = {abc, bcd, acd} then we partition ∂B into 2-paths abc, bdc and cad.

• If B = F2 = {oab, obc, ocd, oda} then we partition ∂B into 2-paths abo, bco, cdo and
dao.

• Finally, if B = K3
4 = {abc, abd, acd, bcd} then we partition ∂B as K4, i.e., we add

∂B = K4 as an element of D.

Clearly, by Lemma 3.6 we have no other cases left. Thus all of the edges of the graph G
are partitioned into paths of length 2, triangles and K4’s.

Observation 3.8.

(a) If D is a triangle that belongs to D, then there is a hyperedge h ∈ H such that D = ∂h.

(b) If abc is a 2-path that belongs to D, then abc ∈ H. Moreover ac is a fat pair.

(c) If D is a K4 that belongs to D, then there exists F = K3
4 ⊆ H such that D = ∂F .

Let α1 |G| and α2 |G| be the number of edges of G that are contained in triangles and
2-paths of the edge-decomposition D of G, respectively. So (1 − α1 − α2) |G| edges of G
belong to the K4’s in D.

Claim 3.9. We have,

|H| =
Ç
α1

3
+
α2

2
+

2(1− α1 − α2)

3

å
|G| .

Proof. Let B be a block with the core B. Recall that for each hyperedge h ∈ B \B, we have
added exactly one 2-path or a triangle to D.

Moreover, because of the way we partitioned ∂B, it is easy to check that in all of the
cases except when B = K3

4 , the number of hyperedges of B is the same as the number of
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elements of D that ∂B is partitioned into; these elements being 2-paths and triangles. On
the other hand, if B = K3

4 , then the number of hyperedges of B is 4 but we added only one
element to D (namely K4).

This shows that the number of hyperedges of H is equal to the number of elements of D
that are 2-paths or triangles plus the number of hyperedges which are in copies of K3

4 in H,
i.e., 4 times the number of K4’s in D. Since α1 |G| edges of G are in 2-paths, the number of
elements of D that are 2-paths is α1 |G| /2. Similarly, the number of elements of D that are
triangles is α2 |G| /3, and the number of K4’s in D is (1 − α1 − α2) |G| /6. Combining this
with the discussion above finishes the proof of the claim.

The link of a vertex v is the graph consisting of the edges {uw | uvw ∈ H} and is denoted
by Lv.

Claim 3.10. |Lv| ≤ 2 |N1(v)|.

Proof. First let us notice that there is no path of length 5 in Lv. Indeed, otherwise, there
exist vertices v0, v1, . . . , v5 such that vvi−1vi ∈ H for each 1 ≤ i ≤ 5 which means there is a
Berge 5-cycle in H formed by the hyperedges containing the pairs vv1, v1v2, v2v3, v3v4, v4v, a
contradiction. So by the Erdős-Gallai theorem |Lv| ≤ 5−1

2
|N1(v)|, proving the claim.

Lemma 3.11. Let v ∈ V (H) be an arbitrary vertex, then the number of edges in G[N1(v)]
is less than 8 |N1(v)|.

Proof. Let Gv be a subgraph of G on a vertex set N1(v), such that xy ∈ Gv if and only
if there exists a vertex z 6= v such that xyz ∈ H. Then each edge of G[N1(v)] belongs
to either Lv or Gv, so |G[N1(v)]| ≤ |Lv| + |Gv|. Combining this with Claim 3.10, we get
|G[N1(v)]| ≤ |Gv|+ 2 |N1(v)|. So it suffices to prove that |Gv| < 6 |N1(v)|.

First we will prove that there is no path of length 12 in Gv. Let us assume by con-
tradiction that P = v0, v1, . . . , v12 is a path in Gv. Since for each pair of vertices vi, vi+1,
there is a hyperedge vivi+1x in H where x 6= v, we can conclude that there is a subsequence
u0, u1, . . . , u6 of v0, v1, . . . , v12 and a sequence of distinct hyperedges h1, h2, . . . , h6, such that
ui−1ui ⊂ hi and v /∈ hi for each 1 ≤ i ≤ 6. Since u0, u3, u6 ∈ N1(v) there exist hyper-
edges f1, f2, f3 ∈ H such that vu0 ⊂ f1, vu3 ⊂ f2 and vu6 ⊂ f3. Clearly, either f1 6= f2

or f2 6= f3. In the first case the hyperedges f1, h1, h2, h3, f2, and in the second case the
hyperedges f2, h4, h5, h6, f3 form a Berge 5-cycle in H, a contradiction.

Therefore, there is no path of length 12 in Gv, so by the Erdős-Gallai theorem, the
number of edges in Gv is at most 12−1

2
|N1(v)| < 6 |N1(v)|, as required.

3.2.1 Relating the hypergraph degree to the degree in the shadow

For a vertex v ∈ V (H) = V (G), let d(v) denote the degree of v in H and let dG(v) denote
the degree of v in G (i.e., dG(v) is the degree in the shadow).

Clearly dG(v) ≤ 2d(v). Moreover, d(v) = |Lv| and dG(v) = |N1(v)|. So by Claim 3.10,
we have

dG(v)

2
≤ d(v) ≤ 2dG(v). (3.3)
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Let d and dG be the average degrees of H and G respectively.
Suppose there is a vertex v of H, such that d(v) < d/3. Then we may delete v and all

the edges incident to v from H to obtain a graph H ′ whose average degree is more than
3(nd/3 − d/3)/(n − 1) = d. Then it is easy to see that if the theorem holds for H ′, then it
holds for H as well. Repeating this procedure, we may assume that for every vertex v of H,
d(v) ≥ d/3. Therefore, by (3.3), we may assume that the degree of every vertex of G is at
least d/6.

3.2.2 Counting paths of length 3

Definition 3.12. A 2-path in ∂H is called bad if both of its edges are contained in a triangle
of ∂H, otherwise it is called good.

Lemma 3.13. For any vertex v ∈ V (G) and a set M ⊆ N1(v), let P be the set of the good
2-paths vxy such that x ∈M . Let M ′ = {y | vxy ∈ P} then |P| < 2 |M ′|+ 48dG(v).

Proof. Let BP = {xy | x ∈ M, y ∈ M ′, xy ∈ G} be a bipartite graph, clearly |BP | = |P|.
Let E = {xyz ∈ H | x, y ∈ N1(v), codeg(x, y) ≤ 2}. By Lemma 3.11, |E| ≤ 2 · 8 |N1(v)|
so the number of edges of 2-shadow of E is |∂E| ≤ 48 |N1(v)|. Let B = {xy ∈ BP | ∃z ∈
V (H), xyz ∈ H \ E}. Then clearly,

|B| ≥ |BP | − |∂E| ≥ |P| − 48 |N1(v)| = |P| − 48dG(v). (3.4)

Let dB(x) denote the degree of a vertex x in the graph B.

Claim 3.14. For every y ∈M ′ such that dB(y) = k ≥ 3, there exists a set of k − 2 vertices
Sy ⊆M ′ such that ∀w ∈ Sy we have dB(w) = 1. Moreover, Sy ∩ Sz = ∅ for any y 6= z ∈M ′

(with dB(y), dB(z) ≥ 3).

Proof. Let yx1, yx2, . . . , yxk ∈ B be the edges of B incident to y. For each 1 ≤ j ≤ k let
fj ∈ H be a hyperedge such that vxj ⊂ fj. For each yxi ∈ B clearly there is a hyperedge
yxiwi ∈ H \ E.

We claim that for each 1 ≤ i ≤ k, wi ∈M ′. It is easy to see that wi ∈ N1(v) or wi ∈M ′

(because vxiwi is a 2-path in G). Assume for a contradiction that wi ∈ N1(v), then since
yxiwi /∈ E we have, codeg(xi, wi) ≥ 3. Let f ∈ H be a hyperedge such that vwi ⊂ f . Now
take j 6= i such that xj 6= wi. If fj 6= f then since codeg(xi, wi) ≥ 3 there exists a hyperedge
h ⊃ xiwi such that h 6= f and h 6= xiwiy, then the hyperedges f, h, xiwiy, yxjwj, fj form a
Berge 5-cycle. So fj = f , therefore fj 6= fi. Similarly in this case, there exists a hyperedge
h ⊃ xiwi such that h 6= fi and h 6= xiwiy, therefore the hyperedges fi, h, xiwiy, yxjwj, fj
form a Berge 5-cycle, a contradiction. So we proved that wi ∈M ′ for each 1 ≤ i ≤ k.

Claim. For all but at most 2 of the wi’s (where 1 ≤ i ≤ k), we have dB(wi) = 1.

Proof. If dB(wi) = 1 for all 1 ≤ i ≤ k then we are done, so we may assume that there is
1 ≤ i ≤ k such that dB(wi) 6= 1.
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For each 1 ≤ i ≤ k, wi ∈M ′ and xiwi ∈ ∂(H \E) (because xiwiy ∈ H \E), so it is clear
that dB(wi) ≥ 1. So dB(wi) > 1. Then there is a vertex x ∈M \{xi} such that wix ∈ B. Let
f, h ∈ H be hyperedges with wix ∈ h and xv ∈ f . If there are j, l ∈ {1, 2, . . . , k} \ {i} such
that x, xj and xl are all different from each other, then clearly, either f 6= fj or f 6= fl, so
without loss of generality we may assume f 6= fj. Then the hyperedges f, h, wixiy, ywjxj, fj
create a Berge cycle of length 5, a contradiction. So there are no j, l ∈ {1, 2, . . . , k}\{i} such
that x, xj and xl are all different from each other. Clearly this is only possible when k < 4
and there is a j ∈ {1, 2, 3} \ {i} such that x = xj. Let l ∈ {1, 2, 3} \ {i, j}. If fj 6= fl then
the hyperedges fj, h, wixiy, ywlxl, fl form a Berge 5-cycle. Therefore fj = fl. So we proved
that dB(wi) 6= 1 implies that k = 3 and for {j, l} = {1, 2, 3} \ {i}, we have fj = fl. So if
dB(wi) 6= 1 and dB(wj) 6= 1 we have fj = fl and fi = fl, which is impossible. So dB(wj) = 1.
So we proved that if for any 1 ≤ i ≤ k, dB(wi) 6= 1 then k = 3 and all but at most 2 of the
vertices in {w1, w2, w3} have degree 1 in the graph B, as desired.

We claim that for any i 6= j where dB(wi) = dB(wj) = 1 we have wi 6= wj. Indeed, if
there exists i 6= j such that wi = wj then wixj and wixi are both adjacent to wi in the graph
B which contradicts to dB(wi) = 1. So using the above claim, we conclude that the set
{w1, w2, . . . , wk} contains at least k− 2 distinct elements with each having degree one in the
graph B, so we can set Sy to be the set of these k − 2 elements. (Then of course ∀wi ∈ Sy
we have dB(wi) = 1.)

Now we have to prove that for each z 6= y we have Sy ∩Sz = ∅. Assume by contradiction
that wi ∈ Sz ∩ Sy for some z 6= y. That is, there is some hyperedge uwiz ∈ H \ E where
u ∈ M , moreover u = xi otherwise dB(wi) > 1. So we have a hyperedge xiwiz ∈ H \ E
for some z ∈ M ′ \ {y}. Let j, l ∈ {1, 2, . . . , k} \ {i} such that j 6= l. Recall that xjv ⊂ fj
and xlv ⊂ fl. Clearly either fj 6= fi or fl 6= fi so without loss of generality we can assume
fj 6= fi. Then it is easy to see that the hyperedges fj, xjwjy, yxiwi, wizxi, fi are all different
and they create a Berge 5-cycle (xjwjy 6= yxiwi because xj 6= wi).

For each x ∈M ′ with dB(x) = k ≥ 3, let Sx be defined as in Claim 3.14. Then the average
of the degrees of the vertices in Sx ∪ {x} in B is (k + |Sx|)/(k − 1) = (2k − 2)(k − 1) = 2.
Since the sets Sx ∪ x (with x ∈ M ′, dB(x) ≥ 3) are disjoint, we can conclude that average
degree of the set M ′ is at most 2. Therefore 2 |M ′| ≥ |B|. So by (3.4) we have 2 |M ′| ≥
|B| > |P| − 48dG(V ), which completes the proof of the lemma.

Claim 3.15. We may assume that the maximum degree in the graph G is less than 160
√
n

when n is large enough.

Proof. Let v be an arbitrary vertex with dG(v) = Cd for some constant C > 0. Let P be
the set of the good 2-paths starting from the vertex v. Then applying Lemma 3.13 with
M = N1(v) and M ′ = {y | vxy ∈ P}, we have |P| < 2 |M ′|+ 48dG(v) < 2n+ 48 · Cd. Since
the minimum degree in G is at least d/6, the number of (ordered) 2-paths starting from v is
at least d(v) · (d/6− 1) = Cd · (d/6− 1). Notice that the number of (ordered) bad 2-paths
starting at v is the number of 2-paths vxy such that x, y ∈ N1(v). So by Lemma 3.11, this
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is at most 2 · 8 |N1(v)| = 16Cd, so the number of good 2-paths is at least Cd · (d/6− 17). So
|P| ≥ Cd · (d/6− 17). Thus we have

Cd · (d/6− 17) ≤ |P| < 2n+ 48Cd.

So Cd(d/6 − 65) < 2n. Therefore, 6C(d/6 − 65)2 < 2n, i.e., d < 6
»
n/3C + 390, so

|H| = nd/3 ≤ 2n
»
n/3C + 130n. If C ≥ 36 we get that |H| ≤ n3/2

3
√

3
+ 130n = n3/2

3
√

3
+ O(n),

proving Theorem 3.2. So we may assume C < 36.
Theorem 3.1 implies that

|H| = nd/3 ≤
√

2n3/2 + 4.5n, (3.5)

so d ≤ 3
√

2
√
n+ 13.5. So combining this with the fact that C < 36, we have dG(v) = Cd <

108
√

2
√
n+ 486 < 160

√
n for large enough n.

Combining Lemma 3.13 and Claim 3.15, we obtain the following.

Lemma 3.16. For any vertex v ∈ V (G) and a set M ⊆ N1(v), let P be the set of good
2-paths vxy such that x ∈ M . Let M ′ = {y | vxy ∈ P} then |P| < 2 |M ′|+ 7680

√
n when n

is large enough.

Definition 3.17. A 3-path x0, x1, x2, x3 is called good if both 2-paths x0, x1, x2 and x1, x2, x3

are good 2-paths.

Claim 3.18. The number of (ordered) good 3-paths in G is at least nd3

G−C0n
3/2dG for some

constant C0 > 0 (for large enough n).

Proof. First we will prove that the number of (ordered) 3-walks that are not good 3-paths
is at most 5440n3/2dG.

For any vertex x ∈ V (H) if a path yxz is a bad 2-path then zy is an edge of G, so the
number of (ordered) bad 2-paths whose middle vertex is x, is at most 2 times the number of
edges in G[N1(x)], which is less than 2 · 8 |N1(x)| = 16dG(x) by Lemma 3.11. The number
of 2-walks which are not 2-paths and whose middle vertex is x is exactly dG(x). So the total
number of (ordered) 2-walks that are not good 2-paths is at most ∑x∈V (H) 17dG(x) = 17ndG.

Notice that, by definition, any (ordered) 3-walk that is not a good 3-path must contain
a 2-walk that is not a good 2-path. Moreover, if xyz is a 2-walk that is not a good 2-path,
then the number of 3-walks in G containing it is at most dG(x) + dG(z) < 320

√
n (for large

enough n) by Claim 3.15. Therefore, the total number of (ordered) 3-walks that are not
good 3-paths is at most 17ndG · 320

√
n = 5440n3/2dG.

By the Blakley-Roy inequality, the total number of (ordered) 3-walks in G is at least nd3

G.
By the above discussion, all but at most 5440n3/2dG of them are good 3-paths, so letting
C0 = 5440 completes the proof of the claim.

Claim 3.19. Let {a, b, c} be the vertex set of a triangle that belongs to D. (By Observation
3.8 (a) abc ∈ H.) Then the number of good 3-paths whose first edge is ab, bc or ca is at most
8n+ C1

√
n for some constant C1 and for large enough n.
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Proof. Let Sabc = N1(a) ∩ N1(b) ∩ N1(c). For each {x, y} ⊂ {a, b, c}, let Sxy = N1(x) ∩
N1(y) \ {a, b, c}. For each x ∈ {a, b, c}, let Sx = N1(x) \ (N1(y) ∪ N1(z) ∪ {a, b, c}) where
{y, z} = {a, b, c} \ {x}.

For each x ∈ {a, b, c}, let Px be the set of good 2-paths xuv where u ∈ Sx. Let S ′x =
{v | xuv ∈ Px}. For each {x, y} ⊂ {a, b, c}, let Pxy be the set of good 2-paths xuv and yuv
where u ∈ Sxy. Let S ′xy = {v | xuv ∈ Pxy}.

Let {x, y} ⊂ {a, b, c} and z = {a, b, c} \ {x, y}. Notice that each 2-path yuv ∈ Pxy
(xuv ∈ Pxy), is contained in exactly one good 3-path zyuv (respectively zxuv) whose first
edge is in the triangle abc. Indeed, since u ∈ Sxy, xyuv (respectively yxuv) is not a good
3-path. Therefore, the number of good 3-paths whose first edge is in the triangle abc, and
whose third vertex is in Sxy is |Pxy|. The number of paths in Pxy that start with the vertex
x is less than 2

∣∣∣S ′xy∣∣∣+ 7680
√
n, by Lemma 3.16. Similarly, the number of paths in Pxy that

start with the vertex y is less than 2
∣∣∣S ′xy∣∣∣ + 7680

√
n. Since every path in Pxy starts with

either x or y, we have |Pxy| < 4
∣∣∣S ′xy∣∣∣ + 15360

√
n. Therefore, for any {x, y} ⊂ {a, b, c}, the

number of good 3-paths whose first edge is in the triangle abc, and whose third vertex is in
Sxy is less than 4

∣∣∣S ′xy∣∣∣+ 15360
√
n.

In total, the number of good 3-paths whose first edge is in the triangle abc and whose
third vertex is in Sab ∪ Sbc ∪ Sac is at most

4(|S ′ab|+ |S ′bc|+ |S ′ac|) + 46080
√
n. (3.6)

Let x ∈ {a, b, c} and {y, z} = {a, b, c} \ {x}. For any 2-path xuv ∈ Px there are 2 good
3-paths with the first edge in the triangle abc, namely yxuv and zxuv. So the total number
of 3-paths whose first edge is in the triangle abc and whose third vertex is in Sa ∪ Sb ∪ Sc is
2(|Pa|+ |Pb|+ |Pc|), which is at most

4(|S ′a|+ |S ′b|+ |S ′c|) + 46080
√
n, (3.7)

by Lemma 3.16.
Now we will prove that every vertex is in at most 2 of the sets S ′a, S ′b, S ′c, S ′ab, S ′bc, S ′ac.

Let us assume by contradiction that a vertex v ∈ V (G) \ {a, b, c} is in at least 3 of them.
We claim that there do not exist 3 vertices ua ∈ N1(a) \ {b, c}, ub ∈ N1(b) \ {a, c} and
uc ∈ N1(c) \ {a, b} such that xuxv is a good 3-path for each x ∈ {a, b, c}. Indeed, otherwise,
consider hyperedges ha, h′a containing the pairs aua and uav respectively (since auav is a good
2-path, note that ha 6= h′a), and hyperedges hb, h′b, hc, h′c containing the pairs bub, ubv, cuc, ucv
respectively. Then either h′a 6= h′b or h′a 6= h′c, say h′a 6= h′b without loss of generality. Then
the hyperedges ha, h′a, h′b, hb, abc create a Berge 5-cycle in H, a contradiction, proving that it
is impossible to have 3 vertices ua ∈ N1(a) \ {b, c}, ub ∈ N1(b) \ {a, c} and uc ∈ N1(c) \ {a, b}
with the above mentioned property. Without loss of generality let us assume that there is no
vertex ua ∈ N1(a)\{b, c} such that auav is a good 2-path – in other words, v /∈ S ′a∪S ′ab∪S ′ac.
However, since we assumed that v is contained in at least 3 of the sets S ′a, S ′b, S ′c, S ′ab, S ′bc, S ′ac,
we can conclude that v is contained in all 3 of the sets S ′b, S ′c, S ′bc, i.e., there are vertices
ub ∈ Sb, uc ∈ Sc, u ∈ Sbc such that vubb, vucc, vub, vuc are good 2-paths. Using a similar
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argument as before, if vu ∈ h, vub ∈ hb and vuc ∈ hc, without loss of generality we can
assume that h 6= hb, so the hyperedges abc,h,hb together with hyperedges containing uc and
ubb form a Berge 5-cycle in H, a contradiction.

So we proved that

2 |S ′a ∪ S ′b ∪ S ′c ∪ S ′ab ∪ S ′bc ∪ S ′ac| ≥ |S ′a|+ |S ′b|+ |S ′c|+ |S ′ab|+ |S ′bc|+ |S ′ac|

This together with (3.6) and (3.7), we get that the number of good 3-paths whose first edge
is in the triangle abc is at most

8 |S ′a ∪ S ′b ∪ S ′c ∪ S ′ab ∪ S ′bc ∪ S ′ac|+ 92160
√
n < 8n+ C1

√
n

for C1 = 92160 and large enough n, finishing the proof of the claim.

Claim 3.20. Let P = abc be a 2-path and P ∈ D. (By Observation 3.8 (b) abc ∈ H.)
Then the number of good 3-paths whose first edge is ab or bc is at most 4n+C2

√
n for some

constant C2 > 0 and large enough n.

Proof. First we bound the number of 3-paths whose first edge is ab. Let Sab = N1(a)∩N1(b).
Let Sa = N1(a) \ (N1(b) ∪ {b}) and Sb = N1(b) \ (N1(a) ∪ {a}). For each x ∈ {a, b}, let Px
be the set of good 2-paths xuv where u ∈ Sx, and let S ′x = {v | xuv ∈ Px}. The set of good
3-paths whose first edge is ab is Pa ∪ Pb, because the third vertex of a good 3-path starting
with an edge ab can not belong to N1(a) ∩N1(b) by the definition of a good 3-path.

We claim that |S ′a ∩ S ′b| ≤ 160
√
n. Let us assume by contradiction that v0, v1, . . . vk ∈

S ′a ∩ S ′b for k > 160
√
n. For each vertex vi where 0 ≤ i ≤ k, there are vertices ai ∈ Sa and

bi ∈ Sb such that aaivi, bbivi are good 2-paths. For each 0 ≤ i ≤ k, the hyperedge aivibi is
in H, otherwise we can find distinct hyperedges containing the pairs aai, aivi, vibi, bib and
these hyperedges together with abc, would form a Berge 5-cycle in H, a contradiction. We
claim that there are j, l ∈ {0, 1, . . . , k} such that aj 6= al, otherwise there is a vertex x
such that x = ai for each 0 ≤ i ≤ k. Then xvi ∈ G for each 0 ≤ i ≤ k, so we get that
dG(x) > k > 160

√
n which contradicts Claim 3.15.

So there are j, l ∈ {0, 1, . . . , k} such that aj 6= al and ajvjbj, alvlbl ∈ H. By observation
3.8 (b), there is a hyperedge h 6= abc such that ac ⊂ h. Clearly either aj /∈ h or al /∈ h.
Without loss of generality let aj /∈ h, so there is a hyperedge ha with aaj ⊂ ha 6= h. Let
hb ⊃ bjb, then the hyperedges abc, h, ha, ajvjbj, hb form a Berge 5-cycle, a contradiction,
proving that |S ′a ∩ S ′b| ≤ 160

√
n.

Notice that |S ′a|+ |S ′b| = |S ′a ∪ S ′b|+ |S ′a ∩ S ′b| ≤ n+ 160
√
n. So by Lemma 3.16, we have

|Pa|+ |Pb| ≤ 2(|S ′a|+ |S ′b|) + 2 · 7680
√
n ≤ 2(n+ 160

√
n) + 2 · 7680

√
n = 2n+ 15680

√
n

for large enough n. So the number of good 3-paths whose first edge is ab is at most 2n +
15680

√
n. By the same argument, the number of good 3-paths whose first edge is bc is at

most 2n + 15680
√
n. Their sum is at most 4n + C2

√
n for C2 = 31360 and large enough n,

as desired.
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Claim 3.21. Let {a, b, c, d} be the vertex set of a K4 that belongs to D. Let F = K3
4 be a

hypergraph on the vertex set {a, b, c, d}. (By Observation 3.8 (c) F ⊆ H.) Then the number
of good 3-paths whose first edge belongs to ∂F is at most 6n+C3

√
n for some constant C3 > 0

and large enough n.

Proof. First, let us observe that there is no Berge path of length 2, 3 or 4 between distinct
vertices x, y ∈ {a, b, c, d} in the hypergraphH\F , because otherwise this Berge path together
with some edges of F will form a Berge 5-cycle in H. This implies, that there is no path of
length 3 or 4 between x and y in G \ ∂F , because otherwise we would find a Berge path of
length 2, 3 or 4 between x and y in H \ F .

Let S = {u ∈ V (H) \ {a, b, c, d} | ∃{x, y} ⊂ {a, b, c, d}, u ∈ N1(x) ∩ N1(y)}. For each
x ∈ {a, b, c, d}, let Sx = N1(x) \ (S ∪ {a, b, c, d}). Let PS be the set of good 2-paths xuv
where x ∈ {a, b, c, d} and u ∈ S. Let S ′ = {v | xuv ∈ PS}. For each x ∈ {a, b, c, d}, let Px
be the set of good 2-paths xuv where u ∈ Sx, and let S ′x = {v | xuv ∈ Px}.

Let v ∈ S ′. By definition, there exists a pair of vertices {x, y} ⊂ {a, b, c, d} and a vertex
u, such that xuv and yuv are good 2-paths.

Suppose that zu′v is a 2-path different from xuv and yuv where z ∈ {a, b, c, d}. If u′ = u
then z /∈ {x, y} so there is a Berge 2-path between x and y or between x and z in H \ F ,
which is impossible. So u 6= u′. Either z 6= x or z 6= y, without loss of generality let us
assume that z 6= x. Then zu′vux is a path of length 4 in G \ ∂F , a contradiction. So for any
v ∈ S ′ there are only 2 paths of Pa∪Pb∪Pc∪Pd∪PS that contain v as an end vertex – both
of which are in PS – which means that v /∈ S ′a ∪ S ′b ∪ S ′c ∪ S ′d, so S ′ ∩ (S ′a ∪ S ′b ∪ S ′c ∪ S ′d) = ∅.
Moreover,

|PS| ≤ 2 |S ′| . (3.8)
We claim that S ′a and S ′b are disjoint. Indeed, otherwise, if v ∈ S ′a∩S ′b there exists x ∈ Sa

and y ∈ Sb such that vxa and vyb are paths in G, so there is a 4-path axvyb between vertices
of F in G \ ∂F , a contradiction. Similarly we can prove that S ′a, S ′b, S ′c and S ′d are pairwise
disjoint. This shows that the sets S ′, S ′a, S ′b, S ′c and S ′d are pairwise disjoint. So we have

|S ′ ∪ S ′a ∪ S ′b ∪ S ′c ∪ S ′d| = |S ′|+ |S ′a|+ |S ′b|+ |S ′c|+ |S ′d| . (3.9)

By Lemma 3.16, we have |Pa|+ |Pb|+ |Pc|+ |Pd| ≤ 2(|S ′a|+ |S ′b|+ |S ′c|+ |S ′d|)+4 ·7680
√
n.

Combining this inequality with (3.8), we get

|PS|+ |Pa|+ |Pb|+ |Pc|+ |Pd| ≤ 2 |S ′|+ 2(|S ′a|+ |S ′b|+ |S ′c|+ |S ′d|) + 4 · 7680
√
n. (3.10)

Combining (3.9) with (3.10) we get

|PS|+|Pa|+|Pb|+|Pc|+|Pd| ≤ 2 |S ′ ∪ S ′a ∪ S ′b ∪ S ′c ∪ S ′d|+30720
√
n < 2n+30720

√
n, (3.11)

for large enough n.
Each 2-path in PS ∪ Pa ∪ Pb ∪ Pc ∪ Pd can be extended to at most three good 3-paths

whose first edge is in ∂F . (For example, auv ∈ Pa can be extended to bauv, cauv and dauv.)
On the other hand, every good 3-path whose first edge is in ∂F must contain a 2-path of
Pa∪Pb∪Pc∪Pd∪PS as a subpath. So the number of good 3-paths whose first edge is in ∂F
is at most 3 |Pa ∪ Pb ∪ Pc ∪ Pd ∪ PS| = 3(|PS| + |Pa| + |Pb| + |Pc| + |Pd|) which is at most
6n+ C3

√
n by (3.11), for C3 = 92160 and large enough n, proving the desired claim.
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3.2.3 Combining bounds on the number of 3-paths

Recall that α1 |G|, α2 |G|, (1−α1−α2) |G| are the number of edges of G that are contained
in triangles, 2-paths and K4’s of the edge-decomposition D of G, respectively. Then the
number of triangles, 2-paths and K4’s in D is α1 |G| /3, α2 |G| /2 and (1 − α1 − α2) |G| /6
respectively. Therefore, using Claim 3.19, Claim 3.20 and Claim 3.21, the total number of
(ordered) good 3-paths in G is at most

α1

3
|G| (8n+ C1

√
n) +

α2

2
|G| (4n+ C2

√
n) +

(1− α1 − α2)

6
|G| (6n+ C3

√
n) ≤

≤ |G|n
Ç

8α1

3
+ 2α2 + (1− α1 − α2)

å
+ (C1 + C2 + C3)

√
n |G| =

=
n2dG

2

Ç
5α1 + 3α2 + 3

3

å
+ (C1 + C2 + C3)

n3/2dG
2

.

Combining this with the fact that the number of good 3-paths is at least nd3

G−C0n
3/2dG

(see Claim 3.18), we get

nd
3

G − C0n
3/2dG ≤

n2dG
2

Ç
5α1 + 3α2 + 3

3

å
+ (C1 + C2 + C3)

n3/2dG
2

.

Rearranging and dividing by ndG on both sides, we get

d
2

G ≤
Ç

5α1 + 3α2 + 3

6

å
n+

(C1 + C2 + C3)

2

√
n+ C0

√
n.

Using the fact that (5α1 + 3α2 + 3)/6 ≥ 1/2, it follows that

d
2

G ≤
Ç

5α1 + 3α2 + 3

6

å
n

Ç
1 +

(C1 + C2 + C3) + 2C0√
n

å
.

So letting C4 = (C1 + C2 + C3) + 2C0 we have,

dG ≤
√

1 +
C4√
n

 
5α1 + 3α2 + 3

6

√
n <

Ç
1 +

C4

2
√
n

å 
5α1 + 3α2 + 3

6

√
n, (3.12)

for large enough n. By Claim 3.9, we have

|H| ≤ α1

3
|G|+ α2

2
|G|+ 2(1− α1 − α2)

3
|G| = 4− 2α1 − α2

6

ndG
2
.

Combining this with (3.12) we get

|H| ≤
Ç

1 +
C4

2
√
n

å
(4− 2α1 − α2)

12

 
5α1 + 3α2 + 3

6
n3/2,
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for sufficiently large n. So we have

ex3(n,C5) ≤ (1 + o(1))
(4− 2α1 − α2)

12

 
5α1 + 3α2 + 3

6
n3/2.

The right hand side is maximized when α1 = 0 and α2 = 2/3, so we have

ex3(n,C5) ≤ (1 + o(1))
4− 2/3

12

 
5

6
n1.5 < (1 + o(1))0.2536n3/2.

This finishes the proof.

3.3 C5-free linear hypergraphs: Proof of the upper bound
in Theorem 3.3

Let H be a 3-uniform linear hypergraph on n vertices containing no C5. Let d and dmax
denote the average degree and maximum degree of a vertex in H, respectively. We will show
that we may assume H has minimum degree at least d/3. Indeed, if there is a vertex whose
degree less than one-third of the average degree in the hypergraph, we delete it and all the
hyperedges incident to it. Notice that this will not decrease the average degree. We repeat
this procedure as long as we can and eventually we obtain a (non-empty) hypergraph H ′

with n′ ≤ n vertices and average degree d′ ≥ d and minimum degree at least d/3. It is easy
to see that if d′ ≤

»
n′/3 + C then d ≤

»
n/3 + C (for a constant C > 0) proving Theorem

3.3. So from now on we will assume H has minimum degree at least d/3. Our goal is to
upper bound d.

The following claim shows that for any vertex v, the number of hyperedges h ∈ E(H)

with
∣∣∣h ∩NH

1 (v)
∣∣∣ ≥ 2 is small provided d(v) is small. This is useful for proving Claim 3.23.

Using this and the fact that the minimum degree is at least d/3, we will show in Claim 3.25
that we may assume the maximum degree in H is small.

Claim 3.22. Let v ∈ V (H). Then the number of hyperedges h ∈ E(H) with
∣∣∣h ∩NH

1 (v)
∣∣∣ ≥ 2

is at most 6d(v).

Proof of Claim 3.22. We construct an auxiliary graph G1 whose vertex set is NH
1 (v) in the

following way: From each hyperedge h ∈ E(H) with
∣∣∣h ∩NH

1 (v)
∣∣∣ ≥ 2 and v 6∈ h, we select

exactly one pair xy ⊂ h ∩NH
1 (v) arbitrarily. We claim that there is no 7-vertex path in G1.

Suppose for the sake of a contradiction that there is a path v1v2v3v4v5v6v7 in G1. Then, one of
the two hyperedges v1v4v, v4v7v is not in E(H) as the hypergraph is linear. Suppose without
loss of generality that v1v4v 6∈ E(H), so there are two different hyperedges h, h′ such that
v1, v ∈ h and v4, v ∈ h′. These two hyperedges together with the 3 hyperedges containing
v1v2, v2v3, v3v4 create a five cycle in H (note that they are different by our construction), a
contradiction. So there is no path on seven vertices in G1 and so by Erdős-Gallai theorem,
G1 contains at most 7−2

2
|V (G1)| ≤ 2.5(2d(v)) = 5d(v) edges, which implies that the number

of hyperedges h ∈ E(H) with
∣∣∣h ∩NH

1 (v)
∣∣∣ ≥ 2 is at most 5d(v) + d(v) = 6d(v).
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Using the previous claim we will show the following claim.

Claim 3.23. Let v ∈ V (H). Then,∣∣∣NH
2 (v)

∣∣∣ ≥ ∑
x∈NH

1 (v)

d(x)− 18d(v).

Proof of Claim 3.23. First let us count the number of hyperedges h ∈ E(H) such that∣∣∣h ∩NH
1 (v)

∣∣∣ = 1 and
∣∣∣h ∩NH

2 (v)
∣∣∣ = 2. Let G2 = (NH

2 (v), E(G2)) be an auxiliary graph
whose edge set E(G2) = {xy | ∃h ∈ E(H),

∣∣∣h ∩NH
1 (v)

∣∣∣ = 1,
∣∣∣h ∩NH

2 (v)
∣∣∣ = 2 and x, y ∈

h ∩ NH
2 (v)}. Let h1, h2, . . . , hd(v) be the hyperedges containing v. Now we color an edge

xy ∈ E(G2) with the color i if x, y ∈ h and h ∩ hi 6= ∅. Since the hypergraph is linear this
gives a coloring of all the edges of G2.

Claim 3.24. If there are three edges ab, bc, cd ∈ E(G2) (where a might be the same as d),
then the color of ab is the same as the color of cd.

Proof of Claim 3.24. Suppose that they have different colors i and j respectively. Then,
the hyperedges in H containing ab, bc, cd, together with hi and hj form a five cycle, a
contradiction.

We claim that G2 is triangle-free. Suppose for the sake of a contradiction that there is a
triangle, say abc, in G2. Then by Claim 3.24 it is easy to see that all the edges of this triangle
must have the same color, say color i. Therefore, at least two of the three hyperedges of H
containing ab, bc, ca must contain the same vertex of hi. This is impossible since H is linear.

We claim that if v1v2v3 . . . vk is a cycle of length k ≥ 4 in G2, then every vertex in it
has degree exactly 2. Suppose without loss of generality that v3w ∈ E(G2) where w 6= v2,
w 6= v4. Since G2 is triangle free, w 6= v1 and w 6= v5 (note that if k = 4, then v5 = v1). By
Claim 3.24, the color of v1v2 is the same as the colors of v3v4 and v3w. Also, the color of
v4v5 is the same as the colors of v3w and v2v3. This implies that the edges v2v3, v3w, v3v4

must have the same color, which is a contradiction since the hypergraph is linear. Thus, G2

is a disjoint union of cycles and trees. So |E(G2)| ≤ |V (G2)| =
∣∣∣NH

2 (v)
∣∣∣.

Since ∑x∈NH
1 (v) d(x) is at most the number of edges in G2 plus three times the number

of hyperedges h ∈ E(H) with
∣∣∣h ∩NH

1 (v)
∣∣∣ ≥ 2, applying Claim 3.22 we have

∑
x∈NH

1 (v)

d(x) ≤
∣∣∣NH

2 (v)
∣∣∣+ 3(6d(v)),

completing the proof of the claim.

Using the above claim we will show Theorem 3.3 holds if dmax > 6d. We do not optimize
the constant multiplying d here.

Claim 3.25. We may assume dmax ≤ 6d for large enough n (i.e., whenever n ≥ 34992).
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Proof. Suppose that v ∈ V (H) and d(v) = dmax > 6d. Recall that H has minimum degree
at least d

3
. Then by Claim 3.23,

∣∣∣NH
2 (v)

∣∣∣ ≥ ∑
x∈NH

1 (v)

d(x)− 18d(v) ≥ d

3

∣∣∣NH
1 (v)

∣∣∣− 18d(v) =

=
d

3
(2d(v))− 18d(v) =

Ç
2d

3
− 18

å
· d(v) >

Ç
2d

3
− 18

å
· 6d ≥ 3d2

if d > 108. That is, if d > 108, then 3d2 ≤
∣∣∣NH

2 (v)
∣∣∣ ≤ n which implies that

|E(H)| = nd

3
≤ 1

3
√

3
n3/2,

as required. On the other hand, if d ≤ 108, then

|E(H)| = nd

3
≤ 36n ≤ 1

3
√

3
n3/2

for n ≥ 34992, proving Theorem 3.3.

In the next definition, for each hyperedge of H we identify a subhypergraph of H cor-
responding to this hyperedge. (We will later see that this subhypergraph has a negligible
fraction of the hyperedges of H.)

Definition 3.26. For abc ∈ E(H), the subhypergraph H ′abc of H consists of the hyperedges
h = uvw ∈ E(H) such that h ∩ {a, b, c} = ∅ and h satisfies at least one of the following
properties.

1. ∃x ∈ {a, b, c} such that
∣∣∣h ∩NH

1 (x)
∣∣∣ ≥ 2.

2. h ∩ (NH
1 (a) ∩NH

1 (b) ∩NH
1 (c)) 6= ∅.

3. {x, y, z} = {a, b, c} and u ∈ NH
1 (x) ∩NH

1 (y) and v ∈ NH
1 (z).

Definition 3.27. Let Habc be the subhypergraph of H defined by V (Habc) = V (H) and
E(Habc) = E(H) \ E(H ′abc). That is, Habc is the hypergraph obtained after deleting all the
hyperedges of H which are in E(H ′abc).

The following claim shows that the number of hyperedges in H ′abc is small.

Claim 3.28. Let abc ∈ E(H). Then

|E(H ′abc)| ≤ 25dmax.
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Proof. By Claim 3.22, the number of hyperedges h ∈ E(H) satisfying property 1 of Definition
3.26 is at most

6d(a) + 6d(b) + 6d(c) ≤ 18dmax.

Now we estimate the number of hyperedges satisfying property 2 of Definition 3.26 .
First let us show that

∣∣∣NH
1 (a) ∩NH

1 (b) ∩NH
1 (c)

∣∣∣ ≤ 1 which implies that the number of
hyperedges satisfying property 2 of Definition 3.26 is at most dmax. Assume for the sake of a
contradiction that {u, v} ⊆ NH

1 (a)∩NH
1 (b)∩NH

1 (c). Then by linearity of H, it is impossible
that uva, uvb, uvc ∈ E(H). Without loss of generality, assume that uva 6∈ E(H). Then it is
easy to see that the pairs ua, av, vc, cb, bu are contained in distinct hyperedges by linearity
of H, creating a C5 in H, a contradiction.

Now we estimate the number of hyperedges satisfying property 3 of Definition 3.26. Fix
x, y, z such that {x, y, z} = {a, b, c}. We will show that for each v ∈ NH

1 (z), there is at most
one hyperedge containing v and a vertex from NH

1 (x) ∩ NH
1 (y). Assume for the sake of a

contradiction that there are two different hyperedges u1vw1, u2vw2 ∈ E(H) such that u1, u2 ∈
NH

1 (x) ∩ NH
1 (y) and v ∈ NH

1 (z). Now it is easy to see that the pairs u1x, xy, yu2, u2v, vu1

are contained in five distinct hyperedges since H is linear and u1vw1, u2vw2 are disjoint from
abc, so there is a C5 in H, a contradiction. So for each choice of z ∈ {a, b, c} the number of
hyperedges satisfying property 3 of Definition 3.26 is at most

∣∣∣NH
1 (z)

∣∣∣. So the total number
of hyperedges satisfying property 3 of Definition 3.26 is at most∣∣∣NH

1 (a)
∣∣∣+ ∣∣∣NH

1 (b)
∣∣∣+ ∣∣∣NH

1 (c)
∣∣∣ ≤ 2(d(a) + d(b) + d(c)) ≤ 6dmax.

Adding up these estimates, we get the desired bound in our claim.

A 3-link in H is a set of 3 hyperedges h1, h2, h3 ∈ E(H) such that h1∩h2 6= ∅, h2∩h3 6= ∅
and h1 ∩ h3 = ∅. The hyperedges h1 and h3 are called terminal hyperedges of this 3-link.
(Notice that a given 3-link defines four different Berge paths because each end vertex can be
chosen in two ways. Also note that a 3-link is simply the set of hyperedges of a linear path
of length three.)

Given a hypergraph H and abc ∈ E(H), let pabc(H) denote the number of 3-links in H
in which abc is a terminal hyperedge and let p(H) denote the total number of 3-links in H.
Notice

p(H) =
1

2

∑
abc∈E(H)

pabc(H).

In Section 3.3.1, we prove an upper bound on p(H) and in Section 3.3.2, we prove a lower
bound on p(H) and combine it with the upper bound to obtain the desired bound on d.

3.3.1 Upper bounding p(H)

For any given abc ∈ E(H), the following claim upper bounds the number of 3-links in H in
which abc is a terminal hyperedge by a little bit more than 2 |V (H)|.
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Claim 3.29. Let abc ∈ E(H). Then,

pabc(H) ≤ 2 |V (H)|+ 273dmax.

Proof of Claim 3.29. First we show that most of the 3-links of H are in Habc.

Claim 3.30. We have,
pabc(H) ≤ pabc(Habc) + 225dmax.

Proof. Consider h ∈ E(H) \ E(Habc) = E(H ′abc). Note that h ∩ {a, b, c} = ∅. The number
of 3-links containing both abc and h is at most 9 since the number of hyperedges in H that
intersect both h and abc is at most 9 as H is linear. Therefore the total number of 3-links in
H containing abc and a hyperedge of E(H) \ E(Habc) is at most 9 |E(H ′abc)| ≤ 9(25dmax) =
225dmax by Claim 3.28 which implies that pabc(H) ≤ pabc(Habc) + 225dmax, as required.

For x ∈ {a, b, c}, let Hx be a subhypergraph of Habc whose edge set is E(Hx) = Ex
1

⋃
Ex

2

where Ex
1 = {h ∈ E(Habc) | x ∈ h and h 6= abc} and Ex

2 = {h ∈ E(Habc) | ∃h′ ∈ Ex
1 , x 6∈

h and h∩h′ 6= ∅} and its vertex set is V (Hx) = {v ∈ V (Habc) | ∃h ∈ E(Hx) and v ∈ h}. Note
that |Ex

1 | = dHx(x) = dH(x) − 1 and every hyperedge in Ex
1 contains exactly two vertices

of NHx
1 (x) and every hyperedge in Ex

2 contains one vertex of NHx
1 (x) and two vertices of

NHx
2 (x) because hyperedges containing more than one vertex of NHx

1 (x) do not belong to
Habc (since they are in H ′abc by property 1 of Definition 3.26) and thus, do not belong to Hx.

We will show that the number of ordered pairs (x, h) such that x ∈ {a, b, c} and h ∈ Ex
2

is equal to pabc(Habc) by showing a bijection between the set of ordered pairs (x, h) such that
x ∈ {a, b, c} and h ∈ Ex

2 and the set of 3-links in Habc where abc is a terminal hyperedge.
To each 3-link abc, h′, h in Habc where abc ∩ h = ∅ and h′ ∩ abc = {x}, let us associate the
ordered pair (x, h). Clearly x ∈ {a, b, c} and h ∈ Ex

2 . Now consider an ordered pair (x, h)
where x ∈ {a, b, c} and h ∈ Ex

2 . Then h contains exactly one vertex u ∈ NHx
1 (x), so there is

a unique hyperedge h′ ∈ E(H) containing the pair ux. Therefore, there is a unique 3-link in
Habc associated to (x, h), namely abc, h′, h, establishing the required bijection. So,

pabc(Habc) = |{(x, h) | x ∈ {a, b, c}, h ∈ Ex
2}| =

∑
x∈{a,b,c}

|Ex
2 | . (3.13)

Now our aim is to upper bound pabc(Habc) in terms of ∑x∈{a,b,c}

∣∣∣NHx
2 (x)

∣∣∣, which will be
upper bounded in Claim 3.31.

Substituting v = x and H = Hx in Claim 3.23, we get,
∣∣∣NHx

2 (x)
∣∣∣ ≥ ∑

y∈NHx
1 (x) d

Hx(y) −
18dHx(x) for each x ∈ {a, b, c}. Now since∑y∈NHx

1 (x) d(y) = 2 |Ex
1 |+|Ex

2 |, we have
∣∣∣NHx

2 (x)
∣∣∣ ≥

2 |Ex
1 |+ |Ex

2 | − 18dHx(x). So by (3.13),∑
x∈{a,b,c}

∣∣∣NHx
2 (x)

∣∣∣ ≥ ∑
x∈{a,b,c}

(2 |Ex
1 |+|Ex

2 |−18dHx(x)) =
∑

x∈{a,b,c}
(2 |Ex

1 |−18dHx(x))+pabc(Habc).

Since |Ex
1 | = dHx(x) = dH(x)− 1, we have 2 |Ex

1 | − 18dHx(x) = −16(dH(x)− 1). So,
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∑
x∈{a,b,c}

∣∣∣NHx
2 (x)

∣∣∣ ≥ −16
∑

x∈{a,b,c}
(dH(x)−1)+pabc(Habc) ≥ −48(dmax−1)+pabc(Habc). (3.14)

Now we want to upper bound ∑x∈{a,b,c}

∣∣∣NHx
2 (x)

∣∣∣ by 2 |V (H)|.

Claim 3.31. Each vertex v ∈ V (H) belongs to at most two of the sets NHa
2 (a), NHb

2 (b), NHc
2 (c).

So ∑
x∈{a,b,c}

∣∣∣NHx
2 (x)

∣∣∣ ≤ 2 |V (H)| .

Proof. Suppose for the sake of a contradiction that there exists a vertex v ∈ V (H) which is
in all three sets NHa

2 (a), NHb
2 (b), NHc

2 (c). Then for each x ∈ {a, b, c}, there exists hx ∈ Ex
2

such that v ∈ hx.
First let us assume ha = hb = hc = h and let hx∩NHx

1 (x) = {vx} for each x ∈ {a, b, c}. If
va = vb = vc then h∩ (NH

1 (a)∩NH
1 (b)∩NH

1 (c)) 6= ∅, so by property 2 of Definition 3.26, h ∈
E(H ′abc) so h 6∈ E(Habc) ⊇ Ex

2 , a contradiction. If vx = vy 6= vz for some {x, y, z} = {a, b, c}
then by property 3 of Definition 3.26, h 6∈ E(Habc) ⊇ Ex

2 , a contradiction again. Therefore,
va, vb, vc are distinct. Moreover, for each x ∈ {a, b, c}, vx ∈ NHx

1 (x) and v ∈ NHx
2 (x).

However, since NHx
1 (x) and NHx

2 (x) are disjoint for each x ∈ {a, b, c} by definition (see the
Notation section for the precise definition of first and second neighborhoods), v is different
from va, vb and vc. So v, va, vb, vc ∈ h, a contradiction since h is a hyperedge of size 3.

So there exist x, y ∈ {a, b, c} such that hx 6= hy. Also, there exist h′x ∈ Ex
1 , h

′
y ∈ E

y
1 such

that hx∩h′x 6= ∅ and hy ∩h′y 6= ∅. Now it is easy to see that the hyperedges hx, hy, h′x, h′y, abc
form a C5, a contradiction, proving the claim.

So by Claim 3.31, ∑x∈{a,b,c}

∣∣∣NHx
2 (x)

∣∣∣ ≤ 2 |V (H)|. Combining this with (3.14), we get

pabc(Habc)− 48(dmax − 1) ≤
∑

x∈{a,b,c}

∣∣∣NHx
2 (x)

∣∣∣ ≤ 2 |V (H)| . (3.15)

Therefore, by Claim 3.30 and the above inequality, we have

pabc(H) ≤ pabc(Habc) + 225dmax ≤ 2 |V (H)|+ 48(dmax − 1) + 225dmax ≤ 2 |V (H)|+ 273dmax,

completing the proof of Claim 3.29.

So by Claim 3.29, we have

p(H) =
1

2

∑
abc∈E(H)

pabc(H) ≤ 1

2
(2 |V (H)|+ 273dmax) |E(H)| . (3.16)

By Claim 3.25, we can assume dmax ≤ 6d. Using this in the above inequality we obtain,

p(H) ≤ 1

2
(2 |V (H)|+ 1638d) |E(H)| = (n+ 819d)

nd

3
. (3.17)
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3.3.2 Lower bounding p(H)

We introduce some definitions that are needed in the rest of our proof where we establish a
lower bound on p(H) and combine it with the upper bound in (3.17).

A walk of length k in a graph is a sequence v0e0v1e1 . . . vk−1ek−1vk of vertices and edges
such that ei = vivi+1 for 0 ≤ i < k. For convenience we simply denote such a walk by
v0v1 . . . vk−1vk. A walk is called unordered if v0v1 . . . vk−1vk and vkvk−1 . . . v1v0 are considered
as the same walk. From now on, unless otherwise stated, we only consider unordered walks.
A path is a walk with no repeated vertices or edges. Blakley and Roy [7] proved a matrix
version of Hölder’s inequality, which implies that any graph G with average degree dG has at
least as many walks of a given length as a dG-regular graph on the same number of vertices.

We will now prove a lower bound on p(H). Consider the shadow graph ∂H of H. The
number of edges in ∂H is equal to 3 |E(H)| = 3 · nd

3
= nd. Then the average degree of a

vertex in ∂H is d∂H = 2d, and the maximum degree ∆∂H in ∂H is at most 2dmax ≤ 12d by
Claim 3.25. Applying the Blakley-Roy inequality [7] to the graph ∂H, we obtain that there
are at least 1

2
n(d∂H)3 (unordered) walks of length 3 in ∂H. Then there are at least

1

2
n(d∂H)3 − 3n(∆∂H)2

paths of length 3 in ∂H as there are at most 3n(∆∂H)2 walks that are not paths. Indeed, if
v1v2v3v4 is a walk that is not a path, then there exists a repeated vertex v in the walk such
that either v1 = v3 = v or v2 = v4 = v or v1 = v4 = v. Since v can be chosen in n ways and
the other two vertices of the walk are adjacent to v, we can choose them in at most (∆∂H)2

different ways.
A path in ∂H is called a rainbow path if the edges of the path are contained in distinct

hyperedges of H. If a path abcd is not rainbow then there are two (consecutive) edges in it
that are contained in the same hyperedge of H. So there are two hyperedges h, h′ ∈ E(H),
h ∩ h′ 6= ∅ such the path abcd is contained in the 2-shadow of h, h′. Now we estimate the
number of non-rainbow paths.

We can choose these pairs h, h′ ∈ E(H) in ∑
v∈V (H)

Ä
dH(v)

2

ä
ways and for a fixed pair

h, h′ ∈ E(H), it is easy to see that the path abcd can chosen in 8 different ways in the
2-shadow of h, h′. Therefore, the number of non-rainbow paths in ∂H is at most

∑
v∈V (H)

8

(
dH(v)

2

)
≤ 4n(dmax)

2 ≤ 4n(6d)2 = 144nd2.

So the number of rainbow paths in ∂H is at least

1

2
n(d∂H)3 − 3n(∆∂H)2 − 144nd2 =

1

2
n(2d)3 − 3n(12d)2 − 144nd2 = 4nd3 − 576nd2.

Since each 3-link in H produces 4 rainbow paths in ∂H, the number of rainbow paths in
∂H is 4p(H). So, 4p(H) ≥ 4nd3 − 576nd2. That is,

p(H) ≥ nd3 − 144nd2.
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Combining this with (3.17), we get

nd3 − 144nd2 ≤ p(H) ≤ (n+ 819d)
nd

3
.

Simplifying, we get d2 − 144d ≤ (n+ 819d)/3. That is,

d ≤
 
n

3
+

173889

4
+

417

2
.

So,

|E(H)| = nd

3
≤ n

3
·
( 

n

3
+

173889

4
+

417

2

)
=

1

3
√

3
n3/2 +O(n),

completing the proof of Theorem 3.3.

3.4 C4-free linear hypergraphs: Proof of Theorem 3.4
Let H be a 3-uniform linear hypergraph on n vertices containing no (Berge) C4. Let d denote
the average degree of a vertex in H.

Outline of the proof: Our plan is to first upper bound ∑x∈NH
1 (v) 2d(x) for each fixed

v ∈ V (H), which as the following claim shows, is not much more than n. Then we estimate∑
v∈V (H)

∑
x∈NH

1 (v) 2d(x) in two different ways to get the desired bound on d.

Claim 3.32. For every v ∈ V (H), we have∑
x∈NH

1 (v)

2d(x) ≤ n+ 12d(v).

Proof. First we show that most of the hyperedges incident to x ∈ NH
1 (v) contain only one

vertex from NH
1 (v).

Claim 3.33. For any given x ∈ NH
1 (v), the number of hyperedges h ∈ E(H) containing x

such that
∣∣∣h ∩NH

1 (v)
∣∣∣ ≥ 2 is at most 3.

Proof. Suppose for a contradiction that there is a vertex x ∈ NH
1 (v) which is contained in 4

hyperedges h such that
∣∣∣h ∩NH

1 (v)
∣∣∣ ≥ 2. One of them is the hyperedge containing x and v.

Let h1, h2, h3 be the other 3 hyperedges. Then it is easy to see that two of these hyperedges
intersect two different hyperedges incident to v, and these four hyperedges form a C4 in H,
a contradiction.

For each x ∈ NH
1 (v), let Ex = {h ∈ E(H) | h ∩ NH

1 (v) = {x}}. Note that any
hyperedge of Ex does not contain v, so it contains exactly two vertices from NH

2 (v). Let
Sx = {w ∈ NH

2 (v) | ∃h ∈ Ex with w ∈ h}. Then |Sx| = 2 |Ex| since H is linear. Notice that
|Ex| ≥ d(x)− 3 by Claim 3.33, so

|Sx| ≥ 2d(x)− 6. (3.18)
The following claim shows that the sets {Sx | x ∈ NH

1 (v)} do not overlap too much.
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Claim 3.34. Let x, y ∈ NH
1 (v) be distinct vertices. If xyv 6∈ E(H) then Sx ∩ Sy = ∅ and if

xyv ∈ E(H) then |Sx ∩ Sy| ≤ 2.

Proof. Take x, y ∈ NH
1 (v) with x 6= y. Let hx, hy ∈ E(H) be hyperedges incident to v such

that x ∈ hx and y ∈ hy. First suppose hx 6= hy. Then it is easy to see that Sx ∩ Sy = ∅
because otherwise hx, hy and the two hyperedges containing xw, yw for some w ∈ Sx ∩ Sy
form a C4, a contradiction.

Now suppose hx = hy. We claim that |Sx ∩ Sy| ≤ 2. Suppose for the sake of a contradic-
tion that there are 3 distinct vertices v1, v2, v3 ∈ Sx ∩ Sy. Then it is easy to see that there
exist i, j ∈ {1, 2, 3} such that neither vivjx nor vivjy is a hyperedge in H. So there are two
different hyperedges h1, h2 ∈ Ex such that xvi ∈ h1 and xvj ∈ h2. Similarly there are two
different hyperedges h′1, h′2 ∈ Ey such that yvi ∈ h′1 and yvj ∈ h′2. As Ex ∩ Ey = ∅, the
hyperedges h1, h2, h

′
1, h
′
2 are distinct and form a C4, a contradiction.

We will upper bound ∑
x∈NH

1 (v) |Sx|. It follows from Claim 3.34 that each vertex w ∈
NH

2 (v) belongs to at most two of the sets in {Sx | x ∈ NH
1 (v)}. Moreover, w belongs to two

sets Sp, Sq ∈ {Sx | x ∈ NH
1 (v)} only if there exists a unique pair p, q ∈ NH

1 (v) such that
pqv ∈ E(H) and for any such pair p, q with pqv ∈ E(H), there are at most 2 vertices w
with w ∈ Sp, Sq. So there are at most 2d(v) vertices in NH

2 (v) that are counted twice in the
summation ∑x∈NH

1 (v) |Sx|. That is,∣∣∣NH
2 (v)

∣∣∣ ≥ ∑
x∈NH

1 (v)

|Sx| − 2d(v). (3.19)

As NH
2 (v) and NH

1 (v) are disjoint, we have n ≥
∣∣∣NH

2 (v)
∣∣∣+ ∣∣∣NH

1 (v)
∣∣∣. So by (3.19),

n ≥
∑

x∈NH
1 (v)

|Sx| − 2d(v) +
∣∣∣NH

1 (v)
∣∣∣ =

∑
x∈NH

1 (v)

|Sx| − 2d(v) + 2d(v) =
∑

x∈NH
1 (v)

|Sx| . (3.20)

Combining this with (3.18), we get

n ≥
∑

x∈NH
1 (v)

(2d(x)− 6) =
∑

x∈NH
1 (v)

2d(x)− 6
∣∣∣NH

1 (v)
∣∣∣ =

∑
x∈NH

1 (v)

2d(x)− 12d(v), (3.21)

completing the proof of Claim 3.32.

We now estimate ∑v∈V (H)
∑
x∈NH

1 (v) 2d(x) in two different ways. On the one hand, by
Claim 3.32

∑
v∈V (H)

∑
x∈NH

1 (v)

2d(x) ≤
∑

v∈V (H)

(n+ 12d(v)) = n2 + 12nd. (3.22)

On the other hand,∑
v∈V (H)

∑
x∈NH

1 (v)

2d(x) =
∑

v∈V (H)

2d(v) · 2d(v) =
∑

v∈V (H)

4d(v)2 ≥ 4nd2. (3.23)
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The last inequality follows from the Cauchy-Schwarz inequality. Finally, combining (3.22)
and (3.23), we get 4nd2 ≤ n2 + 12nd. Dividing by n, we have 4d2 ≤ n + 12d, so d ≤
1
2
(
√
n+ 9 + 3). Therefore,

|E(H)| = nd

3
≤ 1

6
n
√
n+ 9 +

n

2
,

proving Theorem 3.4.

3.5 Proof of Theorem 3.5: Construction
We prove Theorem 3.5 by constructing a linear hypergraph H below, and then we show that
it is Clin

2k+1-free. Finally, we count the number of hyperedges in it.

Construction of H: Let G = (V (G), E(G)) be a C2k−2-free bipartite graph (i.e., girth
at least 2k) on z vertices. Let the two color classes of G be L = {l1, l2, . . . lz1} and R =
{r1, r2, . . . , rz2} where z = z1 + z2.

Now we construct a hypergraph H = (V (H), E(H)) based on G. Let q be an integer.
For each 1 ≤ t ≤ q, let Lt = {lt1, lt2, . . . , ltz1} and Rt = {rt1, rt2, . . . , rtz2}. Let B = {vi,j |
1 ≤ i ≤ z1, 1 ≤ j ≤ z2 and lirj ∈ E(G)}. (Note that |B| = |E(G)| as we only create a

vertex in B if the corresponding edge exists in G.) Now let V (H) =
q⋃
i=1

Li ∪
q⋃
i=1

Ri ∪ B
and E(H) = {vi,jltirtj | vi,j ∈ B and lirj ∈ E(G) and 1 ≤ t ≤ q}. Clearly H is a linear
hypergraph.

Proof that H is Clin
2k+1-free: Suppose for the sake of a contradiction that H contains

C lin
2k′+1, a linear cycle of length 2k′ + 1 for some k′ ≤ k.
Since the basic cycle of C lin

2k′+1 is of odd length it must contain at least one vertex in B.
(Note that here we used that the length of the linear cycle is odd.)

First let us assume that the basic cycle of C lin
2k′+1 contains exactly one vertex x ∈ B.

Then
q⋃
i=1

Li ∪
q⋃
i=1

Ri ∪ x contains all the basic vertices of C lin
2k′+1. For X ⊆ V (H), let H[X]

denote the subhypergraph in H induced by X. Notice that x is a cut vertex in the 2-shadow
of H[

q⋃
i=1

Li ∪
q⋃
i=1

Ri ∪ x]. Therefore, there exists a t such that the basic vertices of C lin
2k′+1

belong to Lt ∪ Rt ∪ x. Let xu and xv be the two edges incident to x in the basic cycle of
C lin

2k′+1. However, by construction the hyperedge containing xu is the same as the hyperedge
containing xv, which is impossible since C lin

2k′+1 is a linear cycle. Therefore, there are at least
two basic vertices of C lin

2k′+1 in B.
Let c1, c2, . . . , cs be the basic vertices of C lin

2k′+1 in B and let us suppose that they are
ordered such that the subpaths Pi,i+1 of the basic cycle of C lin

2k′+1 from ci to ci+1, are pairwise
edge-disjoint for 1 ≤ i ≤ s (addition in the subscript is taken modulo s from now on).
Note that s ≥ 2 by the previous paragraph and s ≤ k′ because for each i, the subpath
Pi,i+1 contains at least two edges. It is easy to see that for each 1 ≤ i ≤ s, there exists
a t such that V (Pi,i+1) ⊆ Lt ∪ Rt ∪ {ci, ci+1}. Let P ′i,i+1 be a path in G with the edge set

52

C
E

U
eT

D
C

ol
le

ct
io

n



{lαrβ | ltαrtβ ∈ E(Pi,i+1) for some t} for 1 ≤ i ≤ s. Clearly,
∣∣∣E(P ′i,i+1)

∣∣∣ = |E(Pi,i+1)| − 2 ≥ 0.
For each ci, there exists 1 ≤ αi ≤ z1, 1 ≤ βi ≤ z2 such that ci = vαi,βi . Let ei = lαirβi for
each 1 ≤ i ≤ s, and let eti = ltαir

t
βi

for each 1 ≤ t ≤ q. Notice that P ′i,i+1 is a path in G
and ei ∈ E(G). Moreover, P ′i,i+1 is a path between a vertex of ei and a vertex of ei+1 and if
E(P ′i,i+1) = ∅, then ei ∩ ei+1 6= ∅.

Claim 3.35. The paths P ′i,i+1 (for 1 ≤ i ≤ s) cannot contain any of the edges ej (for
1 ≤ j ≤ s). Moreover, for any 1 ≤ i 6= j ≤ s, the paths P ′i,i+1 and P ′j,j+1 are edge-disjoint.

Proof. Assume for the sake of contradiction a path P ′i,i+1 (for some 1 ≤ i ≤ s) contains an
edge ej (for some 1 ≤ j ≤ s). This implies there exists t with 1 ≤ t ≤ q, such that etj
is contained in Pi,i+1, so etj is contained the basic cycle of C lin

2k′+1. Then the (only) hyper-
edge containing etj, namely ltαjr

t
βj
vαj ,βj = ltαjr

t
βj
cj is a hyperedge of the linear cycle C lin

2k′+1.
However, by definition of a linear cycle, the basic cycle must use exactly two vertices of any
hyperedge of its linear cycle, a contradiction. Therefore the paths P ′i,i+1, 1 ≤ i ≤ s, cannot
contain any of the edges ej (for 1 ≤ j ≤ s).

Now we will show that for any 1 ≤ i 6= j ≤ s, P ′i,i+1 and P ′j,j+1 are edge-disjoint. Suppose
for a contradiction that lαrβ ∈ E(P ′i,i+1) ∩ E(P ′j,j+1) for some 1 ≤ α ≤ z1 and 1 ≤ β ≤ z2.
Then there exist t 6= t′ such that ltαrtβ and lt

′
αr

t′
β are two disjoint edges of the basic cycle

of C lin
2k′+1. However, ltαrtβvα,β, lt

′
αr

t′
β vα,β ∈ E(H), which is impossible since the hyperedges

containing disjoint edges of the basic cycle of a linear cycle must also be disjoint, by the
definition of a linear cycle.

Recall that by definition, the first vertex of Pj,j+1 is cj. So the first edge of Pj,j+1 is
contained in a hyperedge of the form etj ∪ cj for some t (indeed all the hyperedges containing
cj are of this form). This means the second vertex of Pj,j+1 is contained in etj, so the first
vertex of P ′j,j+1 is contained in ej. Similarly, the last vertex of P ′j−1,j is also contained in ej.
Therefore, the last vertex of P ′j−1,j and the first vertex of P ′j,j+1 are both contained in ej. If
these vertices are different, then we call ej a connecting edge. So using Claim 3.35, the edges
of ∪iE(P ′i,i+1) together with the connecting edges form a circuit C in G (i.e., a cycle where
vertices may repeat but edges do not repeat).

Now we claim that C is non-empty and contains at most 2k−1 edges. Indeed, the number
of edges of C is at least ∑s

i=1

∣∣∣E(P ′i,i+1)
∣∣∣. Moreover, as the number of connecting edges is at

most s, the number of edges in C is at most ∑s
i=1

∣∣∣E(P ′i,i+1)
∣∣∣ + s. Since ∑s

i=1

∣∣∣E(P ′i,i+1)
∣∣∣ =∑s

i=1 |E(Pi,i+1)| − 2s = 2k′ + 1 − 2s, and 2 ≤ s ≤ k′, it is easily seen that C is non-empty
and contains at most 2k′ + 1− s ≤ 2k′ − 1 ≤ 2k − 1 edges, as claimed. (Let us remark that
here the fact that the length of the linear cycle C lin

2k′+1 is odd played a crucial role in ensuring
that the circuit C is non-empty –indeed, if the length is even, it is possible that E(P ′i,i+1) is
empty for each i.)

Since every non-empty circuit contains a cycle, we obtain a cycle of length at most 2k−1
in G, a contradiction, as desired.

Bounding exlin
3 (n, Clin

2k+1) from below: We assumed exbip(z, C2k−2) ≥ (1+o(1))c(z/2)α
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for some c, α > 0. So there is a C2k−2-free bipartite graph G on z vertices with

|E(G)| = (1 + o(1))c
Åz

2

ãα
. (3.24)

Let H be the Clin
2k+1-free hypergraph constructed based on G (as described in the Con-

struction above). Then the number of hyperedges in H is |E(G)| · q. So we have

exlin
3 (n, Clin

2k+1) ≥ |E(H)| = |E(G)| · q ≥ |E(G)| ·
ú
n− |E(G)|

z

ü
. (3.25)

Substituting (3.24) in (3.25) and choosing z = (1 + o(1))
(

2α(α−1)
c(2α−1)

) 1
α n

1
α , we obtain that

exlin
3 (n, Clin

2k+1) ≥ (1 + o(1))
αc

4α− 2
·
Ç

α− 1

c(2α− 1)

å1− 1
α

n2− 1
α ,

completing the proof of Theorem 3.5.
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Chapter 4

Triangles in C5-free graphs and
Hypergraphs of Girth Six

4.1 Introduction
Motivated by a conjecture of Erdős [16] on the maximum possible number of pentagons in a
triangle-free graph, Bollobás and Győri [8] initiated the study of the natural converse of this
problem. Let ex(n,K3, C5) denote the maximum possible number of triangles in a graph on
n vertices without containing a cycle of length five as a subgraph. Bollobás and Győri [8]
showed that

(1 + o(1))
1

3
√

3
n3/2 ≤ ex(n,K3, C5) ≤ (1 + o(1))

5

4
n3/2. (4.1)

Their lower bound comes from the following example: Take a C4-free bipartite graph G0

on n/3 + n/3 vertices with about (n/3)3/2 edges and double each vertex in one of the color
classes and add an edge joining the old and the new copy to produce a graph G. Then, it is
easy to check that G contains no C5 and it has (n/3)3/2 triangles.

Recently, Füredi and Özkahya [38] gave a simpler proof showing a slighly weaker upper
bound of

√
3n3/2 +O(n). Alon and Shikhelman [4] improved these results by showing that

ex(n,K3, C5) ≤ (1 + o(1))

√
3

2
n3/2. (4.2)

E., Győri, Methuku and Salia [33] recently showed that

Theorem 4.1. (E., Győri, Methuku, Salia [33])

ex(n,K3, C5) ≤ (1 + o(1))
1

2
√

2
n3/2.

In this chapter our aim is to introduce a new approach and use it to improve two old
results and prove a new one. Our approach consists of carefully counting paths of length 5 (or
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paths of length 3) by making use of the structure of certain subgraphs. Roughly speaking,
we are able to efficiently bound the number of 5-paths if its middle edge lies in a dense
subgraph (for e.g., in a K4). We expect this approach to have further applications.

The main result of this chapter improves the previous estimates (4.1), (4.2) and theorem
4.1, on the maximum possible number of triangles in a C5-free graph, as follows.

Theorem 4.2 (E., Methuku [26]). We have,

ex(n,K3, C5) < (1 + o(1))
1

3
√

2
n3/2.

Given a hypergraph H, its 2-shadow is the graph consisting of the edges {ab | ab ⊂ e ∈
E(H)}. Applying our approach to the 2-shadow of a hypergraph of girth 6, we prove the
following result.

Theorem 4.3 (E., Methuku [26]). Let H be an r-uniform hypergraph of girth 6. Then

|E(H)| ≤ (1 + o(1))
n3/2

r3/2(r − 1)
.

Let us mention a related result of Lazebnik and Verstraëte [59] which states the following.
If H is an r-uniform hypergraph of girth 5, then

|E(H)| ≤ (1 + o(1))
n3/2

r(r − 1)
.

Note that Theorem 4.3 shows that if a (Berge) cycle of length 5 is also forbidden, then
the above bound can be improved by a factor of

√
r. It would be interesting to determine

whether there is a matching construction for the bound in Theorem 4.3, at least when r = 3.

In Section 4.3.2, we show a close connection between Theorem 4.2 and Theorem 4.3,
and prove that the estimate in Theorem 4.2 can be slightly improved using Theorem 4.3.
However, to illustrate the main ideas of the proof of Theorem 4.2, we decided to state
Theorem 4.2 in a slightly weaker form.

Loh, Tait, Timmons and Zhou [61] introduced the problem of simultaneously forbidding
an induced copy of a graph and a (not necessarily induced) copy of another graph. A graph
is called induced-F -free if it does not contain an induced copy of F . They asked the following
question: What is the largest size of an induced-C4-free and C5-free graph on n vertices?
They noted that the example showing the lower bound in (4.1) is in fact induced-C4-free and
C5-free, thus it gives a lower bound of (1 + o(1)) 2

3
√

3
n3/2. (If the “induced-C4-free" condition

is replaced by “C4-free" condition, then Erdős and Simonovits [19] showed that the answer
is (1 + o(1)) 1

2
√

2
n3/2.) In [31], Győri and the current authors determined (asymptotically)

the maximum size of an induced-Ks,t-free and C2k+1-free graph on n vertices in all the cases
except in the case when s = t = 2 and k = 2 (i.e., the question stated above), and in this
case an upper bound of only n3/2/2 was proven [31]. Here we show that using our approach
one can slightly improve this upper bound.
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Theorem 4.4 (E., Methuku [26]). If a graph G is C5-free and induced-C4-free, then

|E(G)| ≤ (1 + o(1))
n3/2

2
10
√

2
.

Structure of the chapter: In Section 4.2, we prove Theorem 4.2. In Section 4.3, we
prove Theorem 4.3 and show how it can be used to slightly improve Theorem 4.2. Finally
in Section 4.4, we prove Theorem 4.4.

Notation: Given a graph G and a vertex v of G, let N1(v) and N2(v) denote the first
neighborhood and the second neighborhood of v respectively.

For a vertex v of G, let d(v) be the degree of v. The average degree of a graph G is
denoted by d(G), or simply d if it is clear from the context. The maximum degree of a graph
G is denoted by dmax(G) or simply dmax.

A walk or path usually referes to an unordered one, unless specified otherwise. That is,
a walk or path v1v1v2 . . . vk is considered equivalent to vkvk−1v2 . . . v1.

4.2 Number of triangles in a C5-free graph: Proof of The-
orem 4.1 and 4.2

Let G be a C5-free graph with maximum possible number of triangles. We may assume
that each edge of G is contained in a triangle, because otherwise, we can delete it without
changing the number of triangles. Two triangles T, T ′ are said to be in the same block if
they either share an edge or if there is a sequence of triangles T, T1, T2, . . . , Ts, T

′ where each
triangle of this sequence shares an edge with the previous one (except the first one of course).
It is easy to see that all the triangles in G are partitioned uniquely into blocks. Notice that
any two blocks of G are edge-disjoint. Below we will characterize the blocks of G.

A block of the form {abc1, abc2, . . . , abck} where k ≥ 1, is called a crown-block (i.e.,
a collection of triangles containing the same edge) and a block consisting of all triangles
contained in the complete graph K4 is called a K4-block. See Figure 4.1.

Figure 4.1: An example of a crown-block and a K4-block

The following claim was proved in [33]. We repeat its proof for completeness.

Claim 4.1. Every block of G is either a crown-block or a K4-block.
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Proof. If a block contains only one or two triangles, then it is easy to see that it is a crown-
block. So we may assume that a block of G contains at least three triangles and let abc1, abc2

be some two triangles in it. We claim that if bc1x or ac1x is a triangle in G which is different
from abc1, then x = c2. Indeed, if x 6= c2, then the vertices a, x, c1, b, c2 contain a C5, a
contradiction. Similarly, if bc2x or ac2x is a triangle in G which is different from abc2, then
x = c1.

Therefore, if aci or bci (for i = 1, 2) is contained in two triangles, then abc1c2 forms
a K4. However, then there is no triangle in G which shares an edge with this K4 and is
not contained in it because if there is such a triangle, then it is easy to find a C5 in G, a
contradiction. So in this case, the block is a K4-block, and we are done.

So we can assume that whenever abc1, abc2 are two triangles then the edges ac1, bc1, ac2, bc2

are each contained in exactly one triangle. Therefore, any other triangle which shares an
edge with either abc1 or abc2 must contain ab. Let abc3 be such a triangle. Then applying the
same argument as before for the triangles abc1, abc3 one can conclude that the edges ac3, bc3

are contained in exactly one triangle and so, any other triangle of G which shares an edge
with one of the triangles abc1, abc2, abc3 must contain ab again. So by induction, it is easy
to see that all of the triangles in this block must contain ab. Therefore, it is a crown-block,
as needed.

4.2.1 Proof of Theorem 4.1

Claim 4.2. The edges of any C4 in G are contained in only one block of G.

Proof. Let xyzw be a 4-cycle in G. Every edge of G is contained in a triangle. So in
particular, let xyu be a triangle containing the edge xy. If u 6∈ {x, y, z, w} then uxwzy is a
C5, a contradiction. Therefore, u = z or u = w. So either xyz and yzw or xyw and ywz are
triangles of G. In both cases, the two triangles share an edge, so they belong to the same
block. Hence, all four edges of xyzw lie in the same block.

We are now ready to prove the theorem using the above claims. We want to select a
C4-free subgraph G0 of G such that the number of edges in G0 is the same as the number
of triangles in G. By Claim 4.2 the edge set of every C4 is completely contained in some
block of G. So in order to make sure the selected subgraph G0 is C4-free, it suffices to make
sure the edges selected from each block of G do not contain a C4, which is done as follows:
From each crown-block {abc1, abc2, . . . , abck}, we select the edges ac1, ac2, . . . , ack to be in
G0. From each K4-block abcd we select the edges ab, bc, ac, ad to be in G0 (since every block
is either a crown-block or a K4-block by Claim 4.1, we have dealt with all the blocks of
G). Finally, notice that the number of selected edges in each block is exactly the number
of triangles in that block. Moreover, since blocks are edge-disjoint, we never select the same
edge twice. Therefore, as every triangle of G is contained in some block, the total number
of triangles in G is the same as the number of edges in G0. On the other hand, as G0 is
C4-free and also C5-free (as it is a subgraph of G), we can use the theorem of Erdős and
Simonovits [19], which states that the maximum possible number of edges in a graph on n
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vertices containing no C4 or C5 as a subgraph is at most 1
2
√

2
(1 + o(1))n3/2. So we get that

the number of edges in G0 is at most 1
2
√

2
(1 + o(1))n3/2, completing the proof of Theorem

4.1.

4.2.2 Proof of Theorem 4.2

Edge Decomposition of G: We define a decomposition D of the edges of G into paths of
length 2, triangles and K4’s, as follows: Since each edge of G belongs to a triangle, and all
the triangles of G are partitioned into blocks, it follows that the edges of G are partitioned
into blocks as well. Moreover, by Claim 4.1, edges of G can be decomposed into crown-blocks
and K4-blocks. We further partition the edges of each crown-block {abc1, abc2, . . . , abck} (for
some k ≥ 1) into the triangle abc1 and paths acib where 2 ≤ i ≤ k. This gives the desired
decomposition D of E(G).

Claim 4.3. Let u, v be two non-adjacent vertices of G. Then the number of paths of length 2
between u and v is at most two. Moreover, if uxv and uyv are the paths of length 2 between
u and v, then x and y are adjacent.

Proof. First let us prove the second part of the claim. Since we assumed every edge is
contained in a triangle and u and v are not adjacent, there is a vertex w 6= v such that uxw
is a triangle. If w 6= y, then uwxvy is a C5, a contradiction. So w = y, so x and y are
adjacent, as desired.

Now suppose that there are 3 distinct vertices x, y, z such that uxv, uyv, uzv are paths
of length 2 between u and v. Then x and y are adjacent by the discussion in the previous
paragraph. Therefore uxyvz is a C5 in G, a contradiction, proving the claim.

Let t(v) be the number of triangles containing a vertex v and let t(G) = t =
∑
v∈V (G)

t(v)
n
.

Observe that number of triangles in G is nt/3. Our goal is to bound t from above.
First we claim that for any vertex v of G,

t(v) ≤ d(v) ≤ 2t(v). (4.3)

Indeed, d(v) ≤ 2t(v) simply follows by noting that every edge is in a triangle. Now notice
that t(v) is equal to the number of edges contained in the first neighborhood of v (denoted
by N1(v)). Moreover, there is no path of length three in the subgraph induced by N1(v)
because otherwise there is a C5 in G. So by Erdős-Gallai theorem, the number of edges
contained in N1(v) is at most 3−1

2
|N1(v)| = d(v). Therefore, t(v) ≤ d(v).

Note that by adding up (4.3) for all the vertices v ∈ V (G) and dividing by n, we get

t ≤ d ≤ 2t. (4.4)

Suppose there is a vertex v of G, such that t(v) < t/3. Then we may delete v and all the
edges incident to v from G to obtain a graph G′ such that t(G′) > 3(nt/3− t/3)/(n− 1) =
t(G). Then it is easy to see that if the theorem holds for G′, then it holds for G as well.
Repeating this procedure, we may assume that for every vertex v of G, t(v) ≥ t/3. Therefore,
by (4.3), we may assume that the degree of every vertex of G is at least t/3.
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Claim 4.4. We may assume that dmax(G) ≤ 6
√

3
√
n.

Proof. Suppose that there is a vertex v such that d(v) > 6
√

3
√
n. The sum of degrees of

the vertices in N1(v) is at least |N1(v)|t
3

= d(v)t
3

as we assumed that the degree of every vertex
is at least t/3. The number of edges inside N1(v) is t(v), which is at most d(v) by (4.3).
Therefore the number of edges between N1(v) and N2(v) is at least d(v)t

3
−2d(v). Now notice

that any vertex in N2(v) is incident to at most two of these edges by Claim 4.3. Therefore,
|N2(v)| ≥ d(v)t

6
− d(v).

Thus we have,

n ≥ |N1(v)|+ |N2(v)| ≥ d(v) +
d(v)t

6
− d(v) =

d(v)t

6
>

6
√

3
√
nt

6
,

which implies t <
»

n
3
. Therefore, the total number of triangles in G is less than n3/2

3
√

3
, proving

Theorem 4.2.

By the Blakley-Roy inequality, the number of (unordered) walks of length five in G is
nd5/2. First let us show that most of these walks are paths. Let v0v1v2v3v4v5 be a walk that
is not a path. Then vi = vj for some i < j. Fix some i < j. Then there are n choices for
v0, and then at most dmax choices for every vk with k ≤ j − 1, then since vj = vi, there is
only choice for vj and again at most dmax choices for every vk with k ≥ j+ 1. So in total the
number of walks that are not paths is at most

Ä
6
2

ä
n(dmax)

4 as there are
Ä

6
2

ä
= 15 choices for

i, j. Thus the number of (unordered) paths of length five in G is at least nd5/2−15n(dmax)
4.

From now, we refer to a path of length five as a 5-path.
We say a 5-path v0v1v2v3v4v5 is bad if there exists an i such that vivi+1vi+2 is a triangle

of G; otherwise it called good. Our aim is to show that the number of bad 5-paths is very
small. Let v0v1v2v3v4v5 be a bad 5-path. Then there is an i so that vivi+1vi+2 is a triangle.
If we fix an i, there are at most 2nt choices for vivi+1vi+2 as each of the nt/3 triangles
can be ordered in 3! = 6 ways, and there are at most dmax choices for every vertex vk with
k < i or k > i + 2. There are four choices for i. Therefore, the total number of 5-paths
that are bad is at most 8nt(dmax)

3. This means that the number of good 5-paths is at
least nd5/2 − 15n(dmax)

4 − 8nt(dmax)
3. By (4.1), the number of triangles of G is at most

(1 + o(1))5n3/2

4
. Since the number of triangles of G is nt/3, we have t ≤ 15

4
(1 + o(1))n1/2.

Now using Claim 4.4, it follows that the number of good 5-paths is at least

nd5

2
− 15n(6

√
3
√
n)4 − 8n

15

4
n1/2(6

√
3
√
n)3 ≥ nd5

2
− Cn3, (4.5)

where C is some positive constant.
Now we seek to bound the number of good 5-paths from above. Recall that we defined a

decomposition D of the edges of G into three types of subgraphs: paths of length 2, triangles
and K4’s. We distingush three cases depending on which type of subgraph the middle edge
of a good 5-path belongs to, and bound the number of good 5-paths in each of those cases
separately in the following three claims.

A path of length two (or a 2-path) xyz is called good if x and z are not adjacent.
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Claim 4.5. Let abc be a 2-path of the edge-decomposition D. Then the number of good
5-paths in G whose middle edge is either ab or bc is at most n2.

Proof. A good 5-path xypqzw whose middle edge is ab or bc contains good 2-paths, xyp, qzw
as subpaths (where pq is either ab or bc). Moreover, since xypqzw is a good 5-path and the
2-path abc is contained in the triangle abc (because of the way we defined the decomposition
D), it follows that x, y 6∈ {a, b, c} and z, w 6∈ {a, b, c}.

Let na be the number of good 2-paths in G of the form axy where x, y 6∈ {a, b, c}, and let
nb be the number of good 2-paths in G of the form bxy where x, y 6∈ {a, b, c}. We define nc
similarly. Then the number of good 5-paths whose middle edge is either ab or bc is at most

nanb + nbnc = nb(na + nc) ≤
Åna + nb + nc

2

ã2

.

We claim that for any fixed vertex y 6∈ {a, b, c}, there are at most two good 2-paths of
the form pxy with p ∈ {a, b, c} and x 6∈ {a, b, c}. If this claim is true, then na+nb+nc ≤ 2n,
so the right-hand-side of the above inequality is at most n2, proving Claim 4.5.

It remains to prove this claim. Suppose for a contradiction that there are three such
good 2-paths, say, p1x1y, p2x2y, p3x3y. Notice that if pixi is disjoint from pjxj for some
i, j ∈ {1, 2, 3}, then pipjxjyxi forms a C5 in G, a contradiction (note that here we used that
pi and pj are adjacent even when {pi, pj} = {a, c} because of the way we defined D). Thus
the edges p1x1, p2x2, p3x3 pair-wise intersect, which implies that either p1 = p2 = p3 = p
or x1 = x2 = x3 = x (since p1, p2, p3 ∈ {a, b, c} and x1, x2, x3 6∈ {a, b, c}). The former case
is impossible by Claim 4.3 and in the latter case, note that a, b, c, x forms a K4, but this
contradicts the definition of D since abc was assumed to be a 2-path component of D and
no 2-path of D comes from a K4-block of G.

Claim 4.6. Let abc be a triangle of the edge-decomposition D. Then the number of good
5-paths in G whose middle edge is either ab, bc, ca is at most 4n2

3
.

Proof. The proof is very similar to that of the proof of Claim 4.5. A good 5-path xypqzw
whose middle edge is ab, bc, ca contains good 2-paths, xyp, qzw as subpaths. Moreover, since
xypqzw is a good 5-path, it follows that x, y 6∈ {a, b, c} and z, w 6∈ {a, b, c}.

Let na be the number of good 2-paths in G of the form axy where x, y 6∈ {a, b, c}, and
let nb, nc be defined similarly. Then the number of good 5-paths whose middle edge is ab, bc
or ca is at most

nanb + nbnc + ncna ≤
(na + nb + nc)

2

3
.

By the same argument as in the proof of Claim 4.5, it is easy to see that na+nb+nc ≤ 2n,
so the above inequality finishes the proof.

Claim 4.7. Let abcd be a K4 of the edge-decompostion D. Then the number of good 5-paths
in G whose middle edge belongs to the K4 is at most 3n2

2
.

61

C
E

U
eT

D
C

ol
le

ct
io

n



Proof. Notice that any good 5-path xypqzw contains good 2-paths, xyp, qzw as subpaths.
Suppose the middle edge of xypqzw belongs to the K4, abcd. Then since xypqzw is a good
5-path, it follows that x, y 6∈ {a, b, c, d} and z, w 6∈ {a, b, c, d}.

Let na be the number of good 2-paths in G of the form axy where x, y 6∈ {a, b, c, d},
and let nb, nc, nd be defined similarly. Then the number of good 5-paths whose middle edge
belongs to the K4, abcd is at most

∑
i,j∈{a,b,c,d}

ninj ≤
3

8
(na + nb + nc + nd)

2. (4.6)

To see that the above inequality is true one simply needs to expand and rearrange the
inequality ∑i,j∈{a,b,c,d}(ni − nj)2 ≥ 0.

Using a similar argument as in the proof of Claim 4.5, it is easy to see that for any fixed
vertex y 6∈ {a, b, c, d}, there are at most two good 2-paths of the form pxy with p ∈ {a, b, c, d}
and x 6∈ {a, b, c, d}. This implies that na + nb + nc + nd ≤ 2n, so using (4.6), the proof is
complete.

Now we are ready to bound the number of good 5-paths in G from above. Suppose the
number of edges of G is e(G), and let α1e(G) and α2e(G) be the number of edges of G that
are contained in triangles and 2-paths of the edge-decomposition D of G, respectively. Let
α1 + α2 = α. In other words, (1 − α)e(G) edges of G belong to the K4’s in D. Then the
number of triangles and 2-paths in D is at most α1

3
e(G) and α2

2
e(G) respectively and the

number of K4’s in D is at most (1−α)
6
e(G). Therefore, using Claim 4.5, Claim 4.6 and Claim

4.7, the total number of good 5-paths in G is at most

α1

3
e(G)

4n2

3
+
α2

2
e(G)n2 +

(1− α)

6
e(G)

3n2

2
≤ α

2
e(G)n2 +

(1− α)

4
e(G)n2 =

(1 + α)

8
n3d.

Combining this with the fact that the number of good 5-paths is at least nd5/2 − Cn3

(by (4.5)), we get
nd5

2
− Cn3 ≤ (1 + α)

8
n3d,

which simplifies to d5

2
≤ (1+α)

8
n2d+Cn2 = (1 + o(1)) (1+α)

8
n2d. Here we used that d ≥ t =

Ω(
√
n) (by (4.4)). Therefore,

d ≤ (1 + o(1))

Ç
1 + α

4

å1/4√
n. (4.7)

Recall that when defining D we decomposed the edges of each crown-block into a triangle
and 2-paths. This means that the number of triangles of G that belong to crown-blocks of
G is at most α1e(G)

3
+ α2e(G)

2
≤ αe(G)

2
, and the number of triangles that belong to K4-blocks

of G is at most 4(1−α)e(G)
6

. Therefore, the total number of triangles in G is at most

αe(G)

2
+

4(1− α)e(G)

6
=

4− α
6

e(G) =
(4− α)nd

12
. (4.8)
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Now using (4.7), we obtain that the number of triangles in G is at most

(1 + o(1))

Ç
1 + α

4

å1/4 (4− α)

12
n3/2.

Now optimizing the coefficient of n3/2 over 0 ≤ α ≤ 1, one obtains that it is maximized at
α = 0, giving the desired upper bound of (1 + o(1)) 1

3
√

2
n3/2.

4.3 On hypergraphs of girth 6 and further improvement
In this section we will first study r-uniform hypergraphs of girth 6, and prove Theorem 4.3.
Then we use Theorem 4.3 to further (slightly) improve the estimate in Theorem 4.2 on the
number of triangles in a C5-free graph.

4.3.1 Girth 6 hypergraphs: Proof of Theorem 4.3

Let d be the average degree of H. Our aim is to show that d ≤
√
n√

r(r−1)
. If a vertex has

degree less than d/r, then we may delete it and the edges incident to it without decreasing
the average degree. So we may assume that the minimum degree of H, δ(H) ≥ d/r.

Suppose there is a vertex v of degree c
√
n for some constant c. Then the first neighbor-

hoodNH
1 (v) := {x ∈ V (H)\{v} | v, x ∈ h for some h ∈ E(H)} has size more than c

√
n(r−1)

(since H is linear), and the second neighborhood NH
2 (v) = {x ∈ V (H) \ (NH

1 (v) ∪ {v}) |
∃h ∈ E(H) such that x ∈ h and h ∩NH

1 (v) 6= ∅} has size more than

c
√
n(r − 1)× δ(H)(r − 1) ≥ c

√
n(r − 1)× d(r − 1)

r
=
c
√
n(r − 1)2d

r
.

Note that here we used that H has no cycles of length at most four. On the other hand, since∣∣∣NH
2 (v)

∣∣∣ ≤ n, we have c
√
n(r−1)2d
r

≤ n, implying that d ≤ r
(r−1)2c

√
n. So if c > r3/2

r−1
, we have

the desired bound on d. Thus, we may assume c ≤ r3/2

r−1
, which proves that the maximum

degree of H, dmax ≤ r3/2

r−1

√
n.

Let ∂H denote the 2-shadow graph of H. Let d∂H and d∂Hmax denote the average degree
and maximum degree of ∂H, respectively. Note that since H is linear, d∂H = (r − 1)d and
d∂Hmax = (r − 1)dmax ≤ r3/2

√
n.

We say a 3-path v0v1v2v3 in ∂H is bad if either {v0, v1, v2} ⊆ h or {v1, v2, v3} ⊆ h for
some hyperedge h ∈ E(H); otherwise it is good.

By the Blakley-Roy inequality the total number of (ordered) 3-walks in ∂H is at least
n(d∂H)3. We claim that at most 3n(d∂Hmax)

2 of these 3-walks are not 3-paths. Indeed, suppose
v0v1v2v3 is a 3-walk that is not a 3-path. Then then there exists a repeated vertex v in the
walk such that either v0 = v2 = v or v1 = v3 = v or v0 = v3 = v. Since v can be chosen in
n ways and the other two vertices of the walk are adjacent to v, we can choose them in at
most (d∂Hmax)

2 different ways. Therefore, the number of (ordered) 3-paths in ∂H is at least
n(d∂H)3 − 3n(d∂Hmax)

2 ≥ n(d∂H)3 − 3n(r3/2
√
n)2 = n(d∂H)3 − 3r3n2.
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We will show that most of these 3-paths are good by bounding the number of bad 3-paths.
Suppose v0v1v2v3 is a bad 3-path. Then either {v0, v1, v2} or {v1, v2, v3} is contained in some
hyperedge h ∈ E(H). In the first case, the number of choices for v0v1v2 is |E(H)|

Ä
r
3

ä
3! as

there are
Ä
r
3

ä
ways to choose the vertices v0, v1, v2 from a hyperedge of H and then 3! ways to

order them. And there are at most d∂Hmax choices for v3. The second case is similar. Therefore,
in total, the number of bad 3-paths in ∂H is at most 2 |E(H)|

Ä
r
3

ä
3! d∂Hmax < 2nd

r
r3d∂Hmax ≤

2nr2dmaxd
∂H
max ≤ 2 r5

r−1
n2. So the number of (ordered) good 3-paths in ∂H is at least

n(d∂H)3 − 3r3n2 − 2
r5

r − 1
n2 = n(d∂H)3 − crn2 = (r − 1)3d3n− crn2, (4.9)

where cr = 3r3 + 2r5

r−1
.

The following claim is useful for upper bounding the number of (ordered) good 3-paths
in ∂H.

Claim 4.8. If C is a cycle of length at most five in ∂H, then its vertex set is contained in
some hyperedge of H.

Proof. Let v1, v2, . . . , vk, v1 be a cycle of length k in ∂H (for some k ≤ 5). For each i, let hi
be the hyperedge of H containing vi, vi+1 (addition in the subscripts is taken modulo k). If
these k hyperedges are not all the same, there exists j, j′ such that hj, hj+1, . . . , hj′ are all
distinct but hj′+1 = hj. So these hyperedges form a cycle in H of length at most k ≤ 5, a
contradiction. Therefore, h1 = h2 = . . . = hk = h; then v1, v2, . . . , vk ∈ h, as desired.

In order to upper bound the number of (ordered) good 3-paths in ∂H, let us first fix a
hyperedge h of H, and bound the number of good 3-paths v0v1v2v3 such that v0, v1 ∈ h.

Claim 4.9. For any vertex v 6∈ h, there are at most (r − 1) good 3-paths v0v1v2v such that
v0, v1 ∈ h.

Proof. Suppose v0v1v2v and v′0v′1v′2v are good 3-paths with v0, v1, v
′
0, v
′
1 ∈ h. Then v2, v

′
2 6∈ h

because it would contradict the definition of a good 3-path. We will prove that v1 = v′1 and
v2 = v′2.

Suppose v1 6= v′1. Then depending on whether v2 = v′2 or not, either v1v
′
1v
′
2vv2 forms

a five-cycle or v1v
′
1v
′
2 forms a triangle in ∂H. Then by Claim 4.8, v1, v

′
1, v
′
2 ∈ h′ for some

hyperedge h′ ∈ E(H). (Note that h′ 6= h, since v′2 6∈ h.) But then h and h′ are two different
hyperedges of H that share at least two vertices, namely v1, v

′
1, contradicting the fact that

H is linear. Thus v1 = v′1.
Now if v2 6= v′2, then vv2v1v

′
2 is a four-cycle in ∂H, so it must be contained in a hyperedge

of H, but this means the 3-path v0v1v2v is bad, a contradiction. Thus v2 = v′2.
In summary, any two good 3-paths v0v1v2v and v′0v

′
1v
′
2v with v0, v1, v

′
0, v
′
1 ∈ h can only

differ in their first vertex, of which there are at most r − 1 choices, proving the claim.

Claim 4.9 implies that for any fixed hyperedge h ∈ E(H), there are at most (r − 1)n
good 3-paths v0v1v2v3 with v0, v1 ∈ h. Therefore, the total number of good 3-paths in H is
at most |E(H)| (r − 1)n = (r−1)dn2

r
.
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Combining this with (4.9), we obtain (r− 1)3d3n− crn2 ≤ (r−1)dn2

r
. Dividing through by

d and using that d = Ω(
√
n), we get (r− 1)3d2n ≤ (1 + o(1)) (r−1)n2

r
and upon simplification

and rearranging, we get

d ≤ (1 + o(1))

√
n√

r(r − 1)
,

so using |E(H)| = nd/r, completes the proof.

4.3.2 Further improving the estimate on ex(n,K3, C5)

Here we slightly improve Theorem 4.2, by establishing a connection to girth 6 hypergraphs
and using Theorem 4.3.

Recall that in the proof of Theorem 4.2, G denotes a C5-free graph, and (1−α)e(G) edges
of G belong to the K4’s in the edge-decomposition D of G. Let us note that the vertex sets
of two different K4’s of G do not share more than one vertex, since G is C5-free. Consider
the 4-uniform hypergraph H formed by taking the vertex sets of all the K4’s of G. Then
notice that H is linear and if H contains a (Berge) cycle of length at most 5, then G contains
a C5. Therefore, H is of girth 6. Therefore, by Theorem 4.3, H contains at most n3/2/24
hyperedges. Thus at most n3/2/24 ×

Ä
4
2

ä
= n3/2/4 edges of G belong to the K4’s in the

edge-decomposition D. Therefore, (1− α)e(G) ≤ n3/2

4
, which implies d ≤

√
n

2(1−α)
. Combining

this with (4.7), we get

d ≤ (1 + o(1)) min

{
1

2(1− α)
,

Ç
1 + α

4

å1/4
}
√
n,

so using (4.8), we obtain that the number of triangles in G is at most

(1 + o(1))
(4− α)

12
min

{
1

2(1− α)
,

Ç
1 + α

4

å1/4
}
n3/2.

The above function is maximized at α = 0.343171, proving that ex(n,K3, C5) ≤ 0.231975n3/2.

4.4 C5-free and induced-C4-free graphs: Proof of Theo-
rem 4.4

Let G be a C5-free graph on n vertices having no induced copies of C4. Let G∆ be the
subgraph of G consisting of the edges that are contained in triangles of G, and let GS be the
subgraph of G consisting of the remaining edges of G. Since G∆ is C5-free and every edge of
it is contained in a triangle, by the same argument of the proof of Theorem 4.2, the triangles
of G∆ can be partitioned into crown-blocks and K4-blocks. So there is a decomposition D
of the edges of G∆ into paths of length 2, triangles and K4’s. First let us note that Claim
4.3 in the proof of Theorem 4.2 still holds for G (not just for G∆), as shown below.
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Claim 4.10. Let u, v be two non-adjacent vertices of G. Then the number of paths of length
2 between u and v is at most two. Moreover, if uxv and uyv are the paths of length 2 between
u and v, then x and y are adjacent.

Proof. The second part of the claim is trivial since G does not contain an induced copy of
C4. To see the first part of the claim, suppose uxv, uyv, uzv are three distinct paths of length
2 in G. Then x and y are adjacent, so uxyvz is a C5 in G, a contradiction.

Our goal is to bound the average degree d of G. If a vertex has degree less than d/2,
then it may be deleted without decreasing the average degree of G, so we may assume that
G has minimum degree at least d/2. Now using this fact and Claim 4.10, one can show that
the maximum degree of G is at most 10

√
n by repeating the same argument as in the proof

of Claim 4.4.
We say a 5-path v0v1v2v3v4v5 is bad if there exists an i such that vivi+1vi+2 is a triangle

of G; otherwise it called good. Similarly, a 2-path abc is good if a and c are not adjacent. By
the same argument as in the proof of Theorem 4.2, the number of (unordered) good 5-paths
in G is at least

nd5

2
− Cn3 (4.10)

for some constant C > 0. Now we bound the number of good 5-paths in G from above. Let
|E(G∆)| = α |E(G)| for some α ≥ 0, so |E(GS)| = (1− α) |E(G)|.

Claim 4.11. The number of good 5-paths in G whose middle edge is contained in GS is at
most |E(GS)|n2.

Proof. The proof is very similar to that of the proof of Claim 4.5. A good 5-path xyabzw
whose middle edge ab is in GS contains good 2-paths, xya, bzw as subpaths.

Let na be the number of good 2-paths in G of the form axy where x, y 6= b, and let nb
be the number of good 2-paths in G of the form bxy where x, y 6= a. Then the number of
good 5-paths whose middle edge is ab is at most nanb ≤ (na+nb)

2/4. By the same argument
as in the proof of Claim 4.5, it is easy to see that na + nb ≤ 2n, so the number of good
5-paths whose middle edge is ab ∈ E(GS) at most n2. Adding these estimates for all the
edges ab ∈ E(GS) finishes the proof of the claim.

Let us further assume that the number of edges of G∆ that belong to paths of length 2,
triangles and K4’s in its edge-decomposition D be α1 |E(G)| , α2 |E(G)| , α3 |E(G)|, respec-
tively. (Of course, α1 + α2 + α3 = α.) Since Claim 4.10 holds, one can easily check that
the proofs of Claim 4.5, Claim 4.6 and Claim 4.7 are still valid, so these claims hold in the
current setting too. These claims, together with Claim 4.11, imply that the number of good
5-paths in G is at most

α1 |E(G)|
2

n2 +
α2 |E(G)|

3

4n2

3
+
α3 |E(G)|

6

3n2

2
+ |E(GS)|n2 ≤ α |E(G)|

2
n2 +(1−α) |E(G)|n2.

We will now bound the right-hand-side of the above inequality by carefully selecting a
C5-free, and C4-free subgraph G′ of G, as follows: We select all the edges of GS and the
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following edges from G∆: From each crown-block {abc1, abc2, . . . , abck} of G∆, we select the
edges ac1, ac2, . . . , ack to be in G′. From each K4-block abcd we select the edges ab, bc, ac, ad
to be in G′.

By Claim 4.2, the edge set of every C4 is completely contained in some block of G∆, and it
is easy to check that the selected edges in each block of G∆ form a C4-free graph. Therefore,
G′ is C4-free. Since it is a subgraph of G, it is also C5-free. Therefore, by a theorem of
Erdős and Simonovits [19], |E(G′)| ≤ 1

2
√

2
n3/2. On the other hand, since all the edges of

GS and at least half the edges of G∆ are selected, we have |E(G′)| ≥ |E(GS)| + |E(G∆)|
2

=

(1− α) |E(G)|+ α|E(G)|
2

. Therefore,

α |E(G)|
2

+ (1− α) |E(G)| ≤ 1

2
√

2
n3/2.

Therefore, by the discussion above, the number of good 5-paths in G is at most 1
2
√

2
n3/2×

n2 = 1
2
√

2
n7/2. Combining this with (4.10), we get

nd5

2
− Cn3 ≤ 1

2
√

2
n7/2,

so nd5

2
≤ (1 + o(1)) 1

2
√

2
n7/2, implying that d ≤

√
n

10
√

2
, finishing the proof.

67

C
E

U
eT

D
C

ol
le

ct
io

n



Chapter 5

On a hypergraph bipartite Turán
problem

5.1 Introduction
An r-graph is an r-uniform hypergraph. Determining the asymptotic order of ex(n,F) is
generally very difficult. For an excellent survey on the study of hypergraph Turán numbers,
see [54]. In this chapter, we study a hypergraph Turán problem that is motivated by the
study of Turán numbers of complete bipartite graphs as well as by a question of Erdős.

Definition 5.1. Let r ≥ 3 be an integer. Let G be a bipartite graph with an ordered biparti-
tion (X, Y ). Suppose that Y = {y1, . . . , ym}. Let Y1, . . . , Ym be disjoint sets of size r−2 that
are disjoint from X ∪ Y . Let G(r)

X,Y denote the r-graph with vertex set (X ∪ Y ) ∪ (
⋃m
i=1 Yi)

and edge set ⋃mi=1{e ∪ Yi : e ∈ E(G), yi ∈ e}.
Let s, t ≥ 2 be positive integers. If G is the complete bipartite graph with an ordered

bipartition (X, Y ) where |X|= s, |Y |= t, then let G(r)
X,Y be denoted by K(r)

s,t .

As mentioned in Chapter 1, Mubayi and Verstraëte [64] initiated the study of the general
problem of determining ex(n,K

(r)
2,t ) for any t ≥ 2. They showed that for any t ≥ 2 and n ≥ 2t

ex(n,K
(3)
2,t ) < t4

(
n

2

)
,

and that for infinitely many n, ex(n,K
(3)
2,t ) ≥ 2t−1

3

Ä
n
2

ä
, where the lower bound is obtained by

replacing each hyperedge in S(n, 2t+1, 2) with all its 3-element subsets, where S(n, 2t+1, 2)
is an (n,r,t)-Steiner system.

Mubayi and Verstraëte noted that g(t) := limn→∞ ex(n,K
(3)
2,t )/

Ä
n
2

ä
exists and raised the

question of determining the growth rate of g(t). It follows from their results that

2t− 1

3
≤ g(t) ≤ t4. (5.1)
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In this chapter, we prove that as t→∞,

g(t) = Θ(t1+o(1)), (5.2)

showing that their lower bound is close to the truth. More precisely, we prove the following.

Theorem 5.1 (E., Jiang, Methuku [27]). For any t ≥ 2, we have

ex(n,K
(3)
2,t ) ≤ (15t log t+ 40t)n2.

Notation. Given a hypergraph (or a graph) H, throughout the Cha,tpre we also denote
the set of its edges by H. For example |H| denotes the number of edges of H. Given two
vertices x, y in a graph H, let NH(x, y) denote the common neighborhood of x and y in H.
We drop the subscript H when the context is clear.

5.2 Proof of Theorem 5.1: K(3)
2,t -free hypergraphs

We will use the a special case of a well-known result of Erdős and Kleitman [25].

Lemma 5.2. Let H be a 3-graph on 3n vertices. Then H contains a 3-partite 3-graph, with
all parts of size n, and with at least 2

9
|H| hyperedges.

Let us define the sets A = {a1, a2, . . . , an}, B = {b1, b2, . . . , bn} and C = {c1, c2, . . . , cn}.
Throughout the proof we define various 3-partite 3-graphs whose parts are A,B and C.

Suppose H is a K(3)
2,t -free 3-partite 3-graph on 3n vertices with parts A,B and C. First

let us show that it suffices to prove the following inequality.

|H| ≤ (30t log t+ 80t)n2. (5.3)

It is easy to see that inequuity (5.3) and Lemma 5.2 together imply that any K(3)
2,t -free 3-

graph on 3n vertices contains at most 9
2
(30t log t+ 80t)n2 hyperedges, from which Theorem

5.1 would follow after replacing 3n by n.
In the remainder of the section, we will prove (5.3). Let us introduce the following notion

of sparsity.

Definition 5.3 (q-sparse and q-dense pairs). Let q be a positive integer. Let G be a bipartite
graph with parts X, Y . Let x, y be two different vertices such that x, y ∈ X or x, y ∈ Y .
Then we call {x, y} a q-dense pair of G if |N(x, y)| ≥ q. We call {x, y} a q-sparse pair of
G if |N(x, y)| < q but x, y are still contained in a copy of K2,q in G. Note that it is possible
that {x, y} is neither q-sparse nor q-dense.

The following Procedure P(q) about making a bipartite graph K2,q-free lies at the heart
of the proof. (We think of q as the parameter of the Procedure P(q), that is changed
throughout the proof.)
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Procedure P(q): Making a graph K2,q-free

Input: A bipartite graph G with parts A and B.

G ← G, ψ ← 1.

F (x, y)← ∅ , D(x, y)← ∅ and S(x, y)← ∅ for every x, y ∈ A and x, y ∈ B.

while ψ = 1 do

ψ ← 0.

Step 1:

For each q-sparse pair {x, y} of G such that F (x, y) = ∅, let S(x, y) be the set of
vertices spanned by the q-dense pairs of G that are contained in NG(x, y).
Let F (x, y)← {ab ∈ G | a ∈ {x, y} and b ∈ S(x, y)}, and let D(x, y) be a spanning
forest of the graph formed by the dense pairs of G that are contained in S(x, y).
If there exists an edge ab ∈ G such that ab is contained in F (x, y) for at least q/2
different pairs {x, y}, where x, y ∈ A or x, y ∈ B,
then G ← G \ {ab} and ψ ← 1.

Step 2:

If there exists a set M of edges in G such that removing all of the edges of M from G
decreases the number of q-dense pairs by at least |M | /2,
then G ← G \M and ψ ← 1.

end while

G′ ← G
F ′(x, y)← F (x, y) for every x, y ∈ A and x, y ∈ B.

D′(x, y)← D(x, y) for every x, y ∈ A and x, y ∈ B.

S ′(x, y)← S(x, y) for every x, y ∈ A and x, y ∈ B.

Output: The graph G′ and the sets F ′(x, y), D′(x, y), S ′(x, y) for all x, y ∈ A and x, y ∈ B.

In the procedure P(q), initially for all the pairs {x, y} (with x, y ∈ A and x, y ∈ B)
the sets F (x, y), D(x, y), S(x, y) are set to be empty. Then as the edges are being deleted
during the procedure, possibly, new q-sparse pairs {x, y} are being created. When this
happens, Step 1 redefines the sets S(x, y), F (x, y), D(x, y) and gives them some non-empty
values. (They get non-empty values due to the fact that {x, y} is q-sparse, which implies
that {x, y} is contained in a copy of K2,q, so there is at least one q-dense pair in the common
neighborhood of x, y.) Therefore, these values stay unchanged throughout the rest of the
procedure.

Notice that at the point S(x, y) was redefined, the pair {x, y} was q-sparse, so number
of common neighbors is less than q. Therefore, as S(x, y) is a subset of the common neigh-
borhood of x and y, we also have |S(x, y)| < q. Moreover, since D(x, y) is defined as a
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spanning forest with the vertex set S(x, y), we have |D(x, y)| ≤ |S(x, y)|. Also, it easily
follows from the definition of F (x, y) that |F (x, y)| = 2 |S(x, y)|. Finally, notice that D(x, y)
does not contain any isolated vertices, because its vertex set S(x, y) spans all of its edges,
by definition. Therefore, |D(x, y)| ≥ |S(x, y)| /2. At the end of the procedure, the sets
F (x, y), D(x, y), S(x, y) are renamed as F ′(x, y), D′(x, y), S ′(x, y). Note also that if a pair
{x, y} never becomes q-sparse in the process then S ′(x, y) = D′(x, y) = F ′(x, y) = ∅.
Observation 5.4. For every x, y ∈ A and x, y ∈ B, we have

(1) |S ′(x, y)| < q.

(2) |D′(x, y)| ≤ |S ′(x, y)|.

(3) |F ′(x, y)| = 2 |S ′(x, y)|.

(4) |D′(x, y)| ≥ |S ′(x, y)| /2.

For convenience, throughout the chapter we (informally) say that the sets F ′(x, y),
D′(x, y), S ′(x, y) are defined by applying Procedure P(q) to a graph G to obtain the graph
G′, instead of saying that the input to Procedure P(q) is G and the output is the graph G′
and the sets F ′(x, y), D′(x, y), S ′(x, y).

Claim 5.5. Let the sets F ′(x, y), D′(x, y), S ′(x, y) (for x, y ∈ A and x, y ∈ B) be defined by
applying Procedure P(q) to a bipartite graph G to obtain G′. Let N(x, y) denote the number
of common neighbors of vertices x, y in the graph G. Then

|F ′(x, y)|
4

≤ |D′(x, y)| < q.

Moreover |F ′(x, y)| ≤ 2 |N(x, y)|.

Proof. Combining the parts (3) and (4) of Observation 5.4, we have |F ′(x, y)| /4 ≤ |D′(x, y)|.
Combining the parts (1) and (2) of Observation 5.4, we obtain |D′(x, y)| < q, proving the
first part of the claim.

To prove the second part, notice that S ′(x, y) is a common neighborhood of x, y in some
subgraph G of G, we have |S ′(x, y)| ≤ |N(x, y)|. Combining this with part (3) of Observation
5.4, we obtain |F ′(x, y)| ≤ 2 |N(x, y)|, as required.

Finally, let us note the following properties of the graph obtained after applying the
procedure.
Observation 5.6. Let the sets F ′(x, y), D′(x, y), S ′(x, y) (for x, y ∈ A and x, y ∈ B) be defined
by applying Procedure P(q) to a bipartite graph G to obtain G′. Then

1. Every edge ab in G′ is contained in at most q/2 members of {F ′(x, y) : x, y ∈ A} and
in at most q/2 members of {F ′(x, y) : x, y ∈ B}.

2. For any set M of edges in G′, removing the edges of M from G′ decreases the number
of q-dense pairs by less than |M | /2.
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Definition 5.7. Let H be a 3-partite 3-graph with parts A,B and C.
For each 1 ≤ i ≤ n, let Gi[H](A,B) be the bipartite graph with parts A and B, whose

edge set is {ab | a ∈ A, b ∈ B, abci ∈ E(H)}. The graphs Gi[H](B,C) and Gi[H](A,C) are
defined similarly.

Definition 5.8 (Applying Procedure P(q) to a hypergraph). Let H be a 3-partite 3-graph
with parts A,B and C. We define the hypergraph H ′ as follows:

For each 1 ≤ i ≤ n, let G′i[H](A,B), G′i[H](B,C), G′i[H](A,C) be the graphs obtained
by applying the procedure P(q) to the graphs Gi[H](A,B), Gi[H](B,C), Gi[H](A,C) respec-
tively.

For each edge ab which was removed from Gi[H](A,B) by the procedure P(q) (i.e. ab ∈
Gi[H](A,B)\G′i[H](A,B)) we remove the hyperedge abci from H (it may have been removed
already). Similarly for each edge bc (resp. ac) which was removed from Gi[H](B,C) (resp.
Gi[H](A,C)) by the procedure P(q) we remove the hyperedge aibc (resp. abic) from H. Let
the resulting hypergraph be H ′. More precisely,

H ′ = {aibjck ∈ H | aibj ∈ G′k[H](A,B), bjck ∈ G′i[H](B,C), aick ∈ G′j[H](A,C)}.

We say H ′ is obtained from H by applying the Procedure P(q).

Remark 5.9. Let H ′ be obtained by applying the Procedure P(q) to the hypergraph H.
Then,

|H|−|H ′| ≤
∑

1≤i≤n
(|Gi[H](A,B)| − |G′i[H](A,B)|)+

∑
1≤i≤n

(|Gi[H](B,C)| − |G′i[H](B,C)|)

+
∑

1≤i≤n
(|Gi[H](A,C)| − |G′i[H](A,C)|) .

Indeed, if aibjck ∈ H \ H ′ then it is easy to see that aibj ∈ Gk[H](A,B) \ G′k[H](A,B) or
bjck ∈ Gi[H](B,C) \G′i[H](B,C) or aick ∈ Gj[H](A,C) \G′j[H](A,C).

Lemma 5.10. Let q ≥ 2 be an even integer and G be a bipartite graph with parts A and B.
Suppose G′ is the graph obtained by applying Procedure P(q) to G. Then G′ is K2,q-free.

Proof. Let us define a q-broom of size k to be a set of q-sparse pairs {x0, xj} (with 1 ≤ j ≤ k),
and a q-dense pair {y, z} such that {y, z} is contained in the common neighborhood of
x0, xj for every 1 ≤ j ≤ k. Note that either {x0, x1, . . . , xk} ⊆ A and {y, z} ⊆ B or
{x0, x1, . . . , xk} ⊆ B and {y, z} ⊆ A.

Claim 5.11. There is no q-broom of size q/2 in G′.

Proof. Suppose by contradiction that there is a set of q-sparse pairs {x0, xj} (with 1 ≤ j ≤
q/2), and a q-dense pair {y, z} such that {y, z} is contained in the common neighborhood
of x0 and xj for every 1 ≤ j ≤ q/2. Then the edge x0y is contained in the sets F ′(x0, xj) for
every 1 ≤ j ≤ q/2, which contradicts Observation 5.6.
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Let us suppose for a contradiction (to Lemma 5.10) that G′ contains a copy of K2,q. Then
G′ contains at least one q-dense pair. Without loss of generality we may assume there is a
q-dense pair {a, a1} in A. Suppose {a, aj} (for 1 ≤ j ≤ p) are all the q-dense pairs of G′
containing the vertex a. For each 1 ≤ j ≤ p, let Bj ⊆ B be the common neighborhood of a
and aj in G′. By definition, |Bj|≥ q for 1 ≤ j ≤ p.

Claim 5.12. For any J ⊆ {1, 2, . . . , p}, we have |⋃j∈J Bj| > 2 |J |.

Proof. Let us assume for contradiction that there exists a J ⊆ {1, 2, . . . , p} such that
|⋃j∈J Bj| ≤ 2 |J |. Let G∗ be obtained from G′ by deleting all the edges from a to ⋃j∈J Bj.
For each j ∈ J , the pair {a, aj} has no common neighbor in G∗ since we have removed all
the edges from a to Bj. Thus the pair {a, aj} is not q-dense in G∗. So in forming G∗ from G′

the number of q-dense pairs decreases by at least |J |, while the number of edges decreases
by |⋃j∈J Bj|≤ 2|J | edges, contradicting Observation 5.6.

Let B′ = ⋃
1≤j≤pBj. For each vertex v ∈ B′ and let

J(v) := {j | v ∈ Bj},

D(v) := {{v, u} | {v, u} is q-dense in G′ and {v, u} ⊆ Bj for some j ∈ J(v)}.

In the next two claims, we will prove two useful inequalities concerning |J(v)| and |D(v)|.

Claim 5.13. For each v ∈ B′, |J(v)| > 2 |D(v)|.

Proof. Suppose for contradiction that there is a vertex v ∈ B′ such that |J(v)| ≤ 2 |D(v)|.
Let us delete all the edges of the form vaj, j ∈ J(v), from G′ and let the resulting graph be
G∗. Since we deleted |J(v)| edges, by Observation 5.6, the number of q-dense pairs decreases
by less than |J(v)| /2 ≤ |D(v)|. So there exists {v, u} ∈ D(v) such that {v, u} is (still)
q-dense in G∗. That is, |N∗(v, u)|≥ q, where N∗(v, u) denotes the common neighborhood of
v and u in G∗. Clearly each pair of vertices in N∗(v, u) is contained in a copy of K2,q in G∗
(and hence in G′).

For each pair of vertices in N∗(v, u), since it is contained in a copy of K2,q in G′, it
is either q-sparse or q-dense in G′. Note that a ∈ N∗(v, u). If all the pairs {a, x} with
x ∈ N∗(v, u) \ {a} are q-sparse in G′ then the set of these pairs together with {v, u} is a
q-broom of size at least q − 1 ≥ q/2 in G′, which contradicts Claim 5.11. So there exists a
vertex x ∈ N∗(v, u) \ {a} such that {a, x} is q-dense in G′. Since v is adjacent to both a and
x, by the definition of J(v), x = aj for some j ∈ J(v). However, by definition, in forming G∗
we have removed vx from G′. This contradicts x ∈ N∗(v, u) and completes the proof.

Claim 5.14. ∑
v∈B′
|D(v)| ≥ 1

2

∑
1≤j≤p

|Bj|.
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Proof. Fix any j with 1 ≤ j ≤ p. Since {a, aj} is q-dense in G′, every pair {x, y} ⊆ Bj

is contained in some copy of K2,q and hence is either q-dense or q-sparse in G′. Let v be
any vertex in Bj and let S(v) = {y ∈ Bj | {v, y} is q-sparse in G′}. By definition, the
set {{v, y} | y ∈ S(v)} together with {a, aj} is a q-broom of size |S(v)|. By Claim 5.11,
|S(v)|≤ q/2− 1 ≤ |Bj| /2− 1. Since |D(v)|+ |S(v)| ≥ |Bj| − 1, we have

|D(v)| ≥ 1

2
|Bj| (5.4)

Note that (5.4) holds for every j = 1, . . . , p and every v ∈ Bj.
Let us define an auxiliary bipartite graph Gaux with a bipartition ({1, 2, . . . p}, B′) in

which a vertex j ∈ {1, . . . , p} is joined to a vertex y ∈ B′ if and only if y ∈ Bj. Let J
be an arbitrary subset of {1, 2, . . . , p}. The neighborhood of J in Gaux is precisely ⋃j∈J Bj.
By Claim 5.12, |⋃j∈J Bj| > 2 |J | ≥ |J |. Since this holds for every J ⊆ {1, . . . , p}, by Hall’s
theorem [50] there exist distinct vertices wj ∈ Bj, for j = 1, . . . , p. By (5.4), for every
j ∈ {1, . . . , p}, |D(wj)| ≥ 1

2
|Bj|. Hence∑

v∈B′
|D(v)| ≥

∑
1≤j≤p

|D(wj)| ≥
1

2

∑
1≤j≤p

|Bj|.

If we view {B1, . . . , Bp} as a hypergraph on the vertex set B′, then the degree of a vertex
v ∈ B′ in it is precisely |J(v)| and the degree sum formula yields∑

v∈B′
|J(v)| =

∑
1≤j≤p

|Bj| . (5.5)

Using Claim 5.13 and Claim 5.14 we have∑
v∈B′
|J(v)| >

∑
v∈B′

2 |D(v)| ≥ 2
∑

1≤j≤p

1

2
|Bj|=

∑
1≤j≤p

|Bj|,

which contradicts (5.5). This completes proof of Lemma 5.10.

In the next subsection we will prove a general lemma about making an arbitrary hyper-
graph K1,2,q-free (for any given value of q). This lemma is used several times in the following
subsections.

5.2.1 Applying Procedure P(q) to an arbitrary hypergraph H

Let q be an even integer and let q ≥ t. Let H be an arbitrary K(3)
2,q -free 3-partite 3-graph

with parts A,B and C. In this subsection we will prove the following lemma that estimates
the number of edges removed from the graphs Gi = Gi[H](A,B) for 1 ≤ i ≤ n, when the
Procedure P(q) is applied to them. This lemma together with Remark 5.9 will allow us to
estimate the number of edges removed from H when the Procedure P(q) is applied to it.

Throughout this subsection, Ni(x, y) denotes the set of common neighbors of the vertices
x, y in the graph Gi.
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Lemma 5.15. Let q ≥ t be an even integer. Let H be an arbitrary K(3)
2,q -free 3-partite 3-graph

with parts A,B and C. Let Gi = Gi[H](A,B) for 1 ≤ i ≤ n. For each 1 ≤ i ≤ n and any
x, y ∈ A or x, y ∈ B, let F ′i (x, y) be defined by applying the procedure P(q) to Gi and let the
resulting graph be G′i. Then,

∑
1≤i≤n

|Gi \G′i| <
2

q

Ñ ∑
u,v∈A

∑
1≤i≤n

|F ′i (u, v)|+
∑
u,v∈B

∑
1≤i≤n

|F ′i (u, v)|

é
+ 2tn2.

Proof of Lemma 5.15. First let us prove the following claim.

Claim 5.16. Let u, v ∈ A or u, v ∈ B. Then {u, v} is q-dense in less than t of the graphs
Gi, 1 ≤ i ≤ n.

Proof. Without loss of generality, suppose that u, v ∈ A. Suppose for contradiction that
{u, v} is q-dense in t of the graphs Gi, 1 ≤ i ≤ n. Without loss of generality suppose
{u, v} is q-dense in G1, . . . , Gt. Then |Ni(u, v)| ≥ q ≥ t for i = 1, . . . , t. Therefore, we can
greedily choose t distinct vertices y1, . . . , yt such that for each i ∈ [t], yi ∈ Ni(u, v). For each
i ∈ [t], since yi ∈ Ni(u, v) we have uyici, vyici ∈ E(H). However, the set of hyperedges
{uyici, vyici ∈ E(H) | 1 ≤ i ≤ t} forms a copy of K(3)

2,t in H, a contradiction.

Note that when procedure P(q) is applied to Gi (to obtain G′i), Step 1 and Step 2 may
be applied several times (and each time one of these steps is applied it may delete an edge
of Gi).

For each i ∈ [n], let mi denote the number of q-dense pairs of Gi. By Claim 5.16, we
know that each pair {u, v} with u, v ∈ A or u, v ∈ B, is q-dense in less than t different graphs
Gi (for 1 ≤ i ≤ n). Therefore,

∑
1≤i≤n

mi ≤
∑
u,v∈A

(t− 1) +
∑
u,v∈B

(t− 1) = 2

(
n

2

)
(t− 1). (5.6)

For each i ∈ [n], let αi denote the total number of edges that were removed by Step 1
when procedure P(q) is applied to Gi and βi be the number of edges removed by Step 2
when procedure P(q) is applied to Gi. Then αi + βi = |Gi \G′i|, so

∑n
i=1 αi +

∑n
i=1 βi =∑n

i=1 |Gi \G′i|.
First, we bound ∑n

i=1 βi. Let i ∈ [n]. Observe that whenever a set M of edges were
removed by Step 2 of Procedure P(q) applied to Gi, the number of q-dense pairs decreased
by at least |M | /2. Hence βi ≤ 2mi. So summing up over all 1 ≤ i ≤ n, and using (5.6), we
get ∑

1≤i≤n
βi ≤ 2

∑
1≤i≤n

mi ≤ 2n(n− 1)(t− 1) < 2tn2. (5.7)

Next, we bound ∑n
i=1 αi. Let i ∈ [n]. If an edge xy was removed from Gi by Step 1 of

the procedure P(q) then there are vertices z1, z2, . . . , zq/2 such that xy ∈ F ′i (x, zj) for every
j ∈ {1, 2, . . . , q/2} or xy ∈ F ′i (y, zj) for every j ∈ {1, 2, . . . , q/2}. So
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αi ≤
1

q/2

Ñ ∑
u,v∈A

|F ′i (u, v)|+
∑
u,v∈B

|F ′i (u, v)|

é
.

Therefore, ∑
1≤i≤n

αi ≤
2

q

Ñ ∑
1≤i≤n

∑
u,v∈A

|F ′i (u, v)|+
∑

1≤i≤n

∑
u,v∈B

|F ′i (u, v)|

é
.

This is equivalent to the following.

∑
1≤i≤n

αi ≤
2

q

Ñ ∑
u,v∈A

∑
1≤i≤n

|F ′i (u, v)|+
∑
u,v∈B

∑
1≤i≤n

|F ′i (u, v)|

é
. (5.8)

Combining this inequality with (5.7) completes the proof of Lemma 5.15.

5.2.2 The overall plan

Let us define the sequence q0, q1, . . . , qk as follows. Let q0 = 2l where l is an integer such
that q0 = 2l ≤ t2 < 2l+1 = 2q0. For each 1 ≤ j ≤ k, let qj = qj−1

2
and qk ≥ t > qk

2
. Clearly

q0
qk

= 2k, moreover

2k =
q0

qk
≤ t2

t
= t.

So we have
k ≤ log t. (5.9)

Now we apply the procedure P(q0) to the hypergraph H (recall Definition 5.8) to obtain
a K1,2,q0-free hypergraph H0. For each 0 ≤ j < k we obtain K1,2,qj+1

-free hypergraph Hj+1

by applying the procedure P(qj+1) to the hypergraph Hj.
This way, in the end we will get a K1,2,qk-free hypergraph Hk. In the following section,

we will upper bound |H| − |H0|. Then in the next section, using the information that Hj is
K1,2,qj -free, we will upper bound |Hj+1| − |Hj| for each 0 ≤ j < k. Then we sum up these
bounds to upper bound the total number of deleted edges (i.e., |H|− |Hk|) from H to obtain
Hk. Finally, we bound the size of Hk, which will provide us the desired bound on the size of
H.

5.2.3 Making H K1,2,q0-free

First, we are going to prove an auxiliary lemma that is similar to Lemma A.4 of [64]. In an
edge-colored multigraph G, an s-frame is a collection of s edges all of different colors such
that it is possible to pick one endpoint from each edge with all the selected endpoints being
distinct.

Lemma 5.17. Let G be an edge-colored multigraph with e edges such that each edge has
multiplicity at most p and each color class has size at most q. If G contains no t-frame then
|G|≤

Ä
t−1

2

ä
p+ tq.
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Proof. Consider a maximum frame S, say with edges e1, . . . , es such that for every i ∈
{1, 2, . . . , s}, ei has color i and that there exist x1 ∈ e1, x2 ∈ e2, . . . , xs ∈ es with x1, . . . , xs
being distinct. By our assumption, s ≤ t − 1. Let f be any edge with a color not in [s].
Then both vertices of f must be in {x1, . . . , xs}, otherwise e1, . . . , es, f give a larger frame,
a contradiction. On the other hand, each edge with both of its vertices in {x1, . . . , xs} has
multiplicity at most p. Hence there are at most

Ä
s
2

ä
p edges with colors not in {1, 2, . . . , s}.

The number of edges with color in {1, 2, . . . , s} is at most sq by our assumption. So |G|≤Ä
s
2

ä
p+ sq ≤

Ä
t−1

2

ä
p+ tq.

Let us recall that H is 3 partite K(3)
2,t -free hypergraph with A,B,C. For convenience we

denote Gi = Gi[H](A,B) where 1 ≤ i ≤ n. For each 1 ≤ i ≤ n and any x, y ∈ A or x, y ∈ B,
let F ′i (x, y), D′i(x, y) and S ′i(x, y) be defined by applying the procedure P(q0) on Gi and let
the obtained graph be G′i.

First, observe that t2/2 < q0 ≤ t2 according to our definition.

Claim 5.18. Let u, v ∈ A or u, v ∈ B. Then ∑1≤i≤n |F ′i (u, v)| ≤ 6t3.

Proof. Let D∗ be an edge-colored multigraph in which a pair of vertices e is an edge of color
i ∈ [n] whenever e is an edge of D′i(u, v). The number of edges of color i in D∗ is |D′i(u, v)|.
By Claim 5.5 we have |D′i(u, v)| < q0. Hence the number of edges in each color class of D∗
is less than q0.

Let xy be an arbitrary edge of D∗ and let I = {i ∈ [n] | xy ∈ D′i(u, v)} . For each i ∈ I,
the pair {x, y} is q0-dense in Gi by the definition of D′i(u, v). Therefore, by Claim 5.16, we
have |I| < t. So xy has multiplicity less than t in D∗. Since xy is arbitrary, the multiplicity
of each edge of D∗ is less than t.

Next, observe that D∗ contains no t-frame. Indeed, otherwise without loss of generality
we may assume that D∗ contains t edges x1y1, . . . , xtyt, where xiyi has color i for each i ∈ [t]
and y1, . . . , yt are distinct. For each i ∈ [t] since xiyi ∈ D′i(u, v), in particular yi ∈ Ni(u, v)
(where Ni(u, v) denotes the common neighborhood of u and v in Gi), which means that
uyici, vyici ∈ H. But now, {uyici, vyici | i ∈ [t]} forms a copy of K(3)

2,t , contradicting H being
K

(3)
2,t -free.
Therefore, applying Lemma 5.17, we have |D∗| ≤

Ä
t−1

2

ä
t+ tq0. By Claim 5.5, we have

|F ′i (u, v)|
4

≤ |D′i(u, v)| .

So ∑
1≤i≤n

|F ′i (u, v)|
4

≤
∑

1≤i≤n
|D′i(u, v)| = |D∗| ≤

(
t− 1

2

)
t+ tq0 <

3

2
t3,

which proves the claim.

By Lemma 5.15 we have

∑
1≤i≤n

|Gi \G′i| <
2

q0

Ñ ∑
u,v∈A

∑
1≤i≤n

|F ′i (u, v)|+
∑
u,v∈B

∑
1≤i≤n

|F ′i (u, v)|

é
+ 2tn2.
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Combining it with Claim 5.18 we get

∑
1≤i≤n

|Gi \G′i| <
2

q0

Ñ ∑
u,v∈A

6t3 +
∑
u,v∈B

6t3

é
+ 2tn2.

Therefore, as q0 > t2/2, we have

∑
1≤i≤n

|Gi \G′i| <
4

t2

(
12t3

(
n

2

))
+ 2tn2 < 26tn2.

So, ∑
1≤i≤n

|Gi \G′i| =
∑

1≤i≤n
|Gi[H](A,B) \G′i[H](A,B)| < 26tn2.

By symmetry, using the same arguments, we have∑
1≤i≤n

|Gi[H](B,C) \G′i[H](B,C)| < 26tn2,

and ∑
1≤i≤n

|Gi[H](A,C) \G′i[H](A,C)| < 26tn2.

Therefore, by Remark 5.9, we have

|H| − |H0| < 78tn2. (5.10)

5.2.4 Making a K1,2,qj-free hypergraph K1,2,qj+1
-free

In this subsection, we fix a j with 0 ≤ j < k. Recall that Hj is K1,2,qj -free, and Hj+1 is ob-
tained by applying the P(qj+1) to Hj. Our goal in this subsection is to estimate |Hj|−|Hj+1|.
The key difference between arguments in this subsection and in the previous subsection is
that now in addition to Hj being K

(3)
2,t -free we can also utilize the fact that Hj is K1,2,qj -free.

In particular, this extra condition leads to Claim 5.19, which improves upon Claim 5.18.
For convenience of notation, in this subsection, let Gi = Gi[Hj](A,B) for each 1 ≤ i ≤ n.

For every 1 ≤ i ≤ n and every u, v ∈ A or u, v ∈ B let the sets F ′i (u, v) and D′i(u, v) be
defined by applying the procedure P(qj+1) to the graph Gi, to obtain the graph G′i.

Claim 5.19. Let u, v ∈ A or u, v ∈ B. Then ∑1≤i≤n |F ′i (u, v)| < 2qjt.

Proof. For each i ∈ [n] we denote the set of common neighbors of u, v in Gi as Ni(x, y). For
each i ∈ [n], since Hj is K1,2,qj -free, Gi is K2,qj -free and so |Ni(u, v)| < qj.

Without loss of generality let us assume u, v ∈ A. For each vertex w of B, let Iw = {i ∈
{1, 2, . . . , n} | w ∈ Ni(u, v)}. We claim that |Iw| < qj. Indeed, for each i ∈ Iw, we have
uwci, vwci ∈ Hj. So the set of hyperedges {uwci, vwci | i ∈ Iw} form a copy of K1,2,|Iw| in Hj.
Thus if |Iw| ≥ qj, then Hj contains a copy of K1,2,qj , a contradiction. Therefore, |Iw| < qj,
as desired.
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Consider an auxiliary bipartite graph GAUX with parts B and [n] where the vertex i ∈ [n]
is adjacent to b ∈ B in GAUX if and only if b ∈ Ni(u, v). Then by the discussion in the
previous paragraph, each vertex w ∈ B has degree |Iw| < qj, and each vertex i ∈ [n] has
degree |Ni(u, v)| < qj. In other words, the maximum degree in GAUX is less than qj.

We claim that GAUX does not contain a matching of size t. Indeed, suppose for a
contradiction that the edges i1bi1 , i2bi2 , . . . , itbit (i.e., bil ∈ Nil(u, v) for 1 ≤ l ≤ t) form a
matching of size t in GAUX . Then the set of hyperedges ubilcil , vbilcil , 1 ≤ l ≤ t, form a copy
of K(3)

2,t in Hj, a contradiction, as desired.
Since GAUX does not contain a matching of size t, by the König-Egerváry theorem it has a

vertex cover of size less than t. This fact combined with the fact that the maximum degree of
GAUX is less than qj, implies that the number of edges of GAUX is less than qjt. On the other
hand, the number of edges in GAUX is ∑i∈[n] |Ni(u, v)|. Therefore, ∑i∈[n] |Ni(u, v)| < qjt.
This, combined with the fact that for each i ∈ [n], |Ni(u, v)| ≥ |F ′i (u, v)| /2 (see Claim 5.5),
completes the proof of the lemma.

By Lemma 5.15, we have

∑
1≤i≤n

|Gi \G′i| ≤
2

qj+1

Ñ ∑
u,v,∈A

∑
1≤i≤n

|F ′i (u, v)|+
∑

u,v,∈B

∑
1≤i≤n

|F ′i (u, v)|

é
+ 2tn2.

Now using Claim 5.19, we have

∑
1≤i≤n

|Gi \G′i| ≤
8qjt

qj+1

(
n

2

)
+ 2tn2 <

4tqj
qj+1

n2 + 2tn2.

Since qj+1 = qj/2, we have ∑
1≤i≤n

|Gi \G′i| < 8tn2 + 2tn2 = 10tn2.

So, ∑
1≤i≤n

|Gi \G′i| =
∑

1≤i≤n
|Gi[Hj](A,B) \G′i[Hj](A,B)| < 10tn2.

By symmetry, using the same arguments, we have∑
1≤i≤n

|Gi[Hj](B,C) \G′i[Hj](B,C)| < 10tn2,

and ∑
1≤i≤n

|Gi[Hj](A,C) \G′i[Hj](A,C)| < 10tn2.

Therefore, by Remark 5.9, we have

|Hj| − |Hj+1| < 30tn2. (5.11)
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5.2.5 Putting it all together

By (5.10) and (5.11) we have

|H| − |Hk| = |H| − |H0|+
∑

0≤j<k
(|Hj| − |Hj+1|) < 78tn2 + k(30tn2).

By (5.9) we have k ≤ log t, so we obtain,

|H| − |Hk| < 78tn2 + 30t log tn2. (5.12)

Notice thatHk isK1,2,qk-free and qk < 2t. ThereforeHk isK1,2,2t-free. Moreover, we know
that the hypergraphHk is 3-partite andK(3)

2,t -free with parts A,B,C (as it is a subhypergraph
of H). Now we bound the size of Hk.

Claim 5.20. We have |Hk| ≤ 2tn2.

Proof. Suppose for a contradiction that |Hk| > 2tn2. For any pair {a, b} of vertices with
a ∈ A and b ∈ B, let codeg(a, b) denote the number of hyperedges of Hk containing the pair
{a, b}. Then the number of copies of K2,1,1 in Hk of the form {abc, a′bc} where a, a′ ∈ A,
b ∈ B, c ∈ C is ∑

b,c
b∈B,c∈C

(
codeg(b, c)

2

)
.

As the average codegree (over all the pairs b ∈ B, c ∈ C) is more than 2t, by convexity, this
expression is more than (

2t

2

)
n2 > (2t− 1)2

(
n

2

)
.

This means there exist a pair a, a′ ∈ A and a set of (2t− 1)2 + 1 > (t− 1)(2t− 1) + 1 pairs
S := {bc | b ∈ B, c ∈ C} such that abc, a′bc ∈ E(Hk) whenever bc ∈ S. Let GAUX be a
bipartite graph whose edges are elements of S. Since GAUX has |S| ≥ (t − 1)(2t − 1) + 1
edges, it either contains a matching M with t edges or a vertex v of degree 2t (see Lemma
A.3 in [64] or the last paragraph of our proof of Claim 5.19 for a proof). In the former case,
the set of all hyperedges of the form abc, a′bc with bc ∈ M , form a copy of K(3)

2,t in Hk, a
contradiction. In the latter case, let u1, u2, . . . , u2t be the neighbors of v in GAUX . Then the
set of hyperedges {avui, a′vui | 1 ≤ i ≤ 2t} form a copy of K1,2,2t in Hk, a contradiction
again. This completes the proof of the claim.

Combining (5.12) with Claim 5.20, we have |H| ≤ 80tn2 + 30t log tn2, thus proving (5.3),
which implies Theorem 5.1, as desired.
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5.3 Remarks
Recall that given a bipartite graph G with an ordered bipartition (X, Y ), where Y =

{y1, . . . , ym}, G(r)
X,Y is the r-graph with vertex set (X∪Y )∪(

⋃m
i=1 Yi) and edge set ⋃mi=1{e∪Yi :

e ∈ E(G), yi ∈ e}, where Y1, . . . , Ym are disjoint (r− 2)-sets that are disjoint from X ∪ Y . A
standard reduction argument such as the one used in the proof of Theorem 1.4 in [64] can
be used to show the following.

Proposition 5.21. Let n, r ≥ 3 be integers and G a bipartite graph with an ordered bipar-
tition (X, Y ). There exists a constant cr depending only on r such that

ex(n,G
(r)
X,Y ) ≤ crn

r−3 · ex(n,G
(3)
X,Y ).

Thus, by Theorem 5.1 and Proposition 5.21, for all r ≥ 4, we have ex(n,K
(r)
2,t ) ≤

crt log t
Ä
n
r−1

ä
for some constant cr, depending only on r. On the other hand, taking the fam-

ily of all r-element subsets of [n] containing a fixed element shows that ex(n,K
(r)
2,t ) ≥

Ä
n−1
r−1

ä
.

Recall that in the r = 3 case, a better lower bound of Ω(t
Ä
n
2

ä
) was shown by Mubayi and

Verstraëte [64]. For r = 4, we are able to improve the lower bound to Ω(t
Ä
n
3

ä
) as follows.

Proposition 5.22. We have

ex(n,K
(4)
2,t ) ≥ (1 + o(1))

t− 1

8
n3.

Proof. (Sketch.) Consider a K2,t-free graph G with (1 + o(1))
√
t−1
2
n3/2 edges where each

vertex has degree (1 + o(1))
»

(t− 1)
√
n. (Such a graph exists by a construction of Füredi

[38].) Let us a define a 4-graph H = {abcd | ab, cd ∈ G and ac, ad, bc, bd /∈ G}. In other
words, let the edges of H be the vertex sets of induced 2-matchings in G. Via standard
counting, it is easy to show that |H| = (1 + o(1)) t−1

8
n3. It remains to show H is K(4)

2,t -free.

Claim 5.23. If axyz, bxyz ∈ H, then there is a vertex c ∈ {x, y, z} such that ac, bc ∈ G.

Proof. By our assumption, {a, x, y, z} and {b, x, y, z} both induce a 2-matching in G. With-
out loss of generality, suppose ax, yz ∈ G. If bx ∈ G then we are done. Otherwise, we have
by, xz ∈ G or bz, xy ∈ G, both contradicting {ax, yz} being an induced matching in G.

Suppose for contradiction that H has a copy of K(4)
2,t with edge set {axiyizi, bxiyizi | 1 ≤

i ≤ t}. By Claim 5.23, for each 1 ≤ i ≤ t, there exists a vertex wi ∈ {xi, yi, zi} such that
awi, bwi ∈ G. This yields a copy of K2,t in G, a contradiction.

For r ≥ 5, we do not yet have a lower bound that is asymptotically larger than
Ä
n−1
r−1

ä
. It

would be interesting to narrow the gap between the lower and upper bounds on ex(n,K
(r)
2,t ).

It will be interesting to have a systematic study of the function ex(n,G
(r)
X,Y ). Mubayi

and Verstraëte [64] showed that ex(n,K
(3)
s,t ) = O(n3−1/s) and that if t > (s − 1)!> 0 then
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ex(n,K
(3)
s,t ) = Ω(n3−2/s) and speculated that n3−2/s is the correct order of magnitude. The

case when G is a tree is studied in [37], where the problem considered there is slightly
more general. The case when G is an even cycle has also been studied. Let C(r)

2t denote
G

(r)
X,Y where G is the even cycle C2t of length 2t. It was shown by Jiang and Liu [52]

that c1t
Ä
n
r−1

ä
≤ ex(n,C

(r)
2m) ≤ c2t

5
Ä
n
r−1

ä
, for some positive constants depending c1, c2 on r.

Using results in this chapter and new ideas, we are able to narrow the gap to c1t
Ä
n
r−1

ä
≤

ex(n,C
(r)
2m) ≤ c2t

2 log t
Ä
n
r−1

ä
, for some positive constants c1, c2 depending on r.
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Chapter 6

On the Rainbow Turán number of paths

6.1 Introduction
For an integer k, let Pk denote a path of length k, where the length of a path is defined as
the number of edges in it. Erdős and Gallai [20] proved that ex(n, Pk+1) ≤ k

2
n; moreover,

they showed that if k + 1 divides n, then the unique extremal graph is the vertex-disjoint
union of n

k+1
copies of Kk+1.

On the other hand, Keevash, Mubayi, Sudakov and Verstraëte [55] showed that in some
cases, the rainbow Turán number of Pk can be strictly larger than the usual Turán number
of Pk: Maamoun and Meyniel [62] gave an example of a proper coloring of K2k containing no
rainbow path with 2k−1 edges. By taking a vertex-disjoint union of such K2k ’s, Keevash et.
al. showed that ex∗(n, P2k−1) ≥

Ä
2k

2

ä ö
n
2k

ù
= (1+o(1))2k−1

2k−2
ex(n, P2k−1)– so ex∗(n, P2k−1) is not

asymptotically equal to ex(n, P2k−1). They also mentioned that determining the asymptotic
behavior of ex∗(n, Pk+1) is an interesting open problem, and stated the natural conjecture
that the optimal construction is a disjoint union of cliques of size c(k), where c(k) is chosen
as large as possible so that the cliques can be properly colored with no rainbow Pk+1. For
P4, this conjecture was disproved by Johnston, Palmer and Sarkar [53]: Since any properly
edge-colored K5 contains a rainbow P4, and K4 does not contain a P4, the conjecture for P4

would be that ex∗(n, P4) ∼ 3n
2
. But they show that in fact, ex∗(n, P4) ∼ 2n by showing a

proper edge-coloring of K4,4 without rainbow P4, and then taking n
8
vertex-disjoint copies of

K4,4. For general k, they proved the following:

Theorem 6.1 (Johnston, Palmer and Sarkar [53]). For any positive integer k, we have

k

2
n ≤ ex∗(n, Pk+1) ≤

¢
3k + 1

2

•
n.

We improve the above bound by showing the following:

Theorem 6.2 (E., Győri, Methuku [34]). For any positive integer k, we have

ex∗(n, Pk+1) <

Ç
9k

7
+ 2

å
n.
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Let us remark that using the ideas introduced in this chapter, it is conceivable that
the upper bound can be further improved (at the cost of making the proof very involved).
However, it would be very interesting (and seems to be difficult) to prove an upper bound
less than kn or construct an example with kn edges.

We give a construction which shows that ex∗(n, P2k) > ex(n, P2k) for any k ≥ 2.

Construction. Let us first show a proper edge-coloring of K2k,2k (a complete bipartite
graph with parts A and B, each of size 2k) with no rainbow P2k . The vertices of A and B are
both identified with the vectors Fk2. Each edge uv with u ∈ A and v ∈ B is assigned the color
c(uv) := u − v. Clearly this gives a proper edge-coloring of K2k,2k . Moreover, if it contains
a rainbow path v0v1 . . . v2k then such a path must use all of the colors from Fk2. Therefore∑2k−1
i=0 c(vivi+1) = 0. On the other hand, ∑2k−1

i=0 c(vivi+1) =
∑2k−1
i=0 (vi−vi+1) = v0−v2k . Thus,

v0 − v2k = 0. But notice that since the length of the path v0v1 . . . v2k is even, its terminal
vertices v0 and v2k are either both in A or they are both in B. So they could not have been
identified with the same vector in Fk2, a contradiction. Taking a vertex-disjoint union of such
K2k,2k ’s we obtain that ex∗(n, P2k) ≥ (2k)2

ö
n/2k+1

ù
= (1 + o(1)) 2k

2k−1
ex(n, P2k).

Remark. This construction provides a counterexample to the above mentioned con-
jecture of Keevash, Mubayi, Sudakov and Verstraëte [55] whenever the largest clique that
can be properly colored without a rainbow P2k has size 2k. This is the case for k = 2, as
noted before. The question of determining whether this is the case for any k ≥ 3 remains
an interesting open question (see [2] for results in this direction).

Overview of the proof and organization. Let G be a graph which has a proper
edge-coloring with no rainbow Pk+1. By induction on the length of the path, we assume
there is a rainbow path v0v1 . . . vk in G. Roughly speaking, we will show that the sum of
degrees of the terminal vertices of the path, v0 and vk is small. Our strategy is to find a set
of distinct vertices M := {a1, b1, a2, b2, . . . , am, bm} ⊆ {v0, v1, . . . , vk} (whose size is as large
as possible) such that for each 1 ≤ i ≤ m, there is a rainbow path P of length k with ai
and bi as terminal vertices and V (P ) = {v0, v1, . . . , vk}; then we show that there are not
many edges of G incident to the vertices of M , which will allow us to delete the vertices of
M from G and apply induction. To this end, we define the set T ⊆ {v0, v1, . . . , vk} as the
set of all vertices v ∈ {v0, v1, . . . , vk} where v is a terminal vertex of some rainbow path P
with V (P ) = {v0, v1, . . . , vk}; we call T the set of terminal vertices. We will then find M as
a subset of T ; moreover, it will turn out that if the size of T is large, then the size of M is
also large – therefore, the heart of the proof lies in showing that T is large.

In Section 6.2.1, we introduce the notation and prove some basic claims. Using these
claims, in Section 6.2.2, we will show that T is large (i.e., that there are many terminal
vertices). Then in Section 6.2.3 we will find the desired subset M of T (which has few edges
incident to it).
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6.2 Proof of Theorem 6.2
Let G be a graph on n vertices, and suppose it has a proper edge-coloring c : E(G) → N
without a rainbow path of length k + 1. Consider a longest rainbow path P ∗ in G. We may
suppose it is of length k, otherwise we are done by induction on k. For the base case k = 1,
notice that any path of length 2, has to be a rainbow path. Thus G can contain at most
n
2
< (9

7
+ 2)n edges, so we are done.

6.2.1 Basic claims and Notation

In the rest of the chapter, the degree of a vertex v ∈ V (G) be denoted by d(v).

Definition 6.1. Let P ∗ = v0v1 . . . vk. Suppose the color of the edge vi−1vi is c(vi−1vi) = ci
for each 1 ≤ i ≤ k. Let L and R denote the sets of colors of edges incident to v0 and vk
respectively. (Notice that since the edges of G are colored properly, we have |L| = d(v0) and
|R| = d(vk).)

We define the following subsets of L, R and {c1, c2, . . . , ck} corresponding to P ∗.

• Let Lout (respectively Rout) be the set of colors of the edges incident to v0 (respectively
vk) and to a vertex outside P ∗.

Note that Lout ⊆ {c1, c2, . . . , ck} and Rout ⊆ {c1, c2, . . . , ck}, otherwise we can extend
P ∗ to a rainbow path longer than k in G.

• Let Lin = L \ Lout and Rin = R \Rout.

• Let Lold = L ∩ {c1, c2, . . . , ck} and Lnew = L \ {c1, c2, . . . , ck}. Similarly, let Rold =
R ∩ {c1, c2, . . . , ck}, Rnew = R \ {c1, c2, . . . , ck}.

• Let SL = {c(vj−1vj) = cj | v0vj ∈ E(G) and c(v0vj) ∈ Lnew and 2 ≤ j ≤ k} and
SR = {c(vjvj+1) = cj+1 | vkvj ∈ E(G) and c(vkvj) ∈ Rnew and 0 ≤ j ≤ k − 2}.
Notice that |SL| = |Lnew| and |SR| = |Rnew|.

• Let Lnice = L∩ SR and let Rnice = R∩ SL. (Note that since Lnice ⊆ {c1, c2, . . . , ck}, we
have Lnice ∩ Lnew = ∅. Similarly Rnice ∩Rnew = ∅.)

• Let Lres = Lin \ (Lnew ∪ Lnice) = Lold \ (Lnice ∪ Lout), and Rres = Rin \ (Rnew ∪Rnice) =
Rold \ (Rnice ∪Rout).

Notation 6.2. For convenience, we let |L| = l and |R| = r. Moreover, let |Lout| =
lout, |Lold| = lold, |Lnice| = lnice, |Lnew| = lnew and |Rout| = rout, |Rold| = rold, |Rnice| =
rnice, |Rnew| = rnew.

Note that
d(v0) = lin + lout = lnew + lold = l
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and
d(vk) = rin + rout = rnew + rold = r.

Now we prove some inequalities connecting the quantities defined in Definition 6.1 for
the path P ∗.

Claim 6.3. Lout ∩ SR = ∅ = Rout ∩ SL. This implies that Lout ∩ Lnice = ∅ = Rout ∩ Rnice

(since Lnice ⊂ SR and Rnice ⊂ SL).

Proof of Claim. Suppose for a contradiction that Lout ∩ SR 6= ∅. So there exists a vertex
w 6∈ {v0, v1, . . . , vk} such that c(vkvj) ∈ Rnew and c(wv0) = c(vjvj+1) for some 0 ≤ j ≤ k− 2.
Consider the path vj+1vj+2 . . . vkvjvj−1 . . . v0w. The set of colors of the edges in this path
is {c1, c2, . . . , ck} \ {c(vjvj+1)} ∪ {c(wv0), c(vkvj)} = {c1, c2, . . . , ck} ∪ {c(vkvj)}, so it is a
rainbow path of length k + 1 in G, a contradiction.

Similarly, by a symmetric argument, we have Rout ∩ SL = ∅.

Claim 6.4. lout ≤ k − rnew and rout ≤ k − lnew.

Proof of Claim. By Claim 6.3, Lout ∩ SR = ∅. Since both Lout and SR are subsets of
{c1, c2, . . . , ck}, this implies, |Lout| = lout ≤ k − |SR| = k − rnew, as desired. Similarly,
rout ≤ k − lnew.

We will prove Theorem 6.2 by induction on the number of vertices n. For the base cases,
note that for all n ≤ k, the number of edges is trivially at most(

n

2

)
≤ kn

2
<

Ç
9k

7
+ 2

å
n,

so the statement of the theorem holds. If d(v) < 9k
7

+ 2 for some vertex v of G, then we
delete v from G to obtain a graph G′ on n−1 vertices. By induction hypothesis, the number
of edges in G′ is less than (9k

7
+ 2)(n − 1). So the total number of edges in G is less than

(9k
7

+ 2)n, as desired.
Therefore, from now on, we assume that for all v ∈ V (G),

d(v) ≥ 9k

7
+ 2.

Since d(v0) = l = lold + lnew and lold ≤ k, we have that

lnew ≥
2k

7
+ 2. (6.1)

Similarly,

rnew ≥
2k

7
+ 2. (6.2)

Claim 6.5. We have
lnice + rnice ≥

4k

7
+ 4.

86

C
E

U
eT

D
C

ol
le

ct
io

n



Proof of Claim. First notice that Lres ∩ SR = ∅. Indeed, by definition, Lres ∩ SR = (Lres ∩
L) ∩ SR = Lres ∩ (L ∩ SR) = Lres ∩ Lnice = ∅. Moreover, by Claim 6.3, Lout ∩ SR = ∅.
Therefore, we have (Lres ∪ Lout) ∩ SR = ∅. Moreover, (Lres ∪ Lout) ∪ SR ⊆ {c1, c2, . . . , ck}.
Therefore, lres + lout ≤ k − |SR| = k − rnew. On the other hand, by definition, lres + lout ≥
(lin − lnew − lnice) + lout = l − lnew − lnice. So we have,

l − lnew − lnice ≤ k − rnew.

By a symmetric argument, we get

r − rnew − rnice ≤ k − lnew.

Adding the above two inequalities and rearranging, we get l + r − lnice − rnice ≤ 2k, so

lnice + rnice ≥ l + r − 2k = d(v0) + d(vk)− 2k ≥ 4k

7
+ 4,

as required.

6.2.2 Finding many terminal vertices

Definition 6.6 (Set of terminal vertices). Let T be the set of all vertices v ∈ {v0, v1, v2, . . . , vk}
such that v is a terminal vertex of some rainbow path P with V (P ) = {v0, v1, v2, . . . , vk}.

For convenience, we will denote the size of T by t.

The next lemma yields a lower bound on the number of terminal vertices and is crucial
to the proof of Theorem 6.2.

Lemma 6.7. We have
|T | = t ≥ 3k

7
+ 2.

The rest of this subsection is devoted to the proof of Lemma 6.7.

Proof of Lemma 6.7

Recall that P ∗ = v0v1 . . . vk and c(vjvj+1) = cj. First we prove a simple claim.

Claim 6.8. We may assume c(v0v1) 6∈ Lnice and c(vkvk−1) 6∈ Rnice. Moreover, if v0vk is an
edge of G, we can assume c(v0vk) 6∈ Lnew ∪Rnew.

Proof of Claim. First consider the case when v0vk is an edge of G. If c(v0vk) ∈ Lnew ∪Rnew,
then every vertex vi ∈ T . Indeed, the path vivi−1vi−2 . . . v0vkvk−1 . . . vi+1 is a rainbow path
with vi as a terminal vertex. Thus |T | = k+ 1 ≥ 3k

7
+ 2, and we are done. So we can assume

c(v0vk) 6∈ Lnew ∪ Rnew. This implies that c(v0v1) 6∈ Lnice and c(vkvk−1) 6∈ Rnice, because
c(v0v1) 6∈ SR and c(vkvk−1) 6∈ SL.

Now if v0vk is not an edge of G, then again c(v0v1) 6∈ SR and c(vkvk−1) 6∈ SL, so the claim
follows.
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Claim 6.9. If v0vi is an edge such that c(v0vi) ∈ Lnew then vi−1 ∈ T .

Proof of Claim. Consider the path vi−1vi−2 . . . v0vivi+1 . . . vk. Clearly it is a rainbow path of
length k in which vi−1 is a terminal vertex.

Suppose v0vi is an edge such that c(v0vi) ∈ Lnice. Since c(v0vk) 6∈ Rnew, by the definition
of Lnice, there exists an integer j (with 1 ≤ j ≤ k − 2) such that c(vkvj) ∈ Rnew and
c(v0vi) = c(vjvj+1) = cj.

Claim 6.10. If c(v0vi) ∈ Lnice then vi−1 ∈ T or vi+1 ∈ T .
Moreover, let j be an integer (with 1 ≤ j ≤ k−2) such that c(vkvj) ∈ Rnew and c(v0vi) =

c(vjvj+1) = cj.
If j ≥ i, then vi−1 ∈ T , and if j < i then vi+1 ∈ T .

Proof of Claim. Observe that since c(v0vi) ∈ Lnice ⊂ SR, we have that c(vkvj) ∈ Rnew (by
definition of SR).

First let j ≥ i. In this case consider the path vi−1vi−2 . . . v0vivi+1 . . . vjvkvk−1 . . . vj+1. It
is easy to see that the set of colors of the edges in this path is {c1, c2, . . . , ck}\{ci}∪{c(vjvk)}.
As c(vjvk) ∈ Rnew, the path is rainbow with vi−1 as a terminal vertex. So vi−1 ∈ T .

If j < i, then consider the path vj+1vj+2 . . . viv0v1 . . . vjvkvk−1 . . . vi+1. It is easy to see
that the set of colors of the edges in this path is {c1, c2, . . . , ck} \ {ci+1} ∪ {c(vjvk)}, so the
path is rainbow again, with vi+1 as a terminal vertex. So vi+1 ∈ T .

By symmetry, one can see that the same arguments used in the proofs of Claim 6.9 and
Claim 6.10, imply the following two statements.
Observation 6.11. If vkvi is an edge such that c(vkvi) ∈ Rnew then vi+1 ∈ T .

If c(vkvi) ∈ Rnice then vi−1 ∈ T or vi+1 ∈ T .

Definition 6.12. Let b′ > b be the largest two integers such that c(v0vb) ∈ Lnew and c(v0vb′) ∈
Lnew. Similarly, let a′ < a be the smallest two integers such that c(vkva′) ∈ Rnew and
c(vkva) ∈ Rnew.

Notation 6.13. For any integers, 0 ≤ x ≤ y ≤ k, let

T x,y = {vi ∈ T | x ≤ i ≤ y},

and |T x,y| = tx,y.
Notice that t = t0,k = 2 + t1,k−1, as v0 and vk are both terminal vertices.

Now we will show that if a > b, then Lemma 6.7 holds. Suppose a > b. Then by the
definition of a and b, we have

|{i | 2 ≤ i ≤ b and c(v0vi) ∈ Lnew}| = |Lnew| − 1 = lnew − 1.

By Claim 6.9, we know that whenever c(v0vi) ∈ Lnew, we have vi−1 ∈ T . This shows that
t1,b−1 ≥ lnew − 1. Similarly, by a symmetric argument (using Observation 6.11), we get
ta+1,k−1 ≥ rnew − 1. Therefore,

t = 2 + t1,k−1 = 2 + t1,b−1 + tb,a + ta+1,k−1 ≥ 2 + (lnew − 1) + (rnew − 1) = lnew + rnew.
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Now using (6.1) and (6.2), we have

t = lnew + rnew ≥
2k

7
+ 2 +

2k

7
+ 2 =

4k

7
+ 4,

proving Lemma 6.7. Therefore, from now on, we always assume a ≤ b.

Claim 6.14. If c(v0vi) ∈ Lnew or c(vkvi) ∈ Rnew, and a ≤ i ≤ b, then vi−1 ∈ T and vi+1 ∈ T .

Proof of Claim. First suppose c(v0vi) ∈ Lnew. Then by Claim 6.9, vi−1 ∈ T . We want to
show that vi+1 ∈ T .

Observe that if i = a, then by Claim 6.9 again, we have vi+1 ∈ T because vkvi ∈ Rnew.
So let us assume a < i and show that vi+1 ∈ T . Notice that there exists a∗ ∈ {a, a′} (see
Definition 6.12 for the definition of a and a′) such that c(v0vi) 6= c(va∗vk). Now consider the
path va∗+1va∗+2 . . . viv0v1 . . . va∗vkvk−1 . . . vi+1. The set of colors of the edges in this path are
{c1, c2, . . . , ck} \ {ca∗+1, ci+1} ∪ {c(v0vi), c(va∗vk)}, and it is easy to check that all the colors
are different, so the path is rainbow with vi+1 as a terminal vertex.

Now suppose c(vkvi) ∈ Rnew. Then a similar argument (using Observation 6.11) shows
that vi−1 ∈ T and vi+1 ∈ T again, completing the proof of the claim.

Now we introduce some helpful notation.

Notation 6.15. For any integers, 0 ≤ x ≤ y ≤ k, let

Lx,ynice = {c(v0vi) ∈ Lnice | x ≤ i ≤ y},

Rx,y
nice = {c(vkvi) ∈ Rnice | x ≤ i ≤ y},

Lx,ynew = {c(v0vi) ∈ Lnew | x ≤ i ≤ y},
Rx,y

new = {c(vkvi) ∈ Rnew | x ≤ i ≤ y},
Moreover, let |Lx,ynice| = lx,ynice, |R

x,y
nice| = rx,ynice, |Lx,ynew| = lx,ynew, |Rx,y

new| = rx,ynew.

Note that by definition of a and b, lnew = l0,a−1
new + la,bnew + 1 and rnew = 1 + ra,bnew + rb+1,k

new .
Using Claim 6.8, for any integer z, we have the following:

L0,z
nice = L2,z

nice and Rz,k
nice = Rz,k−2

nice . (6.3)

Moreover, by definition of Lnew and Rnew, we have

L0,z
new = L2,z

new and Rz,k
new = Rz,k−2

new . (6.4)

Informally speaking, Claim 6.10 and Claim 6.14 assert that each edge e = v0vi such that
c(v0vi) ∈ Lnew∪Lnice “creates" a terminal vertex x = vi−1 ∈ T or x = vi+1 ∈ T (or sometimes
both). Similarly, (using Observation 6.11) each edge e = vkvi such that c(vkvi) ∈ Rnew∪Rnice

“creates" a terminal vertex x = vi−1 ∈ T or x = vi+1 ∈ T (or both). In the next two claims, by
double counting the total number of such pairs (e, x), we prove lower bounds on the number
of terminal vertices in different ranges (i.e., t0,a−1, tb+1,k and ta,b), in terms of lnew, rnew, lnice

and rnice.
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Claim 6.16. We have,

t0,a−1 ≥ 1

2

(
l0,anice + l0,anew +

r0,a
nice

2

)
,

and

tb+1,k ≥ 1

2

(
rb,knice + rb,knew +

lb,knice

2

)
.

Proof of Claim. By Claim 6.10, and by the fact that there is only one j such that c(vkvj) ∈
R0,a−1

new , it is easy to see that for all but at most one i, we have the following: if c(v0vi) ∈
L0,a

nice = L2,a
nice (equality here follows from (6.3)), then vi−1 ∈ T 1,a−1. So there are at least

l2,anice − 1 pairs (v0vi, x) such that c(v0vi) ∈ L2,a
nice and x = vi−1 ∈ T 1,a−1.

If c(v0vi) ∈ L0,a
new = L2,a

new (equality here follows from (6.4)), then by Claim 6.9, vi−1 ∈
T 1,a−1. So there are l2,anew pairs (v0vi, x) such that c(v0vi) ∈ L2,a

new and x = vi−1 ∈ T 1,a−1.
Adding the previous two bounds, the total number of pairs (v0vi, x) such that c(v0vi) ∈

L0,a
nice ∪ L0,a

new = L2,a
nice ∪ L2,a

new and x = vi−1 ∈ T 1,a−1, is at least l2,anice − 1 + l2,anew. This implies
t1,a−1 ≥ l2,anice − 1 + l2,anew. Therefore, using that v0 is also a terminal vertex, we have

t0,a−1 ≥ l2,anice + l2,anew. (6.5)

If c(vkvi) ∈ R0,a−1
nice , then by Observation 6.11, there is a vertex x ∈ {vi−1, vi+1} such that

x ∈ T . So the number of pairs (vkvi, x) such that c(vkvi) ∈ R0,a−1
nice , x ∈ {vi−1, vi+1} and x ∈ T ,

is at least r0,a−1
nice . By the pigeonhole principle, either the number of pairs (vkvi, vi−1) with

c(vkvi) ∈ R0,a−1
nice , vi−1 ∈ T , or the number of pairs (vkvi, vi+1) with c(vkvi) ∈ R0,a−1

nice ,vi+1 ∈ T ,
is at least r0,a−1

nice /2. In the first case, we get t0,a−2 ≥ r0,a−1
nice /2 and in the second case, we get

t1,a ≥ r0,a−1
nice /2. As t0,a−1 ≥ t0,a−2 and t0,a−1 ≥ t1,a, in both cases we have,

t0,a−1 ≥ r0,a−1
nice

2
. (6.6)

Therefore, adding up (6.5) and (6.6), we get

2t0,a−1 ≥ l2,anice + l2,anew +
r0,a−1
nice

2
= l0,anice + l0,anew +

r0,a
nice

2
.

Note that the equality follows from (6.3), (6.4) and the fact that r0,a−1
nice = r0,a

nice because
c(vkva) ∈ Rnew. By a symmetric argument, we have

2tb+1,k ≥ rb,k−2
nice + rb,k−2

new +
lb+1,k
nice

2
= rb,knice + rb,knew +

lb,knice

2
.

This finishes the proof of the claim.

Now we prove a lower bound on ta,b.

Claim 6.17.
ta,b ≥ 1

4

Ä
la+1,b−1
nice + ra+1,b−1

nice + 2(la+1,b
new + ra,b−1

new )
ä
.
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Proof of Claim. Let us construct a set S of pairs (e, x) such that e ∈ Lin ∪ Rin and x ∈ T
with certain properties.

For every edge e such that c(e) ∈ La+1,b−1
nice ∪Ra+1,b−1

nice , Claim 6.10 (and Observation 6.11)
ensures that there is a vertex x ∈ {vi−1, vi+1} such that x ∈ T (in particular, x ∈ T a,b).
Add all such pairs (e, x) to S. Therefore, the number of pairs (e, x) added to S so far, is
la+1,b−1
nice + ra+1,b−1

nice .
For every edge e such that c(e) ∈ La+1,b

new ∪ Ra,b−1
new , we have both vi−1, vi+1 ∈ T by Claim

6.14; we add both the pairs (e, vi−1) and (e, vi+1) to S. Therefore the number of pairs (e, x)
added to S in this step is 2(la+1,b

new + ra,b−1
new ). Thus,

|S| = la+1,b−1
nice + ra+1,b−1

nice + 2(la+1,b
new + ra,b−1

new ).

Note that all the pairs (e, x) in S are such that x ∈ T a,b. Moreover, for each x ∈ T a,b,
there are at most four pairs (e, x) in S. Therefore, we have

4ta,b ≥ |S| ≥ la+1,b−1
nice + ra+1,b−1

nice + 2(la+1,b
new + ra,b−1

new ),

finishing the proof of the claim.

By Claim 6.16 and Claim 6.17, we have

2(2t0,a−1 + 2tb+1,k) + 4ta,b ≥ 2

(
l0,anice + l0,anew +

r0,a
nice

2
+ rb,knice + rb,knew +

lb,knice

2

)

+la+1,b−1
nice + ra+1,b−1

nice + 2(la+1,b
new + ra,b−1

new ).

This implies,
4t ≥ lnice + rnice + 2l0,bnew + 2ra,knew + l0,anice + rb,knice.

By the definition of a and b, l0,bnew = lnew − 1 and ra,knew = rnew − 1. So, we get

4t ≥ lnice + rnice + 2lnew + 2rnew + l0,anice + rb,knice − 4

≥ lnice + rnice + 2(lnew + rnew)− 4.

Now by Claim 6.5 and inequalities (6.1) and (6.2), we get that

4t ≥ 4k

7
+ 4 + 2

Ç
2k

7
+ 2 +

2k

7
+ 2

å
− 4 =

12k

7
+ 8.

Therefore,

t ≥ 3k

7
+ 2,

completing the proof of Lemma 6.7.
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6.2.3 Finding a large subset of vertices with few incident edges

Now we define an auxiliary graph H with the vertex set V (H) = T and edge set E(H) such
that ab ∈ E(H) if and only if there is a rainbow path P in G with a and b as its terminal
vertices and V (P ) = V (P ∗) = {v0, v1, . . . , vk}.

Claim 6.18. The degree of every vertex u in H is at least 2k/7 + 2.

Proof of Claim. As u ∈ V (H) = T , u is a terminal vertex. So there is a rainbow path
P = u0u1 . . . uk in G such that u0 = u and {u0, u1, . . . , uk} = {v0, v1, . . . , vk}. We define the
sets L,R, Lnew, Rnew corresponding to P in the same way as we did for P ∗ (in Definition 6.1).
Moreover, since P ∗ was defined as an arbitrary rainbow path of length k, (6.2) holds for P
as well – i.e., |Rnew| = rnew ≥ 2k/7 + 2. We claim that if ukuj is an edge in G such that
c(ukuj) ∈ Rnew, then uuj+1 ∈ E(H). Indeed, consider the path u0u1 . . . ujukuk−1 . . . uj+1.
This is clearly a rainbow path with terminal vertices u = u0 and uj+1. So u and uj+1 are
adjacent in H, as required. This shows that degree of u in H is at least rnew ≥ 2k/7 + 2, as
desired.

Size of a matching is defined as the number of edges in it. The following proposition is
folklore.

Proposition 6.19. Any graph G with minimum degree δ(G) has a matching of size

min

®
δ(G),

ú
V (G)

2

ü´
.

We know that δ(H) ≥ 2k
7

+ 2 by Claim 6.18. Moreover |V (H)| = |T | = t. So applying
Proposition 6.19 to the graph H and using Lemma 6.7, we obtain that the graph H contains
a matching M of size

m := min

®
2k

7
+ 2,

õ t
2

û´
≥ 3k

14
. (6.7)

Let the edges of M be a1b1, a2b2, . . . , ambm. Moreover, let

ni = |{xy | xy 6∈ E(G), x ∈ {ai, bi} and y ∈ {v0, v1, v2, . . . , vk} \ {ai, bi}}| .

Claim 6.20. The number of edges in the subgraph of G induced by M is

|E(G[M ])| ≥
(

2m

2

)
−
(

m∑
i=1

ni
2

+m

)
= 2m2 − 2m−

m∑
i=1

ni
2
.

Proof of Claim. Note that the sum ∑
i ni counts each pair xy 6∈ E(G) with x, y ∈ V (M)

exactly twice unless xy = aibi for some i. Therefore, the number of pairs xy 6∈ E(G) in the
subgraph of G induced by M is at most ∑i

ni
2

+ m. Thus the number of edges of G in the
subgraph induced by M is at least

Ä
2m
2

ä
− (

∑
i
ni
2

+m), which implies the desired claim.
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Claim 6.21. The sum of degrees of ai and bi in G is at most 3k − ni
2
.

Proof of Claim. Since aibi is an edge in the auxiliary graph H, there is a rainbow path
P = u0u1 . . . uk in G such that u0 = ai, uk = bi and {u0, u1, . . . , uk} = {v0, v1, . . . , vk}.
We define the sets L,R, Lin, Rin, Lout, Rout, Lnew, Rnew and the numbers l, r, lin, rin, lout, rout,
lnew, rnew corresponding to P in the same way as we did for P ∗ (in Definition 6.1). Therefore,
degree of ai is l ≤ lnew + k. Similarly, degree of bi is at most rnew + k. So the sum of degrees
of ai and bi in G is at most

2k + lnew + rnew. (6.8)

On the other hand, the sum of degrees of ai and bi in G is l + r = lin + lout + rin + rout.
By Claim 6.4, this is at most (lin + rin) + k − rnew + k − lnew = (lin + rin) + 2k − lnew − rnew.
Moreover, it is easy to see that lin + rin ≤ 2k−ni by the definition of ni. Therefore, the sum
of degrees of ai and bi in G is at most

2k − ni + 2k − lnew − rnew. (6.9)

Adding up (6.8) and (6.9) and dividing by 2, we get that the sum of degrees of ai and bi in
G is at most

(2k + 2k − ni + 2k)

2
=

(6k − ni)
2

= 3k − ni
2
,

as desired.

The sum ∑m
i=1(d(ai)+d(bi)) counts each edge in the subgraph of G induced byM exactly

twice (note that here d(v) denotes the degree of the vertex v in G). Therefore, the number
of edges of G incident to the vertices of M is at most ∑m

i=1(d(ai) + d(bi))− |E(G[M ])|. Now
using Claim 6.20 and Claim 6.21, the number of edges of G incident to the vertices of M is
at most

m∑
i=1

Å
3k − ni

2

ã
−
(

2m2 − 2m−
m∑
i=1

ni
2

)
= 3km− 2m2 + 2m = (3k + 2− 2m)m.

Now by (6.7), this is at most

(3k + 2− 2m)m ≤
Ç

3k + 2− 2

Ç
3k

14

åå
m =

Ç
9k

7
+ 1

å
2m <

Ç
9k

7
+ 2

å
2m.

We may delete the vertices of M from G to obtain a graph G′ on n − 2m vertices. By
induction hypothesis, G′ contains less than (9k

7
+ 2)(n − 2m) edges. Therefore, G contains

less than Ç
9k

7
+ 2

å
2m+

Ç
9k

7
+ 2

å
(n− 2m) =

Ç
9k

7
+ 2

å
n

edges, as desired. This completes the proof of Theorem 6.2.
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