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Abstract

This thesis aims at investigating the role of inter-firm network structure in the devel-

opment of technological innovations. Technological innovation is a complex economic

problem, in that it admits a multidimensional landscape of potential solutions that are

non-trivial to explore. To model this complexity, the approach of fitness landscapes

offers a flexible and detailed framework. Furthermore, the process of technological

innovation is increasingly stylized as a collective problem of interacting economic agents,

and to model these interactions, network science offers useful tools and models. The

analysis conducted in this thesis has two goals: first, to understand the role of network

average path length, degree-heterogeneity, and edge directionality in the process of

technological innovation, and second to attempt to offer empirical case study where a

technological innovation was collectively developed. An evolutionary agent-based model

and an applied case study from financial markets are presented and discussed. In both

cases, a group of firms (in the case study, banks) collectively search a complex (rugged)

technological landscape and observe each other’s solutions through different relationship

networks. Concerning the agent-based model, two families of networks are used in the

analysis; the first family includes undirected networks which vary in terms of average

path length. The second family includes directed networks which vary in terms of degree

heterogeneity. Results for the agent-based model show that average path length and

degree heterogeneity are important factors influencing the average performance of the

system. As for the case study, I used a projected financial network that is derived from

the syndicated lending database DealScan, provided by Thomson and Reuters, which

I employ to produce a heterogeneous and directed network. The results obtained for

the case study show an interesting trade-off between market efficiency and system stability.
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1 Introduction

Both from the economic and social points of view, technological innovation represents an

important phenomenon with significant consequences. Given its notable effects on economic

growth, human progress, social development, economic stability, industrial development,

and the environment, technological innovation requires continuous efforts to scientifically

understand it. Understanding technological innovation, however, is non-trivial! First, one must

decide on what it means to study technological innovation: does the research question concern

technological innovation analyzed as a complex object (e.g. an aeroplane) or its development

process? if technological innovation is analyzed as a complex object, the question which

arises is how to model its components and figure out the relationships between them; If on the

other hand, one wants to analyze the development process of a technological innovation, then

one needs to specify which aspect or phase of the development process is the subject of the

analyses: the emergence, diffusion, or evolution of a technology? Finally, a frequent subject

of study in the technological innovation literature concerns the measurement and prediction of

technological innovation: is technological innovation measurable? is there data that represents

technological innovation? can we predict it? It is important to note that these questions are

not necessarily independent and more than one question could be the subject of the same

study. Crucially, each of these questions has been investigated with different depth. As far

as the development process is concerned, most of the literature is focused on the problem

of the diffusion of technological innovations. Diffusion of innovation is an empirically

well-established area and benefits from sound mathematical models like the S-shaped and

logistic curves [72; 61; 7; 51]. However, the focus on diffusion has created a gap in literature

represented by the scarcity of studies that analyse the other aspects of the development process

which are emergence and evolution [81; 70]. How do technologies emerge and why? Can we

understand their evolution through time? Filling this gap is important because the mechanisms

of emergence, diffusion, and evolution of technological innovation are linked through feedback

mechanisms and complex interactions and therefore should be analyzed together. For this

reason, to understand technological innovation as a process, then emergence, diffusion, and
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evolution need to (ideally) be combined in the same study. This this thesis is presented as an

original contribution to this gap.

Often, the development process of technological innovations is modelled as a collective

process of interacting agents. With this assumption (or fact) in mind, a large amount of re-

search has been conducted to understand the process of technological innovation with network

science. In this regard, the concept of network has been used to study several configurations,

such as individuals or problem solvers in a research project or organisation [4], technological

artefacts and designs [106; 164], or innovating firms which are linked through knowledge

flow relationships. Substantial work has been done showing the role of network features on

inter-firm knowledge transfer, such as network centrality and node embeddedness [90], net-

work range, and cohesion [174]. One particular line of research on complex problem solving

by collectives has concluded that the average path length of networks, defined as the speed at

which networks disseminate information, can have a relevant effect on the performance of the

collective[14; 151; 132]. Average path length correlates with speed of diffusion; Networks

with short average path length allow for information flow throughout the network to be fast.

The opposite case is with long average path length networks, which disseminate information

slowly. In reference [132], the authors argued that in situations involving collective problem

solving, short average path length networks performed better than long average path ones in

the long term but not in the short term. The explanation for this is that short average path length

networks circulate information about immediate solutions quickly and the system is likely to

experience an early convergence to low-quality solutions. Long average path length networks,

given their slow rate of information dissemination, allow agents to explore a wider variety of

solutions and discover better ones. In another experimental study, authors of reference [151]

show that short average path length networks perform better than long average path length

ones. The study showed that the reason for this was that agents were able to rationally adapt

their search strategies when they receive information more rapidly. Building on this, authors

of reference [14] show that the performance of short and long average path length networks

depends on the search strategy employed by the nodes.
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As far as technological innovation is concerned, there is evidence that shorter path length cor-

relates positively with system-level technological innovation [74]. Although these studies have

spurred an interesting debate on whether network average path length can improve collective

performance, little has been done to understand the role of other network features like degree-

heterogeneity, edge direction, as well as different interaction rules. Do heterogeneous networks

facilitate technological innovation in an innovation network? Under what conditions? Does

edge direction have an effect? Does the interaction rule between agents affect the outcome

of innovation? The aim of this thesis is to contribute to answering these questions by doing

two things: first, develop and simulate agent-based models for investigating the process of

technological innovation as a collective evolutionary process involving a technological space

(also called fitness or technological landscape) and a network of innovating firms, and second,

to present a historical case study on Financial Risk Management (FRM) to illustrate the role

of network in real life collective innovation. The case study is constructed using stylized facts

from the history of FRM. To my knowledge, this is one of few studies to analyze a real-life case

study of collective innovations and is the first study to incorporate a regulator as a ’super-node’

that influences the decisions of searching agents. The results from the agent-based model

showed that network average path length and degree-heterogeneity are important factors

affecting the average performance of the system. Another finding shows that there could be

a trade-off between the frequency with which agents seek information from their neighbours

and the rate with which they conduct an independent search. As for the case study, I used a

projected financial network that is derived from the syndicated lending database DealScan,

provided by Thomson Reuters, which I use to produce a heterogeneous and directed network.

The results obtained so far for the case study of FRM show an interesting trade-off between

market efficiency and system stability: in absence of regulatory intervention, the system

achieves high performance but at the cost of lower diversity; in presence of the regulator, the

system might achieve lower performance but keeping more diversity in the system.

The thesis is structured as follows: the second chapter investigates the problem of techno-

logical innovation: What is it, how to study it, why is it a complex problem, how to model
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it as a complex problem. The third chapter investigates the network and collective nature of

the process of technological innovation: why is the process of technological innovation de-

velopment a network and collective phenomena, how to model technological innovation as a

collective problem? In the fourth chapter, I report on the results of the evolutionary agent-based

model simulated with different network structures and interaction rules. Chapter 5 presents the

history, model, data, and results of the case study provided as evidence for the collective and

complex nature of technological innovation. Chapter 6 offers a discussion on how network

studies like this thesis might be useful for policy-making. Conclusions and future extensions

are offered in chapter 7.
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2 Technological innovation as a complex problem

Technological innovation is a significant problem both from the economic and social point

of view [56]. From an economic point of view, technological innovation can be considered

as one of the main factors influencing the economic standards of living and the quality of

social life in that it correlates with the wealth of a nation [196]. In the 1920s, the Russian

Economist Kondratiev observed that there is a relationship between technological innovation

and economic cycles of growth, recession, and depression. These cycles came to be known

as Kondratiev Waves. Later, the Austrian economist Joseph Schumpeter sustained that the

economy can be modelled as following business cycles whose ups and downs are caused

mainly by the introduction of successful technological innovations by entrepreneurs [188].

For Schumpeter, technological innovations arrive in business cycles in the form of clusters

of innovations. Schumpeter also argued that entrepreneurs would require financial capital for

them to create technological innovation, thus emphasising the role of finance in the process

of economic growth. Carlota Perez described how the episodes of technical changes which

we have witnessed so far are heavily dependent on financial capital [166]; This is the reason

why many critics argued that, had financial capital been invested in useful and productive

technological innovations, the financial crisis of 2008 could have been avoided or results less

consequential. In fact, following the crisis of 2008, the topic of technological innovation

has re-emerged into the scene as a frequently proposed solution to fight economic meltdown

[62]. Finally, it worth mentioning that technological innovation is important because it acts

as a means by which nations and firms compete globally and allow countries to establish a

comparative advantage.

From a social point of view, technological innovation is closely related to social devel-

opment. Technological changes affect almost all aspects of people’s life at home, work, or

anywhere else. It can improve social welfare by increasing the efficiency and quality of ser-

vices, free the society from the repetitive and time-consuming activities, enhance the delivery

of health-care, education, transportation, and information-related services. The ways technolo-
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gies are used by societies are of great importance. Technologies can be used for good as well as

evil purposes. Problems like global warming, technological employment, ecological disasters,

freedom restriction, and others happen mostly thanks to advances in technological innovation.

Controlling technological innovation might not be feasible, however as Kevin Kelly sustained,

the optimal approach to guarantee the best outcome out of technological innovation is to know

how to direct technological innovation for the best uses [125]. According to reference [56],

several players can influence the way technology is created and shaped: governments through

their role as technology supplier (financing science), regulators through patent laws, intellectual

property, and technical standards, and customers through their economic and political choices.

2.1 What is technological innovation?

Technological innovation has been the subject of inquiry for a wide range of scholars

and scientists; therefore, different viewpoints have emerged to understand how to define and

conceptualise technological innovation. In most definitions, the main discussion revolves

around the idea that innovation encompasses a creation process focused to a large extent on

the element of newness. Here, I should mention that innovation needs to be distinguished

from what is called invention, in that invention is about the conception of a new idea, while

innovation is about the actual development and implementation of an invention in life or in the

production process. The term ’technological’ is often attached to the concept of innovation to

indicate that innovation is developed within an existing technological paradigm that includes

tools, instruments, knowledge (know-how and know-what), patterns of inquiry and behaviours

used to tackle and solve specific problems in certain domains. In this thesis, I will adopt the def-

inition according to which technological innovation is a creative activity, conducted by one or

more agents, in order to develop a new solution to an existing problem within a specific domain.

Several types and classes of technological innovations exist. Among the economists

who emphasised the importance of technological innovation in economic life is the Austrian

economist Joseph Schumpeter. In his seminal work Theory of Economic Development, Schum-

peter distinguishes five classes of innovations:
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1. The introduction of a new good, like a product which is not yet familiar to customers,

or unique quality of the same good. This type of innovations usually takes the name of

product innovation.

2. The introduction of a new method of production, i.e. one that is not yet used or tried in

the sector or industry concerned. In many cases this type of innovation is called process

innovation.

3. The opening of a new market: a market that has not been exposed yet to the products or

services of the concerned firm.

4. New source of supply of raw materials or intermediate goods.

5. A new organisation of an industry, like the creation or breaking up of a monopoly posi-

tion.

The classification offered by Schumpeter presents itself as a general classification and does

not take into account the nature of the innovation being introduced. To provide a more accurate

and detailed distinction between the different types of technological innovations, scholars and

technologists have proposed several classification schemes. For example, authors in reference

[149] proposed a distinction between the following types of innovations:

• Radical Innovations: Innovations that leave a substantial impact or cause a significant

change in the market or industry where they are introduced. In some contexts, radical

innovations are also referred to as revolutionary or breakthrough innovations.

• Incremental innovations: Innovations that come in the form of small improvement or

change to products, services or processes. Another term used to describe incremental

innovations is evolutionary innovations.

• System innovations: Innovations that require a long time and several resources to realise.

Examples are IT systems.

Distinguishing between a radical and non-radical innovation is a non-trivial task and it

represents an important research question (see for example [50; 39; 45; 208]). Authors in
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reference [50] defined a radical innovation as one that is: (1) novel; (2) unique; and (3) has

an impact on future technology. From this definition, it can be seen that defining a radical

innovation requires a novelty criterion as well as a method to estimate the future impact of

an innovation on the marketplace and society. Additionally, radical innovation is not to be

confused with disruptive innovation, which according to the author of [40] is an innovation

that takes a produce of service that is accessible to only a small category of people and make it

affordable or accessible a large part of the society.

In another study, authors of [100] proposed the following categorization of innovations:

• Radical: These innovations establish a new dominant design with new defining concepts

that link components in a new architecture. For example, the move from room air fan to

central air conditioning.

• Incremental: Incremental innovations refine and extend an established design. Most

of the improvement occurs in individual components, without altering the underlying

concepts and links between them, for example, introducing an improvement to the air

fan’s blade design or in the power of the motor.

• Modular: It is an innovation that changes only the core design concept without changing

the product’s architecture. For example, replacing the analog with digital telephones, it

turns the core design concept but not the product’s architecture.

• Architectural: Innovations that change only the product’s architecture without changing

the components or core design concept. For example, the introduction of small, portable

fans in addition to ceiling-mounted room fans. Here, the primary components (blade,

motor, control system) are the same, but the architecture is different.

2.2 What does it mean to study technological innovation?

Studying technological innovation can refer to different things. Within the research com-

munity that investigates the phenomenon of technological innovation, four main topics have
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been the centre of focus: emergence, diffusion, evolution, measurement and prediction. In the

next sections, I offer a brief discussion of each of these subjects of study.

2.2.1 Emergence

The first subject of study that has received attention in the technological innovation

literature is the emergence of innovations. Researchers in this line of inquiry try to answer the

question of how do innovations emerge and why they are initially developed. Concerning the

why technological innovations emerge, the existing literature has focused on two main per-

spectives. In the first perspective, an innovation emerges due to an identified market/customer

need or a business problem which require firms to innovate to satisfy the demand or solve that

specific problem. This theory is called market pull. In a recent study on the Swedish firms,

author of reference [200] developed an analytical framework of the historical driving forces

of innovation in Sweden and found that Swedish innovations were mostly developed as a

response to problems or new opportunities, which can be seen as evidence for the market pull

hypothesis. The other perspective is known as technology push and perceives an innovation

as the result of a new technology or idea that is developed independently of market demand,

therefore emphasising the supply aspect of technological innovations. For example, a firm

supplies a new technology to increase profits, or a new technology emerges because it has been

enabled by another technology [209]. Proponents of each perspective debated for several years

and a conclusion is reached according to which both factors (push and pull), are crucial in

explaining the emergence of technological innovations [58; 154]. Following this conclusion,

the shift has been towards understanding the mix of economic, political, institutional and

technological factors that drive innovation [210].

In addition to the question of why technological innovations emerge, scholars have been

interested in understanding how innovations emerge. In this regard, the most dominant view

is the combinatorial mechanism which models the emergence of a new technology as a novel

combination of existing objects or technologies [9]. The combinatorial theory can explain the

emergence of a wide range of technological innovations; however, it fails at explaining the
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rise of breakthrough innovations (or novelty) which are not merely a combination of existing

technologies. One explanation was offered by Brian Arthur who sustained that technological

novelty emerges "not just from combination of what exists already but from the constant

capturing and harnessing of natural phenomena. At the very start of technological time, we

directly picked up and used phenomena: the heat of fire, the sharpness of flaked obsidian, the

momentum of stone in motion. All that we have achieved since comes from harnessing these

and other phenomena, and combining the pieces that result".

Another important theory that is gaining popularity in the scientific community is the

theory of adjacent possible introduced by Stuart Kauffman [122]. For Kauffman, the adjacent

possible is a consequence of the dynamic nature of the biosphere which is continuously

creating novelties in ways that typically cannot be foretold [123]. In other words, the

adjacent possible consists of all possible novelties that could potentially emerge (through

recombination) in the next time step, given the present state of the world. It is a subset of the

whole space of possibilities which is conditional on the present [206]. Kauffman shows that

like the biosphere, "the ’econosphere’ is a self-consistently co-constructing whole, persistently

evolving, with small and large extinctions of old ways of making a living, and the persistent

small and large avalanches of the emergence of new ways of making a living". Whenever a

Figure 1: Graph-theoretic illustration of the adjacent possible
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novelty emerges in this way, then part of what was possible becomes actual, and this actual

in turn is bounded by a new adjacent possible [207]. Figure 1 presents a graph-theoretic

representation of the adjacent possible as suggested in [140]. Nodes in grey are assumed to

represent the actual technologies abstractly. A link between two nodes implies that these two

technologies can be combined together to produce new technology. The nodes in white are the

novelties that have not been discovered so far, but yet they are possible given the present state

of the world. Some problems in economics can be assumed to have an adjacent possible that is

dynamically changing and expanding with time. Technological innovation is perhaps the most

practical example [215; 114; 123].

2.2.2 Measurement and prediction

The second line of inquiry in technological innovation concerns the problem of measure-

ment and prediction of technological innovations.

Several conventional measures have been used to quantify technological innovation.

The two most common are expenditure on research and development and patents, which

can be treated as direct measures of technological innovation. Another way to measure

technological innovation is to use a functional approach, where the examiner observes not

the innovation itself, but its desired effect. For example, authors in reference [67] measured

technological innovation in the energy sector indirectly by analysing the reduction in costs

of production of different forms of energy and attributing such a decrease in costs to innovation.

Measuring technological innovation entails several challenges. As I stated in the previous

section, the conventional definition of technological innovation is the Schumpeterian defini-

tion, according to which technology consists of novelty, i.e. the creation of completely new

products and services. However, this definition might suffer from two shortcomings: first,

important innovations should not necessarily consist in totally novel things as Schumpeter

claimed; innovative activities which cause relatively small changes in product performance
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may also have important economic and technological consequences [178]. Innovation can also

be cumulative , in that small inventions accumulate over time to produce a final innovation

[191; 53; 203]. Newness may also be subjective, in that innovation is considered new if

it is perceived as such by its potential users or developers. Finally, since ’new’ does not

necessarily translate into ’better’, the measurement of technological innovations might require

the establishment of a criterion to classify a technological innovation as such [65].

The measurement of technological innovation can assist researchers in predicting future

innovative activities. And if it was possible to predict technological innovation, then it might

be possible to predict economic growth, which is among the most critical prediction tasks for

policymakers. However, similar to the problem of measurement, the prediction of technologi-

cal innovation can be challenging for two main reasons. First, to predict an innovation we must

identify the forces driving its emergence. As discussed in the previous section on emergence,

pull vs push theories had dominated the scene for a long time, where the question was whether

technological innovation is the result of market demand or of independent technological

trajectory which is evolving through time. In addition to whether the driving factors are push

and pull, these factors can change and evolve. This, in turn, might require a dynamic theory

of technological innovation. The other reason why we cannot easily predict technological

innovation is the non-ergodicity of dynamics in a technological landscape. Assuming that

innovations emerge by combinatorial process [9], then a successful innovation will depend

on putting together existing products and services in new, unanticipated ways. Because it

is impossible to define in advance all the possible combinations, the prediction of future

technological innovations becomes almost impossible [118], unless a formulation is done in a

statistical sense.

Crucially, although the prediction of single technological innovations may be impossible,

Giovanni Dosi states that it might be possible instead to identify technological paradigms and

technological trajectories as an indicator of the general innovating behaviour in the market

[58]. According [60, p. 16], a technological paradigm entails "a definition of the relevant prob-
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lems that must be tackled, the tasks to be fulfilled, a pattern of inquiry, the material technology

to be used, and the types of basic artifacts to be developed and improved", while technological

trajectories describe progress along one paradigm. Some studies have confirmed that the

pattern of innovative behaviour in an industry can be the product of different technological

paradigms [141], while other studies have shown that there is not clear evidence whether firms

in a specific industry behave in the same way [133]. Some studies modelled technological

trajectories as patent citation networks [213]. The question of whether technological paradigm

and trajectories exist, and how to describe them remains one of the challenging tasks and open

questions in evolutionary economics.

2.2.3 Diffusion

Diffusion of innovations is a research topic that seeks to explain why and how innovations

are adopted by participants in a social system, the speed and mechanism behind the diffusion

of certain types of technologies rather than others, and the characteristics of innovation users

[177]. Innovation diffusion occupies a special place in the technological innovation literature,

mainly due to the availability of data on several case studies and the use of mathematical tools

like S-curves and logistic models [190]. In this research line, the hypothesis that specific

technologies may win over others due to technological lock-in, as well as positive feedbacks,

has gained great importance [33; 7]. The importance of technological lock-ins derives from

two main reasons: first, a technological lock-in can mean that the system has converged to

a sub-optimal solution, and second, technological lock-ins might induce a reduction of the

diversity in the system which can lead to fragility. If a system of agents (e.g. a market) adopts

a unique solution to a problem, then an unfavourable change in the environment would put the

whole system at risk. If however agents adopt a variety of solutions within every generation,

then the system as a whole is likely to survive changes in the environment.

Another well-known mechanism for innovation diffusion is the so-called network effect or

network externality, i.e. the fact that the use of one product or service by one agent is influenced

20

C
E

U
eT

D
C

ol
le

ct
io

n



by the number (network) of other agents who use the same product or service [117; 63]. Last

but not least, an influential theory that has received considerable attention in the diffusion of

innovation literature was proposed by Mark Granovetter, who sustained that the presence of

’weak ties’ could lie behind the process of diffusion of specific innovations, especially the

unconventional ones [94]. Innovators outside the conventional system may have more freedom

in experimenting new ideas and methods, and should they succeed in achieving an important

discovery, players from the conventional system who has weak ties to the innovators outside

the system may produce better results.

2.2.4 Evolution

In most studies that use the concept of diffusion of innovations, there is an implicit assump-

tion that the innovation being adopted has reached its final development or commercial shape.

In reality, innovations can change in their composition, shape, increase in details and evolve

into different forms through time as a response to feedback, enabling technologies, and other

factors. In this case, researchers often use the concept of ’evolution’ of innovations. When

studying the evolution of technological innovations, the problem is not simply why and how

certain technologies are adopted rather than others, but to understand the mechanism behind

the temporal evolution of innovations as if they were like living organisms which undergo mu-

tations and recombination based on a common descent [9]. According to Brian Arthur, under-

standing how technologies evolve is the essential question in technological innovation because

"without evolution - without a sense of common relatedness- technologies seem to be born inde-

pendently and improve independently. Each must come from some unexplained mental process,

some form of ’creativity’ or ’thinking outside the box’ that brings it into existence and sepa-

rately develops it. With evolution (if we can find how it works), new technologies would be

birthed in some precise way from previous ones, albeit with considerable mental midwifing,

and develop through some understood process of adaptation. In other words, if we could un-

derstand evolution, we could understand that most mysterious of processes: innovation." The

diffusion of technological innovations can happen simultaneously with evolution, and there-

fore a deeper understanding of technological innovation would require studying evolution and
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diffusion as two mechanisms operating simultaneously [153].

2.3 Complexity and technological innovation

In this thesis, technological innovation will be treated as a complex economic problem. Be-

fore moving to a discussion of what complex problems are in economics, it is worth illustrating

what economic means. In the mainstream approach, an economist would think of an economic

problem or economic decision-making as constrained optimisation. At the micro level, the

problem for economic agents is constrained choice: the individual customer exercises rational

choice between baskets of goods; the producing firm chooses between production plans, and

the investor chooses between portfolios of investments. At the macro level, the problem for

society is the efficient allocation of scarce resources to the many uses. For the regulator, the

problem is to guarantee fair competition and avoid costly bailouts. Typically, the mainstream

approach to economic problems assumes the existence of a single optimal solution, the market

equilibrium point. This followed mathematically from the shapes of the supply and demand

curves, including the assumption of diminishing returns to scale for demand curves. Among the

promising alternative approaches to economic problems is what I call here the complexity ap-

proach, which traces its origins from evolutionary theory and organizational learning literature

and differs from the mainstream approach in that it emphasizes the role of combinatorial evo-

lution, bounded rationality, local search, and trial and error in the study of economic problems

[157; 145]. Economic problems addressed by the complexity approach are assumed to include

the possibility of multiple optima and the premature convergence on a (sub-optimal) local peak.

To operationalize complexity in the complexity approach, it is worth clarifying what

is usually meant by complexity. To this end, I would discuss two perspectives. The first

perspective is based on the difference between ontological and epistemological complexity

[41]. Simply, ontology is concerned with the nature of a problem; epistemology is how we

know that problem [10; 23; 28; 91]. Building on this distinction, ontological complexity can

be defined as the complexity of the problem being analysed such as the complexity of an

organisation or a technological artefact. Epistemological complexity, in contrast, deals with
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the potentiality of what might be known and what may never be known about a complex

problem [184]. In other words, epistemological complexity refers to "how complex are our

descriptions" [41]. In this thesis, I assume that the epistemological complexity is a pale

shadow of ontological complexity. This point can be clarified by relating to the classification

of ontology and epistemology based on the assumption of an objective ’out there’ existence

of reality, or a subjective reality that is concluded through meditated social interpretation

[23; 28]. Objective ontological complexity assumes that a phenomenon is complex regardless

of human cognition; based on this assumption, we can say that objective epistemological

complexity looks for the variables and their relationships, which exist ’out there’, to model

the objective ontological complexity of a problem. The role of the researcher here is to

discover these variables and locate reality using observation, measurement, taste, and touch

[113; 28]. The contrasting alternative is the subjective view (often called interpretivist or

constructivist), and it argues that "the reality that people confront is the reality they construe"

[91]. The subjective view would lead to the argument that ontological and epistemological

complexity of a problem are socially constructed and dependent upon human cognition and

social relationships. While objective epistemological complexity assumes the existence of

objective ontological complexity, the challenge is with subjective epistemological complexity

which can presuppose either an objective or a subjective ontological complexity (see [113] ).

The other perspective which I adapt to understand complexity is more practical and relies on

the distinction between static and dynamic complexity [32], which I illustrate next in more

detail.

In the static sense, a problem is said to be complex if at least two conditions are satisfied.

First, the solution to the problem is made up of several components where each component

can assume one of the different values or attributes [132; 192]. Mathematically this can be

modelled as a set W of N components:

W = (ω1, ω2, ...., ωi, ...ωN)

Where ωi represents the choice for component i, for i = 1,..., N. For each component, the
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set of possible options can be assumed to be discrete or continuous, and such choices could be

qualitative or quantitative. For example, in the discrete case, we can assume that there are s

choices to choose from and therefore

ωi ∈ {1, ......., s}

For i=1,......,N, where s is a positive integer. Hence the number of solutions is finite and

given by

#Ω = sN

The second condition for static complexity requires the existence of non-linear inter-

dependencies between the components of a solution such that the total evaluation of the

goodness of a solution is not merely the sum of the goodness of the individual parts. Mathe-

matically, dependencies can be modelled using matrix or network representation. For example,

considering the formula for W defined above, we can think of a graph G=(V,E) where V

are nodes representing the components of a problem (ω1, ω2, ...., ωi, ...ωN), and E is the set

of edges (could be weighted edges) that represent the dependence between two connected

components. By definition, the presence of multiple dimensions that need to be optimized, and

complex inter-dependencies between them implies that there are different solutions to choose

from, thus giving rise to what is called a solution space, or what I shall call in this chapter a

fitness landscape (discussed in detail in the next sections).

In many cases, the static complexity of a problem might change with time, giving rise to

what is called dynamic complexity. The dynamic view is mainly concerned with the nature

and rate of change of both the components of a problem and their relationships, as well as

the behavioural changes that follow from such dynamics (e.g. dynamic optimisation). In

other words, dynamic complexity can be viewed as representing the changing patterns of

static complexity. Facts supporting the presence of dynamic complexity can be: increase in

the dimensionality of a problem, change in the pattern or nature of connectivity among the
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components of a problem, feedback loops that can alter the landscape of solutions, and the

emergence or expansion of a landscape. Throughout the thesis, it will be shown that both the

static and dynamic complexity views are important in understanding the fitness landscapes of

economic problems as well as the adaptation strategies of agents.

The question now is how do these definitions of complexity (ontological, epistemological,

static, and dynamic) apply to the problem of technological innovation? The next section pro-

vides an answer to this question and provides a review of the most important models of fitness

landscape.

2.3.1 Technological innovation as a complex problem

Technological innovation is an outstanding example of a complex problem to which the

four forms of complexity addressed in the previous section apply (ontological, epistemologi-

cal, static, and dynamic). Technological innovations are complex in the ontological sense, in

that they are real human-made objects or know-how that emerge and develop for economic and

social reasons [9]. They are also complex in the epistemological sense, in that humans might

have limited ability to understand and discover the dimensions of a technological problem

and the nature of interactions between its components. To theoretically model the ontological

complexity of technological innovation, the static view discussed previously can offer a prac-

tical approach. Typically, a technological innovation is made up of many components, where

each component can assume one of different shapes or values, with different degrees of inde-

pendence or complementarity among the components [152; 81; 73]. For example, to build a

jetfighter, one may need to optimise dimensions such as speed, firing power, weight, and ma-

noeuvrability. However, these dimensions are to some degree dependent on each other so that

an improvement in one might result in reduced performance in another. To make jetfighters

faster implicates that they should be lighter, yet this can translate into less firing power. The

higher is the number of components and complementary relationships of a technological prob-

lem, the more complex is the solution space of that problem [200; 105; 73; 136; 120]. When

complementary interactions are dense, then a change in the value of one component can have
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a large impact on the goodness (fitness) of a solution, which I refer to as ruggedness in the

next section. Viewed from a mainstream economic perspective, before-mentioned problems

are typically assumed to have single optimal solutions. For example, production functions and

production frontiers are modelled as smooth and convex functions that admit unique solutions,

mostly to simplify analysis [120; 178]. However, problems like technological innovation re-

quire optimisation which entails conflicting constraints, implicating the need to search in a

complex landscape of many potential solutions. As I illustrate in the next section, complexity

theorists often use the approach of fitness landscape to model the solution space of an economic

problem.

Moving from the static view of complexity, it is reasonable to assume that the complexity

of technological innovations increases over time [8]. For example, technological artefacts like

an aeroplane become larger and more sophisticated and composed of more parts. Similarly, the

complementary structure of a technological innovation (number and weight of links between

components) may change as time passes, for example connecting more parts of an aeroplane.

As I mentioned earlier, the most commonly adopted approach to the modelling of techno-

logical innovation is the fitness landscape approach. To give an idea about this approach, the

next section illustrates its main features.

2.3.2 The variety of fitness landscape models

Theoretically, to model a fitness landscape, three main ingredients are necessary. First,

given a space S of possible (or available) solutions to a problem, an encoding function enc:

S ⇒ F that encodes elements from the solution space to some representation space so that an

algorithm can process them. Examples of representations spaces are the real vector (F = Rn),

the bit-vector (F = C(n)), a permutation (F = Pn) , or more complicated configurations.

Figure 2 illustrates a simple example of a fitness landscape.

The second ingredient in a fitness landscape model is a fitness function f : F ⇒ R that

assigns fitness value f(x) to an encoded solution x. The fitness function is not enough to define

a fitness landscape. What is needed is a notion of neighborhood or connectedness between the

26

C
E

U
eT

D
C

ol
le

ct
io

n



Figure 2: Simple illustration of how fitness landscapes are constructed. This hypothetical example takes
the jetfighter as a complex technological problem characterised by three dimensions: speed,
weight, and manoeuvrability. Each one of these dimensions can assume one of two values:
high or low. High is encoded as 1, and low is encoded as 0. The total number of possible
solutions is 8, where each of the three positions in the solution represents one dimension of
the problem. Fitness values are assigned randomly by taking the numbers from 1 - 8. Finally,
each solution is connected with those solutions which are at a Hamming distance of 1.
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Figure 3: Different typologies of fitness landscapes. A smooth fitness landscape (left) has a small num-
ber of local optima. Smooth landscapes are easy to explore since all that is required to reach
the optimal point is hill-climbing heuristic. By increasing the number of local optima (figures
on the left and right), search becomes more complicated, and a simple hill-climbing heuristic
would eventually end up in a local optimum that is sub-optimal compared to the other local
optima. Figure source: [189]

different solutions in S. Here, a neighborhood function N : S ⇒ 2S (2S is the power set) is

often used to associate a set of neighbor solutions to a candidate solution x. An essential part

of a neighborhood function is the choice of the operator of the algorithm, for example:

N (x) = {y ∈ S|Pr(y = op(x) > 0}

or N (x) = {y ∈ S|Pr(y = op(x) > α}

Where op(x) is often replaced with a distance measure. To illustrate the concept of neigh-

bourhood, suppose we choose a distance measure like the Hamming distance which measures

the number of positions at which the two strings or combinations differ:

N (x) = {y ∈ S|dHamming(x, y) = 1}

And suppose we want to obtain the neighbors of candidate (0,0,0) in the fitness landscape

in figure 2, then

N (0, 0, 0) = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}

In summary, a fitness landscape F is defined as a set of encoded search space F, a fitness

function f(x) and neighborhood function N (x) that assign fitness value and distances between
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solutions in F .

F = (F, f(x),N (x))

A variety of fitness landscape models have been used to model complex economic prob-

lems, and in particular technological innovation. The first model of fitness landscapes is the

rank model (often called the House of Cards model) which was proposed by Kauffman and

Levin [119]. In the rank model, a problem is represented as a string of length N, where each

element in the string can assume a value of 0 or 1, producing a total number of combinations

equal to 2N . Integers from the interval [1, N] are assumed to represent fitness values which

can be assigned either randomly or with a correlation constraint. Example of correlation con-

straint could be that the difference in fitness between neighbouring combinations is ≤ α . One

example of a study that used similar fitness landscapes is reference [59], in which the authors

examined the optimal organisational power structure by modelling the space of different power

structures as a fitness landscape where fitness values of the various structures were ranked from

best to worst.

The second and most popular model of fitness landscapes is the NK model proposed by

Stuart Kauffman to model the effect of ’epistasis’ on the structure of fitness landscapes [119].

In biology, epistasis refers to the fact that genes affect other genes, which can be translated into

economic settings as institutional complementarity or technical complementarity. In the NK

model, N represents the dimension of the problem, and K controls the level of interdependence

among the components. If k=0, then the interactions between components is absent and, there-

fore, each component contributes independently to the fitness of a given solution. On the other

extreme, if k=N, then every component interacts with all the other components and the fitness

contribution of one component influences the fitness contribution of all the other components.

By varying K, one can control for the ruggedness (complexity) of the fitness landscape (see

Figure 3 for illustration of the concept of ruggedness). The NK model has been extensively

used to model technological and organisational landscapes [200; 73; 135; 216]. In assigning

fitness values to the different combinations, the NK model relies on the idea of averaging fit-

ness contributions. The fitness of a given combination V is the sum of contributions from each

locus Vi in the combination:
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F (V ) =
∑
i

f(Vi)

The contribution from each locus in V depends generally on the value of k other loci:

f(Vi) = f(Vi, V
i
1 , ........., V

i
k )

For instance, assume you want to model an NK model with binary strings, with N=4 and

K=1. An example of a string is [1,0,1,1]. The components of a string are often called locus

(plural loci). In this case, the fitness of one string is the sum of the fitness contributions of all

4 loci (because the length of the string is 4). Given that K is 1, then the fitness contribution

of one locus will depend on the value of the locus and one other loci in the string. For the

sake of simplicity, I shall use the convention f(Si) = f(Si, Si+1), which means that each locus

i is affected by its immediate neighbor i+1, and given the possibility of cyclicity f(S4) =

f(S4, S1). If we take the fitness function to be as follows: f(0, 0) = 1; f(0, 1) = 0; f(1, 0) = 0;

f(1, 1) = 2, then the fitness value of the string [1,0,1,1] is

F (1011) = f(1, 0) + f(0, 1) + f(1, 1) + f(1, 1) = 0 + 0 + 2 + 2 = 4

Hence, the fitness function f(Vi, V
i
1 , ........., V

i
k ) can be considered as a mapping between

combinations of length k+1 and scalars, which are usually called "fitness contributions". In

obtaining these fitness contributions, the original NK model relies mostly on random draws

from a uniform distribution between 0 and 1 [120]. In the original NK model, the fitness value

can be written as the average of the combination’ fitness contributions:

z =
1

N

∑
f(Vi)

For example, assuming N=3 and k=2, then a fitness function can be obtained as the average

of three numbers drawn randomly from the interval [0, 1]. Figure 4 shows an example of an

NK constructed following this method.

30

C
E

U
eT

D
C

ol
le

ct
io

n



Figure 4: NK landscape with N=3 and K=2

Two main variants of the NK have been proposed. The first extension is known as the

generalised NK model [5]. Generalised NK landscapes are constructed following the same

logic as in the original NK model. Besides, the basic properties of the NK landscapes, which

relate the interdependence parameter k to both the number and the fitness of local optima,

remains the same. There are however two main differences; First, whereas in the standard

NK model the k parameter is uniform and symmetric across all elements of a combination,

in the generalized NK the k parameter can be heterogeneous and asymmetric, meaning that

K is not the same for all components of a solution and influence of one element on another

can go one way only. In this way, some components may have many connections (high K)

with other components, in which case they are called core components, while others have few

connections (low k) and are called periphery components. Second, the number of elements in

a combination does not necessarily need to be equal to the number of fitness components F.

In the original NK model, it is assumed that each element in a combination is identified with

one fitness component. To illustrate more the idea of the generalized NK model, I follow the

reference [5], which used matrix representation to explain it.

Figure 5 shows three examples. Panel (a) presents a standard NK model with N=4 elements

(denoted with E) and k=1. There is a total of four fitness components (denoted with C). An X

in the matrix indicates the element influences fitness contribution. Panel (b) instead presents

a generalised model with N=4 and non-uniform k. In this generalised model, we still have a

number of fitness components equal to N. In panel (c), the number of elements N is equal to
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Figure 5: Generalized NK models. Panel(a) is a standard NK model with N=4 elements(denoted with
E) and fixed K (K=1). Panel(b) is a generalized NK model with N=4 and variable K. Panel(c)
is a generalized NK model with N=7 and variable K

7, while the number of fitness components is 4. Panel (c) shows that elements E5 and E6 are

strongly interdependent, while the other elements are loosely connected. The interdependent

elements can be thought of as the core elements of the system, while the loosely connected ele-

ments as the periphery. It could be noticed also that in panel(b), the system presents no modular

structure, while in panel (c) we have five almost modular elements (E1, E2, E3, E4, E7) and two

strongly interdependent elements (E5, E6).

Versions of the generalised NK models have been used to model complex economic prob-

lems like the financial system [105] and modular product architectures [80]. The second variant

of the NK model is the N(K+C) which was proposed to account for co-evolution [124]. In the

N (K+C) model, the fitness contribution of each element of a group depends both on K other

intra-group features as well as on C features for other groups. Given a solution with N elements,

the fitness of such solution may be either independent of the attributes of other organisations

(i.e., C=0), or it may depend on a variety of characteristics of other agents (i.e., C >0). The

rationale behind N(K+C) is that different agents or groups can have different fitness landscapes

and the actions of one agent in her landscape can influence the landscape of another agent.

Authors often use the term ’coupled’ or ’linked’ fitness landscapes to model co-evolution.

Other fitness landscape models used in the literature include random field models, which

are random functions of multidimensional parameters that can be simulated using different

correlation lengths and probability distributions [121]. Figure 6 shows the plots of two random

fields generated on a 2-dimensional lattice using multivariate standard normal distribution with

an exponential covariance function:
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Figure 6: Realizations of a mean zero Gaussian random field model with correlation length 0.1 (left)
and 0.5 (right)

cov(z(x), z(y)) = exp(−||x− y||
l

)

where z() is a zero mean multivariate Gaussian function, and y and x are two dimensional

parameters expressing a pair of tuples of the form (xi, xj) and (yi, yj). Each item in the tuple

assume values in the range 0-1 separated by an interval of 0.001. This implies that the final

lattice (figure 6) have a 1000 x 1000 dimension, and a total of one million tuples. The plots

were generated using correlation length 0.1 (left plot) and 0.5 (right plot). The correlation

structure of a fitness landscape is an important concept since it conveys information about the

extent to which nearby locations on the fitness landscape have similar fitness values. For large

values of correlation length, the landscape is typically smooth and has fewer peaks, while for

smaller values of correlation length, the resulting landscape is rugged with multiple peaks and

valleys. A necessary consequence of highly correlated landscapes is that it will require more

steps to escape a correlated area [119].

Another promising model for fitness landscapes is called Design Structure Matrix. Design

Structure Matrices (DSM) is a network modelling approach used in engineering management

and other fields and can offer a workable solution [195; 64; 152]. DSM are equivalent to an n

x n adjacency matrix = Aij , with Aij 6= 0 if component i impacts component j (and Aij = 0

otherwise). The advantage of DSM is the high modelling flexibility achieved thanks to network

science tools (see figure 7).
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Figure 7: Interaction topologies in DMS. Assume a problem made of seven components (nodes). A
DSM can model a variety of scenarios such as the simple but unrealistic scenario of com-
pletely independent components (left), fixed out-degree, where each component affects ex-
actly 2 components (middle), and most realistically the case with variable out-degree (right).
Such logic was used in [152]. Weighted interactions have also been considered [36]

Finally, a recent model has been proposed with the name ’local optima network’, which

is a network that as nodes has the local optima of the fitness landscape (the concept of local

optima is explained in the next section) and links are the transition probabilities between them

[160]. Local optima networks have not been used to model economic problems, but I believe

they have some potential. In one scenario, the researcher might be interested in abstracting

away the existence of search trajectories and focus on local optima and multiple equilibrium,

in such case a local optima network can be a good model. Using a network of local optima

one can also save on the computational complexity required to build and represent large

multidimensional spaces like in the case of NK and random fields. In another scenario, the

searcher or problem solver might know already the local optima of a problem, in such case,

there would be no need to draw the entire landscape and rely only on a network representation

of the phenomena. To give an illustration of how a local optima network can be modeled,

figure 8 presents a directed network where each link points from one local optimum to another

with an attached probability of moving between nodes. This network representation can allow

for using tools from network science such as random walks on networks, PageRank, and other
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Figure 8: Local Optima Network

tools to study the dynamics of the system. In network science, there are concepts like sink and

source node where the first refers to nodes that have only incoming links, while the later has

out-coming links. A lock-in situation in a local optima network can be thought of as a sink

node that once reached the system is trapped there (see figure 8).

As explained later in section 4.1, in this thesis, I construct and use an artificial fitness

landscapes having as a main feature presence of multiple local peaks and one global optimum.

2.3.3 Solving the technological innovation problem: evolutionary dynamics on fitness

landscapes

A crucial assumption in a fitness landscape model of an economic problem is the rule

used to optimise or adapt in such landscapes. In describing these rules, researchers often

use concepts like ’problem solving’ [148], ’optimal search’ [121], ’adaptation’ [135], or

’exploration and exploitation’ [144]. Behavioural rules can be classified into two categories.

The first category includes algorithmic rules, which entail a search for an optimal solution

that avoids sub-optimal lock-ins. Algorithmic search can be treated as a complex (detailed)

version of the problem of optimization in mainstream economics. Ideally, the algorithmic

search would work if solutions were enumerable, explorable and comparable, at least as an
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assumption. Second are adaptive rules, which are used to model and analyse the trajectory

of evolution over time. Adaptive behaviour is commonly associated with the process of

evolution. Evolution on fitness landscapes can be treated as a formalization of Herbert Simon’s

concept of bounded rationality, which is based on costly decision making and limited cognitive

capabilities [136; 145]. The adaptive perspective differs from the algorithmic one in that

adaptation is not about finding an exact and optimal solution, rather it involves a change in an

attribute of a problem to increase fitness. Here, the adaptive agent is not assumed to be able to

enumerate and explore the whole landscape, which otherwise would make adaptation an empty

concept. Researchers often adopt the adaptive perspective if the intention is to show how

agents actually deal with complex problems in the real world. For example, adaptive search

might resemble the decision of a firm to improve the quality of its product based on changing

market preferences. An example of algorithmic search might be the search for a financial

investment strategy that guarantees the highest return for a given level of risk. Crucially,

whether the intention is to search for optimal solutions or to adapt, a common assumption is

that an agent or a population of connected agents perform exploratory moves in their fitness

landscape. Next, I offer a discussion of how to model these moves.

In order to model search or adaptive behaviour, the simplest scenario would be that of a

single agent or a population of independent agents located somewhere on the fitness landscape.

Assuming that we are dealing with economic agents, a first question might arise as to why

economic agents would move in their fitness landscape? agents can be interested in solving

economic problems for different reasons; a manager might be interested in designing the best

organizational structure in order to improve organizational performance, regulators may search

for an optimal financial architecture to avoid failures and guarantee efficiency, and firms might

be interested in developing technological innovations in order to increase profits.

As far as optimal search is the behavioural rule being modeled, one of the first fundamental

procedures concerns the representation of the landscape itself. If we assume for the moment

that a fitness landscape is exogenously given, then a useful analytical step consists in measuring
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the statistical features of the landscape [169]. Perhaps the most important and basic feature is

that of local optima. Given a landscape S, A point x ∈ S is a local optimum if, given the

neighbourhood N (x), of x and a fitness function f:

∀n ∈ N (x), f(x)− f(n) ≥ 0

The number or frequency of local optima in a fitness landscape is often referred to as the

modality of a fitness landscape. A related and important quantity is that of landscape rugged-

ness. A fitness landscape with many local peaks characterised by high fitness surrounded by

deep valleys with low fitness is called rugged, while landscapes with relatively small fitness

differences between near solutions are called smooth. Two common measures of ruggedness

are often used: autocorrelation and correlation length. According to reference [169], autocor-

relation measures the correlation of neighbouring fitness values along a random walk (defined

below) in the landscape. It can thus be calculated as the average correlation of fitness values at

distance τ :

ρ(τ) =
E(ft.ft+τ )− E(ft)E(ft+τ )

V ar(ft)

Where E is an expectation operator. Other measures of ruggedness include the correlation

length, defined as the average distance between fitness points until they become ’uncorrelated’

(see [169]), and information theory methods which relate ruggedness to the amount of

information needed to describe a walk on a fitness landscape [211]. Authors in reference [169]

offer a review of some of the autocorrelation measures used in literature. Another related

concept to local optima is that of basins of attractions. A basin of attraction is an area around

a local optimum that always leads to that local optimum when going uphill. Similarly, a

derived concept from local optima and basins of attraction is that of fitness barriers. A fitness

barrier refers to the maximum of minimum fitness values required to get from one optimum to

another through an arbitrary path, given all possible pathes. Finally, the concept of fitness neu-

trality is used to refer to those connected areas of the fitness landscape which have equal fitness.

Moving to search rules, the most common tool in fitness landscape analysis is the notion of
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walk [119; 169]. The basic type of walks is the simple random walk. Mathematically, given a

solution space S, a random walk is a sequence of solutions (s1, s2, ., st, ) where each st+1 is

chosen to be a random neighbor of st, (st, st+1) ∈ S , with probability Pst⇒st+1 drawn from

some probability distribution. Several variations of the random walk has been proposed: A

random walk with jumps does not require that st and st+1 be neighbors; an adaptive walk

assumes that a move from st to a neighboring st+1 is accepted if st+1 has higher fitness than

st or all neighbors of st, an uphill-downhill performs an adaptive walk until it cannot attain

higher fitness followed by a reverse adaptive walk until the walker cannot attain lower fitness,

and in a simulated annealing walk the move from st to st+1 is accepted with probability

p = 1
1+e−∆F/T

where ∆F is the difference between the fitness of st and the fitness of st+1

and T is a temperature parameter used to control for randomness in accepting a new solution.

These examples illustrate the need for neighborhood function N (x) to get the neighbor solu-

tions to a candidate solution x and the fitness function f(x) that returns the fitness of a solution x.

An implicit assumption in most of the walks mentioned above is the combinatorial logic,

which refers to the fact that known solutions in the fitness landscape are combinations of

existing components or subsystems [6; 80]. The combinatorial assumption is often assumed

as a stylized fact in economic problems like technological innovation [191]. Another frequent

assumption in these walks, especially when applied to an NK landscape, is that a single move

consists of a one-bit mutation. The one-bit mutation rule may be adequate if we assume an NK

landscape with low K, in such case the fitness landscape is smooth, and the searcher can find

the local peak by performing ’hill-climbing’. When interdependencies increase (higher K),

problems might arise as the system is very likely to exhibit path dependence and sub-optimal

lock-in [105; 135]. The issue of path dependence is caused by the fact that the local optimum

that is reached is dependent on the initial position such that a walk that starts from that initial

position will allow the agent to climb up to the nearest local optimum. This means that the

global optimum will be reached only when the initial position is within its basin of attraction.

Once a local optimum is reached, this may act to lock an agent into that solution and prevent

them from exploring other points in the landscape. The phenomenon of lock-in is perhaps
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the most crucial concept in landscape analysis both from the modelling and policy points of

view. Search on fitness landscapes is mostly about how to achieve the highest fitness and avoid

getting locked in a local optimum. For policymakers, lock-in situations reduce diversity in the

system which can lead to fragility.

Whenever complementarity between the components of a problem is high, lock-ins could

be seen as the result of a long evolutionary process where each evolutionary unit is optimally

adjusted to the other complementary units. In this case, the system exhibits rigidity, and

small changes or mutations to the existing solution can never have an effect on fitness and are

likely to be eliminated by selection forces [165]. The nature of lock-ins might also depend on

problem complexity (dimensionality). Author of reference [165] shows that there is a trade off

between complexity and evolutionary rigidity. Simple organisms are more flexible, in that they

can easily mutate; however simplicity can reduce the space of possibilities. On the other hand,

complex organisms have more evolutionary possibilities, but at the cost of more rigidity. For

policy making, this type of situations might justify a top-down control of the system to resolve

economic problems. Whereas single searchers go by one-bit mutations, a central controller can

perform multiple mutations simultaneously [105]. Given its relevance to economic problems,

the theory of lock-in has received considerable attention, particularly concerning the problem

of diversity [33; 105; 7].

To overcome or avoid situations of lock-in, researchers proposed a variety of possible

solutions. Author of reference [165] proposed two mechanisms for protecting diversity:

protectionism and subsidies. The idea of protectionism consists of protecting a new species

from being eliminated by the dominating species. For example, the introduction of a new

technological innovation that is not in line with the dominant design may put it under the risk

of extension because markets are very unlikely to adopt it. Protecting the new technology

from the pressure to adapt to the dominant design can contribute to diversity and increase the

potential for better innovation. This policy will depend on several factors such as competition,

network externalities, sizes of populations, or interaction with old species. Some studies
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use the term ’technological niches’ as a key instrument to escape from a dominant design

paradigm [33]. The second proposed solution by [165] to lock-ins is subsidies. This strategy

involves the adoption of a different type of selection forces than existing ones. For example,

an innovation may survive competition not for its high profitability when compared to others,

but for its environment-friendly benefits. Another potential solution to technological lock-ins

relies on the idea of flexible design [2]. This solution consists in maximising the number of

paths towards the different existing local optima and increasing the robustness of the system to

changing evidence, changing fitness values, and preferences. In this way, the system can be

reversed even if initial steps have been taken toward a specific local optimum. Furthermore,

critical factors like regulation, technological breakthroughs, firm-level strategic initiatives, and

the emergence of new leading users can also contribute to the diffusion and adoption of new

and diverse innovations, thus reducing the probability of lock-ins.

Although the statistical analysis of fitness landscapes can offer significant modelling

power, agents in economic settings are likely to be more intelligent than following hill-

climbing or simple random walk. In real life situations, agents might often use heuristics

and cognitive shortcuts which they construct and dynamically change in order to adapt to

their environment [138; 88; 79; 148]. For example, if we take an NK landscape with high K,

then the number of local optima is high and economic agents might explore the landscape

by means of heuristics which decompose the landscape into searchable sub-areas which can

be searched independently or quasi-independently [158; 73]. This decision to decompose a

fitness landscape can be the result of bounded rationality and limited resources. It should

be noted that the decomposition of a complex problem is not a trivial task since agents with

bounded rationality might not be able to find the correct or optimal level of decomposition

of a problem, especially when problem complementarity is high [86]. This, in turn, might

introduce a trade-off between the level of decomposition (modularization) of a problem and

the quality of the solutions [146; 27]. Decomposed areas of a landscape could be related

to what Dosi called a technological paradigm [27], which embodies a selection of the set

of technological problems to pursue and the tools to solve them. Different technological
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paradigms might encourage different search heuristics. Additionally, different sub-areas

might offer different return opportunities; Authors of reference [147] proposed a model with

consumers endowed with heterogeneous preferences and for this reason a technological fitness

landscape may become divided into different areas where each area is populated by different

types of consumers, thus providing different profit opportunities.

Another line of research classifies landscape heuristics based on two dimensions as

proposed in [139; 85]. The first dimension concerns where to search, in such case a distinction

could be made between local vs distant search heuristics [115; 134]. The other dimension

is how to search, where heuristics are classified as experiential or cognitive. As far as the

’where’ dimension is concerned, an optimal scenario would involve a balance of both local and

distant search. In the literature, this balance is often called exploration-exploitation and agents

are assumed to pursue such balance [144]. Achieving this balance however is challenging,

because too much exploitation can result in sub-optimal performance in the long run, while

too much exploration is costly and eventually forgoes the benefits of exploitation in the

short run. Research has been done to explore how agents achieve this balance [17; 98; 173],

however, it is still an open question whether and how agents achieve such balance, especially in

dynamic environments. An interesting finding is offered in reference [22], in which the authors

conducted an experimental study of adaptive behaviour on rugged landscapes and found that

success in search narrows down search activity to the local neighbourhood of the status quo

(exploitation), whereas failure incentivizes more exploratory search (exploration). In a more

general sense, factors such as - search costs, growth stage, institutional context, organisational

inertia, bounded rationality, absorptive capacity, and dynamic capabilities - are among the

most important determinants of the exploration-exploitation strategy. Moving to the second

dimension, i.e. how to search, its first form is experiential search which can be thought of as

learning by doing process [168]. This means that solutions are tried and evaluated ’on-line’

and feedback from trials is used to decide on the subsequent steps. The other form is cognitive

search, which involves mind representation of a problem and its solutions which are tested

using ’off-line’ evaluation and learning before doing.
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Finally, it is worth mentioning that the process of search on fitness landscapes might

require another trade-off between a centralised and decentralized search. The important

question here relates to whether the search should be decentralized (self-organized), where

agents are free to navigate the fitness landscape, or to some extent centralized, where a central

agent can influence the direction of the search of the other agents? In presence of complex

landscapes (rugged fitness landscape), the trade-off between authority and power on the one

hand and the adaptive behaviour of agents on the other side becomes more relevant. In a

simple computational model, authors of reference [59] show that organisational performance

is enhanced when there is a balance between decentralised local coordination and authority.

In their model, the authors adopted a fitness landscape model where fitness values were

ranked from best to worst, and agents could perform more than single-bit mutation search and

"mutate up to all the policies under their control". In another paper, authors of [105] sustained

that when individual agents search by performing only small incremental steps in the fitness

landscape, there might be a need for a central agent to introduce more radical changes, which

goes in line with what I discussed in section 4.1 about escaping lock-in situations.

Crucially, search for technological innovation in a fitness landscape is likely to be performed

by a multitude of connected agents rather than a single one. In this regard, technological

innovation is often perceived as a collective phenomenon. In the next section, I discuss the idea

of collective technological innovation and illustrate the role of networks in such a process.
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3 The process of technological innovation as a collective and

network problem

Besides being a primary and outstanding example for a complex economic problem, techno-

logical innovation is increasingly stylized as a ’collective’ phenomenon of interactions between

a multitude of innovating agents [111; 96]. As the author of reference [172] sustained "the idea

of a lonely innovator has been definitely abandoned and replaced by a view which suggests

that technological change takes place in the form of both technological and non-technological

interplay between different actors, such as individuals, firms, organizations and institutions".

When technological innovation is conducted collectively rather than singly, the exploration-

exploitation trade-off may be pursued by balancing individual and collective search [14; 15].

Having said that, one might ask why is it that agents decide to solve a problem collectively

rather than singly? next I offer a few explanations.

3.1 The rationale behind the collective nature of technological innovation

Why would an economic agent like a firm search the landscape of a problem together with

other firms rather than doing it alone and seize all the benefits? In the literature, there have been

several interpretations of why agents in specific business contexts may benefit from the sharing

of information/knowledge between each other. Several reasons and theories are proposed to

explain the collective aspect of technological innovation and to cover all of them is beyond the

scope of this thesis. However, in the next few subsections, I provide a discussion of the most

important and diffused of these theories.

3.1.1 High costs of technological innovation

Among the most important reasons for technological collaboration are the high costs in-

volved in the development of specific innovations. For example, developing a new drug or a

military weapon can cost hundreds of millions of dollars, and a single firm may not be will-

ing to incur the entire cost. For this reason, firms might form networks to share the costs of

43

C
E

U
eT

D
C

ol
le

ct
io

n



development. This, however, comes at the expense of having to share the return, therefore

introducing a trade-off. This trade-off can be very important for the performance and competi-

tiveness of a firm and therefore cannot be neglected. Several empirical studies have shown that

in many situations there are advantages for market participants to share information, and those

who refuse to share any knowledge might end up being excluded from the settings in which

these exchanges of knowledge take place [214; 187; 101; 179; 180].

3.1.2 Low protection for innovations

Since technological innovation is a costly activity, innovating firms would decide to inno-

vate if they know that they can seize all the benefits that derive from their investments. The

literature on this topic has shown that innovating firms may not be always able to appropriate

all the benefits arising from their innovations, thus firms have less incentive to carry the scien-

tific research needed to innovate [156; 214; 202]. This situation happens if, for example, the

innovations in one sector are not subject to patent protection. One possible solution to such

a problem is cooperative R&D where a multitude of firms shares knowledge concerning the

development of a specific technological innovation [112].

3.1.3 Technological complexity and novelty

Another reason behind the decision of market agents to engage in knowledge sharing is

when the knowledge base of an industry is sophisticated so that it makes sense to collaborate

by sharing the costs and benefits of complex R&D projects [171]. The development of a certain

technology might require a wide range of technical skills and knowledge depth which a single

firm is unlikely to have, and so collaboration offers a means to gain access to these skills. In

his seminal paper, the author of [203] claims that alliances can resolve problems of complex

coordination between firms and therefore results in better innovations and higher welfare. By

establishing different collaborations, firms can achieve technological diversification, which

is a term used to describe the expansion of a firm’s competencies into a broader range of

technological areas [31]. This, however, comes at the cost of sharing the returns. In reference

[203], the author states that technological collaboration could represent a challenge for the
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antitrust authorities since alliances can resemble cartels, and it might be difficult to distinguish

between cartels and alliances.

Another factor that contributes to the emergence of collaboration is the search for novelty.

Assuming that the space of technological innovations is always expanding, then novel technolo-

gies and ideas would be continuously emerging. Established firms might not have an incentive

to look for novelty if they are following a well established technological paradigm, but this is

not the case with players like start-ups are known for their agility and unique innovation pat-

terns. Therefore, these startup firms might be ideal partner for established firms to collaborate

with to explore novel technologies. A well-known example is the FinTech industry which is

composed of start-ups searching for novel technologies to improve financial services [194]. To

be embedded in the financial system, FinTech start-ups usually establish collaboration agree-

ments with big banks who in turn benefit from gaining knowledge about alternative innovative

technologies [38].

3.1.4 Technological risks

Given the high costs and uncertainty involved in the development of new technology, firms

may decide to collaborate to share the risk of innovation [76]. This has been the case with

biotechnology and information technology [56].

3.1.5 Overcoming local search

Some research (e.g. [181]) argues that due to organisational and relational constraints, firms

might find themselves in a limited context - both technologically and geographically- in their

search for new knowledge. Distant knowledge might offer good ideas that would allow a firm

to innovate, however, it might be challenging for some firms to reach beyond their existing

context. In this case, an excellent solution might consist in establishing cooperation or alliance

relationships with other firms which can serve as bridges to distant knowledge, allowing the a

firm to overcome its contextual constraints.
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3.1.6 The nature of technological knowledge

Most technological knowledge is tacit, in that it is hard to codify into explicit blueprints, and

firm-specific, meaning that it is not necessarily adequate to implement immediately in another

firm [176]. This makes technological knowledge hard to transfer to other firms. This difficulty

can be overcome by collaboration since close linkages allow for the emergence of a common

understanding which allows effective transfer of technological knowledge. The tacit nature of

technological knowledge makes it hard to price, and with collaboration firms avoid the problem

of pricing.

3.1.7 System-wide problems and technical standards

Among the most critical factors that can justify information sharing is the situation in which

a set of roughly equivalent market agents are all trying to solve the same problem. This situ-

ation can be encountered in real life as when doctors and professors are working on the same

problem or state government formulating their policies [132]. In some industries, firms might

be interested in promoting technical standards throughout the system in order to facilitate func-

tioning and communication in the system. The same holds for the transfer of best practices

[199].

3.1.8 Globalization and competitive strategies

From a corporate perspective, technological collaboration could be viewed as a competi-

tive advantage where firms try to establish the right partnerships and alliances to navigate the

competitive landscape. In his book about globalisation, author of [161] argued that globali-

sation "mandates alliances, makes them absolutely essential to strategy" and finding the right

international partner becomes of great importance.

3.2 Theoretical approaches to collective technological innovation

In this section, I discuss some of the theoretical approaches proposed and used in litera-

ture to model technological collaboration and knowledge transfer that involve collective and
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network aspects.

3.2.1 Information cascades, herding and the problem of aggregation

Seen from one angle, economic problems like technological innovation are knowledge-

driven. In many cases, knowledge about a certain problem happens to be dispersed among

individual agents, therefore obtaining a solution to such a problem can go beyond the inventive

capacities of single individuals. For this reason, some economic theorists like Friedrich Hayek

claimed that the main problem that economic agents face concerns the aggregation of the

dispersed pieces of knowledge [99]. In many cases, the problem of aggregation may fail and

result in market behaviours that are sub-optimal. Among the variety of models proposed to

explain aggregation failures is information cascades theory [12; 20]. Information cascade

theory illustrates how non-welfare improving behaviour (fads) can diffuse among agents when

agents observe the choices of others but not the quality or success of such choices. The

cascade happens when a signal travels through the system (network) which causes agents to

base their adoption decision on the choice of other agents, which leads to a self-reinforcing

process, reflected in phenomena like bank runs, fire selling and so on. In reference [198],

the information cascade model was extended to situations in which agents can observe the

performance of other agents but not the reason for that success. The market for technological

innovation might be exposed to the problem of information cascades if participants decide

to adopt certain technology without examining its potential success. Similarly, information

cascades can lead as well to the problem of technological lock-in.

3.2.2 Imitation regime

When the market landscape is populated by many firms who are behaving as a community

of simultaneously searching agents, then the practice of observing and imitating others may

be an effective way of saving time and resources. Economic models of competition often

assume that when an agent comes up with a profitable innovation or product, then the rest of

the market will soon imitate and copy such innovation and this will bring down profits to zero.
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Economic models tend to assume that all agents in the economy perfectly share knowledge,

therefore, neglecting the fact that imitation has an aspect of knowledge diffusion [155]. The

hypothesis of perfect knowledge distribution comes weaker if we consider that learning a new

technology is instead a costly activity [130]. For this reason, it would be more realistic to

assume that there are networks of observation and imitation between firms which I call here an

imitation regime.

Imitation behaviour in economics has been a puzzling phenomenon for policymakers. On

the one hand, research has shown that when innovating firms do not succeed in seizing profits

from their innovations, for example, because imitators may have better complementary assets,

markets don’t function well [202]. On the other hand, imitators might be able to exploit other’s

innovations better and develop them further, resulting in a higher economic performance

overall. The later situation might result beneficial if innovation is both complementary,

meaning that each potential innovator in the market follows a different research line and

’sequential’, meaning that each innovation is built on the previous innovations [19]. In the

same paper, author of [19] makes the argument that in the software industry, which was

dominated by imitation in its initial stage, benefited substantially from imitation. Another

viewpoint about imitation, usually called Negative Incentive Problem, states that competition

driven by imitation tends to harm competition and growth [155]. So far there is still no clear

evidence whether imitation-driven competition enhances innovation or not.

Imitation has often been treated as a learning activity, where imitating firms start by

copying others and successively developing new technologies based on the knowledge which

they acquired. For example, Toyota, who entered the car industry in the 1930s, started by

copying the Ford production system, and then modifying and improving it to come up with

a more efficient production system which they called the lean production system (LPS).

Interestingly, some of the features of the LPS were later copied by American firms (see chapter

6 of ref. [75]). It is often argued that many of the modern Japanese innovations were mainly

based on imitating foreign technology [75]. Another notable example of imitation is IBM. A
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company called UNIVAC was the first business computer built by John Mauchly and John

Eckert. In its early years, IBM is known for having followed a strategy based on rapid imitation

by acquiring and learning the most essential technological knowledge from competitors and

universities (see chapter 7 of ref. [75]). Even though the first data-processing computer

introduced by IBM (the 702 model) was unreliable, successive versions (especially the 705

model) were launched in 1954, and by 1955, IBM was selling more computers than UNIVAC

[30]. Similarly, first to introduce a graphical operating system was Apple in 1984. In 1985,

Microsoft entered the graphical operating system market by introducing Windows 1.0. The

first versions of Windows (1.0 and 2.0) were not successful, however, with the introduction of

Windows 3.0 in late 1990 Microsoft realised significant success [137]

Several could be the motivations for observing the behaviours and innovations of others. In

a formal model introduced in reference [24], the authors modeled the probability of an agent

seeking information from another agent as a function of (1) guessing what the other agent

knows; (2) estimating what the other agent knows; (3) being able to access agent’s knowledge;

and (4) perceiving a reasonable cost of seeking information from that agent. In organiza-

tional and corporate settings, similar requirements have been studied. For example, the concept

of absorptive capacity, which refers to a firm’s capacity to collect, assimilate and understand

knowledge from other firms or the surrounding environment, has received considerable atten-

tion [44; 43]. Tacit knowledge and know-how could be important factors influencing the ability

of a firm to absorb knowledge from another firm. Authors of reference [197] showed that

networks play an essential role in knowledge transfer when knowledge is moderately complex.

3.2.3 The collective invention regime

In 1983, Robert Allen coined the term Collective Invention [3] to explain the development

of blast furnace design between the iron making companies in Cleveland district in Britain.

The collective invention regime described by Allen has two main features: first, firms willingly

release to the public information about their innovations in order for others to acquire and learn

from such innovations; Second, firms which receive the information build on such knowledge
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to develop new innovations further and release them in their turn to the public. In this way, tech-

nological innovations are developed by repeated interactions and feedback mechanisms. Typi-

cally, a collective invention regime is assumed to end when a dominant design emerges [162].

The collective invention regime lost its importance in the early and mid-twentieth century by

the establishment of internal R&D labs in firms, but recently there has been a re-emergence

of new forms of collective regimes that brought into the scene some of the aspects of collec-

tive invention [170]. The collective invention model has been later extended to incorporate

networks, which was first done in reference [46]. In their paper, authors of [46] show that

small world regions (in the Watts-Strogatz sense) achieve higher innovation level. Another

variation of the collective invention model is called the private-collective invention regime, of

which open source development is the most frequent example [102; 162]. The main difference

between collective invention regimes and the private-collective regime is that the former ter-

minates with the emergence of a dominant design, while the latter survives it design, and thus

shows continuity in the innovation process which goes beyond traditional forms of markets and

formal hierarchies and alliances [162].

3.2.4 Strategic link formation

An important branch of network science takes the name of Strategic Link Formation (SLF),

and it deals mainly with how and why networks form and take a particular form [92]. This line

of research has received particular attention in the field of economic networks [92; 108; 109]

given that link formation entails an evaluation of the economic consequences of establishing

new links. The main idea behind strategic link formation is that in many network settings,

the decision of nodes to create connections with other nodes is determined by the choice of

participating nodes, and not randomly. The main assumption in strategic link formation is that

the node’s decision to form a link is based on cost-benefit analysis and individual preferences

that together determine the outcome. Nodes will maintain useful links and drop those which

are costly. Given the strategic aspect of SLF, researchers in this field usually make use of game

theory to model network formation. Concepts like efficiency and utility are used to describe

which networks are optimal from an economic point of view.
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Within the SLF literature, the connections model is considered the basic model to explain

the strategic formation of links [110]. The idea of the connections model is the following: given

a network, a node has direct links to other nodes to whom he/she is connected, and these links

have a cost and benefit to the node. Additionally, a node can derive some benefit from friends

of friends, friends of friends of friends and so on but with a decaying benefit as the path length

increases. The basic connections model assumes that a node pays a cost for direct links only.

Given a network G, the net gain (or utility) that a node realises is the difference between the

sum of benefits that the node gets from her direct and indirect links and the cost of maintaining

those links. In mathematical terms, it is:

ui(G) =
∑

j 6=i;∃pij

δlij(G) − di(G)c

where pij indicates a path between i and j, lij is the number of links in the shortest path

linking i to j, di(G) is the degree of i (number of links i has), c > 0 is the cost for a node of

maintaining a link, and 0 < δ < 1 is a parameter that accounts for the fact that the utility

(value) that i obtains from having a connection to j is proportional to the closeness of j to i.

Several variations of the strategic link formation model have been proposed to explain

different economic and social phenomena. One variant of the SLF investigates the formation

of undirected networks where a link between two nodes is beneficial for both parties. This is

usually referred to as two-way flow networks [83]. Since in reality many networks are directed,

i.e. the benefit flows only towards the investor of the link, another class of connection model

networks was developed to model this situation and is usually called is one-way flow networks

[83].

Another parameter in the connections models proposed in the literature is homogeneity with

respect to values and costs. Players can either have similar or different costs of establishing

new links with others and based on the level of heterogeneity , different network structures
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might emerge [83]. In reference [11], the authors studied a non-cooperative one-way network

formation model with homogeneous players. Their study showed that if a player has increasing

payoffs in the number of other players accessed and decreasing payoffs in the number of

edges formed, then the strict Nash equilibrium network is either an empty network with no

links or a wheel network where each player creates and receives one link. In another study,

authors of [83] analysed a one-way network (directed) formation model with heterogeneous

players. Players are heterogeneous in terms of the costs of establishing a link and the value

gained from accessing other players. In many real-life situations, this heterogeneity is likely

to arise naturally. For example, in the context of information or knowledge networks, some

individuals are more interested (or invest more) in certain topics and issues and therefore have

more information, which automatically makes them a valuable contact. Similarly, different

individuals are likely to have different social and communication skills, and consequently,

it might be natural that creating links is cheaper for some individuals as compared to others

(firms who don’t invest in a specific technology are likely to seek knowledge from firms who

invest in it).

Strategic link formation can have important applications in the field of technological inno-

vation. This can be mainly justified by the fact that technological innovation is mostly a collab-

orative phenomenon and thus the choice of the firm or innovator to collaborate with others may

entail cost-benefit analysis. According to reference [90], the position and embeddedness of a

firm in technological innovation alliances have a positive effect on the potential for exploration

and patenting. In reference [167], the authors argued that firms collaborate with other firms

to become part of a knowledge network, gain experience in their industry, and collectively use

their knowledge to serve their customers in a competitive environment effectively. In a compu-

tational model, authors of reference [66] examined the role of endogenous network formation

on search involving complex fitness landscapes. The paper showed that agents achieved better

results (in terms of searching for an optimal solution) when they were allowed to adjust their

network compared to the case when they are connected via a static network. In all these cases,

creating the right links requires strategic thinking in order to take advantage of the knowledge
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network fully. Another situation where strategic links formation plays a role is in the world

of startups. In many cases, startups decide to collaborate with big firms for the startup to gain

access to a wide and commercial platform and for the big firm to learn from the innovations of

startups. An example of this behaviour is the FinTech industry, which consists of startups who

are working on improving back-end and customer-face financial services. For many FinTech

firms, the way to commercialise and offer their products in the financial system is via a collab-

oration agreement with an established financial institution (mostly banks). Choosing the right

bank to collaborate with is a strategic decision which entails costs and benefits and therefore

can be treated as a strategic link formation problem.

3.2.5 Infomediators, connectors and the law of the few

In many social and economic settings, a particular form of communication may emerge

where the majority of agents acquire their information from a small subset of the agents.

Some refer to this group of agents as influencers, connectors or infomediators. Work on

this phenomena started with references [116; 131], where the authors studied the effect of

personal contacts and media on consumer and voting decisions concerning products, movies

and fashion. Their main finding was that personal contacts play a crucial role in disseminating

information which in turn influence individuals decisions and choices. Reference [131], which

relied on a sample of 4000 individuals, revealed that 20 per cent of the whole sample was

the source of information for the rest. In a similar study, authors of reference [68] identified

20 per cent of their sample of 1400 individuals as the main source of information about food

items, household products, drugs. Similarly, research conducted on online social communities

revealed similar patterns of communication. In their paper, authors of [221] investigated the

Java Forum which is an online group of users who ask and answer each other’s questions about

the programming language Java. The study found that 55 per cent of users only asks questions,

12 per cent ask and answer questions and 13 per cent only answers questions.

In an interesting study, authors of reference [84] called this phenomenon the law of the

few: that the majority of agents acquire most of their information from a small subset of other
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Figure 9: Examples of core-periphery networks. Core nodes are in black while periphery nodes in
white. Figure from [84]

agents. In their paper, the authors asked the question of whether the law of the few can emerge

in settings where there are no differences between individuals. To answer this question, they

proposed a game where individuals can either acquire information personally or establish links

with other individuals to access their information. The main finding of the paper was that

every equilibrium of the game exhibited the law of the few. The resulting network has a Core-

Periphery Structure; core agents acquire information personally, while periphery agents acquire

information by using their links with the core. Figure 9 illustrates some configurations of core-

periphery networks. In networks science, a famous mechanism that explains the emergence

of networks with a few hubs is the so called preferential attachment [13]. In few words, a

preferential attachment mechanism is one where a node in the network receives new links

based on how many link it has already. In this case, nodes which have already a large number

of links have higher probability of receiving new links that nodes with fewer links. From

an economic perspective, there could be several factors that might favour a law of the few

between firms. Perhaps the most crucial reason is resource limitations, where firms with more
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resources are in a position to acquire more knowledge. Another factor might be the experience.

For example, authors of reference [26] sustained that the knowledge base of firms is path-

dependent; therefore older firms can be in a better position that new incumbent ones to acquire

knowledge.

3.2.6 Open innovation

In 2006, Henry Chesbrough, a professor at UC Berkeley’s Haas Business School coined

the term open innovation in his book ’Open innovation: The new imperative for creating and

profiting from technology’. Before becoming a professor, Chesbrough worked as a manager in

the computer disk drive industry in Silicon Valley where he noticed that there was no flow of

ideas and advice from academia coming to the industry. For this reason, Chesbrough decided

to move to the academic world to work on this gap between industry and academia. To realise

his ambition, Chesbrough theorised the idea of open innovation which he defines as:

"open innovation is a paradigm that assumes that firms can and should use external

ideas as well as internal ideas, and internal and external paths to market, as firms

look to advance their technology"

- [37]

Conceptually, the open innovation regime is a distributed, participatory, decentralised

approach to innovation, based on the fact that valuable knowledge is disseminated, and

no company, no matter how old or how big, could innovate effectively on its own. Open

innovation has two aspects. The most recognised of these aspects is the ’outside in’ aspect,

where external ideas and innovations are brought into the innovation process of a firm. The

other facet is the ’inside out’ part, where un- and under-utilised knowledge and ideas are

brought from the firm to the outside world where they can be incorporated into other firms’

innovation process.

A key part of the open innovation regime is the business model. To know what to

look for outside and what to transfer to the outside will depend on a firm’s business

model. The ideas to bring from outside should be those which fit the business model, while

55

C
E

U
eT

D
C

ol
le

ct
io

n



the internal ideas and knowledge that don’t fit the business model are likely to go to the outside.

Open innovation is not like a collective invention or private-collective invention regimes

in that the business model for innovation in an open innovation regime is a crucial part. Thus

open innovation is not to be confused with innovations like open source. On the other hand,

open innovation is not to be confused with supply chain management, since the actors involved

in an open innovation regime fall outside supply chains (such as universities and individuals),

and these actors can be influenced but not managed or directed. Finally, open innovation is

to be distinguished from user innovation. Although the user is an essential actor in the open

innovation regime, so are universities, venture capitalists, startups, and corporate R&D.

The question of whether open innovation regimes are more useful than closed ones has

received considerable attention [69; 49], and remains one of the main areas which requires

further investigation.

3.2.7 The concept of innovation networks

In many research studies, the concept of network is used to refer to a group of innovating

firms who are working together on developing technological innovations, in such case the

term innovation network is often employed. Networks of innovators have been an important

subject of study in the last few decades. In a special issue of the Research Policy dedicated

to networks of innovators, the authors of reference [52] claim that among others, network

of innovators might be "supplier-user networks, networks of pioneers and adopters within

the same industry, regional inter-industrial networks, international strategic technological

alliances in new technologies, and professional inter-organizational networks that develop

and promote a new technology". Innovation networks are increasingly becoming an integral

part of economic systems. One estimate made by reference [95] shows that between 2002 and

2011, firms around the globe formed close to 42,000 alliance relationships.

Generally, innovation networks can be distinguished from other types of networks in that
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they consist in loose, informal, implicit, easily decomposable, and recombinable systems of

relationships, although those which succeed can last for long period [52]. It should be noticed

that although innovation networks can involve legal contracts and relationships, informal links

can be equally important, especially because of the tacit nature of technological knowledge

[174].

In many cases, an innovation network would emerge if it brings benefits to the inter-firm

system that are partly external to single firms. In other words, for innovation networks to

develop, they have to guarantee positive-sum game, where some players may lose some of the

time, but a majority of players are winners most of the time. Alliance networks is perhaps the

most suitable example in this context. Assuming that technological innovation is combinatorial

(new combinations of existing elements), an innovation network might act as a mechanism

through which one firm combines its resources with those of another firm in order to develop

a technological innovation. In addition to that, innovation networks can act as a channel for

firms to establish standards and public norms of the new market [205].

The flows of information in innovation networks usually assume the form of technological

transactions. Examples of technological transactions include technological knowledge transfer,

innovation ventures, technology adoption, or technological adaptation. Technological transac-

tions can involve costs which can vary according to the nature of the transaction. To understand

the nature of transaction costs involved in innovation network one can build on reference[203],

in which the author illustrated that technologies share a number of common features including:

uncertainty (in that it involves navigating a wide space of solutions), path dependency (in

that technologies evolve along an established paradigm), cumulative development (especially

when technologies evolve within a technological paradigm), inter-relatedness (especially with

other technologies, complementary assets, and users), tacitness (in that it is difficult to codify

and articulate), and inappropriability ( in that it is often hard to establish which parts of the

technological innovation can be legally protected). According to the extent to which these

features are present in a technological innovation, one might apply a transaction costs approach

57

C
E

U
eT

D
C

ol
le

ct
io

n



to study the dynamics of technological transactions.

3.2.8 Networks and institutional isomorphism

So far, I have quoted only arguments stating that networks are a positive factor in the

economy and the development of technological innovations. In some instances, this might

not be the case. I borrow the following example from reference [175] to illustrate the point:

in [175], the authors examined the role of inter-organisational networks in the diffusion of

computer-aided production management (CAPM) innovation in the UK industrial sector

during the 1980s. The study found that engagement in inter-organisational networks was

an essential factor in the diffusion of CAPM since it allowed potential adopters to obtain

information about the new technology. However, it was also found that the information which

adopters obtained from networks was used to reinforce the image of technology suppliers.

This implied that firms were led by the network to adopt an innovation not because it has

higher performance, but due to mimetic and normative processes that influence the adoption

process. According to the authors, the diffusion of CAPM can be an example of ’institutional

isomorphism’. This finding shows that networks are not always a positive factor in the process

of technological innovation.

In seminal paper [55], Powell and DiMaggio coined the term ’institutional isomorphism’

which refers to the process through which institutions, which face the same environmental

conditions, resemble each other even if they evolve from different positions. The resulting

similarity between organisations can be the result of the imitation of independent development

under similar constraints. For example, a firm might decide to enter an established industry

but wants to adopt a different business model; The theory of isomorphism suggests that this

firm, once embedded in the existing inter-firm network, will end up locked into the system

and therefore will be heavily influenced by the network context. The diffusion or evolution of

technological innovation through institutional isomorphism can lead to suboptimal solutions

which cannot be explained by the efficient-choice perspective that dominates the innovation
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literature [177].

There are three mechanisms of institutional isomorphic change. The first is a coercive

isomorphism, which derives mainly from political power and results from both formal and

informal pressures exerted on organisations by other organisations upon which they are

dependent and by cultural expectations in the society within which organisations function

[55, p 15]. According to Powell and DiMaggio "organizations are increasingly homogeneous

within given domains and increasingly organised around rituals of conformity to wider

organizations". The second type of isomorphism is mimetic isomorphism, which results

from "standard responses to uncertainty". When faced with uncertainty, organisations are

more likely to imitate each other. Powell and DiMaggio state that "when organizational

technologies are poorly understood, when goals are ambiguous, or when the environment

creates symbolic uncertainty, organizations may model themselves on other organizations".

Organisational models can be diffused through employee migration or by consulting firms. The

third isomorphic change is normative pressure, which derives mainly from professionalisation.

Powell and DiMaggio define professionalisation as "the collective struggle of members of an

occupation to define the conditions and methods of their work,..., and to establish a cognitive

base and legitimation for their occupational autonomy". There are two crucial aspects of

professionalisation that can lead to isomorphism. The first is the result of formal education

and legitimisation in a "cognitive base produced by university specialists". People from the

same educational background will very likely approach a problem in much the same way.

The second is the increasing role of professional and inter-organisational networks that span

organisations and through which new ideas and models diffuse rapidly. The similarities

caused by these professionalisation mechanisms allow firms to interact with each other more

efficiently and to strengthen legitimacy among organisations. The more firms are similar, the

more what they do will look legitimate, even if it is be sub-optimal.

Until now, the thesis has focused on reviewing the theoretical aspects of the problem of

technological innovation and the collective nature of its development. In the next chapter, I
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will report on the result of an evolutionary and to some extent idealised agent-based model to

illustrate the role of network average path length, edge direction, and degree-heterogeneity on

the performance of a system of innovating firms. I note that the results presented in chapter 4

constitute the content of join paper with Rosario Mantegna which is currently under revision

by the Journal of Complex Networks. In chapter 5, I present the results which I have obtained

so far from a historical agent-based model that depicts the development of Financial Risk Man-

agement (FRM) as a collective phenomenon. I shall bring to the attention of the reader that

given the current stage of my research, these models are purely explanatory models rather than

predictive.
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4 Path length, Degree-Heterogeneity, and Edge Directional-

ity: An Agent-Based Model

Analysing the role of networks in the process of technological innovations can be ap-

proached from several angles. The first angle concerns the network metrics that the researcher

wants to examine. Examples are degree centrality, betweenness centrality, network embedded-

ness, weak or strong ties, and so on. The second angle concerns the decision of whether the

researcher is interested in the performance at the node-level or network level. It is possible

to study performance from a micro perspective, where the researcher might be interested in

understanding the role of network position on the performance of the the single node. On

the other hand, it is possible to study the effect of macro-level network features like average

degree or average betweenness on the overall performance of the network. The model and

results presented in this chapter and chapter 5 are based on the macro-perspective, where the

main metrices concern degree, betweenness, and closeness centralities, clustering, and finally

network constraint. These metrics are discussed in the next sections.

One particular line of research on complex problem solving by collectives has concluded

that the average path length of networks can have a relevant effect on the performance of the

collective [14; 151; 132]. From a topological point of view, average path length correlates

with the speed of diffusion; Networks with short average path length allow for information

to flow fast. The opposite case is with long average path length networks which disseminate

information slowly. In reference [132], the authors argued that in situations involving collective

problem solving, long average path length networks performed better than short average path

length ones in the long term but not in the short term. The explanation for this is that short

average path length networks circulate information about immediate solutions quickly and the

system is likely to experience an early convergence to low-quality solutions. Long average path

length networks, given their slow rate of information dissemination, allow agents to explore a

wider variety of solutions and discover better ones. In another experimental study, authors of

reference [151] show that short average path length networks perform better than long average
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path length ones. The study showed that the reason for this was that agents were able to

rationally adapt their search strategies when they receive information more rapidly. Building

on this, authors in reference [14] show that the performance of short and long average path

length networks depends on the search strategy employed by the nodes. As far as technological

innovation is concerned, there is evidence that shorter path length correlates positively with

system-level technological innovation [74].

Although these studies have spurred an interesting debate on whether network average path

length can improve collective performance, little has been done regarding the role of other

network features like degree-heterogeneity, edge direction, as well as different interaction

rules. Do heterogeneous networks facilitate technological innovation in a collective innova-

tion context? Under what conditions? Does edge direction affect performance? Does the

interaction rule between agents affect the outcome of innovation? To answer these questions I

constructed and simulated an agent-based model to understand the role of average path length,

degree heterogeneity, and edge directionality on the system-wide average performance. To

do this, I simulated a network of searching firms on a fitness landscape using networks which

varied in terms of average path length, degree heterogeneity and edge directionality.

The chapter proceeds as follows: First I give a schematic description of my model,

network structure, details of the search dynamics and observation rules of agents. Agents

in my model are firms and all firms are assumed to face the same initial problem: finding

the optimal technological innovation with the highest fitness in a given technological space

(or fitness landscape) without knowing the structure of this technological space. The model

considers only a generic innovation without making it a case study. Solutions are called

technological innovations (or simply innovations), and the fitness landscape represents the

space of all possible technological innovations. In the model setting, the fitness landscape has

one global peak, and the optimal technological innovation would be to find the solution with

the highest fitness possible. I assume that there is a network of relationships between firms

such that neighbouring firms (two linked nodes) can observe the innovations according to
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their position in the network. A node observing another node means that the first is interested

in understanding and eventually imitating the innovation of the other node. Specifically, for

undirected networks, the observation is bi-directional whereas for the directed networks the

observation will be possible according to the direction of the arc (or arcs) connecting the two

nodes (uni-directional if the link points solely from A to B, and bi-directional if A points to B

and B points to A). I assume that a directed link from firm A to firm B means that firm A is

interested in observing and eventually imitating the innovation that firm B has found, but firm

B is not interested in observing firm A. The fitness of technological innovation is assumed to

be related to the profitability of an innovation such that the higher the fitness, the higher the

expected profits.

4.1 The Fitness landscape

As I illustrated in section 2.3.2, a variety of fitness landscape models are used to model

complex problems. Although these models have been widely used in the description of

complex systems, I have decided to follow similar steps along the line suggested by [151].

In reference [151], the authors constructed a fitness landscape having in mind not the goal of

replicating standard fitness landscapes like the NK or random field models; instead, they aimed

at capturing more qualitative features of real-world problems. Following this logic, the feature

which I want to capture is the presence of multiple local peaks and one global optimum. I note

that the focus is not on the fact that there is a unique global optimum, but instead I aim to

create a context where there is one solution that is significantly better than every other solution

to render optimal search a challenging task that requires extended exploration. To this end,

the landscape is constructed in such a way to have many peaks with values between 100 and

5000 and a single peak with fitness value of 10000 which corresponds to the global optimum.

In this way, the resulting landscape, which has a global peak, is non-trivial to navigate since it

requires a lot of effort to find the optimal (global) innovation. I note that firms are assumed to

lack information about the structure of the landscape and the existence of a global optimum.

For the sake of simplicity, I assume that the fitness of a technological innovation is related to
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how much profits is guarantees in return, i.e. the higher is the fitness the more profitable is the

innovation.

The space of technological innovations (fitness landscape) is modelled as a 2-dimensional

regular grid of size 1000 x 1000. The assignment of fitness values to the grid points is done in

four stages:

1- The grid is divided into 100 x 100 smaller and equally sized blocks, resulting in a total of

100 blocks of size 100x100.

2- Evenly spaced values within the interval [100,5000] are generated with spacing between

values of 50. The result is a list of 99 numbers, to which I add the value 10000 that will be

used as a global optimum, i.e. [100,150,200,250,...5000,10000].

3 -To each of the blocks obtained in step 1, I assign randomly and without replacement a

number from the generated values in step 2 to the point at the centre of each block.

4 - I assign values to all other coordinates inside each block by following an iterative process

where nodes of distance 1 from the central point of a block are assigned fitness values equal to

a fraction of the fitness assigned to the center (see step 3) , nodes at distance 2 are assigned a

smaller fraction of the fitness of the central node and so on , resulting in a fitness landscapes

which has many peaks and valleys and high variance in the fitness values of local peaks.

A schematic illustration of the fitness landscape is shown in figure 10. I point out that the

fitness landscape used in this thesis is fixed, i.e. does not expand, and static, i.e. the fitness

values of innovations do not change over time. This will be considered as limitations of the

study and added as possible extensions to the model.
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Figure 10: The Fitness landscape. The fitness landscape is generated by dividing a 1000 x 1000 grid
(left panel) into 100 blocks of size 100 x 100 and assigning them different fitness values. An
example of resulting landscape is shown in the right panel of the figure.

4.2 Network configuration

The key question of the model in this section is the impact of average path length, degree

heterogeneity edge direction, and observation probability on the average performance of the

innovation system. For this reason, firms are located on a network which defines the interac-

tion structure. I consider only networks that have a single strongly-connected component for

directed networks (i.e. there is at least one path connecting each pair of nodes in the network),

and weakly-connected component for directed networks (i.e. there is at least one path that

goes either from node A to node B or from node B to node A). In the simulations presented, I

examine two basic types of network: a family of undirected networks which vary in terms of

average path length, and a family of directed networks which vary in terms of heterogeneity of

degree. In the undirected networks, observation can be done in two ways, meaning that node A

can observe neighbouring node B and vice versa. In the directed networks observation is one

way, meaning that if A has a directed link towards B and B doesn’t have a directed link to A

then only A can observe B but not vice-versa. [83].

In the investigation of the role of network average path length, I consider eight networks

that are analogue to those proposed in [151]. Specifically, I generate eight networks having 64

nodes and a fixed degree of 3 for each node, but with different structural properties which I

illustrate next:
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MinAvgClus MinAvgBet MaxConsVar MaxMaxClos

MinMaxClos MaxAvgBet MaxMaxBet MaxAvgClus

Figure 11: The networks used in simulations investigating the role of average path length. The panels
of the upper row show networks which have high average path. From left to right they are
characterised by minimised average clustering, minimised average betweenness, maximised
variance in constraint and maximised maximum closeness. The four networks in the panels
of the lower row have low average path length in terms of path length. From left to right they
are characterised by minimised maximum closeness, maximised average betweenness, max-
imised maximum betweenness and maximised average clustering. Details of the generation
of the networks will follow later.

• Betweenness Centrality Betweenness centrality [77] can be perceived as a measure of

the amount of information that flows between nodes through aother node. Formally, let

αij be the number of shortest paths from i to j and let αij(k) be the number of shortest

paths from i to j that go through k, then the betweenness centrality of k is

Cbetweenness(k) =
∑

i 6=k 6=j∈V

αij(k)

αij

• Closeness Closeness centrality [78] measures how reachable a node is from the other

nodes in a network. More formally, it can be calculated as the reciprocal of the average

length of the shortest path between a node and the rest of the network

Ccloseness(k) =
n− 1∑

v∈V d(k, v)

66

C
E

U
eT

D
C

ol
le

ct
io

n



where n is the number of nodes in the network, and d(k,v) is the length of the shortest

path from k to v.

• Clustering Coefficient Clustering coefficient is a measure of how connected are the

neighbors of a node [183]. In formal language

cc(k) =
|{(i, j)|i ∈ Γ (k) and j ∈ Γ (k)}|(

deg(k)
2

)
where Γ (k) is the set of nodes that k is connected to and deg(k) is the degree of node k.

• Network constraint network constraint, developed in reference [29], capture the extent

to which a node acts as a bridge between different groups in the network. Burt defined

network constraint of node k as follows:

nc(k) =
1

deg(k)2

∑
v∈Γ (k)

(
pkv +

∑
w∈Γ (k),w 6=v

pkwpwv

)2

where pkv represents the fraction of attention (often measured as link weight) that node

k gives to node v. The sum
∑

w∈Γ (k),w 6=v pkwpwv denotes the total fraction of (indirected)

attention that k gives to v going through an intermediary w. If the sum of direct and

indirect attention that k gives to v is high, then k is said to waste effort giving attention

to v. Smaller value of network constraint is considered to be better because it allows

for more freedom in exploiting ones links. When network constraint is high, then the

neighbors of a node are densely connected between each other, therefore limiting the

opportunities of a node to access unique information that others don’t have access to [29].

It should be noted that the equation above is valid for directed and weighted network. In

this thesis I used the version for undirected and unweighted network which is as follows:

nc(k) =
1

deg(k)2

∑
v∈Γ (k)

(
1 +

∑
w∈Γ (k),w 6=v

pwv

)2

In both cases, the measure results minimised when none of k’s neighbours is connected

with other neighbours.
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It has been shown that the above network average attributes influence the average path

length of the network, which is used as an indicator of average path length [151; 132].

Therefore, by adjusting these network attributes, I am able to obtain networks of the same size,

average degree, and the number of edges but with different levels of average path length.

In constructing the networks, I use the following algorithm. Firstly I create random

networks with 64 nodes all of them with fixed degree 3, therefore with a number of edges of

96. Secondly, for a sufficiently large number of iterations, I choose randomly two edges per

iteration and perform a degree preserving double edge swap. A double edge swap deletes two

randomly chosen edges x-y and z-w and creates the new edges x-z and y-w. With this rewiring

approach besides keeping the node degree fixed, I ensure that the graph remains connected

(or weakly connected for the directed networks) by accepting rewiring that preserves the

network connectedness. During my search for a network characterised by the maximum value

of a given network indicator only rewiring procedures that increased or decreased one of the

properties of the four network metrics mentioned above are accepted. The properties examined

are the average value, the variance, the maximum value and the minimum value. For example,

the network with "Maximized Maximum Closeness" is the one where the most central node

(in closeness terms) is as close to other nodes as possible. So to obtain the network with maxi-

mized maximum closeness, I start with a random network with fixed degree of 3. Subsequently,

for a total of one million steps, I obtain the value of closeness centrality for the node with the

highest closeness centrality, perform a double-edge swap, and check the closeness value of the

node with the highest closeness value after the swap. If the maximum closeness value increases

and the network remains connected, I accept the swap, otherwise I undo the swap. With this

procedure, I control the average path length of the network, obtaining eight networks analogue

to those investigated in [151]. Figure 11 shows the undirected networks used in the simu-

lations of our agent-based model. The parameters of these networks are summarised in Table 1.

To examine the role of degree heterogeneity and one-way (directed) observation, I also

generate four networks with 64 nodes, and a total number of directed edges equals to 96. The
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AvgBet MinBet MaxBet AvgClos MaxClos MinClos AvgClus VarConst

MinAvgBet 0.04 0.04 0.05 0.26 0.27 0.26 0.00 0.00
MinAvgClus 0.05 0.02 0.10 0.23 0.25 0.20 0.00 0.00
MaxMaxClos 0.05 0.01 0.08 0.24 0.27 0.19 0.03 0.00
MaxConsVar 0.06 0.00 0.17 0.20 0.25 0.16 0.22 0.02
MaxAvgClus 0.12 0.03 0.34 0.12 0.15 0.10 0.47 0.01
MaxMaxBet 0.11 0.00 0.67 0.13 0.19 0.09 0.12 0.01
MinMaxClos 0.22 0.00 0.51 0.07 0.09 0.05 0.19 0.02
MaxAvgBet 0.24 0.00 0.51 0.06 0.08 0.04 0.41 0.01

Table 1: Structural properties of communication networks used in the thesis

procedure used in the generation of these networks is the following: first I fix the number of

hubs (call it H) I want to have in the network, and I connect them by directed links with prob-

ability 0.5. Secondly, with probability 0.95, I assign a directed link from any of leaf nodes to

a randomly chosen hub, otherwise, with probability 0.05 a link is assigned to a randomly se-

lected node of the periphery of the network. During the generation of the network, I make sure

that the network is weakly connected by accepting link assignments that preserve connectivity,

and I impose a condition where nodes with degree k can have an outgoing link only towards

nodes with a degree higher than or equal k. For every value of H, I generate many realizations

of these networks. The final choice is based on the value of the degree variance. As shown in

figure 12, the four selected networks present different levels of degree homogeneity. It could

be noticed that by increasing degree heterogeneity, the resulting networks resemble networks

with a core-periphery structure where the core is densely connected and its nodes have a high

degree while the periphery of the is made of sparsely connected nodes which are mostly linked

to the core [48]. Figure 12 presents the four directed networks used in the paper.

4.3 Research design

Each simulation is structured as follows: I assign random initial solutions to the 64 firms in

the fitness landscape. This guarantees that the system has a high level of initial heterogeneity in

the adopted solutions. Solutions are labelled in the form of 2-tuples (A,B), where A and B can

assume all integer values between 1-1000, generating a two dimensional grid of 1000 x 1000.

For example, one solution could be (10,20), another (100,500), and so on. I then systematically

vary the observation probability p, for which I consider the following values linearly spaced
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Variance in Degree = 4 Variance in Degree = 10

Variance in Degree = 18 Variance in Degree = 32

Figure 12: The networks used in the simulations of firms located in directed and heterogeneous net-
works. By increasing the variance of degree the network assumes a structure progressively
closer to a core-periphery network.

[0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]. At each round of the simulation, I assumed that

firms choose randomly between two strategies: (a) with probability p (observation probability)

the firm observes the innovation of a randomly chosen neighbouring firm, and if the fitness

value of the innovation of the observed firm is higher, the observing firm will move on the

position of the fitness landscape of the neighbouring firm otherwise it will stay in its position 1;

(b) With probability 1− p ( probability of autonomous search), the firm conducts independent

search by visiting a random neighboring innovation on the fitness landscape. The independent

search by a firm will be treated as a local exploitation process. For example, if the actual

position in the fitness landscape of a firm is (50,50), then the possible neighboring innovations

are (51,50),(49,50),(50,49),(50,51) 2. If the fitness value of the newly visited innovation (FNew)

is greater than the fitness of the previous innovation FOld, then the firm will move on the fitness

landscape to the new innovation with probability compared to parameter Z = 1 − exp
−∆E
T ,

1I note that the model implicitly assumes that knowledge about the fitness of observed neighbors has moderate
level of complexity such that it can flow easily from one firm to another [197]

2In technological innovation studies, the behaviour of local search for new innovations, i.e., trying combina-
tions of existing innovations which are to somehow similar to what an agent already use, is treated as a stylized
fact. see [191] for a discussion of stylized facts about technological innovation
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where ∆E is simply FNew - FOld and T is a noise parameter that controls for randomness in

accepting the new innovations. The parameter Z can assume a max of 1 and any value below

(including negative values). This way, when a firm chooses a new position on the landscape, it

evaluates Z and it is then compared to a random probability obtained from the interval [0,1]. If

Z is higher than the random probability, then the new solution is accepted. If Z is lower or Z is

<0 then the new solution is not accepted. The higher is the value of T the less noise there will

be in that a larger number of visited solutions will be accepted3. I report the results obtained

for T = 300, but I also run simulations with T = 100 and T = 10. I note that when p = 0,

then firms are searching independently and don’t observe each other, which is the equivalent

of having no network in which observation can take place. On the other hand, when p = 1,

then only observation takes place and search on the fitness landscape happens by observing

neighboring firms and moving to their location if they have fitter solutions. Observing the

solution of a neighboring firm will be treated as a process of exploration which can be distant

from the current location of the firm. Each simulation is run by performing 1000 rounds with

asynchronous update (meaning that all nodes must finish their moves at eath rouund before

starting the next round). Results are reported by averaging the averages across 200 simulations.

For each simulation, I use a different set of initial conditions of firms (positions in the fitness

landscape) and these 200 sets of initial conditions are the same for all networks.

The assumption of observing neighbouring firms is justified by the fact that all firms face

the same initial problem which requires them to search for an innovation ( a solution) in the

fitness landscape. In settings where agents can observe one another’s choices, it would be a

rational decision to learn from one another [82; 21; 212]. It is worth noting that in this model

I am not concerned with the costs of observation or absorptive capacity of firms (see [46]),

instead I focus on the role of firm network structure on performance. The performance will

be measured as the average fitness of the innovations of all firms at one timestep and by the

number of firms who find the global peak. Next, I turn to illustrate the model in more detail.

3I note that the idea of the parameter 1− exp
−∆E
T is inspired by the simulated annealing optimization method

[128]. I note however that in simulated annealing the parameter T, which refers to Temperature, assumes the
opposite role in that the higher it is the more noise there is.
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4.4 Statistical quantities

For the purpose of this model, I am mainly interested in in two statistical quantities: average

performance, and the average number of times the global optima was found. Denote with V(G)

the set of all nodes in a network G, with (p1i,x, p
2
i,x) the position of a node i at round x, and R

the number of realizations performed, then the system level average performance for network

G at round x is calculated as:

Avg(G, x) =

∑R
1

∑
∀i∈V (G) fit(p

1
i,x, p

2
i,x)

R ∗ |V (G)|

Where fit() returns the fitness value assigned to one solution as already explained in section

4.1. The second statistical quantity I am interested in is the number of times the firms found

the global optima at any given round (I shall called it Glob(G,x)):

Glob(G, x) = |{i|i ∈ Gand fit(p1i,x, p2i,x) = 10000}|

4.5 Results

4.5.1 short average path length networks perform better than long average path length

networks

As a first result, the simulations show that short average path length networks achieve

higher average fitness than long average path length ones in the short-medium term, but long

average path length networks do marginally outperform in the long run for all observation

probabilities p greater than 0. Figure 13 plots the average performance over 200 simulations

of the short and long average path length networks over time for one value of the observation

probability (p = 0.3). Figure 13 shows a clear pattern. When information circulates faster,

firms can get information about better local optima faster and at an earlier stage than when

they are located in long average path length networks.

By rapidly circulating information about the best innovations, short average path length
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Figure 13: Average fitness for all eight undirected observation networks. The observation probability
is p = 0.3. Short average path length networks are blue lines and long average path length
ones are red lines. The value of the noise parameter T is 300
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Figure 14: Simulations of firms’ search located in all eight undirected observation networks. The ob-
servation probability is p = 0.3. Short average path length networks have colours in the blue
region of the colour spectrum whereas long average path length ones have colours in the red
region of the colour spectrum. Left panel: average number of agents finding the global peak.
Right panel: average value of the maximum fitness value discovered by firms. The value of
the noise parameter T is 300

networks allow firms to position themselves close to high fitness solutions quicker than in the

case of long average path length networks. However, given that the landscape which I use

requires an extended search to find the global peak, short average path length networks are

more likely to experience a convergence to sub-optimal solutions. On the other hand, long

average path length networks do not circulate information quickly given the higher average

path length and therefore they have more time to conduct an extended search which would
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increase the chance of finding the global peak more often but at a later stage. Figure 14 shows

this behaviour clearly. In the left panel, I report the average over 200 simulations of the number

of agents who are located at the local peak at each round, and on the right panel, I show the

average of the maximum fitness value attained by a firm (the best performer) at each round.

From figure 14, it could be seen that short average path length networks allow firms to find the

global peak more often in the short-medium term, but in the long run, more agents on average

find the global peak in long average path length networks. I note that after checking the fitness

values attained by firms in the last round (round 1000), it was found that approximately half

the time ( 100 simulations) most firms were at the global peak, while in the other half of

simulations no firm could find the global optimum. This can be attributed to the fact that

some initial conditions are more favourable for finding the global peak. Similar behaviour was

observed for the maximum fitness per round as shown in the right panel of figure 14.

Finally, results show that the performance at the system level improves on average when

we I decrease the value of the parameter T. For T=100 and T=10, all networks achieve better

average fitness and the global peak is found more often. This can be interpreted by considering

that lower values of T allow autonomous searchers (which happens with probability 1-p) to

accept new solutions more often than in the presence of higher values of T. When T is high

then the average performance is mainly driven by firms observing each other and therefore the

role of the network structure is more important. On the other hand, when T is low, then the

autonomous search contributes more to the average performance and the role of the network

becomes less pronounced. One would expect that in real life firms have limited resources and

therefore it is unlikely that a firm invests heavily in both autonomous search as well as observing

other innovating firms. To achieve a balance between autonomous vs. observational search,

firms may be constrained by several factors like (i) existence of technological paradigms [58]

which compels firms to check the prevailing innovative trend, (ii) absorptive capacity which

limits firm’s understanding of other firms’ solutions [220], and (iii) dynamic capabilities [204]

which limit firm’s ability to adapt to new solutions.
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4.5.2 Collective search performs better than independent search

Regardless of network average path length, my results demonstrate that search with obser-

vation probability greater than zero produces higher average fitness in the medium and long run

than autonomous search. Figure 15 plots the average performance of searches performed by

firms when they are located in a network characterized by a maximized value of the maximum

closeness for several different values of the observation probability. What figure 15 shows is

that for moderately high values of the observation probability (for example, 0.5,0.6, and 0.7),

the system achieves higher performance in the short and medium run. On the contrary, for

lower values (0.1,0.2, and 0.3) the system achieves higher performance in the long run. When

observation probability is moderately high, then firms will be copying each others’ solutions

more frequently, resulting in a quick improvement in the short and medium run, but increasing

the likelihood that the system will be unable to find valuable solutions, which typically requires

more exploration. This is the reason why simulations with lower observation probabilities do

perform poorly at the early stage, but later they achieve higher performance which is due to the

fact that they are given more time to explore the space of solutions. These simulations tell us

that in order to achieve optimal performance at the system level, there is a need to guarantee a

balance between how often firms observe each other and how often they search in isolation.

4.5.3 Degree heterogeneity has a negative effect on average performance

Simulations for directed networks of firms with different degree show that the increase

of degree heterogeneity harms the average performance of the system. As I mentioned in

section 4.2, degree heterogeneity is measured by the variance in the degree of nodes, where

higher variance indicates more heterogeneous networks. Figure 16 illustrates the behaviour of

the system for four directed networks (simulations are performed for observation probability

p = 0.3). As expected, the network with degree variance 4 has by far outperformed all other

networks with variance 10, 18 and 32 respectively. This behaviour shows that by introducing

a heterogeneous and one-way observation structure, we reduce the sources of information

available to the imitating firms, thus resulting in worse performance. The inferior performance

can be attributed to the fact that the location of hubs in the technological landscape constrains
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Figure 15: Average fitness for a search performed by firms located in an undirected network with a
maximized value of the maximum closeness. Different lines refer to different values of the
observation probability p. These values are ranging from 0 to 1 in steps of 0.1. The value of
the noise parameter T is 300

their search for technological improvements and as a consequence limits the improvements of

the imitating firms. If the initial position of hubs is poor (in fitness terms), then heterogeneous

structures of firms with one-way observation are very likely to drive the system to perform

poorly. Concerning the finding of the global peak, results show that, contrary to the family

of varying average path length networks, the family of directed and heterogeneous networks

are not able to find the global optimum in all cases and for all observation probabilities with

T = 300. This, however, is not the case for lower values of the parameter T. The results show

that by setting the value of T to T = 100, some firms in all four networks are able to find the

global optimum (in average 1 or 2 times). By setting T = 10, the system performs better and

the global optimum is found more frequently by firms located in all four networks.

It could be noticed in figure 16 that the average performance of the system is much lower

for all four networks than it was with the degree regular and undirected networks examined in

the previous section. To check the role of directed versus bidirectional observation, I repeated

the same simulations on the four networks in figure 12 by ignoring edge direction and keeping

the same network structure. Results for these simulations are shown in figure 17. Figure 17
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Figure 16: Average fitness for a search performed by firms located in the four networks with heterogene-
ity in the degree discussed in the text. Edges of the network are directed, and observations of
the firms are directional. Each network is labelled by the value of the variance of the degree.
Observation probability is p = 0.3
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Figure 17: Average fitness for a search performed by firms located in the four networks with hetero-
geneity in the degree discussed in the text but ignoring edge direction. Edges of the network
are undirected, and observations of the firms are bidirectional. Each network is labelled by
the value of the variance of the degree. Observation probability is p = 0.3
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shows that the average performance for all networks is higher than the case with directional

observation (figure 16). When the structure of observation between firms is directional, then it

is more likely that the system collectively misses improvement opportunities because of the

lack of mutual observation. This raises an important question of why certain structures like

directed and heterogeneous networks might form despite their lower benefit for innovation? In

the real world, factors pertaining to social and economic pressures can lead to the formation

of heterogeneous networks [93]. As I illustrated in section 3.2.5, this phenomenon has been

called ’The Law of The Few’, which is a situation where the majority of agents acquire

most of their information from a small subset of other agents. One economic reason why

the law of the few can emerge in firm networks relates to the role of experience [26]. The

knowledge base of firms is path-dependent; therefore older firms can be in a better position

that new incumbent ones. The universality of such claim, however, cannot be confirmed, and

because of the importance of such theory, an interesting debate in the technological innovation

literature spurred around the idea of small vs big innovators. This debate is usually referred

to as the Schumpeter/Arrow debate [89]. For Joseph Schumpeter, concentrated markets with

big companies have more resources to invest in R&D and therefore are in better position to

innovate. On the other hand, Arrow argued that big companies may have incentives not to

innovate and therefore competition should be the main driver of innovation. In his classical

paper, [159] suggests that small firms may be more innovative.

Although in my thesis I am assuming that firms have the same search capability, my results

highlight that in a market characterised by heterogeneous observation structure that favours

the core over the periphery, the system-level performance is not optimal and more likely to

experience sub-optimal lock-in.

Concerning the effect of observation probability, networks with degree heterogeneity

show a less clear distinction between which observation probabilities are optimal for the

system performance. The Results shows however that collective search, characterised by

values of the observation probability greater than zero (p > 0), always performs better than
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independent search (p = 0). However, the difference in performance between different values

of the observation probability is less pronounced than the case with the undirected and regular

networks examined in the previous section.

So far, I have dealt with an idealised model where all components of the model are artifi-

cially constructed. The lack of empirical case studies is still a significant gap in the literature of

collective search on fitness landscapes. In the next chapter, I present a contribution to the em-

pirical direction by building a historical agent-based model of the joint invention of Financial

Risk Management constructed using empirical data.

5 Computational case study: modern market risk measure-

ment as a collective innovation

In this section, I report on the results of a historical agent-based model constructed to pro-

vide an empirical application of the model proposed in chapter 4. According to reference [217],

a historical agent-based model "constrains parameters, interactions, and decision rules in the

model in line with the specific, empirically-observable history of a particular industry. It can be

interpreted as a calibration exercise with respect to unique historical traces". The case study

presented in this chapter concerns the development of the financial risk measurement solution

whose history of development followed a collective and interactive process. The model pre-

sented explains the industry-side dynamics and not the whole story. I also note that the results

presented here are not the final version of the model which is still a work in progress as of the

date of this thesis.

5.1 Market risk management: a short history

The object of the case study is the financial risk management (FRM) solution to measure

market risk in financial institutions. Market risk is defined as the risk of losses in on- and

off-balance sheet positions arising from movements in market prices. [47]. Market risk can

result from different sources like interest rates, currency exchange rate, and equity risk factors.
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The history of FRM is a history of interaction between theoretical findings, market players,

and the regulatory authorities. On the theoretical side, most sources accredit the beginnings

of FRM to Louis Bachelier, who was the first to use stochastic processes in the study of stock

option pricing [143]. The work of Bachelier remained unknown to scholars until the period

after WWII when Leonard Jimmie Savage translated the thesis of Bachelier and brought his

work to the attention of Paul Samuelson. Paul Samuelson’s work on random walks (and

subsequently Geometric Brownian Motion) became one of the main assumptions in the market

risk paradigm. In parallel with the random walk theory, the works of Markowitz on modelling

risk using mean-variance analysis, Eugene Fama on efficient financial markets, William Sharpe

on quantifying the worth of an asset, and Black, Scholes, and Merton on the value of risk were

essential in shaping the trajectory of FRM [143]. In this thesis, I claim that financial theory is

not sufficient to explain the history of FRM, whose development involves the adaptation and

application of financial theory into commercial use. This is in line with the distinction between

invention and innovation illustrated in section 2.1.

On the industry side, the problem of how to quantify market risk has always been driven by

the fact that market risk is intrinsic to the business model of financial institutions. Additionally,

financial institutions, and in particular, commercial banks, are (at least in theory) supposed to

perform two primary functions: risk management and resource allocation.

The evolution of FRM went through several stages. In the years following WWII, the

financial sector did not have a well-established standard for measuring financial risk. Each

bank relied on their ad-hoc heuristics. One convention was to treat the maximum loss incurred

after the post-world war history as a proxy for market risk [57]. However beginning from the

1970s, a wave of convergence took place among financial institutions that resulted in what

I call FRM. The first stage in the convergence to FRM was repricing gap analysis (RGA),

which simulated the effect of interest rate changes on interest income. RGA is easy to use and

communicate, but it has limitations if managers are interested in a more precise measure of risk.
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The use of duration analysis characterised the second stage. Duration analysis measures the

sensitivity of a security’s price to changes in interest rates and has the advantage of taking into

account the effect of market rate changes to the market value of securities. Another advantage

of duration analysis is that it converts a financial instrument into zero coupon equivalents,

therefore creating a common unit of measurement for market risk. Duration analysis has the

disadvantage of not taking into account changes in the yield curve environment, and it does not

integrate correlation risk. Given these issues, a third stage followed where measures like Value

at Risk (VAR) and scenario analysis were the dominant measures. The origins of Value at Risk

go back to Bankers Trust who began implementing the first VAR measures to calculate what is

called Risk-Adjusted Return on Capital (RAROC) [57]. The emergence of VAR models was

encouraged by the shift to standard-deviation models which was also pioneered by Bankers

Trust in by late 1970s. VAR models were later popularised during the 1980s and 1990s by

the research team at JP Morgan [103], led by Till Guildimann. Given its rapid diffusion and

simplicity of implementation, regulators adopted and encouraged the use of VAR-like and

scenario analysis tools.

Finally, on the regulatory side, the primary driver of regulatory intervention in the devel-

opment of FRM was the need to guarantee that financial institutions have enough capital as a

buffer against losses incurred due to market risk. To determine how much capital banks should

hold, regulators were also interested in a solution for market risk measurement. With a stan-

dard risk measure (or practice) in place, regulators can simplify their job and compare the risk

profiles of different banks. There were several episodes of regulatory interventions in the finan-

cial market that were mostly driven by the goal of driving the market to converge to a uniform

solution to the problem of market risk. For a detailed discussion of the most critical regulatory

interventions in the history of FRM see [103].

5.2 Stylized facts

When constructing a historical-agent based model of an innovation or industry, the main

ingredient is the set of stylized facts that characterise the history of such innovation [142].
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Stylized facts are used to model the parameters and components of the agent-based model in

order to produce patterns that resemble the actual history of the problem at hand. In this section,

I provide five of the stylized facts about the development of FRM.

1- The extensive interaction between the public and private sector in finding the right solu-

tion ([18; 71]. As the chairman of the Federal Reserve Ben Bernanke sustained:

The evolution of risk management as a discipline has thus been driven by market

forces on the one hand and developments in banking supervision on the other, each

side operating with the other in complementary and mutually reinforcing ways.

Banks and other market participants have made many of the key innovations in risk

measurement and risk management, but supervisors have often helped to adapt

and disseminate best practices to a broader array of financial institutions. And at

times, supervisors have taken the lead, for example, by identifying emerging issues

through examinations and comparisons of peer institutions or by establishing

guidelines that codify evolving practices.

2- The dominance of a few institutions in the innovation process. These institutions were

mostly the largest ones who were actively investing in finding a solution to the problem of

measurement and management of market risk. This stylized fact can be treated as an example

of institutional isomorphism where powerful agents create an environment that encourages

others to belong to it in order to conform. Evidence for institutional isomorphism can be

supported by the group of thirty meeting in 1991. The group of thirty is an international

body of leading financiers and academics which aims to deepen understanding of economic

and financial issues and to examine consequences of decisions made in the public and private

sectors related to these issues. In 1993, the G30 published the famous report in which they

made it explicit that market risk measure like Value-at-risk and stress scenario are to be treated

as best practice and encouraged the system to adopt them. See Appendix A for a list of banks

who were part of the 1993 G30 project.

3- The dimension of the FRM problem as seen from an industrial perspective. As with any
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complex economic problem, finding the best risk measure entails a constrained optimization

along multiple dimensions. The most critical dimensions of the problem of FRM were to find

a measure that is comprehensive (i.e. deals with all or nearly all aspects of financial risk), and

simple (i.e. easy to implement). Simplicity and breadth, however, resulted in being qualities

where an increase in one would results in decrease in the other. As Kenneth Garbade, who

worked in Bankers Trust Cross Markets Research Group, noted:

In view of the importance of risk assessment and capital adequacy to regulatory

agencies and market participants, it is not surprising that many analysts have

tried to devise procedures for computing risk and/or capital adequacy which are

(a) comprehensive and (b) simple to implement. Without exception, however,

those who make the effort quickly discover that the twin goals of breadth and

simplicity are seemingly impossible to attain simultaneously. As a result, risk and

capital adequacy formulas are either complex or of limited applicability, and are

sometimes both.

4- development of FRM lead to a situation of lock-in. By the beginning of the 1990s, the

financial sector managed to agree on a final solution for market risk that involves VAR and

stress scenario, and this solution was quickly generalised throughout the system. Two main

factors contributed to the lock-in situation of FRM. First, in the 1990s, complimentary services

were developed around FRM such as software implementation and university courses. Second,

regulators adopted similar measures as their solution for evaluating capital requirements

[97; 150; 71]. Adopting a uniform approach to risk measurement throughout the financial

system might give rise to a form of systemic risk driven by model homogeneity. The source of

the systemic risk lies the fact that a unique approach might generate a system-wide asymmetric

risk profile that exposes the entire system to the same risk factors. As Bernanke sustained

a single firm may have an acceptable exposure to a particular type of risk that would be

unacceptable if replicated across many firms. Even the theory of forecasting sustain that

aggregating different forecasts tend to outperform a single forecast [16; 54]. Following the

crisis of 2008, measures of market risk like Value-at-Risk have been heavily criticized for
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being a main factor leading to the crisis. Future development in the area of market risk

management will show whether it will be possible to lock-out from the Value-at-Risk solution

to market risk measurement.

5- I would argue that a stylized fact of financial markets concerns the fact that financial

innovations are typically not subject to legal protection ([127]); thus financial institutions have

high incentive to observe and copy the innovations of other institutions. Evidence shows that

during the years leading to the development of FRM, small financial institutions actively at-

tended conferences and workshops offered by major financial institutions on the subject of risk

management [57; 97].

5.3 Data collection

The data employed in this section come from two primary sources. Data on the financial

network of banks is obtained from the DealSscan database. DealScan is the most compre-

hensive database of the international syndicated lending market. It is published by Reuters

Loan Pricing Corporation (LPC) and contains information on over $2 trillion large corporate

syndicated loans originated since 1981. Academic researchers and economists leverage

DealScan data for investigating several problems like bank-firm relationships analysis, lending

behaviours, banking structure, information asymmetries and cross-country lending activities.

DealScan provides detailed information on loan contract terms, type, amount, currency,

country of origination, purpose, type, borrower, and lenders. For each participant in a loan,

information is available regarding its role (lead arrangers and participant lenders), and its

share in the loan. Information is available both on the deal (package) level as well as on the

tranche (facility) level. A deal can be made of several tranches. The data used in this thesis had

263299 facilities and 17377 distinct participating banks. The size of the deals in the database

may vary from a small amount of several thousand to as much as several billion US dollars.

The number of lenders in the deals and tranches varies greatly and ranges between one to

more than 190 lenders. The market covers borrowing firms from more than 180 countries.

The reason DealScan is chosen is that of its comprehensive coverage that includes most of the
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Degree Betweenness Cloneness Clustering Eigenvector Frequency

Average 131 1.038766e-04 0.391831 0.728495 0030180 84
Min 1 0.000000e+00 0.000069 0 3.198113e-19 1
Max 5021 4.626842e-02 0.593151 1 1 29881
10th Perc 4 0.000000e+00 0.329445 0.379447 1.223761e-06 1
50th Perc 37 3.408369e-07 0.397505 0.767007 2.085476e-05 4
80th Perc 168 2.161768e-05 0.440529 1 1.050072e-04 24
90th Perc 351 8.935352e-05 0.456229 1 2.008113e-04 68
95th Perc 563 2.662830e-04 0.468303 1 2.926613e-04 172
99th Perc 1362 1.758312e-03 0.498557 1 5.938556e-04 1161

Table 2: Summary Statistics of the Lender-Lender projected graph

international banks (more than 180 countries). Additionally, since the development of FRM

took place mostly in the United States, DealScan has particularly good coverage for the US

loan markets as sustained in [35]. Finally, the closing of a syndicated loan requires interaction

between banks’ directors and professionals that implies, at least partial, access and sharing of

information concerning the process of risk management followed by each bank. The network

will be used as a proxy for an observation network where a link from one bank to another

means that the first bank observes the risk management solution of another bank. The fact that

the syndicated loan market is highly exposed to information asymmetries problems implies

that banks who participate with others in a facility do usually acquire information about each

other and this will be used as an argument in favor of the use of DealScan as a proxy for

observation network.

To get the proxy network, I first extract a bipartite graph where on one side there are lenders

and on the other side borrowers. Most of this research will focus on lender-lender relationships,

and for this reason, the lender-side projected network will be the primary data input. In this

network, a node represents a bank, and a link exists between two banks if they participated

together in at least loan. Weights are excluded for the sake of simplicity. Figure 18 shows

both the original Bipartite network and the lender-side projected one. Figure 19 shows the

log-log plot of the degree of the projected graph. Applying the methodology proposed in [42],

the hypothesis of power-law distribution was confirmed for the degree distribution. Additional

summary statistics are shown in table 2.
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Figure 18: The first graph to the left (Graph A)is the bipartite graph where on one side we have lenders,
and on the other side, we have borrowers. For example, it is shown that Bank A and Bank B
participated together to give a loan to Company X through Facility N.20. The graph to the
Left (Graph B) is the Lender Side projected Network. For example, if on Graph A both Bank
A and Bank B participated together in the same facility (Facility 20) they are connected.
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y

Figure 19: Log-Log plot of degree distribution of the projected lender-lender graph

The second type of data was obtained as a result of text analysis of the annual reports of US

banks deposited at the Securities and Exchange Commission. All public US banks are required

to report their annual report to the SEC. In their annual reports, banks usually mention the risks

they face and the methods used to measure and manage them. I extracted the text parts (when

available) where banks discuss their risk method adopted to manage market risk. The majority

of banks mention either value-at-risk, sensitivity and scenario analysis, or both. Here are some

examples:

Market risk arises from price changes in various markets. Market risk from foreign

exchange and trading activities is monitored and controlled through established
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limits on positions and aggregate limits based on estimates of potential loss of

earnings under assumptions about changes in market conditions.

- State Street Corporation, 1994 Annual Report

Market risk from foreign exchange and trading activities is controlled through

established limits on aggregate and net open positions, sensitivity to changes in

interest rates, and concentrations. These limits are supplemented by stop-loss

thresholds. The Corporation uses a variety of risk management tools and tech-

niques, including value at risk, to measure, monitor and control market risk.

- State Street Corporation 1997 Annual Report

Bank Name Degree Centrality

Bank of America 5344
Deutsche Bank AG 5336

ABN AMRO Bank NV [RBS] 5317
Societe Generale SA 4983

Royal Bank of Scotland Plc [RBS] 4663

Table 3: Five Largest Degree Centralities in DealScan

Bank Name Betweenness Centrality

Bank of America 3288722.5
Deutsche Bank AG 2907339.7

ABN AMRO Bank NV [RBS] 2804728
BNP Paribas SA 2403666.3

Citibank 2265226.2

Table 4: Five Largest Betweenness Centralities in DealScan

The data collected also includes the consulting company used by banks for preparing the

annual report. The data shows that few companies dominate the auditing market for US banks

such as Deloitte, KPMG, Ernst & Yong, Price Coopers, and ARTHUR ANDERSEN & CO.

In this model, I sustain that hubs in financial markets are a driving force behind the adoption

of FRM. In order to prove the crucial role of hubs, I present next some analysis of market
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Bank Name Eigenvector Centrality

Bank of America 1
Deutsche Bank AG 0.75398648

Citibank 0.73367721
ABN AMRO Bank NV [RBS] 0.72972546

Bank of Nova Scotia 0.72752112

Table 5: Five Largest Eigenvector Centralities in DealScan

association rules using the apriori algorithm.
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5.4 Examining the role of hubs in financial markets: association rules

analysis

In this thesis, I sustain that hubs in financial markets play a substantial role in structuring

and influencing the market. To give some justification of this claim this section reports on the

results of a machine learning analysis using Association rule learning [1] that I applied to the

DealScan data. The goal of applying this algorithm is to check whether there are participation

rules in financial markets (e.g. if bank A is present then bank B is very likely to be present

as well) and understand the role of hubs in the shaping of such rules. There are studies like

[34] who already found evidence for trust relationships and memory in the Syndicated Loans

Market; however, such studies did not consider the nature and role of hubs in the formation of

such relationships. Next, I present the analysis and a discussion of the results.

5.4.1 Association Rule Learner applied to the syndicated loan market

Following the original definition by [1] the problem of association rule mining is defined

as follows:

Let I={i1, i2, . . . , in} be a set of n binary attributes called items. In my case these items are

the lender banks in the DealScan database (17377 unique banks).

Let D={t1, t2, . . . , tz} be a set of transactions which would be the data input for the

association rule learner. In my case, these transactions represent the facilities (263299 unique

facilities). E.g. a facility can be given by bank A, bank B, and bank F in such case the

transaction is (Bank A, Bank B, Bank F).

A rule is defined as an implication of the form:

X ⇒ Y, where X, Y ⊆ I.

Which could be interpreted as follows: the presence of X implies the presence of Y. A rule
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is composed by two different sets of items, X and Y, where X is called antecedent or and Y

consequent. If X has only one element in it the it is called item, while if it contains more that

one item then it is called itemset. Applying this logic to the DealScan data, a rule can be read

as follows: The presence of Bank A in a loan implies the presence of Bank B, or the presence

of Bank A and Bank B together in a loan implies the presence of Bank C.

In an association rule analysis, three concepts are essential. Let’s use X to denote an item

(or itemset), X ⇒ Y to denote an association rule and T to represent a set of transactions from

D. One important concept is the itemset support, which indicates the frequency with which an

itemset X appears in the dataset. In other words, it is the number of transactions t in D which

contain X.

supp(X) =
|{t ∈ T ;X ⊆ t}|

|T |

The same antecedent can produce a number of different consequents. For this reason, an-

other measure of the rule quality is how often that antecedent X appears in transactions that

also contain Y. This is the rule confidence

conf(X ⇒ Y ) =
supp(X ∪ Y )

supp(X
)

One more quality measure - the rule lift - tells us how much precise a rule is, compared

to just the a priori probability of consequent Y. In other words, it is the ratio of the observed

support to that expected if X and Y were independent.

lift(X ⇒ Y ) =
supp(X ∪ Y )

supp(X)× supp(Y )

To examine the role of hubs on the structure of the syndicated loan markets, I first apply the

association rule analysis to the entire dataset and analyse the results. After that I exclude the

hubs from the dataset (using a simple criterion for deciding what a hub is) and then repeat the

association rule analysis. Next, I present the results for both scenarios.

90

C
E

U
eT

D
C

ol
le

ct
io

n



Column min mean max st.dev skewness kurtosis

Support (0-1) 0.01 0.0208 0.1135 0.0149 2.7425 10.1809

Table 6: Association model with min support 0.01. These statistics concern the itemsets (not the rules)
with max length of 3. For example, a minimum support of 0.01 indicates that itemsets of length
1,2, or 3 are chosen if they appear at least in 1% of entire transactions set (facilities). itemsets
are of the form (Bank A) or (Bank A, BankB) or (Bank A, Bank B, Bank C).

Column min mean max st.dev skewness kurtosis

Support 0.01 0.013 0.0203 0.0026 1.3342 1.199
Confidence 0.0905 0.2345 0.4953 0.8036 0.8097 0.7904

Lift 1.5455 4.0216 7.6832 1.3418 0.5728 -0.0983

Table 7: Summary statistics for association rules with min support 0.01. This means that these statistics
concern the rules whose frequency is at least 1% among the entire set of rules that is obtained
from association analysis.

5.4.2 Analysis and results for the entire dataset

After transforming the lender-lender graph into a transaction dataset, I ran the association

rule analysis as follows: first, for computational reasons I chose the maximum itemset length to

be 3. This means that the algorithm will try to find rules for which the length of the antecedent is

at most 3. Second, the algorithm requires the choice of the minimum support level for itemsets

and for this I chose the values 0.01, and 0.001. For values greater than 0.01, the result was an

empty table (no rules).

With minimum support of 0.01 I get only ten items (I=10), with a maximum support of

0.11 and an average of 0.02 as shown in table 6. Calculating the association rules for this

support level I get a total of 120 rules. Table 7 provides some of the descriptive statistics of the

measures associated with these rules. As table 7 shows, the average support for the 120 rules

is 0.013, meaning that, there are 120 association rules which on average are 1% frequent in the

entire dataset. The average confidence was 23%, which means that the rules which I got are

on average 23% of the time right. One of the original intentions behind this analysis is to treat

rules as an indicator of trust or memory relationships between banks. If the participation of one

bank, Bank A, in a facility produces with a high confidence level the consequent involvement

of Bank B, then this could be attributed to the fact that a trust relationship exists between the

two banks.
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Column min mean max st.dev skewness kurtosis

Support (0-1) 0.001 0.0017 0.1135 0.0021 18.7418 579.9909

Table 8: Association model with min support 0.001. These statistics concern the itemsets (not the rules)
with max length of 3. For example, a minimum support of 0.001 indicates that itemsets of
length 1,2, or 3 are chosen if they appear at least in 0.1% of entire transactions set (facilities).
itemsets are of the form (Bank A) or (Bank A, BankB) or (Bank A, Bank B, Bank C).

Column min mean max st.dev skewness kurtosis

Support 0.001 0.0015 0.0203 0.0008 06.8211 79.8988
Confidence 0.05 0.4731 0.9215 0.194 -0.3141 -0.7867

Lift 0.6139 17.4431 170.7222 13.4643 1.856 4.8585

Table 9: Summary statistics for association rules with min support 0.001. This means that these statis-
tics concern the rules whose frequency is at least 0.1% among the entire set of rules that is
obtained from association analysis.

The average lift was 4, meaning that on average we are four times more confident that the

rules found are precise. This means that it is four times more likely to observe the participation

of certain banks as a consequent of one rule compared to seeing the involvement of the same

as a consequent in the entire dataset.

By decreasing further the minimum support to 0.001, I get 26088 items with average sup-

port of 0.0017 (table 8). Here it could be seen that the maximum support is equal to that of the

previous support (0.11). This is because the only thing which was changed is the number of

items with lower support.

Moving to the association rules table, with minimum support of 0.001 I get a total number

of 84714 rules. The average support for rules here is 0.0015 where the maximum is the

same as with the previous level of support (table 9). However, one can notice here that the

average confidence is higher (=0.47). The higher confidence may be a further signal that

trust or memory is evident when we reduce the minimum support to include lower support

items. The reason could be the power law distribution of the lender-lender network where a

significant number of banks has a low degree, and few have a very high degree (hubs). This

means that, while hubs have many participations with other banks (they appear with very high
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frequency), the majority of banks appear with much less frequently (low frequency), and when

the minimum support was reduced, the results produce much more items and much more rules.

Numerically I can reason about it in the following way: The total number of transactions

(facilities) in the dataset is 263299. If we assume a minimum support level of 0.01, this

means that I expect a bank to appear in at least 0.01*263299=2632 facilities, which is very

unlikely (it would be enough to look at table 2 and we can see that the 80th quantile for

participation frequency is 24!, meaning that 80% of banks appeared in a maximum of 24

loans (facilities)). On the other hand, reducing the minimum support to 0.001 means that we

expect banks in this sector to appear in 0.001*263299 = 263 loans which is more reasonable,

given that the DealScan dataset expands over 28 years and thus on average we expect our

banks to participate every year in 263/28 = 9 loans. Another indicator of trust or market

structure is the large number of rules that was obtained. If participation were random, we

should not expect any association rules! (I pick my products from the supermarket randomly).

If we look at table 9, we can notice that the average lift is much higher now than before,

with an average value of 17. This may indicate that the precision of the association rules

increased with lower support. Now we are sure that if A implies B, then on average this

association is 17 times more likely compared to B being implied by some other item in the

entire dataset. I decided not to lower more the support level for two reasons: first is the very

high computational cost which is involved in reducing the minimum support and second is the

fact that, as I said earlier, a frequency of participation in 0.001(minimum support)*263299(N

of Transactions)/28(temporal length of the datasets in years) = 9 which is close to the first

quartile (=8) in the degree distribution of lenders , so I assumed that it is an acceptable level.

Another way to look at the results is by examining both the antecedents and consequent

columns to check for the frequency of times in which the same antecedent or consequent ap-

peared in the rules. The results show that for min support level of 0.001, I get a number of

10348 unique antecedents and 283 unique consequents. This result suggests that there is more

variety on the antecedent side than on the consequent side. The hypothesis here is that hubs
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Pearson Correlation Degree Centrality Betweenness Centrality Eigenvector Centrality

Degree Centrality 1 0.88 0.82
Betweenness Centrality 0.88 1 0.98
Eigenvector Centrality 0.82 0.98 1

Table 10: Pearson correlation between centrality measures

Spearman Correlation Degree Centrality Betweenness Centrality Eigenvector Centrality

Degree Centrality 1 0.99 0.99
Betweenness Centrality 0.99 1 0.99
Eigenvector Centrality 0.99 0.99 1

Table 11: Spearman correlation between centrality measures

play a crucial role in shaping the structure of the market. Due to the existence of hubs, who

are frequently present in many facilities, it is very likely that their participation gives rise to

many associations between market participants. In order to check for the effect of hubs on the

structure and associations in the syndicated market, I run the same Association Rule Analysis

on the same dataset but excluding the hubs. Next, I discuss the results for this analysis.

5.4.3 Analysis and results after excluding the hubs

As I mentioned at the beginning of this analysis, I intend to capture or measure the role of

hubs on market structure. To proceed with this analysis, I first analyze the correlation between

the frequency of participation of a bank and acquiring a higher degree. To achieve these

results, I calculate two measures:

1- The Pearson and Spearman Correlation between the Degree Centrality, Betweenness

Centrality and the Eigenvector Centrality (tables 10 and 11).

2- The Pearson and Spearman correlation between the frequency of each lender in the

dataset and its degree (tables 12 and 13). Afterwards, we move to discuss the output of the

association rules analysis conducted by excluding the hubs from the dataset.

As shown in tables 10 and 11, there seems to be a high positive correlation between
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Pearson Correlation Degree Centrality Frequency

Degree 1 0.780279
Frequency 0.780279 1

Table 12: Pearson Correlation between lender Degree and Lender Frequency

Spearman Correlation Degree Frequency

Degree 1 0.8047502
Frequency 0.8047502 1

Table 13: Spearman Correlation between lender Degree and Lender Frequency

all three measures of centrality. This could be interpreted as an indicator that if a lender is

connected directly with a high number of other lenders (high degree), this lender would also be

very important as a mediator between other lenders (high betweenness). These two measures

are also positively correlated with a high Eigenvector centrality, which means that if a bank

is connected to a large number of other lenders and it sits in many of the shortest paths of

other lenders, this implies that the bank will have as neighbours those of high importance as

well. This could be interpreted by referring to the almost stylized fact according to which

the structure of financial markets is core-periphery. In a core periphery-structure, the biggest

banks form a well-connected core, and the smaller banks form a loosely connected periphery

that is mostly connected with the core.

Examining the correlation between degree and bank frequency (tables 12 and 13), it could

be seen that the correlation between participation and degree is positive and high. With a value

of 0.8, we can conclude that participating many times in this market is highly correlated with

acquiring neighbours and thus becoming an important player. Putting together the results in

table 10 and 11, the main idea emerges that the structure of the syndicated loan market is

heavily dependent on the hubs who are present in the majority of flows.

Now going back to the association rules, I ran the association rule analysis on the same

dataset, with minimum support of 0.001 and min confidence 0.05, but excluding the nodes

which have a frequency (defined as the number of time a bank appeared in the dataset) greater
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than 10000. Next, I report the main results.

First, the total number of items moves down from 263299 to 246758 (a difference

of 16541, 6%). Table 14 reports the statistics for the support count. It could be seen

that the mean support is 0.0021, close enough to 0.0017 in the case with hubs (Table

8). However, if we look at the maximum support we can see a substantial reduction with

respect to the case with hubs (0.039 vs. 0.1135). This is intuitive given that I excluded the hubs.

Second, including the association rules in the analysis, we get a lower number of rules

equal to 11498 compared to 84714 rules when hubs are included (a reduction of 86%). This is a

strong indicator that hubs in this market are, as initially assumed, a crucial element in forming

the structure and relationships in this market. The table below reports some statistics for the

rules. Here we can notice that the average support value is close to the case with hubs with the

only difference being a lower maximum support equal to 0.009 compared to 0.02 with the hubs.

As for the confidence, the only difference is the average value which is lower (0.37 vs. 0.47

with hubs). As I showed earlier, the higher the confidence, the more we are sure that the rule

is true. By removing the hubs from the system, we are less sure that the rules are true since

in the syndicated market there is some sort of hierarchy where there is the arranger (usually

the hub) who is responsible for structuring the loan and the participating banks. By removing

the hubs we are less confident that the entire hierarchy of the market is represented. The last

measure is the lift, which results higher on average if we exclude the hubs (29 vs. 17). This

reduction could be due to the fact that by removing the hubs we get a reduction of 86% in the

population of rules which, given the definition of lift, reduces the size of the population to

which we compare the precision of the rule.

Finally, we can move to understand what happened to the number of unique antecedents

and consequents when I removed the hubs from the dataset.

Results show that the number of unique antecedents is 1813 compared to 10348 in the case
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Column min mean max st.dev skewness kurtosis

Support (0-1) 0.001 0.0021 0.0396 0.0.0027 7.139 63.5708

Table 14: Association model without hubs and with min support 0.001. These statistics concern the
itemsets (not the rules) with max length of 3. For example, a minimum support of 0.001
indicates that itemsets of length 1,2, or 3 are chosen if they appear at least in 0.1% of entire
transactions set (facilities). itemsets are of the form (Bank A) or (Bank A, BankB) or (Bank
A, Bank B, Bank C).

Column min mean max st.dev skewness kurtosis

Support 0.001 0.0.0016 0.009 0.0007 3.1771 15.0758
Confidence 0.05 0.3794 0.9153 0.2235 0.2618 -1.0036

Lift 1.3294 29.1241 160.0439 21.0681 0.847 0.4347

Table 15: Summary statistics for association rules without hubs and with min support 0.001. This means
that these statistics concern the rules whose frequency is at least 0.1% among the entire set of
rules that is obtained from association analysis.

with the hubs (a decrease of 82%), while the number of unique consequents is 277 compared

to 283 when hubs were included. Again here we can observe the importance of hubs in

structuring and determining the rules of the market. If hubs do not exist, there are many

relationships and associations (such as trust) which would not exist.

With this finding, I would conclude that trust in the syndicated loans market is heavily

dependent on the hubs which, through their influence and power, can shape the bulk of market

relationships. This conclusion is in line with interesting findings in network science. For

example, [182] studied the evolution of cooperation in the framework of evolutionary game

theory and found that when individuals interact through a network generated via preferential

attachment, cooperation becomes the dominant trait; thus hubs play a very important in

promoting cooperation. The same might apply for the analysis presented in this section: since

hubs have experience, resources, and risk management capabilities, the participant banks

would have more trust in the deal, and thus hubs encourage participation.

In the next section, I will turn to present and discuss the simulations procedure for the

historical agent-based model for FRM.
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5.5 The model

5.5.1 The network

Given the large size of the projected graph obtained from DealScan, I took a smaller net-

work which is the lender-lender network for the year 1993. By 1993, financial markets almost

completed the process of convergence to the actual financial risk paradigm which was domi-

nated by Value at Risk and Scenario Analysis practices. Banks and regulators both accepted

FRM as the leading paradigm for measuring and managing market risk. The sampled network

has 905 nodes (banks) and 26412 unweighted and undirected edges. For the purpose of this

model, the network is then converted to a directed network using similar logic as proposed in

section 4.2. If a peripheral node is connected to a hub node, then the link is converted to a

directed link from the peripheral node to the hub. If a peripheral node is linked to another pe-

ripheral node, then the link is excluded, and if a hub is connected to a hub, then a bi-directional

edge is created between the two hubs. An edge from one bank to another indicates that the

first bank observes the risk measurement solution of the second bank. I assume that banks

are able to observe and understand the solutions of the other banks. Two simulation scenar-

ios are considered, the first has as hubs the biggest 15 nodes (in terms of degree) while the

second has as hubs the biggest 30. This choice is based on some facts from the history of

FRM. For example, according to Till Guldimann, one of the main innovators who popularized

VAR measures at JP Morgan, by the early 90s only the top 10-15 banks were developing risk

management technologies 4. The network with 30 hubs was constructed based on the number

of participants in the G30 summit in 1993. These numbers are simply assumptions of what

was the true number of banks working on risk management technologies. Figure 20 shows a

(small) illustrative graph that depicts the network structure used in this model. Hub nodes are

colored in blue while periphery nodes are in yellow. Is this network setting a realistic one? As I

illustrated in section 3.2.5, in many situations it could result economically optimal for a system

to organize itself as a core-periphery network where core nodes acquire information individu-

ally, while peripheral nodes acquire no information individually but form links and get all their

4http://finance-and-banking.blogspot.com/2007/06/blog-post.html
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Figure 20: Interaction Structure in the financial network. I note that this is an illustrative graph of the
original one. Blue nodes are the core and yellow are the periphery. The size of the core
nodes represent their degree but this is not based on real data. Additionally, in the real data
the core is fully connected but in the figure I excluded most links in the core for visualization
reasons.

information from the core nodes [84]. The economic motives of such structure might derive

from the fact that returns from the information acquiring by peripheral nodes is higher than the

costs of individually obtaining information (exploration). Several factors might complicate the

decision of a bank to develop a risk management technology. For example, there are usually

complementary assets that are simultaneously developed with other technologies. In the case

of risk management, these complementary elements could be software companies developing

commercial implementations of risk technologies, or university programs who start teaching

these techniques to finance students. Another factor is the need for regulatory approval when a

bank develops a new risk management solution.

5.5.2 The problem and the solution space

The problem to be solved in this model consists of finding the risk measure that can predict

future losses arising from market factors (hence market risk). The problem will be assumed to

have two conflicting dimensions: breadth and simplicity as discussed in section 5.2. Increasing
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the breadth of a risk measure is likely to produce more accurate predictions but at the same time

reduces its commercial applicability. On the other hand, increasing the simplicity of the risk

measure makes it easy to implement in commercial space but at the risk of underestimating

risk. The fitness value of a solution in the landscape would be the expected precision of its

prediction ([87] adopted similar logic for operationalizing fitness). For the sake of simplicity, I

assume that the landscape is given exogenously and agents arrive at the same fitness evaluation

for similar solutions. The landscape used in the analysis is the same one in section 4.1, where

one dimension is breadth and the other is simplicity.

5.5.3 Behavioral rules and research design

The search process is modelled as follows: first, hubs are assumed to be the only nodes

which explore the fitness landscape. This assumption is based on the historical evidence dis-

cussed in section 5.2 that only 10 - 15 banks were involved in developing solutions for financial

risk management. At each round, a hub observes a randomly chosen neighbouring hub (the data

shows that all hubs are connected to each other), and if the fitness of the solution of the ob-

served hub is higher, then the observing hub adopts the solution of the observed hub. If the

fitness of the solution of the observed hub is lower or equal to the fitness of the current solution

of the observing hub, then the hub adopts an independent search heuristic that splits the fitness

landscape into four equal modules and choose four solutions from each. The first module in-

clude all solutions (i,j) where both i and j are the range 1-500, the second module has range

1-500 for i and 500-1000 for j, the third has range 500-1000 for i and 1-500 for j, and the last

module has range 500-1000 for both i and j. Each module contains a total of 250,000 candidate

solutions (see figure 21). The practice of decomposing a fitness landscape into smaller mod-

ules and searching modules in parallel is thought to be one of the most efficient heuristics that

searching agents can adopt when facing complex economic problems (see [17; 126]).

After choosing four new solutions, an acceptance parameter is assigned to each solution as

follows:
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Where (iactual, jactual) is the actual position in the fitness landscape, (iknew, j
m
new) denotes

one of the four solutions chosen from the four modules, d() calculates the Euclidean dis-

tance between two solutions, max(d) is the maximum Euclidean distance in the landscape

(d[(1,1),(1000,1000)], fit() is the fitness function, T is noise parameter equal to 200. A weight

of 0.1 is given to the ratio between the distance between the actual and new positions (numer-

ator) and the maximum possible distance (denominator). The reason I added this 0.1 weight

is to account for what is called dynamic capabilites , which is a constraint on the ability of an

Figure 21: Modular Decomposition of the Fitness Landscape
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organization to move in the landscape [204]. The other term is given a 0.9 weight and it is

dependent on the difference in fitness of each solution, divided by a T=200 parameter which is

included to add randomness to the probability of acceptance.

After evaluating these four parameters, I assume that a bank ranks them in decreasing order

and chooses the solution with the highest acceptance parameter if its value is positive. Note

that such an acceptance parameter might be negative if the fitness of the newly chosen solution

is lower than the fitness of the actual solution. If all acceptance parameters are negative, then

the bank does not choose any of the four solutions. When this happens, then the bank chooses

a random solution from the fitness landscape and adopts it if it has higher fitness than the

actual solution. If this second option results also in a solution with lower fitness than the actual

one, then the bank remains in its position.

As for the search behaviour of the non-hub nodes, I adopted a simple heuristic: at each time

step, each peripheral bank chooses one adjacent hub node at random and adopts its solution.

Periphery nodes do not search on their own, they only observe the hubs.

At the end of each round, there will be the regulator who observes all the choices made

by all banks, calculates the convergence in space (the fitness landscape) and with certain

probability β accepts the convergence. In the next section, I illustrate how convergence is

calculated. Throughout the thesis, I will call β the probability of convergence acceptance. Four

values of β were used: 0.1,0.4,0.7, and 1. If the regulator accepts the convergence at round x,

then banks will retain their positions in the fitness landscape at that round. If the regulator does

not accept the convergence, then all banks will return to the positions there were in at round

x-1, and start from there at round x+1.

The realizations of the model were repeated for 50 different sets of initial conditions, where

each set contains a total of 905 (=number of nodes) positions in the fitness landscape. I note

that none of the initial locations contains the global optima. For each set, I run one realization

for 1000 rounds, and at the end, results are averaged for each round over the 50 realizations.
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FRM-Fitness-Averages-eps-converted-to.pdf

Figure 22: Average fitness value for the networks with 15 hubs and regulator (upper left), 15 hubs
without regulator (upper right), 30 hubs with regulator (lower left), and 30 hubs without
regulator (lower right)

5.6 Statistical quantities

For the purpose of this model, I am concerned mainly in three quantities: average per-

formance, network convergence in the landscape, and the average number of times the global

optima was found. Denote with V(G) the set of all nodes in a network G, with (p1i,x, p
2
i,x) the

position of a node i at round x, and with R the number of realizations performed, then the

system level average performance for network G at round x is calculated as:

Avg(G, x) =

∑R
1

∑
∀i∈V (G) fit(p

1
i,x, p

2
i,x)

R ∗ |V (G)|

In this model, I am interested in observing the convergence of the banks in the solution

space. At the end of each round, I calculate the total sum of all pairwise Euclidean distances

between the positions of each pair of nodes. Let’s call (pin, p
j
n) the position of node n in the

fitness landscape and (pim, p
j
m) the position of another node m, then the total Euclidean distance

of a network G ( call it d(G)) is calculated as:

d(G) =
∑

∀m,n∈G,n 6=m

√
(pim − pin)2 + (pjn − pjn)2

The third statistical quantities I am interested in is the number of times the banks found the

global optima at any given round:

Glob(G, x) = |{i|i ∈ Gand fit(p1i,x, p2i,x) = 10000}|

5.7 Discussion

In this section, I will discuss the results obtained so far for the simulations of the model

proposed in the previous section. In figure 22, I report the average performance of the networks
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with 15 and 30 searching hubs. In the left column, results are reported for the simulations

with regulator for the four convergence acceptance probabilities [0.1,0.4,0.7,1], while in the

right column the same simulations are reported to show how the system would have performed

in the absence of the regulator for each simulation. By focusing on the plots for the network

with 15 hubs (upper row), it could be immediately noticed that the system achieves always

high average fitness if the regulator is absent (right plot). This result can be attributed to two

main factors: first, the search heuristic adopted by the hubs (landscape decomposition) is very

efficient, therefore making it very likely that the system will achieve high fitness if left on its

own (without the intervention of a regulator). Parallel search can be costly, and one might

ask whether this is a realistic assumption. I would sustain (speculate) that this might be the

case. In appendix B, I list the total amount in dollars of the investments made by the largest 50

banks in 1993 as reported by DealScan. The table shows that banks invest money in the order

of tens of billions every year and this can be treated as an indicator that the financial sector

did not lack the resources to explore the landscape of risk management solutions. Obtaining

data or estimates of the costs involved in the development of risk management is one possible

extension of this model. Second, given that periphery nodes do observe only hub nodes, this

acts as an accelerating factor in the diffusion of solutions found by the hubs. This scenario is

also dependent on the nature of the real fitness landscape of risk management solutions. If we

assume that the real landscape has few peaks and is easy to explore via parallel and modular

search, then it is very likely that the system with few hubs will be able to find the most optimal

solutions and disseminates them through imitation. The history of FRM shows that financial

institutions acted as if there were only a few optimal solutions to the problem of financial risk

measurement and the evidence for that is the few options that were discussed whenever risk

management was the object of policy discussion. As some authors show (see [103; 104]),

most of the discussion revolved around tools like Value at Risk, scenario analysis, and stress

testing. Authors in reference [103] claims that similar tools with the same underlying logic

were used throughout the 20th century both by regulators and banks. This, however, could

merely indicate that the landscape is rugged and further solutions are difficult to evaluate or

test. This remains an extension to this study that deserves investigating.
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Moving to the case where a regulator is present (upper left plot in figure 22), an evident

trend emerges: the higher the probability that a regulator accepts network convergence, the

higher is the average fitness achieved. This result shows that the presence of a regulator can act

as a barrier towards an efficient exploration of the fitness landscape by the network of banks.

This, however, presents the regulator with a trade-off between efficiency and risk, which is

often the main tradeoff in financial regulation [163]. The efficiency can be represented by the

average fitness of the system, while the risk lies in the fact that the system might converge to

a uniform solution that reduces the diversity of risk models. If the financial system as a whole

adopts the same risk measure, then this might create a system-level asymmetric risk profile

where everyone will be affected by the same market factors. Back in 1997, Nassim Taleb [201]

warned that the generalised use of measures like Value at Risk would lead to systematic risk

especially because VAR measures tend to underestimate rare events. Ben Bernanke, former

chairman of the Federal Reserve, criticized homogeneity in the banking system and sustained

that ’a single firm may have an acceptable exposure to a particular type of risk that would be

unacceptable if replicated across many firms’.

When the number of searching hubs is 30 (figure 22 lower row), the results were very

similar to the case of 15 banks. The only small difference could be noticed is that the

difference in system performance with probabilities of acceptance 0.4,0.7 and 1 are less

wide compared to the case with 15 nodes. This result could be explained by the fact that

when 30 banks are exploring, there are always higher chances that the system will find the

optimal solutions and therefore achieve higher fitness. By repeating the simulations on a

wider range of core sizes (15, 30, 60, and 120), I found that there is a monotonic relationship

between the average fitness and the core size: the larger is the size of the core, the better

is the average performance. This result goes in line with what was found in section 4.5.3

where it was shown that less heterogeneous structures tend to achieve higher fitness. In a

real case scenario, this would depend on cost-benefit analysis. Is it optimal for the entire

system to invest in landscape exploration? This remains an interesting topic for further research
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FRM-Distance-Averages-eps-converted-to.pdf

Figure 23: Average euclidean distance for the networks with 15 hubs and regulator (upper left), 15 hubs
without regulator (upper right), 30 hubs with regulator (lower left), and 30 hubs without
regulator (lower right)

To understand more in detail the dynamics of convergence, figure 23 plots the average

Euclidean distance between all nodes in the network at each time step. With the presence of

regulators, the system exhibits more convergence in the fitness landscape when the convergence

acceptance probability increases (left column). If the regulator was absent, it could be shown

that the system always exhibits a fast convergence in space (right column in figure 23). This

behaviour indicates the trade-off again that regulators face between efficiency and risk. When

the system exhibits convergence, this might act to increase efficiency as financial markets

are known to adopt the solution that appears efficient. The efficiency in adopting a uniform

risk model derives mainly from the fact that markets can speak the same risk language which

facilitates trading and risk sharing between market agents. Regulators would be interested in

having markets converge to a uniform solution because this way they can compare the risk

profiles of different financial institutions and evaluate the system-level stability. However, if

the risk model adopted by the system results to be seriously flawed or inadequate (especially

when market conditions change), this might act to generate systemic risk that might jeopardize

financial stability. Risk model homogeneity can be treated as a special form of systemic

risk. Regulators have actually realized this category of risk in the 1990s by allowing banks

to use their internal models to evaluate risk [193]. These internal models, however, are

often constrained by some parameter assumptions that are set by regulators. The history of

regulatory intervention (until these days) have always shown several episodes of negotiations

between regulators and banks on how much freedom to give banks in formulating their internal

risk models for capital requirements calculations. In a future extension of this model I will

modify the fitness function to allow for dynamic fitness evaluation based on the number of

adopters of a certain solution. The fitness landscape used in this study is static in that fitness

values do not change with time. However, the fitness of specific solutions to a problem can

be a decreasing function of the number of adopters of such solution. How is this possible?
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FRM-Global-Found-Averages-eps-converted-to.pdf

Figure 24: Average number of times the global optima was found for the networks with 15 hubs and
regulator (upper left), 15 hubs without regulator (upper right), 30 hubs with the regulator
(lower left), and 30 hubs without regulator (lower right)

A naive way to think of it is by imagining that the adoption of a specific solution might

encourage certain behaviours that change the conditions under which such a solution might

work. Suppose that a bank adopts Value at Risk to measure market risk and assume that this

measure gives very low probability to large and rare shocks. Now imagine that this measure

unintentionally encourages risk-taking on the side of banks because of its reliance on normal

market assumptions. This, of course, would not be a problem if we are limited to one or

a few users (large shocks are still rare). However, if the entire market adopts this measure

and everyone starts accumulating risks, then the likelihood of big shocks is no more low as

predicted by Value at Risk and consequently, such measure would start giving low-quality

predictions (thus its fitness decreases).

Finally, figure 24 shows how many times on average did the network (how many nodes)

find the global optima. Surprisingly, in the absence of a regulator (right column), the entire

system managed to find the global optima after circa 200 rounds. I note that none of the initial

conditions includes global optimum. This high efficiency in finding the global optima without

a regulator can be attributed to the effectiveness of search heuristic adopted by the hubs and

the fact that peripheral nodes do observe only the solutions of the hubs. By decomposing the

landscape into smaller areas and the exploration of each in parallel, the probability of locating

the global optimum becomes much higher.

When the regulator is present (left column), different behaviour could be observed. For the

network with 15 hubs (upper left), the system managed to find the global optima only when the

probability of convergence acceptance is 1. If regulators were to accept network convergence

with probability smaller than 1, then it is improbable that the system will be able to find the

global optimum. The fluctuations shown in the figure are mainly due to the fact that peripheral
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nodes are randomly choosing the solutions of the hubs which they observe without making

any fitness evaluation. The lack of fitness evaluation by peripheral nodes means that even if

a peripheral node happens to be at the global optima in one round, this doesn’t exclude that

at the next round the node observes another hub and adopts its solution which might not be

the global optima. This again can act as an intervention in the efficiency of markets by a

public authority for the sake of achieving stability. This, however, raises an epistemological

problem inline with what I discussed in section 2.3.1: To say that the system finds the global

optima would be true only if the fitness landscape is objective and somehow known to the

agents. Objective evaluations do not necessarily hold in real-life. A fitness landscape might be

a subjective construct in the minds of agents and what could be a good solution for one agent

might be a bad solution for another. It might also be that a fitness landscape is objective but

agents are unable to know it given bounded rationality. In the case of FRM I assumed that

fitness represents the precision of expected loss of a risk measure. However, this precision

will only be known in the future. This remains an interesting question in the fitness landscape

literature. Interestingly, when we consider the network with 30 hubs (lower left plot), we can

notice that the system managed to find the global optima when the probability of convergence

acceptance is less than 1. This is again due to the fact that there is twice the number of hubs

exploring the fitness landscape and therefore the likelihood of finding the global optima is

higher. After repearing the same analysis with core sizes of 15, 30, 60, and 120, it was found

that there is a monotonic relationship between the number of nodes who found the global

optima and the size of the core: the bigger is the core, the more nodes find the global optima.
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6 Policy implications: how do network science, technological

innovation, and policy-making interact?

Policy interventions in the economic sphere are so pervasive, and with the increasing

reliance on network science to study complex economic phenomena like technological

innovation, there is a corresponding need to address how policy-making might benefit from

such studies and why. Authors of papers and studies usually include a short section at the

end of their research recommending few policy implications; however, it is rare that authors

understand the connection between science and policy. In this thesis, I will not list policy

recommendations given the scope and explanatory nature of the models analysed. However, I

will offer a brief and basic introduction to the process of policy making and how it might relate

to network analysis like the ones in this thesis.

Generally speaking, there are three different angles from which policy-making can be

scientifically approached. The first angle focuses on the descriptive or explanatory part of

policy-making and can be summarized with the question what does economic policy-making

do? A dominant theory in this regard is public choice theory which states that in politics there

are separate interests and the pursuit of those interests mainly drives political behaviour. Cru-

cially, many government interventions do not involve a search of self-interest, but instead, they

are instrumental in the sense that they are intended to prevent market failures. Traditionally,

the public choice theory is focused on equilibrium-oriented assumptions, comparative-static

methodology, and assumes perfect or almost perfect information. However, adopting an

evolutionary perspective, author of reference [219] sustained that politicians, as well as voters,

are subject to bounded rationality and thus have limited knowledge. Having limited knowledge

is likely to induce political agents to be highly selective in their learning. In this case, some

information is expected to receive attention and influence agents perceptions and beliefs while

other information will be ignored. Neglected information might be discovered sometime in the

future and change agents beliefs and normative judgments, thus dynamically shifting attention.

A shifting attention process might be subject to path dependency in the evolving norms, values,
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and ends [51].

Information selection and learning in policy-making happen often through communication

channels. These channels might be a community or group where information dissemination

occurs in a decentralised and face-to-face way, or through centralised means like the media.

In many cases, communications processes are subject to agenda-setting effect [185], meaning

that certain topics will be selected to be the main points of political discussion. The selective

nature of policy-making is crucial if we want to understand the conditions under which a

public opinion emerges. As the author of [218] explained, for some policy idea to attract

sufficient public attention in a self-amplifying process, there is a need for a critical mass of

people discussing and communicating that policy item within their social networks. This is

the reason why interest groups are always interested in engaging in the communication and

agenda-setting process. Building on these views, the process of policy making can be thought

of as a collective learning process, where networks of politicians, academics and interest

groups together discuss and set political agenda. An interesting example in this regards was

offered in [107] who studied the political process that led to the adoption of patent laws in Italy

in the 1960s. Hutter illustrated how social networks (or what the author called conversation

cycles) that were established between lawyers, policymakers and interest groups had a signifi-

cant effect on the public opinion formation and the final shape of the legislative measures taken.

In this thesis, I first showed that under certain conditions, short average path length

networks outperform long average path length ones in collective search problems. Let’s

treat this as a piece of information; thus it might attract attention in conversation cycles or

get neglected. Assume that it draws attention, then questions arise such as: how does this

translate into policy problem? should policymakers encourage innovators to communicate

or observe each other quickly? Is the evidence convincing? Is communication between

innovators dependent on geography or geography doesn’t matter? In the literature, results

have disagreed on the impact of different types of networks on firm innovativeness (see [186]).

Now if we consider my case study about Risk Management, the policy aspect was more
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evident. The story of FRM is a story of convergence to industry standard with the supervision

and intervention of policymaking and the banking network exploring the space of possible

solutions. Before the 1990s, developments in risk management were decentralised, and there

was no unique reference for the financial system to use as a benchmark. Beginning in 1990,

conversation cycles emerged to accelerate the process of convergence. Thes conversation

cycles were materialised in the working group of senior managers and academics that was

formed by JP Morgan Chairman Dennis Weatherstone based on a solicitation of Paul Volker in

1993, (see appendix A for a list of the participants). Knowing that few core banks are leading

the innovation could help policymakers understand whether the system would achieve optimal

results if left on its own. Or will hubs drive the system to a sub-optimal solution? Are hubs

always the best for exploring complex technological landscapes? Aren’t small banks more

flexible and can study in areas that big banks would rarely approach?

The second approach to economic policymaking deals with the theoretical basis of

instrumental policy making and revolves around the question what economic policymaking

could (try to) do? The instrumental view deals with the practical and applied ways of dealing

with policy problems. In this approach, values, ends, and motives of political agents are not

part of the analysis. Crucially, instrumental policy analysis is dependent on the predictive

power of the theories applied. This opens the door for unintended consequences due to

uncertainty. For example, agents who are unfavourably affected by a policy measure might

have adaptive incentives to find a way to circumvent such a policy. A good policy making is

thus one that tries to understand the range of its unintended consequences before implementing

it. Assume that the idea of short average path length innovation networks discussed in this

thesis receives attention in policy conversation cycles, what could policymakers do about it?

Can policy making change the network structure of agents in the marketplace? In general,

the most common policy instruments for innovation are patent laws and R&D. With patent

laws, agents have less incentive to observe and imitate each other because each innovation is

legally protected. This might lead to the emergence of another type of innovation networks like

alliance networks. Another unintended consequence is if alliance networks emerge and start
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acting like cartels, thus jeopardising market competition. It might also happen that networks

operate to reinforce the institutional isomorphism mechanism which I discussed in section

3.2.8. Other policy instruments used to encourage inter-firm technological collaboration

include science parks, industry clusters, support for business incubators, laws and regulations

for contracting, intellectual property rights, and other.

The third angle is the normative angle which investigates the goals and legitimisation of

economic policy, and can be characterised by the question what ought economic policymaking

do? This is the level at which ends and values are discussed from a normative point of view.

In this approach, the analysis focuses on distinguishing the goals that are legitimate to pursue

and how to achieve them. Another critical issue is to differentiate between targets that are

compatible and conflicting goals. Among the best examples that can be used to illustrate this

question is technological innovation [219]. Innovation is often thought of as a good thing that

will bring benefit to society. It is known however that technological innovation might also

cause negative externalities, so what kind of technological innovation policy makers need to

support? Now if we include networks in this discussion, then similar questions might arise:

are networks good for innovation? Do networks always provide the best channel to solve

technological problems? should policymakers focus on influential nodes or the peripheral ones?

Can networks guarantee the necessary diversity need for the system to evolve? If networks are

functional, how much regulatory intervention is needed to ensure a balance between market

efficiency and system stability? I would encourage scholars to consider these issues with more

detail.
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7 Conclusion and future extensions

Besides being a primary and outstanding example for a complex economic problem,

technological innovation is increasingly stylized as a ’collective’ phenomenon of interactions

between a network of innovating agents. To better understand the characteristics of the network

structure needed to promote system-level innovation, I conducted the following analysis in

this thesis: first, I analysed the role of network average path length, edge direction, and degree

heterogeneity on the average performance of a network of innovating firms. All networks

were located on a fitness landscape that is assumed to represent the space of solutions to a

technological problem. Results for this first analysis showed that the system achieves higher

performance in the short-medium term when networks are fast at circulating information

about technological innovations. In the long run, however, some long average path length

networks showed marginally higher performance in terms of average fitness and number of

firms who found the global peak. It was also found that the average performance of the system

results optimal when the probability of agents observing each other is neither too small nor

too large, thus introducing a trade-off between autonomous and collective search. Finally,

by introducing heterogeneity of the degree and directional observation, it was found that the

network system performs much worse than in the case of undirected and degree-homogeneous

networks. By increasing degree-heterogeneity, networks assume a more centralized structure

primarily focused on the performance of the main hubs, which acts to constrain the search

opportunities. The second analysis done in this thesis concerns a historical and empirical case

study of Financial Risk Management which I modelled as a collective innovation phenomenon,

involving a network of banks and a central regulator. The goal of this second analysis is to

provide an empirical example of a situation where the network plays an important role in the

development of technological innovation. The preliminary results obtained for the case study

showed that the intervention of a regulator introduces a trade-off between efficiency (average

fitness) and diversity of solutions, which is an important policy issue in financial markets. High

efficiency comes at the cost of agent convergence in the space of solutions (fitness landscape),

while high diversity comes with lower system performance.
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As with any scientific study, the results in this thesis are strongly dependent on the

assumptions of the models and several limitations are present. There are therefore critical

potential extensions in both empirical testing and modelling. First, let’s take the computational

model presented in chapter 4. On the theoretical level, I purposely constructed this model

with the minimum complexity in order to focus on the role of different network structures in

supporting technological innovation. There is, therefore, space for extending the model. It

would be useful to examine a more extensive array of network structures and their performance

under different conditions. In reference [14], it was found that different network structures

perform differently according to the learning strategy that agents adopt. This might raise

an interesting question: is it the strategy that gives the network structure importance or the

other way around? In other words, is it the nature of dynamics that we run on a network that

gives significance to the network structure or it is instead the structure of the network that

produces the dynamics? An interesting network structure that could be used for technological

innovation is the modular (community) structure since innovating firms are known to form

clusters [172; 25]. This thesis has been concerned with the system-level (or network-level)

performance of firm networks, but it would also be of interest to examine the performance at

the level of a single firm [90]. Another realistic extension is to assume that the network is

not given a priori, but emerges endogenously from learning cost-benefit analysis as illustrated

in section 3.2.4. Finally, interesting work could be done by assuming evolving networks of

agents that change due to agent experience and learning [129]

Concerning the search rules, an implicit assumption in this model is that search process

is the same for all firms in that it is modelled as a random process of trial and error plus a

constant probability of observation. The main advantage of this assumption is its simplicity.

However, in a real-world economic setting, agents are likely to be more strategic than just

following simple incremental optimising paths and performing simple observation of their

neighbours. Agents can indeed use sophisticated heuristics and/or complex adaptive strategies

[79; 148; 126]. An important thing to note is that I started the simulations assuming the agents
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are randomly located on the fitness landscape; however, it might be more realistic to assume

that agents start from near locations on the fitness landscape. Trying and comparing a variety

of search strategies is an important extension of this model.

Another implicit assumption in the model is that the fitness landscape is both static and

fixed. There are valid reasons to believe that fitness landscapes are neither static nor fixed and

this creates potential to add a dimension to the model that incorporates dynamic complexity.

Fitness landscapes are static if environmental conditions that influence the fitness of solutions

remain stable over time. Phenomena whose context is rapidly changing will eventually result

in the peaks and valleys moving up and down as time goes on. Furthermore, the fitness of

solutions in the landscape can change as a result of the actions of an agent or a collection of

agents acting and reacting to each other (endogenous factors), or as a result of external shocks

like a new regulation that reduces the profitability of an investment or product (exogenous

factors). The assumption of a fixed landscape can also be challenged, because the continuous

emergence of novelty contributes to the expansion of fitness landscapes through time. Novelty

creates new niches and opportunities that can be discovered.

Moving to the case study presented in section 5, some work still needs to be done on

theoretical and empirical modelling. First, the model assumes no search costs both for the hubs

who explore the landscape and for the peripheral nodes who observe and acquire information.

A natural extension, therefore, would be to include search and observation costs in the model.

As I show in the appendix, data is available on the amount of money that each bank invested,

and this would be used as an indicator of resources. Second, links between banks are assumed

to be unweighted, but in reality, banks appear together in the DealScan database with different

frequency, and therefore it would make sense to consider weighted links in the simulations.

Third, the regulator is assumed to accept convergence with a fixed probability, but a more

realistic scenario would involve fitness evaluation and learning on the side of regulators so that

they would allow convergence with changing probabilities according to factors such as fitness

and diversity.
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Finally, I would mention that among the most important limitations of this paper is the high

computational costs and waiting time needed for running the simulations. Searching a vast

fitness landscape like the one in used in this thesis is computationally demanding, especially if

the network of agents is large as in the case study in chapter 5.

The results presented in this thesis are meant to illustrate (explain) the nature of the interac-

tion between network structure and technological innovation on fitness landscapes. The models

presented therefore are explanatory in nature and have no predictive power given the stage of

the research. The next steps would be to work on predictive models that can be validated and

statistically tested to provide robust and valid results for policymaking.
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collectiveâĂİ innovation model: Issues for organization science. Organization science,

14(2):209–223, 2003.

[103] Glyn A Holton. History of value-at-risk, 2002.

[104] Glyn A Holton. Value-at-risk. Acad. press, 2003.

[105] Werner Hölzl. Convergence of financial systems: towards an evolutionary perspective.

Journal of Institutional Economics, 2(1):67–90, 2006.

[106] Thomas Parke Hughes. Networks of power: electrification in Western society, 1880-

1930. JHU Press, 1993.

[107] Michael Hutter. Transaction cost and communication: A theory of institutional change,

applied to the case of patent law. In Law and economics and the economics of legal

regulation, pages 113–129. Springer, 1986.

[108] Matthew O Jackson. A survey of network formation models: stability and efficiency.

Group Formation in Economics: Networks, Clubs, and Coalitions, pages 11–49, 2005.

[109] Matthew O Jackson. Social and economic networks. Princeton university press, 2010.

[110] Matthew O Jackson and Asher Wolinsky. A strategic model of social and economic

networks. Journal of economic theory, 71(1):44–74, 1996.

[111] Börje Johansson, Charlie Karlsson, and Lars Westin. Patterns of a network economy.

Springer Science & Business Media, 2012.

[112] Peter Stewart Johnson. Co-operative research in industry: an economic study. Halsted

Press, 1973.

126

C
E

U
eT

D
C

ol
le

ct
io

n



[113] Phil Johnson and Joanne Duberley. Understanding management research: An introduc-

tion to epistemology. Sage, 2000.

[114] Steven Johnson. Where good ideas come from: the seven patterns of innovation. Penguin

UK, 2011.

[115] Riitta Katila and Gautam Ahuja. Something old, something new: A longitudinal study

of search behavior and new product introduction. Academy of management journal, 45

(6):1183–1194, 2002.

[116] Elihu Katz and Paul Felix Lazarsfeld. Personal Influence, The part played by people in

the flow of mass communications. Transaction Publishers, 1966.

[117] Michael L Katz and Carl Shapiro. Technology adoption in the presence of network

externalities. Journal of political economy, 94(4):822–841, 1986.

[118] SA Kauffman, Stefan Thurner, and Rudolf Hanel. The evolving web of future wealth.

Scientific American, 2008.

[119] Stuart Kauffman and Simon Levin. Towards a general theory of adaptive walks on

rugged landscapes. Journal of theoretical Biology, 128(1):11–45, 1987.

[120] Stuart Kauffman and William Macready. Technological evolution and adaptive orga-

nizations: Ideas from biology may find applications in economics. Complexity, 1(2):

26–43, 1995.

[121] Stuart Kauffman, José Lobo, and William G Macready. Optimal search on a technology

landscape. Journal of Economic Behavior & Organization, 43(2):141–166, 2000.

[122] Stuart A Kauffman. Investigations. Oxford University Press, 2000.

[123] Stuart A Kauffman. Reinventing the sacred: A new view of science, reason, and religion.

Basic Books, 2008.

[124] Stuart A Kauffman and Sonke Johnsen. Coevolution to the edge of chaos: coupled

fitness landscapes, poised states, and coevolutionary avalanches. Journal of theoretical

biology, 149(4):467–505, 1991.

127

C
E

U
eT

D
C

ol
le

ct
io

n



[125] Kevin Kelly. The inevitable: understanding the 12 technological forces that will shape

our future. Penguin, 2017.

[126] Tamer Khraisha. Complex economic problems and fitness landscapes: Assessment and

methodological perspectives. Structural Change and Economic Dynamics, (in press)

https://doi.org/10.1016/j.strueco.2019.01.002, 2019.

[127] Tamer Khraisha and Keren Arthur. Can we have a general theory of financial innovation

processes? a conceptual review. Financial Innovation, 4(1):4, 2018.

[128] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. Optimization by simulated

annealing. science, 220(4598):671–680, 1983.

[129] Alan Kirman. The economy as an evolving network. Journal of evolutionary economics,

7(4):339–353, 1997.

[130] David Kreps and Kenneth Wallis. Advances in economics and econometrics: Theory

and applications 3 volume paperback set. Technical report, Cambridge University Press,

1997.

[131] Paul Felix Lazarsfeld, Bernard Berelson, and Hazel Gaudet. The people’s choice: how

the voter makes up his mind in a presidential campaign, by Paul F. Lazarsfeld [et al.].

Columbia Univ. Press, 1965.

[132] David Lazer and Allan Friedman. The network structure of exploration and exploitation.

Administrative Science Quarterly, 52(4):667–694, 2007.

[133] Aija Leiponen and Ina Drejer. What exactly are technological regimes?: Intra-industry

heterogeneity in the organization of innovation activities. Research Policy, 36(8):1221–

1238, 2007.

[134] Daniel Levinthal and James G March. A model of adaptive organizational search. Jour-

nal of Economic Behavior & Organization, 2(4):307–333, 1981.

[135] Daniel A Levinthal. Adaptation on rugged landscapes. Management science, 43(7):

934–950, 1997.

128

C
E

U
eT

D
C

ol
le

ct
io

n



[136] Daniel A Levinthal and Massimo Warglien. Landscape design: Designing for local

action in complex worlds. Organization Science, 10(3):342–357, 1999.

[137] Stanley J Liebowitz and Stephen E Margolis. Winners, Losers & Microsoft; Competition

and Antitrust in High Technology. Independent Institute, 1999.

[138] Andrew W Lo. Adaptive markets: Financial evolution at the speed of thought. Princeton

University Press, 2017.

[139] Henry Lopez-Vega, Fredrik Tell, and Wim Vanhaverbeke. Where and how to search?

search paths in open innovation. Research Policy, 45(1):125–136, 2016.

[140] Vittorio Loreto, Vito DP Servedio, Steven H Strogatz, and Francesca Tria. Dynamics on

expanding spaces: modeling the emergence of novelties. In Creativity and universality

in language, pages 59–83. Springer, 2016.

[141] Franco Malerba and Luigi Orsenigo. Technological regimes and firm behaviour. In

Organization and strategy in the evolution of the enterprise, pages 42–71. Springer,

1996.

[142] Franco Malerba, Richard Nelson, Luigi Orsenigo, and Sidney Winter. ’history-

friendly’models of industry evolution: the computer industry. Industrial and corporate

change, 8(1):3–40, 1999.

[143] Benoit Mandelbrot and Richard L Hudson. The Misbehavior of Markets: A fractal view

of financial turbulence. Basic books, 2007.

[144] James G March. Exploration and exploitation in organizational learning. Organization

science, 2(1):71–87, 1991.

[145] James G March and Herbert Alexander Simon. Organizations. 1958.

[146] Luigi Marengo and Giovanni Dosi. Division of labor, organizational coordination and

market mechanisms in collective problem-solving. Journal of Economic Behavior &

Organization, 58(2):303–326, 2005.

129

C
E

U
eT

D
C

ol
le

ct
io

n



[147] Luigi Marengo and Marco Valente. Industry dynamics in complex product spaces: An

evolutionary model. Structural Change and Economic Dynamics, 21(1):5–16, 2010.

[148] Luigi Marengo, Giovanni Dosi, Paolo Legrenzi, and Corrado Pasquali. The structure of

problem-solving knowledge and the structure of organizations. Industrial and Corporate

Change, 9(4):757–788, 2000.

[149] Donald G Marquis. The anatomy of successful innovations. Innovation, 1(7):28–37,

1969.

[150] Christopher Marshall and Michael Siegel. Value-at-risk: Implementing a risk measure-

ment standard. 1996.

[151] Winter Mason and Duncan J Watts. Collaborative learning in networks. Proceedings of

the National Academy of Sciences, 109(3):764–769, 2012.

[152] James McNerney, J Doyne Farmer, Sidney Redner, and Jessika E Trancik. Role of

design complexity in technology improvement. Proceedings of the National Academy of

Sciences, 108(22):9008–9013, 2011.

[153] J Stanley Metcalfe. Evolutionary economics and technology policy. The economic jour-

nal, 104(425):931–944, 1994.

[154] David Mowery and Nathan Rosenberg. The influence of market demand upon innova-

tion: a critical review of some recent empirical studies. Research policy, 8(2):102–153,

1979.

[155] Toshihiko Mukoyama. Innovation, imitation, and growth with cumulative technology.

Journal of Monetary Economics, 50(2):361–380, 2003.

[156] Richard R Nelson. The simple economics of basic scientific research. Journal of political

economy, 67(3):297–306, 1959.

[157] Richard R Nelson and Sidney G Winter. Evolutionary theorizing in economics. Journal

of Economic Perspectives, 16(2):23–46, 2002.

130

C
E

U
eT

D
C

ol
le

ct
io

n



[158] Jack A Nickerson and Todd R Zenger. A knowledge-based theory of the firmâĂŤthe
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8 Appendix

A G30 Supporters

1. American International

Group

2. Bank of America

3. Bank of Tokyo

4. Bankers Trust Com-

pany

5. Banque Indosuez

6. Banque Paribas

7. Barclays Bank

8. Chase Manhattan Bank

9. Chemical Bank

10. Citicorp

11. Commerzbank

12. Crédit Suisse

13. CS First Boston

14. Dai-ichi Kangyo Bank

15. Daiwa Securities

16. Deutsche Bank

17. Dresdner Bank

18. Fidelity Investments

19. First Chicago

20. Fuji Bank

21. Goldman Sachs

22. HSBC Holdings

23. Industrial Bank of

Japan

24. J.P. Morgan

25. Kredietbank

26. Lloyds Bank

27. Merrill Lynch

28. Mitsubishi Bank

29. Morgan Stanley

30. NatWest Markets

31. Nikko Securities

32. Nomura Securities

33. O’Connor & Associates

34. Price Waterhouse

35. Royal Bank of Canada

36. S.G. Warburg Group

37. Sakura Bank

38. Salomon Brothers

39. Sanwa Bank

40. Société Générale

41. Standard Chartered

42. State Street Bank and

Trust

43. Sumitomo Bank

44. Swiss Bank Corpora-

tion

45. Union Bank of Switzer-

land

46. Yamaichi Securities
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B Amounts Invested by the Biggest Banks in 1993

Bank Name Amount Invested in 1993 in Bln Dollars
0 Bank of America 56.7408
1 Bank of Boston 44.5284
2 Chase Manhattan Bank 34.1471
3 Norwest Business Credit 32.5562
4 NationsBank 27.3572
5 Chemical Bank 26.5995
6 First Chicago 25.8042
7 NBD Bank NA 24.7670
8 Bank of Nova Scotia 24.3873
9 NationsBank of Tennessee 23.1395
10 First American National Bank Nashville 21.4407
11 NationsBank of Texas 20.8987
12 CIBC [Canadian Imperial Bank of Commerce] 18.3381
13 Bank of New York 17.9929
14 Boatmen’s National Bank of St Louis 17.5128
15 Frost National Bank 16.1927
16 Morgan Guaranty Trust 16.0352
17 Le Credit Lyonnais SA [LCL] 15.0338
18 Heller Financial Inc 14.4798
19 Bank IV Oklahoma 13.7440
20 PNC Bank 13.6666
21 BNP Paribas [Ex-Banque Paribas] 13.6367
22 Citibank 13.3576
23 Comerica Bank 12.9459
24 Society National Bank 12.8809
25 Sanwa Business Credit Corp 12.6018
26 Societe Generale SA 12.2444
27 ABN AMRO Bank NV [RBS] 12.2359
28 Bank One Texas 12.2033
29 Wachovia Bank of Georgia 12.1108
30 Mellon Bank 11.8826
31 First Union National Bank of North Carolina 11.6368
32 CoreStates Bank 10.2287
33 Deposit Guaranty National Bank 10.0850
34 Credit Suisse AG 10.0412
35 Silicon Valley Bank 9.8257
36 Long-Term Credit Bank of Japan Ltd 9.6985
37 First Source Financial Inc 9.4762
38 Texas Commerce Bank 9.3234
39 LaSalle National Bank 9.1942
40 Fuji Bank Ltd 9.0198
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