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In the face of global environmental change, protected areas (PAs) have become an increasingly 

important tool in modern conservation, and as such there is a clear imperative to maximise the 

benefits they provide. In this regard a growing field of interest is the quantification of PA 

ecological effectiveness, often expressed in terms of avoided deforestation achieved relative to 

unprotected areas. However, such assessments are confounded by biases in both the non-

random siting of PAs within landscapes as well as differential pressure upon their resources. 

These biases can be overcome by the use of quasi-experimental counterfactual study designs, 

that evaluate the impact of PAs against control areas of ‘similar’ biophysical and socio-

economic characteristics. To contribute towards this knowledge domain this study presents an 

assessment of PA effectiveness for the Southeast Asian nation Cambodia, which, in light of its 

history of natural resource management, represents a pertinent case study. PA effectiveness 

was analysed using propensity score matching for three different outcome periods between 

2010-2018 with the results finding significant positive treatment effects in each, with forested 

land in PAs being as much as 8% less likely to be deforested than similar unprotected forest. In 

addition to this a significant positive spillover effect of PAs was observed in 5km buffers zones 

adjacent to their boundaries, resulting in a maximum of 4% reduction in probability of 

deforestation. Furthermore, the effectiveness of PAs in Cambodia was found to vary under 

differential deforestation pressure as well as with regards to the duration of time since PA 

establishment. 

 

Keywords: Protected area effectiveness, avoided deforestation, matching methods, 

propensity score, counterfactual, quasi-experimental, spillover effects, conservation 

 

C
E

U
eT

D
C

ol
le

ct
io

n



vi 

 

Acknowledgements  
 

First and foremost, I would like to thank my parents for their unfailing support in all of the 

choices I have made that have led me to this point, and thanks to those who believed in me 

along the way and imparted some formative life lessons (Jack and Jemma). Thanks to my 

supervisor Prof. Brandon Anthony for all of his guidance and time not just through my thesis 

but throughout my time in MESPOM. I would also like to thank Prof. Johanna Eklund for her 

advice on matching methods and Noah Greifer for the assistance in making his excellent 

Cobalt package do things it was never intended to do. Finally, thanks to my partner, Janna, for 

giving me a reason to get out of bed every morning, I couldn’t have done this without you.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

C
E

U
eT

D
C

ol
le

ct
io

n



vii 

 

Table of Contents 

Thesis structure ................................................................................................................................ 1 

Introduction ...................................................................................................................................... 2 

1.1 The evolution of protected areas: Purpose and importance ................................................... 2 

1.2 Assessing PA effectiveness .................................................................................................... 6 

1.2.1 Why is assessment important? ........................................................................................ 6 

1.2.2 What to assess: Coverage, capacity or outcomes ............................................................ 8 

1.2.3 How to assess PA outcomes: Incorporating counterfactuals and biases ....................... 13 

1.3 Quasi-experimental techniques for assessing PA ecological outcomes ............................... 17 

1.3.1 Regression based conditioning...................................................................................... 18 

1.3.2 Matching methods ......................................................................................................... 19 

1.3.3 Combining matching and regression............................................................................. 21 

1.3.4 Cross-cutting considerations and problems .................................................................. 22 

1.3.4.1 The requirement for sampling ................................................................................ 22 

1.3.4.2 Validity of hypothesized covariates ....................................................................... 23 

1.3.4.3 Quality of matching ............................................................................................... 24 

1.3.4.4 Spillover of treatment effects ................................................................................. 27 

1.3.4.5 Other considerations .............................................................................................. 28 

1.4 Reviewing counterfactual assessments of PA ecological effectiveness ............................... 29 

1.4.1 Summarizing results ...................................................................................................... 29 

1.4.2 Covariates and confounders of PA effectiveness .......................................................... 31 

1.4.3 Critiques of forest dynamic based assessment of PA effectiveness .............................. 32 

1.5 Chapter conclusions ............................................................................................................. 33 

2. Cambodia: A case study of PA effectiveness......................................................................... 34 

2.1 The context of environmental conservation ..................................................................... 34 

2.1.1 Characterizing drivers of environmental change ...................................................... 34 

2.1.2 Policy eras of natural resource management ............................................................ 37 

2.1.2.1 The timber concessions of 1990’s ..................................................................... 37 

2.1.2.2 The transition to Economic Land Concessions in the 2000s ............................. 38 

2.1.2.3 Directive 01: The move towards genuine land tenure reform? ......................... 41 

2.1.3 Quantifying the loss of Cambodia’s forests .............................................................. 43 

2.2  Cambodia’s protected areas ............................................................................................ 46 

2.2.1 History of PA establishment, expansion and management ....................................... 47 

2.2.2 Prior analysis of PA effectiveness ............................................................................ 51 

2.2.2.1 Explanatory factors of environmental degradation ............................................ 52 

2.2.2.2 Counterfactual investigations of PA effectiveness ............................................ 55 

2.2.3 What’s left to conserve? The value of remaining resources in PAs ......................... 57 

2.2.4 Socio-political developments shaping the future of conservation ............................ 59 

2.3 Rationale for a national-scale assessment of PA effectiveness ........................................ 61 

C
E

U
eT

D
C

ol
le

ct
io

n



viii 

 

2.3.1 Planning an assessment of PA avoided deforestation ............................................... 62 

2.3.2 Potential applications of results ................................................................................ 65 

3. Aims and Objectives .................................................................................................................. 66 

3.1 Aims ..................................................................................................................................... 66 

3.2 Objectives ............................................................................................................................. 67 

3.2.1 Preliminary analysis ...................................................................................................... 67 

3.2.2 Primary analysis ............................................................................................................ 68 

3.2.3 Secondary analysis ........................................................................................................ 68 

4.  Methodology ............................................................................................................................. 69 

4.1 Source selection and data acquisition................................................................................... 69 

4.1.1 Treatment/control assignment (independent variable) .................................................. 70 

4.1.1.1 Assignment to treatment ........................................................................................ 70 

4.1.1.2 Assignment to control ............................................................................................ 71 

4.1.2 Source for outcome (dependent) variable ..................................................................... 71 

4.1.3 Selection of covariates/confounders ............................................................................. 73 

4.2 Data exploration and preparation ......................................................................................... 77 

4.2.1 Defining outcome periods for analysis ......................................................................... 77 

4.2.2 Creating relational datasets ........................................................................................... 77 

4.3 Preliminary analysis ............................................................................................................. 78 

4.3.1 Refinement of covariates .............................................................................................. 78 

4.3.2 Identifying biases in PA location and predictors of deforestation ................................ 78 

4.3.3 Testing for spatial autocorrelation ................................................................................ 79 

4.3.4 Selecting matching method ........................................................................................... 80 

4.3.5 Testing for unobserved covariates ................................................................................ 81 

4.3.6 Investigating spatial spillover effect of protection ........................................................ 82 

4.4 Primary analysis ................................................................................................................... 82 

4.5 Secondary analysis ............................................................................................................... 83 

4.6 Ensuring Reproducibility ..................................................................................................... 84 

5. Results ........................................................................................................................................ 85 

5.1 Preliminary analysis ............................................................................................................. 85 

5.1.1 Sampling of control and treated populations ................................................................ 85 

5.1.2 Conclusions of covariate refinement and testing of spatial autocorrelation ................. 86 

5.1.3 Identification of biases in PA siting .............................................................................. 86 

5.1.4 Predictors of deforestation in Cambodia ....................................................................... 90 

5.1.5 Results of spillover analysis .......................................................................................... 97 

5.2 Primary analysis ................................................................................................................... 99 

5.2.1 Assessing quality of matching ...................................................................................... 99 

5.2.2 Results of post-matching SAC testing ........................................................................ 101 

5.2.3 Treatment effect results ............................................................................................... 101 

C
E

U
eT

D
C

ol
le

ct
io

n



ix 

 

5.3 Secondary analysis ............................................................................................................. 105 

5.4 Summarizing results ........................................................................................................... 110 

6. Discussion ................................................................................................................................ 111 

6.1 Interpretation of results ...................................................................................................... 111 

6.1.1 Findings of the preliminary analysis ........................................................................... 111 

6.1.2 Main findings with regards to PA effectiveness ......................................................... 114 

6.2 Limitations of the study ................................................................................................... 120 

6.2.1 Practical limitations of analysis .................................................................................. 120 

6.3.2 Conceptual limitations of methodology ...................................................................... 122 

6.3 Implications of study results .............................................................................................. 125 

6.3.1 Practical implications for stakeholders ....................................................................... 125 

6.3.2 Implications for the field of quasi-experimental PA effectiveness assessment .......... 126 

6.3.3 Recommendations for further study ............................................................................ 127 

7. Conclusion ................................................................................................................................ 128 

8. References ................................................................................................................................ 130 

9. Appendixes ............................................................................................................................... 155 

A. Details of recent quasi-experimental studies of PA ecological effectiveness .................... 155 

B. Sources of forest assessments for Cambodia ....................................................................... 165 

C. Synthesizing dataset of PA boundaries for assignment to treatment ................................... 167 

D. Defining unprotected land for assignment to control .......................................................... 171 

E. Further details on the selection of covariates and confounders ........................................... 172 

F. Synthesizing data for ELCs ................................................................................................. 173 

G. Testing durations outcome of outcome periods for analysis ............................................... 174 

H. Process of creating relational datasets ................................................................................. 175 

I. Refinement of covariates ...................................................................................................... 177 

I.1 Testing covariates with GLMs........................................................................................ 177 

I.2 Testing for multicollinearity ........................................................................................... 181 

I.3 Confirming overlap in covariate distributions ................................................................ 182 

J. Spatial autocorrelation analysis ............................................................................................ 184 

K. Results of matching methods trials. .................................................................................... 187 

L. Sensitivity analysis for unobserved covariates .................................................................... 191 

M. Average values of covariate summary statistics in the 2013-2015 outcome period ........... 192 

N. Treatment effect estimates for all matched-samples (secondary analysis) ......................... 193 

O. Secondary analysis covariate balance for 2013-2015 and 2016-2018 periods.................... 194 

 

 

 

C
E

U
eT

D
C

ol
le

ct
io

n



x 

 

List of Tables  

Main text: 

Table 1: Numbers of protected areas contained in the dataset produced for this study ................. 70 

Table 2: Details of the preliminary selection of covariates ............................................................ 74 

Table 3: Population and sample sizes for the primary and spillover analyses ............................... 85 

Table 4: Summary statistics for covariates of units separated by forest cover outcome ................ 91 

Table 5: Estimates of ATT and bias-adjusted SE produced by the spillover analysis ................... 97 

Table 6: Estimates of ATT and bias-adjusted SE produced in the the primary analysis ............. 102 

Table 7: Treated sample sizes and number of sub-samples used in the secondary analysis ........ 105 

Table 8: Mean ATT estimates for PAs in categories of establishment date ................................ 105 

Appendixes: 

Table A1: Details of quasi-experimental studies of PA effectiveness in forest related 

outcomes………………………………………………………………………………………....155 

Table C1: Protected areas included in the filtered dataset for analysis………………………….170 

Table I1: Results of the GLMs including all covariates produced for each outcome period …...179 

Table I2: Results of stepwise model selection from initial GLMs………………………...…….181 

Table I3: Variance inflation factors for predictors in the GLM of the 2010-2012 period……....182 

Table I4: Covariate summary statistics for all outcome periods…………………………....…...183 

Table J1: Results of the two spatially adjusted GLMs……………………………………..........186 

Table K1: Summary information from the trials of increasing sample sizes under different 

matching approaches…………………………………………………………………...………..189 

Table L1: Rosenbaum bounds sensitivity analysis for the matched sample from the 2010-2012 

period…………………………………………………………………………………...………..191 

Table N1: Treatment effect estimates for all matched-samples (secondary analysis)……..……193 

C
E

U
eT

D
C

ol
le

ct
io

n



xi 

 

List of Figures 

Main text: 

Figure 1: Components of protected area management capacity ....................................................... 9 

Figure 2: Underlying and proximate causes of land-use change in Cambodia .............................. 35 

Figure 3: Location of Economic Land Concessions (ELCs) in Cambodia .................................... 39 

Figure 4: Changes in forest cover in Cambodia between 1973 and 2014 ...................................... 44 

Figure 5: Forest loss per year (>10% canopy cover) in Cambodia between 2001 and 2018 ......... 45 

Figure 6: National protected areas in Cambodia established between 1993-2019 ......................... 48 

Figure 7: Expansion in the size of Cambodia’s protected area estate between 1993-2019............ 50 

Figure 8: Locations of resource extractive developments inside protected areas in Cambodia  .... 54 

Figure 9: Area of ELC land established in Cambodia per year between 1995-2018 ..................... 63 

Figure 10: Smoothed density distributions of the covariates for treated and control samples in the 

2010-2012 outcome period ............................................................................................................. 88 

Figure 11: Biplot of the PCA analysis for units in the 2010-2012 outcome period: Note units are 

formatted with transparency to avoid over plotting. ...................................................................... 89 

Figure 12: Smoothed density distributions of each of the covariates for units exhibiting different 

forest cover outcomes in the 2010-2012 period ............................................................................. 93 

Figure 13: PCA biplots for deforested units in each outcome period and across all periods ......... 95 

Figure 14: Average values of covariate summary statistics pre- and post-matching in the 2010-

2012 outcome period of the spillover analysis ............................................................................... 98 

Figure 15: Average values of covariate summary statistics pre- and post-matching in the 2010-

2012 outcome period of the primary analysis ................................................................................ 99 

Figure 16: Average values of covariate summary statistics pre- and post-matching in the 2016-

2018 outcome period of the primary analysis .............................................................................. 100 

Figure 17: Forest dynamics occurring in protected and unprotected areas in each outcome period 

of analysis ..................................................................................................................................... 103 

Figure 18: Forest dynamics occurring between 2010-2018 inside PAs established in different time 

periods .......................................................................................................................................... 107 

Figure 19: Average values for covariate summary statistics for PAs grouped by establishment date 

in the 2010-2012 outcome period ................................................................................................. 109 

Appendixes: 

Figure C1: Disparity in the extent of protected areas in Cambodia between the WDPA and ODC 

datasets…………………………………………………………………...167 

Figure G1: PA and ELC land omitted from analysis under different outcome periods………... 175 

Figure I1: Normal-QQ plot for the linear model of the 2010-2012 outcome period data……….178 

C
E

U
eT

D
C

ol
le

ct
io

n

file:///D:/Bens%20stuff/Dissertation%20planning/Thesis%20draft%204.docx%23_Toc42176031
file:///D:/Bens%20stuff/Dissertation%20planning/Thesis%20draft%204.docx%23_Toc42176032
file:///D:/Bens%20stuff/Dissertation%20planning/Thesis%20draft%204.docx%23_Toc42176033
file:///D:/Bens%20stuff/Dissertation%20planning/Thesis%20draft%204.docx%23_Toc42176035
file:///D:/Bens%20stuff/Dissertation%20planning/Thesis%20draft%204.docx%23_Toc42176036
file:///D:/Bens%20stuff/Dissertation%20planning/Thesis%20draft%204.docx%23_Toc42176037
file:///D:/Bens%20stuff/Dissertation%20planning/Thesis%20draft%204.docx%23_Toc42176039
file:///D:/Bens%20stuff/Dissertation%20planning/Thesis%20draft%204.docx%23_Toc42176039
file:///D:/Bens%20stuff/Dissertation%20planning/Thesis%20draft%204.docx%23_Toc42176041
file:///D:/Bens%20stuff/Dissertation%20planning/Thesis%20draft%204.docx%23_Toc42176041
file:///D:/Bens%20stuff/Dissertation%20planning/Thesis%20draft%204.docx%23_Toc42176042
file:///D:/Bens%20stuff/Dissertation%20planning/Thesis%20draft%204.docx%23_Toc42176044
file:///D:/Bens%20stuff/Dissertation%20planning/Thesis%20draft%204.docx%23_Toc42176044
file:///D:/Bens%20stuff/Dissertation%20planning/Thesis%20draft%204.docx%23_Toc42176047
file:///D:/Bens%20stuff/Dissertation%20planning/Thesis%20draft%204.docx%23_Toc42176047
file:///D:/Bens%20stuff/Dissertation%20planning/Thesis%20draft%204.docx%23_Toc42176048
file:///D:/Bens%20stuff/Dissertation%20planning/Thesis%20draft%204.docx%23_Toc42176048


xii 

 

Figure J1: Spatial visualisation of the GLM residuals from the 2010-2012 outcome period…...184 

Figure K1: Summary statistics for covariates in the 2010-2012 outcome period under different 

matching methods………………………………………………………………………………..188 

Figure M1: Average values of covariate summary statistics pre- and post-matching in the 2013-

2015 outcome period (primary analysis)………………………………………………………...192 

Figure O1: Average values of covariate summary statistics pre- and post-matching for PAs 

grouped by establishment dates in the 2013-2015 outcome period……………………………..194 

Figure O2: Average values of covariate summary statistics pre- and post-matching for PAs 

grouped by establishment dates in the 2016-2018 outcome period……………………………..195 

 

 

C
E

U
eT

D
C

ol
le

ct
io

n



xiii 

 

List of Abbreviations  
 

ADB Asian Development Bank 

AIC Akaike Information Criterion 

ASMD Absolute standardized mean difference 

ATE Average Treatment Effect 

ATT Average Treatment Effect on the Treated  

BACI Before-After-Control-Impact 

CBD Convention on Biological Diversity  

CCF Community Conservation forest 

CEM Coarsened exact matching 

CF Community Forest 

CLT Communal Land Title 

COC Complement of the overlapping coefficient 

COP Conference of the Parties 

CPA Community Protected Area 

CPP Cambodian People's Party 

DDF Deciduous Dipterocarp forest  

DPSIR Drivers, Pressures, State, Impact, Response  

ELC Economic Land Concession 

eQQ Empirical quantile-quantile 

ESIA Environmental and social impact assessment 

EU European Union 

FA 
Forestry Administration of the Ministry of Agriculture, Forests and Fisheries of 

the Royal Government of Cambodia 

FCA Forest cover assessment 

FCL Forest Cover Loss 

FLEGT Forest Law Enforcement, Governance and Trade 

GDANCP 
General Department of Administration for Nature Conservation and Protection, 

Ministry of Environment, of the Royal Government of Cambodia 

GD-PAME Global Database on Protected Area Management Effectiveness  

GFW Global Forest Watch 

GLAD Global Land Analysis & Discovery lab of the University of Maryland  

GLM Generalized Linear Model 

HARKing Hypothesizing After Results are Known 

HDI Human Development Index 

IFSR Independent Forest Sector Review  

IUCN International Union for the Conservation of Nature 

KS Kolmogorov-Smirnov 

LICADHO Cambodian League for the Promotion and Defense of Human Rights  

MAFF 
Ministry of Agriculture Forests and Fisheries of the Royal Government of 

Cambodia 

MDM Mahalanobis distance covariate matching 

MEA Millennium Ecosystem Assessment  

METT Management Effectiveness Tracking Tool 

C
E

U
eT

D
C

ol
le

ct
io

n



xiv 

 

MoE Ministry of Environment of the Royal Government of Cambodia 

MSB Median standardized bias 

NGO Non-governmental organisation 

NPASMP National Protected Area Strategic Management Plan  

NRM Natural resource management 

NTFP Non timber forest product 

ODC Open Development Cambodia 

PA Protected area 

PADDD Protected area degazettement, downgrading and downsizing 

PAME Protected Area Management Effectiveness  

PC Principal component 

PCA Principal Component Analysis 

PES Payments for ecosystem services 

PF Protected Forest 

PSM Propensity score matching 

RAPPAM Rapid Assessment and Prioritization of Protected Area Management 

RBC Regression based conditioning 

RDPA Royal Decree for Protected Areas 

REDD+ Reducing Emissions from Avoided Deforestation and Degradation 

RGC Royal Government of Cambodia 

SAC Spatial autocorrelation 

SATT Sample Average Treatment Effect on the Treated 

SD Standard deviation 

SDM Standardized mean difference 

SE Standard error 

SEM Structural equation modelling  

SITA Strongly Ignorable Treatment Assignment 

SLC Social Land Concession 

SUTVA Stable Unit Treatment Value Assumption  

THPI Temporal Human Pressure Index 

UN United Nations 

UN FAO Food and Agriculture Organization of the United Nations 

UNCED United Nations Conference on Environment and Development  

UNDP United Nations Development Program 

UNEP United Nations Environment Program 

UNEP-WCMC United Nations Environment Program - World Conservation Monitoring Center  

VIF Variance inflation factor 

WCPA World Commission on Protected Areas 

WCS Wildlife Conservation Society 

WDPA World Database on Protected Areas  

WWF Worldwide Fund for Nature 

 

 

 

 

C
E

U
eT

D
C

ol
le

ct
io

n



1 

 

Thesis structure 
 

In the interest of cogency, the first portion of this thesis has been divided into two chapters 

merging both introductory material and literature review. The first chapter (1) serves as a 

macroscale exposition of the field of protected area (PA) effectiveness assessment, focusing 

on its evolution alongside the global context of PAs and the different thematic areas and 

techniques encompassed within it. The purpose of this is to offer context to the form of 

assessment and methodology that will be employed by this study, namely a quasi-

experimental, counterfactual, matching methods analysis of PA effectiveness in avoided 

deforestation.  

 The second introductory chapter (2) will present the case study that will be used for 

this analysis namely the Southeast Asian nation of Cambodia. This will highlight the 

rationale behind why such an assessment of PA effectiveness is pertinent on the basis of the 

socio-politico-economic changes that have occurred over the last several decades and the 

impact of these for the future of conservation in the country.   

 Following this, the thesis will observe the typical scientific convention, presenting 

sequential chapters on: the aims and objectives of the study (3); methodological and 

analytical techniques employed (4); results (5); discussion (6) and conclusions (7).   
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Introduction 
 

1.1 The evolution of protected areas: Purpose and importance 

 

The act of societies demarcating areas for the protection of biophysical assets on the basis of 

their value to either specific groups or the wider population has been occurring for thousands 

of years (Watson et al. 2014). The underlying impetus for the establishment of such protected 

areas (PAs) is summarized aptly by McNeely (1998, 189) as: “a cultural response to 

perceived threats to nature”, however the motivations, modalities and agents by which it has 

been realized have always been varied.  

For example, some of the earliest recorded PAs come from the Sumerian civilization 

in the third millennium B.C and whilst their establishment was prompted by conservationist 

intent it was intertwined with religious mythology (Grove 1995). Other historical examples 

such as reserves established by the monarchy for the purpose of hunting in various European 

countries highlight the origins of the exclusionary nature of PAs that still persists to some 

extent today (Mulder and Coppolillo 2005).  

Many consider the establishment of North America’s Yellowstone National Park in 

1872 as the earliest example of a PA in the form that we typically associate them with, 

namely a nationally owned area managed under some intent for conservation (Heinen 2012). 

Whilst this was undoubtedly a pivotal development, in perspective it should be seen as only 

part of the totality of collective societal experience that has led us to the current situation of 

PAs as a fundamental component of the global conservation effort seen today.   

 The definition of PAs in the context of conservation has changed substantially over 

the last 50 years in line with the evolution of the dominant opinions surrounding their 

purpose (Naughton-Treves et al. 2005). These changes can be loosely characterized into 

different eras, starting with the ‘fortress conservation’ mentality of the early to mid-twentieth 

century whereby the purpose of PAs was focused very narrowly on species and habitat 

management (Brockington 2002). This approach is what Phillips (2003) dubs as the ‘classic 

model of PAs’ which because of its roots in colonialist ideology typically involved the 

exclusion of local land users, both physically and participatorily (p 11.). Due to macro-level 

trends in global societal development this mindset gradually diminished towards the end of 

the last century and conservation decision makers and practitioners steadily adopted a more 

inclusionary approach to PAs (Brockington et al. 2008). A substantial driver of this change 
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was the recognition of the value that PAs have beyond being simply a refuge for species of 

declining populations, particularly the socio-cultural-economic values of PA land to local 

populations as well as the benefits of incorporating indigenous traditional ecological 

knowledge into PA management activities (Kothari et al. 2013).  

 In a sense these developments have resulted in a raising of the conservation 

‘aspirations’ for PAs in the 21st Century (Watson et al. 2014: Dudley et al. 2018) which is 

reflected clearly in perhaps the most oft-cited definition provided by the  International Union 

for the Conservation of Nature (IUCN) as: “a clearly defined geographical space, recognized, 

dedicated and managed, through legal or other effective means, to achieve the long-term 

conservation of nature with associated ecosystem services and cultural values.” (Dudley 

2008, p. 8).  

 The IUCN along with the World Commission on Protected Areas (WCPA; originally 

the National Parks Commission in the 1950’s) have played a crucial part in this evolution of 

the purpose of PAs by not only cataloguing and synthesising knowledge from around the 

globe but also by advocating to keep PAs at the forefront of the conservation discourse 

(Galvin and Haller 2008). A pivotal moment in this work was the organisation of the First 

World Conference on National Parks in 1962 which set the stage for the United Nations (UN) 

General Assembly to announce that it would implement a process for the periodical review of 

the number and extent of the worlds PAs under the banner of the ‘UN-list of protected areas’ 

program (Chape et al. 2005). In 1981 this program was expanded into the World Database on 

Protected Areas (WDPA), which today is managed by the United Nations Environment 

Program - World Conservation Monitoring Center (UNEP-WCMC). With the WDPA data 

being publicly available through UNEP-WCMC’s ‘protected planet’ web platform since 2010 

(UNEP-WCMC 2020a). 

A second crucial development that occurred in parallel to this was the establishment 

of clearly defined categories of PA management objectives. Early work on these took place 

as a joint effort between the IUCN and the WCPA throughout the 1970’s with the intention of 

complementing and facilitating the ease of information gathering for the WDPA (Dudley 

2008). Simultaneously they prompted further recognition that certain objectives of PA 

management are better suited to differing socio-political and institutional settings which is an 

important consideration in terms of planning the establishment or expansion of PA networks 

(Naughton-Treves et al. 2005).  
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These were finalized as the system of ‘IUCN management categories’ in 1994 (IUCN 

and UNEP-WCMC 1994). Further description this system is unnecessary in the scope of this 

introduction although readers should refer to Dudley (2008) for an overview. It is important 

to note that the IUCN categories did not achieve instant widespread adoption by national 

institutions, rather this is something that progressed slowly throughout the 2000’s (Chape et 

al. 2005) and indeed many countries today do not explicitly categorise all of their PAs under 

the IUCN system (Heinen 2012).      

Whilst this macro-level transition towards an expanded role of PAs as well as a more 

unified and consistent documenting of their activities can be attributed in part to social 

change processes, it must of course also be viewed as a product of the increased knowledge 

and recognition of the severity of global environmental problems that have developed over 

the past three decades (MacKinnon et al. 2020) amongst these in the minds of 

conservationists is the unprecedented rate of species extinctions observed over the last 

century (Elewa 2008). This has led many to proclaim that we are in the midst of an 

anthropogenic induced 6th mass extinction event, referred to as either the Holocene or the 

Anthropocene, which will possibly lead to a loss of 75% of all living species (Ceballos et al. 

2015; Payne et al. 2016).  

As a response there have been an expansive array of international policies and 

conventions declared to coordinate strategies to address biodiversity loss (Heinen 2012). 

Possibly the most well-known of these is the Convention on Biological Diversity (CBD) 

which was ratified at the United Nations Conference on Environment and Development 

(UNCED) in 1992 (Glowka et al. 1994). The most pertinent article of the CBD related to PAs 

was Article 8, under which encouraged all signatories to: “(a) Establish a system of protected 

areas or areas where special measures need to be taken to conserve biological diversity” and 

“(b) Develop, where necessary, guidelines for the selection, establishment and management 

of protected areas or areas where special measures need to be taken to conserve biological 

diversity” (UN 1992, 6). The goals of the CBD have been operationalized through ‘strategic 

plans’ issued for 2002-2010 (CBD 2002) and subsequently 2011-2020 (CBD 2010b). The 

latter quantified the desired extent of global PAs under its Aichi Targets, principally target 

11, which called for formal protection of 17% of the earth’s terrestrial surface and 10% of 

coastal and marine areas (p. 6).  

Prior to this the conservation sector had already been witnessing a substantial expansion 

of the global PA estate over the previous 20 years. However, Aichi Target 11 and the ongoing 
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reporting of UNEP-WCMC undoubtedly galvanised this effort (Geldmann et al. 2019). For 

context, Zimmerer et al. (2004) estimated that in 1985 only 3.48% of global land was under 

formal protection. Whereas as of April 2020 the WDPA contains a total of 245,133 PAs 

across 245 countries and territories, covering a total of 15.2% of terrestrial surface area and 

7.4% of the marine area (UNEP-WCMC 2020d).  

However, biodiversity loss is but one component alongside others such as climatic 

change, that collectively constitute the macro-scale phenomenon of global environmental 

degradation resulting from anthropogenic activities.  In this regard, the last two decades have 

also seen increased acknowledgement of the potential of PAs to contribute to minimizing and 

mitigating other issues such as the loss of ecosystem services (Dudley and Stolton 2010: 

Watson et al. 2014; Melillo et al. 2015). The Millennium Ecosystem Assessment (MEA 

2005) was pivotal in characterising these services, with Rodríguez-Rodríguez (2012) 

providing an apt summary of the diverse services provided by PAs specifically: “raw 

materials; food; genetic, medicinal and ornamental resources; water purification; air quality 

regulation; erosion prevention; mitigation of extreme events; pollination; biological control; 

carbon sequestration; soil formation; primary production; and nutrient cycling” (p. 3). 

Furthermore Quintela et al. (2004) estimated that a global network of effective PAs could 

safeguard ecosystem services to the value of $38 trillion a year. Indeed, the operationalisation 

of this to benefit conservation is well underway through the implementation of payments for 

ecosystem services (PES) schemes specifically suited to PAs such as the UN’s Reducing 

Emissions from Avoided Deforestation and Degradation (REDD+) program (Scharlemann et 

al. 2010; Soares-Filho et al. 2010).  

Collectively, these developments make it clear that as a conservation intervention, PAs 

are more important than ever. This is exemplified by the fact that unlike some other 

environmental policies the establishment of PAs has, arguably, successfully spanned the 

global north/south divide (Kashwan 2017). Whilst PA degazettement, downgrading and 

downsizing (PADDD) is still prevalent (Mascia et al. 2014), no country has witnessed a net 

reduction in its total land area demarcated as legally protected between 1990 and 2017 

(Kashwan 2017).  

Importantly though, researchers and conservation practitioners alike have often 

highlighted that the rush to increase PA coverage around the world has come somewhat at the 

expense of addressing the crucial question of how successful PAs are at actually achieving 

conservation goals in real-world settings (Chape et al. 2005; Mora and Sale 2011; Watson et 
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al. 2014; Eklund and Cabeza 2016). Part of the reason for this failure is the fact that 

answering this is problematic on many levels. Not only from the practical perspective of 

objectively devising metrics of evaluation (i.e. what to assess?) but also the conceptual issues 

around how to robustly identify success from failure (how to assess?). To this end, the 

following section (1.2) will provide an overview of some of the key themes and issues within 

the sphere of assessing PA effectiveness, before narrowing down to the specific method of 

assessment that will be employed in this study.  

 

1.2 Assessing PA effectiveness  

 

1.2.1 Why is assessment important?  

 

The need for the broad-scale evaluation of PAs has, historically, been widely acknowledged 

and so too has the dearth of empirical techniques for achieving this goal (Kleiman et al. 2000; 

Pullin and Knight 2001; Sutherland et al. 2004; Ferraro and Pattanayak 2006). Beyond the 

realm of scientific literature it has been highlighted broadly in multi-national conventions as 

one of the main messages of the MEA (2005) and as a non-quantitative component of the 

CBD’s Aichi target 11 (Adams et al. 2019) which is of increasing relevance given that the 

renegotiation of this target under the 2050 Vision of the current Strategic Plan for 

Biodiversity is soon approaching (CBD secretariat 2018).  

 This is not to say that progress within the field of PA effectiveness evaluation has not 

been made over the last decade, albeit relatively slowly (Eklund and Cabeza 2016).  

However, given the increased expectations placed on PAs, the risks they face due to the 

confluence of global environmental issues (described in the preceding section), and that 

conservation as a societal endeavor remains systemically underfunded (Balmford et al. 2003; 

Mansourian and Dudley 2008), then making further progress towards the creation and 

application of comprehensive methods for assessing PA effectiveness remains imperative 

(Chauvenet and Barnes 2016; Watson et al. 2016; Dudley et al. 2018; Coad et al. 2019).  

Another factor that attests to an increased requirement for the assessment of PA 

effectiveness is that in many developing countries (who have often exhibited the most 

expansion in their contribution to the total global PA estate over the last quarter of a century: 

Naughton-Treves et al. 2005), the establishment and management of PAs has been largely 

funded by multi-national development (The World Bank; Asian Development Bank (ADB); 

United States Agency for International Development) and conservation organizations 
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(Worldwide Fund for Nature (WWF); Conservation International; Wildlife Conservation 

Society), or divisions of supranational bodies such as the United Nations Environment 

Program (UNEP) and Food and Agriculture Organization (UN FAO) (Mansourian and 

Dudley 2008). Whilst this is not inherently problematic a trend that has emerged is that 

donors are increasingly allocating funds on a conditional basis, i.e. dependent upon the 

achievement of pre-agreed conservation outcomes (Eklund and Cabeza 2016). The reasons 

behind this are manifold, chief amongst them is that the global financial crisis of 2007-2009 

has resulted in decreased expenditure by both domestic and international development 

institutions (Caldecott and Jepson 2014). Whilst no recent efforts have been able to quantify 

the total annual global spending on PAs (Coad et al. 2019) it is likely that it does not meet the 

$76 billion annual requirement as estimated by McCarthy et al. (2012), which itself is now 

outdated given the expansion of designated PA extent since it was posited.   

In addition to this funding organizations face increased scrutiny due in part to the 

expanded reach of the global media. This allows the publication of examples of ineffective 

use of funding, or worse, negative outcomes of PAs, to reach wider audiences and thus 

become even more damaging to their credibility and morale  (e.g. the implication of WWF 

funded PA rangers in criminal activities reported on a global internet news agency: Warren 

and Baker (2019)).  

Regardless of the explanation, the response is the same, donors are increasingly 

selective about what they fund and look to maximize the ‘return’ on their conservation 

investments and thus those advocating for PAs must provide more evidence of their 

effectiveness to justify continued or expanded expenditure (Lopoukine et al. 2012).  

However, the positive implication of this is that there has been a renewed focus for 

conservation practitioners to develop viable alternative means of funding for PAs (Githiru et 

al. 2015). Progress has been made toward implementing examples such as PES schemes; debt 

for nature swaps; private-public partnerships; and biodiversity offsets (Mansourian and 

Dudley 2008). Nevertheless, it has been contended that these new forms of funding should 

not be used to displace responsibility from national governments and rather should be 

considered as temporary solutions (Pilgrim and Bennun 2014). Debate aside, most of these 

alternate modalities also inherently require rigorous assessments of the variables on which 

they depend, for example the income from PES schemes such as REDD+ is conditional upon 

the amount of carbon sequestration achieved within the project area and if these initiatives 
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take place inside PAs this creates an explicit requirement for the evaluation of their 

effectiveness.  

Beyond these unempathetic issues of funding there remains a moral obligation behind 

the assessment of PA effectiveness and their outcomes. This is because despite the paradigm 

shift towards a more people-centered approach to planning and management (Roe 2008), PAs 

are still incontrovertibility responsible for creating or exacerbating intra- and international 

conflicts over land rights and access to resources (West et al. 2006; Coad et al. 2008 

Kashwan 2017;). Given that the complete mitigation of these negative aspects of PAs remains 

unachievable then conservation practitioners and planners must ensure that at the very least 

they are achieving other stated outcomes of biodiversity and habitat retention.   

 

1.2.2 What to assess: Coverage, capacity or outcomes 

 

One of the principle factors that has hampered progress in the evaluation of PAs is the 

ongoing discussion that bisects the realms of conservation policy, science and practice around 

what best constitutes a measure of PA effectiveness. The research around this subject has 

mirrored the evolution of the contemporary debate around the expanded purpose of PAs and 

as such there are some distinctions that can be drawn in terms of thematic areas. 

Early work focused primarily around the effectiveness of PA planning and 

establishment through assessments of ecological representativeness and coverage, 

encapsulated within the field of gap analysis (Scott et al. 1993) and the broader domain of 

systematic conservation planning (Margules and Pressey 2000). Whilst the results of this type 

of analysis can be insightful (such as the seminal global study of Rodrigues et al. (2003)) the 

limitation of this approach as a measure of effectiveness is self-evident as the inclusion of a 

habitat or species inside PAs does not inherently decrease the probability that they will be 

conserved (Wang et al. 2013).  

 This prompted attention to instead move towards assessing the ‘effectiveness of 

implementation’ of PAs, more commonly referred to as assessment of Protected Area 

Management Effectiveness (PAME). As PAME represents a substantial field of study in its 

own right the overview provided here will be necessarily brief seeking primarily to reflect the 

extent of its application and conceptual shortcomings.  

   The origins of PAME assessments began in the 1990’s and whilst the methods 

employed by early examples were often devised ad hoc and independently (Hockings and 
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Philips 1999), a uniting feature is that they typically drew upon theory from the field of 

adaptive management (Holling 1978). Indeed, this was something that was perpetuated in the 

definitive framework for PAME assessments formalized by the IUCN and WCPA in 2000 

(Hockings et al. 2004; Courrau et al. 2006). Although the framework is not a methodology of 

assessment in and of itself, it does provide guidelines on how to evaluate PAME by grouping 

indicators of effectiveness under the specific elements of the management cycle: “context, 

planning, inputs, processes, outputs and outcomes” (Leverington et al. 2010).  

As the exact requirements for PAME assessment are still not fixed and indeed they 

have been expanded considerably over the last decade through the proliferation of 

methodologies such as RAPPAM (Ervin 2003) and METT (Stolton et al. 2007),  it is helpful 

to visualize the process under general categories that influence the capacity to manage 

(Figure 1).  

 

Figure 1: Components of protected area management capacity 

 (adapted from Hockings and Philips 1999) 

Of course, these are broad headings and, in reality, all consist of a plethora of components, 

for example assessments of ‘staff’ typically consider multiple factors such as training; 

motivation; retention; capacity levels etc.  

Since its beginnings the application of PAME assessments has expanded considerably 

across the global PA estate. The mandate for this began with the ambitious commitment 

within the CBD Program of Work on PAs at the 7th Conference of the Parties (COP) in 2004 

that all parties would actualize systems for monitoring, evaluating and reporting PAME, with 

assessments being completed for 30% of the total area of all PAs by 2010 and 60% by 2015 
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(CBD 2010a). As of 2013, Coad et al. (2013) found that considerable progress towards this 

target had been met with 29% of global PA area having been assessed and 23% of countries 

exhibiting over 60% areal assessment coverage. As of May 2020, the Global Database on 

Protected Area Management Effectiveness (GD-PAME) contains records of 27657 PAME 

assessments (UNEP-WCMC and IUCN 2020c). 

Macro-scale reviews of the results of PAME assessments have been fairly consistent in 

the trends they have identified: the management of the majority of PAs ranks as “clearly 

inadequate”; with 13% of PAs lacking any evidence of management activities; and the 

weakest aspects being the community components and the funding of resources (Leverington 

et al. 2010; Coad et al. 2013). Whilst reviews also present evidence that PAME scores do 

improve with repeated assessments, critics have pointed out that the qualitative nature of the 

process, along with the fact that PAME scores have increasingly begun to be made a 

conditional requirement of PA funding (Eklund and Cabeza 2016) creates significant 

potential for bias or under/over-exaggeration of scores (Cook and Hockings 2011; Cook et al. 

2014). In addition to this Anthony (2014) highlights a number of other critiques such as is 

issues of mutual exclusivity and ambiguity in commonly used surveys.    

Regardless of this it is unequivocal that the propagation of PAME assessment has induced 

positive change in the effectiveness of PA implementation even it defies explicit 

quantification (Geldmann et al. 2015). Although at a conceptual level, the principal critique 

remains that successful implementation of conservation projects does not necessarily equate 

to successful conservation outcomes (Kapos et al. 2009). 

This segues into the final lens through which researchers have sought to assess PAs 

namely through the effectiveness of their outcomes. As a field this has very much developed 

in tandem with assessment of PAME and indeed there is overlap between the two as many 

PAME methodologies do explicitly seek to quantify outcomes as part of the management 

cycle. However, by comparison the assessment of effectiveness of PA outcomes is both less 

researched and less widely implemented in applied settings (Eklund and Cabeza 2016). Part 

of the reason for this is the fact that there are numerous possible conceptions of PA outcomes 

in accordance with their broad range of objectives. For example, some studies focus on 

evaluating the socio-economic outcomes of PAs in terms of reducing localized poverty or 

improving human well-being (Andam et al. 2010; Clements et al. 2014; Oldekop et al. 2016). 

Alternatively, others have pursued assessments of reduction in anthropogenic pressure 

(Geldmann et al. 2019) or threats (Anthony 2008; Milatovic et al. 2019) as measures for 
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successful outcomes. However, the majority of research has relied upon measures of 

‘ecological outcomes’ that focus directly on the more traditionally perceived goals of habitat 

and biodiversity conservation. 

 The notion that ecological outcomes resulting from PA establishment and operation 

should be considered as a measure of their effectiveness is by no means a new idea, indeed 

Margules and Pressey (2000) established it as a key tenet within their conception of 

systematic conservation planning almost two decades ago. The question then is why has the 

implementation of this by PA management not been achieved at a significant scale?  

In terms of biodiversity specifically the reasons for this are three-fold: firstly at a 

macro level devising methods to quantitatively capture elements of biodiversity is inherently 

difficult as it is essentially an abstract multifaceted concept and whilst this has been the 

subject of much research no single method has been comprehensively endorsed (Tucker 

2005). This is interdependent upon the second reason which is that historically there has 

been, and continues to be, a large disparity between the abundance of data collected on 

certain biological taxa versus others which stems from not only a bias in conservation 

priorities (Western et al. 2009) but also the fact that some groups of species are difficult to 

observe and monitor. Finally, overarching these two explanations is the issue of cost as long-

term biological monitoring programs are often unfeasible under limited PA budgets 

(Lindenmayer and Likens 2018; Coad et al. 2019) 

Nevertheless, numerous studies have attempted to evaluate PA effectiveness on the 

basis of aspects of biodiversity, principally bird and mammal population data, with a review 

by Geldmann et al. (2013) highlighting no fewer than 35 separate publications, with Barnes 

et al. (2016) and Geldmann et al. (2018) being noteworthy additional examples given their 

more ambitious scales. However, the fact that few studies have chosen to focus on other 

measures of biodiversity indicates that the aforementioned problems of a paucity of data and 

the lack of unified metrics continue to limit progression in this form of analysis (Barnes et al. 

2017).  

As a result, much of the focus of research has instead been on quantifying PA 

ecological effectiveness in terms of their capacity to retain favorable habitat types or the 

antonymous measure of avoidance of undesirable land cover changes. The primary form that 

this has taken is analysis of PAs capacity to avoid deforestation or forest cover loss (FCL). 

Although some studies have opted to use different aspects of forest change dynamics, 

including forest gain as well as loss (Chai et al. 2009; Andam et al. 2013), forest degradation 
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(Blackman et al. 2017), carbon stocks (Scharlemann et al. 2010) or the prevalence of forest 

fires (Wright et al. 2007).  

In comparison to assessing impacts of PAs on biodiversity these measures of 

habitat/land cover changes are not only easier to conceptually delineate, and thus quantify, 

but have also become increasingly feasible given the substantial improvements in the 

availability and quality of remote sensing data (Blackman 2013). Additionally, it is contended 

that the effectiveness of PAs in retaining desirable land cover also provides an implicit 

indication of their effect on biodiversity given prevailing theories on the relationships 

between species diversity and habitat types, as well as the effect of landscape connectivity on 

diversity (Gaston et al. 2008).  

For these reasons there has been a considerable growth in the number of studies over 

the last decade that have analyzed PA effectiveness through permutations of forest related 

ecological outcomes. Overall, the consensus is that there is weak but positive evidence that 

PAs reduce deforestation in particular (Naughton-Treves et al. 2005; Gaveau et al. 2009; 

Geldmann et al. 2013; Nolte et al. 2013; Pfaff et al. 2013; Jones and Lewis 2015; Eklund et 

al. 2016).  

However, studies in this domain exhibit pronounced differences with regards to the 

strength of causal inference between their chosen measure of ecological outcome and PA 

effectiveness. Given that this approach to PA effectiveness assessment is the one that will be 

employed by this study, an understanding of the causal models that can be utilized is crucial. 

For this reason, section 1.2.3 explains the underpinnings of causal inference and 

complications associated with it in assessments of PA ecological outcomes in more detail.  

To summarize, there remains no unified means of assessing PA effectiveness although 

attempts have been made to propagate a more holistic understanding to bridge the gaps 

between the three strands of assessment described. For example, Eklund and Cabeza (2016) 

conceptually mapped the relationship between PAME and PA ecological effectiveness by 

adapting the European Environmental Agency’s Drivers, Pressures, State, Impact Response 

(DPSIR) framework. The most comprehensive example though is the recently announced 

IUCN Green List Project (Hockings et al. 2019) of which the intention is to serve as a new 

global standard for PA effectiveness evaluation by requiring that PAs that seek inclusion on 

the list demonstrate success across four components: “Good governance, sound design and 

planning, and effective management, which work together to lead to successful conservation 

outcomes” (p. 59). 
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Whilst this is a promising development the creators acknowledge that it will require 

PA management to set “explicit ecological thresholds that represent success in conservation 

of their major values.” (p. 60) and yet the documentation provides scant additional details as 

to how this can be achieved in a comprehensive, reproducible and verifiable manner. This 

reaffirms that there remains a dearth of research on practical methods for assessing PA 

ecological outcomes and unless this knowledge gap is addressed it seems unlikely that 

projects like the Green List can meaningfully set a standard for PA effectiveness. On this 

basis sections 1.3 and 1.4 will highlight the progress and the specifics gaps that exist within 

this domain before a novel case study is conducted for Cambodia.   

  

1.2.3 How to assess PA outcomes: Incorporating counterfactuals and biases  

 

At the highest level of abstraction, assessing PA effectiveness through empirical outcomes 

typically takes the form of analyses of relational data (Blackman 2013). As alluded to in the 

preceding section such assessments often focus on varied outcomes which may be 

represented by either quantitative or qualitative data that is related in either spatial or 

temporal dimensions. Thus the modus operandi of such analyses is to examine the data for 

correlations or patterns by comparing across these dimensions in such a manner as to 

maximize the causal inference of the conclusions (Ferraro and Hanauer 2014).  

 This process shares many similarities with the evaluation of impacts in any given 

field, and as such, it is pertinent to apply some generalized terminology to ensure clarity. In 

this regard Blackman (2013) provides a useful glossary whereby the unit of analysis is the 

smallest element being analyzed which may be defined in spatial (areal) terms i.e. a sample 

plot or pixel in GIS representation of size X or by its anthropogenic designation such as an 

administrative area or single PA. The treatment is the condition or phenomena of which the 

impact is being investigated: in PA assessments this is typically the presence or establishment 

of the PAs themselves (i.e. units of analysis inside PAs are referred to as treated units). By 

contrast those units not receiving the treatment are referred to as the controls.  The outcome 

variable is that which is used to quantify the impact of the treatment for example, in studies 

of PA ecological effectiveness, avoided deforestation is most often used as an outcome for 

which the proximate variable would be forest cover change. Hence the outcome period is the 

temporal duration over which changes in the outcome variable and hence the effect of the 

treatment is being analyzed.    
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Given the possibility of analyzing the outcome variable in either or both the temporal 

and spatial dimensions this means that numerous types of comparisons can be performed and 

again in the interest of clarity it makes sense to define and group these together. Firstly, it is 

possible to only compare the outcome variable within the treated group over time, for 

example by contrasting FCL rates within a protected area at two different time points. This is 

often referred to as a ‘naïve’ comparison as it only allows for conclusions with weak causal 

inference as any changes observed in FCL rates cannot definitively be attributed to the effect 

of ‘protected status’ of the unit of analysis (Ferraro and Hanauer 2014).  

As an alternative to this, a counterfactual comparison is that which analyzes observed 

changes in the outcome variable between treatment and control groups. This can be 

performed in a spatial sense by identifying control units in proximity to, but not contiguous 

with, the treated units in what can be referred to as with-versus-without comparisons. Or this 

can be in a temporal sense where the treated units are analyzed both before and after the 

treatment is applied, referred to as before-after-control-impact (BACI) comparisons (Conner 

et al. 2016).    

The usage of the term counterfactual stems from the notion that we can directly 

quantify the outcome of the treatment on the treated units but cannot observe the outcome on 

them in the absence of the treatment and, vice versa, we can quantify the outcome on the 

control units in the absence of the treatment but cannot observe the outcome with treatment. 

These unobservable outcomes are non-real (i.e. counterfactual) and, hence, must be estimated 

through the comparison of the quantifiable outcomes exhibited by the treated units and 

controls, the product of which is known as the Average Treatment Effect (ATE). This is an 

extension of the Rubin Causal Model (Ferraro and Hanauer 2014) which can be represented 

by the following equation: 

 

Equation 1.  ATE = E[Yi (1) − Yi (0)] = E[Yi (1)] − E[Yi (0)]  (Ferraro and Hanauer 2014, 497) 

 

ATE is the causal effect of the treatment on a randomly chosen unit (i) from a sample 

population of control and treated units. Where E is the expectation operator; E[Yi (1)] 

represents the observed outcome in the presence of treatment and E[Yi (0)] is the unobserved 

counterfactual. Whereas in the absence of treatment E[Yi (0)] is the observed outcome and 

E[Yi (1)] the counterfactual.   
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 However, we are typically only concerned with the unobservable (counterfactual) 

outcomes for the treated units only as logically we want to know the effect of the treatment 

not of non-treatment. Thus, the measurement of the causal effect of the treatment is referred 

to as ‘the average treatment effect on the treated’ (ATT) (p. 498) which can be represented 

mathematically as the following:    

 

Equation 2.  ATT = E[Yi (1) − Yi (0)|Ti = 1] = E[Yi (1)|Ti = 1] − E[Yi (0)|Ti = 1] 

 (Ferraro and Hanauer 2014, 498) 

 

This takes the same form as Equation 1. with the addition of ‘|Ti = 1’ representing the 

condition that the unit i has been exposed to the treatment. This means that E[Yi (0)|Ti = 1 is 

the effect that the treatment would have had on the outcome for a unit not exposed to the 

treatment, again this is the counterfactual and as such  E[Yi (0)|Ti = 1 = E[Yi (0)|Ti = 0 which 

represents the observable outcome for the control units (p. 498).  

The fact that counterfactual comparison allows us to examine the difference in 

outcomes between the control and treated units not just at the level of individual units but 

also at the population level is one of the reasons that it results in greater causal inference as 

we are more certain that any observed differences are not heterogenous effects and indeed 

result from the treatment itself (Ferraro 2009). As a result of this counterfactual comparison 

has become substantially more commonplace in evaluations within the environmental 

sciences versus the naïve form of comparison of differences in treated units only (Schleicher 

et al. 2019). 

However counterfactual comparisons are by no means a panacea in terms of the issue 

of causal inference as they often fail to adequately account for the influence of control 

variables (covariates) and confounding variables (confounders). Control variables are 

defined as the factors that are expected, or have been demonstrated, to be correlated with 

either the outcome variable or the probability of a unit of analysis being assigned to either 

the treatment or control groups. Confounding variables are those that are likely correlated 

with both the outcome variable and treatment/control assignment. Both covariates and 

confounders clearly have the potential to introduce bias into the estimation of the ATT and 

they are represented in the formula as:  

 

Equation 3. ATT(x) = E[Yi (1) − Yi (0)|Ti = 1, X= x] = E[Yi (1)|Ti = 1, X= x ] − E[Yi (0)|Ti = 1, X= x] 

(Ferraro and Hanauer 2014, 500) 
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Which takes the form of the standard ATT equation (2. above) with the addition of x 

representing a vector of all pretreatment covariates or confounders of the population and X 

the pretreatment covariates for unit i being a random vector of x. Hence from this equation it 

is clear that in order for t E[Yi (0)|Ti = 1 to be a valid counterfactual the value of X for the 

control units should be the same as the value for the treated units otherwise the estimate of 

the ATT will be affected.  

In the case of assessments of PA outcomes, the influence of bias from covariates and 

confounders has been well documented, particularly with regards to the ecological outcome 

of avoided deforestation. The seminal studies on the subject were completed by Andam et al. 

(2008) and Joppa and Pfaff (2009) whose work is referenced and built upon by all subsequent 

counterfactual PA assessments (a review of which is provided in section 1.4). Both studies 

arrive at two key conclusions. First, PAs themselves are not placed randomly within the 

environment, i.e. the locations they are established in are biased along a suite of bio-physical 

and socio/politico-economic factors. Second, many of these same factors are significant 

predictors of the locations in which FCL occurs and thus there is a bias in deforestation 

pressure that exists across landscapes. The obvious implication of this latter point for the 

former is that different PAs will experience differential pressures on their resources based 

upon their location.  

The nature of these biases is quite clear. The title of Joppa and Pfaff’s (2009) study 

was “High and Far” referencing the fact the PAs tend to be located in areas of high elevation 

and on land of low value for agricultural or commercial use due to both environmental 

conditions and distance from roads and human population centers. As for the bias in FCL the 

opposite is true in that it is more likely to occur closer to roads and settlements, on land with 

higher productive potential and at lower elevations with less slope (Geldmann et al. 2019).  

Of course, many other proximate factors beyond these have been posited and tested as 

both covariates and confounders (detailed in section 1.4.2) and indeed the same types of 

biases are also relevant when assessing other measures of PA effectiveness beyond avoided 

deforestation. For example, Eklund and Cabeza (2016) highlight that differential pressure on 

PA resources can confound evaluations of effectiveness using PAME data as a given PA may 

display good management but due to high pressure exhibit high resource extraction and thus 

appear ineffective and by comparison a poorly managed PA under low pressure may appear 

effective.  
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The general consensus is that any counterfactual comparisons (either with-versus-

without or BACI) that fail to account for either or both of the types of bias highlighted above 

will likely overestimate the effect of protected status as a treatment (Ribas et al. 2020). This 

was demonstrated experimentally by Andam et al. (2008; 2013) who found that “naïve 

empirical methods” i.e. those that do not take biases into account, resulted in an 

overestimation of the ATT of protection (inclusion in a PA) by as much as 65%. Although 

contrary to this, Ren et al. (2015) found comparable results between a naïve random sampling 

approach and counterfactual bias inclusive approach in their study of the effectiveness of 

China’s nature reserves.   

The question of how to encompass the effects of covariates and confounders (a 

process referred to as ‘conditioning’) and thereby maximize causal inference has led to the 

development of a suite of techniques that constitute quasi-experimental approaches (Jones 

and Lewis 2015). In practical terms the purpose of these is to artificially select control groups 

that best minimize any differences in variance with respect to the covariates, essentially 

mimicking a random probability of assignment of a given unit to either the treated or control 

groups (Stuart 2010). In the simplest sense this is attempting to ensure that the only 

observable difference between the treated and control units is that the former has been 

exposed to the treatment, thus allowing for ‘apples to apples’ or with-versus similar without 

comparisons (Blackman 2013).  

Critically though these methods must contend not just with the observable biases but 

also the presence of unobserved bias or hidden confounders, and the fact that some treatments 

can induce changes in the outcome variable within the control units themselves (spillover 

effects) (Andam et al. 2008). These techniques as well as issues associated with their use are 

the subject of detailed discussion in section 1.3.  

 

1.3 Quasi-experimental techniques for assessing PA ecological outcomes  

 

The term ‘quasi-experimental’ refers to the fact that observational data is being analyzed in 

an experimental context whereby the independent variable is controlled (the treatment) but 

the assignment of the units of analysis to treatment and control groups is non-random. The 

implication of this as described in the preceding section is that the techniques must condition 

(account) for the biases that are created as a result of this non-random assignment in order to 

get an accurate estimate of the effect of the treatment. This is achieved through the balancing 
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(minimization of variance) of the covariates and confounders associated with each unit of 

analysis that are known or believed to be significant.   

Much of the theory behind the design of quasi-experimental studies was developed in 

the domain of statistical research (Morgan and Harding 2006), and only over the last two 

decades have the techniques begun to gain prominence within the field of conservation 

impact evaluation (Jones and Lewis 2015) and the assessment of PA ecological outcomes in 

particular (section 1.4). 

There are several families of techniques that are used for the conditioning of 

covariates and confounders in quasi-experimental studies: structural equation modelling 

(SEM); Bayesian inferential statistics; regression-based conditioning (RBC); and matching 

methods. Of these SEM and Bayesian techniques have seen the least application in the sphere 

of assessing PA effectiveness, with Brun et al. (2015) being the only published example of 

the latter. In contrast, studies utilizing either RBC or matching methods techniques are 

comparatively abundant (section 1.4). Thus, it seems pertinent to forgo further exposition of 

the two former techniques and instead provide a more detailed background and critique of the 

latter groups. Of course, it should be noted that the use of each of these techniques does not 

preclude the use of the other and indeed regression models are often employed in synergy 

with matching methods which will also be expanded upon. 

 

1.3.1 Regression based conditioning 

 

Conceptually speaking RBC techniques in a quasi-experimental context are those that 

incorporate the effects of covariates and confounders by first quantifying the relationship that 

exists between them and the outcome (dependent) variable for both the treated and control 

groups and then using this to adjust the estimated treatment effect (Rubin 1979). Given the 

scope of this thesis it is not possible to provide a detailed description of the extent of different 

RBC techniques that have been developed and, in that sense, readers should refer to Morgan 

and Winship (2015).  

Instead it seems more pertinent to highlight some of the most commonly used 

examples with respect to quasi-experimental assessments of PA effectiveness which 

Blackman (2013) divides into three broad categories: simple; instrumental variable; and fixed 

effects regression.  
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Simple regression conditioning techniques can be characterized as those relying on 

various iterations of generalized linear models, for example logistic or probit models when 

the dependent (outcome) variable is dichotomous in nature (for example forest cover being 

lost or not) (Cropper et al. 2001), or multinomial logistic models for polychotomous 

outcomes (Mertens et al. 2002). Of course, the limitation to this approach is that if the model 

is mis-specified then it can have the opposite of the intended effect by increasing the bias on 

the estimated treatment effect (Stuart 2010).  

 By contrast the instrumental variables approach incorporates bias by quantifying the 

relationships of only the covariates that are predictors of being assigned to either the 

treatment or control and specifically do not predict the outcome variable for a unit except 

through the treatment (referred to as ‘instruments’). Thus, for this to be a valid approach the 

instruments cannot be correlated with any unobserved confounders. This is not only hard to 

achieve from a practical perspective and indeed if it is then the results of such a conditioning 

only hold for the subset of units for which the assumption is met and hence the end result is 

not to the ATT but rather the local ATT only (Sims 2010).  

 Fixed effects regression conditioning is arguably the most effective of these RBC 

techniques because it utilizes panel data (repeated observations of the units of analysis over 

time) which allows for every unit of analysis to be included as a separate ‘dummy’ variable in 

the resulting regression model making it possible to quantify the unobserved variance both 

across the units and across time. However, in reality this is hard to implement as panel data 

for all covariates is rarely available prior to the treatment taking place (Wendland et al. 2015) 

i.e. PA management rarely collect historic data for sites that they intend to establish as PAs 

prior to doing so.  

 

1.3.2 Matching methods  

 

The development of matching methods, also referred to as statistical matching techniques, 

began in the 1940s (Stuart 2010) with most of the ground-breaking developments being made 

courtesy of Rubin and Rosenbaum in the 1970s and 80s (Rubin 1973;1974;1977;1979;1980; 

Rosenbaum and Rubin 1983; 1984; 1985a; 1985b). Historically this group of techniques has 

been less utilised in the environmental sciences than RBC (Ferraro and Hanauer 2014) 

although it is now seeing increasing use in diverse applications such as fisheries management 

(Costello et al. 2008), butterfly farming (Morgan-Brown et al. 2010), farm land abandonment 
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(Alix-Garcia et al. 2012), and evaluating payment for ecosystem service schemes (Arriagada 

et al. 2012).  

The process of statistical matching involves the creation of a control group ex post by 

selecting control units that are as similar as possible (display the least variance) to the treated 

units across the range of covariates (Andam et al. 2008). Typically, the aim is to find matches 

(control units) for every single treated unit, although this is sometimes not possible depending 

on the restrictions of the technique employed.  

In this regard matching can be conducted on an ‘exact’ or ‘approximate’ basis, with 

the former option requiring that covariate distributions of control units exactly match those of 

a given treated unit. Whereas the latter creates matches on the basis of which control units 

have the closest possible covariate distribution and hence is often referred to as ‘nearest 

neighbour’ matching. Logically, exact matching is the more robust approach with regards to 

minimizing variance between the treated and control groups, but it’s use is limited as it 

becomes increasingly difficult to identify matches for larger numbers of treated units as well 

as with increasing covariate dimensionality (Imai et al. 2008).  

Under approximate matching there are several different techniques that can be employed: 

propensity score matching (PSM); covariate matching; and coarsened exact matching (CEM). 

In terms of assessing PA outcomes the former two techniques have been widely applied 

whereas no studies appear to have used CEM, as such it does not warrant further description 

here, although for details readers should consult Iacus et al. (2011).  

 PSM was pioneered by Rosenbaum and Rubin (1983) and involves summarising the 

vector of covariate values for all observations using a regression model and then assigning 

each a scalar propensity score the based upon the probability of assignment to treatment. 

Treatment and control units are then matched based on the proximity of their propensity 

scores (Iacus et al. 2011).  

 Covariate matching is similar although the vector of covariates is calculated using a 

metric of multi-variate distance. The most commonly applied of which is the Mahalanobis 

distance (Rubin 1979) as it reduces the impact of any collinearity that may exist between the 

covariates (Abadie and Imbens 2006). Matches are then generated on the proximity between 

treated units and control units within the defined multi-variate space (also referred to as the 

variance covariance matrix). 

 Whilst it is possible to critique each of these matching approaches on an individual 

basis most of the common complaints are also cross-cutting with the RBC techniques and 
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hence in the interest of cogency these will be presented in section 1.3.4. Irrespective of these, 

both Andam et al. (2013) and Ferraro and Hanauer (2014) outline specific rationales as to 

why matching methods are preferable over RBC techniques. First, they contend that matching 

and the results it generates are easier to communicate to non-scientific audiences who may 

lack in-depth statistical knowledge. Second, the fact that matching makes the researcher 

manually assess the resulting covariate balance forces them to acknowledge whether there is 

sufficient overlap between the treated and control groups, something that regression models, 

particularly those implemented ‘blindly’ through statistical software packages, can often fail 

to highlight (Stuart 2010). Most importantly, the researcher must attempt to achieve the best 

covariate balance before being able to view the estimated treatment effect, effectively 

guarding against the possibility of poor research conduct through the intertwined phenomena 

of ‘P-hacking’ (selective reporting of only statistically significant results; Head et al. 2015) 

and HARKing (Hypothesizing After Results are Known; Kerr 1998).  

These endorsements are evidently influencing the research community as the number 

of studies implementing matching methods approaches to analysing PA ecological outcomes 

have been increasing relative to those using RBC alone (Appendix A: Table A1). Despite this 

there remains no concrete answer as to which particular method of matching should be used 

although several studies (Ho et al. 2007; Rubin 2007; Stuart 2010) simply suggest that the 

best method is that which produces the best covariate balance although as section 1.3.4 will 

point out, this is hardly the only consideration. 

 

1.3.3 Combining matching and regression 

 

Matching and RBC techniques are by no means mutually exclusive . In fact, many quasi-

experimental studies have applied both separately to demonstrate the difference in the 

resultant estimated ATT (Ho et al. 2007), as well as in combination to increase the robustness 

of ATT estimates (Imbens and Wooldridge 2007). Combining the techniques typically takes 

one of two forms: either a regression model is used to test and refine the selection of 

covariates, as well as identify any outliers in the data prior to matching (Schleicher et al. 

2017), or vice-versa regression is used to estimate the ATT post-matching (Ferraro and 

Miranda 2014; Bowker et al. 2017), with neither approach being demonstrably superior to the 

other.   
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1.3.4 Cross-cutting considerations and problems  

 

In order to understand potential problems when implementing either RBC or matching 

methods, it is necessary to first detail the conceptual assumptions from which they arise. The 

first of these is known as the assumption of unconfoundedness (Rosenbaum and Rubin 1983) 

or conditional independence (Lechner 2002), and holds that the probability of a unit being 

assigned to either the treatment or control is independent (exogenous) of the outcome 

variable i.e. it is unconfounded with respect to the dependent variable (Abadie and Imbens 

2006). The second is the assumption of overlap which holds that there is a positive 

probability of assignment to treatment or control for all values of the pre-treatment covariates 

or, put more simply, there is sufficient overlap between the distributions (variance) of 

covariates between the treated and control units (Abadie and Imbens 2006; Stuart 2010).   

 The original expounders of these assumptions, Rosenbaum and Rubin (1983), refer to 

them collectively as the assumption of “Strongly Ignorable Treatment Assignment” (SITA). 

However, it has since been acknowledged that violations of the SITA assumption, especially 

with regards to unconfoundedness does not constitute a critical flaw in analyses. Indeed, 

some authors have posited weaker versions of both of the underlying assumptions, such as 

Imbens (2004) who noted that in the case of estimation of the ATT the assumption of 

unconfoundedness should only be applicable with respect to the assignment of units to the 

control being independent of the outcome variable. Regardless, the SITA assumptions 

underpin numerous methods designed to ensure robustness at multiple stages of the quasi-

experimental process. Details of these considerations with reference to assessments of PA 

ecological effectiveness are presented below, although it should be noted that whilst some of 

them are relevant under both RBC and matching designs (cross-cutting) some are applicable 

to only one in particular.  

 

1.3.4.1 The requirement for sampling 

 

The need to sample the total population of treated and control units in order to make a quasi-

experimental analysis achievable will be determined by several factors: size of the analysis 

region; duration of the outcome periods; and size (resolution) of the units of analysis 

themselves. Assessments of PA avoided deforestation often utilize high resolution remote 

sensing data (e.g. 30x30m pixels) and hence even a region of analysis of a single country can 

lead to potential population sizes in the range of 1x106 to 1x109 units (Eklund et al. 2016). 
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Analyzing populations of this size using matching methods is rarely feasible without 

substantial computational resources especially given that the size of such datasets increases 

dramatically with additional covariate dimensionality (Blackman et al. 2015). Thus, sampling 

is a commonplace practice in these studies with some opting to use a simple randomized 

approach (Wang et al. 2013; Ren et al. 2015; Abman et al. 2018). Whereas others have used 

random sampling with a minimum distance constraint to mitigate for spatial auto-correlation 

(discussed in detail below) (Bragina et al. 2015; Ament and Cumming 2016) and some 

instead using a systematic sampling approach (Beresford et al. 2013; Blackman et al. 2015).  

Irrespective of the technique used an important consideration is the proportion of 

treated vs. control units that are represented in the samples. The rationale behind this is 

implicitly linked to the theoretical 2nd assumption of overlap that if either group is 

disproportionally represented then this increases the likelihood of there not being an overlap 

in covariate values (given the biases that exist for PAs specifically). Also, with matching 

methods a higher proportion of controls vs. treated is preferable as it can increase accuracy 

(Clements et al. 2014).  

 

1.3.4.2 Validity of hypothesized covariates 

 

Prior to the conditioning using either regression or matching there is a need to test the validity 

of the covariates that will potentially be included in the analysis. Often the preliminary 

selection is made on the basis of their prevalence in the wider literature and indeed it is 

important to recognize that any hypothesized relationships drawn from other studies may not 

hold true for the region under investigation especially if it is a novel one.  

Covariates can be validated by quantifying their explanatory power using an 

appropriate regression model (Schleicher et al. 2017), or through other techniques such as: 

principal component analysis (Eklund et al. 2016), Pearson’s r correlation analysis (Wang et 

al. 2013) or even algorithms such as ‘Random forests’ (Oldekop et al. 2016). At the same 

time such testing should also investigate the presence of any multicollinearity between the 

covariates which could be inflating explanatory power (Imbens and Wooldridge 2007). 

Additionally, the results can be used to demonstrate that sufficient overlap exists between the 

covariates of the treated and control groups in keeping with the 2nd assumption.  

 At a conceptual level testing the validity of the proposed covariates forces the 

investigator to question whether the data they have chosen adequately represents the 

phenomena it is intended to. This is particularly pertinent with regards to some of the well 
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popularized covariates of PA avoided deforestation because the nature of the quasi-

experimental analysis means that essentially time variant phenomena are being forced into a 

time-invariant context. For example, distance to roads is one of the most commonly used 

covariates (see Table A1: Appendix A) and in with-versus similar without comparisons this is 

typically intersected with other relational data of the units of analysis for the first year of the 

outcome period only. Hence, this ignores the fact that new roads may be built within the 

subsequent years of the outcome period and the excluding the potential influence of these on 

the observed outcome. Temporal partitioning of the data for such covariates can mitigates this 

effect to some extent but cannot eliminate it entirely. This is not to suggest that such 

covariates should be excluded from analysis although it is a potential explanation for why 

they may show poor or non-significant explanatory power in testing.   

 Overall refining the selection of covariates becomes a balancing act between defining 

a causal model with the best explanatory power whilst ensuring that the analysis remains 

computationally feasible. In this regard there are proponents who suggest that all potential 

covariates should be included as long as they positively contribute the model’s power, 

criticizing those who use too small a set of covariates (Andam et al. 2008; Stuart 2010). 

Whereas others advocate that the selection should be refined to only those deemed to be the 

most important (Blackman 2013). Ultimately though the selection of covariates will largely 

depend on the subjective choices of researchers as well as the limitations of data availability. 

A final consideration is to test for the presence of unobserved or hidden covariates or 

confounders, again with respect to the 1st assumption of unconfoundedness (Stuart 2010). 

Existing studies primarily utilize Rosenbaum bounds sensitivity analysis to achieve this 

(Andam et al. 2008; 2010; 2013; Blackman 2013) although Ichino et al. (2008) present an 

alternative. 

 

1.3.4.3 Quality of matching 

 

As previously stated, the purpose of matching as an exercise is to create a control group with 

minimal differences in its covariate distribution with respect to the treated group (Ferraro and 

Hanauer 2014). In this regard there are a number of decisions that must be made as part of the 

matching process that can influence this. The first is whether or not to match using a caliper, 

i.e. a minimum possible difference in covariate distribution allowed for a match to be valid. 

This is often seen in examples of both PSM and covariate matching and is typically expressed 

in terms of a number of standard deviations (SD) away from either the propensity score or 
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multivariate distance metric of the treated unit. For example, Clements et al. (2014) matched 

using the Mahalanobis distance with a distance of 0.5 SD’s meaning that if the Mahalanobis 

value for a prospective control unit exceeds this value with respect to a given treatment unit 

then it is rejected as a possible match. Others have used more restrictive caliper values of 

0.25 SD (Jones and Lewis 2015; Zhao et al. 2019).  

 A second consideration is the number of matches that should be found for each treated 

unit. Whilst the typical concept of nearest neighbor matching is to generate 1:1 treated to 

control matches, if this is not being done on the basis of exact matching of covariates (which, 

as was alluded to earlier, is rarely achievable) then it has the potential to obscure the fact that 

a treated unit may in fact have a large number of potential control unit matches that are very 

similar in their covariate distributions to it. Matching more than one control to each treated 

unit is often referred to as ‘ratio matching’ or ‘k-nearest neighbors (k:1)’ and it’s impacts in 

terms of the robustness of the ATE/ATT scores produced are still under debate. Stuart (2010) 

highlights that k:1 matching has the potential to both increase bias (as obviously all k>1 

matches are less similar to the treated unit) but also reduce variance by leading to a larger 

matched sample size thereby ‘smoothing out’ the influence of individual covariates that 

might display more pronounced variance than others. Possibly the most revolutionary 

example of this amongst PA ecological effectiveness studies are those of Eklund et al. (2016) 

and (2019) who performed ratio matching on a 1:500 basis but allowed the matching of both 

treated to treated and treated to control. 

 A final consideration as part of the matching process itself is the decision whether to 

match with or without replacement. As the name implies matching without replacement 

means that each control unit can only be matched to one treated unit and at that point it is 

removed from the pool of potential matches for the remaining treated units. Matching with 

replacement is obviously the opposite and similar to the question of k-nearest neighbors there 

is no conclusive answer as to which option is most appropriate. Abadie and Imbens (2006) 

suggest that matching with replacement can generate higher quality matches (less variance) 

as every treated unit has a greater possible set of matches. Additionally Stuart (2010) 

highlights that this is particularly useful in circumstances where the total number of control 

units in the sample is low in proportional to the treated units, but also cautions that if care is 

not taken then the estimated treatment effect can be impacted if a relatively small number of 

controls end up in a substantial number of matches overall. Indeed, depending on the extent 
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of this, it could be said that the ATE/ATT generated is in fact only a local treatment effect as 

opposed to being representative of the whole sample/population. 

 Of course, these considerations are without meaning if the actual quality of the 

matches generated are not tested post-matching. There are numerous methods of assessing 

the balance of covariates between the matched treatment and control groups: normalized 

difference in means (Wendland et al. 2015); mean differences in the empirical quantile-

quantile (eQQ) plots (Brandt et al. 2015); median standardized bias (MSB) (Blackman et al. 

2015); variance ratios (Austin 2009b); the Kolmogorov-Smirnov (KS) test (Greifer 2020b) 

and the complement of the overlapping coefficient (COC: Franklin et al. 2014). Each has its 

proponents and detractors and yet all remain widely used and hence it does not seem 

necessary to discuss their relative merits further.  

 Historically a lot of matching studies have utilized a wide range statistical tests to 

confirm the differences in these summary metrics following matching including: t-tests (two 

sample and paired), Wilcoxon signed rank tests, F-tests, chi- square tests, and the C-statistic 

(Austin 2009a; Clements and Milner-Gulland 2014b; Franklin et al. 2014; Ali et al. 2015). 

However, a number of methodological expositions have warned that many of these tests are 

in fact not appropriate for use in matching analyses, due to the fact that matching alters both 

sample size and structure (Ho et al. 2007; Imai et al. 2008; Austin, 2009a; 2011; Stuart, 2010; 

Thoemmes & Kim, 2011; Ali et al. 2015; Linden 2015). In the absence of such tests 

evaluating the differences in covariate balance achieved by matching becomes subjective 

upon the researcher although decisions can still be guided by setting thresholds to represent 

minimum requirements for improvements in covariate balance under different summary 

metrics (Greifer 2020b).  

 Importantly, the covariate balance is not the only thing that must be assessed in 

affirming the quality of matches. Another potential problem that must be considered is the 

phenomenon of spatial autocorrelation (SAC). This is the concept that variable values for a 

given unit are influenced or correlated with the variable values of units in spatial proximity to 

them (Mets et al. 2017). Obviously, the scale at which this occurs is dependent upon the 

specific variable and the resolution of the units of analysis themselves. For example, 

elevation is a covariate commonly used in PA ecological outcome studies, it is logical to 

expect that at a high resolution of 30x30m there is a strong likelihood that a given unit’s 

elevation will be very similar to those that surround it as elevation is unlikely to show 

significant variability at this scale. However, the same cannot be said of all covariates as the 
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extent of SAC can be difficult to define as it can be either exogenous (resulting from a 

another spatially autocorrelated variable such as rainfall determining agricultural 

productivity) or endogenous in nature (Gaspard et al. 2019).  

 The implication of SAC for matching methods approaches is that it increases the 

likelihood that treated units will be matched to controls in close spatial proximity to them. 

This is problematic in the case of 1:1 matching as the estimated ATT cannot be said to be 

representative of the whole population if, in spatial terms, the matched samples are from a 

relatively limited portion of the total region of analysis (Negret et al. 2020).  

Regression based quasi-experimental designs are also by no means immune to the 

effects of SAC which can violate the assumption of independence (Lee 2013), cause an over-

estimation of the effect of predictors (Brun et al. 2015), and possibly an inaccurate measure 

of statistical significance (Mertens et al. 2002; Mets et al. 2017).  

As previously highlighted numerous studies have attempted to implement strategies to 

mitigate for SAC either through enforcing a minimum distance at the initial sampling stage or 

indeed doing the same during the matching process (Bowker et al. 2017). Fortunately, the 

extent of SAC can be quantified through several different statistical techniques: Moran’s I; 

Geary’s C; and by producing semi-variograms (O’Sullivan and Unwin 2010).  

 

1.3.4.4 Spillover of treatment effects 

 

Spillover is an additional consideration for quasi-experimental assessments that utilize spatial 

data although whether or not it is a concern is also dependent on the nature of the treatment 

itself. In the case of PA ecological outcome analyses it, is highly relevant as the treatment i.e. 

designation of an area as ‘protected’, has well-documented effects that ‘spillover’ to the 

surrounding de facto ‘unprotected’ land (Andam et al. 2008). These effects were 

encompassed within an additional conceptual assumption by Rubin (1980) referred to as the 

Stable Unit Treatment Value Assumption (SUTVA). The premise of SUTVA is that the 

outcome for one unit of analysis is not affected by the treatment assignment of any other 

units. With regards to the outcome of FCL the spillover effects of protection as a treatment 

can either positively or negatively influence the outcomes observed in control units in close 

spatial proximity to treated units. Positive spillover equates to reduced FCL in the 

surrounding area which can often be the result when the establishment of a PA generates 

economic benefits such as tourism which reduces the need for land conversion for agriculture 

(Gaveau et al. 2009; Wang et al. 2013). In contrast, negative spillover represents increased 
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FCL due to the displacement of clearing activities or even additional clearing by land users as 

an attempt to pre-empt the establishment of additional protected land (Pfaff and Robalino 

2017). Regardless of the nature of the influence the presence of spillover effects violates the 

SUTVA assumption and risks generating a biased estimate of the ATT/ATE especially if 

other covariates are spatial autocorrelated.  

Of course, it is possible to incorporate processes within quasi-experimental PA 

effectiveness analyses to quantify the spillover effects of protection. One way to achieve this 

is to construct buffer areas of a pre-defined width around all PAs within the region of analysis 

and then calculate the ATT for the treatment of being located inside the buffer as compared to 

control units outside the buffer (but not inside PAs). A significant ATT in this regard would 

suggest that there is a spatial spillover of protection occurring.  

However, such a strategy raises an interesting question, what is the appropriate size of 

buffer to capture the spatial extent of spillover effects? So far testing of this has proved 

inclusive with some studies observing a positive treatment effect but no significant difference 

with respect to buffer sizes (Andam et al. 2008; Ota et al. 2020). Further adding to this 

complexity is that heterogenous spillover effects (both positive and negative) have been 

found to occur simultaneously depending on the context (land cover) and at different scales 

(Pfaff and Robalino 2012; Ament and Cumming 2016; Blanco et al. 2019). 

 

1.3.4.5    Other considerations 

 

Two final noteworthy considerations for quasi-experimental PA outcome assessments: First 

is the possibility of time-lagged treatment effects. Take, for example, the protection of a unit 

of land as a treatment and FCL as the outcome. Is it a valid assertion that the establishment of 

a protected area will have an impact on reducing FCL after a single year or is it more likely 

that any effects will only be observable after multiple years? Of course, it is impossible to 

generalize an answer for this as it is dependent on many aspects such as the capacity of 

management to implement law enforcement or the extent of the psychological effect of 

protected status with regards to those who may be engaging in forest clearing activities.  

This practical consideration is linked to another under-researched, albeit more 

methodological, concern which is how best to quantify and propagate measures of variance 

and error as part of the quasi-experimental process. This is especially problematic with 

regards to investigations relying on spatial data as whilst some methods of land cover 

classifications of remote sensing data do specify error in terms of kappa coefficients, there is 
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little consensus on how observational error should be measured for other spatial data or how 

it should be propagated when data layers are intersected (Devendran and Lakshmanan 2014). 

There is also discussion around what measure of variance is appropriate for estimates 

of treatment effects generated from matching methods analysis (Imbens 2004; Schafer and 

Kang 2008; Austin 2009a; 2011; Stuart 2010). With some prominent theorists arguing that 

measures such as standard error (SE) are conceptually inapplicable, especially when 

matching is conducted with replacement which violates sample independence (Austin 2009a). 

To this end Abadie and Imbens (2006; 2008; 2011) devised a method to generate bias-

adjusted estimates of SE for average treatment effects generated using matching estimators 

that has since been widely adopted. However, linking this to the observational error present in 

the data itself remains unexplored territory. 

 

1.4 Reviewing counterfactual assessments of PA ecological effectiveness 

 

The purpose of this section is to provide insight into the breadth to different approaches that 

counterfactual quasi-experimental assessments of PA ecological effectiveness have taken 

with regards to aspects of forest change dynamics. Given that a comprehensive review of 

previous studies in this domain is already offered by Geldmann et al. (2013), it does not make 

sense to re-review the literature they have already collated. Instead section 1.4.1 will provide 

a brief summary of their conclusions with the focus instead being on reviewing examples that 

have been published post-2013 or those that were not included by Geldmann et al. (2013). In 

this regard, a selection of the pertinent information (summarized using the terminology 

introduced in section 1.2.3) related to 37 additional studies has been included as a tabular 

Appendix (A: Table A1). Subsequent sections will highlight the common covariates 

employed in these studies (section 1.4.2) as well as critiques of the approach (section 1.4.3). 

 

1.4.1 Summarizing results 

 

Geldmann et al.’s (2013) review identified 76 counterfactual assessments of PA effectiveness 

under some measure of forest or land cover dynamics from 51 published studies. From these 

they highlighted several trends: there was a strong location bias in research efforts (35 

examples were from Latin America); tropical forest was the type analyzed in almost all 

examples (67); 63 analyses relied on remote sensing data; and whilst the majority of studies 

made counterfactual comparisons to either buffer areas or similar unprotected land only 10 
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examples used matching methods to condition on biases. In terms of conclusions the authors 

noted that in 62 comparisons habitat loss occurred at greater rates outside PAs than inside 

them.  

Although it is not feasible to concisely summarize the results of all the studies in 

Appendix A individually, reviewing those that were performed after Geldmann et al.’s (2013) 

synopsis, they largely corroborate with the former’s conclusions. The majority concurred that 

PAs are generally more effective in producing a desirable outcome in terms of forest 

dynamics (be it avoided deforestation, increased carbon sequestration, etc.) vs. unprotected 

sites (Berefords et al. 2013; Carranza et al. 2013; Nolte et al. 2013; Pfaff et al. 2013; 

Vergara-Asjeno and Potvin 2014; Spracklen et al. 2015 Ament and Cumming 2016; Eklund 

et al. 2016; Bowker et al. 2017; Yang et al. 2019; Ota et al. 2020 etc.).  

However, it is important to note that there have been a number of studies that have not 

concurred with this conclusion, either on the basis of observing contradictory results (Curran 

et al. 2004; Rayn and Sutherland 2011) or because the positive effect of PAs was too weak to 

be significant (Bragina et al. 2015; Wendland et al. 2015). 

An interesting sub-set of these studies are those that have investigated the treatment of 

protection as not just a dichotomous difference between protected and unprotected but as a 

polychotomous variable testing the relative effectiveness of different PA management types 

(e.g. under the IUCN PA classifications), governance types (PAs vs. community forests etc.), 

and PA size or age (duration since establishment). With regards to PA management types 

there have been mixed results with some finding that PAs of supposedly stricter management 

are more effective in reducing undesirable forest changes (Naughton-Treves et al. 2005; 

Carranza et al. 2013), whereas others have concluded the opposite (Blackman et al. 2015; 

Brun et al. 2015) and interestingly Ferraro et al. (2013) found that the effects were 

heterogenous between different countries.  

In terms of governance modalities, Schleicher et al.’s (2017) case study of Peru 

compared: “state PAs, Indigenous Territories (ITs), and civil society and private 

Conservation Concessions (CCs)” and found no difference between the effectiveness in terms 

of avoided deforestation as compared to logging concessions.  

As for differences in PA size and age, again conflicting results have been observed with 

Bowker et al. (2017) finding that for their sample of African PAs, younger PAs were more 

effective than older and similarly smaller PAs were effective than larger. However, by 
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contrast Zhao et al. (2019) did not observe a significant relationship between PA age and 

effectiveness.   

 Another area of interest within this domain is the studies that have tested for the 

presence of a relationship between PA ecological effectiveness and other measures of PA 

effectiveness such as PAME scores. Given the management activities captured by PAME 

assessments, logically we should expect a positive correlation between management 

effectiveness scores and avoided deforestation although thus far evidence of this has been 

inconclusive (Nolte & Agrawal, 2013; Carranza et al. 2014; Eklund et al. 2019). 

Finally, even though it did not investigate land change dynamics as a direct outcome, 

an additional study of note is that of Geldmann et al. (2019). This is partly because it claims 

to be the largest study of PA effectiveness to date by analyzing over 12,000 PAs from around 

the globe. The authors used a novel metric the Temporal Human Pressure Index (THPI), 

consisting of combined data on human population density, land transformation and electrical 

power infrastructure, as the outcome variable. They concluded that overall PAs had not 

reduced human pressure relative to matched controls over a 15-year period. Although once 

they separated between forested and non-forested PAs (on the basis of those used by previous 

studies) they observed that whilst forested PAs displayed increasing human pressure over the 

outcome period this was significantly less than in matched un-protected areas.  

 

1.4.2 Covariates and confounders of PA effectiveness 

 

Table A1 (Appendix A) shows that there is a core selection of covariates that have been used 

in a large number of studies and indeed this is further evidenced by the 51 studies reviewed 

by Geldmann et al. (2013) that were not included in this table. These include distance to 

roads; distance to population centres; population density; slope; elevation; proxies for 

surrounding habitat cover (distance to forest edge); and indicators of agricultural suitability 

(soil type and quality; temperature precipitation). Although it is important to note that not all 

studies have been unanimous with regards to the direction of the relationships between these 

observed variables and the treatment or outcome. For example, Bowker et al. (2017) found 

the opposite than expected relationship between accessibility and deforestation pressure 

(outcome) in their matching methods study in Africa, namely that more inaccessible area’s 

(as defined by elevation, slope and distance to cities) had higher deforestation pressure. This 

they attributed to the fact that greater inaccessibility could correlate with lower levels of law 
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enforcement and that in their case ‘distance to cities’ was perhaps not adequately reflecting 

local population density.   

 By contrast, some lesser used but nonetheless interesting covariates are ‘proximity to 

international borders’ (Joppa and Pfaff 2009) and proximity to land of other tenure types 

(numerous studies test for relative differences in outcomes between these but few include the 

spatial proximity of them as a covariate; Blackman et al. 2015).    

 

1.4.3 Critiques of forest dynamic based assessment of PA effectiveness 

 

The foremost critique of using ecological outcomes as a proxy for PA effectiveness is that 

while minimizing FCL should be a clear objective for management in PAs that exhibit 

substantial forest cover, the responsibility of management to maintain land cover in non-

forested and partially forested PAs is much less clear (Geldmann et al. 2019). Whilst it would 

be a reasonable assertion that the goals of these PAs should be to prevent the conversion of 

natural land cover to ‘unnatural’ (i.e. anthropogenic use) this is complicated by the question 

of what constitutes ‘natural’ cover. In fact, in some cases it may be appropriate for 

management to actively convert forested land to non-forested by, for example, removing non-

native tree species to allow for the restoration of natural wetlands.  

Another criticism highlighted by Brandt et al. (2015) is that if PAs effect on forest 

dynamics is viewed at too coarse a distinction, i.e. only focusing on total FCL, this can 

obscure some of the heterogeneity in impacts that may be occurring. For example, the 

conclusion of their study in China was that there was no significant difference in total forest 

cover retention by protected vs. control areas. However, when forest types were separated out 

there was a significant difference with respect to old-growth forest which is arguably one of 

the most important varieties from a conservation perspective.  

Looking beyond the practical aspects of forest dynamic based measures, an important 

conceptual critique of using them as a proxy for PA effectiveness is that the greatest potential 

for achieving avoided deforestation is in regions where deforestation rates are high. This is 

problematic from a cost-benefit perspective considering that the cost of achieving avoided 

deforestation in areas of high pressure is likely to be high and the overall conservation 

benefits relatively low in comparison to securing the same amount of avoided deforestation 

across numerous locations facing lower pressure. Hence focusing on those PAs that appear to 

be the most effective by virtue of having achieved the most avoided deforestation is perhaps 

misleading in terms of where limited funding should be allocated (Vincent 2016). Of course, 
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the counter argument to this is that it would be possible to normalize effectiveness estimates 

across relative deforestation pressures and analysis on the basis of total spending to see which 

PAs have achieved the most (relative) gains at the lowest expense.  

 

1.5 Chapter conclusions 

 

To draw together the most salient points from this chapter, it is abundantly clear that PAs 

have a more important role to play than ever in terms of addressing the issues of global 

environmental change. To maximise the utility of PAs more research is needed to develop 

measures of assessing their effectiveness. In this regard the ecological outcomes of PAs, 

quantified through avoided deforestation is an emerging field. In order to produce valid 

assessments of this outcome, biases in both PA locations and deforestation pressure must be 

accounted for using quasi-experimental counterfactual study designs. Within this domain the 

use of statistical matching methods has become increasingly popular and is often favoured 

over regression-based techniques for intuitiveness and ease of communication.  However, 

many aspects of the methodology of matching have not yet been adequately explored when 

applied to assessing PA outcomes. For example, further analysis to examine the spatial 

spillover of treatment effects; techniques to mitigate for SAC; and particularly other factors 

associated with PAs such as size and age that may influence effectiveness. Additionally, 

Ament and Cumming (2016) highlight that numerous studies have focused on too large a 

spatial extent (global or regional) and sometimes miss the dynamics of forest cover change 

and PA effectiveness that occur at more localized scales. These are clear areas that this study 

hopes to build upon as part of the continued propagation of quasi-experimental techniques to 

ultimately address the need for better causal inference in assessments of PA effectiveness in 

general. This will be achieved through the application of a nearest neighbor matching 

approach to estimate avoided deforestation of PAs in Cambodia, the rationale for which 

forms the basis of the following chapter.     
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2. Cambodia: A case study of PA effectiveness  
 

The purpose of this chapter is to demonstrate why Cambodia represents a suitable case study 

for a quasi-experimental analysis of PA effectiveness expressed in terms of avoided 

deforestation. In this regard it is important to first identify the patterns of natural resource use 

and environmental change that have impacted conservation efforts within the context of the 

socio-politico-economic circumstances of the country’s recent history (section 2.1).  

Following this section 2.2 will detail how PAs in Cambodia have evolved within this context, 

their importance in terms of the country’s remaining resources, prior assessments of their 

effectiveness and the current events and emerging trends that have implications for them in 

the future. These strands are then synthesized to present a clear rationale for how an 

assessment of PA effectiveness could provide relevant country-specific insights for 

conservation practitioners and policy makers (section 2.3). 

  

2.1  The context of environmental conservation 

 

In the period from 1990 until the present-day Cambodia has exhibited substantial 

environmental change. Similar to other surrounding Southeast Asian nations, such as 

Thailand and Vietnam, this has principally been in the form of changing patterns of land-use 

particularly exemplified by the clearing, conversion and degradation of primary and 

secondary forest cover (WWF 2013). Before quantifying the extent of this change (section 

2.1.3), it is important elucidate the mechanisms or drivers by which it has come about. In this 

regard section 2.1.1 will first adopt a socio-ecological system approach to framing these 

causal factors at the macro-scale. Following this section 2.1.2 will contextualise the drivers 

within a narrative of historical/events and policies that can be said to characterise natural 

resource management ‘eras’ within Cambodia’s recent history.  

 

2.1.1 Characterizing drivers of environmental change  

 

Figure 2 below summarises the main drivers of environmental change that have been posited 

for Cambodia in both a proximate and ultimate capacity as highlighted by a range of sources 

(De Lopez 2002: Amariei 2004; Broadhead and Izquierdo 2010; EU 2012; Forest Trends 

2015; JICA 2017; and Kong et al. 2019) and placed into the schema developed by Geist and 

Lambin (2002). Many of these drivers are those typically displayed by most similarly 
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agrarian countries undergoing development, such as urbanization or and development of a 

cash crop sector. With others being the result of larger macroscale phenomena such as 

climatic change (e.g. changes in rainfall). Although in the case of Cambodia there is one 

particular ‘ultimate-proximal’ causal relationship that has been disproportionately responsible 

for the countries pronounced environmental change over the last four decades. Namely the 

commodification of state land used as a means to perpetuate natural resource exploitation 

primarily focused upon the country’s forests (Beauchamp et al. 2018).  

 

The exact mechanism by which this has occurred has changed over time and can be 

loosely characterised into different governmental policy eras of natural resource management 

that have taken place between the early 1990’s and the present day. As these different eras 

each had particular implications for the country’s PAs they are discussed in more detail in the 

subsequent section (2.1.2). However, a defining feature that transcends them is that whilst the 

purported aim of natural resource exploitation has always been national development the 

process has consistently been subverted to benefit an entrenched societal-political elite class 

(Le Billon 2000; De Lopez 2002; Global Witness 2007; Un and So 2009; Cock 2010; 2016; 

Baird 2014; Milne and Mahanty 2015). This phenomenon has been facilitated and 

perpetuated by a combination of weak governance (Un and So 2009), a pervasive culture of 

 Figure 2: Underlying and proximate causes of land-use change in Cambodia 

 (Schema adapted from Geist and Lambin 2002) 
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institutional corruption (Global Witness 2004; Hill and Menon 2013), and the absence of rule 

of law (Ghai 2009). Which has resulted in some describing the country’s governmental 

system of the last three decades as being little more than a kleptocracy (Global Witness 

2009), that has exploited national resources to support a neo-patrimonial authoritarian regime 

(Cock 2010; Karbaum 2011; Un and So 2011; Milne 2015). At this point it is worth noting 

that over this period the Royal Government of Cambodia (RGC) has been comprised from the 

same political party: the Cambodian People’s Party (CPP), led by Samdech Hun Sen as the 

prime minister (Diepart and Sem 2015). 

Aside from environmental degradation, elite capture of natural resources in Cambodia 

has resulted in myriad negative socio-economic impacts. In 2013 the Cambodian League for 

the Promotion and Defense of Human Rights (LICADHO) estimated that a minimum of 

420,000 rural Cambodians had been directly affected by land grabbing or related conflicts 

based upon their case studies since 2003 (LICADHO 2014). This is corroborated by the fact 

that by 2009 an estimated 45% of the country’s total land area had been handed out to private 

investors (Global Witness 2009) whilst amongst the general population there was a growing 

trend of landlessness (20% in 2009, with an estimated 40% of rural households owning 

farmland less than 0.5 ha) (Üllenberg 2009).  

Additionally, in economic terms, the fact that the majority of resource exploitation has 

been allowed to occur in an unformalized and unregulated manner, has meant that it has 

demonstrably failed to generate proportionate revenue for the state (Biddulph 2011). For 

example, between 1991 and 1998, Cambodia exported at least USD 2.5 billion worth of 

timber, although from this only 12% ($120 million) of the total public revenue due through 

taxation was collected (Le Billon 2002).  

Whilst the three-decade long exploitation of Cambodia’s natural resources has been 

undeniably undesirable from an environmental perspective, at the same time it cannot be 

ignored that the country has achieved a remarkable developmental transition.  The World 

Bank’s (2019) country overview highlights that in 2015 the country attained lower middle-

income status after averaging 8% annual economic growth between 1998 and 2018. Although 

the poverty rate dropped from 47.8% in 2007 to 13.5% in 2014, they caution that 4.5 million 

people are still categorised as “near-poor”. Simultaneously between 1990 and 2018 

Cambodia’s score on the United Nations Development Programme’s (UNDP) Human 

Development Index (HDI) rose from 0.384 to 0.581, an increase of 51.4% with average life 

expectancy at birth over this period increasing by 16 years (UNDP 2019, 2). However, once 
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this 2018 HDI score is adjusted for the inequality of development across the population then 

it falls by 20% to 0.465, highlighting that strong inequalities still exist across all three 

dimensions of life expectancy, education and income.  These examples highlight the question 

long asked by scholars and development agencies alike: In the absence of a kleptocratic 

governmental system could Cambodia have achieved the same or greater development in a 

more equitable fashion and without the severe depletion of the country’s natural resources?  

 

2.1.2 Policy eras of natural resource management  

 

2.1.2.1 The timber concessions of 1990’s 

 

The first of the aforementioned natural resource policy eras occurred through the 1990’s and 

into the early 2000’s and can be characterised by the privatisation of national forests which 

were auctioned off to foreign investors, primarily for the purpose of establishing timber 

concessions. Between 1994 and 1997, this saw an estimated 39% of Cambodia’s total land 

area (~7 million ha) signed over to timber concessionaires on the basis of 5-25-year leases 

(Bottomley 2000). This comprised the majority of all remaining forested land not included in 

PAs established in the same year (section 2.2.1) (Forest Trends 2015), with the rest gradually 

being subsumed into agricultural concessions which by 2001 amounted to over 800,000 ha 

(McKenney and Prom 2002).  

The policy was rationalized as one of the few viable means to generate revenue for 

post-war reconstruction following nearly two decades of conflict (1970s-80s) (Le Billon 

2000). Indeed it was initially endorsed by the donor/development community who were very 

active in the country at the time, particularly the World Bank, who envisioned it as a 

transparent system of public-private partnerships that would put an end to the unsustainable 

forest exploitation that was still taking place to fund the last vestiges of the civil war (Diepart 

and Sem 2015). However, the way the concession system was actually implemented saw the 

hopes of donors dashed very quickly as, by 1996, logging practices were described by some 

observers as “anarchic” (Forest Trends 2015). This was characterised not just by 

unsustainable extraction inside concessions but also illegal logging outside their boundaries 

which resulted in rural communities being dispossessed of land and access to natural 

resources (Barney 2005; Diepart and Sem 2015). 

C
E

U
eT

D
C

ol
le

ct
io

n



38 

 

The pressure upon the RGC from international donors to reform the concession 

system mounted towards the end of the century with successive sectoral reviews in 1996 

(World Bank 1996) and 2000 (Barney 2005). The latter resulted in the announcement of the 

2002 Forestry Law, and the indefinite suspension of all timber concession licences (ICEM 

2003b). Although there is evidence that many concessionaires simply continued to operate 

despite the suspension (Barney 2005) and their activities did not truly cease until the 

concession system was finally brought to a halt following the Independent Forest Sector 

Review (IFSR) the RGC in 2004 (Forest Trends 2015). 

The lack of political will to address the glaring issues with the concession system 

resulted from the fact that many of the concessions licences were held by societal elites and it 

was the patronage of these individuals that had allowed the CPP to secure its position in 

charge the newly formed RGC (Diepart and Sem 2015; Diepart and Schoenberger 2016). 

Thus, the end of this era meant that a new policy actuated means for this patronage network 

to continue had to be created. In the end the next policy regime did not represent a 

considerable structural change from the previous era, only that instead of timber concessions, 

state land was allocated to private companies for the purpose of agri-business development 

(Forest Trends 2015). 

 

2.1.2.2 The transition to Economic Land Concessions in the 2000s 

 

Whilst a precedent for the allocation of land for large-scale agricultural developments had 

been set by the granting of such concessions in the 1990s these were few in number and small 

in scale in comparison to the timber concessions. This changed dramatically with the 

introduction of the 2001 Land Law (RGC 2001) under which all untitled land in the country 

(75-80% of the total land area at the time) was re-classified as either state public land or state 

private land (Neef et al. 2013). More importantly it included the legal provision that state 

private land could be allocated, on a contractual basis, as Economic Land Concessions 

(ELCs) for the purpose of Agri-industrial development. The Land Law laid out a set of 

criteria upon which the allocation of ELCs was supposed to be based including that (i) the 

area of a single concession could not exceed 10,000ha; (ii) no individual nor legal entities 

(companies) controlled by an individual is allowed to hold more than one concession licence; 

(iii) the maximum length of ELC lease is 99 years and cannot lead to ownership; and (iv) 

exploitation of the land for the ELCs stated purpose must begin with 12 months of the 
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granting of the licence (RGC 2001). These were subsequently strengthened by an additional 

sub-decree (no. 146) on the topic in 2005 (RGC 2005) which introduced the provision that all 

prospective ELCs had to produce environmental and social impact assessments (ESIA) along 

with sustainable use management plans prior to agreement of the licence by the Ministry of 

Agriculture Forests and Fisheries (MAFF). 

The passing of sub-decree 146 in 2005 marked the beginning of a substantial increase in the 

number of ELCs declared which continued to rise until 2012 (Grogan et al. 2019) although the 

total extent of ELC land that was declared in the country is a subject of debate to this day. This is 

because information related to concession allocations has never been publicly disclosed in a 

systematic fashion by the RGC leaving it largely up to scholars and civil society organisations to 

devise their own estimates (Broadhead and Izquierdo 2010: FAO 2012). Whilst exact figures 

differ most sources agree that the amount of land allocated to ELCs by 2013 was between 2 and 

2.5 million ha, representing over half of Cambodia’s total arable land (Neef et al. 2013; 

LICADHO 2014; Forest Trends 2015). To put this into perspective Figure 3 shows the extent of 

ELCs included in one of the most comprehensive datasets produced by the Non-governmental 

organisation (NGO) Open Development Cambodia (ODC).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Location of Economic Land Concessions (ELCs) in Cambodia  

(data sources: ODC 2017a GADM 2018) 

C
E

U
eT

D
C

ol
le

ct
io

n



40 

 

Similar to the timber concessions the purported rationale behind the policy of ELC 

allocation was that it was in the interest of national development. The expectation was that 

they would increase production of agricultural goods for national consumption as well as 

export (particularly rubber) but also diversifying the rural labour market (Beauchamp 2016). 

However, the reality of the impacts of ELCs was very different and has been subject to 

considerable analyses from both environmental and social standpoints.  

In environmental terms the establishment of ELCs inherently require the alteration of 

existing land cover which makes them a significant contributor to the trends of FCL observed 

in Cambodia over the last two decades (Rainey et al. 2010; Hor et al. 2014; Davis et al. 2015: 

Messerli et al. 2015; Beauchamp 2016; Beauchamp et al. 2018; Grogan et al. 2019; 

Magliocca et al. 2020). This could have been deemed acceptable had the productive capacity 

of ELCs been realised, however there is evidence to suggest that many concessionaires 

lacked both the capacity and intention to actually engage in agricultural production (EU 

2012; Forest Trends 2015).  

To put this into perspective, Un and So (2011) highlight that as of 2007 only 9% of 

ELCs had been put into productive use and Debonne et al. (2019) found that in 2015 only 

32% of total ELC land was used productively. This is exacerbated by the fact that many 

sources attest to ELCs engaging in illegal land clearance and selective logging of luxury 

timber outside of their boundaries (Global Witness 2015). This was especially problematic 

considering that many ELCs were in close proximity to PAs and indeed, as of 2008, the RGC 

made it possible for them to be allocated inside PAs (Banks et al. 2014), which will be 

discussed further in section 2.2.1.  

 ELCs also resulted in substantial negative social impacts, similar to the timber 

concessions this was primarily in the form of displacement of rural communities through 

forced evictions, resulting in violence and other human rights abuses (Subedi 2012; Neef et 

al. 2013; Forest Trends 2015). This expropriation of land led to not only increasing poverty 

through loss of income from agriculture and access to natural resources (principally non-

timber forest products (NTFPs)) but also irreparable damage to cultural heritage through the 

destruction of spiritual sites which disproportionately affected indigenous communities 

(CHRAC 2009; LICADHO 2005; 2009; EU 2012; Subedi 2012; ADHOC 2013).  

Many of the negative impacts of ELCs stemmed from illegality in the processes of 

their allocation and management. This is evidenced by the fact that every criterion of ELC 

allocation established by the RGC was routinely ignored with numerous concessions being 
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granted that were several orders of magnitude larger than the maximum 10,000ha, many 

owned by a small number of powerful individuals through shell-companies, and the majority 

submitting no form of ESIA or management plan (Oldenburg and Neef 2014; Global Witness 

2015). This has led to the conclusion that the real intent of ELCs was simply a means for 

societal elites to continue to exploit the country’s resources (Un and So 2011; Messerli et al. 

2015: Diepart and Schoenberger 2016; Beauchamp et al. 2018). 

However, the collective weight of the problems surrounding ELCs was eventually 

enough to bring the era of their establishment to a close. In May 2012, prior to the national 

elections prime minister Hun Sen issued a decree amounting to a moratorium on the granting 

of new ELCs as well as a pledge for a systematic review of all current ELCs in what became 

known as ‘Directive 01’ (also known as Order 01BB) (Diepart and Sem 2015).  

  

2.1.2.3 Directive 01: The move towards genuine land tenure reform? 

 

Directive 01 can be said to characterise the beginning of what can be thought of Cambodia’s 

current policy era of natural resource management which some have suggested represents a 

genuine step towards tackling the issues of forest exploitation and land tenure insecurity 

within the country (Dwyer et al. 2015). The reason for this is that as well as halting the large 

scale allocation of land for new ELCs  Directive 01 demanded a shift in perspective in the 

public land titling system towards “the allocation of land to deserving recipients rather than 

simply the provision of titles based on existing legal rights” (Dwyer et al. 2015, par. 35). 

This the prime minister dubbed the ‘Leopard skin’ policy on the basis that it was 

intended to achieve a mosaiced landscape of smaller formally titled land parcels interspersed 

between larger existing concessions (Milne 2013; Work and Beban 2016). This was to be 

achieved through an increase in the granting of three different forms of land titles: private 

titles (recognition of agricultural land already occupied by individuals or families); social 

land concessions (SLCs: land allocated to poor or dispossessed communities for re-

settlement); and indigenous communal land titles (CLTs: land traditionally occupied and 

managed communally by indigenous groups). Indeed, progress towards this started strongly 

with the government issuing 38 SLCs covering over 100,000 ha in 2012 (ADHOC 2013) and 

a further 485 (626,823 ha) in the following year (ADHOC 2014), primarily on land that had 

been excised from ELCs.  
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Unfortunately, this was short-lived as a number of problems came to light. Firstly, 

with regards to ELCs, despite the moratorium a further 16 concessions had been granted by 

the end of 2013 amounting to over 80,000 ha of which close to half was inside PAs 

(LICADHO 2014), with perhaps as many as 33 being issued in total by the end of 2014 

(Diepart and Sem 2015). Additionally, the promised review of existing ELCs was 

disappointingly opaque and whilst many were downsized there was little clear information as 

to how many concessions were actually cancelled.  

Furthermore, despite it’s supposed intentions the leopard skin policy also served to 

perpetuate small scale land conflict in numerous capacities. Many of the SLCs allocated 

resulted in disputes because of corruption and mismanagement be well as being allocated 

over land already inhabited by vulnerable groups (ADHOC 2013; 2014). As for CLTs, 

inadequate provisions were included for certain types of communal land not under active use 

such as ‘spirit forest’ (Rabe 2013) and communities were often forced to choose between 

communal and individual (private) land titles resulting in the break-down of social capital 

(Milne 2013). The requirements of the private land titling also exacerbated forest clearance 

(land had to be cultivated to be eligible: Rabe 2013) and resulted in the loss of land for others 

(maximum title size of 5 ha: Work and Beban 2016). 

The totality of these issues has led to the criticism that Directive 01 was merely a 

façade to win voter support and more importantly did not represent a viable means to halt 

deforestation in the country which continued illegally (Un and So 2011; Milne 2015). Of 

course, this cynicism must be taken in light of the fact that this policy era is still ‘current’ and 

on-going and thus no definitive conclusions can be drawn from it. In this regard it must also 

be acknowledged that the intervening period between 2012 and the present has seen a number 

of other generally positive developments in the domain of natural resource management 

(NRM). This has included a markedly increased commitment to conservation, evidenced not 

just through verbal rhetoric surrounding clamping down on illegal logging (EIA 2017) and 

decentralisation of NRM (Riggs et al. 2020), but also in concrete actions such as the 

expansion of the country’s PA system and progression towards other conservation initiatives 

such as operationalising REDD+ projects, which will be discussed further in section 2.2.4. 
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2.1.3 Quantifying the loss of Cambodia’s forests 

 

Now that the causative mechanisms of natural resource exploitation in Cambodia have been 

elucidated, it is important to offer quantification of the impacts over the last four decades. As 

previously mentioned, this has most strongly been exemplified by a trend of declining forest 

cover and whilst all sources agree with this general prognosis there has been significant 

contention with regards to the extent of change that has occurred both between and among 

national and international sources. The details of these disagreements do not merit discussion 

here although they are relevant in terms of informing the selection of a data source for forest 

cover and FCL for the assessment of PA avoided deforestation. For this reason, a discussion 

of the different sources of forest cover assessment (FCA) available for Cambodia is included 

as an appendix (Appendix B).   

To visually demonstrate the extent of forest cover change that occurred in Cambodia 

between 1973 and 2014 the FCA produced by ODC (2019a) has been reproduced as Figure 4 

below. The figures of total forest cover % in Figure 4 are largely in line with those of other 

sources which estimate that forest cover in the 1960s-70s was likely in the region of 70-75% 

of the total land area, decreasing to between 53-65% by the turn of the century and falling to 

45-50% by 2014-2016 (approximations aggregated from FAO (2015), GDANCP (2018), and 

Grogan et al. (2019)), representing a loss of over 2.2 million ha of forest cover between 2001 

and 2018 alone (Kresek 2019). 
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Figure 4: Changes in forest cover in Cambodia between 1973 and 2014 (data sources: GADM 2018; ODC 2019a) 
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 Beyond this picture of total FCL it is also important to examine the trend in the rate of 

FCL that has been observed since the start of the century. This has been summarized in 

Figure 5 in terms of the amount of ha of forest lost per year according to Global Forest Watch 

data (GFW 2020b) 

 

 

Figure 5: Forest loss per year (>10% canopy cover) in Cambodia between 2001 and 2018 (GFW 

2020b) 

Figure 5 shows that whilst the annual rate of forest loss was consistent throughout the early to 

mid-2000s it began to increase substantially after 2008, peaking in 2010, and remaining 

relatively high through to 2016. This trend is corroborated by the RGC’s own figures which 

found that the annual rate of FCL increased from an average of ~2% per year between 2006 

to 2010 to 10.65% between 2010-2016 (GDANCP 2018). These rates of FCL have been 

widely acknowledged as being substantial even in a global context with Ingalls et al. (2018) 

offering the summary that Cambodia had the ”third highest deforestation rate in the world 

between 2005 and 2010 and the highest rate of tree cover loss in Asia for the period 2000–

2012” (p. 257). The timing of this trend validates the evidence of deforestation being 

perpetuated by the allocation of ELCs as described in section 2.1.2.2 and the subsequent 

section (2.2) will detail that this loss of forest cover was unfortunately prevalent inside 

Cambodia PAs.  
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2.2  Cambodia’s protected areas  
 

The circumstances and extent of natural resource exploitation that have occurred in 

Cambodia over the last three decades make it hard to imagine that meaningful conservation 

strategies could have been implemented and yet today the country has a relatively expansive 

network of functioning (with active management) PAs (MoE 2017).  However, the 

effectiveness of Cambodia’s PAs has long been subject to widespread critique, with Clements 

et al. (2010) referring to early established PAs as ‘paper parks’ with almost no staff or 

funding for management. Further, analysis of GFW data in 2015 showed that a mature tree 

inside Cambodia’s PA had an almost equal chance of being deforested as those outside PAs 

leading conservationists to declare that the PA system had reached a crisis point and was in 

need of complete restructuring (Peter and Pheap 2015).  

Following this, in 2019 subsequent GFW data analysis concluded that: “between 2001 

and 2018, Cambodia’s protected areas lost 557,000 hectares of tree cover, (totalling 

approximately) 11.7% of the total protected area in Cambodia.” (Kresek 2019, 1). In fact, this 

loss of forest cover was so pronounced that it led to one PA, Snuol Wildlife Sanctuary being 

degazetted in 2018 on the grounds that “there was nothing left to protect” (Boyle and Turton 

2019, 1).  Indeed, FCL is not the only problem, with the European Union’s (EU) country 

profile of Cambodia in 2012 highlighting that 45% of forests inside PAs were degraded (EU 

2012). This is further supported by Collins and Mitchard (2017) who highlighted Cambodia 

as a particularly significant example in their global analysis of CO2 emissions from PAs on 

the basis of it having lost a “disproportionate amount of total protected forest carbon… 

amounting to over 16.5% since 2000” (p. 3). Additionally, it has been well acknowledged 

that biodiversity in the country’s PAs faces continuing threat from illegal wildlife poaching 

(WWF 2012; 2013; Gray et al. 2017).  

It is important to note however that a large number of critiques of Cambodia’s PAs 

have been primarily anecdotal in nature and where quantitative evaluations have been made, 

they have often fallen into the trap of weak causal inference by not offering robust 

counterfactual comparison (section 1.2.3). This is of course one of the main rationales behind 

the undertaking of this study which will be discussed in section 2.3. Although in order to 

inform the design of such an assessment it is necessary to first discuss key aspects of 

Cambodia’s PA system, namely: the history of it’s establishment, expansion and management 
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(2.2.1); the analyses of different aspects of its effectiveness (2.2.2); the value of the resources 

that it conserves (2.2.3); and recent/current events shaping the its future (2.2.4).   

 

2.2.1 History of PA establishment, expansion and management 

 

The origins of Cambodia’s post-colonial PA system began with the declaration of the Royal 

Decree for Protected Areas (RDPA) in 1993 which established 23 PAs amounting to a total 

area of 3,289,000 ha (18% of the country’s total area) and covering 30% of its forests 

(Diepart and Sem 2015). These PAs were classified under 4 different categories: national 

parks; wildlife reserves/sanctuaries; protected landscapes; and multiple use management 

areas. The decree also included 3 RAMSAR sites. Management, planning and development 

of all these sites was entrusted to the General Department of Administration for Nature 

Conservation and Protection (GDANCP) of the Ministry of Environment (MoE) under the 

RGC (RGC 2014).  

 However, there was also another type of PA established in the country in the same 

period, in the form of ‘protected forests’ which constitute part of the country’s permanent 

forest reserve and under the 2002 forestry law and are managed by the Forestry 

Administration (FA) under MAFF for the purpose of ‘conservation and development of the 

forest resource and biodiversity’ (RGC 2010, 45).  

 The size of the country’s PA estate grew throughout the 2000’s with the addition of 

both new PAs under GDANCP and new protected forests under the FA (ICEM 2003b; 

Broadhead and Izquierdo 2010). The size of these additions was relatively constant until 2016 

when 5 new PAs were established covering over 1 million ha of forest and grassland, 

bringing the supposed total PA coverage up to 6,038,275 ha (Souter et al. 2016) (although 

this figure should not be taken as representative for reasons which will be discussed below). 

The locations and relative distributions of Cambodia’s terrestrial PAs under different 

management categories as of 2020 are represented visually in Figure 6 below.  
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The most significant development related to the management of PAs in Cambodia 

following the RDPA was the 2008 Protected Areas Law (RGC 2008) which included 

provisions for all PAs to be subdivided into zones based upon management objectives 

including: core (conservation) zones: sustainable use and community zones. On the face of it 

this should have been a positive development as it represented progress towards re-dressing 

issues of natural resource use by communities whose ancestral lands had been contained 

within PAs (Dunai 2008). In reality its primary significance was quite the opposite as it 

created the opportunity for the RGC to issue land inside PA sustainable use zones to private 

companies for the purpose of agricultural (ELCs) and mining concessions as well as 

irrigation and hydropower developments (Beauchamp 2016). Prior to this, developments such 

as the timber concessions of the 1990’s (section 2.1.2.1) had been allocated adjacent to the 

borders of PAs but none formally inside their boundaries (ICEM 2003b). 

The provision that these activities were supposed to take place in sustainable use 

zones only was effectively a ‘red herring’ as almost none of the PAs established at the time 

had zoning plans implemented (Banks et al. 2014). Indeed, the National PA Strategic 

Management Plan indicates that as of 2017 only 3 PAs had actually been zoned (MoE 2017). 

This meant that instead the large number of concessions that were issued inside PAs, 

Figure 6: National protected areas in Cambodia established between 1993-2019 

(data sources: GADM 2018; ODC 2019b) 
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primarily for ELCs, were justified on the basis that the land they were allocated was degraded 

and/or unforested (p. 20). In reality, the spatial congruence of these concessions with forest 

cover locations show that this was certainly not the case and concessions were allocated over 

primary forest (Neef et al. 2013; Davis et al. 2015).  

 The fact that the explicit purpose of many of these development projects was to 

extract natural resources or at the very least clear the prevailing land cover (in the case of 

ELCs and mining concessions), then it is logical that any land given over to this purpose 

should de facto be considered as degazetted or excised from the PAs total area (Clements et 

al. 2014). In the case of Cambodia this is corroborated by WWF and Conservation 

International (CI)’s database on global PADDD events which lists all the occasions of PA 

land being allocated to ELCs as either ‘downgrading or downsizing events’ (WWF 2013; CI 

and WWF 2019). However, this is ignored in the RGC’s own statistics (Banks et al. 2014) 

which report that PA coverage in the country, as of 2017, is 39% of the total land area (MoE 

2017). Given the uncertainty surrounding both the size of ELCs and revocations following 

Directive 01 (section 2.1.2.2) and that there are discrepancies between data sources for PA 

boundaries (Appendix C) then an accurate figure for genuinely ‘protected’ PA land in 

Cambodia is difficult to ascertain. In this regard Figure 7 below provides an insight into the 

expansion of PA land in Cambodia over time and demonstrates the difference in the size of 

the total estate when ELC land is indeed excised from purported PA boundaries. Figure 7 

shows that the amount of ELC land allocated inside PAs between 1998 and 2014 was 

somewhere in the region of ~680,000 ha and it is noteworthy that this does not include other 

forms of concessions granted for which the information is even less reliable (mining 

concessions) also the locations are highlighted in a subsequent figure in section 2.2.2.1. 
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Figure 7: Expansion in the size of Cambodia’s protected area estate between 1993-2019 

(data sources ODC 2017a: 2019b) 
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Another important factor to consider with regards to the evolution of Cambodia’s PAs 

is the involvement of international conservation organisations in supporting the MoE and FA 

in management. The exact timeline of this is hard to pin down but notably the involvement of 

large-scale organisations such as WWF; Wildlife Conservation Society (WCS); CI; Wildlife 

Alliance, and Birdlife International began in the early 2000s (WWF 2012; Clements and 

Milner-Gulland 2014a.; Wildlife Alliance 2017; BirdLife International 2020; CI 2020).  

This involvement has undoubtedly resulted in positive outcomes in terms of 

increasing active management and capacity building through the provision of financial 

support and technical expertise (ICEM 2003b; WWF 2012). However, there is also evidence 

that it has downsides as well. For example, it can lead to tension between staff employed by 

or on secondment with NGOs and those employed by the RGC, as the latter tend to have 

lower salaries commensurate to greater responsibilities (ICEM 2003b).  Additionally, it also 

presents the risk that the government becomes reliant upon the external funding provided by 

NGOs and fails to develop sufficient replacement sources when their support is inevitably 

phased out. Although in the case of Cambodia the RGC’s commitment to operationalise 

REDD+ schemes could address this issue (discussed in section 2.2.4).  

Finally, it is important to note that there are two other forms of PAs that exist within the 

national PA estate with slightly different management modalities, namely Community 

Protected Areas (CPAs) and Community Conservation Forests (CCFs). CPAs constitute 

forest areas within PAs managed by the MoE (principally in wildlife sanctuaries and national 

parks) (Mahanty et al. 2006), whereas CCFs are demarcated inside protected forests managed 

by the FA (WWF 2012). CCFs however, are not be confused with Community Forests (CFs) 

which are an additional legally recognised form of land title that is granted in forested areas 

specifically outside national PAs (Broadhead and Izquierdo 2010). The purpose of CPAs, 

CCFs and CFs is to contribute to conservation by decentralising the management of natural 

areas to local communities under sustainable use management plans (p. 56). Thus far the 

extent to which this has been achieved and its overall effectiveness as a strategy is still 

unclear and would benefit from further assessment (Lambrick et al. 2014: Lonn et al. 2018).  

 

2.2.2 Prior analysis of PA effectiveness  

 

The purpose of this section is twofold: First, section 2.2.2.1 will detail the host of macro-

scale factors that have been posited as being responsible for the environmental degradation 

exhibited by Cambodia’s PAs. Second, section 2.2.2.2 discusses the very limited number of 
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studies that have used counterfactual approaches to attempt to quantify whether this 

environmental performance is indeed representative of poor PA effectiveness or rather if it is 

simply a microcosm of wider environmental trends occurring in the country.    

 

2.2.2.1 Explanatory factors of environmental degradation 

 

Conceptually the first factor that has been posited for the poor environmental performance of 

Cambodia’s PAs is that those that were declared in the ‘first wave’ in 1993 (that still make up 

a substantial proportion of the total PA estate today) were subject to flawed design and 

planning. Insufficient data on the locations of human settlements meant that many were 

included inside PA boundaries and were not subsequently re-settled leaving them with 

unclear tenure rights (Clements et al. 2010; 2014). Also, the boundaries and locations of 

these PAs were devised on the basis of outdated information of habitat coverage and thus 

they failed to capture many of the areas later deemed critical for biodiversity conservation 

(ADB 2001; ICEM 2003b; Souter et al. 2016). Although Neugarten et al. (2020) show that 

subsequent additions to the PA network have gone some way towards rectifying this.  

 The next widely cited explanation for the poor environmental outcomes of 

Cambodia’s PAs is weak management effectiveness. Whilst the GD-PAME lists that 49 

formalized PAME assessments have been completed in Cambodia (UNEP-WCMC 2020c), 

only one, Lacerda et al. (2004), has been published in the public domain. Furthermore, this 

was hardly a detailed assessment as it was conducted using the WWF’s RAPPAM (Rapid 

Assessment and Prioritization of Protected Area Management) methodology (intended to 

provide a quick overview), and covered only the PAs that existed under MoE management at 

the time. Regardless, one of its primary conclusions was that the PA system was “chronically 

lacking resources in practically all levels of management” (p. 19). 

Outside of formal assessments numerous other sources have expanded upon specific 

aspects of how an overall lack of resources has compromised PAME in Cambodia. A 

principal example of this is a lack of financial resources which has clear implications for the 

level and scope of management activities that can be achieved. Historical evidence of this in 

Cambodia’s PAs has been well documented, with some reports finding that funding for some 

national parks in the 1990’s was equivalent to less than $10,000 per year (ICEM 2003a) and 

Clements et al. (2014) noting that funding for management zones in PAs in 2004 was 

approximately $2/ha. This level of funding is barely sufficient to cover staff costs leaving 
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little to invest in infrastructure (ICEM 2003b). Worryingly, Souter et al. (2016) (of whom the 

authors represent a cross section of the leading conservation practitioners in the country) 

indicate that severe underfunding still remains a contemporary problem, requiring greater 

commitment on the part of the RGC.  

Another dimension in which Cambodia’s PAs are lacking in resources is in terms of 

the capacity of their staff (i.e. human resources) (ICEM 2003b; WWF 2012). This has been 

particularly problematic with regards to formalizing PA management plans, with the RGC 

acknowledging in 2014 that 84% of PAs at the time were ineffective for this reason as well as 

an overall shortage of competent staff (RGC 2014). Although a National Protected Area 

Strategic Management Plan (NPASMP) for 2017-2031 has now been produced (MoE 2017), 

this highlights two further issues resulting from the combined lack of capacity as well as 

underfunding. First many PAs still do not have adequate physical demarcation of their 

boundaries (p. 9) and that the zonation of PAs had only been achieved for 3 of the total 49 

PAs in 2017 (p. 24). 

Exacerbating the above, a separate well documented phenomena contributing towards 

poor PAME in Cambodia is the institutional structure of management. Specifically, the 

historical overlap in jurisdiction between the MoE and FA has resulted in inefficiency and 

confusion stemming from poorly delineated responsibilities, especially in cases where PAs 

managed by each authority are spatially contiguous with each other (ICEM 2003b; Souter et 

al. 2016). This has been aggravated by poor coordination, communications and a lack of 

information sharing between the two organisations (ADB 2001), stemming from the fact that 

decision-making processes remain highly centralised and there is a climate of inter-

ministerial competition (Amariei 2004). 

  One of the clearly observed implications of poor management effectiveness in 

Cambodia’s PAs has been the inability to address illegal activities inside their boundaries. 

Illegal logging of luxury timber and land encroachment are perhaps the prime examples of 

this (ICEM 2003b; EIA 2017) although poaching of endangered species is also prevalent 

(WWF 2012; 2013; Gray et al. 2017). These activities persist due to weak PA law 

enforcement, which is partly due to a lack of capacity and funding, but has also been 

constrained by the limited judicial authority granted to PA rangers (UNODC 2015).  

Overall, though illegal activity in PAs has arguably not been as damaging to their 

environmental effectiveness as the legalization of formal resource extractive industries inside 

their boundaries with insufficient oversight (Broadhead and Izquierdo 2010). As mentioned 
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in section 2.2.1 this has primarily taken the form of ELCs, with 113 separate concessions 

being granted inside PAs between 2008 and 2012 alone, amounting to over 272,000 ha and 

covering over 14% of total PA land (Oldenburg and Neef; Forest Trends 2015; Souter et al. 

2016). The activities of these concessions have been explicitly linked to illegal logging 

outside their boundaries, with Global Witness (2015) documenting that even officials as high 

up as PA managers were employed by ELCs to identify the location of high value timbers 

within the PAs surrounding the ELCs for them to extract.  

Substantial amounts of PA land have also been allocated for mining concessions 

(WWF 2020) and hydropower development (Matthews and Geheb 2014) with the latter being 

particularly prominent. These developments obviously involve clearance of land as part of 

their operation although both have also been linked to illegal clearance of forest beyond their 

permitted areas (Käkönen and Thuon 2019). Similar to ELCs there is a pronounced lack of 

transparency with regards to the status of these developments, however Figure 8 below 

demonstrates the extent to which all three types have been allocated inside PAs according to 

government records.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Locations of resource extractive developments inside protected areas in Cambodia 

(data sources: GADM 2018; ODC 2017a: 2019b: 2020b: 2020c) 
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2.2.2.2 Counterfactual investigations of PA effectiveness 

 

As previously alluded to the contribution of counterfactual studies to the collective literature 

surrounding PA environmental effectiveness is Cambodia is slim, consisting of just two 

studies: Clements and Milner-Gulland (2014a) and Ota et al. (2020) (although Clements et al. 

(2014) did adopt a counterfactual approach to assessing PA impacts on local livelihoods). 

Both these studies concluded that PAs in Cambodia were effective in reducing the 

deforestation rate inside their boundaries compared to counterfactual control areas, however 

they also highlight the existence of clear knowledge gaps that warrant further investigation. 

Clements and Milner-Gulland’s (2014a) study utilised a quasi-experimental BACI design 

with nearest neighbour covariate matching performed using the Mahalanobis distance albeit 

with a fairly restricted scale, focusing on just two PAs. For the portion of their study 

analysing the impact of PAs on deforestation the authors used two outcome periods, the first 

between 2001 to 2006 and the second between 2006 to 2010 (to reflect the transition toward 

more active management of PAs) (p. 80). The biophysical and socio-economic covariates 

employed by Clements and Milner-Gulland (2014a) are detailed in Table A1 in Appendix A 

and are typical of studies of this type although this is a positive indication that such variables 

are applicable in the context of Cambodia. 

As alluded to above the primary conclusion from this study was that deforestation rates 

inside PAs were significantly less (by as much as 60%) than in matched control areas 

following the transition to active management. Perhaps equally important was the observation 

that the deforestation in PA ‘border areas’ ( 4-12 km buffer zone) was greater than inside PAs 

and increased significantly in the second outcome period (active management), leading the 

authors to suggest that there ‘may’ have been negative spillover effects of protection (section 

1.3.4.4) (p. 81).  

A final noteworthy point from Clements and Milner-Gulland (2014a) is their suggestion 

that one of the key impacts of the PAs they analysed was their influence in stopping the 

establishment of ELCs on the land they occupied (p. 84). Thus, their analysis obviously 

cannot be said to be inclusive of the effect of ELCs on all PAs as the wider literature has 

shown that many PAs were not able to mitigate ELC establishment even inside their 

boundaries (section 2.2.2.1). This is especially true as their outcome periods precede the time 

when ELC allocation was at its highest between 2010-2012 (Figure 7: section 2.2.1).  
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As for Ota et al. (2020) they evaluated ‘forest conservation effectiveness’ between PAs, 

CFs, and Protected Forests (PFs: see section 2.2.1) established in Cambodia between 1994 

and 2005. They quantified this in terms of avoided deforestation observed between 2005-

2016 using an analysis based upon a combined RBC and matching methods approach (see 

section 1.3.3). This involved propensity score matching and generalized boosted models (p. 

3). One of the aims of their study was to highlight how the difference in management 

authority (MoE vs. FA) might influence effectiveness between PAs and PFs which is why 

they considered them as separate treatments. Again, the covariates they used are detailed in 

Table A1 (Appendix A), and whilst they were relatively standard, they did explicitly include 

‘distance from ELCs’ (p. 3). Unfortunately, they offer no discussion as to how this particular 

variable influenced PA effectiveness and indeed it is not clear if they treated this variable as 

time variant by only including ELCs that were established in the first year of their outcome 

period (see section 1.3.4.2). This is confusing as they state that they did remove the areas of 

ELCs that overlapped with PA boundaries which implies that they must have only used ELCs 

that were in existence prior to the establishment of the PAs. Indeed, even if they did do this, 

their study cannot be considered to constitute a thorough investigation of the effects of ELCs 

as many were established later than 2005, especially those inside PA boundaries (see section 

2.2.1).  

The results of their primary analysis were that CFs, PAs and PFs all produced significant 

negative ATE’s with regards to their respective matched controls meaning that all generated 

avoided deforestation. Amongst the three there was a ‘hierarchy’ of effectiveness with PFs 

exhibiting significantly less deforestation than PAs and both significantly reducing 

deforestation as compared to CFs (p. 4). This is interesting as it contradicts an earlier 

assessment by Broadhead and Izquierdo (2010) who found that conservation areas managed 

by the FA (PFs) were subject to greater FCL than the MoE PAs because of the existence of 

more former logging roads within their boundaries. Whereas Ota et al. (2020) suggest that 

their result of greater effectiveness of PFs could be the result of more active management by 

the FA (by comparison to the MoE (GDANCP)). This could have implications for the 

effectiveness of PAs in the future given institutional changes to PA management that 

occurred in 2016 which will be detailed in section 2.2.4.   

Similar to Clements and Milner-Gulland (2014a) the secondary results of Ota et al.’s 

(2020) analysis also offers important insight, namely their testing for spatial spillover effects. 

They found non-significant differences between different widths of buffers less than 6 km (0–
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2; 2–4; 4–6). However, they did find some significant differences between the prevalence of 

deforestation within these buffers vs. the wider control region (> 6 km from PA boundaries) 

although these were not consistent across the treatments. Firstly, they found no significant 

spillover effect for PAs but they did for PFs and CFs (p. 4). Secondly the nature of the 

spillover effects for PFs vs. CFs were different, with PFs having a positive spillover i.e. 

reduced deforestation in the buffer zone, whereas CFs showed a negative spillover effect with 

significantly greater deforestation occurring within their buffer as compared to the wider 

control region (p. 4) The absence of a significant spillover effect for PAs specifically is 

surprising given that a phenomenon to that effect was observed by Clements and Milner-

Gulland (2014a).  

In conclusion, the summary of these two studies, representing the entirety of the literature 

surrounding counterfactual PA environmental effectiveness in Cambodia, make it clear that 

further investigation is needed on a number of fronts. These will be explored in more detailed 

in section 2.3 which will draw together the rationale and proposed foci of an assessment of 

PA effectiveness in Cambodia.  

 

2.2.3 What’s left to conserve? The value of remaining resources in PAs 

 

Previous sections have painted a bleak picture of Cambodia’s PAs by focusing on the extent 

of FCL that has occurred. However, it is important to recognise that they do still contain 

natural resources that are of substantial importance not just for the country’s population but 

also in a global context.    

 As expected, the primary resource of interest in this regard is still Cambodia’s 

forested habitat of which the majority is now contained inside PAs (Renard et al. 2020). 

Despite the long-term trend of FCL Cambodia still exhibits greater forest cover than the 

larger surrounding countries of Thailand and Vietnam (Forest Trends 2015). The importance 

of this is acknowledged by the RGC whose national forest policy has set the ambitious target 

of increasing national forest cover to 60% and retaining it into the future (RGC 2010). The 

benefits of adhering to this target and protecting Cambodia’s remaining forests through its 

PAs are myriad, and from an anthropocentric perspective they can be characterised as either 

direct or indirect benefits.  

The direct benefits of conserving forests in Cambodia is primarily exemplified by 

their socio-economic importance to rural communities. Numerous studies have sought to 

quantify this, with Hansen and Top (2006) and Jiao et al. (2015) estimating that rural 

C
E

U
eT

D
C

ol
le

ct
io

n



58 

 

households still derive between 30-42% of their total household incomes from forest 

resources and the RGC (2010) acknowledging that as many as 75% of subsistence farmers 

depend on these resources. This reliance on forest resources takes many forms, through the 

use of timber for the construction of homes and firewood to the collection NTFPs for general 

consumption, traditional medicinal uses and also to supplement livelihoods as a ‘safety net’ 

in times of economic shocks (ICEM 2003b; RGC 2010; Chou 2018b).  

These direct benefits of access to forest resources have been explicitly linked to the 

functioning of PAs with Clements et al. (2014) finding that improved (more active) PA 

management resulted in positive economic benefits for surrounding communities. 

Furthermore, Chou (2018a) highlighted that the ability to engage in NTFP extraction was one 

of the most influential factors in local people’s decision to participate in conservation 

activities and as an incentive this generated benefits of around $0.95/ha for one specific PA.  

As for the indirect benefits of forest conservation, perhaps the most significant from 

the perspective of the population of Cambodia is the continued provision of ecosystem 

services of different descriptions, particularly watershed maintenance and water purification 

which will be crucial if the growing number of hydropower developments in the country are 

to be successful (see section 2.2.2.1) (ICEM 2003a; 2003b; Netzer et al. 2019). Additionally, 

maintaining forest cover has clear benefits in terms of reducing the impact of flooding and 

droughts, nutrient and sediment retention, carbon storage (EU 2012: Watkins et al. 2016), 

and ultimately playing a key role in the mitigation and minimization of the many adverse 

effects of global climatic change (ICEM 2014). To put this in monetary terms the ADB 

(2015) estimate that if FCL in Cambodia continues at its projected rate between 2010-2030 

the resultant loss in ecosystem services will equate to over $6 billion.  

The second key indirect benefit of Cambodia’s forests is their important contribution 

to regional and global biodiversity as part of the Indo-Burma biodiversity hotspot (Souter et 

al. 2016). More specifically PAs within the country contain a number of globally threatened 

habitat types such as tropical deciduous dipterocarp forest (DDF), riverine forest, seasonally 

inundated wetlands as well as coastal mangroves (ICEM 2014). Many of these habitats are 

recognised as key biodiversity areas because of the presence of endemic and flagship species 

across the taxonomic spectrum (Daltry 2008; Clements et al. 2013; Gray et al. 2012; Kibria 

et al. 2017).  

Finally, in a more abstract sense the preservation of remaining forest resources can 

also be considered as resulting in indirect benefits through the option (the benefit of being to 
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utilise the resource in the future offset against the opportunity cost of not using it in the 

present) and existence values (the socio-cultural and emotional benefits of simply knowing 

that something exists) it represents (Pearce 2001). These benefits are of unique importance to 

Cambodia’s indigenous minorities for whom the forest is an integral part of their culture and 

belief systems (Kibria et al. 2017).    

 

2.2.4 Socio-political developments shaping the future of conservation 

 

Whereas sections 2.1.2 and 2.2.1 discussed the historical context of PAs in Cambodia, in 

order to understand their current situation and how this might change in the near future, it is 

important to highlight several recent events and trends within conservation in the country. 

 The first and most influential of these for PAs is that in 2016 the management of all 

protected forests was transferred from the FA to the GDANCP under the MoE which saw 

them re-classified as wildlife sanctuaries (in keeping with the schema of MoE PA categories) 

(ODC 2017b). This transition was particularly significant given that it occurred 

simultaneously with the establishment of five new PAs. This meant that in total the 

GDANCP was responsible for the management of a further 2.6 million ha of protected land, 

representing an increase of 80% as compared to its previous portfolio (Souter et al. 2016). 

This development was criticized at the outset by a cross section of conservation 

practitioners in Cambodia especially as there was no indication that MoE would receive 

additional funding and the ministry is already acknowledged to be under-resourced (p.3). 

However, in the period since this institutional change there has been no formal analysis of the 

impacts that it has had.  

Another concerning development has been the apparent increase in the number of serious 

violent confrontations between PA staff and individuals engaged in illegal activities. Since 

2015, five PA patrolling staff have been killed in several different incidents with a sixth being 

shot and wounded in 2019 (Kasztelan 2018; WWF 2019). This makes it clear that not only is 

illegal activity still occurring in Cambodia’s PAs but that there is also a growing culture of 

fear with respect to PA law enforcement. This is made more problematic by the fact that 

those responsible for the murder of three PA staff on patrol in 2018 were government border 

police attempting to cover up their involvement in illegal logging (Lipes 2018). This trend 

has arguably contributed to what can be seen as somewhat of a growing dichotomy between 

the approaches to PA management pursued by different international conservation agencies 
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who support the GDANCP. The perspective offered by WWF and WCS, who are perhaps the 

most visible of the NGOs supporting the greatest number of PAs, can still very much be 

characterised as a ‘win-win’ approach combining conservation with a strong community 

development focus.  

In contrast, Wildlife Alliance (who have operated for a substantial amount of time in 

Cambodia but are focused only on the PAs in the region of the Cardamom mountains) appear 

to be pursuing an approach that, outwardly at least, is much more reminiscent of a fortress 

conservation mentality. Whilst they do operate community and education programs the 

primary focus of their promotional material and donor outreach belies a strong emphasis on 

strict PA law enforcement replete with many images and videos of armed rangers on patrol 

arresting suspects (Wildlife Alliance 2020).  

Another alternative is being offered by Rising Phoenix Ltd. who are a private company 

seeking to be the first in Cambodia to secure a private-public partnership (based on the 

African parks model) with the RGC to manage a PA (Western Siem Pang Wildlife 

Sanctuary). Although this has yet to be finalized, part of their proposed plan would be to 

fence substantial portions of the PAs boundary under the guise of ‘rewilding’ efforts (Gray et 

al. 2019).  

This diversification into a new funding model is itself symptomatic of a wider trend 

across all the conservation NGO’s in Cambodia who are seeing funding for PA management 

become increasingly difficult to obtain as larger multilateral aid and development 

organisations seek to devolve further responsibility to the RGC (Souter et al. 2016).   

The result of this has seen NGOs and the RGC invest considerable effort into 

operationalising REDD+ projects within PAs as a means of securing long-term funding 

(Forest Trends 2015: JICA 2017). Although, the success of project implementation thus far 

has been mixed with one pilot project in Oddar Meanchey being particularly contentious with 

regards to achieving deforestation reductions and being inclusive of community participation 

(Frewer 2015; Lang 2016). However, by contrast a project in Keo Seima Wildlife Sanctuary 

generated $2.6 million from the sale of carbon credits in 2016 (Ken et al. 2020). In total 17 

REDD+ projects are at different stages of operation and development at present (p. 3) and if 

these can be implemented effectively, they have great potential as a means of improving PA 

effectiveness by providing a clear monetary incentive against continued state sponsored 

resource extraction.  
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In addition to making progress with REDD+ in recent years the RGC has also begun 

negotiations to participate in the joint FAO-EU Forest Law Enforcement, Governance and 

Trade (FLEGT) initiative (Forest Trends 2015). This would see them enter into a voluntary 

partnership agreement that would aim to ensure that timber exported from the country is 

legally sourced (p.60). Obviously to achieve this would mean addressing the issues of illegal 

timber extraction which would undoubtedly have benefits for the PAs in which this still 

occurs. 

Further to this the RGC have also made a very public commitment to reintroducing the 

extirpated wild tiger (Panthera tigris) to Cambodia as part of WWF’s global ‘Tx2’ initiative 

to double the number of wild tigers by 2022. Several PAs in the country have been identified 

as suitable locations and a re-introduction plan drafted (Gray et al. 2017; Debonne et al. 

2019). Although Miquelle et al. (2018) caution that the necessary steps to facilitate a 

successful re-introduction, primarily the elimination of the threat posed by poaching and 

recovery of prey populations, will require 10-20 years of concerted effort.   

In conclusion, when viewed collectively these developments do suggest an increasing 

desire on the part of the RGC to achieve genuine conservation progress. It is also clear that an 

in-depth assessment of PA effectiveness could provide numerous insights that could 

contribute towards this, such as which locations should be prioritized for the establishment of 

REDD+ sites. In this regard the following section will expand upon the rationale behind such 

an assessment and detail other possible synergies in knowledge it could produce.  

 

2.3 Rationale for a national-scale assessment of PA effectiveness 

 

In summary, the successive sections of this chapter have presented a logical progression 

through the following notions: 

i. Historically environmental resource management in Cambodia has been a 

contentious issue (section 2.1.1), characterized by several different policy regimes 

(2.1.2), all of which have been co-opted by an elite class to perpetuate large scale 

exploitation of the country’s forests (2.1.3).  

ii. Despite this hostile setting the country has established a network of PAs although 

the landmark decision to legalize extractive industries within them raised 

questions as to the commitment of the country’s government to using PAs to 

achieve conservation goals (2.2.1).  

C
E

U
eT

D
C

ol
le

ct
io

n



62 

 

iii. The impact of this policy and other factors that have resulted in sub-optimal 

environmental outcomes for Cambodia’s PAs have been the subject of some 

investigation (2.2.2.1). Although only two studies have analyzed PA effectiveness 

in a counterfactual capacity and these have clearly highlighted knowledge gaps 

that could be addressed by further assessment (2.2.2.2).  

iv. The resources that Cambodia’s PAs still protect are of significance not just at a 

national scale but also in terms of global biodiversity, and ecosystem services 

(2.2.3). This is increasingly recognized by those responsible for them who have 

exhibited a renewed focus towards creating a genuinely effective system of PAs 

within the country (2.2.4).  

 

It is the totality of these notions that make it clear that a comprehensive and robust 

counterfactual assessment of the effectiveness of Cambodia’s PAs is highly relevant in the 

current context. First and foremost, such an assessment should seek to build upon the narrow 

literature of country-specific counterfactual assessments. In this regard, the existing studies 

by Clements and Milner-Gulland (2014a) and Ota et al. (2020) provide a strong incentive to 

continue with assessment based upon the use of avoided deforestation as a metric for 

effectiveness. This is further supported by the lack of data available to assess other aspects of 

effectiveness such as PAME (section 2.2.2.1).  

Now that a rationale has been established the next steps are to conceptually delineate 

what the focus of such an assessment should be and how it could offer relevant insights to the 

authority now responsible for PA management, namely the GDANCP of the MoE under the 

RGC. For clarity these have been presented as separate subsections below. 

 

2.3.1 Planning an assessment of PA avoided deforestation  

 

Summaries of the previous counterfactual studies of Cambodia’s PA effectiveness in 

section 2.2.2.2 highlighted several knowledge gaps that could form the basis of the 

forthcoming assessment. Firstly, neither study analyzed the effectiveness of the PA network 

in its entirety, with Ota et al. (2020) being the more comprehensive in terms of its coverage 

but still only investigating PAs and PFs established between 1994 and 2005. Hence analysis 

should be performed for a broader selection of PAs that were established following this 

period (see section 2.2.1). 
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This inherently creates the need to analyze PA effectiveness in other time periods, which 

simultaneously should be viewed as an opportunity to investigate those that can be 

characterized by prominent events or themes. Chief amongst these should be the influence of 

ELCs as whilst it is clear that they had a profound impact on PAs (sections 2.1.2.2 and 

2.2.2.1), this has yet to be adequately quantified. As such the location of ELCs should be 

included as a covariate and investigated in a time variant manner. For the purpose of 

comparison this should include periods where their influence on PAs can reasonably be 

assumed to differ. For example, it should be expected that the period surrounding the time 

when the majority of ELCs were allocated will be that in which their effect was the most 

significant and hence it should be expected that avoided deforestation in PAs will be the 

lowest. In this regard Figure 9 below shows the amount of ELC land declared in Cambodia 

between 1995 and 2018 both inside and outside PAs.  

 

 

 

 

 

Figure 9: Area of ELC land established in Cambodia per year between 1995-2018 

 (data sources ODC 2017a; ODC 2019b)  

On this basis the proposed analysis should take place in several outcome periods within a 

total period of analysis between 2010 and 2018. This would not only capture the period of 

greatest ELC establishment but also encompasses the corresponding trend of increasing FCL 

loss (Figure 5: section 2.1.3) and allows for investigation of the effect of PFs being re-
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designated as PAs under the authority of the GDANCP in 2016 (section 2.2.4), something 

which Ota et al. (2020) stressed as having potential implications for overall PA effectiveness.   

The use of multiple outcome periods also creates the opportunity to test whether there is a 

difference in effectiveness associated with PAs established in different periods. There is a 

clear rationale to investigate this given that the design and efficacy of Cambodia’s early PAs 

has been highlighted as flawed (2.2.2.1) and Clements and Milner-Gulland (2014a) indicate 

that management activities in many did not begin until NGO’s began to provide funding and 

logistical support around 2005. Whilst previous counterfactual analyses of PA effectiveness 

in Cambodia have investigated the difference between different types of PA (Ota et al. 2020) 

this has not been done with regards to explicit attributes of PAs themselves such as their age 

(i.e. duration since establishment). This is an interesting factor to investigate given that other 

studies in the wider literature have exhibited conflicting results with regards to it being a 

significant predictor of effectiveness (Section 1.4.1).       

This can conceivably be investigated in two ways: firstly ‘intra-outcome period 

effectiveness’ i.e. does the period in which PAs were established result in different estimates 

of effectiveness under similar deforestation pressure? Of course, this comparison is only valid 

if indeed pressure can be said to be similar across the different groups of PAs. This is further 

confounded by the fact that the pressure experienced is relative to the size of the PA and it is 

clear that the earlier PAs (established pre-2000) make up the majority of the currently 

existing estate (section 2.2.1). On this basis, a better comparison would be how PAs 

established in different time periods respond to different levels of pressure, i.e. a comparison 

of inter-outcome period effectiveness. This would mean that the same PAs would be 

compared across different periods which eliminates the issue of different sample sizes.  

Another area warranting further investigation is that of the spillover effects of protection 

(i.e. PA establishment) for which the two previous studies generated conflicting results 

(section 2.2.2.2). Here again, the analysis of multiple outcome periods could lead to novel 

insights as to how spillover effects change over time and relative to the deforestation pressure 

inside PAs and in the wider unprotected landscape.   

Beyond just quantifying PA effectiveness this assessment should also seek to use the 

biophysical and socio-economic covariates required for the matching analysis to identify 

whether there are biases that exist in the siting (location) of PAs in Cambodia. This is a 

feature common to other quasi-experimental investigations of PA effectiveness but something 

that has yet to be explicitly investigated in the case of Cambodia.   
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Similarly, given the outcome variable to be investigated is deforestation occurrence this 

analysis can also be used to shed light on the predictors of this with respect to the covariates 

employed. Whereas the drivers of deforestation in Cambodia have been highlighted in 

different contexts by Michinaka et al. (2013), Davis et al. (2015), Beauchamp et al. (2018), 

and Lonn et al. (2018), this study could provide insights into how the predictors of 

deforestation differ between forests inside PAs and those outside of them and how these have 

changed over time.  

 

2.3.2 Potential applications of results 

 

Insights related to the effectiveness of the whole PA network over time, as well as whether 

PAs established in different time periods exhibit different responses to changing pressure, are 

of clear benefit to conservation practitioners and government PA management authorities in 

Cambodia. First and foremost, evidence of PAs generating the positive conservation outcome 

of avoided deforestation could be used to support requests for continued or increased funding 

from both central government and international donors. This is especially important in light 

of the previous critiques of PA effectiveness (section 2.2) and waning donor support (section 

2.2.4).   

This same information can indicate which PAs in particular are facing the highest 

pressure and thus how management could better allocate their limited resources and budget 

for management activities such as law enforcement. This is of particular relevance given the 

changes to PA management structure that occurred in 2016 with the GDANCP now being 

responsible for all PAs in the country (section 2.2.4). In addition, information concerning the 

impacts that developments inside PAs have upon their effectiveness (as captured by the 

changes in coverage of ELCs between the different outcome periods of the analysis) could be 

useful in shaping future policy regarding further allocations of this kind. 

Finally, the results of this analysis also have the potential to contribute to several of the 

projects being pursued by the RGC with respect to PAs but also in terms of wider natural 

resource management. Knowing which PAs are more effective as well as the predictors of 

deforestation both inside and outside of PAs could be used to inform the selection of 

locations for additional REDD+ projects (section 2.2.4). This is also relevant with regards to 

further planning for the potential re-introduction of tigers as PAs that are effective in 

retaining forest cover are likely those that represent more suitable re-introduction sites. 
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3. Aims and Objectives 

3.1  Aims 
 

 The two introductory chapters of this thesis have offered distinct and yet harmonious 

conclusions. The first (section 1.5) highlighting that there still exists a knowledge and 

implementation gap at the macro-scale in terms of quasi-experimental counterfactual 

assessments of PA ecological effectiveness. In particular the requirement for further testing 

and refinement of aspects of the methodology through country-scale studies. The second 

chapter showed that there is a clear rationale for such an assessment to be performed for the 

country of Cambodia, with the potential to generate real insights for practitioners and policy 

makers (section 2.3).  

Thus, the overarching aim of this study will be to contribute to both of these directives by 

performing a quasi-experimental matching methods analysis of PA avoided deforestation in 

different periods in Cambodia between 2010 and 2018. More specifically this study will 

investigate:  

i. The biases that exist in both the siting of PAs and the occurrence of deforestation 

in Cambodia expressed by a range of bio-physical and socio-economic variables.  

ii. The effectiveness of Cambodia’s PAs in terms of avoided deforestation in several 

outcome periods wherein forest resources were subject to differing levels of 

extractive pressure. 

iii. Whether PAs established in different time periods show trends in effectiveness in 

response to changing deforestation pressure.  

iv. The presence of a possible spillover effect of PA establishment in terms of 

reduced deforestation in the areas immediately surrounding them.  

 

Of course, it is important to re-iterate at the outset that such an analysis using matching 

methods requires a substantial number of considerations to be addressed in order to ensure 

that the results generated are robust and meaningful. Section 1.3.4 described the conceptual 

basis of these however the link between these and the investigations aims has been codified 

within the practical objectives in the following section.  
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3.2 Objectives 
 

In the interest of cogency, the objectives of this study have been divided into three stages: 

preliminary analysis, primary analysis and secondary analysis. These do not include the 

processes of data selection and preparation necessary prior to analysis although these are 

detailed at the outset of the methodology.  

 

3.2.1 Preliminary analysis 

 

The preliminary analysis encompasses the tasks necessary to confirm that matching is an 

appropriate approach for the main analysis of PA effectiveness, with the specific objectives 

being to:  

i. Determine the optimal length (duration) of outcome period to be used with respect 

to the inclusion of PAs and other land use types.  

ii. Address the considerations highlighted in section 1.3.4 that confirm the 

appropriateness of matching analysis by testing the validity of a selection of 

covariates informed by the literature. Covariates should be refined on the basis of 

their explanatory power with respect to the outcome period, the presence of any 

multicollinearity between them, and the extent of spatial autocorrelation in the 

data. 

iii. Utilise the results from the process of covariate refinement to identify the biases 

that exist in both the location of PAs in Cambodia as well as the determinants of 

deforestation in terms of the suite of bio-physical and socio-economic variables. 

iv. Test different techniques of statistical matching to determine which is most 

appropriate and select a method for calculating treatment effects.  

v. Trial the matching approach by analysing whether there is a significant effect of 

spatial spillover of protection in a 5 km buffer zone surrounding PAs in the 

different outcome periods.   
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3.2.2 Primary analysis 

 

The objective of the primary analysis is to use the selection of covariates along with the 

matching technique refined within the preliminary analysis to perform a nearest-neighbour 

matching analysis between protected (treatment) and unprotected (control) areas within 

different outcome periods.  The effectiveness of PAs will be quantified as the ATT in terms 

of the binary outcome of forest cover loss or retention at the end of the outcome period.  Any 

differences in ATT between the different outcome periods will then be discussed in light of 

changing deforestation pressure, natural resource management policies and other socio-

political developments, particularly the impact of the allocation of ELCs within PAs and the 

change in management structure from FA to MoE (section 2.2.4).   

 

3.2.3 Secondary analysis 

 

The objective of the secondary analysis is to build upon the primary investigation of PA 

effectiveness by performing additional matching analysis to elucidate whether there are 

observable differences in effectiveness based upon the periods in which PAs were 

established. This will utilize the same data as the primary analysis but ATT will be estimated 

for different periods of PA establishment separately within each outcome period.   
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4. Methodology 
  

For clarity the methodological description of this study has been sub-divided into the 

following sections: 4.1 and 4.2 detail the processes of data acquisition and wrangling that 

were required to create the datasets for the subsequent analysis; 4.3 pertains to the objectives 

of the preliminary analyses as described in section 3.2; whereas 4.4 and 4.5 describe the 

primary and secondary analyses respectively. For conciseness each of these sections in the 

main text will highlight only summary information with references to appendixes containing 

further details as well as any preliminary results required in order to inform subsequent 

processes. Finally, section 4.6 acknowledges the methodological considerations made to 

ensure that the results of this study constitute reproducible and open science. In this regard it 

is important to highlight that all statistical procedures and analysis were performed in 

RStudio version 3.6.1.     

 

4.1 Source selection and data acquisition  

 

It is important to state at the outset that the unit of analysis or resolution that was chosen for 

this study was 30x30m spatial pixels, with the rationale being that this is the highest 

resolution data that is freely (non-commercial) available for the outcome variable of forest 

cover dynamics. Additionally, as noted by Blackman (2013) the utilization of a ‘plot’ level 

unit of analysis such as this is preferable to the coarser alternative of analysing at the level of 

whole PAs as it negates the requirement for extrapolating covariate values which may 

introduce aggregation bias.       

The following subsections will precede stepwise through each variable in the analysis, 

highlighting the rationale for their inclusion, the data sources that were chosen and what re-

structuring was required. It is worth noting that all data management processes were 

performed in either ESRI’s ArcMap 10.2.2 or Quantum GIS (QGIS) 3.12.0  and to ensure 

consistency all spatial data was projected using the World Geodetic System 1984, Universal 

Trans Mercator zone 48 north (the correct zone for Cambodia; WGS 1984 UTM 48N) 

coordinate reference system.    
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4.1.1 Treatment/control assignment (independent variable)  

 

4.1.1.1 Assignment to treatment  

 

In the case of this study, assignment of a unit of analysis to the treated group (as part 

of the primary analysis) was dependent on two conditions: i) the unit displayed forest cover 

in the first year of the outcome period, and ii) the unit was contained within the borders of a 

PA established prior to the first year of the outcome period excluding any land within PAs 

assigned to other tenure types (ELCs). The first condition required the same data as the 

outcome variable (forest cover dynamics) and hence to avoid repetition will be discussed 

only in section 4.1.3. The second condition required data of the boundaries and extents of all 

PAs in Cambodia established prior to and within the total analysis time period of 2010-2018. 

In this regard, other studies have opted to utilise the UNEP-WCMC’s WDPA (Bowker et al. 

2017; Abman 2018). However, in the case of Cambodia this source is substantially outdated 

following the institutional re-arrangements in 2016 (section 2.2.4). By comparison the most 

up to date dataset of PA boundaries in Cambodia is ODC’s ‘natural protected areas (1993-

2019) dataset’ (ODC 2019b) although this too has its limitations. Hence for this study a new 

dataset was synthesised by selectively combining information from the two sources and 

filtering the records to suit the purpose of the analysis. The details of this process are 

described in Appendix C with the result being a dataset of 51 PAs containing their best-

known boundaries and extents (area) along with their date of establishment. This dataset was 

dubbed ‘filtered PAs’ and Table 1 below shows the number of PAs of respective designations 

included with a full list of PAs by name in Appendix C.  

Table 1: Numbers of protected areas contained in the dataset produced for this study 

Category Total 

Multiple Use Management Area 5 

National Park 11 

Natural Heritage Site 2 

Protected Landscape 12 

Ramsar Site 2 

Wildlife Sanctuary 19 

Grand Total 51 

 

From this additional spatial dataset was created of the filtered PAs extents minus that 

of any ELCs that were either contained within them or overlapped their borders. The 
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rationale for this is described in section 2.2.1 although in summary ELC land de facto cannot 

be considered as protected as its purpose is for agricultural development. This was done by 

‘clipping’ the spatial polygons of the PAs using the ELC spatial data that will be highlighted 

in section 4.1.3, with the resulting dataset being dubbed ‘PAs minus ELCs’.  

 

4.1.1.2 Assignment to control  

 

In the case of this analysis the control region can essentially be thought of as land not 

managed by the relevant authorities of the RGC for the purpose of nature conservation, or 

what could be more loosely referred to as ‘unprotected land’. However, conceptually 

identifying this is problematic as Blackman (2013) notes that no land is explicitly demarcated 

as non-protected by governments and hence the decision as to how to define unprotected land 

is largely subjective upon the investigator.  

Ultimately the decision was made that the unprotected control region should represent 

all land managed by any means apart from the types of nationally recognised protected areas 

identified in Table 1 above (also Appendix C), with the rationale for this discussed in detail 

in Appendix D. In practical terms this meant that the boundaries and extent of the control 

region were identified by taking a polygon of Cambodia’s border and clipping it using the 

polygon layer of ‘PAs minus ELCs’ (Section 4.1.1.1). Hence for units to be assigned to 

control they had to be present inside the control region and display forest cover in the first 

year of a given outcome period. 

 

4.1.2 Source for outcome (dependent) variable 

 

The outcome or dependent variable for this analysis was binary in nature, namely whether or 

not a given unit remained forested at the end of the outcome period or if it was deforested at 

any point within the outcome period. Obviously, this requires a source of data for both forest 

cover extent and forest cover loss at an annual level. As mentioned previously, the forest 

cover extent data was also necessary to identify units suitable for either assignment to 

treatment or control groups (sections 4.1.1.1 and 4.1.1.2).  

 Appendix B detailed that there are a number of FCAs that have been completed for 

Cambodia by both national and international organizations that could possibly serve as data 

sources. Of these the nationally produced estimates were ruled out on the basis of both data 

availability and insufficient temporal coverage. This left a decision between the global scale 
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data from GLAD or the regionally produced data from the SERVIR-Mekong project, with the 

latter being chosen as the preferred source on the basis of it’s supposed greater accuracy 

(Appendix B).  

 SERVIR-Mekong’s forest monitor system (SERVIR-Mekong 2020b) allows users to 

specify a definition for forest cover with respect to tree height and % canopy crown cover. 

In this regard it was decided to adopt that of the UNFCCC’s REDD+ scheme (which is also 

used by the RGC (GDANCP 2018)) which defines forest as “a unit of an ecosystem in the 

form of wetland and dry land covered by natural or planted vegetation with a height from 5 

metres on an area of at least 0.5 hectares, and canopy crown cover of more than 10%.” (JICA 

2017, p.8). Once this had been specified the data for forest cover extent and loss for all of the 

years required under the different outcome periods was downloaded directly.  

 At this stage it is important to highlight the issue of validation with respect to this 

data, which is of course a crucial consideration for all land cover assessment and particularly 

forest cover. There are several methods of validating remotely sensed forest cover data: first 

it can be ‘ground-truthed’ by comparing it against data collected in situ from a number of 

field sites although given the nature of this study this was obviously not an option. 

Alternatively, it can be validated against other data produced for the same region but as 

Appendix B detailed there are clear discrepancies between the major sources available for 

Cambodia and so this approach would itself be contentious. Finally, it can be compared 

against other remotely sensed data relying on different technologies such as synthetic 

aperture radar (Singh et al. 2018), although this was deemed too time-consuming for the 

scope of this project. 

Instead, the decision was made to perform cursory validation of the SERVIR-Mekong 

FCL data by cross checking it against forest cover data for the final year of the outcome 

period. The rationale for this was that if a given unit has supposedly experienced a FCL event 

within the outcome period, given that the data resolution is 30x30m patches, then it is 

reasonable to expect that the unit will show an absence of forest cover in the final year of the 

outcome period. Vice versa if a unit did register a FCL event and still displays forest cover in 

the final year of the outcome period it is likely to be a classification error. As the nature of the 

misclassification is unknown the unit should then be discounted from the sample. In reality 

however this approach to validation was not successful as there were a substantial number of 

apparent contradictions between the forest cover and FCL dataset. The most likely reason for 
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this was not that the data itself is inaccurate rather the segregation into annual time periods 

does not take into account that datasets may have different start/end points of classification.  

 

4.1.3 Selection of covariates/confounders 

 

Reviewing the wider literature of quasi-experimental assessment of PA avoided deforestation 

highlighted a core set of covariates found to be significant by large numbers of studies 

(section 1.4.2). This selection was then bolstered by several additions prompted by the 

Cambodia specific literature regarding deforestation and PA effectiveness (sections 2.1 and 

2.2) to give a preliminary set of covariates for which there is sufficient evidence to suggest 

play a causal role in either the siting of PAs and/or the occurrence of deforestation in the 

country.  

 The next stage was to source representative data for this selection of covariates in 

light of the constraints of the matching methods technique. Namely that, similar to the 

variable controlling assignment to treatment, the data should ideally originate from, prior to, 

or within the first year of a given outcome period.  This factor along with general data 

availability and evaluation of data quality led to some narrowing of the initial covariate 

selection, details pertaining to which are included in Appendix E. 

 The final selection of preliminary covariates along with the rationale for their 

inclusion (causal relationship), and the data processing completed in order to make them 

relevant for the subsequent analysis, have been detailed in Table 2 below (note that the 

distance to ELC covariate required more extensive data wrangling which has been detailed in 

Appendix F). The use of each of these covariates is extensively supported by the wider 

literature but for the sake of repetition the citations are not included in Table 2; instead the 

readers should refer back to Table A1 Appendix A. However, references for the applicability 

of covariates in the context of Cambodia specifically have been included where relevant. 

Finally, it is worth highlighting that this represents the selection of covariates prior to further 

refinement within the preliminary analysis (section 4.3.1).  
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Table 2: Details of the preliminary selection of covariates 

Variable 

designation 

Covariate or 

confounder? 

Contextual causal relationship (with Cambodia 

specific reference where applicable) 
Data source/s Data wrangling/processing 

Distance to 

surrounding 
FCL 

Confounder 

Units have a higher probability of being deforested if 

deforestation has occurred recently in close 

proximity to them (Beauchamp et al. 2018). 
PAs are more likely to be sited away from areas of 

deforestation 

Forest cover loss 

extent (SERVIR-
Mekong 2020b) 

Data for FCL occurring in the two years prior 
to each outcome period (2008-2010; 2011-

2013; 2014-2016) downloaded, converted to 

point data and processed using distance matrix 
tool to establish mean Euclidean distance 

between unit of analysis and the nearest 10 

FCL events from the preceding two years. 

Distance to 

international 
land borders 

Covariate of 

FCL 

Extensive reporting that forested regions have been 
subjected to cross-border (Thailand and Vietnam) 

illegal logging and timber transit (ICEM 2003b; 

WWF 2012; Singh 2014; EIA 2017) 

Cambodia 
administrative 

boundaries 

(GADM 2018) 

Polygon of Cambodia's land border 
transformed into line format, border to ocean 

removed and Euclidean distance (30x30m) to 

borders layer produced. 

Distance to 

ELCs 

covariate of 

FCL 

Substantial evidence of ELCs conducting illegal 

logging outside of their borders (Global Witness 
2009; Clements et al. 2014). Hence deforestation is 

more likely to occur in close proximity to them 

(demonstrated by Davis et al. 2015; Beauchamp et 

al. 2018; Magliocca et al. 2020) 

ELC boundaries 

(combination of 

ODC (2017a) 

and LICADHO 
(2020)). 

Dataset of filtered ELC boundaries (see 
Appendix F) temporally partitioned and 

Euclidean distance layer at 30x30m resolution 

produced for each. 

Soil type Confounder 

PAs often sited on land of poor productivity which is 

typified by certain soil types.  
 

Deforestation is more probable on land of high 

agricultural suitability (Michinaka et al. 2013) again 

exemplified by particular soil types 

 
 

Map of 

distribution of 

soil types ODC 
(2020a) 

Data projected using standard project 

coordinate reference system (CRS), converted 

to raster format for ease of intersection with 
sample/control point data C
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Average 

annual 
temperature 

Covariate of 

FCL Both of these variables are correlated with the 

agricultural suitability of land which Michinaka et al. 
(2013) found to be a significant predictor of FCL in 

Cambodia. However, the nature of the relationship is 

expected to differ depending on the type of cropping 
that is occurring. 

Average annual 
temperature 

between 1970 

and 2013 

(Karger et al. 
2017) 

Data reprojected to project CRS maintaining 

native resolution of 1km2 

Average 

annual 

precipitation 

Covariate of 
FCL 

Average annual 

precipitation 

between 1970 
and 2013 

(Karger et al. 

2017) 

Data reprojected to project CRS maintaining 
native resolution of 1km2, unit is mm/year 

Distance to 
major roads 

Confounder 

PAs are typically located further away from major 

roads. Deforestation is more likely to occur closer to 

major roads (ICEM 2003a; Broadhead and Izquierdo 

2010; Ota et al. 2020) as these provide access and are 
required in order to transport the product to market. 

Although Lonn et al. (2018) observed the opposite 

i.e. that probability of deforestation was reduced with 
proximity to roads in Cambodia. However, there is 

the problem of endogeneity where areas are 

deforested specifically to allow for the construction 
of roads.  

Locations of 

major roads in 

Cambodia from 
commune 

database in 2011 

(ODC 2019c) 

Distance to major and minor roads was trialled 

however the extent made the proximity 

calculation ineffective even at a high 
resolution. Time variant road data was also 

trialled although they were inconsistencies 

between the sources and hence it was elected to 
use Euclidean distance to primary/major roads 

only (coded as highway, national road or 

arterial) from 2011 data. 

Distance to 

provincial 

capital 

Confounder 

PAs typically sited in areas of low human population 
ergo further from capitals. Provincial capitals are the 

best available proxy for population centres in 

Cambodia given scarcity of census data. The 
products of deforestation i.e. timber is likely to pass 

to market in provincial capitals and hence a reduced 

travel distance to these is preferable for those 

engaged in forest clearing (Ota et al. 2020). 

Location of 

provincial 

capitals in 
Cambodia 

(MLMUPC 

RGC 2008) 

Location of provincial capitals is essentially 

time invariant and hence the single data layer 
was used for all 3 outcome periods. Point data 

of locations was convert to raster with a 

resolution of 5000m2 for the capitals then a 

Euclidean distance layer was produced at 
30x30m resolution. C
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Surrounding 
human 

population 

Confounder 

PAs typically sited in areas of low human population. 
Heterogenous effects expected for deforestation 

occurrence: conversion for agriculture more likely to 

occur in proximity to populations, clearance for 
timber in locations of lower population density. 

Tested by Ota et al. (2020) 

LandScan (2020) 

Landscan estimated population count layers 
downloaded for years 2010, 2013 and 2016 at 

30x30m (900m2) resolution. Clipped to extent 

of Cambodia, Layers re-sampled using sum 
values to give estimated population (no. of 

people) per 5000m2. 

Elevation Confounder 

PAs typically sited in areas of higher elevation, as 
evidenced by the fact that many PAs in Cambodia are 

situated in the North-Eastern provinces or 

Mondulkiri and Ratanakiri and the Cardamom 
mountains (Figure 7) 

 

Unclear relationship with deforestation occurrence: 
Low elevation regions typically converted to 

agriculture earlier meaning they have a higher 

probability of deforestation (Lonn et al. (2018) 

observed this relationship in Cambodia). But this 
leaves behind primary forest desirable for 

deforestation at higher elevations.  

Shuttle Radar 
Topography 

Mission (SRTM) 

Digital Elevation 
Map (DEM) 

dataset for 

Cambodia 

(Aruna 
Technology Ltd. 

2020) 

No processing required data projected using 

standard project coordinate reference system at 
30x30m resolution 

Slope Confounder 

PAs typically sited in areas of higher slope, largely 
because this is correlated with elevation changes 

 

Areas of higher slope are harder to deforest and less 

suitable for agricultural conversion. Confirmed by 
Lonn et al. (2018) who found higher deforestation 

probability at lower slope % in Cambodia. 

Calculated from 

Aruna 
Technology Ltd. 

(2020) 

Slope calculated from elevation data using the 

GDAL slope algorithm with a 1:1 ratio of 
vertical units to horizontal projected at 30x30m 

resolution 
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4.2 Data exploration and preparation 

  

4.2.1 Defining outcome periods for analysis 

 

Although section 2.3.1 conceptually delineated the outcome periods to be analyzed based on 

when specific policies and events occurred, these needed to be refined given the specific 

restrictions of the matching methods approach. Namely, that treatment and control groups are 

identified on the basis of data for variables up to and including the first year of the outcome 

period only. For example, in selecting an outcome period to best represent the time of 

maximum ELC establishment (likely to be a strong confounder of PA effectiveness) the start 

date had to follow the years of highest establishment to ensure maximum inclusion of 

records. As for determining the duration of the outcome periods, whilst it would have been 

ideal to perform the analysis at an annual level this was not achievable given the scope of this 

study. Hence there was a trade-off between selecting outcome periods that begin at an 

appropriate time and are of sufficient cumulative duration to cover the whole temporal period 

of 2000-2018. After testing the amount of both PA and ELC land that would be excluded 

(omitted) from the analysis under different outcome periods (described in Appendix G) the 

decision was made to utilize 3-year outcome periods divided as follows: 2010-2012; 2013-

2015; and 2016-2018.  

 

4.2.2 Creating relational datasets 

 

In the case of this analysis the term ‘relational dataset’ is used to refer to a dataset containing 

the spatial location of all units of analysis along with their status as either a treated or control 

unit, their outcome (forested; deforested) in the final year of the outcome period and the data 

for all of the covariates. Separate datasets were required for each of the outcome periods 

under the primary/secondary analysis along with an additional three for the spillover analysis 

as part of the preliminary investigation. The process for creating all of the datasets was 

similar as all required the identification of treatment and control populations, achieved 

through the temporal partitioning of the variables for both treatment assignment and the 

outcome. These processes are described in Appendix H along with the subsequent steps of 

sampling the treated and control populations in order to make them feasible for analysis. 
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4.3 Preliminary analysis  
 

4.3.1 Refinement of covariates 

 

As highlighted in section 1.3.4.2 there are two primary concerns in confirming the validity of 

the covariates chosen in matching methods analysis. Firstly, that the hypothesised covariates 

are significantly correlated with the outcome (dependent variable) and secondly that there is a 

region of common support (sufficient overlap) between their variance with respect to the 

treated and control groups (the second assumption under SITA: section 1.3.4).  

To address the first of the concerns, it was decided to follow the technique of 

Schleicher et al. (2017) by creating generalized linear models (GLM) initially including all 

covariates and using stepwise model selection to iteratively test which combination of 

predictors provided the most explanatory power or best ‘model fit’ based upon Akaike 

Information Criterion (AIC) scores.   

However, this method of covariate refinement alone is not sufficient as it doesn’t 

explicitly assess whether any multicollinearity exists between the variables. The presence of 

multicollinearity is important to test as it relates back to the first assumption of 

unconfoundedness under SITA (section 1.3.4). This was tested through calculation of 

variance inflation factor (VIF) which informed whether the removal of any additional 

covariates from the final selection was necessary prior to matching.  

With regards to the second concern of confirming overlap between covariate 

distribution between the control and treatment groups, the ‘bal.tab’ function in Greifer’s 

(2020a) Cobalt package for R was used to calculate a range of summary statistics for the pre-

matching covariate distribution and hence show that there was an appropriate overlap. 

Detailed information on the methods and results for all these processes are included in 

Appendix I. 

 

4.3.2 Identifying biases in PA location and predictors of deforestation 

 

The process of quantifying the covariate distributions between treated and control groups also 

served the dual purpose of contributing towards addressing an additional objective of the 

preliminary analysis (section 3.2.1), namely identifying the biases that exist in PA siting.  

Appendix I.3 details the summary statistics produced for each of the covariates, such as the 

mean and SD, which were useful in helping elucidate the nature (direction) of the biophysical 
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and socio-economic biases that exist. Whereas the standardised mean difference values 

between treated and control groups (Appendix I.3) in addition to visualisations of the 

smoothed density distributions of each covariate (also produced by the Cobalt package 

(Greifer 2020a)) were used in order to make inferences about the ‘extent’ of these biases.  

 The same process was used to address the objective of characterising the predictors of 

deforestation occurrence in Cambodia, by instead investigating the difference in covariate 

distributions in term of the dichotomous outcome (dependent variable) of forest cover 

retention or FCL at the end of each outcome period.   

However, making inferences with respect to either of these objectives on the basis of 

the covariate distributions alone is somewhat limited as it does not indicate which factors 

correspond most strongly to the variance exhibited by the different groups. For this reason, 

principal component analysis (PCA) was used to capture this concept in an intuitive form. In 

simple terms PCA is a dimensionality reduction technique that involves transforming 

predictors into hypothetical linearly un-correlated variables known as ‘principal components’ 

(PCs) that explain a defined percentage of the variance in the sample (Dytham 2011; Zuur et 

al. 2007). The extent to which each of the original predictors ‘load’ upon the PCs gives an 

indication of how they contribute towards variance and in this respect, it is also possible to 

map the contribution of individuals units in the sample. Both of these interactions can be 

visually represented in biplots which map the variables and individuals in 2 dimensions with 

the 1st and 2nd PCs representing the X and Y axes. 

 In the case of this study PCAs for both the predictors of PA location and deforestation 

occurrence were conducted using the ‘prcomp’ function in the R stats package (R core team 

2020) with the data centred and scaled. Following this PCA biplots were produced using the 

R Factoextra package (Kassambara and Mundt 2020). As these results represent a key finding 

for this study they are presented as part of the results section of the main text (sections 5.1.3 

and 5.1.4).   

 

4.3.3 Testing for spatial autocorrelation 

 

Section 1.3.4.4 highlighted that the phenomenon of SAC has the potential to adversely affect 

the results of the matching methods analysis. Thus, it is pertinent to assess the extent of SAC 

in the data prior to matching especially as it can also influence the results of covariate 

selection through the use of regression models such as the GLMs used in this study.  In this 
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regard the presence of SAC was investigated by first visualizing the residuals of the GLMs in 

a spatial context and then following up with statistical confirmation using the Moran’s I test. 

The outcome of this precipitated the need to produce new GLMs including the spatial 

location of the data units to account for SAC and re-affirm the final selection of covariates to 

be used in matching. Again, because the results of these processes were critical in informing 

the methodology of the primary analysis, they are presented in more detail in Appendix J.  

 

4.3.4 Selecting matching method 

 

Prior to conducting the analysis for the spillover effects of protection (section 3.2.1) as well 

as the primary and secondary analyses (section 3.2.2), it was necessary to test different 

matching approaches to determine which was most appropriate. The rationale behind this was 

two-fold: first, to test what size of samples could feasibly be analyzed computationally and 

second which matching technique resulted in the best ‘quality’ of matches.  

 In this regard two different methods were tested using the R package: Matching 

(Sekhon 2020): Propensity score matching (PSM) and covariate matching using the 

Mahalanobis distance (MDM). For both methods matching was conducted using the selection 

of 10 covariates refined in sections 4.3.1 and 4.3.3; on a 1:1 (treated: control) nearest-

neighbour basis; with replacement of units, no deterministic handling of ties; and a caliper of 

0.5 SDs to exclude inferior matches (section 1.3.4.3).  

Initially these approaches were tested using the full samples of control and treated 

(treatment: located within PAs) units from the 2010-2012 outcome period, however this was 

computationally unfeasible. This led to the testing of different sizes of sub-samples including 

10%; 20% and 30% random samples, with the Cobalt package (Greifer 2020a) again used to 

produce statistical summaries of the covariate distributions to assess the quality of matching 

(section 1.3.4.3) under each technique. As the results of this process were decision relevant to 

the subsequent analysis they are presented in detail in Appendix K however the primary 

conclusion was that the most appropriate matching technique for this study context was PSM 

using samples not to exceed ~100000 units with a ratio of approximately 1:3 treated to 

control units.  

With the matching approach finalised the next decision was how the matched sample 

produced would be used to quantify the effect of the treatment. More specifically, given the 

nature of the treatments being investigated, this meant producing an estimate of ATT (section 

C
E

U
eT

D
C

ol
le

ct
io

n



81 

 

1.2.3). As alluded to in section 1.3.3 there are two widely used approaches to achieving this: 

The first option is to estimate ATT directly from the matched sample by “averaging the 

within-match differences in the outcome variable between the treated and the untreated units” 

(Abadie and Imbens 2006). Whereas the alternative is to estimate ATT by fitting an 

appropriate regression model to the matched data with treatment assignment specified as an 

independent variable (Pan and Bai 2015; Leite 2017). 

 In the case of this study the decision was made to follow the former strategy largely 

because this is the means of ATT estimation that can be specified to be produced directly by 

the ‘Match’ function in the Matching package (Sekhon 2020). However, Abadie and Imbens 

(2011) note that this form of ATT estimation is prone to bias when matching is not able to 

produce perfect covariate balance. To account for this, they developed a technique to produce 

ATT estimates conditioned for this bias by linearly regressing the outcome (dependent 

variable) onto the covariates of the matched units (Leite 2017).  Given that the testing of the 

chosen matching approach (PSM) for this study did not result in perfect covariate balance 

(Appendix K) it was deemed pertinent to specify the ‘Match’ function to calculate Abadie-

Imbens bias-adjusted ATT estimates for the all subsequent matching analysis. Similarly, the 

function was specified to report bias-adjusted estimates of SE under the Abadie-Imbens 

variance formula (Abadie and Imbens 2011). 

 

4.3.5 Testing for unobserved covariates 

 

Section 1.3.4.2 highlighted the need to test whether the results of matching analysis are 

susceptible to the influence of unobserved ‘missing’ covariates the inclusion of which would 

explain more of the variance between the treated and control groups. If this effect proves to 

be substantial it is a clear indication that the conceptual model of what determines assignment 

to treatment is flawed and should be reassessed to ensure that treatment effect estimates are 

robust.  

On this basis the decision was made to test for unobserved variance prior to 

conducting the actual matching analysis by using the results generated as part of the process 

of trialling different matching approaches (Section 4.3.4). The most widely used test for 

unobserved variance in this context is the Rosembaum bounds sensitivity analysis which was 

implemented using R package: rbounds (Keele 2014). A table of the results of this analysis 

for the 10% random sample of the 2010-2012 outcome period under the finalized PSM 
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approach has been included in Appendix L. Although the conclusion was that the matching 

model was robust (not susceptible) with respect to unobserved covariates and did not require 

adjustment.   

  

4.3.6 Investigating spatial spillover effect of protection 

 

To re-iterate, the purpose of this analysis is to identify the presence, extent and nature of 

spillover effects from the establishment of PAs in Cambodia (sections 1.3.4.4 and 3.2.1). To 

this end section 4.2.2 and Appendix H have already detailed how samples of treated units 

from 5km buffer zones surrounding PAs and control units from the wider unprotected 

landscape were created for each outcome period. The sizes of these samples are detailed in 

Table 3 (section 5.1.1) however section 4.3.4 made it clear that the size of these full samples 

was too large to be feasibly matched. Thus, the decision was made to analyse four sub-

samples for each outcome period, containing 100,000 units, made up of random samples of 

25,000 treated units and 75,000 control units (1:3 ratio). The rationale behind this being that 

the combined total of these sub sample would equate to ~12% of the total population in each 

outcome period (See Table 3). These sub-samples were subjected to PSM under the 

specifications highlighted in section 4.3.4 in order to compare deforestation occurrence 

within the treated and control groups. The bias-adjusted ATT estimates and their SE’s 

generated by each sub-sample were then averaged to produce an estimate of avoided 

deforestation in each outcome period. Following this the quality of matching in terms of the 

improvements in covariate balance was investigated using summary statistics produced by 

the Cobalt package (Greifer 2020a) as described in Appendix I.3.  

 

4.4 Primary analysis  

 

As specified in section 3.2.2 the purpose of the primary analysis was to estimate the 

effectiveness of PAs in Cambodia in terms of the outcome of forest cover loss vs. retention 

observed for forested (treated) units within PA boundaries as compared to those in the wider 

unprotected (control) region. Similar to the spillover analysis, this was achieved by 

calculating the average bias adjusted ATT and SE of a number of matched sub-samples of the 

data using the matching approach defined under section 4.3.4. In this case 12 sub-samples 

were used for each outcome period to effectively represent the 10% samples of the 

populations (See Table 3 in section 5.1.1). Again, these sub-samples were randomly 
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generated, following the previously used standard of 100,000 units total consisting of 25,000 

treated units and 75,000 control units. 

 The requirement to conduct sub-sampling in order to perform matching was possibly 

beneficial in the sense that random sampling has the potential to reduce the presence of SAC 

in the data. In order to determine whether this was actually realised the residuals of a GLM 

produced for the post-matching data of 1 randomly selected sample from each outcome 

period were tested using the Moran’s I test. As per the spillover analysis the quality of 

matching was assessed by calculating summary statistics related to the covariate balance in 

the matched and unmatched samples. 

Finally, in order to provide context for the discussion of the estimated treatment effects, 

the spatial data of forest cover and FCL events (see section 4.1.2) was used to calculate 

relative deforestation rates for the treated and control regions in each outcome period to give 

a general indication of deforestation pressure.   

 

4.5 Secondary analysis 

 

As per the specific objective in section 3.2.3 the purpose of the secondary analysis was to 

compare the effectiveness of PAs that were established in different periods between the 3 

outcome periods. In practical terms the first step was to split up the datasets of treated units 

used for the primary analysis into separate datasets of units from PAs established in different 

time periods (categories).  For the 2010-2012 outcome period these categories were: PAs 

established prior to the year 2000 (i.e. between 1993-2000); and those established between 

2001-2010. These same 2 categories were carried over to the 2013-2015 outcome period with 

the intention of using a 3rd category of PAs established between 2011-2013 however this was 

not possible given that were none established in this time period. Finally, for the 2016-2018 

outcome period the first 2 categories were used (1993-2000; 2001-2010) with the addition of 

a 3rd category of PAs established between 2011-2016.  

A table of the relative numbers of treated units in each of these categories within each 

outcome period is included in the results (Table 7: section 5.3). Again because of the total 

number of units, it was necessary to perform the matching analysis on sub-samples taken 

from each category. This was done using the same sampling and matching protocol as the 

spillover and primary analyses although the number of sub-samples matched for each 

category were not uniform (detailed in Table 7). 
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Following matching, treatment effect estimates were produced along with covariate 

balance statistics for each category of PA establishment date. Finally, to offer validation for 

the inter-outcome period comparison the relative deforestation pressure faced by each 

category of PAs was again calculated using the spatial data of forest cover and FCL events 

(see section 4.1.2).    

 

4.6 Ensuring Reproducibility  

 

Given that this investigation relies on a substantial number of data sources and processing 

procedures as well as statistical techniques reproducibility is a key concern. The purpose of 

making this analysis reproducible is not just to demonstrate robustness of results by allowing 

them to be tested by others but also to help in propagating the techniques used to a growing 

audience.  

 To this end all of the spatial data used in this investigation (including the datasets 

created by filtering open access sources) has been formatted as a ‘Geopackage’ database 

including the accompanying QGIS project file and is available through the author’s 

GoogleDrive upon request (Black 2020a). Similarly, all of the R scripts used for the statistical 

analysis have been made publicly available through the author’s GitHub repository (Black 

2020b). 
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5. Results 
 

The following section will be subdivided in accordance with the objectives and methodology 

with sequential sections pertaining to the results of the preliminary analysis; primary analysis; 

and secondary analysis.  

 

5.1 Preliminary analysis 

 

5.1.1 Sampling of control and treated populations 

 

Table 3 below shows the population and sample sizes of treated and control units, for both 

the primary investigation of PA establishment as treatment as well as the spillover analysis.  

There are few relevant observations that can be drawn from this other than the fact that the 

ratio of treated to control units makes it evident that there were sufficient numbers to allow 

for comparison using matching. It is notable that the number of treated units in the 2016-2018 

outcome period did exceed that of the controls, which of course is to be expected given the 

expansion of the PA estate (section 2.2.1) and the trend of ongoing forest cover loss (section 

2.1.3). However, given that matching was specified with replacement of units this was not an 

issue.  

 

Table 3: Population and sample sizes for the primary and spillover analyses 

Primary analysis 

Outcome 

period 

Population (no. units) 10% random sample (minus NA records) (no. units) 

Treated  Control Treated  Control Total 

2010-2012 3579236 5767875 353822 573781 927603 

2013-2015 3111479 5380047 307486 534417 841903 

2016-2018 4158821 3769179 413223 374099 787322 

Spillover analysis  

Outcome 

period 

Population (no. units) 10% random sample (minus NA records) (no. units) 

Treated  Control Treated  Control Total 

2010-2012 906479 4861396 90004 483777 573781 

2013-2015 790271 4594883 78443 455974 534417 

2016-2018 723189 3045990 72235 301866 374101 
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5.1.2 Conclusions of covariate refinement and testing of spatial autocorrelation  

 

For clarity it is pertinent to recap the important conclusions from the processes of covariate 

refinement and SAC testing the results of which were presented in Appendixes H and I.  

First, stepwise model selection and multicollinearity testing demonstrated that all of the 

covariates identified in the preliminary selection (Table 2 in section 4.1.3) with the exception 

of average annual temperature are appropriate as predictors of the dependent variable (forest 

cover change at the end of the outcome period). Second, there is sufficient overlap between 

the distributions of these covariates with regards to the treated and control groups across the 

different outcome periods to meet the assumption of SITA (section 1.3.4). Thus, this 

selection of covariates was appropriate to be carried forward to the subsequent stages of 

preliminary analysis.  

 The presence of SAC was confirmed in the data for the 2010-2012 outcome period 

through visual inspection of the model residuals in a spatial context as well as through a 

significant result in the Moran’s I test. Under this conclusion the GLM of the 10 refined 

covariates as predictors was re-tested in two forms, first with the inclusion of the unit’s X/Y 

coordinates and second with an autocovariate representation of SAC. These models did alter 

the significance of one covariate in each case however given that a subsequent Moran’s I test 

of the residuals of the autocovariate model showed that it still showed significant SAC the 

decision was made to retain all of the covariates for the matching analysis. 

 

5.1.3 Identification of biases in PA siting 

 

At the outset is important to acknowledge that the inferences that can be made regarding 

biases in PA location in Cambodia from the results of this study are limited by its conceptual 

delineations. The most significant of these being that all of the units analysed were explicitly 

chosen on the basis of being forested at the start of each outcome period. Thus, these 

inferences should be viewed more specifically as the differences between forested land 

located inside PAs and in the wider unprotected landscape. Although of course given the 

concentration of forest cover in PAs this is still somewhat generalisable to wider conclusions.   

The first result to be discussed is the summary statistics of the covariate distributions 

for the treated (protected) and control (unprotected) samples prior to matching. These have 

already been included as Table I4 in Appendix I.3 and so the reader should refer to this. The 

mean values of the covariates in Table I4 show that in general forested units in PAs were 
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found at greater distances from surrounding forest cover loss, provincial capitals, and major 

roads as compared to unprotected forest. They were also situated in areas of higher average 

elevations and slope with greater average annual precipitation. Conversely PA forest was on 

average located closer to ELCs and land borders in areas of lower human population than 

unprotected forest. The values of standardised mean difference between the treated and 

control samples for the majority of covariates were fairly consistent (between ~0.3-0.5), with 

some of the lowest values being soil type (average of -0.279 across the three outcomes 

periods) indicating that it did not vary strongly between the treated and control groups. Vice 

versa elevation shows markedly higher standardised mean difference values (0.77-0.81) 

which suggests that it varied the most strongly. 

These trends are also reflected in the values of the variance ratio, KS statistic and 

COC, in particular the latter two for which the majority of results are <0.3 (with 0 indicating 

perfect balance between groups). However, in order to get a better picture of the how the 

variance of the covariates differ away from the mean it is necessary to refer to plots of the 

smoothed density distributions, which are shown for each covariate for the 2010-2012 

outcome period in Figure 10 below.    

The density plots in Figure 10 largely corroborate the inferences drawn from the 

summary statistics above, especially the notion that most covariates do not differ strongly 

between PA and unprotected samples (i.e. there is substantial overlap). Although the plot for 

distance to ELCs gives a better insight into the fact that whilst PAs had a lower mean 

distance to ELCs there was a substantially greater proportion of control units at intermediate 

distances from ELCs (~50,000-75,000). This already suggests that perhaps the influence of 

this covariate on the outcome is not straightforward to elucidate.  
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Figure 10: Smoothed density distributions of the covariates for treated and control samples in the 2010-

2012 outcome period prior to matching 
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Given the observation thus far that very few of the covariates vary particularly 

strongly with respect to the treated and control groups the use of PCA becomes particularly 

pertinent in determining which factors are responsible for the majority of the variance. Figure 

11 below contains the PCA biplot for the 2010-2012 outcome period with the treated and 

control units distinguished by colour and marker shape. From the X and Y axes labels we can 

see that the first 2 principal components (PCs) explain a total of 42% of the variance. Whilst 

it would be preferable for them to explain the majority of variance (>50%) this is still 

sufficient to allow for some inferences to be made about which covariates are the most 

influential in characterising the two groups.  

 

Figure 11: Biplot of the PCA analysis for units in the 2010-2012 outcome period: 

Note units are formatted with transparency to avoid over plotting. 

The direction and lengths (measured from the centre point of the axes) of the arrows 

corresponding to each covariate is an indicator of how strongly each ‘loads’ upon the 2 PCs 

(X and Y axis respectively) and the nature of the relationship (Kohler and Luniak 2005). In 

addition to this the cosine of the angle between the arrows tells us the degree of correlation 

between the covariates (p. 209).  In this regard Figure 11 shows that the covariates that 

exhibit the greatest variance within the data distance to provincial capital (Cap_dist) and 
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distance to major road (Road_dist). However, these two covariates load more strongly on 

PC2 which explains less total variance than PC1. Hence the covariates that explain the most 

variance within the data are elevation, slope, soil type and average annual precipitation 

(Precip) which all load strongly on PC1. The small angle of the cosine between the former 2 

covariates (Cap_dist and Road_dist) and elevation, slope and average annual precipitation 

suggest that these groups show moderate correlation amongst each other. This seems logical 

given that road density is higher around provincial capitals and elevation and slope are 

typically related.  

The fact that the arrows for distance to ELCs (ELC_dist), and surrounding population 

(Pop) are all still relatively long as compared to the covariates discussed above suggests that 

these covariates also display considerable variance within the data however they do not load 

strongly on PC1 and PC2, suggesting it is likely that they are better represented by other PCs 

that would explain the remaining cumulative variance (~58%). Finally, the arrows for 

surrounding FCL (SFCL) and distance to land border (Border_dist) show that these 

covariates explain the least variance.    

By contrast, the relative distributions of the observations as represented by the 

coloured points, provides an insight into how the different groups vary as well as the presence 

of outliers within them (Kohler and Luniak 2005). Unfortunately, in the case of Figure 11 this 

is not that useful as the distributions of the protected (treated) and unprotected (control) units 

are largely overlapping which confirms the earlier conclusion drawn from the statistical 

summaries and density plots that, in terms of the covariates utilised here, there are not strong 

differences between forest areas in PAs and non-protected forest areas in Cambodia. Perhaps 

the covariate for which there is the greatest difference is surrounding population density, 

which does show some deviation in distribution for the un-protected units. Although this 

could be an artefact of the outliers that exist for this covariate which are likely to represent 

small areas of forest remaining in high population areas such as public parks etc.   

 

5.1.4 Predictors of deforestation in Cambodia  

 

Similar to the preceding section it is important to identify the limitations of the inferences 

that can be made from the data used in this study. The results do not show all deforestation 

that occurred across the total outcome period of the study (2010-2018) rather only the 

deforestation of the proportion of the populations of treated and control units that were 

selected on the basis of being forested in the first year of the outcome periods. Similarly, the 
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deforestation events are being compared only to the units that remained forested at the end of 

each outcome period. In effect this means that it is only possible to identify the predictors that 

contribute to whether a given unit loses or retains its forest cover within an outcome period. 

However, given that the number of deforestation events captured by the datasets is still 

substantial these inferences are likely to be relatively robust. 

 Table 4 below shows the differences in means, SD and standardized mean difference 

(SDM) in the values of the covariates between units that remained forested at the end of each 

outcome period and those that were deforested within them. The largest SDM values across 

all three outcome periods are for the surrounding FCL covariate, indicating that it is a strong 

predictor of deforestation likelihood. This shows that units that were deforested were on 

average much closer to recent FCL events than those that retained forest cover. In addition to 

this elevation, distance to major roads and average annual precipitation were also moderate 

predictors with SDM values >0.375 (with the exception of the 2013-2015 outcome period for 

distance to major roads). As expected, units that were deforested were in closer proximity to 

major roads and at lower elevations. Distance to provincial capital also displayed relatively 

high SDM values in the 2010-2012 and 2016-2018 outcome periods although markedly lower 

in the 2013-2015 period, which hints that perhaps the nature of the factors driving 

deforestation changed in this period. By contrast the weakest predictors of deforestation 

occurrence with respect to SDM are distance to land border (<0.1 for all outcomes periods) 

and surprisingly distance to ELCs (all values <0.13).  

 

Table 4: Summary statistics for covariates of units separated by forest cover outcome 

Covariate 
Outcome 

period 

Forested Deforested 
SDM 

Mean SD Mean SD 

Surrounding FCL 

2010-2012 2708.445 2611.225 854.859 854.621 -0.954 

2013-2015 2603.022 2604.029 692.957 803.261 -0.991 

2016-2018 2309.489 2473.284 993.688 1648.270 -0.626 

Distance to ELC 

2010-2012 43141.760 34138.373 46299.925 33860.852 0.093 

2013-2015 28194.142 25224.167 28714.903 26789.006 0.020 

2016-2018 22079.626 18841.640 24745.563 23277.566 0.126 

Surrounding 

population  

2010-2012 313.471 945.130 412.329 886.417 0.108 

2013-2015 282.857 824.419 308.285 731.569 0.033 

2016-2018 269.736 765.368 523.165 1043.685 0.277 

Average annual 

precipitation 

2010-2012 2167.795 734.888 1928.523 471.331 -0.388 

2013-2015 2204.940 746.154 1946.137 556.611 -0.393 

2016-2018 2234.379 758.114 1985.170 554.927 -0.375 

Slope 2010-2012 11.048 11.840 7.850 7.193 -0.326 
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2013-2015 11.515 12.185 8.623 8.442 -0.276 

2016-2018 11.960 12.417 9.094 9.313 -0.261 

Elevation 

2010-2012 214.479 222.921 131.061 111.931 -0.473 

2013-2015 224.806 230.623 137.998 115.606 -0.476 

2016-2018 234.716 237.107 156.674 145.510 -0.397 

Distance to 

provincial capital 

2010-2012 46774.904 18557.934 40970.980 17897.997 -0.318 

2013-2015 46894.691 18821.762 44536.245 17295.180 -0.130 

2016-2018 47770.696 18885.390 39330.688 17827.204 -0.460 

Distance to land 

border 

2010-2012 60357.117 40474.591 58753.869 39642.574 -0.040 

2013-2015 59393.850 40204.980 63377.342 40811.249 0.098 

2016-2018 59727.194 40265.766 57029.983 40740.639 -0.067 

Distance to major 

roads 

2010-2012 14332.204 11109.156 9827.803 8520.585 -0.455 

2013-2015 14695.461 11265.702 11533.973 9594.964 -0.302 

2016-2018 15094.118 11385.211 10483.544 8984.866 -0.450 

Soil type 

2010-2012 7.021 6.303 9.772 6.088 0.444 

2013-2015 6.754 6.251 8.804 6.274 0.327 

2016-2018 6.559 6.238 8.524 6.164 0.317 

 

As per the analysis of biases in PA location it is also useful to examine the smoothed 

density distributions of the covariates to see how they vary beyond just measures of central 

tendency. These are visualized in Figure 12 below for the 2010-2012 outcome period. Again, 

these density plots largely confirm the inferences made from the statistical summaries above 

i.e. that units that were deforested were in closer proximity to surrounding FCL events.  

However, there are several noteworthy features, particularly that a large proportion of 

the units that remained forested were in areas of higher human population than those that 

were deforested, which is obscured in the mean values in Table 4. Also, for distance to ELCs, 

the density distribution shows that a greater proportion of units in close proximity (0-

10000m) were deforested which was not evident from the comparisons of means. Although 

surprisingly at intermediate distances (10,000-50000m) a larger proportion of units remained 

forested.     
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Figure 12: Smoothed density distributions of each of the covariates for units exhibiting different forest 

cover outcomes in the 2010-2012 period 
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The statistical summaries and density distributions have already provided insights into 

the differences in covariates between units that remained forested and those that were 

deforested. Rather than using PCA to further validate this it was instead deemed pertinent to 

use it to investigate the differences in units that were deforested inside PAs vs. those that 

were deforested in the unprotected landscape. This of course allows for inferences to be made 

as to whether there are differences in the predictors of deforestation as a result of protection. 

In addition, by performing PCA for the deforested units in each of the three outcome periods 

separately as well as again for all units in all outcome periods, it is possible to ascertain 

whether these predictors have changed over time. Figure 13 below contains the biplots for all 

of these PCAs.  

  The axes of the biplots for all outcome periods show that the first 2 PCs in each 

explain relatively low proportions of the total variance with the highest being 38.2% for the 

2016-2018 period and the lowest being 35.9% for 2013-2015. This indicates that the variance 

in the data is not easily explained by a small number of factors, rather it is the result of 

numerous factors, the implication of this being that any inferences drawn the distributions of 

the data points and the variables are fairly limited.    

 Irrespective of this, there are some differences displayed in the biplots from different 

time periods. The variable arrows in the 2010-2012 biplot show that for this period elevation, 

slope and precipitation explained the most variance in the data. This was followed closely by 

distance to provincial capitals, land borders and major roads and whilst the distribution of the 

two groups of observations (deforestation events in PAs and unprotected areas) in the region 

of these covariates do overlap there is a clear area in the upper right hand quadrant of the plot 

where the distribution of unprotected units is not overlapped. This indicates that deforestation 

events occurred at more extreme values of these covariates than for the protected pixels. 

However, this is not the most pronounced region where the distributions of the two groups 

diverge, which is instead in the lower right quadrant of the plot and shows that deforestation 

events in the unprotected landscape occurred with greater variability with respect to the size 

of the surrounding human population.  
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 Figure 13: PCA biplots for deforested units in each outcome period and across all periods: 

Note units are formatted with transparency to avoid over plotting. 
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 As for the 2013-2015 biplot the covariates of elevation, slope and precipitation still 

explain the most variance with respect to the first 2 PCs. Although the nature of the 

relationship between them and PC1 changed from the previous outcome period with these 

variables now exhibiting negative variance values. This suggest that the variance in these 

covariates for this outcome period is due to smaller values rather than larger values. The fact 

that the distribution of the unprotected observations ‘breaks away’ from that of the protected 

observations towards the upper left corner of the plot, indicates that more deforestation took 

place at lower values of elevation, slope and average annual precipitation in unprotected areas 

in this outcome period.  In addition to this it appears that the distributional difference between 

the groups with respect to surrounding population size is less pronounced in this outcome 

period than in 2010-2012.  

 In the 2016-2018 biplot the 2 PCs are the closest in terms of the % of variance they 

explain (PC1 = 19.4%, PC2=18.8%). This is noteworthy as it clear that there is less 

difference between the covariates in terms of which explains the most variance with respect 

to the PCs. Similar to the two previous outcome periods the most prominent of these are 

distance to provincial capital and roads, elevation, slope and average annual precipitation. For 

this outcome period the difference in distributions of the two groups with respect to the 

surrounding population covariate (upper right quadrant) shows a similar pattern to that of the 

2010-2012 outcome period.  

 To summarize, whilst the PCAs have highlighted some minor differences between the 

three outcome periods, the patterns of predictors of deforestation occurrence with respect to 

protected and unprotected areas are largely consistent. This is exemplified by the biplot in 

Figure 13 for the data of all outcome periods combined which shows that the greatest 

difference between the two groups is that a greater proportion of deforestation events in the 

unprotected landscape occurred at higher values of surrounding population size.  

In conclusion, the main points to take away from this portion of the analysis are that, 

first the strongest predictors of whether a 30x30m forested area in Cambodia will be 

deforested or not within the subsequent 1-3 years are its proximity to surrounding FCL 

events, elevation and distance to major roads, with lower values of all three variables 

increasing the likelihood of deforestation. Second, the factor that varies most with regards to 

deforestation occurrence inside PAs vs. in unprotected areas is the size of the surrounding 

human population. This is unsurprising given that section 5.13 shows that this covariate 

showed the most variation between protected and unprotected areas.  
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5.1.5 Results of spillover analysis 

 

Table 5 presents the results of the ATT estimation for the treatment of a spillover effect of 

PA establishment into 5km buffer zones exogenous to PA boundaries. Values of ATT are 

included for each of the 4 matched samples along with an average for each outcome period. 

Given that the outcome variable is dichotomous the values of ATT produced are effectively 

odds ratio representing the difference in probability of a unit under treatment displaying a 

given outcome (Benedetto et al. 2018). Note that the averages of the bias-adjusted (Abadie-

Imbens) SEs are simply the mean variance across the samples and not calculated as a 

function of the average ATT.  

 

Table 5: Estimates of ATT and bias-adjusted SE produced by the spillover analysis 

 2010-2012  2013-2015  2016-2018  

Sample ATTsignif 
Bias- 

adjusted SE  
ATTsignif 

Bias- 

adjusted SE 
ATTsignif 

Bias-

adjusted SE 

1 -0.03988*** 0.00274 -0.01092*** 0.00270 -0.0332*** 0.00328 

2 -0.03864*** 0.00272 -0.01448*** 0.00271 -0.02956*** 0.00326 

3 -0.04536*** 0.00273 -0.00928*** 0.00268 -0.03004*** 0.00327 

4 -0.03456*** 0.00269 -0.00928*** 0.00268 -0.02628*** 0.00322 

Average -0.03961 0.00272 -0.01099 0.00269 -0.02977 0.00325 

Note: **p<0.05***p<0.01     

 

Table 5 shows that for all samples in all outcome periods there was a significant effect 

of ATT at the 99% confidence level. The fact that the values of ATT are negative is an 

artefact of how the outcome variable was coded in the data however they do represent a 

positive treatment effect. In practical terms this means that units within PA buffer zones were 

significantly less likely to be deforested over the course of the outcome periods than those in 

the unprotected (control) landscape. However whilst the effect may be significant the size of 

the effect is not particularly large, if the decimal ATT odds-ratios are expressed as 

percentages this means that in the 2010-2012 period a 30x30m area of forest (the unit of 

analysis) inside a radius of 5km from a PA boundary was on average ~4% less likely to be 

deforested than a similar forested area >5km away from the PA boundary. The 2016-2018 

period displayed a similar result with an average ~3% reduction in the probability of 

deforestation for treated units. However, the ATT for the 2013-2015 period was noticeably 
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lower with a sample average of ~1%. At this stage it is not pertinent to offer explanation as to 

why this reduction in ATT may have occurred without first observing the results of the 

primary analysis and as such this will be addressed as part of an overall summary of results 

(section 5.4).    

  Of course, the treatment effects observed need to be viewed in consideration of the 

quality of matching that was achieved. In this regard Figure 14 below contains a love plot of 

the absolute standardized mean difference (ASMD) and the KS statistics for all the 

covariates, averaged across the four samples of the 2010-2012 outcome period.  

 

Figure 14: Average values of covariate summary statistics pre- and post-matching in the 2010-2012 

outcome period of the spillover analysis 

 

Figure 14 shows that PSM was able to reduce the values of ASMD and the KS 

statistic for all covariates, with many of the ASMD values being close to 0 in the matched 

data. This is a better result than was observed for the post-matching covariate balance when 

trialing the PSM technique for the treatment of PA establishment (Appendix K: Figure K1). 

Although this is not unusual given that the spatial extent of the treated units for the spillover 

analysis (within 5km PA buffer zones) is substantially smaller than that of the treated units 

used in testing (within PA boundaries). This considerable improvement in covariate balance 

is an indicator that the ATT estimates produced from the post matching samples are robust.       
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5.2 Primary analysis  
 

5.2.1 Assessing quality of matching 

 

Before presenting the main results of the analysis in terms of treatment effect estimates it is 

important to inspect the quality of matching that was achieved in terms of improvements to 

the covariate balance. Figure 15 below contains a love plot of the ASMD and KS statistic 

values for each covariate averaged over the 12 sub-samples for the 2010-2012 outcome 

period that were subjected to PSM.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15 shows that for all covariates PSM improved covariate balance between 

treated and control units as exemplified by reductions in average ASMD and KS statistic 

values. For some covariates the improvement in balance in more pronounced than others 

however these tend to be the covariates that showed greater imbalance to begin with, such as 

surrounding population. Overall, this result is largely equivalent to that which was achieved 

when the PSM method was trialed as part of the preliminary analysis (Figure K1: Appendix 

K) and whilst it also did not achieve perfect covariate balance (ASMD and KS statistic values 

= 0), it does affirms that the approach of sub-sampling was appropriate.  

Figure 15: Average values of covariate summary statistics pre- and post-matching in the 

2010-2012 outcome period of the primary analysis 
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A very similar result in terms of covariate balance improvements was achieved for the 

2013-2015 outcome period, and thus for the sake of brevity the love plot visualizing this is 

not presented here although it has been included as an Appendix (M). On the other hand, the 

covariate balance for the 2016-2018 period, did show some discrepancies and hence is 

presented as Figure 16 below.  

 

Figure 16: Average values of covariate summary statistics pre- and post-matching in the 2016-2018 

outcome period of the primary analysis 

 

Figure 16 shows that in the 2016-2018 period matching did not result in an average 

reduction in ASMD for three covariates: surrounding FCL; distance to land border and 

distance to ELCs. Although for surrounding FCL it did still reduce the value of KS statistic. 

This is problematic as it reduces the robustness of the ATT estimate produced for this period 

and unfortunately there is little that can be done to rectify this short of removing these 

covariates and repeating the analysis. Logically, this would have to be performed for all 

outcome periods which itself would be contentious given that balance was improved upon 

these covariates within the other periods.  
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5.2.2 Results of post-matching SAC testing  

 

To re-iterate the purpose of this testing was to highlight whether the sub-sampling procedure 

reduced the presence of SAC in the data (as detailed in Appendix J). The residuals of GLMs 

produced from the matched data of one randomly selected sample from each outcome period 

were tested using the Moran’s I test. The results of these tests found significant SAC at the 

99% confidence level (p<0.01) in each outcome period. The implication of this is that the 

results of the treatment effect estimates are likely being influenced by SAC to some extent. 

Unfortunately given earlier that attempts to mitigate the effect of SAC through the use of 

spatial GLMs were not successful (Appendix J), there is no realistic way to estimate the 

magnitude of this impact or to mitigate it. It is clear that SAC remains a pervasive issue for 

studies of this nature which will be reviewed further in the discussion.    

 

5.2.3 Treatment effect results  

 

Table 6 below presents the results of the ATT estimation for the treatment of units being 

included inside established PAs at the outset of each outcome period. In this case values of 

ATT are included for each of the 12 matched samples, along with an average, for each 

outcome period. As in the spillover analysis (section 5.1.5) the ATT values are expressed as 

odds ratios and the averages of the bias-adjusted SEs are calculated as the mean variance 

across the samples (not from the average ATT value). All samples in all outcome periods 

showed a significant positive treatment effect at the 99% confidence level (p<0.01), with the 

ATT values and bias-adjusted SE values being relatively consistent across the samples within 

each period. There was however a pronounced difference in the average ATTs values 

between the outcome periods corresponding to an apparent trend of decreasing PA 

effectiveness over time. In practical terms, the results show that in the 2010-2012 outcome 

period a 30x30m area of forest inside a PA was on average ~8.6% less likely to be deforested 

than a similar forested area not under protection. Whereas in the 2013-2015 outcome period 

this reduced likelihood of deforestation fell to ~6.1% and in the 2016-2018 period it 

decreased further to just ~2.9%.  
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Table 6: Estimates of ATT and bias-adjusted SE produced in the primary analysis 

 2010-2012 2013-2015 2016-2018 

Sample ATTsignif 

Bias- 

adjusted 

SE  

ATTsignif 
Bias- 

adjusted SE 
ATTsignif 

Bias- 

adjusted SE 

1 -0.0831*** 0.0022 -0.0606*** 0.0022 -0.0293*** 0.0024 

2 -0.0812*** 0.0022 -0.0604*** 0.0022 -0.0247*** 0.0024 

3 -0.0950*** 0.0023 -0.0602*** 0.0021 -0.0306*** 0.0024 

4 -0.0822*** 0.0022 -0.0624*** 0.0021 -0.0271*** 0.0024 

5 -0.0856*** 0.0023 -0.0595*** 0.0021 -0.0294*** 0.0024 

6 -0.0904*** 0.0023 -0.0619*** 0.0022 -0.0303*** 0.0024 

7 -0.0868*** 0.0023 -0.0597*** 0.0021 -0.0297*** 0.0024 

8 -0.0862*** 0.0022 -0.0583*** 0.0021 -0.0296*** 0.0024 

9 -0.0880*** 0.0023 -0.0648*** 0.0022 -0.0279*** 0.0024 

10 -0.0863*** 0.0023 -0.0599*** 0.0021 -0.0315*** 0.0024 

11 -0.0837*** 0.0022 -0.0622*** 0.0022 -0.0326*** 0.0024 

12 -0.0850*** 0.0023 -0.0616*** 0.0022 -0.0234*** 0.0024 

Average -0.0861 0.0023 -0.0610 0.0021 -0.028853 0.00242 

Note: **p<0.05***p<0.01 

 

 However, the validity of this inference of decreased PA effectiveness between 

outcome periods must be viewed in light of the relative deforestation pressure faced by PAs 

and unprotected forests over time. I.e. If the extent of FCL exhibited by PAs increases 

relative to the previous outcome period whilst simultaneously the extent in unprotected 

regions becomes substantially less then there are likely exogenous factors driving this that 

were not present in the previous period. For example, deforestation in the unprotected forest 

has become less commonplace as more land has been formally titled whilst it has increased in 

PAs due to a reduction in law enforcement activities. In this case it would be valid to infer 

that PA effectiveness has decreased but comparing the difference in ATT for this period to 

another where the control region exhibited greater FCL allows for only weak causal inference 

as the influence of the change on the control units is not accounted for. Alternatively, if 

deforestation pressure across different outcome periods is either consistent or changes uni-

directionally with respect to PAs and unprotected forests then this is not problematic.  

To facilitate comparison between the outcome periods, Figure 17 below includes 

visualizations of the spatial distributions of all FCL events occurring in either PAs or control 

(unprotected) regions in each outcome period, as well as summary statistics of the 

proportions of forest cover lost.  
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Figure 17: Forest dynamics occurring in protected and unprotected areas in each outcome period of analysis  

(data sources: GADM 2018; ODC 2019b; SERVIR-Mekong 2020b) 
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First, on a positive note, the summary data for all outcome periods in Figure 17 does 

corroborate the treatment effects observed in the primary analysis as it shows that PAs saw a 

smaller proportion of FCL relative to the area of forest cover they exhibited at the start of the 

each outcome period as compared to unprotected areas (PAs: 2.79% vs. 6.30% in unprotected 

areas).  

By contrast deforestation pressure can be compared between each outcome period by 

considering both the total area of FCL incurred by each region and the relative change in the 

area of forest cover lost as compared to the previous outcome period. In this regard Figure 17 

shows that PAs exhibited almost the same area of FCL in both the 2010-2012 and 2013-2015 

outcome periods (~960 km2) with a relative decrease of only 0.07%. This implies that the 

deforestation pressure they faced was consistent. However considering that the total area of 

forest cover in PAs in the second outcome period was substantially less than in the first 

(29845 km2 vs. 34406km2) this does confirm the notion of a reduction in PA effectiveness 

(despite there being less forest to protect, PAs failed to reduce the total amount of FCL 

incurred). In this case the fact that the deforestation pressure on the unprotected region 

appears to drop between the first and second outcome periods does not impact this inference 

given that the pressure on PAs remained consistent. 

On the other hand, the inferred reduction in PA effectiveness between the latter two 

periods of 2013-2015 and 2016-2018, which was greater than that observed between the 

former two (decrease in absolute ATT of 3.2% vs. 2.5%: Table 6) is not so simple to validate. 

In this case PAs in the 2016-2018 period exhibited a substantially greater area of FCL area 

(1152km2) equating to a relative increase of ~20.3% as compared to the 2013-2015 period. 

However, this must be viewed relative to the fact that the area of forest cover inside PAs in 

2016 increased to 40304km2 which is greater than it was at the outset of the preceding period 

(29845km2) let alone before the deforestation that occurred up until the end of 2015. This 

obviously results from the increase in the size of the total PA estate due to the new areas 

declared in 2016 (section 2.2.1), with the implication being that it is not possible to state 

whether deforestation pressure has increased relative to the previous period from this 

aggregated figure for all PAs. Instead confirmation of whether the decrease in ATT value 

observed for this period can actually be ascribed to decreasing PA effectiveness should come 

from a comparison of treatment effect estimates for the PAs in this period excluding those 

established in 2016 as compared to the relative FCL they experienced. These are the 

estimates that will be presented as part of the secondary analysis and thus the answer to this 

will be addressed in the summary of results (section 5.4).    
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5.3 Secondary analysis 
 

Table 7 below shows the number of treated units contained in the original samples for 

category of PA establishment date under all outcome periods. These were used to determine 

the number of sub-samples to be analyzed using PSM matching. Table 7 highlights that the 

category of PAs established between 2001-2010 had considerably lower number of treated 

units in the sample implying that these PAs amounted to a lower total area than the other 

categories something which is shown clearly in Figure 18 which follows later in this section.  

 

Table 7: Treated sample sizes and number of sub-samples used in the secondary analysis 

 Outcome periods 

PA 

establishment 

categories 

2010-2012 2013-2015 2016-2018 

No. of 

treated 

units 

No. of sub-

samples 

matched 

No. of 

treated 

units 

No. of sub-

samples 

matched 

No. of 

treated 

units 

No. of sub-

samples 

matched 

1993-2000 319090 13 275396 11 264415 11 

2001-2010 34732 2 32090 2 28593 2 

2011-2016 - - - - 120215 5 

 

The average treatment effect estimates (mean ATT) resulting from the secondary 

analysis are presented in Table 8 below. Given that these estimates of means are taken from 

the multiple samples analysed for each category they do not have significance values 

associated with them. However, all samples did produce positive significant ATT estimates at 

the 99% confidence level (p<0.01) and the results of treatment effect estimation for all 

individual matched samples has been included as a tabular Appendix (N).  

 

Table 8: Mean ATT estimates for PAs in categories of establishment date  

 Outcome period 

 2010-2012 2013-2015 2016-2018 

PA 
establishment 

date categories  

Mean 

ATT 

Mean 

bias-

adjusted 
SE  

Mean 

ATT 

Mean bias-

adjusted SE  

Mean 

ATT 

Mean bias-
adjusted 

SE  

1993-2000 -0.072 0.00215 -0.061 0.00210 -0.026 0.00246 

2001-2010 -0.21544 0.00291 -0.118 0.00278 -0.015 0.00305 

2011-2016 - - - - -0.063 0.00240 
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In a similar fashion to the primary analysis the results in Table 8 should be viewed in 

combination with the summary statistics related to the deforestation pressure faced by each 

category of PA across the different outcome periods which are presented in Figure 18.  

Starting with the 2010-2012 outcome period, Table 8 shows that PAs established 

between 2001-2010 produced a substantially greater ATT value than those established 

between 1993-2000 (~-0.22 vs. ~0.07). This implies that the former groups of PAs, which are 

effectively younger, were more effective in terms of generating avoided deforestation than 

the latter group. Although whether or not this would still be true if they covered the same 

total area as the older group cannot be verified i.e. it cannot be said with certainty that the 

overall effectiveness of these PAs intrinsically stems from how they were managed or simply 

due to differential pressure upon the forest resources they protected.    

 As for the 2013-2015 period, the two categories of PAs exhibited the same general 

feature with the 2001-2010 PAs showing a greater mean ATT value compared to the 1993-

2000 PAs (~0.12 vs. ~0.06), but the relative difference between these values is quite a bit 

smaller compared to the previous outcome period. This is validated by the values of relative 

% change in FCL area (compared to 2010-2012 period) in Figure 18, which show that the 

amount of FCL occurring in the 1993-2000 PAs fell by 9.2% whereas the 2001-2010 PAs 

saw a dramatic increase in FCL loss area of 85.5%. Overall, this is a strong basis to conclude 

that whilst both groups of PAs were less effective in 2013-2015 than in the previous period, 

the decrease in effectiveness was proportionally greater for younger PAs.  

 This trends also holds true for these groups of PAs in the 2016-2018 outcome period, 

with the 1993-2000 PAs exhibiting a relative % change in FCL area (as compared to 2013-

2015 period) of only ~-2.8% whereas for the 2001-2010 PAs it was ~-16.6%. In fact, this led 

to the former group displaying a higher mean ATT value as compared to the latter (Table 8: -

0.026 vs. -0.015), which is a notable change from the previous two outcome periods.   
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Figure 18: Forest dynamics occurring between 2010-2018 inside PAs established in different time periods 

(data sources: GADM 2018; ODC 2019b; SERVIR-Mekong 2020b) 
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Finally, it is interesting to note that the new category included in the 2016-2018 

outcome period of PAs established between 2011-2016 had a greater mean ATT estimate 

compared to the two other groups (Table 8: -0.63 vs. -0.026 (1993-2000) and -0.015 (2001-

2010)).  This supports the inference made with respect to the 2010-2012 outcome period that 

newly established PAs are more effective in their early years than older ones. Although again 

this is difficult to prove given the difference in areal coverage of the respective categories.  

As per the primary analysis it is important to inspect the improvement in covariate 

balance resulting from the matching process as this can highlight whether any category of PA 

suffered from poorer matching quality than others which in turn implies that the forest 

resources contained in those PAs were more different with respect to the control region than 

that contained in others.  

Figure 19 contains a joint love plot showing the changes in ASMD and the KS 

statistic values for covariates in each category of PA establishment date in the 2010-2012 

period. Comparing between the two categories there does appear to be some general trends, 

first PAs established between 2001-2010 showed higher values of ASMD and the KS statistic 

prior to matching than the 1993-2000 category and despite a greater magnitude of reduction 

in these values through matching the post matching values also remained higher. This would 

imply that the treated units (forest) contained in these PAs was more different (and thus 

harder to match) than that of the 1993-2000 PAs. However, it must be said that this is not the 

case for all covariates with notable exceptions being elevation and distance to provincial 

capital for which the relationship was essentially the opposite to that described above. Also, 

this trend is hardly surprising given that the 2001-2010 PAs covered a much smaller area than 

those established prior to them (see Figure 18), logically making them more likely to exhibit 

a smaller variance with regards to the covariate values associated with their treated units.  

The same general relationship was observed for the two categories in the 2013-2015 

outcome period for which a love plot has been included in Appendix O (Figure O1). As for 

the novel category of PAs established between 2011-2016 in the 2016-2018 outcome period, 

Figure O2 (Appendix O) shows that matching was able to achieve balance improvements on 

the majority of covariates. Although for surrounding population matching did not reduce the 

value of ASMD and for surrounding FCL it actually increased it. This was also true for this 

latter covariate in the other two categories of PA establishment in this outcome period. At the 

same time however the KS statistic value for both of these covariates was reduced by 

matching indicating that overall the process did make the distributions of the treated and 

control units closer even if this was not reflected in the measure of central tendency (ASMD).
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Figure 19: Average values for covariate summary statistics for PAs grouped by establishment date in the 2010-2012 outcome period 
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5.4 Summarizing results 

 

The purpose of this section is to tie together the results of each section of the analyses 

(spillover, primary and secondary) and highlight complementarities or discrepancies that 

exist between them.  

 First, the spillover analysis found a significant positive spillover effect of reduced 

probability of deforestation in 5km buffer zones exogenous to PA boundaries in all outcome 

periods, albeit with a decreased magnitude of treatment effect in 2013-2015 (Table 5). 

Overall, this result is validated by those of the primary and secondary analyses which also 

observed significant positive effects in all outcome periods. More specifically, the reduced 

magnitude of the spillover effect in the 2013-2015 period concurs with the reduction in mean 

ATT for the same period in the primary analysis (Table 6). However, the fact that spillover 

effect in 2016-2018 increased with respect to the former period does not match the trend of 

continued decreased PA effectiveness in that period for the primary analysis. This is a topic 

for further explanation which is addressed in the discussion (section 6.1).  

 Second, the results of the treatment effect estimate of the primary analysis implied a 

trend of decreasing PA effectiveness over time. This assertion was validated for the transition 

between the 2010-2012 period and 2013-2015 on the basis of the population level trends in 

FCL observed, although the same leap was not possible for the 2016-2018 period given that 

so much new PA land was added to the national estate. In this regard the results of the 

secondary analysis create the opportunity for a ‘pseudo-counterfactual’ comparison of what 

trend would have occurred had the PAs in 2016 not been established by only considering the 

treatment effects of the PAs established in the 1993-2000 and 2001-2010 categories. Table 8 

shows that the mean ATT estimates for both these categories of PAs in 2016-2018 also 

decreased relative to the 2013-2015 period which in effect confirms what the primary 

analysis alone could not, namely that PA effectiveness did successively decline in the periods 

between 2010 and 2018. The first question that this result should prompt is why did this 

occur? Which of course will be a topic of the discussion which comprises section 6.  
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6. Discussion 
 

Given the breadth of analysis undertaken the discussion has been sub-divided into several 

sections.  First section 6.1 will interpret the results in greater detail with regards to the 

circumstances that characterized each outcome period as well as other studies of PA avoided 

deforestation both in Cambodia and in a wider context. Second, section 6.2 will highlight the 

limitations of the analysis in both a practical and conceptual capacity. Finally, section 6.3 will 

summarize the implications of the results for stakeholders at a national scale as well as the 

wider context of quasi-experimental PA assessment literature and make recommendations for 

further study.  

 

6.1  Interpretation of results 

 

6.1.1 Findings of the preliminary analysis 

 

Beginning with the findings of the preliminary analysis that addressed objective iii (section 

3.2.1). The first component of which was the identification of biases in PA location in 

Cambodia as expressed by differences in the biophysical and socio-economic covariates 

between the units inside PAs and in the unprotected region. The three different techniques 

(summary statistics. smoothed density distributions and PCA) used gave rise to the same 

conclusion that overall, the groups show similar distributions across the majority of 

covariates with minor differences in only a few (section 5.1.3). The implication being that 

PAs in Cambodia do not show strong biases in their siting.  

 The moderate differences that were observed were that PA units were found at greater 

average distance from provincial capitals, major roads and surrounding FCL events. With the 

most pronounced differences in distribution being that PA units were mostly in areas of lower 

human population at higher average elevations (Figure 10;11, Table I4).  

Given that no previous studies have analyzed PA location in Cambodia in this manner 

there is no direct source of comparison for these results. However, they do match the results 

of similar studies in the wider literature which are collectively responsible for the broadly 

supported prognosis that PAs are located in remote and less accessible areas, (Mas 2005: 

Andam et al. 2008; Joppa et al. (2008); Joppa and Pfaff 2009: Pfaff et al. 2009: Kere et al. 

2017: Sarathchandra et al. 2018).  
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In this sense the nature of the differences observed are of less interest than the question of 

why the magnitude of the differences (biases) was not so pronounced. This likely stems from 

the fact that, Cambodia exhibits a relatively high coverage of PAs as a percentage of its total 

land area (26% in 2014 (RGC 2014) increasing to 34% in 2016 (Souter et al. 2016) not 

inclusive of development projects inside PA boundaries). Given that this high coverage is 

spread throughout the country (Figure 6, section 2.2.1) (i.e. encompassing the range of 

geophysical conditions that exist) the lack of a pronounced difference as compared to 

unprotected areas is not so unusual. If anything, this is further exaggerated in this study 

considering that only forested units of analysis were compared and it is clear from the size of 

the populations of both treated units and control units that PAs contain a large proportion of 

the countries remaining forests (Table 3: section 5.1.1).  

However, there is another factor that suggests that the explanation is not quite as simple 

as this. Namely that, given the size of the PA estate increased in the final outcome period 

then we would have expected this to have reduced the variance of covariates between treated 

and control groups as compared to previous periods. Whilst the values of the KS statistic and 

COC in Table I4 (Appendix I.3) show that this is the case for some covariates (decreasing 

value in the 2016-2018 period) for others the inverse is true i.e. the distributions became less 

similar (increasing values).  

There are two possible explanations for this difference: Firstly, it could result from 

whether covariates were time-invariant or changed over time only due to endogenous 

processes (i.e. related to themselves). For example, the location of provincial capitals did not 

change in the data however average annual precipitation could have changed because of 

macro-scale climatic trends. Secondly the variance of both of these types of covariates is 

determined in part by the exogenous processes that change the distribution of all units over 

time, i.e. patterns of deforestation. For the time variant covariates, the influence of exogenous 

processes maybe occurring concurrently with the endogenous changes over time or either one 

may be occurring in isolation. Elucidating which of these circumstances is the case is difficult 

and as such this confounds explanation of why the variance between protected and 

unprotected areas did not increase as the former were expanded over time.  

On this basis a more comprehensive method of testing for biases in PA location in 

Cambodia in the future would be to use the same covariates but instead to analyze the 

distributions of all units inside PAs not just those that were forested which would of course 

exclude the impact of the exogenous factors affecting the distribution of units.  

 

C
E

U
eT

D
C

ol
le

ct
io

n



113 

 

Moving on to the second component of objective iii the identification of predictors of 

deforestation. The results showed that the strongest predictors of whether a given unit was 

deforested were its proximity to other surrounding FCL events, followed by elevation, 

distance to major roads and average annual precipitation (section 5.1.4). These factors and the 

nature of the relationships with deforestation are broadly in keeping with the results of other 

studies in Cambodia. For example, ICEM (2003a), Broadhead and Izquierdo (2010), 

Beauchamp et al. (2018); Ota et al. (2020) all also concluded that deforestation is more likely 

to occur closer to major roads. Similarly, this study’s result of a greater probability of 

deforestation occurrence at lower elevations is corroborated by Beauchamp et al. (2018) and 

Lonn et al. (2018). As for lower average distances to surrounding FCL events being a strong 

predictor of deforestation this is a similar result to Beauchamp et al. (2018) who found that 

“deforestation was more likely to occur when areas are surrounded by a high proportion of 

non-forest” (p. 439). Overall, the fact that these results concur with the country-specific 

literature is unsurprising given that these relationships, similar to the biases in PA location, 

have been extensively confirmed by studies in many different contexts (see Geist and Lambin 

2002 and Green et al. 2013 for an overview).    

 By contrast an unexpected result was that distance to ELCs which was expected to be 

strong predictor of deforestation based upon previous quantitative analysis (Michinaka et al. 

2013; Davis et al. 2015; Beauchamp et al. 2018; Magliocca et al. 2020) was in fact one of the 

weakest (low values of SDM: Table 4: Section 5.1.4). The most likely explanation for this is 

that the means by which this covariate was implemented (by producing a Euclidean distance 

matrix from all ELC boundaries) was too crude a measure given the number and size of ELCs 

present in each outcome period. However, a minor effect was more visible for this covariate 

in the smoothed density plots (Figure 12: section 5.1.4).  

As for the investigation into deforestation predictors between protected and unprotected 

areas. Whilst the PCA biplots showed that differences between the groups were minimal 

(Figure 13: section 5.1.4), the fact that the first two PCs explained a relatively proportion of 

the total variance (maximum of 38.2% in the 2016-2018 period) is an indication that overall 

deforestation is a complex process not easily captured by a small number of predictors. This 

is a similar conclusion to that of Eklund et al. (2019) who highlight that the occurrence of 

deforestation is dynamic in both a spatial and temporal sense and can shift between accessible 

and inaccessible regions. In this sense, one means to improve this aspect of this study would 

be to make the analysis more comprehensive by including all deforestation events not just 

those that occurred for the units identified as either treated or controls.   
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6.1.2 Main findings with regards to PA effectiveness  

 

 In fulfillment of the stated objective (section 3.2.2) the primary analysis of this study found a 

significant positive treatment effect (ATT) resulting from a unit of analysis being located 

inside a national PA for all three outcome periods (section 5.2.3). This corresponds to PAs 

exhibiting significantly less deforestation than their matched counterfactual unprotected areas 

which concurs with the generalized findings of the two previous quasi-experimental studies 

that performed similar analysis in Cambodia: Clements and Milner-Gulland (2014a) and Ota 

et al. (2020). Although the magnitude of the treatment effects observed are not comparable 

given differences in scale and temporal coverage. This finding is also supported by other 

quantitative analysis such as that of Beauchamp et al. (2018) who, whilst they did not utilize 

a quasi-experimental approach, did observe lower rates of deforestation inside PAs than 

outside. In a broader sense this overall result of a positive treatment effect of PAs with 

regards to an ecological outcome is also in keeping with the majority of studies in the wider 

context beyond Cambodia (Andam et al. 2008; Berefords et al. 2013; Carranza et al. 2013; 

Geldmann et al. 2013; Nolte et al. 2013; Pfaff et al. 2013; Vergara-Asjeno and Potvin 2014; 

Spracklen et al. 2015 Ament and Cumming 2016; Eklund et al. 2016; Bowker et al. 2017; 

Butsic et al. 2017; Yang et al. 2019).  

However, within this general finding there was a trend of decreasing treatment effect 

between the outcome periods (Table 6, section 5.2.3), which when contextualised against the 

relative rates of total FCL events and the results of the secondary analysis, can reasonably be 

ascribed to a trend of decreasing PA effectiveness over time. This trend is hardly surprising 

given the history of poor natural resource management and accompanying widespread 

exploitation that has occurred both inside and outside of Cambodia’s PAs as described in 

successive sections in chapter 2. Section 2.1.2 specifically highlighted the broader trends and 

events that the particular temporal period that was investigated was intended to characterise 

and as such it is pertinent to review these now in combination with the results.   

Firstly, in terms of FCL at the national scale the first outcome period of 2010-2012 showed a 

comparatively greater area of FCL having occurred than in the 2013-2015 period (sum of 

FCL in all three years of each period: Figure 5, section 2.1.3). On the basis of this alone it 

would seem counterintuitive that PA effectiveness decreased over this time however when 

the area of FCL is divided into that occurring inside PAs vs. outside of them a different 

picture emerges. Figure 17 (section 5.2.3) showed that whilst the area of FCL occurring 

inside PAs was almost the same in the two outcome periods (~960 km2) the amount of forest 
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there was inside PAs to protect in the latter period was considerably lower. Hence the relative 

% of FCL in PAs between 2013-2015 was higher and meaning that protection was less 

effective.  

Given that there is no evidence that suggests that this reduction in PA effectiveness 

over this period was due to endogenous factors such as a decline in funding or decrease in 

extent of management activities it is logical to assume that instead it is due to exogenous 

processes namely an increase upon the pressure of forest resources inside PAs. This increase 

in pressure upon PA resources is most likely due to the activities of the ELCs that were 

established inside PA boundaries from 2008 onwards (section 2.2.1). In this regard Figure 9 

(section 2.3.1) shows that the area of ELCs established inside PAs on an annual basis 

increased from 2008 and more than doubled in 2011. Whilst this would appear to slightly pre-

date the decline in PA effectiveness it must be remembered that due to the restrictions of the 

counterfactual study design employed these ELCs only began to be included in the 2013-

2015 period (Appendix G). This is unlikely to produce a dissimilar effect from what occurred 

in reality given that many ELCs did not begin operations (land clearance) immediately after 

their licenses were issued (Beauchamp et al 2018).  

This assertion of ELCs impacting the environmental outcomes of PAs and thus their 

effectiveness is supported by other sources (Broadhead and Izquierdo 2010; Global Witness 

2015; Peter and Pheap 2015; Boyle and Turton 2019). However, in order to further validate 

it, additional analysis could be performed estimating treatment effects on an annual basis 

between the years of 2011-2015 to determine exactly what year the biggest reduction in PA 

effectiveness occurred. This could then be compared with RS imagery of land cover change 

from ELCs sites inside PA boundaries to give a more accurate indication of when they 

actually began operations.   

 By contrast the decrease in PA effectiveness between the latter two outcome periods 

of 2013-2015 and 2016-2018 is more likely to be the result of factors endogenous to PA 

management/operations. The reason for this is that, the area of FCL that occurred in each 

year at the national scale was generally lower than in 2013-2015 (although 2016 did see an 

increase vs. 2015: Figure 5, section 2.1.3), and whilst the area of FCL inside PAs did increase 

(Figure 17, section 5.2.3) this is overshadowed by the concurrent increase in the amount of 

forest to be protected given the expansion of the PA network (section 2.2.1). However, we do 

know that 2016 was a significant year for PA management in Cambodia with the MoE being 

transferred the jurisdiction over areas previously overseen by the FA and thus now being 

responsible for the whole national PA estate (section 2.2.4). At the time Souter et al. (2016) 
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warned of the potential negative implications that this change in conjunction with the 

expansion of the PA network could have on the management and effectiveness of PAs given 

the existing budgetary constraints and insufficient capacity of the MoE and it seems that the 

results of this study have validated their concerns. The lack of other sources evaluating PA 

effectiveness in Cambodia as recently as the 2016-2018 period make it harder to identify 

what aspects of PAME have been most compromised by this change. Although if the results 

of the PAME assessments that have taken place were made publicly available then these 

could be cross referenced against the results of this study to provide further insights in this 

regard.  

Moving on to the results of the spillover analysis the main finding of which was a 

significant positive spillover effect across all outcome periods (section 5.1.5). In practical 

terms this means that units in 5km buffer zones surrounding PA boundaries were 

significantly less likely to be deforested as compared to matched counterfactual units in the 

wider unprotected landscape. The fact that this result generally fits with that of the primary 

analysis is positive although it is noteworthy that the trend of changes in the magnitude of the 

treatment effect between outcome periods did not entirely match. More specifically in the 

primary analysis treatment effect sizes declined across all subsequent periods whereas for the 

spillover effect there was a decline between the 2010-2012 and 2013-2015 periods but an 

increase in 2016-2018 (Table 5, section 5.1.5).  

Comparison to the other in-country studies offers little in the way of explanation for this 

as their results differed, with Clements and Milner-Gulland (2014a) observing a possible 

negative spillover effect although their analysis period was prior to that of this study. 

Whereas Ota et al. (2020) found a positive effect for protected forests but not for other PAs 

and they only analysed up to 2016. However other studies in the wider literature do offer 

some possible explanations. Firstly, the spillover effects resulting from PAs have been 

acknowledged as varying over different spatial extents as well as with regards to the 

effectiveness of PAs themselves (Pfaff and Robalino 2012; Pfaff et al. 2013; Ament and 

Cumming 2016). Given that the results of the secondary analysis observed different 

magnitudes of treatment effects between PAs established in different time periods it is 

possible that this is causing heterogenous spillover effects to occur. On this basis it would be 

useful to extend the spillover analysis by not just different buffer zone sizes but also 

differential effects using the PA establishment categories of the secondary analysis to see if 

the trends are similar i.e. do younger PAs exhibit stronger positive spillover effect that 

declines over time? 
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Although Pfaff and Robalino (2017) also highlight how the mechanisms by which 

spillover effects are generated are complicated and also play a role in determining the nature 

and size of effects observed. For example, the establishment of PAs alters localized economic 

conditions such as demand for forest and agricultural products as well the availability of land, 

the knock-on effects of which may differ for example stakeholders may choose to pre-

emptively clear land thereby increasing deforestation or alternatively they may choose to 

migrate to areas further from PAs with less restrictions upon resource use (p. 302). 

Simultaneously the strategies/activities employed by PAs themselves also influence spillover 

effects, such as the relative deterrence effect of law enforcement vs. community education 

and development programs (p. 304). Considering that such factors were not controlled for in 

the matching process in this study in theory they be could responsible for the result in 2016-

2018.  

Alternatively, another possible explanation is the nature of the forest clearance that is 

occurring in the buffer zone in any given period. The spillover effect may have been greater  

in the third outcome period because by this point only low value timber was remaining and 

hence there was little incentive to clear it whereas those that would have engaged in this 

activity instead turned their attention to higher value timber left inside PAs (Singh 2014). 

This notion highlights a fundamental conceptual limitation of the form of analysis employed 

in this study, namely that deforestation is treated as somewhat of a uni-dimensional process 

to be predicted by external factors rather than the different motivations that drive it, 

something which will be discussed further in section 6.3.2. 

Finally, there is the results of the secondary analysis which displayed the same overall 

trend of significant positive PA avoided deforestation over time albeit with differences in the 

magnitude of the treatment effect dependent upon the period in which PAs were established 

(section 5.3). In this regard the main finding was that the most effective group of PAs in each 

outcome period were those that had been established the most recently although between 

outcome periods it was these PAs that suffered the greatest reduction in treatment effect size. 

Again, this result is not comparable to the Cambodian studies by Clements and Milner-

Gulland (2014a) and Ota et al. (2020) as they did not analyze multiple outcome periods. 

Although this phenomenon of younger PAs being more effective has been evidenced by other 

quasi-experimental studies such as Paiva et al. (2015); Blackman et al. (2015); Kere et al. 

(2017) and Bowker et al. (2017). However, it is not definitive as others have observed the 

inverse relationship (Butsic et al. 2017) or insignificant differences (Zhao et al. 2019) 

indicating that there are likely other factors involved. On this point Kere et al. (2017) make 
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two important observations: First that there should be a contextual justification why younger 

PAs are more effective and second that any apparent differences in effects between PAs of 

different ages must be viewed in light of their respective localities.  

Applying this logic to the findings of this study a possible explanation for why the PAs 

established between 2001-2010 were more effective in both the 2010-2012 and 2013-2015 

outcome periods is that they were likely subject to better planning and design as well as 

increased financial and technical support from international conservation organizations than 

those of the early establishment group of 1993-2000. Indeed, Clements and Milner-Gulland 

(2014a) note that some PAs did not have any active management until they received donor-

led support in the mid 2000’s. In addition to this, it is a reasonable assertion that after close to 

a decade of managing the early PAs (1993-2000) that the level of capacity within the MoE 

and FA would have improved to some extent despite being acknowledged as still being 

limited (ICEM 2003b; Lacerda et al. 2004). The same argument can be made for the new PAs 

established between 2011-2016 that were the most effective in the 2016-2018 period.  

The trend of more recently established PAs displaying a larger reduction in treatment 

effect between outcome periods in proportion to the older PAs is also interesting. Although, 

again, without detailed information on aspects of management effectiveness or funding it is 

only possible to speculate as to what is causing it. One logical explanation is that at the outset 

of establishment of new PAs, support from central institutions and external organisations is 

strong, management have targets to meet and something to prove and staff motivation is high. 

Thus, in the early years the PA achieves good results in terms of reducing pressure as 

evidenced by high avoided deforestation. However, as in other types of conservation 

programs, this early progress can sometimes represent ‘low-hanging fruit’ (Coll et al. 2015) 

i.e. objectives that are addressed first on the basis that they are relatively achievable and yet 

produce substantial results, perhaps at the expanse of tackling more pernicious problems. For 

example, in PAs this could be the implementation of law enforcement activities where none 

were previously present. Initially this is likely to achieve good short-term results by reducing 

the volume of illegal activities but in isolation it is unlikely to eliminate the persistence of 

said activities in the long term. The implication of this is that after short-term gains are made, 

PA effectiveness can effectively ‘plateau’ as the progress in addressing more complex threats 

is slower. This in turn can lead to declining motivation of staff which can be compounded by 

waning support from central institutions and donors as new projects become more attractive.  

This combined with the emerging trend of increased scrutiny with regards to the funding of 

PAs by larger multilateral donors evidenced both in Cambodia (Souter et al. 2016) and in a 
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wider (global) context (section 1.2.1) could very well explain why the effectiveness of newly 

established PAs in Cambodia declined quickly.  

However, the second observation regarding the localities of PAs of different ages 

representing a confounding effect cannot be overlooked (Kere et al. 2017). In this study 

treatment effects were estimated for the different establishment dates of PAs separately, this 

means that whilst matching was conditioning for the differences between these PAs and the 

whole control sample it did not then condition for the differences between the matched 

samples produced for each group. This allows the possibility that the control units matched to 

certain groups of PAs displayed substantially different average outcomes due to the 

differences in the distribution of deforestation occurrence. The implication of this is that it is 

these differences may be influencing the treatment effect sizes more than the age of the PAs 

themselves. Ultimately this phenomenon was not assessed in this study and thus no 

conclusion can be made as to whether it indeed explains the observed difference in PA 

avoided deforestation with age. In hindsight this could have been tested for by comparing the 

density distributions or summary statistics for the covariates of the matched samples across 

the different groups of PA establishment dates. Although, given that this analysis involved 

sub-sampling of uneven sample sizes this process would not only have been protracted but 

also potentially too coarse to highlight differences. Instead a better approach to mitigate for 

this confounding of effect of PA locality would instead be to utilise an alternative model of 

treatment effect estimation as part of the matching process that analyses the different groups 

in combination with one another. This would involve the treatment being conceptualised not 

as dichotomous (untreated vs. treated) but as polychotomous (untreated vs. treatedX: treatedY) 

which can be achieved using a multinomial logistic regression model (Kere et al. 2017). Such 

a technique is something that could be employed if the analysis of this study is expanded 

upon in the future.  

In summary the principal findings of this study namely: a positive effect of PAs albeit 

with a decline in magnitude over time, and that newly established PAs were more effective 

than older ones do hold up to comparison with both quantitative and qualitative sources from 

Cambodia as well as trends highlighted by the wider literature on quasi-experimental PA 

assessment. Even if the explanation for the latter trend is difficult to confirm conclusively 

without further analysis. 
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6.2 Limitations of the study 
 

6.2.1 Practical limitations of analysis 

 

The different processes involved in the quasi-experimental methodology used in this thesis 

presented their own limitations and compromises had to be made at different stages. At the 

data acquisition and preparation stage (sections 4.1 and 4.2), one of the primary examples of 

this was that no viable means of validating the forest cover and FCL data, upon which 

assignment to treatment and control groups as well as the outcome variable depend, was 

found. In addition to this, despite the dataset of ELC locations being comprised through a 

process of cross-checking the two most comprehensive sources available (Appendix F) there 

is still a recognized degree of uncertainty associated with this data which is significant given 

that ELCs represented a substantial amount of land excluded from PAs in the analysis. The 

implication being that if inaccuracies in the data meant that PA land was excluded when it 

shouldn’t be or vice versa then this might have produced different results of avoided 

deforestation.  

 Overall these are the same concerns that plague all analysis of this type, and from a 

practical perspective there is little that can be done about them as even if it were possible to 

quantify the error in individual covariate data for example, methods of propagating this in the 

estimation of the treatment effect are yet to be developed (section 1.3.4.5).  

As for limitations that were encountered in the preliminary analysis steps prior to 

matching the most significant issue was that neither of the methods employed to mitigate for 

the presence of spatial-autocorrelation (SAC) in the data were successful (Appendix J). In 

addition to this further testing found that SAC was still significant after sub-sampling in the 

primary analysis (section 5.2.2) meaning that it is likely influencing the results of the 

treatment effect estimates in this analysis as well as the spillover and secondary analyses. The 

persistence of SAC is certainly not an issue for this study alone, in fact a recent study by 

Negret et al. (2020) tested four different models to account for SAC in a matching based 

assessment of PA effectiveness and none were successful. This is particularly worrying given 

that a large number of studies of this kind in the wider literature either ignore SAC or assume 

that random-sampling of the treated and control populations will be sufficient to mitigate it 

(See Table A1: Appendix A) whereas this study has shown that this is evidently not the case. 

This a clear indication that further research on understanding the processes by which SAC 

occurs and how its effects can be accounted for in quasi-experimental studies is needed. 
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Finally turning to limitations in the statistical matching portion of the analysis, the most 

notable of which was that given the computational resources available it was only possible to 

analyze for treatments effects covering ~10-12% of the total populations of treated and 

control units available in each outcome period across the primary, secondary and spillover 

analyses (refer to sections 4.3.6, 4.4 and 4.5). This means that the region of support 

(Schleicher et al. 2019) for the estimates of ATT is possibly limited and hence it is debatable 

whether in fact they constitute measures of Sample Average Treatment Effect on the Treated 

(SATT). Similar to SAC this is an issue for many other studies in the literature, a good deal 

of which have analyzed total samples much smaller in size than that achieved in this study 

(See Table A1: Appendix A). Furthermore, these studies rarely discuss the implications of 

this with regards to the broader inferences they draw from their results.  

In terms of addressing the computational constraints of statistical matching the simplest 

approach is to use a coarser resolution of the unit of analysis although this is hardly a panacea 

as it risks introducing aggregation-bias (Blackman 2013). Instead this study replicated the 

technique used by Nolte and Agrawal (2013) by analyzing successive sub-samples and 

calculating an average ATT from them however as mentioned there has been no detailed 

investigation of the implications of this in terms of the quality of matching achieved. This 

study has made a contribution to this discussion as testing showed that indicators of matching 

quality did not vary substantially under different samples sizes (Appendix K). Although this 

should still be expanded upon by more rigorous investigation.  

Beyond this issue of constraints in sample size another limitation of the matching analysis 

was that neither technique that was tested resulted in a perfect post-matching covariate 

distribution (Appendix K), and neither was this achieved using PSM in the actual analysis 

(sections 5.1.5, 5.2.1, 5.3, Appendix O). In theory this weakens the causal inference of the 

treatment effect estimates even though the Abadie and Imbens (2011) bias-adjusted method 

of ATT calculation was used to mitigate for this (section 4.3.4). Of course, to avoid this it 

would have been possible to exhaustively test other specifications of matching that may have 

resulted in better covariate balance. An additional technique that was trialed but found to not 

be feasible was to use the ‘GenMatch’ function in the Matching package (Sekhon 2020) 

which minimizes variance by using an evolutionary search algorithm to iteratively test 

different covariate weightings schemes in the calculation of the desired multivariate distance 

metric (e.g. propensity score or Mahalanobis distance). When tested this matching algorithm 

ran for >18 hours without producing a result for a similarly sized sample as was tested in 

Appendix K, although there is nothing to suggest that with additional processing power it 
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would not be successful.  An alternative to this would be test further matching specifications 

under the PSM approach such as matching without replacement, different ratios of treated to 

control units, and a more restrictive caliper than the 0.5 SD that was used previously, all of 

which have the potential to yield improved post-matching covariate balance if this research is 

to be expanded upon in the future.  

 

6.3.2 Conceptual limitations of methodology 

 

Turning instead to the conceptual limitations in the quasi-experimental methodology of this 

thesis. Section 6.1.1 already highlighted that Cambodia’s relatively high PA coverage meant 

that it was difficult to ascertain biases in PA location. However, this is also problematic when 

it comes to the estimation of treatment effects using matching methods as it meant that there 

was a ratio of less than 1:2 treated to control units in the populations for analysis (Table 3, 

section 5.1.1). Whilst it was possible to artificially adjust this ratio in the sub-sampling that 

was used for matching (a 1:3 ratio was used, section 4.3.4) this does not change the fact that 

in reality unprotected forest is not that abundant compared to protected forest in Cambodia. 

This in fact may explain why matching was not able to achieve better covariate balance 

improvements as the unprotected forest that does exist is too dissimilar to the protected 

forest. If this is true then it implies that perhaps a with-versus similar without study design as 

used in this thesis is not best suited to analyzing PA effectiveness in Cambodia. This does not 

mean that such analysis is not applicable but that instead a counterfactual BACI or fixed 

effects regression design, which would be more robust to differences between the treated and 

control groups, might be more appropriate (Wendland et al. 2015). Ultimately though there 

are no objective rules regarding what constitutes an acceptable ratio of treated to control units 

or the maximum acceptable level of dissimilarity between the groups, leaving the decision up 

to investigators which is something of an inherent weakness of the methodology.    

Another limitation as alluded to in section 1.3.4.2 is that because this study did not 

conduct analysis on an annual time step this meant that variables that are in reality are time-

variant were constrained into a time-invariant form within each outcome period. Appendix G 

detailed how this meant that some ELC and PA land that was not established in the first year 

of the outcome period was excluded until the subsequent outcome period. However, 

constrains of data availability also meant that for some covariates the same data had to be 

used for all periods, for example distance to roads, which is especially problematic given that 

we should have expected that this is a variable that would show substantial variation over 
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time. This is another issue with counterfactual matching study designs that goes largely 

unaddressed in the literature, likely because there is no easy solution to it. Given that such 

covariates as distance to roads have been consistently found to be strong predictors of both 

PA location and deforestation occurrence (Section 1.4.2) it doesn’t make sense to drop them 

entirely. However, in future more effort should be made to source temporally partitioned 

data, perhaps by utilizing open access big data sources such as the OpenStreetMap project 

(OSMF 2020) (although admittedly crowd-sourced data has its own issues of accuracy). 

Failing this, researchers should at least provide more clarity as to the temporal limitations of 

the data they use.   

Another conceptual issue associated with temporality in counterfactual analysis is that of 

problems of endogeneity with respect to causality (Antonakis et al. 2014). Within this thesis 

two such problems were identified at different scales. First the causal relationships between 

the covariates and the outcome variable of deforestation occurrence are not necessarily uni-

directional, this is summarized aptly by Mertens et al. (2004) as follows: “it is hard to 

distinguish situations where human settlements, productive activities, and infrastructure are 

located in certain places because those places have environmental conditions that make them 

good to deforest from those where deforestation occurs because people settle, build roads, or 

make specific zoning decisions.” (p.90). In the case of Cambodia, the conclusion of 

modelling by Beauchamp et al. (2018) led them to suggest that the latter causal relationship 

was occurring although this is unlikely to be homogenous across the whole country.  

Second, with regards to the inferences made about PA effectiveness validated against 

crude indicators of deforestation pressure (Sections 5.2.3 and 5.3). This is because the 

relationship between the ‘pressure’ on a PAs resources and the effectiveness of PA 

management in terms of mitigating this pressure is complex. Both are multi-faceted concepts 

that are occurring simultaneously, changing continuously and influenced by separate 

exogenous factors, hence ascribing causality is difficult and discretizing them into outcome 

periods is inherently limiting.  Logically one way to deal with these endogeneity problems is 

by continually improving the causal model to reduce uncertainty (Ferraro and Hanauer 2014; 

Baylis et al. 2016). In practical terms this can mean increasing the resolution of the analysis, 

temporally but also spatially, and possibly including additional variables, for example in the 

situation of inferring reduced PA effectiveness from lower avoided deforestation estimates by 

comparing pressure across different time periods (section 5.2.3) being able to also examine 

the trend in PA management inputs would have improved the strength of this conclusion. Of 

course, there will always be a tradeoff between what level of certainty with regards to casual 
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inference is deemed acceptable in light of the costs (time and money) of sourcing and 

analyzing further data.  

At a higher level of abstraction, it is important to reconsider the conceptual critique 

introduced in section 1.4.3 that perhaps avoided deforestation may not be the most 

appropriate ecological outcome by which to assess the effectiveness of Cambodia’s PAs. The 

justification for choosing was that the country’s PAs do contain a considerable portion of its 

remaining forest and this has always been a critical resource (section 2.2.3). However, this 

outcome obviously precludes the fact the PAs may have been effective in preserving other 

valuable non-forest habitat types known to be present and threatened such as wetlands (ICEM 

2014).  

A final limitation in the methodology of counterfactual PA outcome assessment used in 

this thesis is the conceptual boundaries that are applied to the outcome of deforestation. More 

specifically, whilst statistical matching improves causal inference by attempting to ensure 

that differences in the outcome variable are the result of the treatment only, it is inherently 

unable to account for the fact that outcomes such as deforestation are the result of decisions 

by human agents for which the rationale may differ (Eklund et al. 2016). For example, two 

widely recognised drivers of deforestation in Cambodia are the conversion of land for 

agriculture (Kong et al. 2019) and the selective extraction of high-value timber species 

(Global Witness 2015). However the very nature of PAs means it is highly likely that 

deforestation within them is being driven more by the latter process rather than the former as 

attempting to engage in agriculture within PAs is more risky as the time-scale of the activity 

means there is an increased probability of being caught and forced to abandon the cleared 

land. Whereas selective illegal logging, particularly at a small scale, is comparatively easier 

to perpetrate in PAs and is known to be an issue in Cambodia (Singh 2014). Vice versa in the 

unprotected forests conversion for agriculture is likely the more dominant driver especially as 

most high-value timber worth extracting will likely been cleared already given the history of 

natural resource exploitation in the country (section 2.1). 

Hence even though the results of section 5.1.4 indicated that the predictors of 

deforestation in PAs and unprotected areas in terms of the covariates were similar, if in fact 

deforestation is occurring for very different reasons in each area then this weakens the 

counterfactual comparison created using matching. It would be possible to account for this 

phenomenon by using a polychotomous outcome variable i.e. Y1= forest cover retained; Y2 

=FCL: conversion for agriculture; Y3=FCL: timber extraction. Although this would require a 
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robust means of distinguishing between these outcomes from the RS data and this has been 

widely acknowledged as a challenge (Eklund et al. 2016; Singh et al. 2018).  

Overall, despite the limitations that have been described it is important to recognise that 

counterfactual analyses that are able to reduce some of the uncertainty with regards to impact 

evaluation of PA outcomes still represent a marked improvement over naïve assessments that 

do not account for biases (Ribas et al. 2020) and this can only improve with further 

development of the techniques involved.   

 

6.3 Implications of study results  

 

6.3.1 Practical implications for stakeholders  

 

The fact that this study has demonstrated that PAs in Cambodia produce tangible benefits in 

terms of avoided deforestation as compared to the counterfactual of them not being present is 

something of a vindication for those responsible for their continued operation in the face of 

long-running criticism (section 2.2). This finding should be utilized by conservation 

practitioners as empirical justification for continued funding for PAs into the future. In this 

regard the trend of decreased PA effectiveness over time should be particularly highlighted to 

stress how increased funding of PA management is needed to reverse the trajectory of 

decline. In addition to this the positive spillover effects observed should also be leveraged to 

demonstrate that PAs in Cambodia have ecological benefits beyond their boundaries in 

combination with the socio-economic benefits found by Clements and Milner-Gulland 

(2014a) and Clements et al. (2014).   

The results of this study should also be considered in decisions of how spending on PAs 

is allocated going forward. If indeed the decrease in effectiveness observed between the 

2013-2015 and 2016-2018 period stems from the MoE being over-stretched in terms of 

managing an expanded PA estate (section 6.1.2) then it seems ill-advised to establish any 

more PAs in the near future. Instead, there is a clear incentive for funding to be used to 

persist with improving PA management. Ideally this should focus on the newly established 

(2016) PAs in an attempt to buck the trend of these becoming less effective over time as 

observed in this study. Further to this additional consideration should be given to placing 

REDD+ sites in these PAs given that they are more likely to be successful at least in the short 

term. More specifically these sites should be located in areas that show lower human 

populations as this was found to be the strongest factor affecting deforestation occurrence 
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inside PAs (section 5.1.4). The same holds in terms of selecting potential locations for the re-

introduction of the wild Tiger although of course this must be weighed up against the 

placement of REDD+ sites as logically the two are not compatible.  

 Finally, if it wasn’t already clear from the previous evidence (section 2.2.2.1) this 

study has shown that the policy of allowing the development of resource-extractive industries 

inside PAs was likely a strong contributor to a reduction in their environmental effectiveness. 

Whilst this was primarily demonstrated for the period of 2013-2015 there is a chance that the 

effects extend beyond this as well (section 6.1.2). This serves as a clear message that the 

continued allocation of PA land in this manner in the future is highly inadvisable and indeed 

any remaining developments that have not yet started operations (particularly mining and 

hydropower) should either be revoked or at the least monitored closely.   

 

6.3.2 Implications for the field of quasi-experimental PA effectiveness 

assessment 

 

The previous sections 6.1 and 6.2 have already highlighted some of the contributions that this 

study can be considered as having added to the field of quasi-experimental PA outcome 

assessment although it is useful to summarize these collectively. From a methodological 

perspective this study has provided additional evidence that the use of sub-sampling can 

make the process of statistical matching computationally achievable when processing 

capacity is limited. Additionally, that the techniques of accounting for SAC in GLMs using 

either simplistic X/Y coordinate predictors or through the creation of a SAC autocovariate 

were not successful. As for the results, this study adds further weight to the growing 

consensus that PAs show positive but weak avoided deforestation as compared to 

counterfactual unprotected control areas (sections 1.4.1 and 6.1.2). The results of this study 

also serve to further the discussions around how the duration of time since PA establishment 

is related to the effectiveness of outcomes as well as relationship between trends in the sizes 

of spillover effects and those of overall PA effectiveness. 

Finally, from a practical perspective this study has shown that given the increasing 

coverage and quality of big data available it is possible for researchers or conservation 

practitioners to conduct robust quasi-experimental analyses such as this without extensive 

costs or resources. Indeed, this was the motivation behind making the R scripts used for the 

analysis openly available through GitHub so that others can adapt them to their own needs in 

future (section 4.6).  
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6.3.3 Recommendations for further study 

 

Again some of the discussion of results and limitations has already entailed some 

recommendations for further study including: testing spillover effects for PAs of different 

ages separately (section 6.1.2), more comprehensive methods of ATT calculation to mitigate 

differences in locality when analyzing PAs of different ages (6.1.2) and different matching 

approaches to improve covariate balance (6.2.1). However, in addition to these a number of 

other avenues for further research became apparent over the course of this study.   

First, there is a clear precedent from both the wider literature (section 1.4.1) and within 

country sources (Beauchamp et al. 2018; Ota et al. 2020) to test whether the management 

categories or size of individual PAs are also predictors of their outcomes in terms of avoided 

deforestation. These results could then be compared to those of PA establishment period in 

this study to see if any interactions exist. Furthermore, given that the involvement of 

international conservation organizations was posited as an explanation for why PAs 

established between 2001-2010 were more effective than those created earlier (section 6.1.2) 

then there is a rationale to test for differences in PA outcomes for those being supported by 

NGOs vs. those that are not.  

Another interesting possibility would be to perform a BACI analysis for the PAs 

established in 2016, using matching in combination with a fixed effects regression model. As 

mentioned in section 1.3.1 opportunities for such study designs are rare given data 

availability although the relatively recent PA establishment date makes it possible in this 

case. Such an analysis would offer insight into whether these PAs were effective compared to 

not just to matched counterfactual but to when the same land was actually not protected. A 

similarity in this regard would lend further credence to the results of this study by validating 

the process of counterfactual creation.  

A final suggestion for expanding this research in Cambodia would be to build upon 

the work comparing avoided deforestation generated by the national PAs to other forms of 

protected land. Ota et al. (2020) analyzed the relative effectiveness of PAs vs. CFs but no 

investigation has been made including CPAs. Also given that many CFs and CPAs actually 

intersect national PAs it would be interesting to follow the approach adopted by Anderson et 

al. (2018) and analyze the effectiveness of these different conservation modalities where they 

overlap and where they exist in isolation. 
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7. Conclusion 
 

In summary this thesis planned a series of objectives for a quasi-experimental counterfactual 

analysis of PA avoided deforestation in Cambodia based upon knowledge gaps identified in 

both the country-specific literature as well as the wider field of research. Propensity score 

matching with a combination of 10 biophysical and socio-economic covariates was used to 

account for the widely acknowledged confounding effects of non-random biases in PA 

location and the occurrence of deforestation across the landscape. This analysis produced 

results that addressed all of the stated objectives, with the principal findings being that PAs in 

Cambodia showed a significant positive effect in generating avoided deforestation between 

2010-2018. In practical terms, in the period of 2010-2012, this equated to a 30x30m area of 

forest inside a PA being as much as 8% less likely be to deforested than a similar area of 

unprotected forest in the rest of country.  

However, the magnitude of this effect and thus PA effectiveness was observed to 

decline over time. Placed in the context of the circumstances and events surrounding 

conservation in the country the nature of the factors responsible for this trend are likely to 

have also changed over time from being exogenous (increase in pressure upon PA resources 

due to the establishment of agro-industrial concessions between 2010 and 2015) to 

endogenous (an increased burden upon a managing institution with weak capacity and 

shortage of funding, from 2016 onwards). In addition to this it was found that newly 

established PAs consistently performed better than older PAs however they also exhibited 

greater declines in effectiveness over time. Although given the lack of available information 

on management input as well as the confounding effect of PA locality the explanation for this 

result is more difficult to confirm.  

Finally, this thesis also found a significant positive spatial spillover effect of PAs 

corresponding to a reduced probability of deforestation in surrounding 5km buffer zones 

between 2010-2018. However, the trend of this result did not entirely match that of overall 

PA effectiveness which is further evidence that such PA spillover effects may be 

heterogenous in nature and warrant further investigation.  

Through its results and methodology this thesis also highlighted several areas in the 

research domain that require further study. Perhaps most important of these is to develop 

better understanding of, and means of mitigating for, the influence of spatial autocorrelation 

when assessing PA environmental outcomes using statistical matching.  
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In conclusion, the most salient point to take away from this thesis is that whilst 

assessments of the ecological outcomes of PA networks are a useful tool to highlight to 

managers which PAs may need further attention, used in isolation they give little insight into 

the nature of the changes that are required in order to improve these outcomes. This is exactly 

why a holistic approach to PA assessment is needed with dedicated planning and ongoing 

monitoring of management effectiveness as well as both ecological and socio-economic 

outcomes. In essence this is what the newly established IUCN Green list program (section 

1.2.2) hopes to achieve but it is clear that integrating these different components still requires 

a lot of work. In this regard perhaps the key achievement of this study is that it has shown 

that it is possible to conduct a rigorous quasi-experimental investigation of PA environmental 

outcomes using open source software and data, with limited computational resources. 

Thereby demonstrating that such an approach to assessment can, and should, be more widely 

adopted by institutions responsible for PA management as it requires minimal training and 

cost investment whilst being able to produce policy-relevant results.  
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9. Appendixes 
 

A. Details of recent quasi-experimental studies of PA ecological effectiveness 
 

Table A1: Details of quasi-experimental studies of PA effectiveness in forest related outcomes 

Study 
Region of 
analysis 

Treatment  
Outcome  
variable 

Comparison 
type/s 

Empirical 
technique/s 

Control for 

spillover 
effects 

Consideration of 

spatial 
autocorrelation 

Sampling 
method/size 

Outcome 
periods 

Outcome 

data 
resolution 

Covariates/ 
confounders 

Abman 

2018 
Global 

Protected 

area's 

Rule of 

law 

Forest 

cover 

change 

With-versus- 

similar 

without 

Matched: 

weighted least 

squares 

regression 

10 km 

buffer 
No 

Random 

sample: 5 

million pixels 

2000-2012 30x30m 

Elevation 

Slope 

Distance to Roads 
Distance to population 

centre 

Travel time to city 

Agricultural suitability 

(soil, climate and terrain) 

Distance to river/water 

body 

Terrestrial biome 

Ament and 

Cumming 
2016 

South 

Africa 

National 

parks 

Natural 

land cover 
loss 

With-versus- 

similar 
without 

Covariate 

matching with 

caliper: one to 
one matching 

10km 

buffer 

Enforced 

distance 

between sample 
points: 100m 

500 random 

sample points 

in each park; 

250,000 
random 

control points 

2000-2009 30x30m 

Terrain (elevation, slope) 

Climate (annual 

precipitation) 

Accessibility (distance to 
towns, distance to roads) 

Social-ecological state 

(land cover in 2000). 

C
E

U
eT

D
C

ol
le

ct
io

n
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Andam et 

al. 2008 
Costa Rica 

Protected 

areas 

Forest 

cover 

change 

With-versus-

without 

With-versus- 

similar 

without 

Unmatched 

(naïve 

comparison) 

vs. 

 covariate 

matching: 
Mahalanobis 

distance with 

calipers 

 

Also tested: 

Inverse 

weighted 

covariate 

matching 

Kernel 

propensity 

score 
matching 

covariate 

matching with 

a genetic 

algorithm 

Tested 

different 

buffer 

widths: 0-

2; 2-4; 4-6; 

6-8km 

No 
Random: 

20,000 plots 
  3 hectares 

Distance to roads 

Distance to forest edge 

Land use capacity: slope, 
soil characteristics, 

humidity 

Distance to nearest major 

city 

Extended covariates 

Distance to railroads and 

rivers 

District level population 

density 

Proportion of immigrants 

Adults educated beyond 

secondary level 
Households fuel wood use 

Size of district 

Andam et 

al. 2013 
Costa Rica 

Protected 

areas 

IUCN 

manageme

nt category  

Forest re-

growth 

With-versus- 

similar 

without 

Covariate 

matching: 

Mahalanobis 

distance with 

calipers 

5km buffer No Random 
1967-1979 

1981-1997 
3 hectares 

Distance to roads 

Distance to Major cities 

Distance to forested parcel 

at baseline 

Beresford 
et al. 2013 

Africa 
Important 
Bird Areas 

Forest 

cover 
change 

With-versus- 

similar 
without 

Covariate 

matching: 

unspecified 
distance 

measure  

20km 
buffer 

Enforced 

distance 
between sample 

points 

Grid-point 
sampling  

1990-2010 30x30m 

Altitude 

Population density 
Distance from roads 

Land-cover 

C
E

U
eT

D
C

ol
le

ct
io

n
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Blackman 
et al. 2015 

Mexico 

Natural 

protected 
areas 

Forest 

cover 
change 

With-versus- 

similar 
without 

Propensity 

score 

matching with 

caliper 

Covariate 

matching: 
Mahalanobis 

distance 

Probit 

regression 

with matched 

controls  

20km 
buffer 

No 

Intersected a 

2-km 

rectangular 

grid with the 

study area and 

sampled the 
plots where 

the gridlines 

crossed. 

Sample= 

>500,000 

plots 

1993-2000 30x30m 

Communal land tenure 

More than 75% pop. 

locality indigenous?  

Travel time to nearest city 
Elevation 

Slope 

Median annual 

precipitation  

Bowker et 

al. 2017 
Africa 

Parks 

(Protected 

areas) 

Forest 

cover 

change 

Park extent 

(size) 

Age 

Location 

With-versus- 

similar 

without 

Covariate 

matching: 

unspecified 

distance 

measure 

10 km 

buffer 

Randomly 

sampled points 

spaced at least 

500m apart 

Random: 500 

treatment, 

1,000,000 

control 

2000-2013 30x30m 

Distance to roads 

Distance to Major cities 

Annual precipitation 

Elevation 

Slope 

Bragina et 

al. 2015 

Western 

Caucasus 

Protected 

areas under 

different 
IUCN 

categories 

Rate of 

forest 

canopy 
removal 

With-versus- 

similar 
without 

Propensity 

score 

matching with 

caliper: 1 to1 
matching 

without 

replacement 

  

Enforced 

distance 

between sample 
points: 300m 

Random: 1% 

1985-1990 

1991-1999 
2000-2010 

30x30m 

Distance to nearest road 

Distance to major city 

(Sochi) 
Slope 

Brandt et 

al. 2015 

Yunnan, 

China 

Protected 

areas 
vs. 

Tibetan 

sacred 

areas 

Areas 

under 

logging 

ban 

Forest 

cover 

change 

Forest 

type: Old 

growth, 

pine 

With-versus- 

similar 

without 

BACI 

Covariate 

matching: 

Mahalanobis 

distance 

No 

Enforced 

distance 

between sample 

points: 1000m 

NA 
1990–1999 

1999–2009 
200x200m 

Road density 

Road density squared 

Distance to Shangrila 
Elevation 

Elevation squared 

Slope 

Slope squared 

% edge forest 

% core forest 

% old growth forest 

% pine forest 

 % snow 

C
E

U
eT

D
C

ol
le

ct
io

n
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Brun et al. 
2015 

Indonesia 

Protected 

areas 
IUCN 

manageme

nt category  

Deforestati
on  

With-versus- 
similar 

without 

Autologistic 

and 

mechanistic 

spatial 

autoregressive 

models built 
upon the 

Bayesian 

framework 

using Markov 

Chain Monte 

Carlo 

simulation  

- 
Accounted for 
by model type 

- 2000-2010 250m 

Elevation 

Cost to transport timber to 

nearest city 

Gross rent (in terms of 

national production value 
of top 7 crops 

Historical illegal logging 

hotspots 

logging concessions and 

wood plantations 

Carranza et 
al. 2013 

Cerrado, 
Brazil 

Protected 
areas 

Forest 
conversion 

With-versus- 
similar 

without 

Propensity 

score 

matching with 
caliper (exact 

matching 

without 

replacement) 

10km 
buffer 

No 
Random 

sample for 

control set 

2002-2009 
250 x 
250m 

Accessibility: distance to 

paved roads; nearest state 

or federal capital city;  

travel time to the nearest 

city with population ≥ 

50,000 
Agricultural suitability: 

soil fertility; slope; 

salinity; risk of flooding 

Rain-fall 

Vegetation type 

Elevation 

Chai et al. 

2009 
Jamaica 

National 

Park 

Forest 

clearance 

re-growth 

fragmentat

ion 

BACI 

Unmatched 

comparison: 

ratio of means 

N/A N/A - 

1983–1992 

 1992–

2002 

30x30m - 

Clements 

and 

Milner-

Gulland 

2014a  

(Clements 

et al. 2014 

represents 

the same 

study)  

Kulen 

Promtep 

Wildlife 

Sanctuary  

and Preah 

Vihear 

Protected 

Forest, 

Cambodia 

Protected 

areas 

Payments 

for 

Ecosystem 

services 

schemes 

Deforestati

on rate 

Household 

well-being 

BACI 

Covariate 

matching: 

Mahalanobis 

distance with 

calipers 

4-12km 

from PA 

boundary 

No - 

2001/2002

-

2005/2006 

2005/2006

-

2009/2010 

1km 2 

Forest cover within 5 km 

of the village 

Village size  

Distance to roads 

Distance to nearest village 

Baseline forest cover 

(2001/2002) 

Slope 

Distance to markets 

C
E

U
eT

D
C

ol
le

ct
io

n
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Eklund et 

al. 2016 

Madagasca

r 

Protected 

areas 

Deforestati

on 

With-versus- 

similar 

without 

Covariate ratio 

matching 

(1:500): 

Mahalanobis 

distance  

No No Random: 10% 
1990-2000 

2000-2010 
30 x 30m 

Distance to roads 

Distance to major cities 

Distance to rivers 

Annual rainfall 

Elevation 

Slope 

Forest type 

Eklund et 

al. 2019 

Madagasca

r 

Protected 

areas 

Deforestati

on 

With-versus- 

similar 

without 

Covariate ratio 

matching 

(1:500): 

Mahalanobis 
distance  

No No Random: 10% 2005-2010 30 x 30m 

Distance to roads 

Distance to major cities 

Distance to rivers 

Annual rainfall 

Elevation 

Slope 
Forest type 

PA shape and area 

PAME scores 

Ferraro 
and 

Hanauer 

2011 

Costa Rica 
Protected 

areas 

Avoided 

deforestati
on and 

poverty 

alleviation 

With-versus- 
similar 

without 

Propensity 
score 

matching 

No No 
random 

sampling 

23,000 units 

1960-1997 3ha 

Land productivity class 
Distance to forest edge 

Distance to road 

Distance to major city 

Ferraro et 
al. 2013 

Bolivia; 

Costa 
Rica; 

Indonesia: 

Thailand 

Protected 

areas 
IUCN 

manageme

nt category  

Deforestati
on 

With-versus- 
similar 

without 

Covariate 

matching: 

Mahalanobis 
distance or 

inverse 

covariance 

Tested 
5km buffer 

Random 
sampling 

(20,000 unit 

sample in 

Bolivia, Costa  
Rica and 

Thailand, 

26,154 for 

Indonesia 

Bolivia: 

1991-2000 

Costa 

Rica: 
1960-1997 

Thailand: 

1973-2000 

Indonesia: 

2000-2006 

(100m2 

pixels for 

Bolivia, 

3ha pixels 

for Costa 
Rica, 

900m2  

Thailand 

and 1km2 

pixels for 

Indonesia 

Country specific covariates 

including: 

Distance to roads 

Distance to major city 
Slope 

Elevation 

Soil measures 

Distance to forest edge 

Distance to port 

Gaveau et 

al. 2012 

Sumatra, 

Indonesia 

Protected 

areas 

Deforestati

on 

With-versus- 

similar 

without 

Propensity 

score 

matching 

No No 11% sample 1990-2000 25km2 

 Slope 

Elevation 

Distance to forest edge 

Distance to roads 

C
E

U
eT

D
C

ol
le

ct
io

n
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Gaveau et 

al. 2013 

Indonesian 

Borneo 

Protected 

areas vs. 

agricultura

l 

concession

s 

Deforestati

on 

With-versus- 

similar 

without 

Propensity 

score 

matching, with 

replacement 

and caliper 

(0.25 SD) 

No 

2km minimum 

distance 

between sample 

plots 

Given 

sampling 

restriction 

small sample 

of n= ~3400 

units 

2000-2010 1km2 

Slope 

Elevation above sea level 

Travel time to roads 

Travel time to cities 

Distance to oil palm mills 

and plantations 

Soil type 
Administration 

Green et 

al. 2013 

Eastern 

Arc 

Mountains 

of 

Tanzania 

Protected 

areas 

Forest and 

woodland 

conversion 

With-versus- 

similar 

without 

Generalised 

additive model 
- 

Included 

dummy variable 

as a random 

effect in models 

- 1975-2000 500m 

Distance to Forest edge 

Travel time to nearest city 

Distance to Roads 

Distance to Markets 

Altitude 

Slope 

Land value 

Distance to water 

Annual precipitation 
Water deficit 

Population density 

Haruna et 

al. 2014 
Panama 

Protected 

areas 

Deforestati

on 

With-versus- 

similar 

without 

Propensity 

score 

matching 

No No - 
1992-2000 

2000-2008 

100m2 

(1992-

2000) 

900m2 

(2000-

2008) 

Elevation 

Slope 

Distances from roads, 

urban areas and rivers 

Provinces 

Life zones/ecoregions 

Agricultural suitability 

Knorn et 

al. 2012 
Romania 

Protected 

areas 

Forest 

disturbanc

e 

With-versus-

without 

Unmatched 

comparison 

5; 10; 15; 

20 km 

buffers 

No - 1987-2009 1 ha - 

C
E

U
eT

D
C

ol
le

ct
io

n
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Miranda et 

al. 2016 
Peru 

Protected 

areas 

Deforestati

on 

Household 

socio-
economic 

impacts 

With-versus- 

similar 
without 

1:1 covariate 

matching 

using 
Mahalanobis 

distance 

Spillover 

analysis 

for socio-

economic 

outcomes 
but not 

deforestati

on 

No 

Intersected a 

1-km 

rectangular 

grid with the 

study area and 

sampled the 
plots where 

the gridlines 

crossed. 

Sample= 

~337,000 units 

2000-2006 30x30m 

Elevation 

Slope 

Aspect 

Average precipitation 

Average maximum/mean 

temperature 
Distance to nearest 

population centre 

Proportion of land suitable 

for forestry 

Negret et 
al. 2020 

(under 

review) 

Colombia 
Protected 

areas 

Deforestati

on 

With-versus- 
similar 

without 

Propensity 

score 

matching with 

caliper (0.25 
SD), without 

replacement 

with matching 

performed at 

different 

scales 

No 

Tested four 

different models 

for including 
SAC in 

estimation of 

treatment effects 

from matched 

data  

- 2000-2015 1km2 

Initial forest  cover 

Biotic  regions 

Population density 

Intensity of armed conflict 

Distance to major rivers 

Distance to mining 

concessions 

Distance to  exploited oil 
wells 

Distance to  coca 

plantations 

Distance to paved road, 

Distance to unpaved road 

Elevation 

Surrogates of land-use 

potential (Slope; biotic 

region) 

Nolte and 

Agrawal 

2013 

Amazon 

basin 

ecoregion 

Protected 

areas: 

subdivided 

into those 

with low 

and high  

PAME 
(METT) 

scores 

Forest fire 

occurrence 

With-versus- 

similar 

without 

Covariate 

matching: 

Mahalanobis 

distance with 

replacement 

and caliper of 
1 SD 

No 

Randomly 

sampled a small 

percentage of 

forest parcels 

(2%) from the 

entire 
population 

see left 2000-2010 1km2 

Elevation 

Slope 

Travel time to major city 

Distance to forest edge 

Average annual 
precipitation 

C
E

U
eT

D
C

ol
le

ct
io

n
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Nolte et al. 

2013 

Brazilian 

Amazon 

Strict vs. 

sustainable

-use 

protected 

areas 

Deforestati

on 

With-versus- 

similar 

without 

Matching with 

replacement 

and caliper (1 

SD) 

Control 

units 

further 

than 10km 

from PA 

boundaries 

No 
5% random 

sample 

2000-2005 

2006-2010 
1km2 

Baseline forest cover 

Distance to forest edge 

Travel time to major cities 

Slope 

Terrain 

Probability of flooding  

State 

Ota et al. 

2020 
Cambodia 

Protected 

areas, 

protected 

forests and 

community 

forest 

Deforestati

on  

With-versus- 

similar 

without 

Generalized 
boosted 

models using 

the inverse 

probability of 

treatment 

weighting 

based on the 

propensity 

score 

0–2 km, 2–

4 km, 4–6 

km buffers 

No 

Random 

sample of 

25,000 units 

from each 

treatment type 

2006-2016 30x30m 

Elevation 
Slope 

Distance to the nearest 

main road 

Distance to district centres 

Distance to the nearest 

village 

Distance to the nearest 

economic land concession 

Forest cover in 2005 

Pfaff et al. 

2009 
Costa Rica 

Protected 

areas 

Deforestati

on 

With-versus- 

similar 
without 

Covariate 

matching: 

Propensity 
score 

No No 

Random 

sample: 4229 
points 

1986-1997 28x28m 

Distance to roads (national 

and local)  

Distance to rivers 

Distance to major cities 

Distance to forest clearing 
Rain 

Elevation 

Slope 

Pfaff et al. 

2013 

Acre, 

Brazil 

Protected 

areas of 

different 

governanc

e and 

manageme

nt types 

Deforestati

on  

With-versus- 

similar 

without 

Propensity-

score 

matching 

Covariate 

matching ( 

exact 

matching  for 

key variables 

and similarity 

matching for 
others) 

No 

Tested for it in 

the residuals of 

regression 

model with a 

non-significant 

result 

Random 

sample 

(~21,000 units 

per outcome 

period) 

2000-2004 

2004-2008 
90 x90m 

distances to the nearest 

road 

distance to nearest city 

distance to forest edge 

soil quality 

rainfall 

slope 

Rayn and 

Sutherland 

2011 

Mexico 
Protected 

areas 

Rate of 

forest 

cover loss 

BACI 

Unmatched 

comparison: 

ratio of means 

10 km 

buffer zone 
No - 1973-2000 1:250,000 

Road density 

Population size 

C
E

U
eT

D
C

ol
le

ct
io

n
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Ren et al. 

2015 
China 

National 

level 

nature 

reserves 

Natural 

Forest 
Protection 

Program 

Forest 

cover 

change 

With-versus-

without 

With-versus- 

similar 

without 

unmatched 

comparison 

vs. 

covariate 

matching: 

Mahalanobis 
distance with 

calipers 

10 km 

buffer 
No Random  2000-2010 

MODIS 

pixel size: 

231.7 m 

Landsat 

30x30m 

Elevation  

Slope 

Distance to forest edge 

Spracklen 

et al. 2015 
Global 

Protected 

areas 

Deforestati

on  

With versus 

without 

With versus 

similar 

without for a 

sub-sample 

ratio of 

fractional 

forest loss 

between 

protected and 

buffer areas 

Tested 

extensive 

widths of 

PA buffers 

No - 2000-2012 30 x 30m 
Slope 

Elevation 

Vergara-

Asjeno and 

Potvin 

2014 

Panama 

Protected 

areas and 

Indigenous 

territories 

Deforestati

on 

With-versus- 

similar 

without 

Covariate 

matching: 

Mahalanobis 

distance with 
caliper 

No No - 
1992-2008 

2000-2008 

200m x 

200m 

Elevation 

Slope 

Distance to roads 

Distance to towns 

Wang et 

al. 2013 

Hainan 

Island, 

China 

National 

nature 

reserves 

Forest area 

change 

Forest 

fragmentat

ion 

With-versus-

without 

unmatched 

comparison: 

General linear 

model 

10 km 

buffer 
No Random  2000-2010 30x30m 

Elevation 

Slope 

Distance to Roads 

Historical forest area  

Wendland 

et al. 2015 

European 

Russia 

Strict vs. 

multiple 

use 

protected 
areas 

Forest 

disturbanc

e 

BACI 

 

With-versus- 

similar 
without  

Matched: One 

to one 

propensity 

score 

matching 

without 

replacement 

using a caliper 
followed by 

fixed effects 

panel 

regression 

No 

Enforced 

distance 

between sample 

points: 300m 

Random 

sample of 1% 

of all pixels 

within each 

PA: 36,000 
pixels 

1985-2010 30x30m 

Distance to forest edge 

Distance to closest town 

Distance to Moscow  

Distance to closest road  

Elevation 
Slope 
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Yang et al. 

2019 
China 

Protected 

areas 

Deforestati

on 

With versus 

similar 

(nearby) 
without 

Propensity 

score 

matching with 
caliper 

No No 

Random 

sampling 

based on 
proportion of 

forest cover 

2000-2015 300m 

tree cover, distance to 

forest edge, elevation, 

slope, aspect, terrain 

roughness, topographic 

wetness index, human 

influence index, travel 
time to the nearest city, 

precipitation, temperature, 

soil carbon, soil depth, soil 

acidity, and amount of 

bulk and clay in the soil. 

Zhao et al. 

2019 

Southwest 

China 

Nature 

reserves: 

compariso

n of 

manageme

nt levels 

and 

establishm
ent age) 

Deforestati

on 

With-versus- 

similar 

without 

Propensity 

score 

matching, 

without 

replacement 

and caliper 

(0.25 SD) 

10km 

buffer zone 

exclusion 

Minimum 

distance of 

300m between 

units 

Random 

sample within 

control area 

defined for 

each reserve 

2001-2012 30x30m 

Elevation 

Topographic position 

index (TPI) 

Annual precipitation 

Distance to the nearest 

major road 

Distance to the nearest 
major settlement 
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B. Sources of forest assessments for Cambodia 

 

At the national level the the Forestry Administration (FA) under MAFF of the RGC has 

produced 9 forest cover assessments (FCAs) between 1965 and 2016. Although production of 

these only began in 1993 with subsequent assessments following approximately every 4 years 

(1997; 2002; 2006; 2010; 2014 and 2016) (GDANCP 2018). The RGC’s FCAs have been 

criticized for being inconsistent in their definition of forest cover (different % canopy cover 

thresholds) and their inclusion of rubber and palm plantations as non-distinguished from 

natural forest (Broadhead and Izquierdo 2010; Brun 2013). Although the RGC have now 

updated their definition of forest cover to be used in subsequent assessments to match the 

commonly used definition under the REDD+ scheme (MoE 2016; JICA 2017). Additionally, 

accuracy assessments were only performed for two of the historic FCAs 2006 and 2010 

(GDANCP 2018). 

 The RGC’s FCAs have also been the subject of skepticism by national civil society 

organizations (Banks et al. 2014) under the assumption that the RGC has a vested interest in 

under-reporting FCL to deflect criticism from international donors. This led the prominent 

organization ODC to produce its own FCA for 6 different time points with similar temporal 

coverage as those of the RGC (1973-2014) (ODC 2019a).  

Overall, the efforts of both national sources of FCAs have been hampered by data 

availability, lack of coordination and reticence in data sharing as well the capacity to perform 

advanced classification techniques (ADB 2001; Aruna Technology Ltd. 2013). By contrast 

these are typically non-issues for international bodies that produce FCAs. Perhaps the most 

well-known of these being the University of Maryland’s Global Land Analysis & Discovery 

(GLAD) lab (Hansen et al. 2013) who have pioneered some of the most advanced image RS 

image classification techniques. GLAD provide their data through the interactive Global 

Forest Watch (GFW) platform which provides annual estimations of forest cover, FCL and 

forest re-growth at a global scale (GFW 2020a).  

 Whilst the GLAD/GFW data is arguably the most comprehensive FCA resource 

available, its accuracy has been critiqued, with Sannier et al. (2016) suggesting that its scale 

makes it unsuitable for national level analyses. Additionally, Grogan et al. (2019), who 

performed their own FCA for Cambodia, found that GLAD data underestimated cover with 

regards to the particular tropical forest type present, although ultimately this led to only 

minor deviations in trends as compared to their own data (p. 48).  
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 An additional source of FCA for Cambodia that is intermediary in scale between the 

national scale sources (FA and ODC) and the global (GFW), is the recently released ‘forest 

monitoring system’ as part of the SERVIR-Mekong regional land cover monitoring project 

(SERVIR-Mekong 2020b). This has been developed in collaboration with GLAD and a host 

of other influential partners to provide geospatial data covering the countries of Cambodia, 

Lao PDR, Myanmar, Thailand and Vietnam. The intent behind this service is to provide 

geospatial data on forest dynamics that is more accurate at a regional scale than that of the 

GFW data, achieved through leveraging the same cutting-edge processing techniques 

developed by GLAD, combined with validation against field data from national sources 

(Potapov et al. 2019; SERVIR-Mekong 2020a). However, differences in accuracy between 

SERVIR-Mekong data and other sources have yet to be formally compared.  
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C. Synthesizing dataset of PA boundaries for assignment to treatment 

 

As alluded to in section 4.1.1.1 the flaw in the WDPA dataset for Cambodia (UNEP-

WCMC 2020b) is that it has not yet been updated to reflect the fact that ‘protected forests’ 

(formerly a sub category of land under the national forest estate managed by the FA) were 

converted to ‘wildlife sanctuaries’ to match the MoE’s designations in 2016. Indeed, 

Nagendra et al. (2013) and Bowker et al. (2017) noted similar problems with consistency in 

the WDPA database for African parks.  

The national level alternative is ODC’s natural protected areas (1993-2019) dataset 

(ODC 2019b). This dataset includes a number of PAs missing from the WDPA dataset as 

visible in Figure C1 below. Although by contrast the WDPA dataset did contain one PA not 

present in the ODC data: “Ta Moa” protected forest. 

 

 

However, the ODC dataset is limited by the fact that it does not contain the historic 

designations of PAs. For example, ‘Keo Seima Wildlife Sanctuary’ is listed as being 

established in 2016 although formerly the same area was ‘Seima protected forest’ and was 

Figure C1: Disparity in the extent of protected areas in Cambodia between the WDPA and ODC datasets 

(data sources ODC 2019b; UNEP-WCMC 2020b) 
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established in 2004. These changes in PA names primarily affected the former protected 

forests which were re-designated in 2016 (section 2.2.4).  

Additionally, there were several minor discrepancies in the sizes of PAs that were 

common to both datasets, for example the WDPA data showed larger boundaries for both 

Kep national Park and the Stung Treng Ramsar site (‘or Middle Stretches of the Mekong 

River north of Stoeng Treng’ as it referred to as).  

For these reasons it was deemed best to combine records into a single dataset with a 

column noting any changes in names, designations and establishment dates. In the case of 

discrepancies in boundary sizes and locations the ODC data was given priority over the 

WDPA because it provides comprehensive references to the RGC ministerial declarations by 

which the PAs were established. After data cleaning the total PA dataset included 67 PAs 

across all categories (most recent designations).  

Following this the data was filtered on several accounts, firstly the decision was made 

to remove the single marine national park, as whilst it contains islands that do display forest 

cover (SERVIR Mekong 2020b) for the purpose of this analysis these cannot be said to face 

the same deforestation pressure as mainland forested areas. Another PA category that was 

considered for exclusion was multiple use management areas. Lacerda et al. (2004) defined 

the management objective of these as: “conservation of biodiversity, sustainable use of 

resources in natural ecosystems.” However, this is problematic as no information is available 

regarding whether these areas are indeed managed differently to other PAs. Ultimately the 

decision not to exclude these PAs was made in light of the fact that the relationship between 

PA effectiveness and the strictness of protection under different management objectives has 

thus far proved inconclusive (See section 1.4.1). Also cursory examination showed them to 

contain relatively little forest cover in the period of proposed analysis which suggests that 

their inclusion was unlikely to skew the results. 

A related consideration to this is the fact that Cambodia has begun zoning its PAs in 

accordance with land use plans (GDANCP 2017). In theory this should have implications for 

the management activities and ultimately the avoided deforestation occurring within them. 

However, given that only a small number (3) of the total PAs have been zoned and this 

process only took place well after their establishment date (MoE 2017) (and hence the zoning 

would have to be applied in some outcome periods and not others) the decision was made to 

not to include this in this analysis. 
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Ramsar sites were assessed for exclusion on an individual basis as many are contained 

entirely within PAs of other designations and whilst this would not create the possibility of 

doubling sampling it does add an additional element to the data complexity that does not 

provide any benefit. On this basis only Ramsar sites for which the majority or entirety of their 

area lay outside of other designated PAs were included in the final PA dataset.  

The decision was also made to selectively exclude several PAs deemed 

unrepresentative for the purpose of the analysis: Kep national Park (KNP); the 

aforementioned Ta Moa protected forest (TMPF) and Angkor Wat protected landscape 

(AWPL).  KNP was removed because its land cover has been extensively modified and it is 

afforded no formal protection by the relevant management authorities (ICEM 2003b). TMPF 

was removed as it is no longer a protected area as it has become the Phnom Tamao 

Zoological Park and Wildlife Rescue Center. AWPL was excluded as the forest cover data 

there is clearly not accurate as it covers the main temple complex. This left a total of 51 PAs 

in the final dataset (dubbed: ‘filtered PAs’) to be used for the analysis, the names and details 

of which are included in Table C1 below. 
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Table C1: Protected areas included in the filtered dataset for analysis 

Name Category 
Establishment 

year 
Area (ha) 

Phnom Aural Wildlife Sanctuary Wildlife Sanctuary 1993 253,750 

Phnom Prich Wildlife Sanctuary Wildlife Sanctuary 1993 222,500 

Lomphat Wildlife Sanctuary Wildlife Sanctuary 1993 250,000 

Preah Soramrit-Kosomak "Kirirom"  National Park 1993 35,000 

Roniem Daun Sam I Wildlife Sanctuary Wildlife Sanctuary 1993 16,565 

Preah Vihear Temple Protected Landscape Protected Landscape 1993 5,000 

Kulen Promtep Wildlife Sanctuary Wildlife Sanctuary 1993 402,500 

Preah Monivong National Park National Park 1993 140,000 

Phnom Kulen National Park National Park 1993 37,500 

Beng Per Wildlife Sanctuary Wildlife Sanctuary 1993 242,500 

Phnom Namlear Wildlife Sanctuary Wildlife Sanctuary 1993 47,500 

Dong Peng Multiple Use Area 
Multiple Use Management 

Area 
1993 27,700 

Roniem Daun Sam II Wildlife Sanctuary Wildlife Sanctuary 1993 21,335 

Protected Landscape Banteay Chmar Protected Landscape 1993 81,200 

Tonle Sap Biosphere Multiple Use Area 
Multiple Use Management 

Area 
1993 316,250 

Cultural Resort of Banteay Chmar Temple Protected Landscape 1993 780 

Virachey National Park National Park 1993 332,500 

Snuol Wildlife Sanctuary Wildlife Sanctuary 1993 75,000 

Botum Sakor National Park National Park 1993 171,250 

Roniem Daun Sam III Wildlife Sanctuary Wildlife Sanctuary 1993 2,121 

Peam Krasop Wildlife Sanctuary Wildlife Sanctuary 1993 23,750 

Prasat Bakan Protected Landscape Protected Landscape 1993 2,124 

Phnom Yart Natural Heritage Site Natural Heritage Site 1993 31.951 

Samlaut Multiple Use Area 
Multiple Use Management 

Area 
1993 60,000 

Phnom Samkos Wildlife Sanctuary Wildlife Sanctuary 1994 333,750 

Ream National Park National Park 1995 150,000 

Prek Teuk Sap Kbal Chhay Multiple Use Area 
Multiple Use Management 

Area 
1997 5,520 

Chheb Wildlife Sanctuary Wildlife Sanctuary 1999 190,027 

Srepok Wildlife Sanctuary Wildlife Sanctuary 1999 372,971 

Central Cardamom Mountains National Park National Park 1999 401,313 

Ang Trapeang Thmor Protected Landscape Protected Landscape 1999 12,650 

Stung Treng Ramsar Site Ramsar Site 1999 14,600 

Koh Kapik and Associated Islets Ramsar Site 1999 12,000 

Sambor Prey Kok Temple Cultural Resort Protected Landscape 2003 2,982 

Cultural Resort of Banteay Top Temple Protected Landscape 2003 108 

Koh Kae Protected Resort Protected Landscape 2004 3,508 

Beng Mealea Protected Area Protected Landscape 2004 315 

Keo Seima Wildlife Sanctuary Wildlife Sanctuary 2004 292,690 

Boeung Prek Lpeou Protected Landscape Protected Landscape 2007 8,305 

Ou Ya Dav National Park National Park 2009 101,348 
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D. Defining unprotected land for assignment to control 

 

In terms of identifying the ‘unprotected’ control region, Gaveau et al. (2012) and Schleicher 

et al. (2017) highlight the importance of both considering the existence of other types of land 

governance regimes, as well as any legal frameworks, whose purposes are to either prevent or 

allow natural resource extraction or land conversion. In the case of Cambodia examples of 

land governance modalities intended to prevent change from natural land cover are CFs and 

CPAs. However, including these in the proposed analysis by excluding them from the 

unprotected control region was not deemed appropriate for several reasons. Firstly, the data 

available on the boundaries and degree of management of CFs and CPAs is inconsistent 

meaning that any quantification of their impact could hardly be said to be robust. Secondly 

whilst their stated purpose is to prevent large scale land conversion there is provisions under 

the laws governing their establishment to allow for sustainable use which in the case of CFs 

would mean timber extraction and thus the question would be how to determine whether any 

FCL observed in CFs or CPAs can be considered sustainable or not especially as very little 

evidence exists to quantify this.  

Conversely in terms of land governance modalities in Cambodia that allow for natural 

resource extraction or land cover alteration, the principal examples are ELCs; SLCs and 

mining concessions (introduced in section 2.1). Given the likely importance of their impact 

ELCs are already accounted for in the analysis as a covariate and as such it would not be 

possible for them to be excluded from the unprotected control region. SLCs were not factored 

in on the basis that whilst they represent land specifically allocated to for the resettlement 

households there is no clear directive for the occupants to alter land cover and hence they 

Techo Sen Russey Treb Cambodian Royal 

Academy National Park 
National Park 2014 11,435 

Siem Pang Wildlife Sanctuary Wildlife Sanctuary 2014 133,708 

Prey Lang Wildlife Sanctuary Wildlife Sanctuary 2016 431,683 

Veun Sai-Siem Pang National Park National Park 2016 57,469 

Preah Rokar Wildlife Sanctuary Wildlife Sanctuary 2016 90,361 

Anloung Pring Protected Landscape Protected Landscape 2016 217 

Ponhea Kraek Multiple Use Area 
Multiple Use Management 

Area 
2016 199 

Southern Cardamom Mountains National Park National Park 2016 410,392 

Tonle Sap Northern Lowland Protected 

Landscape 
Protected Landscape 2016 31,159 

Tatai Wildlife Sanctuary Wildlife Sanctuary 2016 144,275 

Phnom Tbeng Natural Heritage Site Natural Heritage Site 2016 25,269.41 
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must be considered as equivalent to any other land under private title. Mining concessions on 

the other hand are more contentious as, like ELCs, there is some evidence linking them to the 

stripping of forest cover by operators (Work et al. 2018). However, unlike the ELCs, 

Cambodia’s mining concessions are less well documented and detailed information on their 

boundaries and states of operation is not available and thus on this ground they were not 

included.   

  Collectively these considerations led to the decision described in section 4.1.1.2 that 

the control region by defined as all land use modalities aside from the nationally recognized 

PAs included in the filtered PA dataset (see Appendix C).  

 

E. Further details on the selection of covariates and confounders  

 

In terms of additional covariates that were considered for the analysis another that was 

investigated was the spatial distribution of species of high-value hard wood timber. This on 

the basis that there is evidence suggesting that considerable selective logging of certain 

species in Cambodia has taken place (Global Witness 2015) and hence it should be expected 

that the distribution of these species correlates with both the occurrence of deforestation as 

well the location of PAs (as they are located in rare habitat types such as DDF). However, 

whilst maps of these species’ distributions were produced by the Cambodian Tree Seed 

Project (CTSP 2004) they rely upon very scant sampling data and digitized versions are not 

readily available, hence this covariate was discarded.  

It has been widely noted that the suitability/desirability of land for conversion to 

agricultural is one of the driving forces behind deforestation in tropical forests (Jones and 

Lewis 2015).  Although this is particularly hard to capture as a covariate as it depends on a 

multitude of factors, which has often led others to utilise composite variables i.e weighted 

calculations of several interdependent variables such as soil fertility; salinity and slope etc. 

(Carranza et al. 2013). However, this is problematic as little attention has been made to 

quantifying the effect of any multicollinearity, or heterogeneity of explanatory power 

between the variables of which the composites consist, on the results. For this reason, 

composite variables were deliberately avoided for this study, instead covariates aimed at 

capturing the same phenomenon were included individually. In this regard one other 

covariate that was investigated but subsequently discarded was data on commune level 

agricultural yields from national socio-economic censuses available from the Cambodian 

C
E

U
eT

D
C

ol
le

ct
io

n



173 

 

National Institute of Statistics (NIS MOP 2020).  Combined with information on the 

percentage land area under cultivation this would give a good insight into productivity of the 

land. Unfortunately, the data was not consistently available for the correct time periods and 

the number of households surveyed differed between censuses further limiting the robustness 

of this as a data source.    

 

F. Synthesizing data for ELCs 

 

Two principle data sources are available for the boundaries and extents of ELCS in 

Cambodia: One from ODC (2017a) and one from LICADHO (2020). Both of which 

acknowledge that their datasets contain inaccuracies and missing information due to the fact 

that the RGC’s data of ELCs is itself inconsistent and incomplete. On this basis the decision 

was made to filter, combine and cross-check both of these datasets in order to synthesize a 

new dataset of ELC records suitable for this analysis.  

The first level of filtering that was performed was to remove any records that did not 

contain a declaration date or start of contract date for the ELC thereby making them 

unsuitable for the temporal nature of the analysis. In this regard the LICADHO dataset 

originally contained 281 records which was reduced to 245 and the ODC (2017a) dataset 

contained 285 records which was reduced to 264 after removal.  

Amongst these records in the ODC dataset there were a number that were represented 

by circles as polygons features the attributes of which described then as ‘government data 

partial’ indicating that their correct boundaries were not included in the dataset. However, 

when these ELCs were overlaid with the LICADHO dataset it was clear that they did contain 

the boundaries for some of these unknown examples (matching performed on the basis of 

concession names) and removing those records left a total of 217 ELCs. Further to this 

though, the LICADHO dataset contained 41 ELCs that did not show consistent spatial 

overlap with the equivalent ELCs from the ODC dataset although many are attributed to the 

same developers and hence can be construed as likely the same concessions but with different 

boundary data. Vice versa there were 17 ELCs in the ODC dataset that did not substantially 

overlap with those in the LICADHO dataset. In these cases, preferences were given to the 

ELC boundaries contained in the ODC dataset on the grounds that it includes citations to 

supporting documentation for each entry whereas the LICADHO dataset does not. 
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Beyond these removals of records on the grounds missing temporal and spatial 

information the decision was made to include all of the ELCs from both the LICADHO and 

ODC datasets regardless of whether they are listed as downsized or revoked as a result of 

Directive 01 (section 2.1.2.3). The justification for this being that there is limited information 

as to when these changes were affected and also whether or not they were implemented 

successfully. This resulted in a final dataset containing 266 ELCs in total which was then 

temporally partitioned into three separate layers based upon the ELC establishment dates to 

be intersected with the different outcome periods.  

  

G. Testing durations outcome of outcome periods for analysis 

 

Given that annual (1 year) outcome periods were deemed unfeasible for this analysis the 

decision was made to test outcome periods of both 2 and 3 year durations between 2010 and 

2018. This consisted of calculating how much PA and ELC land that was established during 

this period would effectively be excluded from the analysis by virtue of the fact that it was 

declared within the outcome periods (only land established prior to and within the first year 

can be included). The results of this are demonstrated in Figure G1 below from which it was 

concluded that three-year periods were preferable because the 2-year period of 2015-2016 

excludes the new PAs established in 2016 and hence has no concrete policy/event 

underpinning that makes it worth investigating. Whereas comparatively this increase in the 

PA estate is better captured by the 3-year 2016-2018 period. Although the use of 3-year 

periods would result in the omission of a relatively large amount of ELC land in the first 

outcome period of 2010-2012, this is justifiable as this land is included within the following 

period and it is unlikely that the effects the ELCS established in 2011 and 2012 will be 

observed immediately and hence the period of 2013-2015 best captures the period of greatest 

deforestation pressure due to ELCs. A final benefit of the 3-year periods is that it results in 

only having 3 outcomes periods to analyze versus 4 under the 2-year approach, which may 

not sound significant but given the amount of data processing required (which will be 

detailed in the following sections) is advantageous. Thus from this point on the outcome 

periods for this analysis will be: 2010-2012; 2013-2015; and 2016-2018. 
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Figure G1: PA and ELC land omitted from analysis under different outcome periods 

 

H. Process of creating relational datasets  

 
Chronologically the first stage to be undertaken was the creation of initial datasets 

required for the preliminary analysis, with the intent being that if the results of the 

preliminary analysis were favorable these initial datasets could be used as final datasets for 

both the primary and secondary analysis without modification. Or if changes to the covariate 

selection were required on the basis of these results then initial datasets could easily be 

modified. This required separate datasets to be created for each of the outcome periods 

defined in the previous section (2010-2012; 2013-2015; 2016-2018). 

 As previously described the conditions determining assignment to treatment for these 

datasets was whether a given unit was located within the boundaries of a PA that had been 

established during or prior to the first year of the outcome period but not within the 

boundaries of any ELC that had been declared within that PA by that same year. This meant 

temporally dividing up the dataset of PAs minus ELCS (section 4.1.1.1) into layers 
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representing the total PA extent in the years of 2010, 2013 and 2016. Then the treated unit 

population was identified within these as being those pixels (30 x 30m) resolution that were 

shown to be forested within in the first year of the outcome period according to the 

appropriate layers of the SERVIR Mekong forest cover data (see section 4.1.1). As for 

identifying the control unit population these were all units that were forested in the first year 

of the outcome period located within the wider un-protected landscape as defined in section 

4.1.1.2. 

Both the treated and control populations for each of the outcome periods (datasets) 

were all of an order of magnitude between 3x106-5.7x106 units which would make a 

matching analysis using the total populations computationally unfeasible. Hence in line with 

other studies (section 1.3.4.1) it was elected to take a random sample of 10% of both treated 

and control units for each outcome period to use in the subsequent analysis.  

The next stage of creating the initial datasets for each outcome period was to intersect 

the samples of the treated and control units with the layers representing the outcome variable 

and covariates/confounders. This was achieved using a combination of the QGIS ‘join 

attributes by location’ tool for the vector layers and the SAGA GIS ‘Add raster values to 

points’ tool using the bilinear interpolation method. The outcome variable being the data of 

FCL events occurring within each outcome period (section 4.1.2) (FCL outcome) resulting in 

each unit being ascribed a dichotomous value of forested (0) or deforested (1). Whereas the 

covariates and confounders were incorporated using all of the separate data layers detailed in 

section 4.1.3 (Table 2) and had discrete/continuous values. The final task was to remove any 

units from the sample datasets that displayed ‘null’ values for any of the covariates, with a 

table of the final number of treated and control units in the samples for each outcome period 

included in section 5.1.1. 

As alluded to above the testing for spillover effects of PA establishment as part of the 

preliminary analysis (described in section 4.3.6) necessitated the creation of three additional 

datasets (one for each outcome period).  

The process of creating these datasets was essentially very similar with the key 

difference being that assignment to treatment was not based on whether or not a unit was 

inside a PA but instead whether it was located inside a 5km buffer zone of a PA that was 

established during or prior to the first year of the outcome period. The buffers were created 

from the layers of temporally partitioned PA boundaries that were generated as part creating 

the initial datasets. However, this meant that because some PAs shared contiguous boundaries 
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to ensure that no buffer area overlapped with that of other PAs it was necessary to edit the 

buffer polygons manually. Manual edits were also made to ensure that external buffers were 

not present in the locations where the boundaries of the PA intersected with that of ELCs, 

either when the ELCs were external to the PAs or contained within them.  

Once the buffer areas had been established the treatment population was identified as 

all of the units that were forested inside them within the first year of the outcome period. The 

control population for these datasets was identified in the same manner as for the initial 

datasets with the obvious exception being that units were only identified within the 

unprotected landscape external to the buffers and not within the PA land internal to them. The 

same random sampling strategy was employed to generate samples of these treated and 

control populations. Again, the last step for these datasets was to intersect the treated and 

control units with the other data fields for the outcome variable and the covariates in the same 

manner as the primary datasets above and units displaying null values removed to make them 

ready for analysis.  

  

I. Refinement of covariates 
 

I.1 Testing covariates with GLMs 

 

A GLM was an appropriate model choice in this circumstance as the primary dependent 

variable being investigated for the purpose of covariate refinement is the binary outcome of 

whether a unit remains forested or has been deforested at the end of the outcome period. 

Thus, given that deforestation is rarely uniformly distributed across landscapes (and indeed it 

shows patterns in Cambodia: section 2.13-2.14) it is reasonable to hypothesise that this 

variable and the residuals associated with it, are likely to be non-normally distributed and 

hence simple linear regression is inappropriate (Dytham 2011)  However, for accuracy this 

assumption was confirmed by creating a linear model and evaluating the normal-QQ plot, 

which visibly confirmed non-normal distribution of residuals (Figure I1 below). 
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Figure I1: Normal-QQ plot for the linear model of the 2010-2012 outcome period data 

There are numerous types of GLMs representing logistic regression under different 

error distributions (Zuur et al. 2007), in the case of this study a GLM using binomial 

distribution is appropriate given that we have a categorical dependent variable and for this 

distribution the default transformation is a logit link function (p. 120).  

The first step was to create an initial GLM with the dependent variable being the 

dichotomous outcome of forested (0) or unforested (1), and including all 11 covariates as 

main effects (i.e. without testing for interaction between them).  This model was created 

using the R stats package’s ‘glm’ function (R core team 2020) with separate models created 

for each outcome period. The reason for this was that there is a possibility that control and 

treated samples of different outcomes periods contain the same units of analysis (given the 

conditions for assignment detailed in section 4.1.1). Thus, appending the data for all of the 

outcome periods together would likely have violated the GLM assumption of independence 

(Zuur et al. 2007).  

 The rationale behind starting with initial GLMs including the full selection of 

covariates was to follow the advice of Andam et al. (2008) and Stuart (2010) who highlighted 

the importance of including all possible variables that have a significant predictive effect. 

However, this suggestion precludes the fact that just because all variables have a significant 

effect does not mean that the resulting model is the best fit for the observed data as some may 

be redundant. Hence there is a clear incentive to at least trial different combinations of 

covariates (predictors) to see if model fit (explanatory power) can be improved.  

This can be achieved through the use of stepwise model selection in which variables 

are iteratively added (forward selection) or removed (backward) from the model and the 

results compared using a standardised value. In this study given that a full model of all 

variables had already been produced, backwards selection was utilised with the Akaike 
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Information Criterion (AIC) (a value of model fit that penalises the addition of unnecessary 

predictors: Zuur et al. (2007)) used as a means of comparison.  

Table I1 below shows the results of the initial GLMs (all covariates) for each outcome 

period. Given that the model uses a logit link function, for ease of interpretation the influence 

of the various covariates are expressed as odds ratios (the exponential of the coefficients 

estimates). In light of this and the model specifications variance is appropriately expressed 

through low/high confidence intervals (CI) rather than standard error.   

 

 

Table I1: Results of the GLMs including all covariates produced for each outcome period 

Predictors 

Dependent variable: Forest cover outcome 

 

Odds ratio(signif.) (2.5% CI; 97.5% CI) 

2010-2012 2013-2015 2016-2018 

Surrounding FCL 0.999*** (0.999; 0.999) 0.999*** (0.999, 0.999) 0.999*** (0.999, 0.999) 

Distance to ELC 1.000*** (1.000; 1.000) 1.000 (1.000, 1.000) 1.000(1.000, 1.000) 

Surrounding 

population 
1.000*** (1.000; 1.000) 1.000*** (1.000, 1.000) 1.000*** (1.000, 1.000) 

Slope 0.992*** (0.991; 0.993) 0.999*** (0.998, 1.000) 0.998*** (0.998, 0.999) 

Average annual 

precipitation 
1.000*** (1.000; 1.000) 1.000 (1.000, 1.000) 1.000*** (1.000, 1.000) 

Average annual 

temperature 
0.981*** (0.977; 0.985) 1.023*** (1.020, 1.027) 0.982*** (0.978, 0.985) 

Elevation 0.997*** (0.997; 0.998) 1.000*** (1.000, 1.001) 0.998*** (0.998, 0.999) 

Distance to provincial 

capital 
1.000*** (1.000; 1.000) 1.000*** (1.000, 1.000) 1.000*** (1.000, 1.000) 

Distance to land border 1.000*** (1.000; 1.000) 1.000*** (1.000, 1.000) 1.000(1.000, 1.000) 

Distance to major 

roads 
1.000*** (1.000; 1.000) 1.000*** (1.000, 1.000) 1.000*** (1.000, 1.000) 

Soil type 1.027*** (1.026; 1.029) 1.012*** (1.011, 1.014) 1.017*** (1.015, 1.018) 

Constant 
321.813*** (112.046; 

924.300) 
0.001 (0.0002, 0.001) 

255.900*** (101.469, 

645.369) 
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Observations 927,603 841,903 787,322 

Null deviance 
 

547860  486853 557018 

Residual deviance 
 

450378  398406 484941 

Akaike Inf. Crit. 450,401.700 398,429.900 484,965.400 

Note:**p<0.05***p<0.01  

 

Table I1 shows that the reductions in deviance resulting from the model including all 

covariates as predictors as compared to the null deviance from the intercept alone for all 

outcome periods, indicate that the models are a good fit for the observed data. This is further 

confirmed by the fact that the majority of predictors are relatively consistent in their 

significance across all 3 outcome periods. However, it is slightly concerning that ‘distance to 

ELCs’ is non-significant for both the 2013-2015 and 2016-2018 outcome periods given that it 

is highly significant for the period of 2010-2012. A possible explanation for this is that the 

dataset for the first outcome period contained relatively few ELCs compared to the 

subsequent two (Appendix G). This is exacerbated by the method by which this variable is 

calculated, namely through the use of a Euclidean distance matrix which means that all forest 

cover loss events were likely in closer proximity to ELCs (making it a non-significant 

predictor). The differences in significance for certain predictors between the outcome periods 

is also reflected in the results of the stepwise model selection as shown in Table I2 below. For 

the first outcome period Table I2 shows that the GLM including all covariates produced the 

lowest AIC score indicating that it represents the best fit as compared to when any covariates 

are systematically removed. However, for the period 2013-2015 the results show that the 

removal of either the average annual precipitation or distance to ELCs predictors resulted in a 

lower model AIC score. This is also the case for the distance to ELCs and distance to land 

borders predictors in the 2016-2018 period. Ordinarily it is custom to retain the model that 

results in the lowest AIC score however as the removal of any of these predictors in either of 

the latter two outcome periods only results in a difference in AIC score of <=2 and the 

removal of distance to ELCs for the first outcome period would increase in AIC score by 397.  

then it seems more pertinent to overlook this and maintain consistency between the outcome 

periods by using the same model including all covariates for each.  
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Table I2: Results of stepwise model selection from initial GLMs 

Predictor removed 
(2010-2012) (2013-2015) (2016-2018) 

Deviance AIC Deviance AIC Deviance AIC 

None 450378 450402 398406 398430 484941 484965 

Average annual precipitation 451882 451904 398407 398429 486610 486632 

Distance to ELC 450777 450799 398407 398429 484943 484965 

Elevation 450850 450872 398412 398434 485165 485187 

Slope 450576 450598 398413 398435 484953 484975 

Average annual temperature 450475 450497 398562 398584 485064 485086 

Surrounding population density 450469 450491 398626 398648 485978 486000 

Distance to provincial capital 451874 451896 398687 398709 489628 489650 

Distance to major roads 452320 452342 398703 398725 486065 486087 

Soil type 452074 452096 398718 398740 485639 485661 

Distance to land borders 450548 450570 398946 398968 484941 484963 

Surrounding FCL 513315 513337 465244 465266 523106 523128 

Note: AIC results displayed in Bold highlight models that reduced AIC compared to the full model  

 

I.2 Testing for multicollinearity  

 

As previously alluded too (section 1.3.4.2), in confirming the covariates to be used for 

matching methods analysis there is a need to check for the presence of any multi-collinearity 

between them that may introduce bias. This can be identified by calculating the variance 

inflation factors (VIF) for each covariate, which in the case of this analysis was performed 

using the ‘vif’ function as part of the R package ‘car’ (Fox et al. 2020). This process was 

repeated for all outcome periods however given that the results were analogous for efficiency 

they will be reported for one outcome period only, as such Table I3 below shows the results 

for 2010-2012. Generally, VIF values >5 are considered to a conservative ‘cut-off’ point with 

regards to the presence of collinearity of variables (with values ~1 indicative of no 

collinearity) (Zuur et al. 2009). Thus, Table I3 shows that only two variables are likely to 

collinear: average annual temperature and elevation. 
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Table I3: Variance inflation factors for predictors in the GLM of the 2010-2012 period 

Predictor 
Variance Inflation 

Factor (VIF)  

Surrounding FCL 1.022988 

Distance to ELC 1.798822 

Surrounding population density 1.184162 

Slope 1.28565 

Average annual precipitation 1.699616 

Average annual temperature 13.342755 

Elevation 11.834353 

Distance to provincial capital 1.176646 

Distance to land border 1.570873 

Distance to major roads 1.177708 

Soil type 1.081652 

 

 This implication of this is that one of these should be removed from the final selection 

of covariates with the decision made on the basis of which removal results in the smallest 

increase in model AIC score. Referring back to Table I2 it is evident that the removal of 

average annual temperature as a predictor results in the smallest increase in AIC across the 

three outcome periods and hence it should be removed from the covariate selection for the 

matching analysis. This was further justified on the basis that recalculation of the VIF 

following the removal resulted in all predictors having a VIF value <1.75.  

 

I.3 Confirming overlap in covariate distributions 

 

As highlighted in section 4.3.1 the second consideration when finalising the selection of 

covariates prior to matching is that there is sufficient overlap between their distributions with 

regards to the treated and control samples (to meet the assumption of SITA: section 1.3.4).  

To check this a range of summary statistics for the samples from each outcome period were 

calculated using the bal.tab function within the Cobalt package in R (Greifer 2020a). 

Typically, the standardized mean difference (SDM) between the samples for each covariate is 

used to as an indicator of dis/similarity between samples. However, Greifer (2020b) 

highlights that it is also important to consult other statistical measures that give a better 

picture of covariate distribution beyond measures of central tendency. In this regard the 

variance ratio (Austin 2009a), Kolmogorov-Smirnov (KS) statistic (Greifer 2020b) and the 

complement of the overlapping coefficient (COC: Franklin et al. 2014) were used to provide 

summary values of covariate overlap (or sample balance) in easily interpretable terms.  
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Table I4 below shows these summary statistics in addition to the means and standard 

deviations (SD) for each covariate within each outcome period. The most important result to 

take away from this table is that the treated and control samples do indeed show sufficient 

overlap between their covariate distributions across all of the outcome periods. This 

evidenced primarily by the values of the KS statistic and the COC, whereby in both measures 

a value of 0 indicates a perfectly overlapping distributions and 1 indicates perfectly non-

overlapping distributions (Greifer 2020b). Thus, in this case there appears to be substantial 

overlap for all covariates.   

Table I4: Covariate summary statistics for all outcome periods 

Covariate 
Outcome 

period 

Control Treated 

SDM  
Variance 

ratio 

KS 

statistic 
COC  

Mean SD Mean SD 

Surrounding 
FCL 

2010-2012 2238.710 2363.923 3047.904 2781.443 0.314 1.384 0.147 0.146 

2013-2015 2074.022 2317.133 3081.585 2818.749 0.391 1.480 0.185 0.183 

2016-2018 1694.996 2555.326 2581.290 2228.686 0.370 0.761 0.228 0.227 

Distance to 

ELC 

2010-2012 47537.423 33315.271 36732.979 34366.149 -0.319 1.064 0.233 0.264 

2013-2015 32827.661 26206.881 20261.185 21610.574 -0.523 0.680 0.286 0.333 

2016-2018 22195.524 21026.606 22551.149 17828.224 0.018 0.719 0.168 0.141 

Surrounding 

population 
density 

2010-2012 439.208 1142.967 132.090 377.547 -0.361 0.109 0.292 - 

2013-2015 376.196 976.493 126.502 361.779 -0.339 0.137 0.268 - 

2016-2018 503.288 1089.343 113.095 301.055 -0.488 0.076 0.403 0.217 

Average 

annual 

precipitation 

2010-2012 2031.183 662.432 2334.821 765.963 0.424 1.337 0.285 0.280 

2013-2015 2070.140 687.392 2379.492 774.321 0.423 1.269 0.278 0.274 

2016-2018 1953.546 505.211 2434.737 841.535 0.693 2.775 0.309 0.307 

Slope 

2010-2012 8.771 9.117 14.012 14.061 0.442 2.379 0.190 0.189 

2013-2015 9.231 9.673 14.818 14.424 0.455 2.224 0.203 0.200 

2016-2018 8.719 9.323 14.275 13.689 0.474 2.156 0.224 0.223 

Elevation 

2010-2012 140.097 126.142 316.096 279.815 0.811 4.921 0.367 0.356 

2013-2015 150.763 145.072 333.458 283.308 0.812 3.814 0.382 0.372 

2016-2018 140.135 143.903 303.467 263.216 0.770 3.346 0.390 0.389 

Distance to 

provincial 
capital 

2010-2012 42651.145 18307.442 52139.976 17470.097 0.530 0.911 0.241 0.239 

2013-2015 43818.881 18713.115 51696.173 17618.395 0.433 0.886 0.204 0.203 

2016-2018 42554.544 18789.669 50668.024 18272.894 0.438 0.946 0.184 0.183 

Distance to 
land border 

2010-2012 64735.015 38722.663 52892.368 41973.695 -0.293 1.175 0.169 0.186 

2013-2015 63751.652 38685.042 52739.307 41982.770 -0.273 1.178 0.168 0.183 

2016-2018 59990.226 39256.338 58905.856 41269.323 -0.027 1.105 0.044 0.091 

Distance to 

major roads 

2010-2012 12580.703 10141.931 16146.330 11896.479 0.323 1.376 0.140 0.137 

2013-2015 13318.155 10641.368 16359.564 11784.912 0.271 1.226 0.124 0.123 

2016-2018 11813.565 10229.678 17067.137 11516.210 0.482 1.267 0.230 0.229 

Soil type 

2010-2012 7.843 6.269 6.316 6.320 -0.243 1.016 0.170 0.193 

2013-2015 7.480 6.256 5.965 6.202 -0.243 0.983 0.169 0.193 

2016-2018 7.922 6.136 5.750 6.193 -0.352 1.019 0.232 0.218 

 

C
E

U
eT

D
C

ol
le

ct
io

n



184 

 

J. Spatial autocorrelation analysis 
 

Section 4.3.3 highlighted that SAC can affect the results of regression models used for 

covariate refinement, this occurs because by its nature spatially auto-correlated data violates 

the assumptions underlying regression. Primarily the requirement for independence and 

homoskedasticity of variance in the model residuals (Bolker 2007: Dormann et al. 2007).  

The practical implication of this is that regression models under SAC tend to underestimate 

the standard errors of the coefficients of the predictor variables, thereby increasing the 

probability of a type I error occurring by not rejecting predictors that are in fact non-

significant (Negret et al. 2020).  

 This problem is clearly applicable for the GLMs used for covariate refinement in this 

study (Appendix I) and thus it was important to confirm the presence of SAC to affirm the 

validity of the covariate selection generated by them. A simple initial means of investigating 

this is to visualize the residuals of the GLM in a spatial context, i.e. by plotting them against 

the X and Y coordinates of the data points (units of analysis). Given the assumption that the 

residuals are independently distributed, if this visualization shows clear clustering of similar 

residual values then SAC is likely present. Figure J1 below shows such a visualization for the 

GLM residuals of the 2010-2012 outcome period.  

 

Figure J1: Spatial visualisation of the GLM residuals from the 2010-2012 outcome period 
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From an observational perspective Figure J1 does appear to show some clustering of 

higher value residuals in the data meaning that SAC is likely influencing the results of the 

GLM. However, as the substantial number of units in the dataset (<950,000) confounds this 

observation, it was deemed pertinent to confirm the presence of SAC using a statistical 

measure, namely the Moran’s I test.  

Whilst it would be possible to test for SAC with respect to each predictor (covariate) 

separately to ascertain which of them contribute the most to the cumulative effect of SAC. In 

the case of this study this would have been superfluous as there are a quite a number of 

predictors that would logically be expected to be spatially autocorrelated. Hence for 

expediency, the Moran’s I test was performed on the residuals of the GLM containing the 10 

refined covariates from Appendix I. However, given the large number of units in the 

combined (treated and control units) datasets it was necessary to test a sample from one 

outcome period in order to make the processing possible. This was performed on a 10% 

random sample of the 2010-2012 outcome period data (consisting of 92760 units) using the 

‘moran.test’ function as part of the Spdep package in R (Bivand et al. 2019).  With results of 

the Moran’s I test confirming the presence of SAC (Moran I statistic standard deviate = 

86.901, p-value < 2.2e-16).  

With the presence of SAC confirmed within the data it was then necessary to return to the 

GLMs used for covariate refinement (Appendix I) to test whether the inclusion of SAC in the 

model structure affected the results in terms of the significance of the covariates and the AIC 

scores. There are two means of achieving this, a more simplistic approach as performed by 

Schleicher et al. (2017) is to include the X and Y coordinates as well as the interaction 

between them (X*Y) as separate predictors in the GLM alongside the other variables. 

However, the robustness of this approach is questionable, by contrast Dormann et al. (2007) 

describe a more comprehensive option whereby the effect of SAC is included the model as an 

autocovariate. In practical terms this represents the extent of SAC through a distance 

weighted neighbourhood index that quantifies how much the value of the response 

(dependent) variable for each unit reflects the values of those in proximity to it, essentially 

resulting in a spatial GLM.  

The latter method was trialled first, however the creation of the neighbourhood index for 

a sample of the size of the 2010-2012 data (>950,000 units) was too computationally 

intensive (the script failed to complete after 18+ hours using parallel processing). On this 

basis the decision was made to instead perform the process for a spatial sample (control and 
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treat units sampled within a polygonal region) from the 2010-2012 dataset. This was achieved 

using the ‘autocov_dist’ function from the R package Spdep (Bivand et al. 2019) using the 

default ‘style = B’ (symmetrical neighbourhood matrix) and trialling an increasing 

neighbourhood radius (0.1 increments) until all units had neighbours associated (3.8 km).   

 Given that it was only possible to create an autocovariate adjusted GLM for a sample 

of the data, the former method of Schleicher et al. (2017) was also implemented for the full 

2010-2012 dataset. Table J1 below shows the results of the GLMs produced by the two 

processes 

Table J1: Results of the two spatially adjusted GLMs 

 Dependent variable: Forest cover outcome 

Predictors Odds ratio(signif.) (2.5% CI; 97.5% CI) 

 GLM with X/Y terms GLM with autocovariate 

Surrounding FCL 0.999*** (0.999, 0.999) 0.999*** (0.999, 0.999) 

Distance to ELCs 1.000 (1.000, 1.000) 1.000*** (1.000, 1.000) 

Surrounding population 1.000*** (1.000, 1.000) 1.000*** (1.000, 1.000) 

Slope 0.992*** (0.991, 0.993) 0.987*** (0.980, 0.994) 

Average annual precipitation 1.000*** (1.000, 1.000) 0.998*** (0.997, 0.998) 

Elevation 0.998*** (0.998, 0.999) 1.003*** (1.001, 1.004) 

Distance to provincial capital 1.000*** (1.000, 1.000) 1.000 (1.000, 1.000) 

Distance to land border 1.000*** (1.000, 1.000) 1.000*** (1.000, 1.000) 

Distance to major roads 1.000*** (1.000, 1.000) 1.000*** (1.000, 1.000) 

Soil type 1.026*** (1.024, 1.027) 0.980*** (0.974, 0.985) 

X coordinate 1.000*** (1.000, 1.000)  

Y coordinate 1.000 (1.000, 1.000)  

X*Y interaction 1.000*** (1.000, 1.000)  

Autocovariate  1.042*** (1.041, 1.043) 

Constant 1.199*** (0.673, 2.138) 2.514*** (1.336, 4.730) 

Observations 927,603 69,598 

Log Likelihood -223,604.800 -19,177.840 

Akaike Inf. Crit. 447,237.700 38,379.680 

Note: *p  **p<0.05 ***p<0.01   

 

Table J1 shows that the inclusion of predictors that make the spatial context of the units 

explicit results in models with lower AIC scores (better model fit) than the standard model 

presented in Table I1 (Appendix I). Of course, given the significance of SAC as confirmed by 
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the Morans I result this is hardly unexpected. Of more importance is the fact the models 

resulted in a change in the significance of 1 covariate although these were different in each 

case. In the simple model including the X/Y coordinates distance to ELCs was no longer 

significant whereas in the autocovariate model distance to provincial capitals was not a 

significant predictor.  

These observations are tenuous grounds to discount these covariates from the 

matching analysis. However given the limited appraisal for the robustness X/Y coordinate 

inclusive model as well as the fact that a Morans I test of the autocovariate GLM still found 

significant SAC (Moran I statistic standard deviate = 107.07, p-value < 2.2e-16), it was 

decided that the best course of action was to continue using the set of 10 refined covariates. 

Although in light of this the matched data produced by the primary and secondary analysis 

should be re-tested to see if SAC is still present.  

 

K. Results of matching methods trials.  

 

Before presenting the results generated by the two different matching approaches it is 

important to define the aspects upon which they are to be compared. Given that the primary 

purpose of matching is to reduce the variance in the covariate distribution between the treated 

and control groups (i.e. create more covariate balance) then metrics that quantify this should 

be the primary concern (Section 1.3.2). However, the number of treated and control units, as 

a proportion of the total sample, that a given technique is able to match must also be 

considered to ensure that ATT estimates are robust (Section 1.3.4.3). Also, in the case of this 

study, given the constraint of computational resources, the time taken for the matching 

process to complete (as an operation in RStudio) was a factor. 

Firstly, in terms of assessing the improvements to covariate balance, following the 

discussion in section 1.3.4.3 the decision was made to compare the values of absolute 

standardized mean difference (ASMD) and the KS statistics between the unmatched and 

matched samples without formal hypothesis testing for differences. Figure K1 shows the 

results of this for the 10% random samples from the 2010-2012 outcome period (treatment: 

located within PAs) under both the PSM and MDM approaches in the form of love plots.    

 

C
E

U
eT

D
C

ol
le

ct
io

n



188 

 

 

Figure K1: Summary statistics for covariates in the 2010-2012 outcome period under different 

matching methods 
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From Figure K1 it is clear that the MDM approach results in greater reductions with respect 

to both ASMD and the KS statistics values across all of the covariates as compared to PSM. 

On the basis of this observation alone it would be reasonable to conclude the MDM is the 

more favorable of the two approaches, however this becomes less clear-cut when taking into 

consideration the number of observations matched under each approach which are presented 

in Table K1 below.  

 

Table K1: Summary information from the trials of increasing sample sizes under 

 different matching approaches 

  

Propensity score matching 

(PSM) 

Mahalanobis distance matching 

(MDM) 

Random sample size:  10% 20% 30% 10% 20% 30% 

Time to completion (mins) 10 86 188 10 118 309 

ATT estimate -0.0925 -0.0911 -0.0917 -0.0888 -0.0795 -0.0875 

Abadie-Imbens SE 0.0019 0.0014 0.0011 0.0026 0.0017 0.0014 

T-stat -47.826 -67.092 -82.869 -34.032 -46.146 -61.751 

p value <0.001 <0.001 <0.001 <0.001  <0.001  <0.001  

Sample size (no. of units)  92760 185521 278281 92760 185521 278281 

no. of treated units 35227 70778 106446 35227 70778 106446 

no. of control units 57533 114743 171835 57533 114743 171835 

Number of treated units 

matched 
35227 70778 106446 19518 41730 64579 

No. of control units matched 18991 37860 56697 5816 10403 14555 

No. of unmatched control units 38542 76883 115138 51717 104340 157280 

% of control units matched 33.01 33.00 33.00 10.11 9.07 8.47 

Number of matches dropped 

by caliper   
0 0 0 15709 29048 41867 

 

Table K1 shows that whilst MDM for the 10% sample did achieve better covariate 

balance it was only able to match 19518 of the total 35227 treated units in the sample with 

15709 matches excluded by the caliper (0.5 SDs of the Mahalanobis distance value). 

Furthermore, because matching with replacement was specified, these matches utilized only 

5816 control units approximately 10% of the total available. By contrast the PSM approach 

for the 10% sample was able to match all treated units (35227) with 18991 of the control 

units (33% of the total). These trends in the proportions of treated and control units matched 

under each approach were fairly consistent across the additional trials using 20% and 30% 

random samples of the 2010-2012 data respectively. To attempt to increase the proportions of 

treated and control used the MDM approach was repeated with the specification of matching 

without replacement however this did not result in a notable difference. This led to the 
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conclusion that despite it achieving less impressive improvements to covariate balance PSM 

was preferable to MDM as the potential to weaken the results of ATT estimation through 

reliance on only a small proportion of the treated and control units was too strong to ignore.   

The next issue to be addressed was the question of what size of sample was feasible to 

pursue for the matching to be completed as part of the spillover, primary and secondary 

analyses. Table K1 shows that the time taken for completion of the matching script in 

RStudio do not increase linearly with sample size, for example the 10% sample was 

completed in ~10 minutes whereas the 20% took 86 mins. Logically then it is preferable to 

utilize a smaller sample size and bootstrap the matching analysis by testing multiple random 

samples and average the results to produce ATT estimates. Indeed, this is an approach that 

has been utilized in other studies of PA effectiveness such as Nolte and Agrawal (2013).  

This method appears viable given that the covariate distributions between treated and 

control groups were already close prior to matching (Appendix I.3) although it can only be 

acceptable if there are no clear differences in matching ‘performance’ when comparing 

different sample sizes under the same approach. In this regard Table K1 shows that whilst the 

Abadie-Imbens SE and T-stat do change slightly between the sample sizes, the ATT 

estimates (all of which are significant: P<0.001) and the % of control units matched are fairly 

consistent. Additionally, the love plots of covariate balance for the 20% and 30% random 

sample runs showed only slight differences in reductions in ASMD or KS statistic values 

across the covariates as compared to the 10% sample in Figure K1 above.  

This confirms that the use of sample sizes equating to that of the 10% random sample 

tested is appropriate. Of course, given that the full samples of treated and control units vary in 

size for the spillover analysis as compared to the primary analysis (Table 3, section 5.1.1) 

then there is a need to frame this sample size as a relative number. On this basis it was 

decided that sample sizes for matching should not exceed ~100,000 units and should contain 

a ration of approximately 1:3 treated to control units. 
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L. Sensitivity analysis for unobserved covariates 
 

As described in section 4.3.5 the matched results from the 10% random sample of the 2010-

2012 outcome period that were tested in Appendix K were subjected to Rosenbaum bounds 

sensitivity analysis for unobserved covariates. Given that the dependent variable is 

dichotomous the ‘binarysens’ function in the rbounds package (Keele 2014) was used to 

calculate the lower and upper bounds of the p-value (Mc Nemar’s test) for differences in the 

probability of treatment assignment at different values of the sensitivity parameter (Γ) (Keele 

2010). These are presented in a redacted form for Γ values of 1-4.6 at increments of 0.1 in 

Table L1 below.    

 
Table L1: Rosenbaum bounds sensitivity analysis for the matched sample from the 2010-2012 period 

Sensitivity 

parameter (Γ) 

P-value (McNemar’s test) 

Lower 

bound 

Upper 

bound  

1 – 4.1 0 0 

4.2 0 0.00005 

4.3 0 0.00053 

4.4 0 0.00401 

4.5 0 0.02043 

4.6 0 0.07286 

 

Table L1 shows the that the upper bound of the p-value did not exceed the 95% confidence 

limit (P>0.05) until a Γ value of 4.6. In practical terms this means that for an unobserved 

covariate to significantly alter the rate of deforestation occurrence in the matched sample that 

unobserved covariate would have to produce a 4.6-fold increase in the probability of 

treatment assignment (p. 10). This is considered a high Γ value (Keele 2010; Leite 2017) and 

indicates that the matching results are robust to unobserved covariates i.e that the current 

selection of covariates is strong and requires no adjustment.  
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M. Average values of covariate summary statistics pre- and post-matching 

in the 2013-2015 outcome period (primary analysis) 

  

 

Figure M1: Average values of covariate summary statistics pre- and post-matching in the 2013-2015 

outcome period (primary analysis) 
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N. Treatment effect estimates for all matched-samples (secondary analysis)  

 

Table N1: Treatment effect estimates for all matched-samples (secondary analysis) 

  Outcome period 

  2010-2012 2013-2015 2016-2018 

PA 
establishmen

t period 

Sample 

No.  
ATTsignif 

bias-
adjusted 

SE  

ATTsignif 
bias-

adjusted 

SE  

ATTsignif 
bias-

adjusted 

SE  

1993-2000 

1 -0.077*** 0.00222 -0.067*** 0.00215 -0.024*** 0.00244 

2 -0.069*** 0.00215 -0.062*** 0.00208 -0.021*** 0.00243 

3 -0.070*** 0.00213 -0.061*** 0.00210 -0.022*** 0.00242 

4 -0.075*** 0.00217 -0.063*** 0.00211 -0.027*** 0.00246 

5 -0.074*** 0.00215 -0.058*** 0.00209 -0.025*** 0.00245 

6 -0.075*** 0.00216 -0.059*** 0.00210 -0.025*** 0.00242 

7 -0.066*** 0.00208 -0.064*** 0.00211 -0.035*** 0.00252 

8 -0.070*** 0.00214 -0.062*** 0.00209 -0.025*** 0.00246 

9 -0.075*** 0.00218 -0.055*** 0.00205 -0.024*** 0.00244 

10 -0.070*** 0.00216 -0.058*** 0.00213 -0.032*** 0.00253 

11 -0.070*** 0.00210 -0.056*** 0.00210 -0.029*** 0.00245 

12 -0.071*** 0.00217 - - - - 

13 -0.070*** 0.00213 - - - - 

2001-2010 
1 -0.214*** 0.00291 -0.119*** 0.00277 -0.016*** 0.00306 

2 -0.217*** 0.00291 -0.117*** 0.00278 -0.013*** 0.00303 

2011-2016 

1 - - - - -0.061*** 0.00236 

2 - - - - -0.068*** 0.00242 

3 - - - - -0.054*** 0.00234 

4 - - - - -0.060*** 0.00237 

5 - - - - -0.074*** 0.00249 
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O. Secondary analysis covariate balance for 2013-2015 and 2016-2018 periods  

Figure O1: Average values of covariate summary statistics pre- and post-matching for PAs grouped by establishment dates in the 2013-2015 outcome period 
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Figure O2: Average values of covariate summary statistics pre- and post-matching for PAs grouped by establishment dates in the 2016-2018 outcome period 
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