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Abstract

In Chapter 1 we give a concise introduction into the analysis of Boolean functions. Several
equivalent definitions of noise sensitivity are discussed. We highlight the complex relation
between noise sensitivity/stability and the pivotal set. In particular we construct a noise
stable sequence of monotone, transitive Boolean functions which has many pivotals with
high probability.

In Chapter 2 we introduce the central concept of our thesis: For a sequence of functions
fn : {−1, 1}Vn −→ R defined on increasing configuration spaces we talk about sparse
reconstruction if there is a sequence of subsets Un ⊆ Vn of coordinates satisfying Un =
o(Vn) such that knowing the coordinates of Un gives us some information about the value
of fn.

We first show that if the underlying measure is a product measure, then for transitive
functions no sparse reconstruction is possible. We discuss the question with an L2-type
and an information theoretic concept of information. Furthermore we show that the left-
right crossing event for critical planar percolation on the square lattice does not admit
sparse reconstruction either.

Chapter 3 extends the question of sparse reconstruction to some larger classes of
sequences of measures. We find that if the average correlation of spins in a sequence
of spin systems decays slower then 1/mn, where mn is the size of the coordinate set,
then sparse reconstruction is possible. We also investigate the question for sequences
converging to a finitary factor of IID system and we find that the expected coding volume
plays a crucial role in determining whether there is sparse reconstruction or not.

Finally, we apply our results and methods to investigate Ising models on sequences
of locally convergent graphs. We show that there is sparse reconstruction for low tem-
perature and critical Ising models, and that there is no sparse reconstruction on the high
temperature Curie-Weiss model.
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Chapter 1

Noise Sensitivity and the Pivotal Set

1.1 Introduction to Noise Sensitivity and Noise Sta-

bility

Noise Sensitivity for Boolean functions was introduced in the seminal work of Benjamini,
Kalai and Schramm [BKS99]. It was originally created to understand the behavior of
crossing events for critical Bernoulli percolation, but it turned out to be of interest on its
own right.

A sequence of Boolean functions is called noise sensitive, if distorting each input bit
with any fixed small probability asymptotically destroys all information on the original
value of fn.

Definition 1.1.1 (Non-degenerated sequences). A sequence of Boolean functions fn :
{−1, 1}Vn −→ {−1, 1} is called non-degenerated if there exists an ε > 0 such that for all
n

−(1− ε) < E[fn] < 1− ε.
Definition 1.1.2 (Noise Sensitivity). Let ε be a positive real number. For a uniform
random vector ω ∈ {−1, 1}kn denote Nε(ω) the random vector which we obtain from
ω by resampling each of its bits independently with probability ε. A sequence of non-
degenerated functions fn : {−1, 1}kn −→ {−1, 1} is noise sensitive if and only if for every
ε > 0

lim
n→∞

Var(E[fn | Nε(ω)])

Var(fn)
= 0 (1.1.1)

The notion of noise sensitivity has applications in complexity and social choice theory.
A Boolean function f : {−1, 1}n −→ {−1, 1} can be interpreted as a voting scheme or an
aggregation rule. Each coordinate stands for a voter and the values −1 or 1 represents a
choice between two alternatives. f may be seen as rule telling how the individual votes
aggregate to a group decision. In this set up noise sensitivity of a voting system means
that even a small ε ratio of counting mistakes in the voting has reasonable chance to turn
the outcome. See [K05] for applications of noise sensitivity in the Social Choice Theory
setting.

Remark 1.1.1. The usual definition of noise sensitivity is slightly different. It states that
the expected correlation between fn and fn applied to the noisy input decays to 0 as n
approaches to infinity. It is easy to see that the two definitions are equivalent see Theorem
1.1.4. We have a preference for this form since it features the notion of clue (Definition
2.1.1). (1.1.1) states that limn clue(fn | Nε(ω)) = 0
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2 CHAPTER 1. NOISE SENSITIVITY AND THE PIVOTAL SET

Note that the above definition naturally extends to R-valued functions requiring
asymptotic independence. (For binary-valued function decorrelation implies indepen-
dence.)

A sort of opposite case of noise sensitivity is a sequence where the value of the function
is, under a small amount of noise, highly correlated with the value of the noisy version.
This phenomenon is expressed by the notion of noise stability:

Definition 1.1.3 (Noise Stability). A sequence of functions fn : {−1, 1}kn −→ {−1, 1}
is noise stable if and only if

lim
ε→0

sup
n

P[fn(ω) 6= fn(Nε(ω))] = 0 (1.1.2)

1.1.1 The Fourier-Walsh expansion

We introduce a function transform for functions on the hypercube which is widely used
in the analysis of Boolean functions.

Definition 1.1.4 (Fourier-Walsh expansion). For any f ∈ L2({−1, 1}V ) and ω ∈ {−1, 1}V

f(ω) =
∑
S⊂V

f̂(S), χS(ω) χS(ω) := ()i ∈ Sωi (and χS(∅) := 1). (1.1.3)

This is in fact the Fourier transform, the event space naturally identified with the
group ZV2 by assigning a generator gx to every x ∈ V . The functions χS are the characters
of ZV2

Let us introduce the natural inner product (f, g) = E[fg] on the space of real func-
tions on the hypercube. It is straightforward to check that the functions χS form an
orthonormal basis with respect to this inner product. We will now state a few important
consequences of this fact.

Since the Fourier-Walsh transform, as it is straightforward to check is an orthonormal
transformation with respect to the standard inner product, Parseval’s formula applies
and therefore ∑

S⊆V

f̂(S)2 = ‖f‖2 .

Noting that f̂(∅) = E[f ], we also have

Var(f) =
∑
∅6=S⊆V

f̂(S)2. (1.1.4)

For a subset T ⊆ V let us denote by FT the σ-algebra generated by the bits belonging
to T . So FT expresses knowing the coordinates in T . It turns out that the conditional
expectation of any function f : {−1, 1}n −→ R S ⊂ E with respect to FT can be
expressed in terms of the squared Fourier-Walsh expansion coefficients see [GS15]:

E[f | FT ] =
∑
S⊆T

f̂(S)χS

The proof is fairly simple: we only need to observe that if S ⊆ U then E[χS | FU ] = χS
in any other case E[χS | FU ] = 0.

Using (1.1.4) we get a concise spectral expression for the variance of the conditional
expectation.

Var(E[f | FT ]) =
∑
∅6=S⊆T

f̂(S)2 (1.1.5)
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1.1. INTRODUCTION TO NOISE SENSITIVITY AND NOISE STABILITY 3

Fourier-Walsh transformation as eigenbasis of the noise operator

Consider a continuous time simple random walk {ωt : t ∈ [0,∞)} on the hypercube.
More precisely we have a rate 1 Poisson clock for every i ∈ V , and each time the clock of
i rings the bit ωi switches to −ωi. It is easy to see that after time t the joint distributions
of (ω0, ωt) and (ω,Nε(ω)) are the same with the conversion ε = 1− e−t.

So on the one hand, we have an interpretation of information theoretic flavour, that
we try to compute a piece of information (represented by f) but the input is corrupted
with noise. The question is: can we recover the original information?

On the other hand, we have a geometric interpretation: We perform a simple random
walk on the discrete hypercube and we have a subset of vertices A (again represented by
f). The question is whether after a fixed amount of time do we remember if we started
the walk from A or not.

One can now think about the Fourier-Walsh expansion in a more probabilistic way:
the functions χS are the eigenfunctions of the simple random walk on the hypercube or,
which is the same, the operator Nε.

Indeed, observe that for any i ∈ V E[Nε(ωi)|ωi] = (1 − ε)ωi, and using that for any
coordinates i 6= j E[Nε(ωi)|ωi] and E[Nε(ωj)|ωj] are independent, we have for any S ⊆ V :

E[χS(Nε(ω))|ω] = (1− ε)|S|χS

Let us introduce the operator

Tε[f ] := E[f(Nε(ω)|ω]

for any f : {−1, 1}n −→ R. Based on the above and the linearity of conditional expecta-
tion:

Tε[f ] =
∑
S⊂V

(1− ε)|S|f̂(S)χS(ω) (1.1.6)

Using now Parseval’s formula it is an easy calculation to establish the following spec-
tral description of Noise Sensitivity and Noise Stability.

Theorem 1.1.2. A sequence of functions fn : {−1, 1}Vn −→ R is noise sensitive if and
only if for any k ∈ N

lim
n→∞

1

Var(fn)

∑
0<|S|<k

f̂n(S)2 = 0.

and noise stable if and only if for every ε there is a large enough k such that

lim
n→∞

1

Var(fn)

∑
|S|>k

f̂n(S)2 < ε.

The Spectral Sample

It turns out to be useful to think about the squared Fourier coefficients f̂(S)2 as a random
subset of the spins called the Spectral Sample It is convenient to normalize this measure
to get a probability measure. The random subset according to this measure Sf is called
the spectral sample.
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4 CHAPTER 1. NOISE SENSITIVITY AND THE PIVOTAL SET

Definition 1.1.5 (Spectral Sample). Let f ∈ L2({−1, 1}V . The Spectral Sample Sf of
f is a random subset of V chosen according to the distribution

P[Sf = S] =
f̂(S)2

‖f‖2 S ⊆ V.

The advantage of this concept that it introduces a new and rather compact language,
where the concepts that we introduced so far has a straightforward translation. Indeed,
noise sensitivity of a sequence of functions is equivalent to the fact that the respective
Spectral Measure - the measure corresponding to the Spectral Sample is concentrated on
large subsets, while noise stability means that the Spectral Sample is concentrated on
bounded subsets.

Theorem 1.1.3 (Noise sensitivity and stability via Spectral Sample). A sequence of
functions fn : {−1, 1}kn −→ R is
(1) noise sensitive if conditioned on the events |Sfn| 6= 0, |Sfn| → ∞ in probability,
(2) noise stable if the sequence |Sfn| is tight.

Another concept that translates very well to the Spectral Sample language is notion
of clue. The clue of a function f with respect to a subset of coordinates U , defined as
clue(f | U) = Var(E[f | FU ])

Var(f)
(see Definition 2.1.1) is one of the central concept of this work.

Using (1.1.4) and (1.1.5) we get that

clue(f | U) = P[Sf ⊆ U |Sf 6= ∅]. (1.1.7)

This observation is in fact the key step in proving Theorem 2.1.1.

1.1.2 Equivalent Characterisation of Noise Sensitivity

Here we collect a few statements that are equivalent to being Noise Sensitive. These
equivalences are fairly easy and implicitly known to the community, but (some of them)
have not been explicitly spelled out and it seems to be of some use to include them here.

For better readability, we introduce the shorthand notation ωε = Nε(ω).

Theorem 1.1.4. Let fn : {−1, 1}Vn −→ {−1, 1} be sequence of non-degenerate Boolean
functions. The following statements are equivalent

1. fn is noise sensitive.

2. For every ε > 0

lim
n→∞

E[fn(ωε)fn(ω))]− E[fn]2 = 0

3. For every p ∈ (0, 1) denoting by Hp the Bernoulli random subset at level p (i.e. each
i ∈ V is in Hp with probability p, independently from what happens to the other

elements). Let E[clue(fn | Hp)] := E
[

Var(E[fn | Hp])
Var(fn)

]
(See also Definition 2.1.1).

With this notation

lim
n→∞

E[clue(fn | Hp)] = 0.
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1.1. INTRODUCTION TO NOISE SENSITIVITY AND NOISE STABILITY 5

4. Let Pf be the uniform measure on {fn = 1} (we suppress the n from the subfix to
simplify the notation) and let consider a simple random walk {X t : t ∈ [0,∞)}
on the hypercube with initial distribution Pf . Let us denote by Ptf [ω] the measure
according to the distribution of X t. Then for every t > 0

lim
n→∞

‖P− Ptf‖1 = 0,

where ‖ ‖1 is the total variation distance of measures.

5. For every ε ∈ (0, 1)

lim
n→∞

E[fn(ωε) | fn(ω) = 1] = E[f ].

6. For every ε ∈ (0, 1)

E[fn(ωε) | ω]
p−→ E[f ].

Proof. (1 ⇔ 2) Note that E[χS(ω)χS(ωε)] =
∏

i∈S E[ω(i)ωεi ] = (1 − ε)|S|. Consequently,
for general functions, using that E[χS1(ω)χS2(ω

ε)] = 0 whenever S1 6= S2 we have the
following formula

E[f(ω)f(ωε)]− E[fn]2 =
∑
∅6=S⊂V

f̂(S)2E[χS(ω)χS(ωε)] =
∑
S⊂V

f̂(S)2(1− ε)|S|.

At the same time (1.1.6) shows that

Var(E[fn(ωε) | ω]) =
∑
∅6=S⊂V

f̂(S)2(1− ε)2|S|.

Since (ωε, ω) has the same distribution as (ω, ωε) we have Var(E[fn(ωε) | ω]) = Var(E[fn(ω) | ωε]).
By assumption fn is non-degenerated, therefore 1/Var(fn) is just a constant factor and
the equivalence follows.

(1⇒ 3)

E[Var(E[f | Hp])] = E[
∑
∅6=S⊂V

f̂(S)211S⊆Hp ] =

∑
∅6=S⊂V

f̂(S)2P[S ⊆ Hp] =
∑
∅6=S⊂V

f̂(S)2p|S|

Using p = 1− ε and noting again that the variance of fn is of constant order, we get the
desired equivalence.

(1⇒ 4)

Observe that the Radon-Nykodim derivative
dPf
dP is 2

E[fn]+1
if fn(ω) = 1 and 0 otherwise

so for any ω ∈ {−1, 1}Vn
dPf
dP

(ω) =
fn(ω) + 1

E[fn] + 1
.

Similarly,
dPtf
dP

(ω) =
E[fn(ωt) + 1 | ω]

E[fn] + 1
.
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6 CHAPTER 1. NOISE SENSITIVITY AND THE PIVOTAL SET

So we can write

‖P[ω]− Ptf‖1 =
∑

ω∈{−1,1}Vn

|P[ω]− Ptf [ω]| = 1

2|Vn|

∑
ω∈{−1,1}Vn

∣∣∣∣1− E[fn(ωt) | ω] + 1

E[fn] + 1

∣∣∣∣.
Using the Cauchy-Schwarz inequality we get

‖P[ω]− Ptf‖1 ≤
∥∥∥∥1− E[fn(ωt) | ω] + 1

E[fn] + 1

∥∥∥∥
2

.

Now we can use the Fourier-Walsh transform to conclude that

‖P[ω]− Ptf‖1 ≤
√

1

E[fn] + 1

∑
S⊂V

f̂(S)2e−2|S|t.

(4⇒ 5) Let Xt as before the simple random walk with initial distribution Pf and t such
that 1− e−t = ε.

E[fn(ωε) | fn(ω) = 1] = E[fn(Xt) | fn(X0) = 1] = Ptf [fn = 1]− Ptf [fn = −1].

By assumption, for large enough n the total variation distance between Ptf and the uniform
measure is smaller then δ and therefore

|E[fn(ωε) | fn(ω) = 1]− E[fn]| < 2δ.

(5⇒ 6) Immediately follows as the arguments (4⇒ 5) and (5⇒ 6) can be repeated with
fn(ω) = −1.

(6⇒ 1) Since

Note that in the usual definition of noise sensitivity, see for example Property 2.
([GS15]) or Property 6. ([BKS99]) from Theorem ?? it is not asymptotic decorrelation,
but only asymptotic independence is required. (Ironically, in this special case decorrela-
tion seems stronger then independence).

As the difference is whether we scale down by the variance, this question only effects
degenerate sequences. According to the usual definition degenerated sequences are au-
tomatically noise sensitive, since asymptotic independence is guaranteed. The intuition
behind is that with high probability we know everything about a degenerated sequences
of functions and what else a probabilist can ask for? Our point is that it might be mean-
ingful to differentiate between degenerated sequences as well, depending on the speed
of decorrelation. Also, defining noise sensitive via covariance or conditional variance
is semantically vague, as these notions - in contrast with clue or correlation - are not
dimensionless concepts expressing information content.

1.2 Noise Sensitivity versus Pivotals

1.2.1 Pivotal set, Influence and the Spectrum

The influence of Boolean functions, a very natural discrete partial derivative concept had
been studied way before noise sensitivity, most notably in [KKL88]. We introduce the
main concept and investigate its relationship with the previously introduced concepts.
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1.2. NOISE SENSITIVITY VERSUS PIVOTALS 7

We are going to use the following notation: For a configuration ω ∈ {−1, 1}V we
denote by ωj the configuration which is the same as ω except its jth coordinate which is
flipped.

Definition 1.2.1 (Pivotal Set). Let f : {−1, 1}V −→ {−1, 1} and ω ∈ {−1, 1}V . We
call a coordinate j pivotal for f with respect to ω if f(ω) 6= f(ωj). The pivotal set Pf

is the (ω-measurable) random set of pivotal coordinates.

Influence of a variable is the probability that it is pivotal.

Definition 1.2.2 (Influence). Let f : {−1, 1}V −→ {−1, 1} than for an j ∈ V the
influence of the coordinate j is

Ij(f) := P[f(ω) 6= f(ωj)].

The total influence is defined as I(f) :=
∑

j∈V Ij(f)

Unsurprisingly the influence also admits a concise formulation in terms of the Fourier-
Walsh transform:

Ij(f) =
∑
S:j∈S

f̂ 2(S) and I(f) =
∑
S:⊆V

|S|f̂ 2(S) (1.2.1)

This is easy to derive using the fact that the pivotal set of χS is constant S. A remarkable
consequence is the following link between the Spectral Sample and the Pivotal Set I(f) =
E[|Sf |]. On the other hand, by definition I(f) = E[|Pf |], so the expected size of these
random sets is the same. In fact even more is true.

Proposition 1.2.1. Let f : {−1, 1}V −→ {−1, 1} then for every i, j ∈ V

Pr[i ∈Pf ] = Pr[i ∈ Sf ] and Pr[i, j ∈Pf ] = Pr[i, j ∈ Sf ]

For a proof see [GS15] Corollary IX.7. The fact that the one dimensional marginals
are equal comes directly from (1.2.1). The equality of the two dimensional marginals is
a consequence of a generalization of (1.1.7), the so-called Random Restriction Lemma.

The sudden idea that the two random sets might be the same can be easily discarded
as already on three bits one can find counterexamples. Still these observations raises the
possibility of characterising Noise Sensitivity and Stability with the help of influences or
the pivotal set. According to Theorem 1.1.3, a sequence of function is noise sensitive
when the Spectral Sample is typically large, and Proposition 1.2.1 suggests that there
might be some connection between the sizes of the Spectral Sample and the Pivotal Set.

Indeed in some well-studied cases the two distributions show similar behavior. For
example, this is the case for the crossing event in critical planar percolation. In [GPS10]
a thorough analysis of the Fourier expansion shows that most of the Fourier spectrum
is typically on sets larger then nε for some ε, while it is known that the pivotal set of
the critical crossing event is also typically of polynomial size. See [GPS10] or Chapter
X in [GS15] for further details on the similarities and differences between the size of the
spectrum and the pivotal set.

Another important example is the Majority on 2n+ 1 bits defined as

Maj2n+1 =

{
1 if

∑
i ω(i) > 0

−1 if
∑

i ω(i) < 0.
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8 CHAPTER 1. NOISE SENSITIVITY AND THE PIVOTAL SET

This function is noise stable, that is, most of its Spectral Sample is concentrated on small
(bounded) subsets although the average size of the spectrum is going to infinity in the
order of

√
n (See [OD14]). Similarly, the pivotal set is typically empty since in order to

have a pivotal bit one must have
∑

i∈n ω(i) = ±1.
At the same time this example shows that Spectral Sample does not need to be

concentrated, i.e. the knowledge of their expected size is irrelevant for noise sensitivity
or stability.

It would be quite useful to infer noise sensitivity via influences. While the Fourier-
Walsh transform is a strong theoretical tool, it is very challenging to calculate or even
estimate the spectrum of a sequence of Boolean Function (see for example [GPS10], a
highly technical paper that estimates the typical size of the Spectral Sample for the
crossing event of planar percolation). On the other hand, the influences is usually easier
to calculate and in particular, the pivotal set is easy to simulate via a uniformly random
string of bits, while there is no known way to sample the spectral sample.

There is, in fact one very important and slightly mysterious result that links noise
sensitivity to influences:

Theorem 1.2.2 ([BKS99]). Let fn : {−1, 1}Vn −→ {−1, 1} if

lim
n→∞

∑
j∈Vn

Ij(fn)2 = 0

then fn is noise sensitive.

The proof is not long, but rather technical. It uses the method of hypercontractivity,
an analytic tool introduced already in [KKL88]. The converse is not true in general, ex-
emplified by χVn , but it is for monotone Boolean functions. We note that

∑
j∈Vn Ij(fn)2

in the pivotal set language means the expected size of the intersection of two independent
samples of the pivotal set. So we can rephrase Theorem 1.2.2 as follows: if two inde-
pendent copies of the pivotal set are asymptotically disjoint then the sequence is noise
sensitive.

1.2.2 A paradoxical sequence

Apart from Proposition 1.2.1 and Theorem 1.2.2 there is no further known general con-
nection between the behaviour of Sf and Pf .

Indeed [GS15] Section XII.2 features a number of ’paradoxical’ sequences . Among
others, a sequence of a noise sensitive sequence of monotone, non-degenerate functions
has been constructed for which the pivotal set is empty with high probability or a noise
stable sequence which has many pivotals with high probability.

Along these lines the following question was posed by Gil Kalai: Is there a sequence of
Boolean functions fn : {−1, 1}kn −→ {−1, 1} such that fn is transitive and noise stable,
but at the same time P[Pn(ω) 6= ∅] > c for some constant c > 0 for all n ∈ N?

Definition 1.2.3 (Transitive function). A function f : {−1, 1}V −→ R is transitive if
there is a transitive group action G on V such that for every g ∈ G f g = f

In the language of Social Choice Theory the transitivity of a voting scheme can be
interpreted as no voter is privileged or treated differently from teh others.

We are going to show that the answer is positive.
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1.2. NOISE SENSITIVITY VERSUS PIVOTALS 9

Theorem 1.2.3. There exists a sequence of transitive monotone functions fn : {−1, 1}kn −→
{−1, 1} such that fn is transitive, noise stable and limn P[Pn > an] = 1 (here Pn is the
pivotal set, see below) for some sequence of integers an →∞.

Our result is another indication that, apart from the known connections in general
the Spectral Sample and the Pivotal set can show very different behavior.

Remark 1.2.4. One can relax the stability condition to the lack of noise sensitivity. In this
case the answer is almost trivial. We now sketch an example of a sequence of monotone
functions which is transitive, not noise sensitive and the pivotal set is nonempty with a
uniformly positive probability.

Let An, Bn ⊆ {−1, 1}kn be two sequences of monotone transitive events satisfying the
conditions of Theorem 1.2.3 except for noise stability, with the property that there exists
c > 0 such that for all (large) n, P[An ∪ Bn] − P[An] > c (We can, for example, choose
An and Bn to be two tribes events defined on different tribe partitions). Let Majkn be
the Majority function on the same kn bits. Now let

fn =

{
11An if Majkn = −1
11An∪Bn if Majkn = 1.

It is clear that fn is monotone, transitive and admits pivotals with a positive probability.
At the same time it is positively correlated with Majkn and therefore cannot be noise
sensitive.

In the sequel, we shall construct a sequence of functions fn : {−1, 1}kn −→ {−1, 0, 1}
with the following properties:

1. fn is transitive

2. lim
n

P[fn = 0] = 1

3. lim
n

P[∃ i, j ∈ [kn] : fn(ωi) = 1 and fn(ωj) = −1] = 1.

where ωi denotes ω with its ith coordinate flipped. We will call a sequence of functions
bribable if it satisfies the above conditions. The name is coming from the Social Choice
Theory interpretation. It is an impartial (transitive) monotone voting scheme (this time
with three possible results) with the property that although in most of the times the
result is the same, with high probability we can buy some people who can turn the result
in a particular direction.

It might be also interesting to think of the bribable sequence geometrically. This is a
sequence of invariant and monotone subsets of the hypercube with a density going to 0,
but with the property that almost any vertex of hypercube is a neighbour, meaning that
it can be reached from the set by changing the value of a single coordinate.

Using a bribable sequence fn one can easily construct a transitive noise stable Boolean
function which admits a pivotal bit with high probability. Namely, let Majn denote the
majority function on the corresponding bit set. Let

gn =

{
Majn if fn = 0
fn if fn 6= 0.

Obviously gn is noise stable because of property 2 of fn. On the other hand, conditioned
on {fn = 0} there is a pivotal bit with high probability because of property 3 of the
sequence fn.
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10 CHAPTER 1. NOISE SENSITIVITY AND THE PIVOTAL SET

It is also straightforward to verify that if we choose a bribable sequence fn which is
monotone then the resulting gn sequence will be monotone as well.

Again looking at this from the social choice perspective, this is an impartial, transi-
tive voting scheme, which is noise stable - that is, small random perturbations, such as
miscounting or a few (random) people changing there mind in the last moment are not
likely to effect the results. However, with high probability there are some powerful voters
who can change the result of the voting, if they change their mind.

Construction of a monotone bribable sequence

Now we turn to the construction of a monotone bribable sequence. Define the Boolean
function Tribes(l, k) : {−1, 1}lk −→ {0, 1} as follows: we group the bits in k l-element
subsets, these are the so called tribes. The function takes on 1 if there is a tribe T
such that for every i ∈ T : ω(i) = 1, and 0 otherwise. The Tribes function is standard
example, when kn and ln are defined in such a way that the function is non-degenerate. It
is well know that such a sequence testifies that the Kahn-Kalai-Linial theorem about the
maximal influence of sequences of Boolean functions (Theorem 1.14 in [GS15]) is sharp.

We are going to show that in case the two sequences ln, kn are properly chosen, a
slight modification of Tribes(ln, kn) is bribable.

Proposition 1.2.5. Suppose that ln and kn are sequences such that

lim
n→∞

(
1− 1

2ln

)kn
= 1 (1.2.2)

and

lim
n→∞

knln
1

2ln
=∞ (1.2.3)

then the sequence of functions fn(ω) := Tribes(ln, kn)(ω)− Tribes(ln, kn)(−ω) is bribable.
Moreover, there is a sequence of positive integers an →∞ such that P[|Pn| > an]→ 1

Proof. Let us call a tribe T pivotal if there is exactly one j ∈ T such that ω(j) = −1.
Define the random variable Xn as the number of pivotal tribes in a configuration. Note
that E[Xn] = knln

1
2ln

.
It is clear that conditioned on the event {Tribes(ln, kn) = 0} we have |Pn| = Xn,

where |Pn| denotes the pivotal set of Tribes(ln, kn). Consequently, for the respective
conditional expected values:

E[Pn|Tribes(ln, kn) = 0] = E[Xn|Tribes(ln, kn) = 0].

We can write Xn =
∑kn

j Yj where Yj is the indicator of the event that the jth tribe
is pivotal. For any j ∈ [kn] we have

P[Yj = 1|Tribes(ln, kn) = 1] =
P[Yj = 1]P[Tribes(ln, kn − 1) = 1]

P[Tribes(ln, kn) = 1]
≤ P[Yj = 1],

using that if the jth tribe is pivotal and there is a full 1 tribe then the latter is among
the remaining kn − 1 tribes. This implies

E[Xn|Tribes(ln, kn) = 1] ≤ E[Xn] ≤ E[Xn|Tribes(ln, kn) = 0]

C
E

U
eT

D
C

ol
le

ct
io

n



1.2. NOISE SENSITIVITY VERSUS PIVOTALS 11

and therefore

E[Pn|Tribes(ln, kn) = 0] ≥ E[Xn] = knln
1

2ln
→∞.

As Xn is binomially distributed with E[Xn]→∞, being the sum of i.i.d 0− 1-valued
random variables, there is a an →∞ such that

lim
n→∞

P[Xn > an] = 1.

Note that

P[Tribes(ln, kn) = 0] =

(
1− 1

2ln

)kn
and this probability tends to 1 as n approaches ∞ by our assumption. So clearly

P[Xn > an and Tribes(ln, kn) = 0] = P[|Pn| > an, and Tribes(ln, kn) = 0]→ 1

and therefore also

lim
n→∞

P[|Pn| > an | Tribes(ln, kn) = 0] = 1.

The same argument can be repeated for −Tribes(ln, kn)(−ω). The event that neither
Tribes(ln, kn)(ω) nor Tribes(ln, kn)(−ω) happens while the pivotal set of both is larger than
an still holds with high probability. That is, we find pivotal bits for both Tribes(ln, kn)(ω)
and Tribes(ln, kn)(−ω) with high probability and thus push fn = Tribes(ln, kn)(ω) −
Tribes(ln, kn)(−ω) to 1 or −1, respectively.

Furthermore Tribes(ln, kn)(ω)− Tribes(ln, kn)(−ω) is monotone increasing as the sum
of monotone increasing functions.

Now it only remains to show that with an appropriate choice of the sequences kn and
ln (1.2.2) and (1.2.3) are satisfied.

First, note that (
1− 1

2ln

)kn
→ 1 if and only if

kn
2ln
→ 0,

or equivalently

log kn − ln → −∞, (1.2.4)

while after taking the logarithm in both sides (1.2.3) becomes

log kn + log ln − ln →∞. (1.2.5)

If we now choose ln = log kn + 1
2

log log kn then clearly (1.2.4) is satisfied. As for (1.2.5),
using that log ln ≥ log log kn

log kn + log ln − ln ≤ log kn + log log kn − (log kn +
1

2
log log kn) =

1

2
log log kn →∞.

Finally, we note that the argument remains valid with some elementary modifications
in case if, instead of the uniform measure we endow the hypercube with the product
measure Pp = (1− pδ−1 + pδ1)⊗kn for some p ∈ (0, 1).
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12 CHAPTER 1. NOISE SENSITIVITY AND THE PIVOTAL SET

The case of a general sequence of pn

So far we assumed that the hypercube is endowed with the uniform measure. Now we
consider a sequence of measures where the hypercube {−1, 1}mn is endowed with the
measure Ppn = (1− pnδ−1 + pnδ1)⊗kn .

In the argument used to prove Proposition 1.2.5 we only made use of the uniform
measure in explicit calculations. Therefore in the general case we simply have to replace
(1.2.2) with

lim
n→∞

(
1− plnn

)kn
= 1 (1.2.6)

and (1.2.3) with
lim
n→∞

knln(1− pn)pln−1
n =∞, (1.2.7)

respectively. Furthermore, since we also want to use simultaneously the function Tribes(ln, kn)(−ω),
the above asymptotics should hold if we replace pn with qn = 1− pn as well.

We will replace kn by mn/ln in the sequel, The question we would like to answer is
for what pair of mn and pn can we find an appropriate sequence ln that satisfy (1.2.6)
and (1.2.7).

First, observe, in case 0 < infn pn ≤ supn pn < 1 basically the argument used in the
uniform case continues working. So we will investigate two cases: when limn pn = 0 and
when limn pn = 1. Case 1 : limn pn = 0 Using that plnn → 0 and taking logarithm from
(1.2.6) we get

mn

ln
log (1− plnn ) � −mn

ln
plnn → 0,

which after taking logarithm again, becomes

logmn − log ln − log
1

pn
ln → −∞. (1.2.8)

As for (1.2.7), we get

log(an) := logmn − log
1

pn
(ln − 1)→∞ (1.2.9)

ignoring the term log qn → 0. So (1.2.8) can be written as

dn − log pn − log ln = dn − log(pnln)→ −∞.

Case 2 : limn pn = 1 In this case plnn = (1 − qn)ln � e−qnln using that qn tends to 0.
Now let us suppose that we can choose ln such that plnn � e−qnln → 0. That is we have
the condition qnln →∞

Under these assumptions taking logarithm from (1.2.6) gives:

mn

ln
log (1− plnn ) = −mn

ln
plnn = −mn

ln
e−qnln → 0

After taking logarithm one more time we get the equivalent

logmn − log ln − qnln → −∞. (1.2.10)

While taking logarithm from (1.2.7) we get

dn := logmn − log
1

qn
− qnln →∞ (1.2.11)
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1.2. NOISE SENSITIVITY VERSUS PIVOTALS 13

where we ignored the term log 1
pn
→ 0. We can express ln in terms of mn, qn and dn and

plug it into (1.2.8):

logmn−
(

log(logmn − log
1

qn
− dn) + log

1

qn

)
− (logmn − log

1

qn
− dn) =

dn − log(log (qnmn)− dn)→ −∞.

If we choose dn as for example 1
2

log log(qnmn), then obviously (1.2.10) and (1.2.11) are
satisfied. It is also straightforward to verify that whenever qnmn → ∞ then ln < mn

moreover qnln → ∞ is consistent with this choice of dn, and it also guarantees that, in
particular ln →∞.

1.2.3 Volatility

Another dynamical property of Boolean functions, which may look, at first glance, almost
the same as noise sensitivity, is volatility, studied in [JS16]. It roughly says that if we are
updating the input bits in continuous time, then the output changes very often.

Our construction also implies, see Corollary 1.2.8 below, that every (monotone)
Boolean function is close to a (monotone) Boolean function that has many pivotals with
high probability. As functions with these properties are also volatile, this is a strength-
ening of Theorem 1.4 in [F18].

Let Xn(t) be the continuous time random walk on the kn hypercube (where Xn(0)
is sampled according to the stationary measure) with rate 1 clocks on the edges. For a
sequence of Boolean functions fn let Cn denote the (random) number of times fn(Xn(t))
changes value in the interval [0, 1]. The following concepts where introduced in [JS16].

Definition 1.2.4 (Volatility, tameness). A sequence of functions fn : {−1, 1}kn −→
{−1, 1} is called volatile if the sequence Cn tends to ∞ in distribution and tame, if the
sequence Cn is tight.

It is a (rather intuitive) fact that a non-degenerate noise sensitive sequence is volatile
(Proposition 1.17 in [JS16]) and all tame sequences are noise stable (Proposition 1.13 in
[JS16]). The Maj function, for example, is noise stable, but not tame and not volatile
either.

Now we are going to relate our conditions to volatility.

Lemma 1.2.6. Let fn : {−1, 1}kn −→ {−1, 1} be a sequence of Boolean functions with the
property that there is a sequence of positive integers an →∞ such that P[|Pn| > an]→ 1
(where Pn denotes the pivotal set of of fn). Then fn is volatile.

Proof. Let An := {|Pn| ≤ an}. It is clear that E[
∫ 1

0
11Xn(t)∈Andt] = P[|Pn| ≤ an]→ 0 so

for every ε for large enough n it holds that

E[

∫ 1

0

11Xn(t)∈Andt] < ε2

and therefore, using Markov’s inequality

P[

∫ 1

0

11Xn(t)∈Andt > ε] < ε.
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14 CHAPTER 1. NOISE SENSITIVITY AND THE PIVOTAL SET

By Lemma 1.5 in [JS16] volatility is equivalent with the condition

lim
n

P[Cn = 0] = 0.

Now we show that P[Cn = 0] can be arbitrary small. If we choose n large enough so that
e−(1−ε)an < ε

P[Cn = 0] ≤ P[

∫ 1

0

11Xn(t)∈Andt > ε]+P[

∫ 1

0

11Xn(t)∈Andt ≤ ε and Cn = 0] ≤ ε+e−(1−ε)an < 2ε,

where we used that Cn = 0 can only hold as long as no pivotal bit is switched during the
time we are outside of An.

Hence we obtain the following

Corollary 1.2.7. There exists a noise stable and volatile sequence of transitive monotone
functions.

We say that the sequences fn and gn o(1)-close to each other if limn P[fn 6= gn] = 0.
In [F18] it is proved (Theorem 1.4) that for every sequence of Boolean functions there is
a volatile sequence o(1)-close to it and in this sense volatile sequences are dense among
all sequences of Boolean functions. Our construction has a similar conclusion. Using
the fact that any sequence of Boolean functions can be slightly modified with a bribable
sequence in the same way as we did with Maj, we obtain the following strengthening of
Theorem 1.4 from [F18]:

Corollary 1.2.8. Any sequence of (monotone) Boolean functions is o(1)-close to a
(monotone) volatile sequence with the property that P[Pn > an] → 1 for some sequence
of integers an →∞.

Although here we consider the uniform measure on the hypercube the same type of
questions are meaningful when the uniform measure is replaced by the sequence of product
measures Ppn = (1 − pnδ−1 + pnδ1)⊗kn . It has to be noted that Theorem 1.4 in [F18] is
valid for basically all possible sequences pn under which the question is meaningful, while
our construction works in a more restricted range of sequences pn. Most importantly, our
results extend to all sequences pn that satisfy 0 < lim inf pn ≤ lim sup pn < 1.

Furthermore, in [F18] a sequence of Boolean functions is constructed which is noise
stable and volatile, but at the same time it is not o(1)-close to any non-volatile sequence.
Such a sequence, of course cannot be obtained with a small modification from some
non-volatile stable sequence.

This naturally lead to the following questions:

Question 1.2.9. Is there a transitive, noise stable (volatile?) sequence fn such that
P[Pn(ω) 6= ∅] → 1 and fn is not o(1)-close to any sequence which does not have these
properties?

We think that the answer is positive to this question.

Question 1.2.10. Is there a transitive, monotone and noise stable (volatile?) sequence
fn such that P[Pn(ω) 6= ∅]→ 1 and fn is not o(1)-close to any sequence which does not
have these properties?

This looks more difficult and it might be the case that the answer is negative.
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1.2. NOISE SENSITIVITY VERSUS PIVOTALS 15

An alternative bribable sequence

Here we sketch a completely different way of constructing a bribable sequence. Its dis-
advantage is that it is not-monotone therefore it only implies a weaker result (without
monotonicity). We shall include here because the ideas in it might be of interest.

Let L, k ∈ N be such that L > 6k and n =
(

L
2k+1

)
. In fact, we are going to identify

the set of bits [n] with the 2k + 1 element subsets of [L].
Define for j = 1, 2, . . . L the subset of bits Hj ⊂ [n] by

Hj :=

{
t ∈
(

L

2k + 1

)
: j ∈ t

}
.

We introduce a spin system indexed by j = 1, 2, . . . L which is a factor of the ω:

σj := χHj(ω) =
∏
t∈Hj

ωt

That is, we multiply all the ωt bits corresponding to subsets that contain j.
The crucial property of this spin system with respect to the original bits is the following

simple observation:

Lemma 1.2.11. For every 2k+ 1 element subset t ⊆ [L] the corresponding bit ωt has the
following property: If one flips the value of ωt then the values of all the spins σj : j ∈ t
are flipped, while all the other spins σk : k /∈ t are kept unchanged.

Proof. Flipping the value of any bit t that is in Hj will change the value of σj = χHj(ω)
and it will obviously not change the value of any σl = χHl(ω) which does not contain t.
By definition, t is contained in Hj if and only if j is contained in t. Since every for every
2k + 1 element subset there is a corresponding bit t the statement follows.

Lemma 1.2.12. If ωt, t ∈
(

L
2k+1

)
is a uniform i.i.d spin system, then so is {σj, j ∈ [L]}.

Proof. First we observe that if for any ∅ 6= S ⊆ [L] it holds that E[σS] = E[
∏

j∈s σj] = 0
then the random variables {σj, j ∈ [L]} are independent, unbiased coin flips.

We show this by induction with respect to L. For L = 1 the statement is trivially
true. Now suppose we have a system of L− 1 spins which satisfies the condition above.
By the induction hypothesis this is a uniform i.i.d spin system.

It is easy to see that any event A which is measurable with respect to {σj, j ∈ [L− 1]}
is independent from σL. Indeed, 1A can be written as a linear combination of functions
σS : S ⊆ [L− 1] (i.e. the Fourier-Walsh transform of 1A), but E[σSσL] = E[σS∪{L}] = 0
and consequently Cov(1A, σL) = 0. This shows that σL is independent from the σ-algebra
generated by {σj, j ∈ [L− 1]}. Together with E[σL] = 0, this shows that {σj, j ∈ [L]} is
a uniform i.i.d spin system. Now we are going to show that E[σS] = 0 for any ∅ 6= S ⊆ [L].

Indeed,

σS =
∏
j∈s

σj =
∏
j∈S

∏
t∈Hj

ωt =
∏
j∈S

∏
t:j∈t

ωt.

Notice that for any particular subset t ∈
(

L
2k+1

)
, the bit ωt appears in this product for

all j ∈ S for which j ∈ t also holds, that is |S ∩ t| times. So we get that

σS =
∏

t∈( L
2k+1)

ω
|S∩t|
t .
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16 CHAPTER 1. NOISE SENSITIVITY AND THE PIVOTAL SET

Consequently, σS is uniform on ±1 whenever there exist some 2k + 1 element subset
t for which |S ∩ t| is odd. But this is always true. Indeed, in case |S| ≥ 2k+ 1 then there
exists a t ∈

(
L

2k+1

)
such that t ⊆ S, and therefore |S ∩ t| = |t| = 2k + 1. If |S| < 2k + 1

we can choose one element from S and another 2k elements from L \S (which is possible
since L > 4k) and then |S ∩ t| = 1.

Now we can define the sequence fn.
Let k = dL 1

2
+εe, and define the following two events:

An :=

∑
j∈[L]

σj ≥ 2k


and

Bn :=

∑
j∈[L]

σj ≤ −2k

 .

Now let fn := 11An − 11Bn .
It is clear that lim

n
Pr[fn = 0] = lim

n
(1− Pr[An]− Pr[Bn]) = 1 because of the Central

Limit Theorem. At the same time, conditioned on the event {fn = 0} (which happens
with high probability) we can always find (many) bits that change fn to 1 or −1, respec-
tively.

Indeed, define M+ = {j ∈ [L] : σj = 1} and M− in a similar way. Obviously, |M+|+
|M−| = L and −2k < |M+| − |M−| < 2k on {fn = 0}. So |M+| > L/2 − k > 2k using
that L > 6k. (In fact, |M+| = L/2− o(L) while 2k + 1 = o(L).) By symmetry, the same
lower bound holds for M−. So we can always choose a t ⊆ M+ and a t′ ⊆ M+ with
t, t′ ∈

(
L

2k+1

)
.

On the other hand
∑

j∈[L] σj = |M+|− |M−| increases (decreases) by 4k+ 2 whenever

we change the value of any t ⊆ M+ (t′ ⊆ M−). Therefore, as −2k < |M+| − |M−| < 2k
holds on {fn = 0}, by changing the value of a bit t (or respectively t′) as above one can
achieve that

∑
j∈[L] σj ≥ 2k (respectively,

∑
j∈[L] σj ≤ −2k).

1.2.4 Revealment

The fundamental paper [BKS99] used hypercontractivity estimates to prove that cross-
ing events are noise sensitive. There is, however another tool coming from the theory of
randomised algorithms that allows for more quantitative noise sensitivity results. The
revealment of a randomized algorithm for a Boolean function f is the maximum probabil-
ity that a particular bit is queried during the algorithm. The revealment of the Boolean
function is the infimum of the revealments over all randomized algorithms.

Definition 1.2.5 (Revealment). Let JA denote the random set of edges queried by the
algorithm A until it learns the value of f . Let R denote all possible random algorithms
on {−1, 1}E The revealment of f is

δf = inf
A∈R

max
e∈E

P[e ∈ JA] (1.2.12)

Now the important result that links noise sensitivity to this notion is the following
([SS10]):
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1.2. NOISE SENSITIVITY VERSUS PIVOTALS 17

Theorem 1.2.13. Let f : {−1, 1}E −→ R then∑
|S|=k f̂(S)2

‖f‖2
2

≤ δfk (1.2.13)

If the revealment δn of a sequence of Boolean functions fn goes to 0 then it is noise
sensitive. Moreover, δn gives a quantitative bound for noise sensitivity.
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Chapter 2

Sparse Reconstruction in Product
Measures

2.1 Sparse Reconstruction for Transitive Functions

Let G be a vertex transitive graph with vertex set V and let us put uniformly random
bits (we will think about them as ±1) on the vertices of the graph. Now take an event
which is invariant under graph automorphisms. The question we are going to investigate
is the following: Is it possible that knowing the bits of a small subset of vertices specified
in advance (independently from the value of the bits) will give enough information to
decide whether the event has occurred or not?

In this section we will answer this question and some of its generalizations. In order to
make this question precise we need to measure the amount of information we gain about
an event by learning a subset of the coordinate values of a configuration. For a subset of
vertices U ⊆ V let FU denote the σ-algebra generated by the random bits belonging to
vertices in U .

Definition 2.1.1 (Clue). Let f : {−1, 1}V −→ R and U ⊆ V .

clue(f | U) =
Var(E[f | FU ])

Var(f)

In the definition we allowed for any real function f , not only events (which may be
represented by their indicator functions), as the definition extends naturally.

The notion of cluef (U) quantifies the proportion of the total variance of f attributed
to the variance of the function projected onto FU . The clue is always a number between
0 and 1, as projection can only decrease the variance.

It is worth noting that

clue(f | U) =
Cov2(f,E[f | F(U)])

Var(f)Var(E[f | F(U)])
= Corr2(f,E[f | F(U)]). (2.1.1)

using that Cov(f,E[f | F(U)]) = Var(E[f | F(U)]), since conditional expectation is or-
thogonal projection.

Natural it may seem, clue is obviously not the only possible way to quantify the
information content of a subset of coordinates about a function. Later on in this section
we will consider a few alternatives.

19
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20 CHAPTER 2. SPARSE RECONSTRUCTION IN PRODUCT MEASURES

Here we mention a similar concept introduced in [BL89]. For a subset U ⊆ V the
influence of U is defined as follows:

I(U) = P[ f is not determined by the bits on U c]

Influence is, however much weaker then clue (in the sense that it is much easier to have
high influence then high clue). Like in Social Choice Theory, one may think about
coordinates as individual agents trying to influence the value(outcome) of f by the values
of the respective bits. In this framework the influence of a subset quantifies the probability
that the set of agents in U can change the value of f by coordinating their values. While
in this setting coordinates are allowed to cooperate, clue rather quantifies the average
gain of information (measured in variance) for a uniformly random configuration of U .

Indeed, one can easily see that among n coordinates any set of size n
2
3 has influence

close to 1 with respect to Maj(n). On the other hand, it is an easy exercise to verify
that subsets of size o(n) give asymptotically 0 clue (besides it follows immediately from
Theorem 2.1.1).

We continue formalising the informal question posed at the beginning. Let G be
a group acting transitively on the set of coordinates V . This action can be extended
in the natural way to the configuration space {−1, 1}V , and in turn to any function
f : {−1, 1}V −→ R. For a Boolean function f , and for g ∈ G we denote by f g(x) := f(xg)
the action of G on the function f .

Definition 2.1.2 (Transitive function). A function f : {−1, 1}V −→ R is transitive if
there is a transitive group action G on V such that for every g ∈ G f g = f

We introduce a concept that helps us to ask what we want in a concise way. Besides,
this is one of the central notions of this thesis.

Definition 2.1.3 (Sparse Reconstruction). Let fn : {−1, 1}Vn −→ {−1, 1} be a sequence
of Boolean functions and let µn =. We say that there is Sparse Reconstruction for fn if
there is a sequence of subsets Un ⊆ Vn such that for some c > 0

lim inf
n

clue(fn | Un) > c

We are now ready to formulate our question. Is there a fn : {−1, 1}Vn −→ {−1, 1} be
a sequence of transitive Boolean functions for which there is Sparse Reconstruction?

One may guess that the answer is negative for transitive functions and this is indeed
the case. The proof, however, is surprisingly short and it demonstrates the power of the
notion of spectral sample in an impressive way. (For an introduction on the Fourier-Walsh
transform on the hypercube and the spectral sample see Section 1.1.1).

Theorem 2.1.1 (Clue of Transitive Functions). If f : {−1, 1}V −→ {−1, 1} transitive,
U ⊆ V then

clue(f | U) ≤ |U |
|V |

Proof. Let X be a uniformly random element from the spectral sample Sf of f condi-
tioned on being non-empty. Because f is transitive X is uniform on V . Using (1.1.7) we
get the following:

clue(f | U) = P[S ⊆ U |S 6= ∅] ≤ P[X ∈ U ] =
∑
u∈U

P[X = u] =
|U |
|V |

(2.1.2)
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2.1. SPARSE RECONSTRUCTION FOR TRANSITIVE FUNCTIONS 21

Remark 2.1.2. The bound in Theorem 2.1.1 is sharp, as it is testified by the function∑
v∈V ωv.

Remark 2.1.3. There is no obvious way to relax the condition of transitivity. We now
sketch an example of a sequence of Boolean functions where the individual influences
Iv(fn) (see Definition 1.2.2) are (almost) equal for every n, however there is a sparse

subset of coordinates Un (i. e. limn
|Un|
|Vn| = 0) such that limn cluefn(Un) = 1.

Let an be a sequence of integers such that an → ∞. Let us define non-symmetrical
majority functions

Majan(n) =

{
1 if

∑
i ω(i) > an

√
n

−1 if
∑

i ω(i) < an
√
n.

We can choose an in such a way that for some small ε > 0

Ii(Majann ) =

(
n

n/2+an
√
n

)
2n

∼ 1

n2/3

holds. The Tribes function Tribes(ln, kn) which has already been defined in Section ??
is known to be balanced if ln = log n − log log n and kn = n/ln. Let us denote this
balanced version of the tribes on n bits by Tribes(n). An easy calculation shows that
Ii(Tribesn) ∼ logn

n
.

Let Vn = Mn ∪ Tn. In the following definition, where the domain of Majanmn is Mn and
the domain of Tribes(tn) is Tn.

fn :=

{
Majan(mn) if Tribes(tn) = 1
Maj−an(mn) if Tribes(tn) = −1.

We adjust the size of Mn and Tn in such a way that the influence of each coordinate is
the same. So we have the equation log tn

tn
= 1

n2/3 , or equivalently

mn =

(
tn

log tn

)3/2

.

So the density of Tn goes to 0 compared to |Vn| = tn+mn. At the same time, from the Cen-
tral Limit Theorem it is clear that limn P[Majan(mn) = 1] = 0 and limn P[Maj−an(mn) =
1] = 1. Consequently, limn cluefn(Tn) = 1.

It is worth noting that the result does not only apply for sequences of Boolean func-
tions, but also for any sequences of real-valued functions, no matter bounded or not. One
may ask whether a similar result can be derived in case we replace the {−1, 1} space in
the domain with something more complicated. It turns out that there is an important
generalization of the Fourier-Walsh transform and the spectral sample for general product
spaces that enables us to extend the inequality in Theorem 2.1.1 to arbitrary product
spaces. We will need the following simple observation, which turns out to be crucial for
the orthogonality of the Efron-Stein decomposition

Lemma 2.1.4. Let f ∈ L2(Ωn, π⊗n) and let K,L ⊆ [n]. then

E[E[f | FL] | FK ] = E[f | FL∩K ]

Proof. Rewriting the conditional expectations as integral and using Fubini’s Theorem∫
XKc

(∫
XLc

f(XL, xLcdxLc)

)
dxKc =

∫
XKc∪Lc

f(XL∩K , xKc∪Lc)dxKc∪Lc .
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Theorem 2.1.5 (Efron-Stein decomposition, 1981). For f ∈ L2(Ωn, π⊗n), there is a
unique decomposition

f =
∑
S⊆[n]

f=S ,

where f=S is a function that depends only on the coordinates in S, and (f=S, f=T ) = 0
whenever S 6= T .

Proof. Our proof follows the ideas from [OD14].
Notice first that assuming such a decomposition exists, then much like in the case of

the hypercube,

E[f | FT ] =
∑
S⊆T

f=S.

Indeed, since E[f | FT ] only depends on coordinates in T , for every S 6⊆ T we expect
that E[f | FT ]=S = 0. Therefore using the (assumed) orthogonality (f,E[f | FT ]) =∑

L⊆T (f=L,E[f | FT ]=L) and since E[f | FT ] maximizes (f, g) among all g FT -measurable

functions, we have f=L = E[f | FT ]=L for every L ⊆ T .
This means that we can reconstruct the functions f=S via a Moebius inversion (in

this case, an exclusion-inclusion principle) from the conditional expectations:

f=S =
∑
L⊆S

(−1)S−LE[f | FL].

It is obvious from the construction that f=T only depends on coordinates in T . So what
is left to show is that f=T and f=S are orthogonal, if they are not equal. First we show
that if g is FT -measurable and S \ T 6= ∅ then f=T and g are orthogonal. We can pick
an i ∈ S \ T and write the above inner product as

E[gf=S] =
∑

L⊆S\{i}

(−1)S−LE[gE[f | FL]]− E[gE[f | FL∪{i}]]

using that (−1)S−L and (−1)S−L∪{i} has opposite signs. Conditioning on T and after on
L before taking the expectation and applying Lemma 2.1.4 twice gives that

E[gE[f | FL]] = E[E[g | FT∩L]E[f | FT∩L]] =

E[E[g | FT∩(L∪{i})]E[f | FT∩(L∪{i})]] = E[gE[f | FL∪{i}]].

We used that T ∩ (L∪{i}) = T ∩L, since i /∈ L and i /∈ T . This shows that E[gf=S] = 0.
From this to E[f=Tf=S] and switching the roles, it follows E[f=Tf=S] = 0 if either
S \ T 6= ∅ or T \ S 6= ∅ which is equivalent to T 6= S.

Observe that this is indeed a generalization of the Fourier-Walsh transform, with
f=S = f̂(S)χS. What is important for our purpose is that we can again define a Spectral

Sample P[S = S] := ‖f=S‖2
‖f‖2 for every square-integrable function, as in the case of the

hypercube and thus Theorem 2.1.1 generalizes for product measures.

Theorem 2.1.6 (Small Clue Theorem for Product Spaces). Let f ∈ L2(Ωn, π⊗n) and
suppose that there is a G ≤ Sn acting on the n copies of Ω transitively. Suppose f is
invariant under the action of G. If U ⊆ [n] then

clue(f | U) ≤ |U |
n
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2.2. SPARSE RECONSTRUCTION AND MUTUAL INFORMATION 23

The proof is exactly the same as for Theorem 2.1.1, the only difference being that
we need to use the Efron-Stein decomposition instead of the Fourier-Walsh transform to
build the Spectral Sample.

2.2 Sparse Reconstruction and Mutual Information

Our setup remains the same, but we formulate it in a somewhat different way. Let
{Xv : v ∈ V } be a set of real-valued discrete random variables defined in a common
probability space. Let G be a group acting on V transitively and we assume that the
joint distribution of {Xv : v ∈ V } is invariant under the group action. We introduce the
following notation for a S ⊆ V we have XS = {Xj : j ∈ S} and as before FS denotes the
σ–algebra generated by XS. The variables Xv : v ∈ V obviously playing the role of the
coordinates. Let f : RV 7→ R and let Z = f(XV ). In this section we are going to discuss
an alternative way of measuring the amount of information a subset S ⊆ V of coordinates
contains about the function f . In the sequel we use concepts from information theory
and define an information-theoretic clue accordingly.

Our main interest is still the special case where the variables Xv and Z are ±1-valued
variables (spins) (the case f : {−1, 1}V → {−1, 1}), but all the argument we present here
work in this slightly more general framework.

For a (possibly vector valued) random variable (or a probability distribution) entropy
measures the amount of randomness or information.

Definition 2.2.1 (Entropy). Let X be a random variable. Then the entropy of X is

H(X) = −
∑

x∈Ran(X)

P[X = x] logP[X = x]

We will also need the concept of conditional entropy. The entropy of X conditioned
on the random variable Y expresses how much randomness remains in X on average if
we learn the value of Y .

Definition 2.2.2 (Conditional Entropy). The conditional entropy of X given Y is

H(X|Y ) = E[H(X)|Y ]

The mutual information quantifies the common information present in two variables.
In a way it measures how far the joint distribution of the two variables is from being
independent.

Definition 2.2.3 (Mutual Information). Suppose that H(X) and H(Y ) are both finite
then the mutual information between X and Y is:

I(X : Y ) = H(X) +H(Y )−H(X, Y ) = H(X)−H(X|Y ) (2.2.1)

Now the definition of clue in this framework:

Definition 2.2.4 (I-Clue). Let f : Ωn 7→ R and Z = f(XV ). The information theoretic
clue (I-clue) of f with respect to U ⊆ [n] is

clueI(f | U) =
I(Z : XU)

H(Z)
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Note that if Z is XU -measurable then H(Z|XU) = 0 and therefore I(Z : XU) = H(Z),
while if Z is independent from XU then I(Z : X) = 0, in accordance with what we expect
from a clue type notion. Now we are ready to prove an equivalent of Theorem 2.1.6 for
the I-clue. The following Theorem, however, as well as the definition of I-Clue only works
well in the discrete case, as the continuous counterpart of entropy, differential entropy
has some drawbacks (for example, it can be negative).

Theorem 2.2.1. Let {Xv : v ∈ V } be discrete valued, i.i.d, random variables with finite
entropy. Let f : Ωn 7→ R be a transitive function and Z = f({Xv : v ∈ V }). Then

clueI(f | U) ≤ |U |
n

(2.2.2)

For the proof we will use the following well-known inequality which finds numerous
applications in combinatorics. For a proof see [Ga12].

Theorem 2.2.2 (Shearer’s inequality). Let X1, X2, . . . Xn random variables defined on
the same probability space. Let S1, S2 . . . , SL subsets of [n] such that for every i ∈ [n]
there are at least k among S1, S2 . . . , SL containing i. Then

kH(X[n]) ≤
L∑
l=1

H(XSl),

First we need the following consequence of Shearer’s inequality.

Lemma 2.2.3. Suppose X1, X2, . . . Xn are independent. Let S1, . . . SL be a system of
subsets of [n] such that each i ∈ [n] appears in at most k sets. Then

L∑
j

I(Z : XSj) ≤ kI(Z : X[n]) (2.2.3)

Proof. Without loss of generality we can assume that each i appears in exactly k sets.
Indeed the right hand side does not change and the left hand side can only increase by
this.

Since the variables Xi are independent:

L∑
j

H(XSj) =
∑
j

∑
i∈Sj

H(Xi) = k
∑
i∈[n]

H(Xi) = kH(X[n]) (2.2.4)

On the other hand, using Shearer’s inequality

−
L∑
j

H(XSj |Z) ≤ −kH(X[n]|Z) (2.2.5)

Using that I(Z : XSj) = H(XSj) − H(XSj |Z) and adding up 2.2.4 and 2.2.5 completes
the proof.

Now the proof of the clue-theorem:
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2.2. SPARSE RECONSTRUCTION AND MUTUAL INFORMATION 25

Proof. Recall that G acts transitively on V . We assume that both the product measure
µ and the function f are G-invariant. Let U ⊆ V arbitrary. then for each g ∈ G

I(Z : XU) = I(Z : XUg)

where U g = {ug : g ∈ G}.
Observe that v ∈ U g ⇐⇒ vg−1 ∈ U ⇐⇒ u = vg−1. For each pair of v ∈ V and u ∈ U
there are |Gv| such g, where Gv is the stabilizer subgroup of G with respect to v. (Since
the action is transitive such a g exists, moreover the cardinality of the stabilizer subgroup
Gv is the same for every v ∈ V .) The conclusion is that each v ∈ V appears in exactly
|U ||Gi| translated version of U . Applying Lemma 2.2.3 gives

|G|I(Z : XU) =
∑
g∈G

I(Z : XUg) ≤ |U ||Gv|I(Z : XV ) = H(Z)

which is what we wanted since |G| = n|Gv| by the orbit-stabilizer theorem.

The concept of clue and I-clue are close to each other as long as the variables Zn
are non-degenerate, in the sense that the variables Zn are uniformly bounded and its
variance is Ω(1). This follows from Proposition 3.1.7. So in the non-degenerate case,
Theorem 2.1.6 and Theorem 2.2.1 are equivalent. In full generality, however we cannot
say anything. In light of this, it is remarkable that we have the exact same bound (at
least in the case product measures) for the clue and I-clue.

2.2.1 Measuring clue via Relative Entropy

The Kullback-Liebler(KL) divergence or relative entropy between probability measures µ
and ν on the same probability space is a way of measuring distance between two measures.

Definition 2.2.5 (Relative entropy). Let ν and µ measures on the same probability
space, where ν � µ. the relative entropy between ν and µ is

D(νU ||µU) = −
∑
x

µ(x) log
µ(x)

ν(x)

Observe that although it means to express a concept of distance between two distri-
butions, the relative entropy is not a metric. In particular D(νU ||µU) 6= D(µU ||νU)

Let us consider again a product space generated by respective random variables
{Xv : v ∈ V }. For convenience let us assume that the random variables are discrete.
A measurable random variable with respect to XV induces an absolutely continuous
probability measure and a respective Radon-Nikodym derivative.

On the other hand every φ : {−1, 1}n 7→ [0,∞] with E[φ] > 0 can be interpreted as a
density, and can be used to define another measure on the same space by

ν(ω) :=
1

E[φ]
φ(ω)µ(ω)

If XV is distributed according to µ and a U ⊆ V we denote by µU the projection of µ
onto XU .

If D(νU ||µU) expresses the total ’information distance’ between µ and ν, we can
interpret the quantity D(νU ||µU) as the ’information distance’ restricted to the respective
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subset of coordinates. Like this we may introduce another possible clue measure as
follows:

clueKL(f | U) :=
D(νU ||µU)

D(νU ||µU)

We can observe that
D(ν||µ) = Ent(φ)

where Ent(φ) := E[φ log φ]− E[φ] logE[φ].
The reason why it worth mentioning this concept is that the respective version of

Theorem 2.1.6 and Theorem 2.2.1 is true for clueKL. Moreover, in contrast with mutual
information, relative entropy is a concept that remains meaningful for continuous random
variables as well. Indeed, the following Shearer-type inequality holds:

Lemma 2.2.4. Let µ be a product measure on the hypercube (in fact, any product measure
will do) and and ν another measure on the same space satisfying ν � µ.

Let S1, . . . SL be a system of subsets of V such that each i ∈ V appears in at most k
sets. Then

L∑
j

D(νSi ||µSi ≤ kD(ν||µ)

The proof of this Lemma is also a simple consequence of Shearer’s inequality (Theorem
2.2.2), for a proof see [Ga12]. The corresponding clue theorem follows in the same way
as Lemma 2.2.3 implies Theorem 2.2.1.

2.3 Sparse Reconstruction and Cooperative Game

Theory

The field of cooperative game theory starts with the following setup: There is a set of
players which we denote by V here (to be consistent) and the game is defined by assigning
a positive real number v(S) to every subset S of the players. Usually it is assumed that
v(∅) = 0. The function v : 2V −→ R is referred to as the characteristic function. This
aims to model a situation where individuals can gain profit, but the profit may change
(typically increases) in case certain individuals cooperate and form a coalition. Thus v(S)
is the common payoff of the individuals in S provided that they cooperate.

Cooperative game theory is mostly concerned with finding some sort of fair distribu-
tion of the payoff given the characteristic function v. One of these concepts is the Shapley
value, which aims to distribute the payoff based on the average marginal contribution of
the individuals.

Definition 2.3.1 (Shapley value).

φi(v) =
1

|V |
∑

S⊆V \{i}

v(S ∪ {i})− v(S)(|V |−1
|S|

) (2.3.1)

Observe that for a given f : {−1, 1}V −→ {−1, 1} we can define a cooperative game
via vf (U) := Var[E[f | FU ]] for any U ⊆ V . Besides fitting the mathematical definition, it
also fits into the interpretation of the Theory. It is a sort of information game, where the
payoff (we can interpret it as an expected gain or profit) depends on how accurately we
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2.3. SPARSE RECONSTRUCTION AND COOPERATIVE GAME THEORY 27

know a piece of information (represented by the value of the function). Each individual
possesses one piece of information (the value of the corresponding coordinate) but only
together they determine the valuable piece of information.

In the proof of Theorem 2.1.1 we introduced the random element X of the index set,
which is a uniformly random element of the Spectral Sample. In fact, X is distributed
according to the Shapley value.

Proposition 2.3.1. Let f : {−1, 1}V −→ R. Then

φi(vf )

vf (V )
= P[X = i]

Proof. Without loss of generality we may assume that Var(f) = 1. Let n = —V—. First,
observe that

P[X = u] =
∑
u∈S

f̂(S)2 1

S

Now we calculate φi(vf ) via Fourier-Walsh expansion and show that it equals to P[X = u].

Using that vf (S) =
∑

T⊆S f̂(T )2 we get that

φi(v) =
1

n

∑
S⊆V \{i}

∑
T⊆S f̂(T ∪ {i})2(

n−1
|S|

) =
1

n

∑
T⊆V \{i}

f̂(T ∪ {i})2
∑

S⊆[n]\{i}:T⊆S

1(
n−1
|S|

)
For a fixed T there is

(
n−1−|T |
k−|T |

)
k-element subset S which contains T . Therefore we have

φi(v) =
1

n

∑
T⊆V \{i}

f̂(T ∪ {i})2

n−1∑
k=|T |

(
n−1−|T |
k−|T |

)(
n−1
k

)
With some elementary manipulation of the binomial coefficients we get that(

n−1−|T |
k−|T |

)(
n−1
k

) =

(
k
|T |

)(
n−1
|T |

)
and using that by the Hockey-stick identity (

∑n−1
k=|T |

(
k
|T |

)
=
(

n
|T |+1

)
), we get the desired

formula.

Remark 2.3.2. The Shapley value has a more analytic interpretation as well in the Boolean
analysis framework.

The stability of f at level p is

Stabf (p) :=
∑
S⊆En

f̂(S)p|S|

Stability has two interpretations. First, this quantity measures the noise stability of f .
If f is defined on the p-correlated bit sets x and y than Stabf (p) = E[f(x)f(y)]. On the
other hand, it is also the expected clue of a Bernoulli random set of coordinates Bp of
density p: Stabf (p) = E[clue(f | Bp)].

Stability can be generalized as a polynomial of |V | variables. Than the quantity

Stabf (p) =
∑
S⊆V

f̂(S) ()i ∈ Spi
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Can be interpreted as the expected clue of a random subset where the bit i is selected
with probability pi, independently from other bits.

Denote by p the vector with all of its coordinates is equal to p. An easy calculation
shows that ∫ 1

0

∂Stabf (p)

∂pu
dp =

∑
u∈S

f̂(S)2 1

S
= P[X = u]

This can be understood as the average increase in clue over all p values, induced by a
small increase in the probability of selecting u into the random set.

Given how naturally the Shapley value shows up in the proof of Theorem 2.1.1 it is
perhaps not surprising that there is proof that does not use Fourier-Walsh transform,
only simple concepts from Cooperative Theory and Combinatorics. The advantage of
this approach is that it makes it more clear what are the conditions under which a small
clue Theorem can be true. It should be also noted that this approach entails both the L2

and the entropy version of the Theorem.

We introduce another concept of fair distribution which is related to our topic. the
core defines those distributions of the profit in which every coalition of players gets in
total at least as much as they deserve (according to the characteristic function).

Definition 2.3.2 (Core). The core of a Cooperative game V is C(v) ⊆ R|V | in such a
way that x ∈ C(v) if and only if ∑

i∈V

xv = v(V )

and for every S ⊂ V ∑
i∈S

xi ≥ v(S)

We have the following simple observation.

Proposition 2.3.3. Let v be a transitive game. If the Shapley value vector φ(v) is in the
core C(v) then for every S ⊆ V

v(S) ≤ |S|
|V |

v(V )

Proof. For transitive games, obviously φi(v) = v(V )
|V | . Using that φ(v) ∈ C(v), we get that

v(S) ≤
∑
i∈S

φi(v) =
|S|
|V |

v(V )

We are going to show that a class of cooperative games, the so-called convex games
satisfy the conditions of Proposition 2.3.3.

Definition 2.3.3 (Convex games). A cooperative game v is convex if the characteristic
function is supermodular. That is for every subset of players S, T ⊆ [n]

v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ) (2.3.2)
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Recall that with any function f on a product space we can associate a game vf by
vf (U) := Var[E[f | FU ]]. We have another game if we define the information we gain via
information theoretic concepts (see Definition 2.2.4) .

vIf (S) = I(Z : XS)

It is not difficult to see that for product measures, both vf and vIf are convex games.
The entropy version is immediate from the submodularity of entropy, which can be written
as:

−H(XS|Z)−H(XT |Z) ≤ −H(XS∩T |Z)−H(XS∪T |Z)

Using that for independent variables the submodularity inequality is sharp we get

H(XS)−H(XS|Z) +H(XT )−H(XT |Z) ≤
H(XS∩T )−H(XS∩T |Z) +H(XS∪T )−H(XS∪T |Z).

For the L2 version the supermodularity of Var(E[f | FU ]) follows easily from the spec-
tral description. Here we show an argument that does not require Fourier-Walsh expan-
sion or Efron-Stein decomposition.

Proposition 2.3.4. Let f : XV −→ {−1, 1} endowed with a product measure. The set
function (cooperative game) v(S) = Var(E[f | FU ]) for (S ⊆ V ) is supermodular (convex).

Proof. First observe that whenever S ⊆ T then E[E[f | FT ] | FS] = E[f | FS] by the
towering property, and using that conditional expectation is an orthogonal projection we
get that

Var(E[f | FT ])− Var(E[f | FS]) = Var(E[f | FT ]− E[f | FS]),

and therefore (2.3.2) can be rewritten as

Var(E[f | FT ]− E[f | FS∩T ]) ≤ Var(E[f | FS∪T ]− E[f | FS]). (2.3.3)

Fix S, T ⊆ V such that S ⊆ T . Using Lemma 2.1.4 for (T \ S)c and T we get

E[f | FS] = E[E[f | F(T\S)c ] | FT ].

Note that this is the only place in the argument where the fact that the underlying
measure is a product measure is exploited.

This identity allows us to write E[f | FS∩T ] = E[E[f | F(T\S∩T )c ] | FT ] and E[f | FS] =
E[E[f | F(S∪T\S)c ] | FS∪T ]. Since T \ S ∩ T = S ∪ T \ S = T \ S, (2.3.3) becomes

Var(E[f − E[f | F(T\S)c ] | FT ]) ≤ Var(E[f − E[f | F(T\S)c ] | FS∪T ]),

which always holds, because orthogonal projection cannot increase the variance (L2-
norm).

The subgame vU denotes the game v with its domain restricted to the subset U ⊆ [n].

Lemma 2.3.5. If v is convex and transitive game then S ⊆ T implies

φi(vS) ≤ φi(vT )
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Proof. We are going to show this when T = S ∪ {j}. Let |S| = k We have

φi(vS) =
1

k

∑
L⊆S\{i}

v(L ∪ {i})− v(L)(
k−1
|L|

) ≤ 1

k + 1

∑
L⊆T\{i}

v(L ∪ {i})− v(L)(
k
|L|

)
and

φi(vT ) =
1

k + 1

 ∑
L⊆S\{i}

v(L ∪ {i})− v(L)(
k
|L|

) +
∑

L⊆S\{i}

v(L ∪ {i, j})− v(L ∪ {j})(
k
|L|+1

)


It is a straightforward calculation to verify that for any l ≤ k

1

k

1(
k−1
l

) =
1

k + 1
(

1(
k
l

) +
1(
k
l+1

))

and therefore, using that by supermodularity, v(L∪{i})−v(L) ≤ v(L∪{i, j})−v(L∪{j}),
we get

φi(vS) =
1

k + 1

 ∑
L⊆S\{i}

v(L ∪ {i})− v(L)(
k
|L|

) +
∑

L⊆S\{i}

v(L ∪ {i})− v(L)(
k
|L|+1

)
 ≤ φi(vS∪{j})

Lemma 2.3.5 implies that for any S ⊂ V

v(S) =
∑
i∈S

φi(vS) ≤
∑
i∈U

φi(v)

which shows that φ(v) is indeed in the core. It is clear that Theorem 2.1.6 and Theorem
2.2.1 follows immediately from Proposition 2.3.3 and Lemma 2.3.5.

Observe that for a transitive game with a non-empty core the Shapley value, i.e.
the uniform vector will always be in the core. It is because the core is convex and
itself is invariant under the group action. Therefore, one could weaken the condition of
Proposition 2.3.3 by only requiring the non-emptiness of the core. A classical result in
Cooperative Game Theory (see for example [BDT08] Theorem 2.4) gives necessary and
sufficient conditions for this. It has to be said that on a practical level, the conditions of
this Theorem are not very easy to verify.

Theorem 2.3.6 (Bondareva-Shapley). The core of the game v is non-empty if and only
if for every α : 2V \ ∅ → [0, 1] such that for every i ∈ V∑

S⊆V : i∈S

α(S) = 1

it holds that ∑
S⊆V

α(S)v(S) ≤ v(V )
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2.4 Sparse Reconstruction for Planar Percolation

2.4.1 A Brief Introduction to Percolation Theory

Graph percolation theory arose historically in statistical mechanics in the 60s. The moti-
vation was to understand the percolation of some liquid in a porous body. This is modeled
by a random graph whose vertices, called sites, correspond to points in the body and the
edges represent possible links between sites. Percolation theory aims at understanding
some distributional properties of the connected components (referred to as clusters) in
the above random graph.

There are a number of possible models depending on the randomization procedure.
Here our focus is the most straightforward model, Bernoulli edge percolation. In this
model each edge is open (meaning that the liquid can flow), independently from the
status of any other edge. Edge percolation refers to the fact that the 0 − 1 random
variables that decide whether locally the fluid can pass, are assigned to edges contrary
to site percolation, where they are assigned to the vertices of the graph.

As we want to have an automorphism invariant model we require that each edge of
the graph has the same probability p to be open. In case the graph is infinite, it is a
question of particular interest whether for a particular value of p the graph contains an
infinite cluster or not. This is a tail event, consequently for any value of p either there
is or there is not such a cluster, almost surely. A simple coupling argument shows that
by increasing p we can only introduce an infinite cluster. It has been shown accordingly
that any infinite connected graph admits a critical value pc:

Definition 2.4.1 (Critical Probability). pc = inf {p : Pp(∃ ∞ cluster) = 1}

It tuns out that the critical model in many graphs displays interesting, fractal-like
features. There is a universality principle coming from statistical physics which connects
the behaviour of various graph models around phase transition. The idea is that, although
the low level description of models may differ, ultimately they all describe the same high-
level phenomenon. Physicists believe that any graph percolation that comes from a nice
d-dimensional lattice describes the same ’ideal’ d-dimensional percolation at the critical
probability pc, only in possibly different frames.

This principle suggests the existence of so-called critical exponents, which describe
the probability of important observables of the percolation at the phase transition (i.e.
at p = pc) via universal power laws. For example, although the value of pc may vary
from graph to graph, the Hausdorff dimension of the connectivity clusters at criticality is
believed to be the same. Physicists can calculate the value of these exponents and they
believe that these values are universal in the sense above. Nevertheless, from the point
of view of the mathematician, little is actually known.

In this chapter we consider Bernoulli edge percolation on the n×n square lattice with
p = 1/2. Our main focus will be the left right crossing event LRn. This is the event that
there exist to vertices x from the left boundary of the square and y from the right in such
a way that there is a path consisting of open edges between x and y.

It is not too difficult to show that when p = 1
2

then P[LRn] tends to 1
2

as n → ∞.
Every percolation configuration on a square (or, in fact, any planar) lattice induces a
percolation configuration on the dual lattice. In the dual lattice the sites are faces and
two faces are connected in configuration if the two faces are bordered with an edge which
is closed in the original percolation.
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The proof uses two observations. First, that n − 1 × n rectangles are self dual and
second that there is a left-right crossing in the original configuration if and only if there
is an up-down crossing in the dual configuration. In the sequel, we shall also make use
of this rotational symmetry of the percolation model.

This suggests that the critical probability for Z2 is pc = 1
2
. This is indeed the case,

but it is far from trivial to prove this. It has to be noted that in case p < 1
2
(p > 1

2
) the

probability of LRn goes to 0(1) exponentially fast.

Critical planar percolation has been more extensively studied, and there has been
some important developments in the last few decades. The main breakthrough was by
Smirnov [Sm01], who showed that in the case of the triangular lattice the universality
conjecture of the physicists holds, in particular the value of the critical exponent is as
predicted. For the square lattice, however (and for any planar lattice) no similar result
has been proved.

Arm exponents

There is a family of critical exponents that we would like to highlight since it plays an
important part in the sequel.

The 1-arm event on Z2) (we only consider this lattice, but the arm events can be
defined for any transitive planar lattice ) A1(R) is the event that there is a path of
open edges from 0 to a site (vertex) which is at graph distance R away from the origin.
The event A1(R, r) is the event that there is path of open edges starting somewhere in
distance at most r from 0 and ending at a site which is at distance R from the origin.
It is conjectured based on the above universality principle that in any reasonable lattice
(on Z2, in particular)

α1(R, r) := P[A1(R)] �
( r
R

) 5
48

+o(1)

.

This was, in fact proven for site percolation on the triangular lattice in []. Up until today
this is the only lattice where this exponent is verified.

There are other arm events that are of interest, for example the four arm event, which
is closely related to the pivotals of the crossing event LRn. In case of the four arm event
we also require that every second arm needs to go trough dual edges. That is, two arms
of open paths is separated by two dual arms on each side.

In our proof we are going to use another event, the 3-arm event in a half plane which
we denote by A+

3 (R, r). This is the event that there are two paths of open edges in
the positive half plane Z × N starting at distance r from the origin and reaching until
distance R, and the two open arms are separated with a similar arm consisting of dual
edges (which is also entirely in the half plane Z× N ).

It turns out that the exponent of A+
3 (R, r) is known for Z2. There is a combinatorial

argument that does not rely on the universality conjecture. The heuristics is, strange as
it may seem, that fractional arm exponents are hard, while integer arm exponents are
approachable.

Proposition 2.4.1 ([LSW02]). For the Z2 lattice

P[A+
3 (R, r)] = α+

3 (R, r) �
( r
R

)2+o(1)

.
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2.4.2 Sparse Reconstruction for Planar Percolation

In this section we are going to show that the left-right crossing event in critical planar
percolation cannot be reconstructed from a sparse subset of spins, by this answering a
question posed by Itai Benjamini. Note first that we can use the frame work of Boolean
functions, since a percolation configuration can be described as an element in {−1, 1}E,
where E is the edge set of the graph. We shall denote by LRn : {−1, 1}E(Z2

n) −→ {−1, 1}
the indicator function of the planar crossing event. More precisely, LR(ω) is 1 if there is
a left-right crossing of 1s in ω and -1 otherwise.

Theorem 2.1.1, however, does not apply for this question, since the left-right crossing
is not a transitive event. Still we shall make use of the results of the previous section.
We argue that the left-right crossing event is in fact not too far from being transitive.

Here is a brief summary of what we are going to do: Let us denote by LR the character-
istic function of the left-right crossing. We will show that for every ε there is a sublattice
(subgroup) Hε ⊆ Z2

n whose size only depends on ε and MHε [LRn], the projection of LRn
into the space of Hε-invariant functions, is close to a transitive function (in the sense that
Corr(LRHε , g) ≥ 1−O(ε) for some transitive function g). This g is in fact the projection
of LRn to the space of Z2

n-invariant functions. As we shall see, in case two functions are
highly correlated there clue with respect to a particular subset is also close.

Now if the crossing event LRn had uniformly positive clue with respect to some se-
quence of subsets Un, the projection MHε [LRn] would also have high clue with respect to
the union of the original subset Un and its Hε-translates, which is still small since ε is
fixed.

But this is impossible because then in turn the transitive function g being highly
correlated with MHε [LRn] would also have had uniformly positive clue with respect to a
sparse sequence of subsets which is contradiction with Theorem 2.1.1.

While this question has not been investigated in this general form, in [GPS10] there
have already been a number of partial results. concerning the information content of
some particular sparse subsets. Based on a deep analysis of the Fourier spectrum of the
percolation crossing event upper bounds for the clue of some particular sequences of small
subsets of bits has been established.

Here are a few examples of these sort of results from [GPS10]. If U c
n is a random set

of bits of density n−
3
4

+ε, than clue(Un)→ 0. Also, it is known that if every disk of radius

n
3
8
−ε contains a bit from U c

n, then clue(Un) → 0. On the other hand, if U c
n has a scaling

limit of Hausdorff-dimension strictly less than 5
4
, then clue(Un)→ 1.

It is also known that there is a revealment algorithm for the crossing event of the
percolation (on the triangular lattice) with revealment δ ∼ n−

1
4 ([SS10]). This, in partic-

ular, implies that any sequence of sets Sn of size o(n
1
4 ) is asymptotically clueless, since

denoting the random set of queried bits by Jn, we have:

E|Sn ∩ Jn| =
∑
i∈Sn

P[i ∈ Jn] ≤
∑
i∈Sn

δ ∼ |Sn|n−
1
4 → 0

whenever |Sn| = o(n
1
4 ). It is clear that if Sn is asymptotically disjoint from Jn, it cannot

admit a large clue.
We now turn to the proof. Since our proof uses the fact that, roughly speaking the

percolation crossing event is almost transitive, we need to define the projection operation
that sends a function to the space of functions that are invariant under some specific
group action.
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In case we have a group G acting on E we shall also consider an invariant (Haar)
probability measure on G. As we are in a finite setting this will be simply the uniform
measure on a finite group G.

The space of Boolean functions over a given configuration space {−1, 1}E and a cor-
responding probability measure (the uniform measure in this case) can be endowed with
a Hilbert space structure via the scalar product 〈f, g〉 := E[fg]. There is a natural oper-
ation that turns an arbitrary function f into a G-invariant function on the same space:

MG[f ] :=
1

|G|
∑
g∈G

f g (2.4.1)

In case the action of G is transitive than, of course, Theorem 2.1.1 applies for MG[f ].
We will now show that the operator MG is the orthogonal projection onto the subspace
of G-invariant functions. First, it is obvious that MG[f ] = f whenever g is G-invariant.

For any g ∈ G ∑
h∈G

E
[
f(x)fh(x)

]
=
∑
h∈G

E
[
f g(x)fh(x)

]
(2.4.2)

using that by the G-invariance of the measure E
[
f(x)fh(x)

]
= E

[
f g1(x)fhg1(x)

]
, which

allows us to write

E[MG[f ]2] =
1

|G|2
∑
g∈G

∑
h∈G

E
[
f g(x)fh(x)

]
=

1

|G|
∑
g∈G

E [f g(x)f(x)] = E
[
MG[f ]f

]
,

where we used 2.4.2. Therefore, we can conclude that

E
[
(f −MG[f ])MG[f ]

]
= 0,

which shows that MG is a projection operator.
The sum

S(f) =
∑
g∈G

E[ff g]

is called the susceptibility of f and we will discuss it in more detail in Section 3.1.3. It is
clear from the above that for any f : {−1, 1}V −→ R

E[MG[f ]2] =
1

|G|
S(f) (2.4.3)

In the same way as above by theG-invariance of the measure Cov(f g1 , f g2) = Cov(f, f g2−g1)
and therefore

Var(MG[f ]) =
1

|G|2
∑
g∈G

∑
h∈G

Cov(f g, fh) =
1

|G|
∑
g∈G

Cov(f, f g) (2.4.4)

The following two simple technical lemmas will be useful to estimate how much a
projection can distort correlations. The geometrical intuition is that in case the correla-
tion of two functions is high and the projection is not too ’radical’ (meaning here that
it does not decrease the norm drastically), then the correlation will be preserved by the
projection. Note that these results are completely general, we do not make use of the
fact that there is an underlying product measure.
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Lemma 2.4.2. Let f, g ∈ L2(S, µ) satisfying

Corr(f, g) ≥ 1− ε.

Let U be a subspace of L2(S, µ) and let us denote by P the orthogonal projection onto this
subspace. Assume that

clue(f | U) ≥ c, and clue(g | U) ≥ c.

Then
Corr(P [f ], P [g]) ≥ 1− ε

c
.

Proof. Without loss of generality we may assume that E[f ] = E[g] = 0 and Var(f) =
Var(g) = 1, since both clue and correlation are invariant under linear transformations.
As in this case they are equivalent, we may use ‖ ‖2 instead of the variance, depending
on the context.

Using that the the variance of f and g are equal, we get

‖f − g‖2 =Var(f) + Var(g)− 2
√

Var(f)Var(g)Corr(f, g) =

2(1− Corr(f, g)) ≤ 2ε,

In a similar fashion, we get for the projected functions that

‖P [f ]− P [g]‖2 =√
Var(P [f ])Var(P [g])

(
Var(P [f ])

Var(P [g])
+

Var(P [g])

Var(P [f ])
− 2Corr(P [f ], P [g])

)
Now noting that √

Var(P [f ])Var(P [g]) ≥ c

and
Var(P [f ])

Var(P [g])
+

Var(P [g])

Var(P [f ])
≥ 2,

we obtain that
‖P [f ]− P [g]‖2 ≥ 2c(1− Corr(P [f ], P [g])).

Since P is a projection it can only decrease the L2 norm and therefore:

‖f − g‖2 ≥ ‖P [f ]− P [g]‖2.

Finally, putting together estimates for ‖f − g‖2 and ‖P [f ]− P [g]‖2 we conclude that

2ε ≥ ‖f − g‖2 ≥ ‖P [f ]− P [g]‖2 ≥ 2c(1− Corr(P [f ], P [g]).

After reordering the inequality the statement follows.

Lemma 2.4.3. Let f, g ∈ L2(S, µ) with

Corr(f, g) ≥ 1− ε.

Let P denote the orthogonal projection onto the subspace U of L2(S, µ) and suppose that

clue(f | U) ≥ c.

Under these conditions
Corr(P [f ], P [g]) ≥ 1− ε

c− 2ε
and

clue(g | U) ≥ c− 2ε.
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Proof. Again, without loss of generality we may assume that E[f ] = E[g] = 0 and
Var(f) = Var(g) = 1 and therefore we may use ‖ ‖2 instead of variance, like previ-
ously.

Using that P [f ] is the closest point to f in U for every h ∈ U

‖f − P [f ]‖2 ≤ ‖f − h‖2.

Therefore with the triangle inequality we get

‖g − P [g]‖2 ≤ ‖g − P [f ]‖2 ≤ ‖g − f‖2 + ‖f − P [f ]‖2. (2.4.5)

Recall that, since P is an orthogonal projection for every f ∈ L2(S, µ) we have

‖P [f ]‖2 + ‖f − P [f ]‖2 = ‖f‖2 (2.4.6)

As in Lemma 2.4.2 Corr(f, g) ≥ 1− ε implies ‖g − f‖2 ≤ 2ε.
On the other hand, by our assumptions

clue(f | U) =
‖P [f ]‖2

‖f‖2
= ‖P [f ]‖2 ≥ c

and (2.4.6) shows that ‖f − P [f ]‖2 ≤ 1 − c. Therefore plugging in the estimates into
(2.4.5) we can write (using that dividing by ‖g‖2 = 1 does not change the equation)

‖g − P [g]‖2

‖g‖2
≤ 2ε+ (1− c).

Using (2.4.6) again, we get

1− clue(g | U) ≤ 2ε+ 1− c

from which clue(g | U) ≥ (c− 2ε) is immediate.
We can apply Lemma 2.4.2 to get that Corr(P [f ], |P [g]) ≥ 1− ε

c−2ε

In the sequel Dδ will denote the rectangle [−δn, δn]2 ⊂ Z2
n. Obviously |Hδ| = 1

δ2
and

|Dδ| = (δn)2.

Lemma 2.4.4. Let Dδ := [−δn, δn]2 as above. Then there is a K > 0 such that for every
d1, d2 ∈ Dδ

Corr(LRd1 , LRd2) ≥ 1−Kδ

Proof. Let d =∈ Dδ. We are going to show that

P[LR0 6= LRt] ≤ O(δ).

From this the statement of the lemma follows. Indeed, for any d1, d2 ∈ Dδ

Corr(LRd1 , LRd2) = 1− 2P[LRd1 6= LRd2 ] = 1− 2P[LR 6= LRd] ≥ 1−O(δ).

Let us assume that d = (0, t). Observe (see Figure ??) that in both cases the event{
LR0 6= LRd

}
entails a 3-arm event in a half plane from radius O(δ) to distance O(1).

As the grid size approaches to zero, the probability of the 3-arm event is in quadratic
order by Proposition 2.4.1:

α+
3 (δ, 1) = O(δ2)
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The 3-arm event happens in one of O(1
δ
) different δ × δ boxes, so by the union bound

P[LR0 6= LRt] ≤ α+
3 (δ, 1)O(

1

δ
) = O(δ)

In case d = (t, 0) we have exactly the same argument exploiting the π/2 rotational
symmetry of the model (switching to the dual lattice and using that LRn does not happen
if and only if there is a dual up-down crossing.

The case of a general d ∈ Dδ now easily follows. If
{
LR0 6= LRt

}
then either

{
LR0 6= LRd

1
}

or
{
LR0 6= LRd

2
}

, where d1 and d2 are the projections of d onto the first and the second

coordinates, respectively.
As a consequence, P[LR0 6= LRd] ≤ P[LR0 6= LRd

1

] + P[LR0 6= LRd
2

] ≤ O(δ).

In the sequel we will use the functionMZ2
n [LR], which is obviously a transitive function,

as Z2
n acts transitively on the coordinates.

We shall also consider projections to a coarser grid of mesh size δ. The subgroup Hδ

is the group generated by the two perpendicular elements (0, δn) and (δn, 0)

Lemma 2.4.5. Let ε > 0. Then there is a K > 0 such that

Corr(MZ2
n [LR],MHε2 [LR]) ≥ 1−Kε.

Proof. We consider a new spin system σ on the Z2
n torus which is a factor of the uniform

Bernoulli percolation on the edges. At every vertex v ∈ Z2
n σv = LRv.

The outline of the proof is as follows: First we observe that for a randomly chosen
δn×δn square the value of σ is the same on the four vertices of the square, with probability
1−O(δ). For a fixed configuration we call a square on the δn-grid good if this is the case,
bad otherwise.

The second step is to show that the event that there exist a point t inside a good
square such that σt differs from the value of σ on the vertices of the square also happens
with probability at most 1 − O(δ). These two claims together suffice to show that the
average on the 1

ε2
grid already gives a good approximation about the average on the entire

torus Z2
n.

Define the event A =:
{
σ0 = σ(0,nδ) = σ(nδ,0) = σ(nδ,nδ)

}
. By Lemma 2.4.4 and the

union bound
P[Ac] ≤ 2(P[σ0 6= σ(0,δ)] + P[σ0 6= σ(δ,0)]) ≤ O(δ).

Because of the translation invariance of the measure this means that on average all except
O(δ) portion of the 1

δ2
small squares are ’good’. This translates to the the following bound

on the number of bad δn× δn squares:

E[|bad squares|] ≤ O(δ)
1

δ2
= O(

1

δ
). (2.4.7)

Let B denote the event that for every t ∈ Z2
n ∩ [0, δn]2 the values σt are the same. We

are going to show that P[Bc ∩ [0, δn]2 is a good square] ≤ O(δ). With other words, if a
square on the δn grid has the same value on all of the four vertices of the square then
with high probability this is the value everywhere inside the square.

First, observe that the event Bc ∩ {[0, δn]2 is a good square} implies the existence of
an ’alternating’ triple t1, t2, t3 on a vertical or horizontal line segment of length at most
nδ on the torus such that σt1 = σt3 but σt1 6= σt2 . Indeed, if there is a t on the edges of the
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square such that σt 6= σvi , we are ready, otherwise the point inside with its projections
to two parallel edges of [0, δn]2 will do.

This configuration, in a similar way as in Lemma 2.4.4, implies the existence of two
3-arm events in two disjoint half planes both from distance δ to O(1) (see Figure ??),
and this enables us to give an upper bound on P[Bc | [0, δn]2 is a good square].

Let us denote by d the distance on the unit square of the two δ boxes where the two
3-arm events start. Clearly, there are two, independent 3-arm events for half plane from
distance δn to dn

2
(as they are supported on disjoint bits) and also two 3-arm event for

half plane from distance dn
2

to O(1)n. The former two are also independent as they are
realized in two disjoint half planes so again they are supported on disjoint bits. Thus the
probability of this is, by Proposition 2.4.1(

α+
3 (δ,

d

2
)

)2(
α+

3 (
d

2
, O(1))

)2

= O(

(
δ

d

)2

)O(

(
d

1

)2

) = O(δ4),

independently from the distance d.
One of the 3-arm events can be started at any of O( 1

δ2
) different δn × δn-boxes and

once this is fixed, the second one can be chosen O(1
δ
) different ways (since it has to be δ

close to the other one in at least one of the coordinates). Therefore the two 3-arm events
can be realized in 1

δ3
different ways, and the union bound gives that

P[Bc ∩ [0, δn]2 is a good square] ≤ O(
1

δ3
)O(δ4) = O(δ). (2.4.8)

Let us call a δn× δn square perfect, if it is good and for any t in the box the σt values are
the same as those in the vertices of the square. A square is imperfect, if it is not perfect.
Using this expressions (2.4.8) says that the probability that a square is good, but not
perfect is small. Therefore, putting together (2.4.7) and (2.4.8) we get that

P[ [0, δn]2 is perfect] ≥ 1− P[ [δn]2 is bad]− P[Bc ∩ [0, δn]2 is good] ≥ 1−O(δ).

We are now ready estimate the correlation. For a given ε choose δ = ε2. Applying
Markov’s inequality gives

P[|imperfect squares| > ε
1

δ2
] = P[|imperfect squares| > 1

ε3
] ≤ O(1/ε2)

1/ε3
= O(ε).

But on the event
{
|imperfect squares| ≤ ε 1

δ2

}
we have

∣∣∣MZ2
n [LR]−MHε2 [LR]

∣∣∣ ≤ ε. So

P[|MZ2
n [LR]−MHε2 [LR]| ≤ ε] ≥ 1−O(ε),

which implies
Corr(MZ2

n [LR],MHε2 [LR]) ≥ 1−O(ε).

because |MZ2
n [LR]−MHε2 [LR]| ≤ 2.

Now we are ready to prove the main result of this section.

Theorem 2.4.6. There is no Sparse reconstruction for the left-right crossing in critical
planar percolation
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2.4. SPARSE RECONSTRUCTION FOR PLANAR PERCOLATION 39

Proof. Let Un ⊆ Z2
n be a sparse sequence of subsets, i.e., limn

|Un|
n2 = 0. Indirectly, we

assume that there is a c > 0 such that clue(LRn | Un) > c for every large n.

We start by giving an outline of the proof. Fix two grid sizes a finer δ and a coarser
one η so 0 < δ < η. We are going to show that the assumption that there is a sparse
sequence of subsets with clue greater then c > 0 for the crossing event, then the average
of the translated crossing events on the δ-grid MHδ [LRn] also has clue greater then c′ > 0
for a larger, but still sparse sequence of subsets U δ

n (where c′ depends on η, but η does
not depend on n).

But Lemma 2.4.5 shows that the average of the translates on the δ-grid and the
average of all translates MZ2

n [LRn] are highly correlated. Therefore, the same sequence
of sparse subsets also gives us positive amount of clue about MZ2

n [LRn]. But this is in
contradiction with Theorem 2.1.1, which claims that a sequence of sparse subsets cannot
give positive clue about a transitive function.

We define the set U δ
n = ∪t∈HδU t, where U t = {u+ t : u ∈ U}. So U δ

n is just the
union of all Hδ-translates of U . Clearly, clue(LRn | U δ

n) ≥ c.

We start by giving a lower bound on clue(MHδ [LRn] | U δ
n). We will denote by P

the projection (conditional expectation, from the probabilistic point of view ) onto FUδn .
With this notation

clue(MHδ [LRn] | U δ
n) =

Var(P [MHδ [LRn]])

Var(MHδ [LRn])
.

As the Bernoulli measure is Z2
n-invariant, we clearly have Var(LRn) = Var(LRgn) for

every g ∈ Z2
n and just like in (2.4.4)

Var(MHδ [LRn]) =
1

|Hδ|
∑
h∈Hδ

Cov(LRn, LR
h
n) =

Var(LRn)
1

|Hδ|
∑
h∈Hδ

Corr(LRn, LR
h
n) ≤ Var(LRn).

We continue by giving a lower bound for the variance of P [MHδ [LRn]]. LetD = [−ηn, ηn]×
[−ηn, ηn].

Var(P [MHδ [LRn]]) =

1

|Hδ|2
∑
h1∈Hδ

∑
h2∈Hδ

Cov(P [LRh1n ], P [LRh1+h2
n ]) ≥

1

|Hδ|2
∑
h1∈Hδ

∑
d∈D∩Hδ

Cov(P [LRh1n ], P [LRh1+d
n ]) =

Var(P [LRn])

|Hδ|2
∑
h1∈Hδ

∑
d∈D∩Hδ

Corr(P [LRh1n ], P [LRh1+d
n ]).

(2.4.9)

For the inequality we used that LRn is monotone and therefore by the FKG-inequality
Cov(P [LRh1n ], P [LRh2n ] ≥ 0 and after that U δ

n is Hδ-invariant and therefore Var(P [LRn]) =
Var(P [LRhn]) for any h ∈ Hδ.

By Lemma 2.4.4 there exists a K > 0 such that

Corr(LRtn, LR
t+d
n ) ≥ 1−Kη
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40 CHAPTER 2. SPARSE RECONSTRUCTION IN PRODUCT MEASURES

for every d ∈ D and t ∈ Z2
n. Applying Lemma 2.4.2 for LRtn, LRt+dn and P and choosing

η small enough to assure 2Kη < c/2 we get that

Corr(P [LRtn], P [LRt+dn ]) ≥ 1− Kη

c− 2Kη
≥ 1− 2Kη

c
.

By substituting this into (2.4.9), we obtain the following bound lower bound

Var(P [MHδ [LRn]]) ≥ Var(P [LRn])
|D ∩Hδ|
|Hδ|

(
1− 2Kη

c

)
= η2Var(P [LRn])

(
1− 2Kη

c

)
,

where we used that |Hδ| = 1
δ2

and |D ∩Hδ| = η2/δ2, and thus |D ∩Hδ|/|Hδ| = η2.
The lower bound for Var(P [MHδ [LRn]]) and the upper bound for Var(MHδ [LRn]) to-

gether yields (recall that Var(P [LRn]/Var(LRn) ≥ c)

clue(MHδ [LRn] | U δ
n) =

Var(P [MHδ [LRn]])

Var(MHδ [LRn])
≥

Var(P [LRn]

Var(LRn)
η2

(
1− 2Kη

c

)
≥ η2(c− 2Kη).

(2.4.10)

In order to simplify the notation we shall write M [ ] for the operator MZ2
n [ ]. By

Lemma 2.4.5
Corr(MHδ [LRn],M [LRn]) ≥ 1−O(

√
δ).

Applying Lemma 2.4.3 again with MHδ [LRn] and M [LRn] we get from (2.4.10) that

clue(M [LRn] | U δ
n) ≥ η2(c− 2Kη)−O(

√
δ).

But M [LRn] is transitive and Theorem 2.1.1 tells us that

1

δ2

|Un|
n
≥ clueM [LRn](M [LRn] | U δ

n).

Here we used that obviously |U δ
n| ≤ 1

δ2
|Un|. Comparing the lower bound an the upper

bound for M [LRn]
1

δ2

|Un|
n
≥ η2(c−O(η))−O(

√
δ).

After reordering and choosing δ = η6

1

δ2η2

|Un|
n

+
O(
√
δ)

η2
+O(η) =

1

O(η14)

|Un|
n

+O(η) ≥ c.

But this is a contradiction, since right hand side can be made arbitrary small by first
choosing a sufficiently small η to make the term O(η) < ε/2 and after selecting n large

enough so that 1
O(η14)

|Un|
n
< ε/2 as well.
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Chapter 3

Sparse Reconstruction in Spin
Systems

3.1 Results for General Spin Systems

3.1.1 Introduction

We have seen in Chapter 2 (Theorem 2.1.1 and Theorem 2.1.6) that if we endow the
configuration space with a product measure then sparse reconstruction is not possible for
transitive functions. That is, for any sequence of transitive functions and any sequence
of subsets of the coordinates the clue of the sequence vanishes as n goes to infinity. In
the present Chapter we will investigate the same sort of questions for different sequences
of probability measures on the hypercube.

In order to ensure that the question makes sense we will have to require that the
probability measure in question is invariant under the action of some group Γn, where Γn
acts transitively on the coordinate set Vn. We pose an additional requirement, namely
that the sequence of probability measure has to be weekly convergent. We hope that
certain properties of the limiting measure give information whether the sequence admits
sparse reconstruction or not.

It turns out, however, that if we want to anchor our sequence to a limiting spin
system, we need a somewhat stronger link then weak convergence of measures. We also
have to ensure that the symmetries in the sequence and in the limit are consistent. We
require that coordinate set Vn has a graph structure Gn = (Vn, En) consistent with the
symmetries in the sense that Γn ≤ Aut(Gn), and the graph sequence converges locally to
G(V,E).

Local convergence of transitive graph means that for every r ∈ N there is an Nr ∈ N
such that whenever n ≥ Nr then for any vertex v the r-neighbourhood of v ∈ Vn (counted
in graph distance) Br(v) is isomorphic to the r-neighbourhood of any vertex v ∈ V from
the vertex set of G.

There is one pitfall that we need to avoid. In case µn or µ is not invariant under
the full automorphism group of Gn or G, respectively, we risk that calling two rooted
neighbourhoods isomorphic, because they are isomorphic as rooted graphs, but they have
different distributions (as the measure µ is invariant under the action of a smaller group).

In order to avoid such problems, we assume that the neighbourhoods Br(v) are edge-
decorated and we only consider local isomorphisms that preserve decoration of the edges.
In fact, instead of focusing on the whole Γ ≤ Aut(G), we only care about the stabilizer

41
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42 CHAPTER 3. SPARSE RECONSTRUCTION IN SPIN SYSTEMS

subgroup Γv ≤ Aut(Gn)v for some v ∈ V (as the action is transitive it does not matter
which v one chooses). For a given stabilizer subgroup Γv we shall consider a decoration
of the edges in such a way that the group of rooted automorphisms of the decorated
rooted graph G, d, r is exactly Γv. The practical importance of this lies in the fact that
in such a way cylinder events can be pulled back from the infinite graph onto the finite
ones, by considering respective large balls isomorphic to each other. If µn converges to µ
according to this conditions we will say that µn is locally convergent.

And why is this always possible? Here is a simple argument: :)...
Now that are framework is clear, we are going to list a few possible notions of Sparse

Reconstruction. While these concepts are equivalent for sequences of product measures,
(they all fail) when we allow for different sequences of measures, the picture becomes
richer.

Definition 3.1.1 ((Weak) Sparse Reconstruction). Let Gn be a sequence of finite tran-
sitive graphs with a transitive group action Γn on Vn. Let µn be a Γn-invariant sequence
of probability measures on {−1, 1}Vn , and suppose that µn is weakly convergent.

Let fn : {−1, 1}Vn −→ R. There is Sparse Reconstruction for fn in µn if there is a

sequence of subsets of spins Un ⊆ Vn with limn
|Un|
|Vn| = 0 such that

clue(fn | Un) > c.

for some constant c > 0.
There is Weak Sparse Reconstruction (briefly: WSR) for µn if there exist a sequence

of transitive functions fn : {−1, 1}Vn −→ R such that there is Sparse Reconstruction for
fn.

There is Sparse Reconstruction (briefly: SR) for µn if there exist a sequence of transi-
tive, non-degenerated Boolean functions fn such that there is Sparse Reconstruction for
fn.

As we shall see in Corollary ?? if there is WSR, then there is also a sequence of
Boolean functions for which there exists sparse reconstruction. The difference between
WSR and SR lies in that in the latter case we also require non-degeneracy of the sequence.

We will give an example of a sequence of measures for which there is WSR, but no SR.
(See the example under Corollary 3.1.9.) Of course, for sequences of product measures,
there is neither SR nor WSR.

The first natural question to ask is whether the existence of Sparse Reconstruction is
the attribute of the limiting measure. That is, if µn and νn sequences of measures share
the same weak limit, then either both of the sequences have SR (WSR), or have not SR.
The answer to this question is negative, in general.

It is possible to construct a sequence µn weakly convergent to a product measure which
admits sparse reconstruction. Indeed, let µn be the following measure on {−1, 1}Zn . We

choose a uniformly random i ∈ Zn and around i in a neighborhood of size bn 2
3 c we flip a

fair coin and make every spin in the interval +1 or −1 according to the coin flip. Outside
this interval the spins are iid coin flips. Now it is easy to see that Majority can be
reconstructed from this sequence.

One can choose U simply to be the multipliers of n
1
2 . With high probability we can

identify where is the long + or − interval and again with high probability whether it is
+ or − will tell us the Majority. At the same time this spin system weakly converges to
the product measure on {−1, 1}Z.
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3.1. RESULTS FOR GENERAL SPIN SYSTEMS 43

It seems that in general it is more difficult to tweak a sequence where SR naturally
exists. For example, the following is true:

Proposition 3.1.1. Let µn be a sequence of spin systems that locally converges to a Γ
invariant measure µ which is not Γ-ergodic, then there is Sparse Reconstruction for µn
from a set of constant size.

Proof. As the limiting measure µ is non-ergodic there is a transitive event A with non
trivial probability. As any measurable event can be approximated with an event depend-
ing on a finite subset of the coordinates (a cylinder event) with desired accuracy, for a
given ε > 0 one can choose an event Aε satisfying

µ[A4Aε] < ε,

where A4B is the symmetric difference of the events A and B. For a γ ∈ Γ the translated
event Aγε is also a good approximation of A, using the invariance of A and therefore it is
easy to see that µ[Aγε4Aε] < 2ε.

Now choose a root r ∈ V and choose N ∈ N large enough so that Aε is BN(r)-
measurable (that is, the coordinates on which Aε depends are inside the ball BN(r)).

Now choose n large enough so that the BN(r) balls are isomorphic in Gn and G and
that |µn[Aε]−µ[Aε]| < ε and consequently µn[Aγε4Aε] < 4ε. Consider on the configuration

space of Gn the event
{∑

γ∈Γn
(211Aγε − 1) > 0

}
, that is the majority of the translates of

Aε are satisfied. Let us denote the indicator of this event by Majn(Aε). Clearly, this is a
transitive Boolean function for every n and if ε is small enough, it is also non-degenerated.
At the same time, it is easy to verify that knowing Aε already gives a positive clue about
Majn(Aε) and Aε depends on a constant number of coordinates.

But can we have such a stability for an ergodic measure?

Question 3.1.2. Is there an ergodic measure µ such that whenever µn converges weakly
to µn there is SR for µn?

Another line of questions is concerned about whether it is true if in some sense µn
contains less randomness (or less information) then νn and νn admits SR, then is it true
that µn admits SR as well. Of course, the important point here is how we make the
expression ’contains less randomness’ precise?

A natural attempt is to express the degree of randomness in a sequence with asymp-
totic entropy.

Definition 3.1.2 (asymptotic entropy). Let µn be a sequence of measures. The asymp-
totic entropy of the sequence

H(µn) := lim
n→∞

H(µn)

n

if it exists.

It turns out that H(νn) > H(µn) and νn having SR does not imply that µn has SR.
First, the above example of a spin system that weakly converges to a product space and
still admits SR testifies that it can happen that the asymptotic entropy is 1 (as large as
it can possibly be) but still there is Sparse Reconstruction. Still we believe that it does
not hold in the opposite direction.
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44 CHAPTER 3. SPARSE RECONSTRUCTION IN SPIN SYSTEMS

Conjecture 3.1.3. If H(µn) = 0, then there is SR for µn.

Question 3.1.4. Is it true that for every ε > 0 there is a weakly convergent sequence µn
such that H(µn) < ε and there is no SR for µn ?

Another way of expressing that µ has no more randomness then ν is to say that µ is
a factor of ν. It turns out it is possible that there is SR for the sequence νn while the
sequence µn, which is a factor of νn, does not admit SR. (Folyt...)

There is an alternative version of Sparse reconstruction that does not require any
symmetry of the underlying µn measures.

Definition 3.1.3 (Sparse Reconstruction, with randomness). Let En be a sequence of fi-
nite sets and let µn be a weakly convergent sequence of probability measures on {−1, 1}Vn .
For every n let Un be a random subset of Vn independent from the spin system with the
property that

δn = max
j∈Vn

P[j ∈ U ]→ 0

There is Random Sparse Reconstruction (RSR) for µn if there is a sequence of Boolean
functions fn : {−1, 1}Vn −→ {−1, 1} and a Un as above

E[cluefn(Un)] > c.

for some c > 0

It is easy to see that in case SR holds for a sequence µn then RSR as well. Instead
of the the deterministic set Un we define Un as a uniformly random Gn translate of Un.
Because of transitivity of fn the clue does not change by taking a translate, and δn = |Un|

|En| .
Also, with some small modifications of the proof of Theorem 2.1.1 one can show that for
product measures RSR does not hold either. We do not know, however, whether the two
concepts are equivalent in general.

Question 3.1.5. Suppose that for a transitive, weakly convergent sequence µn there is
Random Sparse Reconstruction. Does this imply that there is also Sparse Reconstruction
for µn?

Remark 3.1.6. The spectral sample does not exist anymore in this general setting and
therefore the short proof does not work for transitive functions. At first it looks like
that we can use the exclusion-inclusion principle in just the same way as for product
measures to get a spectral sample. The problem is that this measure in general assigns
negative weights to certain subsets. Indeed, it is easy to find spin systems where transitive
functions can be reconstructed from the values of a small subset.

3.1.2 Different Measures of Clue

We use (at least) two different concept of clue and therefore it is important to show that
- at least in the most important cases - sparse reconstruction according to one of them is
equivalent with sparse reconstruction with respect the other.

Proposition 3.1.7 (L2 and Information Theoretic clue). Let µ be a measure on {−1, 1}n
and σ = (σ1, . . . σn) a spin system distributed according to µ.

Let f : {−1, 1}n −→ {−1, 1} satisfying k < |f(x)| ≤ K and let Z = f(σ). For any
U ⊆ [n]

Var(E[Z | FU ])

Var(Z)
≤ K

I(Z, σU)

H(Z)
. (3.1.1)
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3.1. RESULTS FOR GENERAL SPIN SYSTEMS 45

Proof. First we show that

Var(E[Z | FU ]) ≤ 2K2I(Z, σU).

The argument follows Lemma 4.4 in [Tao05]. First we fix some notations

pz := P[Z = z]

pu := P[σU = u]

pz|u := P[Z = z |σU = u]

Now, with this notation we have

Var(E[Z | FU ]) =
∑
u∈σU

pu(E[Z]− E[Z |σU = u])2

and for a fixed u ∈ σU

(E[Z]−E[Z |σU = u])2 =
∑
z∈R(f)

(pzz − pz|uz)2 =
∑
z

z2(pz − pz|u)2 ≤ K2
∑
z∈R(f)

(pz − pz|u)2.

So, finally we get that

Var(E[Z | FU ]) ≤ K2
∑
u∈σU

∑
z

(pz − pz|u)2.

With the notation h(x) := −x log x for x ∈ [0, 1] we can write the mutual information as

I(Z, σU) = H(Z)−H(Z|σU) =
∑
z

(h(pz)−
∑
u∈σU

puh(pz|u)) (3.1.2)

Using linear Taylor expansion with error term around pz for h(pz|u) we get the following
estimate

h(pz|u) ≤ h(pz) + h′(pz)(pz|u − pz)−
1

2p∗z|u
(pz|u − pz)2

with some p∗z|u ∈ (pz, pz|u) (or ∈ (pz|u, pz)), using for the error term that h′′(x) = − 1
x
.

Substituting this estimate into (3.1.2), and observing that the term h′(pz) cancels, since
for any z ∈ R(f) we have

∑
u∈σU pu(pz|u − pz) = pz − pz = 0, we obtain

∑
u∈σU

∑
z

(pz − pz|u)2

p∗z|u
≤ 2I(Z, σU).

As 0 < p∗z|u < 1 we can conclude that

Var(E[Z | FU ]) ≤ K2
∑
u∈σU

∑
z

(pz − pz|u)2

p∗z|u
≤ 2K2I(Z, σU)

In the sequel we show that under the conditions of the lemma

H(Z) ≤ CVar(Z).
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46 CHAPTER 3. SPARSE RECONSTRUCTION IN SPIN SYSTEMS

In case f is Boolean and thus Z takes on ±1 almost surely, the entropy can be expressed
as a function of x = E[Z]. A quadratic Taylor expansion around 0 gives the following
asymptotics:

−
(

1− x
2

log
1− x

2
+

1 + x

2
log

1 + x

2

)
= 1− 1

ln 4
x2 +O(x4),

So in case |E[Z]| ≤ 1− c a simple calculation shows that

H(Z) ≈ 1− 1

ln 4
E[Z]2 ≤ 1

c
(1− E[Z]2) =

1

c
Var(Z).

In case f is still binary valued and min(f)−max(f) ≥ L for some k > 0 :

H(Z) ≤ 1

cmin(l2, 1)
Var(Z)

We continue by induction on |R(f)|, the cardinality of the range of f . In the case
when |R(f)| ≤ 2, we already proved that our claim is true.

Now let |R(f)| > 2 For a ∅ 6= I ⊂ R(f) we define the event A := {Z ∈ I}. Using the
law of total variance Var(Z) = Var(E[Z | FA])+E[Var(Z | FA)], where FA is the σ-algebra
generated by A. In a similar way, H(Z) = H(Z, 11A) = H(11A) +H(Z | 11A), using that A
is Z-measurable.

In case c
2
< P[A] < 1− c

2
, using that both |E[Z |A]| and |E[Z |Ac]| > k

H(A) ≤ 1

2 min(l2, 1)
Var(E[Z | FA]).

Conditioned on A and Ac the range of f is smaller then R(f), respectively so by the
induction hypothesis we have

H(Z |A) ≤ 1

2cmin(k2, 1)
Var(Z |A)

together with the respective upper bound for H(Z |Ac). So we get

H(Z | 11A) = P[A]H(Z |A) + P[Ac]H(Z |Ac) ≤ 1

2cmin(k2, 1)
E[Var(Z | FA)]

3.1.3 Reconstruction from random sets

In this section we state some general results. The setup is as before. We consider a
sequence {σn : n ∈ N} where σn is a {−1, 1}Vn-valued random variables with law µn.
We also assume that for each n there is a group Gn acting transitively on Vn and the
law µn of σn is invariant under this group action. In particular, for every j ∈ Vn the
distribution of σnj is the same, where we denote by σnj the projection of σn to the jth
coordinate, a ±1-valued random variable.

We will sometimes consider this setup with the modification that the random variables
are not binary, but R-valued. In order to point out the difference in this case we will
denote our sequence with φn instead of σn. Clearly, if a statement or definition works
with φn it also does so with σn.
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3.1. RESULTS FOR GENERAL SPIN SYSTEMS 47

We introduce the notation mn := |Vn|. We define the magnetization operator as

Mn[φ] :=
1

mn

∑
j∈Vn

φnj . (3.1.3)

For the next definition it is useful to specify one vertex of Vn as root denoted by 0 (as
all vertices look the same this choice is arbitrary). We define the susceptibility of φn

function as
Sn(φ) :=

∑
j∈Vn

Cov(φn0 , φ
n
j ). (3.1.4)

The term ’magnetization’ comes from statistical physics, more specifically the Ising model
(see section 3.2), a spin model which is central in this work. The value of the spins in this
model are thought of as the charge of a particle, and the magnetization as the charge of
the whole field. the concept of susceptibility originates from the Ising model as well. It
can be shown that for the Ising model this quantity measures the change in the magnetic
field of the system upon a small change in the external magnetic field, hence the name.

Recall that because of the translation invariance of the measure we have the following
relationship between M [φ] and S(φ):

Var(Mn[φ]) =
Sn(φ)

mn

.

This is discussed in more detail in Section 2.4.2, see (2.4.3). Also, using again translation
invariance,

1

mn

Sn(φ)

Var(φnk)
=

1

mn

∑
j∈Vn

Corr(φn0 , φ
n
j ) = Corr(φn0 , φ

n
j ). (3.1.5)

where Corr(φn0 , φ
n
j ) is the average correlation between the function and its translates.

The upcoming proposition states that in case for a spin system the average correlation
is sufficiently high then the magnetization can be reconstructed from a random set with
high probability. We will state in a slightly larger generality, with R-valued random
variables, as we do not use the fact that spins are taking only two values.

Proposition 3.1.8 (Sparse Reconstruction from random sets). Let {φn : n ∈ N be
a sequence of RVn-valued random variables with distribution invariant under the group
action of Gn on Vn

Suppose that

Corr(φn0 , φ
n
j )� 1

|Vn|
then there is a sequence of numbers kn = o(mn) such that for a uniform random subset
Hkn of size kn and for any ε > 0

lim
n→∞

P[clue(Mn[φ] | Hkn) > 1− ε] = 1.

Proof. Let us introduce the shorthand notations Mn := Mn[φ] and Sn := Sn(φ). We
give a lower bound for E

[
Corr(Mn,E[MH[σn]

∣∣ H])
]
, the average correlation between the

total magnetization and the magnetization of a uniformly random subset of kn spins.
For any subset Un ⊆ Vn, define the random variable

MUn
n :=

1

|Un|
∑
j∈Un

φnj
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48 CHAPTER 3. SPARSE RECONSTRUCTION IN SPIN SYSTEMS

We have

Cov(Mn,M
Un
n ) =

1

mn|Un|
∑
j∈Un

∑
i∈Vn

Cov(φnj , φ
n
i ) =

1

mn

Sn.

Recall that Var(Mn) = 1
mn
Sn as well. So Corr(Mn,M

U
n ) depends only on Var(MUn).

We now consider a uniformly random set of spins of size kn = |Un| and write the average
correlation between the magnetization of the system and the magnetization of the random
set. Let H denote the random set of kn spins we know.

Observe that by Jensen’s inequality

E
[
Corr(Mn,E[MH

n

∣∣ H])
]

=

√
Sn
mn

E

 1√
Var(MH

n

∣∣ H)

 ≥
√
Sn
mn

1√
E[Var(MH

n

∣∣ H)]
,

(3.1.6)

and therefore it is enough to estimate the expected variance of the magnetization of a
uniform random subset of kn elements. So we can write

E
[
Var(MH ∣∣ H)

]
=

1

k2
n

E

[
E

[ ∑
i,j∈Vn

Cov(φni , φ
n
j )11i∈H11j∈H

∣∣ H]] =

=
1

k2
n

∑
i,j∈Vn

E
[
11i∈H11j∈HCov(φni , φ

n
j )
]
.

Since

E
[
11i∈H11j∈HCov(φni , φ

n
j )
]

=

{
kn
mn

Var(φnj ) if i = j
kn(kn−1)
mn(mn−1)

Cov(φni , φ
n
j ) if i 6= j

,

we get, using the notation Var(φnj ) = sn (because of invariance it does not depend on
j):

E[Var(MH ∣∣ H)] =
1

mnkn

∑
i∈Vn

sn +
kn − 1

kn

1

mn(mn − 1)

∑
i 6=j

Cov(φni , φ
n
j ) =

kn − 1

kn

1

mn(mn − 1)

∑
i,j∈Vn

Cov(φni , φ
n
j ) + sn

(∑
i∈Vn

1

mnkn
− kn − 1

kn

1

mn(mn − 1)

)
=

kn − 1

kn

1

mn(mn − 1)
mnSn + sn

(
1

kn

(
1− kn − 1

mn − 1

))
=

kn − 1

kn

1

mn − 1
Sn + sn

(
1

kn

(
1− kn − 1

mn − 1

))
Now we can give a lower bound for the average correlation over all subsets of size kn.
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3.1. RESULTS FOR GENERAL SPIN SYSTEMS 49

Substituting back into (3.1.6), we get

E
[
Corr(Mn,E[MH

n

∣∣ H])
]
≥

√
Sn

√
mn

√
kn−1
kn

1
mn−1

Sn + sn

(
1
kn

(
1− kn−1

mn−1

)) =

(
kn − 1

kn

mn

mn − 1
+
sn
Sn

(
mn

kn

(
1− kn − 1

mn − 1

)))− 1
2

�
(

1 +
sn
Sn

mn

kn

)− 1
2

=(
1 +

1

knCorr(φn0 , φ
n
j )

)− 1
2

,

exploiting that kn−1
mn−1

→ 0, by assumption and that by (3.1.5), Sn
snmn

= Corr(φn0 , φ
n
j ).

So if knCorr(φn0 , φ
n
j )→∞ then the right hand side tends to 1 as n goes to ∞. Since

by assumption Corr(φn0 , φ
n
j )� 1

mn
, we can choose a sequence kn such that

Corr(φn0 , φ
n
j )� 1

kn
� 1

mn

.

In this case E
[
Corr(Mn,E[MH

n

∣∣ H])
]
→ 1 and therefore, as correlations can be at most

1, the correlation Corr(Mn,E[MH
n

∣∣ H]), and thus its square, the clue (see (2.1.1)) tends
to 1 with high probability.

We would like to highlight the special case when φn0 = σn0 is uniform {−1, 1}-valued
for all n.

Corollary 3.1.9. Suppose that {σn : n ∈ N is a sequence of {−1, 1}Vn-valued random
variables with distribution invariant under the group action of Gn on Vn and Var(σn0 ) = 1

If Sn(σ)→∞, or equivalently Var(Mn[σn])� 1
mn

then there is a sequence of numbers

kn = o(mn) such that for a uniform random subset Hkn of size kn and for any ε > 0

lim
n→∞

P[clue(Mn[σ] | Hkn) > 1− ε] = 1.

Proof. It is straightforward to check that Sn(σ)→∞ is equivalent to Corr(φn0 , φ
n
j )� 1

mn
,

when sn is constant.

In order to conclude SR we need to reconstruct non-degenerate Boolean functions,
and therefore it is an important question whether Sparse Reconstruction of the total
magnetization implies Sparse Reconstruction for the Majority function. In fact, in case
the Magnetization is not concentrated there is no reason for this implication to hold. We
might think about the following example:

Let us take the convex combination of an iid spin system and a system in which all
the spins are +1 or all the spin are −1 with probability 1

2
, respectively. With probability

1√
n

we choose the ±-system and with probability 1− 1√
n

we choose the iid system. Now it

is clear that in this mixed system Var(Mn)� n so by Theorem 3.1.8 the magnetization
can be reconstructed, but Majority (or any other non-degenerated Boolean function)
cannot. So in this sequence of measure there is Weak Sparse Reconstruction, but no
Sparse Reconstruction.

The following proposition gives sufficient conditions under which Maj can also be
reconstructed.

C
E

U
eT

D
C

ol
le

ct
io

n



50 CHAPTER 3. SPARSE RECONSTRUCTION IN SPIN SYSTEMS

Proposition 3.1.10. Let σn be a sequence of spin systems as above. Suppose there is a
sequence of naturals an such that an√

mn
→∞ and for every large n it holds that

P[|
∑
j∈Vn

σnj | ≥ Kan] > c (3.1.7)

for some c > 0. Then there is a sequence pn → 0 such that for the random set Bpn (in
which every element is chosen independently with probability pn) and arbitrary ε > 0

P [clue(Maj | Bpn) > 1− ε] > c.

Proof. Conditionally on the event A = {|Mn| ≥ Kan} the expectation of the total mag-
netization in a Bernoulli sample can be bounded as follows. (We call total magnetization
the unnormalized sum of the spins.)

E

[
E

[
|
∑
j∈Bpn

σnj |
∣∣ Bpn] ∣∣ A] =

E

| ∑
j∈Vn:σnj =1

11j∈Bpn −
∑

k∈Vn:σnk=−1

11k∈Bpn |
∣∣ A
 = pnE[|

∑
j∈Vn

σnj |] ≥ Kanpn

Now we compute its variance, using that the events {j ∈ Bpn} and {k ∈ Bpn} are
independent, whenever k 6= j:

Var

(
E

[ ∑
j∈Bpn

σnj
∣∣ Bpn] ∣∣ A) =

Var

 ∑
j∈Vn:σnj =1

11j∈Bpn −
∑

k∈Vn:σnk=−1

11k∈Bpn
∣∣ A
 = mnpn(1− pn)

This means that for every ε there exists a C > 0 such that

P

[∣∣∣∣∣E
[ ∑
j∈Bpn

σnj
∣∣ Bpn]∣∣∣∣∣ > Kanpn − Cε

√
mnpn

∣∣ A] > 1− ε

since the total magnetization of the sample follows binomial distribution.
In case one chooses pn to satisfy anpn �

√
mnpn then, conditioned on A the fluctua-

tions of the random sample are small compared to the sample magnetization. Therefore,
conditioned on A, with high probability the majority of the sample coincides with the
majority of the original system.

Formally, choose n large enough so that Cε
√
mnpn ≤ K

2
anpn. Then we have

P

[∣∣∣∣∣E
[ ∑
j∈Bpn

σnj
∣∣ Bpn]∣∣∣∣∣ > K

2
anpn

∣∣ A] > 1− ε,

and this of course entails {Maj = Maj(E[σn
∣∣ Bpn ])} (the latter random function is the

majority on the random bits of Bpn). Therefore, conditioned on A with high probability
the magnetization can be reconstructed from Bpn .
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3.1. RESULTS FOR GENERAL SPIN SYSTEMS 51

It remains t verify that the condition anpn �
√
mnpn is consistent with our assump-

tions. Indeed, equivalently we can write

pn �
mn

a2
n

.

which means that pn is of order o(1) by the assumption that an√
mn
→∞. Therefore, Bpn

is sparse with high probability. In particular, there exits also a sequence of subsets Un
with density tending to 0 and the majority has uniformly positive clue with respect to
this sequence.

Moreover, with small additional cost - a couple of independent samples - we can learn
with high probability whether A holds or not, thus we know if the magnetization of the
random set gives a good guess for the total magnetization or not.

3.1.4 The 3-Correlation Lemma

First we need a slight generalization of the concepts of magnetization and susceptibility.
Let us consider a spin system σ distributed according to µ, with coordinate set V and
group action G, as before.

Recall that for a function f : {−1, 1}V −→ R f g denotes the g-translated version of
f . Since µ is G-invariant, Z := f(σ) and Zg := f g(σ) has the same distribution. One can
define magnetization (as we have already done in Chapter 2 see (2.4.1)) and susceptibility
for arbitrary function on the configuration space by:

M [Z, µ] :=
1

|G|
∑
g∈G

Zg

and

S(Z, µ) :=
1

|Gv|
∑
g∈G

Cov(Z,Zg),

. where Gv is the stabilizer subgroup of a vertex. In case the action of G on V is not
free, that is the stabilizer subgroup of a vertex is not trivial then for every Z we count
every covariance |Gv| many times. Indeed, as |G| = |V ||Gv| we have |Gv| times too many
terms in the susceptibility. Warning: in case Z has additional symmetries it is possible
that there are still repetitions in the sum of S(Z, µ) and it is perfectly fine. For example
when Z itself is transitive, that is G-invariant, Cov(Z,Zg) = Var(Z) for every g and thus

S(Z) = |G|
|Gv | = |V |Var(Z).

In the sequel, to avoid this technical difficulty we will assume that the action of the
group on the coordinate set is free (thus we omit the coefficient 1

|Gv |). We emphasize,
however, that all the results are true without this additional condition.

Also, along the lines of (3.1.5) we have

1

|Gn|
Sn(Z)

Var(Z)
:=

1

|Gn|
∑
j∈Vn

Corr(Z,Zg) := Corr(Z,Zg), (3.1.8)

In case there is no room for ambiguity we are going to omit the dependence on the
measure to simplify notation. Observe that for any f the system of random variables
{Zg : g ∈ G} is a G-invariant family (although possibly the same random variables
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52 CHAPTER 3. SPARSE RECONSTRUCTION IN SPIN SYSTEMS

appear multiple times), so in fact the definitions in (3.1.3) and (3.1.4) already cover this
case.

The following statement, although it follows from some elementary facts by straight-
forward calculations, has some interesting consequences.

Lemma 3.1.11 (3-Correlation Lemma). Let σ = {σj : j ∈ V } be a spin system with
G-invariant distribution, where G acts transitively on V . Let f : {−1, 1}V −→ R be a
transitive function and let Z := f(σ). Then

Corr(Z,M [E[Z | FU ]])Corr(E[Z | FU ],M [E[Z | FU ]]) = Corr(Z,E[Z | FU ])

Proof. As in (2.1.1), we have:

Corr(Z,E[Z | FU ]) =
Var(E[Z | FU ])√

Var(Z)
√

Var(E[Z | FU ])
=

√
Var(E[Z | FU ])

Var(Z)

Now we turn to the left hand side. First, observe that

Cov(Z,M [E[Z | FU ]]) =
1

|V |
∑
g∈G

Cov(Z,E[Z | FUg ]) = Var(E[Z | FU ]),

using that Z is transitive and therefore Cov(Z,E[Z | FUg ]) is G-invariant. Using that
Var(M [E[Z | FU ]]) = S(E[Z | FU ])/|V |, we get

Corr(f,M [E[Z | FU ]]) =
Var(E[Z | FU ])√

Var(Z)

√
|V |

S(E[Z | FU ])
. (3.1.9)

As for the other term, we can estimate the covariance as follows

Cov(E[Z | FU ],M [E[Z | FU ]]) =

1

|V |
∑
j∈V

Cov(E[Z | FU ],E[Z | FUj ]) =
S(E[Z | FU ])

|V |
.

So we get for the respective correlation:

Corr(E[Z | FU ],M [E[Z | FU ]]) =

S(E[Z | FU ])/|V |√
Var(E[Z | FU ])S(E[Z | FU ])/|V |

=

√
S(E[Z | FU ])

|V |Var(E[Z | FU ])

(3.1.10)

It is now easy to see that when multiplying (3.1.10) with (3.1.9), one gets Corr(Z,E[Z | FU ])
as stated.

Substitute in any σ-measurable random variable Z in the place of E[Z | FU ] and
compare it with (3.1.8). This gives rise to the following, strange looking identity:

Corr(Z,Zg) = Corr2(Z,M [Z]) (3.1.11)

Corollary 3.1.12. If in a spin system σn there is weak sparse reconstruction , then there
is also weak sparse reconstruction with clue tending to 1.
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3.1. RESULTS FOR GENERAL SPIN SYSTEMS 53

Proof. By assumption, there exist a sequence of subsets Un ⊆ Vn with |Un| = o(Vn) and
a sequence of functions of fn : {−1, 1}Vn −→ R with

clueσn(fn | Un) > c

for some c > 0. Let Zn = fn(σn). Recalling that clue(fn | Un) = Corr2(Zn,E[Zn | FUn ]) it
follows, using Lemma 3.1.11 that

c < Corr2(Zn,E[Zn | FUn ]) ≤ Corr2(E[Zn | FUn ],M [E[fn | FUn ]]).

This means, according to (3.1.11) that

c < Corr(E[Zn | FUn ],E[Zn | FUgn ]). (3.1.12)

Now we consider the spin system φng := E[Zn | FUgn ] indexed by G and apply the argument
in Proposition 3.1.8. We recall from the proof of Proposition 3.1.8 that the expected cor-
relation with respect to Hkn , a uniformly random subset of coordinates with kn elements
is given by

E
[
Corr(M [φn],E[M [φn]H

∣∣ H])
]
≥

(
1 +

1

knCorr(φn, φng )

)− 1
2

.

So taking into account (3.1.12) it follows that

E
[
Corr(M [φn],E[M [φn]H

∣∣ H])
]
≥
(

1 +
1

knc

)− 1
2

.

Let kn be a sequence of integers such that kn →∞, but |Un|kn � |Vn|. From this choice
it is immediate that E

[
Corr(M [φn],E[M [φn]H

∣∣ H])
]
→ 1. On the other hand, for a fixed

set sampled from Hkn , the function E[M [φn]H
∣∣ H] depends on kn coordinates of φn, and

ultimately on at most |Un|kn coordinates of σn (since each φng depends on Un coordinates
of σn), which is sparse, by our choice of kn.

Since the expected correlation tends to 1, there is a sequence of kn-element subsets
which reconstructs M [E[Zn | FUn ]] with high probability.

We continue with another consequence of Lemma 3.1.11, which gives a potential tool
to show that there is no SR for a particular spin system.

Corollary 3.1.13. For a sequence of spin system σn there is no sparse reconstruction
if and only if there is an ε > 0 such that for every sequence of subsets Un ⊆ Vn with
Un � Vn and every Zn sequence of FUn-measurable random variables

Corr(Zn, Z
g
n) < 1− ε (3.1.13)

for every n ≥ N .

Proof. Indirectly, assume that 3.1.13 holds but there exists a sequence of subsets Un ⊆ [n]
and a sequence of transitive functions fn with lim inf clueσn(fn |Un) = c > 0. By Corollary
3.1.12 we may assume that limn cluefn(Un) = 1.

Set Zn = fn(σn). If n is large enough

1− ε ≤ Corr2(Zn,E[Zn | FUn ]) ≤
Corr2(E[Z | FU ],M [E[Z | FU ]]) = Corr(E[Zn | FUn ],E[Zn | FUgn ]).

where we first used Lemma 3.1.11 and after (3.1.11). As E[Zn | FUn ] is trivially FUn-
measurable, this is in contradiction with our assumptions, so there is no SR on σn.
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54 CHAPTER 3. SPARSE RECONSTRUCTION IN SPIN SYSTEMS

This result allows us to give yet another proof for Theorem 2.1.6. We need the
following:

Lemma 3.1.14. Let f : {−1, 1}V −→ R be a function on the n-dimensional hypercube
with the uniform measure, G a group acting on V transitively. If f is FU -measurable for
some U ⊆ [n] then S(f) ≤ |U |.

Proof. Observe that for g ∈ G

f g =
∑
S⊆V

f̂(S)χSg =
∑
S⊆V

f̂(S−g)χS.

and therefore
f̂ g(S) = f̂(S−g).

We can now express the susceptibility of f in terms of the Fourier-Walsh transform of f .

S(f) =
∑
g∈G

Cov(f(ω), f g(ω)) =
∑
g∈G

∑
S⊆V

f̂(S)f̂(S−g) =
∑
S⊆V

∑
g∈G

f̂(S)f̂(S−g)

The sum can be partitioned according to G-orbits of subsets. Let O denote the set of
G-orbits of the subsets of V . Then

S(f) =
∑
G·S∈O

∑
g,h∈G

f̂(Sh)f̂(Sh−g) =
∑
G·S∈O

(∑
g∈G

f̂(Sg)

)2

For a particular u ∈ U there are exactly |U | translations such that g · u ∈ U as well.

Because f is FU -measurable f̂(Sg) can have nonzero coefficients only if Sg ⊆ U . So each
orbit G · S contains at most |U | subsets with non-zero Fourier coefficient and therefore,
by the Cauchy-Schwartz inequality:(∑

g∈G

f̂(Sg)

)2

≤ |U |
∑
g∈G

f̂ 2(Sg), (3.1.14)

and thus we get

S(f) =
∑
G·S∈O

(∑
g∈G

f̂(Sg)

)2

≤ |U |Var(f(ω)).

Combining the above result with Corollary 3.1.13 we immidiately get the promised
alternative proof for Theorem 2.1.1. Indeed

Corrfn(ω), f gn(ω)) =
S(fn)

|Vn|Var(fn(ω))
=
|Un|
|Vn|

→ 0.

Remark 3.1.15. It is straightforward to generalise the above result to general product
measures (Theorem 2.1.6) if one replaces the Fourier-Walsh transform with the Efron-
Stein decomposition (See Theorem 2.1.5).

Remark 3.1.16. In equation 3.1.14 there is equality when f =
∑

j∈U ωj and therefore the
inequality of Lemma 3.1.14 is sharp.
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An Algorithmic Method

Lemma 3.1.11 suggests an algorithmic method to find functions with high clue. We
introduce the notation

πU [f ] := E[f | FU ]

and let T [f ] := M [πU [f ]] Now we can rewrite the statement of Lemma 3.1.11. For every
Zdn-transitive function f :

Corr(f, T [f ])Corr(πU [f ], T [f ]) = Corr(f, πU [f ])

In case Corr(f, T [f ]) < 1 we have Corr(πU [f ], T [f ]) > Corr(f, πU [f ]). Since Corr(πU [f ], T [f ]) ≤
Corr(πU [T [f ]], T [f ]) (as πU [T [f ]] is the function that maximizes the correlation with T [f ]
among FU -measurable ones), we get that

Corr(πU [T [f ]], T [f ]) > Corr(f, πU [f ])

This means that iteratively applying the operator T to a given function we can increase the
clue whenever Corr(f, T [f ]) < 1. In case Corr(f, T [f ]) = 1 that is, if f is an eigenfunction
of T , the iteration comes to an end. So if T admits an eigenbasis then it is sufficient to
calculate the clue of the eigenfunctions since in that case T n[f ] converges to the linear
combination of some eigenfunctions belonging to the same eigenspace.

Indeed, it is exactly what happens in the i.i.d. case, where there is an eigenfunc-
tion corresponding to every Zdn-orbit. For simplicity we discuss the case of the uniform
hypercube.

Let L be a Zdn-orbit of S and χL =
∑

S∈L χS. Then

πU [χO(S)] =
∑

j∈Zdn, Sj⊆U

χSj

and
T [χO(S)] = C(O(S), U)χL,

where
C(O(S), U) := |{j ∈ Zdn : Sj ⊆ U}|

denotes the number of translations of the subset S which are contained in U . Obviously,
the functions fL form an orthogonal basis for the space of Zdn-invariant functions. Indeed,

every transitive function f can be represented in this basis as f =
∑

O∈O f̂(O)χO.
Moreover, limn→∞ T

n[f ] is contained in the eigenspace corresponding to the the largest
eigenvalue with nonzero coefficient in f . In particular, if f has non-zero energy on level
1 (that is, a linear part) then T n[f ] tends to the magnetization. The reason is that for
any given U ⊆ [n] the eigenvalue C(O(S), U) maximized by the singletons.

Proposition 3.1.17. Let f be a transitive function and U ⊆ [n]. Then

Var(E[f | FU ]) =
1

n

∑
L∈O

C(L,U)f̂ 2(L) (3.1.15)

Proof. For convenience suppose that Var(f) = 1.

Var(E[f | FU ]) = P[S ⊆ U |S 6= ∅] =
∑
L∈O

P[S ∈ L]P[S ⊆ U |S ∈ L] (3.1.16)
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56 CHAPTER 3. SPARSE RECONSTRUCTION IN SPIN SYSTEMS

By the orbit counting lemma the orbit O has n
|Stab(O)| many elements and therefore

P[S ∈ O] =
n

|Stab(O)|
∑
S∈O

f̂ 2(S) =

(∑
S∈O

(f̂(S)

)2

= f̂ 2(L),

while

P[S ⊆ U |S ∈ O] =
C(O,U)

n

3.2 Sparse Reconstruction for the Ising Model

3.2.1 The Curie-Weiss model

A slight strengthening of the argument above is enough to show that there is no sparse
reconstruction for the subcritical Curie-Weiss model (we know that magnetization can
be reconstructed on any critical and supercritcal Ising model by Theorem ?? ).

Theorem 3.2.1. There is no sparse reconstruction for the subcritical Curie-Weiss model.

We divide the proof of the Theorem into a few steps.

Lemma 3.2.2. Let σ[n] be a sequence of spin systems and suppose that there is a C > 0
such that for every n

H(σ[n]) = n− C (3.2.1)

then there is no sparse reconstruction for σ[n].

Proof. The proof repeats that of Lemma 2.2.3 and Theorem 2.2.1. First observe that

L∑
j

H(σ(Sj)) ≤
∑
j

∑
i∈Sj

H(σ(i)) = k
∑
i∈[n]

H(σ(i)) ≤ k(H(σ[n]) + C) (3.2.2)

were, for the last inequality we used the condition of the Lemma.
In turn, together with the Shearer inequality as in 2.2.5, we obtain that

L∑
j

I(Z, σ(Sj)) ≤ k(I(Z, σ[n]) + C) (3.2.3)

Now we can use this inequality just as in the proof of Theorem 2.2.1 to get that

nI(Z, σU) ≤ |U |(I(Z, σ[n]) + C) (3.2.4)

obviously, |U |(I(Z,σ[n])+C)
n

= o(1) which is exactly what we wanted to show.

Theorem 3.2.3 (Tail of subcritical Curie-Weiss). If β < βc = 1 then

lim
n

Pr[Mn > C
√
n] =

√
1− β

2π

∫ ∞
x

exp−1− β
2

t2dt (3.2.5)

where Mn :=
∑n

i=1 σ(i) is the total magnetisation
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3.2. SPARSE RECONSTRUCTION FOR THE ISING MODEL 57

For a proof of this result see for example [].

Lemma 3.2.4. Let σ[n] denote a subcritical Curie-Weiss model on n spins and let Mk =
k∑
i=1

σ(i). Then for every t > 0 and 0 < i ≤ n positive integer

Pr[Mi > t
√
n] ≤ e−Ct

2

1− 4e−
t2

4

(3.2.6)

for some positive constant C

Proof. First we are going to show that for every t > 0 and 0 < i ≤ n we have

Pr[Mn ≤
t

2

√
n | Mi > t

√
n] ≤ 4e−

t2

4 . (3.2.7)

Let us now fix an 1 ≤ i ≤ n. Conditioned on the event {Mi > C
√
n} we may consider

a coupling between the process Mi+k and the simple random walk Sk : (k = 1, 2, . . . n−i),
where each time Mi+k decreases (that is, σk = −1) Sk decreases as well.

As long as Mi+k ≥ 0 such a coupling exists because σk+1 conditioned on the mag-
netization of the first i + k spins already revealed is a Bernoulli random variable with
expectation mn−i−k(β,

Mi+k

2n
) > 0 independent from the value of any of the individual

spins revealed before.
Therefore, using the above coupling:

Pr[Mn ≤
t

2

√
n | Mi > t

√
n] ≤

(3.2.8)

≤ Pr[min
k
{Mi+k} ≤ 0 | Mi > t

√
n] + Pr[Mn ≤

t

2

√
n and min

k
{Mi+k} > 0 | Mi > t

√
n] ≤

(3.2.9)

≤ Pr[minS1, S2, . . . Sn−i ≤ −t
√
n] + Pr[Sn−i ≤ −

t

2

√
n] ≤

(3.2.10)

≤ 2 Pr[Sn−i > t
√
n] + Pr[Sn−i = t

√
n] + Pr[Sn−i ≥

t

2

√
n] ≤ 4e−

t2

4

(3.2.11)

For the second inequality we used the monotone coupling between Mi+k and the simple
random walk Sk, while in the second one we used the symmetry of the SRW with respect
to the origin and the standard result that Pr[{maxS1, S2, . . . Sn−i} ≥ l] = 2 Pr[Sn−i >
l] + Pr[Sn−i = l]. Finally in the last row we used the Gaussian estimation for the tail of
a binomially distributed random variable.

After using the definition of conditional probability and rearranging (3.2.7)

Pr[Mi > t
√
n] ≤

Pr[Mn >
t
2

√
n and Mi > t

√
n]

1− 4e−
t2

4

(3.2.12)

Using that by Theorem 3.2.3

Pr[Mn >
t

2

√
n and Mi > t

√
n] ≤ Pr[Mn >

t

2

√
n] ≤ e−Ct

2

(3.2.13)
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58 CHAPTER 3. SPARSE RECONSTRUCTION IN SPIN SYSTEMS

we obtain

Pr[Mi > t
√
n] ≤ e−Ct

2

1− 4e−
t2

4

(3.2.14)

Now we are ready to show that the condition of Lemma 3.2.2 is satisfied for the
subcritical Curie-Weiss model.

Lemma 3.2.5. The subcritical Curie-Weiss model with a fixed temperature β and with
h = 0 satisfies the conditions of Lemma 3.2.2, that is denoting the Curie-Weiss model on
n spins by σβ[n], there exist a positive constant C such that for all large enough n

H(σβ([n])) ≥ n− C (3.2.15)

Proof. According to the chain rule of entropy

H(σβ[n]) =
n−1∑
k=0

H(σ(k + 1) | σ[k]) (3.2.16)

Because of the lack of geometry all the information is encoded in the sum of the spins,
i.e. the magnetization. Therefore we can write:

H (σ(k + 1) | σ([k])) =
∑
t

Pr [Mk = t]H (σ(k + 1) |Mk = t). (3.2.17)

where again Mk =
k∑
i=1

σ(i).

Since σ(k) is a Bernoulli random variable its conditional distribution, and thus its
conditional entropy is determined by the conditional expected value E[σ(k+1) = 1 |Mk =
t]. That is

H (σ(k + 1) |Mk = t) = h (E[σ(k + 1) = 1 |Mk = t]) (3.2.18)

where

h(x) :=
1− x

2
log

1− x
2

+
1 + x

2
log

1 + x

2
= 1− 1

ln 4
x2 +O(x4) (3.2.19)

using the Taylor expansion of h around 0. Let us compute the Hamiltonian conditioned
on the event that sum of the first k spins is t:

Hn,0(σ |Mk = t) =− 1

2n

∑
i,j>k

σ(i)σ(j)−
∑
i≤k

σ(i))
∑
l>k

σ(l)− 1

2n

∑
i,j≤k

σ(i)σ(j)

=− t

2n

∑
i>k

σ(i)− 1

2n

∑
i,j>k

σ(i)σ(j)− t2

2n

This shows that conditioned on the event {Mk = t} the spin system σ[n] \ [k] has the
law of a Curie-Weiss model on n− k spins with parameters (β, t

2n
). As a consequence

E [σ(k + 1) |Mk = t] = mn−k

(
β,

t

2n

)
(3.2.20)
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3.2. SPARSE RECONSTRUCTION FOR THE ISING MODEL 59

where mn (β, h) := 1
n
E[Mn(σβ,h[n])] is the expected magnetization per site.

Using a first order approximation for mn−k
(
β, t

2n

)
around h = 0 we get that

mn−k(β,
t

2n
) = mn−k(β, 0) +

t

2n

∂m

∂h
+O

(
t2

n2

)
. (3.2.21)

Note that ∂mn
∂h
≤ ∂mn

∂h
= βχ where χ denotes the susceptibility. It is known (see [])

that the susceptibility is finite in the subcritical (high temperature) regime. Obviously
mn(β, 0) = 0, so the first order approximation says that for every t ≥ 0:

E [σ(k + 1) |Mk = t] = βχ
t

2n
+O

(
t2

n2

)
. (3.2.22)

From Equation 3.2.18, taking into account the expansion of h as in 3.2.19 we obtain
that

H (σ(k + 1) |Mk = t) = 1− C t2

n2
+O

(
t3

n3

)
(3.2.23)

We introduce the following notation:

f(t) = Pr [Mk = t] (3.2.24)

F (t) =
t∑

s=0

Pr [Mk = s] = Pr [0 ≤Mk ≤ t] (3.2.25)

h(t) = 1−H (σ(k) |Mk = t) (3.2.26)

with this we can rewrite (3.2.17)

H (σ(k + 1) | σ[k]) =
∑
t

Pr [Mk = t]H (σ(k + 1) |Mk = t) = (3.2.27)

= 1−
∑
t

Pr [Mk = t] (1−H (σ(k + 1) |Mk = t)) = 1−
k∑

t=−k

f(t)h(t) (3.2.28)

In what follows we are going to give an upper bound on
∑k

t=0 f(t)h(t) which will
result in a lower bound for H (σ(k + 1) | σ[k]) and, in turn, for H(σ[n]).

According to summation by parts, we have:

k∑
t=0

f(t)h(t) =F (k)h(k)− F (0)h(0) +
k−1∑
t=0

F (t)(h(t+ 1)− h(t)) = (3.2.29)

=F (k)h(k) +
k−1∑
t=0

(F (k)− Pr [Mk > t])(h(t+ 1)− h(t)) = (3.2.30)

=
k−1∑
t=0

Pr [Mk > t] (h(t+ 1)− h(t)) (3.2.31)
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60 CHAPTER 3. SPARSE RECONSTRUCTION IN SPIN SYSTEMS

where we first used that F (0) = 0 and after that
∑k−1

t=0 F (k)(h(t+ 1)− h(t)) = F (k)h(k).
Now we split the above sum into three parts and bound them separately.

k−1∑
t=0

Pr [Mk > t] (h(t+ 1)− h(t)) =

L
√
n−1∑
t=0

(. . . ) +
n

3
4−1∑

t=L
√
n

(. . . ) +
k−1∑
t=n

3
4

(. . . ) (3.2.32)

Let us start with the first sum:

L
√
n−1∑
t=0

Pr [Mk > t] (h(t+ 1)− h(t)) ≤
L
√
n−1∑
t=0

(h(t+ 1)− h(t)) = h(L
√
n)− h(0) (3.2.33)

Using that h(0) = 0 and h(L
√
n) = C L2n

n2 + O
(
n3/2

n3

)
by the approximation of (3.2.23),

so
L
√
n−1∑
t=0

Pr [Mk > t] (h(t+ 1)− h(t)) ≤ CL2 1

n
+O

(
1

n3/2

)
(3.2.34)

Now we turn to the second sum. By Lemma 3.2.4

n
3
4−1∑

t=L
√
n

(Pr [Mk > t] (h(t+ 1)− h(t)) ≤
n

3
4−1∑

t=L
√
n

(h(t+ 1)− h(t))
e−

Ct2

n

1− 4e−
t2

4n

(3.2.35)

First note that t = o(n), so we can still use the first order approximation to get h(t +

1)− h(t) = 2t+1
n2 +O

(
t2

n3

)
= Ct+o(t)

n2 .

One can choose L large enough so that for every large n both

e−
Ct2

n ≤
(
t2

2n

)−2

(3.2.36)

and

1− 4e−
t2

4n ≥ 1

2
(3.2.37)

are satisfied whenever t ≥ L
√
n. With such an L we have:

n
3
4−1∑

t=L
√
n

(h(t+ 1)− h(t))
e−

Ct2

n

1− 4e−
t2

4n

≤ C

n2

n
3
4−1∑

t=L
√
n

t

(
t

2
√
n

)−4

= C ′
n

3
4−1∑

t=L
√
n

t−3 (3.2.38)

Now approximating the sum with the respective integral, we get that

n
3
4−1∑

t=L
√
n

Pr [Mk > t] (h(t+ 1)− h(t)) ≤ C”(L
√
n)−2 − n−

3
2 ) ≤ C”

1

L2n
(3.2.39)

Finally, using the tail estimation of Lemma 3.2.4 and (3.2.37):

k−1∑
t=n

3
4

Pr [Mk > t] (h(t+ 1)− h(t)) ≤ 1

2

k−1∑
t=n

3
4

e−
Ct2

2n = o

(
1

n

)
(3.2.40)
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3.2. SPARSE RECONSTRUCTION FOR THE ISING MODEL 61

where we used the trivial bound h(t+ 1)− h(t) ≤ 1.

Now we can put everything together, using that
k∑
t=1

f(t)h(t) =
−1∑
t=−k

f(t)h(t).

1−H (σ(k)|σ([k − 1])) ≤ 2
k−1∑
t=0

Pr [Mk−1 > t] (h(t+ 1)− h(t)) ≤ C

(
L2 +

1

L2

)
1

n
+o

(
1

n

)
(3.2.41)

and therefore, substituting this estimate into the chain rule we have that for some
constant K > 0

H(σβ([n])) =
n∑
k=1

H(σ(k)|σ([k − 1])) ≥ n

(
1−K 1

n
+ o

(
1

n

))
= n−K + o (1) (3.2.42)

3.2.2 General results for the Ising model

Theorem 3.2.6 (Van den Berg - Steif, 1999). For β < βc, the unique Ising measure µ
on Zd is a finitary factor of Unif[0, 1]Z

d
, with coding radius P[R > t] < exp(−ct).

Now we are ready to prove that small enough sets are clueless with respect to the
subcritical Ising measure. In view of Theorem 3.2.6 a transitive function of the Ising
spins on a finite torus can be also regarded as a transitive function of iid bits, in which
case we have a good control on the clue of subsets.

For the critical Ising, however, sparse reconstruction is possible:

Theorem 3.2.7 (Sparse Reconstruction at Critical Ising). At β = βc on Z2
n, the total

magnetization Mn(σ) :=
∑

x σ(x) can be guessed with high precision from the sparse
magnetization M ε

n(σ) :=
∑

nε|x σ(x),as long as ε < 7/8. This implies clueMn(nε-grid) =

1− o(1).

Proof. We know from ?? that Eσ(x)σ(y) � c ‖x− y‖−
1
4 and thus we can compute the

order of magnitude of the variance of magnetization. We use a standard trick: We divide
the square Z2

n into logarithmically increasing anullii.

VarMn � n2 + n2
∑
x∈Z2

n

Eσ(0)σ(x) = n2 + n2

logn∑
k=1

(2k − 2k−1)
(
2k
)− 1

4 � n2 + n2O(n2− 1
4 )

and in a similar way, for the magnetization of the sparse grid we get

VarM ε
n � (

n

ε
)2 + (

n

ε
)2

logn∑
k=1

(2k(2−2ε) − 2(k − 1)(2− 2ε))
(
2k
)− 1

4

� n2−2ε + n2−2εO(n−
1
4n2−2ε) � O(n2−2ε + n4−4ε− 1

4 ).

Finally

Cov(Mn,M
ε
n) =

∑
x∈Z2

n,y∈

Eσ(x)σ(y) � n2−2ε
∑
x∈Z2

n

Eσ(0)σ(x)

� n2−2εO(n2− 1
4 ) � O(n4−2ε− 1

4 ).
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62 CHAPTER 3. SPARSE RECONSTRUCTION IN SPIN SYSTEMS

If we choose ε < 1 − 1
8

= 7
8
, then in VarM ε

n the second term wins, so VarM ε
n =

O(n4−4ε− 1
4 ). Putting all these together we get an estimation about the correlation:

Corr(Mn,M
ε
n) =

O(n4−2ε− 1
4 )

O(n2− 1
8 )O(n2−2ε− 1

8 )
= O(1)

3.3 Factor of IID measures

In this section we investigate sequences of spin systems that converges to finitary factor
of IID systems. As this is a class of measures that are relatively approachable it is an
obvious choice trying to understand them. Moreover some of the Ising models can also
be described in this framework.

Finitary factor of IID systems are also interesting because basically they describe the
type of measures that we have can investigate with experimental tools, by simulations.
As the computational power of computers keeps increasing simulations has become an
important (although not strictly mathematical) tool to understand the behavior of some
systems. This is, however, possible only when there is an efficient way to sample from the
distribution of the spin system we want to understand. Finitary factor of IID measures
(spin systems) are those that can be sampled by a local algorithm from an IID spin
system.

Definition 3.3.1 ((Finitary) Factor of IID systems). Let G = (V,E) be a transitive
graph. A spin system on {−1,+1}V with distribution µ is a factor of IID, if there is
a measurable map ψ : [0, 1]V → {−1,+1}V such that if X ∼ Unif[0, 1]V then the spin
system defined by

σv := ψ(Xv) v ∈ V (G)

is distributed w.r.t. µ.
A factor map is called finitary, if additionally, there is a random coding radius R <∞

almost surely ,for which it holds that ψ(Xv) is determined by {Xu : u ∈ BR(v)}, including
the value of R.

From a practical point of view the additional condition of being finitary guarantees
that one can sample from the spin system, since σv is actually determined by a finite
neighbourhood of Xv. Nevertheless, again from a practical point of view, if we have
no control of the number of vertices u ∈ V (G) for which Xu needs to be revealed, this
condition is still not enough.

Therefore those finitary factor if IID systems where the coding volume (i.e the number
of uniform random variables one needs to know to learn the value of a particular spin)
has finite expected value bear special importance.

We would like to investigate under what conditions can we conclude that there is or
there is not sparse reconstruction (or some of its variant) for a sequence µn converging to
a Finitary factor of IID. We have to point out, in light of some negative results presented
in Section ??, that it is not at all clear that we can expect such results. Therefore
we would like to narrow down the setup. We shall only consider such sequences of spin
systems which themselves are factors of IIDs and in particular are generated by (a possibly
truncated version of) the same local algorithm that we see in the limit.
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3.3. FACTOR OF IID MEASURES 63

Let G(V,E) be an infinite, edge-decorated transitive graph and µ an Aut(G)-invariant
finitary factor of IID measure on {−1,+1}V . We consider a sequence of transitive edge-
decorated graphs Gn(Vn, En) that converges to G locally.

From µn, however, we expect more than weak convergence: whenever n is large enough
so that all N -neighbourhoods in Gn are the same as in G (such n exists thanks to the
local convergence), and the coding radius R ≤ N then we generate σv according to φ as
a factor of IID. In case either of these conditions does not hold σv can be generated with
some alternative local algorithm φn : [0, 1]Vn → {−1,+1}Vn . It is clear that as n → ∞
the probability that a given vertex σv is obtained with φ, tends to 1.

Let S+(f) :=
∑

g∈Aut(G) |Cov(f, f g)|. We will need the following fact to give a simple
sufficient condition on when we have WSR for a ffIID system.

Lemma 3.3.1. Let µ be a ffIID spin system on G. Let F ⊆ V (G) finite and let f :
{−1,+1}F → R. If µn converges to µn in the above sense, then

S+(f) =∞→ lim
n→∞

S+
n (fn) =∞

for some fn : {−1,+1}Fn → R, where Fn ⊆ Vn satisfying |Fn| = |F |.
moreover, if µn satisfies the condition

lim
n→∞

P[∃ u ∈ Vn : Ru > Diam(Gn)] = 0

(where Diam(Gn) is the diameter of the graph) then it is also holds that

lim
n→∞

S(fn) = S(f)

whenever S(f) is absolutely convergent.

Proof. First we define fn for all n large enough so that the d = Diam(F )-ball on Gn and
on G are isomorphic. Observe that it is sufficient to give an injection from F onto Gn.
Pick an arbitrary r ∈ F , and again an arbitrary r′ ∈ Vn. Using the (rooted) isomorphism
between the d-balls of r in G and r′ in Gn, we can find a bijection between the vertices
of a subset Fn in Gn and F .

We start by proving the first statement. Define the sequence of ffIID measures νn on
G as follows. For every v ∈ V we run the algorithm φ restricted to the ball Bn(v). If the
spin value σv can be calculated from Bn(v) (where σ is distributed according to µ), then
we write the respective spin value, otherwise we flip a coin independent from everything
else, according to the distribution of σv conditioned on Bn(v). It is clear that νn

a.s.−−→ µ
and that limn→∞ Sνn(f) = Sµ(f). Therefore we can choose n such that Sνn(f) > L

Fix a large number L and choose a finite subset H ⊂ Aut(G) in such a way, that∑
g∈H |Cov(f, f g)| > L. For an arbitrary v ∈ F we may choose a large, but fix r in such

a way that
⋃
g∈H F

g ⊆ Br(v).
Now choose K > r large enough so that P[Rv > K] < ε/|Br(v)|. Using the union

bound, we have

P[∀ u ∈ Br(v) : Ru ≤ K] = 1− |Br(v)|P[ Rv > K] ≤ 1− ε.

Let A := {∀ u ∈ Br(v) : Ru ≤ K}. Note that for large enough n the ball BK(v)
looks identical in G and in Gn and we now consider such an n. So we have the following
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64 CHAPTER 3. SPARSE RECONSTRUCTION IN SPIN SYSTEMS

estimate for the susceptibility of fn on Gn:

S+(fn) ≥
∑
g∈H

|Cov(fn, f
g
n)| ≥

P[A]
∑
g∈H

|Cov(fn, f
g
n)|

∣∣ A) = (1− ε)
∑
g∈H

|Cov(f, f g)| > (1− ε)L.

Since L and ε was arbitrary, we are done.

For the second statement the same argument (here we choose H ⊂ Aut(G) such that
S+(f)−

∑
g∈H |Cov(f, f g)| < ε) yields that lim infn S(fn) ≥ S(f).

In order to see the other inequality let us denote by Bn = {∀ u ∈ Vn : Ru ≤
Diam(Gn)} and observe that conditioned on Bn Cov(fn, f

g
n) = Cov(f, f g) and therefore

S+(fn) =
∑

g∈Aut(Gn)

|Cov(fn, f
g
n)| ≤ P[Bn]

∑
g∈Aut(Gn)

|Cov(f, f g)|+P[Bc
n]s2 ≤ (1−ε)S(f)+εs2,

where s2 = Var(f).

In the sequel we will mostly focus on finitary factor of IID measures on the infinite
d-dimensional lattice G = Zd. We note that most of the results can be extended to
amenable graphs or polynomial growth graphs.

Lemma 3.3.2. [BS99] If X is a finitary factor of an i.i.d. process on Zd with |Xi| ≤ K
almost surely. Let N0 denote the coding radius of X0. Suppose that the expected coding
volume E[(N0)d] is finite. Then there is a constant C that only depends on K and d such
that

S+(X) ≤ CE[(N0)d] (3.3.1)

Proof.

Cov(X0, Xj) =
∑

max(k,l)≥ |j|
2
−1

Cov(X01N0=k, Xj1Nj=l)+
∑

max(k,l)<
|j|
2
−1

Cov(X01N0=k, Xj1Nj=l) ≤

Let Xj := Xj − E[Xj]

≤ 4K2
∑

max(k,l)≥ |j|
2
−1

Pr[N0 = k,Nj = l] +
∑

max(k,l)<
|j|
2
−1

E[X01N0=k]E[Xj1Nj=k]

≤ 8K2
∑
k≥ j

2
−1

Pr[N0 = k] +

 |j|
2
−2∑

k=0

E[X01N0=k]

2

Since X0 has 0 expected value

 |j|
2
−2∑

k=0

E[X01N0=k]

2

=

 ∑
k≥ |j|

2
−1

E[X01N0=k]


2

≤ K2
∑

k≥ |j|
2
−1

Pr[N0 = k]
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and therefore

Cov(X0, Xj) ≤ 9K2
∑

k≥ |j|
2
−1

Pr[N0 = k] =

K2
∑

k : 2k+1≥|j|

Pr[2N0 + 1 = 2k + 1] ≤ K2
∑
i≥|j|

Pr[2N0 + 1 = i]

Observing that the number of u ∈ Zd such that |u| = m equals C0m
d−1 (since it is the

boundary of a d-dimensional hypercube with side length 2m) we get

∑
j∈Zd

Cov(X0, Xj) ≤ 9K2
∑
j∈Zd

∑
i≥|j|

Pr[2N0 + 1 = i] ≤

C ′
∞∑
m=0

md−1
∑
i≥m

Pr[2N0 + 1 = i] = C ′
∞∑
i=1

Pr[2N0 + 1 = i]
∑
m≤i

md−1

For every d there is a constant C1 such that
∑

m≤im
d−1 ≤ C1i

d thus∑
j∈Zd

Cov(X0, Xj) ≤ C
′′∑
j∈Zd

Pr[2N0 + 1 = i]id ≤ CE[(N0)d]

Corollary 3.3.3. If µ is a ffIID spin system on Zd with E[(N0)d] = ∞, where (N0)d is
the coding volume. Let µn be a sequence of ffIID spin systems converging to µn in the
prescribed sense. Then there is weak sparse reconstruction for µn.

Proof. According to Lemma 3.3.2, infinite coding volume implies that the absolute sus-
ceptibility of the system (of one spin) is infinite. In turn by Lemma 3.3.1, this means
that the absolute susceptibility in µn tends to ∞ as n goes to ∞. Now we only need to
show that in that case there is also a sequence of functions with S(fn) tending to ∞.
Indeed, then by Corollary 3.1.9, it follows that there is sparse reconstruction for µn.

Corollary 3.3.3 naturally raises the question, whether the converse is true. Can there
be Sparse reconstruction for a sequence that converges to a ffIID spin system with finite
expected coding volume? The following Theorem that relies on the IID case, gives a
partial answer.

Theorem 3.3.4. For any sequence of transitive, non-degenerated Boolean functions fn :
{−1, 1}Vn −→ {−1, 1}. Let µ be a finitary factor of IID on Z[d] with the property that
P[R > t] < exp(−ct)], where R is the coding radius, and µn is a factor of IID sequence
converging to µ (in the sense specified above). Then for any subset Un ⊆ Vn satisfying
|Un| = o(nd/ logd n),

clue(fn | Un)→ 0.

Proof. Let Un ⊆ Vn and for u ∈ Un let Ru denote the (random) coding radius of the spin
σu. For any r be a positive integer, by the union bound

P[∀ u ∈ Un : Ru < r] = 1− P[∃ u ∈ Un : Ru ≥ r] > 1− |Un| exp(−cr)
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By definition, whenever {∀ u ∈ Un : Ru < r} happens the spins in Un can be calculated
from at most |Un|rd independent uniformly distributed variables. Denote the set of this
bits by Jn =

⋃
u∈Un Br(u)

Let us choose the sequence of integers rn in such a way that

|Jn| ≤ |Un|rdn � |Vn| = nd, (3.3.2)

and at the same time
lim
n

1− |Un| exp(−crn) = 1. (3.3.3)

Now we can consider gn := fn(ψ(X)), the same function as fn but interpreted as a func-
tion of the uniform IID variables X. Obviously gn is transitive as well. On the one hand,
it follows from Theorem 2.1.6 using the condition (3.3.2) that clueUnif

(
gn | FJn(X)

)
→ 0.

On the other hand, conditioned on the event {∀ u ∈ Un : Ru < r},

E[fn|FUn(σ)] = Eµn [gn|FJn(X)] (3.3.4)

and by (3.3.3) this happens with high probability.
Observe that if one chooses rn = K log nd with sufficiently large K (3.3.2) and (3.3.3)

are both satisfied (for the latter using our assumption on the size of Un).
Let us denote by G the minimal σ-algebra for which both the random set of uniform

variables necessary to compute the spins of Un and Jn are measurable. So E[gn
∣∣ G] =

E[fn
∣∣ FUn(σ)]. Since FJn(X) ⊆ G by the definition of G, we have by Pythagoras’s Theorem∥∥E[gn

∣∣ G]
∥∥2

=
∥∥E[g

∣∣ FJn(X)]
∥∥2

+
∥∥E[g

∣∣ G]− E[gn
∣∣ FJn(X)]

∥∥2
.

Subtracting the common squared expectation we get

Var
(
E[g

∣∣ G]
)

= Var
(
E[g

∣∣ FJn(X)]
)

+
∥∥E[g

∣∣ G]− E[g
∣∣ ωVn ]

∥∥2
.

Since fn is non-degenerate Var
(
E[g

∣∣ FJn(X)]
)
→ 0 (as we already pointed out) by The-

orem 2.1.6 and the second term is smaller then 2P[E[fn|FUn(σ)] 6= E[gn|FJn(X)] ] which
again tends to 0 by (3.3.4).

The reader might wonder whether this Theorem can be improved. Three natural
direction comes into mind to improve the result. First, can we right o(nd instead of =
o(nd/ logd n) in the condition of the Theorem ? Second, can we substitute the exponential
decay of the coding volume with some weaker condition (like finite expected coding
volume)? Third, do we really need to assume non-degeneracy of the sequence?

We start by answering the third question, positively. We show an ffIID sequence
converging to a ffIID spin system on Z in which one can reconstruct a sequence of functions
surely, from a set of coordinates of constant size. The local algorithm is as follows: We
read the bits starting from 0 going to the right, and we stop when we find two consecutive
bits with equal value and this value will be the spin that we write at 0. In case we

3.4 Generalised DaC measures

Let N be a linear subspace of Fn2 . Define the event AN {χS = 1 : S ∈ N} The measure
PrN is defined as the uniform measure conditioned on AN . Pr[n] Let N be a random
linear subspace of Fn2 . Then N induces a probability measure on {−1, 1}n by
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Definition 3.4.1. PrN [σ = x] := E[PrN [σ = x|AN ]]

We can generalise the Fourier-Walsh transform for these kind of measures. Let f(x) =∑
T⊂[n] f̂(T )χT (x). It is straightforward to see that for every N ∈ N

Pr[χS(ω) = χS⊕N(ω)|AN ] = 1.

With other words {−1, 1}n is divided into N -congruence classes, and conditioned on AN
and for any ω ∈ {−1, 1}n the value of χS(ω) only depends on the congruence class to
which S belongs to.

Let F(N ) = P(AN ). For a fixed subspace N we can now write for any x ∈ AN

f(x) =
∑

C∈Fn2 /N

f̂N (C)χC(x),

where

f̂N (C) =
∑
T∈C

f̂(T ) =
∑
N∈N

f̂(T ⊕N). (3.4.1)

Here T is any subset that belongs to the congruence class C. We note that instead of
a linear subspace N of Fn2 we can also determine the measure by a linear transformation
Π : Fn2 → Fn2 satisfying K (Π) = N so that Π(S) = Π(T ) if and only if S ⊕ T ∈ N .

We can write 3.4.1 in a slightly different way. With an abuse of notation we denote
by f̂N (T ) the Fourier-coefficient of the congruence class of T . For any x ∈ AN we have

f(x) =
1

2dimN

∑
T⊂[n]

f̂N (T )χT (x).

There are 2dimN subset in every N -congruence class we counted every subset this many
times, hence the normalization factor.

We also introduce the notation

f̂N (T ) :=
f̂N (T )

2dimN

to be able to write
f(x) =

∑
T⊂[n]

f̂N (T )χT (x).

Using that trivially E[χT |AN ] = 1 if and only if T ∈ N and otherwise E[χT |AN ] = 0

E[f |AN ] = f̂N (∅)

Conditionally on AN either S ⊕ T ∈ N , in which case χS = χT or if S ⊕ T /∈ N then
χS and χT are independent. In order to see this, note that for fixed N E[χS|N ] = 0,
whenever S /∈ N . So Cov(χS, χT |N ) = 0. Hence, after expanding any two function f
and g we get

E[fg|AN ] =
∑

C∈Fn2 /N

f̂N (C)ĝN (C) =
1

2dimN

∑
T⊂[n]

f̂N (T )ĝN (T ) (3.4.2)
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Where for the equality we again used the fact that when the sum is taken by subsets,
each term of the form f̂N (C)ĝN (C) is counted 2dimN many times.

In particular:

E[f 2|AN ] =
∑

C∈Fn2 /N

f̂ 2
N (C) =

1

2dimN

∑
T⊂[n]

f̂ 2
N (T )

These observations allow to express the first of second moment of functions accord-
ing to a DaC measure induced by a random linear subspace with the random Fourier
coefficients f̂N (T ).

E[f ] = E[f̂N (∅)] = E[
∑
N∈N

f̂(N)] =
∑
T⊂[n]

f̂(T ) Pr[T ∈ N ]

Proposition 3.4.1. Let µ be a DaC measure and let N be a corresponding random linear
subspace. Then for any two functions f, g : {−1, 1}n 7→ R

Eµ[f(σ)g(σ)] =
∑
T⊆[n]

E[
1

2dimN f̂N (T )ĝN (T )] (3.4.3)

Proof. By the tower property of conditional expectation

E[f(σ)g((σ)] = E[E[fg(σ)|N ]]

For a fixed N , the Fourier expansion of f and g gives Equation 3.4.2. Now taking
expectation on both sides yields the statement.

Proposition 3.4.2. Let µ be a DaC measure and let N be a corresponding random linear
subspace. Then for any function f : {−1, 1}n 7→ R with Eµ[f ] = 0

Sµ(f) =
1

nd

∑
T∈[nd]

E

 1

2dimN

∑
j∈Zdn

f̂N j(T
j)

2 (3.4.4)

Proof. Since Eµ[f ] = 0 also Eµ[f j] = 0, because of the translation invariance of µ.
Therefore Covµ(f, f j) = Eµ[ff j]. Therefore we can use Proposition 3.4.1.

First note that (χT )j(σ) = χT (σ−j) =
∏

k∈T σk−j = χT−j(σ). Therefore,

f j =
∑
T⊂[n]

f̂(T )χT−j =
∑
T⊂[n]

f̂(T j)χT

that is, f̂ j = f̂(T j)

For a fixed subspace N and a fixed subset T and j ∈ Zdn we have

f̂ jN (T ) =
∑
N∈N

f̂ j(T ⊕N) =
∑
N∈N

f̂(T j ⊕N j) = f̂N j(T
j)

where we used the simple fact that (T ⊕N)j = (T j ⊕N j).
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We are now ready to express the susceptibility of f with the spectrum.

Sµ(f) =
∑
T⊆[n]

∑
k∈Zdn

E
[

1

2dimN f̂N (T )f̂kN (T )

]
=
∑
T⊆[n]

∑
k∈Zdn

E
[

1

2dimN f̂N (T )f̂N k(T
k)

]
=

=
1

nd

∑
k,l∈Zdn

∑
T⊆n]

E
[

1

2dimN f̂N l(T )f̂N l+k(T
k)

]
For the last equality we exploited the fact that the measure µ together with the

random subspace N is transitive and therefore averaging over all translates of N returns
the original measure.

Now let us divide the sum according to orbits of subsets. Since we enumerate all
translates T i in the orbit of [T ], every term is counted |Stab([T ])| many times. Therefore
we get for an orbit that [T ]

1

nd|Stab([T ])|
∑

k,l,j∈Zdn

E
[

1

2dimN f̂N l(T
j)f̂N l+k(T

j+k)

]
=

1

nd|Stab([T ])|
∑

i,l,m∈Zdn

E
[

1

2dimN f̂N i+j(T
j)f̂N i+m(Tm)

]
where we used the substitutions i = l− j and m = j+ k. So we can write the above sum
in a more concise form:

1

nd|Stab([T ])|
∑
i∈Zdn

E

 1

2dimN

∑
j∈Zdn

f̂N i+j(T
j)

2 =

1

|Stab([T ])|
E

 1

2dimN

∑
j∈Zdn

f̂N j(T
j)

2
For the equality we again used that the measure is transitive.

Now if we sum according to all subsets T , every term as above is counted |[T ]| times.
So we get

Sµ(f) =
∑
T∈[nd]

1

|Stab([T ])||[T ]|
E

 1

2dimN

∑
j∈Zdn

f̂N j(T
j)

2
Noting that by the Orbit Counting Lemma |Stab([T ])||[T ]| = nd for every T ⊆ [nd]
finishes the proof.

Now we will try to establish some upper bounds for Sµ(f). In the sequel we are going
to fix a U ⊆ [nd] and we will assume that f is F(U)-measurable. This is equivalent to
the Fourier coefficients of f being supported on subsets of U .

For every subset T ⊆ [nd] define a random subset F (T ) as follows:

FN (T ) :=
{
l ∈ Zdn : (T ⊕N )l ∩ P(U) 6= ∅

}
Where T ⊕N = {T ⊕N : N ∈ N}.

Obviously, FN (T ) also depends on U , but to ease the notation we are going to suppress

this dependence. Note that whenever (T ⊕N )j ∩ P(U) = ∅ then f̂N j(T ) = 0 since f is
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F(U)-measurable and thus all its Fourier coefficients f̂S are 0 in case S 6⊆ U . Therefore,
for fixed N the Cauchy-Schwarz inequality gives that:∑

j∈Zdn

f̂N j(T
j)

2

≤
∑
j∈Zdn

f̂ 2
N j(T

j)
∑
j∈Zdn

12
{j∈FN (T ))} = |FN (T )|

∑
j∈Zdn

f̂ 2
N j(T

j)

So we have for any F(U)-measurable function f

Sµ(f) ≤ 1

nd

∑
T∈[nd]

E

 1

2dimN |FN (T )|
∑
j∈Zdn

f̂ 2
N j(T

j)


=

1

nd

∑
j∈Zdn

∑
T∈[nd]

E
[

1

2dimN |FN (T )|f̂ 2
N j(T

j)

]
=
∑
T∈[nd]

E
[

1

2dimN |FN (T )|f̂ 2
N (T )

]
Where in the last equality we used again that our measure is transitive.

Now the question is how large FN (T ) can be? Let us start with an example: Suppose
that N and T are such that there exist an l satisfying l ∈ T ⊕N for all N ∈ N . Now if
k ∈ FN (T ) that is, there is N ∈ N such that (T⊕N)k ⊆ U , then obviously lk = l+k ∈ U .
But this may happen for at most |U | many k ∈ Zdn and therefore we have the upper bound
|FN (T )| ≤ |U |.

We slightly generalise this idea: a set L ⊆ [n] is a covering set for (T,N ) if (T ⊕N)∩
L 6= ∅ for every N ∈ N . Following the argument above, in case k ∈ FN (T ) then for some
l ∈ L it holds that l + k ∈ U . This implies that |FN (T )| ≤ |L||U |.

Definition 3.4.2 (Size of minimal covering set).

βN(T ) =

{
min |L| : (T ⊕N) ∩ L 6= ∅ ∀N ∈ N if T /∈ N
0 if T ∈ N .

Observe that if ∅ ∈ T ⊕N then there is no covering set. This happens if and only if
T ∈ N . So in this case we have to look for other methods to bound the susceptibility.
Now we split the sum accordingly:

Sµ(f) ≤
∑
T∈[nd]

E
[

1

2dimN |FN (T )|f̂ 2
N (T )1T∈N

]
+
∑
T∈[nd]

E
[

1

2dimN |FN (T )|f̂ 2
N (T )1T /∈N

]

≤ndE[f̂ 2
N (∅)] + |U |

∑
T⊆[nd]

E
[

1

2dimN βN(T )f̂ 2
N (T )

]

Note that E[f̂ 2
N (∅)] = E[(E[f |N ])2] − E2[E[f |N ]] = Var(E[f |N ]) using the fact that

E2[E[f |N ]] = E[f ] = 0 by assumption.

3.4.1 FK-Ising

It is well know that the Ising model can be described as a DaC model. Namely on any
graph G one performs an edge percolation according to the law

φp,2(ω) =
1

Z

∏
e∈E

pω(e)(1− p)1−ω(e)2k(ω)
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where p ∈ (0, 1) and k(ω) is the number of connectivity clusters.
For a given configuration ω let C1, C2, . . . Ck(ω) denote the sizes of the connectivity

clusters. It is easy to see that dimN =
∑

i (Ci − 1) = n− k(ω). Therefore

Eφ[f(σ)g(σ)] =
1

2n

∑
T⊆[n]

Eφ[2k(ω)f̂N (T )ĝN (T )]

Now let B denote the Dac measure induced by the Bernouilli(p) percolation on G. Then
by the definition of φp,2:

Eφp,2 [f ] = EB[2kf ]

so we have:

Eφ[f(σ)g(σ)] =
1

2n

∑
T⊆[n]

EB[22k(ω)f̂N (T )ĝN (T )] = 2n
∑
T⊆[n]

EB[f̂N (T )ĝN (T )]
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