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1
Introduction

In this thesis, we will investigate some combinatorial and algebraic objects through
polynomial or probability theory. In the first part, we will investigate a kind of gen-
erating function for certain combinatorial objects. In the second part, we will examine
a probability generalization of normal subgroups (the invariant random subgroups) in
some self-similar groups.

As a usual strategy for investigating combinatorial objects, for example, the matchings
in a graph, independent sets in a graph, or the number of colorings, etc., one introduces
a polynomial that encodes the interesting quantities. In the case of finite objects, this
encoding can be given as a valuation or as the coefficients of a polynomial. As a
motivation, we choose the already well-studied problem of the number of matchings.
We call an edge set of a graph to be a matching if no two chosen edges share the same
endpoint. Let mk(G) be the number of matchings of size k in the graph, then

M(G, x) =
ν(G)

∑
k=0

mk(G)xk

is the modified matching polynomial of the graph G. We can also think about this
object as the normalization constant for the random matching Mx in G, where we
pick a random matching M ⊆ E(G) proportional to x|M|. In statistical physics, this
probability measure appears as the stationary distribution of a Markov process on the
matchings also known as Glauber dynamics. Also, observe that Mx is converging in
distribution to the uniform maximal matching as x → ∞.

As the main point of interest, on the one hand, one would like to see if there are any
characteristics of this probability measure that change abrupt (i.e. if there is a phase
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INTRODUCTION

transition) as we tune the parameter over all x > 0. On the other hand, the second
question is whether we can approximate the ’energy/entropy’ of the matchings, that is

H(Mx) =
log(M(G, x))
|V(G)| ?

Since counting matchings in a graph is a self-reducible problem, therefore by [43], the
approximation M(G, x) (or H(Mx)) is equivalent to the existence of a full polynomial
time almost uniform sampler of Mx (called FPAUS). This shows a connection between
the previous two questions. Thus, a natural construction of an FPAUS is to show that
the above mentioned Markov process has nice mixing properties [44, 53].

Another possible approach for capturing the lack of phase transitions is due to Barvi-
nok’s Taylor series approach [6] that was used in the work of Patel and Regts [56]. Their
designed approximation algorithm (FPTAS) is based on the observation that the mod-
ified matching polynomial of a class of graphs has no complex roots that accumulate
to [0, ∞). According to the celebrated theorem of Heilmann and Lieb [41], we know
that M(G, x) has only negative real roots. Therefore, for any reasonable graph family,
we will not observe a phase transition. Because of the success of the investigation of
the location of zeros of the matching polynomial, it might be worth to investigate other
graph polyomials as well. In this thesis, these polynomials will be the independence
polynomial and the partition function of the Potts model.

In the first chapter of this thesis, we will investigate the roots of the independence
polynomial, that is also known as the partition function of the hard-core lattice gas
model. This polynomial is defined similarly to the matching polynomial, but now
the coefficient of xk will count the number of independent sets of size k in G. As
a part of this chapter, we will give a relaxation of a theorem of Chudnovsky and
Seymour [23], and give a unified approach to prove whether graphs have only real-
rooted independence polynomial.

Then, in the next chapter, we consider a different partition function, the so-called Potts
model on q states. We will prove that if the number of colors q is at least e∆(G) + 1,
then the Potts model has no phase transition as b ∈ [0, 1]. In particular, we will prove
that the number of q colorings is approximable for graphs of degree at most ∆

The second part of the thesis will resemble the first part. To investigate some substruc-
tures of permutations, we will encode them into a polynomial, and prove some of its
properties. Fix a pattern σ ∈ Sk, and fix some positions I ⊆ [n], then we are interested
in the number and the growth rate of permutations π ∈ Sn, such that we start to see
the subpermutation σ only at the position i ∈ I. In this thesis, we will focus on the de-
scending positions. For a fixed permutation σ ∈ Sn, we define the descending positions
of σ as the set of indices {i ∈ [n− 1] | σi > σi+1}. We denote the number of elements
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CHAPTER 1

of Sn that have descending positions exactly at I by d(I, n). This can be regarded as a
function of n, and it was proven to be a polynomial in n (see [52]) of degree max(I).
Similarly to the chromatic polynomial, the coefficients of d(I, n) have combinatorial
meanings in different polynomial bases. We will also investigate the location of the
complex zeros of these descending polynomials.

The last part of the thesis is related to group theory, where we will prove some in-
teresting phenomena. We will consider self-similar groups acting on the infinite d-ary
tree, and we will show that it has continuum many distinct ergodic invariant random
subgroups, that form a conjugation invariant probability measure on the space of sub-
groups. The key idea is to understand the action of the subgroups on the boundary
of the tree, and gain information on the IRS. For instance, we will prove that if the
action on the boundary gives finite orbit-closure classes, then the IRS is just a random
conjugation of a finite indexed subgroup.

11

C
E

U
eT

D
C

ol
le

ct
io

n



INTRODUCTION

12

C
E

U
eT

D
C

ol
le

ct
io

n



2
Zeros of independence

polynomials

In this chapter, we will examine the independence polynomial, that is defined for every
graph G as

I(G, x) = ∑
k≥0

ik(G)xk,

where ik(G) denotes the number of independent sets of G of size k. We set i0(G) = 1,
since the empty set is always an independent set by definition. We can think about
I(G, x) as the generator function or weighted sum of independent sets of G, that is

I(G, x) = ∑
A∈F (G)

x|A|,

where F (G) is the set of subsets of G that are independent sets.

It is clear that this polynomial is not zero for any x ≥ 0, thus, one might wonder about
the root that is the closest to 0. It turns out that the shortest complex root −β(G) for
a connected graph is well defined (by that we mean it is a unique shortest complex
root), moreover, it is always negative (so β(G) > 0). Also, this parameter has a nice
monotonicity property:

Theorem 2.1. [32, 38] Let G be a connected graph. Then I(G, x) has a zero in the interval
[−1, 0), and let −β(G) be the largest among them. Then −β(G) is a simple zero of I(G, x),
and if ξ 6= −β(G) is a zero of I(G, x), then β(G) < |ξ|.

Theorem 2.2. [24] Let G be a connected graph and H be a proper subgraph of G. Then
β(H) > β(G).
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ZEROS OF INDEPENDENCE POLYNOMIALS

The proof of this monotonicity result depends on the observation that the Taylor series
of the fraction of independence polynomials of an induced subgraph and the whole
graph have alternating integer coefficients (in particular, it is a growth function of
some elements in a trace monoid [18, 32]).

Theorem 2.3. [24] Let G be a connected graph and H be an induced subgraph, then in the
following series

I(H, x)
I(G, x)

= ∑
k≥0

(−1)krk(G, H)xk,

for each k ≥ 0 the coefficients rk(G, H) are positive integers.

The previously mentioned theorems play the key role to prove that for a graph G of

maximum degree at most d the ball of radius βd = (d−1)d−1

dd doesn’t contain any roots
of I(G, x) (see [62] ). In other words, the ball of radius βd around 0 (called Shearer’s
disk) is a zero-free region for graphs of degree at most d.

For another theorem about the location of the roots of I(G, x) depending on some
structures of G, let us recall the matching polynomial as one of our main motivations.

For a graph G the matching polynomial is defined in a similar way as the independence
polynomial:

µ(G, x) = ∑
k≥0

(−1)kmk(G)xn−2k,

where m0(G) = 1, and if k ≥ 1, then mk(G) is the number of matchings with k edges.
One could also define as a transformation of an independence polynomial, that is

µ(G, x) = xn I(L(G),−x−2),

where L(G) denotes the line-graph of G.

When Heilmann and Lieb [41] introduced the theory of matching polynomials, they al-
ready noticed that matching polynomials show strong analogies with orthogonal poly-
nomials, and in some instances they are indeed orthogonal polynomials. For instance,
one can show that,

µ(Cn, x) = 2 · T(1)
n

( x
2

)
,

µ(Pn, x) = T(2)
n

( x
2

)
,

µ(Kn, x) = 2−n/2Hn(
x√
2
)

where T(1)
n , T(2)

n are the Chebyshev polynomials of the first and second kind, Hn is the
Hermitian polynomial; and Pn, Cn and Kn are respectively the path, the cycle and the
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CHAPTER 2

complete graph on n vertices. In [41] the following Christoffel–Darboux identities were
proved:

Theorem 2.4. Let G be a graph and u, v ∈ V(G). Let Pu,v be the set of paths from u to v,
and for a path P ∈ Pu,v let us denote by G − P the subgraph induced by the complement of
V(P) ⊆ V(G). Then

µ(G− u, x)µ(G− v, x)− µ(G, x)µ(G− u− v, x) = ∑
P∈Pu,v

µ(G− P, x)2.

Theorem 2.5. Let G be a graph and u ∈ V(G). Let Pu be the set of paths starting from u.
Then

µ(G, x)µ(G− u, y)− µ(G− u, x)µ(G, y) =

= (x− y) ∑
P∈Pu

µ(G− P, x)µ(G− P, y).

We remark that Theorem 2.5 provides a fast proof of the fact that all matching polyno-
mials have only real zeros.

In the first part of this chapter, we prove analogous statements for independence poly-
nomials and give a few corollaries along with Theorem 2.11, that is a slight extension
of a theorem of Chudnovsky and Seymour [23], which states that the independence
polynomial of a claw-free graph has only real roots.

Theorem 2.11. Let G be a graph and let B(G) be the set of connected induced subgraphs of G,
and denote bd(G) = max(A,B;F)∈B(G)(||A| − |B||). Then I(G, x) doesn’t have any root in

{
z ∈ C

∣∣∣ |arg(z)| < π

bd(G)

}
.

A graph is claw-free if it does not contain any induced K1,3 (see Figure 2.2), the com-
plete bipartite graph on 1 + 3 vertices. We also have to remark that this extends the
result of Heilmann and Lieb since the line-graph L(G) of any graph is known to be
claw-free.

It arises as a natural question, which trees have real rooted independence polynomials.
If we just check the condition of the Chudnovsky and Seymour theorem [23], we get
that claw-free trees can only be paths.

Again our motivation arises from the theory of matching polynomials. For the match-
ing polynomial, it is well known that for any finite graph G and u ∈ V(G) there exists
a rooted tree (T, r), such that

µ(G− u, x)
µ(G, x)

=
µ(T − r, x)

µ(T, x)
(2.1)

15
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ZEROS OF INDEPENDENCE POLYNOMIALS

1 2
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5

4

(a) A graph G with labeled vertices.

1

3

2

5

5

4 3

4 2 5

2 4 3

(b) Path tree of G from vertex 1. The labels of the vertices
denote endpoints of paths.

Figure 2.1: A graph with its path tree.

A well-known construction for T is the path-tree [36] (a.k.a. Godsil tree), which is the
tree on paths of G starting from u, and the edges are the strict inclusions. (For an
example, see Figure 2.1.)

In the middle part of this chapter, we will prove an ”independence version” of this
theorem through a quite similar construction. More precisely, we will show that there
exists a rooted tree (T′, r), such that

I(G− u, x)
I(G, x)

=
I(T′ − r, x)

I(T′, x)
.

We will call the constructed tree a stable-path tree. This construction already appeared
in the work of Scott and Sokal (see [62]) and a variant of this construction in the work
of Weitz (see [76]). We will see that the key property of a stable-path tree is that its
independence polynomial is a product of independence polynomials of some induced
subgraphs of G.

This construction gives us an approach that unifies most literature attempts to show
whether a tree has real-rooted independence polynomial. The construction also estab-
lishes that there is no difference if we restrict the roots of independence polynomials
of graphs of degree at most d for trees of a degree at most d.

In the last part of this chapter, we will define a new graph polynomial and show its
connection to the independence polynomial. The adjoint polynomial of a graph G, that
is

h(G, x) = ∑
k≤0

(−1)kak(G)xk,

where n is the number of vertices of G and ak(G) is the number of ways to partition
the vertices of G into n − k many complete subgraphs. The adjoint polynomial was
introduced by R. Liu [49] and it is studied in a series of papers ([14, 15, 78–80]).
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CHAPTER 2

The adjoint polynomial shows a strong connection with the chromatic polynomial [60].
More precisely the chromatic polynomial of the complement graph G of G is

ch(G, x) =
n

∑
k=1

ak(G)x(x− 1) . . . (x− k + 1).

The adjoint polynomial shows certain nice analytic properties. For instance, it has a
real zero whose modulus is the largest among all zeros. Zhao showed ([78]) that the
adjoint polynomial always has a real zero, furthermore, Csikvári proved ([25]) that the
largest real zero has the largest modulus among all zeros. He also showed that the
absolute value of the largest real zero is at most 4(∆− 1), where ∆ is the largest degree
of the graph G.

In this part, we will establish a connection between the independence and adjoint
polynomial (similar as between the independence and matching polynomial), in the
sense that for any graph G we will construct an auxiliary graph Ĝ, such that

h(G, x) = xn I(Ĝ,−1/x).

This correspondence will enable us to use the rich theory of independence polynomials
to study the adjoint polynomials. In particular, we give new proofs of the aforemen-
tioned results Liu and Csikvári.

Throughout of this chapter we will use the following notations.

• For a graph G and u, v ∈ V(G), let dG(u, v) denote the length of the shortest path
from u to v in G, if it exists, or else let it be ∞.

• For H ⊆ G, let N[H] = {v ∈ V(G) | ∃u ∈ V(H), dG(u, v) ≤ 1} be the closure of
H.

• If S ⊆ V(G), then G[S] denotes the induced subgraph of G on the vertex set S,
and G− S denotes G[V(G)− S].

• Let us denote the set of induced connected, bipartite subgraphs of G by B(G).

• Let Bu(G) = {H ∈ B | u ∈ V(H)}, and for a graph H ∈ Bu(G), let Au(H) be the
color class containing u, and let Bu(H) = V(H) \ A(H), |Au(H)| = au(H) and
|Bu(H)| = bu(H).

• For u 6= v ∈ V(G) let Bu,v(G) = Bu(G) ∩ Bv(G).

If G is clear from the context, we simply write B, Bu or Bu,v instead of B(G), Bu(G) or
Bu,v(G).
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ZEROS OF INDEPENDENCE POLYNOMIALS

1 Christoffel–Darboux type identities for the independence poly-
nomial

The aim of this section is to prove analogous statements of the Christoffel-Darboux
identities for independence polynomials and to give a new proof and a possible relax-
ation of a theorem of Chudnovsky and Seymour [23], which states that the indepen-
dence polynomial of a claw-free graph has only real roots.

We will prove the following theorems.

Theorem 2.6. Let G be a graph, and u, v ∈ V(G). Then

I(G− u, x)I(G− v, x)− I(G, x)I(G− u− v, x) =

= ∑
H∈Bu,v

(−1)dH(u,v)+1x|V(H)| I(G− N[H], x)2.

Theorem 2.7. Let G be a graph, and u ∈ V(G). Then

I(G, x)I(G− u, y)− I(G− u, x)I(G, y) =

= ∑
H∈Bu

I(G− N[H], x)I(G− N[H], y)(xau(H)ybu(H) − xbu(H)yau(H)).

As it appears, one might try to prove all the previous theorems by examining the
union of two special sets in G, that are either matchings (Theorems 2.4 and 2.5) or
independent sets (Theorems 2.6 and 2.7). In particular, the union of two matchings is
a collection of cycles and paths, whereas the union of two independent sets induces a
bipartite graph.

A special case of Theorem 2.6 is related to the so-called Merrifield–Simmons conjecture.
This conjecture asserts that for every graph G and u, v ∈ V(G), the sign of

I(G− u, 1)I(G− v, 1)− I(G, 1)I(G− u− v, 1)

depends only on the parity of the distance of u and v in G. This was claimed to be
true without proof in their book [54], and became known as the Merrifield–Simmons
conjecture. This conjecture turned out to be false for general graphs, as it was pointed
out in [40]. On the other hand, the conjecture is true for bipartite graphs [71]. Now
we see that Theorem 2.6 implies a slight generalization of this result. Suppose that the
length of every path in G from u to v has the same parity, then (−1)dG(u,v) = (−1)dH(u,v)

for every H ∈ Bu,v. In particular, if G is bipartite, then for every u, v ∈ V(G) the parity
of all paths from u to v are the same.
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CHAPTER 2

Corollary 2.8. Let G be a bipartite graph, and u, v ∈ V(G) and x ∈ R+. Then

sgn
[
I(G− u, x)I(G− v, x)− I(G, x)I(G− {u, v}, x)

]
=





1 if dG(u, v) is odd;

0 if dG(u, v) = ∞;

−1 if dG(u, v) is even.

For an H ∈ B(G), let us denote one of its color classes by A(H) and the other by B(H).
Let a(H) = |A(H)| and b(H) = |B(H)|. The following statements are consequences of
Theorem 2.6 and 2.7 using the facts (see, e.g. [47]) that

I′(G, x) = ∑
u∈V(G)

I(G− N[u], x),

and
I(G, x) = I(G− u, x) + xI(G− N[u], x).

Corollary 2.9. Let G be a graph and u ∈ V(G). Then

xI′(G− u, x)I(G, x)− xI(G− u, x)I′(G, x) =

= ∑
H∈Bu

(bu(H)− au(H))x|V(H)| I(G− N[H], x)2,

and

x2 I′(G, x)2 − x2 I′′(G, x)I(G, x)− xI′(G, x)I(G, x) =

= − ∑
H∈B

(a(H)− b(H))2x|V(H)| I(G− N[H], x)2.

Theorem 2.10. Let G be a graph. Then

xI′(G, x)I(G, y)− yI(G, x)I′(G, y) =

= ∑
H∈B

(a(H)− b(H))I(G− N[H], x)I(G− N[H], y)(xa(H)yb(H) − xb(H)ya(H)).

At this point we would like to emphasize the difference between the use of au(H) and
a(H). In case of a(H) it is allowed to choose any of the color classes of the bipartite
graph H. It also means that the choice of A(H) and B(H) does not affect the two
previous formulae. However, in the case of au(H), we have a fixed vertex u, and au(H)

denotes the color class that contains u.

Let us recall that, for a fixed graph G the quantity bd(G) is the maximum of |a(H)−
b(H)|, where the maximum is taken over all induced connected bipartite subgraph of
G.
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ZEROS OF INDEPENDENCE POLYNOMIALS

The proof of Corollary 2.9 can be found in [37] for matching polynomials and goes
quite similarly for independence polynomials. Therefore we will not give the detailed
proof of it. In the proof of Theorem 2.10 we will follow an argument similar to the one
given in [37] for matching polynomials.

Then as an application of Theorem 2.10, we will prove the following theorem that
generalize the theorem of Chudnovsky and Seymour [23], see Subsection 1.3.

Theorem 2.11. Let G be a graph. Then I(G, x) doesn’t have any root in
{

z ∈ C

∣∣∣ |arg(z)| < π

bd(G)

}
.

Another similar proof of this theorem can be found in [46], which concerns the gen-
eralization of the “Mehler-formula” of orthogonal polynomials for independence and
matching polynomials.

This section is organized as follows. In the next section we prove Theorem 2.6, Theo-
rem 2.7 and Theorem 2.10. In the third section we prove Theorem 2.11.

1.1 Proof of the Christoffel–Darboux identities

The main idea of the proofs is that we think about I(G, x) as a generating function of
the independent subsets of G. We mean by that

I(G, x) = ∑
A∈F (G)

x|A|,

where F (G) is the set of independent subsets in G. In other words, we give weight
x|A| to each A ∈ F (G), and write I(G, x) for the total weight of F (G).

As a corollary we see that for any two graphs G, H, the polynomial I(G, x)I(H, x) can
be thought of as a generating function of pairs of independent subsets from G and H,
that is

I(G, x)I(H, x) = ∑
(A,B)∈F (G)×F (H)

x|A|+|B|.

By considering the difference of two products of the similar form, we will find pairs
appearing in each summation with the same weight, therefore those terms can be
simultaneously eliminated. As we will see, it might happen that we use this argument
repeatedly.

We would also like to remark that if we take two independent subsets of G, then their
union induces a bipartite subgraph of G.
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CHAPTER 2

Proof of Theorem 2.6. Let F (G) be the set of the independent sets of G.

Let

F1 = F (G− u)×F (G− v),

F2 = F (G)×F (G− u− v).

By definition I(G, x) is equal to ∑
A∈F (G)

x|A|. Then the left hand side of the identity

yields: (
∑

(A,B)∈F1

x|A|+|B|
)
−
(

∑
(A,B)∈F2

x|A|+|B|
)

. (2.2)

If A, B ∈ F (G) and z ∈ A ∩ B, then dG[A∪B](z) = 0 and G[A4 B] is a bipartite graph
with color classes A \ B and B \ A.

Let us observe the following equivalences:

• (A, B) ∈ F1 and u, v /∈ A ∪ B ⇔ (A, B) ∈ F2 and u, v /∈ A ∪ B

• (A, B) ∈ F1 and u /∈ A ∪ B 3 v ⇔ (A, B) ∈ F2 and u /∈ A ∪ B 3 v

• (A, B) ∈ F1 and v /∈ A ∪ B 3 u ⇔ (B, A) ∈ F2 and v /∈ A ∪ B 3 u

Now we can reformulate (2.2) with the following notations.

Let

F ′1 = {(A, B) ∈ F1 | u, v ∈ A ∪ B},
F ′2 = {(A, B) ∈ F2 | u, v ∈ A ∪ B}.

Then by the previous equivalences we have a natural bijection between F1 \ F ′1 and
F2 \ F ′2, therefore these terms eliminate each other. Thus, (2.2) is equal to:


 ∑

(A,B)∈F ′1
x|A|+|B|


−


 ∑

(A,B)∈F ′2
x|A|+|B|


 . (2.3)

Suppose that (A, B) ∈ F ′1 and u and v are not in the same connected component of
G[A ∪ B]. Let us switch the colors only in the component of v, by which we mean that
the new independent sets A′ and B′ are

A′ = A4 {w ∈ A ∪ B | dG[A∪B](v, w) < ∞},
B′ = B4 {w ∈ A ∪ B | dG[A∪B](v, w) < ∞}.
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ZEROS OF INDEPENDENCE POLYNOMIALS

Then u, v ∈ A′ ∈ F (G) and u, v /∈ B′ ∈ F (G), thus, (A′, B′) ∈ F ′2 and |A| + |B| =
|A′|+ |B′|. It is easy to see that every pair is canceled, where u and v are not in the
same connected component.

Let

F ′′1 = {(A, B) ∈ F ′1 | dG[A∪B](u, v) < ∞},
F ′′2 = {(A, B) ∈ F ′2 | dG[A∪B](u, v) < ∞}.

We can therefore rewrite (2.3) as


 ∑

(A,B)∈F ′′1
x|A|+|B|


−


 ∑

(A,B)∈F ′′2
x|A|+|B|


 . (2.4)

Let us observe, that if (A, B) ∈ F ′′1 , then dG[A∪B](u, v) is odd, and if (A, B) ∈ F ′′2 ,
then dG[A∪B](u, v) is even. Therefore if A, B are independent sets of G, their union
contains u and v, and they are in the same component of the induced graph, then we
can decide whether (A, B) ∈ F ′′1 or (A, B) ∈ F ′′2 . For (A, B) ∈ F ′′1 ∪ F ′′2 , let P(A, B)
be the connected component of u and v in the induced graph G[A ∪ B]. Thus, (2.4) is
equal to


 ∑

(A,B)∈F ′′1
(−1)dG[A,∪B](u,v)+1x|A|+|B|


+


 ∑

(A,B)∈F ′′2
(−1)dG[A,∪B](u,v)+1x|A|+|B|


 =

=


 ∑

(A,B)∈F ′′1 ∪F ′′2
(−1)dP(A,B)(u,v)+1x|P(A,B)|x|A|+|B|−|P(A,B)|


 . (2.5)

We can rearrange the summation by first collecting the possible subsets of vertices of
G of the form P(A, B) for (A, B) ∈ F ′′1 ∪ F ′′2 . Observe that P(A, B) is an element of
Bu,v, moreover A \ P(A, B) and B \ P(A, B) are independent subsets in G−N[P(A, B)].
Then (2.5) is equal to

∑
H∈Bu,v

(−1)dH(u,v)+1x|V(H)|
(

∑
A,B∈F (G−N[H])

x|A|+|B|
)

=

= ∑
H∈Bu,v

(−1)dH(u,v)+1x|V(H)| I(G− N[H], x)2.
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Proof of Theorem 2.7. We will use the same argument as in the previous proof. Let F (G)

be the set of independent sets and let F ′ = F (G)×F (G− u). Then the left hand side
is equal to

∑
(A,B)∈F ′

x|A|y|B| − ∑
(A,B)∈F ′

x|B|y|A|. (2.6)

If (A, B) ∈ F ′ and u /∈ A, then (B, A) ∈ F ′. Let F ′′ = F ′ \ (F (G− u)×F (G− u)).

Then (2.6) is equal to

∑
(A,B)∈F ′′

x|A|y|B| − ∑
(A,B)∈F ′′

x|B|y|A|. (2.7)

Note that for all (A, B) ∈ F ′′, u is always in A and u /∈ A ∩ B.

Let P(A, B) be the connected component of the graph induced by the set A ∪ B that
contains u. Then for the first sum we can write the following:

∑
(A,B)∈F ′′

x|A|y|B| =

= ∑
(A,B)∈F ′′

xau(P(A,B))ybu(P(A,B))x|A|−au(P(A,B))y|B|−bu(P(A,B)). (2.8)

Similarly as before, we can rearrange the summation by first collecting all subsets of
vertices of G of the form P(A, B) for (A, B) ∈ F ′′. Thus, (2.8) is equal to

∑
H∈Bu

xau(H)ybu(H) ∑
K,L∈F (G−N[H])

x|K|y|L| =

= ∑
H∈Bu

xau(H)ybu(H) I(G− N[H], x)I(G− N[H], y).

We get the same formula for the second sum.

∑
(A,B)∈F ′′

x|B|y|A| =

= ∑
H∈Bu

yau(H)xbu(H) I(G− N[H], y)I(G− N[H], x)

Then (2.7) is equal to

∑
H∈Bu

(xau(H)ybu(H) − yau(H)xbu(H))I(G− N[H], x)I(G− N[H], y).
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Proof of Theorem 2.10. We use the facts that

I′(G, x) = ∑
u∈V(G)

I(G− N[u], x),

and
I(G, x) = I(G− u, x) + xI(G− N[u], x).

Let n = |V(G)|. By combining these two formulae we get

∑
u∈V(G)

I(G− u, x) = nI(G, x)− xI′(G, x).

Let us sum both sides of the identity of Theorem 2.7 for all u ∈ V(G) and apply the
above identities. For the left hand side, we get

∑
u∈V(G)

(I(G, x)I(G− u, y)− I(G− u, x)I(G, y)) =

= I(G, x) ∑
u∈V(G)

I(G− u, y)− I(G, y) ∑
u∈V(G)

I(G− u, x) =

= I(G, x)(nI(G, y)− yI′(G, y))− I(G, y)(nI(G, x)− xI′(G, x)) =

= xI′(G, x)I(G, y)− yI(G, x)I′(G, y).

Now we sum up the right hand side, which is

∑
u∈V(G)

∑
H∈Bu

(xau(H)ybu(H) − yau(H)xbu(H))I(G− N[H], x)I(G− N[H], y) =

= ∑
H∈B

(a(H)− b(H))(xa(H)yb(H) − ya(H)xb(H))I(G− N[H], x)I(G− N[H], y).

1.2 Proof of Theorem 2.11

We will prove Theorem 2.11 by induction on the number of vertices of G, using The-
orem 2.10 to prove the induction step. Also the statement is true for the graph with
one vertex, since its independence polynomial is 1 + x. So let G be a graph on n ≥ 2
vertices, and assume that the statement is true for graphs with at most n− 1 vertices.

Suppose by contradiction there is a graph G on n vertices, that doesn’t satisfies the
statement. So there exists complex number ξ, such that 0 < arg(ξ) < π

bd(G)
, since
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I(G, x) has positive coefficients. Then using the identity of 2.10 for x = ξ and y = ξ̄,
we obtain that

ξ I′(G, ξ)I(G, ξ̄)− ξ̄ I(G, ξ)I′(G, ξ̄) = (2.9)

∑
H∈B

2(a(H)− b(H))|ξ|2b(H)|I(G− N[H], ξ)|2=(ξa(H)−b(H))i

First of all the left hand side is 0, since I(G, x) has real coefficients. Moreover, G−N[H]

is an induced subgraph of G on fewer vertices and bd(G− N[H]) ≤ bd(G), so by the
induction hypothesis I(G − N[H], ξ) 6= 0. Since d=(ξd) > 0 for any 0 < |d| ≤ bd(G)

and B contains one vertex subgraphs, therefore the right hand side all the members of
the product is positive multiple of i, this contradiction proves the induction step.

1.3 Roots of some graph families

In this section, we will give a few applications of Theorem 2.11, that will cover the
Chudnovsky-Seymour theorem about claw-free graphs and fork-free graphs.

In [16], the authors investigated graphs G (called stable graphs), such that all complex
roots of I(G, x) are in the left half plane. In other words, there is no complex root whose
argument’s absolute value is smaller than π

2 . We immediately see by Theorem 2.11, that
if bd(G) ≤ 2, then G is stable. Since bd(G) ≤ 2 is a hereditary property of graphs,
one might characterize this class of graphs with forbidden induced subgraphs. This
list will consist of infinitely many trees that are 2 claws connected by a path, where the
distance between the centers of the claws is even (possibly 0).

Our next corollary can be viewed as a generalization of Proposition 2.1 of [16] for
arbitrary α(G).

Corollary 2.12. Let G be a graph. Then I(G, x) doesn’t have any root in
{

z ∈ C

∣∣∣ |arg(z)| < π

α(G)− 1

}
,

where α(G) is the independence number (i.e. the degree of I(G, x)).

Proof. If we take any connected induced bipartite subgraph of G with color classes
A, B, then A and B are independent sets of G. So we have that 1 ≤ |A| ≤ α(G) and
1 ≤ |B| ≤ α(G), so ||A| − |B|| ≤ α(G)− 1. So we proved that bd(G) ≤ α(G)− 1.

Next, we prove the Chudnovsky-Seymour theorem about claw-free graphs [23].
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ZEROS OF INDEPENDENCE POLYNOMIALS

Corollary 2.13. The independence polynomial of a claw-free graph G has only real roots.

Proof. It is enough to show that if H is an induced connected bipartite subgraph of G,
then ||A| − |B|| ≤ 1. Since H is induced subgraph of a claw-free graph, therefore H is
as well. But it implies that a degree of a vertex in a claw-free bipartite graph is at most
2, i.e. H is either a path of an even cycle. In both cases the difference of the color classes
is at most 1. So we proved, that bd(G) ≤ 1, i.e. I(G, x) has no root in C \R−.

A possible extension of the previous is to forbid the fork graph (a tree on 5 vertices is
in Figure 2.2). It was proposed as a question in [29], whether it is possible to design
an FPTAS based on the the work of [56] to approximate I(G, x) for fork-free graphs. In
order follow their work, first, one would need to find a open neighborhood of [0, ∞)

that doesn’t contain any roots of the independence polynomial of a fork-free graph.
Before giving a partially positive answer, we have a warning example for the existence
of such a region. If we take the sequence of complete graphs (they are also claw-
free), and their independence polynomials, that are I(Kn, x) = 1 + nx, then their roots
converge to 0.

However, if we restrict our attention to bounded degree graphs, then by a result of
Scott and Sokal [62], we get an open zero-free region around 0. In the next statement,
we establish an open zero-free region for bounded degree fork-free graphs containing
(0, ∞).

(a) The claw graph K1,3. (b) The fork graph.

Figure 2.2: The claw and fork graphs.

Corollary 2.14. Let G be a fork-free graph of degree at most d. Then I(G, x) doesn’t have any
root in {

z ∈ C

∣∣∣ |arg(z)| < π

d− 1

}
.

Proof. It is enough to show that if H is a connected bipartite graph of degree at most d,
then ||A| − |B|| ≤ d− 1. One could use the classification of connected bipartite graphs
(see [29]) to obtain the statement. For the sake of completeness we will give a different
proof.

Let us assume that there exists a fork-free connected bipartite graph H of degree at
most d with color classes A, B, such that |A| ≥ |B|+ d. Since H is connected, therefore
there exists vertex u ∈ B with degree at least 3. If there would be a vertex v ∈ B, such
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that the distance between u, v is at least 4, then we would have a fork. Therefore we
may assume that for any v ∈ B the distance is 2 from u. If there would be a vertex
v ∈ B, such that |N(u) \ N(v)| ≥ 2, then we would also able to find a fork. So we may
assume that for any v ∈ B, |N(u) \ N(v)| ≤ 1. It immediatly implies that for any v ∈ B
the neighborhood has size at least 2 and also |N(v) \ N(u)| ≤ 1.

But we claim that it is impossible, since

d + |B| ≤ |A| = | ∪v∈B N(v)| ≤ |N(u)|+ ∑
u 6=v∈B

|N(v) \ N(u)| ≤ d + |B| − 1.

So we obtained that for any fork-free connnected bipartite graph of degree at most d
has difference at most d− 1 between its sides, i.e. bd(G) ≤ d− 1.

2 Independence polynomial of some trees

In this section, we study the independence polynomials of trees. For trees, it is a well
known conjecture that the sequence (ik(T))k≥0 is unimodal [3].

Recall that a sequence (bk)
n
k=0 is unimodal ([68]), if there exists an index k, such that

b0 ≤ b1 ≤ · · · ≤ bk−1 ≤ bk ≥ bk+1 ≥ · · · ≥ bn.

A stronger property for positive sequences is the so called log-concavity: for any i such
that 0 < i < n, we have b2

i ≥ bi−1bi+1. An even stronger property is the real-rootedness
of the polynomial p(x) = ∑n

i=0 bixi (any complex zero of the polynomial is real). This
prompted many mathematicians to study trees with real-rooted independence poly-
nomials. In this section, we show a general method to construct such trees or prove
real-rootedness.

In particular, we will give a new proof for real-rootedness of the independence polyno-
mials of certain families of trees, which includes centipedes (Zhu’s theorem, see [82]),
caterpillars (Wang and Zhu’s theorem, see [75]), and we will prove a conjecture of
Galvin and Hilyard about the real-rootedness of the independence polynomial of the
Fibonacci trees (Conj. 6.1. of [35]).

Recall that the n-centipede Wn is a graph (Fig. 2.3a), such that we take a path on n
vertices and we hang 1 pendant edge from each vertex of it. Similarly, the n-caterpillar
Hn is the graph (Fig. 2.3b) obtained by taking a path on n vertices and by hanging 2
pendant edges from each vertex of it. The Fibonacci trees were defined by Wagner [74]
as follows (Fig. 2.3c): let F0 = K1 and F1 = K2 with roots r0 ∈ V(F0) and r1 ∈ V(F1).
Then for n ≥ 2 the nth Fibonacci tree Fn is obtained from the disjoint union of Fn−1,
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. . .

(a) The centipede

. . .

(b) The caterpillar

r4

r3

r2

r1

r0

(c) The first 5 Fibonacci trees

Figure 2.3: Some families of trees

Fn−2 and a new vertex, labeled by rn and connecting rn to the roots of Fn−1 and Fn−2.
Define rn as the root of Fn.

Motivated by theorems for matching polynomials as described in the beginning of this
chapter we will show that there exists a rooted tree (T′, r), such that

I(G− u, x)
I(G, x)

=
I(T′ − r, x)

I(T′, x)
.

We will call the constructed tree a stable-path tree. We will see that the key property
of a stable-path tree is that its independence polynomial is a product of independence
polynomials of some induced subgraphs of G. We will realize all the previously men-
tioned trees as stable-path trees of some graph G. Therefore, to understand the roots
of those trees, it is enough to understand the location of the roots of the induced sub-
graphs of G.

In particular, in Corollary 2.13 we proved that claw-free graphs have only real-rooted
independence polynomial. Since any induced subgraph of a claw-free graph is also
claw-free, this enables us to conclude that any stable-path tree of a claw-free graph
has real-rooted independence polynomial. In Section 2.2, we will construct claw-free
graphs such that their stable-path trees will be n-centipedes, n-caterpillars and Fi-
bonacci trees. In the same section we will give further applications of this method.

This chapter is organized as follows: in the next section we will define stable-path trees
of graphs, and we will prove some properties of it. In the last section we will prove
real-rootedness of independence polynomials of certain graphs.
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2.1 Tree of stable paths

In this section we will give two variants of the definition of the stable-path tree, where
the first one is a special case of the latter one. For the applications it is enough to get
familiar with the first definition. But first let us recall the following properties of the
independence polynomial, which we will use intensively in the proofs. For proof see
[47].

Lemma 2.15. Let G be a graph with connected components G1, . . . , Gk, and let u ∈ V(G) be
a fixed vertex. Then

I(G, x) = I(G− u, x) + xI(G− NG[u], x)

I(G, x) =
k

∏
i=1

I(Gi, x)

Definition 2.16 (Tree of stable paths). Let G be a graph, where we have a total ordering ≺
on V(G) and let u ∈ V(G) fixed. Then we define a tree (T<

G,u, ū) as follows. Let us denote by
N(u) = {u1 ≺ · · · ≺ ud}, and let

Gi = G[V(G) \ {u, u1, v2, . . . , ui−1}]
(Ti, ri) = (T<

Gi ,ui
, ūi),

where we take the induced ordering of the vertices on V(Gi) for 1 ≤ i ≤ d. Consider the
disjoint unions of Ti with roots ri and a new vertex with label ū, and add edges (ū, ri) for
1 ≤ i ≤ d. In this way we gain a tree T<

G,u and let ū be the root of this tree. See an example in
Fig 2.4.

1 2

3

5

4

(a) A graph G with labeled vertices.

1 2

3

5

4 3

5

4

(b) The graph T<
G,1. The labels of the vertices denote end-

points of stable-paths.

Figure 2.4: A graph with its stable-path tree. The ordering on the vertices of G is induced by its labeling

Theorem 2.17. Let G be a graph, u ∈ V(G). Then for T = T<
G,u we have that

I(G− u, x)
I(G, x)

=
I(T − u, x)

I(T, x)
,
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Proof. We will prove the statement by induction on the number of vertices of G. If G
has exactly one vertex, then T<

G,u is constructed to be a graph with one vertex.

Let N(u) = {u1 ≺ · · · ≺ ud}, and then let Gi = G[V(G) \ {u, u1, v2, . . . , ui−1}] and
(Ti, ri) = (TGi ,ui

, ūi) for 1 ≤ i ≤ d as in the definition. Then

I(G, x)
I(G− u, x)

=
I(G− u, x) + xI(G− N[u], x)

I(G− u, x)
= 1 +

xI(G− N[u], x)
I(G− u, x)

=

1 + x
I(G− u− u1, x)I(G− u− {u1, u2}, x) . . . I(G− u− {u1, . . . , uk}, x)

I(G− u, x)I(G− u− u1) . . . I(G− u− {u1, . . . , uk−1})
=

1 + x
I(G1 − u1, x)

I(G1, x)
I(G2 − u2, x)

I(G2, x)
. . .

I(Gd − ud, x)
I(Gd, x)

=

1 + x
I(T1 − r1, x)

I(T1, x)
I(T2 − r2, x)

I(T2, x)
. . .

I(Td − rd, x)
I(Td, x)

=

I(T − r, x) + xI(T − N[r], x)
I(T − r, x)

=
I(T, x)

I(T − r, x)
.

We would like to remark that in all applications it will be enough to use this definition,
however, for the completeness we will give a a more general form.

The following construction already appeared in the work of Scott and Sokal (see [62]),
where they called the this tree as pruned SAW-tree.

Definition 2.18 (Tree of σ-stable paths). Let Pu be the set of paths from u in G, and let

AG,u = {(P, e) ∈ Pu × E(G) | P = (v0, . . . , vk), vk ∈ e}.

A function σ : AG,u → R is called deep decision if it satisfies the following condition: whenever
(P, e), (P, f ) ∈ AG,u and σ(P, e) = σ(P, f ), then e = f . Then a path P = (v0, v1, . . . , vk)

from u is σ-stable, if whenever (vi, vj) ∈ E(G) and i + 1 < j, then σ(P′, (vi, vi+1)) <

σ(P′, (vi, vj)), where P′ = (v0, . . . , vi) is a subpath. If the path P = (u, v1, . . . , vk) is stable
with respect to σ, then P′ = (u, v1, . . . , vk−1) is also stable with respect to σ.

Let Tσ
G,u be a tree, whose vertices are the σ-stable paths from u, and the edges correspond to the

strict inclusion. In that tree the path (u) (with length 0) appears, which we will denote by u.

To see the relation between the two definitions, let us assume, that G has a total or-
dering on its vertices, so we may assume, that (V(G),≺) = ({1, . . . , n},<). Then for a
(P, e) ∈ AG,u, such that P = (u, v1, . . . , vk) and e = (vk, vk+1) let σ(P, e) = vk+1. Then
it is easy to check that Tσ

G,u = T<
G,u. Indeed the second definition is a generalization of

the first one.
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For the completeness we will prove Theorem 2.17 also for the generalized σ-stable-path
tree.

Theorem 2.19. Let G be a graph, u ∈ V(G) and let σ : AG,u → R be a deep decision. Then
for T = Tσ

G,u we have that
I(G− u, x)

I(G, x)
=

I(T − u, x)
I(T, x)

,

Proof. We will prove the statement by induction on the number of vertices. If G has
exactly one vertex, then Tσ(G, u) is constructed to be a graph with one vertex.

Furthermore we may assume that G is connected, since if G1, . . . , Gk are the connected
components of G, where u ∈ V(G1), then by using the multiplicity of the independence
polynomial, we have:

I(G− u, x)
I(G, x)

=
I(G1 − u, x)I(G2, x) . . . I(Gk, x)

I(G1, x)I(G2, x) . . . I(Gk, x)
=

I(G1 − u, x)
I(G1, x)

.

and by AG,u = AG1,u we have that Tσ(G1, u) = Tσ(G, u), which is the appropriate tree.

For the rest assume that G is connected. Then let N(u) = {u1, . . . , ud} in such a
way, such that σ(u, (u, ui)) < σ(u, (u, uj)), whenever 1 ≤ i < j ≤ d. Then for any
1 ≤ i ≤ d and for any (P, e) ∈ AG−{u,u1,...,ui−1},ui

let σi be defined as follows (where
P = (ui, v1, . . . , vk)):

σi(P, e) = σ((u, ui, v1, . . . vk), e).

Then

I(G, x)
I(G− u, x)

=
I(G− u, x) + xI(G− N[u], x)

I(G− u, x)
= 1 +

xI(G− N[u], x)
I(G− u, x)

=

1 + x
I(G− u− u1, x)I(G− u− {u1, u2}, x) . . . I(G− u− {u1, . . . , ud}, x)

I(G− u, x)I(G− u− u1) . . . I(G− u− {u1, . . . , ud−1})
=

1 + x
I(G− u− u1, x)

I(G− u, x)
I(G− u− {u1, u2}, x)

I(G− u− u1)
. . .

I(G− u− {u1, . . . , ud}, x)
I(G− u− {u1, . . . , ud−1})

=

1 + x
I(Tσ1

G−u,u1
− u1, x)

I(Tσ1
G−u,u1

, x)

I(Tσ2
G−u−u1,u2

− u2, x)

I(Tσ2
G−u−u1,u2

, x)
. . .

I(Tσd
G−u−{u1...ud−1},ud

− ud, x)

I(Tσd
G−u−{u1 ...ud−1},dk

, x)
=

I(T, x)
I(T − r, x)

,

where T is a tree that is obtained from a star with k leaves, whose root is r, and the ith
leaf is glued to the root of Tσi

G−u−{u1 ...ui−1},ui
.
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ZEROS OF INDEPENDENCE POLYNOMIALS

On the other hand, this T is isomorphic to Tσ
G,u, since any σ-stable path P = (u, ui, v1, . . . ,

vk) (specially, if 1 ≤ j < i, then uj /∈ {v1, . . . , vk}) the path P′ = (ui, v1, . . . , vk) is σi-
stable. And for any σi-stable path P′ = (ui, v1, . . . , vk) is a P = (u, ui, v1, . . . , vk) σ-stable
path. So

I(T − r, x)
I(T, x)

=
I(Tσ

G,u − u, x)
I(Tσ

G,u, x)

We would like to remark that Weitz’s construction of the self-avoiding path tree is
a special case of the previously defined stable-path tree of a deep decision. Let φ :
E(G) → {1, . . . , m} bijection, where m = |E(G)|. Then for a (P, e) ∈ AG,u let σ(P, e) =
φ(e). Then Tσ

G,u is the Weitz-tree.

Remark 2.20. Observe that if we have a deep decision for a connected graph, then we can
perform the DFS-algorithm with respect to σ, in the following way. Whenever we arrive into
the vertex v along the path P and there is an unvisited neighbor of v, then we will move to that
unvisited vertex w for which σ(P, (v, w)) is the smallest.

Formally, let us assume, that there is a given connected graph G, u ∈ V(G) and a deep decision
σ from u. Then one can construct a spanning tree FG,u,σ (call as σ-DFS tree of G) as follows. Let
G1, . . . , Gk be a the connected components of G − u, ui = argminv∈V(Gi)∩NG(u)(σ(u, (u, v)))
for 1 ≤ i ≤ k and the functions σi : AGi ,ui → R are

σi((ui, v1, . . . , vk), e) = σ((u, ui, v1, . . . , vk), e).

Then we gain FG,u,σ as we take the disjoint union of FGi ,ui ,σi for 1 ≤ i ≤ k and we connect a
new vertex called u with ui for 1 ≤ i ≤ k.

By induction we can prove the following properties of a stable-path tree.

Proposition 2.21. Let G be a connected graph, u ∈ V(G), σ a deep decision, and let F be a
σ-DFS tree. Denote by F the set of paths from u in F (they are σ-stable paths). Then

1. there exists a sequence G1, . . . , Gk of induced subgraphs of G, such that

I(Tσ
G,u, x) = I(G, x)I(G1, x) . . . I(Gk, x),

2. and

I(G, x) =
I(Tσ

G,u)

I(Tσ
G,u − F, x)

.

Proof. We will prove the first part by induction on the number of vertices of G. The
proof of the second part goes similarly. From the proof of the previous theorem (and
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with its notations) we know that

I(Tσ
G,u, x) =

I(G, x)
I(G− u, x)

I(Tσ
G,u − u, x) =

I(G, x)
I(G− u, x)

I(Tσ1
G−u,u1

, x)I(Tσ2
G−{u,u1},u2

, x) . . . I(Tσd
G−{u,u1,...ud−1},ud

, x) =

I(G, x)
I(G− u, x)

d

∏
i=1

li

∏
j=0

I(Gi
j, x),

where Gi
0 is the connected component of G− {u, u1, . . . , ui−1}, which contains ui; and

each Gi
j is an induced subgraph of Gi

0. So each Gi
j is an induced subgraph of G. Let

{H1, . . . , Ht} the set of connected components of G− u, and

I = { min
ui∈V(Hj)

(i) | 1 ≤ j ≤ t}.

By definition of I we have that the set {Gi
0 | i ∈ I} is the set of connected components

of G− u. This implies that the product ∏i∈I I(Gi
0, x) = I(G− u, x), therefore

I(Tσ
G,u, x) = I(G, x)∏

i∈I′
I(Gi

0, x)
d

∏
i=1

li

∏
j=1

I(Gi
j, x), (2.10)

where I′ = {1, . . . , d} \ I.

Remark 2.22. Sometimes, it is useful to follow the induction to determine explicitly the multi-
plicites of the subgraphs occuring in the formula (2.10).

2.2 Applications of stable-path tree

In this section we will present various applications of the following corollary of Propo-
sition 2.21:

Corollary 2.23. Let G be a graph, v ∈ V(G), and let σ be a deep decision. If G is a claw-free
graph, then I(Tσ

G,u, x) is real-rooted. Moreover I(G, x) divides I(Tσ
G,u, x).

Proof. Assume that G is a claw-free graph. Then by Proposition 2.21 we have a sequence
of induced subgraphs G1, . . . , Gk of G, such that

I(Tσ
G,u) = I(G, x)

k

∏
i=1

I(Gi, x).
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ZEROS OF INDEPENDENCE POLYNOMIALS

Since each Gi is an induced subgraph of a claw-free graph, therefore it is also claw-
free. Then by Corollary 2.13, we have that each polynomial I(Gi, x) and the polynomial
I(G, x) are real-rooted, so their product is also real rooted.

In this section will show some applications of this corollary. In all applications, of
Corollary 2.23 the vertices of G will be labelled by integers. This labeling will induce a
total order on the vertices in the most natural way, the order of two vertices will be the
order of their labels.

Trees with real-rooted independence polynomial

In this subsection we will show that some families of trees have real-rooted indepen-
dence polynomials.

Definition 2.24. Let us recall that, the n-centipede Wn is a graph such that we take a path on
n vertices and we hang 1 pendant edge from each vertex of it.

The n-caterpillar Hn is a graph such that we take a path on n vertices and we hang 2 pendant
edges from each vertex of it.

The Fibonacci tree F0 = K1 and F1 = K2 with roots r0 ∈ V(F0) and r1 ∈ V(F1). Then for
n ≥ 2 the nth Fibonacci tree Fn is obtained from the disjoint union of Fn−1, Fn−2 and a new
vertex, labeled as rn, and connecting rn to the roots of Fn−1 and Fn−2. Define rn as the root of
Fn.

The proof of the real-rootedness of the independence polynomial of Wn was in [82],
then a unified proof for Wn and Hn appeared in [75]. The statement for Fn was verified
in [35] for n ≤ 22, and conjectured for arbitrary n. Our proofs will follow the following
strategy: for each mentioned T tree we will define a claw-free graph G̃ with integer
labels, such that the stable-path tree of G̃ from one of its vertex will be isomorphic to
T.

Proposition 2.25. For any n, the independence polynomial of Wn is real-rooted, hence log-
concave and unimodal.

Proof. Let W̃n be a graph (Fig. 2.5), such that we take a path on {1, . . . , n} and we attach
a triangle to every (2k + 1)th edge of the path. If n is odd, then we attach a pendant
edge to n. Also label all the new vertices by numbers bigger than n.

These graphs are claw-free, and

T<
W̃n,1
∼= Wn.
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. . .
1 2 3 n− 2 n− 14

n + 1 n + 3

n

2n− 1

(a) The graph W̃n, when n is even

. . .
1 2 3 n− 2 n− 14

n + 1 n + 3

n

2n− 2 2n

(b) The graph W̃n, when n is odd

Figure 2.5: The graph family W̃n

Therefore by Corollary 2.23 we have the desired statement.

Proposition 2.26. For any n, the independence polynomial of Hn are real-rooted, hence log-
concave and unimodal.

Proof. Let H̃n be a graph (Fig. 2.6), such that we take a path on {0, . . . , n + 1} and we
attach a triangle to each edge, which is not the first or the last. Also label all the new
vertices with numbers bigger than n.

. . .
0 1 2 n− 1 n3 n + 1

n + 2 n + 3 2n

Figure 2.6: The graph H̃n

These graphs are claw-free, and

T<
H̃n,0
∼= Hn.

Therefore by Corollary 2.23 we have the desired statement.

Proposition 2.27. For any n, the independence polynomial of Fn are real-rooted, hence log-
concave and unimodal.

Proof. Let F̃n be a graph (Fig. 2.7), such that we take the set {0, . . . , n − 1} and we
connect i and j if 0 < |i− j| ≤ 2.

. . .
0 1 2 n− 3 n− 23 n− 1

Figure 2.7: The graph F̃n

These graphs are claw-free, and

T<
F̃n,0
∼= Fn.
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ZEROS OF INDEPENDENCE POLYNOMIALS

Therefore by Corollary 2.23 we have the desired statement.

Remark 2.28. If someone carefully examine the formula (2.10), then one might get the following
identities:

I(Wn, x) = I(W̃n)(1 + x)bn/2c,

I(Hn, x) = I(H̃n)(1 + x)n−2,

I(Fn, x) =
n

∏
k=0

I(F̃k, x) fn−k ,

where f0 = 1, f1 = 0 and fn = fn−1 + fn−2 for n ≥ 1.

Some real-rooted graph families

In this subsection we show another approach to verify real-rootedness of independence
polynomials of some graphs. The idea is that for a graph G we construct a stable-path
tree T, which is real-rooted. Then by Corollary 2.23 we know that I(G, x) divides
I(T, x), so it means that I(G, x) is also real-rooted.

Definition 2.29. Let us define the following graph families.

The nth apple graph An is a graph (Fig. 2.8a), such that we take a path on {1, . . . , n}, and we
add the edge (2, n).

The n-sunlet graph Nn is a graph (Fig. 2.8b), such that we take a cycle on {1, . . . , n}, and we
attach a new vertex to each vertex of the cycle. Also label all the new vertices with numbers
bigger than n.

Let Mn be a graph (Fig. 2.9), such that we take a path on {1, . . . , n}, and we attach 2 triangles
to any 2k + 1th edge of the path. If n is odd, then we attach 2 pendant edges to n. For the new
vertices choose different numbers greater than n as labels.

. . .
1 2 3 n− 2 n− 14 n

(a) The apple graph (An)

. . .

(b) The sunlet graph (Nn)

Figure 2.8: Some graph families

A proof for real-rootedness of the independence polynomial of Mn and Nn was given
in [75].
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. . .

(a) The graph Mn, when n is even

. . .

(b) The graph Mn, when n is odd

Figure 2.9: The graph family Mn

Proposition 2.30. For any n, the independence polynomial of Mn is real-rooted, hence log-
concave and unimodal.

Proof. By Proposition 2.26 we have that Hn has real-rooted independence polynomial.
However we can see that

T<
Mn,1
∼= Hn.

By Corollary 2.23 we know that I(Mn, x) divides I(Hn, x), which implies, that I(Mn, x)
is real-rooted polynomial.

Proposition 2.31. For any n, the independence polynomial of Nn is real-rooted, hence log-
concave and unimodal.

Proof. By Proposition 2.25 we have that Wn has real-rooted independence polynomial.
However we can see that

T<
Nn,1
∼= W2n−1.

By Corollary 2.23 we know that I(Nn, x) divides I(W2n−1, x), which implies, that I(Nn, x)
is real-rooted polynomial.

Proposition 2.32. For any n ≥ 4, the independence polynomial of An is real-rooted, hence
log-concave and unimodal.

Proof. Let Ãn be a graph (Fig. 2.10), such that we take a path on {1, . . . , n}, and add
the edge (2, 4).

. . .1 2

4

3

5 6 n− 1 n

Figure 2.10: The graph Ãn
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ZEROS OF INDEPENDENCE POLYNOMIALS

Figure 2.11: A tree T with real-rooted independence polynomial, which is not a stable-path tree of any
non-tree graph

Since Ãn is a claw-free graph, so for any n ≥ 4 we have that TÃn,1 has a real-rooted
independence polynomial. However we can see that

T<
Ãn,1
∼= T<

An,1,

which means that I(T<
An,1, x) is real-rooted. By Corollary 2.23 we know that I(An, x)

divides I(T<
An,1, x), which implies, that I(An, x) is real-rooted polynomial.

2.3 Further examples

We would like to remark that this method is capable of proving the real-rootedness of
the independence polynomial of the ladder graph (Thm. 5.1. of [81]), the polyphenyl
ortho-chain (Ōn of [4]), k-ary analogue of the Fibonacci tree (Remark of [74]).

One might ask that it is true that any tree with real-rooted independence polynomial
is a stable path tree of a non-tree graph G. The answer is no, as the following example
shows:

Let T be a tree on 9 vertices as on the Figure 2.11 and assume that there exists a graph
G, a deep decision σ and a vertex u ∈ V(G), such that T = Tσ

G,u. Then the independence
polynomial of T is

I(T, x) = (1 + 3x + x2)(1 + 5x + 6x2 + x3) + x(1 + 2x)3 =

(1 + x)(1 + 8x + 20x2 + 16x3 + x4),

where the factors are real-rooted and irreducible polynomials in Q[x]. By Proposi-
tion 2.21 we have that I(G, x) divides I(T, x), and clearly G cannot be K1 or the empty
graph, therefore I(G, x) should be 1+ 8x + 20x2 + 16x3 + x4. However it can be proved,
that there is no such a graph G.
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3 The adjoint polynomial as an independence polynomial

Let us recall from the beginning of this chapter the adjoint polynomial of a graph G,
that is

h(G, x) =
n

∑
k=1

(−1)n−kak(G)xk,

where ak(G) denotes the number of ways one can cover all vertices of the graph G
by exactly k disjoint cliques of G. From the definition it is clear that an(G) = 1 and
an−1(G) = e(G), the number of edges, where the number of vertices of G is n.

Based on the aforementioned results (see Chapter 2) of [14, 15, 25, 49, 60, 78–80],
there might be a connection between the independence polynomials and the adjoint
polynomials.

In this section, we will show that there is indeed such a connection between the two
graph polynomials. We will prove the following theorem:

Theorem 2.33. For any graph G there exists a graph Ĝ, such that

h(G, x) = xn I(Ĝ,−1/x).

This correspondence will enable us to use the rich theory of independence polynomials
to study the adjoint polynomials. In particular, we give new proofs of the aforemen-
tioned results Liu and Csikvári, and have another look at the proof of Brown and Erey
[17]. For details see Section 3.2.

In Section 3.1, we will give the construction of Ĝ and prove Theorem 2.33, moreover,
we will show that Ĝ can be taken as a spanning subgraph of the line graph of G.
Recall that the line graph L(G) for a graph G is a graph on the edge set of G, and
there is an edge between two vertices of the line graph if they share a common vertex.
This enables us to establish a connection with the matching polynomial of the graph
G. For definition of the matching polynomial and applications of this connection see
Section 3.2.
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3.1 The construction

In this section, we will construct Ĝ and prove Theorem 2.33.

1 2

3 4

5

(a) A graph G

(1, 2) (1, 3)

(2, 4)

(3, 4)

(4, 5)

(3, 5)

(2, 5)

(b) The graph Ĝ

Figure 2.12: An example for the construction

Let K(G) denote the set of clique covers of G, that is

{{S1, . . . , Sk} ⊆ P(V(G)) | ∪k
i=1 Si = V(G), if 1 ≤ i 6= j ≤ n, then

Si ∩ Sj = ∅, G[Si] is a complete graph},

then one can write the adjoint polynomial of G in the following way:

h(G, x) = ∑
Q∈K(G)

(−1)n−|Q|x|Q|.

We will also use the notation

h∗(G, x) = xnh (G, 1/x) =
n−1

∑
k=0

(−1)kan−k(G)xk.

Let us choose an arbitrary ordering on the vertices of G, that is V(G) = {u1, . . . , un}.
Then we construct a Ĝ graph as follows. Let V(Ĝ) = {(ui, uj) ∈ E(G) | 1 ≤ i < j ≤ n},
and let (ui, uj) 6= (uk, ul) ∈ V(Ĝ) be two vertices. We may assume that j ≤ l, then the
two vertices are connected, if and only if (i = k) or (j = k) or (j = l and (ui, uk) /∈ E(G)).
Clearly Ĝ is a subgraph of the line graph of G. In the next theorem we show that the
independence polynomial of Ĝ actually equals to h∗(G, x). For example see Figure
2.12.

Proposition 2.34. Let G be a graph and let us choose an ordering of the vertices. Then the
constructed Ĝ graph satisfies that

h∗(G, x) = I(Ĝ,−x).

Moreover if e = (un−1, un) ∈ E(G), then Ĝ− e ⊆ Ĝ.
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Proof. The second statement is clear from the construction above. In order to prove
the first statement we will show that there is a bijection between independent sets of
Ĝ and K = K(G). More precisely, if we let I = I(Ĝ) denote the set of independent
sets of Ĝ, then there exists a bijection φ : K → I such that for any Q ∈ K we have
|φ(Q)| = n− |Q|.

Let Q = {S1, . . . , Sk} ∈ K. For 1 ≤ i ≤ k let f (i) denote the maximal index in Si, that is
f (i) = max{1 ≤ j ≤ n | uj ∈ Si}. Then φ(Q) will be the union of clique edges having
one endpoint as a maximally indexed vertex, that is

φ(Q) =
⋃

1≤i≤k

{(uj, u f (i)) | uj ∈ Si, j 6= f (i)} ⊆ V(Ĝ).

First we show that φ(Q) is an independent set in Ĝ. Let us define the sets Fi =

{(uj, u f (i)) | uj ∈ Si, j 6= f (i)} for 1 ≤ i ≤ k. If 1 ≤ i < i′ ≤ k, then there is no edge
between Fi and Fi′ in Ĝ, since Q is a partition of V(G). Also the set Fi is independent
for 1 ≤ i ≤ k, since if (uj, u f (i)) 6= (uj′ , u f (i)) ∈ Fi ⊆ E(G[Si]), then (uj, uj′) ∈ E(G[Si]),
because Si is a clique.

Furthermore we see that |Fi| = |Si| − 1, so

|φ(Q)| = ∑
1≤i≤k

|Fi| = ∑
1≤i≤k

(|Si| − 1) = n− |Q|

For the surjectivity of φ let I ∈ I be fixed, and let Ki = {(uj, ui) ∈ I | j < i} for
1 ≤ i ≤ n. Then

Q′ =
{
{ui} ∪ {uj | (uj, ui) ∈ Ki} | Ki 6= ∅

}

is a set of pairwise disjoint subsets of V(G), where each subset induces a clique in G.
Therefore

Q = Q′ ∪
{
{ui} | ui /∈ ∪Q′

}

is a partition of V(G) where each part induces a clique in G. Moreover we have that

φ(Q) =
⋃

Ki 6=∅

{(uj, ui) ∈ I | j < i} = I.

So φ is a bijection.

Now the statement follows as:

h∗(G, x) = ∑
Q∈K

(−x)n−|Q| = ∑
Q∈K

(−x)|φ(Q)| = ∑
I∈I

(−x)|I| = I(Ĝ,−x).
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3.2 About “the largest” root of the adjoint polynomial

In this section we will give a various applications of Theorem 2.33 and the construction.
First we collect some results on independence polynomials of graphs.

We will also need some results on a modified version of the matching polynomial. Let

M(G, x) = ∑
k≥0

(−1)kmk(G)xn−k,

where mk(G) denotes the number of matchings with k edges in G. Note that

M(G, x) = xn I(L(G),−1/x).

The following theorem is due to Heilmann and Lieb.

Theorem 2.35. [41] All zeros of M(G, x) are real, and the largest zero t(G) is at most 4(∆−
1), where ∆ is the largest real root.

Now we will present our new proofs for various results of Liu and Csikvári.

Corollary 2.36. [25, 78] Let G be a connected graph. Then h(G, x) has a real zero, and let
γ(G) be the largest among them. Then γ(G) is a simple zero of h(G, x), and if ξ 6= γ(G) is a
zero of h(G, x), then γ(G) > |ξ|.

Proof. Choose an ordering of the vertices of G, and construct Ĝ. From the construction
of Ĝ it is clear that Ĝ is a connected graph, so β(Ĝ) > 0 is a simple simple of I(Ĝ,−x) =
h∗(G, x), thus, β(Ĝ) = γ(G)−1. The rest is the consequence of Theorem 2.1.

Corollary 2.37. [25] Let G be a connected graph. Then γ(G) ≤ t(G). In particular γ(G) ≤
4(∆− 1).

Proof. The first inequality follows from the fact that Ĝ ⊆ L(G). Indeed this implies that

γ(G)−1 = β(Ĝ) ≥ β(L(G)) = t(G)−1,

where the inequality follows from Theorem 2.2, and the equalities follow from the iden-
tities h∗(G, x) = xn I(Ĝ,−1/x) and M(G, x) = xn I(L(G),−1/x). The second inequality
follows from the first inequality and Theorem 2.35.

Corollary 2.38. [25] Let H be a proper subgraph of G. Then γ(H) < γ(G).

Proof. Suppose that H can be obtained from G by deleting the edges {e1, . . . , ek} and
then deleting the isolated vertices {v1, . . . , vl}. Let Gi = G − {e1, . . . , ei} for 1 ≤ i ≤

42

C
E

U
eT

D
C

ol
le

ct
io

n



CHAPTER 2

k, and G0 = G. Since Gi and Gi+1 differ only in one edge, then we can choose an
ordering of the vertices of Gi, such that that ei is the edge between the last two vertices.
Then Ĝi+1 = Ĝi − e. This implies that γ(Gi+1) < γ(Gi) and so γ(Gk) < γ(Gk−1) <

. . . γ(G0) = γ(G).

Since h(H ∪ K1, x) = (−x)h(H, x) and γ(H) > 0, we have that γ(H ∪ K1) = γ(H). So
γ(Gk) = γ(Gk − v1) = · · · = γ(Gk − {v1, . . . , vl}) = γ(H).

Corollary 2.39. [25] Let G be a connected graph and H be a subgraph, then in the following
series

h∗(H, x)
h∗(G, x)

= ∑
k≥0

sk(G, H)xk

for each k ≥ 0 the coefficients sk(G, H) are positive integers.

Proof. Direct consequence of Theorem 2.3.

Another consequence is that it gives an insight into the proof of the theorem of [17].
Brown and Erey proved (using our notations) that if G is a graph on n vertices and
χ(G) ≥ n− 3, then h(G, x) has only real roots. Using some reduction and classification
of graphs with chromatic number χ(G) ≥ n− 3 in their paper, they reduced the prob-
lem to prove real rootedness of h(G, x) only for graphs G, where G has n vertices and
a subset S ⊆ V(G), such that |S| ≤ 3 and for any u ∈ V(G) \ S the neighborhood of u
is strictly contained in S. If one would follow the construction of Ĝ for such a graph G,
then it would turn out that Ĝ is a claw-free graph, that has real-rooted independence
polynomial according to Corollary 2.13.
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3
On zero-free regions for the

anti-ferromagnetic Potts model

on bounded-degree graphs

The Potts model is an important object in statistical physics generalizing the Ising
model for magnetism. The partition function of the Potts model captures much in-
formation about the model and its study connects several different areas including
statistical physics, probability theory, combinatorics and theoretical computer science.

Every graph G (throughout the chapter we will always assume graphs are simple) has
an associated Potts model partition function defined as follows. Fix k ∈ N, which
will be the number of states or colors. We will consider all functions φ : V → [k] :=
{1, . . . , k} and often refer to φ(v) as the color of v. For our given graph G = (V, E), we
associate a variable we ∈ C to each edge e ∈ E. The k-state partition function of the Potts
model for G is a polynomial in the variables (we)e∈E given by

Z(G; k, (we)e∈E) := ∑
φ:V→[k]

∏
uv∈E

φ(u)=φ(v)

wuv.

If k and the we are clear from the context we simply write Z(G). One often considers
the ‘univariate’ special case when all we are equal to some w ∈ C, in which case
we write Z(G; k, w) for the partition function. We note that in statistical physics one
parametrizes we = eβJe with β the inverse temperature and Je the coupling constant.
The model is called anti-ferromagnetic if we ∈ (0, 1) (i.e. Je < 0) for each e ∈ E and
ferromagnetic if we > 1 (i.e. Je > 0) for each e ∈ E.
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ON ZERO-FREE REGIONS FOR THE ANTI-FERROMAGNETIC POTTS MODEL

The study of the location of the complex zeros of the partition function is originally
motivated by a seminal result of Lee and Yang [77], roughly saying that absence of
complex zeros near a point on the real axis implies that the model does not undergo
a phase transition at this point. Another motivation is the algorithmic computation of
partition functions which has recently been linked to the location of the complex zeros.
We discuss this theme in more detail after stating our main result: a new zero-free
region for the multivariate anti-ferromagnetic Potts model, which will be proved in
Section 3.

Theorem 3.1. For each ∆ ∈ N there exists a constant c∆ ≤ e and an open set U ⊂ C

containing the real interval [0, 1) such that the following holds. For all graphs G of maximum
degree at most ∆, all integers k ≥ k∆ := dc∆ · ∆ + 1e, and for all (we)e∈E such that we ∈ U
for each e ∈ E, we have

Z(G; k, (we)e∈E) 6= 0.

See Table 3.1 below for better bounds on c∆ and k∆ for small values of ∆.

Remark 3.2. We can in fact guarantee an open set U containing the closed interval [0, 1]
under the same conditions as in the theorem above. It is however more convenient to work with
[0, 1). In Remark 3.12 we indicate how to extend our results to the closed interval.

We moreover note that while we work with simple graphs in the chapter, our result also holds
for graphs with multiple edges (loops are not allowed). Our proof of Theorem 3.1 only requires
a tiny change to accommodate for this. We leave this for the reader.

∆ 3 4 5 6 7 8 9 10 11 12

c∆ 1.485 1.749 1.939 2.081 2.193 2.283 2.357 2.419 2.472 2.517

k∆ 6 8 11 14 17 20 23 26 29 32

Table 3.1: Upper bounds on c∆ and the resulting bounds on k∆ for small ∆.

Related work

There are several results concerning zero-free regions of the partition function of the
Potts model, some of which we discuss below. See e.g. [19–21, 30, 63] for results on the
location of the (Fisher) zeros of the partition function of the anti-ferromagnetic Potts
model on several lattices, and [6, 31, 42, 64] for results on general (bounded degree)
graphs. Let us say a few words on the latter results and connect these to our present
work.

The partition function of the Potts model is a special case of the random cluster model
of Fortuin and Kasteleyn [33] which, for a graph G = (V, E) and variables q and
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(ve)e∈E, is given by
Z(G; q, (ve)e∈E) := ∑

F⊆E
qk(F) ∏

e∈F
ve,

where k(F) denotes the number of components of the graph (V, F). Indeed, taking q =

k and ve = we − 1 for each edge e, it turns out that Z(G; q, (ve)e∈E) = Z(G; k, (we)e∈E);
see [65] for more details and for the connection with the Tutte polynomial.

Almost twenty years ago Sokal [64] proved that for any graph G of maximum degree
∆ ∈ N there exists a constant C ≤ 7.964 such that if |1 + ve| ≤ 1 for each edge e, then
for any q ∈ C such that |q| ≥ C∆ one has Z(G; q, (ve)e∈E) 6= 0. The bound on the
constant C was improved to C ≤ 6.907 by Procacci and Fernández [31]. See also [42]
for results when the condition |1 + v| ≤ 1 is removed. In our setting, Sokal’s result
implies that Z(G; k, (we)e∈E) 6= 0 for any integer k > C∆ when every we lies in the unit
disk.

Our main result may be seen as an improvement upon the constant C, though in a
more restricted setting where, instead of demanding that Z(G; k, (we)e∈E) is nonzero in
the unit disk, we demand that Z(G; k, (we)e∈E) is nonzero in an open region containing
[0, 1). Interestingly, our method of proof is completely different from the approach in
[31, 42, 64], which is based on cluster expansion techniques from statistical physics. We
prove our results by induction using some basic facts from geometry and convexity,
building on an approach developed by Barvinok [6]. Previously, Barvinok used this
approach in [6, Theorem 7.1.4] (improving on [8]) to show that for each positive integer
∆ there exists a constant δ∆ > 0 (one may choose e.g. δ3 = 0.18, δ4 = 0.13, and in general
δ∆ = Ω(1/∆)) such that for any positive integer k and any graph G of maximum degree
at most ∆ one has

Z(G; k, (we)e∈E) 6= 0 provided |1− we| ≤ δ∆ for each edge e. (3.1)

In fact this result is proved in much greater generality, but we have stated it here just
for the Potts model.

While the approach in [6] seems crucially to require that we is close to 1, here we present
ideas that allow us to extend the approach in a way that bypasses this requirement. As
such the approach may be applicable to other types of models.

Algorithmic applications

Barvinok [6] recently developed an approach to design efficient approximation algo-
rithms based on absence of complex zeros in certain domains. This gives an additional
motivation for studying the location of of complex zeros of partition functions. While
it is typically #P-hard to compute the partition function of the Potts model exactly one
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ON ZERO-FREE REGIONS FOR THE ANTI-FERROMAGNETIC POTTS MODEL

may hope to find efficient approximation algorithms (although for certain choices of
parameters it is known to be NP-hard to approximate the partition function of the Potts
model [34]).

Combining Theorem 3.1 with Barvinok’s approach and results from [56], we obtain the
following corollary. We discuss how the corollary is obtained at the end of this section.

Corollary 3.3. Let ∆ ∈N, w ∈ [0, 1] and let k ≥ c∆ ·∆ + 1. Then there exists a deterministic
algorithm which given an n-vertex graph of maximum degree at most ∆ computes a number ξ

satisfying

e−ε ≤ Z(G; k, w)

ξ
≤ eε

in time polynomial in n/ε.

Corollary 3.3 gives us a fully polynomial time approximation scheme (FPTAS) for com-
puting the partition function of the anti-ferromagnetic Potts model (for the right choice
of parameters). In the case when w = 0, Z(G; k, w) is the number of proper k-colorings
of G and so the corollary gives an FPTAS for computing the number of proper k col-
orings when k ≥ kmin

∆ > c∆ · ∆ + 1. Lu and Yin [51] gave an FPTAS for this problem
when k ≥ 2.58∆ + 1; we improve their bound for ∆ = 3, . . . , 11. We remark that for
∆ = 3 there is in fact an FPTAS for counting the number of 4-colorings [50]. Moreover,
there exists an efficient randomized algorithm due to Vigoda [73], which is based on
Markov chain Monte Carlo methods, that only requires k > (11/6)∆ colors. See [22]
for a very recent small improvement on the constant 11/6.

Proof sketch of Corollary 3.3. We first sketch Barvinok’s algorithmic approach applied to
the partition function of the Potts model from which Corollary 3.3 is derived. Suppose
we wish to evaluate Z(G; k, w) at some point w ∈ [0, 1) for some graph G of maximum
degree at most ∆ and positive integer k ≥ c∆ · ∆. The first step is to define a univariate
polynomial q(z) := Z(G; k, 1 + z(w− 1)). We then wish to compute q(1).

By Theorem 3.1 combined with (3.1) (cf. Remark 3.2) there exists an open region U′

that contains [0, 1] on which q does not vanish. Then we take a disk D of radius
slightly larger than 1 and a fixed polynomial p such that p(0) = 0 and p(1) = 1 and
such that D is mapped into U′ by p; see [6, Section 2.2] for details. We next define
another polynomial f on D by f (z) = q(p(z)). Then f does not vanish on D and
hence log( f (z)) is analytic on D and has a convergent Taylor series. To approximate
f (1) = Z(G; k, w) we truncate the Taylor series of log( f (z)) (see [6, Lemma 2.2.1] for
details on where exactly to truncate the Taylor series to get a good approximation), and
then we compute these Taylor coefficients.

To compute the Taylor coefficients of log( f (z)) it turns out that it is suffices to compute
the low order coefficients of the polynomial q, since these can be combined with the
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coefficients of the polynomial p to obtain the low order coefficients of f , from which
one can deduce the Taylor coefficients of log( f (z)) via the Newton identities; see [56,
Section 2]. By Theorem 3.2 from [56] the low order coefficients of q can be computed in
polynomial time, since, up to an easy to compute multiplicative constant, q is a bounded
induced graph counting polynomial ([56, Definition 3.1]), as is proved in greater generality
in [56, Section 6].

Organization of the chapter

In the next section we set up some notation and discuss some preliminaries that we
need in the proof of our main theorem. This proof is inspired by Barvinok’s proof of
(3.1), and has a similar flavor. It is based on induction with a somewhat lengthy and
technical induction hypothesis. For this reason we give a brief sketch of our approach
in the next section. Section 2 then contains an induction for Theorem 3.1. This induc-
tion contain a condition that is checked in Section 3. The proof of Theorem 3.1 follows
upon combining the results of Sections 2 and 3; see the remark after the statement of
Proposition 3.10. In Section 4 we slightly modify our induction hypotheses and add
another condition to it that allows us to improve our bounds for small values of ∆. We
close with some concluding remarks in Section 5.

1 Preliminaries, notation and main idea of the proofs

In order to prove our results, we will need to work more generally with the partition
function of the Potts model with boundary conditions. For a list W = w1 . . . wm of
distinct vertices of V and a list L = `1 . . . `m of pre-assigned colors in [k] for the vertices
in W the restricted partition function ZW

L (G) is defined by

ZW
L (G) := ∑

φ:V→[k]
φ respects (W,L)

∏
uv∈E

φ(u)=φ(v)

wuv,

where we say that φ respects (W, L) if for all i = 1 . . . , m we have φ(wi) = `i. We call
the vertices w1, . . . , wm fixed and refer to the remaining vertices in V as free vertices.
The length of W (resp. L), written |W| (resp. |L|) is the length of the list. Given a list
of distinct vertices W ′ = w1 . . . wm, and a vertex u (distinct from w1, . . . , wm) we write
W = W ′u for the concatenated list W = w1 . . . wmu and we use similar notation L′`
for concatenation of lists of colors. We write deg(v) for the degree of a vertex v and
we write G \ uv (G − u) for the graph obtained from G by removing the edge uv (by
removing the vertex u).
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ON ZERO-FREE REGIONS FOR THE ANTI-FERROMAGNETIC POTTS MODEL

In our proofs we often view the restricted partition functions ZW
L (G) as vectors in

C ' R2. The following lemma of Barvinok turns out to be very convenient.

Lemma 3.4 (Barvinok [6, Lemma 3.6.3]). Let u1, . . . , uk ∈ R2 be non-zero vectors such that
the angle between any vectors ui and uj is at most α for some α ∈ [0, 2π/3). Then the ui all
lie in a cone of angle at most α and

∣∣∣
k

∑
j=1

uj

∣∣∣ ≥ cos(α/2)
k

∑
j=1
|uj| .

Let us now try to explain our approach. It starts with Barvinok’s approach from [6,
Section 7.2.3] tailored to the partition function of the Potts model. Fix a vertex v of the
graph G. Then Z(G) = ∑k

i=1 Zv
i (G). If we can prove that the pairwise angles between

Zv
i (G) and Zv

j (G) for all i, j ∈ [k] are bounded above by 2π/3 then one can conclude
by the Lemma 3.4 that Z(G) 6= 0. So the idea is to show (using induction on list size)
that for any list W of distinct vertices of G and L of pre-assigned colors from [k] where
|W| = |L| we have for any vertex v /∈ W that the pairwise angles between ZW ,L,i;

L,W,v;(G)

and ZW ,L,j;
L,W,v;(G) are bounded by some α < 2π/3.

To obtain information about ZW ,L,i;
L,W,v;(G), the next step is to fix the neighbors of v and

apply a suitably chosen induction hypothesis to all of these neighbors combined with
some kind of telescoping argument. Suppose for the moment that the degree of v is 1,
and let u be the unique neighbor of v. Then

ZW ,L,j;
L,W,v;(G) =

k

∑
i=1

ZW ,;u;L,j,i;
L,;i;W,v,u;(G) = ∑

i 6=j
ZW ,;u;L,j,i;

L,;i;W,v,u;(G \ uv) + wuvZW ,;u;L,j,j;
L,;j;W,v,u;(G \ uv). (3.2)

To compare ZW ,L,j;
L,W,v;(G) with ZW ,L,j′;

L ,;W,v;(G), Barvinok shows that if wuv is sufficiently close
to 1, then their angle is not too big (if wuv = 1 then they are equal) and then the
induction can continue.

We however allow wuv to be arbitrarily close to zero, so we need an additional idea:
in the induction hypothesis, besides the condition that the angle between two vectors
ZW ,;u;L,j,i;

L,;i;W,v,u;(G) and ZW ,;u;L,j,i′;
L,;i′;W,v,u;(G) is small, we add the condition that their lengths should

not be too far apart. This leads to complications, but fortunately they can be overcome
with some additional ideas. We refer to the next section for the induction statement
and the details of the proofs. We next collect some tools that we will use.

We will need the following simple geometric facts, which follow from the sine law and
cosine law for triangles.
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Proposition 3.5. Let u and u′ be non-zero vectors in R2.

(i) If the angle between u and u′ is at most π/3, then |u− u′| ≤ max{|u|, |u′|}.

(ii) The angle γ between u and u′ satisfies sin γ ≤ |u− u′|/|u′|.

For r > 0 and a ∈ C we denote by B(a, r) ⊆ C the open disk of radius r centered at a.
For d ∈N we denote

B(a, r)d := {b1 . . . bd | bi ∈ B(a, r) for i = 1, . . . , d} ⊆ C.

We will need the Grace–Szegő–Walsh coincidence theorem, which we state here just
for disks. Recall that a polynomial p in variables x1, . . . , xd is called multi-affine if for
each variable its degree in p at most one.

Lemma 3.6 (Grace–Szegő–Walsh). Let p be a multi-affine polynomial in the variables x1, . . . , xd.
Suppose that p is symmetric under permuting the variables. Then for any disk B ⊂ C, if
ζ1, . . . , ζd ∈ B, then there exists ζ ∈ B such that

p(ζ, . . . , ζ) = p(ζ1, . . . , ζd).

We refer the reader to [59, Theorem 3.4.1b] for a proof of this result, background and
related results. Using the previous result we can show convexity of the set B(1, r)d ⊆ C

for certain choices of r and d.

Lemma 3.7. Let d ∈N. Then for any 0 < r < 1/d the set B(1, r)d is convex.

Proof. Define f : C→ C by z 7→ (1 + rz)d. Then, by Lemma 3.6, B(1, r)d is the image of
B(0, 1) under f . We compute the ratio

f ′′(z)
f ′(z)

= r(d− 1) (1 + zr)−1 .

The norm of this ratio is, for any z ∈ B(0, 1), strictly upper bounded by 1, since r < 1/d.
This implies that for all z ∈ B(0, 1),

<
(

1 + z
f ′′(z)
f ′(z)

)
> 0.

A classical result cf. [28, Section 2.5] now implies that the image of B(0, 1) under f is a
convex set.
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In Section 4, we will also need the following geometric lemma, which we prove below.

Lemma 3.8. Let u and u′ be non-zero vectors in R2 and r ≥ 1 real number such that the angle
between u and u′ is at most φ < π/3 and

r−1 ≤ |u||u′| ≤ r.

Then

|u− u′| ≤ max
{

2 sin(φ/2),
√

1 + r−2 − 2r−1 cos φ

}
·max

{
|u|, |u′|

}
.

Proof. Without loss of generality assume that |u′| ≥ |u| and arg(u)− arg(u′) = φ ≥ 0.
Then we can assume that u′ is the point A in Figure 3.1, the length OA is |u′|, the
length OD is r−1|u′|, and that u lies in the shaded area which we denote by U.

O
D A

C

B

x
y

φ

r−1|u′|
|u′|

Figure 3.1: A diagram for the proof of Lemma 3.8. The shaded area is U.

The diameter of U is an upper bound on |u − u′|, and it is not hard to see that the
diameter of U is the maximum of the distances between any pair of the points A, B, C,
and D. By symmetry and by the triangle inequality one can see that this maximum is
achieved by x or y. In order to calculate these lengths we apply the cosine law in the
triangles OAC and OAB (and a half-angle formula).

2 An induction for Theorem 3.1

Let G = (V, E) be a graph together with complex weights w = (we)e∈E assigned to the
edges, a list of distinct vertices W, and a list of pre-assigned colors L with |W| = |L|
(i.e. each vertex in the list W is colored with the corresponding color from the list L).
Recall that the vertices in W are called fixed and those in V \W are called free.
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Let ε > 0 be given. We say a neighbor v of a vertex u ∈ V is a bad neighbor of u if
|wuv| ≤ ε. We say a color ` ∈ [k] is good for a vertex u ∈ V if every fixed neighbor
of u is not colored `; we call ` bad if u has at least one fixed, bad neighbor colored
`. We call a color neutral if it is neither good nor bad. Note that the definition of
good, neutral and bad colors also applies if u is fixed. We denote the set of good
colors by G(G, W, L, u), the set of neutral colors by N (G, W, L, u, ε) and the set of bad
colors by B(G, W, L, u, ε). We will also write m(G, W, L, u, ε, `) for the number of fixed
bad neighbors of u with color `. When G, W, L, u, and ε are clear from the context
we will write e.g. G = G(G, W, L, u), B = B(G, W, L, u, ε), N = [k] \ (G ∪ B), and
m(`) = m(G, W, L, u, ε, `).

For a graph G = (V, E) we call W ⊆ V a leaf-independent set if W is an independent set
and every vertex in W has degree exactly 1. In particular this means every vertex in W
has exactly one neighbor in V \W.

Theorem 3.9. Let ∆ ∈ N≥3. Suppose that k > ∆ and 0 < ε < 1 are such that there exists
a positive constant K < 1/(∆− 1) with θ := arcsin(K) ∈ (0, π

3(∆−1+ε)
) such that for each

d = 0, . . . , ∆− 1, with b = ∆− d,

0 <
(1 + ε)2

(k− b)(1− K)d − εb
≤ K. (3.3)

Then for each graph G = (V, E) of maximum degree at most ∆ and every w = (we)e∈E

satisfying for each e ∈ E that

(i) |we| ≤ ε, or

(ii) | arg(we)| ≤ εθ and ε < |we| ≤ 1,

the following statements hold for Z(G) = Z(G; k, w).

A For all lists W of distinct vertices of G such that W forms a leaf-independent set in G and
for all lists of pre-assigned colors L of length |W|, ZW

L (G) 6= 0.

B For all lists W = W ′u of distinct vertices of G such that W is a leaf-independent set and
for any two lists L′` and L′`′ of length |W|:

(i) the angle between the vectors ZW ′ ;L′,`;
L ′ ;W ′,u;(G) and ZW ′ ;L′,`′;

L ′ ′;W ′,u;(G) is at most θ,

(ii)
ZW ′ ;L′,`;

L ′ ;W ′,u;(G)

ZW ′ ;L′,`′;
L ′ ′;W ′,u;(G)

∈ B(1, K). (3.4)

C For all lists W = W ′u of distinct vertices such that the initial segment W ′ forms a
leaf-independent set in G and for all lists of pre-assigned colors L′ of length |W ′|, the
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following holds. Write G = G(G, W ′, L′, u) and N = N (G, W ′, L′, u, ε), let d be the
number of free neighbors of u, and let b = ∆− d. Then

(i) for any ` ∈ G ∪N , ZW ′ ;L′,`;
L ′ ;W ′,u;(G) 6= 0,

(ii) for any `, `′ ∈ G ∪N , the angle between the vectors ZW ′ ;L′,`;
L ′ ;W ′,u;(G) and ZW ′ ;L′,`′;

L ′ ′;W ′,u;(G)

is at most (d + bε)θ,

(iii) for any `, j ∈ G,
ZW ′ ;L′,`;

L ′ ;W ′,u;(G)

ZW ′ ;L′,j;
L ′ ;W ′,u;(G)

∈ B(1, K)d. (3.5)

2.1 Proof

We prove that A, B, and C hold by induction on the number of free vertices of a graph.
The base case consists of graphs with no free vertices. Clearly A and B hold in this case
as they are both vacuous: if there are no free vertices then W = V but then W cannot
be a leaf-independent set.

For statement C we note that since there are no free vertices, V \W ′ = {u}, and hence
G must be a star with center u. Part C(i) follows since when ` ∈ G ∪ N we have that
ZW ′ ;L′,`;

L ′ ;W ′,u;(G) is a product over nonzero edge-values. Part (ii) follows since changing

the color of u from ` to j ∈ G ∪ N , we can obtain ZW ′ ;L′,j;
L ′ ;W ′,u;(G) from ZW ′ ;L′,`;

L ′ ;W ′,u;(G) by
multiplying and dividing by at most deg(u) factors wuv with arg(wuv) ≤ εθ; hence the
restricted partition function changes in angle by at most ∆εθ. Part (iii) follows similarly,
as when there are no free vertices we must have d = 0, and changing the color of u
from j to ` does not change the value of the restricted partition function since both
colors are good. Hence ZW ′ ;L′,`;

L ′ ;W ′,u;(G)/ZW ′ ;L′,j;
L ′ ;W ′,u;(G) = 1 ∈ B(1, K)d.

Now let us assume that statements A, B, and C hold for all graphs with f ≥ 0 free
vertices. We wish to prove the statements for graphs with f + 1 free vertices. We start
by proving A.

Proof of A

Let u be any free vertex. We proceed using the fact that |ZW
L (G)| = |∑k

j=1 ZW ,L,j;
L,W,u;(G)|.

Let G = G(G, W, L, u), B = B(G, W, L, u, ε), N = [k] \ (G ∪ B) and b̂ = |B|. Let d be
the number of free neighbors of u and let b = ∆− d. Note that b̂ ≤ b and |G| ≥ k− b.
After fixing u to any j ∈ [k] we have one less free vertex, and hence can apply C using
induction as necessary.
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There are two cases to consider. If b̂ = 0 then by induction using C(i) we have that the
ZW ,L,j;

L,W,u;(G) are non-zero and by C(ii) the angle between any two of the ZW ,L,j;
L,W,u;(G) is at

most ∆θ < ∆
∆−1 π/3 ≤ 3/2 · π/3 = π/2. So the ZW ,L,j;

L,W,u;(G) all lie in some cone of angle
at most π/2. In particular their sum must be in that cone and nonzero.

If b̂ > 0 then u must have at least one fixed neighbor, and hence d ≤ ∆− 1. Let H be the
graph obtained from G by deleting all fixed neighbors of u, i.e. H = G− (NG(u) ∩W),
and let W ′ = W \ NG(u) and L′ be the sublist of L corresponding to the vertices in W ′.
Observe that by definition for any j ∈ [k] we have

ZW ,L,j;
L,W,u;(G) = ZW ′ ;L′,j;

L ′ ;W ′,u;(H) · ∏
v′∈W∩NG(u)

s.t. L(v′)=j

wuv′ , (3.6)

where by L(v′) we mean the color that the list L pre-assigns to the vertex v′. In partic-
ular, if j ∈ G, then ZW ,L,j;

L,W,u;(G) = ZW ′ ;L′,j;
L ′ ;W ′,u;(H). Note also that by construction u has no

fixed neighbors in the graph H and hence any color is good for u in H. Let

M := max
{∣∣ZW ′ ;L′,j;

L ′ ;W ′,u;(H)
∣∣ : j ∈ [k]},

and assume that jM ∈ [k] achieves the maximum above. Note that M > 0 by induction
using C(i). We then have by the triangle inequality

|ZW
L (G)/M| =

∣∣∣
k

∑
j=1

ZW ,L,j;
L,W,u;(G)/ZW ′ ;L′,jM ;

L ′M ;W ′,u;(H)
∣∣∣ ≥

∣∣∣ ∑
j∈G∪N

ZW ,L,j;
L,W,u;(G)/ZW ′ ;L′,jM ;

L ′M ;W ′,u;(H)
∣∣∣

− ∑
j∈B
|ZW ,L,j;

L,W,u;(G)/ZW ′ ;L′,jM ;
L ′M ;W ′,u;(H)|.

Since by induction using C(ii) the pairwise angles between the ZW ,L,j;
L,W,u;(G) for j ∈ G ∪N

are bounded by (d + bε)θ ≤ (∆− 1 + ε)θ ≤ π/3 these vectors lie in a cone of angle at
most π/3 and therefore,

∣∣∣ ∑
j∈G∪N

ZW ,L,j;
L,W,u;(G)/ZW ′ ;L′,jM ;

L ′M ;W ′,u;(H)
∣∣∣ ≥

∣∣∣ ∑
j∈G

ZW ,L,j;
L,W,u;(G)/ZW ′ ;L′,jM ;

L ′M ;W ′,u;(H)
∣∣∣.

By induction using C(iii), the numbers

ZW ,L,j;
L,W,u;(G)/ZW ′ ;L′,jM ;

L ′M ;W ′,u;(H) = ZW ′ ;L′,j;
L ′ ;W ′,u;(H)/ZW ′ ;L′,jM ;

L ′M ;W ′,u;(H)

are contained in B(1, K)d, for j ∈ G. By Lemma 3.7 this is a convex set, as K < 1/d.
Therefore, ∑j∈G ZW ,L,j;

L,W,u;(G)/ZW ′ ;L′,jM ;
L ′M ;W ′,u;(H) ∈ |G| · B(1, K)d, which implies by convexity

of B(1, K)d that ∣∣∣ ∑
j∈G

ZW ,L,j;
L,W,u;(G)/ZW ′ ;L′,jM ;

L ′M ;W ′,u;(H)
∣∣∣ ≥ |G| · (1− K)d.
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By (3.6) and the definition of B, we have that for each j ∈ B

|ZW ,L,j;
L,W,u;(G)|/|ZW ′ ;L′,jM ;

L ′M ;W ′,u;(H)| ≤ ε.

Combining these inequalities we arrive at

|ZW
L (G)/M| ≥ (k− b)(1− K)d − εb̂ ≥ (k− b)(1− K)d − εb.

Now the conditions (3.3) give that ZW
L (G) 6= 0.

Next we will prove B.

Proof of B

Since W = W ′u is a leaf-independent set, deg(u) = 1 and the unique neighbor of u,
which we call v, is free. We start by introducing some notation.

We define complex numbers zj for j ∈ [k] by

zj := ZW ′ ,v;L′,`,j;
L ′ ,j;W ′,u,v;(G \ uv) = ZW ′ ,v;L′,`′,j;

L ′ ′,j;W ′,u,v;(G \ uv) , (3.7)

where the second equality holds because u is isolated in G \ uv. Let w := wuv and
define complex numbers xj and yj for j ∈ [k] by

xj =

{
zj if j 6= `;

wz` if j = ` ,
yj =

{
zj if j 6= `′;

wz`′ if j = `′ .

Let x = ∑k
j=1 xj and y = ∑k

j=1 yj. Observe that x = ZW ′ ;L′,`;
L ′ ;W ′,u;(G) and y = ZW ′ ;L′,`′;

L ′ ′;W ′,u;(G),
and that we may apply induction to the restricted partition function evaluations repre-
sented by the zj because there are f free vertices in G \ uv when the vertices in W ′uv
are fixed.

For B(i) and (ii) we wish to bound the angle between x and y and to constrain the ratio
x/y respectively. To do this we first bound |y| and |x− y|.

We note for later that by the definition of x and y, we have x − y = (w− 1)z` + (1−
w)z`′ = (1−w)(z`′ − z`). Also |1−w| ≤ 1+ ε by conditions (i) and (ii) in the statement
of the theorem so |x− y| ≤ (1 + ε)|z`′ − z`|.

Let G = G(G, W ′u, L′`′, v), B = B(G, W ′u, L′`′, v, ε), N = [k] \ (G ∪ B), b̂ = |B|, and
suppose v has d free neighbors (in G when W ′u is fixed). Let H be the graph obtained
from G by deleting all fixed neighbors of v, i.e. H = G− (NG(v) ∩W), and let W ′′ =
W \ NG(v) and L′′ be the sublist of L corresponding to the vertices in W ′′. Observe that
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by definition for any j ∈ [k] we have

zj = ZW ′ ;L′,j;
L ′ ;W ′,v;(G− u) = ZW ′v;L′′,j;

L ′ j;W ′′,v;(H) · ∏
v′∈W ′∩NG(v)
s.t. L′(v′)=j

wvv′ , (3.8)

where by L′(v′) we mean the color that the list L′ pre-assigns to the vertex v′. In
particular, if j ∈ G, then ZW ′ ;L′,j;

L ′ ;W ′,v;(G− u) = ZW ′v;L′′,j;
L ′ j;W ′′,v;(H). Note also that by construction

v has no fixed neighbors in the graph H. Now write b = ∆− d. Note that d ≤ ∆− 1,
and define M, j∗ by

M := max
{∣∣ZW ′v;L′′,j;

L ′ j;W ′′,v;(H)
∣∣ : j ∈ [k]

}
= |ZW ′v;L′′,j∗;

L ′ j∗;W ′′,v;(H)|.

We perform a similar calculation to the case b̂ > 0 of A to show that

|y/M| ≥ (k− b)(1− K)d − b̂ε. (3.9)

To see this we have by the triangle inequality,

∣∣∣y/ZW ′v;L′′,j∗;
L ′ j∗;W ′′,v;(H)

∣∣∣ =
∣∣∣∣∣

k

∑
j=1

ZW ′ ,v;L′,`′,j;
L ′ ′,j;W ′,u,v;(G)/ZW ′v;L′′,j∗;

L ′ j∗;W ′′,v;(H)

∣∣∣∣∣ ≥
∣∣∣∣∣ ∑

j∈G∪N
ZW ′ ,v;L′,`′,j;

L ′ ′,j;W ′,u,v;(G)/ZW ′v;L′′,j∗;
L ′ j∗;W ′′,v;(H)

∣∣∣∣∣ − ∑
j∈B

∣∣∣ZW ′ ,v;L′,`′,j;
L ′ ′,j;W ′,u,v;(G)/ZW ′v;L′′,j∗;

L ′ j∗;W ′′,v;(H)
∣∣∣ .

As before, by (3.8) and by induction using C(ii) the pairwise angles of the summands
in the sum over G ∪N is at most (d + bε)θ ≤ π/3. This implies that these numbers lie
in a cone of angle at most π/3, which implies that

∣∣∣∣∣ ∑
j∈G∪N

ZW ′ ,v;L′,`′,j;
L ′ ′,j;W ′,u,v;(G)/ZW ′v;L′′,j∗;

L ′ j∗;W ′′,v;(H)

∣∣∣∣∣ ≥
∣∣∣∣∣∑j∈G

ZW ′ ,v;L′,`′,j;
L ′ ′,j;W ′,u,v;(G)/ZW ′v;L′′,j∗;

L ′ j∗;W ′′,v;(H)

∣∣∣∣∣ .

Now for any j ∈ G, we have that

ZW ′ ,v;L′,`′,j;
L ′ ′,j;W ′,u,v;(G)/ZW ′v;L′′,j∗;

L ′ j∗;W ′′,v;(H) = ZW ′v;L′′,j;
L ′ j;W ′′,v;(H)/ZW ′v;L′′,j∗;

L ′ j∗;W ′′,v;(H) ∈ B(1, K)d

by induction using C(iii). As this set is convex, we have
∣∣∣∣∣∑j∈G

ZW ′ ,v;L′,`′,j;
L ′ ′,j;W ′,u,v;(G)/ZW ′v;L′′,j∗;

L ′ j∗;W ′′,v;(H)

∣∣∣∣∣ ≥ |G|(1− K)d.
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Since for any j ∈ B we have m(j) ≥ 1, it follows by (3.8) and the definition of the yj

that

∑
j∈B

∣∣∣ZW ′ ,v;L′,`′,j;
L ′ ′,j;W ′,u,v;(G)/ZW ′v;L′′,j∗;

L ′ j∗;W ′′,v;(H)
∣∣∣ ≤ b̂εm(j) ≤ b̂ε.

Combining these two bounds we obtain (3.9).

We next claim that
|x− y|
|y| < K. (3.10)

To prove this we need to distinguish two cases, depending on whether or not ` or
`′ is a bad color in G − u for the vertex v. We first introduce further notation. Let
Ĝ = G(G − u, W ′, L′, v), B̂ = B(G − u, W ′, L′, v, ε), N̂ = N (G − u, W ′, L′, v, ε), and let
m̂(j) be the number of bad neighbors of v in G − u with pre-assigned color j. Note
that v has d ≤ ∆− 1 free neighbors in G − u. We now come to the two cases: either
both `, `′ ∈ Ĝ ∪ N̂ , or at least one is in B̂. In the first case, by induction using C(ii)
for ZW ′ ;L′,j;

L ′ ;W ′,v;(G − u) = ZW ′ ;L′,j;
L ′ ;W ′,v;(G \ uv) = zj, the angle between z` and z`′ is at most

(d + bε)θ ≤ (∆ − 1 + ε)θ ≤ π/3, and hence we have |z`′ − z`| ≤ max{|z`|, |z`′ |} by
Proposition 3.5. Putting the established bounds together, we have

|x− y|
|y| ≤ (1 + ε)|z`′ − z`|

|y| ≤ (1+ ε) max
j∈{`,`′}

|zj|/M
|y|/M

≤ 1 + ε

(k− b)(1− K)d − εb
< K , (3.11)

where the second inequality follows using (3.9) and the definition of M, and the final
inequality follows from the condition (3.3). Hence (3.10) holds when `, `′ ∈ Ĝ ∪ N̂ .

For the other case, when at least one of `, `′ is in B̂, we use the triangle inequality and
(3.8) to obtain

|z` − z`′ |
M

≤ |z`|
M

+
|z`′ |
M
≤
(
εm̂(`) + εm̂(`′)) ≤ (1 + ε),

since at least one of m̂(`) and m̂(`′) is at least 1 in this case. Therefore, using (3.9),

|x− y|
|y| ≤ (1 + ε)|z`′ − z`|/M

|y|/M
≤ (1 + ε)2

(k− b)(1− K)d − εb
< K, (3.12)

where the final inequality comes from the condition (3.3), establishing (3.10).

Now, by Proposition 3.5, the angle γ between x and y satisfies sin γ ≤ |x− y|/|y| < K,
and we conclude that γ ≤ arcsin(K) = θ as required for B(i). Additionally, we have

x
y
=

y + x− y
y

= 1 +
x− y

y
∈ B(1, K) ,

since |x− y|/|y| < K. This gives B(ii). We now turn to C.
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Proof of C

We start with (i), that is we will show that for any ` ∈ G, ZW ′ ;L′,`;
L ′ ;W ′,u;(G) 6= 0. Since we

have already proved A and B for the case of f + 1 free vertices and since we have f + 1
free vertices for ZW ′ ;L′,`;

L ′ ;W ′,u;(G), we might hope to immediately apply A; the only problem
is that W ′u is not a leaf- independent set, so we will modify G first.

Let v1, . . . , vd be the free neighbors of u. We construct a new graph H from G by
adding vertices u1, . . . , ud to G and replacing each edge uvi with uivi for i = 1, . . . , d,
while keeping all other edges of G unchanged (so note that u is only adjacent to its
fixed neighbors in H). Each edge e of H is assigned value w′e where w′e = we if e is
an edge of G and w′uivi

= wuvi for the new edges uvi. See Figure 3.2 for an illustrative
example.

u

W ′

G

u
u1 u2 u3

S

H

Figure 3.2: An illustration of the construction of H (below) from G (above) in the proof of C. Note that
W ′ forms a leaf-independent set, but that we do not require that W ′u has this property.

Then by construction we have

ZW ′ ;L′,`;
L ′ ;W ′,u;(G) = ZW ′ ,u1,...,ud;L′,`,`,...,`;

L ′ ,`,...,`;W ′,u,u1,...,ud;(H). (3.13)

Notice that in H, the vertex u together with its neighbors form a star S that is discon-
nected from the rest of H (and all vertices of S are in W = W ′u so they are fixed).

59

C
E

U
eT

D
C

ol
le

ct
io

n



ON ZERO-FREE REGIONS FOR THE ANTI-FERROMAGNETIC POTTS MODEL

Thus H is the disjoint union of S and some graph Ĥ. Thus the partition function
z := ZW ′ ,u1,...,ud;L′,`,`,...,`;

L ′ ,`,...,`;W ′,u,u1,...,ud;(H) factors as

ZW ′ ,u1,...,ud;L′,`,`,...,`;
L ′ ,`,...,`;W ′,u,u1,...,ud;(H) = ZW ′

1,...,ud;L′,`,...,`;
L ′ ,...,`;W ′,u1,...,ud;(Ĥ) · ZW ′ ;L′,`;

L ′ ;W ′,u;(S); (3.14)

here we abuse notation by having a list W ′u1 . . . ud (resp. W ′u) that may contain ver-
tices not in Ĥ (resp. S); such vertices and their corresponding color should simply be
ignored.

The fixed vertices in Ĥ form a leaf-independent set, so we can apply A to conclude
that the first factor above is nonzero. It is also clear that second factor above is nonzero
because all vertices in S are fixed and ` ∈ G ∪N . Hence z 6= 0 as required.

To prove part (ii), we will apply B to Ĥ with W ′u1 . . . ud fixed, which (as above) is
possible since we already proved B for f + 1 free vertices and W ′u1 . . . ud restricted to
Ĥ is a leaf-independent set. By B(i) the angle between

ZW ′
1,...,ud−1,ud;L′,`,...,`,`′;

L ′ ,...,`,`′;W ′,u1,...,ud−1,ud;(Ĥ) and ZW ′
1,...,ud−1,ud;L′,`,...,`,`;

L ′ ,...,`,`;W ′,u1,...,ud−1,ud;(Ĥ)

is at most θ. Continuing to change the label of each ui one step at the time, we conclude
that the angle between

ZW ′
1,...,ud;L′,`′,...,`′;

L ′ ′,...,`′;W ′,u1,...,ud;(Ĥ) and ZW ′
1,...,ud;L′,`,...,`;

L ′ ,...,`;W ′,u1,...,ud;(Ĥ)

is at most dθ. We next notice that since for (ii) we assume `, `′ ∈ G ∪N , changing the
color of u from ` to `′ can only change ZW ′ ;L′,`;

L ′ ;W ′,u;(S) by degS(u) ≤ ∆ − d = b factors,
each of argument at most εθ thus giving a total change of angle by at most bεθ. Hence
by (3.14), we therefore conclude that the angle between ZW ′ ;L′,`;

L ′ ;W ′,u;(G) and ZW ′ ;L′,`′;
L ′ ′;W ′,u;(G) is

at most dθ + bεθ.

To prove (iii) we observe that we can write for any j, ` ∈ [k] the telescoping product:

ZW ′
1,...,ud;L′,`,...,`;

L ′ ,...,`;W ′,u1,...,ud;(Ĥ)

ZW ′
1,...,ud;L′,j,...,j;

L ′ ,...,j;W ′,u1,...,ud;(Ĥ)
=

ZW ′
1,...,ud;L′,`,...,`;

L ′ ,...,`;W ′,u1,...,ud;(Ĥ)

ZW ′
1,...,ud−1,ud;L′,`,...,`,j;

L ′ ,...,`,j;W ′,u1,...,ud−1,ud;(Ĥ)
· · ·

ZW ′
1,u2,...,ud;L′,`,j,...,j;

L ′ ,j,...,j;W ′,u1,u2,...,ud;(Ĥ)

ZW ′
1,...,ud;L′,j,...,j;

L ′ ,...,j;W ′,u1,...,ud;(Ĥ)
. (3.15)

By B(ii), each of these factors is contained in B(1, K) and hence

ZW ′
1,...,ud;L′,`,...,`;

L ′ ,...,`;W ′,u1,...,ud;(Ĥ)

ZW ′
1,...,ud;L′,j,...,j;

L ′ ,...,j;W ′,u1,...,ud;(Ĥ)
∈ B(1, K)d.
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Finally note that since `, j ∈ G then ZW ′ ;L′,`;
L ′ ;W ′,u;(G) = ZW ′

1,...,ud;L′,`,...,`;
L ′ ,...,`;W ′,u1,...,ud;(Ĥ) by (3.13) and

(3.14) (since Z(S) = 1 in this case), and similarly for j. So we deduce that the ratio
ZW ′ ;L′,`;

L ′ ;W ′,u;(G)/ZW ′ ;L′,j;
L ′ ;W ′,u;(G) is contained in B(1, K)d, as desired. This completes the proof.

3 Finding constants for Theorems 3.1

Recall that we denote the base of the natural logarithm by e.

Proposition 3.10. Let ∆ ∈ N≥3 and k ≥ e∆ + 1. Then there exists ε ∈ (0, 1) such that with
K = 1/∆, for each d = 0, . . . , ∆− 1, with b = ∆− d,

0 <
(1 + ε)2

(k− b)(1− K)d − εb
≤ K, (3.16)

and additionally arcsin(K) ≤ π
3(∆−1+ε)

.

Note that (3.16) is precisely the condition (3.3) required in the hypothesis of Theo-
rem 3.9. Therefore combining this proposition with Theorem 3.9 proves Theorem 3.1
for c∆ = e (we only need part A).

Proof. We first observe that once ε is set to zero in (3.16) the condition states: for all
d = 0, . . . , ∆− 1,

1
(k + d− ∆)(1− K)d ≤ K. (3.17)

We will show that (3.17) is satisfied with strict inequality provided k ≥ e∆ + 1 when
K = 1/∆. Since the expression involving ε in (3.16) is a continuous, increasing function
of ε, there exists an ε > 0 for which (3.16) is satisfied. Moreover, for K = 1/∆ we also
have arcsin(K) < π

3(∆−1) for any ∆ ≥ 3. So for ε > 0 small enough all conditions will
be satisfied.

Noting that we assume ∆ ≥ 3, let us define for d ≥ 0 the function

f∆(d) := ∆
(

∆
∆− 1

)d

− d.

We observe that condition (3.17) with K = 1/∆ is satisfied with strict inequality pro-
vided f∆(d) < k− ∆ for each d = 0, . . . , ∆− 1.

We first claim that f∆(d) as a function of d is convex on R≥0. Indeed, its second
derivative in d is given by

f ′′∆(d) = log2
(

∆
∆− 1

)
( fd(∆) + d) > 0.
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This implies that f∆ attains its maximum on [0, ∆ − 1] at a boundary point: either
when d = 0 or when d = ∆− 1. In fact the maximum is attained at d = ∆− 1, since we
observe

f∆(∆− 1) = ∆
∆−1

∑
i=0

(
∆− 1

i

)( 1
∆− 1

)i
− (∆− 1) ≥ 2∆− (∆− 1) > ∆ = f∆(0),

where the penultimate inequality holds by taking the first two terms in the sum. It
now remains to check that f∆(∆− 1) < k− ∆ whenever k ≥ e∆ + 1. This holds since

f∆(∆− 1) + ∆− 1 = ∆
(

1 +
1

∆− 1

)∆−1

< ∆e.

Thus we obtained that if k ≥ e∆ + 1, we can choose K = 1/∆, such that all the condi-
tions in (3.17) are satisfied with strict inequality. This finishes the proof.

Remark 3.11. We could have given a slightly tighter analysis by parametrizing K = x/∆ in
the proof given above. However, it is not difficult to show that as ∆ → ∞ the optimal choice
for x converges to 1. In the next section we give better bounds for small values of ∆ by adding
additional constraints and using a computer to find the optimal value of K.

Remark 3.12. We note that if one replaces (3.3) by

0 <
(1 + ε)2+b

(1− K)d(k− b)− εb(1 + ε)b ≤ K (3.18)

for all d = 0, . . . , ∆− 1 and b = ∆− d, one can give essentially the same proof (where only
C(iii) needs to be modified) to conclude that in Theorem 3.1 we can in fact guarantee an open
set containing the closed interval [0, 1].

4 Improvements for small values of ∆

In the previous section we showed that we can take c∆ ≤ e for each ∆ ≥ 3 in the
statement of Theorem 3.1. In this section we prove the second part of Theorem 3.1, by
showing that for small values of ∆, we can improve the bound on c∆. We do this by
proving a slightly different version of Theorem 3.9 in which we constrain the ratios of
the restricted partition functions to lie in slightly different sets.

We first define a function f by

f (d, K, φ) = max
(

2 sin (φ/2) ,
√

1 + (1 + K)−2d − 2 cos(φ)(1 + K)−d
)

,

where d is a positive integer, K ∈ (0, 1), and φ is an angle.
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Theorem 3.13. Let ∆ ∈ N≥3. Suppose that k > ∆ and 0 < ε < 1 are such that there exist
constants K ∈ (0, 1) with θ := arcsin(K) ∈ (0, π

3(∆−1+ε)
) satisfying, for each d = 0, . . . , ∆− 1

with b := ∆− d, that

(1 + ε)2(1 + K)d

cos((d + bε)θ/2)(k− b)− εb(1 + K)d ≤ K for d = 0, . . . , ∆− 2; (3.19)

(1 + ε)(1 + K)d

cos((d + bε)θ/2)(k− b)− εb(1 + K)d ≤
K

f (d, K, (d + bε)θ)

for d = 0, . . . , ∆− 1. (3.20)

Then for each graph G = (V, E) of maximum degree at most ∆ and every w = (we)e∈E

satisfying for each e ∈ E that

(i) |we| ≤ ε, or

(ii) | arg(we)| ≤ εθ and ε < |we| ≤ 1,

the following statements hold for Z(G) = Z(G; k, w).

A’ For all lists W of distinct vertices of G such that W forms a leaf-independent set in G and
for all lists of pre-assigned colors L of length |W|, ZW

L (G) 6= 0.

B’ For all lists W = W ′u of distinct vertices of G such that W is a leaf-independent set and
for any two lists L′` and L′`′ of length |W|:

(i) the angle between the vectors ZW ′ ;L′,`;
L ′ ;W ′,u;(G) and ZW ′ ;L′,`′;

L ′ ′;W ′,u;(G) is at most θ,

(ii)
|ZW ′ ;L′,`;

L ′ ;W ′,u;(G)|
|ZW ′ ;L′,`′;

L ′ ′;W ′,u;(G)|
≤ 1 + K. (3.21)

C’ For all lists W = W ′u of distinct vertices such that the initial segment W ′ forms a
leaf-independent set in G and for all lists of pre-assigned colors L′ of length |W ′|, the
following holds. Write G = G(G, W ′, L′, u) and N = N (G, W ′, L′, u, ε), let d be the
number of free neighbors of u, let b = ∆− d, and let m(`) be the number of fixed, bad
neighbors of u with pre-assigned color `. Then

(i) for any ` ∈ G ∪N , ZW ′ ;L′,`;
L ′ ;W ′,u;(G) 6= 0,

(ii) for any `, `′ ∈ G ∪N , the angle between the vectors ZW ′ ;L′,`;
L ′ ;W ′,u;(G) and ZW ′ ;L′,`′;

L ′ ′;W ′,u;(G)

is at most (d + bε)θ,

(iii) for any ` ∈ [k] and j ∈ G

|ZW ′ ;L′,`;
L ′ ;W ′,u;(G)|
|ZW ′ ;L′,j;

L ′ ;W ′,u;(G)|
≤ εm(`)(1 + K)d. (3.22)

63

C
E

U
eT

D
C

ol
le

ct
io

n



ON ZERO-FREE REGIONS FOR THE ANTI-FERROMAGNETIC POTTS MODEL

The proof is almost the same as the proof of Theorem 3.9: we essentially replace a
convexity argument by an application of Lemma 3.4. For convenience of the reader, we
give a full proof.

4.1 Proof

We prove that A’, B’, and C’ hold by induction on the number of free vertices of a
graph. The base case consists of graphs with no free vertices. Clearly A’ and B’ hold in
this case as they are both vacuous: if there are no free vertices then W = V, but then
W cannot be a leaf-independent set.

For statement C’ we note that since there are no free vertices, V \W ′ = {u}, and
hence G must be a star with center u. Part C’(i) follows since when ` ∈ G ∪ N we
have that ZW ′ ;L′,`;

L ′ ;W ′,u;(G) is a product over nonzero edge-values. Part (ii) follows since, by

changing the color of u from ` to j ∈ G ∪ N , we obtain ZW ′ ;L′,j;
L ′ ;W ′,u;(G) from ZW ′ ;L′,`;

L ′ ;W ′,u;(G)

by multiplying and dividing by at most deg(u) factors wuv with arg(wuv) ≤ εθ; hence
the restricted partition function changes in angle by at most ∆εθ ≤ (d + bε)θ (since
d = 0 and so b = ∆). Part (iii) follows similarly, as when there are no free vertices we
must have d = 0, and changing the color of u from j to ` corresponds to multiplying
ZW ′ ;L′,j;

L ′ ;W ′,u;(G) by at most deg(u) factors wuv all satisfying |wuv| ≤ 1 and m(`) of the
factors satisfying |wuv| ≤ ε.

Now let us assume that statements A’, B’, and C’ hold for all graphs with f ≥ 0 free
vertices. We wish to prove the statements for graphs with f + 1 free vertices. We start
by proving A’.

Proof of A’

Let u be any free vertex. We proceed using the fact that |ZW
L (G)| = |∑k

j=1 ZW ,L,j;
L,W,u;(G)|.

Let G = G(G, W, L, u), B = B(G, W, L, u, ε), N = [k] \ (G ∪ B) and b̂ = |B|. Let d be
the number of free neighbors of u and let b = ∆− d. Note that b̂ ≤ b and |G| ≥ k− b.
After fixing u to any j ∈ [k] we have one less free vertex, and hence can apply C’ using
induction as necessary.

There are two cases to consider. If b̂ = 0 then by induction using C’(i) we have that the
ZW ,L,j;

L,W,u;(G) are non-zero and by C’(ii) the angle between any two of the ZW ,L,j;
L,W,u;(G) is at

most ∆θ < π/2. Hence by Lemma 3.4

|ZW
L (G)| =

∣∣∣
k

∑
j=1

ZW ,L,j;
L,W,u;(G)

∣∣∣ ≥ cos(π/4)
k

∑
j=1

∣∣ZW ,L,j;
L,W,u;(G)

∣∣ > 0 .
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If b̂ > 0 then u must have at least one fixed neighbor, and hence d ≤ ∆− 1. Let

M :=min
{∣∣ZW ,L,j;

L,W,u;(G)
∣∣ : j ∈ G

}
,

m :=max
{∣∣ZW ,L,j;

L,W,u;(G)
∣∣ : j ∈ B

}
,

and assume that jM ∈ G achieves the minimum above and jm ∈ B achieves the max-
imum. Note that M > 0 by induction using C’(i). Note further by induction using
C’(iii) that

m ≤ εm(jm)(1 + K)d|ZW ′ ;L′,jM ;
L ′M ;W ′,u;(G)| ≤ ε(1 + K)d M, (3.23)

where we used that m(jm) ≥ 1 since jm ∈ B. We then have

|ZW
L (G)| =

∣∣∣
k

∑
j=1

ZW ,L,j;
L,W,u;(G)

∣∣∣ ≥
∣∣∣ ∑

j∈G∪N
ZW ,L,j;

L,W,u;(G)
∣∣∣− ∑

j∈B
|ZW ,L,j;

L,W,u;(G)|

≥ cos((d + bε)θ/2) ∑
j∈G∪N

|ZW ,L,j;
L,W,u;(G)| − ∑

j∈B
|ZW ,L,j;

L,W,u;(G)|

≥ M|G| cos((d + bε)θ/2)−m|B|
≥ M

[
(k− b) cos((d + bε)θ/2)− bε(1 + K)d] ,

where the first inequality is the triangle inequality, the second uses C’(ii) and Lemma 3.4,
the third uses the definition of M and m, and the fourth follows from (3.23). Now the
conditions (3.19) give that ZW

L (G) 6= 0 (recalling we have d ≤ ∆ − 1 and noting the
denominator in (3.19) must be positive).

Next we will prove B’.

Proof of B’

The proof starts in exactly the same way as the proof of B. Recall that deg(u) = 1
and that its unique neighbor, which we call v, is free. We start by introducing some
notation.

We define complex numbers zj for j ∈ [k] by

zj := ZW ′ ,v;L′,`,j;
L ′ ,j;W ′,u,v;(G \ uv) = ZW ′ ,v;L′,`′,j;

L ′ ′,j;W ′,u,v;(G \ uv) = ZW ′ ;L′,j;
L ′ ;W ′,v;(G− u) , (3.24)

where the equalities follow because u is isolated in G \ uv and so makes no contribution
to the partition function. Let w := wuv and define complex numbers xj and yj for j ∈ [k]
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by

xj =

{
zj if j 6= `;

wz` if j = ` ,
yj =

{
zj if j 6= `′;

wz`′ if j = `′ .

Let x = ∑k
j=1 xj and y = ∑k

j=1 yj. Observe that x = ZW ′ ;L′,`;
L ′ ;W ′,u;(G) and y = ZW ′ ;L′,`′;

L ′ ′;W ′,u;(G),
and that we may apply induction to the restricted partition function evaluations repre-
sented by the zj because there are f free vertices in G \ uv when the vertices in W ′uv
are fixed.

For B’(i) and (ii) we wish to bound the angle between x and y and the ratio |x|/|y|
respectively. To do this we first bound |y| and |x− y|.

We note for later that by the definition of x and y, we have x − y = (w− 1)z` + (1−
w)z`′ = (1−w)(z`′ − z`). Also |1−w| ≤ 1+ ε by conditions (i) and (ii) in the statement
of the theorem so |x− y| ≤ (1 + ε)|z`′ − z`|.

Let G = G(G, W ′u, L′`′, v), B = B(G, W ′u, L′`′, v, ε), N = [k] \ (G ∪ B), b̂ = |B|, and
suppose v has d free neighbors (in G when W ′u is fixed), so d = ∆− 1. Let H be the
graph obtained from G by deleting all fixed neighbors of v, i.e. H = G− (NG(v) ∩W),
and let W ′′ = W \ NG(v) and L′′ be the sublist of L corresponding to the vertices in
W ′′. Observe that by definition for any j ∈ [k], we have the similar identities

zj := ZW ′ ;L′,j;
L ′ ;W ′,v;(G− u) = ZW ′v;L′′,j;

L ′ j;W ′′,v;(H) · ∏
v′∈W ′∩NG(v)
s.t. L′(v′)=j

wvv′ , (3.25)

ZW ′ ,v;L′,`′,j;
L ′ ′,j;W ′,u,v;(G) = ZW ′v;L′′,j;

L ′ j;W ′′,v;(H) · ∏
v′∈W∩NG(v)
s.t. L′(v′)=j

wvv′ , (3.26)

where by L′(v′) we mean the color that the list L′ assigns to the vertex v′. In particular,
if j ∈ G, we have ZW ′ ;L′,j;

L ′ ;W ′,v;(G− u) = ZW ′v;L′′,j;
L ′ j;W ′′,v;(H).

Now write b = ∆− d. Note that d ≤ ∆− 1, and define M, j∗, and C by

M := min
{∣∣ZW ′v;L′′,j;

L ′ j;W ′′,v;(H)
∣∣ : j ∈ [k]

}
= ZW ′v;L′′,j∗;

L ′ j∗;W ′′,v;(H);

C := (k− b) cos((d + bε)θ/2)− bε(1 + K)d .

Note that for all j ∈ [k], we have

M ≤ |ZW ′v;L′′,j;
L ′ j;W ′′,v;(H)| ≤ M(1 + K)d, (3.27)
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where the upper bound follows by induction using C’(iii) (here H with fixed vertices
W ′′v has fewer free vertices than G with fixed vertices W) and noting that all colors in
[k] are good for v in H. We perform a similar calculation to the case b̂ > 0 of A’ to
bound |y|. We have

|y| =
∣∣∣ZW ′ ;L′,`′;

L ′ ′;W ′,u;(G)
∣∣∣ ≥

∣∣∣ ∑
j∈G∪N

ZW ′ ,v;L′,`′,j;
L ′ ′,j;W ′,u,v;(G)

∣∣∣− ∑
j∈B
|ZW ′ ,v;L′,`′,j;

L ′ ′,j;W ′,u,v;(G)|

≥ cos((d + bε)θ/2) ∑
j∈G
|ZW ′ ,v;L′,`′,j;

L ′ ′,j;W ′,u,v;(G)| − ∑
j∈B
|ZW ′ ,v;L′,`′,j;

L ′ ′,j;W ′,u,v;(G)|

≥ cos((d + bε)θ/2) ∑
j∈G
|ZW ′ ;L′,j;

L ′ ;W ′,v;(H)| − ε ∑
j∈B
|ZW ′ ;L′,j;

L ′ ;W ′,v;(H)|

≥ M|G| cos((d + bε)θ/2)−M|B|ε(1 + K)d ≥ M · C ;

here the first inequality is the triangle inequality, the second follows from Lemma 3.4
and induction using C’(ii), the third follows from (3.26) and the fourth follows from
(3.27).

We next claim that
|x− y|
|y| ≤ K. (3.28)

To prove this, we will need to distinguish three cases, for which we now introduce
the notation. Let Ĝ = G(G − u, W ′, L′, v), B̂ = B(G − u, W ′, L′, v, ε), N̂ = N (G −
u, W ′, L′, v, ε), and let m̂(j) be the number of bad neighbors of v in G − u with pre-
assigned color j. Then, by (3.25) and (3.27) we have for any j,

|zj| ≤ εm̂(j)|ZW ′v;L′′,j;
L ′ j;W ′′,v;(H)| ≤ εm̂(j)M(1 + K)d. (3.29)

We now come to the three cases: either (a) `, `′ ∈ Ĝ, or (b) ` ∈ B̂ or `′ ∈ B̂, or (c) both `

and `′ are contained in Ĝ ∪ N̂ and one of them is not contained in Ĝ.

In case (a), by induction using C’ for ZW ′ ;L′,j;
L ′ ;W ′,v;(G − u) = ZW ′ ;L′,j;

L ′ ;W ′,v;(G \ uv) = zj, the
angle between z` and z`′ is at most (d + bε)θ ≤ (∆ − 1 + ε)θ ≤ π/3 (by C’(ii)) and
(1+ K)−d ≤ |z`/z`′ | ≤ (1+ K)d by C’(iii), so we can apply Lemma 3.8 to conclude that

|z`′ − z`| ≤ f (d, K, (d + bε)θ) ·max{|z`|, |z`′ |} ≤ (1 + K)d M,

where the final inequality follows by (3.29). Then

|x− y|
|y| ≤ (1 + ε)|z`′ − z`|

|y| ≤ (1 + ε)
f (d, K, (d + bε)θ)M(1 + K)d

M · C < K ,

where the final inequality comes from the condition (3.20).
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For case (b), at least one of `, `′ is in B̂, so we know that d ≤ ∆− 2 (as the degree of v
in H is at most ∆− 1 and v has at least one fixed neighbor in H). We use the triangle
inequality to obtain

|z` − z`′ | ≤ |z`|+ |z`′ | ≤
(
εm̂(`) + εm̂(`′))M(1 + K)d ≤ (1 + ε)M(1 + K)d,

using (3.29) for j ∈ {`, `′} and that at least one of m̂(`) and m̂(`′) is at least 1 in this
case. Therefore

|x− y|
|y| =

(1 + ε)|z`′ − z`|
|y| ≤ (1 + ε)2M(1 + K)d

MC
< K,

where the final inequality comes from the condition (3.19) (noting that we only need
the condition for d = 1, . . . , ∆− 2).

In case (c), both ` and `′ are contained in Ĝ ∪ N̂ and at least one of them is contained
in N̂, and so d ≤ ∆− 2 (as in case (b)). By induction using C’ for ZW ′ ;L′,j;

L ′ ;W ′,v;(G − u) =

ZW ′ ;L′,j;
L ′ ;W ′,v;(G \ uv) = zj, the angle between z` and z`′ is at most (d+ bε)θ ≤ (∆− 1+ ε)θ ≤

π/3 by C’(ii). Thus using Proposition 3.5 and (3.29), we obtain

|z` − z`′ | ≤ max{|z`|, |z`′ |} ≤ M(1 + K)d,

and so as before

|x− y|
|y| =

(1 + ε)|z`′ − z`|
|y| ≤ (1 + ε)(1 + K)d M

MC
< K,

where the final inequality comes from the condition (3.19) (noting that we only need
the condition for d = 1, . . . , ∆− 2). This establishes (3.28) in all cases.

Now, by Proposition 3.5, the angle γ between x and y satisfies sin γ ≤ |x− y|/|y| ≤ K,
and we conclude that γ ≤ arcsin(K) = θ as required for B’(i). Additionally, by the
triangle inequality we have

|x|
|y| ≤

|y|+ |x− y|
|y| ≤ 1 + K ,

which gives B’(ii). We now turn to C’.

Proof of C’

We start with (i), that is we will show that for any ` ∈ G ∪N , ZW ′ ;L′,`;
L ′ ;W ′,u;(G) 6= 0. Since

we have already proved A’ and B’ for the case of f + 1 free vertices and since we have
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f + 1 free vertices for ZW ′ ;L′,`;
L ′ ;W ′,u;(G), we might hope to immediately apply A’; the only

problem is that W ′u may not a leaf- independent set, so we will modify G first.

Let v1, . . . , vd be the free neighbors of u. We construct a new graph H from G by
adding vertices u1, . . . , ud to G and replacing each edge uvi with uivi for i = 1, . . . , d,
while keeping all other edges of G unchanged (so note that u is only adjacent to its
fixed neighbors in H). Each edge e of H is assigned value w′e where w′e = we if e is
an edge of G and w′uivi

= wuvi for the new edges uvi. See Figure 3.2 for an illustrative
example.

Then by construction we have

ZW ′ ;L′,`;
L ′ ;W ′,u;(G) = ZW ′ ,u1,...,ud;L′,`,`,...,`;

L ′ ,`,...,`;W ′,u,u1,...,ud;(H). (3.30)

Notice that in H, the vertex u together with its neighbors form a star S that is discon-
nected from the rest of H (and all vertices of S are in W = W ′u so they are fixed).
Thus H is the disjoint union of S and some graph Ĥ. Thus the partition function
z := ZW ′ ,u1,...,ud;L′,`,`,...,`;

L ′ ,`,...,`;W ′,u,u1,...,ud;(H) factors as

ZW ′ ,u1,...,ud;L′,`,`,...,`;
L ′ ,`,...,`;W ′,u,u1,...,ud;(H) = ZW ′

1,...,ud;L′,`,...,`;
L ′ ,...,`;W ′,u1,...,ud;(Ĥ) · ZW ′ ;L′,`;

L ′ ;W ′,u;(S); (3.31)

here we abuse notation by having a list W ′u1 . . . ud (resp. W ′u) that may contain ver-
tices not in Ĥ (resp. S); such vertices and their corresponding color should simply be
ignored.

The fixed vertices in Ĥ form a leaf-independent set, so we can apply A′ to conclude
that the first factor above is nonzero. It is also clear that second factor above is nonzero
because all vertices in S are fixed and ` ∈ G ∪N . Hence z 6= 0 as required.

To prove part (ii), we will apply B’ to Ĥ with W ′uu1 . . . ud fixed, which (as above) is
possible since we already proved B’ for f + 1 free vertices and W ′uu1 . . . ud restricted
to Ĥ is a leaf-independent set. By B’(i) the angle between

ZW ′
1,...,ud−1,ud;L′,`,...,`,`′;

L ′ ,...,`,`′;W ′,u1,...,ud−1,ud;(Ĥ) and ZW ′
1,...,ud−1,ud;L′,`,...,`,`;

L ′ ,...,`,`;W ′,u1,...,ud−1,ud;(Ĥ)

is at most θ. Continuing to change the label of each ui one step at the time, we conclude
that the angle between

ZW ′
1,...,ud;L′,`′,...,`′;

L ′ ′,...,`′;W ′,u1,...,ud;(Ĥ) and ZW ′
1,...,ud;L′,`,...,`;

L ′ ,...,`;W ′,u1,...,ud;(Ĥ)

is at most dθ. We next notice that since for (ii) we assume `, `′ ∈ G ∪N , changing the
color of u from ` to `′ can only change ZW ′ ;L′,`;

L ′ ;W ′,u;(S) by deg(u) ≤ ∆− d = b factors, each
of argument at most εθ thus giving a total change of angle by at most bεθ. Hence by
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(3.31), we therefore conclude that the angle between ZW ′ ;L′,`;
L ′ ;W ′,u;(G) and ZW ′ ;L′,`′;

L ′ ′;W ′,u;(G) is at
most dθ + bεθ.

To prove (iii) we observe that we can write for any j, ` ∈ [k] the telescoping product,

ZW ′
1,...,ud;L′,`,...,`;

L ′ ,...,`;W ′,u1,...,ud;(Ĥ)

ZW ′
1,...,ud;L′,j,...,j;

L ′ ,...,j;W ′,u1,...,ud;(Ĥ)
=

ZW ′
1,...,ud;L′,`,...,`;

L ′ ,...,`;W ′,u1,...,ud;(Ĥ)

ZW ′
1,...,ud−1,ud;L′,`,...,`,j;

L ′ ,...,`,j;W ′,u1,...,ud−1,ud;(Ĥ)
· · ·

ZW ′
1,u2,...,ud;L′,`,j,...,j;

L ′ ,j,...,j;W ′,u1,u2,...,ud;(Ĥ)

ZW ′
1,...,ud;L′,j,...,j;

L ′ ,...,j;W ′,u1,...,ud;(Ĥ)
, (3.32)

and consequently by B’(ii), it follows that

(1 + K)−d ≤
|ZW ′

1,...,ud;L′,`,...,`;
L ′ ,...,`;W ′,u1,...,ud;(Ĥ)|
|ZW ′

1,...,ud;L′,j,...,j;
L ′ ,...,j;W ′,u1,...,ud;(Ĥ)|

≤ (1 + K)d. (3.33)

Next we observe that in S when changing the color of u from ` ∈ [k] to a good color
j ∈ G, we have ∣∣ZW ′ ;L′,`;

L ′ ;W ′,u;(S)
∣∣ ≤ εm(`)

∣∣ZW ′ ;L′,j;
L ′ ;W ′,u;(S)

∣∣ ,

and so by (3.31) we have

∣∣ZW ′ ,u1,...,ud;L′,`,j,...,j;
L ′ ,j,...,j;W ′,u,u1,...,ud;(H)

∣∣ ≤ εm(`)
∣∣ZW ′ ,u1,...,ud;L′,j,j,...,j;

L ′ ,j,...,j;W ′,u,u1,...,ud;(H)
∣∣ ,

Combining the above inequality with (3.33), we obtain (iii) as required:

|ZW ′ ;L′,`;
L ′ ;W ′,u;(G)|
|ZW ′ ;L′,j;

L ′ ;W ′,u;(G)|
=
|ZW ′ ,u1,...,ud;L′,`,`,...,`;

L ′ ,`,...,`;W ′,u,u1,...,ud;(H)|
|ZW ′ ,u1,...,ud;L′,j,j,...,j;

L ′ ,j,...,j;W ′,u,u1,...,ud;(H)|
≤ εm(`)(1 + K)d.

This completes the proof.

In Table 3.2 we list the improvements that Theorem 3.13 gives; we give the improved
values for k∆ together with values of K and θ that allow the reader to check that the
conditions of Theorem 3.13 are met with strict inequality for ε = 0.

5 Concluding remarks and questions

In the present chapter we have established that if k is an integer satisfying k ≥ e∆ + 1,
then there exists an open set U containing [0, 1) such that the for any graph G of
maximum degree at most ∆ and w ∈ U, Z(G; k, w) 6= 0. For small values of ∆ we have
shown that we can significantly improve on e. We raise the following question.
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∆ K θ k∆

3 0.4124 0.4251 6

4 0.2900 0.2943 8

5 0.2224 0.2244 11

6 0.1814 0.1826 14

7 0.1536 0.1543 17

8 0.1334 0.1339 20

9 0.1179 0.1183 23

10 0.1057 0.1060 26

11 0.0959 0.0961 29

12 0.0877 0.0879 32

13 0.0800 0.0802 35

Table 3.2: Bounds for the number of colors and values for K and θ for small values of ∆ for Theorem 3.13.

Question 3.14. Is it true that for each ∆ ∈ N≥3 there exists an open set U = U∆ containing
[0, 1] such that for any integer k satisfying k ≥ ∆ + 1 and any graph G of maximum degree at
most ∆ and w ∈ U, Z(G; k, w) 6= 0?

As mentioned in the introduction, Barvinok’s approach for proving zero-free regions
for partition functions has been used for several types of partition functions, see [6–8,
61]. This of course raises the question as to which of these partition functions our ideas
could be applied. In particular it would be interesting to apply our ideas to partition
functions of edge-coloring models (a.k.a. tensor networks, or Holant problems). This
framework may be useful to study the zeros of the Potts model on line graphs.

Implicit in our proof of Theorem 3.9 is an iteration of a complex-valued dynamical
system, which for k = 2 coincides with the dynamical system analyzed in [48, 57].
Given the recent success of the use of methods from the field of complex dynamical
systems to identify zero-fee regions and the location of zeros of the partition function
of the hardcore model [58] and the partition function of the Ising model [48, 57], it
seems natural to study this dynamical system. We intend to expand on this in future
work.
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4
Descent polynomial

Denote the group of permutations on [n] = {1, . . . , n} by Sn and for a permutation
π ∈ Sn, the set of descending position is

Des(π) = {i ∈ [n− 1] | πi > πi+1}.

We would like to investigate the number of permutations with a fixed descent set.
More precisely, for a finite I ⊆ Z+ let m = max(I ∪ {0}). Then for n > m we can count
the number of permutations with descent set I, that we will denote by

d(I, n) = |D(I, n)| = |{π ∈ Sn | Des(π) = I}|.

This function was shown to be a degree m polynomial in n by MacMahon in [52]. In
order to investigate this polynomial we extend the domain to C, and for this chapter
we call d(I, n) the descent polynomial of I.

This polynomial was recently studied in the article of Diaz-Lopez, Harris, Insko, Omar
and Sagan [26], where the authors found a new recursion which was motivated by the
peak polynomial. The paper investigated the roots of descent polynomials and their
coefficients in different bases. In this chapter we will answer a few conjectures of [26].

The coefficient sequence ak(I) is defined uniquely through the following equation

d(I, n) =
m

∑
k=0

ak(I)
(

n−m
k

)
.
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DESCENT POLYNOMIAL

In [26] it was shown that the sequence ak(I) is non-negative, since it counts some
combinatorial objects. By taking a transformation of this sequence we were able to
apply Stanley’s theorem about the statistics of heights of a fixed element in a poset. As
a result we prove

Theorem 4.11. If I 6= ∅, then the sequence {ak(I)}m
k=0 is log-concave, that means that for any

0 < k < m we have
ak−1(I)ak+1(I) ≤ a2

k(I).

As a corollary of the proof of Theorem 4.11 we get a bound on the roots of d(I, n):

Theorem 4.14. If I 6= ∅ and d(I, z0) = 0 for some z0 ∈ C, then |z0| ≤ m.

As in [26] we will also consider the ck(I) coefficient sequence, that is defined by the
following equation

d(I, n) =
m

∑
k=0

(−1)m−kck(I)
(

n + 1
k

)
.

By using a new recursion from [26] we prove that

Proposition 4.6. If I 6= ∅, then for any 0 ≤ k ≤ m the coefficient ck(I) ≥ 0.

In the last section we will establish zero-free regions for descent polynomials. In par-
ticular we will prove the following.

Theorem 4.20. If I 6= ∅ and d(I, z0) = 0 for some z0 ∈ C, then |z0 − m| ≤ m + 1. In
particular, <z0 ≥ −1.

This chapter is organized as follows. In the next section we will define two sequences,
ak(I) and ck(I), we recall the two main recursions for the descent polynomial and we
introduce one of our main key ingredients. Then in Section 2 we will prove a conjecture
concerning the sequence ck(I) and some consequences. In Section 3 we will prove a
conjecture concerning the sequence ak(I), then in Section 4 we prove some bounds on
the roots.

1 Preliminaries

In this section we will recall some recursions of the descent polynomial and we will
establish some related coefficient sequences by choosing different bases for the poly-
nomials.
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CHAPTER 4

First of all, for the rest of the chapter we will always denote a finite subset of Z+ by I,
and m(I) is the maximal element of I ∪ {0}. If it is clear from the context, m(I) will be
denoted by m.

Let us define the coefficients ak(I), ck(I) for any I with maximal element m and k ∈ N

through the following expressions:

d(I, n) =
m

∑
k=0

ak(I)
(

n−m
k

)
=

m

∑
k=0

(−1)m−kck(I)
(

n + 1
k

)
,

if k ≤ m, and ck(I) = ak(I) = 0, if k > m. Observe that they are well-defined, since
{(n−m

k )}k∈N and also {(n+1
k )}k∈N form a base of the space of one-variable polynomials.

For later on, we will refer to the first and second bases as “a-base” and “c-base”,
respectively. We will also consider an other base that is also a Newton-base.

As it turns out, these coefficients are integers, moreover, they are non-negative. To be
more precise, in [26] it has been proved that ak(I) counts some combinatorial objects
(i.e. they are non-negative integers), and c0(I) is non-negative. The authors of [26]
also conjectured that each ck(I) ≥ 0, and for a proof of the affirmative answer see
Proposition 4.6.

Next, we would like to establish two recurrences for the descent polynomial, which
will be intensively used in several proofs. Before that, we need the following notations.
For an ∅ 6= I = {i1, . . . , il} and 1 ≤ t ≤ l, let

I− =I − {il},
It ={i1, . . . , it−1, it − 1, . . . , il − 1} − {0},
Ît ={i1, . . . , it−1, it+1 − 1, . . . , il − 1},
I′ ={ij | ij − 1 /∈ I},
I′′ =I′ − {1}.

For the rest, m(I) denotes the maximal element of a non-empty set I ∪ {0}. If it is clear
from the context, we will denote this element by m .

Proposition 4.1. If I 6= ∅, then

d(I, n) =
(

n
m

)
d(I−, m)− d(I−, n)

In contrast to the simplicity of this recursion, the disadvantage is that the descent
polynomial of I is a difference of two polynomials. In [26], the authors found an other
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DESCENT POLYNOMIAL

way to write d(I, n) as a sum of polynomials (Thm 2.4. of [26]). Now we will state an
equivalent form, which will fit our purposes better, and we also give its proof.

Corollary 4.2. If I 6= ∅, then

d(I, n + 1) = (4.1)

d(I, n) + ∑
it∈I′′\{m}

d(It, n) + ∑
it∈I′\{m}

d( Ît, n) + d(I−, m− 1)
(

n
m− 1

)
.

Proof. Let us recall the formula of Theorem 2.4. of [26]:

d(I, n + 1) = d(I, n) + ∑
it∈I′′

d(It, n) + ∑
it∈I′

d( Ît, n). (4.2)

If I = {1}, then trivially (4.1) is true. For I 6= {1} we will distinguish two cases.

If m /∈ I′ (and also m /∈ I′′), then by definition it means that m− 1 ∈ I. But it means
that m− 1 ∈ I− and

d(I−, m− 1)
(

n
m− 1

)
= 0.

Therefore the right hand side of (4.1) is the same as the right hand side of (4.2).

If m ∈ I′ (and also m ∈ I′′), then il = m, Îl = I− ∪ {m− 1} and Il = I−. Now take the
difference of the right hand sides of (4.1) and (4.2), that is

d(I−, m− 1)
(

n
m− 1

)
− d(Il , n)− d( Îl , n) =

d(I−, m− 1)
(

n
m− 1

)
−
(

d( Î−l , n)
(

n
m− 1

)
− d(I−, n)

)
− d(I−, n) =

d(I−, m− 1)
(

n
m− 1

)
− d(I−, n)

(
n

m− 1

)
= 0.

Therefore the two equations have to be equal.

As a conjecture in [26] it arose that the coefficient sequence {ak(I)}m
k=0 is log-concave.

We mean by that that for any 0 < k < m we have

ak−1(I)ak+1(I) ≤ ak(I)2.

In particular, the sequence {ak(I)}m
k=0 is unimodal.

Our main tool to attack this problem will be a result of Stanley about the height of a
certain element of a finite poset in all linear extensions. So let P be a finite poset and
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CHAPTER 4

v ∈ P a fixed element, and denote the set of order-preserving bijection from P to the
chain [1, 2, . . . , |P|] by Ext(P). Then, the height polynomial of v in P defined as

hP,v(x) = ∑
φ∈Ext(P)

xφ(v)−1 =
|P|−1

∑
k=0

hk(P, v)xk.

In other words hk(P, v) counts how many linear extensions P has, such that below v
there are exactly k many elements.

In special cases, when all comparable elements from v (except for v) are bigger in P,
we can reformulate hk(P, v) as it counts how many linear extensions P has, such that
below v there are exactly k many incomparable elements. For such a case, we could
combine two results of Stanley to obtain the following theorem.

Theorem 4.3. Let P be a finite poset, and v ∈ P be fixed. Then the coefficient sequence
{hk(P, v)}|P|−1

k=0 is log-concave. Moreover if all comparable elements with v are bigger than v in
P, then {hk(P, v)}|P|−1

k=0 is a decreasing, log-concave sequence.

Proof. The first part of the theorem is Corollary 3.3. of [66]. For the second part we
use fact that hk(P, v) can be interpreted as the number of linear extensions such that
there are k many smaller than v incomparable elements in the extension. Then by
Theorem 6.5. of [67] we obtain the desired statement.

We will use this theorem in a special case. For any I we define a poset PI on [u1, . . . , um+1],
as ui > ui+1 if i ∈ I and ui < ui+1 if i /∈ I. Observe that any comparable element with
xm+1 is bigger in PI , therefore the sequence {hk(PI , um+1)}m

k=0 is decreasing and log-
concave. We would like to remark that any linear extension of PI can be viewed as an
element of D(I, m + 1). In that way we can write that

h(I, x) = hPI ,um+1(x) = ∑
π∈D(I,m+1)

xπm+1−1.

2 Descent polynomial in “c-base”

The aim of the section is to give an affirmative answer for Conjecture 3.7. of [26], and
give some immediate consequences on the coefficients and evaluation. For corollaries
considering the roots of d(I, n) see Section 4. We would like to remark at that point that
the proof will be just an algebraic manipulation, not a “combinatorial” proof. However,
giving such a proof could imply some kind of “combinatorial reciprocity” for descent
polynomials.
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DESCENT POLYNOMIAL

First, we will translate the recursion of Corollary 4.2 to the terms of ck(I).

Lemma 4.4. If I 6= ∅ and 0 ≤ k ≤ m− 1, then

ck+1(I) = ∑
it∈I′′\{m}

ck(It) + ∑
it∈I′\{m}

ck( Ît) + d(I−, m− 1).

Proof. The idea is that we rewrite the equation of 4.2 as

d(I, n + 1)− d(I, n) = ∑
it∈I′′\{m}

d(It, n) + ∑
it∈I′\{m}

d( Ît, n) + d(I−, m− 1)
(

n
m− 1

)
,

and express both sides in c-base, then compare the coefficients of (n+1
k ).

The left side can be written as

d(I, n + 1)− d(I, n) =
m

∑
k=0

ck(I)(−1)m−k
(

n + 2
k

)
−

m

∑
k=0

ck(I)(−1)m−k
(

n + 1
k

)
=

m

∑
k=1

ck(I)(−1)m−k
(

n + 1
k− 1

)
=

m−1

∑
k=0

ck+1(I)(−1)m−k−1
(

n + 1
k

)
.

Next we use the famous Chu-Vandermonde’s identity:

(
n

m− 1

)
=

m−1

∑
k=0

(
n + 1

k

)( −1
m− 1− k

)
=

m−1

∑
k=0

(−1)m−1−k
(

n + 1
k

)
.

Therefore the right hand side can be written as:

∑
it∈I′′\{m}

d(It, n) + ∑
it∈I′\{m}

d( Ît, n) + d(I−, m− 1)
(

n
m− 1

)
=

m−1

∑
k=0

(−1)m−1−k

(
∑

it∈I′′\{m}
ck(It) + ∑

it∈I′\{m}
ck( Ît) + d(I−, m− 1)

)(
n + 1

k

)
.

We gain that for any 0 ≤ k ≤ m− 1,

(−1)m−k−1ck+1(I) =

(−1)m−1−k

(
∑

it∈I′′\{m}
ck(It) + ∑

it∈I′\{m}
ck( Ît) + (−1)m−1d(I−, m− 1)

)
.
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By multiplying both sides by (−1)m−k−1 we get the desired statement.

Similarly, we can rephrase Proposition 4.1, but we leave the proof for the readers.

Lemma 4.5. If I 6= ∅ and 0 ≤ k ≤ m, then

ck(I) = d(I−, m)− (−1)m−m−ck(I−), (4.3)

where m− = m(I−).

The next theorem settles Conjecture 3.7 of [26]. We would like to point out that the
non-negativity of c0(I) has already been proven in [26], and one can use it to find a
shortcut in the proof. However, we will give a self-contained proof.

Theorem 4.6. For any I and 0 ≤ k ≤ m, the coefficient ck(I) is a non-negative integer.

Proof. We will proceed by induction on m. If m = 0, then I = ∅, thus,

d(I, n) = 1,

therefore c0(I) = 1 ≥ 0.

If m = 1 or |I| = 1, then I = {m} and

d(I, n) =
(

n
m

)
− 1 =

m

∑
k=0

(
n + 1

k

)( −1
m− k

)
−
(

n + 1
0

)
=

m

∑
k=1

(−1)m−k
(

n + 1
k

)
+ (−1)m−0

(
n + 1

0

)
(1− (−1)m).

We obtained that

ck(I) =





1 if 0 < k ≤ m

2 if k = 0 and m is odd

0 if k = 0 and m is even

For the rest of the proof, we assume that the size of I is at least 2. Therefore m > 1,
and m− = max(I−) > 0. Since for any it ∈ I′′ (and it ∈ I′) the maximum of It (and
Ît) is exactly m− 1, we can use induction on them, i.e. ck(It) ≥ 0 integer (ck( Ît) ≥ 0
integer). On the other hand, d(I−, m− 1) counts permutations with descent set I−, so
d(I−, m− 1) ≥ 0 integer. Now by Lemma 4.4 and by the previous paragraph we have
for any k ≥ 1 that

ck(I) = ∑
it∈I′\{m}

ck−1(It) + ∑
it∈I′′\{m}

ck−1( Ît) + d(I−, m− 1) ≥ 0. (4.4)
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DESCENT POLYNOMIAL

What remains is to prove that c0(I) ≥ 0. This is exactly the statement of Proposition
3.10. of [26], but for the completeness we also give its proof.

We consider two cases. If m− 1 ∈ I, then by (4.3)

c0(I) = d(I−, m)− (−1)m−(m−1)c0(I−) = d(I−, m) + c0(I−) ≥ 1 + 0 > 0,

since m > max(I−).

If m− 1 /∈ I, then by (4.4),
c1(I) ≥ d(I−, m− 1) ≥ 1.

On the other hand, we can express d(I, 0) in two ways. The first equality is by Lemma
3.8. of [26], the second is by the definition of ck(I).

(−1)#I = d(I, 0) =
m

∑
k=0

(−1)m−kck(I)
(

1
k

)
= (−1)m(c0(I)− c1(I)),

therefore
c0(I) = c1(I) + (−1)#I+m ≥ 1 + (−1) = 0.

As a corollary we will see that the values of the polynomial d(I, n) at negative integers
are of the same sign. This phenomenon is kind of similar to a “combinatorial reci-
procity”, by which we mean that there exists a sequence of “nice sets” An parametrized
by n, such that (−1)md(I,−n) = |An|. We think that either proving the previous the-
orem using combinatorial arguments or finding a combinatorial reciprocity for d(I, n)
could provide an answer for the other.

Corollary 4.7. Let n be a positive integer, then

(−1)md(I,−n) ≥ 0.

Moreover if n > 1 positive integer, then (−1)md(I,−n) > 0.

Proof. Assume that n = 1. Then

(−1)md(I,−1) =
m

∑
k=0

(−1)−kck(I)
(−1 + 1

k

)
= (−1)0c0(I)

(
0
0

)
= c0(I),

80

C
E

U
eT

D
C

ol
le

ct
io

n



CHAPTER 4

and by the previous proposition we know that c0(I) ≥ 0.

(−1)md(I,−n) =
m

∑
k=0

ck(I)(−1)−k
(−n + 1

k

)
=

m

∑
k=0

ck(I)(−1)−k(−1)k
(

n + k− 2
k

)
=

m

∑
k=0

ck(I)
(

n + k− 2
k

)
> 0

We would like to remark that in Section 4 we will prove that in particular there is no
root of d(I, n) on the half-line (−∞,−1), that is, for any real number z0 ∈ (−∞,−1),
the expression (−1)md(I, z0) is always positive.

Moreover if we carefully follow the previous proofs, then one might observe that
d(I,−1) = 0 iff c0(I) = 0 iff I = {m} where m is even or I = [m− 2] ∪ {m}.

3 Descent polynomial in “a-base”

In this section we would like to investigate the coefficients ak(I). In order to do that, we
will need to understand the coefficients of d(I, n) in the base of {(n−m+k

k+1 )}m−1
k=−1, which

is defined by the following equation

d(I, n) = a−1(I)
(

n−m− 1
0

)
+ a0(I)

(
n−m

1

)
+ · · ·+ am−1(I)

(
n− 1

m

)
.

Observe that a−1(I) = 0, since

0 = d(I, m) = a−1(I)
(−1

0

)
+

m−1

∑
k=0

ak(I)
(

k
k + 1

)
= a−1(I),

therefore later on, we will concentrate on the coefficients ak(I) for 0 ≤ k ≤ m− 1. As
it will turn out, all these coefficients are non-negative integers, moreover, each of them
counts some combinatorial objects.

On the other hand, this new coefficient sequence is closely related to the coefficients
ak(I). To show the connection, we introduce two polynomials

a(I, x) =
m

∑
k=0

ak(I)xk,

a(I, x) =
m−1

∑
k=0

ak(I)xk.
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First we will show that ak(I) = hm−k(PI , um+1), i.e. ak(I) counts the number of permu-
tations from D(I, m + 1), such that there are (k + 1) elements above um+1.

Proposition 4.8. If I 6= ∅ and 0 ≤ k ≤ m− 1, then

ak(I) = hm−k(PI , um+1).

Proof. We will show that if n > m, then

d(I, n) =
m−1

∑
k=0

hm−k(PI , um+1)

(
n−m + k

k + 1

)
.

It is enough, since {(n−m+k
k+1 )}m−1

k=−1 is a base in the space of polynomials of degree at
most m.

Let us define the sets Bk(I, n) = {π ∈ D(I, n) | πm+1 = k} for 1 ≤ k ≤ n. For
any π ∈ D(I, n) the last descent is between m and m + 1, therefore πm > πm+1 <

πm+2 < · · · < πn ≤ n, i.e. πm+1 ≤ m. Therefore Bk(I, n) = ∅ for any m < k ≤ n,
and D(I, n) is a disjoint union of the sets Bk(I, n) for 1 ≤ k ≤ m. Also observe that
|Bk(I, m + 1)| = hk(PI , um+1).

We claim that

|Bk(I, n)| = |Bk(I, m + 1)×
(
[k + 1, n]
m + 1− k

)
| = |Bk(I, m + 1)|

(
n− k

m + 1− k

)
.

To prove the first equality we establish a bijection. If π ∈ Bk(I, n), then let Eπ = {1 ≤
i ≤ m | πi > k}, Vπ = {πi | i ∈ Eπ} and π|m+1 ∈ Bk(I, m + 1) the unique induced
linear ordering on the first m + 1 element. As before, for any l > m + 1 the value πl is
bigger than πm+1, therefore |Eπ| = m + 1− k and Vπ ⊆ [k + 1, n] has size m + 1− k. So
let f : Bk(I, n)→ Bk(I, m + 1)× ( [k+1,n]

m+1−k) defined as

f (π) = (π|m+1, Vπ) .

Checking whether the function f is a bijection is left to the readers.

Putting the pieces together, we have

d(I, n) = |D(I, n)| = | ∪m
k=1 Bk(I, n)| =

m

∑
k=1
|Bk(I, n)| =

m

∑
k=1
|Bk(I, m + 1)×

(
[k + 1, n]
m + 1− k

)
| =

m

∑
k=1
|Bk(I, m + 1)|

(
n− k

m + 1− k

)
=
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m

∑
k=1

hk(PI , um+1)

(
n− k

m + 1− k

)
=

m−1

∑
l=0

hm−l(PI , um+1)

(
n−m + l

l + 1

)
.

Corollary 4.9. If I 6= ∅, then the sequence a0(I), a1(I), . . . , am−1(I) is a monotone increasing,
log-concave sequence of non-negative integers.

Proof. By the previous proposition we know that this sequence is the same as

{hm−k(PI , um+1)}m
k=1,

which is clearly a sequence of non-negative integers. Moreover, by Theorem 4.3, it is
log-concave and monotone decreasing.

We just want to remark that since the polynomial a(I, x) has a monotone coefficient
sequence, all of its roots are contained in the unit disk (see Figure 4.1).

Figure 4.1: The roots of ā(I, n) where I has the form I = J ∪ [10, 11, . . . , 10 + k] for some k = 0, . . . , 4 and
J ⊆ [8]. Different colors mark different values of k.

Our next goal is to establish a connection between the coefficients ak(I) and ak(I).

Proposition 4.10. If I 6= ∅, then

a(I, x) = xa(I, x + 1)
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Proof. By definition we see that

d(I, n) =
m−1

∑
k=0

ak(I)
(

n−m + k
k + 1

)
=

m−1

∑
k=0

ak(I)
k+1

∑
l=0

(
n−m

l

)(
k

k + 1− l

)
=

m−1

∑
k=0

ak(I)
k+1

∑
l=1

(
n−m

l

)(
k

l − 1

)
=

m

∑
l=1

(
n−m

l

)( m−1

∑
k=l−1

ak(I)
(

k
l − 1

))
,

which means that al(I) = ∑m−1
k=l−1 al(I)( k

l−1) for 1 ≤ l ≤ m, i.e.

a(I, x) =
m

∑
l=1

xl

(
m−1

∑
k=l−1

ak(I)
(

k
l − 1

))

On the other hand, let us calculate the coefficients of xa(I, x + 1).

xa(I, x + 1) = x

(
m−1

∑
k=0

ak(I)(x + 1)k

)
=

x

(
m−1

∑
k=0

ak(I)
k

∑
l=0

(
k
l

)
xl

)
= x

(
m−1

∑
l=0

xl
m−1

∑
k=l

ak(I)
(

k
l

))
=

m−1

∑
l=0

xl+1
m−1

∑
k=l

ak(I)
(

k
l

)
=

m

∑
l=1

xl
m−1

∑
k=l−1

ak(I)
(

k
l − 1

)
= a(I, x).

As a corollary of two previous propositions, we will give a proof of Conjecture 3.4 of
[26].

Corollary 4.11. If I 6= ∅, then the sequence a0(I), a1(I), . . . , am(I) is a log-concave sequence
of non-negative integers.

Proof. By Corollary 4.9 we know that the coefficient sequence of the polynomial a(I, x)
is log-concave, and by monotonicity, it is clearly without internal zeros. Therefore by
the fundamental theorem of [13], the coefficient sequence of the polynomial a(I, x + 1)
is log-concave. Since multiplication with an x only shifts the coefficient sequence,
xa(I, x + 1) = a(I, x) also has a log-concave coefficient sequence.
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CHAPTER 4

4 On the roots of d(I, n)

In this section we will prove four propositions about the locations of the roots of d(I, n),
two are for general I, and two are for some special ones. The first result is obtained by
the technique of Theorem 4.16. of [26] based on the non-negativity of the coefficients
ck(I). In the second, we will prove a linear bound in m for the length of the roots of
d(I, n), which will be based on the monotonicity of the coefficients ak(I). For the third
we use similar arguments as in the proof of the second statement. In the fourth we will
prove a real-rootedness for some special I using Neumaier’s Gershgorin type result.

First we will recall some basic notations from [26]. Let Rm be the region described by
Theorem 4.16. of [26], that is Rm = Sm ∪ Sm and

Sm =

{
z ∈ C

∣∣∣ arg(z) ≥ 0 and
m

∑
i=1

arg(z− i + 1) < π

}
.

Then we have the following corollary of Proposition 4.6.

Corollary 4.12. Let I be a finite set of positive integers. Than any element of (m− 2)− Rm is
not a root of d(I, z). In particular, if z0 is a real root of d(I, z), then z0 ≥ −1.

Proof. Let z ∈ C be a complex number such that

S =
{
(−1)0(z + 1)↓0, . . . , (−1)m(z + 1)↓m

}

is non-negatively independent, i.e.

S =
{
(−1− z)↑0, . . . , (−1− z)↑m

}

is in an open half plane H, such that 1 ∈ H. But this is equivalent to the fact that the
points

S′ =
{
(m− 2− z)↓m(−1− z)−1

↑0 , . . . , (m− 2− z)↓m(−1− z)−1
↑m
}

are in H, which is the same set as

S′ =
{
(m− 2− z)↓m, (m− 2− z)↓m−1 . . . , (m− 2− z)↓0

}
.

But by Theorem 4.16. of [26], we know that this set lies on an open half-plane iff
m− 2− z ∈ Rm.

Therefore S is an open half plane iff m− 2− z ∈ Rm iff z ∈ (m− 2)− Rm.

The last statement can be obtained from the fact that (m− 1, ∞) ⊆ Rm.
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DESCENT POLYNOMIAL

The following lemma will be useful in the upcoming proofs.

Lemma 4.13. Let m > 0 integer given and assume that |z| > m. Then the lengths
∣∣∣∣
(

z−m + k
k

)∣∣∣∣

are increasing for k = 0, . . . , m.

In particular, if α0, . . . , αm ∈ R, αm 6= 0, ∑m−1
i=0 |αi| ≤ |αm| and |z| > m, then

∣∣∣∣αm

(
z
m

)∣∣∣∣ >
∣∣∣∣∣
m−1

∑
k=0

αk

(
z−m + k

k

)∣∣∣∣∣ .

m

∑
i=0

αk

(
z−m + k

k

)
6= 0

Proof. Let 0 ≤ k ≤ m− 1 be fixed. Then to see that the lengths are increasing we have
to consider the ratio of two consecutive elements:

∣∣∣∣
(

z−m + k + 1
k + 1

)∣∣∣∣
∣∣∣∣
(

z−m + k
k

)∣∣∣∣
−1

=

=
|z−m + k + 1|

k + 1
≥ |z| −m + k + 1

k + 1
> 1

Therefore the sequence is increasing.

To see the second statement let us define C = ∑m−1
i=0 |αi|. If C = 0, then the statement is

trivially true. If C 6= 0, then the vector

v =

∣∣∣∣∣
m−1

∑
k=0

αk

C

(
z−m + k

k

)∣∣∣∣∣ =
∣∣∣∣∣
m−1

∑
k=0

|αk|
C

sign(αi)

(
z−m + k

k

)∣∣∣∣∣

is a convex combination of the vectors
{

sign(αk)(
z−m+k

k )
}m−1

k=0
. Hence

|v| ≤
∣∣∣∣
(

z− 1
m− 1

)∣∣∣∣ ,

and ∣∣∣∣∣
m−1

∑
k=0

αk

(
z−m + k

k

)∣∣∣∣∣ = C|v| ≤ C
∣∣∣∣
(

z− 1
m− 1

)∣∣∣∣ < αm

∣∣∣∣
(

z
m

)∣∣∣∣
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CHAPTER 4

Corollary 4.14. If z0 is a root of d(I, z), then |z0| ≤ m.

Proof. Let us consider the polynomial p(z) = (z− 1)ā(I, z), and let pi (resp. āi) be the
coefficient of zi in p (resp. ā), i.e.

p(z) =
m

∑
i=0

pizi ā(I, z) =
m−1

∑
i=0

āizi.

The relation of p and ā translates as follows:

pi =





ām−1 if i = m

āi−1 − āi if 0 < i < m

−ā0 if i = 0

and

d(I, n) =
m

∑
k=0

pk

(
n−m + k

k

)
.

Since the coefficient sequence of ā(I, z) is non-decreasing by Corollary 4.9, therefore all
coefficients of p except pm are non-positive and their sum is 0. In other words for any
k ∈ {0, 1, . . . , m− 1}:

|pk| = −pk

and
m−1

∑
k=0
|pk| = −

m−1

∑
k=0

pk = am−1 = pm > 0.

Therefore by Lemma 4.13, if |z| > 0, then

d(I, z) =
m

∑
k=0

pk

(
z−m + k

k

)
6= 0.

In the previous proof we did not use the fact that āk(I) is a log-concave sequence,
which would be interesting if one could make use of it. Our next goal is to prove
Theorem 4.20. In order to prove it, we have to distinguish a few cases depending on
the number of consecutive elements ending at max(I). For simplicity, first we will
consider the case, when the distance of the last two elements is at least 2.
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DESCENT POLYNOMIAL

Proposition 4.15. If I = {i1, . . . , il} for some l ≥ 1, such that |I| = 1 or il − il−1 ≥ 2. If
d(I, z0) = 0, then

|m− 1− z0| ≤ m.

In particular <z0 ≥ −1.

Proof. Let us consider p(n) = (−1)md(I, m− 1− n) using coefficients ck(I).

d(I,−(n−m + 1)) =
m

∑
k=0

(−1)m−kck(I)
(−(n−m + 1) + 1

k

)
=

m

∑
k=0

(−1)m−kck(I)(−1)k
(

n−m + k− 1
k

)
=

(−1)m
m

∑
k=0

ck(I)
(

n−m + k− 1
k

)
.

It might be familiar from the proof of Corollary 4.14. As before we expend p(n) in base
{(n−m+k

k )}k∈N.

p(n) =
m

∑
k=0

ck(I)
(

n−m + k− 1
k

)
=

m

∑
k=1

ck(I)
((

n−m + k
k

)
−
(

n−m + k− 1
k− 1

))
+ c0(I)

(
n−m− 1

0

)
=

cm

(
n
m

)
+

m−1

∑
k=0

(ck(I)− ck+1(I))
(

n−m + k
k

)
=

m

∑
k=0

c̃k(I)
(

n−m + k
k

)
.

Now we claim that ∑m−1
k=0 |c̃k(I)| ≤ cm(I). To prove that, we use induction on |I| and m,

and we use the recursion of Lemma 4.4. If I = {m}, then it can be easily checked.

So for the rest assume, that the statement is true for sets of size at most l − 1 and
with maximal element at most m − 1. Let |I| = l ≥ 2 with il = m and assume that
il − il−1 ≥ 2. Then

m−1

∑
k=0
|ck(I)− ck+1(I)| =

|c0(I)− c1(I)|+
m−1

∑
k=1

∣∣∣∣∣ ∑
t∈I′′\{m}

ck−1(It)− ck(It) + ∑
t∈I′\{m}

ck−1( Ît)− ck( Ît)

∣∣∣∣∣ ≤

88

C
E

U
eT

D
C

ol
le

ct
io

n



CHAPTER 4

1 +
m−2

∑
k=0

∑
t∈I′′\{m}

|ck(It)− ck+1(It)|+
m−2

∑
k=0

∑
t∈I′\{m}

|ck( Ît)− ck+1( Ît)|

For any t ∈ I′′ \ {m} the two largest elements of It will be it−1− 1 and it− 1 = m− 1, so
their difference is at least 2, therefore we can use inductive hypothesis. If t ∈ I′ \ {m},
then either Ît has exactly one element, or | Ît| > 1. In this second case the largest
element of Ît is it − 1 = m− 1 and the second largest is it−2 or it−1 − 1. Clearly in each
cases the inductive hypothesis is true, therefore

m−1

∑
k=0
|ck(I)− ck+1(I)| ≤ 1 + ∑

t∈I′′\{m}
cm−1(It) + ∑

t∈I′\{m}
cm−1( Ît) =

1 + cm(I)− d(I−, m− 1) ≤ cm(I) = c̃m(I).

The last inequality is true, since m− 1 > max(I−).

So we obtained that ∑m−1
k=0 |c̃k(I)| ≤ cm(I), therefore by Lemma 4.13, if |z| > m, then

0 6=
m

∑
k=0

c̃k(I)
(

z−m + k
k

)
= p(z) = (−1)md(I, m− 1− z),

equivalently if |m− 1− z0| > m, then d(I, z0) 6= 0.

We would like to remark two facts about the previous proof. First of all the introduced
“new” coefficients, c̃k(I), are exactly

c̃k(I) = d(Ic, k) =





(−1)m+|[k+1,∞)∩I|+kd(I ∩ [k− 1], k) if k ∈ I

0 otherwise
,

where Ic = [m] \ I, therefore

d(I, n) =
m

∑
k=0

(−1)m−k c̃k(I)
(

n
k

)
=

m

∑
k=0

(−1)m−kd(Ic, k)
(

n
k

)
.

Secondly we can not extend the proof for any I, because the crucial statement, that was
∑m−1

k=0 |ck(I)− ck+1(I)| ≤ cm(I), is not true for any I ⊆ Z+. (E.g. I = {1, 2, 3, 4, 5})

From now on we would like to understand the roots of I’s with “non-trivial endings”.
To analyze these cases we introduce for the rest of the chapter the following notation:
for any finite set I ⊆ Z+ and t ∈N let It = I ∪ {m + 1, m + 2, . . . , m + t}.
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DESCENT POLYNOMIAL

Proposition 4.16. For any ∅ 6= I such that m− 1 /∈ I. Then if t = 1, 2, 3, 4, then there exists
an m0 = m0(t), such that if m ≥ m0 and d(It, z0) = 0, then

|m + t− 1− z0| ≤ m + t.

Proof. Let us consider d(It, n) in base {(n
k)}k∈N. Then

d(It, n) =
m+t

∑
k=0

(−1)m+t−kd(Ic, k)
(

n
k

)
,

where Ic = (It)c = [m + t] \ It = [m] \ I.

We claim that if t ∈ {1, 2, 3, 4} and m sufficiently large, then for any m ≤ k < m + t we
have

2d(Ic, k) ≤ d(Ic, k + 1). (4.5)

To see that let us observe that all the roots ξ1, . . . , ξm−1 of d(Ic, n) are in a ball of
radious m− 1 around 0 by Corollary 4.14. Without loss of generality let us assume that
ξ1 = max(Ic) = m− 1. Then

d(Ic, k)
d(Ic, k + 1)

=

∣∣∣∣
d(Ic, k)

d(Ic, k + 1)

∣∣∣∣ =
(k− ξ1)∏m−1

i=2 |k− ξi|
(k + 1− ξ1)∏m−1

i=2 |k + 1− ξi|
k−m + 1
k−m + 2

m−1

∏
i=2

|k− ξi|
|k + 1− ξi|

≤ k−m + 1
k−m + 2

m−1

∏
i=2

k + m− 1
k + m

≤ t
t + 1

(
2m + t− 2
2m + t− 1

)m−2

=
t

t + 1

(
1− 1

2m + t− 1

)m−2

→ t
t + 1

e−0.5

Since t
t+1 e−0.5 < 1/2, therefore we get that for any t ∈ {1, 2, 3, 4} there exists an m0 =

m0(t), such that ∀m ≥ m0 and for any m ≤ k < m + t we have 2d(Ic, k) ≤ d(Ic, k + 1).
In particular 2m+t−kd(Ic, k) ≤ d(Ic, m + t).

To finish the proof let us assume that m ≥ m0 for some fixed t ∈ {1, 2, 3, 4}. Then
consider the following polynomial p(n) = (−1)m+td(I, m + t− 1− n) as in the previos
proof

p(n) = (−1)m+t
m+t

∑
k=0

(−1)m+t−kd(Ic, k)
(

m + t− 1− n
k

)

=
m+t

∑
k=0

d(Ic, k)
(

n− (m + t) + k
k

)
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CHAPTER 4

Assume that z0 is a zero of p(n) with length at least m + t i.e.

d(Ic, m + t)
(

z0

m + t

)
=

m+t−1

∑
k=0

(−d(Ic, k))
(

z0 − (m + t) + k
k

)

By the previous proof we get that ∑m−1
k=0 |d(Ic, k)| ≤ d(Ic, m), therefore

C =
m+t−1

∑
k=0
| − d(Ic, k)| ≤ d(Ic, m) +

m+t−1

∑
k=m

d(Ic, k)

≤ 2−td(Ic, m + t) +
m+t−1

∑
k=m

2−(m+t−k)d(Ic, m + t)

= d(Ic, m + t).

But it means that d(Ic,m+t)
C ( z0

m+t) is a convex combination of F = {εk(
z0−(m+t)+k

k )}m+t−1
k=0 ,

where εk = sgn(−d(Ic, k)). However this is a contradiction, since d(Ic,m+t)
C ≥ 1 and

( z0
m+t) is strictly longer than any member of the set F .

Trivial upper bounds on m0 is the smallest m′0, such that for any m ∈ [m′0, ∞) we have

t
t + 1

(
1− 1

2m + t− 1

)m−2

< 1/2. (4.6)

These values can be found in the following Table 4.1.

Lemma 4.17. For any ∅ 6= I, such that m− 1 /∈ I and

(m− 1)(2m + 1) ≤
(

t + m− 1
t

)
, (4.7)

then
d(Ic, m)(2m + 1) ≤ d(Ic, m + t)

Proof. First of all

d(Ic, m) = d(I, m) ≤ d(I−, m− 1)(m− 1) = d((Ic)−, m− 1)(m− 1),

because any π ∈ D(I, m) can be written uniquely as an element in D(I−, m − 1) ×
[1, m− 1].
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DESCENT POLYNOMIAL

On the other hand

d(Ic, m + t) ≥
(

t + m− 1
t

)
d((Ic)−, m− 1),

because the left hand side counts the number of elements in D(Ic, m + t), while the
right hand side is the number of elements π in D(Ic, m + t), such that πm = 1.

Combining these inequalities and using the hypothesis we get the desired statement.

Proposition 4.18. For any ∅ 6= I such that m− 1 /∈ I. If

(m− 1)(2m + 1) ≤
(

t + m− 1
t

)

and d(It, z0) = 0, then
|m + t− z0| ≤ m + t + 1.

Proof. Let us consider the polynomial p(n) = (−1)m+td(It, m + t− n)

p(n) =(−1)m+td(It, m + t− n) =
m+t

∑
k=0

d(Ic, k)
(−t−m + n + k− 1

k

)
=

=
m−1

∑
k=0

d(Ic, k)
(

n−m− t + k− 1
k

)
+

m+t

∑
k=m

d(Ic, k)
(

n−m− t + k− 1
k

)

= u(n) +
m+t

∑
k=m

d(Ic, k)
(

n−m− t + k− 1
k

)
.

As a result of the proof of Proposition 4.15 we get that if |z| > m, then

|u(z + t + 1)| =
∣∣∣∣∣
m−1

∑
k=0

d(Ic, k)
(

z−m + k
k

)∣∣∣∣∣ <
∣∣∣∣d(Ic, m)

(
z
m

)∣∣∣∣ .

So if |z| > m + t + 1, then |z− (t + 1)| > m and therefore

|u(z)| ≤ d(Ic, m)

∣∣∣∣
(

z− t− 1
m

)∣∣∣∣

≤ d(Ic, m)

(∣∣∣∣
(

z− t
m

)∣∣∣∣+
∣∣∣∣
(

z− t− 1
m− 1

)∣∣∣∣
)

= d(Ic, m)

(∣∣∣∣
(m + t) . . . (m + 1)

z(z− 1) . . . (z− t + 1)

∣∣∣∣+
∣∣∣∣

(m + t) . . . m
z(z− 1) . . . (z− t)

∣∣∣∣
) ∣∣∣∣
(

z
m + t

)∣∣∣∣

< d(Ic, m)

(
2m + 1

t + m + 1

) ∣∣∣∣
(

z
m + t

)∣∣∣∣
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Let us assume that p(z) = 0 and |z| > m + t + 1, therefore

d(Ic, m + t)
(

z
m + t

)
=

m+t−1

∑
k=m−1

(d(Ic, k + 1)− d(Ic, k))
(

z−m− t + k
k

)
+ u(z),

equivalently

(
z

m + t

)
=

m+t−1

∑
k=m−1

d(Ic, k + 1)− d(Ic, k)
d(Ic, m + t)

(
z−m− t + k

k

)
+

1
d(Ic, m + t)

u(z).

Observe that the summation on the right hand side is a convex combination of some
complex numbers, therefore its length can be bounded from above by the length of the
longest vector, that is

∣∣∣∣∣
m+t−1

∑
k=m−1

d(Ic, k + 1)− d(Ic, k)
d(Ic, m + t)

(
z−m− t + k

k

)
+

1
d(Ic, m + t)

u(z)

∣∣∣∣∣ ≤
∣∣∣∣
(

z−m− t + m + t− 1
m + t− 1

)∣∣∣∣+ |u(z)|

<
t + m

t + m + 1

∣∣∣∣
(

z
m + t

)∣∣∣∣+
d(Ic, m)

d(Ic, m + t)

(
2m + 1

t + m + 1

) ∣∣∣∣
(

z
m + t

)∣∣∣∣

=

(
t + m

t + m + 1
+

d(Ic, m)

d(Ic, m + t)

(
2m + 1

t + m + 1

)) ∣∣∣∣
(

z
m + t

)∣∣∣∣

We claim that
t + m

t + m + 1
+

d(Ic, m)

d(Ic, m + t)

(
2m + 1

t + m + 1

)
≤ 1

equivalently

d(Ic, m)(2m + 1) ≤ d(Ic, m + t), (4.8)

but this is exactly the statement of Lemma 4.17. Therefore we get that
∣∣∣∣
(

z
m + t

)∣∣∣∣ <
(

t + m
t + m + 1

+
d(Ic, m)

d(Ic, m + t)

(
2m + 1

t + m + 1

)) ∣∣∣∣
(

z
m + t

)∣∣∣∣ ≤
∣∣∣∣
(

z
m + t

)∣∣∣∣ ,

and that is a contradiction. So we obtained that any root of p(n) has length at most
m + t + 1. Therefore if

0 = d(It, z0) = d(m + t− (m + t− z0)) = (−1)m+t p(m + t− z0),

then |m + t− z0| ≤ m + t + 1

Remark 4.19. With some easy calculation one could get the smallest value m0(t), for each
t, such that the conditions of the corresponding proposition is satisfied for any m ≥ m0(t).
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DESCENT POLYNOMIAL

Specifically it means that if max(I) > 10, then one of the conditions are satisfied. For
max(I) ≤ 10 we refer to Figure 4.2, where we included all the possible roots of d(I, n), depend-
ing on m = max(I) and regions ball (blue) of radius m around 0, ball (blue) of radius m + 1
around m and ball (red) of radius (m + 1)/2 around (m− 1)/2.

Observe that in Proposition 4.18 the crucial inequality was (4.8), and checking this condition
for the these 84 cases we end up with 16 cases when (4.8) is not satisfied.

t Corollary 4.15 Condition (4.6) Condition (4.7) Condition (4.8)

0 1 - - -

1 - 3 - -

2 - 6 - -

3 - 14 8 (3)

4 - 53 3 (2)

≥ 5 - - 1 (1)

Table 4.1: Smallest values for m0(t), such that the corresponding conditions are satisfied for any m ≥
m0(t). There are 84 I’s, that do not satisfy any of the first 3 conditions, and there are 16 of them, that do
not satisfy any of the 4 conditions.

By combining the previous four propositions and checking the uncovered cases of the
table (see Figure 4.2) we obtaine the following theorem.

Theorem 4.20. For any ∅ 6= I if d(I, z0) = 0, then

1. |z0| ≤ m

2. |m− z0| ≤ m + 1

In particular, −1 ≤ <z0 ≤ m

As the previous theorem shows, all the complex roots of d(It, n) have their real parts
in between -1 and m + t. In the following proposition we will show that if t is large
enough, then all the roots of d(It, n) are real.

Proposition 4.21. Let I 6= ∅, such that m − 1 /∈ I. Then there exists a t0 = t0(I) ∈ N,
such that for any t > t0 and v ∈ {−1, 0, . . . , m + t} \ {m− 1} there exists a unique root of
d(It, n) of distance 1/4 from v. In particular the roots of d(It, n) are contained in the interval
[−1, m + t].
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Proof. The proof is based on Neumaier’s Gershgorin type results on the location of
roots of polynomials. For further reference see [55]. Let

pt(n) =
d(It, n)

∏t
i=1(n− (m + i))

and
T(n) = n(n− 1) . . . (n−m + 2)(n−m),

and let us fix the value of t.

Then the leading coefficient of pt is

d(It−1, m + t)
(m + t)!

,

it has degree m, and for v = 0, . . . , m− 2, m

|αv| =
|d(I, v)|(m− 1− v)

v!(m− v)! ∏t
i=1(m− v + i)

=
|d(I, v)|(m− 1− v)

v!(m + t− v)!
.

Therefore

|rv| =
m
2
|d(I, v)|(m− 1− v)

v!(m + t− v)!
(m + t)!

d(It−1, m + t)
=

m
2
|d(I, v)|(m− 1− v)

d(It−1, m + t)

(
m + t

v

)
.

If we are able to prove that |rv| → 0 as t → ∞ for any v = 0, . . . , m − 2, m, then we
would be done.

In order to prove that we observe that

d(It−1, m + t) ≥ d(I−, m− 1)
(

m + t− 1
t

)
,

since the set of permutations of D(It−1, m + t) with the largest element at position m
has size d(I−, m− 1)(m+t−1

t ). To see that, choose the largest element m + t into the mth
position, and take an arbitrary subset of {1, . . . , m + t− 1} after the mth position in a
decreasing order, and take the rest as D(I−, m− 1) on the first m− 1 position through
an order-preserving bijection of the base-set.
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DESCENT POLYNOMIAL

Therefore

|rv| ≤
m(m− 1− v)

2
|d(I, v)|

d(I−, m− 1)
(m+t

v )

(m+t−1
t )

=

m(m− 1− v)
2

|d(I, v)|
d(I−, m− 1)

(m + t)(m− 1)!
v!

t!
(m + t− v)!

=

Cv,m
(m + t)t!

(t + m− v)!
.

If v = m, then |rv| = 0, since d(I, m) = 0.

If v ∈ {0, . . . , m− 2}, then

|rv| ≤ Cv,m
av,m(t)
bv,m(t)

,

where av,m(t) = t + m is a polynomial of degree 1, and bv,m(t) = ∏(m−v)
i=1 (t + i) is a

polynomial of degree at least 2. Therefore Cv,m
av(t)
bv(t)
→ 0 as t→ ∞, i.e. |rv| → 0.

5 Some remarks and further directions

We described an interesting phenomenon in Section 2, namely that ck(I) and (−1)md(I,−n)
are non-negative integers. This result suggests that there might be some combinatorial
proofs for them.

Question 4.22. What do the coefficients ck(I) and evaluations (−1)md(I,−n) count?

There are two conjectures about the roots of the descent polynomial:

Proposition 4.23 (Conjecture 4.3. of [26]). If z0 is a root of d(I, n), then

• |z0| ≤ m,

• <z0 ≥ −1.

This conjecture can be viewed as a special case of Theorem 4.20. As a common gen-
eralization of the two parts we conjecture that (motivated by numerical computations
for m ≤ 13 (e.g. see red regions on Figure 4.2), by a proof for the case |I| = 1 and by
Proposition 4.21) the roots of d(I, m) will be in a disk with the endpoints of one of its
diameters being −1 and m. More precisely:
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Conjecture 4.24. If d(I, z0) = 0, then |z0 − m−1
2 | ≤ m+1

2 .

Similarly to the descent polynomial, instead of counting permutations with described
descent set, one could ask for the number of permutations with described positions of
peaks (i.e. πi−1 < πi > πi+1). As it turns out, this peak-counting function is not a
polynomial. However, it can be written as a product of a polynomial and an exponen-
tial function in a “natural way”. (See the precise definition in [10]). This polynomial is
the so-called peak polynomial. This polynomial behaves quite similarly to the descent
one, thus it is natural to ask whether there is a deeper connection between them, or
whether we can prove similar propositions to the already obtained ones. In line with
this we propose a conjecture about the coefficients in a base similar to āk(I).

Conjecture 4.25. For the peak-polynomial the coefficients in base {(n−m+k
k+1 )}k∈N form a sym-

metric, log-concave sequence of non-negative integers.
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DESCENT POLYNOMIAL

(a) max(I) = 3 (b) max(I) = 4 (c) max(I) = 5

(d) max(I) = 6 (e) max(I) = 7 (f) max(I) = 8

(g) max(I) = 9 (h) max(I) = 10

Figure 4.2: Roots of d(I, n) for m = max(I) ∈ {3, . . . , 10} and regions: ball (blue) of radius m around 0,
ball (blue) of radius m + 1 around m and ball (red) of radius (m + 1)/2 around (m− 1)/2
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5
Invariant random subgroups of

groups acting on rooted trees

For a countable discrete group Γ let SubΓ denote the compact space of subgroups
H ≤ Γ, with the topology induced by the product topology on {0, 1}Γ. The group
Γ acts on SubΓ by conjugation. An invariant random subgroup (IRS) of Γ is a Borel
probability measure on SubΓ that is invariant with respect to the action of Γ.

Examples include Dirac measures on normal subgroups and uniform random conju-
gates of finite index subgroups. More generally, for any p.m.p. action Γ y (X, µ) on
a Borel probability space (X, µ), the stabilizer StabΓ(x) of a µ-random point x defines
an IRS of Γ. Abért, Glasner and Virág [1] proved that all IRS’s of Γ can be realized this
way.

A number of recent papers have been studying the IRS’s of certain countable discrete
groups. Vershik [72] characterized the ergodic IRS’s of the group FSym(N) of finitary
permutations of a countable set. In [2] the authors investigate IRS’s in lattices of Lie
groups. Bowen [11] and Bowen-Grigorchuk-Shavchenko [12] showed that there exists a
large “zoo” of IRS’s of non-abelian free groups and the lamplighter groups (Z/pZ)n o
Z respectively. Thomas and Tucker-Drob [69, 70] classified the ergodic IRS’s of strictly
diagonal limits of finite symmetric groups and inductive limits of finite alternating
groups. Dudko and Medynets [27] extend this in certain cases to blockdiagonal limits
of finite symmetric groups.

In this chapter we study the IRS’s of groups of automorphisms of rooted trees. Let T
be the infinite d-ary rooted tree, and let Aut(T) denote the group of automorphisms of
T.
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IRS’S OF GROUPS ACTING ON ROOTED TREES

An elementary automorphism applies a permutation to the children of a given vertex,
and moves the underlying subtrees accordingly. The group of finitary automorphisms
Aut f (T) is generated by the elementary automorphisms. The finitary alternating auto-
morphism group Alt f (T) is the one generated by even elementary automorphisms.

The group Aut(T) comes together with a natural measure preserving action. The
boundary of T – denoted ∂T – is the space of infinite rays of T. It is a compact metric
space with a continuous Aut(T) action and an ergodic invariant measure µ∂T.

For some natural classes of groups IRS’s tend to behave like normal subgroups. In [2]
the Margulis Normal Subgroup Theorem is extended to IRS’s, it is shown that every
nontrivial ergodic IRS of a lattice in a higher rank simple Lie group is a random conju-
gate of a finite index subgroup. On the other hand, the finitary alternating permutation
group FAlt(N) is simple, in particular it has no finite index subgroups, but as Vershik
shows in [72] it admits continuum many ergodic IRS’s.

The group Alt f (T) is an interesting mixture of these two worlds. It is both locally finite
and residually finite, and all its nontrivial normal subgroups are level stabilizers. The
Margulis Normal Subgroup Theorem does not extend to IRS’s, as the stabilizer of a
random boundary point gives an infinite index ergodic IRS. However, once we restrict
our attention to IRS’s without fixed points, the picture changes.

Theorem 5.1. Let H be a fixed point free ergodic IRS of Alt f (T), with d ≥ 5. Then H is
the uniform random conjugate of a finite index subgroup. In other words H contains a level
stabilizer.

Note, that an IRS H is fixed point free if it has no fixed points on ∂T almost surely. In
general let Fix(H) denote the closed subset of fixed points of H on ∂T.

When we do not assume fixed point freeness IRS’s of Alt f (T) start to behave like
the ones in FAlt(N). In the case of FAlt(N), any nontrivial ergodic IRS contains a
specific (random) subgroup that arises by partitioning the base space in an invariant
random way and then taking the direct sum of deterministic subgroups on the parts.
We proceed to define a (random) subgroup of Alt f (T) which highly resembles these
subgroups.

Every closed subset C ⊆ ∂T corresponds to a rooted subtree TC with no leaves. The
complement of TC in T is a union of subtrees T0, T1, . . . as in Figure 5.1. Choose an
integer mi for each Ti, and let Lmi(Ti) stand for the mth

i level of the tree Ti. We define
L
(
C, (mi)

)
to be the direct sum of level stabilizers in the Ti:

L
(
C, (mi)

)
=
⊕

i∈N

StabAlt f (T)
(
Lmi(Ti)

)
.
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T

TC T0

T1 T2

T3 T4 T5

Figure 5.1: Decomposition of T with respect to C

It is easy to see that Fix
(

L
(
C, (mi)

))
= C. We call such an L

(
C, (mi)

)
a generalized

congruence subgroup with respect to the fixed point set C.

Let C̃ be the translate of C with a Haar-random element from the compact group
Alt(T) = Alt f (T). Then L

(
C̃, (mi)

)
becomes an ergodic IRS of Alt f (T) with fixed point

set C̃.

Theorem 5.2. Let H be an ergodic IRS of Alt f (T), with d ≥ 5. Then Fix(H) is the Haar-
random translate of a fixed closed subset C. Moreover, there exists (mi) such that the generalized
congruence subgroup L

(
Fix(H), (mi)

)
is contained in H almost surely.

We can exploit our methods to prove new results on branch groups as well. We post-
pone the formal definition of branch groups to Section 1. The examples to keep in
mind are the groups Aut f (T), Alt f (T) and groups defined by finite automata, such as
the first Grigorchuk group G.

In [9] Benli, Grigorchuk and Nagnibeda exhibit a group of intermediate growth with
continuum many distinct atomless (continuous) ergodic IRS’s. In the ergodic case being
atomless means that the measure is not supported on a finite set. We extend this result
to weakly branch groups in general.

Theorem 5.3. Every weakly branch group admits continuum many distinct atomless ergodic
IRS’s.

A key ingredient in Theorems 5.1 and 5.2 is to analyze the orbit-closures of IRS’s on ∂T.
For any subgroup L ≤ Aut(T) taking the closures of orbits of L gives an equivalence
relation on ∂T, that is L acts minimally on each class. It turns out that nontrivial
orbit-closures of IRS’s are necessarily clopen.
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IRS’S OF GROUPS ACTING ON ROOTED TREES

Theorem 5.4. Let H be an ergodic IRS of a countable regular branch group Γ. Then almost
surely all orbit-closures of H on ∂T that are not fixed points are clopen. In particular if H is
fixed point free, then H has finitely many orbit-closures on ∂T almost surely.

In a group Γ the rigid stabilizer of a vertex v ∈ V(T) is the set RstΓ(v) ⊆ Γ of automor-
phisms that fix all vertices except the descendants of v. The rigid stabilizer of the level
Ln is

RstΓ(Ln) = ∏
v∈Ln

RstΓ(v).

In [39, Theorem 4] Grigorchuk showed that nontrivial normal subgroups in branch
groups contain the derived subgroup Rst′Γ

(
Lm(T)

)
for some m ∈ N. Our next theo-

rem can be thought of as a generalization of this statement for finitary regular branch
groups.

Using the decomposition of T with respect to C above we can define a generalized rigid
level stabilizer L(C, mi) by taking the direct sum of the rigid level stabilizers RstΓ

(
Lmi(Ti)

)

instead of the StabΓ
(
Lmi(Ti)

)
we used before. The next theorem generalizes Theorem

5.1 and Theorem 5.2 for finitary regular branch groups.

Theorem 5.5. Let Γ be a finitary regular branch group, and let H be a nontrivial ergodic IRS of
Γ. Then Fix(H) is the Haar-random translate of a closed subset C with an element from Γ. Also
there exists (mi) such that H almost surely contains the derived subgroup L′

(
Fix(H), (mi)

)
of

a generalized rigid level stabilizer. In particular if H is fixed point free, then H almost surely
contains Rst′Γ

(
Lm(T)

)
for some m ∈N.

Already in the case of Aut f (T) with d = 2 the abelianization of Aut f (T) equals
(Z/2Z)N. This itself gives rise to a lot of IRS’s, which makes the following conse-
quence of Theorem 5.5 somewhat surprising.

Theorem 5.6. All ergodic fixed point free IRS’s in finitary regular branch groups are supported
on finitely many subgroups, and therefore are the uniform random conjugates of a subgroup with
finite index normalizer.

One can think of Theorem 5.6 as a dual of Theorem 5.3. Also note that merely contain-
ing Rst′Γ

(
Lm(T)

)
does not imply finite index normalizer.

In the Grigorchuk group G the elements are not finitary. In this case our methods yield
a weaker result on the closures of IRS’s.

Theorem 5.7. Let Γ be a countable regular branch group, and let H be a nontrivial ergodic
IRS of Γ. Then there exists (mi) such that H contains the derived subgroup L′

(
Fix(H), (mi)

)
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of a generalized rigid level stabilizer almost surely, where the elements of the rigid stabilizers in
L
(
Fix(H), (mi)

)
can be chosen from Γ instead of Γ.

However, classifying IRS’s of the discrete Grigorchuk group G is still open.

Problem 5.8. What are the (fixed point free) ergodic IRS’s of the first Grigorchuk group G? Is
it true, that a fixed point free ergodic IRS of G contains a congruence subgroup almost surely?

The structure of the chapter is as follows. We introduce the basic notions of the chapter
in Section 1 and state some lemmas leading towards Theorem 5.4. In Section 2 we in-
vestigate the actions of IRS’s on the boundary and prove Theorems 5.3 and 5.4. Section
3 is dedicated to understanding the structure of IRS’s in finitary regular branch groups
and proving Theorem 5.5. We show how Theorems 5.6 and 5.7 follow from our earlier
results in Section 4. In the Appendix we prove a few technical details that we postpone
during the exposition.

1 Preliminaries

In this section we introduce the basic notions discussed in the chapter. Notation mostly
follows [5], which we recommend as an introduction to automorphisms of rooted trees
and branch groups.

1.1 Automorphisms of rooted trees

Let T be a locally finite tree rooted at o, and let dT denote the graph distance on T. For
any vertex v the parent of v is the unique neighbor u of v with dT(u, o) = dT(v, o)− 1.
Accordingly, the children of u are all the neighbors v of u with dT(v, o) = dT(u, o).
Similarly we use the phrases ancestors and descendants of a vertex v to refer to vertices
that can be reached from v by taking some number of steps towards or away from the
root respectively. The nth level of T is the set of vertices Ln = {v ∈ V(T) | dT(v, o) = n}.

To effectively talk about automorphisms of a rooted tree T one has to distinguish the
vertices. For any vertex v we fix an ordering of the children of v. In the case of the
d-ary tree this corresponds to thinking of T as the set of finite length words Y∗ over the
alphabet Y with d letters. The empty word represents the root, and the parent of any
word w1w2 . . . wn is w1w2 . . . wn−1. Being an ancestor of v corresponds to being a prefix
of the word corresponding to v.

An automorphism of T (which preserves the root) corresponds to a permutation of
the words which preserves the prefix relation. For an element γ ∈ Aut(T) and a
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IRS’S OF GROUPS ACTING ON ROOTED TREES

word w ∈ Y∗ we denote by wγ the image of w under γ. For a letter y ∈ Y we have
(wy)γ = wγy′ where y′ is a uniquely determined letter in Y. The map y 7→ y′ is a
permutation of Y, we refer to it as the vertex permutation of γ at w and denote it (w)γ.

Considering all the vertex permutations
(
(w)γ

)
w∈Y∗ gives us the portrait of γ, which is

a decoration of the vertices of T with elements from the symmetric group Sd. In turn
any assignment of these vertex permutations – that is, every possible portrait – gives
an automorphism of T. Note that one has to perform these vertex permutations “from
bottom to top”.

An automorphism γ is finitary, if it has finitely many nontrivial vertex permutations.
It is alternating, if all are from the alternating group Ad.

Let Swr(n)
d denote the n-times iterated permutational wreath product of the symmetric

group Sd. That is, let [d] = {1, . . . , d} and set

Swr(n)
d = ((Sd o[d] . . .) o[d] Sd) o[d] Sd︸ ︷︷ ︸

n

.

Then Swr(n)
d is isomorphic to the automorphism group of the d-ary rooted tree of depth

n. These groups can be embedded in Aut(T) as acting on the first n levels. The group
Aut f is the union of these embedded finite groups. The full automorphism group

Aut(T) however is isomorphic to the projective limit lim←− Swr(n)
d with the projections

being the natural restrictions of the permutations.

The groups Alt f (T) and Alt(T) are in a similar relationship with the finite groups

Awr(n)
d .

1.2 The boundary of T

The boundary of T is the set of infinite paths starting from o, and is denoted ∂T. For
two distinct paths p1 = (u0, u1, . . .) and p2 = (v0, v1, . . .) with un, vn ∈ Ln their distance
is defined to be

d∂T(p1, p2) =
1
2k , where k = max{n | un = vn}.

Two infinite paths are close it they have a long common initial segment. This distance
turns ∂T into a compact, totally disconnected metric space.

The shadow of v on ∂T, denoted by Sh(v) is the set of paths passing through v. Similarly
the shadow of v on Ln is the set ShLn(v) of descendants of v in Ln. The sets Sh(v) form
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a basis for the topology of ∂T. Define the probability measure µ∂T by setting its value
on this basis:

µ∂T
(
Sh(v)

)
=

1
dn for every v ∈ Ln.

A µ∂T-random point of ∂T is a random infinite word (w1w2 . . .) with each letter chosen
uniformly from the set Y.

As γ ∈ Aut(T) permutes the vertices, it induces a bijection on ∂T, so we have an action
of Aut(T) on ∂T. This action is by isometries and preserves the measure µ∂T.

The objects in relation of the tree considered in this chapter include vertices v ∈ V(T),
points x ∈ ∂T, closed subsets C ⊆ ∂T and later 3-colorings of the vertices ϕ : V(T) →
{r, g, b}. For any such object z let zγ denote its translate by γ.

1.3 Topology on Aut(T)

We equip Aut(T) with the topology of pointwise convergence. This can be metrized
by the following distance:

dAut(T)(γ1, γ2) =
1
2k , where k = max{n | γ1|Ln = γ2|Ln}.

Two automorphisms are close if they act the same way on a deep level of T. This metric
turns Aut(T) into a compact, totally disconnected group.

The action Aut(T) y ∂T is continuous in the first coordinate as well. For any subgroup
H ≤ Aut(T) the set Fix(H) is closed in ∂T, and similarly for any set C ⊆ ∂T its
pointwise stabilizer StabΓ(C) is closed in Aut(T).

For a subgroup Γ ≤ Aut(T) its closure Γ is a closed subgroup of Aut(T), and therefore
it is compact. We note that Aut f (T) = Aut(T) and Alt f (T) = Alt(T). Even though
the groups Γ we are considering are discrete, their closures in Aut(T) always carry a
unique Haar probability measure.

For any object z in relation to the tree we write z̃ for its Haar random translate, that is
zγ where γ ∈ Γ is chosen randomly according to the Haar measure.
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1.4 Fixed points and orbit-closures in ∂T

We aim to understand the IRS’s of Γ through their actions on ∂T. The first step is to
look at the set of fixed points. The boundary (∂T, d∂T) is a compact metric space, so let
(C, dH) denote the compact space of closed subsets of ∂T with the Hausdorff metric.

Lemma 5.9. The map H 7→ Fix(H) is a measurable and Γ-equivariant map from SubΓ to
(C, dH).

Equivariance is trivial, while the proof of the measurability is a standard argument.
We postpone it to the Appendix.

Lemma 5.9 implies that the fixed points of the IRS constitute a Γ-invariant random
closed subset of ∂T. We will also consider the orbit-closures of the subgroup on ∂T.
For a subgroup H ≤ Aut(T) let OH denote the set of orbit-closures of the action
H y ∂T. It is easy to see that OH is a partition of ∂T into closed subsets. Note that
all fixed points are orbit-closures. Denote by O the space of all possible orbit-closure
partitions on ∂T, i.e. O = {OH | H ≤ Aut(T)}. This O is a subset of all the possible
partitions of ∂T.

As earlier, we would like to argue that the map H 7→ OH is a measurable map, with
respect to the appropriate measurable structure on O. This allows us to associate to our
IRS a Γ-invariant random partition (into closed subsets) of ∂T. We will then analyze
these invariant random objects on the boundary.

To this end we introduce a metric on the space O. Denote by OH,Ln the partition of Ln

into H-orbits. As Ln is finite, there is no need to take closure here.

Definition. Let P = OH ∈ O be the orbit-closure partition of H and n ∈ N. Then let Pn be
the orbit-structure of H on Ln, i.e.

Pn = OH,Ln .

For P 6= Q ∈ O let

dO(P, Q) = min
n∈N

{
1
2n

∣∣ Pn = Qn

}
.

Observe that if Pn = Qn, then Pn−1 = Qn−1, so the above distance measures how deep
one has to go in the tree to see that two partitions are distinct. This definition turns
(O, dO) into a metric space. To check that distinct points cannot have zero distance we
argue that if x = (v0, v1, . . .) and y = (u0, u1, . . .) are two rays such that vn and un are
in the same orbit in Ln for all n, then y is indeed in the closure of the orbit of x.

The group Aut(T) acts on O in a natural way by shifting the sets of the partition. The
resulting partition is again in O because (OH)

γ = OHγ for γ ∈ Aut(T).
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Lemma 5.10. The map H 7→ OH is measurable and Γ-equivariant.

Again, equivariance is obvious, and measurability is proved in the Appendix.

1.5 Invariant random objects on ∂T

Now we study invariant random closed subsets and partitions on the boundary. We
show that the invariance can be extended to Γ, which carries a Haar measure. Ergodic
objects turn out to be random translates according to this Haar measure.

Lemma 5.11. Every Γ-invariant random closed subset of ∂T is in fact Γ-invariant. Similarly
a Γ-invariant random P ⊆ O is Γ-invariant.

Proof. Let P(C) denote the set of probability measures on C. The action of Γ on ∂T
gives rise to a translation action on (C, dH), which in turn gives rise to an action on
P(C).

We claim that this action Γ × P(C) → P(C) is continuous in both coordinates with
respect to the pointwise convergence topology on Γ and the weak star topology on
P(C).

The weak topology on P(C) is metrizable by the Lévy - Prokhorov metric, which is
defined as follows:

π(µ, ν) = inf{ε > 0 | µ(A) ≤ ν(Aε) + ε, and ν(A) ≤ µ(Aε) + ε for all A ⊆ C Borel}.

Here Aε denotes the set elements of C with dH distance at most ε from A.

If γ1 and γ2 agree on the first n levels of T, then for every x ∈ ∂T we have d(γ1x, γ2x) ≤
1/2n. This implies, that for a compact set C ∈ C we have dH(γ1C, γ2C) ≤ 1/2n. This in
turn implies that for all A ⊆ C Borel we have γ1A ⊆ γ2A1/2n

and vice versa.

This means, that
(
(γ1)∗µ

)
(A) = µ(γ−1

1 A) ≤ µ(γ−1
2 A1/2n

) =
(
(γ2)∗µ

)
(A1/2n

), so as a
consequence π

(
(γ1)∗µ, (γ2)∗µ

)
≤ 1/2n. That is, the action is continuous in the first

coordinate.

Continuity in the second coordinate is an easy exercise, as it turns out that the elements
of Γ act by isometries on (∂T, d∂T), (C, dH) and

(
P(C), π

)
respectively.

As Γ is a dense subset of Γ, by continuity we can say that if some µ ∈ P(C) is Γ-
invariant then it is also Γ-invariant, thus proving the statement for invariant random
closed subsets.
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The proof for invariant random partitions follows the exact same steps after substitut-
ing (C, dH) with (O, dO) everywhere.

Remark. The fact that the same lemma holds with the same proof for closed subsets and par-
titions is not a coincidence. A closed subset C can be thought of as a partition into the two
sets C and Cc (the complement might not be closed). While it is not generally true that this
partition is in O – it might not arise as an orbit-closure partition of some H ⊆ Aut(T) – but it
still can be approximated on the finite levels. Indeed define Cn to be the set of vertices v on Ln

with Sh(v) ∩ C 6= ∅. The Cn correspond to the (1/2n)-neighborhoods of C in ∂T, and so the
Hausdorff distance of closed subsets coincides with the distance dO we could define using these
Cn.

Lemma 5.12. Any ergodic Γ-invariant random closed subset of ∂T is the γ translate of a fixed
closed subset C, where γ ∈ Γ is a uniform random element chosen according to the Haar
measure. Similarly an ergodic Γ-invariant partition from O is the Haar-random translate of
some fixed P ∈ O.

Proof. We introduce an equivalence relation on closed subsets of ∂T: we say that C1 ∼
C2 if and only if there is an automorphism γ ∈ Γ such that Cγ

1 = C2. Let [C] denote the
equivalence class of C.

Define the following metric on equivalence classes that measures how well one can
overlap two arbitrary sets from the classes:

d([C1], [C2]) = min
γ∈Γ
{dH(C

γ
1 , C2)}.

The minimum exists by compactness of Γ, and standard arguments using the fact that
Γ acts by isometries on (C, dH) show that this is well defined and indeed a metric.

The function C → [C] is measurable (in fact continuous) and Γ-invariant, hence it is
almost surely a constant by the ergodicity of the measure.

In other words the measure is concentrated on one equivalence class, say [C]. However
[C] is a homogeneous space of Γ, i.e. the action of Γ on [C] is the same as Γ y
Γ/StabΓ(C). StabΓ(C) is a closed and therefore compact subgroup of Γ, and as such
Γ/StabΓ(C) carries a unique invariant measure. Of course picking a random translate
of C is an invariant measure, so the two must coincide.

The result for partitions again follows word for word, by writing P for C and (O, dO)
for (C, dH) everywhere.

Remark. A way to put the previous lemmas into a general framework is the following: let G
be a metrizable compact group acting continuously on a compact metric space (X, d) and let
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Γ ≤ G be a dense subgroup. Then any Γ-invariant measure on X is also G-invariant. Moreover
if the metric d is G-compatible, then any ergodic Γ-invariant measure on X has the distribution
of a random G-translate of a fix element in X.

If the IRS H ≤ Γ is ergodic, then so is the associated invariant random closed subset.
This means that Fix(H) is the random translate of a fixed closed subset C. Similarly
OH is the random translate of some partition P.

1.6 Branch Groups

For a vertex v of T let Tv denote the induced subtree of T on v and its descendants.
We denote by StabΓ(v) the stabilizer of v in Γ. Every γ ∈ StabΓ(v) acts on Tv by an
automorphism, which we denote γv. Then Uv = {γv | γ ∈ StabΓ(v)} is a subgroup of
Aut(Tv). Uv is the group of automorphisms of Tv that are realized by some element of
Γ.

The trees we are considering are regular, so Tv is canonically isomorphic to T. (The
isomorphism preserves the ordering of the vertices on each level. If we think of the
vertices as finite words over a fixed alphabet, then this isomorphism just deletes the
initial segment of each word in Tv.) This identification of the trees allows us to compare
the action of G on T to the action of Uv on Tv. In particular we say that Γ is a fractal
group, if Uv is equal to G for all v ∈ V(T) (under the above identification of the trees
they act on).

For a vertex v ∈ V(T) let RstΓ(v) denote the rigid stabilizer of v, that is the subgroup
of elements of Γ that fix every vertex except the descendants of v. Clearly RstΓ(v) ≤
StabΓ(v). For a subset of vertices V ⊆ Ln the rigid stabilizer of the set is RstΓ(V) =

∏v∈V RstΓ(v).

Throughout the chapter we will be able to prove statements in varying levels of gen-
erality, so we introduce several notions of branching. In all cases we assume Γ to be
transitive on all levels. We say that Γ is weakly branch, if all rigid vertex stabilizers
RstΓ(v) are nontrivial. We say that the group Γ is branch, if for all n the rigid level
stabilizer RstΓ(Ln) is a finite index subgroup of Γ. Finally we define regular branch
groups.

Definition. Suppose the fractal group Γ has a finite index subgroup K. The group Kd is a
subgroup of Aut(T), each component acting independently on Tvi where {v1, . . . , vd} are the
vertices on L1. We say that Γ is a regular branch group over K, if K contains Kd as a finite
index subgroup.
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IRS’S OF GROUPS ACTING ON ROOTED TREES

In fractal groups the action on any subtree Tv is the same as on T, however for some
v1, v2 ∈ Ln we might not be able to move Tv1 and Tv2 independently. This independence
(up to finite index) is what we required in the definition above. The following lemma
is straightforward and we leave the proof to the reader.

Lemma 5.13. Having finite index and being a direct product remains to be true after taking
closures:

1. Let K ⊆ Γ be a subgroup of finite index. Then K is a finite index subgroup of Γ;

2. K× · · · × K︸ ︷︷ ︸
d

= K× · · · × K︸ ︷︷ ︸
d

.

2 Fixed points and orbit-closures of IRS’s

In this section we prove Theorems 5.3 and 5.4. To a closed subset C on the boundary
one can associate two natural subgroup of Γ, the pointwise stabilizer of C and the
setwise stabilizer of C. The pointwise stabilizer gives us a big “zoo” of IRS’s when we
choose C as a Γ-invariant closed subset, proving Theorem 5.3. The setwise stabilizer
will play a key role in the proof of Theorem 5.4.

In order to investigate these stabilizers we introduce a coloring to encode C on the tree
T. The coloring will help analyzing the Haar random translate C̃.

2.1 Closed subsets of the boundary

To every closed subset of the boundary C ⊆ ∂T we associate a vertex coloring ϕ :
V(T) → {r, g, b} with 3 colors: red, green and blue. If a vertex has its shadow com-
pletely in C, then color it red. If it has its entire shadow in the complement of C, then
color it blue. Otherwise color it green.

ϕ(v) =





r, if Sh(v) ⊆ C;

b, if Sh(v) ∩ C = ∅;

g, otherwise.

All descendants of a red vertex are red, and similarly all descendants of blue vertices
are blue. On the other hand all ancestors of a green vertex are green.
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C being clopen is equivalent to saying that after some level all vertices are either red
or blue. So if C is not clopen, then there are green vertices on all the levels. Using
König’s lemma we see that there is an infinite ray with vertices colored green. This ray
corresponds to a boundary point of C. As the complement of C is open, we get that
every vertex on this infinite ray has a blue descendant.

Lemma 5.14. Let Γ ⊆ Aut(T) be a group of automorphisms that is transitive on every level.
Let ϕ : V(T) → {r, g, b} be a vertex coloring with the colors red, green and blue, and suppose
it satisfies the above properties, namely:

1. descendants of red and blue vertices are red and blue respectively;

2. ancestors of green vertices are green; (This formally follows from 1.)

3. there is an infinite ray (u0, u1, . . .) of green vertices such that for each ui there exists some
descendant of ui which is blue.

Then ϕ has infinitely many Γ-translates.

Proof. The root u0 is colored green. It has a blue descendant, say on the level n1. We
denote this blue descendant wn1 . By the transitivity assumption there is some γ1 ∈ Γ,
such that γ1(wn1) = un1 . Furthermore, un1 has a blue descendant, on some level n2,
we denote it wn2 . We choose γ2 ∈ Γ such that γ1(wn1) = un1 , and so on. One can
easily check, that moving ϕ with the different γi yields different colorings. Indeed
ϕγi(unj) = g for all j < i, and ϕγi(uni) = b, and this shows that the ϕγi are pairwise
distinct. See Figure 5.2.

Corollary 5.15. Let Γ and ϕ be as in Lemma 5.14. Then the uniform (Haar) random Γ-translate
of ϕ is an atomless measure on the space of all 3-vertex-colorings.

Proof. If there was some translate ϕg, g ∈ Γ which occurred with positive probability,
then all its Γ-translates would occur with the same positive probability. Furthermore
ϕg would also satisfy the assumptions of Lemma 5.14, which then implies that it has
infinitely many Γ-translates, and they would have infinite total measure, which is a
contradiction.

Corollary 5.16. If C is not clopen, then its random Γ-translate C̃ is an atomless measure on
(C, dH).
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ϕ

u0

un1

un2

un3

wn1

wn2

wn3

ϕγ1

u0

un1

ϕγ2

u0

un1

un2

ϕγ3

u0

un1

un2

un3

Figure 5.2: Distinct colorings

2.2 Continuum many distinct atomless ergodic IRS’s in weakly branch groups

Proof of Theorem 5.3. We argue that for any closed subset C ⊆ ∂T the random subgroup
StabΓ(C̃) is an ergodic IRS. This follows from C̃ being an ergodic invariant random
closed subset.

We also claim that if [C1] 6= [C2], then the corresponding IRS’s are distinct. To prove
this we first observe that in weakly branch groups taking the stabilizer StabΓ(C) of a
closed subset C, and then looking at the fixed points of that subset we get back C.

Lemma 5.17. For any C ⊆ ∂T closed we have Fix
(
StabΓ(C)

)
= C.

Proof. The key idea – present in [9, Proposition 8] and earlier works credited there –
is to show, that for any x /∈ C, with x = (u0, u1, . . .) we can find some n large enough
such that Sh(un) ∩ C = ∅, and some γ ∈ RstΓ(un) with xγ 6= x.

Indeed such an n exists as the complement of C is open. By weak branching there
exists some γ0 ∈ RstΓ(un) moving some descendant of u denoted v to v′ 6= v on
Lm, m ≥ n. By transitivity we can find some η ∈ StabΓ(un) with v = uη

m. Now

uηγ0η−1

m = (v′)η−1 6= um, so γ = ηγ0η−1 ∈ RstΓ(un), and xγ 6= x as witnessed on Lm.

As Sh(un) ∩ C = ∅ we have RstΓ(un) ⊆ StabΓ(C). The existence of γ shows that x /∈
Fix
(
StabΓ(C)

)
, which implies Fix

(
StabΓ(C)

)
⊆ C, which is the nontrivial inclusion.
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To show that [C1] 6= [C2] implies that StabΓ(C̃1) and StabΓ(C̃2) distinct simply consider
the function H 7→ [Fix(H)] on ergodic IRS’s. Using Lemma 5.17 we have

[
Fix
(
StabΓ(C̃1)

)]
= [C̃1] = [C1].

This implies that the constructed IRS are distinct. By Corollary 5.16 we know that if C
is not clopen then C̃ is atomless. Then Lemma 5.17 implies that StabΓC̃ is an atomless
IRS.

There are continuum many non-Γ-equivalent closed (but not clopen) subsets of ∂T, as
one can construct a closed subset Cr with µ∂T(Cr) = r for any r ∈ [0, 1], and if r is
irrational then C is not clopen.

2.3 Random colorings in regular branch groups

We proceed to prove a stronger versions of Corollary 5.15 for the case when the group
is regular branch.

Let Γ be a regular branch group over K. Consider the finite index subgroup Kdn ≤
StabΓ(Ln) = ∩v∈Ln StabΓ(v), and let {t1, . . . , tl} be a transversal to Kdn in Γ. We can
think of a random element γ of Γ as γ = γ0 · k, where γ0 is chosen uniformly from the
transversal and k is chosen according to the Haar measure on Kdn .

Take ϕ to be a 3-vertex-coloring as in Lemma 5.14. Let ϕ̃ = ϕγ denote the translate of
ϕ by the Haar random group element γ. Conditioning on γ0 = ti we get a conditional
distribution (ϕ̃|γ0 = ti). Note that this random coloring is always the same up to the
nth level, and ti already determines where the random translate of the infinite green
ray (u0, u1, . . . ) intersects Ln, namely at v = uti

n .

Lemma 5.18. The restriction of the random coloring (ϕ̃|γ0 = ti) to Tv is atomless.

Proof. The coloring ϕti restricted to Tv satisfies the assumptions of Lemma 5.14. Hence
its Γ-orbit is infinite. As K is finite index in Γ, its K orbit is also infinite. Hence when it
is randomly translated with an element from K (corresponding to v in Kdn

) the resulting
random coloring is atomless.

Lemma 5.19. Fix any isomorphism f : V(Tv)→ V(Tv′) between Tv and Tv′ for some v′ ∈ Ln.
Then the probability that f respects the colorings we get by restricting (ϕ̃|γ0 = ti) to Tv and
Tv′ respectively is 0.

P
[(
(ϕ̃|γ0 = ti)|Tv

) f
= (ϕ̃|γ0 = ti)|Tv′

]
= 0.
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Proof. The restricted colorings ϕti |Tv and ϕti |Tv′ are translated by the random elements
k1, k2 ∈ K respectively. These k1 and k2 are independent since they are two coordinates
of a Haar random element from Kdn

. Furthermore we know from Lemma 5.18 that
(ϕti |Tv)

k1 is atomless, and hence
(
(ϕti |Tv)

k1
) f is also atomless. This together with the

independence of k1 and k2 implies that

P
[(
(ϕti |Tv)

k1
) f

= (ϕti |Tv′ )
k2
]
= 0.

2.4 Proof of Theorem 5.4

The idea of the proof is to show that taking the setwise stabilizer of a Haar random
translate C̃ of a closed but not clopen subset C has a fixed point in C̃. With some con-
siderations one can apply this to the orbit-closures of H, which are setwise stabilized
by H.

Proposition 5.20. Let Γ be a countable regular branch group over K. Suppose C is a closed
subset of ∂T. Consider the IRS L ≤ Γ obtained by taking the setwise stabilizer of C̃, which is
the uniform Γ-translate of C. If C is not clopen, then L has a fixed point in C̃ almost surely.

Proof. Associate the coloring ϕ : V(T)→ {r, g, b} to C as before: vertices with shadows
contained in C are colored red, vertices with shadows in the complement are colored
blue, everything else is colored green. As automorphisms move the set C the coloring
moves with it.

Choose a point x0 ∈ ∂T which is on the boundary of C, that is x0 ∈ C \ int(C). Being a
boundary point means that every vertex on the path (u0, u1, . . .) corresponding to x0 is
green, and we can find a blue vertex among the descendants of ui for all i.

Let C̃, ϕ̃ and x̃0 denote the uniform random translates of C, ϕ and x0 respectively.

Fix an element η ∈ Γ. We will study the probability that η stabilizes C̃ and does not fix
x̃0, and conclude that it is 0. If η stabilizes C̃ then it preserves ϕ̃.

First assume η is finitary, that is we can find a level n with vertices Ln = {v1, . . . , vdn}
such that η moves the subtrees Tvi hanging off the nth level rigidly. The condition
that x̃0 is moved has to be witnessed on Ln. Assume v1, . . . , vl are moved by η and
vl+1, . . . , vdn are fixed.

Let us assume that ϕ̃ is preserved by η, and the ray corresponding to x̃0 is moved by
η. Then x̃0 ∩ Ln = vi for some i ≤ l with vj = ηvi 6= vi. Conditioning on this vi we are

114

C
E

U
eT

D
C

ol
le

ct
io

n



CHAPTER 5

looking for the probability that (ϕ̃|Tvi
)η = ϕ̃|Tvj

. However, as the colorings are uniform
random translates on Tvi and Tvj respectively, the probability of the coloring appearing
in the exact same way under two points is 0. In the case of Γ = Alt f (T) this is an easy
consequence of Corollary 5.15. There are finitely many choices of vi, so the probability
of moving x̃0 while stabilizing C̃ is 0.

As Γ is countable this means that with probability 1 the whole setwise stabilizer of C̃
fixes x̃0.

In the general case when Γ is a regular branch group we condition on γ0 = ti as in
Lemma 5.19, and with f the canonical isomorphism between Tvi and Tvj we conclude
that the conditional probability of η preserving (ϕ̃|γ0 = ti) is 0. There are finitely many
choices for ti, so again we conclude that the probability of moving x̃0 while stabilizing
C̃ is 0.

When η is not finitary there are two points where the above argument fails:

1) the trees Tvi are not moved rigidly;

2) the nth level might not witness that x̃0 is moved by η.

Notice however that 1) is not a real problem as we have fixed η and this fixes an iso-
morphism between Tvi and Tvj . The full generality of Lemma 5.19 (with f = η|Tvi→Tvj

)
ensures that the probability of randomizing η-compatible colorings for Tvi and Tvj is 0
even if γ is not finitary.

To work our way around 2) we notice that the probability of x̃0 being moved by η

but this not being witnessed on Ln tends to 0 as n → ∞. The set of fixed points of
η is the decreasing intersection of the shadows of its fixed points on the finite levels.
So the probability of x̃0 being in the shadow of the fixed points of Ln but outside
Fix(η) converges to 0. This means that repeating the argument for all n ∈ N we get
P[η moves x̃0, but preserves ϕ̃] = 0.

Proof of Theorem 5.4. By ergodicity and Lemma 5.12 we know that there exists a P ∈ O,
such that P̃ has the same distribution as OH. Let us choose a closed set C which is not
a single point from the partition P. We aim to use Proposition 5.20 to conclude that C
is clopen. For that we will couple H and C̃ such that H ≤ L holds almost surely, where
L is the setwise stabilizer IRS of C̃. Then H moving all points of C implies the same for
L, which then through Proposition 5.20 implies that C is clopen.

Let X = (P, C) ∈ O × C. Consider the diagonal action of Γ on O × C. Let X̃ be the
Haar random translate of X. This way we obtained that the first coordinate of X̃ has
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the same distribution as OH, the second coordinate has the same distribution as C̃,
and the second coordinate is always a closed subset in the partition given by the first
coordinate.

Now we use the transfer theorem (see Theorem 6.10. of [45]) to obtain a random
element CH of C, such that (OH, CH)

d
= X̃. The first coordinate of X̃ always contains

the second, therefore CH ∈ OH and clearly CH
d
= C̃. Choosing L to be the setwise

stabilizer of CH concludes the proof.

3 IRS’s in regular branch groups

Our goal is to understand all IRS’s H of Γ. Let C̃ = Fix(H). Lemmas 5.11 and 5.12
tell us that C̃ is the γ translate of a fixed closed subset C ⊆ ∂T, where γ ∈ Γ is Haar
random. First we exhibit some concrete examples which are worth to keep in mind
and to motivate the decomposition of the tree in Subsection 3.2. We study the action
of H on the parts in Subsection 3.3. The last two subsections contain the proof of the
main theorem of the chapter.

3.1 Examples

We show a few examples to keep in mind. For simplicity let d = 5, and Γ = Alt f (T).
Recall that in this group the normal subgroups are the level stabilizers StabΓ(Ln), and
the quotients are the finite groups Awr(n)

d .

Example 5.21. Pick n ∈ N, and a finite subgroup L ≤ Awr(n)
d . Let L̃ be the uniform random

conjugate of L in Awr(n)
d , and H be the preimage of L̃ under the quotient map, that is H =

L̃ · StabΓ(Ln). Then H is an ergodic fixed point free IRS of Γ. Note that this construction
also works if G is only eventually d-ary, i.e. vertices on the first few levels might have different
number of children.

Theorem 5.1 states that all ergodic fixed point free IRS of Alt f (T) are listed in Example
5.21. We give a very broad outline of the proof for this case in the hope that it makes
the subsequent proof of the stronger Theorem 5.5 more transparent and motivates
Proposition 5.26 that we state beforehand.

Outline of proof of Theorem 5.1. By Theorem 5.4 we know that an ergodic fixed point free
IRS H has finitely many clopen orbit-closures on the boundary. A deep enough level
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Lk0 witnesses this partition into clopen sets, and H acts transitively on the different
parts on each Ln with n ≥ k0.

This means that we can find fixed elements supported above some level Lk (k ≥ k0)
generating the orbits on Lk0 that are in H with positive probability. In the finite groups
Awr(n)

d (with n ≥ k ) this property translates to having a fixed subgroup L containing
many conjugates of fixed elements. One can show that if n is sufficiently large this
implies L containing a whole level stabilizer Stab

Awr(n)
d

(Lm) for some m ≥ k which does

not depend on the choice of n.

Using that Alt f (T) is the union of the Awr(n)
d with some additional analysis of ergodic

components one can show that actually H contains StabAlt f (T)(Lm) almost surely.

Example 5.22. Pick a random point x ∈ ∂T, this will be the single fixed point of the IRS
H. Deleting the edges of the ray (u0, u1, . . .) corresponding to x from T we get infinitely many
disjoint trees, where the roots un have degree 4, while the rest of the vertices have 5 children. Pick
any fixed point free IRS for each of these trees as in example 5.21, randomize them independently
and take their direct sum to be H. This construction works with other random fixed point sets
instead of a single point as well.

Example 5.23. A modification of the previous example is the following. Let x ∈ ∂T be random
as before, and do the exact same thing for all the trees hanging of the ray (u0, u1, . . .) except for
the first two, T1 and T2 rooted at u0 and u1 respectively. The finitary alternating automorphism
groups of these trees are Alt f (T) o A4. Now pick an (ergodic) fixed point free IRS of the finitary
alternating and bi-root-preserving automorphism group of T1 ∪ T2, which is (Alt f (T) o A4)×
(Alt f (T) o A4), and use this to randomize H on T1 ∪ T2. We will show that this is different
from the previous examples. When we pick an IRS of (Alt f (T) o A4)× (Alt f (T) o A4) we pick
some n ∈ N, assume that the stabilizers of the nth levels in T1 and T2 are in the IRS, and pick
a random conjugate of some L ≤ (Alt f (T) o A4)× (Alt f (T) o A4) to extend the stabilizer. If
we pick for example L =

{
(γ, γ) | γ ∈ (Alt f (T) o A4)}, then the IRS we construct will not

be the direct product of IRS’s on the two components, because the “top” parts of the subgroups
are coupled together. Taking a random conjugate of L makes the coupling random as well, but
nonetheless in every realization of H there is some nontrivial dependence between the actions of
H on T1 and T2.

3.2 Decomposition of T

The set of fixed points C̃ corresponds to a subtree TC̃, which is the union of all the rays
corresponding to the points of C̃. All elements of H fix all vertices of the tree TC̃, so
understanding H requires us to focus on the rest of T.
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We will decompose T according to the subtree TC̃. Note that the following decomposi-
tion is slightly different to the one in the introduction as it is easier to work with.

On Ln denote the set of fixed vertices Fn = V(TC̃) ∩ Ln. Remove all edges E(TC̃) from
T, the remaining graph T′ is a union of trees.

T

T
C̃ T̃0 T̃1 T̃2

Figure 5.3: Decomposition of T with respect to C̃

Let T̃0 be the connected component of T′ containing the root of T. In other words it is
the tree starting at the root in T′. In general let T̃n be constructed as follows. The first
n levels on T̃n will be the same as the first n levels of TC̃, and beyond that select the
connected components of T′ containing the vertices of Fn. The vertices of T̃n are exactly
the vertices of T that can be reached from the root by taking n steps in TC̃ and then
some number of steps in T′. See Figure 5.3.

The boundary ∂T decomposes as well. Clearly ∂TC̃ = C̃, and

∂T = C̃ ∪ ∂T̃0 ∪ ∂T̃1 ∪ . . .

Each ∂T̃i is H-invariant, and a clopen and therefore compact subset of ∂T. It is the
union of clopen orbit-closures from OH because of Theorem 5.4, so it is the union of
fintely many.

In the remaining part of this section we will prove that for any C ∈ OH there ex-
ists some number m∗ ∈ N and a subset Cm∗ ⊆ Lm∗ with Sh(Cm∗) = C such that
Rst′Γ(Cm∗) ≤ H. This m∗ does not depend on the realization of OH, only on the equiv-
alence class [C].

Using this for the finitely many orbit-closures that constitute ∂T̃i and taking a maxi-
mum yields that for some mi ≥ i we have Rst′Γ

(
Lmi(T̃i)

)
⊆ H. Knowing this for all i
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yields ⊕

i∈N

Rst′Γ
(
Lmi(T̃i)

)
⊆ H,

which is equivalent to the statement of Theorem 5.5.

3.3 The action of H on the T̃i

Before we turn to proving Theorem 5.5 we argue that all IRS’s resemble the previous
examples in the sense that their projections on the T̃n are fixed point free IRS’s in
StabΓ(T̃n).

While the T̃n are random, the isomorphism type of each T̃n is always the same be-
cause of ergodicity, and T̃n can appear in finitely many Γ-equivalent ways in T. Let
T1

n , T2
n , . . . Tl(n)

n denote the possible realizations of T̃n, and note that P[T̃n = Ti
n] is the

same for all i ∈ {1, . . . , l(n)}.

Let ϕn : H → StabΓ(T̃n) denote the restriction function:

ϕn(h) = h|T̃n
.

The function ϕn is also random, but it only depends on T̃n, so once we condition H on
T̃n the function ϕn is well defined.

Proposition 5.24. The random subgroup ϕn
(
(H | T̃n = Ti

n)
)

is a fixed point free IRS in
StabΓ(Ti

n).

Proof. For a fixed subgroup L ≤ Γ let Tn(L) denote the deterministic subtree defined
the same way as T̃n was for H. The set {L ≤ Γ | Tn(L) = Ti

n} is invariant under
the conjugation action of StabΓ(Ti

n) ≤ Γ, so the invariance of the random subgroup H
implies the invariance of the conditioned subgroup (H | T̃n = Ti

n). This IRS is fixed
point free because all fixed points of H are in TC̃.

Remark. One might be tempted to prove the more general Theorem 5.5 by first proving the more
transparent fixed point free case and then using Proposition 5.24 on the individual subtrees,
where H acts fixed point freely. However, we do not see this approach to work. Instead with
some mild additional technical difficulties we present the proof for the more general case.
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IRS’S OF GROUPS ACTING ON ROOTED TREES

3.4 IRS’s in finite subgroups of Γ

Let Γn stand for the elements of Γ that only have nontrivial vertex permutations above
Ln.

Lemma 5.25. For n large enough we have [Γn : (K ∩ Γn)] ≤ [Γ : K].

Proof. Fix a transversal for K. All elements in the transversal are finitary, so choose
n such that all are supported above Ln. Then the translates of (K ∩ Γn) with this
transversal cover Γn.

Let γ ∈ Γ, and v ∈ Lk. The section of γ at v is the automorphism [γ]v we get by
restricting the portrait of γ to the rooted subtree Tv consisting of v and its descendants.
That is, the vertex permutations of [γ]v are (u)γ for every u ∈ Tv and the identity
permutation otherwise. We think of [γ]v as the automorphism on Tv carried out by γ

before all the vertex permutations above the level Lk take place.

Suppose s ∈ Γk, and let L ⊆ Γn where k < n. Let L̃ denote the uniform random Γn-
conjugate of L, which is an IRS of Γn. Furthermore, assume that P[s ∈ L̃] ≥ c > 0,
which is equivalent to ∣∣{γ ∈ Γn | sγ ∈ L}

∣∣
|Γn|

≥ c.

Let R ⊆ Γn be a transversal for the subgroup RstΓn(Lk). By choosing the optimal one,
we can find γ̄ ∈ R such that

∣∣∣
{
(σv1 , . . . , σvdk ) ∈ RstΓn(Lk)

∣∣ sγ̄(σv1 ,...,σv
dk ) ∈ L

}∣∣∣
|RstΓn(Lk)|

≥ c. (5.1)

Here (σv1 , . . . , σvdk ) stands for the element of RstΓn(Lk) that pointwise fixes Lk, and has
sections σvi ∈ RstΓn(vi) at the vertices vi ∈ Lk.

Let s̄ = sγ̄, and let the cycles of s̄ on Lk be C1, . . . Cr, and let Ci = (ui
1ui

2 . . . ui
l(i)),

l(i) denotes the length of the cycle Ci, and s̄(ui
j) = ui

j+1. We use the convention that
ui

l(i)+1 = ui
1. Assume that l(1) ≥ l(2) ≥ . . . ≥ l(r) and let t be the largest index for

which l(t) ≥ 3. Then C = C1 ∪ . . . ∪ Ct ⊆ Lk is the union of s̄-orbits of length at least 3
on Lk.

The next proposition shows that if n is large enough, then L has to contain the double
commutator of some rigid level stabilizer under C, where the depth of this level does
not depend on n.
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Proposition 5.26. Let k, s and c be fixed. Then there exists some m > k and n0 > m such that
for any n ≥ n0, L and corresponding γ̄ satisfying (5.1) above we have Rst′′Γn

(
ShLm(C)

)
⊆ L.

Proof. Let σ = (σv1 , . . . , σvdk ). Fix σvi for all vi /∈ C, and let the rest of the coordinates
σui

j
vary over RstΓn(u

i
j). Choosing a maximum over all choices of the fixed σvi we can

assume that

∣∣∣
{
(σui

j
)

r,l(i)
i,j=1 ∈ RstΓn(C)

∣∣ s̄σ ∈ L
}∣∣∣

|RstΓn(C)|
≥ c.

Consider the conjugates s̄σ, more precisely what their sections are at the vertices ui
j:

[
s̄(σv1 ,...,σv

dk )
]

ui
j

= σui
j
· (σui

j+1
)−1. (5.2)

Fix one η = (ηv1 , . . . , ηvdn−1 ) ∈ RstΓn(Lk) with ηvi = σvi for all vi /∈ C and s̄η ∈ L. Let
σui

j
run through RstΓn(u

i
j), and consider s̄σ · (s̄η)−1. All these elements fix Lk pointwise,

and their sections are

[
s̄σ · (s̄η)−1]

ui
j
= σui

j
· (σui

j+1
)−1 ·

(
ηui

j
· (ηui

j+1
)−1)−1.

Observe that the sections are trivial over vi /∈ C.

We will discard one vertex from each Ci, and focus on the sections we see on the rest.
Let Di = Ci \ {ui

1}.

Consider the sections of s̄σ at the vertices in Di as the sections (σui
1
, . . . , σui

l(i)
) run

through RstΓn(Ci). We claim that the sections
(
[s̄σ]ui

2
, . . . , [s̄σ]ui

l(i)

)
run through RstΓn(Di).

Indeed, given any sections
(
[s̄σ]ui

j

)l(i)

j=2
, and any choice of σui

2
we can sequentially choose

the σui
j+1

according to (5.2) to get the given sections at j = 2, 3, . . . , l(i). The last choice

is σui
1
, which ensures [s̄σ]ui

l(i)
is correct. The last remaining section [s̄σ]ui

1
is already

determined at this point, so we cannot hope to surject onto the whole RstΓn(Ci).

We can do this independently for each Di. Let

D =
⋃

i

Di.
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The sections of s̄σ over the index set D give RstΓn(D) as the sections (σui
j
) run through

RstΓn(C).

The fact that a fixed positive proportion of these conjugates are in L ensures that when
we consider s̄σ · (s̄η)−1 we get that a fixed proportion of the elements of RstΓn(D) are
seen in L0, where L0 ⊆ StabL(Lk) is the set of elements with trivial sections outside C.
Let πD : StabL(Lk)→ ΓD

n−k denote the projection to the coordinates in D. Formally we
get

∣∣πD(L0)
∣∣ ≥ c · |RstΓn(D)|.

We have πD(L0) ≤ (Γn−k)
|D|. Since (K ∩ Γn−k)

|D| ≤ RstΓn(D), using Lemma 5.25 we
get that the index of πD(L0) in Γ|D|n−k is bounded:

[
(Γn−k)

|D| : πD(L0)
]
≤
⌈

1
c

⌉
· [Γ : K]|D|.

This means we can find some N C (Γn−k)
|D| such that N ≤ πD(L0) and

[
(Γn−k)

|D| : N
]
≤
(⌈

1
c

⌉
· [Γ : K]|D|

)
!

The bound on the index of N does not depend on n, only on k, s and c. The bounded
index ensures, that we can find some m0 such that for each index u ∈ D we can find an
element ϕ ∈ N such that πu(ϕ) /∈ StabΓnk

(
Lm0(Tu)

)
. Let m = k + m0. Choose n0 > m

such that Γn0−k acts transitively on Lm0(Tu).

Using Grigorchuk’s standard argument from [5, Lemma 5.3] and [39, Theorem 4] we
pick some w ∈ Lm0(Tu) not fixed by ϕ, elements f and g from RstΓn(uw) and argue
that the commutator [[ϕ, f ], g] = [ f , g] is in N. This shows Rst′Γn

(uw) ⊆ N. If n ≥ n0

then Gn−k is transitive on Lm0(Tu), so we get Rst′Γn

(
Lm0(Tu)

)
⊆ N.

Repeating the argument of the previous paragraph for all u ∈ D we get

Rst′Γn

(
ShLm(D)

)
⊆ N ⊆ πD(L0).

We now repeat this discussion, but we discard different points from the orbits: let
Ei = (Ci) \ {ui

2} and E =
⋃

i Ei. We have

Rst′Γn

(
ShLm(E)

)
⊆ πE(L0).
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We claim that Rst′′Γn

(
ShLm(D ∩ E)

)
⊆ L. Indeed, let ui

j ∈ Ci, j 6= 1, 2. By the above
we see that for any ϕ ∈ Rst′Γn

(
ShLm(u

i
j)
)

we have h1 ∈ L0 such that πD(h1)ui
j
= ϕ and

all other coordinates of πD(h1) are the identity. Similarly we have h2 ∈ L0 such that
πE(h2)ui

j
= ψ and all other coordinates of πE(h1) are the identity. Since Lk \ D and

Lk \ E are disjoint the commutator [h1, h2] ∈ L0 has all identity coordinates except for
the one corresponding to ui

j which is [ϕ, ψ].

We have managed to take care of the points ui
j where j 6= 1, 2. To cover the remaining

points as well we need one more way to discard points from the orbits. Namely F,
where we discard the third vertex ui

3 from every Ci. Using the fact that (D ∩ E) ∪ (E ∩
F) ∪ (D ∩ F) = C we get that Rst′′Γn

(
ShLm(C)

)
⊆ L, which finishes the proof.

3.5 Proof of the main result

Proof of Theorem 5.5. During the proof we will have to choose deeper and deeper levels
in T. For the convenience of the reader we summarized these choices in Figure 5.4.

Let Γn ⊆ Γ denote the elements of Γ that are supported on the first n levels. Suppose
that H is an ergodic IRS of Γ.

By Theorem 5.4 we know that the all nontrivial orbit-closures of H on ∂T are clopen.
For every clopen set C there exists a smallest integer kC such that C is the union of
shadows of points on LkC . Clearly kC does not change when C is translated by some
automorphism. For the random subgroup H and a fixed k0 ∈ N we can collect the
clopen sets C from OH with kC < k0, let CH,k0 be the union of these. This set moves
together with H when conjugating by some γ ∈ Γ:

CHγ,k0 = (CH,k0)
γ.

For n ≥ k0 let Vn ⊂ Ln be the set of points whose shadow make up CH,k0 . As CH,k0

moves with H, so does Vn. Vk0 is a union of orbits of H, let those orbits be denoted Vi
k0

,
where i ∈ {1, . . . , j} and

Vk0 =
j⋃

i=1

Vi
k0

.

Let Vi
n = ShLn(V

i
k0
). The fact that H acts minimally on the components of CH,k0 trans-

lates to saying that H acts transitively on each Vi
n. Notice that since we collected clopen
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IRS’S OF GROUPS ACTING ON ROOTED TREES

sets C with kC strictly less then k0 we ensured that Vi
k0

contains at least d points for all
i.

For every realization of H we can choose finitely many elements of H that already
show that H acts transitively on the Vi

k0
. These finitely many elements are all finitary,

so there is some nH, which might depend on the realization of H, such that all those
finitely many elements are in ΓnH .

This function nH is not necessarily conjugation-invariant, so it need not be constant
merely by ergodicity. However one can find some k ≥ k0 such that the Vi

k0
are distinct

orbits of Hk = H ∩ Γk on Lk0 with probability 1− ε. This k is a deterministic number, it
does not depend on the realization of H.

Enlist all the possible subsets S1, . . . , SN of Γk that generate a realization of the Vi
k0

as
orbits on Lk0 . Clearly there are finitely many. The probability that Si ⊆ H cannot
always be 0, otherwise we would contradict the previous paragraph. So we can find
some finite set S of elements of Γk and some sets Ui

k0
⊆ Lk0 such that the Ui

k0
are a

realization of the Vi
k0

, S is in H with probability p > 0 and the Ui
k0

are orbits of S.

By replacing S with 〈S〉 we may assume that S is a subgroup of Γk, as S ⊆ H and
〈S〉 ⊆ H are the same events.

k0
1)

k2)

m5)

m∗6)

Vk0

S3,4)

1) k0 sees CH,k0

2) Hk acts transitively on V i
k0

with prob. 1− ε

3) S ≤ Γk and P[S ⊆ H] = p > 0

4) V i
k0
∈ OS,k0 and S has long

cycles

5) m given for S, k, γ and c = p/2

6) Rst′Γ(Lm∗) ⊆ Rst′′Γ(Lm)

H y V i
k0

transitive

Appendix Lemma 6.3.

Proposition 4.6.

[BG�03, Lemma 5.3.]

Proposition 4.6.

P[Rst′′Γn
(Vm) ⊆ Hn] ≥ p

2 ergodicity
P[Rst′′Γ(Vm) ⊆ H] = 1

6)
Rst′Γ(Vm) ⊆ H a.s.

Figure 5.4: Choice of levels

As |Ui
k0
| ≥ d, we know that all vertices of Uk0 are moved by some s ∈ S. As a con-

sequence the same holds for Uk: for every vertex v ∈ Uk there is some s ∈ S such
that v 6= vs. However, we will need a stronger technical assumption on S to make our
argument work. We will assume that for every v ∈ Uk we can find some s ∈ S such
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that v, vs and vs2
are distinct, that is v is part of a cycle of length at least 3 in the cycle

decomposition of s. In Lemma 5.31 in the Appendix we show that one can indeed find
such a k and S.

Let Hn = H ∩ Γn, for n ≥ k. The random subgroup Hn is clearly an IRS of Γn, however
it need not be ergodic, i.e. the uniform random conjugate of a fixed subgroup in Γn. As
S ≤ Γk ≤ Γn we have P[S ≤ Hn] = p.

Lemma 5.27. In the ergodic decomposition of Hn the measure of components that contain S
with probability at least p/2 is at least p/2.

Proof. Denote the ergodic components of Hn by H1
n, . . . , Hr

n. Assume Hi
n has weight qi

in the decomposition, and contains S with probability pi. By ordering appropriately
we can also assume p1, . . . , pl ≤ p/2 and pl+1, . . . pr < p/2.

p =
r

∑
i=1

qi pi =

(
l

∑
i=1

qi

)
· 1 +

(
r

∑
i=l+1

qi

)
· p

2
≤
(

l

∑
i=1

qi

)
+

p
2

,

p
2
≤

l

∑
i=1

qi.

So the weight of components containing S with probability at least p/2 is at least
p/2.

Choose an ergodic component of Hn which contains S with probability at least p/2.
This ergodic component is the uniform random conjugate of a fixed subgroup L ≤ Γn.

We have P[S ∈ L̃] ≥ p
2 > 0. In other words L contains at least a p/2 proportion of the

Γn-conjugates of S. By a ”maximum is at least as large as the average” argument we
can find some γ̄ from the transversal of RstΓn(Lk) such that

∣∣∣∣
{
(σv1 , . . . , σvdk ) ∈ RstΓn(Lk)

∣∣ Sγ̄(σv1 ,...,σv
dk ) ∈ L

}∣∣∣∣
|RstΓn(Lk)|

≥ p
2

.

We now use Proposition 5.26 for all s ∈ S with k, γ̄ defined above and c = p
2 . As the

cycles of length at least 3 of elements of Sγ̄ cover (Uk)
γ̄ we get that for some fixed m

and large enough n we have
Rst′′Γn

(
(Um)

γ̄
)
⊆ L.
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It is clear that (Uk0)
γ is the realization of Vk0 corresponding to the realization L of Hn,

so we (almost surely) have Rst′′Γn
(Vm) ⊆ L̃. By Lemma 5.27 this means that

P
[
Rst′′Γn

(Vm) ⊆ Hn
]
≥ p

2
.

As
(
Rst′′Γn

(Vm) ⊆ Hn
)
⇔
(
Rst′′Γn

(Vm) ⊆ H
)

we have

P
[
Rst′′Γn

(Vm) ⊆ H
]
≥ p

2
.

We get this for all n large enough. Since Rst′′Γn
(Vm) ⊆ Rst′′Γn+1

(Vm) the events in question
form a decreasing chain, and for the intersection we get

P
[
Rst′′Γ(Vm) ⊆ H

]
≥ p

2
.

As H is ergodic the above implies

P
[
Rst′′Γ(Vm) ⊆ H

]
= 1.

Clearly Rst′′Γ(Lm) C Γ, so using [5, Lemma 5.3] we can find some m∗ ≥ m such that
Rst′Γ(Lm∗) ⊆ Rst′′Γ(Lm). This also means that Rst′Γ(Vm∗) ⊆ Rst′′Γ(Vm), so

P
[
Rst′Γ(Vm∗) ⊆ H

]
= 1.

The number m∗ only depended on the IRS H and the choice of k0. Repeating this
argument for all k0 ∈N covers all clopen sets from OH, which as discussed in part 3.2
proves Theorem 5.5.

4 Corollaries of Theorem 5.5

In this section we prove Theorem 5.6 and sketch the proof of Theorem 5.7.

4.1 Fixed point free IRS’s

To motivate the following result let us recall Theorem 5.1, which states that any ergodic
IRS of Alt f (T) with d ≥ 5 contains a whole level stabilizer, in particular H is a random
conjugate of a finite indexed subgroup. In other words the measure defining the IRS is
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atomic. As it turns out the fixed point free case of Theorem 5.5 implies this for fixed
point free ergodic IRS’s of countable, finitary regular branch groups as well.

Proof of Theorem 5.6. By Theorem 5.5 we know that an ergodic almost surely fixed point
free IRS H contains Rst′Γ(Lm) for some m ∈N.

IRS’s of Γ containing the normal subgroup Rst′Γ(Lm) are in one-to-one correspon-
dence with IRS’s of the quotient G = Γ/Rst′Γ(Lm), which in this case is of the form
A o F where A is the abelian group RstΓ(Lm)/Rst′Γ(Lm), and F is the finite group
Γ/RstΓ(Lm). As Γ is assumed to finitary both Γ and G are countable.

Let Ĥ = H/Rst′Γ(Lm) ≤ G be the image of H in G. It is an ergodic IRS of G. Let
Ĥ0 = Ĥ ∩ A, which is also an ergodic IRS of G. We see that Ĥ0 ⊆ A is an ergodic
random subgroup with distribution invariant under conjugation by elements of G. As
A is abelian and F finite, it is clearly the uniform random F-conjugate of some subgroup
L0 ≤ A. This shows that Ĥ0 can only obtain finitely many possible values.

We claim that once Ĥ0 is fixed, there are only countably many possible choices for
Ĥ. Indeed we have to choose a coset of Ĥ0 in G for all f ∈ F, which can do in only
countably many different ways.

This shows that the support of Ĥ is countable, but there is no ergodic invariant measure
on a countably infinite set, so the support is finite. This proves the theorem.

4.2 IRS’s in non-finitary branch groups

In this subsection we will sketch the proof of Theorem 5.7. This theorem is not a direct
consequence (as far as we see) of Theorem 5.5, but one can alter the proof to obtain
the desired theorem. First of all let us fix πn : Γ → Swr(n)

d to be the projection from
Γ to the automorphism group of the d-ary tree of depth n, which is the restriction of
elements to the first n levels. The main conceptional difference is that we are trying to
understand the group Γ through the groups πn(Γ) instead of Γn. The statement that
we conclude in this case is weaker.

Our aim is to present only the spine of the proof, as the reasoning is very similar to
the proof of Theorem 5.5 and we leave the details to the reader. In fact some technical
details such as the ergodicity of Hn and the fact that Hn already acts transitively on the
Vi

n makes this proof easier.

Proof of Theorem 5.7. Let Gn = πn(Γ), fix k ∈ N and let CH,k be the union of clopen
orbit-closures C from OH in ∂T with kC < k. For any n ≥ k let Vn ⊆ Ln be the set of
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points whose shadow make up CH,k. We can decompose Vk into H-orbits, denoted by

Vk = ∪j
i=1Vi

k .

Observe that for any realization of H one can find at most |Vk| many elements in H
that already show that H acts transitively on each Vi

k . This means that we can find an
S ⊂ Γ of size at most |Vk|, such that S generates a realization of Vk on Lk and

P[S ⊆ H] = p > 0.

Denote by Ui
k the realization of Vi

k generated by S. As before we can ensure that for
any v ∈ Uk there is an s ∈ S, such that v, vs and vs2

are distinct by replacing k and S if
necessary. (See the Remark after the proof of Lemma 5.31 in the Appendix.)

For every n let Hn = πn(H) ≤ Gn. The random subgroup Hn is an ergodic IRS of Gn,
therefore there exists an Ln ≤ Gn such that Hn is an uniform random conjugate of Ln.
Since

P[πn(S) ⊆ L̃n] = P[πn(S) ⊆ Hn] ≥ p,

we have an element γ from the transversal of RstGn(Lk) in Gn such that

∣∣∣∣
{
(σv1 , . . . , σvdk ) ∈ RstGn(Lk)

∣∣ πn(S)
γ̄(σv1 ,...,σv

dk ) ∈ Ln
}∣∣∣∣

|RstGn(Lk)|
≥ p.

By following the argument in Proposition 5.26 but replacing Γn by Gn one can prove
that there exists some m such that for any n large enough

Rst′′Gn
((Um)

γ̄) ⊆ Ln.

Therefore
P[Rst′′Gn

(Vm) ⊆ Hn] ≥ p > 0,

which by ergodicity implies

P[Rst′′Gn
(Vm) ⊆ Hn] = 1.

Again we can find an m∗ ≥ m, such that Rst′Γ(Vm∗) ⊆ Rst′′Γ(Vm), therefore

P[πn(Rst′Γ(Vm∗)) ⊆ πn(H)] = 1.
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This means that for any g ∈ Rst′Γ(Vm∗) there exists a sequence hn ∈ H, such that
πn(hn) = πn(g), which implies that Rst′Γ(Vm∗) ⊆ H with probability 1.

On the other hand Rst′Γ(Vm∗) ⊇ RstΓ(Vm∗)
′
. We claim that RstΓ(Vm∗) = RstΓ(Vm∗).

Indeed, RstΓ(Lm∗) is finite index in Γ which implies that it is open. Using this one can
show that RstΓ(Lm∗) = RstΓ(Lm∗), which implies the same for Vm∗ ⊆ Lm∗ .

Putting this together we get
Rst′Γ(Vm∗) ⊆ H

with probability 1.

Note that this result on closures is possibly weaker than our earlier results. It is not
clear even in the fixed point free case in Alt f (T) if for some L ≤ Alt f (T) the closure L
containing a level stabilizer implies the same for L.

Problem 5.28. Let L ≤ Alt f (T) be a subgroup such that πn(L) = Awr(n)
d for all n. Does it

follow that L = Alt f (T)?

In other words: is there a subgroup L 6= Alt f (T) which is dense in Alt(T)? We saw
that this cannot happen with positive probability when L is invariant random.

The answer to Problem 5.28 is negative in the case of Aut(T). In the case of the binary
tree let L be the subgroup of elements with an even number of nontrivial vertex per-
mutations. Generally for arbitrary d let L be the subgroup of elements whose vertex
permutations multiply up to an alternating element. This L is not the whole group, yet
dense in Aut(T). Of course the really relevant question in this case would involve the
containment of derived subgroups of level stabilizers.

5 Appendix

In this section we prove the technical statements that we postponed during the rest of
the chapter.

5.1 Measurability of maps

Proof of Lemma 5.9. A closed subset C can be approximated on the finite levels. Define
Cn to be the set of vertices v on Ln with Sh(v) ∩ C 6= ∅. The Cn correspond to the
(1/2n)-neighborhoods of C in ∂T.
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IRS’S OF GROUPS ACTING ON ROOTED TREES

We show that any preimage of a ball in (C, dH) is measurable in SubΓ. Let C ∈ C and
n ∈N be fixed. Then the ball

B1/2n(C) = {C′ ∈ C | Cn = C′n},

therefore its preimage is

X = {H ∈ SubΓ | Fix(H)n = Cn}.

We say that a finite subset S ⊆ Γ witnesses Cn, if the subgroup they generate has no
fixed points in Ln \ Cn. Clearly every Cn has a witness of cardinality at most |Ln \ Cn|.
Let WCn be the set of possible witnesses of Cn of size at most |Ln \ Cn|:

WCn =
{

S ⊆ Γ
∣∣ |S| ≤ |Ln \ Cn| and S has no fixed points in Ln \ Cn

}
.

Let us define FCn ⊆ Γ to be the set of forbidden group elements, which do not fix Cn.
These are the elements that cannot be in any H ∈ X.

Observe that both WCn and FCn are countable, since Γ is countable, and X can be ob-
tained as

X =
⋃

S∈WCn

⋂

g∈FCn

{H ∈ SubΓ | S ⊆ H, g /∈ H}.

The sets {H ∈ SubΓ | S ⊆ H, g /∈ H} are cylinder sets in the topology of SubΓ, so the
above expression shows that X is measurable.

Proof of Lemma 5.10. To prove that the map is measurable, it is enough to show that any
preimage of a ball is measurable in SubΓ. So let P ∈ O and n ∈ N be fixed. Then the
ball

B1/2n(P) = {Q ∈ O | Qn = Pn},

therefore its preimage is

X = {H ∈ SubΓ | (OH)n = Pn}.

We say that a finite subset S ⊆ Γ witnesses Pn, if the subgroup they generate induces
the same orbits on Ln, that is O〈S〉,Ln = Pn. Clearly every Pn has a witness of cardinality
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CHAPTER 5

at most |Ln|. Let WPn be the set of possible witnesses of Pn of size at most |Ln|:

WPn =
{

S ⊆ Γ
∣∣ |S| ≤ |Ln| and O〈S〉,Ln = Pn

}
.

Let us define FPn ⊆ Γ to be the set of forbidden group elements, which do not preserve
Pn. In other words these are the elements that cannot be in any H ∈ X.

Observe that both WPn and FPn are countable, since Γ is countable, and X can be ob-
tained as

X =
⋃

S∈WPn

⋂

g∈FPn

{H ∈ SubΓ | S ⊆ H, g /∈ H}.

The sets {H ∈ SubΓ | S ⊆ H, g /∈ H} are cylinder sets in the topology of SubΓ, so the
above expression shows that X is measurable.

5.2 Technical assumption in Theorem 5.5

First we prove a lemma on intersection probabilities.

Lemma 5.29. Let B1, . . . Br be measurable subsets of the standard probability space (X, µ) with
µ(Bj) = p for all j, and r =

⌈
2
p

⌉
. Then there is some pair (j, l) such that µ(Bj ∩ Bl) ≥ p3

6 .

Proof. Let χB denote the characteristic function of the measurable set B. Let Dl denote
the set of points in X that are covered by at least l sets from B1, . . . Br. Then

r

∑
j=1

χBj =
r

∑
l=1

χDl ,

∫

X

r

∑
j=1

χBj dµ =
r

∑
j=1

µ(Bj) = rp,

rp =
∫

X

r

∑
l=1

χDl dµ =
r

∑
l=1

µ(Dl).

We have D1 ⊇ D2 . . . ⊇ Dr, so 1 ≥ µ(D1) ≥ µ(D2) . . . ≥ µ(Dr).

rp =
r

∑
l=1

µ(Dl) ≤ 1 + (r− 1)µ(D2).
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IRS’S OF GROUPS ACTING ON ROOTED TREES

µ(D2) ≥
rp− 1
r− 1

.

The set D2 is covered by the Bj ∩ Bl , so

max
j,l

µ(Bj ∩ Bl) ≥
µ(D2)

(r
2)
≥ rp− 1

(r
2)(r− 1)

≥ 1((
2
p+1

)(
2
p

)

2

)(
2
p

) ≥
p3

2(p + 2)
≥ p3

6
.

We also prove that one can find a lot of elements of order at least 3 in weakly branch
groups.

Lemma 5.30. Let G be a weakly branch group. Then for any v ∈ T there is a g ∈ RstG(v) of
order at least 3.

Proof. As G is weakly branch, RstG(v) is not the trivial group. By contradiction let us
assume that any nontrivial element of RstG(v) has order 2. Let a nontrivial element
g ∈ RstG(v) be fixed. We can find descendants u1 6= u2 of v, such that ug

1 = u2 . Let
us choose a nontrivial element h ∈ RstG(u1). As h ∈ RstG(v), by our assumption it has
order 2.

We claim that hg ∈ RstG(v) has order at least three. To prove this we will find a vertex
which has an orbit of size at least 3. Let w1 6= w2 descendants of u1, such that wh

1 = w2.
Since g maps descendants of u1 to descendants of u2, we have whg

1 = wg
2 = t2 6= w1, w2.

Then w(hg)2

1 = thg
2 = tg

2 = w2 6= w1. We see that w1, whg
1 and w(hg)2

1 are pairwise distinct,
therefore the order of hg is at least 3.

Now we will prove that the technical assumption we assumed in the proof of Theorem
5.5 can be satisfied. We remind the reader that in the setting of Theorem 5.5 the
following were established:

(1) The random sets (Vk0
1 , . . . Vk0

j ) are orbits of H on Lk0 ;

(2) Sh(Vk0
1 ), . . . , Sh(Vk0

j ) are orbit-closures of H on ∂T and their union is CH,k0 almost
surely;

(3) S ≤ Γk is a finite subgroups with p = P[S ⊆ H] positive;

(4) (Uk0
1 , . . . Uk0

j ) are a realization of (Vk0
1 , . . . Vk0

j ), and S acts transitively on the Uk0
i .
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CHAPTER 5

(5) Vn
i = ShLn(V

k0
i ) and Un

i = ShLn(U
k0
i ).

Lemma 5.31. By possibly replacing k, S and p we can assume that for every u ∈ Uk
i we can

find some s ∈ S such that u, us and us2
are distinct.

Remark. In the case when d is not a power of 2 it can be shown that Lemma 5.31 is implied
by the earlier properties, simply because a transitive permutation group with all nontrivial
elements being fixed point free and of order 2 can only exist on 2k points. For the case when
d is a power of 2 however we can only show Lemma 5.31 by a probabilistic argument and by
increasing k and S if necessary.

Proof. Assume that there is an s ∈ S which admits a long cycle – that is a cycle of length
at least 3 – on Uk

i for some i. In this first case we define k′ such that Hk′ acts transitively
on all the Vk

i with probability 1− p
2 . Then

P[S ⊆ Hk′ and Hk′ is transitive on the Vk
i ] ≥

p
2
> 0.

If S ⊆ Hk′ then the Vk
i are realized as the Uk

i . Now we enlist all subsets S′l in Γk′ that
contain S and act transitively on the Uk

i . There are finitely many, so we can find some
S′ with

P[S′ ⊆ Hk′ ] ≥ p′ > 0.

We can assume S′ to be a subgroup, and by having s ∈ S′ we will show that long cycles
of S′ cover Uk

i . Indeed, by conjugating s one can move the cycle around in Uk
i , and by

the transitivity of S′ we get that the whole of Uk
i is covered. This in turn implies that

long cycles of S′ cover Uk′
i as well.

If on the other hand S acts on Uk
i by involutions, we will increase k and S while keeping

p positive such that the first case holds.

Let r =
⌈

2
p

⌉
. Furthermore let k′ > k such that the shadow of a vertex v ∈ Uk

i on Lk′

contains at least r vertices, namely {v1, v2, . . . , vr, . . .} ⊆ Uk′
i . Let γ1, γ2, . . . , γr ∈ Γk′+t

such that γi ∈ RstΓk′+t
(vi) and γi has order at least 3 by Lemma 5.30, i.e. γi has a long

cycle on Lk′+t.

As H is an IRS we have
P[Sγj ⊆ H] = P[S ⊆ H] = p.
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IRS’S OF GROUPS ACTING ON ROOTED TREES

By Lemma 5.29 we can find some j, l such that

P
[
(Sγj ∪ Sγl ) ⊆ H

]
≥ p3

6
.

Set S′ = 〈Sγj ∪ Sγl 〉. Pick some s ∈ S which moves v ∈ Lk. It is easy to check that
sγj · (sγl )−1 ∈ S′ ∩RstΓk′+t

(Lk) has nontrivial sections only at vj, vl , vs
j and vs

l , and these
sections are some conjugates of γj and γl , and therefore sγj · (sγl )−1 has a long cycle on

Lk′+t. So replacing S by S′, k by k′ + t and p by p3

6 we get to the first case.

Repeating the argument for the first case at most j times we make sure that all Ui
k are

covered by long cycles, which finishes the proof.

Remark. For the proof of Theorem 5.7 one can modify this proof such that instead of Γn, Hk =

Γn ∩H and S ⊆ Γn we use Gn = πn(Γ), Hn = πn(H) and πn(S) ⊆ Gn. Another difference is
that Hn automatically acts transitively on all the Vn

i , so there is no need to distinguish between
k0 and k.
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6
Summary

In the first chapter, we investigated the partition function of the hard-core model, the
independence polyonomial. We have shown some algebraic identities, that were moti-
vated by the theory of matching polynomials, and we used them to obtain information
about the location of the roots of the independence polynomial of graphs. By intro-
ducing a new parameter bd(G), we gave a relaxation of a theorem of Chudnovsky
and Seymour and a zero-free region for bounded degree fork-free graphs. Moreover,
we gave a new method to prove real-rootedness of the independence polynomials of
certain families of trees, and a ’new connection’ between the theory of independence
polynomials and the theory of chromatic polynomials.

In the second chapter, we gave zero-free regions for the partition function of the anti-
ferromagnetic Potts model on bounded degree graphs. In particular, we showed that
for any ∆ ∈ N and any k ≥ e∆ + 1, there exists an open set U in the complex plane
that contains the interval [0, 1) such that Z(G; k, w) 6= 0 for any w ∈ U and any graph
G of maximum degree at most ∆. For small values of ∆, we were able to give better
results.

In the third chapter, we defined the descent polynomial, and we proved some conjec-
tures concerning the coefficient sequences of d(I, n). As a corollary, we described some
zero-free regions for the descent polynomial.

In the last chapter, we worked on invariant random subgroups in groups acting on
rooted trees. Our main concern was Alt f (T) being the group of finitary even auto-
morphisms of the d-ary rooted tree T. We proved that a nontrivial ergodic IRS of
Alt f (T) that acts without fixed points on the boundary of T contains a level stabilizer,
in particular, it is the random conjugate of a finite index subgroup.
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SUMMARY

Applying the technique to branch groups, we proved that an ergodic IRS in a finitary
regular branch group contains the derived subgroup of a generalized rigid level sta-
bilizer. We also proved that every weakly branch group has continuum many distinct
atomless ergodic IRSs. This extends a result of Benli, Grigorchuk, and Nagnibeda who
show that there exists a group of intermediate growth with this property.
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