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Abstract

The thesis consists of three chapters. The first two papers are related
to the economic policy question of network neutrality, while the third
paper studies competition on the retail gasoline market. The three pa-
pers build on a diverse set of tools. The first chapter is a computational
theory paper where the main emphasis is on a new theoretical mod-
eling framework. The second chapter involves empirical data analysis
and numerical methods to conduct counterfactual analysis related to an
actual economic policy matter. The third chapter is a methodological
paper where I develop and demonstrate the working of a new empirical
framework.

Chapter 1
Net Neutrality in a Dynamic Platform Market Environment

The contribution of this paper is a dynamic industry model that en-
ables researchers and policy makers to directly analyze the anecdotal
positive feedback loop (the so called “virtuous cycle”) that lies at the
heart of the Federal Communication Commission’s (FCC) Open Inter-
net Order that aims to establish the highly debated net neutrality prin-
ciple as an effective rule on the Internet. The discrete time multi-agent
dynamic stochastic game is an extended version of the framework of
Ericson and Pakes (1995) which is played by two types of players (i)
two Content Providers (CPs) differentiated by their product quality and
(ii) a single Internet Service Provider (ISP) characterized by an actual
network capacity. Both types have costly dynamic controls over their
states. Agents’ per-period payoffs represent profits from a platform mar-
ket game. The novelty in my approach is that it allows for (i) both the
no termination fee and the no paid priority forms of net neutrality, (ii)
endogenous price setting and side-payments among agents in the stage
game, (iii) dynamic restructuring of the industry as a response to the
change in regulation, and (iv) direct analysis of the effects of net neutral-
ity on the virtuous cycle. Although these features allow for more realistic
interactions among agents they come at the price of analytic tractabil-
ity. Hence, the model is solved numerically for a range of parameters
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by standard Newton-Raphson and Gaussian methods. Then I compare
equilibrium strategies under four different regimes (i) net neutrality, (ii)
termination fee, (iii) paid priority, and (iv) simultaneous termination
and priority fees. In the comparisons I focus on three key outcomes:
investment to network capacity, innovation on the content provider side
and consumer welfare.
Keywords: net neutrality, dynamic game, dynamic programming

Chapter 2
Counterfactual Analysis of Net Neutrality in a Calibrated Model

The Federal Communication Commission’s (FCC) Open Internet Order
seeks to regulate the Internet relying on an anecdotal feedback loop, the
Virtuous Circle. Despite the scale of the issue there is very little or no em-
pirical evidence that supports the claims of proponents or opponents of
the proposed regulation. This paper makes an attempt to produce com-
parable ballpark figures for the potential economic effects of net neutral-
ity in the United States. I use the model developed in my first chapter to
study the outcomes of the counterfactual regulatory regimes in consid-
eration. In order to reflect the actual market environment and to accom-
modate a greater number of firms it is necessary to increase the state
space. However, this inflates the computational burden dramatically
and deterministic solution methods are no longer applicable. For the
dynamic game I propose a reinforcement learning algorithm closely fol-
lowing the stochastic algorithm of Pakes and McGuire (2001) but mod-
ified to handle the two types of agents in my model. To solve the stage
game I use a parallelized homotopy algorithm to increase efficiency and
robustness to different sets of parameter values. Then I calibrate the fun-
damental parameters of the model using various public data sources to
match key observed moments. Using the computed equilibrium policies
from all regulatory regimes I compare the alternative outcomes.
Keywords: net neutrality, counterfactual analysis, reinforcement learn-
ing, homotopy method
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Chapter 3
Delineation of Market Areas Using Sparse Learning and Spatial Reg-
ularization

Market definition is a key part in industrial economic analyses both in
antitrust and business cases. However, current state-of-the-art methods
require either too strong assumptions about the market environment
or too many proprietary data sources. These features may make them
unattractive or even inapplicable in court cases or in the everyday busi-
ness setting. This paper applies modern statistical methods to analyze
the mutual influence among prices of competing products. The key idea
is to apply spatial regularization via the fused lasso to filter the noisy
price data and to get rid of spurious associations. Then the procedure
described in the paper can be used to identify market boundaries and
to analyze the existence of pricing pressure in arbitrary product or geo-
graphic spaces. The main advantages of the method are (i) it is simple,
(ii) it requires only publicly available data, (iii) it doesn’t rely on any
specific theoretical model, and (iv) it extends the current bivariate time-
series analysis based methods to high dimensional settings with many
products. To demonstrate the potential usefulness the method is applied
to weekly consumer prices of gasoline stations in Hungary to highlight
markets that could be potentially harmed by a hypothetical merger be-
tween to competitors.
Keywords: market definition, spatial pricing pressure, fused lasso, gaso-
line
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Chapter 1

Net Neutrality in a Dynamic Platform
Market Environment

1.1 Introduction

Net neutrality is best understood as a network design principle. It re-
quires all bits traveling over the internet to be treated equally. The inter-
net, however, is not a single network. It is a complex structure of several
interconnected networks of different sizes and scales. These specific in-
terconnection points where networks exchange traffic connect hundreds
of millions of users at the edges of the networks day-by-day. It is not un-
realistic to consider the internet as the most important platform for eco-
nomic growth, innovation, competition, and free expression in the 21st
century. Net neutrality, however, restricts the way how interconnect-
ing agents in the internet ecosystem are allowed to interact which may
change their incentives for investments or innovation. Potentially this
may have significant effects on the evolution of the network through the
functioning of the interconnection relationships, and as a consequence,
on our society as a whole.

There is a long standing public debate over the potential effects of the
regulation and, not surprisingly, net neutrality became a frequent guest
in US news headlines. Nothing illustrates better the importance of net
neutrality than the fact that in 2014 the Federal Communications Com-
mission’s proposed Open Internet Order – that was meant to fix net neu-
trality as a rule – generated nearly 4 million public comments on its web-
site.

1
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Given the scale of the potential long-run effects of net neutrality one
would expect an exceptionally thorough economic analysis by the reg-
ulator. However, the FCC received substantial critiques for its lack of
proper economic analyses both from policymakers and academic economists
alike.1 Even Tim Brennan, the former chief economist of the FCC admit-
ted that in the Open Internet Order “a fair amount of the economics was
wrong, unsupported, or irrelevant”.2 Therefore, it is of great importance to
better understand what kind of interactions and incentives (the lack of)
net neutrality regulations might induce and to what market outcomes
they might lead. Indeed, the bulk of the economics literature focuses
on the effects of the two rules proposed by the FCC. The great variety
of models that each focus on certain aspects of the problem in isolation
lead to better understanding of agents’ incentives. However, the range
of controversial findings signals how important it is to consider the ef-
fects of the proposed interventions in a single model where players’ in-
centives and possible interactions are accurately represented.

My contribution to the literature is a model that enables researchers and
policymakers to study either the individual or the combined effects of
the two proposed rules on a variety of market outcomes in a single
framework while allowing for a rich set of interactions among agents.
An additional distinctive feature of my model is that is able to generate
the kind of firm behavior that the FCC uses in its argumentation for its
net neutrality rules. This makes it possible to directly assess the argu-
ments in the Open Internet Order. With that in mind, I use the model
to study the effects of the ban on termination fees and paid priority ser-
vices in a baseline calibration where I take all values from the industry
model of Pakes and McGuire (1994).

I find that that ISPs underinvest in the regimes with paid prioritization
to earn profits from the priority fees and this will decrease CPs’ returns
to investment. As the equilibrium can be computed only by numer-
ical methods, I perform robustness checks with alternative parameter
settings. The main results are qualitatively the same after the perturba-
tions.

The rest of the paper is organized in the following way. Section 1.2 gives
1See Katz (2017) for specific net neutrality related issues or Faulhaber et al. (2017) for a general cri-

tique of the FCC’s economics related practices.
2Source: Brennan (2016).

2
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a more detailed introduction to net neutrality through discussing the re-
lated questions and concerns while section 1.3 provides a brief overview
of the related literature. In section 1.4 I describe the details of the model.
In section 1.5 I specify a baseline set of parameters and present the re-
sults of my analysis. Sections 1.6 and 1.7 discuss potential extensions
and alternative equilibrium concepts.

1.2 Net neutrality

1.2.1 Motivating example

It is instructive to illustrate the typical questions that arise regarding the
consequences of the lack of net neutrality through an example. Follow-
ing Greenstein et al. (2016) I use the typical example of Comcast, the
largest cable and broadband provider in the U.S., and Netflix, the giant
television and movie-streaming service. Suppose that on a Friday night
you want to watch a movie on Netflix. Unfortunately, however, you are
not alone with your plans for the evening. Millions of fellow Comcast
subscribers intend to do the same, the majority of whom will have to
experience serious performance issues because Comcast’s network ca-
pacity has reached its limits and the network is congested. This imme-
diately leads us to a seemingly endless set of question: What would
happen if Comcast asked Netflix to pay for faster and more reliable ac-
cess to its subscribers? Would Netflix be likely to agree to this request?
Would Netflix charge you more for the movie? Would Comcast raise its
broadband subscription fee for this improved service? How would the
deal affect Comcast’s future investments into network capacity? What
would happen to the rest of the movie streaming services, like e.g. Ama-
zon Instant Video or Youtube? Would that deter or encourage new firms
to enter the market? If such a deal was struck, in what ways would con-
sumer or producer surplus change? The example above is about paid
prioritization, one of the two main network management practices that
the FCC has banned entirely. The other one being the ban on blocking, or
more generally a ban on termination fees. In the context of the previous
example imagine that Comcast would demand a price (a termination
fee) from Netflix for each of its subscribers or otherwise it would block

3

10.14754/CEU.2018.11

1



C
E

U
eT

D
C

ol
le

ct
io

n

Investment

InnovationDemand

incentives to develop new content

increases residential demand

incentives to extend capacity

Figure 1.1: The Virtuous Cycle of investment, innovation and consumer demand

its contents. All the questions above apply here as well.

It turns out that such deals are not unprecedented. E.g. in 2003 Cox
and Comcast blocked VPNs, in 2005 Madison River Communications
blocked VoIP services, in 2007 Comcast throttled peer-to-peer programs,
in 2012 AT&T restricted the use of Apple’s FaceTime to certain cus-
tomers, and in 2014 Comcast gave Netflix a special treatment for a cost
– just to name a few significant cases.

1.2.2 The FCC and the virtuous cycle

To address the issue the FCC released its Open Internet Order to pro-
mote and preserve an open internet. They argue that net neutrality is es-
sential in achieving these goals and a ban on termination fees and paid
prioritization would suffice to ensure neutrality. However, as I pointed
out in the introduction, the FCC did not perform a proper rigorous eco-
nomic analysis and their whole argumentation was based on an anecdo-
tal positive feedback loop of innovation, demand and investment, called
the virtuous cycle and presented visually on Figure 1.1. The FCC infor-
mally argues that given abundant network capacity the innovative uses
of the network by content providers (e.g. Netflix, Youtube, Facebook,
Google etc.) lead to increased end-user demand for the broadband ser-
vices of telco and cable companies (e.g. Comcast, Verizon, Time Warner
Cable, AT&T, etc.), which strengthens incentives for network infrastruc-
ture developments, which in turn lead to further innovative uses of the
network, and so on. As one can see, the main trade-off to consider when
trying to assess net neutrality is related to the balance of innovation and
investment.

Proponents of net neutrality emphasize that any price raise or termina-
tion fee charged by internet service providers would create a barrier to
entry for content providers and also negatively impact the already active

4
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smaller content provider firms – where a significant part of innovation
comes from (e.g. start-ups). On the other hand, opponents of net neu-
trality argue that internet service providers wouldn’t be able to recoup
the investments into network capacity without imposing additional fees
and net neutrality would just hinder future developments. Both stories
are plausible and nothing prevents the two channels to exist simultane-
ously. It is just a question of which effect is stronger and whether the
modeling framework can accommodate these behaviors.

1.2.3 Concerns and harmful incentives

The FCC further argues that broadband providers not only have the abil-
ity to engage in the banned practices but also have significant incentives
to do so. Here I briefly reiterate on the main questions and concerns
raised previously and their potential consequences in a more general
way.

Excessive pricing

In the case of termination fees the concern is that broadband providers
would act as gate-keepers over their subscriber base. As local competi-
tion is very limited residential users don’t have alternatives for broad-
band access and providers could act as monopolies setting excessively
high prices for content providers.

Content Creation and Innovation

It is reasonable to associate content innovation with successful market
entry to the digital content provision market. This is based on the re-
mark that creation of a new (differentiated) variety is usually associated
with a small startup (think of Facebook, Twitter, etc.) who enters the
market with this single product. The price charged to this side of the
market generally makes entry less profitable and thus may lead to less
innovation on the content provider side. This is important because we
think that broader variety and better content brings higher welfare to
consumers. However, there is another mechanism that may be beneficial
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for total welfare. By making entry more costly entrants will be selected
by the expected profitability of their products. We may expect to see an
increase in average product quality of entrants and a higher probability
of setting foot in the industry. This means that sunk costs of product
development for potentially less successful entrants can be saved which
is important for total welfare.

Capacity and Investment

Internet service providers argue that the zero-pricing rule prohibits the
appropriation of returns to their investments. From public policy point
of view we might expect that infrastructure development leads to bet-
ter user experience, increased demand and thus increased incentives to
supply quality content. So a non-zero pricing might have a dual effect
on content creation. First, it could reduce innovation through increasing
barriers to entry (see the subsection above). Second, it increases incen-
tives to invest in capacity through which it increases consumer demand
and thus the incentives to entry the content provision market. Depend-
ing on the actual trade-off between these effects it may be interesting to
see the outcome of e.g. a capacity investment subsidy together with the
zero-pricing rule.

Moreover if paid prioritization is allowed then internet service providers
may have an incentive to keep their network capacity low, creating ar-
tificial scarcity that allows them to extract more money from content
providers.

Foreclosure and Fragmentation

Net neutrality raises a number of antitrust related issues. First, if a uni-
form pricing is allowed then broadband providers have an incentive to
raise prices to capture the high willingness to pay of large established
content providers and thus excluding the smaller ones who cannot keep
up with the price. Second, some content providers might be able to fore-
close rivals from local markets by paying for exclusive agreements. Both
of these lead to internet fragmentation, which means that consumers at
different internet service providers are not able to access the same set of
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content providers. However, the presence of cross-side network exter-
nalities should weaken this effect. Furthermore, if small companies are
able to use scalable web services, such as Amazon’s, to deliver content
then the question is rather to what extent the prices will be transmitted
by Amazon.

Competition in related markets

A very important feature of the industry is that traditionally the dom-
inant broadband access providers are established cable companies that
have a primary business in a field that is directly competing with the
digital content offered by online content providers. Indeed, in the video
space alone, CBS and HBO have recently announced new plans for stream-
ing their content free of cable subscriptions. Being forced to allow free
usage of their networks access provider firms are hurt by the increased
competition from rivals who have a sunk cost advantage and are able
to price more aggressively. The concerns with this is that they have an
incentive to favor their own service and to degrade the quality of their
online competitors.

1.2.4 Dominance of video streaming

Internet content producing companies are very diverse. However, there
is small number of large dominant firms and a lot of small firms (e.g.
startups, who might eventually get large). The annual Sandvine Global
Internet Phenomena Report from 2016 provides some interesting statis-
tics. Their measurements show that in North America around 75% of
prime-time downstream traffic comes from the ten largest firms and
more than 90% of this traffic is related to video streaming. Not sur-
prisingly, the five largest firms are all video streaming sites like Netflix,
YouTube and Amazon Video.3 Based on this observation and the fact
that congestion is caused by the traffic-intensive applications I will fo-
cus primarily on the online streaming video industry in my model.

3The exact market shares are Netflix 35.15%, YouTube 17.53%, Amazon Video 4.26%, iTunes 2.91%,
Hulu 2.68%
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1.3 Related literature

The (almost single) agreement in the literature seems to be that it is best
to think of net neutrality in a two-sided market environment where the
internet service provider acts as a platform and lets content providers
interact with subscribers.

However, the main differentiating dimension in the literature is whether
the authors focus on the termination fee or paid prioritization part of the
net neutrality rules as set out by the FCC.

The simplest type of analysis in the literature concerns the effects of the
changes in prices due to the introduction of the termination fee, like in
Economides and Tag (2012). Similarly, Njoroge et al. (2013) also study
the effect of the termination fee but they also take into account the plat-
form’s investment incentives.

The stream of papers that study paid priority and network capacity in-
vestments with a fixed set of content providers include Choi and Kim
(2010),Cheng et al. (2011) and Kramer and Wiewiorra (2012). Although
their results are not unambiguous, they all show that prioritization dis-
tributes more profits to the platform.

A notable exception is Peitz and Schuett (2016) who study both the ter-
mination fee and paid priority rule in a single but simplified industry
model. In their model net neutrality leads socially suboptimal amounts
of traffic.

Economides and Tag (2012) show that competition among internet ser-
vice providers is not likely to change that positive effects of net neutral-
ity while Bourreau et al. (2015) show that paid priority increases both
capacity investment and content innovation.

Research papers also vary in the set of interactions they allow across or
within sides of the market. Most papers don’t allow monetary transac-
tion between the two sides or don’t acknowledge within side competi-
tion among content providers. An exception for the former Gans and
Katz (2016), who introduce side payments between the two sides.

Review articles such as Lee and Wu (2009), Schuett (2010), Kramer et al.
(2013) and Greenstein et al. (2016) are the most useful sources in listing
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the potential question and concerns, however, they do not offer a model
or data to conduct further analysis.

My work is also related to the work on investment incentives in the con-
text of general platform markets. Alexandrov and Deb (2012) study the
interaction of price discrimination and investment incentives of the plat-
form and Belleflamme and Peitz (2010) study platform competition and
seller investment incentives. Their results show that discrimination in-
creases platform investment and that easy access to the platform could
lead to underinvestment.

Regarding the dynamic modeling framework my work builds heavily
on the dynamic industry model of Ericson and Pakes (1995). Out of the
large number of papers that use some variation of this dynamic frame-
work, my work is closest to Markovich (2008), Markovich and Moenius
(2009) and Chen et al. (2009) who study dynamic platform market en-
vironments. The computational algorithm I use to compute the equilib-
rium is a slightly modified version of Pakes and McGuire (1994) which
is also the source for the models parameters.

1.4 Model

In this section I describe all building blocks of the modeling framework
that I use to study the potential effects of switching from a neutral regime
to non-neutral ones. First I describe the model in general and then I
gradually introduce and discuss all features.

1.4.1 Overview

The model itself is an infinite horizon discrete time multi-agent dynamic
stochastic game with per-period profits determined by the actual regu-
lation in place. There are two main building blocks of the model. The
dynamic game builds on the dynamic industry model of Ericson and
Pakes (1995) (EP) and extends the framework to allow for two kinds of
firms with separate value and policy functions. The static game that de-
termines per-period payoffs builds on an oligopolistic price setting game
which is adapted to a platform market environment.
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There are three different types of agents in the model:

• A mass of residential consumers (subscribers) who desire to pur-
chase and consume digital content

• A discrete set of competing vertically differentiated streaming video
content providers (CPs) who distribute their products over the in-
ternet

• A single Internet Service Provider (ISP) who is intermediating be-
tween the two sides and lets subscribers and CPs physically connect
over its network.

In any time period the state of the dynamic game is fully characterized
by a collection of payoff relevant state variables that contains all infor-
mation that is relevant for firms to play the stage game and to choose
their dynamic controls. The three kinds of state variables include (i) a list
of CPs’ product characteristics, (ii) the ISP’s network capacity and (iii) a
scalar congestion parameter. All state variables evolve endogenously
and are controlled by firms’ policies. In particular, state variables (i) and
(ii) evolve according to firms’ investments into their product quality and
network capacity, respectively. The congestion parameter, however, de-
pends on lagged values of the other two state variables and it plays a
role in subscribers’ expectations of future network performance.

Other important features of the stage game include (i) the presence of
cross-side network externalities, (ii) within-side competition effects on
the CP side, (iii) side payments between the two sides of the market and
(iv) both per-user transaction and fixed priority access fees charged by
the platform.

Why use a dynamic model?

Switching to the dynamic modeling framework from a static game has
three main advantages. First, it allows for an equilibrium that is not only
a single state but a probability distribution over the industry states. In
the dynamic framework this means that all states that have a positive
weight in the equilibrium distribution are visited infinitely often with
frequencies proportional to their probability weights. The equilibrium
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distribution is determined by the dynamic responses of agents to each
others’ actions. In many cases this is much closer to the way we actually
think about industries and it makes stylized behaviors as described by
the virtuous cycle directly feasible and observable. Second, separating
the problem into dynamic and static parts makes it feasible to solve the
platform market problem in the stage game that allows for a rich set of
interactions among agents both within and across sides. A traditional
platform market approach would become far too complex.4 Third, note
that the dynamic game is completely agnostic to how per-period profits
are determined. This makes the dynamic framework suitable for analy-
sis of various equilibria resulting from different payoff functions with-
out having to rewrite the model. The approach is common in the indus-
trial organization literature and is well fit for the type of counterfactual
analysis I am interested in.

The price, of course, for these advantages is the elegance and complete-
ness of analytic tractability. As a consequence the equilibrium can be
computed only by using numerical dynamic programming methods.
Although existence or unicity are not guaranteed in general, Doraszel-
ski and Satterthwaite (2010) give formal conditions for the existence of a
stationary Markov-perfect equilibrium in the EP-style industry models.5

I believe that the inherently dynamic nature of the virtuous cycle justifies
the use of dynamics. In particular, a simple sequential decision timing
assumption (e.g. investments first, prices second) would allow for any
two consecutive links in the cycle, but would leave the loop open with-
out allowing for explicit feedback – as it is the case in general with two
period models. E.g. without the internet subscription channel it might
be an attractive choice as it is common in the literature. On the other
hand, assuming all decisions are made simultaneously I might exclude
behavior that is implied by the virtuous cycle. E.g. the dynamic model
would allow an ISP to invest into capacity without observing several
high-quality CPs but only anticipating such behavior (i.e. increased CP
investment) in a future industry state with the resulting higher network
capacity.

4The multi-sided market approach of Weyl (2010) and Veiga et al. (2017) might be an elegant analytic
alternative to the dynamic framework.

5I don’t provide a formal equilibrium characterization in this paper but I refer to their work when it
is applicable.
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In the following section I introduce the details of the model’s primitives
through the model absent congestion and featuring the net neutrality
regulation in place. Building on this baseline model I gradually intro-
duce the features that give rise to the three additional alternative regula-
tory regimes I consider for the static game. Finally I provide the details
of the dynamic game.

1.4.2 Agents

Subscribers

In every period of the game a mass of M residential users face a two-
stage decision. First, they decide whether or not to subscribe for the
ISP’s broadband service based on the available content offered by CPs.
Second, those who decided to subscribe can choose one from the avail-
able set of CPs or may opt for not choosing any. I let subscribers to have
an outside option in both choice situations for two reasons. One is that
assuming a fixed broadband share would exclude a link from the virtu-
ous cycle making it impossible for the dynamic feedback loop to emerge,
decrease the CPs’ investment incentives by shutting down the market
expansion effect, make the ISP’s revenues independent of network con-
tent quality and network capacity/congestion by making demand per-
fectly inelastic. The other reason is that share of broadband subscribers
is an important market outcome that is of policy interest. In the second
choice I leave users an option of ‘casual internet browsing’ instead of
choosing a particular content provider, that is the outside option can be
thought of as using all other services on the internet.

Subscribers are identical in their preferences regarding how much they
value the digital goods offered by the CPs and internet access up to an
idiosyncratic taste shock. However, they don’t fully observe their tastes
on the CPs’ products until they subscribe to the ISP. Thus, when decid-
ing on broadband subscription they base their decision on the expected
utility from the CP choice situation. I introduced this feature so that
only consumers with internet access can have a precise understanding
of what utility they may have from a digital good.

Formally, consumer i’s utility from content provider j is uij = vj + ε ij,
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where vj denotes the observed part of utility. I consider several specifica-
tions for vj but for now I will use simply vj = δj − pj, where δj denotes
the mean utility of CP j who charges price pj for its content. For the ε

errors I assume type I extreme value distribution and I normalize the
observed utility of casual browsing (v0) to zero. None of these come
without a cost. First, the logit assumption introduces the well-known
unlimited love of variety property, while the second assumption basi-
cally restricts the set of outcomes by fixing a free parameter.

The individual choice probability for each consumer to choose CP j, or
in other words, the market share of CP j among consumers who have
internet access is

sj =
exp{vj}

1 + ∑k exp{vk}
.

Given the distribution of ε, before subscribing to the ISP the expected
utility of the CP choice situation for a given consumer is

V = ln

{
∑

j
exp{vj}+ 1

}
,

and the utility of internet access for consumer i is Ui1 = V − P + εi1,
where P is the net price charged by the ISP. For the ε terms I assume
type I extreme value distribution and I normalize the observed utility of
no internet access (V0) to zero. Thus, the probability for a consumer to
subscribe to the ISP is

S =
exp{V − P}

1 + exp{V − P} ,

which also equals the share of consumers with broadband access.

It is important to emphasize that all these values are specific to a given
period. If the available set of CPs or their product offering changes it has
two effects on CPs’ market shares. A direct (or competitive) effect on the
consumers with internet access and an indirect (or market expansion)
effect on the market share of the ISP. Note, that this latter effect is one
crucial part of the virtuous cycle.

Before I turn to CPs, it is instructive to clarify that although consumers
have rational expectations regarding their utilities from CPs’ products,
they are not forward looking in a sense that they don’t form expectations
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for future periods on the sets of available CPs. Also they don’t have
a dynamic role in a sense that their preferences are independent from
history, a notion that I will relax later when I introduce congestion.

Content providers

In every period there are J CPs with the corresponding set of mean util-
ities (product qualities) {δj}J

j=1 selling their products to the ISP’s sub-
scribers. Note, that the specification of consumer utility implies a sys-
tematic vertical differentiation among content providers based on the
mean utilities and an idiosyncratic horizontal differentiation due to con-
sumer taste heterogeneities. In the online video streaming industry one
way to interpret the vertical characteristic is to think of it as video reso-
lution. I assume that CPs have video libraries of similar sizes but with
different titles and consumers don’t prefer systematically any of the li-
braries. Vertical differentiation comes from the different video resolu-
tions of content availability in . Ideally, the higher the resolution the bet-
ter people perceive the product on average. However, higher resolution
means not only more desired products but higher bitrates which lead
to increased marginal content distribution costs and will have an impor-
tant interaction with network capacity and, as I show in turn, might lead
eventually to network congestion.

CPs face a marginal cost (mccp) per user proportional to their product
quality (resolution) that covers the costs of content distribution in the
network. This marginal cost consist of two multiplicative components.
The first component (bj, the bitrate) specifies how many bits are needed
to transmit the content of CP j, and the second component (ccp) is the
price of content distribution per bit that is common for all CPs in the
industry.

Formally, CP j sets its price to maximize profits as given in

Πcp
j (pj, p−j, P) = MS(P, p)sj(pj, p−j)︸ ︷︷ ︸

total demand for CP j

(
pj − ccpbj

)
,

where for clarity I directly indicated that market shares depend on prices.6

6For the ease of notation I will only denote the dependence on prices where it serves a well-defined
purpose.
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Internet service provider

The role of the ISP is to intermediate between subscribers and CPs. It
operates a network with a certain capacity (κ) that carries bits traveling
from CPs to subscribers. The ISP incurs costs of network management
depending on the volume of total network traffic. Traffic is determined
by the demand for CPs’ products and their bitrates.

The ISP then sets its price to maximize static profits which are given as

Πisp(P, p) = MS(P, p)︸ ︷︷ ︸
# subscribers

P− cisp MS(P, p)∑
j

sj(pj, p−j)bj︸ ︷︷ ︸
total traffic

.

Notice that higher quality product offerings by CPs have three effects
on the ISP’s profits. First, they increase revenues by increasing the sub-
scribers’ expected utility from the CP choice situation therefore increas-
ing demand for the ISP’s broadband service. This is exactly what I called
previously as the market expansion effect and is directly related to the
virtuous cycle. Second, they increase the ISP’s costs on the extensive
margin (i.e. attracting more subscribers) Third, they also increase costs
on the intensive margin as higher quality products with higher bitrates
consume more bandwidth. This latter channel is often overlooked in pro
net neutrality arguments.

1.4.3 Congestion

I introduced congestion as a state variable that contains information
about other the lagged state variables. In this section I start from a much
more intuitive interpretation.

Let us first forget for a second about the source of congestion and let us
focus only on the consequences. In a congested network bits arrive at
their destinations with a lag. This has a negative effect on subscribers’
experience as they can’t enjoy the content in its full glory. To model this
decrease in subscribers’ utility due to a congested network it would be
natural to simply discount the utility derived from internet access by a
factor µ ∈ (0, 1], e.g. like in Ui1 = µV − P + εi1. This approach sounds
reasonable as congestion affects all agents connected to the network.
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However, it misses the important notion that because of the differences
in required bandwidths across different products congestion may have
a differential effect on user experience – a point that is often emphasized
by opponents of net neutrality. To reflect this I choose to model the ob-
served part of subscribers’ utility as vj = µδj − pj, where µ ∈ (0, 1] is a
scalar factor that discounts the mean value derived from product j and
both the form of utility and the value of the parameter is known to all
subscribers and firms. Note that modeling congestion in this way the
utility from ‘casual browsing’ that is not bandwidth intensive is not af-
fected and higher quality products will contribute more to the decrease
in V. Also, this approach will turn out to be useful later when I introduce
paid priority.

Regarding the source of congestion, it occurs when network traffic ex-
ceeds network capacity. It would be convenient to define the congestion
parameter as a fraction of capacity and traffic, like e.g. µ = min

{
κ
T , 1
}

,
where total traffic in the given period is given by T = MS ∑j sjbj. How-
ever, there is a logical flaw in this reasoning because firms also consider
the effects of potential congestion on subscribers’ utility and set their
prices accordingly. This means that the proper definition would be

µ = min

{
κ

MS(P, p, µ)∑j sj(pj, p−j, µ)bj
, 1

}
and one would have to solve for µ together with prices in the static equi-
librium for each possible set of products marketed and network capaci-
ties (i.e. all industry states).

There are several reasons why I choose to follow an alternative approach
where the congestion parameter µ is inherited from the previous period
and is defined recursively across periods as

µ = min
{

κ−1

T−1 , 1
}

,

where κ−1 and T−1 are network capacity and total traffic values from
the preceding period. First, there is an obvious computational reason.
The computational burden on the dynamic part of adding congestion
realized in the previous period as a new state variable with a relatively
low number of potential values is way less than that of losing the an-
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alytic first- and second-order conditions used in the computational al-
gorithm for the stage game.Second, it relaxes the implicit assumption
that consumers anticipate congestion rates correctly. In other words I
assume that subscribers are not network engineers and they don’t track
each other’s consumption and how bits travel along a complicated net-
work. More formally, I assume that consumers form adaptive expec-
tations with perfect adjustment regarding the evolution of congestion.7

Third, I find this modeling choice more intuitive and realistic as it is
natural that consumers base their decisions on their past experiences.8

1.4.4 Termination and paid priority

In the preceding sections I introduced the model with the net neutrality
regulations in place. That is the ISP was bound to set a zero price to the
CP side of the market and was not allowed to offer CPs a paid differen-
tiated service without congestion. In this section I relax the ban on both
termination and paid priority fees and show how the full model nest all
regulatory regimes in consideration.

Termination

I define the termination fee (t) as a per transaction fee that CPs have to
pay to the ISP after each of their subscribers. In effect the termination fee
essentially increases the marginal cost of each CP by the same t amount
and increases the profit margin of the ISP. Profits are now defined by the
set of equations below.

Πisp(P, p, t) = MS(P, p, t)

(
P + ∑

j
sj(pj, p−j)(t− cispbj)

)
(1.1)

Πcp
j (pj, p−j, P, t) = MS(P, p, t)sj(pj, p−j)

(
pj − (t + ccpbj)

)
(1.2)

Unfortunately, as it was pointed out in Greenstein et al. (2016) this ap-
proach suffers from the indeterminacy of prices. This is because con-
sumers care only about the total price they pay (e.g. P + pj) but not

7I would like to thank Sergey Lychagin for pointing this out to me.
8E.g. when renewing a contract with, say, Netflix, naturally one would consider their own past

experience or would check the Netflix Speed Index that Netflix publishes for each ISP based on their
previous network performance.
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about the split of this total price between the ISP and the CPs. To allevi-
ate this problem I assume that the ISP first commits to a termination fee
and then all firms (including the ISP) set prices. I also assume that the
ISP is able to compute its profits resulting from all potential termination
fees and selects the one with the highest payoffs.

Paid priority

I define the paid priority service offered by the ISP to be a temporary
capacity extension technology that gives CPs exempt from congestion.
Formally, this means the consumers are able to get the full mean utility
from a product even though µ is less than one. I modify the observed
utility of subscribers to

vj =
[
(1− µ)Gj + µ

]
δj − pj,

where Gj ∈ 0, 1 and Gj = 1 if and only if CP j pays for priority. Note
that for Gj = 0 subscribers perceive the mean utility from product j still
as µδj while for Gj = 1 the term in square brackets reduces to one and
the product can be fully enjoyed by subscribers.

The ISP makes the priority service available to all CPs for the same price
F, which I call the priority fee. I assume that there are no direct costs
associated with the provision of the priority service and the ISP finances
the temporary capacity extension from the collected priority fees. Al-
though it is not a too far fetched assumption that ISPs can “easily plug
in a new cable” at any internet exchange point between their servers and
their interconnecting peers, there are two natural requirements that are
completely missing from the current model. First, there is an unlimited
availability of the temporary capacity which ideally should be not more
than a certain (small) fraction of actual capacity. Second, by providing
the prioritized service the available capacity for regular (non-priority)
traffic remains the same which is considered to be an important trade-
off as it can widen the gap between the quality of regular and priority
traffic. To address these issues I limit the number of CPs that are allowed
to buy priority traffic to one. This will reduce the traffic flowing through
the priority channel, introduce a rudimentary rationing mechanism (the
one who pays the most gets the priority service), and limit the gains
from priority traffic.
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A related issue is that I assume that providing the priority channel is
more “costly” for the ISP when the network is congested. To reflect this
I discount the ISP’s revenues from prioritization by µ.9

After including the priority service option profits become

Πisp(P, p, F, G) = MS(P, p)

(
P−∑

j
sj(pj, p−j)cispbj

)
+ µF ∑

j
Gj

(1.3)

Πcp
j (pj, p−j, P, F, G) = MS(P, p)sj(pj, p−j)

(
pj − ccpbj

)
− FGj. (1.4)

Unfortunately by introducing the binary decisions the problem becomes
a little bit more difficult computationally. I use the same approach as
with the termination fee and assume a sequential process. First the ISP
commits to a priority fee, then the CP that is best off by buying the pri-
ority service gets it and all other CPs remain in the congested network. I
assume that the ISP is able to compute CPs’ profits and to pick a priority
fee that leads to the highest level of its own profits.

Full model and static profits

In the full model I allow the ISP to set both a termination and a priority
fee. Figure 1.2 illustrates the structure of the model and depicts money
flows along with network traffic. The figure shows that ISP charges a
termination fee to both CPs for every user they interact with but it only
charges the one-time priority fee to the first CP. The two CPs have prod-
uct qualities (δ1, δ2) but the ISP’s network is congested so the second CP’s
product is only perceived as µδ2. Residential subscribers are the source
of all revenues in the model. The ISP collects P from everyone who sub-
scribes and CPs collect their prices (p1, p2) from those who decide to buy
their products on top of the internet subscription.

9A more appropriate way of introducing a gap between the fee that is paid by a CP and the net
amount that an ISP gets would be using GjF in the CP profit function and F ∑j Gj − C(µ)∑j Gj for the
ISP, where C(µ) is a decreasing function of µ representing costs related to providing the priority channel
for one CP given congestion level µ. In the current setup I just use the special case C(µ) = (1− µ)F.

19

10.14754/CEU.2018.11

1



C
E

U
eT

D
C

ol
le

ct
io

n

µ

ISP

Users
δ1

CP1

µδ2

CP2

P

p1

p2

total traffic

priority traffic

traffic

t, F

t

Figure 1.2: Stage game flowchart. Solid lines indicate monetary flows while dashed
lines indicate network traffic.

Thus the general profit functions are

Πisp = MS

(
P + ∑

j
sj(t− cispbj)

)
+ µF ∑

j
Gj (1.5)

Πcp
j = MSsj

(
pj − (t + ccpbj)

)
− FGj. (1.6)

I consider four profit function specifications for the static game. In par-
ticular, for the net neutrality model I set t = 0 and F = ∞, for the termi-
nation fee model I don’t constrain t but set F = ∞, for the paid priority
model I only apply the zero-pricing rule as t = 0 but allow for F < ∞
and in the full model I allow the ISP to freely set both t and F. The profits
from the four alternative static games will be used as per-period payoff
functions in the dynamic game.

1.4.5 Static equilibrium

For any given pair of values for t and F the first-order conditions of the
ISP’s and the CPs’ profit maximization problem lead to the following
system of J + 1 nonlinear equations:

(1− S)

(
P + ∑

j
sj(t− cispbj)

)
− 1 = 0 (1.7)(

1− Ssj
) (

pj − (t + ccpbj)
)
− 1 = 0, j = 1 . . . J (1.8)

I assume symmetry of content providers within a given type j. This
applies to both the price setting and the service choice decision. To solve
for optimal fees I compute prices for all (t, F) pairs over a fine grid and
pick the one that leads to the highest ISP profit.
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1.4.6 Dynamic framework

As described in the model overview I adopt an extended version of the
dynamic industry model of EP. The equilibrium concept is that of a sta-
tionary Markov Perfect Equilibrium (MPE). Basically there are two main
conditions for a set of dynamic policies to constitute an MPE:

• Each agent chooses optimal policies given her perceptions of likely
future industry structures

• These perceptions are consistent with the behavior of other agents

The difficulty introduced by my extension is that agents perceptions
have to be formed over two kinds of agents’ behaviors and their best re-
sponses have to be consistent with both perceptions.10 These primitives
are very important because the iterative solution algorithms typically
rely heavily on them. Below I will briefly show how to derive the val-
ues and policies as functions of firms’ perceptions of their competitors
likely future states. Then I use the derived expressions in a slightly mod-
ified version of the Gaussian numerical algorithm of Pakes and McGuire
(1994).

The rest of this section builds heavily on the handbook chapter by Do-
raszelski and Pakes (2007). As EP-style industry models have become
standard in the literature here I just describe the parts of the dynamic
model that are either unique to the setting or especially important for
understanding. For additional details I refer the reader to their paper
and to the literature cited by them.

State space and transitions

In each period the state of the industry is fully described by the triplet
(ω, κ, µ), where

• ω is list of all CPs’ states taking values from the set of integers Ω =

{1, . . . , ω̄}. Higher states correspond to higher mean utilities and
10These kinds of double fixed point problems are similar to the difficulties encountered in dynamic

demand models. See Aguirregabiria and Nevo (2013) for a recent review.
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higher bitrates.11

• κ denotes the capacity state of the ISP’s network on the set of in-
tegers K = {1, . . . , κ̄}. Similarly to CP qualities the corresponding
capacity values Vκ increase with the states.

• µ is the congestion parameter as perceived by residential users that
depends on historical realizations of traffic and network capacity. µ

is discretized to a grid on (0, 1].

In each period content providers can invest in product development that
may result in a new, better product. The outcome of the investment is
stochastic with the following density function:

p(ν|x) =
{

αx
1+αx , if ν = 1

1
1+αx , if ν = 0

(1.9)

Note that both the amount spent (x) and the investment technology pa-
rameter (α) increase the probability of a successful investment outcome
(ν = 1). The ISP has access to a similar investment technology but with
different success rate (τ)

p(ψ|X) =

{
τX

1+τX , if ψ = 1
1

1+τX , if ψ = 0
, (1.10)

where X denotes the amount spent on investment by the ISP.

In each period the industry is hit by an industry-wide shock (η) that
is common across all firms in the industry. This shock can take values
0 or 1 with probabilities λ and (1 − λ), respectively. The next period
state of a firm with quality level ωi and investment outcome ν is given
by ω′i = ωi + ν − η, while the evolution of the ISP’s state is given by
κ′ = κ + ψ − η. Note that the common industry shock has a dual role.
First, it generates correlation among firms’ profits which is a general ob-
servation when looking at industrial data. Second, it creates incentives
for continuous development by modeling decreasing quality of prod-
ucts. This is an alternative way to model that over time consumers get
used to a certain quality level and might not value it as much as initially.

11There is a one-to-one mapping among the elements of Ω the mean utilities ({δj}J
j=1) and the bitrates

({bj}J
j=1)
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In particular I implicitly assume that the value derived from watching an
HD movie in 2007 is comparable to watching a 4k movie in 2017 rather
than an HD movie in 2017. In this way the model allows for continuous
development and does not constrain the industry in the steady state.

As discussed previously the evolution of µ conditional on the current
state (ω, κ, µ) is deterministic and is given by

µ′ = min
{

Vκ

Tω,µ
, 1
}

(1.11)

Value functions and investments

In this section I briefly show how to derive the values and policies as
functions of firms’ perceptions of their competitors likely future states.

In each period incumbent firms first enjoy payoffs from the static game
corresponding to the current industry state and regulation. Then they si-
multaneously decide about their investments in order to maximize their
continuation values. At the very end of the period random shocks and
investments realize and the industry transitions to the next period with
the new state.

The value of an incumbent CP i with individual state ωi in an industry
state (ω, κ, µ) is defined as

Vcp(ωi, ω−i, κ, µ) = Πcp(ωi, ω−i, µ)+

max
xi

{
−xi + βE

[
Vcp(ω

′
i , ω′−i, κ′, µ′, φ′)|xi, ωi, ω−i, κ, µ

]}
. (1.12)

To derive analytic formulas for optimal investment strategies let us denote the in-
cumbent CPs’ perceived probability of the next period value of its competitors’ states
(ω′−i) and the ISP’s state (κ′) conditional on the current state and common shock by
q(ω′−i|ωi, ω−i, κ, µ, η) and z(κ′|ωi, ω−i, κ, µ, η). Then the continuation value can be
written as

E
[
Vcp(ω

′
i , ω′−i, κ′, µ′)|xi, ωi, ω−i, κ, µ

]
= ∑

ν

Wcp(ν|ωi, ω−i, κ, µ)p(ν|xi) (1.13)

where

Wcp(ν|ωi, ω−i, κ, µ) =

∑
η,κ′,ω′−i

Vcp

(
ωi + ν− η, ω′−i, κ′, min

{
1,

Vκ

Tω,µ

})
× q(ω′−i|ωi, ω−i, κ, µ, η)z(κ′|ωi, ω−i, κ, µ, η)p(η) (1.14)
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With this formulation optimal investment policy is given as

x(ωi, ω−i, κ, µ) = max

0,
−1 +

√
βα(Wcp(1|ωi, ω−i, κ, µ)−Wcp(0|ωi, ω−i, κ, µ))

α

 (1.15)

if Wcp(1|ωi, ω−i, κ, µ) ≥ Wcp(0|ωi, ω−i, κ, µ), and x(ωi, ω−i, κ, µ) = 0 otherwise. We
can now write the value function as

Vcp(ωi, ω−i, κ, µ) = Πcp(ωi, ω−i, µ)− xi(ωi, ω−i, κ, µ)+

β ∑
ν

Wcp(ν|ωi, ω−i, κ, µ)p(ν|xi(ωi, ω−i, κ, µ)). (1.16)

The ISP’s value function solves the problem

Visp(ω, κ, µ) = Πisp(ω, µ) + max
X

{
−X + βE

[
Visp(ω

′, κ′, µ′)|X, ω, κ, µ
]}

. (1.17)

As there is only one single ISP the continuation value corresponding to a specific in-
vestment outcome depends only on the ISP’s perceived probabilities of the next period
states of CPs (Q).

E
[
Visp(ω

′, κ′, µ′)|X, ω, κ, µ
]
= ∑

ψ

Wisp(ψ|ω, κ, µ)p(ψ|X) (1.18)

where

Wisp(ψ|ω, κ, µ) = ∑
η,ω′

Visp

(
ω′, κ + ψ− η, min

{
1,

Vκ

Tω,µ

})
Q(ω′|ω, κ, µ)p(η). (1.19)

Optimal ISP investment is derived analogously to incumbent CPs and it allows to ex-
press the integrated value function of the ISP in a similar fashion as

Visp(ω, κ, µ) = Πisp(ω, µ)− X(ω, κ, µ) + β ∑
ψ

Wisp(ψ|ω, κ, µ)p(ψ|X(ω, κ, µ)). (1.20)

1.5 Lessons From the Analysis

Static profits provide the investment incentives for firms and as such they are the foun-
dation of the dynamic equilibrium. Therefore, I find it instructive to have a look at
static profits before the computed dynamic policies.12

12For a step-by-step detailed analysis of certain channels please see the Appendix.
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1.5.1 Static equilibrium

To gain insights to what is going on in the static game in the four alternative regimes
Table 1 provides information on profits, prices and fees. I pick four different congestion
rates ranging from 1 to 0.9 (no, low, mid and high, respectively) and take averages
across all industry states. Note, that this average is not weighted by the stationary
distribution.

In the neutral regime both profits and prices decrease with the severity of congestion
(top two panels).

This decreasing pattern is similar for the termination regime but with two notable dif-
ferences: (i) the introduction of the termination fee opens a drastic gap between ISP and
CP prices and (ii) CP profits fall significantly, while ISP profits increase only marginally
compared to the neutral regime.

In contrast, under the priority regime I find that the ISP can increase its profit with
the severity of the congestion while CPs can maintain their profits at the level of the
neutral regime. This is because once CPs pay for prioritization subscribers don’t notice
the effect of congestion and the ISP can extract the gains from the CPs.

Lastly, when I allow for both termination fees and paid priority I find an interesting
mix of the two regimes. First, ISP profits are the highest and they follow the pattern
similar to priority profits while CP profits are lowest and follow the pattern of the
termination regime. Second, both ISP and CP prices follow the level of termination
regime prices but they are only slightly decreasing like in the priority regime.

Figure 1.7 illustrates how the different termination fees affect the profits of the ISP
who faces a moderately congested network and two CPs (1 high quality and 1 middle
quality). Note how profits drop beyond a certain priority fee. This is the fee where CPs
stop buying the priority access and rather face congestion.

I would like to emphasize once again that these averages were taken across states that
may or may not be in the recurrent class and thus they are just here to show that the
static profits seem to make sense under the alternative regimes. To see the variation
across industry structures Figures 1.3-1.6 depict prices and profits for all possible in-
dustry structures with two CPs.

1.5.2 Dynamic equilibrium

In Table 2 I report four sets of equilibrium outcomes for the four alternative regimes.
All outcomes are weighted averages using the stationary distribution of states.
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Table 1.1: Summary of static equilibria

outcome ISP profit CP profit
congestion no low mid high no low mid high
model

neutral 2.96 2.90 2.73 2.52 0.37 0.35 0.29 0.17
termination 3.10 3.06 2.94 2.78 0.18 0.16 0.11 0.04
priority 2.96 2.97 2.99 3.01 0.37 0.35 0.28 0.15
both 3.10 3.11 3.12 3.13 0.18 0.16 0.13 0.06

(a) Average profits across industry states

outcome ISP price CP price
congestion no low mid high no low mid high
model

neutral 6.09 5.99 5.70 5.10 7.86 7.84 7.78 7.67
termination 4.82 4.66 4.48 4.24 9.42 9.51 9.57 9.70
priority 6.09 6.06 5.97 5.83 7.86 7.86 7.85 7.84
both 4.82 4.74 4.76 4.81 9.42 9.46 9.31 9.13

(b) Average prices across industry states

outcome termination fee priority fee
congestion no low mid high no low mid high
model

neutral - - - - - - - -
termination 1.74 1.86 1.97 2.17 - - - -
priority - - - - - 0.04 0.16 0.40
both 1.74 1.79 1.64 1.45 - 0.03 0.11 0.25

(c) Average fees across industry states
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Figure 1.3: CP prices in static equilibrium
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Figure 1.4: ISP prices in static equilibrium
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Figure 1.5: CP profits in static equilibrium
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Figure 1.6: ISP profit in static equilibrium
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Figure 1.7: ISP profits in static equilibrium as a function of termination and priority
fees

The top panel shows that both termination fees and paid prioritization increase the
gap between ISP and CP values. The gap is largest when both termination and priority
fees are allowed.

ISP investments are lower for non-neutral regimes and the effects are reflected in lower
CP quality, lower network capacity and more severe congestion. Interestingly the re-
current class is significantly larger in the priority regimes that may signal that the in-
dustry is less stable with paid prioritization. One can verify this on Figure 1.12 which
depicts the stationary distribution across all industry structures.

The effects on consumer surplus are not significant for the current parameterization but
total welfare is highest in the neutral regime and it is less sensitive to the introduction
of paid prioritization than to termination fees.
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Figure 1.8: CP value function in dynamic equilibrium
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Table 1.2: Summary of dynamic equilibria

ISP value ISP investment CP value CP investment

neutral 324.252 0.055 30.012 0.144
termination 325.542 0.050 17.924 0.156
priority 324.610 0.051 29.637 0.145
both 325.206 0.047 14.900 0.144

(a) Expected values and investments in the stationary distribution

CPs level capacity congestion recurrent class

neutral 2.000 4.251 2.366 1.000 2.65%
termination 2.000 3.560 2.291 0.999 2.03%
priority 2.000 4.230 2.313 0.998 4.27%
both 2.000 3.806 2.008 0.991 3.51%

(b) Mean industry characteristics in the stationary distribution

consumer surplus industry profit total welfare

neutral 6.00 4.19 10.19
termination 6.00 3.98 9.98
priority 6.00 4.18 10.18
both 6.00 3.88 9.88

(c) Expected consumer surplus and welfare in the stationary distribution

broadband share network traffic priority share

neutral 69.94% 2.12 0.00%
termination 69.99% 1.65 0.00%
priority 69.88% 2.12 2.92%
both 69.83% 1.54 5.74%

(d) Other important outcomes in the stationary distribution
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Figure 1.9: ISP value function in dynamic equilibrium
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Figure 1.10: CP investment in dynamic equilibrium
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Figure 1.11: ISP investment in dynamic equilibrium
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Figure 1.12: Stationary distribution of the system in the dynamic equilibrium
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1.6 Extensions

Below I describe and discuss several extensions that could make the model more real-
istic.

Multiple speed tiers Throughout the paper I assume that consumers are offered a sin-
gle speed tier. In reality, of course, there are multiple speed tiers available but it
is important to note that the current definition of broadband speed (at least 25
Mbps) is enough to seamlessly enjoy an HD movie, while non-broadband tiers
typically offer significantly slower connections that are not designed for video
streaming. For this reason I only focus on broadband subscription and assume
one single broadband speed tier. Modeling higher speed tiers should be neces-
sary for subscribers that use several data-intensive applications simultaneously
(e.g. large households might stream multiple movies at the same time on multi-
ple screens) but for the main purpose of this paper it would excessively compli-
cate the model.

Usage based pricing In the model consumers are only offered an unlimited data inter-
net access plan. However, in reality ISPs are - to a limited extent - allowed to rely
on usage-based pricing (UBP) practices to manage increasing demand for inter-
net content (i.e. manage network congestion). My understanding is that UBP is
essentially the consumer counterpart of termination fees. It was shown by Nevo
et al. (2016) that it redistributes surplus from consumers to the ISP and eliminates
inefficient (least valued) traffic – paralleling my findings with the termination
fee. I have chosen not to model UBP because (i) unlike in other countries it is not
widely applied in the U.S., (ii) even the lowest data caps would allow streaming
an HD movie every single day in a month and (iii) it would likely not solve the
prime-time congestion issue as it is hard to shift the movie experience to another
time or location (daily commute, workplace etc.) because of its nature (e.g. need
for big screen, darkness, family etc.).

Surge pricing Surge pricing is a technique used by an increasing number of compa-
nies for matching demand to supply. To this date I am not aware of any appli-
cations to managing network traffic but it is possible that in case of permanent
severe congestion it may help to ease the load on the network. However, I find
it unlikely to see surge pricing implemented for such purposes in residential net-
works because (i) current experience shows that consumers simply dislike when
prices change frequently over time and (ii) it would make billing much more
complex than a flat fee, which is of key concern to avoid the “bill shock” at the
end of the month.13

13Consumers’ aversion towards frequent price changes is not only related to surge pricing (like e.g. in
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Subscriber heterogeneity Individual specific price sensitivity or mean utility coeffi-
cients would be a natural way to introduce heterogeneity to subscribers’ prefer-
ences. Also, one interesting exercise would be to introduce correlation among
the two to reflect that patterns of content consumption are related to wealth and
demographics.

Subscriber lock-in To introduce history dependence to the ISP’s market share I could
exogenously set a fraction of consumers who stay with the ISP. This would need
an additional state variable of lagged ISP share, though. As an alternative it is
possible to use imperfect adjustment in subscribers’ adaptive expectations. This
could be done without increasing the state space by computing the new con-
gestion as a (possibly random) convex combination of the actual and previous
values.

Vertical integration It is possible to modify the static model in a way that the ISP and
a selected CP maximize their joint profits. A simpler approach would be to let the
ISP exogenously gain profits from the portion of its subscribers who choose the
outside option in the CP choice problem and call it ‘watch TV’ instead of ‘casual
browsing’.

Multi-homing Multi-homing of consumers on the CP side might be important for
both CP profits and the amount of network traffic that in turn affect investment
incentives. It would be possible to extend the current setup to allow for a choice
of multiple CPs but it would complicate the computation of the stage-game equi-
librium.

Costs of congestion Currently I assume that congestion does not increase the costs of
network management. To relax this assumption it would be possible to inflate
the ISP’s marginal cost by the congestion parameter.

1.7 Alternative equilibrium concepts

The current Markov Perfect Equilibrium approach has two serious drawbacks: It is
hard to compute the equilibrium policies with a large number of firms and it requires
firms to have full and symmetric information on the states of all other firms. If I would
want to generalize the model to include more firms, e.g. by either simply increasing
the number of firms or by allowing for different content types (i.e. allow for horizontal
differentiation) then in the current framework the equilibrium would be almost impos-
sible to compute and the informational assumptions would be questionable at best.

case of Uber) but also to dynamic pricing practices (like e.g. in the very recent case of Amazon) where
firms systematically change prices for various reasons including experimentation and obfuscation etc.
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However, in reality the market for online content is characterized by a few dominant
firms and many small firms (i.e. a competitive fringe). As a result in a model that
allows for such market structures, it may be reasonable to assume that firms with many
competitors are more sensitive to changes in the dominant firms’ states and it may be
unrealistic to expect that firms have resources to keep track of the evolution of all rivals.

There are several approaches in the literature to address these issues. To some extent
kinds of generalizations of the idea in Krusell and Smith (1998) to the framework of
Ericson and Pakes (1995).

One solution to the problems with many firms and full information is offered by Wein-
traub et al. (2008). They define a new equilibrium concept that they call oblivious equi-
librium, in which each firm is assumed to make decisions based only on its own state
and knowledge of the long-run average industry state, but where firms ignore current
information about competitors’ states. This approach is appealing but it is not suit-
able for concentrated industries and informational asymmetries. In a follow-up paper
Benkard et al. (2015) introduce the partially oblivious equilibrium that allows for a set
of strategically important firms whose states are always monitored by every other firm
in the market. This alleviates the problem of symmetric information but works only
with relatively ‘light-tail’ distribution of firms. In a recent work Ifrach and Weintraub
(2017) define a new equilibrium concept that they call moment-based Markov equilib-
rium, in which firms keep track of their own state, the detailed state of dominant firms,
and few moments of the distribution of fringe firms’ states.

An alternative approach to introduce asymmetric information is offered by Fershtman
and Pakes (2012) where firms may not observe some part of their competitors’ states
only some publicly observed actions. They define the restricted experience based equi-
librium where agents form expectations about the likely future outcomes of their ac-
tions’ based on their past play using a simple learning algorithm. Unfortunately, their
approach is not directly applicable for an industry with a large number of firms. How-
ever, with an appropriate modification to firms’ information sets it may be an appeal-
ing option for my setting.

1.8 Conclusion

In the preceding sections I introduced a model that allows for a rich set of interactions
among subscribers, internet service providers and content providers to address the
questions and concerns of the net neutrality debate. I believe that this approach leads
to more realistic incentives and, therefore, leads to better approximation of agents’
likely behavior under different regulatory environments in this complex market.
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I think the main task for the future is to perform thorough testing of the findings in a
large variety of parameter settings and to find an appropriate set of parameters that
would generate quantitatively meaningful results. Also, future work on a proper equi-
librium concept seems inevitable to accommodate a large number of firms and differ-
ent content types.
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Chapter 2

Counterfactual Analysis of Net
Neutrality in a Calibrated Model

2.1 Introduction

Residential broadband internet provision and online video streaming are very large
industries. In 2015 there were 89 million broadband subscribers (households) in the
U.S. alone. The aggregate revenues of internet service providers from residential high-
speed internet access approached $40.6 billion and total network investments exceeded
$6.6 billion. The top four online video streaming firms accounted for more than 60% of
prime-time download traffic.1

Surprisingly, neither did the Federal Communications Commission conduct rigorous
analyses to investigate the potential effects of their network neutrality laws, nor has
been published any peer-reviewed empirical work that is suitable for counterfactual
analysis. This paper attempts to produce ballpark counterfactual estimates based on
the following strategy. I take the structural model of chapter 1 and assume that cur-
rently observed market outcomes constitute an equilibrium in the static game. This al-
lows me to calibrate the model parameters to match observed moments derived from
public data sources. Then I solve the model with state of the art numerical algorithms
to assess the effects of the introduction of termination fees and paid prioritization.

My key findings are that the lack of net neutrality favors the ISP and paid prioritization
might be worth to investigate more as it makes it possible to restore the value lost due
to congestion.

1I have chosen to exclude mobile ISPs from the analysis mainly as they are less relevant to the prime-
time entertainment market and the mobile network’s capacity is a small fraction of the fixed network’s
capacity. However, both might change as a response to a widespread adoption of zero-rating for high
definition video content.
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2.2 Data sources

Here I give a brief overview of the several different sources of publicly available data
that I use.

Measuring Broadband America
MBA is a program administered by the FCC in the United States. They dis-
tributed 5000 whiteboxes to households scattered all over the United States which
collect various internet performance related measurements in every hour. The
distribution of whiteboxes matches the distribution of the number of households
with broadband subscription across states and also the number of subscribers in
various speed tiers which makes it a small but representative sample. I use two
main measurements from the dataset: total traffic (in bytes) for each hour and a
video performance related test.

SEC filings
Form 10-K and Form 8-K are invaluable sources for company revenues, prof-
its, membership numbers and capital expenditures. I processed the public fil-
ings of major streaming video content providers (Amazon, Hulu, Netflix, and
Youtube) and major publicly traded internet service providers offering a wireline
service and above the yearly 1 billion $ revenue threshold (15 companies includ-
ing AT&T, CenturyLink, Comcast, Time Warner Cable, and Verizon).

Internet companies’ reports
Sandvine is a networking equipment company who publishes various internet
traffic and performance measurements in its widely cited Global Internet Phe-
nomena Report series. I use their content and firm specific traffic measurements
in peak-hour periods. The other piece of industry source I use is Cloudflare, an
internet company that provides a content delivery service on a global scale. I use
their estimated average price for carrying network traffic.

Market research companies
I use the number of monthly unique viewers for streaming video content providers
and their average monthly time spent on watching videos from the Advertising
& Audiences report of Nielsen. On the other hand Comscore measures and re-
ports ad-based online video audiences and the number of videos watched in their
monthly Online Video Rankings.

American Community Survey
To gauge the size of the market for internet subscription services and to compute
broadband penetration in the United States I use the total number of households
and the number of households with a broadband internet subscription from the
annual ACS 1-year estimates.
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Academic research
In the lack of directly connected published empirical work I use estimates of con-
sumer preferences from related empirical studies. I use the estimates for con-
sumers surplus derived from and willingness to pay for internet subscription
from Nevo et al. (2016) and Liu et al. (2017). I use consumers’ willingness to pay
for not seeing advertisements from Train (2016) who studies demand for online
video streaming.

Internet search
I collect content providers’ prices using the Internet Archive Wayback Machine
available at www.archive.org.

2.3 Calibration

The goal of the calibration is to find values for the parameters of the model that gen-
erate behavior which is close to observed outcomes in the data. If incentives are ac-
curately represented then the model outcomes should be in the ballpark of the actual
effects of the changes in regulation.

To calibrate the parameters I will use observed market outcomes from 2015 in the on-
line video streaming industry and assume that the actual values constitute an equilib-
rium. Then I will set parameters such that in equilibrium those outcomes are matched.
The dynamic modeling framework has the advantage that the static and dynamic
games can be calibrates separately. First I describe the parameters needed for the static
game and I go through the moments I use to set their values. Then I present the cali-
bration of the dynamic part.

2.3.1 Annual timing assumption

For both parts of the model it is important to set the time frequency of agents’ decisions
because observed market outcomes should be interpreted accordingly. To consolidate
the timing of subscription and pricing decisions across the two sides of the market I use
an annual frequency. This is more consistent with both ISP and CP price changes which
are rare and are much closer to annual rather than monthly decisions.2 The annual
frequency is also better for modeling investments which are typically “lumpy” in a
sense that it takes time to deploy a better broadband infrastructure, or to implement a
new content standard or to shoot a new season of a show in higher resolution. The only
part where the new timing assumption is a bit less plausible compared to a monthly
model is the formation of consumers’ expectations of future network congestion.

2In fact, several major ISPs and Amazon actually do offer annual contracts.
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Since several pieces of data are reported on the monthly level I calibrate the static
game to match those monthly outcomes and then scale up everything that goes into
the dynamic model as input to the annual level.

2.3.2 Static part

There are seven types of parameters in the static game:

• market size (M)

• congestion (µ)

• CP product mean utilities (δ)

• utilities of outside options (V0, v0)

• price sensitivity of consumers in the internet subscription decision (a)

• product bitrates (b)

• marginal costs (ccp, cisp)

Market size and congestion are calibrated entirely from data without relying on the
model. However, for mean utilities, outside options and price sensitivity I will make
heavy use the double-logit specification of the consumers’ two-stage decision and data
on broadband penetration, market shares of Netflix, Amazon, Hulu and Youtube,
prices for content and internet subscription and consumers’ willingness to pay for in-
ternet access. For the cost related parameters and bitrates I will rely on the first order
conditions of optimality in the stage game and standard video bitrates.

Market size

I set total market size to M = 118 million which is the number of US households in 2015
according to the American Community Survey. As both broadband subscription and
online streaming video are tied to physical homes I find the unit choice of a household
appropriate.

Congestion

To gauge congestion I use data from the Measuring Broadband America (MBA) pro-
gram that were collected from participating households’ network routers. The white-
boxes attached to the routers perform several network quality measurements in every
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Figure 2.1: Evolution of daily average relative delays in video streaming

hour. One of the tests conducted is a video streaming test. In every hour the device
tries to fetch a high and a low bitrate video file from a server and it records the time the
video was lagging during the test. I take the measured delay for each household from
the peak hour (8-9 pm) and normalize it by the length of the video which was fixed
for all tests to get a relative delay. Figure 2.1 presents the average daily relative delay
across all households for the sample period and confirms that delays are more severe
for the peak hour and higher quality videos are more sensitive to network congestion.
One can see that the high bitrate video was interrupted for ca. 4% of its duration on
average while this value was just ca. 2.5% for the low bitrate video. I will use the mea-
surement for the high bitrate video as a proxy for the extent of quality degradation and
attribute it to a congested network with parameter µ = 1− 0.04 = 0.96.3

CP mean utilities, outside options and price sensitivity

Recall, that consumers have the following two decisions to make:

1. Subscribe to the ISP to have internet connection or not

2. Conditional on having internet connection whether or not to subscribe to an
available CP

I will work backwards from the CP choice. To calibrate mean utilities that consumers
get from enjoying the CPs’ products I use market shares determined by the model as

sj =
exp{µδj − pj}

exp{v0}+ ∑k exp{µδk − pk}
, ∀j = 1 . . . 4.

3I pick the congestion from the high quality video measurements because the low quality video’s
bitrate is not sufficient for any sensible movie experience with current technology.
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and match them to market shares reported by market research companies. A recent
survey conducted by Parks Associates, a company specializing in emerging consumer
technology products and services, reveals that in 2015 52%, 24% and 14% of broad-
band households had subscriptions to Netflix, Amazon and Hulu, respectively. To get
Youtube’s share among broadband households I use the data reported by ComScore, a
large media research company that publishes its monthly Video Update, where it lists
the unique viewers for ad-supported video sites. In 2015, Youtube had ca. 162 million
monthly unique American viewers which I divide by 2.6 (the average household size
according to the American Community Survey) and combine it with the fact that 76%
of U.S. households had broadband subscription in 2015 to conclude that 69% of U.S.
broadband households watched Youtube in an average month.

There is a complicating factor, however, as because of multi-homing of consumers mar-
ket shares add up to more than one . In fact, half of the households subscribing to a
monthly paid streaming video service subscribe to more than one and possibly most of
them watch Youtube as well.4 As the model is not able to accommodate multi-homing
customers I normalize the market shares of Netflix, Amazon, Hulu and Youtube, so
that they add up to 87%, the share of all U.S. broadband households that watches at
least one streaming video in a month.5 Finally I end up with shares that add up to
87% as s = (52%, 24%, 14%, 69%) × 0.547 = (28.4%, 13.1%, 7.7%, 37.8%) for Netflix,
Amazon, Hulu and Youtube, respectively. To correct for this market “shrinkage” I will
scale up the profits by the factor of 1/0.547 when comparing profits from the model to
observed quantities.

To calibrate the mean utilities, on top of market shares I use historical monthly prices
for the video subscription services and I use the median household income to deter-
mine the forgone wages spent on watching advertisements on Youtube.6 In this way I
get monthly prices of p = ($10, $8.25, $8, $6) for Netflix, Amazon, Hulu and Youtube,
respectively.

Now that I have s, p and µ I can perform a contraction mapping similar to Berry et
al. (1995) conditional on any value of v0 which I set to v0 = 4.35.7 In this way I end
up with mean utilities δ = (15.76, 13.13, 12.31, 11.89) for Netflix, Amazon, Hulu and
Youtube, respectively.

4See Sean Buckley, “About 50% of OTT video subs have multiple subscriptions, Parks says”, Fierce
Cable (Jan. 4, 2017).

5See Nielsen, Advertising and Audiences 2015
6Viewership minutes come from the ComScore Video Update report.
7v0 is a free parameter in the model. However, I set it to a value that leads to equal marginal costs

between the ISP and CPs.
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Note, that the expected utility from the CP choice situation (V) can be determined
based on the now available quantities as

V = ln

(
∑
k

exp{µδk − pk}+ exp{v0}
)

.

The calibrated quantities δ, µ, v0 and observed prices p lead to V = 6.39. Next I use the
estimates of Liu et al. (2017) for U.S. households’ willingness to pay (wtp) for internet
connection. Using their estimates and the median upload and download characteris-
tics of plans in the Measuring Broadband America program I get a WTP for a monthly
connection of about $60.8 Together with V and using the specification for observed
utility in the ISP subscription problem (V − aP) this pins down the price sensitivity
parameter as a = V/WTP = 0.105. The two final pieces needed to calibrate the util-
ity of the outside option (V0) are the share of broadband households (S) and the ISP
price (P). Broadband share is set to S = 76% based on the American Community Sur-
vey, as noted eariler. For the internet access price I use the median price ($45) paid by
households participating in the Measuring Broadband America survey.9 As a result I
set V0 = 0.44 to satisfy

S =
exp{V − aP}

exp{V0}+ exp{V − aP} .

Costs and bitrates

Marginal costs of content distribution and bitrates are pinned down by the first-order
conditions of optimality.(

1− Ssj
) (

pj − ccpbj
)
− 1 = 0, j = 1 . . . 4 (CP)

a(1− S)

(
P− cisp ∑

j
sjbj

)
− 1 = 0 (ISP)

Note that the three missing pieces are b, ccp and cisp everything else is either data or
has been calibrated already.

I start with the first-order conditions of CPs. Initially I set bitrates to binit = (3.5, 3.5, 3.5, 2.5)
Mbps for Netflix, Amazon, Hulu and Youtube, respectively. These values are standard
minimum bitrates required for HD streaming movies on these sites.10 Then I use the
first oder conditions (CP) to compute the corresponding marginal costs for all four

8The median broadband upload speed in the sample is 9 Mbps while the median download speed is
41 Mbps.

9Based on cable companies SEC filings this matches almost perfectly the average revenue per high-
speed internet subscriber, which is $44.32.

10See the collection at https://www.lifewire.com/internet-speed-requirements-for-movie-viewing-
1847401
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content providers individually. Specifically I get ccp
init = (2.49, 2.04, 1.98, 1.84) mea-

sured in $/Mbps/user. However, I would like to have a common unique value for the
marginal cost of content distribution across CPs, so I set ccp = 2.09 $/Mbps/user, the
mean of the individual marginal costs. Then I re-set bitrates to CP specific values that
satisfy the first-order conditions with the common marginal cost. The new values are
b = (4.18, 3.42, 3.32, 2.2) Mbps.

To calibrate the ISP’s marginal costs I use the first-order condition of the ISP. All terms
except for cisp are set by now and the only value that satisfies the equality is cisp = 2.09
$/Mbps/user.11

2.3.3 Calibrated values and sanity checks

The final set of parameters that I adopt for the static game:

• δ = (15.76, 13.13, 12.31, 11.89) for Netflix, Amazon, Hulu and Youtube

• b = (4.18, 3.42, 3.32, 2.2) in the same order, measured in Mbps

• (v0, V0) = (4.35, 0.44)

• a = 0.105

• ccp = cisp = 2.09 in $/Mbps/user

• µ = 0.96

• M = 118, millions of U.S. households.

Note, how all parameters seem to make sense. The price parameter (a) leads to a price
elasticity of -1.14 in the internet access decision. Bitrates are standard bitrates for HD-
streaming movies. The marginal content-carrying related costs are in an acceptable
range. For such high-volume players in the internet eco-system, a $2-8 unit price said
to be acceptable.12 Moreover, if I compute the optimal prices for this set of parameters,
I match prices and market share perfectly.

Next I compare revenues and profits predicted by the model to actual data reported
in company SEC filings. Netflix’s monthly revenue in 2015 was $550 million and my
model predicts $255 million. However, if I account for the lack of multi-homing in the

11Note that cisp equals the marginal cost for the CPs. This is fully intentional by selecting a v0 param-
eter that led to an a that scaled the ISP’s first-order condition so that the solution for cisp is 2.09.

12See Cloudflare, Internet transit costs report.
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Figure 2.2: The evolution of download traffic for the average user over the day

model and upscale profits by the factor of (1/0.547) I get $466 million. As an alter-
native, now I compare the profit/revenue ratios which should be independent of the
scaling/shrinking effect. Netflix reports a 20% ratio, while my model predicts 12.76%.

For a reasonable ISP comparison, I add up the revenues of all large publicly traded ISP
based on their SEC filings. My model predicts $4042 million monthly revenues and a
56% profit/revenue ratio for the single ISP, while aggregate company revenues add up
to $3383 million in a month with a 41% profit/revenue ratio.

Traffic check

To compare model traffic to actual volumes I first I have to approximate the actual val-
ues. In order to do that I use an MBA measurement to aggregate individual household
level browsing data to the country level. In each hour whiteboxes record the amount of
downloaded data at every household participating in the program. Figure 2.2 shows
the evolution of downstream traffic over a day at an average household. One can see
that the peak is around 8-9 pm and traffic volume is ca. 4 times higher than in the
early morning hour. It is important to distinguish the peak hour, because I only have
traffic share estimates of video streaming for that period. To approximate peak hour
total download traffic first I compute the mean download traffic only for the peak hour
across all households in the MBA sample for every day of the sample period. Then I
scale it up by the number of households with broadband connection. I get the number
of such households for Jan 1 of years 2014, 2015 and 2016 from the American Commu-
nity Survey and then linearly interpolate between the three dates to get a daily value
for the entire sample period. Figure 2.3 shows the evolution of country level peak
hour download traffic over the sample period. The mean peak hour total downstream
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Figure 2.3: Daily total peak hour download traffic

traffic is 25.8 Petabytes per hour. To approximate the share of Netflix, Amazon, Hulu
and Youtube I use the annual Sandvine Global Internet Phenomena Report from 2016.
Their measurements show that in North America the joint downstream traffic share
of Netflix, Amazon, Hulu and Youtube in the peak hour was 59.6%. Combined with
the upscaled MBA measurement data this leads to an estimated 15.4 Petabytes down-
stream traffic in the peak hour that my model has to match.

The raw output of my model is 244 Terabit per sec bitrate network traffic of video
streaming. In order to make the two numbers comparable I adjust for the following
factors:

• Upscale by (1/0.547) to account for multi-homing

• Convert to Petabytes per hour (8× 3.6)

• Adjust for time spent with daily online video streaming (5.48/60)

For the last adjustment I use the Nielsen Total Audience Report 2015, that reports the
average daily minutes spent on streaming video to be 5.48 minutes. Taken the three
together I get peak hour downstream video traffic of 18.6 Petabytes per hour as an
output of my model. This is 20% more than my approximate number for the actual
value but it is indeed very similar in magnitude.

2.3.4 Dynamic game

The calibration of the dynamic game consists of three main parts:
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• The state space grid for all three kinds of states (δ, κ, µ)

• Discounting and depreciation (β, η)

• Investment efficiency (α, τ)

State space grid

Note that the exact calibrated mean utilities are only used directly for the sanity checks
and the ”as if” counterfactuals in section 2.5.1. For the dynamic game I create a grid
of mean utilities and corresponding video bitrates so that firms can invest in order to
move across the quality ladder. To do so I extrapolate the ratio of the calibrated mean
utilities and video bitrates to extend it in both directions with a lower valued/less
bandwidth intensive and a higher valued/more bandwidth intensive product. For
theoretical and numerical considerations I alter the values to ensure that the resulting
profit functions are bounded and satisfy the sufficient conditions for existence of a
Markov-Perfect Equilibrium in a very similar dynamic industry model of Ericson and
Pakes (1995). The final values that I use in the algorithm:13

• δ = (11.56, 12.81, 13.78, 14.74, 15.44, 15.77)

• b = (2.25, 2.45, 2.8, 3.17, 3.77, 4.49)

To set the capacity grid I take the approximated total downstream traffic and create a
grid that goes beyond that limit so that the ISP can always reach a state where its ca-
pacity exceeds the maximum potential network traffic. There are two reasons I believe
that there is a constantly binding capacity constraint in the peak hour and as such total
peak hour traffic can be interpreted as network capacity. First, every day in the sample
period there is always congestion in the peak hour. Second, Figure 2.4 confirms that
there is a positive relationship between the traffic volumes and delays and that there
might be a binding capacity constraint in the background.

For the congestion parameter I take the most severe congestion from the sample period
(µmin = 0.938) and extend the grid so that the industry could reach states with twice as
severe congestion values.

Discounting and depreciation

I set β = 0.8 to match the average annual treasury yield curve rate in 2015. To set the
probability of the onset of a deprecation shock (η) I use the industry stylized fact that in

13The upper and lower boundaries were selected as when a monopolist incumbent CP stops to invest.
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Figure 2.4: Daily total peak hour download traffic against daily average relative delays

the last almost 10-12 years there were no two consecutive years without a major video
resolution upgrade that became a new standard afterwards.14 To match that I set the
the probability of such a shock to 0.775, which implies a probability of the industry not
seeing a hit within two years not more than 5%.

Investment

To set the ISP’s investment parameter (τ) I try to match the ratio of aggregate cable
ISP network investments (capital expenditures) and aggregate revenues attributed to
high-speed internet services, both as reported in SEC filings. I set the parameter of
CPs’ investment (α) similarly, where I take the ratio of investments in technology and
development to revenues. I re-run the dynamic game until both ratios should are in
the reported 5-10% bounds for the neutral regime.

2.4 Computational algorithm

Just like the model the computational algorithm also consists of two separate parts
corresponding to the static and dynamic parts.

2.4.1 Homotopy method

The first-order conditions of optimality in the static game lead to a system of nonlinear
equations. The system is relatively small, all functions are smooth and differentiable,

14With the exception of 3D television, which has almost disappeared from the market by 2017.
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the analytical Jacobian of the system is available and is relatively cheap to evaluate.
Basically I have everything which makes standard Newton-like methods an attractive
choice. However, this system has to be solved many times under constantly chang-
ing conditions. Indeed, the large number of potential industry states and the varying
parameters require the algorithm to be robust to all such settings.

Unfortunately the performance of Newton’s method depends heavily on the initial
values. Practically this means that after any change to the parameters I would need to
come up with new values that are in the neighborhood of the final solution (i.e. prices).
To alleviate the problem I’ve implemented a homotopy algorithm that establishes a
connection between two different sets of industry states or parameter settings one of
which already has a computed solution.

The idea behind the homotopy method is the following. Imagine that you have to
solve a system, that is difficult to solve. Then instead of solving the hard problem
directly, start with an other or similar problem that is easy to solve. Then gradually
change the easy system to be more “similar” to the difficult problem and use your
initial values from the preceding computations. More formally, suppose you want to
solve the system F(x) = 0.

1. Find a system, say F0(x) = 0, that is easy to solve.

2. Define the homotopy map as H(x, λ) = λF(x) + (1− λ)F0(x).

3. Start with λ = 0 and solve H(x, λ) = 0. Label the solution as xλ.

4. Iterate over a fine grid of λ ∈ [0, 1] values and solve H(x, λ) using initial values
from the preceding iterations.

5. The final solution corresponding to λ = 1 is the solution to F(x) = 0.

Although this procedure describes the general idea quite well there are many addi-
tional details to the homotopy method. It is possible that the solution path, i.e. the
set of consecutive (xλ, λ) pairs, does not represent a proper functional relationship
between xλ and λ. There is actually a reason that step 4 does not specify the relation-
ship of successive λ values. Although in simple problems it is sufficient to gradually
increase λ sometimes it may be necessary to decrease it or simply restart the whole
procedure from a range of new initial values. Depending on the properties of H(x, λ)

solution paths can be non-smooth or even discontinuous. Algorithms that can deal
with such complications are called path following algorithms and they utilize addi-
tional information on F(x) and in general H(x, λ) at the actual locations when selecting
the consecutive λ and x values for the next iteration. In my implementation I allow for
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simple turning points, where λ has to be increased but not for branching and, there-
fore it can’t trace out multiple equilibria. However, I’ve not encountered a single case
where the solution path was non-monotonic in λ.

First I used the algorithm to compute a solution for a simple monopoly industry using
F0(x) ≡ x− a, where a is a constant, and thus F0(x) = 0 is indeed easy to solve. Then
when advancing to more complicated industry structures I set a to the monopoly price
and use λ to gradually change the state vector. In this way I can utilize the good local
convergence properties of Newton’s method and only worry about the initial values of
the very first monopoly problem as the homotopy ensures the appropriate values for
the successive problems.

2.4.2 Reinforcement learning

In mathematical terms the equilibrium of the dynamic game is a solution of a func-
tional equitation. There is a very extensive literature of numerical dynamic program-
ming methods that potentially could be used. Doraszelski and Pakes (2007) give a
good survey of the methods and their properties that have been applied to dynamic
industry models.

The main computational challenge in multi-agent dynamic programming problems
with a large state space lies in the computation of agents’ continuation values. The
continuation values are based on the agents’ expectations of their competitors’ likely
actions. This is a complicated object and different algorithms construct it differently.
To address the computational burden of simply iterating over all possible outcomes of
competitors’ actions to assess the probability of state-to-state Pakes and McGuire (2001)
(PM) suggest a stochastic approximation. Their key observation is that W(investment outcome|state)
– the expected value of future payoffs given a certain investment outcome conditional
on being in the current state – summarizes the agents’ expected future returns and it is
fully sufficient for making investment decisions. As such W fully determines agents’
behavior and it is sufficient to iterate over W instead of value or policy functions and
stop when the actual W generates policies and values that constitute an equilibrium.
Their algorithm approximates W iteratively based on simulating agents’ behavior in-
stead of numerically integrating over all possible actions.

The attractive feature of the stochastic PM algorithm is that it can be given a behav-
ioral interpretation of constantly learning agents. This basically means that agents are
no longer expected to perform complex calculations such as numerical integration to
compute optimal policies just to follow their best responses dictated by their W values
and to update these expectations after the realizations of their competitors’ actions.
This constant experimentation by following some greedy policy that is based on the
actual expected values resulting from possible actions accompanied by a learning rule
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to update expectations is essentially the same general idea that is behind temporal
difference learning and reinforcement learning algorithms which are well-known in
operations research and artificial intelligence.

The procedure that I describe below follows PM but it was modified to allow for both
kind of agents in the model. First set an initial value for W. In practice it is useful to set
it to a value that is expected to approximate the relative differences among states, like
π/(1− β). Also my experience shows that with larger state spaces it is further useful
to “inflate” the part of W that corresponds to the successful investment outcome to
encourage more active experimentation. Then select an initial industry state ω and
iterate over the following steps at each iteration k:

1. Given the actual value of W(·|ωk) compute firms’ optimal investment for the
current industry state ωk.

2. Using these policies simulate the investment and determine ωk+1, the new state
of the industry.

3. To update the values in W(·|ωk):

(a) Evaluate the value function for every firm i with state ωk
i in the new industry

state ωk+1 using the values in W(·|ωk+1).

(b) Set the value in W(·|ωk) to a weighted average of the evaluated value func-
tion at the new industry state and the actual value of W(·|ωk).

4. Continue with the iteration at state ωk+1.

There are several important things to note. First, notice that the algorithm is asyn-
chronous as it updates the values in W only corresponding to the actual state that is
visited. Second, the evolution of the industry states is determined by simulated ran-
dom draws. There is no guarantee that the algorithm will visit each state enough times
so that the averaged values across visits to a state give a good approximation to W.
However, it is only required that the algorithm gives us good approximation of W at
states that are in the recurrent class.15 Third, to check whether the algorithm has con-
verged it would be necessary to stop the algorithm after several iterations and perform
a test that involves the same burdensome numerical integration for each state that is
done in deterministic algorithms. However, I follow the method of Fershtman and

15There is an additional problem with states that are on the boundary of the recurrent class. That
is, from boundary states it is possible to get to states that are not in the recurrent class only firms’
equilibrium policies are such that it never happens in equilibrium. Thus firms’ in boundary states are
required to evaluate options that belong to states that are not expected to be visited infinitely often, and
thus the algorithm won’t produce a good approximation to their corresponding values in W. See the
recent work of Asker et al. (2016) on how one might try to alleviate the problem.
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Pakes (2012) who propose an algorithm that avoids the need for a such a computation-
ally intensive test. First I simulate the industry without updating W for a large number
of iterations so that I can be confident that it has wandered to the recurrent class. Then
I simulate the model for R periods. If R is sufficiently large, the visited states consti-
tute the recurrent class where I have to check the consistency of W with the outcomes
from the policies generated by W. Fershtman and Pakes (2012) show that if W and the
average of realized firm values over the simulated sample paths are close to each other
then W generates equilibrium policies on the recurrent class.

2.5 Results

2.5.1 Static counterfactuals

To see what would happen to the industry with the current market players (Netflix,
Amazon, Hulu, Youtube and an aggregate ISP) with either termination fees or paid
prioritization I use the calibrated values and compute the static equilibrium without
allowing for dynamic restructuring. Table 1 summarizes the results. As I have dis-
cussed earlier, the neutral regime captures the current market outcomes fairly well.

After the introduction of the termination fee one can see that prices adjust according
to expectations. The ISP charges a per-transaction termination fee to the CPs who
transmit it to the customers. As a result while the ISP can lower its price all CPs have
to raise their prices. This in turn raises ISP profits but decreases CP profits. It seems
that the ISP’s lower price can’t compensate consumers for the higher content prices
and consumer surplus drops. A interesting outcome is that traffic drops proportionally
much more than broadband share.

In the case of paid prioritization one can see that the highest quality CP (Netflix) buys
the priority access and it is the only CP that can maintain its neutral level profits. More-
over, it can further raise its price since the competitors’ products became relatively
worse. The ISP seems to be successful in extracting the value from the restored content
quality and is able to significantly raise its profits. For other CPs this is the worst of
the scenarios with even lower profits than with termination fees. Consumer surplus,
broadband share and traffic all increase.

In general I conclude that results are in line with the pattern from the baseline theoret-
ical model from chapter 1.
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Table 2.1: Summary of static counterfactuals, monthly values

outcome ISP price ($/m) CP price ($/m)
firm aggr. YT HU AM NF
model

neutral 45.1 5.99 7.99 8.24 9.99
termination 42.3 6.42 8.46 8.70 10.43
priority 46.6 5.93 7.98 8.23 10.14

(a) Prices from static counterfactuals

outcome ISP profit ($m) CP profit ($m)
firm aggr. YT HU AM NF
model

neutral 2263 86.8 13.3 23.9 59.5
termination 2284 78.1 11.8 21.3 53.3
priority 2354 73.7 11.1 20.0 59.6

(b) Profits from static counterfactuals

outcome consumer broadband traffic
surplus share (Tb/s)

model ($m) (%)

neutral 2069 76 446
termination 2010 74.6 408
priority 2097 76.6 484

(c) Consumer surplus, broadband share and traffic volume from static counterfactuals
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2.5.2 Dynamic equilibria

In Table 2 I report the dynamic equilibrium outcomes weighted by the stationary dis-
tribution. There are no dominant or clearly dominated alternative regulatory regimes.
However, it seems that the lack of net neutrality in general favors the ISP and makes
the CPs worse off. It is not surprising if we think about how the ISP gets more tools to
extract value from CPs.

It is interesting to see some arguments supported by the outcomes and complemented
by the full picture, parts of which are often overlooked. E.g. allowing paid prioritiza-
tion indeed leads to less ISP investment and a more congested network – as net neu-
trality proponents emphasize – but on the other hand it leads to higher CP investment
and restoring the value lost from congestion is valued by consumers. Or termination
fees are indeed used by the ISP for network developments – as net neutrality oppo-
nents claim – but they are transmitted to the customers and squeeze CP margins and
discourage content development.

2.6 Conclusion

In this paper I showed a potential way to calibrate and solve numerically a complex dy-
namic industry model that tries to capture realistic incentives of players in the prime-
time online streaming video market. Then I conduct counterfactual analysis of dif-
ferent types of net neutrality regulation. My conclusion is that (i) regulation should be
very careful as there are serious distributional consequences in the non-neutral regimes
in favor of the ISP and that (ii) introducing paid prioritization may restore value by
saving sensitive content from congestion.
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Table 2.2: Summary of dynamic equilibria, annual values

ISP value ($tr) ISP investment ($b) CP value ($b) CP investment ($m)

neutral 135 3.84 2.75 161
termination 137 4.01 2.46 149
priority 141 3.19 2.47 172
both 143 3.17 2.43 168

(a) Expected values and investments in the stationary distribution

CPs level capacity (Tb/s) congestion recurrent class

neutral 4 3.51 475 0.965 20.20%
termination 4 3.39 448 0.987 14.47%
priority 4 3.78 502 0.941 27.03%
both 4 3.77 456 0.958 25.81%

(b) Mean industry characteristics in the stationary distribution

consumer surplus ($b) industry profit ($b) total welfare ($b)

neutral 2.26 2.54 4.80
termination 2.20 2.55 4.75
priority 2.29 2.62 4.91
both 2.27 2.57 4.84

(c) Expected consumer surplus and welfare in the stationary distribution

broadband share network traffic (Tb/s) priority share

neutral 76.7% 474 -%
termination 72.5% 439 -%
priority 77.2% 504 14.15%
both 76.2% 472 13.80%

(d) Other important outcomes in the stationary distribution

53

10.14754/CEU.2018.11

1



C
E

U
eT

D
C

ol
le

ct
io

n

Chapter 3

Delineation of Market Areas Using
Sparse Learning and Spatial
Regularization

3.1 Introduction

The main objective of any empirical market delineation exercise is to help organizing
the way we think about the economic activity we observe and provide sound founda-
tions for further economic or antitrust analyses. E.g. firms’ market shares can only be
defined with respect to a certain geographical or product market and therefore both
the EU and US jurisdictions explicitly require antitrust authorities to undertake a mar-
ket definition exercise as the first step in an investigation before progressing to eval-
uate competitive effects. As a consequence, market delineation has to be performed
quickly, frequently and in a variety of different settings using only some basic rou-
tinely collected data. The fact that the task is quite challenging and is considered to be
a potentially decisive factor in court decisions explains the increasing number of avail-
able methods. This paper contributes to the literature by offering a practical method
for identifying markets that compromises between simplicity and the amount of struc-
tural assumptions to combine the attractive features of the different existing empirical
approaches while alleviating some of their problems.

The idea behind almost all methods is that pricing constraints that restrict a firm’s abil-
ity to increase prices arise directly from firms who compete in the same market. In
principle one could infer competitive relationships among firms if pricing constraints
could be estimated from the data and this is indeed what most methods are designed
to accomplish. The two main differentiating dimension of approaches in the litera-
ture are (i) whether they are based on the simplest statistical assumptions or on a spe-
cific model derived from economic theory and (ii) whether they require proprietary

54

10.14754/CEU.2018.11

1



C
E

U
eT

D
C

ol
le

ct
io

n

or costly to collect data on top or routinely observed data like prices and locations.
Analysis of pairwise correlations and structural demand modeling represent the two
opposite ends of the spectrum. In Section 3.2 I argue that notwithstanding their at-
tractive features both approaches have significant drawbacks which might make them
unattractive or even completely inapplicable in certain cases.

In Section 3.3 I describe an empirical procedure that has its origins in the statistical
learning and signal denoising literature. There are two key assumptions I maintain.

1. Pricing constraints among competing firms result in co-movements in prices.

2. The First Law of Geography holds.1

The role of the first assumption is to justify the use of regression analysis for detecting
statistical relationships among firms’ prices. The second assumption motivates the use
of spatial regularization in the regression analysis. By applying spatial regularization
I constrain the relationship between a given firm’s prices and any pair of two other
firms’ which are close together in some underlying space.2

In Section 3.4 I demonstrate the working of the method on simulated data and show
that in a simplified example it is possible to recover market boundaries even in a high-
dimensional settings with significant multicollinearity. In Section 3.5 I apply the proce-
dure to a hypothetical merger case in the Hungarian retail gasoline market and show
how one can use the method to highlight areas of potential harm that should be rigor-
ously investigated by the antitrust authority.

3.2 Existing Empirical Approaches

To explain what motivated the new approach for identifying competitors this section
gives a brief overview of empirical market delineation practices.

3.2.1 Price tests

The aim of statistical tests is to identify the set of products whose prices move together
“sufficiently” so that it can be inferred that they belong to a single market. Follow-
ing the pioneering work of Slade (1986) the most common statistical price-based ap-
proaches today are (i) price correlations, (ii) Granger causality tests, (iii) stationarity
tests, and (iv) cointegration tests.

1The law states that “everything is related to everything else, but near things are more related than
distant things” and is credited to Waldo Tobler. It is also known as the First Law of Spatial Econometrics.

2E.g. if firms A and B are close to each other in location or have very similar products then the
competitive pressure they impose on the prices of any firm C should be similar.
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These methods have a number of advantages. First, they are atheoretic (or model-free)
in a sense that they don’t require a specific economic model, thus they are less prone to
model misspecification. Second, they rely almost exclusively on data that is publicly
available such as prices, thus there is no need to collect proprietary information on
e.g. firm specific costs. And third, up to a varying degree they are relatively simple to
explain in front of court and are easy to implement.

On the other hand one immediate disadvantage of these methods is that because of the
pairwise nature of the analysis they can’t reliably quantify the magnitude of pricing
constraints that competing products simultaneously impose on each other. Further-
more, as Coe and Krause (2008) show in their simulation studies the relatively small
sample sizes that are available in actual empirical analyses seriously limit the use of
the sophisticated econometric techniques. For these latter reasons the advanced tech-
niques proposed in the existing literature are very difficult to implement successfully
and as a consequence simple correlation analysis remains the most widely used and
accepted price-based (statistical) method in antitrust cases.

3.2.2 Structural approach

As an alternative to price-based tests in 1982 the U.S. Department of Justice introduced
the ”hypothetical monopolist” or ”SSNIP” test as a method for delineating markets.
The test begins by defining a narrow market and asking whether a hypothetical mo-
nopolist could profitably implement a small but significant and non-transitory increase
in price (SSNIP). If sufficient numbers of consumers are likely to switch to alternative
products so that the price increase is unprofitable, then the firm or cartel lacks the
power to raise price and the relevant market needs to be expanded. The next closest
substitute is added and the process is repeated until the point is reached where a hy-
pothetical cartel or monopolist could profitably impose a 5% price increase. The set of
products/locations so defined constitutes the relevant market.

The differentiated products oligopoly model of Berry et al. (1995) became the corner-
stone of structural approaches in economics and it allows for the exact implementation
of the thought experiment prescribed by the merger guidelines’ SSNIP test. In the
past decades the use of such models has been promoted by academic economists as a
theoretically superior approach to merger analysis in differentiated product industries
(e.g., Nevo (2000) or Geroski and Griffith (2003)).

However, as Gaynor et al. (2013) point out, while the conceptual exercise prescribed
by the hypothetical monopolist test is straightforward, in practical antitrust cases the
implementation is not. This is partly because of data limitations, and partly due to the
reluctance of courts to rely on complex structural econometric models. Indeed, struc-
tural methods need data on important socio-economic demand factors and costs that
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are either proprietary or very costly to obtain, especially given the short time frame.
This is why in practice a much simpler version of the hypothetical monopolist test has
been adopted by several competition authorities worldwide and has been the flagship
of model based tests ever since. The simplified version uses a specific economic model
to evaluate consumer switching behavior but the primitives of the model like demand
and cost functions are typically not estimated rigorously.

Of course, if one has reliable estimates of demand at hand, the test can be implemented
in a direct way that is consistent with the conceptual exercise. However, to alleviate the
burden of increased data requirements there are several informal approaches that try
to approximate the demand system with back-of-the-envelope calculations. Unfortu-
nately, it turns out that even if using the correct economic model the demand estimates
arising from these simple calculations are too imprecise to generate correct predictions
for substitution patterns. Gaynor et al. (2013) show that these informal approaches
imply elasticities ranging from 2.4-3.4 times as large as those calculated from a proper
structural model. Furthermore, their analysis shows that different structural methods
generate results that are largely consistent with each other but inconsistent with such
ad hoc or plug-in methods.

Based on all of the considerations above it is clear that in general an ideal method
would work from a minimal set of assumptions on the underlying data generating
process (like price tests), use only publicly observed routinely collected data (like price
tests) yet it is able to assess competitive relationships among stations simultaneously
(like structural models).

3.3 The Proposed Method

In this section first I argue that the proposed statistical model can be motivated by a
simple and fairly general economic model. Then I gradually introduce the building
blocks of the statistical model.

3.3.1 Intuition behind the methodology

I assume that in each period all J (potentially very large) number of operating firms
set prices to maximize their profits. Firms are myopic and they don’t engage in multi-
period strategies. The profit function of firm i in period t depends on its own price and
its competitors’ prices and period-specific demand conditions. Note that the set of i’s
competitors,Mi, is only a subset of all operating firms and does not necessarily include
all of them. Let us denote this profit function by Πt(pi, p−i), where p−i includes prices
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of all operating firms except for i. The dependence on t expresses variation over time
in common demand and supply conditions. However, it is important to note that this
variation is assumed to have no effect on the set of competitors,Mi, which is assumed
to be constant over time. Thus, for firms that are not competitors of firm i the partial
derivative of the profit function is zero by definition, that is

∂Πt(pi, p−i)

∂pj
= 0⇔ j 6∈ Mi.

Throughout the paper I assume that in each period the market is in equilibrium. Prac-
tically this means that all prices set by operating firms satisfy a system of first-order
conditions. Let us denote the condition for firm i with the scalar valued function Fi,
then the relationship among equilibrium prices can be described implicitly as

Fi(pi, p−i) = 0.

If we assume for a second that pi could be expressed explicitly as a function of p−i then
we could write this relationship as

pi = Fi(p−i).

For all firms inMi the function Fi has a non-zero derivative and for all firms not inMi

the derivative is zero. As we are interested only in identifying the setMi the task is
equivalent to identifying non-zero derivatives of Fi. Unfortunately we don’t generally
know Fi without assuming a particular structural form. To alleviate the problem I
propose a linear approximation F̃i to Fi, or more formally

pi = Fi(p−i) ≈ F̃i(p−i) = β′p−i

If prices are strategic complements then the sign of derivatives of Fi will be approx-
imated well by the signs of the β coefficients of the linear function F̃i. However, Fi

does not generally exist and there are cases when there is only an implicit relationship
among prices through Fi. The logic of the approximation approach is very similar.

There are several advantages of this approach. First, it is very easy to estimate F̃i(p−i)

as this is just a linear function of observed prices. Second, by estimating the parameters
of F̃i(p−i) the derivatives are immediately available, thus one can argue that firms with
zero coefficients are not direct competitors to firm i. Third, sparse learning techniques
make it easy to estimate F̃i(p−i) with a very large number of operating firms, and
will identify non-zero coefficients automatically without the need to specify a minimum
threshold for a non-zero coefficient. This means that the practitioner does not have to
worry about what coefficients are ”too low” to consider the two products to be on the
same market because the algorithm will set those coefficients to zero.3

3The root of very small but positive elasticities is the unbounded support of taste shocks in the widely
used discrete choice models that lead to non-zero predicted market shares for the most inferior (in the
characteristics) product.
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The drawbacks, of course, include the lack of dynamics like history dependence or
forward looking behavior allowed by the assumptions. More sophisticated behaviors
(e.g. with non-monotonic relationships among prices) may be ruled out.

3.3.2 Elements of the statistical model

In this section I describe a procedure that is capable of identifying competitors of a
chosen firm based on their price co-movements. As set out in the previous section,
the formal goal is to identify non-zero coefficients in a linear approximation to the
equilibrium price relationships F , given as

pi = Fi(p−i) ≈ p−iβi

where pi ∈ RT, p−i ∈ RT×(J−1) and βi ∈ R(J−1). For notational simplicity I will drop
the i superscript and denote the dependent variable and the matrix of independent
variables with y and X, respectively. Then the baseline specification becomes the sim-
ple linear least squares model.

min
β
||y− Xβ||22 (3.1)

In the forthcoming sections I gradually introduce the tools developed in the statistical
learning literature and show how to apply them to the problem.

Sparse learning

Although appealing at first, the huge problem with the simple OLS model is that it can
not be estimated by usual techniques as the number of parameters (firms) is usually
much larger than the number of observations (periods). Such settings with a very large
number of potentially important predictors are called high-dimensional problems. They
arise frequently in cases when practitioners cannot generally exclude covariates based
on qualitative reasoning. However, having a large number of potential predictors does
not automatically mean having a large number of actual effects. Therefore, in such
settings it pays off to bet on sparsity and use statistical techniques that lead to sparse
solutions.4 In the statistical learning literature sparsity refers to the vector of estimated
parameters. There are a number of potential advantages like sparse models can be
faster to compute, easier to understand, yield more stable inferences, and are feasible
to compute with more regressors then observations.5

4Hastie et al. (2001) coined the informal ”Bet on Sparsity” principle. Sparse learning methods assume
that the truth is sparse in some basis. If the assumption holds true then the parameters can be efficiently
estimated. If the assumption does not hold then no method will be able to recover the underlying model
without a large amount of data per parameter.

5See Hastie et al. (2016) for a thorough and formal review of sparse learning methods.
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To relate this to the market delineation context recall that the task is to identify the
set of competitors to a given firm. It is reasonable to expect the algorithm to select
a narrower subset of firms that sell a similar product. The difficult part is to avoid
imposing a priori such restrictions on the methodology and to let the data “speak” for
themselves.6

l1 and l2 regularization

Sparsity of the estimated parameter vectors are achieved by regularization. The cor-
nerstone of sparse learning is l1-norm regularization introduced in Tibshirani (1996),
which became popular under the name Least Absolute Shrinkage and Selection Oper-
ator, or just simply lasso. In the lasso model the usual least squares objective function
is augmented with an additional penalty term to get the objective function

min
β
||y− Xβ||22 + λ1||β||1 (3.2)

where the penalty parameter λ1 governs the weight of the l1 penalty in the objective
function.It turns out that this problem has very appealing properties. Most importantly
it yields sparse solutions for β setting many of it’s entries explicitly to zero and shrink-
ing the non-zero elements to some extent towards zero when compared to the OLS
estimate.7 This is important in discovering true signals in high dimensional settings
and makes out of sample predictions more robust to noise in the data. In the market
delineation context we expect the lasso to select a small subset of most influential firms
(i.e. assign non-zero coefficients to them) that affect the prices of our chosen firm.

An important drawback of the lasso solution is that it will typically include only one
from a set of equally important but highly correlated regressors. This is a serious prob-
lem if we are interested in groups of covariates that are thought to have similar predic-
tive powers. In the market delineation context this may occur with many close substi-
tutes whose prices are highly correlated. Thus, the simple lasso has a risk of throwing
out a close competitor because it’s price is very similar to the price of another close
competitor. One solution to that would be to set up a group lasso estimation, that allows
groups of coefficients to be together zero or non-zero. (Yuan and Lin (2006)) However,
this approach would require the analyst to explicitly define the groups (e.g. the set of
close competitors), which contradicts the purpose of the whole exercise. Therefore I
use l2-norm regularization (also called the ridge penalty, Hoerl and Kennard (1970)) in
addition to the lasso penalty.

min
β
||y− Xβ||22 + λ1||β||1 + λ2||β||22 (3.3)

6E.g. spatial weighting schemes impose declining structure on the coefficients.
7When the OLS estimate is applicable, of course.
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This combined specification is called the elastic net, following Zou and Hastie (2005),
which retains most of the lasso sparsity without the risk of throwing out one of two
highly correlated (even identical) but important regressors. This is a consequence of
the ridge penalty which is capable of keeping even identical regressors in the model
and spreading their effect evenly among them.

Thus, we can can expect the elastic net to select a small subset of firms including all the
influential ones potentially with highly correlated prices among themselves.

Spatial regularization

The elastic net is already a big step towards an applicable model but unfortunately
it also introduces a new problem. In markets characterized by sellers with multiple
products the prices of all products of a given seller might be highly correlated due to
common cost or other supply related shocks. As a consequence, in the market delin-
eation context we might expect the elastic net to select products that are not competi-
tors to our product of interest but only produced by the same firms that produce the
truly competing products.

To illustrate this, consider the retail gasoline market with typically a few number of
large chains with many stations each. Suppose we are interested in identifying the
competitors of a given station. It is reasonable to expect that the competitors are sta-
tions in some neighborhood of our chosen station. If we run the elastic net on historical
prices of all stations we might end up with a set of identified competitors and many
additional stations that belong to the chains of competitors.

In this section I will argue that utilizing the spatial relationships among regressors in
some underlying space might help to identify the true effects we are interested in.

Fusion of parameters

Consider an estimation problem where we are interested in the effects of a potentially
large set of regressors {xj ∈ RT}J

j=1 on an outcome y ∈ RT. Suppose that the regressors
can be ordered according to some rule, e.g. time. From domain expertise we happen
to know that regressors close to each other (e.g. from two consecutive periods) tend
to have similar effects. This knowledge could be built into the loss function by adding
a term that penalizes differences in estimated effects corresponding to neighboring
regressors as in (3.4).

min
β
||y− Xβ||22 + λ

J

∑
j=2
|β j − β j−1| (3.4)

It is important to note two things:
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• The ordering is completely independent of the actual values of the regressors.

• The ordering is defined exclusively on the regressors and it does not specify the
regressors’ relationship to the outcome variable.

As a result the fusion approach yields an estimated vector of coefficients that is sparse
in the consecutive differences. In practice that means that by adding a fusion penalty
it restricts the set of values that the elements of the coefficient vector may take and
the estimated coefficients will be a piecewise constant function in the order. In some
sense fusing the coefficients is a spatial homogenization method and it was originally
developed in the signal denoising literature for trend filtering (Land and Friedman
(1996)).

Fortunately, it is possible to combine the fusion penalty with other methods to get an
estimated coefficient vector that retains sparsity on top of being fused. This is exactly
the basis of the fused lasso proposed by Tibshirani et al. (2005) as in (3.5).

min
β
||y− Xβ||22 + λ1||β||1 + λ2

J

∑
j=2
|β j − β j−1| (3.5)

Spatial structure

Note, that the fused lasso is not applicable when regressors can not be ordered. How-
ever, it should be recognized that it is not explicitly the ordering that is useful for us but
the difference in neighboring coefficients. In this sense if it is possible to define neigh-
bors of a coefficient in some arbitrary underlying (possibly multi-dimensional) space
then the neighborship structure can be represented by an undirected graph. Indeed, if
G = (V, E) is a graph with set of nodes V end set of edges E then ∑(i,j)∈E |βi − β j| is
the generalized definition of the fusion penalty and the model

min
β
||y− Xβ||22 + λ1||β||1 + λ2 ∑

(i,j)∈E
|βi − β j| (3.6)

is called the generalized fused lasso. The generalized fusion penalty has it’s roots in
image denoising where the method is called total variation denoising (Rudin et al.
(1992)) and there is an increasing number of applications to spatial trend filtering in
the field of neuroscience (Watanabe et al. (2014)) or more recently in the social sciences
(Wang et al. (2014)).

In the market delineation context the neighborship structure becomes interpretable if
the marketed products can be represented in some space with an appropriate distance
metric. This could either be actual geographic space (e.g. in the case of gas stations) or
the product characteristics’ space (e.g. in the case of cars or cellphones etc.).
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However, it seems that it is up to the researcher what products are considered neigh-
bors. This may be unwanted when automation is essential due to time limitations. To
overcome this problem and, again, to let the data speak for themselves I propose to per-
form a spatial Dealunay triangulation procedure among the products’ locations to get
an undirected neighborhood graph. For the workings of the triangulation procedure I
refer the reader to Section 3.5 where it is demonstrated how to form a neighborhood
graph of actual gas stations’ locations.

3.3.3 Full model

It is useful to take a step back and remind ourselves what do we expect from our
statistical model. There are three key points I require from the method:

• Sparse coefficient vector with non-zero entries for competitors

• Accommodate highly correlated regressors

• Spatial homogeneity in the coefficient vector

The last point simply means that if two products are close to each other in geograph-
ical or product characteristics’ space then their competitive relationship to any other
product in question should be similar.

After adding all three types of penalties to the least-squares loss to achieve the desired
outcomes the baseline model to be estimated becomes

min
β
||y− Xβ||22 + λ1||β||1 + λ2||β||22 + λ3||Mβ||1, (3.7)

where M ∈ R|E|×|V| is the incidence matrix corresponding to graph G.

It is important to emphasize that the spatial structure that is put on the coefficients (i)
comes entirely from the data (i.e. firm locations or product characteristics) and (ii) does
not specify the spatial relationship between the outcome variable and any of the regres-
sors. When setting up the estimation problem in this way nothing requires the model
to select influential regressors from the neighborhood of the outcome variable therefore I
can avoid imposing a priori the desired structure on the estimated coefficients.

3.3.4 Tuning Parameters

It is possible to rewrite the model in (3.7) as

min
β
||y− Xβ||22 + α

{
δ
(

γ||β||1 + (1− γ)||β||22
)
+ (1− δ)||Mβ||1

}
, (3.8)
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to get a more interpretable form. It is now clear that α alone controls the weight of
the whole penalty term, δ specifies the proportions between the elastic net and the
fusion term and γ splits the weight on the elastic net term between the lasso and ridge
penalties.

Normally, such hyper-parameters are tuned by (nested) model selection techniques
based on information criteria or out-of-sample prediction accuracy, such as k-fold cross-
validation. However, with the lack of abundant observations I choose not to follow this
approach and interpret my results as a lower bound to the optimal performance of the
method. I set γ = 0.95 as this is an amount of l2 regularization that is usually consid-
ered a good choice when model selection is not available.8 Unfortunately there is no
consensus in the literature on how to select the best amount of spatial regularization,
so I opted for a conservative method and set δ = 0.9 for a moderate amount of fusion
in the penalty term.

To select α I use the minimal amount of regularization that is required to achieve a
fixed degrees of freedom. Tibshirani and Taylor (2011) showed that the degrees of free-
dom in fused lasso-type problems is best approximated by the number of connected
components in graph G (the graph corresponding to incidence matrix M) with edges
among nodes with differing coefficients deleted. For easy interpretation I set the re-
quired degrees of freedom to 10, and pick the smallest α that matches the criterion.9

3.3.5 Translating coefficients to competitors

To translate the estimated coefficients to a set of competitors I propose the following
procedure. First, as noted earlier, I am not interested in the size of coefficients per se.
To identify competitors of a given product I take the vector of estimated coefficients
(β̂) from the full model in (3.8) and select all nodes that have a non-zero corresponding
coefficient. Then I look for connected components in the subgraph of G corresponding
to the selected nodes. The whole procedure can be summarized in a series of Figures
3.1a – 3.1f.

Step 1. Perform the triangulation procedure to arrive at a neighborship graph of all lo-
cations. Pick a central product whose set of competitor products are going to
be estimated. Figure 3.1a shows one such graph with the red dot indicating the
location of the central product and the black dots indicating the potential com-
petitors.

8For more on this please see Hastie et al. (2016).
9This may seem too simplistic but this is actually the approach used in state-of-the-art applications

as in Wang et al. (2014) or Watanabe et al. (2014). The problem is that fusion is a very restrictive regular-
ization technique and it typically does not increase prediction accuracy. It is best used to constrain the
coefficients to reflect some principle.
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Step 2. Remove the central product and its adjacent edges from the graph. Assign a
coefficient to each node. Figure 3.1b shows such a graph with three example
nodes with their coefficients. Run the penalized regression in (3.8) with the cen-
tral node’s prices on the left hand side and using the incidence matrix of the
graph in the penalty term. Note how the absolute differences of connected nodes’
coefficients enter the loss function. The procedure is completely blind regarding
the location of the central product and the coefficients.

Step 3a. Figure 3.1c shows a typical result of the penalized regression. The black nodes
indicate products with non-zero estimated coefficients. Coefficients of gray nodes
where set to zero by the l1 penalty term in the loss function. Drop all edges
between the zero and non-zero components of the graph and count the connected
components with non-zero nodes. In this case there is only one such connected
component and it has common nodes with the central products neighborhood.
This set of nodes is the identified set of competing products in this example.

Step 3b. Figure 3.1d shows an alternative potential outcome when the non-zero connected
component is not unique. In such cases I apply the first law of geography as a
weak guiding principle and I pick the component that has a common node with
the neighborhood of the central product. If there are several such components
then I pick one based on the actual distance from the central product.

Step 3c. Figure 3.1e shows the situation when there is no such non-zero component that
intersects with the central product’s neighborhood. In such cases I follow the
spatial econometrics literature and I impose an additional penalty term to the
objective function in (3.8) to achieve a set of coefficients that is non-increasing
with the distance to the central product. E.g. Figure 3.1f shows to model re-
estimated with entries such as |β j − βi| and |β j − βk| replaced with θ|β j − βi|+
(1 − θ)(βi − β j) and θ|β j − βk| + (1 − θ)(βk − β j) because the node with β j is
closer to the central product than nodes with βk and βi. Essentially, I replace
||Mβ||1 in the penalty term with a convex combination of ||Mβ||1 and the sum of
Mβ and arrange the values in each row of M so that the value 1 corresponds to
the node of the edge that is farther from the outcome.10

10It is important to note that unlike using a standard spatial decay function I am not imposing a shape
on the coefficients as a hard constraint. My method fully allows for two equidistant coefficients to have
different contributions to the penalty term.
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(a) Original graph of locations after the trian-
gulation procedure

βk

βi

β j

(b) The graph of locations after central prod-
uct was removed

(c) Estimation results with one non-zero con-
nected component

(d) Estimation results with two non-zero con-
nected components

(e) The estimated non-zero connected compo-
nent doesn’t contain any products from the
central product’s neighborhood

βk

β j

βi

(f) Penalizing spatial non-monotonicity
yields a non-zero component with an element
from the central product’s neighborhood

Figure 3.1: Illustration of how estimated model coefficients are translated to competi-
tors
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3.3.6 Discussion

Asymmetric relationships

Up to this point the description of the procedure focused mainly on identifying com-
petitors of one given product.11 However, one might be interested in re-running the
procedure for multiple or all products to learn about the pattern of competing relation-
ships among them. In this case it is important to distinguish between the cases when
product i was identified as a competitor of j or the other way around. Note that the
relationship is not restricted to be symmetric.12 Sometimes this can be a very useful
property e.g. in a case where one product is a market leader while the other is a fringe
product it is reasonable if the market leader’s price heavily affects the fringe product’s
price but not the other way around.

Market areas

By allowing for directional relationships the resulting network of competition can be
described by a directed graph. It may happen that this network consists of several dis-
connected or loosely connected components which might be a signal of independent
market areas. This can be important information for competition economists or market
analysts alike.

The reflection problem

Common shocks to supply and demand is the central challenge for price-correlation-
based market definition. This is related to the classic reflection problem: do prices of
neighboring firms co-move because firms respond to each others pricing strategies or
because firms react to the some spatially correlated shocks in cost or demand?13 To
remain minimalistic in data requirements the current model relies only on price data
and as such has only very limited power in separating the effects of common shocks on
co-movements. This is a weakness of the approach that one has to bear in mind when
interpreting the results. Using additional spatially varying controls could alleviate the
problem (at least partly) but it would contradict the point of the exercise and could be
entirely infeasible in other settings.

In the next sections I will demonstrate the workings of the model on both simulated
and actual data.

11Recall that a competitor is defined as another firm whose prices put a constraint on the prices of the
actual firm in question.

12In my experience the relationships are symmetric in the majority of the cases but it should depend
on the exact application.

13I would like to thank Sergey Lychagin for pointing this out.
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3.4 Simulations

Here I demonstrate the working of the method by applying it to a simulated data set.
The focus will be on support recovery, that is how well can the method recover the set
of regressors with non-zero effects.

The simulated data mimics some important moments of the gasoline data set that will
be used in the next section. As in the previous section X ∈ RT×J will denote the matrix
of covariates which are drawn from a J-dimensional multivariate normal distribution
and y ∈ RT will represent the T-vector of outcomes computed as

y = Xβ + ε,

where β represents the vector of J true effects assigned to the covariates and ε is the
vector of T independent normally distributed disturbances.

The key features of the simulated data set:

• Large number of covariates (J = 1000) compared to the number of observations
(T = 100).

• Highly correlated covariates with pairwise correlations ranging from 0.85 to 0.95.14

• Sparse effect vector, meaning that the fraction of non-zero elements in β is small
(10%).

• Each covariate and corresponding effect are assigned a location on the [0, 1] in-
terval. Locations are increasing from the first to the last column of X.

• The location of the outcome variable is 0.

• The values in β are arranged in decreasing order which represents that effects are
decreasing with distance from the outcome variable.

The two panels of Figure 3.2 help to understand the details.

The left panel plots the β coefficients as a function of their location and shows that only
the covariates located in [0, 0.1] (also separated by a dashed vertical line) have non-zero
effects and the effects are linearly decreasing with the distance from 0. In the market
delineation context these covariates represent the set of competitors. Essentially, the
rest of the regressors with zero effects will introduce the noise in the estimation proce-
dure because of the strong multicollinearity. As a consequence, the outcome variable
will also be highly correlated with the rest of the covariates through the 100 covariates

14The covariance matrix for the multivariate normal draws was simulated using the so-called random
factors method.
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Figure 3.2: Simulated data set

with positive effects. The right panel of Figure 3.2 shows these pairwise correlations
between the outcome variable and the covariates.

It can be seen immediately that there are no clear clustering patterns in the pairwise
correlations so there is a need for a multivariate method that also exploits the underly-
ing spatial structure. As in the previous section the spatial structure will be represented
by the neighborship graph of the covariates.

I set the standard deviation of the disturbances to be 10% of the standard deviation of
Xβ.15

3.4.1 Results

In addition to the baseline specification described in the previous section I performed
experiments with several setups for the data generating process. All specifications
were estimated 50 times with the default values for the tuning parameters. From each
run I take the location of the first zero covariate as my estimate for the market bound-
ary.

Figure 3.3 shows a typical result from one single run. There are three things to note on
the figure:

• Because of spatial regularization estimates form a piecewise constant function.

• The lasso penalty pushes most of the coefficients explicitly to zero.

• Coefficients drop to zero around the market boundary.

15Increasing the variance of the disturbances would lower the correlation among the outcome variable
and the regressors. I want to avoid that to keep the highly correlated spurious regressors.
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Figure 3.3: An example of a typical β̂ with R2 = 0.99.

Table 3.1: Simulation results – Estimated market boundaries

mean median
boundary 0.10 0.25 0.50 0.10 0.25 0.50
T

100 0.0982 0.2072 0.2362 0.0960 0.2150 0.2745
250 0.1064 0.2418 0.4034 0.0990 0.2390 0.4225
500 0.1031 0.2474 0.4437 0.0990 0.2410 0.4490

Table 3.1 shows both averages and medians across replications for each of the nine
separate scenarios. In general it can be concluded, that increasing the sample size im-
proves precision and it is possible to get reasonable estimates for the market boundary
even with the relatively low sample size of 100 observations for 1000 variables.

3.5 Application

To illustrate how the method could be used in an actual analysis I will apply it to a data
set on weekly retail gasoline prices in Hungary. I will identify the set of competitors
of stations involved in a hypothetical merger case using the method described in the
previous sections.

The source of the data set is an online price comparison site www.holtankoljak.hu and
it contains prices for 103 weeks of about 1200 stations from October 2006 to December
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2008. The market is characterized by a few number of chains with several stations each
and a number of independent vendors.16 The three largest chains are MOL, SHELL
and OMV with market shares in terms of the number of stations of 26.7%, 14.1% and
12.9%, respectively.

In the application below I will identify the set of competitors of all SHELL and OMV
stations where a hypothetical merger between the two chains would raise significant
antitrust concern because of the change of concentration in their local markets. It is
important to note that the analysis is only meant to serve as a screening stage before
further rigorous merger scrutiny and it’s main contribution is to highlight cases of
potential harm.

3.5.1 Spatial structure

I use the geographical location of stations to form a neighborhood graph for spatial
regularization. Station addresses were geocoded on a city level to the center of the
city. To assign a unique location to all stations I added a random shock to all locations.
Shocks were weighted by the areas of corresponding cities to get realistic distance pat-
terns. Unique locations are needed because putting multiple stations to one location
would imply very unrealistic neighborship relations. There is an error introduced to
the assumed underlying spatial structure by this random coordinate assignment but
this won’t be an issue in an actual application where locations are fully observed. One
possibility would be to replicate the full procedure for a large number of randomly
drawn locations or to manually geocode the stations on the rooftop level.

To get a neighborhood network I performed a spatial Delaunay triangulation on the
unique station locations. In very broad terms this procedure minimizes the number
of sharp angles in the triangles. The resulting network includes some disproportion-
ately long edges around the graph boundary which would tie the coefficients of very
distant stations so I drop the longest 2%. Figure 3.4 shows the network of all stations
to be used in the estimation. As previously, the graph is represented by the incidence
matrix M, where each row corresponds to an edge in the graph with 1 and −1 at the
corresponding nodes and zeros elsewhere.

The triangulation is needed to come up with an underlying graph structure, which in
turn can be used to penalize differences in coefficients that share an edge in the graph.
In principle I could use a fully connected network of stations with edges weighted by
some inverse distance metric to penalize the differences in coefficients but that would
result in a huge increase in computational time and also would restrict the set of pos-
sible patterns that can arise.

16As this data set has been thoroughly analyzed in Farkas et al. (2009) and in Bekes et al. (2011) I refer
the interested reader to their papers for a deeper understanding of the Hungarian retail gasoline market.
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Figure 3.4: Spatial Structure of Gasoline Stations

3.5.2 Prices

Prices varied a lot over the analyzed period. Most of the trend can be attributed to
common costs which lead to high pairwise correlations among prices. The left panel
of Figure 3.5 depicts the evolution of prices over time while the right panel shows
the histogram of all elements in the pairwise correlation matrix of prices. One can see,
that in such a high-dimensional setting it would be very hard to rely on simple bilateral
correlation analysis to identify competitors. First differencing might be a good solution
to reduce correlations, especially in the case of daily prices. Other detrending methods
could work also but it is the very purpose of this exercise to show how powerful spatial
regularization is even when applied to simple price levels without any pre-processing.

The only pre-processing I did was imputation of missing values which process is de-
scribed in the next section below. The reader not interested in the details may skip this
section.

Imputation of missing prices with spectral regularization

Except for very fortunate cases missing observations are prevalent in empirical stud-
ies. Under some conditions it is possible to exclude observations that are only partially
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Figure 3.5: Trend and correlation of prices
-

observed without sacrificing unbiasedness and statistical power.17 However, in the
high-dimensional setting it is common that the cardinality of the set of observations
that have valid values for all variables of interest is low or even zero. In general terms
the usual practice to get around this problem is to either exclude some problematic
variables (e.g. those with too many missing values) or to use imputation where it is
believed not to introduce excessive bias. One should be very cautious when dropping
variables entirely to avoid accidental exclusion of potentially important effects. Cer-
tainly, in market delineation exercises there are some cases when a set of regressors
corresponding to products or locations could be excluded without loss of generality
purely based on qualitative reasoning. E.g. in a densely populated country one can
be confident in the independence of two distant locations. In the empirical application
below I will demonstrate the working of the method using prices of gas stations where
it would be natural to follow this logic to exclude distant competitors and impute only
the closest stations but for the sake of illustration I decided to impute all missing val-
ues. This will certainly lessen the signal to noise ratio so I will interpret the results
accordingly as a worst case.

There are several methods that can be used to impute missing values to a data set.
The econometrics literature prefers model-based imputation techniques to ad hoc ap-
proaches like mean imputation or hot deck imputation because of their superior per-
formance. However, a sophisticated method with good theoretical properties like
a Markov Chain Monte Carlo-type multiple imputation procedure may pose a sig-
nificant computational challenge. For both computational and prediction accuracy
reasons I opted for an approach based on low-rank matrix factorization that is non-

17Here I focus only on the case where the mechanism which determines which values are missing is
ignorable. In cases where the selection mechanism matters one should consider estimating the appro-
priate model.
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traditional in economics but is a well-developed and highly adopted technique in the
statistics and machine learning literature with superior performance.

Because of its rare occurrence in economics research here I provide a brief overview
of Rahul Mazumder and Tibshirani (2010) who introduced the state-of-the-art SOFT-
IMPUTE algorithm for learning missing values in large-scale problems. Without any
restrictions on the degrees of freedom in the completed matrix the matrix completion
problem is underdetermined since the missing entries could be assigned arbitrary val-
ues. Thus matrix completion often seeks to find the lowest rank matrix. Suppose
we want to learn the missing elements of a matrix Xm×n where Ω ⊂ {1, . . . , m} ×
{1, . . . , n} denotes the indices of the observed elements. Then we could consider to
solve for an approximation Z ∈ Rm×n in the following problem:

minimize rank(Z)

subject to ∑
(i,j)∈Ω

(
Xij − Zij

)2 ≤ δ, (3.9)

where δ ≥ 0 is a regularization parameter controlling the tolerance in the training error.
Unfortunately this problem is in general NP-hard, but there are tractable algorithms
that achieve exact reconstruction with high probability. The basis of SOFT-IMPUTE is
the idea to solve the convex relaxation to (3.9) by using the nuclear norm of Z instead
of the rank constraint.18 Rewriting the problem in Lagrange form yields the following
semidefinite programming problem

minimize
Z

1
2 ∑
(i,j)∈Ω

(
Xij − Zij

)2
+ λ||Z||∗ (3.10)

which can be solved efficiently by SOFT-IMPUTE.

The algorithm performs low-rank singular value decompositions in every iteration.
It is advised to remove row and/or column means from a matrix before performing a
low-rank SVD or running matrix completion algorithms. Likewise we may also wish to
standardize the rows and or columns to have unit variance. This makes the algorithm
more stable and improves prediction accuracy. However, this double normalization
is not straightforward, especially with missing matrix entries. In this paper I use the
method developed by Hastie et al. (2014) that is fast, memory efficient and suitable for
very large and sparse matrices while allows for missing data.

Figure 3.6 shows the histogram of sample sizes that are available for each gas station.
The overall missing rate is around 20%, and around 80% of stations have a missing rate
of less than 20%. Prices can be missing for several non-random data-recording reasons.
E.g. if a station started or closed operation in the middle of the period or it was simply

18The nuclear norm of a matrix (|| · ||∗) is the sum of its singular values.
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Figure 3.6: Distribution of available observations

not sampled by the price comparison site. I choose to impute prices of stations that
have at least 50% of the observations which leaves me 1110 stations.

To illustrate the method I take a balanced subsample of the data (107 stations) and
randomly delete 20% of the observations. Using SOFT-IMPUTE I was able to impute
observations with a root mean squared error of 1.008 which is less than 0.35% of the
average price. For comparison, the best performing k-nearest neighbors method with
7 neighbors resulted in a RMSE of 1.1959 which is about 20% larger.

3.5.3 Estimation

I estimate the full model in (3.8) for all stations separately to identify the sets of com-
petitors for each station. That means that each of the 1110 stations’ time series of length
103 will serve once as an outcome (y) and 1109 times as a regressor (as a column of X).
For each estimation run I remove the node corresponding to the outcome station from
the graph. In this way the estimation procedure remains ”blind” to the spatial relation
between the outcome and the regressors and will require only that neighboring sta-
tions have similar coefficients. I use the default parameters (δ, γ) for the weights inside
the penalty term and tune α for each estimation run to have 12 degrees of freedom.
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Table 3.2: Summary statistics of estimation results

statistic number of Dmin Dmedian Dmean Dmax

percentile competitors (km) (km) (km) (km)

10 1 0.48 1.35 1.39 1.74
25 2 1.12 2.85 3.08 4.18
50 6 2.75 6.28 6.74 10.10
75 20 5.51 18.75 19.61 35.15
90 84 10.41 50.45 51.84 105.89

3.5.4 Results

First it is useful to have a look at the identified sets of competitors. For each station I
have counted the number of competitors, the distance to the closest, to the median, to
the mean and to the most distant competitor. Table 3.2 summarizes the distributions of
the five statistics in the population. There are two important things to note. First of all,
the estimates seem to make sense. It is well known that the gasoline market exhibits
strong local competition (see e.g. Pinkse et al. (2002)). This fact is supported by the
result that half of the stations have at most 6 competitors and all competitors within
10 kilometers (6.25 miles). Also, by looking at Figure 3.7 one can confirm that stations
in areas with higher station density (e.g. stations within certain cities) have more com-
petitors and are closer to their competitors. The second immediate observation is that,
unfortunately, the limits of the method and the data manifest themselves in a number
of extreme cases with an unreasonably large number of identified competitors for the
top ca. 10-15% of stations (in terms of the number of competitors). There are a num-
ber of potential reasons for these performance issues like e.g. insufficient frequency
of observations, simulated locations or affected stations just work differently and the
statistical model is just not able to capture their behavior.19 Table 3.3 repeats the statis-
tics from Table 3.2 with the top 10% of stations (in terms of the number of competitors)
excluded. In this restricted sample the ratio of symmetric competing relationships is
84.2%.20

19One explanation could be that many of the problematic stations are very close to the border and in
Bekes et al. (2011) it was shown that pricing at stations along the border works differently than at other
locations.

20For visualization purposes on Figure 3.7 I only show symmetric relationships of stations after ex-
cluding the problematic top 10%.
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Table 3.3: Summary statistics of estimation results – without extreme values

statistic number of Dmin Dmedian Dmean Dmax

percentile competitors (km) (km) (km) (km)

10 1 0.45 1.11 1.16 1.40
25 1 1.05 2.43 2.56 3.37
50 4 2.47 4.58 4.84 7.15
75 9 4.58 9.35 10.34 16.14
90 17 7.78 16.88 16.56 31.52

3.5.5 Hypothetical merger

In this section I will analyze the case of a hypothetical merger between the second and
third largest competitors on the market. The question is whether the merged parties
will have sufficient market power to raise prices. To address that I use my estimates
and compute the change in market concentration at all stations other than the merging
parties. Figure 3.8 shows stations with an increase in HHI of at least 15%. The result-
ing graph has several independent connected components that correspond to markets
that could be potentially monopolized by the merger. After this preliminary screen-
ing step the competition authority could go and analyze thoroughly the competitive
effects specifically at those markets even independently.

3.6 Conclusion

In this paper I present an approach for identifying competing firms using modern sta-
tistical learning techniques. This method makes it possible for researchers and practi-
tioners to identify sets of competing firms based solely on publicly observed price data
even in high-dimensional settings. As the application shows, the results then can be
readily used by antitrust authorities to detect areas of potential harm.

In the future it would be interesting to see more applications to real data. One poten-
tially interesting exercise would be to connect the estimates to local socio-demographic
variables and see what explains competitive relationships. Although the simulation
studies show unbiasdness it would be important to focus also on the theoretical prop-
erties of the estimation method.
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Figure 3.8: Markets with at least 15% change in HHI
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Appendix A

Appendix for Chapter 1

The goal of this section is to analyze the effects of certain model features one-by-one
in a simplified version of the model presented in the main text. First I focus on a
model with one ISP and one single CP where there is no dynamic adjustment possible.
Then I add some additional layers of complexity and gradually open up the dynamic
adjustment possibilities for CP and ISP states.

When introducing termination fees or paid prioritization before examining what hap-
pens to investments I will take a closer look at the static equilibrium as profits from
the stage game are the main drivers of the evolution of industry states. Firms invest in
order to achieve states with higher payoffs. Analyzing outcomes from the stage game
is therefore useful in understanding the arising investment patterns.

A.1 Simple Model with Net Neutrality

I start from the simplest model specification featuring one ISP and one single CP and
fix CP product quality (δ) and congestion (µ) to a constant. Then I vary δ and µ over
a range of values and compute the static equilibrium. To keep the model as simple as
possible I make the following simplifications:

• Set the market size (M) to 1

• Set marginal costs of content distribution (cisp, ccp) to 0

• Normalize the utility from no internet subscription (V0) and casual browsing (v0)
to 0

• Set the price coefficient (z) to 1

• Set bitrate of CP product to a constant b regardless of the value of δ

I re-computed the static equilibrium for a grid of δ ∈ [5, 10] and µ ∈ [0.8, 1].
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Figure A.1: Prices and profits in the net neutrality model with constant bitrates

A.1.1 Static equilibrium with constant bitrates

Figure A.1 and Figure A.2 summarize the outcomes of the plain vanilla net neutrality
model. Price patterns are increasing with CP product quality and decreasing with the
severity of congestion. This makes sense as the higher the product quality the more
attractive it is to consumers so the CP can raise its prices. Also, a higher quality CP
increases the value of internet subscription so the ISP can also raise its prices. The
widening gap between the prices under different congestion severities shows that the
attractiveness of higher quality products is more sensitive to congestion.

However, there is one fundamental flaw in this model that makes it impossible to use
it in the dynamic framework. The growth in profits is unbounded in δ so the CP would
wish to invest forever to get into higher states making the problem not stationary. To
account for that in the next section I introduce bitrates that increase with product qual-
ity and set marginal costs of content distribution (cisp, ccp) to 1. This is one of the most
important pieces of the model that connects ISP capacity to CP product quality.
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Figure A.2: Market shares, consumer surplus and network traffic in the net neutrality
model with constant bitrates
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A.1.2 Static equilibrium with increasing bitrates

Figure A.3 shows how product quality increases with bitrate. Note the decreasing
marginal utility of increase bitrate. I have chosen this on purpose to reflect that the
higher the video resolution the harder it is to distinguish quality but bitrates still
rise proportionally. One common reason for that is e.g. the lack of suitable screens.
Figure A.4 and Figure A.5 summarize the outcomes of the net neutrality model with in-
creasing bitrates. From the profit figures it becomes immediate that profits are bounded
as very high quality products are too costly to produce. Even the steep price increase
can’t justify the high costs. Except for that nothing else has changed qualitatively.

A.1.3 Dynamic equilibrium with CP adjustment

To see what kind of investment behavior is triggered by the profits from the model I
first allow the CP to reposition its product by investing into product quality. First I set
up a grid of 12 states using increasing bitrates and product qualities from Figure A.3.
The states (ω) and the corresponding product qualities (δ) and bitrates (b) are shown
on Figure A.6.

For this exercise I shut down the ISP capacity investment channel and assume that
there is no congestion. Figure A.7 plots the both value functions, CP investment and
the stationary distribution of the Markovian system. One can see that CP investment
is in sync with the value function and that investment vanishes beyond a certain state.
A typical pattern that could arise is of a CP who starts investing heavily from the low
states until it reaches a good state and then keeps investing small amounts to stay on
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Figure A.4: Prices and profits in the net neutrality model with increasing bitrates
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Figure A.5: Market shares, consumer surplus and network traffic in the net neutrality
model with increasing bitrates
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justment. Note that for better visibility the horizontal axis shows states (ω) rather than
the corresponding qualities (δ).

90

10.14754/CEU.2018.11

1



C
E

U
eT

D
C

ol
le

ct
io

n

top. The stationary distribution confirms this as it is spread over the middle and lower
CP states and is mostly concentrated around the middle states.

Interestingly, however, the two value functions have maxima at different states. In the
general model this can be a driver of strategic behavior from both sides.

A.1.4 Dynamic equilibrium with both CP and ISP adjustment

In this section I present results of the dynamic equilibrium when both the ISP and the
CP can invest in order to achieve higher states. I specify potential ISP capacity levels
(κ) to an equidistant grid of 10 states over [0.25, 2.5]. The highest capacity level is set
such that it exceeds the highest potential traffic volume.

Figure A.8 and Figure A.9 summarize the outcomes. First, it is important to note that
the value functions are similar in shape to ones seen in the previous section. However,
in this case the level is somewhat lower, because by adding more lower capacity levels
to the potential ISP states firms realize that it can get worse than the current state.

Second, the value functions for the same CP state are higher for higher capacity levels.
In general both value functions and CP investment follow the order of ISP capacity lev-
els which confirms that higher network capacity means better perspectives for firms.
The one exception is ISP investment where the logic is the opposite. This is because
with high capacity there is abundance of free capacity and there is no need to invest.
On the other hand, when capacity is low the ISP wants to invest more to get to a state
with a higher value.

A.2 Effects of Termination Fees

In this section I will continue with the same baseline model but allow the ISP to charge
a per-transaction termination fee to the CP. Figure A.10 highlights the differences in
prices and profits for a moderate amount of congestion.1 First, note that CP prices
increase substantially but this is accompanied by a severe drop in profits. On the other
hand the ISP is able to raise profits by not only keeping its price low but also keeping it
at a constant low level. To explain this puzzle one has to take into account the transfers
between the ISP and the CP. Figure A.11 helps to see what is going on. On the left
plot one can see that for each δ the ISP’s profit is maximized at a different termination
fee. From the center plot it can be seen that the optimal fee schedule is increasing with
CP product quality and it is very similar across different congestion levels. Finally, the
right plot shows that the final (or total) price that a residential user pays for internet

1For other congestion values the results are qualitatively the same.
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Figure A.8: Value functions and investment in the model with net neutrality
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Figure A.10: Prices and profits in the model with termination fees

access and streaming content is roughly the same. This means that the critique of the
termination fee that it is going to be transmitted to the user is only half of the truth,
because on the other hand the ISP has incentives to lower the subscription price to
counter-balance.

Figure A.12 reveals that the high CP prices lead to a loss in market shares. Given that
overall internet subscription has increased this means that the streaming video sector
has shrunken and users have turned to less bandwidth-intensive casual browsing in-
stead. Interestingly under the current parameterization this has a positive effect on
consumer surplus.

One conclusion of this section is that introducing the termination fee leads to an un-
equal split of revenues from the user between the ISP and the CP. The drop in CP profits
might have serious consequences for investment decisions. To examine these possibil-
ities I computed the dynamic equilibrium. Figure A.13 shows the expected drop in CP
value and investment across all states and the increase in ISP value. As a consequence
of smaller traffic ISP investment has dropped a little, too. Figure A.14 confirms that
because of the lower investment levels the stationary distribution has shifted to the left
for both CP product qualities and ISP capacities.
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Figure A.11: Optimal termination fee schedule in the model with termination fees
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Figure A.12: Market shares, consumer surplus and network traffic in the model with
termination fees
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Figure A.13: Value functions and investment in the model with termination fees
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Figure A.14: Stationary distributions in the model with termination fees
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A.3 Effect of Paid Prioritization

In this section I allow the ISP to offer a paid priority service to the CP to avoid the nega-
tive consumption effects of congestion. Figure A.15 shows that in the case of moderate
congestion both CP and ISP prices increase but only ISP profits change as a result. This
is because the priority service is no longer mandatory for the CP and it is incentive
compatible. The ISP will offer only contracts that leave the CP with at least as large
profit as in the neutral regime.

To better understand where the extra profit of the ISP is coming from it is worth to
take a look at the optimal fee structure. The left plot on Figure A.16 shows how the ISP
determines what fee to charge in a given period depending on the product quality of
the CP. It will raise the fee until the CP would be indifferent between buying or not. Of
course, this only works in case there is congestion that affects the perceived quality of
the CP. In this way the ISP can enjoy all gains from restoring the quality of the CP from
µδ to δ. The right plot confirms that the more severe the congestion the more is to gain
from the priority service.

According to Figure A.17 the changes in other outcomes like broadband share, CP
market share and consumer surplus suggest that there is a lot of value lost if there is
congestion and it sounds like a good idea to design a market mechanism that is able to
restore this value. However, since the restored value is distributed unevenly to the ISP
it may create incentives for the ISP to sustain socially suboptimal congestion.

Under the current parameterization it is not that striking but Figure A.18 confirms
this. First, note that the gap between low capacity and high capacity ISP values is
much smaller and overall levels are also a little higher compared to net neutrality. This
in turn naturally leads to less investment to capacity, too. Maybe the most interesting
is the clearly visible under-investment in high CP states where the ISP can extract the
most value from the CP.

Otherwise the rest is very similar to the net neutrality results with a slightly lower CP
value and investment. According to Figure A.19 the stationary distributions are also
similar with a little more mass on some congested states.
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Figure A.15: Prices and profits in the model with paid prioritization
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Figure A.16: Optimal priority fees in the model with paid prioritization
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Figure A.17: Market shares, consumer surplus and network traffic in the model with
paid prioritization
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Figure A.18: Value functions and investment in the model with paid prioritization
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Figure A.19: Stationary distributions in the model with paid prioritization
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