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Abstract
Consider an irreducible branch B of a curve germ (C, 0). We show that the knot KB is com-
pletely determined by the set of Puiseux pairs. We describe the full topological classification
of links in terms of the set of Puiseux pairs and linking numbers of knot components forming
the link. The second aims of the thesis is to recover the Puiseux pairs by mean of resolution
of the singularity. We show that for any curve C there exist a resolution such that the strict
transform of C and exceptional curves Ei, which come with Euler numbers ei, form a normal
crossing divisor. We show that the set of Puiseux pairs determine the shape of the resolution
dual graph together with the Euler numbers as decoration, and vice-versa.
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1. Introduction and Preliminaries
Suppose we have many ropes (could be of infinite length) and we drop them from the roof
top of a tall building to a flat ground. Looking from above, we draw a picture of the ropes
on a piece of paper and we call by plane curve the picture thus obtained. We could get
many configuration of a plane curve. For example, we could see in Figure 1.2 the graph of
the ropes when two sections of a rope overlap, or in Figure 1.1 we could see the graph of a
rope where a section is folded. In the graph, these particular points, called singular points,
are represented either by a self-intersection or by non-immersed points of the curve.

Figure 1.1: An ordinary cusp at the origin.

Figure 1.2: An ordinary node at the origin.

In the first part of this chapter, we introduce more precisely the notion of plane curve and
singular points. We will restrict our study to algebraic plane curves, that is, curve, which
could be represented in xy-coordinate system by a polynomial over C. And we state some
theorems about the local parametrization of an algebraic curve. In the second part we will
discuss about a global visualization of a plane curve in C2.

In Chapter 2, we introduce a topological invariant associated with a plane curve singularity,
called link. A link associated with a singularity of a local irreducible branch is completely
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Affine algebraic plane curves Page 2

determined by a set of sequence of pairs (m1, n1), . . . , (mg, ng) called Puiseux pairs which
we could get from a particular parametrization of the curve called Puiseux parametrization.
We show that we get a complete topological classification of the links associated with the
irreducible singularities.

Now, consider the initial ropes before we dropped them as a curve in higher dimension, and
the process of dropping the ropes by a projection to a plane. We get every plane algebraic
curve over C by a projection π : T −→ C2 of a curve in higher dimension. The reverse process
of the projection is called resolution of a singularity. In Chapter 3, we show that for a curve
C ⊂ C2, there is a such projection such that the pre-image π−1 is the union of a curve which
has no singular points, and a finite number of curve Ei, called exceptional curve, which come
with an integer ei called Euler number. Furthermore, all these curves form a normal crossing
divisor. We show that the set of Puiseux pairs and the dual resolution graph decorated by
the Euler numbers determine each other.

1.1 Affine algebraic plane curves

Consider a polynomial f ∈ C[X, Y ], we denote the set of solutions of the equation f(X, Y ) =
0 as (f = 0).

1.1.1 Definition. A subset C ⊂ C2 is called an affine algebraic curve if there exist a non-
constant polynomial f ∈ C[X, Y ] such that C = (f = 0).

Notice that we do not consider the empty set as a curve so it is important that the polynomial
f is non-constant.

1.1.2 Example. • A line is a curve given by linear polynomial.

• The ordinary cusp at the origin in Figure 1.1 is realized by X2 − Y 3.

• The node at the origin in Figure 1.2 is realized by Y 2 −X3 − 2X2.

• The curve described by the sinus function is not algebraic (non-example).

Now, consider two polynomials f, g ∈ C[X, Y ] such that g divides f . If g(x, y) = 0 at a point
(x, y) ∈ C2, then f(x, y) = 0. This mean that (f = 0) ⊆ (g = 0). The reverse implication is
not true in general. A partial converse is stated in the following theorem.

1.1.3 Theorem (Study’s lemma). If g is non-constant and irreducible, and (g = 0) ⊆ (f =
0) then g divides f .

Proof. See (Fischer, 2001).

Since a polynomial ring is a unique factorization domain, for f ∈ C[X, Y ], f splits into a
product

f = fk1
1 · · · fkrr ,
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Tangent lines and singularities Page 3

where the fi are irreducible and no redundant. Hence we have

(f = 0) =
⋃
i

(fkii = 0) =
⋃
i

(fi = 0).

1.1.4 Definition. An algebraic curve C ⊂ C2 is called reducible if there exist two algebraic
curves C1, C2 such that C1 6= C2 and C = C1 ∪ C2. In the other case, the curve C is called
irreducible.

This leads us to the following theorem.

1.1.5 Theorem. An algebraic curve C ⊂ C2 splits as

C = C1 ∪ · · · ∪ Cr

where all Ci are irreducible. {Ci} are called irreducible components.

Proof. See (Fischer, 2001).

Consider a polynomial f ∈ C[X, Y ], C = (f = 0) and f = fk1
1 · · · fkrr a prime factorization of

f . Set f̂ = f1 · · · fr. The polynomial f̂ satisfies (f̂ = 0) = (f = 0) and f̂ is called minimal
polynomial of C. It leads us to the definition of the degree of a curve.

1.1.6 Definition. If C = (f = 0) such that f is minimal then the degree of the curve C is

deg C := deg f.

Our study focuses on the local behaviour of a plane curve. Assume that we are working in
a neighborhood of the origin. Algebraically, we can express a polynomial f by its Taylor
expansion. Hence it is convenient to work in the local ring C[[X, Y ]]. Therefore we say
that f, g : (C2, 0) −→ (C, 0) are equivalent if there is some ϕ in (C2, 0) −→ (C2, 0) such that
f = g ◦ ϕ. The equivalence class of curve is called a curve germ.

Consider the curve C defined by f = Y 2−X3−X2. According to the above definition, though
C is an irreducible curve in C2, by writing Y 2−X3−X2 = (Y −X

√
X + 1)(Y +X

√
X + 1),

we can see that, locally, the germ of C is the union of two germs. In general, consider a curve
germ C = V (f) such that f ∈ C[[X, Y ]]. Assume that f admits an irreducible decomposition
f = fk1

1 · · · fkrr , fi ∈ C[[X, Y ]]. A locus B = V (fkii ) is called local branch.

Write f ∈ C[[X, Y ]] as f = ∑
ai(X)Y i where ai(X) ∈ C[[X]]. We say that f is general in Y

if ai(X) ∈ C for some i.

1.2 Tangent lines and singularities

We will pursue the study in this section by introducing the notion of singularity.
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Intersection of two curves Page 4

1.2.1 Definition. An algebraic curve C = (f = 0) where f is minimal is said to be smooth
at a point P ∈ C if

∇P (f) =
(
∂f

∂X
(P ), ∂f

∂Y
(P )

)
6= (0, 0).

Otherwise, it is called singular at P .

A curve C is called smooth curve if it is smooth at each point P ∈ C.

It might happen that higher order derivatives also vanish at a singular point P = (p1, p2).
We can have a brief picture of behaviour of C in a neighborhood of P by analyzing the
number of these higher derivatives which vanish at P . Define the order of C at P as

ordP (C) = min{k : fk 6= 0},

where fk = ∑
i+j=k aij(X − p1)i(Y − p2)j is the k-th term of its Taylor expansion at P .

It is easy to see that ordP (C) = 1 if and only if C is smooth at P .

A first result in the study of plane curve is the following theorem.

1.2.2 Theorem (Implicit function theorem). Consider a polynomial f ∈ C[X, Y ] such that
∂f
∂Y

(0, 0) 6= 0. Then there exists a series ϕ ∈ C[[X]] such that ϕ(0) = 0 and

f(X,ϕ(X)) ≡ 0.

Geometrically, the condition ∂f
∂Y

(0, 0) 6= 0 means that a curve C defined by f is smooth
at the origin. Furthermore, the existence of ϕ mean that we have a local parametrization
X 7→ (X,ϕ(X)) of C, i.e, the curve C behaves like a complex line in a neighborhood of the
origin. Particularly, we have a homeomorphism between a local neighborhood of the origin
and a line T0(C), called tangent line, given by

T0(C) :=
(
X
∂f

∂X
(0, 0) + Y

∂f

∂Y
(0, 0) = 0

)
.

1.3 Intersection of two curves

Consider two polynomials f, g ∈ C[X, Y ]. Assume that the curves defined by (f = 0)
and (g = 0) do not have any common irreducible component. To describe how the curves
intersect, we study one by one the intersection point of the irreducible components. For an
easy computation, consider the point at the origin as a point of intersection of the curves.
We define the intersection multiplicity as follow:

1.3.1 Definition. The intersection muptiplicity iP (f, g) of two curves (f = 0) and (g = 0),
where P is the origin, P ∈ (f = 0) ∩ (g = 0), is given by

iP (f, g) = dimC
C[[X, Y ]]

(f, g) ,

where (f, g) denotes the ideal generated by f, g.
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The Riemann surface of an algebraic curve Page 5

1.3.2 Example. Consider f = X2 − Y 3 and g = Y . The intersection multiplicity at the
origin is

iO(f, g) = dimC
C[[X, Y ]]

(f, g) = dimC
C[[X, Y ]]

(X2 − Y 3, Y ) = dimC
C[[X, Y ]]
(X2, Y ) = dimC

C[[X]]
(X2) = 2.

1.3.3 Theorem. Let C1, C2 ⊂ C2 be two algebraic curves with no common component. Then
we have ∑

P∈C1∩C2

iP (C1, C2) ≤ deg C1 · deg C2.

Proof. See (Fischer, 2001).

1.4 The Riemann surface of an algebraic curve

We defined first a projective curve in CP2 to be a solution set of a homogeneous polynomial
over C. Indeed, recall that CP2 is the set of line through the origin in C3. Algebraically, we
say that two points (a1, a2, a3), (b1, b2, b3) are equivalent if there is λ ∈ C∗ such that ai = λbi
for i = 1, . . . 3. Therefore, a line through the origin represents an equivalence class, and we
denote the equivalence class of (a, b, c) by [a : b : c]. So if a polynomial F vanishes at a
point [a : b : c] ∈ CP2, then not only F (a, b, c) = 0 but also F (λa, λb, λc) = 0 for λ ∈ C∗.
Therefore, F has to be homogeneous.

We know that [a0 : a1 : a2] 7→
(
a1
a0
, a2
a0

)
is an isomorphism between CP2 − {a0 = 0} and

C2. We describe a projective curve in terms of its affine points. For a given polynomial
f(X1, . . . , Xn) ∈ k[X1, . . . , Xn] of degree d, we associate to f the homogeneous polynomial
F ∈ k[X0, X1, . . . , Xn]:

F (X0, X1, . . . , Xn) = Xd
0f
(
X1

X0
, . . . ,

Xn

X0

)
,

so that F (1, X1, . . . , Xn) = f(X1, . . . , Xn). Conversely, to a given homogeneous polynomial
F (X0, X1, . . . , Xn) ∈ k[X0, X1, . . . , Xn] of degree d, we associate to F the polynomial f ∈
k[X1, . . . , Xn]:

f(X1, . . . , Xn) = F (1, X1, . . . , Xn).

Under the isomorphism stated previously, the restriction (F = 0) − {a0 = 0} −→ (f = 0) is
also an isomorphism.

Suppose we have two lines in CP2. In one of chart C2 ' CP2−{a2 = 0}, we have two cases:
either they intersect at one point, or they are parallel. Suppose we have two parallel lines
given by f = aX + bY + c1 and g = aX + bY + c2. Their projective closure in CP2, which
are given respectively by aX + bY + c1Z and aX + bY + c2Z, intersect at [b : −a : 0]. Hence
two lines in CP2 always intersect. In general, we have the following theorem.
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The Riemann surface of an algebraic curve Page 6

1.4.1 Theorem (Bezout). Let C1, C2 ⊂ CP2 are two curves with no common component.
Then we have ∑

P∈C1∩C2

iP (C1, C2) = deg C1 · deg C2.

We come to the visualization of projective curves over C. Over the complex field, we can
not illustrate or draw anymore since a curve lies in the real 4−dimensional space. In order
to study the topology of an algebraic curve, we define a Riemann surface S as a complex
manifold of dimension one, so of real dimension 2. Furthermore, it is orientable. Indeed, as
complex manifold, consider two charts f, g and a transition function h = f ◦ g−1. We can
consider h as a map from an open set of R2 to R2 and orientation is determined by the sign
of the determinant of the Jacobian of h, which is positive since h is complex holomorphic.

Consider a complex projective line as CP1 ↪−→ CP2 such that [a : b] 7→ [0 : a : b]. Notice that
it is algebraic as it is the solution set (X = 0). We have an isomorphism CP1−{[0 : 1]} −→ C
such that [a : b] 7→ b

a
. Therefore, CP1 is a one point compactification of C, i.e. topologically,

we can consider CP1 as S2.

In general, a compact orientable real surface (in another words, compact complex curve) is
homeomorphic to a sphere with g handles. The number g is called genus of S.

For a smooth curve, we have a nice formula to compute g.

1.4.2 Theorem (Genus formula). A smooth irreducible curve C ⊂ CP2 of degree n has genus

g(C) = 1
2(n− 1)(n− 2).
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The Riemann surface of an algebraic curve Page 7

For the computation of the genus of singular curves, we define theMilnor number µ associated
with a singular point. Consider a curve C defined by a polynomial f . Assume that the origin
is a singular point of C, then the corresponding Milnor number is given by

µ = i0

(
∂f

∂X
,
∂f

∂Y

)
= dim

C[[X, Y ]](
∂f
∂X
, ∂f
∂Y

).
Suppose C has r local branches in a neighborhood of 0. We define a delta invariant δ0
associated with the origin by

2δ0 = µ+ r − 1.

We have a general formula to compute the genus of a curve C of degree n.

1.4.3 Theorem (Max Noether’s Genus formula). An irreducible curve C ⊂ CP2 of degree n
has genus

g(C) = 1
2(n− 1)(n− 2)−

∑
P∈Sing(C)

δP ,

where Sing(C) is the set of all singular points of C.

Consider a curve C of degree 2. Then C has at most one singular point. Otherwise, take a
line L passing through two singular points P,Q ∈ C. Then the intersection number of L and
C counted with multiplicities is iP (C, L) + iQ(C, L) > 2 = deg(C) deg(L) which contradicts
Theorem 1.3.3. In general, we could show that Sing(C) is a finite set for an algebraic curve
C.

1.4.4 Example. Consider the curve C given by X2 − Y 3. The origin is the only singular
point of C. It has only one branch, so r = 1. Let C be its projective closure, i.e. C is defined
by ZX2 − Y 3. We have:

µ0 = dim C[[X, Y ]]
(X, Y 2) = 2,

2δ0 = 2,

g(C) = 1
2(3− 1)(3− 2)− δ0 = 0.
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2. Topology of the link
In the previous chapter, we have introduced the notion of plane curve, studied some of
its properties and show the importance of the study of singularities. In this chapter, we
are going to describe some approach to describe the singularities. In the first section, we
introduce the Puiseux parametrization which is a nice way to parametrize a branch. Then in
the second section, we describe the link associated with a singularity in term of the obtained
parametrization.

2.1 Puiseux parametrization

Consider a branch C defined by a minimal polynomial f ∈ C[X, Y ] such that (0, 0) ∈ C.
From the implicit function theorem, it follow that if ∂f

∂Y
(0, 0) 6= 0, then we have a local

parametrization in a neighborhood of (0, 0):

x 7→ (x, ϕ(x)),

such that f(x, ϕ(x)) ≡ 0.

Now consider the polynomial g = X2 − Y 3. The implicit function theorem does not apply
since ∂g

∂X
(0, 0) = ∂g

∂Y
(0, 0) = 0. However, we have a parametrization

t 7→ (t3, ϕ(t)) where ϕ(t) = t2.

2.1.1 Definition. We define a Puiseux series as an expression of the form

f =
∞∑

k=k0

ckt
k
n ,

where ck ∈ C, k0, n ∈ Z such that n > 0 and ck0 6= 0.

We can express the parametrization of the cusp as:

t 7→ (t, t 2
3 ).

This is an application of the following theorem:

2.1.2 Theorem (Puiseux problem). Let f ∈ CJX, Y K be general in Y of order k ≥ 1. Then
there exist a natural number n ≥ 1 and ϕ ∈ CJtK such that ϕ(0) = 0 and

f(tn, ϕ(t)) = 0 in CJtK.

If f is convergent, then so is ϕ.

To prove the theorem, we will first introduce some definitions and state some lemmas.
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Puiseux parametrization Page 9

2.1.3 Definition. Let f ∈ CJX, Y K such that f = ∑
aijX

iY j. We define the carrier of f
as

carr(f) = {(i, j) ∈ N2 : aij 6= 0}.

2.1.4 Example. A homogenius polynomial f of degree deg f = d is a polynomial of the
form

f =
∑
i+j=d

aijX
iY j.

So the carrier of a homogeneous polynomial of a degree d lies on a line of slope −1.

Figure 2.1: Carrier of a homogeneous polynomial.

2.1.5 Example. A polynomial f is said to be a quasi-homogenius polynomial if there exist
some p, q, l ∈ N∗ such that

f =
∑

pi+qj=l
aijX

iY j.

We call p, q the weights. Particularly, if p = q = 1 then f is homogeneous.

The carrier of a quasi-homogeneous polynomial lies on a line of equation pi+ qj = l.

Moreover, if f is general in Y of order k, i.e. f = a0kY
k+

∑
pi+qj=l, j 6=k

aijX
iY j for some k ∈ N∗,

then l = kq.

2.1.6 Lemma. If f is quasi-homogeneous of weights p, q, and general in Y of order k ≥ 1,
then there exists λ ∈ C such that

f(tp, λtq) = 0.

Proof. Consider f =
∑

pi+qj=l
aijX

iY j. Then we have:

f(tp, λtq) =
∑

pi+qj=l
aijt

ip+jqλj

= tl
∑

pi+qj=l
aijλ

j

= tlg(λ).

As we are working over C, g(λ) = 0 has a solution.
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Puiseux parametrization Page 10

2.1.7 Example. Consider f = X6 − 2X3X2 + Y 4. By solving the system of equation:
6p = l
3p+ 2q = l
4q = l.

We deduce that f has weights p = 2, q = 3.

Let us now find λ ∈ C such that f(t2, λt3) = 0. We have:

f̃(t2, λt3) =
(
t2
)6
− 2

(
t2
)3 (

t3
)2

+
(
t3
)4

= t12(1− 2λ2 + λ4)
= t12(λ2 − 1)2

Let us choose λ = 1.

Notice that the existence of λ ∈ C such that f(tp, λtq) = 0 does not mean that we have a
parametrization of curves defined by quasi-homogeneous polynomial. If a quasi-homogeneous
polynomial f is not locally irreducible, then (X = tp, Y = λtq) is a parametrization of an
irreducible branch of the curve defined by f . Consider f = X6 + X2Y 2 − 2Y 3 = (X2 −
Y )(X4 +X2Y + 2Y 2). The weights of f is (1, 2). Then we have

f(t1, λt2) = t6(1 + λ2 − 2λ) = t6(λ− 1)2.

Hence we can take λ = 1. However, (X = t, Y = t2) parametrizes only (X2 − Y = 0).

We proved the existence of a solution of the Puiseux problem for a quasi-homogeneous
polynomial. In the next step, we show that a polynomial f can be written as f = f̃+h where
f̃ , h ∈ C[X, Y ] such that the polynomial f̃ is called quasi-homogeneous initial polynomial of
f . To compute f̃ , we use a method elaborated by Newton as follow:

Assuming that f is general in Y of order k, (0, k) ∈ carr(f). Consider a line passing through
(0, k) and (0, 0). Then rotate this line anti-clockwise around the point (0, k) until it hit
another point in carr(f). The points in carr(f) that lie on the line obtained determine f̃ .

2.1.8 Example. Consider f = X6 +X5Y 3 +X4Y 3 +X3Y 2 +X2Y 4 +X2Y 2 + Y 3. So the
quasi-homogeneous initial polynomial f̃ = X6 + X2Y 2 + Y 3, and f = f̃ + X5Y 3 + X4Y 3 +
X3Y 2 +X2Y 4.
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Puiseux parametrization Page 11

Figure 2.2: Finding the quasi-homogeneous initial polynomial.

From this discussion and Lemma 2.1.6, we can do the following iteration. Suppose f = f̃ +h
and that X = tp, Y = λtq is a solution of the Puiseux problem for f̃ . Set Ỹ = λX

q
p such

that f̃(X, Ỹ ) ≡ 0. We could approximate the solution for f as follow:

X = Xp
1 , Y = Ỹ +Xq

1Y1 = λX
q
p +Xq

1Y1 = λ
(
X

1
q

)q
+Xq

1Y1 = Xq
1(λ+ Y1). (2.1.1)

Substituting Equation 2.1.1 into f̃ gives us

f̃(X, Y ) =
∑

pi+qj=qk
aijX

iY j

=
∑

pi+qj=qk
aij (Xp

1 )i (Xq
1(λ+ Y1))j

=
∑

pi+qj=qk
aij (Xp

1 )i (Xq
1)j (λ+ Y1)j

= Xqk
1

∑
pi+qj=qk

aij (λ+ Y1)j

= Xqk
1 g(λ+ Y1).

Substituting Equation 2.1.1 into h gives us

h(X, Y ) =
∑

pi+qj>qk+1
aijX

iY j

=
∑

pi+qj>qk+1
aij (Xp

1 )i (Xq
1(λ+ Y1))j

=
∑

pi+qj>qk+1
aij (Xp

1 )i (Xq
1)j (λ+ Y1)j

= Xqk
1 h∗(X1, Y1).
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Puiseux parametrization Page 12

Therefore, we have

f(X, Y ) = f̃(X, Y ) + h(X, Y )
= Xqk

1 g(λ+ Y1) +Xqk
1 h∗(X1, Y1)

= Xqk
1 f1(X1, Y1).

We have the following lemma.

2.1.9 Lemma. Let f and f1 as above:

• f1 is general in Y of order k1, such that 1 ≤ k1 ≤ k,

• if k1 = k, then q = 1.

Proof. See (Fischer, 2001).

Now, we are ready to complete the proof of Theorem 2.1.2.

Let f(X, Y ) be a polynomial which is general in Y of order k. For the initialization, set

f0 = f, X0 = X, Y0 = Y, k0 = k.

We proceed as in the discussion preceding Lemma 2.1.9 for the first step. To get from i
to i + 1, we proceed as follow: if Y ki

i divides fi, then Yi = 0 is solution of fi(Xi, Yi) = 0.
Otherwise, write fi as fi = f̃i + hi where f̃i is the quasi-homogeneous initial polynomial of
fi with weights pi, qi. Set the equation of the carrier of f̃i as piµ+ qiν = qiki. Since Yi does
not divide fi, then there is some λi ∈ C∗ such that Ỹi = λiX

qi
pi
i is a solution of fi(Xi, Ỹi) = 0.

Then set
Xi = Xpi

i+1, Ỹi = Xqi
i+1(λi + Yi+1).

Then we have:
fi(Xi, Yi) = Xqiki

i+1 fi+1(Xi+1, Yi+1),
where fi+1 is general in Yi+1.

Finally, we have
X = Xp0

1 = Xp0p1
2 = · · · = Xp0···pN

N+1 = Xn
N+1 = tn,

for some N ∈ N, n = p0 · · · pN . Moreover, we have

Y = Ỹ0 +Xq0
1 Y1

= Ỹ0 +Xq0
1 (Ỹ1 +Xq1

2 Y2)

= Ỹ0 +Xq0
1 Ỹ1 +Xq0

1 X
q1
2 Y2

= · · ·

= λ0X
q0
p0
0 +

∞∑
i=1

λiX
q0
1 · · ·X

qi−1+ qi
pi

i

=
∞∑

i=0
λit

mi
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Puiseux parametrization Page 13

where m0 = q0p1 · · · qN and mi+1 = mi + qi+1
∏

j>i+1
pj.

We are only interested on the construction of the Puiseux series. For the remaining proof
that this is a solution and about the convergence of Y =

∞∑
i=0
λit

mi , see (Fischer, 2001).

2.1.10 Example. Consider f = −X7 +X6 − 4X5Y − 2X3Y 2 + Y 4. The carrier of f is
carr(f) = {(7, 0), (6, 0), (5, 1), (3, 2), (0, 4)}.

Figure 2.3: The carrier of f .

According to the method of Newton, the quasi-homogeneous initial polynomial of f is
f̃ = X6 − 2X3X2 + Y 4.

From Example 2.1.7, (X = t2, Y = t3) is solution of f̃ = 0. For the iteration: set X =
X2

1 , Y = X3
1 (1 + Y1). Then we have:

f(X, Y ) = −
(
X2

1

)7
+
(
X2

1

)6
− 4

(
X2

1

)5
X3

1 (1 + Y1)− 2
(
X2

1

)3 (
X3

1 (1 + Y1)
)2

+
(
X3

1 (1 + Y1)
)4

= −X14
1 +X12

1 − 4X13
1 (1 + Y1)− 2X12

1 (1 + Y1)2 +X12
1 (1 + Y1)4

= X12
1

(
−X2

1 + 1− 4X1 − 4X1Y1 − 2Y 2
1 − 4Y1 − 2 + Y 4

1 + 4Y 3
1 + 6Y 2

1 + 4Y1 + 1
)

= X12
1

(
−X2

1 − 4X1Y1 + Y 4
1 + 4Y 3

1 + 4Y 2
1 − 4X1

)
= X12

1 f1(X1, Y1).

Now, the carrier of f1 is
carr(f1) = {(2, 0), (1, 0), (1, 1), (0, 4), (0, 3), (0, 2)}.

The quasi-homogeneous initial polynomial of f1 is f̃1 = 4Y 2
1 − 4X1. Let us find λ ∈ C2 such

that f̃1(t2, λt) = 0. We have
f̃1(t2, λt) = 4λ2t2 − 4t2

= 4t2(λ− 1).
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Puiseux parametrization Page 14

The solution of f̃1 = 0 is (t2, t). Then set X1 = X2
2 , Y1 = X2(1 + Y2). Substituting this into

f1 we have:

f1(X2
2 , X

2(1 + Y2)) = −
(
X2

2

)2
− 4

(
X2

2

)
X2(1 + Y2)− 4X2

2 +
(
X2(1 + Y2)

)4

+ 4
(
X2(1 + Y2)

)3
+ 4

(
X2(1 + Y2)

)2

= X4
2Y

4
2 + 4X4

2Y
3

2 + 6X4
2Y

2
2 + 4X3

2Y
3

2 + 4X4
2Y2

+ 12X3
2Y

2
2 + 8X3

2Y2 + 4X2
2Y

2
2 + 8X2

2Y2

= X2
2 (X2

2Y
4

2 + 4X2
2Y

3
2 + 6X2

2Y
2

2 + 4X2Y
3

2 + 4X2
2Y2

+ 12X2Y
2

2 + 8X2Y2 + 4Y 2
2 + 8Y2

= X2
2f2(X2, Y2).

We see that Y2 divides f2(X2, Y2) so Y2 = 0 is a solution of f2(X2, Y2) = 0.

We can now finalize X = X2
1 = (X2

2 )2 = X4
2 and

Y = X3
1 (1 + Y1)

=
(
X2

2

)3
(1 +X2(1 + Y2))

= X6
2 (1 +X2)

= X6
2 +X7

2 .

Therefore, the solution for the Puiseux problem is X = t4, Y = t6 + t7. We can also write
Y = X

3
2 +X

7
4 .

Extraction of the Puiseux pairs. Consider a solution X = tm, Y = ∑
ait

i, ai ∈ C of
f(X, Y ) = 0. Write Y = ∑

akX
k, k ∈ Q. We are going to extract a finite sequence of pairs

from the exponent which we will use later to describe the link associated to a singularity.

• If k ∈ N for every exponent k, then f is regular and there is no pair. Otherwise, take
the smallest exponent k1 = n1

m1
such that (n1 > m1), and gcd(n1,m1) = 1. The pair

(m1, n1) is called the first Puiseux pair.

• Next, we choose the next smallest exponent k2 which is not of the form q
m1

, q ∈ N. We
write k2 = n2

m1·m2
such that gcd(n2,m2) = 1.

• Now, assume that we have the first pairs (m1, n1), . . . , (mj, nj). Take the next exponent
which is not of the form q

m1···mj . Write kj+1 = nj+1
m1···mjmj+1

such that gcd(nj+1,mj+1) = 1.

We could multiply the numerator and denominator by a divisor of m1 · · ·mj to get the
desired form (see Example 2.1.12). Moreover, this process terminates eventually. So there
is some g ∈ N such that m1 · · ·mg = m.

The pairs (m1, n1), . . . , (mg, ng) are called Puiseux pairs. The series (m; β1, . . . , βg) where
βi = ni ·mi+1 · · ·mg is called Puiseux characteristic.

2.1.11 Example. Given the results in the Example 2.1.10. We have Y = X
3
2 + X

7
4 .

Therefore, the Puiseux pairs are (3, 2), (7, 2) and the Puiseux characteristic is (4; 6, 7).
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Description of the topology of the link Page 15

2.1.12 Example. Consider Y = X
3
2 +X

5
3 . The first pair is again (3, 2). But to determine

the second pair, we write 5
3 = 10

6 . Therefore, the next pair is (10, 3).

2.2 Description of the topology of the link

So far, we have only describe plane curves singularities algebraically. In this section, we will
describe geometrically the local behaviour of a curve near a singular point.

2.2.1 Definition. A knot KB associated to a branch B is an embedded copy of S1 into S3.
More formally, assume 0 ∈ B is an isolated singularity, then KB is given by the intersection
KB = B ∩ S3

ε for a small enough ε ∈ R>0.

A link LC associated to a curve C = ∪si=1Bi is a disjoint union LC = ∪si=1KBi .

In this definition, it might appear that the knot is depending on the size of the sphere S3
ε .

However, if we take δ small enough, then B ∩ S3
ε and B ∩ S3

δ are isotopic in S3. This is a
consequence of the following lemma:

2.2.2 Lemma. For ε sufficiently small, KB is a 1-manifold smoothly embedded in Sε, and
there is a homeomorphism of B ∩ Dε to the cone of B ∩ Sε. Furthermore, the embedded
topological type of all these objects are independent of the choice of ε.

Now, let us investigate the construction of the knot for an irreducible branch B. First, let
us assume that B has the easiest form of Puiseux parametrization Y = X

m
n . Write X = reiθ

where |X| = r. Therefore, Y = r
m
n eiθ

m
n . So the curve described by a point in B ∩ Sε turns

once around the circle |X| = r, and m
n
times around |Y | = r

m
n . Notice that if we fix X, the

equation Xm = Y n has as solution ωY, . . . , ωnY where ω is an n-th root of unity. Therefore,
at the initial point X = r, we have n points Yk = r

m
n e2πim

n k, for k = 1, . . . , n.

2.2.3 Definition. A braid on m strings (and initial points {P1, . . . , Pn}) is a homotopy class
of closed path with initial and final points {P1, . . . , Pn}.

From the previous discussion, a braid results from letting θ run in [0, 2π].

2.2.4 Example. Consider the cusp V (X2 − Y 3). Write Y = X
3
2 . So we have 2 points

moving with velocity 3
2 .

By the definition of a braid, notice that a braid has the same initial and final points. We get
the associated link (or knot) by gluing the extreme points. Therefore, the knot associated
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Description of the topology of the link Page 16

to a cusp is the following.

Now, consider a parametrization Y = X
m1
n1 + X

m2
n1n2 + · · · + X

mg
n1···ng . So the Puiseux pairs

are (m1, n1), . . . , (mg, ng). Then we construct a link as follow.

• From the first pair, at the initial position X = r, we have n1 points Y1, . . . , Yn1 moving
with velocity m1

n1
on a circle of center 0 with radius r

m1
n1 .

• For each point Yi, the second pair gives n2 points moving with velocity m2
n2

on a circle
centered at the points Yi and of radius r

m2
n2 .

• In general, the pair (mi, ni) gives ni points moving with velocity mi
ni

on a circle centered
at the previous m1 · · ·mi−1 points created and of radius r

mi
ni .

For a small enough ε, these circles do not interfere with one another. The points on the last
circle (of radius r

mg
ng describe the braid when X run through the circle of radius r.

2.2.5 Example. Consider the parametrization Y = X
3
2 +X

5
4 +X

7
3 .

Figure 2.4: Initial and final points of a braid (full circles).

So far, we have described the braid constructed from the Puiseux pairs. Now, consider a
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Description of the topology of the link Page 17

parametrization Y = akX
k, k ∈ Q. Let us see the effect of the other exponents which are

represented in the pairs. Suppose we have the first Puiseux pair (m1, n1), then we constructed
the next pair from an exponent which is not of the for q

m1
, q > n1. Let us describe the effect

of the exponent of this form. Notice that we get the second pair (m2, n2) as the first exponent
which is not of the form q

m1
and write it as n2

m1m2
. If we write q

m1
of this given form, then

the pair we get is (1, n2). We can write the Puiseux expansion from this pair as Y = Xn2 .
Therefore, similarly as in the discussion preceding Definition 2.2.3, we see that it is just a
curve described by one oscillating point. Going back to the original problem, the exponents
of the form q

m1
does not alter the number of the points in the braid, it create oscillation

around the first approximation, which may be smoothed to get the original braid.

2.2.6 Example. Suppose we have a parametrization X = t2, Y = t3 + t33. Therefore, we
have only one Puiseux pair (2, 3). The first pair gives us a braid as in Example 2.2.4. Thus
the final braid we get from the parametrization Y = X

3
2 +X

33
2 is the following.

This may be smoothed to get the braid in Example 2.2.4.

This illustrates to the following theorem.

2.2.7 Theorem. Puiseux parametrizations with the same Puiseux pairs yield equivalent
braids.

Now, we study the configuration of the disjoint knots KBi generating a link LC. Consider
two embeddings f1, f2 : S1 −→ S3 such that the images are disjoint. One can extend f1 to
f̃1 : D2 −→ S3, and that the images of f̃1 and f2 intersect transversely (see (Bredon, 1993)).
Therefore f̃1(D2) ∩ f2(S1) is a finite set of points. The pre-image f̃1

−1(f̃1(D2) ∩ f2(S1)) is
then also a finite set of points. Consider a point x in this pre-image. The differential of f̃1
and f2 induce a 3-frame at f̃1(x) = f2(x). Assign a + if this frame is consistent with the
standard 3-frame in R3, and assign − otherwise.

2.2.8 Definition. Given the above construction. The linking number L(f, g) is the sum of
the sign over all such a point x.

2.2.9 Lemma. Consider two branches B1,B2 at 0, their intersection multiplicity at 0 is
equal to the linking number of KB1 and KB2 . Moreover, we have:

L(B1,B2) = L(B2,B1).
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Description of the topology of the link Page 18

2.2.10 Theorem. Consider two links LC, LC′ associated respectively with two curves C, C ′.
Two links are equivalent if there is a one-to-one correspondence between the knots forming
LC, LC′ such that:

• the corresponding knot is described by the same Puiseux pairs,

• the linking number of corresponding knot components is the same.

2.2.11 Definition. We say that two curves germs C, C ′ are equisingular if the corresponding
links are equivalent.

Lemma 2.2.2 show that the topology of curve germs is the same as the topology of the link
associated. Therefore, we can have the following classification of plane curve singularities.

2.2.12 Theorem. Two curve germs C, C ′ are topologically equivalent if and only if they are
equisingular.

2.2.13 Example. Consider the curve defined by XY and the curve defined by f = Y 2 −
X3 − 2X2. The curve defined by f has two smooth branches Ba and Bb defined respectively
by the x−axis and the y−axis. In addition, notice that in a neighborhood of the origin,
g = Y 2 −X3 − 2X2 = (Y −X

√
X − 2)(Y +X

√
X − 2). As we see in Figure 1.2, the curve

defined by g has two smooth branches Bµ and Bν defined respectively by (Y − X
√
X − 2)

and (Y +X
√
X − 2). Moreover, we have:

C[[X, Y ]]
(Y −X

√
X − 2, Y +X

√
X − 2)

' C[[X, Y ]]
(Y,X

√
X − 2)

' C[[X, Y ]]
(Y,X) .

Therefore, we have L(Ba,Bb) = L(Bµ,Bν). Then the link associated with the origin of both
germs is the following.
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3. Resolution of singularity
In this chapter, we describe a method to resolve a singularity. There are many ways to
resolve a singularity, in this thesis we will discuss only about one method called blowing up.

3.1 Blow up of C2 at the origin.

There are many ways to define a blow up. In this thesis, we describe it geometrically and
later we present a more algebraic definition.

Basically, the principle of a blow up is to construct a new surface T and a projection φ : T →
C2 such that φ−1(0) is a curve E isomorphic to CP1. The curve E is called exceptional curve.
The map φ induces an isomorphism away from E. Each point in E represents a direction in
C2.

More formally, we have the following definition.

3.1.1 Definition. The incidence correspondence of a blow up is a set T ∈ C2 × CP1 such
that

T = {(p, L) : p ∈ L} ⊂ C2 × CP1.

Consider a point p = (x, y) ∈ C2 and a line L through the origin which is determined by
the ration [a : b], a, b ∈ C, such that (a, b) 6= (0, 0). Therefore, the relation p ∈ L in the
definition means that (a, b) = λ(x, y) for some λ ∈ C∗. Thus we have a relation ay = bx.
This lead us to another definition of the incidence correspondence:

T = {((x, y), [a : b]) : ay = bx} ⊂ C2 × CP1.

Figure 3.1: Blow up of C2 at the origin.
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Blow up of C2 at the origin. Page 20

Take a point (x, y) ∈ C2 such that (x, y) 6= 0. Assume x 6= 0. Then b = ay
x
. This implies

that [a : b] = [a : ay
x

]. Therefore, we have a 6= 0 and [a : b] = [1 : y
x
]. The pre-image of

(x, y) is given by
{

(x, y), [1 : y
x
]
}
. This lead us to the conclude that there is an isomorphism

between C − 0 and π−1(C)− E.

3.1.2 Definition. The pre-image π−1(C) is called the total transform, and the closure of
π−1 − E is called the strict transform of C.

We know that CP1 = {[a : b] : a 6= 0} t {[a : b] : b 6= 0}. If a 6= 0, then we can write
y = b

a
x. Similarly, if b 6= 0, then we write x = a

b
y. Therefore, we could resume the blow up

of C2 to two coordinate charts (u, v) 7→ (u, uv) and (u, v) 7→ (uv, v).

3.1.3 Example. Let C = V (X2 − Y 3). Applying the blow up at 0, we have :

(X = ab, Y = b)⇒ X2 − Y 3 = b2(a2 − b).

So the exceptional curve is V (b), and the strict transform is V (a2 − b).

Figure 3.2: Blow up of a cusp V (X2 − Y 3) at the origin.

Notice that in the other change of coordinate, we have

(X = a, Y = ab)⇒ X2 − Y 3 = a2(1− ab3).

The strict transform V (1− ab3) is already smooth.

3.1.4 Remark. If the strict transform has a singular point in each coordinate chart, then
we have to consider results from both charts.

Now suppose C ∈ T0 = C2 is a single branch passing through 00 = 0. Blowing up T0 at 00
gives us a new surface T1 and a projection π0 : T1 −→ T0. Let E0 = π−1

0 (0) be the exceptional
curve, and C(1) the strict transform such that E0 and C(1) at a unique point {01}.

Now, suppose we have a surface Ti, curves Ej for 0 ≤ j ≤ i− 1, and a strict transform C(i)

meeting Ei−1 at a point 0i. Blowing up Ti at 0i gives us a new surface Ti+1 and a projection
πi+1 : Ti+1 −→ Ti. Let Ei = π−1

i+1(0) be the exceptional curve, C(i+1) the strict transform of
C(i) such that Ei intersects C(i+1) uniquely at a point 0i+1.

3.1.5 Definition. From the above construction, the projection π : TN −→ T0 is a called a
resolution of C if CN is smooth for some N .
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Geometry of the resolution Page 21

The previous construction leads us to the following theorem:

3.1.6 Theorem. A resolution π : TN −→ T0 exists for some N , that is, C(N) is smooth.

Proof. See (Wall, 2004).

3.1.7 Example. Consider the curve C defined by V (X2 − Y 5). Since we want to see the
tangent cone of C at 0 which is given by V (X), we apply the chart (a, b) −→ (ab, b). Then
blowing up C2 at 0 gives us:

X2 − Y 5 = (ab)2 − b5 = b2(a2 − b3).

So the exceptional curve in T1 = C2 is E0 = V (b), and C(1) = V (a2 − b3). Observe that the
other chart (a, b) −→ (a, ab) gives us:

X2 − Y 5 = a2 − (ab)5 = a2(1− a3b5).

This gives us no information since C(1) = V (1−a3b5) is already smooth and does not intersect
the exceptional curve E0 = V (a).

Now, according to the result we get from the first chart, E0 ∩ C(1) = {0}, and C(1) is still
singular at 0. Applying the chart (s, t) −→ (st, t) gives us:

b2(a2 − b3) = t2(s2t2 − t3) = t4(s2 − t).

The exceptional curve is E1 = V (t) and the strict transform is a smooth curve C(2) =
V (s2 − t).

Let us also do the computation in the chart (s, t) −→ (s, st) to see where is the exceptional
curve E0 sent to. We have:

b2(a2 − b3) = s2t2(s2 − s3t3) = s4t2(1− st3).

We see that E0 and E1 intersect transversely in a point at infinity. See Figure 3.3.

3.2 Geometry of the resolution

In the previous construction, we obtained a resolution such that the strict transform C(N)

is smooth. However, in the above example, the exceptional curve is tangential to the strict
transform. We say that a collection of curves in a smooth surface has a normal crossing if
each curve is smooth, no three meet in one point, and any intersection of two is transverse.
In this section, we will show that if we apply repeatedly the blowing up at 0 ∈ C, we will end
with a resolution π : T −→ C2 such that the collection π−1(C) has a normal crossing, and if
E = π−1(0), then T −E ' C2− 0. In that case, a such resolution is called a good resolution.

According to Theorem 3.1.6, we have a resolution such that the strict transform C(N) is
smooth. In order to keep applying the blow up, the first step is to check that the strict
transform of a smooth curve is a smooth curve after applying a blow up.
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Geometry of the resolution Page 22

3.2.1 Lemma. Let C ⊂ C2 be a smooth curve such that 0 ∈ C. Blow up C2 at 0 gives us
an exceptional curve E and a strict transform C ′ of C. Then C ′ is smooth, it meets E at a
single point, and the intersection is transverse. Moreover, C ′ is isomorphic to C.

Proof. See (Wall, 2004).

In the next step, let us investigate on the geometry of the intersection of the exceptional
curves. We have the following lemma.

3.2.2 Proposition. The exceptional curve Ei ⊂ Ti+1 intersects transversely Ei−1 and at
most one Ej with j < i− 1. And at most two Ei pass through a common point.

Proof. See C.T.C Wall.

Then we get the following theorem.

3.2.3 Theorem. Any plane curve singularity has a good resolution.

Proof. See (Wall, 2004).

3.2.4 Definition. Let π : T −→ C2 be a good resolution. The strict transform C̃ is called
the normalisation of C.

3.2.5 Example. Assume the result from Example 3.1.7 of the resolution of the cusp V (X2−
Y 5). We ended up having a strict transform V (a2 − b), a curve E1 = V (b2) and another
curve E0 that we do not see in this coordinate chart but intersect E1 at a far away point.
Notice that E1 is tangent V (a2 − b), that is, the intersection is not transverse. Then we
continue applying a blow-up at 0. Since we want to see where the tangent cone V (b) is sent
to in the next picture, we apply the chart (a, b) −→ (u, uv). We have:

b4(a2 − b) = u4v4(u2 − uv) = u5v4(u− v).

The exceptional curve E1 correspond to V (v2). Therefore, we have a new exceptional curve
E2 = V (u3) and a strict transform V (u−v). Notice that the curve E1, E2 and the exceptional
curve intersect at 0 so we have to apply a blow up at 0.

Here, we want to see where both of E1 and E2, which are the axis, are sent to. Therefore,
we have to apply both coordinate charts. In the chart (u, v) −→ (µ, µν), we have:

u5v4(u− v) = µ5(µν)4(µ− µν) = µ10ν4(1− ν).

So we have a new curve E3 = V (µ4). The strict transform is V (1−ν), and E1 is represented
by V (ν4).

In the other coordinate chart (u, v) −→ (µν, ν), we have:

u5v4(u− v) = (µν)5ν4(µν − ν) = µ5ν10(µ− 1).

We see that E2 intersects transversely E3 at a far away point in the first coordinate chart.

In the end, we have a collection E0, E1, E2, E3, C̃ such that every intersection is transverse.
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Resolution and Puiseux parametrization Page 23

Figure 3.3: Successive blow up of the cusp V (X2 − Y 5) at 0.

3.3 Resolution and Puiseux parametrization

In this section, we describe the change of the Puiseux parametrization under the blowing
up. Let B be a single branch.

3.3.1 Definition. • A point in Er−1 ⊂ Tr is said to be an infinitely near point of the
rth order to 0.

• A point 0i is said to be proximate to 0j, j < i, if for ϕ : Ti+1 −→ Tj+1, 0i lies in the
strict transform of Ej. And we denote 0i −→ 0j.

An infinitely near point comes with a multiplicity mi(B) at 0i of the strict transform B(i).
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Resolution and Puiseux parametrization Page 24

We present some basic properties of the proximity relation.

3.3.2 Proposition. We have the following proximity relations.

1. 0i −→ 0i−1,

2. there is at most one j < i− 1 such that 0i −→ 0j,

3. if 0i −→ 0j and j < k < i, then 0k −→ 0j,

4. mj(B) = ∑
0i−→0j mi(B).

In order to relate the sequence of multiplicity of the infinitely near points and the Puiseux
parametrization, let us first state a theorem expressing the effect of a blow up to the
parametrization.

3.3.3 Theorem. Suppose given an irreducible curve such that the Puiseux characteristic is
(m; β1, . . . , βg). Then the Puiseux parametrization of the strict transform obtained is

(m; β1 −m, . . . , βg −m), if β1 ≥ 2m,
(β1 −m;m,β2 − β1 +m, . . . , βg − β1 +m), if β1 < 2m, and (β1 −m) - m,
(β1 −m; β2 − β1 +m, . . . , βg − β1 +m), if β1 < 2m, and (β1 −m) | m.

Proof. See (Wall, 2004).

Notice that applying this algorithm in this theorem successively yields the sequence of mul-
tiplicity mi(C).

Now, consider a sequence of multiplicity mi(C).

If mi(C) = 1 for all i, then the curve is smooth.

If there is only one mi(C) 6= 1, then, according to the previous theorem, we have β1−m = 1
and the Puiseux characteristic is (m;m+ 1), where m = m0(C).

Now suppose that we blow up C once, and the Puiseux parametrization of the strict transform
is (m1; β1, . . . , βg). So the Puiseux parametrization of C is as follow:

(m1; β1 +m1, . . . , βg +m1), if m0(C) = m1(C)
(m0; β1 +m1, . . . , βg +m1), if m1(C) - m0(C),
(m0;m0 +m1, β1 +m1, . . . , βg +m1), if m1(C) | m0(C).

From this construction and the previous theorem, we have the following:

3.3.4 Theorem. The Puiseux characteristic of a branch C and the multiplicity sequence
mi(C) determine each other.

From the Theorem 3.3.3, we could establish some proximity relations as follow:

• if m0(B) = m1(B), then 01 −→ 00,

• otherwise, write m0(B) = m1(B)q + r. If r 6= 0, then 0q+1 −→ 00.
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3.3.5 Example. Consider the parametrization of the branch B, X = t8, Y = t11. Therefore,
the Puiseux parametrization is (8; 11).

Let us first compute in details the multiplicity sequence of B. By blowing up repeatedly, we
get the following sequence of the Puiseux parametrization:

(8; 11) −→ (3; 8) −→ (3; 5) −→ (2; 3) −→ (1; 2) −→ (1; 1).

From the discussion following Theorem 3.3.4, we have the following proximity relation.

And by applying the properties of the proximity relation in Proposition 3.3.2, we complete
the graph as follow:

We show an efficient way to get the proximity relations from the Puiseux characteristic for a
single branch B = V (Y ad −Xad+bd) with gcd(a, b) = 1. Consider the steps in the Euclidian
algorithm for finding gcd(a, b).

a = bq1 + r1,
b = r1q2 + r2,
· · · · · ·

rf−1 = rfqf+1.

(3.3.1)

We write sk =
k∑
i=1
qi. Then the proximity relations are the following:
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• O1, . . . , Os1 are proximate to O0,

• Os1+1, . . . Os2 are proximate to Os1 ,

• in general, Osk+1, . . . , Osk+1 are proximate to Osk .

3.4 The resolution dual graph

In this section, we will represent geometrically the data we get from the resolution.

3.4.1 Definition. A graph Γ consists of a set V(Γ of vertices Vi and a set E(Γ) of edges
joining the vertices.

Let C ⊂ C2 be a curve and π : T −→ C2 be a minimal good resolution. Here, we mean by
minimal good resolution the first good resolution that we have when applying the blow up
repeatedly. Consider the exceptional curves Ei for 0 ≤ N and the strict transform C(N).

3.4.2 Definition. Consider the graph whose vertex Vi corresponds to the curve Ei, and two
vertices Vi and Vj are joined by an edge if an only if Ei intersects Ej. We say that this graph
is the dual graph of the resolution, denoted by Γ(C).

The augmented dual graph is the dual graph such that we add arrowhead vertices which
represent the strict transform C(N).

3.4.3 Example. Consider the result from the previous example.

Figure 3.4: Resolution dual graph of the cusp V (X2 − Y 5).

The blow up of a plane curve consists of two coordinate charts (x, y) = (uv, v) or (u, uv). We
have a sequence of transformation of one type, followed by a sequence of transformation of
the other type. The change-over corresponds to the proximity relation. Thus the sequence
of vertices in the dual resolution graph is determined by the proximity relation which is
induced by the Euler algorithm 3.3.1. From the Euler algorithm 3.3.1, we have a dual graph
of the following form.
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3.4.4 Lemma. If C is an irreducible curve with Puiseux characteristic (m; β1, . . . , βg), then
the resolution dual graph is a single chain of edges from the initial vertex V0 to the vertex
W , with g side branches, each a single chain, attached to a distinct vertices of the original
chain.

Proof. We use induction on g. The above construction describe the sequence of blow up
for g = 1. Only the first two conditions in Theorem 3.3.3 are satisfied, except at the last
blow up. So the above construction describe the sequence of blow up until the length of
the Puiseux characteristics decreases. It also follow from this construction that any later
vertices of the graph will be attached at vsf .

3.5 Combinatorics on the resolution graph

In order to be able to do operations and study the property of the dual graph, we will
associate to a vertex Vi of the dual graph three integers mi, Mi and ei which are respectively
the multiplicity of an infinitely near point, the multiplicity and the Euler number of the
exceptional curve Ei. The multiplicity of an infinitely near point is defined in Section 3.3.
We define the multiplicity and the Euler number of an exceptional curve. In this section, we
also study the relation between this integers.

Multiplicity of the exceptional curves. Consider a curve C and a minimal good reso-
lution π : T −→ C2. Notice that π is the composition of πi : Ti+1 −→ Ti where T0 = C2. Now,
suppose that in one chart of Ti, π−1

i−1(C) = V (XaY bf) such that the Puiseux parametriza-
tion of V (f) is (m; β1, . . . , βg). Therefore, the equation of π−1

i (C) is either ua+b+mvbf1 or
uava+b+mf1. In each case, the multiplicity of the new exceptional curve is a + b + m. From
the properties of infinitely near points in Section 3.3, m = mi(C), and Oi is proximate to
points in V (XaY b). We deduce the following relation between mi and Mi.

Mi(C) = mi(C) +
∑

Oi−→Oj

Mj(C).

Euler number. First, we introduce the notion of Euler number. Let us recall some results
from topology. Consider two Hausdorff spaces T,B and a projection π : T −→ B. We say

C
E

U
eT

D
C

ol
le

ct
io

n



Combinatorics on the resolution graph Page 28

that π is a fiber bundle over the base space B with total space T , fiber F and structure group
K if we have a collection Φ of local trivialization ϕ : U ×F −→ π−1(U), called charts over U ,
such that

• each point P ∈ B has an open neighborhood U over which there is a chart in Φ,

• if ϕ : U × F −→ π−1(U) is in Φ and V ⊂ U then ϕ|V×F : V × F −→ π−1(V ) is in Φ,

• over a non-trivial overlap Uα∩Uβ, the charts ϕα, ϕβ yield a map ϕ−1
β ϕα : (Uα∩Uβ)×F −→

(Uα∩Uβ)×F such that ϕ−1
β ϕα(u, x) = (u, gαβ(u)x). A such map gαβ is called transition

function.

A section of the fiber bundle is a continuous map s : B −→ T such that π ◦ s = idB and
s|Uα = sα : Uα −→ T verifying:

sα(u) = gαβ(u)sβ(u).

3.5.1 Example. A blow up realizes a line bundle π : T −→ CP1 over CP1 with fiber C. Take
the usual covering of CP1,

U0 = {[x : y] : y 6= 0} = {[x
y

: 1], x, y ∈ C, y 6= 0},

U1 = {[x : y] : x 6= 0} = {[1 : y
x

], x, y ∈ C, x 6= 0}.

Therefore, g01[z : 1] = 1
z
. We have

s0([z : 1]) = 1
z
s1([z : 1]).

The condition π ◦ s = idB implies that si(Ui) ⊂ π−1(Ui) ' Ui × C. Therefore, we could
consider si as polynomial in z.

We define the first Chern class of a line bundle π : T −→ B as the difference

c1(T ) = ]{zero of s} − ]{pole of s}, where s is a non-zero section.

If we write s1([1 : z]) = a0 + · · · + anz
n, then s0([z : 1]) = 1

z
s1([z : 1]) = 1

z
s1([1 : 1

z
]). Notice

that the zeros of s1 are represented as poles of s0, then counting the number of zeros and
poles of s0 suffices. Therefore, c1(T ) = −1.

The previous constructed dual resolution graph was decorated only with the multiplicity of
the exceptional curves. Now, we will add a new decoration which are the Euler number of
the exceptional curves as follow:

• the Euler number of a new exceptional curve is −1,

• the Euler number of an exceptional curve decrease by 1 if the blowing up point lies in
that curve, otherwise, the Euler number remain unchanged.

Let us denote ei the Euler number associated with an exceptional curve Ei.
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3.5.2 Example. Consider the successive blow up at 0 of the cusp V (X2−Y 5) as represented
in Figure 3.3.

• From the first blow up, we have e0 = −1.

• (2nd blow up) Since 0 ∈ E0, e0 = −2, e1 = −1.

• (3rd blow up) Since 0 6∈ E0, 0 ∈ E1, e0 = −2, e1 = −2, e2 = −1.

• (4th blow up) Since 0 6∈ E0, 0 ∈ E1 ∩ E2, e0 = −2, e1 = −3, e2 = −2, e3 = −1.

3.5.3 Theorem. Two curves C, C ′ are equisingular if and only if there is an isomorphism
of the dual resolution graphs Γ(C) −→ Γ(C ′) of minimal good resolution which preserves the
number ei.

Remark that we can also define ei as ei = [Ei] · [Ei] in the homology group H2(T ). Then for
[X] = ∑

Mi(C)[Ei], we have

[X] · [Ei] = Mi(C)[Ei] · [Ei] +
∑
i 6=j

Mj(C)[Ej] · [Ei]

= Mi(C)ei +
∑
{Mj(C) : Vj is adjacent to Vi}.

Denote by Ei the set of all j such that Vj is adjacent to Vi. Then we have the following
relation between the multiplicity system and the Euler numbers:

Mi(C)ei +
∑
j∈Ei

Mj(C) = 0. (3.5.1)

Define the intersection matrix I = (aij) of a decorated graph Γ such that

aij =


ei if i = j,
1 if Vi, Vj is connected by an edge,
0 otherwise.

3.5.4 Lemma. The intersection matrix I is negative definite. And the determinant det(−I)
is invariant under blowing up and its inverse. Particularly, det(−I) = 1 for resolution of
plane curve singularities.

From the above construction, we define a plumbing graph as a graph such that any vertex Vi
has two integers as decorations: the Euler number ei and the genus [gi]. For the case of the
dual resolution graph of plane curve singularities, we omit the genus as they are all zero.

Plumbing construction. As the study is focused on the topology of the link associated
with a singularity, we introduce the notion of oriented plumbed 3-manifoldsM(Γ) associated
with a plumbing graph Γ.

We associate to a vertex V ∈ Γ an S1-bundle πV : BV −→ SV such that SV is a closed
orientable real surface of genus gV , and the Euler number (in here, first Chern class) of
the bundle is the Euler number eV . We choose the orientation of SV and the fibers to be
compatible with the orientation of BV . Now consider two vertices Vi, i = 1, 2 joined by
an edge. We fix for i = 1, 2, a point Pi ∈ Si, an orientation preserving local trivialization
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Di × S1 −→ π−1
i (Di) above a small disc Di 3 pi. So the edge (V1, V2) of Γ determines

∂D1 × S1 ⊂ BV1 and ∂D2 × S1 ⊂ BV2 (both diffeomorphic to S1 × S1) which are glued by

an identification map
(

0 1
1 0

)
. We consider the plumber 3-manifold M(∅) associated with

the empty graph as S3. As stated in (Neumann, 1981), the plumbed 3-manifold M(Γ) is
invariant under action of blowing up and its inverse called blowing down.

For an embedded resolution graph, we can blow down and get an empty graph. Hence, one
can see that the arrowheads represent the link associated with the singularities.

Since an algebraic link is completely determined by the set of Puiseux pairs, for an irreducible
germ, one sees the relations between the Puiseux pairs and the embedded resolution graph. In
order to establish this relation, we define first the Hirzebruch continued fraction representing
x ∈ R as follow:

x = a0 −
1

a1 −
1

. . . −
1
an

We denote x = [a0, a1, . . . , an].

Now, assume we have a single branch curve B = V (f) and the Puiseux pairs associated
(m1, n1), . . . , (mg, ng). Consider the associated continued fractions

mi

ni
= [u0

i , u
1
i , . . . , u

si
i ], ni

mi

= [v0
i , v

1
i , . . . , v

ri
i ].

Then the embedded resolution graph decorated with Euler numbers is as follow:C
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Conversely, assume that the dual graph associated with B is of the following type:

Consider Γ1 as

and Γ2 as

Set m = det(−I1), n = det(−I2) such that I1 is the intersection matrix of Γ1 and I2 is the
intersection matrix of Γ2. Then (m,n) is the First Puiseux pair of B.

3.5.5 Example. Consider the curve defined by X2 − Y 5, and the results in Example 3.5.2,

then I1 =
(
−2 1
1 −3

)
and I2 = −2. Therefore, the first Puiseux pair is (5, 2).

C
E

U
eT

D
C

ol
le

ct
io

n



References
N. A’Campo. La fonction zeta d’une monodromie. Commentarii Mathematici Helvetici, 50:
233–248, 1975.

G. E. Bredon. Topology and Geometry. Graduate Texts in Mathematics. Springer, 1993.

E. Brieskorn and H. Knörrer. Plane Algebraic Curves. Birkhäuser Basel, 1986.

G. Fischer. Plane Algebraic Curves. Student Mathematical Library, V. 15. American Math-
ematical Society, 2001.

J. W. Milnor. Singular Points of Complex Hypersurfaces. Annals of Mathematics Studies
61. Princeton University Press, 1968.

A. Némethi and A. Szilárd. Milnor Fiber Boundary of a Non-isolated Surface Singularity.
Lecture Notes in Mathematics 2037. Springer-Verlag Berlin Heidelberg, 1 edition, 2012.

W. D. Neumann. A calculus for plumbing applied to the topology of complex surface sin-
gularities and degenerating complex curves. Transactions of the American Mathematical
Society, 268(2), 1981.

C. T. C. Wall. Singular Points of Plane Curves. London Mathematical Society Student
Texts. Cambridge University Press, 63 edition, 2004.

32

C
E

U
eT

D
C

ol
le

ct
io

n


	Introduction and Preliminaries
	Affine algebraic plane curves
	Tangent lines and singularities
	Intersection of two curves
	The Riemann surface of an algebraic curve

	Topology of the link
	Puiseux parametrization
	Description of the topology of the link

	Resolution of singularity
	Blow up of C2 at the origin.
	Geometry of the resolution
	Resolution and Puiseux parametrization
	The resolution dual graph
	Combinatorics on the resolution graph


