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Abstract

In order to protect users from spam, financial scams or malware, security com-
panies, such as ESET,1 tend to block dangerous domains and Internet Protocol
(IP) addresses. Many of them are chronically known for spreading malware
and thus blacklisted, while others are known as clean and whitelisted sources.
However, most dangerous domains/IPs are unknown. The aim of this project
is to assign a malware probability to domains/IPs using a large scale data on
a temporal bipartite network. We model the associated reputation problem as
a network interference and graph mining problem, where we construct layers of
domains and IP addresses, and seed tthe network with empirical ground truth
on malware sources. Then we run the voter model of information spreading to
estimate marginal probabilities of domains/IPs being blacklisted. Our analysis
provides an intuitive, scalable way of identifying previously unknown, dangerous
sources online.

1An IT security company ESET which is a leader in antivirus and firewall products, see
Introduction section.
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Introduction

Security companies offering antivirus and firewall solution, such as ESET, use
various techniques to detect malicious content and catch it before it harms the
user’s machine. Most of these techniques are based on a precise understanding
of malware software, collection of samples and comparison to the newly catched
malware. Another novel trend in malicious domain and URL detection is to
study the lexical patterns in domains and Uniform Resource Locator (URL)
strings [17].

This thesis aims to approach this problem from a different direction. We rep-
resent the structure of the internet as a Passive Domain Name Server2 (PDNS)
graph which consists of hostnames or domains and the hosting IP addresses.

In order to improve the antivirus software, users are voluntarily sending
information about threat detections catch on their machines. These detections
contain information on the URL where the file was spotted, the corresponding
domain, IP address and a time stamp.

In order to recognize domains and IP addresses which are known to be a
source of malware, they are labeled as blacklisted, while others may be trusted
and labeled as whitelisted. For simplicity we ignore other possible labelling such
as phishing or Potentially unwanted application3. Labels are assigned based on
both publicly known lists, such as alexa.com, and internal classifiers. However
we do not have such information about 99% of domains and hosts.

In light of these issues, this thesis proposes a solution which assigns reputa-
tion scores to unknown domains and IPs in order to be blacklisted or whitelisted.
We constructed a bipartite network of domains and IP addresses, seeded it with
minimal ground information and propagated the information from the known
nodes to the unknown ones.

The thesis has three chapters. The first chapter is a theoretical introduction,
where we define our problem, introduce the voter model and discuss its theoreti-
cal properties. The second chapter deals with data and general statistics, where
we describe the data used and it’s parameters. The third chapter contains the
main results of the project,where we present our results and the performance of

2Passive Domain Name Server is a system which records Domain Name Server (DNS)
resolution data about the DNS severs and IP address hosts.

3Potentially unwanted application (PUA), as some software companies have a business
strategy such that their products are automatically downloaded as a person visits their website.
Antivirus software tend to block them as they look suspicious.
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CONTENTS 6

the voter model on our dataset.

Related work
There has been significant research done in the area of network interference
for detecting malware and malicious domains. Scientists at Symantec created
the Polonium model where they created a bipartite network of machines and
files and used a Belief Propagation algorithm to estimate marginal probabili-
ties of files being malicious [14]. Researchers in Hewlett-Packard used Belief
Propagation to detect malicious domains on network of hosts (IP addresses)
and domains [5]. Cisco researchers contributed in identifying botnet domains
via signals transmitted through a tripartite network of machines, host names
(domains) and host (IPs) [4].

Scientists have also been studying the voter model for decades. Eguíluz at
al. have published several works on the dynamics of the voter model on various
types of networks [2, 16, 8, 18]. Mobilia at al. [1] wrote On a role of Zealotry in
the voter model, where they analysed the voter model on a complete graph with
an initial fixed numbers of zealots4, while a larger overview on the modelling
of social dynamics was conducted by Castellano et al. in Statistical physics of
social dynamics [15].

ESET
This project was done in close collaboration with the IT security company ESET
which is a leader in antivirus and firewall products. ESET is widely known for
antivirus programs such as ESET NOD32 or ESET Internet Security, it serves
more than 110 millions users worldwide. As a proof of proficiency in cyber
security, ESET has the longest unbroken run of VB100 awards 5 for malware
detection of all Internet security vendors in the world.

Figure 1: Cassiopeia constellation.

4Zealot - a person who has very strong opinions about something, and tries to make other
people have them too (dictionary.cambridge.org)

5Virus Bulletin is an independent testing for security software.
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CONTENTS 7

The Kassiopea
The main contribution of our work is a novel domain reputation model Kassiopea
built on a customized configuration of the voter model. Howerver, most of the
similar works such as Symantec Polonium Technology [14] or domain reputation
from Hewlett-Packard [5] are built on the Belief Propagation model which is
a message-passing algorithm for graphical models based on idea of Bayesian
networks [9]. We approached our problem from a different angle, as a random
stochastic process where we spread the ground information from the known
nodes to the unknown one.

The name Kassiopea stands for the fact that the Cassiopeia is a constellation
formed by five bright stars which forms a bipartite network, see Figure 1.
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Chapter 1

Theoretical framework

In present chapter, we firstly, we characterize the malicious domain problem as
a network interference problem. Secondly, we define our network and it’s char-
acteristics. Thirdly, we present our version of modified voter model, existence
of zealots and susceptible nodes, implementation and realization of the model.
As voter model is widely used in physics, we define macroscopic parameters of
magnetization and density.

Figure 1.1: Propagation of blacklistness / whitelistness between domains and
hosts.
Red - blacklisted, green - whitelisted, light red - tend to be blacklisted, yellow
- tend to be both blacklisted and whitelisted

1.1 Domain blocking
One of the very basic techniques of how to protect people from spam, financial
scams, malware software and other nuisances on the internet is to blacklist
certain hosts or the domains. When a domain is labeled as blacklisted, users
cannot access its content.

8
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CHAPTER 1. THEORETICAL FRAMEWORK 9

There are three empirically accepted hypotheses about the relationship of
blacklisted / whitelisted domains and hosts [5, 12, 3, 6]:

1. An unknown domain which lies on the same host with mostly blacklisted
domains tends to be blacklisted. Equally for whitelisted.

2. All domains on a blacklisted host are blacklisted. Equally for whitelisted.

3. A host with mostly blacklisted domains tends to be blacklisted as well.
Equally for whitelisted.

Figure 1.1 shows how the blacklistness or whitelistness is propagated in
domain-host interference.

1.2 Network
Definition 1 Let B = (V, E) be a network of vertices V and edges E. Let
X ,Y ⊂ V, X ∩ Y = ∅ and every edge connects a node from X with one node
from Y. Then we call B a bipartite network.

We modeled the reputation problem as a network interference and graph
mining problem, where we constructed a bipartite network with layers of do-
main and IP addresses. When a domain lies on an IP address, then those nodes
are connected with an edge. Figure 1.2 shows a sketch of the two layers - do-
mains and IP addresses.

Figure 1.2: Sketch of bipartite network of domains and IP addresses with their
states.

In addition, we constructed a projected network to the corresponding bipar-
tite network and ran our reputation model on the projected version as well.

1.3 Bipartite projection
Definition 2 Let P = (X ,F) be a network corresponding to the bipartite pro-
jection on set X of network B. Let NB(i) be a set of neighbors of node i in
network B. An edge e = (xi, xj) ∈ F if NB(i) ∩NB(j) 6= ∅.
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CHAPTER 1. THEORETICAL FRAMEWORK 10

In order to compute a bipartite projection we need to find an adjacency
matrix for network B. However, in bipartite network the adjacency matrix
has two zero blocks, threfore, we defined a biadjacency matrix B. Then by
multiplying BTB we got an adjacency matrix for the bipartite projected network
P [7, 1, 9]. Figure 1.3 shows the original bipartite projection and its projection
on the domain’s set.

Figure 1.3: Bipartite network and its corresponding projected network

1.4 The voter model
The voter model is a stochastic process that describes opinion dynamics of
adopting states in between agents in the system. The system consists of N
agents which are represented as nodes of a network, where those agents are
connected by links. The agents can communicate with their neighbors only.

In our implementation, the agents had three states (labels, opinions) which
had values −1, 0,+1. The agents change their opinions based on rules and
processes described in the following sections.

1.4.1 Zealotry and susceptibility of nodes
In our implementation of the voter model in which we had a small fraction1 of
nodes that were zealots, i. e. nodes which do not change their states, while
others were susceptible and willing to adopt different states [13].

In the network the ground information was represented by zealot nodes,
while susceptible nodes were initially all the remaining unknown nodes. We
denoted -1 as a blacklisted state, +1 as a whitelisted state and 0 as an unknown
state. Initially, zealot nodes have states ±1 and others i. e. susceptible nodes
are in the unknown state 0.

At each time step an edge (ni, nj) is selected at random and node ni takes
the opinion of nj in according to the rules.

• Susceptible 0 unknown can become +1 whitelisted

• Susceptible 0 unknown can become -1 blacklisted
1In our network the fraction of zealots is ∼ 1%, see chapter Results.
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CHAPTER 1. THEORETICAL FRAMEWORK 11

• Susceptible -1 blacklisted can become +1 whitelisted

• Susceptible +1 whitelisted can become -1 blacklisted

• Zealot -1 blacklisted remains always -1 blacklisted

• Zealot +1 whitelisted remains always +1 whitelisted

Each node, whether it is a susceptible or a zealot, is treated equally and
has the same persuasion strength. We denote number of zealots in state ±1 as
Z±, susceptible in states ±1 as N± and susceptible unknown as N0. The total
number of nodes in the system does not change, N = N−+N0+N++Z−+Z+,
the only changes are states of nodes.

1.4.2 Implementation
The dynamics of our implementation of the voter model consisted of the follow-
ing steps.

1. Choose an edge at random (ni, nj); if both ni and nj are zealots, unknown
or have the same state, do nothing.

2. If in the selected edge (ni, nj) there is at least one susceptible node then
it adopts its state from the known susceptible or zealot node, otherwise
nothing happens.

3. Repeat steps 1 and 2 ad infinitum or until consensus is reached.

Under consensus we understand a stable state when the number of changes is
zero or relatively minimal2.

Other configurations

We also have experimented with different configurations. In the original config-
uration a susceptible node adopts an option with the probability 1, we tried to
improve and set the probability to various values as 0.5 or based on the degree
of the j node:

pj =
wj∑

i∈NG(j)

wi

where wi is the weight3 of the edge, NG(j) means the set of j node’s neighbors.
Other configurations led to a lower performance.

2There are various ways to measure that we have reached consensus. If the magnetization
is close to it’s extremes (m(t) ≈ ±1), if the relative fraction of active links ρ(t) ≈ 0 or if a
relative number of changes in a block of iteration is small. See chapter Results.

3Under ’weight of edge’ we understand the number of entries in our dataset which have a
connection for the particular domain-IP connection.
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CHAPTER 1. THEORETICAL FRAMEWORK 12

1.4.3 Theoretical concept of reputation
In this section, we define the realization of the voter model and characterize rep-
utation. We characterize reputation as statistical dependency between neighbor
nodes.

When the voter model reaches the consensus and the process is stopped, call
it realization of the voter model. In the end of each realization we remembered
the lastly assigned labels. Afterwards, we ran the voter model with the initial
setting (zealot and unknown susceptible nodes). During the whole process we
ran a number of realizations (50-200) and the final reputation is a long term
average of all lastly assigned labels at the end of each realization. In the Results
section we present models with various numbers of realizations.

1.4.4 Macroscopic description
In order to define and measure when the model reaches consensus we have to
define some macroscopic measures which could be used to describe the dynamics
[2, 16, 8, 18].

Magnetization m(t): average state in the network, defined as:

m(t) =
1

N

N∑
i=1

xi

m(t) ∈ 〈−1,+1〉 If m(t) = ±1 then the network reached one of the ab-
sorbing states ±1.

Initial densities σ±0: initial density of zealots states −1, 0,+1 in the entire
network at time t, defined as:

σ±0(t) =
Z± +N±0

N

Initial ratios of zealots z±: initial ratios of zealots states, defined as:

z± =
Z±
Z

Density of interfaces ρ(t): fraction of links connecting neighbors of different
states4 or a number of active links in the network. An active link is a link
such that one of the nodes could adopt its neighbor state under conditions
defined in the implementation of the voter model.

ρ(t) =
# of actitve links

# of links in the network
=

2
[ ∑
〈ij〉∈N

θ(|xi − xj |)−
∑
〈ij〉∈Z

θ(|xi − xj |)
]

〈k〉N
4We have to distinguish between zealot and susceptible nodes. If two zealots of opposite

states are connected, then the link is not active as the state cannot be adopted either way.
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CHAPTER 1. THEORETICAL FRAMEWORK 13

Where 〈ij〉 means neighboring nodes, N and Z are the set of all nodes
and the set of zealot nodes, respectively, θ(x) is Heaviside step function,
defined as:

θ(x) =

{
0, x < 0
1, x ≥ 0

ρ(t) ∈ 〈0, 1〉 If ρ(t) = 0, then the network reaches its stable state.

Summary
In this chapter, we proposed three basic hypotheses on domain blocking, we
defined and introduced our network and the concept of bipartite network and
bipartite projection. We defined the voter model as a stochastic process with up-
dating rules and defined our configuration with three states of nodes (−1, 0,+1)
and explained the concept of zealot and susceptible nodes. Lastly, we defined
how we computed reputation and defined macroscopic measure as magnetization
and density.
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Chapter 2

Data and general statistics

In this chapter we present our data and its general statistics. In order to im-
prove antivirus programs, users voluntarily send information about suspicious
detection. When a suspiciously looking file is opened on a machine, in order to
protect the computer, the antivirus program blocks it and may send a report.
If the report is send, that this detection contains information about the URL
where the file was spotted, the corresponding domain, the IP address and a time
stamp. From this detection data we are able to construct a real-time bipartite
network of domains and their hosts.

As data we considered nodes of domains, IP addresses with whitelisted,
blacklisted or unknown states. An edge in the bipartite network corresponds to
the information that a domain lies on a particular host.

2.1 Bipartite network and bipartite projection
Our original data formed a bipartite network of domains and hosts layers. We
tried to run the reputation algorithm on both the original bipartite and pro-
jected simple network. Bipartite projection is understood as a network where
two nodes are connected if they share a neighbor. In the case of a bipartite
network, nodes of two disjoint sets are in the network, while in the projected
network, there are only nodes from one set, either hosts or domains.1

2.2 Degree distribution
In order to characterize our network, we computed the degree distribution and
the degree correlation for bipartite network. Degree distribution is understood
as a probability distribution that characterizes the number of links of every

1In practice, we can create a projected network where both types of nodes are present
but they are disjoint, (a domain cannot be connected with IP, but there is no edge between
domain and IP).
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CHAPTER 2. DATA AND GENERAL STATISTICS 15

Figure 2.1: Degree distributions of domains and IP layers.

node. Based on figure 2.1 we tested our hypotheses that the network follows
power law distribution, Equation 2.1 and 2.2.

p(k) ∼ k−α (2.1)

log(p(k)) ∼ −αlog(k) (2.2)

For the whole bipartite network (including both layers), Figure 2.2, has
parameter alpha α = 2.0416.

As we can see our exponent α is very close to the value 2, it is a ultra small
world network, just above the anomalous regime2. Then considering Equation
2.3 we see that the first moment is finite, but for α ∈ [2, 3) the second moment
diverges.

〈km〉 = α− 1

α− 1−m
kmmin (2.3)

2.3 Degree correlation
Degree correlation determines whether the hubs3 tend to link with other hubs
or are more likely to connect to nodes with lower degree. We categorize the
network based on the parameter of distribution of degree correlation function,
Equation 2.4,

knn(ki) =
1

ki

N∑
j=1

Aijkj (2.4)

2If the α ∈ (1, 2) then the network is not graphical. See Barabasi [11]
3Hub is a node with a relatively high degree.
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CHAPTER 2. DATA AND GENERAL STATISTICS 16

Figure 2.2: Degree distribution of the bipartite network.

where A stands for adjacency matrix of the network and ki denotes the
particular degree [11].

In Figure 2.3, we see that the exponent of power law distribution of degree
correlation function has a clearly positive value. Therefore, we consider our
network as Disassortative Network, which means that hubs prefer to link to
low-degree nodes [11].

2.4 Macroscopic measures
In Chapter 1, we defined several macroscopic measures which describe the dy-
namics of the voter model.

Initial magnetization m(t0):

m(t0) =
1

N

N∑
i=1

xi ≈ 0.009

Initial densities σ±):

σ+ =
Z+

N
≈ 0.0229

σ− =
Z−
N
≈ 0.0140
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CHAPTER 2. DATA AND GENERAL STATISTICS 17

Figure 2.3: Degree correlation of the bipartite network.

Initial ratios of zealots z±:

z+ =
Z+

Z
≈ 0.6207

z− =
Z−
Z
≈ 0.3793

Density of interfaces ρ(t0):

ρ(t0) =
# of actitve links

# of links in the network
≈ 0.11

We also check the number of links between nodes of two zealots:

zealots_links ≈ 5.45 · 10−4

Number of links between two unknown nodes in the initial setting is:

unknown_links ≈ 0.8897

Summary
In this chapter we presented our network and its general statistics. We found
that the degree distribution of our network follows power law distribution, due
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CHAPTER 2. DATA AND GENERAL STATISTICS 18

to the fact that the exponent of power law distribution is an ultra small world
network and just above the anomalous regime. Secondly, we observed that it is
a disassortative network and the hubs tent to link to low-degree nodes. Finally,
we found initial macroscopic measures of the voter model.
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Chapter 3

Results

In this chapter, we present the results of the voter model’s application to our
dataset. Firstly, we describe its technical realization. Secondly, we define how
we measured that the model reached a consensus. Thirdly, we present our results
on accuracy, True Positive and True Negative rates.

We put significant efforts into studying performance between the bipartite
and the projected network. We also tested how the topology and our ground
information matters, for which we have created synthetic configuration models
with the same properties as our network.

Figure 3.1: Evolution of absolute number of active and inactive links in time.

3.1 Technical realization
The voter model is a simple model and its implementation has the following
structure. We define a function persuade(egde) which gets edge as an argument,
based on the rules mentioned in chapter 1, we choose a node and assign an

19
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CHAPTER 3. RESULTS 20

adopted label. For implementation see Algorithm 1.

Input: edge = (node1, node2) a tuple of two nodes
Output: Update a node’s label
Function Persuade(edge):

if node1 is zealot and node2 is not zealot then
node2 adopts node1 label

else if node1 is not zealot and node2 is zealot then
node1 adopts node2 label

else if node1 is not zealot and node2 is not zealot then
if node1 is not unknown and node2 is not unknown then

choose node that adopts the label at random
else

if node1 is unknown and node2 is not unknown then
node1 adopts node2 label

else if node1 is not unknown and node2 is unknown then
node2 adopts node1 label

else
both nodes are unknown, do nothing

end
end

end
End Function

Algorithm 1: Persuade function
Secondly, we are choosing edges at random in two for loops of size number

of batch and number of iterations in batch, respectively. As we can see the
complexity O(M) is linear to maximal number of iteration. For implementation
see Algorithm 2.

for number of batches do
for size of a batch do

choose an edge at random;
Persuade(edge);
if the process reached the consensus then

break;
end

end
Algorithm 2: Realization of the voter model

3.1.1 Network
We have performed our model on various scales of networks. Firstly, we proved
our concept on a network of size 9 · 104 nodes and 1.3 · 105 with initial magneti-
zation m(t0) = −0.0164 and relative number of active links ρ(t0) = 0.089. This
network is used in sections Comparison of bipartite and projected network and
Configuration networks.
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CHAPTER 3. RESULTS 21

Afterwards, we used a bigger network of size 1 · 107 nodes and 3.1 · 107
with initial magnetization m(t0) = 0.009 and relative number of active links
ρ(t0) = 0.11. This network was used for all other analysis.

Figure 3.2: Evolution of number of nodes with blacklisted and whitelisted labels
in time. (one realization)

3.2 Reaching consensus
In the original configurations of the voter model, where all agents are susceptible
and have only two opinions ±1, there are two stable states, where agents stop
changing their opinions1, which means that all agents have the same −1 or +1
opinion2.

Magnetization m(t) = ±1 shows if the system reached the absorbing state,
where all nodes have the same opinion, while relative fraction of active links
ρ(t) describes how many links can an update happen on. ρ(t) = 0 corresponds
to fully ordered state. In the original model there is a direct relationship:

ρ(t) = 0⇔ m(t) = ±1

For scale-free uncorrelated networks [2] the relationship between magnetization
and density relies on 〈k〉 average degree in the following way:

ρ(t) =
〈k〉 − 2

2(〈k〉 − 1)

(
1−m2(t)

)
However in our model there are zealots - nodes which never change their

opinions. Therefore, m(t) 6= ±1 will never reach a fully ordered absorbing state
and the same goes for the relative fraction of active links, ρ(t) 6= 0. Figure

1We used to called these states absorbing or fully ordered states.
2In particular, this is not true in general. Let’s have a graph with two disjointed components

where on one component all nodes have −1 opinion while on the second component +1.
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CHAPTER 3. RESULTS 22

3.1 shows how the number of active and inactive links evolves in time. We can
observe that from a certain point in time, the number of active links stops its
decay.

Figure 3.3: Evolution of magnetization m(t) in time. (one realization)

A similar phenomenon can be observed for magnetization m(t). Figure 3.2
shows the absolute number of nodes with blacklisted and whitelisted labels
evolving in time. Figure 3.3 shows the relative magnetization evolving in time.

3.2.1 Relative fraction of updates
Based on empirical observation, we estimate the expected number of iterations
required to reach consensus M3, then we split it into b blocks or batches of size
M/b. In every batch we count the number of changes and number of active and
inactive links. We observe (see Figures 3.1, 3.3, 3.4) that the process tends to
saturate at a certain number of active links, magnetization and relative number
of changes, respectively.

More interestingly we observe that in each realization of our model, the
number of active links, relative fraction of updates and magnetization saturated
at a different level. We ran 10 independent realizations of our model.

Figure 3.6 shows paths for magnetization, relative number of updates, num-
ber of active links and number of inactive links with known nodes ±1 for 10
different realizations.

3.2.2 Unknown nodes and links
Another variable to measure is the number of unknown nodes and links4 where
both nodes have not been labeled yet. Figure 3.1 shows the number of unknown
links, while Figure 3.5 describes the decay of unknown nodes in the network.

3However, the number of edges is about ∼ 107, therefore we estimated that the expected
number of iterations would be ∼ 108.

4Under unknown link we understand an inactive link where both nodes have state 0.
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Figure 3.4: Evolution of relative number of updates in time is corresponding to
the number of active links. (one realization)

As we can see the decay progresses very quickly, and for unknown nodes it pro-
gresses exponentially.

Figure 3.5: Number of unknown nodes in the network. (one realization)

In the end, we stop our model when the relative number of changes starts
to saturate. Due to the fact that each realization saturates at a different level,
we stop the realization when the derivation5 is relatively equal to zero.

5In our discrete case we count cumulative difference.
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Figure 3.6: How the levels of magnetization, relative fraction of updates, number
of active and inactive links saturate on different values for 10 realizations of the
voter model.
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3.3 Validation
In this section, we present how we tested the accuracy of how well can our model
assign reputation and predict new potentially malicious domains. However, our
problem does not belong to the traditional machine learning problems where
it would be possible to set up training and testing sets. In order to check the
performance, we use two validation methodologies.

Figure 3.7: True positive rate and false positive rate for domains, using the
ground data test set validation. Comparison of three models, varying the num-
ber of realizations 50, 100, 200.

Firstly, we tried the methodology used in Manadhata et al. [5] and Faloutsos
et al. [14] which shows the robustness of the model where we took 1/10th from
our ground data (zealot nodes) and labeled them as unknown, while the rest
9/10ths of the ground data with the susceptible nodes was the training set.
Using this validation methodology we achieved an overall accuracy of 92.64%
with True Positive Rate (TPR) of 93.38% and True Negative Rate (TNR) of
91.86%6. Figure 3.7 shows the ROC curve, while figure 3.8 shows the probability
distributions of blacklisted / whitelisted classes.

To investigate how the number of realizations changes the accuracy, we per-
formed three different models with 50, 100 and 200 realizations, respectively.
The difference in accuracy was minimal, around ±0.01%.

Secondly, we used valuation methodology which is based on the fact that
domains change their states in time. It is possible for a domain to be labeled
as unknown, but in a few days it may be blacklisted / whitelisted 7. Thanks to

6Under positive outcome or when the rate is close to +1 we understand whitelisted, while
negative outcome, rate is close to -1 we understand blacklisted.

7As we mentioned in the Introduction, domains and IP addresses are blacklisted /
whitelisted based on external and internal classifiers.
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Figure 3.8: Probability distribution of blacklisted and whitelisted classes.

that we can select domains which were unknown when the model was run but
now they are labeled. Using this validation methodology we achieved a general
accuracy of 78.78% with TPR of 52.38% and TNR of 79.09%, see Figure 3.9.

3.4 The voter model on bipartite and projected
network

In other works, the voter model was run on regular latices [8], complete networks
[16], scale free uncorrelated networks [2] or on complete bipartite [18] networks,
but none of them had such complicated structure and configuration as our net-
work and model. Therefore, we tried to simplify our network and calculate the
projection8.

The opposite was true, as we found that the projected network is more dense,
the accuracy is lower, there is loss of information and in terms of detection of
malicious domains it is better to consider the original bipartite network.

3.4.1 Difference in computation efficiency
On a sample of bipartite network with the number of nodes N ≈ 9 · 104 and
number of edges |E| ≈ 1.3 · 105, the projected network had number of edges
|F| ≈ 3.2 · 107.

The hypothesis of why this is true relies on the fact that our bipartite network
is disassortative, which means that hubs tend to link to low-degree nodes. Figure
3.10 shows a network where an IP address (hub) is linked to five domains (low-
degree nodes); the network will be projected as a complete graph of five domains.

8The projection is defined in chapter 1 as well as the projection algorithm.
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Figure 3.9: a) True positive rate and false positive rate for domains, using the
newly labeled test set validation. b) Comparison of ROC curves of bipartite
and projected network.

However, there is a high number of high cliques and many more edges,
therefore the whole model runs for longer, plus a separate, not negligible, com-
putational capacity for projecting is required.

3.4.2 Difference in accuracy
Higher complexity is not the only problem with the projected network. We have
observed that the accuracy is lower (∼ 0.15) compared to the original bipartite
network. Figure 3.9 shows the difference on two ROC curves.

3.4.3 Difference in domain detection
In chapter 1, we introduced three hypotheses of how the blacklistness / whitelist-
ness is being inherited. While the first and third are kept in the projected net-
work, the second one (i.e. All domains on blacklisted host are blacklisted.) is
omitted by the removal of the IP layer.

However, because the computation complexity is higher, accuracy is lower
and there is information loss, we decided to use the bipartite projected network
in our model.

3.5 Configuration models and synthetic networks
In order to understand the significance of our network’s topology we built two
synthetic models which have the same properties as our network. We kept the
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Figure 3.10: Bipartite network and its corresponding projected network.

degree distribution, number of zealots and their ratios (number of blacklisted /
whitelisted nodes). The models have the following configurations:

Randomly shuffled zealots: We kept the network structure and topology as
it is. Nodes and links were in the original configuration. We also kept the
susceptibility of nodes, but we shuffled the zealot’s labels at random.

Randomly shuffled links: We kept the nodes susceptibility and labels as in
the original network but we shuffled the links at random keeping the degree
distribution of each node.

Figure 3.11: ROCs for the configuration modes: a) randomly shuffled zealot’s
labels b) randomly allocated edges, keeping the degrees.

On both configuration networks ran the voter model and checked the ac-
curacy and ROC curves. Figure 3.11 shows that the performance on those
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synthetic networks is close to a random.

Based on these configuration models we can assume that the topology and
the position of zealots is significant.

Summary
In this chapter we presented results of our reputation model Kassiopea. We
demonstrated the technical implementation of the algorithm. We observed the
dynamics of the voter model on our network and based on that we defined when
it reached the consensus.

The reputation model attained a high True positive and True Negative rate,
93,38% and 92.64% respectively. We discussed the difference in running the
model on a bipartite and a projected network. Additionally, we tested how the
model behaves on a synthetic network and we concluded that the topology and
position of zealot nodes have a significant impact on the results.
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Conclusion

In this project, we aimed to detect potentially malicious domains by assigning
reputation of being blacklisted to unknown domains. We transformed it into
a large scale network mining and interference problem and we proposed and
implemented a novel Kassiopeia model. The Kassiopeia model is a special con-
figuration of the voter model, which uses the existence of zealots as a ground
information which is spreads to the remaining unknown nodes.

We performed our Kassiopeia model on large-scale network. The results
show that Kassiopea attained a high True Positive rate TPR of 93.38% and
True Negative rate TNR of 91.86% with overall accuracy of 92.64%.

Kassiopeia now assigns reputation to tens of millions of domains and predicts
new malicious domains on a daily basis.

In addition, we described the stochastic dynamics of the voter model on our
network. We defined consensus and characterized when the system reaches it.

We believe that our work has contributed in both to computer security re-
search and to the mathematical understanding of a novel configuration of the
voter model.
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