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Abstract

The Guruswami-Sudan algorithm is a standard algorithm that decodes beyond the clas-
sical decoding bound for Reed-Solomon codes. We study some complexity improvement
techniques namely polynomial reconstruction and basis transformation which enhance the
decoding capabilities of the algorithm, and compare the techniques.
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1. Introduction

Reed-Solomon codes were invented in 1960 and within a decade an efficient algorithm was
discovered to decode them. They are efficiently encoded and decoded. Moreover, they are
widely used because of their favourable properties including high error correction capability,
burst-error correction capability, and erasure-recovery capability.

For Reed-Solomon codes with block length n and dimension k, the Johnson Theorem states
that for a Hamming ball of radius n −

√
nk there can be at most O(n2) codewords. The

first efficient polynomial time algorithm that agrees with the theorem was discovered by
Sudan [2], which was improved by Guruswami-Sudan [3]. The Guruswami-Sudan paper [3]
considered the following problem: given n distinct points (x1, x2, · · · , xn) in Fq and another
n points (y1, y2, · · · , yn) in Fq, find polynomials f(x) of degree at most k − 1 that agree at
at least t points. The algorithm basically takes as inputs a received word β = (β1, · · · , βn)
(this is basically some n points (α1, β1), · · · , (αn, βn) where (α1, · · · , αn) are distinct field
elements), the number of agreements t and the dimension k of the Reed-Solomon code. The
algorithm constructs a bivariate polynomial which is then factored with some conditions.
These factors, when they satisfy (as equations) at least t of the n points, are listed. A list of
those polynomials identify with codewords yielding a full list of possible codewords that might
have been transmitted. Enumerating all possible codewords this way suggests the name list
decoding. A quest for efficient decoding in a larger radius, or with fewer polynomials listed,
or enumerating polynomials in a reduced time is keeping researchers busy.

In [4], a polynomial reconstruction technique was used to improve on the decoding capability
of the Guruswami-Sudan algorithm. It was established that the Guruswami-Sudan algorithm
can list decode beyond the Johnson radius. In this reconstruction process, we apply some
nice reduction technique and then apply the Guruswami-Sudan algorithm appropriately to
the problem. This guarantees efficient decoding with a larger radius.

The idea of improving Sudan [2] and Guruswami-Sudan [3] by using some transformation or
re-encoding was explored by many researchers. Nevertheless, the basis transformation that
we considered actually incorporates a transformation where the n points get modified in a
certain way and then re-encoded. In the basis transformation, we write the Guruswami-
Sudan algorithm in terms of modules over a univariate polynomial ring, and then try to
get some reduction in the total time required to complete the interpolation step of the
Guruswami-Sudan algorithm. If the length of the list of polynomials to be enumerated ex-
ceeds the multiplicity of the bivariate polynomial, we attain an improvement in the decoding
time of the interpolation step of the Guruswami-Sudan algorithm.

In the rest of the work, we give a precise literature review in Chapter 2, discuss preliminary
concepts in Chapter 3 and provide a detailed treatment of the Guruswami-Sudan interpo-
lation in Chapter 4. Furthermore, we study polynomial reconstruction in Section 5.2 and
basis transformation in Section 5.3 for improved complexities in Chapter 5. We give a short
conclusion in Chapter 6.
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2. Literature Review

Reed-Solomon codes are useful in many ways because of their efficient error correction prop-
erty. Classically, algorithms were constructed to decode Reed-Solomon codes but only up
to a certain radius. In the year 1997, Sudan [2] built on the work of Welch-Berlekamp [5]
and Ar et al. [6] to change the dynamics of decoding Reed-Solomon codes by introduc-
ing an algorithm that efficiently decodes beyond the classical decoding bound. In the year
1999, the famous Guruswami-Sudan algorithm [3] which improved on the Sudan algorithm
[2] was published. The Guruswami-Sudan algorithm [3] is termed the real game changer in
decoding Reed-Solomon codes due to its sophisticated nature and capacity. The algorithm’s
complexity, just as Sudan’s [2], is in polynomial time.

The Guruswami-Sudan algorithm [3] executes the decoding of Reed-Solomon codes in two
steps - bivariate polynomial interpolation and factorisation. Some later authors considered
ways of improving the complexity of solving the Guruswami-Sudan problem [3]. In [7], a
new code was constructed on which the performance of the Guruswami-Sudan algorithm
attains better (optimal) complexity instead of attempting to improve the Guruswami-Sudan
algorithm. We will not discuss new construction of codes since a case like this is rare. In the
more frequent cases, some complexity in solving the Guruswami-Sudan problem is improved
in either the interpolation or the factorisation step.

In [4], an algorithm for polynomial reconstruction that considers the Guruswami-Sudan
problem [3] in instances and then solve them by applying the Guruswami-Sudan algorithm an
appropriate number of times was given. This approach registers an increase in the decoding
radius, hence an improved complexity was attained.

Several authors tried to improve the complexities in the interpolation step of the Guruswami-
Sudan algorithm. In the work of Kotter [8], Roth-Ruckenstein [9] and others, transformation
and re-encoding were discussed. Roth-Ruckenstein [9] reformulated the problem in Sudan
[2] into a key equation over a univariate polynomial ring. The Guruswami-Sudan problem
was reformulated as a system of key equations in [10], [11] and [12]. Alekhnovich’s algorithm
[13] is based on a conversion of Grobner bases from one ordering to another using divide-
and-conquer and [14] presented a list decoding of Reed-Solomn codes from a Grobner basis
perspective. Beelen and Brander [12] used key equations to describe the interpolation step in
terms of modules over a univariate polynomial ring. This approach resulted in an improved
complexity for the interpolation step of the Guruswami-Sudan problem.

In this thesis, we study the Guruswami-Sudan algorithm for decoding Reed-Solomon codes.
We consider polynomial reconstruction [4] and basis transformation [12] for improved com-
plexities.

In the next chapter, we discuss preliminary concepts for understanding the Guruswami-
Sudan interpolation.
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3. Preliminary Concepts

In Chapter 2, we highlighted some works conducted on decoding Reed-Solomon codes. In this
chapter, we discuss concepts required for the understanding and decoding of Reed-Solomon
codes beyond the classical decoding bound. We present a fair idea of coding in general,
introduce finite fields and outline some uses of Reed-Solomon codes.

3.1 Definitions

Let Σ be an alphabet of n distinct elements. We will let Fq = Σ until otherwise stated, since
Reed-Solomon codes are linear codes. We make the following definitions:

Definition 3.1.1 (Hamming distance [15]). Let x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn)
be two strings in Fnq . The number of inequal symbols

d(x, y) = |{i ≤ n|xi 6= yi}|

is the Hamming distance between strings x and y.

Definition 3.1.2 (Hamming weight [15]). Let x = (x1, x2, · · · , xn) ∈ Fnq and 0 = (0, 0, · · · , 0) ∈
Fnq . The Hamming distance d(x,0) is called the Hamming weight.

Definition 3.1.3 (Code [15]). The subset C of Fnq is called a q-ary code. The elements of C
are called codewords. If q = 2, then C is a binary code.

Definition 3.1.4 (q-ary code [16]). Let Fq be a finite set of q elements. A set of strings of
length n form a q-ary code C if their entries are from Fq.

Definition 3.1.5 (Field [17]). A field is a commutative ring in which every non-zero element
has a multiplicative inverse.

Definition 3.1.6 (Reed-Solomon code [18]). Let (x1, · · · , xn) be n distinct elements in Fq.
The map

Ψ : Fkq −→ Fnq
(f0, f1, · · · , fk−1) 7−→ (f(x1), f(x2), · · · , f(xn))

where (f0, f1, · · · , fk−1) is a k-dimensional vector such that

f(x) = f0 + f1x+ · · ·+ fk−1x
k−1 ∈ Fq[x]

is some encoding process. The image space of this linear map forms a Reed-Solomon code.
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Section 3.2. Error Correction Page 4

3.2 Error Correction

A message is a sequence of codewords. It is transmitted through a noisy channel. When a
codeword is transmitted, it can happen that something different is received. We call this the
received word. The received word is obviously an element of the vector space Fnq but might
not be a codeword. That is, during transmission, errors can take place. The error can be an
erasure (i.e. to have a message symbol deleted), alteration (i.e. to have a message symbol
replaced with another message symbol) or concatenation (i.e. to have codeword length
extended). Note that the Guruswami-Sudan algorithm (discussed in Chapter 4) addresses
the cases of alterations and erasures. We will consider the case of alterations in this section
for linear codes in general. A linear code, C is a code with the property that any linear
combination of codewords is also a codeword. In other words, C ≤ Fnq is a subspace. We
present two different types of error correcting codes below.

The basic idea of error correction is to see to it that when a codeword is transmitted through
a channel, which could influence limited alterations on the transmitted symbols, the receiver
should successfully decode the transmitted message. Given a code C ⊂ Fnq , the number of
codewords of C is at most qn. Our goal here is to show how C could be built for it to be an
error correcting code. Consider the code C = F5

2. Unfortunately, this cannot correct even
one error. For example, if the codeword 10000 is sent but the channel transmits 11000 the
receiver could decode the message to be any of 10000, 01000, 11100, 11000, 11010, 11001
even if we assume that there is at most one error. Therefore, we see that C is not a good
error correcting code.

Now, let C ⊂ F5
2 with codewords

C = {00000, 00111, 11001, 11110}.

If a codeword is transmitted from C with at most one error, the receiver will know the actual
message sent. In this case, we have just 4 codewords in our code but it can be massive.
Observe that each non-zero codeword in C has Hamming weight at least 3. Because the code
is linear, it implies that the minimum (Hamming) distance between any two codewords is at
least 3.

Definition 3.2.1. A linear code C is an [n, k, d]q code if C has dimension k, minimum
distance d and each codeword of C has length n.

Theorem 3.2.2. Let C be an [n, k, d]q linear code. The number of errors e that can be
corrected by C is smaller than half the minimum distance of C.

Proof. By way of contradiction, suppose y is a received vector and that there are codewords

x1, x2 ∈ C such that d(y, x1) ≤
d− 1

2
and d(y, x2) ≤

d− 1

2
. By the triangle inequality, this

implies that

d(x1, x2) ≤ d(x1, 0) + d(x2, 0) ≤ d− 1

2
+
d− 1

2
= d− 1 < d.

This is a contradiction since d(x1, x2) = d(x1 − x2, 0) ≥ d.
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Section 3.3. Encoding, Error Detection and Decoding Page 5

In information transmission, we prefer codes with large minimum distance simply because
we want to get more errors corrected.

Example 3.2.3. For C = {00000, 00111, 11001, 11110}, we know d = 3. Hence, C can correct
at most one error since 2e ≤ d− 1. If x ∈ C is transmitted and

1. w = 11001 is received, we see that x must be 11001 in which case an error was
impossible.

2. y = 11101 is received, there must be an error. By inspection, x = 11001 is the original.

3. z = 10100 is received, then there is no codeword at distance 0 or 1 from it. The
codeword x could be either 00000 or 11110.

Definition 3.2.4 (Uniquely decodable [16]). A code C is uniquely decodable if for any finite
source sequence, the sequence of code symbols corresponding to this source is different from
the sequence of code symbols corresponding to any other source sequence.

Remark 3.2.5. Another technique of building error correcting codes is to construct code-
words such that no codeword is a prefix of the other. By Definition 3.2.1, uniquely decodable
codes are not (linear) codes. They are the kind of messages use for information transmission.

3.3 Encoding, Error Detection and Decoding

There are many known techniques of encoding information which is then transmitted via a
channel in which the encoded message might encounter some alterations. The alterations
can be a change in the symbols of the codewords or that some symbols are erased completely.
We will discuss a few of these techniques that are connected to Reed-Solomon codes.

3.3.1 Parity check. This is a technique of encoding codewords of a code C ⊂ Fn2 where
the encoder adds a parity check digit mod 2 to each codeword. The parity of a codeword is
even or odd (this is basically the number of the symbol 1 in a codeword). The technique of
encoding codewords of a code C ⊂ Fn2 where the encoder adds a parity check digit to each
codeword is referred to as a Simple Parity Check or a One-dimensional Parity Check. The
encoder can decide to add a parity check mod 2 to each codeword, which is just ensuring that
the number of the symbol 1 in every message string is even. This type of One-dimensional
Parity Check can be referred to as even-parity check. It works similarly if the encoder
chooses to make sure that the number of the symbol 1 in each message string is odd. In
this case, a 0 parity check digit is added to codewords with odd number of the symbol 1
and a 1 parity check digit is added to codewords with even number of the symbol 1. The
type of One-dimensional Parity Check where each message string contains odd number of
the symbol 1 can be referred to as odd-parity check. However, a linear combination of its
encoded strings does not give another encoded string.

In a One-dimensional Parity Check, the encoder adds a parity check digit accordingly and
then transmits the encoded message. The receiver computes the parity of the received
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Section 3.3. Encoding, Error Detection and Decoding Page 6

message to determine if there occurred an error. In the case of even-parity check, if the
receiver determines that the parity of the received message is odd, the receiver will reject
the message or ask for a re-transmission on the basis that at least one symbol was altered
during transmission. Otherwise, the receiver assumes that there were no alterations. One-
dimensional Parity Check only detects an error but cannot correct with certainty.

Like One-dimensional Parity Checks, a Two-dimensional Parity Check adds a parity check
digit to every codeword accordingly. Even more, a Two-dimensional Parity Check computes
parity check digits for columns that resulted from an alignment of all encoded strings of
the One-dimensional Parity Check. For example, the code below is a demonstration of a
Two-dimensional Parity Check. The parity-check digits are recorded in the last column for
each row, and the bottom row for each column.

0 1 1
1 0 1
1 1 0

Encode−−−−→
Parity

0 1 1 0
1 0 1 0
1 1 0 0
0 0 0 0

Transmission−−−−−−−→
Channel

0 1 1 0
1 0 0 0
1 1 0 0
0 0 0 0

Detection−−−−−→
Decoding

0 1 1 0

1 0 0 0
1 1 0 0
0 0 0 0

Suppose an error in transmission is experienced. It is detected by observing the parities
across the rows and down the columns. The intersection of a row and a column whose
parities do not check out will be the coordinate of the error symbol.

The Two-dimensional Parity Check improves on the One-dimensional Parity Check for better
error detection. It detects two errors and corrects only one error.

Definition 3.3.2 (Burst error). The type of error in which two or more symbols in a string
of Fn2 change from 0 to 1 or vise-versa is called burst error. The length of the burst error is
the number of string symbols from the first corrupted to the last corrupted symbol.

In simple parity check with strings of length r, a length of r2 message is transmitted whereas
a length of (r + 1)2 message is transmitted in the Two-dimensional case. With a Two-
dimensional Parity Check, the likelihood of detecting burst errors increases. However, if four
symbols of the message are altered a Two-dimensional Parity Check will not correct an error.

3.3.3 Syndrome. The idea of encoding messages to be transmitted over a channel is basi-
cally to improve the decoding capabilities since alterations might occur during transmission.
There are different ways to do this. Consider constructing a code with codewords having
some of their index elements dependent on other index elements. One family of such codes
is repetition codes. In a repetition code, every codeword has message digits and check dig-
its. The message digits is in fact the information the encoder desires to transmit, and the
repetition of the message digits for a number of times makes its check digits. A codeword,
in this case, is the concatenation of the message digits and the check digits. Another inter-
esting family is the parity check codes. We have discussed inclusion of parity check codes in
Subsection 3.3.1 and we have already remarked there that that is not a simple parity check
problem. A simple parity check can be referred to as a single-parity-check code. In a single-
parity-check code, the parity of the message digits are considered and it is concatenated with
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Section 3.3. Encoding, Error Detection and Decoding Page 7

the message digits to form codewords.

In order to make the decoding process fast, a better technique is desired. For both repetition
and single-parity-check codes, we saw that the check digits are a function of the message
digits. Therefore, presenting a general case where the check digits are a function of the
message digits is necessary for gains in efficient and fast decoding.

Definition 3.3.4 (Parity-Check Matrix H ). This is a matrix whose rows form a basis for
the dual space C⊥ ≤ Fnq . It is a k × n matrix.

Definition 3.3.5 (Syndrome [19]). The syndrome s of any received vector r is defined by
the equation s = Hr, where H is the parity-check matrix. See Example 3.3.6.

Example 3.3.6. Consider a code in which the length of codewords is 10; 5 message digits
and 5 check digits. Denote m1,m2,m3,m4,m5 as the message digits and m6,m7,m8,m9,m10

as the check digits, and set the parity-check equations as follows:

m6 = m1 +m2 +m3 +m4

m7 = m1 +m2 +m3 +m5

m8 = m1 +m2 +m4 +m5

m9 = m1 +m3 +m4 +m5

m10 = m2 +m3 +m4 +m5

These equations form the system
1 1 1 1 0 1 0 0 0 0
1 1 1 0 1 0 1 0 0 0
1 1 0 1 1 0 0 1 0 0
1 0 1 1 1 0 0 0 1 0
0 1 1 1 1 0 0 0 0 1



m1

m2
...

m10

 =


0
0
...

0

 . (3.3.1)

Let H be the coefficient matrix in Equation (3.3.1). We call H the parity-check matrix. The
code C has 25 codewords, and a received vector is a codeword only when it satisfies Equation
(3.3.1). A decoder identifies and corrects errors by first calculating syndrome digits (hence
the name syndrome decoding) using Equation (3.3.1) as:

s1
s2
...
s5

 = H


r1
r2
...
r10

 , (3.3.2)

where s := [s1, s2, · · · , s5]T is the syndrome vector and r := [r1, r2, · · · , r10]T is the received
vector. The syndrome digits inform the decoder of the pattern of parity-check failures on
the received vector. Because of linearity, the decoder only needs to check the codewords that
have the same syndrome as the received vector. This simplifies the task since knowledge
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Section 3.4. Finite Fields Page 8

of the error pattern automatically relates to what the transmitted codeword was, and it is
given by the relation

y = x+ r

where x was transmitted, r is the error pattern and y is received.

Definition 3.3.7 (Generator matrix [15]). Let C be an [n, k, d]q Reed-Solomon code. A
k × n-matrix whose rows form a basis of C is called a generator of C. Linear combinations
of the rows of a generator matrix form the image space of C. Since C is a vector space (a
subspace of Fnq ), a basis of C is just a maximal set of linearly independent vectors and the
dimension of C is the cardinality of this basis (the number of rows of a generator matrix).

Theorem 3.3.8 (See Lemma 2.14 in [15]). Denote G = (I|P ), a generator matrix of an
[n, k, d]2-code. Then the check matrix is given by H = (P T |I), where I in G is the k× k-unit
matrix and I in H is the (n− k)× (n− k)-unit matrix and P T is the transpose of P .

Proof. Since H is the check matrix, every codeword is orthogonal to every row of H. We
know the rows of G are codewords (in fact, their linear combinations give all codewords).
Therefore, we want to show that every row of G is orthogonal to every row of H:

GHT = (I|P )(P T |I)T = P + P = 0 matrix.

3.4 Finite Fields

From Definition 3.1.5, it is straightforward to see that a field has at least two elements. We
denote Fq as a field with q elements. The construction and error-correction of Reed-Solomon
codes depend on the arithmetic of finite fields. For this reason, it will be ideal to understand
some basics of finite fields.

Finite fields are constructed. Consider F3 = {0, 1, 2}. This is a field of 3 elements. See the
addition and multiplication of its elements below.

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

* 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

From the tables, we see that for any elements α, β, γ ∈ F3, α + β = β + α, α ∗ β = β ∗ α,
α∗ (β+γ) = α∗β+α∗γ, and if α 6= 0 and β 6= 0, then α∗β 6= 0. Now, consider another set
E4 of a larger cardinality. We know any number modulo 4 belongs to the set E4 = {0, 1, 2, 3}.
However, 2 ∈ E4 with 2 ∗ 2 = 0 mod 4. A non-zero element in this set has no multiplicative
inverse. So E4 is simply not a field. Nevertheless, we can construct a field using E4. Write
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Section 3.4. Finite Fields Page 9

E4 as Fpr with p a prime (i.e. F22 where r = 2 and p = 2). We need a monic irreducible
polynomial of degree r = 2 with coefficients in Fp = F2. Since −1 = +1 and any multiple of
2 equals 0, the only possibilities are

x2 + x+ 1, x2 + x, x2 and x2 + 1.

Note that the only irreducible among these polynomials is x2 + x+ 1. So we define

f(x) := x2 + x+ 1.

If there exists ω such that f(ω) = 0, then ω2 + ω + 1 = 0. We have ω2 = −ω − 1 = ω + 1.
From this, we get ω3 = ω2 +ω = 1. Then E4 = {0, 1, ω, ω+1} gives us a new set of elements.
See the addition and multiplication of these elements below.

+ 0 1 ω ω + 1
0 0 1 ω ω + 1
1 1 0 ω + 1 ω
ω ω ω + 1 0 1

ω + 1 ω + 1 ω 1 0

* 0 1 ω ω + 1
0 0 0 0 0
1 0 1 ω ω + 1
ω 0 ω ω + 1 1

ω + 1 0 ω + 1 1 ω

From the current construction, we have a field of 4 elements.

In general, if q is a prime power we construct a field Fq in the following steps:

? write Fq = Fpr for some p prime,

? find a monic irreducible polynomial of degree r with coefficients in Fp, set

f(x) = xr + ar−1x
r−1 + · · ·+ a0,

? let f(ω) = 0 such that ωr = −ar−1ωr−1 − · · · − a0,

? compute the elements of Fq by multiplying ωr by increasing powers of ω.

In this chapter, we have learned some important concepts including the significance of finite
fields in construction Reed-Solomon codes. We have also seen that polynomials identify
with codewords, and this will be helpful in reformulating the Guruswami-Sudan problem to
simply solve it. In Chapter 4, we will strengthen the foundation specifically for solving the
Guruswami-Sudan problem.
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4. Guruswami-Sudan Interpolation

In Chapter 3, we presented some important concepts that form prerequisites to the under-
standing of our main task. In this chapter, we use the definition of a Reed-Solomon code,
present a nice way to write any bivariate polynomial as a univariate polynomial, and we
discuss Hasse derivatives which is core is solving most of our problems in Chapter 5.

4.1 Reed-Solomon Codes

Let us use Definition 3.1.6 to construct an example of a Reed-Solomon code. Since we have
shown how a four-element field is constructed in Section 3.4, we will like to use that field as
our alphabet.

Example 4.1.1. Consider F4 = {0, 1, ω, ω2} constructed using a quadratic polynomial

x2 + x+ 1 ∈ F2[x]

with coefficients in F2. We write x2 = 1×x+ 1× 1 resulting in a (k = 2)-dimensional vector
(f0, f1) = (1, 1). The polynomial f(x) = f0 + f1x is the map

(f0, f1) 7−→ ((f0 + f10), (f0 + f11), (f0 + f1ω), (f0 + f1ω
2)),

which has all together 42 codewords. We enumerate them below.

(f0, f1) Evaluation
(0, 0) (0, 0, 0, 0)
(0, 1) (0, 1, ω, ω2)
(0, ω) (0, ω, ω2, 1)
(0, ω2) (0, ω2, 1, ω)
(1, 0) (1, 1, 1, 1)
(1, 1) (1, 0, ω2, ω)
(1, ω) (1, ω2, ω, 0)
(1, ω2) (1, ω, 0, ω2)

(f0, f1) Evaluation
(ω, 0) (ω, ω, ω, ω)
(ω, 1) (ω, ω2, 0, 1)
(ω, ω) (ω, 0, 1, ω2)
(ω, ω2) (ω, 1, ω2, 0)
(ω2, 0) (ω2, ω2, ω2, ω2)
(ω2, 1) (ω2, ω, 1, 0)
(ω2, ω) (ω2, 1, 0, ω)
(ω2, ω2) (ω2, 0, ω, 1)

It is simpler and ideal for the sake of space and time to write a code in the form of a
generator matrix than to enumerate every codeword like we did in the table above. The
generator matrix for this code is

G :=

(
1 1 1 1
0 1 ω ω2

)
Example 4.1.1 is a [4, 2, 3]4 Reed-Solomon code. Its minimum distance is 3 because every
non-zero codeword has a Hamming weight at least 3. In General, Reed-Solomon codes have
minimum distance d = n− k + 1, and they can correct up to

e =

⌊
n− k

2

⌋
10
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Section 4.1. Reed-Solomon Codes Page 11

errors in classical decoding (which is at most one error in Example 4.1.1).

Theorem 4.1.2. If a polynomial of degree at most k − 1 has at least k roots, then this
polynomial is the zero polynomial.

Proof. Take R(x) ∈ F[x] with deg R(x) ≤ k − 1 and assume that R(x) has at least k roots.
Suppose ∃ an x̃ such that R(x̃) = 0. Then (x− x̃) | R(x). If R(x) has (k−1)+1 = k distinct
roots x̃1, x̃2, · · · , x̃k, then

(x− x̃1)(x− x̃2) · · · (x− x̃k) | R(x).

We have a degree k polynomial that forms a factor of a degree at most k − 1 polynomial.
Therefore, R(x) must be a zero polynomial.

Theorem 4.1.2 implies that d = n − k + 1 is a lower bound for the minimum distance of a
Reed-Solomon code. In the next example, we discuss how a Reed-Solomon code could be
written as a generator matrix first by writing field elements as powers of one field element,
called a primitive element.

Example 4.1.3. Let the field

F8 = {0, 1, ω, ω2, ω3, ω4, ω5, ω6}

be constructed from the irreducible polynomial x3 + x + 1 with coefficients from F2. Note
that ω here is not the same as in Example 4.1.1, and that this example is suitable for the
case when the generator of the field is primitive. So we let ω be a root of this polynomial,
then ω3 = ω + 1. We construct a generator matrix below with the monomials on the left
and their evaluation as a row of the matrix on the right.

1
x
x2

x3

−→
−→
−→
−→


1 1 1 1 1 1 1 1
0 1 ω ω2 ω3 ω4 ω5 ω6

0 1 ω2 ω4 ω6 ω ω3 ω5

0 1 ω3 ω6 ω2 ω5 ω ω4


From this construction, we can generate the complete Reed-Solomon code by computing the
linear combinations of the rows of the above matrix.

A very interesting fact about Reed-Solomon codes is that their generator matrices are con-
tained in each other. From the generator matrix in Example 4.1.3, we define the following:

G1 :=
(
1 1 1 1 1 1 1 1

)
, G2 :=

(
1 1 1 1 1 1 1 1
0 1 ω ω2 ω3 ω4 ω5 ω6

)

G3 :=

1 1 1 1 1 1 1 1
0 1 ω ω2 ω3 ω4 ω5 ω6

0 1 ω2 ω4 ω6 ω ω3 ω5

 G4 :=


1 1 1 1 1 1 1 1
0 1 ω ω2 ω3 ω4 ω5 ω6

0 1 ω2 ω4 ω6 ω ω3 ω5

0 1 ω3 ω6 ω2 ω5 ω ω4

 .

C
E

U
eT

D
C

ol
le

ct
io

n



Section 4.1. Reed-Solomon Codes Page 12

The matrices G1,G2,G3,G4 are the generator matrices for [8, 1, 8]8, [8, 2, 7]8, [8, 3, 6]8 and [8, 4, 5]8
Reed-Solomon codes, respectively. Note that if there are more than one irreducible polyno-
mials, the choice does not influence the resulting code. This is simply because the polynomial
only helps in constructing the field elements, which are fixed, and determining the dimension
of the generator matrix which is the same for each possible choice of irreducible polynomial
since they have the same degree. Therefore, choosing x3 + x2 + 1 instead of x3 + x + 1 will
make no difference.

Now, we demonstrate the identification of polynomials with codewords.

Example 4.1.4. Given the generator matrix of a [7, 4, 4]7 Reed-Solomon code as

G :=


1 1 1 1 1 1 1
0 1 2 3 4 5 6
0 1 4 2 2 4 1
0 1 1 6 1 6 6

 ,

we want a polynomial of degree at most k−1 (i.e. 3). Note that such a polynomial can have
at most 3 roots. Let the polynomial be

(x− 1)(x− 2)(x− 3) = x3 + x2 + 4x+ 1.

As explained in Example 4.1.3, this is just row 4 of G plus row 3 of G plus 4 times row 2 of G
plus row 1 of G. Therefore, the polynomial is identified with the codeword (1, 0, 0, 0, 6, 3, 4).

From the examples above, we learned how finite fields are constructed with the knowledge
of irreducible polynomials, and how polynomials identify with codewords of a Reed-Solomon
code. Suppose c1 ∈ C such that c1 = (f(x1), · · · , f(xn)) is transmitted with f(x) being
the original polynomial of degree at most k − 1 (where k is the dimension of C) but c2 =
(y1, · · · , yn) is the received vector. Let p(x) be a polynomial with degree at most k− 1 such
that

| {i ≤ n |p(xi) 6= yi} |≤ e.

The Guruswami-Sudan algorithm finds the polynomial p(x) (which eventually turns out to
be f(x)) in two steps:
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Section 4.1. Reed-Solomon Codes Page 13

? Interpolation: Let c2 = (β1, · · · , βn) be the received message. Construct a
bivariate polynomial

Q(x, y) =
∑
i,j≥0

qi,jx
iyj (4.1.1)

such that

– Q(x, y) 6= 0;

– Q(x, y) has a zero of multiplicity at least m at each of (αi, βi) where xi = αi
∀i;

– and the (1, k − 1)-weighted degree of Q is as small as possible.

? Factorization: Find all factors of Q(x, y) of the form y − p(x) such that the
degree of p(x) is at most k − 1. Collect these as

L = {p1(x), p2(x), . . . , pl(x)}. (4.1.2)

See the original algorithm and its interpolation and factorization theorems in [3] and some ex-
planations of them in [18]. In Example 4.1.6, we show how the Guruswami-Sudan algorithm
works.

Proposition 4.1.5 ([3]). Given n pairs of points as in the Guruswami-Sudan problem,
{(αi, βi)}ni=1 ∈ Fq × Fq, there exists a bivariate polynomial Q(x, y) as sought in the interpo-
lation step such that Q(αi, βi) = 0 for all i = 1, · · · , n provided

n

(
m+ 1

2

)
<

l(l + 2)

2(k − 1)

(and it can be found by solving a linear system).

Proof. A polynomial Q(x, y) with (1, k − 1)-weighted degree at most l can be of the form

Q(x, y) =

b l
k−1
c∑

j=0

l−(k−1)j∑
i=0

qijx
iyj.

Given that Q(αi, βi) = 0 for all i = 1, · · · , n, we have a linear system of n equations in the
unknowns qij.

For exixtence of a nonzero solution to Q(x, y), we study the rank of the coefficient matrix of
the linear system. Suppose the number of unknowns is ∆, by the number of monomials inC
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Section 4.1. Reed-Solomon Codes Page 14

Q(x, y), we have

∆ =

b l
k−1
c∑

j=0

l−(k−1)j∑
i=0

1

=

b l
k−1
c∑

j=0

(l − (k − 1)j + 1)

=

(⌊ l

k − 1

⌋
+ 1

)
(l + 1)−

(⌊ l

k − 1

⌋
+ 1

)⌊ l

k − 1

⌋(k − 1)

2

=

(⌊ l

k − 1

⌋
+ 1

)(
l + 1− (k − 1)

2

⌊ l

k − 1

⌋)
≥
(⌊ l

k − 1

⌋
+ 1

)(
l + 1− l

2

)
≥ l

k − 1

(
l + 2

2

)
.

Since the rank is at most the number of constraints in the linear system, n
(
m+1
2

)
, the result

follows.

Example 4.1.6. Consider the [6, 3, 4]7 Reed-Solomon code. Suppose the received vector is
(0, 1, 4, 1, 3, 4). This means we are given the points

(0, 0), (1, 1), (2, 4), (3, 1), (4, 3), (5, 4) ∈ F2
7,

the number of agreements t >
√
n(k − 1) so we set t = 4, we can compute the multiplicity

parameter, m and the maximum list size l as defined in [3]:

m := 1+
⌊(k − 1)n+

√
(k − 1)2n2 + 4(t2 − (k − 1)n)

4(t2 − (k − 1)n)

⌋
,

l := mt− 1,

in which case m = 2 and l = 7. We kill every monomial of the following polynomial whose
(1, 1)-weighted degree is less than m = 2.

Q(x, y) =

b l
k−1
c∑

j=0

l−(k−1)j∑
i=0

qijx
iyj =

4∑
j=0

4−j∑
i=0

qijx
iyj

If Q(x, y) is zero when evaluated at each of the given points, we attain a homogeneous linear
equation to solve for some variables qij. One such polynomial from the linear system is

Q(x, y) = −2x7 − 2x6 + 3x5y − 3x5 − 3x4y + 2x3y2 + 3x3y − 2x2y2 − 3xy3 + x3 − xy.

This completes the interpolation step of the algorithm.

C
E

U
eT

D
C

ol
le

ct
io

n



Section 4.2. A Univariate Polynomial Representation Page 15

For the factorisation, we want to get all polynomials of degree at most k − 1 (i.e. 2) in x
and check that at least t = 4 of the given points form roots to them.

We get the following factorisation over F7

Q(x, y) = −3x(−x2 + y)(x2 − 2x+ y + 3)(−3x2 − 2x+ y − 3)

from which we have −x2 + y = 0 for the points (0, 0), (1, 1), (2, 4), (5, 4) with coefficients in
F7, x

2 − 2x + y + 3 = 0 only for the three points (2, 4), (3, 1), (4, 3) with coefficients in F7,
and −3x2 − 2x + y − 3 = 0 for the points (1, 1), (3, 1), (4, 3), (5, 4), with coefficients in F7.
Our list is

L = {x2, 3x2 + 2x+ 3}.

From Example 4.1.4, we know these listed polynomials identify with codewords in the fol-
lowing way:

• y = 3x2 + 2x + 3 is just 3 times row 3 plus 2 times row 2 plus 3 times row 1 of the
generator matrix of our [6, 3, 4]7 Reed-Solomon code. In which case, ( 3 , 1, 5 , 1, 3, 4)
must be the sent codeword;

• y = x2 is just row 3 of the generator matrix of our [6, 3, 4]7 Reed-Solomon code -
(0, 1, 4, 2 , 2 , 4) must be the sent codeword. See that the coordinates 4 and 5 were
those corrupted during transmission.

The possible messages transmitted are (3, 1, 5, 1, 3, 4) and (0, 1, 4, 2, 2, 4).

4.2 A Univariate Polynomial Representation

The interpolation step constructs a bivariate polynomial, Equation (4.1.1). It is easier to
work with a univariate polynomial, instead, so we describe a general way to put down a
univariate representation for any bivariate polynomial. From Equation (4.1.1), we define the
set of all monomials as

Mx,y :=
{
xiyj : i, j ≥ 0

}
. (4.2.1)

From this definition, we denote Z≥0 as the set of nonnegative integers and construct the map

ϕ : Mx,y −→ Z2
≥0

ϕ(xiyj) 7−→ (i, j).
(4.2.2)

The map ϕ in Equation (4.2.2) is a bijection of sets.

Definition 4.2.1 (Monomial ordering [18]). A monomial order is a total order ’<’ on the
set of monomials Mx,y such that

? if λ1 ≤ δ1, λ2 ≤ δ2, then (λ1, λ2) ≤ (δ1, δ2);
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Section 4.2. A Univariate Polynomial Representation Page 16

? if λ ≤ δ and λ, δ, γ ∈ Z≥0, then λ+ γ ≤ δ + γ.

Definition 4.2.2 (Weighted degree [18]). For u, v nonnegative integers, the (u, v)-weighted
degree of a monomial xiyj is

deg(u,v)x
iyj = ui+ vj. (4.2.3)

Definition 4.2.3 ((u, v)-lexicographic order [18]). For two monomials xi1yj1 < xi2yj2 , im-
plies that ui1 + vj1 < ui2 + vj2, or ui1 + vj1 = ui2 + vj2 and i1 < i2.

Definition 4.2.4 ((u, v)-reverse lexicographic order [18]). For two monomials xi1yj1 < xi2yj2 ,
implies that ui1 + vj1 > ui2 + vj2, or ui1 + vj1 = ui2 + vj2 and i1 > i2.

Example 4.2.5. Consider the polynomial

Q(x, y) = −2x7 − 2x6 + 3x5y − 3x5 − 3x4y + 2x3y2 + 3x3y − 2x2y2 − 3xy3 + x3 − xy.

A (1, 2)-weighted degree lexicographic ordering of the monomials of Q(x, y) is

xy < x3 < x3y < x5 < x2y2 < x4y < x6 < xy3 < x3y2 < x5y < x7.

If we order the set Mx,y considering Equation (4.2.3) in a lexicographic or reverse lexico-
graphic order, we essentially have a univariate representation

ϕ0(x, y) < ϕ1(x, y) < ϕ2(x, y) < · · · < ϕl(x, y)

for some finite number of ϕi(x, y) 6= 0 in the variable y. That is to say, the bivariate
polynomial can be written as

Q(x, y) =
l∑

j=0

cjϕj(x, y) (4.2.4)

where cj is an element of the field. This is important because it reduces the problem at the
factorisation step to a root finding problem.

Example 4.2.6. Consider the [7, 4, 4]7 Reed-Solomon code. Given the points

(0, 0), (1, 3), (2, 4), (3, 1), (4, 6), (5, 4), (6, 1) ∈ F2
7,

the number of agreements t >
√
n(k − 1) so we set t = 5, we compute m = 2 and l = 9 from

the formulas in Example 4.1.6, and kill every monomial of the following polynomial whose
(1, 1)-weighted degree is less than m = 2:

Q(x, y) =
3∑
j=0

9−3j∑
i=0

qijx
iyj.

If Q(x, y) is zero when evaluated at each of the given points, we attain a homogeneous linear
equation to solve for some variables qij. One such polynomial from the linear system is

Q(x, y) =− 2x9 − 2x8 + 2x6y − 2x6 − 3x5y − 2x5 + x4y − 3x3y2 − 2x4 − x3y + 2x2y2 − 3x3

+ 3y3 + x2 + xy − 2y2.
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Section 4.3. Hasse Derivatives Page 17

This completes the interpolation step of the algorithm.

Instead of factorisation, we write a univariate representation of Q(x, y) by using a (1, 1)-
weighted degree lexicographic ordering of Q(x, y). This is just

Q(x, y) =(−2x9 − 2x8 − 2x6 − 2x5 − 2x4 − 3x3 + x2) + (2x6 − 3x5 + x4 − x3 + x)y

+ (−3x3 + 2x2 − 2)y2 + 3y3.

We solve this polynomial in y to get the roots y = x3 + 2x2 + 3x + 3, y = −2x3 + 2x2 + 3x
and y = 2x3 + x, all polynomials of at most degree 3. Now we check that at least t = 5 of
the given points form roots to these three polynomials in x over F7. We have agreements
for y = x3 + 2x2 + 3x + 3 at the points (0, 0), (1, 3), (2, 4), (3, 1), (4, 6), for y = −2x3 +
2x2 + 3x at the points (0, 0), (1, 3), (3, 1), (5, 4), (6, 1) and for y = 2x3 + x at the points
(2, 4), (3, 1), (4, 6), (5, 4), (6, 1) so we list all three

L = {x3 + 2x2 + 3x+ 3,−2x3 + 2x2 + 3x, 2x3 + x}.

The possible messages transmitted are (3, 2, 4, 1, 6, 4, 1), (0, 3, 5, 1, 0, 4, 1) and (0, 4, 6, 4, 2, 1, 3).

4.3 Hasse Derivatives

Given an interpolation polynomial (any polynomial) Q, a well-known technique of finding
its singularities is studying its partial derivatives. We shall use Hasse derivatives, instead,
to study the singularities of Q (points where Q intersects itself) simply because partial
derivatives of polynomials over fields of small characteristic are not well behaved.

Definition 4.3.1 ((r, s)-Hasse derivative [20] ). The (r, s) Hasse derivative of a polynomial
Q(x, y), denoted Dr,sQ(x, y), for any integer pair r ≥ 0, s ≥ 0 is

Dr,sQ(x, y) =
∑
i,j

(
i

r

)(
j

s

)
qi,jx

i−ryj−s (4.3.1)

where qi,j is the coefficient of xiyj in Q(x, y).

In the Guruswami-Sudan algorithm, studying singularities by exploring partial derivatives
was avoided for a more suitable technique. The technique was to shift a coordinate system
to a chosen point (xi, yi) as a new origin, and then insist that the non-zero coefficients be of
high degree. The shifting for Q(x, y), where α, β ∈ Fq is

Qα,β(x, y) := Q(x+ α, y + β). (4.3.2)

This technique is essentially applying Hasse derivatives to the polynomial Q(x, y) since

Dr,sQ(α, β) = coefficientxrysQ(x+ α, y + β).
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Section 4.3. Hasse Derivatives Page 18

This is the statement in Theorem 4.3.2. The idea of applying Hasse derivatives on interpo-
lation polynomials makes it somewhat easier to study their singularities with multiplicities.
This was discussed as a product in Lemma 2 of [20].

The bivariate polynomial Q is said to have a zero of multiplicity m at (α, β) if the shift
(Equation (4.3.2)) has a zero of multiplicity m at (0, 0). In other words, every monomial in
Q with deg(1,1)x

iyj < m has zero coefficient. The primary significance of Hasse derivatives
is to help express the shift Q(x + α, y + β) as a bivariate in x and y, which can be given a
univariate representation using Equation (4.2.4) for easy factorization.

The following theorem was given in the work of McEliece and we present the exact proof
given there due to its elegance.

Theorem 4.3.2 (See Theorem 4.4 in [18]). Let

Q(x, y) =
∑
i,j

qi,jx
iyj ∈ Fq[x, y].

For any (α, β) ∈ F2
q, the shift

Q(x+ α, y + β) =
∑
r,s

Dr,sQ(α, β)xrys.

Proof. The idea is to use binomial expansion such that the shift

Q(x+ α, y + β) =
∑
i,j

qi,j(x+ α)i(y + β)j

=
∑
i,j

qi,j

(∑
r

(
i

r

)
xrαi−r

)(∑
s

(
j

s

)
ysβj−s

)

=
∑
r,s

xrys

(∑
i,j

(
i

r

)(
j

s

)
qi,jα

i−rβj−s

)
=
∑
r,s

Dr,sQ(α, β)xrys.

Corollary 4.3.3 ([18]). We have

Q(x, y) =
∑
r,s

Dr,sQ(α, β)(x− α)r(y − β)s.

A second look at the factorization step suggests that using Corollary 4.3.3, the list in Equa-
tion (4.1.2) is just

L = {f(x) ∈ Fq[x] : (y − f(x)) | Q(x, y)}.
Our goal here is to show the significance of Hasse derivatives in solving the Guruswami-Sudan
algorithm.
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4.4 Uses of Reed-Solomon Codes

Reed-Solomon codes have found use in many systems since the quest for optimality is prior-
itized in engineering and telecommunication. We outline a few well-known uses here.

• Consumer technologies like Compact Disc (CD), Digital Optical Disc (DVD), Blu-ray
Discs, QR Codes;

• Data transmission technologies like Digital Scriber Line (DSL) and WiMAX, a family
of wireless communications standards;

• Broadcast systems like Digital Video Broadcasting (DVB), and Advance Television
Systems Committee Standards (ATSCS), standards for digital transmission over ter-
restrial cable and satellite networks;

• Storage systems like RAID 6, which are configurations for stripping, mirroring or cre-
ating parity to actually create large reliable data stores on hard disk drives.

See [4] among other sources for more on this.

In this chapter, we actually built some good foundation for understanding both the Guruswami-
Sudan problem and algorithm. In Chapter 5, we will present some improvement techniques
for the Guruswami-Sudan algorithm.
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5. Improved Complexity

In Chapter 4, we built some tools for the improvement process. Here, we present some
complexity improvement techniques that were based on the Guruswami-Sudan problem and
algorithm. We discuss reconstruction in Section 5.2 and transformation in Section 5.3.

5.1 Error-rate as a Function of Message Rate

Let C be an [n, k, d]q error-correcting code (i.e. C has codeword length n, dimension k and
minimum distance d over a q-ary alphabet Fq). This means the map

C : Fkq −→ Fnq
such that if c1, c2 ∈ C then c1 and c2 differ in at least d coordinates. For a Reed-Solomon
code, d ≥ n − k + 1 with k < n ≤ q. We use this construction to study the error-rate
dependence on the message rate in decoding the Reed-Solomon code C.

Let e be the number of distinct coordinates between some two vectors in Fnq where one is
transmitted (a codeword) and another, a message is received. The number of alterations
that can be corrected - the error in the transmission - by Theorem 3.2.2, is 2e < d. The

error-rate is defined as ε :=
e

n
, while the message rate is κ :=

k

n
. We study the error-rate

dependence on the message rate in two cases. These are: (1) when both the error-rate and
the message rate are fixed, and (2) when the error-rate is not fixed.

Basically, both rates are fixed when the number of errors is within the unique-decoding
bound. A unique decoding bound µ is a bound for an error correcting code such that for a
ball of radius µ centered at a received message, there can be only one codeword within the
ball. A powerful algorithm by Peterson [21] constructed that for a decoding radius

e <
n− k

2
,

we can decode without any complications. It can be observed that the error-rate is

ε =
1− κ

2

where the message rate is fixed (i.e. κ := k
n
). Peterson’s algorithm [21] provides a suitable

alternative to very laborious techniques of computing the error-rate which are comparing a
received word with every other codeword, or compare a received word with those codewords
in its vicinity. These techniques work but require a lot of time. See Berlekamp’s book [19]
for more information on the techniques. However, this algorithm is also rendered inefficient
when the decoding radius, e is beyond the unique-decoding bound.

It might happen that a list of codewords are found within a certain ball of radius

e ≥ n− k
2

.

20
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Hence, unique-decodability might not be achieved here. The problem of decoding correctly
in this case is interesting to researchers. Therefore, we shall study its error-rate dependence
on the message rate. From the list decoding algorithm given by Guruswami-Sudan [3], a
polynomial-time algorithm with the capability of decoding up to (for an [n, k + 1, d]q code)

e = bn−
√
nkc (5.1.1)

radius is acquired. Some later authors improved on this algorithm and hence arrived at some
improved complexities as a result of some re-encoding, and some reformulation techniques.
However, we are basing our analysis on this algorithm because it is very general and the
most standard, and does not camouflage the situation to get better result as some other
methods present. We observe that

ε = 1−
√
κ =

1− κ
1 +
√
κ
≥ 1− κ

2
. (5.1.2)

One of the reconstructions based on the Guruswami-Sudan algorithm was done in [4] and
the authors argued that the decoding radius could be larger than that given by Guruswami-
Sudan algorithm in [3]. However, this was as a result of making some improvements to the
codewords (reconstruction) prior to the application of the Guruswami-Sudan algorithm. We
want to note that the error-rate and message rate dependence was discussed in [3] and we
expand on it here.
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Figure 5.1: Error-rate dependence on information rate

5.2 Polynomial Reconstruction

Let C be an [n, k, d]q Reed-Solomon code. We know from Section 5.1 that the Guruswami-
Sudan algorithm corrects within a wider Hamming ball than classical decoding algorithms.
When we extend its decoding radius, some received words that have errors might not be
correcrtly decoded. Since the Guruswami-Sudan algorithm is our reference point (standard
algorithm), it will be interesting to investigate possible ways to improve its error-correction
capabilities. Muralidhara and Sen [4] presented a construction that discusses one way of
doing this. Note that the Guruswami-Sudan problem is the following: given n distinct
points (x1, x2, · · · , xn) in Fq and another n points (y1, y2, · · · , yn) in Fq, find polynomials
f(x) of degree at most k − 1 that agree at at least t points, i.e.

Γ := {f(x) ∈ Fq[x]|deg f(x) ≤ k − 1, f(xi) = yi for at least t points} . (5.2.1)

Finding all polynomials that agree at t points is equivalent to listing all codewords within
a Hamming ball of radius n− t.
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Let k < λn for 0 < λ < 1. Considering the Guruswami-Sudan problem, define a polynomial

fj(xi) :=
yi − yj
xi − xj

, i 6= j. (5.2.2)

Denote C an [n, k, d]q Reed-Solomon code having codewords agreeing at at least t points as
an (n, k, t) instance of the Guruswami-Sudan problem. If we let j = 1, then Equation (5.2.2)
becomes

f1(xi) :=
yi − y1
xi − x1

, i = 2, · · · , n (5.2.3)

with n− 1 points (
y2 − y1
x2 − x1

,
y3 − y1
x3 − x1

, · · · , yn − y1
xn − x1

)
.

The goal is to reduce the degree from k to k − 1. If f(x1) = y1 and deg f(x) ≤ k − 1, then
deg f1(x) ≤ k− 2 since the n-distinct input points (x1, x2, · · · , xn) is reduced to an (n− 1)-
distinct input points (x2, · · · , xn) (see Theorem 5.2.1). At this stage, we have reduced to an
(n−1, k−1, t−1) instance of the problem. In [4], the authors attained a very striking result
regarding the list size of the codewords after the Guruswami-Sudan algorithm is applied to
the (n− 1, k − 1, t− 1) instance.

Theorem 5.2.1 (See Lemma 2.1 in [4]). There exists a polynomial f(x) such that deg f(x) ≤
k − 1 and f(xi) = yi for at least t points and f(x1) = y1 iff there is a polynomial f1(x) of
degree at most k − 2 such that

f1(xi) :=
yi − y1
xi − x1

, i = 2, · · · , n

for at least t− 1 points.

Proof. (=⇒) By Euclidean algorithm, we let

f(x)

x− x1
= f1(x) +

f(x1)

x− x1
.

This implies that
f(x) = f1(x)(x− x1) + y1.

It is straight forward to see that indeed deg f1(x) ≤ k − 2.

(⇐=) We know that f1(x)(x− x1) is a polynomial, so define

f(x) := f1(x)(x− x1) + y1.

We see that f(x1) = y1 and deg f(x) ≤ k − 1.

If we consider Equation (5.2.1) and define

Γj :=

{
fj(x) ∈ Fq[x]|deg fj(x) ≤ k − 2, fj(xi) =

yi − yj
xi − xj

, i 6= j for at least t− 1 points

}
,

(5.2.4)
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then Equation (5.2.1) can be written as

Γ = ∪nj=1 {fj(x)(x− xj) + yj|fj(x) ∈ Γj} . (5.2.5)

Since for all f ∈ Γ, f(xi) = yi for at least t points and can be recovered from Γj by the
reduction process explained above.

For an (n, k, t) Guruswami-Sudan problem, we let t >
√
nk in the decoding radius given in

Equation (5.1.1). Similarly, for an (n − 1, k − 1, t − 1) we need t − 1 >
√

(n− 1)(k − 1)

for efficient decoding. If t− 1 <
√

(n− 1)(k − 1), we do further reduction of the remaining
(n− 1)-distinct input points (x2, · · · , xn) ∈ Fq for some r times to get an (n− r, k− r, t− r)
instance of the problem, with

t− r >
√

(n− r)(k − r). (5.2.6)

For n distinct points (x1, x2, · · · , xn) ∈ Fq, ∃ nr choices in constructing an (n− r, k− r, t− r)
instance from an (n, k, t) instance. Therefore, applying the Guruswami-Sudan algorithm to
this reduced state nr times is equivalent to solving the original problem. This method of
polynomial reconstruction is optimal in the sense that no information is lost and the list
size of codewords generated by the Guruswami-Sudan algorithm is maintained. In [4], the
authors gave an upper bound for r such that Equation (5.2.6) holds.

Theorem 5.2.2 (See Theorem 2.3 in [4]). Let k < αn, 0 < α < 1 and
√
nk− 1 < t ≤

√
nk.

Let
Γ = {f(x) ∈ Fq[x]|deg f(x) ≤ k − 1, f(xi) = yi for at least t points} .

Then the

1. number of polynomials, |Γ| ≤ O

(
n

2
√
α

(1−
√
α)2

+3
)

;

2. elements in Γ can be listed in O

(
n

2
√
α

(1−
√
α)2

+11

)
time.

Proof. Suppose k < αn. We apply the reduction r = 2
√
α

(1−
√
α)2

+1 times. By easy manipulation

of our assumed fact, we can write

r =
2
√
α

(1−
√
α)2

+ 1 >
2
√
α + 1

n

(1−
√
α)2

>
2
√

k
n

+ 1
n(

1−
√

k
n

)2 .
This implies that

1

r
<
n+ k − 2

√
nk

2
√
nk − 1

.
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Consider
√
nk−1 < t ≤

√
nk. We have −2rt > 2

√
nk−1−r(n+k). Since 2

√
nk−1 > nk−t2,

−2rt > nk − t2 − r(n+ k) ⇐⇒ t2 − 2rt− r > nk − r(n+ k)− r > nk − r(n+ k)− r2

⇐⇒ (t− r)2 > (n− r)(k − r)
⇐⇒ (t− r) >

√
(n− r)(k − r).

The reconstruction problem is solved for
√
nk − 1 < t ≤

√
nk by applying the Guruswami-

Sudan algorithm O

(
n

2
√
α

(1−
√
α)2

+1
)

times. In [22] and [23], the Guruswami-Sudan algorithm

algorithm is shown to take O(n10) time and returns a list of size O(n2). These two complex-
ities are contained in our claim, so the theorem is proved.

For a Hamming radius e = bn −
√
nkc, the Guruswami-Sudan algorithm guarantees a suc-

cessful decoding process. It is presented in [4] that even for a radius of

bn−
√
nkc+ c, c > 0, (5.2.7)

(which is greater than the Guruswami-Sudan radius) the reduction process explained above
can complement the Guruswami-Sudan algorithm for unique-decoding resulting in improved
complexities. The error-rate in this case,

ε = 1−
√
κ+

c

n
, (5.2.8)

is actually a negligible difference from the error-rate attained by the Guruswami-Sudan algo-
rithm given as Equation (4.3.2). However, it is typical of divide-and-conquer algorithms that
a minor factor of improvement could result in a significant improvement in the total running
time. The reduction procedure is indeed a divide-and-conquer approach (an approach that
breaks a problem into sub-problems, recursively solve the sub-problems and then combine
the answers).

The following theorem is a generalisation of Theorem 5.2.2 so its proof can be done by
induction on c, with base case c = 1, and techniques used in the proof of Theorem 5.2.2.

Theorem 5.2.3 (See Theorem 2.4 in [4]). Let k < αn, 0 < α < 1 and
√
nk − c < t ≤√

nk − c+ 1 for c > 0. Let

Γ = {f(x) ∈ Fq[x]|deg f(x) ≤ k − 1, f(xi) = yi for at least t points} .

Then the

1. number of polynomials, |Γ| ≤ O

(
n
c 2

√
α

(1−
√
α)2

+c+2
)

;

2. polynomials in Γ can be listed in O

(
n

2
√
α

(1−
√
α)2

+c+10

)
time.
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5.3 Alternative Basis Transformation

5.3.1 Lagrange Interpolation.

Theorem 5.3.2 ([15]). Given n distinct elements (x1, x2, · · · , xn) ∈ Fq and another n ele-
ments (y1, y2, · · · , yn) ∈ Fq, there exists exactly one polynomial R(x) of degree less than n
with coefficients in Fq such that

R(xi) = yi, i = 1, 2, · · · , n.

Proof. First, we prove that this polynomial exists, and then we show that it is unique. Now,
define some polynomial

R(x) :=
n∑
i=1

yiLi(x)

where

Li(x) :=
k∏

j=1,j 6=i

x− xj
xi − xj

.

This shows that such a polynomial exists.

For the uniqueness, assume that R1(x) and R2(x) both satisfy the conditions in the theorem.
Then R1(x) − R2(x) has n distinct roots. Then by Theorem 4.1.2, R1(x) − R2(x) is a zero
polynomial. Therefore, there exists such a polynomial and it is unique.

5.3.3 Syndrome-Based Decoding. As before, let e be the number of errors that occur
on a transmitted codeword x ∈ C such that y ∈ Fnq is received. We denote a vector E as the
error vector where the coordinates of E hold information about the locations of alterations.
Thus, E = (E1, E2, · · · , En) with Ei ∈ Fq and

Ei =

{
1 if there is an error at coordinate i,

0 otherwise.

Let J be the set of error locations in a received vector y (i.e. all Ei = 1). We have stated in
Section 4.1 that in classical decoding we have e =

⌊
n−k
2

⌋
, and an [n, k, d]q code can correct

any error pattern E if and only if e ≥| J |.

In the book by Ron Roth [24], we see that for syndrome coefficients S0, S1, · · · , Sn−k−1 and
E the error vector, the syndrome polynomial S(x) is defined as

S(x) :=
n−k−1∑
i=0

Six
i ≡

n∑
j=1

Ejvj
1− δjx

mod xn−k

where δj, vj, j = 1, · · · , n are some multipliers.
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Definition 5.3.4 ( [24] ). In syndrome decoding, the error-locator polynomial is defined as

Λ(x) :=
∏
j∈J

(1− δjx)

and the error-evaluator polynomial is defined as

Ω(x) :=
∑
j∈J

Ejvj
∏

i∈J\{j}

(1− δix).

From Definition 5.3.4, we have Λ(0) 6= 0 so the (well-defined) fraction

Ω(x)

Λ(x)
=

∑
j∈J Ejvj∑

j∈J (1− δjx)
≡
∑
j∈J

Ejvj
1− δjx

mod xn−k.

Since the above fraction is well-defined, we have a Key Equation that relates the error-locator
and the error-evaluator polynomials as

Ω(x)

Λ(x)
≡ S(x) mod xn−k. (5.3.1)

In syndrome decoding, the decoder basically computes S(x) from the received word y, solves
the Key Equation (i.e. Equation (5.3.1)) for the error-locator polynomial Λ(x) to determine
its roots, and finally compute the error-evaluator Ω(x) to determine the error values. We
have discussed a general case of simple syndrome decoding in Example 3.3.6.

We will use the basic idea of syndrome-based decoding of Reed-Solomon codes to reformulate
the Guruswami-Sudan problem (given in Section 4.1) in terms of modules over a univariate
polynomial ring (in other words, Key Equations).

5.3.5 Modules over Fq[x]. Consider the Guruswami-Sudan problem (we restate it again)
- given n distinct points (x1, x2, · · · , xn) in Fq and another n points (y1, y2, · · · , yn) in Fq,
find polynomials f(x) of degree at most k − 1 that agree at at least t points. Our goal is to
reformulate this problem in terms of modules over a univariate polynomial ring, Fq[x].

Definition 5.3.6 (Module [25]). Let M be a ring. A (left) M -module is an additive Abelian
group A together with a function M × A 7−→ A such that for all m1,m2 ∈M and a, b ∈ A:

1. m1(a+ b) = m1a+m1b,

2. (m1 +m2)a = m1a+m2a,

3. m1(m2a) = (m1m2)a.

Let α = (α1, · · · , αn) be some transmitted codeword and β = (β1, · · · , βn) be the received
word. The Guruswami-Sudan algorithm has order of multiplicity parameter m (which is 1
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in Sudan [2]) for the n points (α1, β1), (α2, β2), · · · , (αn, βn). Let l be the length of the list
in Equation (4.1.2) and τ be the maximum radius decoding. The bivariate polynomial

Q(x, y) =
l∑

t=0

Qt(x)yt ∈ Fq[x, y]

is the polynomial we look for in the interpolation step which satisfies some conditions in-
cluding the (1, k − 1)-weighted degree must be as small as possible. This means, for any
monomial xiyj in Q(x, y), i+ (k− 1)j < m(n− τ) (this is because the length of the list as in
Example 4.1.6 is l < mt = m(n− τ)). By our construction of Q(x, y), this weighted degree
condition has that

deg Qt(x) < m(n− τ)− (k − 1)t, for t = 0, 1, · · · , l.

Hence, we define

Nt := m(n− τ)− (k − 1)t, for t = 0, 1, · · · , l.

All we need to know about the multiplicity parameter is that for any monomial xiyj in
Q(x, y), the coefficient qij of xiyj is zero whenever i+ j < m.

Let R(x) be the Lagrange interpolation polynomial such that R(αi) = βi and define some
polynomial G(x) :=

∏n
i=1(x− αi). We know from Corollary 4.3.3 that

Q(x, y) =
∑
r,s

Dr,sQ(α, β)(x− α)r(y − β)s =
∑
r,s

Dr,sQt(α)βt(x− α)r(y − β)s.

Therefore, having r = 0, 0 ≤ t ≤ l, and 0 ≤ s < m gives that

Q(x, y) =
l∑

s=0

D0,sQt(α)βt(y − β)s. (5.3.2)

From Equation (5.3.2), we see that Q(x, y) has a multiplicity at least m at (αi, βi) if and
only if (x−αi)m−s divides D0,sQt(α)βt for all s, t with 0 ≤ s < m and t = 0, 1, · · · , l. Below,
we prove a result which is fundamental in the reformulation process. Similar results were
presented in [11] and [12].

Proposition 5.3.7. A bivariate polynomial Q(x, y) ∈ Fq[x, y] has multiplicity at least m at
every (αi, βi) if and only if G(x)m−s | D0,sQ(x,R(x)) for all s with 0 ≤ s < m.

We will prove that the multiplicity condition implies each factor (x−αi)m−s dividesD0,sQ(x,R(x))
and by the uniqueness in the factors for all i, the product G(x)m−s divides it. For the con-
verse, remainder theorem and Hasse derivatives will be helpful.

Proof. Let (αi, βi) ∈ F2
q, R(x) ∈ Fq[x] such that R(αi) = βi. Suppose Q(x, y) has multiplicity

at least m at (αi, βi). Equation (4.2.4) gives a univariate representation such that

D0,sQ(x,R(x)) =
∑
i≥m−s

D0,sciϕi(x,R(x)). (5.3.3)
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We shift to the origin - assume (αi, βi) = (0, 0). This means R(0) = 0, so x | R(x). Consider
s < m where we have each polynomial D0,sϕi(x, y) with no terms of degree less than m− s.
Since each D0,sϕi(x, y) have have only terms with degrees greater than or equal to m − s,
and x | R(x), then

xm−s | D0,sciϕi(x,R(x)) for all s with 0 ≤ s < m.

Shifting back, it follows that

(x− αi)m−s | D0,sciϕi(x,R(x)) for all s, i with 0 ≤ s < m and 1 ≤ i ≤ n.

Since (x− αi) are distinct for all i, then the product G(x)m−s divides D0,sQ(x,R(x)) too.

Conversely, suppose G(x)m−s | D0,sQ(x,R(x)) for all s with 0 ≤ s < m. Then each factor
(shifted to the origin, i.e. αi = 0) xm−s | D0,sciϕi(x,R(x)). This means that for some
polynomial Us(x),

D0,sQ(x,R(x)) = xm−sUs(x) with 0 ≤ s < m.

By Corollary 4.3.3, we can write

Q(x, y) =
∑
s

D0,sQ(x,R(x))(y −R(x))s

=
∑
s<m

D0,sQ(x,R(x))(y −R(x))s +
∑
s≥m

D0,sQ(x,R(x))(y −R(x))s

=
∑
s<m

xm−sU(m−s)(x)(y −R(x))s +
∑
s≥m

D0,sQ(x,R(x))(y −R(x))s.

Observe that a common factor (y−R(x))s has only terms of degree at least s since x | R(x).
Therefore, every term in Q(x, y) has degree greater than m.

This proves that the multiplicity and weighted degree conditions of the Guruswami-Sudan
interpolation step are satisfied by Q(x, y) if and only if there exists a polynomial Bs(x) ∈
Fq[x] such that

D0,sQ(x,R(x)) = Bs(x)G(x)m−s with 0 ≤ s < m. (5.3.4)

and

deg Bs(x) < l(n− k)−mτ + s, with 0 ≤ s < m. (5.3.5)

In the following, we give a reformulation of the Guruswami-Sudan interpolation conditions
in terms of modules over a univariate polynomial ring, Fq[x].

Corollary 5.3.8 ([12]). Let β = (β1, · · · , βn) ∈ Fnq be a received word, l a designed list size,
and m a multiplicity parameter. Then Q(x, y) ∈ Fq[x, y] is an interpolation polynomial if
and only if it is of the form

Q(x, y) =
m−1∑
i=0

Bi(x)G(x)m−i(y −R(x))i +
l∑

i=m

Bi(x)(y −R(x))i. (5.3.6)
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Proof. From Proposition 5.3.7, this follows.

Note that Equation (5.3.6) can be expanded as

Q(x, y) =
l∑

a=0

[
m−1∑
i=0

Bi(x)G(x)m−i(−R(x))i−a
(
i

a

)
+

l∑
i=m

Bi(x)(−R(x))i−a
(
i

a

)]
ya (5.3.7)

=:
l∑

a=0

Qa(x)ya (5.3.8)

in which case we considered polynomials Bi(x) as variables. This gives a nice parameterisa-
tion such that Q(x, y) becomes a valid interpolation polynomial if and only if

deg Qa(x) < m(n− τ)− a(k − 1) for all a with 0 ≤ a ≤ l. (5.3.9)

5.3.9 A Block-Hankel Matrix. We know that Equation (5.3.4) (with Equation (4.3.1))
can be recorded as

l∑
t=s

(
t

s

)
Qt(x)(R(x))t−s = Bs(x)G(x)m−s, for all s with 0 ≤ s < m. (5.3.10)

Let the reciprocal polynomials (see [11], [10]) be the following

R̄(x) = xn−1R(x−1),

Ḡ(x) = xnG(x−1) =
n∏
i=1

(1− δix),

B̄s(x) = xl(n−k)−mτ−s−1B(x−1),

Λt(x) = xNt−1Qt(x
−1)

which, when inserted in Equation (5.3.10) yield

l∑
t=s

(
t

s

)
Λt(x)x(l−t)(n−k)R̄(x)t−s = B̄s(x)Ḡ(x)m−s, for all s with 0 ≤ s < m. (5.3.11)

Since Ḡ(0) 6= 0, the following is well-defined

T (s,t)(x) :=
R̄(x)t−s

Ḡ(x)m−s
.

Thus, considering the
(
m+1
2

)
n system of homogeneous linear equations, we obtain

l∑
t=s

(
t

s

)
Λt(x)x(l−t)(n−k)T (s,t)(x) ≡ B̄s(x) mod xm(n−τ)+l(n−k)−s(n−1), for all s with 0 ≤ s < m.

(5.3.12)
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Definition 5.3.10 (Guruswami-Sudan Syndrome [11]). The syndrome polynomials

S(0,0)(x), S(0,1)(x), · · · , S(0,l)(x), S(1,1)(x), · · · , S(m−1,l)(x)

with

S(s,t)(x) =

(m−s)n+Nt−1∑
i=0

S
(s,t)
i xi

are given by

S
(s,t)
i = T

(s,t)
i+(s+1+t(n−1)−mn), for t = s, · · · , l. (5.3.13)

By Definition 5.3.10, the homogeneous system can be modified, considering weighted degree
conditions, as

l∑
t=s

Λt(x)S(s,t)(x) ≡ B̄s(x) mod xm(n−τ)+l(n−k)−s(n−1), (5.3.14)

where deg B̄s(x) < l(n− k)−mτ + s, for all s with 0 ≤ s < m. (5.3.15)

When we consider the high degree terms in Equation (5.3.14), there are

m−1∑
s=0

(m− s)n =

(
m+ 1

2

)
homogeneous equations and they can be parameterised as

l∑
t=s

Nt−1∑
i=0

Qi
tS

(s,t)
j+i = 0, 0 ≤ j < (m− s)n, 0 ≤ s < m, (5.3.16)

where Qi
t is a univariate polynomial (a coefficient).

Definition 5.3.11 (Hankel matrix [11]). An m × n matrix S is a Hankel matrix if Si,j =
Si−1,j+1 ∀i, j with 1 ≤ i ≤ m− 1, 0 ≤ j < n− 1.

The linear system in Equation (5.3.16) gives a Block-Hankel matrix (each sub-matrix S(s,t)

is a Hankel matrix).

5.3.12 Basis Transformation. As mentioned, solving the Key Equations is crucial in syn-
drome decoding. There is an efficient algorithm by P. Beelen and K. Brander [12] that solves
the Key Equations of the Guruswami-Sudan interpolation problem. We will highlight how
their technique guarantees improved complexity. To see how they solved the Key Equations,
one should read Section 3 in [12].

From the Equation (5.3.7), Beelen and Brander [12] let the system
Q0(x)
Q1(x)

...
Ql(x)

 = A


B0(x)
B1(x)

...
Bl(x)

 (5.3.17)
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where they defined A from Equation (5.3.7) as A := [A1 | A2] such that

[A1]a,i = G(x)m−i(−R(x))i−a
(
i

a

)
, with (a, i) ∈ {0, 1, · · · , l} × {0, 1, · · · , l}

and [A2]a,i = (−R(x))i−a
(
i

a

)
, with (a, i) ∈ {0, 1, · · · , l} × {m,m+ 1, · · · , l}.

By the weighted degree condition of Qa(x) (Equation (5.3.9)), the system (5.3.17) is equiv-
alent to 

Q0(x)
xk−1Q1(x)
x2(k−1)Q2(x)

...
xl(k−1)Ql(x)

 =


1 0 0 · · · 0
0 xk−1 0 · · · 0
0 0 x2(k−1) · · · 0
...

...
...

. . .
...

0 0 0 · · · xl(k−1)

A

B0(x)
B1(x)
B2(x)

...
Bl(x)

 .

Define

B :=


1 0 0 · · · 0
0 xk−1 0 · · · 0
0 0 x2(k−1) · · · 0
...

...
...

. . .
...

0 0 0 · · · xl(k−1)

A. (5.3.18)

Basically, a solution to the system (5.3.17) is any vector

(Q0(x), xk−1Q1(x), x2(k−1)Q2(x), · · · , xl(k−1)Ql(x))T

in the Fq[x]-span of the columns of B and have maximum degree less than m(n− τ).

Definition 5.3.13 ([12]). The maximum degree of a vector is the degree of its entry with
the highest power, and the maximum degree of a collection of vectors is the sum of the
maximum degrees of each vector.

For 0 ≤ i < m, i ≤ j ≤ l, let S(i,j)(x) be the syndrome polynomial given by Definition
5.3.10. In other words, there is some polynomial E(i,j)(x) with

Rj−i(x) = E(i,j)(x)G(x)m−i + S(i,j)(x)

such that deg S(i,j)(x) < deg G(x)m−i = (m − i)n. Also, define a matrix U such that for
(i, j) ∈ {0, 1, · · · , l} × {0, 1, · · · , l}

[U ]i,j =



1 if i = j and j < m,

0 if i 6= j and j < m,(
j

i

)
E(i,j)(x) if i < m and j ≥ m,(

j

i

)
R(x)j−i if i ≥ m and j ≥ m.

(5.3.19)
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The matrix U is a good matrix for change of basis since it is upper triangular with determi-
nant 1. Thus, the module spanned by the columns of B and BU are the same. Therefore, if
a vector spans the columns of B also spans the columns of BU but with a lower maximum
degree, we achieve a reduced complexity. Below we give a result from [12] that proves that
a basis transformation resulting in an improved complexity is attained by their method of
solving the Guruswami-Sudan interpolation step.

Proposition 5.3.14 ([12]). Let B be as in Equation (5.3.18), U be as in Equation (5.3.19).
Then for 0 ≤ a ≤ l and 0 ≤ i ≤ l,

[BU ]a,i =



xa(k−1)G(x)m−i(−R(x))i−a
(
i

a

)
if a ≤ i and 0 ≤ i < m,

−xa(k−1)
m−1∑
h=a

(−R(x))h−a
(
h

a

)(
i

h

)
S(h,i)(x) if a < i and m ≤ i ≤ l,

xa(k−1) if a = i and m ≤ i ≤ l,

0 if a > i.

(5.3.20)

Moreover, the maximum degree of BU is less than (l + 1)mn.

Proof. We shall simplify using the fact that matrices BU and B has the same columns in
their first m columns. We can write
l∑

h=0

[A]a,h[U ]h,i =
m−1∑
h=0

[A]a,h[U ]h,i +
l∑

h=m

[A]a,h[U ]h,i

=
m−1∑
h=0

G(x)m−h(−R(x))h−a
(
h

a

)(
i

h

)
E(h,i)(x) +

l∑
h=m

(−R(x))h−a
(
h

a

)(
i

h

)
R(x)i−h

=
m−1∑
h=0

(−R(x))h−a
(
h

a

)(
i

h

)
(R(x)i−h − S(h,i)(x)) +R(x)i−a

l∑
h=m

(−1)h−a
(
h

a

)(
i

h

)

= R(x)i−a
l∑

h=0

(−1)h−a
(
h

a

)(
i

h

)
−

m−1∑
h=0

(−R(x))h−a
(
h

a

)(
i

h

)
S(h,i)(x).

We know that
l∑

h=0

(−1)h−a
(
h

a

)(
i

h

)
=

{
1 if a = i,

0 otherwise.

Then

[AU ]a,i =



G(x)m−i(−R(x))i−a
(
i

a

)
if a ≤ i and 0 ≤ i < m,

−
m−1∑
h=a

(−R(x))h−a
(
h

a

)(
i

h

)
S(h,i)(x) if a < i and m ≤ i ≤ l,

1 if a = i and m ≤ i ≤ l,

0 if a > i.
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Proving the last part, we got from the first part that for m ≤ i ≤ l the maximum degree of
[BU ]a,i is bounded:

max0≤h≤m−1{(h− a)(n− 1) + (m− h)n}+ a(k − 1) = mn− a(n− k) ≤ mn.

By previous results, for 0 ≤ i ≤ m− 1 the maximum degree for column i in BU is less than
mn− i. It follows that the maximum degree of BU is less than (l + 1)mn.

The method of writing the Guruswami-Sudan interpolation problem in terms of modules over
a univariate polynomial ring resulted in a complexity gain. P. Beelen and K. Brander [12]
reformulated and showed how to solve the problem, and presented an algorithm for improved
complexity. Their algorithm can complete the interpolation step of the Guruswami-Sudan
problem in O(ml4nlog2nlog logn) time. Note that the basis transformation results in a gain
only if l > m (it could be assumed tha m/l ≈ κ in Equation (5.1.2)).
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6. Conclusion

The polynomial reconstruction technique ensures an improved complexity since Equation
(5.2.7) is greater than Equation (5.1.1). We asserted in Section 3.2 that codes with large
minimum distance are desired. This unequivocally points to the fact that a large decoding
radius is preferred for better decoding. The gain in radius is at the expense of other complex-
ities like the decoding time and the number of polynomials listed by the interpolation step.
We saw in Theorem 5.2.3 that the list size and the time taken to enumerate the polynomials
make no improvement to their counterparts in the Guruswami-Sudan algorithm.

In the case of basis transformation, the Guruswami-Sudan problem is reformulated in terms
of modules over a univariate polynomial ring and the basis of the modules are replaced
accordingly for improved complexity (decoding time) in the interpolation step. This is a
nice technique in the sense that its gain is not at the expense of other complexities like the
decoding radius and list size.

The polynomial reconstruction and the basis transformation could be coupled to decode
Reed-Solomon codes. However, this will not ensure any newer improvement in the complexi-
ties. In fact, attaining a good reduction as required by Equation (5.2.6), the coupled system
will complete the interpolation step in O(ml4nr+1log2nlog logn) time (greater than O(m6n3)
time, the complexity for the interpolation step of the Guruswami-Sudan algorithm), where
r is the number of reductions as in Theorem 5.2.2.
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