

Szamohval Monika Mira

ThyssenKrupp Presta AG

Capstone project – Business Analytics
Program

C
E

U
eT

D
C

ol
le

ct
io

n

The primary goal of the following capstone project is to build new data tables from an

existing data archive, that has captured years of software testing. The project objective is

being tested and carried out through the use of Python programming language. The archival

information and data is done through the partnership with Thyssenkrupp. In short, the

project aims to help the daily work of the software testing department, by providing

summary data tables comprised of years of test archives from various software testing

projects.

The company
Thyssenkrupp Presta, located in Budapest, is one of the leading automotive industry and

component suppliers worldwide. Nine-of-ten premium cars currently on the market contain

their components and one-of-every-three trucks contain a Thyssenkrupp propulsion. The

Budapest group, Thyssenkrupp Presta Hungary Kft., belongs to the Component Technology

portion of the business. The Hungarian unit, is a Competence centre with more than 500

employees. Currently the centre operates in the field of steering technology research and

development. Also, the company operates an automotive factory in Győr, which supplies

complete chassis as a direct supplier to car factories, into so called just-in-sequence systems.

Moreover, the company opened a new factory in Jászfényszaru, producing steering systems

(C-EPS) and cylinder head integrated camshafts, with the help of about 500 staff members.

In addition to its automotive industry, Thyssenkrupp employs around 400 people in the

elevator technology, and in industrial materials and related services. Through the years the

company reached multiple products level from prototypes. The competency level growth is

outstanding.

C
E

U
eT

D
C

ol
le

ct
io

n

The chart above clearly illustrates the development lifecycle of the company through the

years.

The testing team
In the following chapter I am going to detail the Budapest team, as my capstone project was

fulfilled at the competence centre, in Presta Kft., Budapest. The Hungarian testing team, is a

group of engineers, and their focus is developing and testing electromechanical software-

controlled steering systems into self-propelled cars which are working with visual signal

processing. The team develops and tests smart steering systems which utilize electromotive

aid, instead of the traditional which uses a continuously energizing hydraulic system. The

electromotive system only consumes energy when the steering wheel is rotated and

therefore saves up to 0.3 litres of fuel per hundred kilometres depending on the car type,

also it is technically more reliable than the traditional fuel regeneration. It is essential for

self- guided cars, as the software control provides, a whole range of security and

convenience features, such as side wind compensation or a parking assistant, in addition to

it, it can provide crucial access to the steering systems of the self-governing cars. The team

originally started testing the software of the self-governing cars, because the competence

centre in Budapest had begun developing steering systems into it. Despite this, these

systems will only be put into street cars in the following 10 to 15 years. With such advantage

in time, the Hungarian System is years ahead of their competitors. Their work is

unquestionably important, as the emergence of the self-guided cars will create a huge

paradigm shift in the world; there still remains the question as to what conditions will allow

for drive automatic systems on be fully functioning on the road. Yet what we know now is

C
E

U
eT

D
C

ol
le

ct
io

n

that electronic systems are always paying attention, never get tired, and their reaction times

already outperform humans.

The method of testing
Why is software testing needed? First, to prove that the system works. In addition, it finds as

many faults as possible, as soon as possible, during the development lifecycle. Moreover, it

demonstrates conformance to requirements both to customers and towards to the internal

requirements as well. Testing is required as engineers need to find the errors in the software

products, before placing them into operation, thus increasing the quality and reliability of

the product. Almost, we can be sure that there is a bug in the software, as people develop

them, and they make mistakes. After testing, it can be stated that there is no error in the

tested parts, so the reliability of the product increases. The reality is that testing cannot

prove that the system is correct! Testing can show what the system can and cannot do.

Testing cannot in fact prove that the system is correct. Further, testing is required to

understand the system and deep dive in the details of the system, and get know as many

details as possible, with discovering all the side effects that can happen during the

development.

C
E

U
eT

D
C

ol
le

ct
io

n

Finally, the aim of the team, is to have a smart steering system on the roads, save lives with

the development of safety critical systems, which cannot be fulfilled without finding the

bugs in the system first.

In case of testing the Budapest group focuses on the verification and validation test

activities. Which involves the process of the followings:

However, considering testing as a big group, there are three kinds of testing:

• Hardware, Motor and Software testingComponent testing

• Functional System Testing
MechatronicSystem

Testing

• Steering feel, maneuvers, fault
injection

System Integration in
real car on the test

track testing

Uniform testing

Software system testing

Functional system testing

C
E

U
eT

D
C

ol
le

ct
io

n

My capstone project focuses on the component testing lifecycle, on the work of the

Software System Test Group. The focus: verification of functionalities and interfaces of the

software components. Tests are executed on real target processor environment.

The Software System Test Group itself is divided into two teams:

- Software Safety Test Team

- Software Integration Test Team

A few words about the team testing processes:

- The teams have a matrix structure, for each testing project they nominate a Test

Project Leader.

- The first round of software testing is unit testing. The focus is on specific units or

components of the software to determine whether each one is fully functional. The

main aim of this endeavour is to determine whether the application functions as

designed. In this phase, a unit can refer to a function, individual program or even a

procedure. The unit testing is done by either the white or black box unit testing. In

case of black box approach, the tester is unconcerned about the internal structure

and workings of the software. Test data is derived solely from the specification.

Whereas in case of the white box approach, the tester analysis the internal logic of

the software under test. White- box module tests are directed toward code coverage.

Following this, the next step is the software system test; the hardware environment,

the hardware in the loop simulator stage. The unit testing is followed by integration

testing to find interface defects between the modules/functions. Next, system

testing, where the complete application is tested as a whole. Lastly, the acceptance

testing, in this stage they are determining whether the system is ready for release.

From this short summary it can be concluded that the software testing is a complicated and

a far- reaching process. One of the biggest challenges of testing is the documentation and

recording of the processes. Unit case testing for example requires multiple developers to

work at the same time, with different approaches. This leads us to ask How can we track,

and record different testing process in a collaborative software development team? Version

management systems, seem to offer a solution to this problem.

SVN Tortoise Version Management with Subversion
For version management, Thyssenkrupp uses Subversion. In the collaborative software

development area, it is essential to have a version control system. It is a server application,

C
E

U
eT

D
C

ol
le

ct
io

n

which stores folders and files like a filesystem. Apache Subversion for is example (or SVN,

derived from the command) is a widely used version control system the manages the various

versions of source codes, web pages, and documentations. It stores changes made to the

files and directories, thus making it possible to recover the project from a previous state.

With SVN, multiple users can work on the same project, using project repositories and

access previous states (older versions) whenever it is needed.

The repositories are storage databases. The files are stored on the server and can be

downloaded if necessary - the version on the server is not modified, only the users can

modify it in the local content, which are called working copies of their server versions. If the

user is done with the changes, they can upload their work to the server. The upload of the

working copy called “commit “. The repository has a special layout / project structure

disregarding the involved process, there are some standard, recommended ways to organize

a repository. For every project a trunk directory can be created to hold the “main line” of

development, a branches directory to contain branch copies, and a tags directory to contain

tag copies. Branches are the forks of the trunk, it is usually used for testing new features,

until they are merged back to the trunk. If a developer has more time-consuming work, he is

able to create a branch, and work on it individually, without disturbing other developers.

When he finished with his own version, he can merge the changes to the trunk. Further,

branching can be used when the developer wants to create a software variant, with side

changes, but in that case, they are not merging the branch back to the trunk. The tags are

snapshots of the trunk, they are SVN’s baseline. They are used, to label specific revisions,

and store them for later access, the method is to create these directories for the smallest

unit of production, called a project.

TKP uses the subversion project structure (trunk, branch, tag) in different processes, not only

in software testing. It is used in the field of product release, software construction, software

integration testing, and in configuration management.

For my capstone project, it was crucial to gain in dept knowledge regarding SVN, as I have
worked with test logs located in SVN repositories.

The project
During the development of the automatized software testing there are two jobs that can be

done: develop a test from zero, or adapt (or in other words, “port”) an existing version.

Throughout the years, the team had recorded how much time they spent, and how much

work was done at all together, but they forgone measurement, the number of testing

methods, and the cases when each test was used on the various different methodologies.

C
E

U
eT

D
C

ol
le

ct
io

n

The design and the project’s key objective were to be able to explain based on the test logs,

which of the tests, had been developed from 0, and which of them was done with porting.

After sorting the data table by date, a special test id occurred on some of the projects. In the

instances where the identification number occurred, those tests were developed from zero,

and the others were done by porting. The test logs and projects were in SVN, in the format

of zip files. Those zip files contained hundreds of xml files, with thousands of rows. My task

was to unzip all the files of the data archive, process the content, and put the required

information from them into corresponding data tables. The processed file projects are the

results of the test logs, which have captured different testing’s. During the test runs, the

automatized scripts are running software testing, for electrical power assisted steering

systems. It is a requirement based testing, the scripts were developed, for functional testing

requirements. The files are involving enormous amount of data such as the testing type,

date, test creator ID, and how many hours were spent with the testing. However, the most

crucial points of the test logs are the following:

 Test ID, based on the ID we can look up in other documentation, that what kind of

software requirement or functionality was tested.

 If the test is passed or fail.

 Also, captures additional information for the evaluation of the tests: such as

expected behaviour of the software (e.g.: value of the output, reaction time),

moreover the actually observed behaviour during the test runs, and there is some

plus data which helps the tester to understand what has happened under the

running, called hardware signs time rows.

Subsequently the running, the software testing team checks the test logs. In case of they

have a failed test, they raise an error ticket. The error ticket includes the error and the test

log as well. Afterwards, all of the test logs are archived, which gave me the opportunity to

proceed them.

Conclusion
In conclusion, my capstone project was a challenging but useful task. Firstly, the engineering

company with the focus of electrical power assisted steering systems and software testing,

was a completely new field for me. The first milestone was to understand the Tortoise

repository system, also the file system commands, to be able to build a script which can

access to it. Not to mention the data access difficulties. The data archive which I worked on

was only accessible through company device with company network connection. Moreover,

the project itself was deeply thought-provoking, as it required a higher level of information

technology knowledge. Still, after all of the obstacles, I feel I gained a lot with my capstone

project. I observed new areas of business, and I made some good connection inside the

company. Finally, with my project I deepened my programming knowledge in Python more

than ever before. On the following pages, I have illustrated my script for the project,

expended with some comments.

C
E

U
eT

D
C

ol
le

ct
io

n

C
E

U
eT

D
C

ol
le

ct
io

n

C
E

U
eT

D
C

ol
le

ct
io

n

C
E

U
eT

D
C

ol
le

ct
io

n

C
E

U
eT

D
C

ol
le

ct
io

n

 C
E

U
eT

D
C

ol
le

ct
io

n

	The company
	The testing team
	The method of testing
	SVN Tortoise Version Management with Subversion
	The project
	Conclusion

