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ABSTRACT

Life is an infinitely complex symphony of physical, chemical, biological pro-
cesses composed by billions of years of evolution and maintained by its most
elementary units: cells. Life is driven by a deep and also widespread hierarchy
of self-organizing systems and mechanisms: from the most basic atomic inter-
actions, through the biochemistry of folding proteins, the networks of protein-
protein interactions, the different cell organelles, to the large organs in our bod-
ies. Understanding all levels of this hierarchy, how the levels relate to each
other, and how the behaviors at one level emerge from the interactions at a
lower level is a major scientific challenge. Complex diseases such as cancer in-
filtrate multiple facets of this complex hierarchy and thus curing them requires
its profound understanding. This thesis makes a case for a holistic, systems ap-
proach aimed at a better understanding of biology. Most other approaches have
brought only limited results to a general understanding, despite technological
advances with large amounts of resources dedicated to the life sciences and de-
veloping treatments. I argue that network models, specifically Boolean dynamic
systems offer a fruitful abstraction of complicated biochemical mechanisms into
logical circuits and make useful, non-trivial and experimentally validated pre-
dictions. Here we focus on the cell cycle: the process of growth and duplication
of cells.

We present a Boolean model for the mammalian cell cycle as the interaction
of two decision-making modules. We argue that the same way as complex bio-
chemical entities such as genes can be abstracted into simple switch-like binary
nodes of a logical network (in a useful way), there are functional network mod-
ules that also act as simple decision-makers at a higher level of the dynamic
hierarchy. These decision-making modules (switches) are integrated into a net-
work of coupled modules without losing their functionality (i.e. their stable
states). As a step towards a general understanding of how the dynamic hierar-
chy in nature emerges, we formulate three principles for dynamical modularity
and propose three corresponding measures that quantify the degree to which
the conditions posed by the principles are true in any system. We demonstrate
that they hold for the cell cycle model but not for its randomized counterparts.
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We show that cell cycle progression is halted at its checkpoints by general-
ized positive feedback loops called stable motifs. Conversely, the checkpoint-
free cell is an autonomous oscillator that robustly toggles through the cell cycle
phases. We introduce the concept of a conditionally stable motif, a positive feed-
back loop that can maintain an associated state as long as one or more nodes ex-
ternal to the motif have a sustained state. The conditionally stable motifs in the
cell cycle are organized into a sequence, such that they channel the dynamics
by reducing degrees of freedom in the system, lending robustness to the oscilla-
tion. Conditionally stable motifs that destabilize themselves suggest a general
negative feedback mechanism leading to robustly sustained oscillations. We re-
inforce this argument by showing that conditionally stable motifs are key to the
robustness of the oscillation of the full cell cycle model.

Finally, we present a more recent, larger Boolean model that includes three
additional dynamical modules dealing with programmed cell death (apopto-
sis), checking DNA origin (origin licensing) and growth stimulation (PI3K path-
way). This model makes a number of valid biological predictions and we
demonstrate that many of its dynamic behaviors are preserved despite stochas-
tic variability in timing.
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CHAPTER 1

INTRODUCTION

1.1 Problems in life sciences and drug development
– Eroom’s law

The technological and scientific advancements of the 20th century have brought
an unprecedented expansion of knowledge and innovation into human civiliza-
tion. Yet in the last 70 years, developing effective treatments to the most preva-
lent diseases has become increasingly more difficult and expensive [1]. This
trend is quantified by Eroom’s law [2], which states that the number of new
drugs approved by the United States Food and Drug Administration (FDA)
for 1 billion dollars of research and development is halved every 9 years. This
is a stark exponential decline that has been steady since the 1950s, and is still
so, despite giant leaps in technological advancements in molecular biology and
medicine. For instance, DNA sequencing has become a billion times faster and
much more cost-effective since its discovery [3]. The engineering and syntheti-
zation of molecules with specific structure i.e. drug candidates has become
orders of magnitude more efficient [4], which in principle allows researchers
to interact with distinct targets in the cell. High Throughput Screening (HTS)
technologies make it possible to automate many experiments and significantly
decrease the cost of testing drug candidates against treatment targets [5]. All
this leads to the accumulation of large amounts of biological data on the micro-
scopic mechanisms within cells.

Curing complex diseases, such as cancer or Alzheimer’s disease is the aim
of both the multi-billion dollar pharmaceutical industry and of the largest por-
tion of publicly funded research grants. In 1970 US President Richard Nixon
declared the ”War on Cancer”, an ambitious commitment (he compared to the
development of the atomic bomb and the Moon landing) that aimed for a gen-
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2 CHAPTER 1. INTRODUCTION

eral cure by 1976 [6]. Today, almost fifty years after the National Cancer Act,
although major milestones have been reached in the treatment of cancer, there
is still no general cure in sight. In 2016 more than half of the total funds of
the US National Academic Research & Development spending was distributed
to life sciences [7]. It does seem like throwing more and more resources at the
problem did not lead to any breakthrough, nor did it stop the decline of effective
drug development in general. Moreover, the field has been observing a grave
reproducibility crisis of published research [8, 9, 10].

Eroom’s law is a clever wordplay on Moore’s law with which it stands in
stark contrast. Moore’s law quantifies the advancement in computing power,
specifically the number of transistors in microprocessors – that was doubling
every 18 months up until the 2010s. Scannell and co-authors point out the prin-
cipal difference between the two laws:

“Part of the contrast between Moore’s Law and Eroom’s Law is related to the com-
plexity and limited current understanding of biological systems versus the relative sim-
plicity and higher level of understanding of solid-state physics.”[2]

I find this parallel both insightful and useful, mainly because it highlights
a key difference: what made physics so successful we lack in biology. Namely,
a more general, systems-level understanding of the complex interactions that
give rise to the emergent behaviors we observe. Physics (especially statistical
physics) has a more holistic approach to explain the macroscopic behavior of a
system as emergent from its small scale (microscopic) interactions. Like predict-
ing the temperature or pressure of a gas from the collisions of its atoms. Biol-
ogy, on the other hand, is more reductionist and generally focuses on studying
specific biochemical mechanisms and pathways of interaction. Naturally, the
reductionist approach is very much justified by the incredible complexity of the
molecular biochemistry of cells and necessary to understand the small scale in-
teractions. Yet, as our knowledge grows and more and more experimental data
is available, integrating it into more holistic models gradually becomes feasible.
Thus we can turn many small pieces of knowledge into an understanding of
the more fundamental systemic principles. With such understanding, we can
create models that make more accurate, non-intuitive predictions. The models
presented in this thesis in Chapters 4, 6 and 8 follow this systemic approach and
have the potential to be useful tools in combating diseases by explaining their
complex effects and by making predictions about their potential cures.

1.2 Capturing complexity – Networks

The 20th century brought extraordinary scientific leaps in unraveling the laws
of nature and the fundamental building blocks of our universe. The branching
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1.2. Capturing complexity – Networks 3

fields of physics from quantum mechanics through solid-state physics to astro-
physics model the interactions between entities from as small as quarks to as
large as clusters of galaxies. One thing shared by most of the models is that the
interactions are almost always dependent on physical proximity. In most mod-
els the span of interactions can be one of two kinds: it is either assumed that
everything interacts with everything else (e.g. mean-field models), or the inter-
actions are only local, i.e. they range to other agents in close physical proximity
(e.g. atoms in a grid).

Towards the second half of the century, as physics was slowing down in
producing paradigm-shifting breakthroughs, some turned towards a third kind
of interaction. In complex systems, especially if they are dynamic, the concept
of interaction can be much more intricate. The idea of graphs (or networks)
presents a paradigm that interaction patterns can be complex and not neces-
sarily tied to physical dimensions. Every introduction to network theory starts
with Euler’s famous “bridges of Königsberg” problem that is accepted as the
first documented case where a real-world problem has been abstracted into a
set of vertices connected by a nontrivial pattern of edges. Social scientists have
also been utilizing the concept rather early [11, 12], having recognized that in-
teractions within society are rather heterogeneous. It is clear however that the
network approach is not an obscure scientific intuition, as even pieces of litera-
ture have recognized some of its consequences [13].

The first mathematical model aimed at understanding the general principles
of graphs was published by the iconic Paul Erdős and Alfréd Rényi [14]. Erdős
and Rényi made the simple assumption that edges emerge randomly with a
constant probability between pairs of vertices. Although their model has be-
come a fundamental building-block of network theory, it made few empirically
verifiable predictions. The breakthrough models that brought network theory
into the forefront of attention at the end of the century were the small-world
model of Watts and Strogatz [15] and the scale-free model of Barabási and Al-
bert [16, 17]. These were the first models to make strong, testable empirical
predictions on how networks organize.

The advances in network theory have profound effects on the global econ-
omy and modern life in general. A relatively simple network measure, the
PageRank [18], developed by Larry Page and Sergey Brin has catapulted
Google, a small garage startup at the time, into being one of the wealthiest and
most powerful companies on Earth. Some of the other current tech giants like
Facebook and Amazon have similar business models, all intertwined with ex-
ploiting the power of knowledge extracted from the networks that make up our
society, economy [19] and even cognition [20]. However, once again, the the-
oretical advancements are less straightforward to apply to biological systems,
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4 CHAPTER 1. INTRODUCTION

where the landscape of variables is more complex and unpredictable. Still, as
data is becoming increasingly abundant it is much more difficult to synthesize
it into predictive models. A cautionary tale reflecting this difficulty is the con-
troversy of Theranos, the Silicon Valley company that promised to solve a host
of medical problems by running diagnostics on very small quantities of blood.
The Silicon Valley business model works in engineering and software develop-
ment but does not necessarily work in medicine. Theranos, even after raising
four hundred million dollars (reaching a net worth of nine billion) failed to de-
liver any workable product and its fraudulent way to hide this fact lead to its
spectacular downfall [21]. In this thesis, I argue that to have meaningful mod-
els in life sciences one has to have a profound understanding of biology itself
coupled with the systemic approach that is offered by the science of networks
and complex systems.

1.3 Early network models in biology

The earliest network models that had biologically relevant predictions were the
NK models of Stuart Kauffman [22], also known as Kauffman networks. In
these models, N stands for the number of nodes and K for the in-degree of each
node that is constant across all nodes. The innovation of the NK models was
that they have a dynamical aspect, namely that each node has a time-dependent
state. The configuration of all the node-states makes up the state of the system.
A trajectory of the system is the sequence of states it visits from an initial state
to some final state. Kauffman used simple binary variables for nodes states,
and Boolean logic to determine how the states change in time. This was in-
spired by gene-regulation where genes regulate each other in a self-organizing
way, such that a gene is either expressed in one point in time or not i.e., it is on
or off. By a gene being expressed we mean that the molecule (usually a protein)
coded by a gene is present in the cell in higher than the basal concentration. The
changes in concentration usually occur suddenly in a step-like manner, due to
strong feedback mechanisms, and thus the Boolean formalism of treating these
variables as binary (on or off) is often justified. The state of a node in the next
time-step is determined by the state of nodes regulating it (nodes with directed
edges pointing towards a node) and the node’s regulatory function. A node’s
regulatory function (also called rule or gate) encodes how a node reacts to the
different states of its regulators. For example, if node X is regulated by nodes
Y and Z, with the logical regulatory rule f (X) = Y AND Z, X will turn on
in the next time-step if both Y and Z are on, otherwise, it will stay off. All
the models presented in this work are generalized Kauffman networks, we re-
fer to as Boolean models or Boolean dynamical systems. The exact formalism
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1.4. The rise of Boolean models in systems biology 5

of the models with detailed examples is presented later in Section 3.1. Kauff-
man studied randomly generated NK models and found that these networks
have states of convergence, so-called attractors. Attractors are states of ”attrac-
tion” which once are approached by the dynamical trajectory, the system can
get stuck in them (for definitions and examples see Section 3.1.4). Kauffman
correctly concluded that attractors could correspond to stable biological pheno-
types (functions) in an empirical gene-regulatory network. He has also shown
that the number of attractors grows proportionally with the square root of N
– which is also a correct prediction of how the number of phenotypes relates
to the number of genes. The Boolean approach has been adapted into a formal
mathematical framework by René Thomas in 1973 [23]. These papers lay the
foundation to the field that has become today’s systems biology.

Aaron Novick, Jacques Monod, and colleagues introduced the earliest mod-
els of coupled ordinary differential equations (ODEs) to explain the regula-
tory mechanisms and continuous changes in the concentration of regulatory
molecules. Their models explained simple feedback mechanisms that they ob-
served in experiments done on bacterial cultures [24, 25]. Since then ODEs have
become a standard tool in systems biology. ODE models offer a more nuanced,
quantitative modeling framework, as compared to Boolean models. They can
encode more complex kinetic interactions and dependencies as well. However,
the large number of parameters makes ODE models more difficult to scale for
larger systems. It is also very difficult to estimate many of the parameters,
where there is no real data available.

Boolean models by definition do not have numerical parameters whose
value has to be continuously tuned to fit experimental data. The main challenge
is determining the regulatory links and the logical regulatory rules between the
biological agents. Considering alternative assumptions, e.g. considering an
“and” relationship instead of “or” between certain regulators, has similarities
with tuning discrete parameters. On the other hand, once a model is estab-
lished and is validated by reliable predictions, there are virtually no parameters
that one has to explicitly tune to get new predictions.

1.4 The rise of Boolean models in systems biology

The Boolean modeling framework was developing slowly during, the late 20th
century, but it started to attract more attention together with (or as a conse-
quence of) the rise of general network theory at the turn of the millennium.

The major advantage of Boolean models is a compromise in complexity: they
offer a comprehensive representation of the complex interactions of biological
agents, through the network structure and the logical activation rules, but also
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6 CHAPTER 1. INTRODUCTION

involve a drastic simplification of the continuous space of kinetic parameters,
concentrations, chemical interactions, etc. As more and more abundant infor-
mation about system-level interactions in the cell has become available, scien-
tists were able to construct various empirical networks and adapt them into the
Boolean modeling framework, which then produced various testable predic-
tions.

There are several relevant and successful models explaining a large spec-
trum of biological phenomena, such as explaining and predicting the embry-
onic segmentation of the Drosophila melanogaster also known as the fruit-fly [26],
the abscisic acid induced stomatal closure in plants [27], signal transduction
in mammalian cells [28], T-cell large granular lymphocyte (T-LGL) leukemia
[29, 30], the heterogeneity of endothelial cells (a cell type on the inside surface
of blood vessels) [31], epithelial-to-mesenchymal transition (EMT) of cells (a
process by which epithelial cells become migratory mesenchymal stem cells –
an extremely harmful transition in the case of cancer) [32, 33]. The main predic-
tive feature of these models is the fact that their attractors correspond to known
and experimentally measurable biological states. The models are also capable
of making predictions based on in silico experiments (computer simulations)
from different initial conditions, involving random or observed mutations as
well as external manipulations to the networks’ states – simulating potential
treatments to diseases. Some of the works mentioned above, together with the
applications of various methods form control theory, predict combinatorial in-
terventions (combinations of multiple targets) that can drive the biological sys-
tem from unhealthy states to healthy ones. Many of the predictions were con-
firmed experimentally. It is also possible to iteratively improve existing models
based on a feedback loop of experimental validation or biology literature and
adjustments made to the models as discussed in [34].

I am going to discuss the Boolean models of the cell division cycle – the focus
of this work – in Section 2.2 and our own models in Chapters 4, 6 and 8.

1.5 Modularity - Macroscopic and functional orga-
nization of networks

To better understand the principles that govern biological systems we turn to
the main organizational principles of networks. One of the most fundamen-
tal principles of collective behavior observed in networks is that the nodes that
share some common set of features tend to self-organize into groups or com-
munities. This most often manifests in the topology of the network as the nodes
are more densely connected within their respective groups than with the rest of
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1.6. Thesis outline 7

the network. This has been observed early in studies of social networks [35, 36]
– which is also supported by intuition – we organize our daily lives in often
overlapping, but distinct communities, from groups as small as families to as
large as nations. What is less intuitive is that most networks have similar meso-
scopic structures as the ones we observe in our social environment. For instance,
biological networks have been shown to have modular organization just as so-
cieties [37]. Ravasz et al. have shown on a multitude of biological networks
that the modular structure also has an internal hierarchy of groups nested within
groups [38]. These discoveries sprang an entire new sub-field of network sci-
ence into motion for finding more efficient ways of mapping the community
structure of networks [39]. The idea that molecules in cells organize into func-
tional modules has been proposed by Hartwell el al. [40] – already suggesting
a new paradigm in biology that we have to shift focus from single molecules
to functional groups or modules. This insight is reinforced by our results dis-
cussed throughout this thesis.

Milo et al. proposed that certain elementary connective patterns called net-
work motifs are statistically over-represented in biological networks and they
can have specific functional roles [41]. An explanation for how functional units
emerge in biological networks has been proposed by Kashtan et al. [42]. The au-
thors developed a genetic algorithm where they mutated the network structure,
mimicking the natural progress of evolution, in which both Boolean regulatory
and neural networks had to adapt to a ”task” representing a challenge by the
environment. They discovered that regularly switching between two different
environments not only causes the adaptation to happen in much fewer gener-
ations, but specialized modules emerge in the networks for dealing with the
alternating environments. This is strong evidence that evolution tends to ”del-
egate” different adaptive behaviors by creating functional modules.

In this thesis, I present our work where we build on these ideas but pro-
pose that modularity is not necessarily just structural in nature. We propose a
kind of modularity that is dynamical and thus it is not detectable from network
topology by any conventional means. Dynamical modularity is a property of
systems where the diverse functionalities of the network are expressed in the
dynamical evolution of their states. I discuss dynamical modularity in detail in
Chapters 4 and 5.

1.6 Thesis outline

The two main statements of this thesis are the following: first, systems-level ap-
proaches, more specifically Boolean dynamic systems, are capable of predicting
the emergent behaviors of the cell cycle from a network of molecular interac-
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8 CHAPTER 1. INTRODUCTION

tions derived from the literature. Second, we can identify general principles
of dynamical self-organization, which are true on all scales of the dynamical
hierarchy that governs living organisms. We do this by bringing together mul-
tiple strands of knowledge from biology and applying methods from dynamic
systems theory and network science.

In Chapter 2 I introduce the basic biological background of the cell cycle.
Most importantly the key genes and molecules, the phases of the cell cycle and
the checkpoints separating the phases. I also discuss the relevant milestones in
understanding and modeling it.

Chapter 3 introduces the essential methodological tools and concepts that
we use throughout the study. We define Boolean models, their dynamical prop-
erties, what are attractors, and what the different update schemes mean. I also
introduce some of the tools, such as the logic expanded network and its differ-
ent motifs (stable, conditionally stable, oscillating), which help us handle and
interpret the often large dynamical landscape of Boolean models.

In Chapter 4 I present our Boolean model for the mammalian cell cycle as
the interaction of two decision-making modules: the Restriction Switch and the
Phase Switch. The two switches have biologically relevant steady states cor-
responding to before/after restriction point passage and the three major cell
cycle checkpoints respectively. The coupled model gives rise to a cyclic attrac-
tor with states corresponding to events of the biological cell cycle. The cyclic
attractor matches the biological sequence by toggling through the steady state
combinations of its modules. We call this behavior – the modular dynamics
preserved in the global dynamics in a meaningful way – dynamical modular-
ity. The decision-making modules (switches) are integrated into a network of
modules without losing their functionality (i.e., their stable states).

In Chapter 5 we formulate the three principles for dynamical modularity
and propose three corresponding measures that quantify the degree to which
the conditions posed by the principles hold in any modular Boolean model. We
show that the principles hold for the cell cycle model but not for its randomized
counterparts.

In Chapter 6 I present our work on the Phase Switch module of the cell
cycle and its intrinsic oscillator. We show that the stable states of the Phase
Switch are contingent on the state of four nodes through which it receives input
from the rest of the network. Biologically, these conditions correspond to cell
cycle checkpoints. Holding these nodes locked (akin to a checkpoint-free cell)
transforms the Phase Switch into an autonomous oscillator that robustly toggles
through the cell cycle phases. We introduce the concept of a conditionally stable
motif, a generalized positive feedback loop that can maintain an associated state
as long as one or more nodes external to the motif have a sustained state. The
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1.6. Thesis outline 9

conditionally stable motifs of the Phase Switch Oscillator are organized into
an ordered sequence, such that they serially stabilize each other but also cause
their destabilization. Along the way, they channel the dynamics of the module
onto a narrow path in state space, lending robustness to the oscillation. Self-
destabilizing conditionally stable motifs suggest a general negative feedback
mechanism leading to sustained oscillations. We perform a coarse-graining of
the Phase Switch Oscillator based on the interaction of the conditionally stable
motifs and reduce the 8 node model into a higher level 3 node model that still
maintains the relevant features of the original model.

Returning to the cell cycle model in Chapter 7 we analyze the robustness
of the model-simulated cell cycle under timing variability. A comparison with
the biological cell cycle allows us to identify the model’s strengths and short-
comings. We identify the conditionally stable motif structure of the Restriction
Switch module and further analyze the interplay between the Phase Switch, the
Phase Switch Oscillator, and the Restriction Switch in the full cell cycle model.

In Chapter 8 I present the latest Boolean model of the cell cycle from our
collaboration. This model includes three additional dynamical modules deal-
ing with apoptosis, origin licensing, and growth factor stimulation. This model
makes useful biological predictions and we demonstrate that many of its emer-
gent dynamic behaviors are preserved despite stochastic variability in timing.

Finally in Chapter 9 I summarize our results, propose directions in going
forward with future research, and conclude the thesis.

C
E

U
eT

D
C

ol
le

ct
io

n
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CHAPTER 2

MODELING THE CELL CYCLE

2.1 Basic concepts and biological background

The main purpose of the cell cycle is to replicate the DNA and produce two
identical daughter cells. This process happens in every living organism that we
know and thus it is one of the most fundamental building blocks of life. Billions
of years of evolution accumulated a multitude of checks and balances to make
sure this process is robust internally yet it is adaptive in a multitude of different
environments. Balancing robustness and adaptive behavior is a difficult task
that is accomplished by a vastly complex procedure. In the progression of the
cell cycle, we can identify distinct phases that are separated by checkpoints. Ev-
ery checkpoint makes sure that everything is going according to the intricate
”plan” of dividing the cell, which gradually evolved to its current level of com-
plexity through the eons. The checkpoints evaluate both external signals (e.g.
is there enough nutrition for further growth) and internal checks (e.g. was the
DNA replicated accurately) to either halt the division process or let it proceed.
All of this is executed and coordinated by an interaction network of various pro-
teins and molecules driving the cycle, managing checkpoints, transmitting sig-
nals, etc. Unfolding this network and understanding the nature of interactions
as well as the dynamic processes lying beneath is a difficult task. For example,
studying the biochemistry of how various proteins can fold in three dimensions
and change their function based on what shapes they take is an entire field of
its own. Our goal is to keep a more systemic view in mind to understand this
complex process.

11
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12 CHAPTER 2. MODELING THE CELL CYCLE

2.1.1 The phases of the cell cycle

The cell cycle process, besides the optional quiescent phase, can be divided into
four main phases, which are separated by three main checkpoints; illustrated in
Figure 2.1.

• G0 – Quiescent phase, where the cell executes its basic functions, but there
is no active growth, nor progression along the cell cycle. For example,
neurons are in the G0 phase during most of their lifetime.

• G1 – The first growth phase when the cell is gathering the necessary nu-
trients to divide and evaluates if the environment is favorable for prolif-
eration. If so the cell generates so-called growth factors that stimulate the
procedure. The first growth phase is guarded by the first checkpoint the
restriction point that makes sure it is safe to start the replication of the
DNA. Passing the restriction point also represents an irreversible commit-
ment to the division cycle.

• S – The synthesis phase when the DNA is replicated

• G2 – A second growth phase following the replication. During this phase,
the cell evaluates the quality of the replicated DNA and repairs all damage
if it is possible. If the damage is irreparable the cell commits to apoptosis
or programmed cell death. Until the DNA is fully checked the cell cycle is
halted. This is called the DNA damage checkpoint.

• M – Mitotic phase. This is the most complex and eventful phase that in
itself can be divided into several sub-phases. First is the Prophase, where
the mitotic spindle starts to form, the nuclear envelope breaks down and
the chromosomes start to condense. The mitotic spindle is a sort of ”scaf-
folding” attached to the pairs of replicated chromosomes still sticking to
each other (sister chromatids). Next is Metaphase, where the sister chro-
matids line up in the middle of the cell, getting ready to be pulled apart
by the spindle. Here, the cell has to make sure that the spindle is perfectly
attached to the sister chromatids and the pulling will not damage either
of them. This is called the spindle assembly checkpoint (SAC). In the
third sub-phase, the Anaphase, the sister chromatids are pulled apart by
the spindle towards opposite poles of the cell. In the following Telophase
the spindle disintegrates, the chromosomes start to de-condense and the
new nucleoli start to form around them. The final phase is the Cytokinesis
(which can partially overlap with preceding phases), when the cytoplasm
is split into two and two identical daughter cells form, both re-entering G1
or entering G0.
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2.1. Basic concepts and biological background 13

In Chapters 4 and 7 we discuss a case that is predicted by our cell cycle model, in
which the two forming daughter cells in the presence of constant growth factors
pre-commit to the next cycle and pass the restriction point of the next division
before cytokinesis.

Spindle Assembly 
Checkpoint

DNA damage checkpoint

Restriction Point

G1

G2

S

M

G0

Figure 2.1. Illustration of the cell cycle phases. The sections of different colors represent
the distinct phases of the cell cycle, with their corresponding labels. The arrows indicate
the direction of the process. The M (mitosis) phase can be divided into five subsegments:
Prophase, Metaphase, Anaphase, Telophase (not shown on the figure) and finally Cy-
tokinesis, where the two cells split, indicated by the bifurcating brown arrow. After
Cytokinesis the cell cycle restarts in both daughter cells, with optionally entering the
quiescent phase (G0), indicated by the blue parallel path. Image credit for chromosome
drawings: [43]

2.1.2 The cell cycle control system

The cell cycle control system is a network of regulators that makes sure that
the events necessary for the progression of the cycle are started in the correct
sequence and everything is completed before the next process starts. This same
control system has to make sure that the cycle halts (arrests) if the conditions of
certain checkpoints are not fulfilled.

In this work we mostly focus on the cell cycle of mammalian cells, however,
the control system is virtually the same in almost all eukaryotic cells. Many of
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14 CHAPTER 2. MODELING THE CELL CYCLE

these mechanisms are so ancient that certain core molecules when transferred
from a yeast cell to a human cell still work properly [44].

The key molecules driving the cell cycle are a family of proteins that acti-
vate and deactivate in different phases of the cell cycle called Cyclins and the
Cyclin dependent protein kinases or Cdks. The discovery and understanding
of these molecules and other key regulators was pioneered by Leland Hartwell,
Paul Nurse and Timothy Hunt, who were jointly awarded the Nobel Prize in
Physiology and Medicine in 2001 for this work [45]. The main mechanism of
regulation of proteins is the phosphorylation and de-phosphorylation, which
is the attachment of a phosphate group to a molecule. For instance, a Cdk to be
active it needs to be phosphorylated at one site and dephosphorylated at two
other sites. The activity of Cyclins and Cdks changes abruptly, due to various
feedback mechanisms that accelerate their regulation. This is one of the reasons
why the Boolean approximation is justified in modeling the cell cycle.

There are different kinds of Cyclins and Cdks responsible for triggering dif-
ferent phases of the cell cycle. The proteins that are ”guarding” the checkpoints
between phases can inhibit the Cdks at the specific checkpoints. Also, if certain
actions are not completed in time, the control system delays the next step until
the previous step is completed.

This fact is a good justification for the synchronous update process of nodes
(defined in 3.1.2) when simulating our Boolean cell cycle models that incorpo-
rate many of the above molecules and mechanisms introduced in Chapters 4
and 8. The randomly updating general asynchronous update scheme has no re-
gard for the synchronicity of events, and it can help us understand, how the
cell makes sure that even in the presence of stochastic timing, the sequence of
events is robust – or which parts are vulnerable for such noise. We derive an
analysis and propose explanations for the robustness of the cell cycle process in
Chapter 6.

2.2 Regulatory models of the cell cycle

One of the earliest network models had already recognized the essential role
of negative and positive feedback loops in cell cycle regulation. Novák and
Tyson introduced a mathematical model for the M-phase control by studying
the M-phase promoting factor (MPF) based on data from Xenopus oocyte em-
bryos [46]. They proposed that the MPF complex consisting of Cyclin B and the
Cdc2 molecule is part of a positive feedback loop with Cdc25 and Wee1 that
promotes the production of MPF, and a negative feedback loop, involving a
ubiquitin-conjugating enzyme (UbE) and an enzyme dubbed intermediary en-
zyme (IE), which start the delayed degradation of the MPF. They predicted that

C
E

U
eT

D
C

ol
le

ct
io

n



2.2. Regulatory models of the cell cycle 15

the positive feedback loop creates a bistable switch as well as the fact the hystere-
sis in the concentration of molecules is an important mechanism in regulating
the cell cycle. However, many of the specific molecules involved were still not
known. Most predictions of the model were later confirmed experimentally
[47]. Our models make similar predictions involving a more comprehensive set
of regulators, discussed in Chapters 4 and 6.

Li et al. proposed a cell cycle model for the budding yeast, where they have
shown that the emerging dynamic pathway matching the cell cycle is extremely
robust against perturbations [48]. The model involved a more comprehensive
set of cyclins (Cln1,2,3; Clb1,2,5,6), inhibitor complexes (Cdc20; Cdc14; Cdh1;
Sic1) and transcription factors (SBF; MBF; Mcm1; SFF) found in yeast. The
cell cycle checkpoints were represented by abstract nodes (not actual biologi-
cal agents) interacting with the molecules. Our model discussed in Chapter 4
also utilizes abstract nodes to simplify cellular processes that are not part of the
model in mechanistic detail, but contrary to Li et al.’s model in our case some
of the checkpoints are already represented by actual molecular interactions. In
Li et al.’s model, the attractor representing the cell cycle is not a closed limit cy-
cle but a linear pathway that nonetheless accurately corresponded to biological
trajectory executed by yeast cells during their division.

In the same year, Chen et al. published a kinetic network model for the
budding yeast, based on the biological consensus model of the cell cycle control
mechanisms. The model included all agents used by Li et al. in [48] with the ad-
dition of several other key molecules such as Mad2, APC, Net1, PPX, Tem1, etc.
The model was able to accurately predict most (more than 100) experimental
results in mutant cells, but it also produced some inconsistencies with exper-
iments that were useful in identifying what parts of the biological consensus
model had to be revised [49].

Based on the skeleton provided by the yeast control network Novák et al.
proposed a model for the restriction point in mammalian cells working with the
assumption that most of the core control system is inherited from much sim-
pler eucaryotic ancestors. The model was supplemented with the mammalian
equivalent of regulatory agents found in yeast such as the core cyclins (Cyclin
E; Cyclin A; Cyclin D), cyclin-dependent kinases (Cdk1; Cdk2), Cdk inhibitor
(Kip1) and transcription factors (Rb; E2F). Table 2.1 is instructive of the corre-
sponding molecules from yeast and mammals together with their roles, repro-
duced from the paper. The model also made predictions matching experimental
results [50].

A problem of the kinetic equation models, such as the one proposed by
Novák et al. is that the methods and results are extremely reliant on fine-tuning
specific parameter sets that become more and more difficult to establish as the
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16 CHAPTER 2. MODELING THE CELL CYCLE

Budding yeast Mammalian Cell Role
Cdc28 Cdk1 Cyclin-dependent kinase
Cln3/Cdc28 CyclinD/Cdk4 Growth-factor sensor
Cln2/Cdc28 CyclinE/Cdk2 Starter kinase
Clb5/Cdc28 CylcinA/Cdk2 Initiate DNA synthesis
Sic1 Kip1 Cdk inhibitor in G1
SBF,MBF Rb, E2F Regulate transciption at G1/S
Clb2/Cdc28 CyclinB/Cdk1 Mitosis promoting factor
Cdh1 Cdh1 Degradation of B-type cyclins
Cdc20 p55cdc Proteollysis at anaphase

Table 2.1. Corresponding core cell cycle molecules and their roles in yeast and mam-
malian cells, reproduced from [50]

models grow.
Fauré et al. built on the model of Novák and Tyson, but adapted the compro-

mise of the more qualitative Boolean approach [51]. Fauré’s paper is imperative
from the perspective of our work as the model presented in Chapter 4 builds on
the Fauré model. Virtually all regulatory nodes proposed by Fauré et al. (Cy-
clinE; CyclinD; E2F; Rb; p27(Kip1); CyclinA; CyclinB; Cdh1; Cdc20; UbcH10)
are also present in our larger model. They also investigated the different ways
of updating the node-states to establish temporal dependencies of the cell cycle.
Neither of the two extremes - synchronous or asynchronous update (see Section
3.1.2) produced a convincing emergent behavior, so the authors also introduced
a mixed update that improved the qualitative match between the emerging at-
tractors and the biological reality. Throughout this thesis comparing the predic-
tions of models under different update schemes is a major topic, as the timing
of events is a key factor in biological systems.

Novák et al. also proposed that the irreversibility of cell cycle transitions
is also a regulatory network phenomenon, which can be attributed to systems-
level feedback [52]. Our results discussed in Chapter 6 confirm this hypothesis
within the framework of generalized positive feedback loops we call stable mo-
tifs.

Gérard and Golbeter proposed a very detailed 39 node model where they
have shown the importance of the Cdk oscillations in driving the cell cycle, as
well as ways the cell can leave the quiescent (G0) phase and initiate the cell
cycle. They also introduce a reduced version of the network, consisting of only
5 nodes that still maintains the key features of the larger detailed model [53].
This way of reducing complexity by coarse gaining a more detailed model into
a smaller one is a key feature of our results discussed in Chapter 6.
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CHAPTER 3

KEY METHODOLOGICAL CONCEPTS

Boolean regulatory models or Boolean dynamical systems introduced in Sec-
tion 1.4 offer a compromise in complexity. By reducing the intricate biochemi-
cal interaction and concentration levels into simple logical interactions between
binary variables we make much more tractable but qualitatively still valuable
analysis of biological systems possible. In this chapter, I am going to introduce
the mathematical framework with the basic concepts and terminology essen-
tial to understand our methods and interpret our results. Then we introduce
some of the tools to better understand and simplify the dynamical landscape of
Boolean regulatory networks, through the so called logic expanded network and
the special strongly connected components or motifs in it.

3.1 Boolean Regulatory Models

Boolean regulatory networks can be represented by a graph G = (V, E) con-
sisting of V = (v1, v2, ..., vn) vertices (nodes) and E edges. The edges are di-
rected, representing a one-way, signed interaction between the vertices of the
network. The sign of an edge represents the activation or inhibition of the tar-
get node. Each node has a binary state, σv equal to 1 or 0, often referred to as
on or off. The state of the model is the collective state configuration of all of its
nodes. Overall, the model can have 2N different states, where N is the number
of vertices. The state of each node v is determined by the state if its incom-
ing neighbors (parents, regulators) through a logical function assigned to each
node, F = ( f1, f2, ..., fn). We also call these functions Boolean regulatory func-
tions or Boolean rules. The logical function encodes how every node responds
to the different states of its regulators. The value of a node σvi in time-step t + 1
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18 CHAPTER 3. KEY METHODOLOGICAL CONCEPTS

is calculated as:
σvi(t + 1) = fi(σPar(vi)

(t)) (3.1)

where Par(vi) is the set of parents or in-neighbors of node vi and σPar(vi)
(t)

is their state configuration at time t. If a node has k incoming neighbors, this
means 2k different possible inputs with 22k

possible output functions. This
allows an incredibly large variety of possible dynamics that a Boolean network
can manifest.

In Figure 3.1 I present a toy Boolean regulatory model that I am going to use
consistently in this chapter as an example to illustrate the discussed concepts.

Figure 3.1. A toy Boolean regulatory model. The Boolean regulatory functions (rules)
that determine the state of each node are shown next to the nodes. Edges ending in
arrows represent positive regulation, while the edge terminating in a white circle repre-
sents negative regulation (inhibition)

3.1.1 Truth Tables and Boolean Rules

Regulatory functions have two common ways of representation – truth tables
and Boolean rules. The two representations are fully equivalent but useful in
different ways. The set of truth tables (or Boolean rules) are sufficient in fully
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3.1. Boolean Regulatory Models 19

determining the Boolean model, as they encode both the dynamical and the
relational interactions.

Truth Tables

Truth tables, as their name suggests, are tables that tell for each variable in
which configuration of their inputs they return 1 (or 0). A main advantage of the
truth table representation is that as logical interactions can get very complicated
it allows the encoding of more complex interactions, which are difficult to ex-
press as logical rules straightforwardly (e.g. activation patterns based on gene
expression data). With truth tables, we explicitly encode what input state con-
figuration activates every node. It is also more machine-readable (many simu-
lation algorithms turn rule inputs into truth tables first). The equivalent truth
tables for all the variables based on the logical rules in Figure 3.1 are shown
below:

B A∗

0 0
1 1

A B∗

0 0
1 1

A D C∗

0 0 1
0 1 0
1 0 1
1 1 1

C D∗

0 0
1 1

E F E∗

0 0 0
0 1 0
1 0 0
1 1 1

E F∗

0 0
1 1

Each variable in the model has a truth table, where the columns (except the
rightmost) are the inputs, the rows represent the possible input combinations.
The rightmost column of each table represents the output variable signed with
an ∗ representing the state of the node in the next time step (if updated) given
the different inputs.

Boolean Rules

The Boolean rules are a compact way of defining a Boolean model, they are
more ”human readable” and in that sense are also more intuitive. A set of
Boolean rules is basically a system of logical equations. This way of representa-
tion is often useful to interpret and evaluate the actual mechanistic interactions
between biological agents. The regulatory network shown in Figure 3.1 has the
following Boolean rules (also shown on the figure):

A∗ = B
B∗ = A
C∗ = A ∨ ¬D
D∗ = C
E∗ = E ∧ F
F∗ = E,

(3.2)
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20 CHAPTER 3. KEY METHODOLOGICAL CONCEPTS

where the ∗ represents the next temporal value of the given variable, ∨ is the
logical or, ∧ is the logical and and ¬ is the logical not.

3.1.2 Update Schemes

An update scheme refers to the order in which the state of the nodes in a Boolean
model is updated. This is important if we are interested in not just the long-term
steady state behavior of the system but the trajectories and pathways of con-
vergence from different initial conditions. Any update scheme makes strong
assumptions about the timing of events in a biological system. These assump-
tions always have to be taken into account when interpreting the emergent be-
havior of a model. It is common practice to analyze a model using multiple
different update schemes simultaneously to see what features are dependent
or independent of timing. In our research, we are mostly utilizing two update
schemes representing to extremes of the temporal spectrum: synchronous and
general asynchronous updates.

Synchronous Update

The synchronous update scheme assumes that all events encoded by the logi-
cal rules happen in synchrony, meaning that every node is updated at the same
time. Because of this, the next state of the dynamical system is fully determined
by its previous state. Using the notation of equation (3.1) the synchronous up-
date is defined as:

σv(t + 1) = f (σPar(v)(t)),

where v represents the vector of all N nodes and σv represents the corre-
sponding vector of all node states. Since every state of the system is exactly
determined by the previous state the trajectories from all initial conditions are
deterministic when using synchronous update. This means that every state has
one and only one next state it can transition into.
This update scheme is very restrictive, but it can be very useful for simulating
biological systems where exact timing and sequence of events is critical as it en-
forces that events happen in a deterministic order. One such system is the cell
cycle, the empirical focus of this work.

General Asynchronous Update

General asynchronous update assumes that events encoded by the logical rules
are temporally independent. The nodes are updated asynchronously (one at a
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3.1. Boolean Regulatory Models 21

time), and they are picked randomly with repetition. This is the largest degree
of sequential stochasticity we can apply to a Boolean model. Because of this,
the trajectory of a model can be also very stochastic. In Chapter 6 I am going
to discuss the network mechanisms that make a system’s trajectory robust even
with general asynchronous update.

Random Order Asynchronous Update

In the case of random order asynchronous update, a time step constitutes from
updating all nodes asynchronously, but only once, in a randomly generated
order. The random order is regenerated in every time-step. This type of asyn-
chronous update introduces a smaller degree of timing variability to a system
than general asynchronous update, but it is still not deterministic like the syn-
chronous update. We only use random order asynchronous update in some
cases with the model introduced in Chapter 8.

3.1.3 State Transition Graph

The state of a Boolean model is discrete – a configuration of N ones and zeros,
where N is the number of nodes. The dynamical changes in a Boolean model
are transitions between these discrete states. Because of the discrete nature of
the dynamics, it is convenient to represent the states and transitions in a graph
format, where nodes are states of the model and edges are transitions between
the states. Such a representation is called a state transition graph (STG).

An STG can have 2N nodes. The number of edges is determined by the
update scheme. For synchronous update, since the emergent dynamics is de-
terministic every node has a single outgoing edge (self-loops included), thus
the number of edges is equal to the number of states (STG nodes). With general
asynchronous update a state can have transitions into up to N other states, in
the case where every node’s update leads to some different state. This means
that STGs have an upper bound of having N × 2N edges. In Figures 3.2 and 3.3
two STGs of the regulatory model introduced in Figure 3.1 are presented gen-
erated with synchronous and general asynchronous update respectively. Both
STGs have the same set of nodes, the 26 possible configurations of the toy net-
work, but the edge wiring is radically different, due to the nature of the two
update schemes.

A fully mapped out STG gives full information on the dynamical landscape
of a Boolean model; however, as the size of the STG grows exponentially with
the size of the regulatory network, this quickly becomes intractable in larger
models. Yet, as the figures also suggest, most models have only a few states
of convergence, and any system quickly merges into pathways that lead into
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22 CHAPTER 3. KEY METHODOLOGICAL CONCEPTS

the ”sinks” of such graphs. What we are usually looking for when studying a
model are these states of convergence that we call attractors.

Figure 3.2. The STG of the regulatory model from Figure 3.1 when using synchronous
update. The nodes represent states, where the labels correspond to the node configu-
ration following the alphabetical order of the regulatory node labels (ABCDEF). Every
node has a deterministic transition from it represented as a single out-going edge. The
red and orange nodes represent the attractors. The red nodes are single steady state at-
tractors, while the orange nodes are representing cyclic attractors (or limit cycles) con-
sisting of multiple states. Light blue nodes represent the basin of attraction of the attrac-
tor state (111100), while the yellow states represent the basin of attraction of the cyclic
attractor looping through the states (000000)→ (001000)→ (001100)→ (000100).

3.1.4 Attractors

Generally, attractors are states or a set of states toward which a system tends to
evolve, for a wide variety of initial conditions of the system. As the name sug-
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3.1. Boolean Regulatory Models 23

Figure 3.3. The STG of the regulatory model from Figure 3.1 when using general asyn-
chronous update. The nodes represent states, where the labels correspond to the node
configuration following the alphabetical order of the regulatory node labels (ABCDEF).
Most nodes have multiple transitions from them which are picked randomly during sim-
ulations. The red and orange nodes represent the attractors. The red nodes are single
steady state attractors, while the orange nodes represent the complex attractors of the
system. Light blue and green nodes represent the basin of attraction of the attractor
state (111100), while the yellow and green states represent the basin of attraction of the
complex attractor looping through the states (000000) → (001000) → (001100) →
(000100). The green states represent the overlap of the two basins.

gests, attractors ”attract” the dynamic trajectory of the system towards them-
selves. Attractors of Boolean models with deterministic regulatory rules are de-
fined as states or sets of states that a dynamical model converges into and keeps
visiting indefinitely. Attractors represent the long term behavior of a system
– and as such are the most relevant features of a model. As explained in Sec-
tion 1.4 in the case of accurate empirical Boolean models attractors correspond
to stable biological states (phenotypes). A dynamical model can have multiple
different attractors. The red and orange nodes in Figures 3.2 and 3.3 represent
the attractors on the state transition graph. Initial conditions, noise, external
perturbation, or combinations of these determine in which of its attractors a
system converges into. The states that inevitably converge into an attractor but
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24 CHAPTER 3. KEY METHODOLOGICAL CONCEPTS

do not make part of the attractor are called the basin of the attractor. Once the
system is in the basin of an attractor it cannot leave it, except due to external
perturbation. When using synchronous update the basin of each attractor is
unique - due to the deterministic dynamics. These appear as disjoint connected
components of the STG as shown in Figure 3.2. On the same figure two basins
are colored - one light blue and one yellow. The asynchronous update makes
the basins fuzzy, thus stochasticity becomes an important factor in which will
be the final attractor. In Figure 3.3 we colored the corresponding basins of the
same two attractors as on the synchronous STG shown in Figure 3.2 blue and
yellow. The green states in Figure 3.3 represent the overlap of the two basins.
From any of the green states, update noise can lead the system in either of the
two attractors. The fact that a significant portion of the basins is overlapping
highlights how much stochasticity affects the long term behavior in the case of
general asynchronous update.

There are different kinds of attractors depending on the update scheme and
the type of noise one introduces to the system. Here I introduce three major
types of attractors: fixed-point attractors (steady states), cyclic attractors (limit
cycles) and complex attractors (a.k.a. loose attractors).

Steady states

A steady state or a fixed point attractor is a single state that once a system con-
verges into, it permanently maintains. In Figures 3.2 and 3.3 the nodes high-
lighted in red are steady states - they have no out-edges (except a self loop).
Steady states are invariant to different update schemes – as the two figures also
suggest. Mathematically the steady states are the solutions of the system of
logical equations that one can turn a Boolean model into.

In biological models, the steady states usually represent the gene expression
of differentiated cells or states that are sustained for longer periods ( e. g. the
G0 quiescent state or locked checkpoints in the cell cycle).

Limit cycles

A limit cycle is an attractor consisting of a deterministically repeating sequence
of states. The deterministic nature of such cycles is only guaranteed when us-
ing the synchronous update scheme. Such cyclic behavior is due to some sort
of negative feedback in the regulatory model. In Figure 3.2 four different emer-
gent limit cycles are shown, consisting of states highlighted by orange. Each
connected subgraph made up of orange states is a different limit cycle. A very
important empirical limit cycle is the emergent cell cycle of our model discussed
in Chapter 4.
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3.1. Boolean Regulatory Models 25

Complex attractors

Complex attractors are akin to limit cycles in the sense that they are made up
of multiple states that are indefinitely visited by the system, however, the key
exception is that the paths (or sequence of states) are not necessarily determin-
istic. Complex attractors can emerge when using general asynchronous update.
In network terms, complex attractors are strongly connected components of the
general asynchronous STG with no edges point out from the component. The
orange states in Figure 3.3 represent a complex attractor. We will discuss in
detail some empirical complex attractors in Chapters 6, 7 and 8.

3.1.5 Sampling complex attractors

When the full mapping of a model’s state transition graph becomes intractable
due to its size we often need to use different methods to sample it. This is
especially important in the case of larger complex attractors, whose states can
all bear biological significance. Here I present a method for sampling complex
attractors we used during our research.

The trajectories generated by general asynchronous update can be inter-
preted as a random walk on the state transition graph. During a random walk
on a directed network, a walker on node i at time step t randomly chooses one of
the edges going out of i and traverses that edge in one time-step. Using general
asynchronous update every node has the same probability of being updated,
thus every outgoing edge (i.e. every state transition that yields a different state
than the starting state) has the same probability. An extended simulation of the
model trajectory starting from any node in the basin of attraction of the com-
plex attractor (i.e. the states that are starting points of trajectories that reach
the complex attractor) gives us a reliable sample of the most probable states
and transitions. For example, performing a random walk of n steps can give
us convergent visitation probabilities of states and transitions. We can validate
the visitation probabilities emerging from our sampling process by using the
PageRank algorithm [18] on the full complex attractor. Mapping of the full state
transition graph of relatively small models is tractable; this is not the case for
larger networks.

3.1.6 Biological noise with synchronous update and the attrac-
tor barriers of Boolean models

Here I present a method of adding noise to synchronously updated dynamics,
by assuming a nonzero probability that nodes can return the wrong output for
the given inputs at any given time-step. This is used in Chapter 5 to determine
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the probability of states when calculating the measures of dynamical modular-
ity.

Biological noise can occasionally lead to transitions between attractor basins.
In the presence of noise, the models’ trajectory also explores the connections and
barriers between individual attractors [54, 55]. Assuming that a small amount
of noise affects each logical rule in each time-step offers an elegant way to es-
timate the long-term probability that the system spontaneously visits any state
(not just the attractors. It also mitigates some of the drawbacks of synchronous
node update [56, 57, 58]. In this case, we follow the method of Zhang et al.
[59], who used a Markov chain approach to calculate the stationary probability
Π(s) of finding the ergodic system in any state s (not just the attractors). To
this end, we first calculate the probability matrix Mij of every state transition
si → sj the system can have in a single time-step. Given a nonzero probability
pE that any Boolean function returns the wrong output in every time-step, the
system’s dynamics is a Markov process and all Mij transitions take place with a
nonzero probability. From each state si (each row of Mij) there will be a single
transition with probability (1− pE)

N corresponding to the deterministic, syn-
chronous state transition observed in the noise-free system. In addition, there
will be N transitions with probability pE(1− pE)

N−1 where one of the N gates
was affected by error, (N

2 ) further transitions with probability p2
E(1 − pE)

N−2

and so on.
In stationary state, the overall probability of the system transitioning into

state si must be balanced by the probability of it leaving si:

ΣjΠ(sj)Mji = Π(si)ΣjMij, (3.3)

where ΣjMij = 1. In matrix form: (M− I)Π = 0 (I is the identity matrix), an
underdetermined system of 2N linear equations. Adding the additional con-
straint that the stationary probabilities across the entire state space add up to
1, ΣiΠ(si) = 1, renders the system of equations determined with a single so-
lution. The exact calculation, however, is only feasible on very small Boolean
networks (it is a system of 2N + 1 equations). For larger networks we estimate
Π(s) as the visitation probability of state s, sampled by long runs of noisy dy-
namics (for further details Deritei et al. [60] Supplementary Methods 1). Using
Π(s), an energy-like quantity can be defined, which is associated with each
network state during noisy Boolean dynamics: E(s) = − log[Π(s)]/β, where
β = log(1/pE − 1)/2 is a function of rule error probability pE [59].

The stability of an individual attractor (and thus, biological phenotype) may
be characterized as the overall probability of finding the system within its basin
of attraction:

P(a) = ∑
i∈B(a)

Π(si), (3.4)
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3.2. The dynamic repertoire of Boolean models 27

where si is an initial condition from which the system’s noise-free dynamics
leads to attractor a. B(a), the basin of a, denotes the set of all such states. Using a
similar logic, we can compute the overall probability of spontaneous transitions
between attractor basins as:

T(a→ b) = ∑
i∈B(a)

∑
j∈B(b)

Π(si)

P(a)
Mij. (3.5)

3.2 The dynamic repertoire of Boolean models

Analyzing a Boolean model by mapping out the state transition graph (STG)
with different update schemes gives us a complete map of the dynamic land-
scape of the model as well as potentially profound insights into the empirical
system it represents. However, as the models grow in size doing a full analysis
of the STG becomes intractable. In this section we are going to discuss a set of
tools introduced by Zañudo et al. in [61] that offer an efficient way to map out
the main dynamical features of a Boolean model. These methods are imperative
in the analysis of our empirical models. Here we also introduce a methodolog-
ical innovation, which makes part of this framework and emerged from our
research, the conditionally stable motif discussed in detail in 3.2.3, published in
[62].

3.2.1 The Logic Expanded Network

The signed interaction network of a Boolean model encodes only partial infor-
mation about the model since there can be nontrivial logical rules that deter-
mine the next state of a node (see Figure 3.1). The logic expanded network
(often referred to as just the expanded network) offers a way to encode the logical
rules into network structure. This representation then allows finding key dynam-
ical features in a model doing structural analysis.

The expanded network consists of two virtual nodes for each node (one for
each of the two possible states) and composite nodes that embody AND gates
among two or more node states. In Figure 3.4 we present the toy regulatory
model, already introduced in Figure 3.1 and its expanded network conversion.

The expanded network (right panel) of the regulatory model (left panel) in-
cludes two virtual nodes for each node: the virtual node marked by the node
name indicates the on (1) state of the node while the virtual node marked by the
node name preceded by ∼ indicates the off (0) state of the node. The expanded
network represents each AND gate with a composite node (small filled circle),
e.g. the composite node with light blue background indicates the AND gate
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Figure 3.4. The expanded network (right panel) of the regulatory model (left panel)
includes two virtual nodes for each node: the virtual node marked by the node name
indicates the on (1) state of the node while the virtual node marked by the node name
preceded by ∼ indicates the off (0) state of the node. The expanded network represents
each AND gate with a composite node (small filled circle), e.g. the composite node with
light blue background indicates the AND gate in the regulatory function of node E.
(Recall that an OR gate in a Boolean rule corresponds to an AND gate in its negation,
as seen in the case of the other, yellow composite node). The positive feedback loop
between A and B yields two stable motifs, one corresponding to the on state of both
nodes (shown in blue) and one corresponding to the off state of both nodes (shown in
orange). The positive feedback between E and F can sustain their off state (stable motif
shown in purple) but the on state of E and F can only be sustained if B is on. Thus, the
virtual nodes E and F form a conditionally stable motif conditioned on B (light blue).
The negative feedback between C and D leads to sustained oscillation of these two nodes
(indicated by the cycle in yellow) if A=0. If A=1 C will also converge to 1 (see the edge
from A to C in the expanded network)

in the regulatory function of node E (E*=B and F) with inputs from the virtual
nodes representing the on states of B and F and an outgoing edge pointing to the
virtual node representing the on state of E. The negation of the rule of E (not E*=
not B or not F) is also represented by the virtual nodes ∼B and ∼F pointing to
∼E. (Recall that an AND in a Boolean rule corresponds to an OR in its negation,
and vice-versa).

An edge from a virtual node to a composite node indicates that the virtual
node is a necessary condition for states described by the composite node. An
edge from any node to a virtual node indicates that the parent node is a sufficient
condition for the state represented by the child node. Special strongly connected
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3.2. The dynamic repertoire of Boolean models 29

subgraphs of the expanded network have strong dynamical implications. In this
section, we are going to discuss these special subgraphs and how they can help
us explore the dynamic repertoire of Boolean models.

3.2.2 Stable and Oscillating Motifs

Stable motifs are generalized positive feedback loops in a regulatory model, which
have a pivotal influence on the dynamical evolution of a model and can be
identified in the expanded network formalism. A stable motif is a subgraph of
an expanded network that satisfies four properties:

1. it is strongly connected – there is a directed path within all pairs of nodes
within the subgraph

2. it is consistent – there are no virtual nodes in the subgraph that also have
their negated pair in the subgraph. E.g. if virtual node A is in the subgraph
A cannot be for the subgraph to be consistent.

3. it is composite-closed – if a composite node is in the subgraph, so too are
all its virtual node parents

4. it is minimal – it contains no nontrivial subgraphs satisfying the first three
properties

On our toy network in Figure 3.4 the positive feedback loop between A and B
yields two stable motifs, one corresponding to the on state of both nodes (shown
in blue) and one corresponding to the off state of both nodes (shown in orange).
The positive feedback between E and F forms a stable motif of their off states
(stable motif shown in purple). The identification of stable motifs is useful be-
cause of one important reason – they are (as their name suggests) parts of the
regulatory network that can sustain their stability independent of the rest of the
network. If the node states represented by the virtual nodes are established (by
the naturally evolving dynamics, as the initial condition or by external inter-
vention), these states lock-in and will not change, regardless of what happens
in the rest of the network. In other words, stable motifs create trap-spaces: once
the dynamical trajectory enters it can no longer leave, and thus the degrees of
freedom in the system are permanently reduced. On the STG this means that
once the model reaches a state where a stable motif is stabilized (e.g. A=B=0
on the toy network) in every state downstream from that state the nodes of the
stable motif will be in the same configuration.

An oscillating motif is a subgraph of an expanded network that satisfies five
properties, some shared with the properties of stable motifs:
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1. it is strongly connected,

2. it is composite-closed,

3. each of its virtual nodes is contradicted by another one of its virtual nodes,

4. it contains no stable motifs

5. it is minimal

The difference between oscillating and stable motifs is in condition number 3,
which means that oscillating motifs are not consistent, but the opposite – oscil-
lating motifs have both virtual nodes of each variable in the subgraph fitting
the conditions listed above. Oscillating motifs create trap-spaces as well but the
nodes represented by the motif will not stabilize but oscillate indefinitely. The
yellow subgraph in Figure 3.4 right panel is not a perfectly realized oscillating
motif (it is not composite closed – i.e. the yellow composite node’s parents are
outside the motif) but it becomes one if the stable motif A=B=0 stabilizes. If that
happens, the nodes C and D will oscillate indefinitely (see the orange attractor
in Figure 3.3). However, the oscillation is conditioned on the stabilization of an-
other motif or node. In the next section, I am introducing a generalization of
stable and oscillating motifs: the conditionally stable (oscillating) motif.

3.2.3 Conditionally Stable Motifs

Conditionally stable motifs (CSM) are strongly connected subgraphs of the ex-
panded network that have the same structural conditions as stable (or oscillat-
ing) motifs, except for the condition of the motif being composite closed, i.e. all
parents of a composite node in the motif are not necessarily in the motif. The
parents of the composite nodes in the CSM that are not part of the subgraph are
the conditions of the conditionally stable motif. If the conditions of a CSM are
held fixed, the CSM becomes a stable (or oscillating) motif. In our example in
Figure 3.4 the positive feedback between E and F can sustain their off state (sta-
ble motif shown in purple) but the on state of E and F can only be sustained if B
is on. The negative feedback between C and D leads to sustained oscillation of
these two nodes if A is off. In Chapter 6 I am going to discuss how conditionally
stable motifs are key in creating checkpoints in the cell cycle (that are intuitively
conditionally stable states) as well as how do they make sure that the dynamic
evolution of the cell cycle is robust to update noise.
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3.2.4 Stable Motif Succession Diagram

As stated in the introduction of this section, the identification of different mo-
tifs in the expanded network can help us map out the dynamic repertoire of a
Boolean model, without the need to explore the full state space (STG). The sub-
sequent stabilization of stable, conditionally stable, and oscillating motifs will
create different paths that then converge into one of the attractors of the system.
By mapping out the possible sequences of stable motif stabilization we can cre-
ate a much more simplified picture of the dynamical landscape of a model. We
call such a map a stable motif succession diagram. In Figure 3.5 we show such
a succession diagram for the toy network we’ve been using so far. Compar-
ing Figure 3.5 to the state transition graphs of the same model on Figures 3.2
and 3.3 one can see that using this framework one can drastically simplify the
dynamical landscape of a model.

Figure 3.5. The stable motif succession diagram indicates the possible sequences of
successive stabilization of the three stable motifs and of the conditionally stable motif as
well as the resulting attractor repertoire of the system.)
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CHAPTER 4

A BOOLEAN MODEL FOR THE CELL
CYCLE WITH TWO INTERACTING
DYNAMICAL MODULES

The cell cycle is one of the most fundamental processes of life. Understanding
its intricacies not only has tremendous scientific value but it can help us better
understand and alleviate complex diseases such as cancer. In this chapter we
are going to present and discuss the cell cycle model, published in the paper
titled Principles of dynamical modularity in biological regulatory networks published
in Scientific Reports in 2016 [60]. This paper is the result of a collaboration be-
tween Erzsébet Ravasz Regan, William B. Aird, Mária Ercsey Ravasz and my-
self. My contribution to this paper was validating the simulation results and
coming up with the generalized quantitative measures of the principles of dy-
namical modularity discussed in the next chapter, as well as writing the paper.
The distillation of the vast experimental literature into the Boolean regulatory
interactions presented in this chapter is the work of Dr. Ravasz Regan. My work
focused on the analysis of the already constructed Boolean models. The tables
explaining the detailed biological mechanisms referencing the experimental lit-
erature can be found in our paper [60] Supplementary Tables S1 to S3. I believe
it is more appropriate to not include those details in this thesis.

The Boolean cell cycle model in the paper is composed of two semi-
autonomous modules that are the two essential empirical models of focus in
this thesis. The first module called the Restriction Switch, models the irre-
versible switching cells undergo when they pass the restriction point and com-
mit to a full division cycle irrespective of further growth stimulation. The sec-
ond module called the Phase Switch models the switch-like transitions from G2
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INTERACTING DYNAMICAL MODULES

into mitosis, as well as spindle assembly checkpoint passage from metaphase to
anaphase. The two modules are coupled to each other, as well as to the main
processes driven by the cell cycle control machinery; namely DNA Replication
and assembly of the mitotic spindle. Cell cycle progression in this model is
dependent on a single Growth Factor input (GF). GF represents an extracel-
lular environment with saturating mitogen levels, leading to full activation of
growth signaling pathways that activate the transcription factors and G1 cyclins
responsible for starting the cell cycle. Thus, when GF is on the model settles into
a limit cycle and mimics continuously cycling cells. In contrast, GF = 0 leads to
a stable state that corresponds to quiescent cells in G0.

4.1 The Restriction Switch – a bistable model of the
restriction point

4.1.1 Biological background

The mammalian restriction point marks a commitment in late G1, before which
cells require ongoing mitogenic (growth) stimulation to initiate the cell cycle.
Past the restriction point, division proceeds regardless of the presence of growth
signals. In cells entering the cell cycle from quiescence (G0 state), growth factors
stimulate the activation of Myc, a transcription factor responsible for early G1
induction of Cyclin D1, as well as its partner kinase Cdk 4 (the active complex
is modeled by CyclinD1 = ON). As active Cyclin D1 / Cdk complexes accumu-
late, they block the activity of the cyclin-dependent kinase inhibitor p27Kip1
and phosphorylate the retinoblastoma protein RB. This blocks RB’s ability to
inhibit E2F1-mediated transcription. E2F1 then orchestrates the production of a
wide array of proteins required for cell cycle progression and DNA replication,
including Cyclin E. As Cyclin E / Cdk2 complexes are also potent inhibitors
of RB, the presence of Cyclin E guarantees that E2F1 remains active, keeping
Cyclin E levels high regardless of mitogenic stimulation. At this point, cells are
committed to replication. In this respect, the Restriction Switch is similar to pre-
viously published models of cell cycle commitment [63, 64, 65, 66]. Besides, the
switch also includes experimentally documented feedback from E2F1 to Cyclin
D1 and Myc, which allow the Restriction Switch to switch into its committed
state early in metaphase (following Cyclin A degradation in pro-metaphase)
and drive an additional cell cycle in the absence of growth factors.
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4.1. The Restriction Switch – a bistable model of the restriction point 35

4.1.2 The Boolean model of the Restriction Switch

The Boolean model of the Restriction Switch (from this point only referred to
as Restriction Switch) encapsulates the biological mechanisms described above
and its emergent dynamics reflects an irreversible switch: it has two distinct
steady states.

in Table 4.1 we provide the description of individual nodes of the Restriction
Switch. In Figure 4.1 we show the regulatory network representation of the Re-
striction Switch. The regulatory interactions (Boolean rules) are listed in Table
4.2. A detailed description of the regulatory interactions included in this model,
supported by references from the experimental literature can be found in [60]
Supplementary Table S1.

node description
CyclinD1 active complex of Cyclin D1 and cyclin-dependent kinases 4 or 6
CyclinE active complex of Cyclin E and cyclin-dependent kinase 2
E2F1 E2F family transcription factor 1
Myc Myc transcription factor
p27Kip1 cyclin-dependent kinase inhibitor 1B
RB hypho-phosphorylated Retinoblastoma protein

Table 4.1. Nodes of the Restriction Switch and their descriptions.

node regulatory function
CyclinD1* = (Myc and E2F1) or (CyclinD1 and (Myc or E2F1))
CyclinE* = E2F1 and (not RB) and (not p27Kip1)
E2F1* = (not RB) and (E2F1 or Myc)
Myc* = E2F1
p27Kip1* = not (CyclinD1 or CyclinE)
RB* = (not CyclinD1) and ((not CyclinE) or p27Kip1)

Table 4.2. Regulatory functions (Boolean rules) of the Restriction Switch model

The two steady states (point attractors) of the Restriction Switch, are shown
in Figure 4.2 – one corresponding to the biological state before restriction point
passage while the other represents mitogen-independent commitment to the
next division (past restriction point). All unstable states of this circuit follow
trajectories into one of these two states, partitioning the system’s state space
into two attractor basins.
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Figure 4.1. The regulatory network representation of the Restriction Switch model.
Edges with terminal arrows indicate positive regulation, edges that end in open circles
indicate negative regulation, and edges that have endings on both sides (i.e., bidirec-
tional edges) indicate the superposition of two edges with opposite directions.

Figure 4.2. The two steady states of the Restriction Switch in the regulatory network
representation of Figure 4.1. The dark grey color background represents the ON state of
a node and the white background represents the OFF state. The color of the two boxes is
the color code of the respective steady states we are going to use on later figures.C
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4.2 The Phase Switch – a tri–stable model of the
phase defining checkpoints

4.2.1 Biological background

Once cells finish DNA replication and repair all DNA damage, they undergo
another irreversible switch-like transition that commits them to mitosis. Mech-
anistically, this commitment involves full activation of M-phase Cyclin B / Cdk1
complexes. The process starts with Cyclin B accumulation in G2 when the ac-
tivity of the APC/C – Cdh1 ubiquitin ligase complex is blocked by Cyclin A /
Cdk2 activity. Once the checkpoint proteins sensing ongoing DNA replication
and/or DNA damage turn OFF and Wee1 activity decreases, the inhibition of
Cdk1 kinase by Wee1 is lifted. Once active, Cyclin B / Cdk1 can keep Wee1 sup-
pressed even if DNA damage signals reappear [67], making the commitment to
Cyclin B / Cdk1 a switch-like transition. Cyclin B / Cdk1 activity initiates the
processes of mitosis, including chromosome condensation, dissolution of the
nuclear membrane and the assembly of the mitotic spindle.

In the coupled cell cycle model shown in Figure 4.5 and further discussed in
Section 4.3 this complex choreography of biological events is simplified into the
Metaphase node outside of the Phase Switch. The Metaphase node is activated
by Cyclin B and Cdk1 in cells with 4N DNA content; its ON state represents
the completion of spindle assembly. As long as Metaphase is OFF, the Phase
Switch maintains a robust Cyclin B and Cdk1-high state where the anaphase-
promoting complex is phosphorylated (pAPC) but inactive. This is the spindle
assembly checkpoint. Its passage requires Metaphase = ON (a signal external
to the Phase Switch) and the subsequent inhibition of Mad2. Mad2 is a highly
sensitive signaling molecule that remains active as long as even a single kineto-
chore (and thus chromosome) remains unattached to the mitotic spindle. Once
Mad2 is inactive, the Cdc20-bound and phosphorylated APC/C complex, mod-
eled as pAPC = ON and Cdc20 = ON, degrades Cyclin B and thus inactivates
mitotic cyclin / cyclin-dependent kinase activity. In addition, the complex tags
the protein securin for degradation, releasing a protease (separase) that cleaves
the cohesin rings that keep sister chromatids together. This marks the start of
anaphase when sister chromatids begin their movement to opposite poles of the
mitotic spindle. The activity of the Cdc20-bound and phosphorylated APC/C
complex is short-lived, however, as APC/C loses its Cdk1/Cyclin B-mediated
phosphorylation and Cdh1 replaces Cdc20 in the complex. This leads to Cdc20
degradation, following which the Phase Switch locks into a stable state that
matches that of G0/G1 cells. At this point, further external input from a com-
mitted Restriction Switch as well as the Replication node is required to toggle it
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back into G2 [68].

4.2.2 The Boolean model of the Phase Switch

The Phase Switch is a Boolean model incorporating the above mechanisms that
together with other key regulators are the core driving interactions of the cell
cycle phases. in Table 4.3 we list the nodes of the Phase Switch with their de-
scriptions. Regulatory functions of the Phase Switch module are listed in Table
4.4. A detailed description of the regulatory interactions included in the Phase
Switch model, supported by references from the experimental literature can be
found in [60] Supplementary Table S2.

node description
Cdc20 cell-division cycle protein 20
Cdc25A cell-division cycle protein 25A
Cdc25C cell-division cycle protein 25C
Cdh1 complex of Cdh1 and anaphase-promoting complex
Cdk1 cyclin-dependent kinase 1
CyclinA Cyclin A
CyclinB Cyclin B
Mad2 mitotic arrest deficient 2
pAPC phosphorylated anaphase-promoting complex
UbcH10 ubiquitin conjugating enzyme UbcH10
Wee1 nuclear kinase Wee1

Table 4.3. Nodes of the Phase Switch and their descriptions.

The Phase Switch module when isolated from external interactions has three
unique steady states, shown in Figure 4.4 that each correspond to states locked
into the three major checkpoints in the cell. More precisely this isolation is a spe-
cial configuration of external signals where no checkpoint gets ”green light”.
Without external intervention, the final stabilization of the Phase Switch de-
pends on the initial condition of the model and/or noise. Naturally, this is not
the case in the actual cell. Yet it is an important feature that the Phase Switch
can capture the locked-in states into the checkpoints, which we further explore
in Chapter 6.
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Figure 4.3. The regulatory network representation of the Phase Switch model. Edges
with terminal arrows indicate positive regulation, edges that end in open circles indicate
negative regulation, and edges that have endings on both sides (i.e., bidirectional edges)
indicate the superposition of two edges with opposite directions.

Figure 4.4. The three steady states of the Phase Switch in the regulatory network
representation of Figure 4.3. The dark grey color background represents the ON state of
a node and the white background represents the OFF state. The color of the two boxes is
the color code of the respective steady states we are going to use on later figures.
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node regulatory function
Cdc20* = pAPC and (not Cdh1) and (not Mad2)
Cdc25A* = CyclinA and (not Cdh1)
Cdc25C* = CyclinA or (CyclinB and Cdk1)
Cdh1* = (not CyclinA) and (not (CyclinB and Cdk1))
Cdk1* = Cdc25C and (CyclinA or CyclinB) and (Cdk1 or (not Wee1))
CyclinA* = (Cdc25A or CyclinA) and (not (pAPC or (Cdh1 and UbcH10) ) )
CyclinB* = not (pAPC and Cdc20) and (not Cdh1)
Mad2* = not (pAPC and Cdc20) and CyclinB and Cdk1
pAPC* = (pAPC and Cdc20) or (CyclinB and Cdk1)
UbcH10* = (not Cdh1) or (UbcH10 and (Cdc20 or CyclinA or CyclinB))
Wee1* = not ((CyclinA or CyclinB) and Cdk1)

Table 4.4. Regulatory functions (Boolean rules) of the Phase Switch model

4.3 The cell cycle model – two switches toggle each
other to generate cyclic dynamics

The full cell cycle model of our study is a coupling of the two modules intro-
duced above, the Restriction Switch and the Phase Switch with interactions be-
tween the two modules. We extend the model with four additional nodes, we
refer to as abstract nodes – since they represent simplifications of processes that
themselves are complex decision-making modules. The additional nodes and
their descriptions are listed in Table 4.5.

node description
Replication The ON state represents the ongoing process of DNA replica-

tion and it turns OFF when cells double their DNA content.
Metaphase The Metaphase abstract node turns ON when spindle assembly

is completed, and none of the kinetochores are left unattached.
4N DNA The 4N DNA abstract node represents the completed duplica-

tion of a cell’s DNA. It also represents the mechanisms that pre-
vent the initiation of a new replication process.

GF Growth factors in the cell’s external environment

Table 4.5. Nodes of the Phase Switch and their descriptions.

The full cell cycle model is defined in Table 4.6, with the network represen-
tation shown in Figure 4.5. We discuss the biological details of the coupling
interactions between the Restriction Switch and the Phase Switch in another
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context in Section 7.4. The detailed description of the regulatory interactions of
the full coupled model, with references from the experimental literature, can be
found in [60] Supplementary Table S3.

node regulatory function
GF* = GF
CyclinD1* = (not Replication) and ((GF and (Myc or E2F1)) or (Myc and

E2F1))
CyclinE* = (Cdh1 or (not Metaphase)) and (E2F1 and (not (p27Kip1 or

RB)))
E2F1* = not (CyclinA or RB) and (E2F1 or Myc)
Myc* = GF or E2F1
p27Kip1* = (not (CyclinB and Cdk1)) and (not (CyclinD1 or (CyclinA and

CyclinE)))
RB* = not (CyclinB and Cdk1) and (not CyclinD1) and (p27Kip1 or

not (CyclinA or CyclinE))
Cdc20* = pAPC and (not Cdh1) and (not Mad2)
Cdc25A* = (E2F1 and (CyclinE or CyclinA)) or ((not Cdh1) and CyclinE

and CyclinA)
Cdc25C* = CyclinA or (CyclinB and Cdk1)
Cdh1* = (not (CyclinB and Cdk1)) and (not CyclinA)
Cdk1* = Cdc25C and (CyclinA or CyclinB) and (Cdk1 or (not Wee1))
CyclinA* = ((E2F1 and Cdc25A) or CyclinA) and (not (pAPC or (Cdh1

and UbcH10) ) )
CyclinB* = not (pAPC and Cdc20) and (not Cdh1)
Mad2* = n4N DNA and (CyclinB and Cdk1 and not ((pAPC and

Cdc20) or Metaphase))
pAPC* = (pAPC and Cdc20) or (CyclinB and Cdk1)
UbcH10* = (not Cdh1) or (UbcH10 and (Cdc20 or CyclinA or CyclinB))
Wee1* = Replication and (not ((CyclinA or CyclinB) and Cdk1))
Metaphase* = n4N DNA and CyclinB and Cdk1 and (not(pAPC and

Cdc20))
Replication* = CyclinE and Cdc25A and (not n4N DNA)
n4N DNA* = (not Cdh1) and (n4N DNA or (CyclinA and Replication))

Table 4.6. Regulatory functions (Boolean rules) of the cell cycle model

The cell cycle model has two attractors: a steady state attractor and a limit
cycle, both corresponding to actual stable biological phenotypes.
In the absence of growth factors cells enter into the so-called quiescent state, G0,
where they keep functioning (e.g. neurons fire) but are not engaged in growth
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Figure 4.5. Illustration of the coupled cell cycle model from its two modules, the Re-
striction Switch (shown with white node background) and the Phase Switch (nodes
with light grey background). The network also contains a Growth Factor input node
(black), and three abstract nodes (dark grey) that stand for cell cycle processes (Repli-
cation, Metaphase) or global cell states (4N DNA) that are triggered, monitored and
terminated by the two controller switches. Edges with terminal arrows indicate positive
regulation, edges that end in open circles indicate negative regulation, and edges that
have endings on both sides (i.e., bidirectional edges) indicate the superposition of two
edges with opposite directions.

and the subsequent division. In the case of our model if the GF input node is
set to 0 the model converges to a steady state that corresponds to a quiescent
cell. All the core molecules responsible for driving the cell cycles are off, only
three nodes are active: RB, p27Kip1 and Cdh1. All three are strong inhibitors of
Cyclins and Cdks and thus are responsible for blocking the cell cycle. This state
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also corresponds almost perfectly to a combination of two module-attractors -
the before restriction point attractor of the Restriction Switch (this lock-in is its
main role) and G0/G1 attractor of the Phase Switch.

In the constant presence of growth factors (GF=1), under synchronous up-
date, the model enters a limit cycle that has two important features: first, its
13 repeating states correspond to actual biological states emerging from by the
sequence of events in the cell cycle – making the different phases of the cell cy-
cle identifiable, in the correct order. In short, the limit cycle corresponds to the
actual cell cycle. Second, the cell cycle states approach the attractors of the two
modules and toggle between them. The states are shown in detail in Table 4.7
and the illustration of the limit cycle from the perspective of the two modules is
shown in Figure 4.6.
This property of the global attractor toggling the attractors of its constituent
modules is a feature we call dynamical modularity. We believe that dynamical
modularity could be a general property of natural decision-making systems
where decision making functional modules coordinate in intricate ways to ex-
hibit robust but adaptive behavior.

Figure 4.6. In the presence of growth factors the model’s states form a limit cycle that
progresses through the phases of the cell cycle while toggling the steady states of the two
modules. Each symbol represents a model state and separately encodes the state of the
Restriction Switch (diamond) and the Phase Switch (hexagon). The color of each shape
indicates that the corresponding state is close to one of the steady states indicated in the
legend and Figures 4.2 and 4.4. The divided sections of the cycle represent the cell cycle
phases accurately reproduced by the states of the limit cycle. For the detailed states see
Table 4.7 and Figure 2 of Deritei et al. [60]C
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Phase G1 S G2 M C G1
State label CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9 CC10 CC11 CC12 CC13 CC1
E2F1 1 1 1 0 0 0 0 0 0 0 1 1 1 1
CyclinE 1 1 1 1 0 0 0 0 0 0 0 0 1 1
CyclinD1 1 1 0 0 0 0 1 1 1 1 1 1 1 1
RB 0 0 0 0 0 0 1 0 0 0 0 0 0 0
p27Kip1 0 0 0 0 0 1 1 0 0 0 0 0 0 0

Restriction
Switch

Myc 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CyclinA 0 0 1 1 1 1 1 1 1 0 0 0 0 0
Cdc25C 0 0 0 1 1 1 1 1 1 1 1 1 0 0
Cdc25A 1 1 1 1 1 0 0 0 0 0 0 0 0 1
CyclinB 0 0 0 0 1 1 1 1 1 1 1 0 0 0
Cdh1 1 1 1 0 0 0 0 0 0 0 0 0 1 1
Cdk1 0 0 0 0 0 0 0 1 1 1 1 1 0 0
Wee1 0 0 1 1 1 1 0 0 0 0 0 0 0 0
UbcH10 1 0 0 0 1 1 1 1 1 1 1 1 1 1
pAPC 1 0 0 0 0 0 0 0 0 1 1 1 1 1
Cdc20 0 0 0 0 0 0 0 0 0 0 1 1 1 0

Phase
Switch

Mad2 0 0 0 0 0 0 0 0 1 0 0 0 0 0
Replication 0 1 1 1 1 0 0 0 0 0 0 0 0 0
4N DNA 0 0 0 0 1 1 1 1 1 1 1 1 1 0abstract

nodes Metaphase 0 0 0 0 0 0 0 0 1 1 1 0 0 0

Table 4.7. States of the cyclic attractor of the synchronous cell cycle model. This limit
cycle is obtained in the sustained presence of growth factors (GF=1). The columns of
the table represent the 13 states of the limit cycle, while the rows denoted by node names
represent the states of individual nodes in each state. We group the states according to
the cell cycle phases, indicated in the topmost row. The state labels correspond to the
labels shown in Figure 4.6. We group the nodes into three categories, namely the Phase
Switch, the Restriction Switch and three abstract nodes. We highlight the states of the
Restriction Switch or Phase Switch that are closest to a respective attractor with the
colors corresponding to the attractors.
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CHAPTER 5

THE PRINCIPLES OF DYNAMICAL
MODULARITY

5.1 Dynamical Modularity – attractors of multi-
module systems are nontrivial combinations of
module-attractors

Our modular description of the cell cycle builds on the hypothesis that a bio-
logical regulatory system’s global attractors (phenotypes) are combinations of
the attractors of its modules (switches), a property we call dynamical modular-
ity. To test this hypothesis by measuring whether it holds in biological versus
randomized multi-module networks we have to find a way to quantify to what
degree is a biological model dynamically modular. To this end, we formulate
three principles that have to be true for a system to be dynamically modular to-
gether with three quantitative measures of ”how true” the given principle is for
a Boolean model.

In this chapter I am using the terms switch and module, as well as attractor and
phenotype, interchangeably, depending on whether the biological or the mathe-
matical context is relevant. To clarify – a switch is a Boolean model that has
very few distinct (preferably steady state) attractors i.e. it behaves as a switch
between a few stable states. A phenotype in this context is an attractor of such
a model that corresponds to some stable biological behavior.

The three principles of dynamical modularity are illustrated intuitively in
Figure 5.1.

The first principle, the principle of modular dynamics (Figure 5.1 A) states that
the phenotypes of a larger biological system (α, β, γ) are combinations of the
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46 CHAPTER 5. THE PRINCIPLES OF DYNAMICAL MODULARITY

phenotypes of its constituent switches (a,b,c,d, etc.). In other terms, the attrac-
tors of the coupled system are combinations of the module attractors.

The second principle, the principle of phenotype conservation (Figure 5.1 B)
states that all switch-phenotypes are present in at least one phenotype of the
larger system, i.e. no switch loses any of its functions in the multi-switch model.
This in terms of Boolean dynamics means that all attractors of the isolated mod-
ules are represented in at least one attractor of the coupled system.

The third principle, the principle of robust coordination (Figure 5.1 C) encap-
sulates two constraints. First, the phenotypes of the global system have to be
radically different from each other (otherwise biological noise can easily switch
between them, and they don’t constitute distinct decisions). Second, they have
to be nontrivial couplings of the underlying switch-phenotypes. When there
is no coupling whatsoever between the switches, the first two principles are
perfectly satisfied, but in that case, the global phenotypes are just trivial recom-
binations of the switch-phenotypes. This principle states that the coupling con-
strains the number of possible global phenotypes and coordinates the decisions
of the switches. The second and third principles formulate an optimization
problem: they require enough attractor-combinations to accommodate every
module-attractor (second principle), but not more (third principle).

The third principle requires that the global phenotypes are radically differ-
ent from each other, however, phenotypes similar to each other do exist in the
cell. Our work is mostly focused on modules that make distinct, discrete deci-
sions resulting in radically different phenotypes. This is a probable limitation
of the generalizability of the principles described in the thesis. There is also a
limitation coming from simplifications of the Boolean framework, as it ignores
many details of biochemistry. Theoretically, proteins can create energy barriers
on a biochemical level such that, while the phenotypes are similar, there is a low
probability of noise-induced transition between them. It can be difficult to en-
code this in a Boolean model. The forces of evolution work gradually; besides,
there are changes at shorter time-scales that show adaptation by fine-tuning,
instead of radical decisions. On the other hand, I believe that at least at the core
level of the control system of the cell, functional modules evolved to make rad-
ical decisions that can still give adaptive responses to the environment when
they are well coordinated. The three principles express the amazing difficulty
of such a task, that nature still managed to resolve.

In Figure 5.2 we illustrate the consequences of dynamical modularity on the
cell cycle model introduced in the previous chapter. When the switches are un-
coupled (A) the model has 12 disjoint basins of attraction with 12 steady state
attractors. The 12 steady states are all the possible combinations of the module
steady states that we plot on a 3D grid of dimensions 2 x 2 x 3 corresponding
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III. Principle of Robust Coordination

the prediction of the scale-free model, for
which the clustering coefficient decreases as
N!0.75 (18), the clustering coefficient of met-
abolic networks is independent of their size
(Fig. 2B).

These results demonstrate a fundamental
conflict between the predictions of the cur-
rent models of metabolic organization. The
high, size-independent clustering coefficient
offers strong evidence for modularity, where-
as the power law degree distribution of all
metabolic networks (10, 11) strongly sup-
ports the scale-free model and rules out a
manifestly modular topology. To resolve this
apparent contradiction, we propose a simple
heuristic model of metabolic organization,
which we refer to as a “hierarchical” network
(Fig. 1C) (19). In such a model network, our
starting point is a small cluster of four dense-
ly linked nodes. Next, we generate three rep-
licas of this hypothetical module and connect
the three external nodes of the replicated

clusters to the central node of the old cluster,
obtaining a large 16-node module. Subse-
quently, we again generate three replicas of
this 16-node module and connect the periph-
eral nodes to the central node of the old
module (Fig. 1C). These replication and con-
nection steps can be repeated indefinitely, in
each step quadrupling the number of nodes in
the system. The architecture of such a net-
work integrates a scale-free topology with an
inherent modular structure. It has a power law
degree distribution with degree exponent " #
1 $ (ln 4)/(ln 3) # 2.26, in agreement with
" # 2.2 observed in metabolic networks. Its
clustering coefficient C ! 0.6 is also compa-
rable with that observed for metabolic net-
works. Most important, the clustering coeffi-
cient of the model is independent of the size
of the network, in agreement with the results
of Fig. 2B.

A unique feature of the proposed net-
work model, not shared by either the scale-

free (Fig. 1A) or modular (Fig. 1B) models,
is its hierarchical architecture. This hierar-
chy, which is evident from a visual inspec-
tion, is intrinsic to the assembly by repeat-
ed quadrupling of the system. The hierar-
chy can be characterized quantitatively by
using the recent observation (20) that, in
deterministic scale-free networks, the clus-
tering coefficient of a node with k links
follows the scaling law C(k) % k!1. This
scaling law quantifies the coexistence of a
hierarchy of nodes with different degrees of
modularity, as measured by the clustering
coefficient, and is directly relevant to our
model (Fig. 1C). Indeed, the nodes at the
center of the numerous 4-node modules
have a clustering coefficient C # 3/4, those
at the center of a 16-node module have k #
13 and C # 2/13, and those at the center of
the 64-node modules have k # 40 and C #
2/40, indicating that the higher a node’s
connectivity, the smaller its clustering co-
efficient, asymptotically following the 1/k
law.

To investigate whether such hierarchical
organization is present in cellular metabo-
lism, we measured the C(k) function for the
metabolic networks of all 43 organisms. As
shown in Fig. 2, C through F, for each
organism, C(k) is well approximated by
C(k) % k!1, in contrast to the k-indepen-
dent C(k) predicted by both the scale-free
and modular networks. This provides direct
evidence for an inherently hierarchical or-
ganization. Such hierarchical modularity
reconciles within a single framework all the
observed properties of metabolic networks:
their scale-free topology; high, system
size–independent clustering coefficient;
and the power law scaling of C(k).

A key issue from a biological perspective
is whether the identified hierarchical archi-
tecture reflects the true functional organiza-
tion of cellular metabolism. To uncover
potential relations between topological mod-
ularity and the functional classification of
different metabolites, we concentrated on the
metabolic network of E. coli, whose metabol-
ic reactions have been exhaustively studied,
both biochemically and genetically (21). Us-
ing a previously established graph-theoretical
representation (10), we first subjected E. co-
li’s metabolic organization to a three-step
reduction process, replacing nonbranching
pathways with equivalent links, allowing us
to decrease its complexity without altering
the network topology (16). Next, we calcu-
lated the topological overlap matrix OT(i, j)
of the condensed metabolic network (Fig.
3A). A topological overlap of 1 between sub-
strates i and j implies that they are connected
to the same substrates, whereas a 0 value
indicates that i and j do not share links to
common substrates among the metabolites
they react with. The metabolites that are part

A

B

C

Fig. 1. Complex network
models. (A) A schematic il-
lustration (left) of a scale-
free network, whose degree
distribution follows a power
law. In such a network, a few
highly connected nodes, or
hubs (blue circles), play an
important role in keeping the
whole network together. A
typical configuration (right)
of a scale-free network with
256 nodes is also shown, ob-
tained using the scale-free
model, which requires the
addition of a new node at
each time such that existing
nodes with higher degrees of
connectivity have a higher
chance of being linked to the
new nodes (12). The nodes
are arranged in space with a
standard clustering algorithm
(30) to illustrate the absence
of an underlying modularity.
(B) Schematic illustration
(left) of a manifestly modular
network made of four highly
interlinked modules connect-
ed to each other by a few
links. This intuitive topology
does not have a scale-free
degree distribution, as most
of its nodes have a similar
number of links, and hubs are
absent. A standard clustering
algorithm uncovers the net-
work’s inherent modularity
(right) by partitioning a mod-
ular network of N # 256
nodes into the four isolated
structures built into the sys-
tem. (C) The hierarchical net-
work (left) has a scale-free
topology with embedded modularity. The hierarchical levels are represented in increasing order
from blue to green to red. Standard clustering algorithms (right) are less successful in uncovering
the network’s underlying modularity. A detailed quantitative characterization of the three network
models is available in (16).
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the prediction of the scale-free model, for
which the clustering coefficient decreases as
N!0.75 (18), the clustering coefficient of met-
abolic networks is independent of their size
(Fig. 2B).

These results demonstrate a fundamental
conflict between the predictions of the cur-
rent models of metabolic organization. The
high, size-independent clustering coefficient
offers strong evidence for modularity, where-
as the power law degree distribution of all
metabolic networks (10, 11) strongly sup-
ports the scale-free model and rules out a
manifestly modular topology. To resolve this
apparent contradiction, we propose a simple
heuristic model of metabolic organization,
which we refer to as a “hierarchical” network
(Fig. 1C) (19). In such a model network, our
starting point is a small cluster of four dense-
ly linked nodes. Next, we generate three rep-
licas of this hypothetical module and connect
the three external nodes of the replicated

clusters to the central node of the old cluster,
obtaining a large 16-node module. Subse-
quently, we again generate three replicas of
this 16-node module and connect the periph-
eral nodes to the central node of the old
module (Fig. 1C). These replication and con-
nection steps can be repeated indefinitely, in
each step quadrupling the number of nodes in
the system. The architecture of such a net-
work integrates a scale-free topology with an
inherent modular structure. It has a power law
degree distribution with degree exponent " #
1 $ (ln 4)/(ln 3) # 2.26, in agreement with
" # 2.2 observed in metabolic networks. Its
clustering coefficient C ! 0.6 is also compa-
rable with that observed for metabolic net-
works. Most important, the clustering coeffi-
cient of the model is independent of the size
of the network, in agreement with the results
of Fig. 2B.

A unique feature of the proposed net-
work model, not shared by either the scale-

free (Fig. 1A) or modular (Fig. 1B) models,
is its hierarchical architecture. This hierar-
chy, which is evident from a visual inspec-
tion, is intrinsic to the assembly by repeat-
ed quadrupling of the system. The hierar-
chy can be characterized quantitatively by
using the recent observation (20) that, in
deterministic scale-free networks, the clus-
tering coefficient of a node with k links
follows the scaling law C(k) % k!1. This
scaling law quantifies the coexistence of a
hierarchy of nodes with different degrees of
modularity, as measured by the clustering
coefficient, and is directly relevant to our
model (Fig. 1C). Indeed, the nodes at the
center of the numerous 4-node modules
have a clustering coefficient C # 3/4, those
at the center of a 16-node module have k #
13 and C # 2/13, and those at the center of
the 64-node modules have k # 40 and C #
2/40, indicating that the higher a node’s
connectivity, the smaller its clustering co-
efficient, asymptotically following the 1/k
law.

To investigate whether such hierarchical
organization is present in cellular metabo-
lism, we measured the C(k) function for the
metabolic networks of all 43 organisms. As
shown in Fig. 2, C through F, for each
organism, C(k) is well approximated by
C(k) % k!1, in contrast to the k-indepen-
dent C(k) predicted by both the scale-free
and modular networks. This provides direct
evidence for an inherently hierarchical or-
ganization. Such hierarchical modularity
reconciles within a single framework all the
observed properties of metabolic networks:
their scale-free topology; high, system
size–independent clustering coefficient;
and the power law scaling of C(k).

A key issue from a biological perspective
is whether the identified hierarchical archi-
tecture reflects the true functional organiza-
tion of cellular metabolism. To uncover
potential relations between topological mod-
ularity and the functional classification of
different metabolites, we concentrated on the
metabolic network of E. coli, whose metabol-
ic reactions have been exhaustively studied,
both biochemically and genetically (21). Us-
ing a previously established graph-theoretical
representation (10), we first subjected E. co-
li’s metabolic organization to a three-step
reduction process, replacing nonbranching
pathways with equivalent links, allowing us
to decrease its complexity without altering
the network topology (16). Next, we calcu-
lated the topological overlap matrix OT(i, j)
of the condensed metabolic network (Fig.
3A). A topological overlap of 1 between sub-
strates i and j implies that they are connected
to the same substrates, whereas a 0 value
indicates that i and j do not share links to
common substrates among the metabolites
they react with. The metabolites that are part
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Fig. 1. Complex network
models. (A) A schematic il-
lustration (left) of a scale-
free network, whose degree
distribution follows a power
law. In such a network, a few
highly connected nodes, or
hubs (blue circles), play an
important role in keeping the
whole network together. A
typical configuration (right)
of a scale-free network with
256 nodes is also shown, ob-
tained using the scale-free
model, which requires the
addition of a new node at
each time such that existing
nodes with higher degrees of
connectivity have a higher
chance of being linked to the
new nodes (12). The nodes
are arranged in space with a
standard clustering algorithm
(30) to illustrate the absence
of an underlying modularity.
(B) Schematic illustration
(left) of a manifestly modular
network made of four highly
interlinked modules connect-
ed to each other by a few
links. This intuitive topology
does not have a scale-free
degree distribution, as most
of its nodes have a similar
number of links, and hubs are
absent. A standard clustering
algorithm uncovers the net-
work’s inherent modularity
(right) by partitioning a mod-
ular network of N # 256
nodes into the four isolated
structures built into the sys-
tem. (C) The hierarchical net-
work (left) has a scale-free
topology with embedded modularity. The hierarchical levels are represented in increasing order
from blue to green to red. Standard clustering algorithms (right) are less successful in uncovering
the network’s underlying modularity. A detailed quantitative characterization of the three network
models is available in (16).
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clustering coefficient C ! 0.6 is also compa-
rable with that observed for metabolic net-
works. Most important, the clustering coeffi-
cient of the model is independent of the size
of the network, in agreement with the results
of Fig. 2B.

A unique feature of the proposed net-
work model, not shared by either the scale-

free (Fig. 1A) or modular (Fig. 1B) models,
is its hierarchical architecture. This hierar-
chy, which is evident from a visual inspec-
tion, is intrinsic to the assembly by repeat-
ed quadrupling of the system. The hierar-
chy can be characterized quantitatively by
using the recent observation (20) that, in
deterministic scale-free networks, the clus-
tering coefficient of a node with k links
follows the scaling law C(k) % k!1. This
scaling law quantifies the coexistence of a
hierarchy of nodes with different degrees of
modularity, as measured by the clustering
coefficient, and is directly relevant to our
model (Fig. 1C). Indeed, the nodes at the
center of the numerous 4-node modules
have a clustering coefficient C # 3/4, those
at the center of a 16-node module have k #
13 and C # 2/13, and those at the center of
the 64-node modules have k # 40 and C #
2/40, indicating that the higher a node’s
connectivity, the smaller its clustering co-
efficient, asymptotically following the 1/k
law.

To investigate whether such hierarchical
organization is present in cellular metabo-
lism, we measured the C(k) function for the
metabolic networks of all 43 organisms. As
shown in Fig. 2, C through F, for each
organism, C(k) is well approximated by
C(k) % k!1, in contrast to the k-indepen-
dent C(k) predicted by both the scale-free
and modular networks. This provides direct
evidence for an inherently hierarchical or-
ganization. Such hierarchical modularity
reconciles within a single framework all the
observed properties of metabolic networks:
their scale-free topology; high, system
size–independent clustering coefficient;
and the power law scaling of C(k).

A key issue from a biological perspective
is whether the identified hierarchical archi-
tecture reflects the true functional organiza-
tion of cellular metabolism. To uncover
potential relations between topological mod-
ularity and the functional classification of
different metabolites, we concentrated on the
metabolic network of E. coli, whose metabol-
ic reactions have been exhaustively studied,
both biochemically and genetically (21). Us-
ing a previously established graph-theoretical
representation (10), we first subjected E. co-
li’s metabolic organization to a three-step
reduction process, replacing nonbranching
pathways with equivalent links, allowing us
to decrease its complexity without altering
the network topology (16). Next, we calcu-
lated the topological overlap matrix OT(i, j)
of the condensed metabolic network (Fig.
3A). A topological overlap of 1 between sub-
strates i and j implies that they are connected
to the same substrates, whereas a 0 value
indicates that i and j do not share links to
common substrates among the metabolites
they react with. The metabolites that are part
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lustration (left) of a scale-
free network, whose degree
distribution follows a power
law. In such a network, a few
highly connected nodes, or
hubs (blue circles), play an
important role in keeping the
whole network together. A
typical configuration (right)
of a scale-free network with
256 nodes is also shown, ob-
tained using the scale-free
model, which requires the
addition of a new node at
each time such that existing
nodes with higher degrees of
connectivity have a higher
chance of being linked to the
new nodes (12). The nodes
are arranged in space with a
standard clustering algorithm
(30) to illustrate the absence
of an underlying modularity.
(B) Schematic illustration
(left) of a manifestly modular
network made of four highly
interlinked modules connect-
ed to each other by a few
links. This intuitive topology
does not have a scale-free
degree distribution, as most
of its nodes have a similar
number of links, and hubs are
absent. A standard clustering
algorithm uncovers the net-
work’s inherent modularity
(right) by partitioning a mod-
ular network of N # 256
nodes into the four isolated
structures built into the sys-
tem. (C) The hierarchical net-
work (left) has a scale-free
topology with embedded modularity. The hierarchical levels are represented in increasing order
from blue to green to red. Standard clustering algorithms (right) are less successful in uncovering
the network’s underlying modularity. A detailed quantitative characterization of the three network
models is available in (16).
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the two possible steady states of the Restrictions Switch (x-axis), the three pos-
sible steady states of the Phase Switch (y-axis) and the two possible states of the
Growth Factor node (z-axis). Once we couple the switches Figure 5.2 (B) the
12 basins merge into 2 basins of two attractors: a steady state (G0) and a cyclic
attractor (cell cycle) – depending on the presence or absence of growth factors.
Keeping the basin layout of the decoupled system reveals that the trajectory of
the limit cycle (red arrows) visits the basins of the decoupled attractor combi-
nations, and approaches the attractor combinations to a large extent (this point
is also illustrated in Figure 4.6 and Table 4.7).

In the following sections, I am going to explain the three principles in detail,
along with their respective measures.

5.2 The Principle of Modular Dynamics and the At-
tractor Modularity Measure

The Principle of Modular Dynamics states that attractors of multi-module regu-
latory circuits are combinations of module-attractors (switch-phenotypes) (Fig-
ure 5.1 A). Even though arbitrary connections between modules can easily pro-
duce global attractors that are not combinations of module-attractors, this prin-
ciple states that biological interactions connecting regulatory switches do not
destroy the function of these switch-level cell states. Instead, they influence
which module-attractors are selected under different circumstances, without
creating new ones. The coordination between switches, however, is an emer-
gent property of multi-switch systems. This phenomenon has been observed in
Boolean regulatory models and leveraged to reduce computational complexity
[69, 70, 71]. This principle does not imply that continuously tunable regulatory
components (with no multi-stability) are completely absent from cells. It does,
however, posit that tunable signal-processing layers feed into core decision-
making circuits.

To measure to what degree is this principle true we introduce the Attractor
Modularity Measure (AMM), designed to quantify the extent to which attrac-
tors of a multi-switch system are combinations of the attractors of its modules.
To calculate AMM, we first map each global attractor of the multi-module sys-
tem onto the most similar combination of individual module-attractors. In a
model that conforms to our dynamical modularity premise, we expect all global
attractors to fall onto (or toggle through) precise combinations of switch-level
phenotypes, resulting in AMM = 1. On the other hand, the existence of even
one global attractor that is significantly different from all module-attractors car-
ries a penalty, resulting in a low overall AMM.
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Figure 5.2. Comparing the dynamics of the coupled cell cycle model to that of its de-
coupled switches reveals the sequence of discrete switch-level phenotypes as they follow
each other during division. (A) Decoupled, the Restriction Switch, Phase Switch, and
Growth Factor switch create a dynamical system with 12 fixed-point attractors, repre-
senting all switch-phenotype combinations. The 12 attractor-basins are laid out on a
3D grid, where switch-level attractors are organized along individual axes (Restriction
Switch: x-axis; Phase Switch: y-axis; Growth Factors: z-axis; node colors of the state
transition graph (STG): attractor basin membership; node size & color saturation: visi-
tation probability with noisy synchronous update. (B) Coupled, the three switches give
rise to the cell cycle model (top graph). This coupled system’s STG is represented using
the same 3D state-node position as in (A), with each state-node re-colored (and resized)
to indicate its attractor membership dictated by the dynamics of the coupled network
(we omitted most STG links from this figure for clarity, the green and red graphs each
form a connected graph). This procedure reveals a single basin on the No Growth Fac-
tors plane with the fixed-point attractor G0 (dark green basin) and another basin on the
Growth Factors plane with a limit cycle attractor, the cell cycle (red arrows and basin).
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50 CHAPTER 5. THE PRINCIPLES OF DYNAMICAL MODULARITY

To claim that a global attractor is a module-attractor combination, the global
attractor has to have a high overlap with the attractor states of each module
m. If the global attractor is a cyclic behavior (that is the case with the cell cycle
model), we expect it to either avoid the basin of certain module-attractors al-
together or implement them precisely at some point along the cyclic trajectory.
We quantify this via the Attractor Modularity AMi,m of global attractor i with
respect to module m. AMi,m is defined as:

AMi,m = 2 ·
[

max
(

O(Qc
i , Qm

j ),
1
2

)
− 1

2

]
, (5.1)

where Qc
i represents the ith global attractor, and Qm

j represents the jth attrac-
tor of module m. Their overlap, O(Qc

i , Qm
j ), is based on the similarity of node

states between Qc
i and Qm

j , generalized to cover comparisons between arbitrary
global and module-level attractors. The generalization to be able to measure the
overlap between all kinds of attractors (steady state with steady state, limit cy-
cle with steady state, limit cycle with limit cycle) is a complicated method and
explaining it is beyond the scope of this section (and the thesis). It is defined
and explained in detail in Supplementary Methods 3 of the 2016 Deritei et al.
paper [60].

AMi,m severely penalizes global states that are significantly different from
all module-attractors of m. Thus, its lowest value 0 is reached when the overlap
between Qc

i and Qm
j is 1/2, representing a global attractor i in which the switch

m is poised halfway between two completely different phenotypes; the opposite
of dynamical modularity. The max(AMi,m, 1/2) is necessary because of the way
we defined overlap between limit cycle module-attractors and global cycles.
If, for example, a global cycle executes the steps of a switch limit cycle with
relatively high pairwise state-overlap but in a scrambled order, it is possible for
O(Qc

i , Qm
j ) to be nonzero but below 1/2. We consider these situations far from

dynamically modular and treat them as worst-case scenarios with AMi,m = 0.
Conversely, perfect overlap results in AMi,m = 1.

The attractor modularity of the entire coupled system with respect to the
switch m is defined as:

AMm = [∏i AMi,m]
1/qc , (5.2)

where qc is the number of global (coupled) attractors. Thus, AMm is constructed
to be very low if any of the global attractors are significantly different from all
phenotypes of switch m.

Lastly, we define the global Attractor Modularity Measure as the geometric
mean of attractor modularity across the modules, AMM = (∏m AMm)1/M (M
= number of modules). High AMM requires simultaneously high AMm for
every module.
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5.3 The Principle of Phenotype Conservation and
the Switch Stability Measure

The Principle of Phenotype Conservation guarantees that each module (switch)
has a biological “decision making” function that is kept in the larger cellular
context as well. It states that every module-attractor is present in at least one
global attractor of the multi-module model (Figure 5.1 B). Thus, no switch’s
functionality is unconditionally locked out from the states of the global system.

This property is quantified by the Switch Stability Measure (SSM). SSM is
built in three steps: first, measuring the prevalence of each individual module-
attractor (switch-phenotype) (PSm→p) of each module (SSm) in the dynamics of
the multi-switch (coupled) system. To claim that the coupled system’s dynam-
ics replicates a module-attractor, two conditions have to be met. First, there
needs to be at least one global attractor that maps onto this module-attractor.
We test this while calculating AMM (Section 5.2), in that we compute the gen-
eralized overlap O(Qc

i , Qm
j ) between every coupled attractor i and module-m

attractor j. Second, it is important that even if a coupled Qc
i attractor exists that

overlaps with module-m attractor j, its basin (and thus the overall stability of
this global phenotype) is not overly small. To quantify this, we leverage noisy
Boolean dynamics and calculate (or sample) the long-term probability Π(s) of
finding the coupled system in any state s in the presence of gate error pE (see
Section 3.1.6). Next, we estimate the size of the state space region (in terms
of visitation probability) from which the system’s dynamics flows into each at-
tractor state. For fixed-point attractors, this equals the overall probability of
finding the system somewhere in their basin. To generalize it to limit-cycles, we
map each state s of the coupled system onto individual attractor states sc→i

k by
starting the coupled system in initial state s, and updating it in the absence
of noise until an attractor state of i is reached for the first time: sc→i

k being
the kth state of attractor i, of the coupled model c. For each global attractor
state sc→i

k we then sum up the probability Π(s) of all states that map to sc→i
k :

Wi(k) = ∑s→···→sc→i
k

Π(s). As we wish to approximate the overall probability
of finding the coupled system in a state that maps onto module-m attractor j,
we go through each global attractor i for which O(Qc

i , Qm
j ) > 0 and sum up

the Wi(k) probabilities along the segment SD→m
j mapped into switch-m attrac-

tor j (for the definition of SD→m
j , and mapping matrix =D→m see Deritei et al.

[60] Supplementary Methods 3). Stated differently, we sum all Wi(k) probabil-
ities for all rows k of the attractor mapping matrix =D→m for which there are
nonzero elements in any of the columns that correspond to module-m attractor
j (a mapping exists). This gives us the probability of finding the coupled system
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in a state that corresponds (is mapped) to the module level attractor j of module
m.

PSC
m→j = ∑{i | O(Qc

i ,Qm
j )>0} ∑{k | =D→m 6=0}Wi(k). (5.3)

To put it more simply, PSC
m→j is a general probabilistic measure that quanti-

fies the degree to which a module attractor j (of module m) is represented in the
dynamical landscape of the global, coupled system. Lastly, we do not expect
this overall probability, PSC

m→j, to be larger than the stability of attractor j in
the isolated module m. Consequently, we compute a similar overall probability
PSU

m→j for the coupled system made of all M modules, but in which none of
the inter-module links are present (U - uncoupled system). The final value of
PSm→j is then computed as

PSm→j = min

(
PSC

m→j

PSU
m→j

, 1

)
. (5.4)

The module level switch stability will be the geometric mean across all at-
tractors PSm→j:

SSm =

(
∏

j
PSm→j

)1/qm

Finally, the switch stability measure of the whole model is the geometric
average of SSm across all modules:

SSM =

(
∏
m

SSm

)1/M

(5.5)

5.4 The Principle of Robust Coordination and the
Switch Quality and Coordination Measure

The Principle of Robust Coordination addresses the hierarchical nature of mod-
ularity. It states that the regulatory system is a hierarchy of dynamical modules,
each a robust switch with a minimal number of radically different attractors (pheno-
types) (Figure 5.1 C). Thus, dynamical modules at higher levels of the hierarchy,
themselves composed of lower-scale modules, act as robust switches between
small numbers of complex phenotypes. Within the lowest-scale modules, dense
regulatory interactions create a small number of robust attractors. Similarly,
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inter-module connections within the modules severely restrict the number of
global attractors.

We define the Switch-Quality SQm of module m as the normalized aver-
age Hamming distance between each pair of its attractors (0 for mono-stable
circuits). To assure that even a single low-quality switch in a dynamically mod-
ular network leads to a low network-wide Switch Quality Measure, we define
SQM as a geometric average over the switches:

SQM = (∏
m

SQm)
1/M.

We also want to distinguish higher-level dynamical modules made of tightly
interacting switches from those that are distant in the cell-wide regulatory net-
work and barely influence each other. Loosely coupled modules give rise to dy-
namics that generate a variety of similar phenotype combinations (many similar
global attractors). In contrast, higher-level dynamical modules govern tightly
coordinated phenotype-rearrangements among all constituent modules (few,
very dissimilar global attractors). To track how well the inter-switch links re-
strict the trivial phenotype-combinations ∏m qm that could, in theory, coexist in
the dynamical landscape, we define a Switch Coordination Measure

SCM = [(∏
m

qm)− qc]/(∏
m

qm).

SCM is highest in systems in which the number of global attractors, qc, is min-
imal. If qc is equal to the number of module-attractor combinations (there is no
effective coupling) SCM is 0. Combining SCM, SQM, and the Switch-Quality
SQc of the coupled system itself, we define the Switch Quality & Coordination
Measure,

SQC = SQM · SQc · SCM

.

5.5 Requirements of measuring AMM, SSM and
SQC in arbitrary Boolean models

To summarize, calculating AMM, SSM and SQC in arbitrary Boolean networks
with arbitrary switch-assignments requires four components:

1) A method to cut the network into individual switches by automatically
generating reduced Boolean rules that dictate the internal dynamics of an arbi-
trary subgraph. Whenever we sever a regulatory link in a Boolean model we
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54 CHAPTER 5. THE PRINCIPLES OF DYNAMICAL MODULARITY

have to choose which state of the severed regulator do we choose as the con-
stant influence, as the remaining internal dynamics are not independent of the
regulator’s influence. An intuitive way to understand this problem is with the
truth table formalism. When we sever a regulating link form a node we remove
the input column of that regulator from the truth table. However, because of
this, we are left with two instances for each remaining input value combina-
tion, with contradicting outputs (if we have no contradictions the remaining
influences are independent of the severed regulator). Thus we have to choose,
which outputs we keep for each input combination. When isolating switches
the main principle is that we wish to preserve as many of the intra-module reg-
ulatory influences as possible. The implementation we chose in the case of the
randomized severing of links is twofold: (i) we keep output set with the highest
entropy, defined as HG = −p · log(p)− (1− p) · log(1− p), where p is the frac-
tion of input combinations for which the output is 0 (ii) the remaining inputs of
the node have to be functional, i.e., there exists at least one value combination
among the other intra-module links for which the input in question dictates the
output.

For example in the cell cycle model the Boolean rule of E2F1 (see Table 4.6)
is:

E2F1* = not (CyclinA or RB) and (E2F1 or Myc).

To isolate E2F1 as part of isolating the Restriction Switch we need to sever
the link coming from CyclinA, which is part of the Phase Switch. We have to
choose between fixing the value of CyclinA to 0 or 1. If we choose CyclinA=1
the rule becomes trivially E2F1*= 0 and all the other regulations lose their func-
tionality. Conversely, if we choose CyclinA=0 the rule becomes E2F1* = not RB
and (E2F1 or Myc). All other regulations maintain their functionality in this
rule. E2F1 is 0 in 5 out of the 8 cases, thus p = 5/8; the entropy of the set of
possible E2F1 outputs is HG = 0.661. This is greater than for the first choice,
where the entropy is 0.

2) a full list of attractors for each module;

3) a full list of attractors for the full coupled system;

4) the steady state visitation probability of states and attractor basins in the
coupled as well as uncoupled system of switches. In the case of synchronous
noisy update the method described in 3.1.6.
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5.6 The dynamical modularity of the cell cycle
model – as compared to randomized versions

We calculated the three measures on the cell cycle model and got the following
values: AMM = 0.874; SMM = 0.905 and SQC = 0.446. To validate the
dynamical modularity of the empirical network we checked the values of the
measures against those of randomized networks. We emphasize that dynamical
modularity requires all three measures to be relatively high (or at least non-
zero) to have the properties we observe on our empirical system. For example
in a trivial case of a coupled system where we have no coupling links between
the modules (like the left panel (A) of Figure 5.2) will have perfect AMM and
SMM scores because the global attractors are just combinations of the module
attractors (AMM = 1) and all module attractors are present in at least one
global attractor (SMM = 1). However, in this case, the SCM and consequently
the SQC will be 0 because the number of global attractors equals the product
of the number of module attractors (∏m qm = qc). As stated earlier SSM and
SQC together enforce a constraint: they require enough attractor-combinations
to accommodate every module-attractor (Principle 2), but not more (Principle
3).

For the validation we performed three kinds of network randomization:

1. Complete link and rule randomization, except for the input node

2. Module id assignment randomization – randomizing which node belongs
to which module (switch)

3. Randomized coupling links between cell cycle switches

In Figure 5.3 we show the measures computed on the many instances of
different randomizations versus the cell cycle model.

AMM and SSM are rarely simultaneously high in random networks (blue
dots). As we decrease the ”entropy” of randomization by only scrambling the
switch ID-s (red dots) but keeping the network structure the number of net-
works with relatively high AMM and SMM increases. We get even more such
networks when we scramble the inter-links between the modules (the switch
IDs being the same as for the cell cycle model). Randomized networks with
high AMM as well as SSM are typically made of robust but loosely coupled
modules, where nearly every module-attractor combination is a different global
state. When AMM, SSM, and SQC are considered together (Figure 5.3 bottom),
none of the random networks or randomized node assignments give rise to
higher values on all three measures than the cell cycle model(large black point).
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56 CHAPTER 5. THE PRINCIPLES OF DYNAMICAL MODULARITY

We often observe networks that score higher on two measures, but completely
fail to satisfy the third (e.g., high SQC and AMM, but SSM = 0). This gives us
confidence that our choice of switches within the Cell Cycle model is optimal.
The only random networks capable of outranking the cell cycle are very rare
instances within the link-randomization ensemble (larger green points).

Figure 5.3. The three dynamical modularity measures distinguish modular cell cycle
models from their randomized counterparts. The dots of different colors represent dif-
ferent randomizations performed on the network model: black – cell cycle model; blue –
random networks; red – randomized node-to-switch assignments; green – randomized
links connecting the two cell cycle switches Top: Scatter plot of AMM and SSM in net-
works. The black circle with the cross: empirical cell cycle model. Bottom: 3D scatter
plot of AMM, SSM, and SQC in randomized networks. The large black dot represents
the empirical cell cycle model. The large green dot (next to the black one): 1 of 1000
random networks that outperform the cell cycle model on all three measures
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CHAPTER 6

A CIRCUIT AT THE CORE OF THE CELL
CYCLE DRIVES THE CELL FROM
CHECKPOINT TO CHECKPOINT

In this chapter, I am going to present the results of our collaboration following
up on the cell cycle model introduced in Chapter 4. In this work, we mostly
focus on a single module, the Phase Switch, and discuss a specific case when it
becomes an autonomous oscillator - creating a cyclic attractor akin to a check-
point free cell. This chapter is based on our paper titled A feedback loop of condi-
tionally stable circuits drives the cell cycle from checkpoint to checkpoint co-authored
with Jordan Rozum, Erzsébet Ravasz Regan and Réka Albert, published in Sci-
entific Reports [62]. The initial main goal of our study was to understand why
and how the characteristic feature of the cell cycle emerges – the global attractor
of the coupled system toggles the attractors of its dynamical modules, a feature
we called dynamical modularity. While doing this we discovered a feature in-
herent to the Phase Switch itself – it being able to robustly oscillate between
the three checkpoints of the cell cycle. We call this model the Phase Switch Os-
cillator (PSO). We introduce a methodological innovation – a generalization of
stable motifs, the conditionally stable motif, which is key in understanding both
the robustness of biological oscillations as well as the mechanistic details of how
dynamical modularity emerges. We use the conditionally stable motifs found
in Phase Switch Oscillator to coarse grain the PSO into a simple 3 node higher-
level model, that still keeps the main dynamic features of the PSO. The coarse-
graining presented is an important step towards understanding how dynamical
modularity emerges.

57
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CELL FROM CHECKPOINT TO CHECKPOINT

6.1 Three stable motifs and four conditionally sta-
ble motifs determine the three point attractors of
the Phase Switch

To understand the structural causes of the toggle between the two modules of
the cell cycle model, we first focused on characterizing the Phase Switch, i.e. the
network among the 11 nodes already introduced in Section 4.2. For this anal-
ysis we follow the cell cycle model published in [60] and discussed in Section
4.3 in severing the inputs to the Phase Switch. Generally speaking, isolating a
designated subset of a network’s nodes means that only the edges that start and
end at nodes of this subset are kept and the rest are deleted. For the dynamical
system, the most important implication of this process is that certain influences
incident on the nodes of the subset will be disregarded. In the specific case of a
Boolean dynamical system in each of these nodes’ regulatory functions only the
terms that represent regulation from within the group are kept; the regulation
that comes from outside of the group is disregarded. This isolation is a valid
reflection of the original, full system if certain conditions about the disregarded
regulators are satisfied. Otherwise, it is a useful approximation. (For a detailed
discussion of the assumptions behind this isolation see point 1. of Section 5.5).

The interactions among the 11 nodes of the Phase Switch express either
positive or negative regulatory effects mediated by protein-protein binding,
complex formation, and post-translational modifications. The Phase Switch is
strongly connected; all nodes within the module can be reached from all other
nodes via at least one directed path. It contains both positive and negative feed-
back loops of various lengths. We used the expanded network formalism to
express the regulatory functions of the Phase Switch (given in 4.4); Figure 6.1
depicts the resulting expanded network. We identified three stable motifs, P0
to P2, as shown in Figure 6.2. Additionally, there are four conditionally stable
motifs: P3, P4, P5 and P6. Conditionally stable motifs P3 and P4 depend on the
prior establishment of CyclinA=0 (which is part of the P0 motif). We represent
this dependence on the prior locking in of the P0 motif as “P3|P0” and “P4|P0”,
respectively, in the motif label. Conditionally stable motif P5 is a stable motif
only if P1 is already established (denoted P5|P1). Conditionally stable motif P6
is a stable motif only if P1 and P5 are already established (denoted P6|P5).

The stable motif succession diagram (see Section 3.2.4) of the Phase Switch
(Figure 6.2) illustrates the relationship between stable motifs, conditionally sta-
ble motifs, and the three point attractors previously discussed in Section 4.2.
Each of these attractors represents cells arrested before one of three checkpoints:
the restriction point in G1, the DNA damage checkpoint in G2, and the spindle
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three point attractors of the Phase Switch 59

Figure 6.1. The expanded network (see 3.2.1) of the Phase Switch model. The virtual
nodes whose state later is fixed in the Phase Switch Oscillator are shown in green.

assembly checkpoint (SAC). Each stable motif in the diagram represents a com-
mitment to the dynamics of the switch. For instance, because in the succession
diagram there is no path from P0 (i.e., the inactivation of Cdc25A and CyclinA)
to the G2 state, wherein CyclinA is active, the G2 state is not attainable when P0
has been locked in. Similarly, the SAC state is not attainable when P1 is active.
In the SAC state CyclinA is inactive, the CyclinB/ Cdk1 complex is active, and
most importantly Mad2 is active, indicating the existence of unattached kineto-
chores on the cell’s replicated chromosomes. The succession diagram indicates
that only the SAC state is available when the P2 motif, which includes active
Mad2, is locked in, consistent with the spindle checkpoint role of Mad2. Fig-
ure 6.2 thus identifies the attractors of the Phase Switch with combinations of
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Figure 6.2. Distinct sequences of stable and conditionally stable motifs commit the
Phase Switch to its attractor states. The stable motifs are shown in the expanded net-
work formalism where a virtual node labeled by the name of the corresponding node
represents the state 1 of the node (dark grey background); a virtual node labeled by the
node name preceded by ∼ represents the state 0 of the node (white background). Stable
motifs P0, P1 and P2 are the stable motifs of the Phase Switch when considered in isola-
tion. Each path in the diagram begins at one of these stable motifs, and (conditionally)
stable motifs in the path are self-sustaining when those earlier in the path are locked
in. Each path terminates in one of the three point attractors (G0/G1, G2, or SAC), vi-
sualized in the Phase Switch regulatory network using a white background for the off
state of a node and dark grey for the on state. The outline color of the three attractors
corresponds to the color-code used for differentiating the three attractors in Chapter 4
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stable motifs and conditionally stable motifs. The G0/G1 attractor of the Phase
Switch is reached by multiple trajectories for which the P0 motif stabilizes to-
gether with P1, P3, or P4. Alternatively, stabilization of P0 could be paired with
locking in the P2 motif to yield the SAC attractor of the Phase Switch. Finally,
the combined locking in of the P1, P5 and P6 motifs yields the G2 attractor.

6.2 Stable motifs of the Phase Switch are condition-
ally stable motifs of the full cell cycle model

In the full cell cycle model the nodes E2F1 and CyclinE of the Restriction Switch
and the three abstract nodes (Replication, Metaphase, and 4N-DNA) regulate
four nodes of the Phase Switch, namely Cdc25A, CyclinA, Wee1 and Mad2 (see
Figure 4.5). Because of these incident influences, the stable motifs of the Phase
Switch are only conditionally stable in the context of the larger model. The
stabilization of the P0 motif requires the OFF state of either E2F1 or CyclinE
(see P0 CSM in Figure 6.3).

The stabilization of the P1 motif requires the ON state of the Replication
node, while the stabilization of P2 requires the simultaneous OFF state of
Metaphase and ON state of 4N DNA. All of these nodes are in their required
states for only specific phases of the cell cycle; for example, E2F1 and CyclinE
are OFF in the uncommitted state of the Restriction Switch. Because of this de-
pendence on external regulators that are only transiently in the state necessary
for stabilization, the P0, P1, and P2 motifs of the Phase Switch cannot stabilize
permanently. In a dividing cell, the period during which one of these motifs
maintains its stability corresponds to a cell cycle checkpoint: the P0 motif is
stable before the restriction point (when E2F1 and CyclinE are inactive), the P1
motif is stable before the cell passes the G2 DNA damage checkpoint, and the P2
motif is stable before the cell passes the spindle assembly checkpoint [52]. The
passage of each checkpoint changes the inputs to the Phase Switch such that the
corresponding motif becomes unstable. To explore what alternative behaviors
remain in the attractor repertoire of the Phase Switch, we consider an extreme
scenario for stabilization. Namely, we assume that all three checkpoints are satis-
fied, which causes the stabilization of Cdc25A, Wee1 and Mad2 in the state op-
posite of their states in the stable motifs of the Phase Switch (see the left side of
the bottom panel of Figure 6.3), and thus destabilizes all three stable motifs. The
resulting system, shown on the right side of the bottom right panel of Figure 6.3,
operates without any checkpoint control. This circuit shares some similarities
with the network responsible for cell cycle progression in mammalian embry-
onic stem cells, in that it doesn’t have a restriction point [72]. In embryonic stem
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Figure 6.3. The stable motifs of the Phase Switch become conditionally stable motifs
in the larger context of the cell cycle model. Due to the influences from the rest of the
cell cycle network on Cdc25A, CyclinA, Wee1, and Mad2 (shown with green lines), the
P0 motif turns into two conditionally stable motifs which differ only in their condition
(∼E2F1 or ∼CyclinE, respectively, see top left panel). The P1 motif can only stabilize
if the abstract node Replication is ON. P2 can only stabilize if the abstract regulator
Metaphase is OFF and 4N DNA is ON simultaneously (top right panel). The Phase
Switch Oscillator (bottom right) is obtained from the Phase Switch (bottom left) by
assuming that the restriction point, DNA damage checkpoint and spindle assembly
checkpoint are satisfied, which implies that Wee1 = Mad2 = 0 and Cdc25A = 1. As in
Figure 6.2, dark grey node background indicates the ON state of the node and white
background refers to the OFF state.C
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6.3. The Phase Switch Oscillator traces a robust cyclic trajectory through the
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cells, E2F1, Cyclin E/Cdk2 and Cdc25A are continuously active in a cell cycle-
independent manner [73], allowing these cells to cycle continuously [74]. Con-
trary to the network driving embryonic stem cell division, the small circuit in
Figure 6.3 (right side of bottom panel) also lacks DNA damage and spindle as-
sembly checkpoint. Thus, the checkpoint-free version of the Phase Switch cap-
tures the functioning of the cell cycle when (and only when) all checkpoints are
cleared without difficulty or pause. After locking Cdc25A ON, and Wee1 and
Mad2 OFF, the Phase Switch module is reduced to eight nodes and 28 edges. It
is still strongly connected and contains positive and negative cycles of various
lengths (right side of the bottom panel of Figure 6.3). Destabilizing the stable
motifs of the Phase Switch might be expected to create a set of complex attrac-
tors, some of which may be dependent on the update scheme. Interestingly, we
find a single limit cycle attractor of 9 states using synchronous update (Figure
6.4), and a single 141-state complex attractor under asynchronous update. All
remaining states (out of the 28 = 256 states of this 8-node system) converge
to the limit cycle / complex attractor. This shows that this dynamical system’s
long-term behavior is a sustained oscillation. In recognition of this fact, we refer
to this modified system as the Phase Switch Oscillator (PSO).

6.3 The Phase Switch Oscillator traces a robust
cyclic trajectory through the three attractors of
the Phase Switch

To evaluate to what extent the PSO’s long-term dynamics depend on stochas-
ticity, we sampled the most frequently visited states of the complex attractor
corresponding to general asynchronous update, and overlaid the synchronous
limit cycle on the resulting state transition graph (Figure 6.5).

We found that the PSO’s synchronous and asynchronous attractor follow
similar paths along the cell cycle. Both pass through a state in which all the
nodes of the Phase Switch are inactive, except for Cdh1; this is reflective of a
quiescent cell or the early G1 phase of a cycling cell. Both trajectories also visit
a state wherein CyclinA, CyclinB, and Cdk1 are ON. Cells in this state have just
cleared the G2 DNA damage checkpoint (hence Cdk1 is active), but have not yet
moved on to the SAC. Thus we denote it “post-G2”. In contrast, the state corre-
sponding to a G2-arrested cell in which Cyclin A and B are expressed but Cdk1
is not yet ON (denoted G2) is only visited by one of three robust paths along
the asynchronous complex attractor. The synchronous limit cycle updates three
nodes in parallel during this step, and thus skips over the G2-arrested state.
Following the post-G2 state, both attractors go through a state preceding the

C
E

U
eT

D
C

ol
le

ct
io

n



64
CHAPTER 6. A CIRCUIT AT THE CORE OF THE CELL CYCLE DRIVES THE

CELL FROM CHECKPOINT TO CHECKPOINT

Figure 6.4. The limit cycle of the Phase Switch Oscillator under synchronous update.
Each column of squares indicates the states of the node written below the column. Each
row corresponds to a state of the system. To use an identifier that is more economical
than indicating the state of all 8 nodes, we describe the state by its overlap with the three
attractors, in the order (G0/G1, G2, SAC). Each pair of successive rows (from the top
down) indicates a single synchronous update, i.e. applying the regulatory functions on
the first state gives the second state. A dark grey square indicates the ON (1) state of
the node indicated below the column and white means OFF (0).
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Figure 6.5. State transition graph (STG) representation of the complex attractor of the
Phase Switch Oscillator. Each circle represents a state of the Phase Switch Oscillator,
which is made up of the states of all the 8 nodes. The node sizes represent the visita-
tion probabilities of the corresponding states (see Section 3.1.5. States with visitation
probability less than 0.5% are omitted. To provide a clear identifier without indicat-
ing the state of each node, each state of the system is labeled with its overlap with the
three Phase Switch attractors, in the order G0/G1, G2, SAC (see Methods). If a system
state overlaps one of the three attractors in 7 or 8 node states (more than 87% overlap),
the node is colored with the color representing the relevant attractor, namely blue for
G0/G1, yellow for G2 and brown for SAC. System states that have an overlap of less
than 6 with an attractor are shown in grey. If the overlap is 6 the state is colored with
a combination of grey with the color of the respective attractor. The color combinations
mirror the transitions between the phases. Some important states are marked by a la-
bel representing the closest phenotype. Each edge label shows the node that changes
state in the respective transition; if the node name is preceded by ∼ the node turns
OFF, otherwise it turns ON. For simplicity, we omit the self-loops that correspond to
the cases where a node state is re-evaluated but does not change. The state transitions
corresponding to the synchronous update are shown in purple.
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spindle assembly checkpoint wherein CyclinA has not yet degraded (which we
denote “near-SAC”), as well as a state where Cdc20 has already turned OFF
(which we denote “post-SAC”). Here too, the state closest to that of a cell ar-
rested at the SAC (thus matching the SAC attractor of the Phase Switch) is only
visited by the complex attractor; Cyclin A degradation and Cdc20 activation
co-occur in the synchronous model. Table 6.1 lists the state of all nodes in these
labeled states.

Cdc25C CyclinA Cdk1 CyclinB Cdh1 pAPC Cdc20 UbcH10 Mad2 Wee1 Cdc25A
The attractors of the Phase Switch
G0/G1 0 0 0 0 1 0 0 0 0 1 0
G2 1 1 0 1 0 0 0 1 0 1 1
SAC 1 0 1 1 0 1 0 1 1 0 0
The states of the Phase Switch Oscillator closest to the attractors of the Phase Switch Passing Prob
G0/G1 0 0 0 0 1 0 0 0 0 0 1 1
G2 1 1 0 1 0 0 0 1 0 0 1 0.33
SAC 1 0 1 1 0 1 0 1 0 0 1 0.55
The most likely closest states of the Phase Switch Oscillator
G0/G1 (8,3,2) 0 0 0 0 1 0 0 0 0 0 1 1
Post-G2 (2,7,6) 1 1 1 1 0 0 0 1 0 0 1 0.89
near-SAC (1,6,7) 1 1 1 1 0 1 0 1 0 0 1 0.94

Table 6.1. Phase Switch Oscillator states closest to Phase Switch attractors Top: The
three fixed point attractors of the Phase Switch. Middle: the states of the Phase Switch
Oscillator (wherein the states Wee1=Mad2=0 and Cdc25A=1, highlighted in gray, are
fixed) that most closely approach the Phase Switch attractors under asynchronous up-
date. The states closest to the G2 and SAC attractors are visited by part of the trajec-
tories of the complex attractor (see Figure 6.5). Bottom: the states that almost every
asynchronous trajectory of the complex attractor will cross and are as close as possible
to one of the three Phase Switch attractors. These three states also lie along the syn-
chronous limit cycle. The rightmost column, labelled passing probability, represents the
likelihood of complex attractor trajectories passing through the state given in the row.

The passing probability estimates in the rightmost column are based on the
filtered complex attractor shown in Figure 6.5 for the middle table, and the
backbone shown in Figure 6.6 for the bottom table. The actual probabilities are
somewhat smaller due to small probability shortcuts, see Figure 6.6 and Sup-
plementary Table 10.1. The G0/G1 state in the middle and bottom table is the
same.

The close agreement between the asynchronous complex attractor and the
synchronous limit cycle is surprising because consecutive states of the syn-
chronous state transition graph differ in up to three node states (multiple nodes
can change state during one synchronous update), while the edges of the asyn-
chronous state transition graph always represent changes in a single node (in-
dicated as edge labels in Figure 6.5). The loss of synchronicity between node
state changes could have induced a dramatic departure from the synchronous
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limit cycle, as was observed in a previous Boolean model of the mammalian
cell cycle by Fauré et al. [51]; only after partially restoring synchronicity did
the Fauré et al. model yield near-cyclic trajectories. Remarkably, in the case of
the PSO the vast majority of the paths in the asynchronous attractor follow the
synchronous limit cycle and robustly adhere to its temporal ordering of states.
(For details: Supplementary Figure 10.1 compares the distribution of consecu-
tive ON and OFF durations of each node with the case of a cycle in which each
node switches state twice.)

Figure 6.6 compactly summarizes this agreement in a “backbone” represen-
tation of the complex attractor. To quantify how closely the asynchronous dy-
namics adheres to the synchronous cycle, we computed the aggregated proba-
bility of all paths of the asynchronous state transition graph (STG) that start and
end at the states of the synchronous limit cycle without visiting other states of
the limit cycle; these probabilities are indicated as edge labels in the network on
the right panel in Figure 6.6.

Asynchronous update paths between limit cycle states that are not adjacent
in the synchronous STG are deemed “shortcut transitions”; these transitions
mix the node state changes involved in multiple steps of the synchronous up-
date. A comprehensive list of the probability of all shortcut transitions is given
in Supplementary Table 10.1. Despite the random update order of the asyn-
chronous update, only six shortcut transitions have a probability higher than
0.05. In conclusion, despite the large variability of possible trajectories in a gen-
eral asynchronous system, the emergent cycle of activations and deactivations
in the PSO is remarkably deterministic.

6.4 The Phase Switch Oscillator contains a cycle of
conditionally stable motifs that sequentially sta-
bilize each other and cause their own destabi-
lization

To understand what causes the robustness of the oscillation and the sequential
approach of the Phase Switch attractors we analyze the expanded network (de-
fined in Section 3.2.1) of the PSO, which encapsulates both the topological and
logical features of the regulatory network.
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Figure 6.6. The shared backbone of the synchronous limit cycle and asynchronous
complex attractor. The nodes represent the nine states of the synchronous limit cycle (the
nodes connected by purple edges in Figure 6.5; the node labels indicate the overlap of
the corresponding state with the three Phase Switch attractors (in the order G0/G1, G2,
SAC). The solid edges represent single state transitions obtained by the synchronous
update. These state transitions also appear in the asynchronous state transition graph,
either as edges or as paths. The dashed edges indicate cases where paths exist in the
asynchronous state transition graph that skip a state visited by the synchronous state
transition graph. The states marked in blue, yellow, and brown indicate the states
closest to the G0/G1, G2, and SAC attractors, respectively. In the left panel the edge
labels indicate the nodes that change state during the corresponding transition; nodes
whose name is prefaced by ∼ turn OFF, the rest turn ON. For each synchronous state
transition, the asynchronous state transition graph contains a path that corresponds
to sequential state changes of the same nodes. In the right panel the labels on the state
transition edges indicate the probability of the state transition when using asynchronous
update. State transitions with a probability of less than 0.05 are omitted from this figure.
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6.4.1 Topological analysis of the expanded network of the
Phase Switch Oscillator

As we describe in Section 6.2, we obtain the Phase Switch Oscillator from the
Phase Switch by assuming that the conditions of the three cell cycle checkpoints
(the restriction point, the DNA damage checkpoint and the spindle assembly
checkpoint) are satisfied. Another, practical way of doing the same is to start
from the isolated Phase Switch and fix the states Cdc25A = 1, Wee1 = Mad2 = 0.
Each of these states contradicts one of the three stable motifs of the Phase Switch
(see Figure 6.2). The virtual nodes corresponding to these fixed node states
have out-edges only to composite nodes, thus no further node states stabilize
as a direct consequence of their stabilization (see Figure 6.1). Moreover, these
fixed node states do not create new stable motifs. In the Phase Switch model
there is only one alternative combination of fixed node states that eliminates
the original stable motifs and does not create new ones: Cdc25A=1, Cdk1=1,
Mad2=0. This alternative combination has the same biological meaning as the
one we considered.

The expanded network of the Phase Switch Oscillator contains 16 virtual
nodes and 21 composite nodes as shown in Figure 6.7. Its 72 edges form 31 suf-
ficient relationships between virtual nodes, each of which is either direct or me-
diated by a single composite node. Each of these sufficient relationships appears
as a disjunctive (“or”-separated) clause in the regulatory function of the target
node. For example, as shown in Table 4.4, the regulatory function of Cdc25C is
fCdc25C= CyclinA or (CyclinB and Cdk1). Both terms separated by the “or” op-
erator, i.e. “CyclinA” and “CyclinB and Cdk1” indicate a sufficient regulatory
relationship, meaning that either the activity of CyclinA, or the simultaneous
activity of CyclinB and Cdk1 can cause the activation of Cdc25C. Consequently,
Cdc25C (a green-highlighted node in the top part of the expanded network in
Figure 6.7) has two incoming edges, one from CyclinA and one from a com-
posite node that in turn has two incoming edges, one from CyclinB and one
from Cdk1. The average in-degree of the expanded network is less than two,
markedly smaller than the average in-degree of the original Phase Switch Os-
cillator network, which is 3.5. This illustrates that regulators need to cooperate
to induce state changes in target nodes [75, 76]. The whole expanded network
is an oscillating motif (see Section 3.2.2): it is strongly connected, it is composite-
closed, it contains the complementary of each virtual node, and it does not have
any stable motifs.

As shown in Figure 6.8, the expanded network has more than 6000 cycles
(closed paths with non-repeating virtual or composite nodes), the vast majority
of which are inconsistent (i.e. they contain an internal contradiction either in the
virtual or composite nodes of the cycle; see orange nodes and edges in Figure
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Figure 6.7. The expanded network of the Phase Switch Oscillator embodies the logic
relationships that drive its oscillating behavior. Colored nodes and edges highlight two
characteristic subgraphs of the expanded network. The green nodes and edges indicate
the subgraphs corresponding to the positive feedback loop between Cdk1 and Cdc25C
(bidirectional edge in Figure 6.3 bottom panel). There are two overlapping cycles (i.e.
closed paths with non-repeating virtual or composite nodes), both of length four. Each
cycle involves Cdk1, Cdc25C, and two composite nodes (one shared by both cycles).
These cycles indicate that the positive feedback can only sustain the on (1) state of Cdk1
and Cdc25C if CyclinB (for one of the cycles) or both CyclinA and CyclinB (for the
other cycle) are also simultaneously on. There is a consistent cycle formed by ∼Cdk1,
∼Cdc25C and a composite node that receives input from ∼CyclinA; this means that
Cdk1 and Cdc25 can simultaneously sustain their off (0) state if CyclinA is also off.
Positive feedbacks form two disjoint (groups of) cycles. Each of these cycles is consis-
tent. The disjoint cycles have opposite states and can have different conditions. The
orange nodes and edges highlight the subgraph that corresponds to the negative feed-
back loop (bidirectional edge) between CyclinA and UbcH10 (Figure 6.3 bottom panel).
In general, negative feedback loops result in a cycle in the expanded network involving
both states of the involved nodes; we call this type of cycle an inconsistent cycle.
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Figure 6.8. Distribution of the length of consistent (bottom) and inconsistent (top)
cycles on the expanded network. As illustrated by the green nodes and edges in Figure
6.7, consistent cycles correspond to positive feedback loops in the regulatory network.
They are the building blocks of conditionally stable motifs. We define inconsistency as
the involvement of two opposite states of the same node, either as virtual nodes or as
determinants of a composite node. Inconsistent cycles are akin to traversing a negative
feedback loop of the regulatory network twice (as illustrated by the orange nodes and
edges in Figure 6.7)
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6.7). There are 28 consistent cycles (similar to the green cycle in Figure 6.7), all
of which have fewer than 8 nodes. All the inconsistent cycles have 8 or more
nodes. This difference in cycle sizes indicates that more conditions (in terms of
the state of other nodes) need to be satisfied to ensure the oscillation of a node
than a sustained state of a node in the Phase Switch Oscillator. In other words,
nodes must rely on each other to achieve a sustained oscillation. Supplementary
Figure 10.2 indicates examples of minimal subgraphs through which a virtual
node (in combination with other virtual nodes) can induce its own negation.

6.4.2 Conditionally stable motifs that sequentially stabilize
each other and cause their own destabilization

To summarize the details of this analysis are described in 6.4.1, we find that
the whole expanded network is an oscillating motif: it is strongly connected,
it is composite-closed, it contains the complementary of each virtual node, and
it does not have any stable motifs. While all virtual nodes participate in this
oscillating motif, their contributions to the connectivity of the oscillating mo-
tif are not equal: CyclinA, pAPC and Cdh1 are the strongest contributors and
Cdc25C, ∼Cdc25C and ∼UbcH10 are the weakest. Parsing the logic sufficiency
and necessity relationships embodied in the expanded network explains the tra-
jectories of the state transition graph. The fact that the whole expanded network
is a single oscillating motif explains why the PSO does not have point attractors,
but by itself does not explain why there is a single complex attractor and why
it is so close to a cycle. As a next step toward answering these questions, we
identified all conditionally stable motifs (CSMs) in the PSO that have a single
condition. These are depicted and labeled in Figure 6.9.

The smallest CSM is a node that can maintain its state with the help of an-
other node. This situation appears in the expanded network as a virtual node
that has an edge pointing to a composite node and receives an edge from the
same composite node. The composite node’s other regulator serves as the con-
dition for the CSM. There are two such nodes, pAPC and UbcH10; both virtual
nodes of each form CSMs (C6, C8, C12 and C13 in Figure 6.9). Other elemen-
tary CSMs of the Phase Switch Oscillator contain two or three virtual nodes
that form one or more cycles. Several elementary CSMs overlap in yet larger
CSMs, indicating that satisfying a single condition can often stabilize relatively
large subnetworks. Four CSMs of the Phase Switch Oscillator coincide with
the four CSMs of the Phase Switch: C0 is the same as P3, C1 coincides with
P4, C6 is P5, and C9 coincides with P6, respectively (compare Figure 6.2 with
Figure 6.9). The CSM C11 includes four of the five virtual nodes of the P2 sta-
ble motif (only Mad2, which is not present in the PSO, is absent); thus the C11
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Figure 6.9. Conditionally stable motifs of the Phase Switch Oscillator (PSO). Condi-
tionally stable motifs are represented here as subgraphs of the expanded network of the
PSO. Virtual nodes with a dashed outline represent the conditions. The labels in the
top right corner of the white boxes indicate the name of the conditionally stable motif as
well as the corresponding Phase Switch motif. Multiple motifs in the same white box
(e.g. C7) consist of the same virtual nodes but with different conditions. The grey boxes
around groups of white boxes illustrate that CSMs with shared states naturally fall into
groups.
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(P2’) notation. This preservation of conditionally stable motifs indicates that
the PSO’s dynamic trajectory can at least transiently visit the attractors of the
Phase Switch. Additionally, the PSO has CSMs that are not present in the Phase
Switch; notably, C14, which contains pAPC=1 together with the Cdc20=1 state
absent from all three attractors of the Phase Switch. The activation of this con-
ditionally stable motif represents the activation of the pAPC/Cdc20 complex,
which starts chromosome separation [77] (also discussed in Section 4.2).

Inspection of the single-condition CSMs in Figure 6.9 suggests merging mul-
tiple overlapping CSMs into larger CSMs. One large group unites conditionally
stable motifs C0-C5 and is composed of the virtual nodes ∼CyclinA, ∼CyclinB,
∼Cdk1, ∼Cdc25C, and Cdh1. Strikingly, these virtual nodes’ complementary
nodes, i.e., CyclinA, CyclinB, Cdk1, Cdc25C, and ∼Cdh1, also form an overlap-
ping group of conditionally stable motifs, namely C9-C11. For a detailed view
of the interactions of the overlapping CSMs see Figure 6.10.

We denote the CSM composed of this latter group of virtual nodes “Cyc”,
as it corresponds to the activation of the key cyclins. Similarly, we name the
CSM formed by the merger of C0-C5 “∼Cyc”, as it represents the inactivation
of the key cyclins and is complementary to the Cyc CSM. The overlapping CSMs
C6 and C7 can also be merged to create a larger CSM that contains the virtual
nodes ∼Cdc20 and ∼pAPC. This merger has a complementary counterpart in
the union of the C13 and C14 CSMs. We call the C13-C14 merged CSM “Cy-
closome” in reference to the Cdc20-bound APC/C complex known as the cy-
closome. Its complement, the C6-C7 merger, is called “∼Cyclosome”. Finally,
the various forms of C12 can be merged to form a larger CSM containing only
UbcH10 as a state, while the CSM C8 acts as the complementary CSM. As these
contain only UbcH10 and ∼UbcH10 as states, we refer to these CSMs by the
names “UbcH10” (C12) and “∼UbcH10” (C8). We note that these six merged
CSMs are the six largest CSMs in the expanded network.

The merged CSMs and their regulators are depicted in Figure 6.11 as ex-
panded networks. Each of the six boxes in Figure 6.11 graphically indicates the
regulatory functions for each node of the corresponding CSM. Thus, each box
indicates the states of the regulators for which all the nodes of the CSM will
achieve their corresponding state. Regulators whose states serve as conditions
of the CSM are shown in dashed outline, while regulators that are outside the
CSM (able to influence it but not necessary for stabilization) are shown in the
dash-dotted outline. An important feature shared by several CSMs of the Phase
Switch Oscillator is that they cause the deactivation of their own conditions. In
other words, the sustained activity of the virtual nodes in these CSMs eventu-
ally leads to the activation of virtual nodes that contradict the states of the CSM
conditions.
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Figure 6.10. Two complementary views of the relationships among conditionally stable
motifs of the Phase Switch Oscillator. The information content of this figure is the same
as that of Figure 6.11; by showing two additional views we aim to better communicate
the information. In the top panel each black rectangle represents a group of conditionally
stable motifs (CSMs), each of which is shown as a red rectangle. The overlaps between
red rectangles illustrate that the CSMs share virtual nodes. The CSMs also activate
each other, indicated as arrows between red rectangles. In the bottom panel the same
groups of CSMs are characterized by the virtual nodes that participate in each. It is
thus apparent that the complementary nodes of a group also form a group. Edges among
groups of CSMs are defined based on the logic implication between them. For example,
the virtual nodes of Cyc are sufficient to activate the virtual nodes of Cyclosome, as can
be seen from the last two rows of Figure 6.11. The virtual nodes of∼Cyclosome together
with ∼UbcH10 are sufficient to activate Cyc, as shown in the second and third rows
of Figure 6.11. Collapsing each black rectangle into a single meta-node makes the two
panels identical, and also identical to the middle panel of Figure 6.12.
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Figure 6.11. The logical relationships between conditionally stable motifs (CSMs) of
the Phase Switch Oscillator. The fifteen single-condition CSMs fall into six groups of
overlapping CSMs, indicated by the boxes labeled Cyc,∼Cyc, Cyclosome,∼Cyclosome,
UbcH10, and ∼UbcH10. The union of the CSMs in each group is depicted as a sub-
graph of the expanded network within each of the boxes. The box labels list the CSMs
that are merged in each case; the six CSM groups correspond to those of Figure 6.9.
Within each box, black dashed lines indicate the conditions of the merged CSM and the
green dash-dotted lines indicate regulation external to CSMs (not required for its stabi-
lization). Importantly, the sustained activity of each row of boxes leads to activation of
the next row (with the last row looping back to the first).
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We determine the logical implications of the stabilization of the states of a
conditionally stable motif (CSM) using the concept of the logic domain of in-
fluence (LDOI). The LDOI of a given “seed” set of virtual nodes is the set of
node states that are causally stabilized by the seed set when it is held fixed [78].
We used the LDOI identification algorithm developed by Yang et al., available
at https://github.com/yanggangthu/BooleanDOI. In this algorithm the LDOI
is defined and built via an iterative process on the expanded network, begin-
ning with the empty set. On each iteration, every child node of every virtual
node in the seed set is considered (breadth-first) and added to the LDOI set if
the child node does not contradict any nodes in the seed set and either 1) the
child node is a virtual node or 2) the child node is a composite node and all
its parent nodes are already in the set. This process is continued, considering
child nodes of the nodes already included in the LDOI until no new nodes can
be added. The LDOI of a stable motif includes the motif itself and no contra-
dictions. We found that the LDOI of five CSMs includes the complementary of
the virtual node that serves as the condition of the CSM. This means that the
CSM sooner or later leads to a contradiction with its own condition, thus to its
own deactivation. These five CSMs are indicated in Supplementary Table 10.2.
Also, Supplementary Figure 10.2 illustrates the LDOI of CSM 3 on the expanded
network.

The merged CSMs have the same self-destabilizing properties. For example,
by examining Figure 6.11, one can determine that sustained activity of the∼Cyc
CSM (C0-C5) eventually leads to activation of the∼Cyclosome CSM (C6-C7) be-
cause the five virtual nodes within∼Cyc contain the two conditions (nodes with
dashed outlines) and the external regulator (in dash-dotted outline) necessary
to activate the two virtual nodes of ∼Cylosome. The five virtual nodes within
∼Cyc are also sufficient to activate ∼UbcH10 (C8). The CSMs ∼Cylosome and
∼UbcH10 contradict all the conditions and external regulators of ∼Cyc. In-
deed, the sustained activity of ∼Cyclosome and ∼UbcH10 eventually leads to
the activation of Cyc, which contradicts ∼Cyc in every virtual node. Similar
relationships exist between each row of Figure 6.11 and the row below it (or
between the bottom row and the top row).

6.5 A higher-level network of three nodes qualita-
tively replicates the oscillation

It is possible to make the relationships between the six CSMs of Figures 6.10
and 6.11 precise by designating a new Boolean variable for each complementary
pair of the merged CSMs. Each of the six CSMs can thus be viewed as a virtual
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node, corresponding to one of two states of a corresponding meta-node. We
label these three meta-nodes Cyc, Cyclosome, and UbcH10. The higher-order
logic of the CSM meta-nodes can be distilled into the regulatory functions:

fCyc = (not Cyclosome and Cyc) or (not Cyclosome and not UbcH10)
fCyclosome = Cyc
fUbcH10 = Cyc or Cyclosome and UbcH10
These regulatory functions express the following logical relationships: Cy-

closome and UbcH10 inactivate Cyc; the only possibility for Cyc activation is
the simultaneous inactivity of both Cyclosome and UbcH10. Existing Cyc ac-
tivity can be maintained if Cyclosome is inactive. Cyc is sufficient for the ac-
tivation of Cyclosome and UbcH10. UbcH10 activity can also be sustained if
Cyclosome is active. Figure 6.12 illustrates the regulatory and expanded net-
works of meta-nodes as well as the corresponding STG.

Figure 6.12. The logical relationships that determine the transitions of the PSO can
be effectively illustrated by defining aggregated meta-nodes for overlapping condition-
ally stable motifs. The Cyc meta-node contains CyclinA, CyclinB, Cdc25C, Cdk1, and
∼Cdh1. The Cyclosome meta-node includes the virtual nodes pAPC and Cdc20. The
complementary node (negation) of a meta-node includes the complementary nodes of
the meta-node’s constituent virtual nodes. The first two panels indicate the regulatory
and expanded network of meta-nodes. The panel on the right shows the state transition
graph of the meta-node network. In this panel, the labels of each state are in the order
Cyc, Cyclosome, UbcH10. Node background color indicates the states closest to the
attractors of the Phase Switch: blue for G0/G1, yellow for G2, brown for SAC. The syn-
chronous cycle is shown by purple edges. The asynchronous complex attractor is made
up of two cycles of unequal size, but each of which approaches the three attractors in
the same order. The difference between the two cycles is whether UbcH10 activates and
then deactivates (longer cycle) or stays inactive (short cycle with dashed edges). This
latter process has a very low probability.

The resulting regulatory network relating the three meta-nodes preserves
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certain structural properties of the regulatory network of the PSO. Most impor-
tantly, all negative feedback loops between nodes in the PSO are represented
as negative feedback loops between meta-nodes, while each positive feedback
loop in the PSO is internal to exactly one meta-node (or is represented explicitly
as a positive self-loop). The higher-order regulatory logic of the CSM meta-
nodes explains the PSO’s cycling between states close to the G0/G1, G2, SAC
attractors, as shown in the right panel of Figure 6.12. The G0/G1 state corre-
sponds to the inactivity of all three meta-nodes. This is not an attractor; inac-
tivity of pAPC and Cdc20 implies that Cyc will activate. When this is achieved,
the system is closest to the G2 attractor of the original Phase Switch. Next, the
activity of Cyc drives the activation of UbcH10 and Cyclosome in a stochastic
order. The probability of UbcH10 turning on before Cdc20 and pAPC, and thus
activating the UbcH10 meta-node before the Cyclosome meta-node, is at least
0.98 (see Supplementary Table 10.1). The rare case in which Cyclosome acti-
vates before UbcH10 leads to a path of state transitions (shown with dashed
lines) from a G2-like state to the G0/G1 state without ever activating UbcH10,
consistent with the observation that fixing UbcH10 off preserves the complex
attractor. In the more likely scenario, UbcH10 activates first, and then the acti-
vation of the Cyclosome node (pAPC and Cdc20) marks the spindle assembly
checkpoint. This state is also short-lived, as Cyc is deactivated by Cyclosome,
which in turn causes the inactivation of both Cyclosome and UbcH10. Thus, the
system returns to the G0/G1 state.

6.6 Examining the motif structure and dynamics of
networks with a locked node reveals the differ-
ences between the nodes’ influence

All eight nodes of the Phase Switch Oscillator participate in the oscillation and
spend a similar amount of time in their two states (see Supplementary Figure
10.1). All 16 virtual nodes participate in at least one CSM, but their contribution
to the connectivity of the expanded network is not equal (discussed in Section
6.4.1). Next, we asked whether all nodes contribute equally to the oscillation. To
evaluate each node state’s contribution to the complex attractor, we systemati-
cally set each node in its active or inactive state and identify the motif structure
and attractor repertoire of the thus-modified dynamical system. The modified
systems’ dynamic behaviors fall into three categories: 1) in three cases the PSO
oscillation is preserved as the sole attractor, 2) in 11 cases the modified system
has a single point attractor, and 3) in two cases the modified system has multiple
point attractors (described in detail Supplementary Table 10.3). The expanded
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networks for representatives of each of the three categories are shown in Figure
6.13, alongside the original system’s expanded network.

The most interesting example is Cyclin B, whose locking ON creates two
highly dissimilar fixed point attractors (see right panels of Figure 6.13). The
bistability in the presence of forced CyclinB expression is due to the fact that
sustained CyclinB is the (direct or indirect) condition for two mutually exclu-
sive CSMs (C10 and C12). In contrast, when CyclinB is held inactive the CSMs
C7 and C9 can stabilize, resulting in a single point attractor most similar to the
G2 attractor. Thus, control of CyclinB can yield any of the three attractors of
the Phase Switch, consistent with biological knowledge [79, 46, 52, 47]. More-
over, enforced step-wise changes between fixed states of CyclinB can induce
attractor transitions that mimic cell cycle progression. The constraint CyclinB
= 0 drives the Phase Switch Oscillator to a unique G2-like state in all update
schemes. This state is in the basin of attraction of the SAC-like attractor of the
CyclinB = 1 constrained PSO (in particular, the C10 conditionally stable motif
is active). Thus, if CyclinB is absent until a steady state is reached, and is then
reintroduced, the model system undergoes a transition from a G2-like state to
a SAC-like state. This model behavior matches experimental observations, as
the introduction of Cyclin B to frog oocytes with replicated DNA but no cyclin
expression was shown to drive these cells into mitosis [79, 46, 47]. Furthermore,
if we remove CyclinB after the SAC-like state is reached, then the system passes
through a G0/G1-like state [80, 81, 82], which was not visited by the trajectory
from the G2-like state to the SAC-like state. A similar hysteresis in response to
the increase vs. a decrease of CyclinB was experimentally observed in Xenopus
embryonic cells [79]. In conclusion, we predict that there exists a sequence of
repeated changes in CyclinB that can drive the system to visit the attractors of
the Phase Switch in the same order as the cell cycle.

I briefly discuss a potential application of the timed Cyclin B driven control
of the cell cycle in the case of Alzheimer’s disease in the outlook Section 9.2.

6.7 Discussion of the results

In this chapter, I presented the results of the paper [62], a follow-up analysis of
a Boolean model of the mammalian cell cycle published in [60] and discussed
in Chapter 4. This model agrees with continuous (ODE-based) models in rec-
ognizing the importance of bistable switches (based either on mutual activation
or mutual inhibition) in this regulatory logic. As beautifully illustrated in a re-
cent review article by Novák et al. [83], these switches are concatenated and
nested. Matched pairs of mutually inhibitory bistable switches underlie the cell
cycle checkpoints. Once the pair of switches is toggled, the transition through
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Figure 6.13. The expanded network that results from no intervention (top left panel)
or three characteristic interventions (other panels as indicated by panel titles). Virtual
nodes whose label is the node name preceded by ∼ indicate the off state of the relevant
node. The three interventions exemplify each of the three attractor categories outlined
in the main text: retained oscillation (bottom left, UbcH10 off), single point attractor
(bottom right, CyclinB off), and multiple point attractors (top right, CyclinB on). The
group of virtual nodes that make up each point attractor are highlighted in color. The
blue state has the greatest overlap with the G0/G1 attractor of the Phase Switch, the
yellow state most closely overlaps with the G2 attractor, and the brown state is most
similar to the SAC attractor.

C
E

U
eT

D
C

ol
le

ct
io

n



82
CHAPTER 6. A CIRCUIT AT THE CORE OF THE CELL CYCLE DRIVES THE

CELL FROM CHECKPOINT TO CHECKPOINT

the checkpoint is irreversible. The logic-based methods we present here offer
a related and complementary way to understand the attractor repertoire that
arises from coupled and nested bistable switches. The concept of stable mo-
tif expresses a stable switch state. Thus, the activation of a stable motif marks
a point of no return in a system’s trajectory. Here we introduced condition-
ally stable motifs, which can maintain a fixed state of their constituent nodes
as long as the state of one or more nodes external to the motif is maintained.
Intuitively, conditionally stable motifs are reversible switches that can main-
tain their state when their conditions are fulfilled but are reversed when their
conditions are violated. Our analysis focused on understanding the connection
between reversible switches and the cyclic activation and deactivation of cyclins
during the cell cycle. To do this, we considered a cell that lacks the restriction,
DNA damage and spindle assembly checkpoints. Our results indicate that the
negative feedback loop formed by a group of strongly coupled switches (en-
compassing CyclinA, CyclinB, Cdk1, Cdh1, Cdc25C), on the one hand, and the
complex of pAPC and Cdc20, on the other hand, is a main contributor to this
cyclic behavior.

Conditionally stable motifs are useful generalizations of stable motifs. Sta-
ble motifs are well-defined within the context of a model. Yet, as all models are
ultimately incomplete, it is possible that a more complete model would have
additional regulators that transform the stable motif into a conditionally stable
motif. Through our analysis of the Phase Switch and the Phase Switch Oscilla-
tor, we have uncovered three key features of conditionally stable motifs (CSMs).
First, they can play an important role in the decision-making of multi-stable
systems. For example, in the Phase Switch module the stable motif P1 is com-
patible with both G0/G1 and G2 attractors. The subsequent stabilization of the
conditionally stable motif P5 and P0, alternatively, P5 and P6, steers the system
into one or the other attractor respectively (see Figure 6.2). Second, in systems
with complex attractors, CSMs reduce noise introduced by stochastic update
order by temporarily eliminating degrees of freedom. Indeed, CSMs with the
fewest conditions capture the temporary stability of short-range positive feed-
back loops, which temporarily fix the states of the nodes in the feedback loop.
Third, oscillation requires that no CSM has stabilized conditions, and therefore
the pattern of CSM condition activation and deactivation can illuminate the na-
ture of the oscillation.

Both the Phase Switch and Phase Switch Oscillator contain induced strongly
connected subgraphs that lack negative feedback loops (in other words, they
are sign-consistent). A significant body of work applied to both continuous and
discrete dynamical systems indicates that sign-consistent systems (also called
monotone systems) have highly predictable and ordered dynamics [84]. Bio-
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logical networks tend to be close to sign-consistent [84], thus identifying their
largest sign-consistent subgraphs, and studying the connections of these sub-
graphs is a fruitful way forward. In the specific case of the Phase Switch Os-
cillator, the largest sign-consistent subgraph is the group of switches made up
by CyclinA, CyclinB, Cdk1, Cdh1, and Cdc25C, a group whose two opposing
states make up the two largest conditionally stable motifs, Cyc and ∼Cyc. The
second-largest sign-consistent subgraph is formed of pAPC and Cdc20 and de-
termines the Cyclosome and ∼Cyclosome CSMs. Merging the sign-consistent,
strongly connected subgraphs into single meta-nodes yields the coarse-grained
system of Figure 6.12, which reveals the negative feedback loops of the Phase
Switch Oscillator. Studying the general relationship between the largest sign-
consistent subgraphs and largest CSMs is an interesting topic for future work.

Our analysis yields novel biological insights and predictions. For example,
our analysis of the Phase Switch Oscillator with a locked-in state of CyclinB con-
firms the important role of CyclinB in driving the cell cycle of embryonic cells
and mitosis in somatic cells. We predict that there exists a sequence of repeated
changes in CyclinB that can be used to drive the system to visit the attractors of
the Phase Switch in the same order as the cell cycle. More broadly, our findings
support the conclusion that a combination of bistability and negative feedback
underlies many biochemical oscillators [85, 79]. Our newly introduced concept
of conditionally stable motifs may also help address biological learning and
adaptation in a network framework [86].

The expanded network framework is part of a broader effort to characterize
and represent a network as the causal relationships between variables of a dy-
namical system. Related concepts include signed interaction hypergraphs [87]
and dynamics canalization maps [75]. For example, the logic domain of influ-
ence of a node state [78] is a subgraph of the expanded network that is conceptu-
ally similar to the three-valued (0, 1, unknown) logical steady state that results
from fixing a node state [87] and to the dynamical modules of dynamics canal-
ization maps, which represent the states inexorably stabilized by an input con-
figuration [75]. The concepts of expanded network and stable motif have been
generalized and implemented in multi-level discrete systems and continuous-
variable systems described by ordinary differential equations [88, 89]. When
considered generally, the expanded network encodes causal links between re-
gions of state-space. Each of its virtual nodes represents a region of state-space
(e.g., the region in which a particular variable takes a specified value or range of
values) and the composite nodes represent the intersection of the virtual node
regions. Once an expanded network is constructed for a given dynamical sys-
tem, be it discrete or continuous, the concept of a conditionally stable motif
is immediately applicable. Thus, it is possible that by using the methods of
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Rozum & Albert 2018 [89], many of the concepts we have introduced here can
be generalized to multi-level discrete dynamical systems and ODE models.

Our analysis indicates that the influences on the Phase Switch originating
from the other modules become functional in a manner that allows the Phase
Switch to approach one of its attractors (as the cell reaches the relevant check-
point), but then they destabilize this attractor as the checkpoint is cleared. In
other words, the network around the Phase Switch helps provide the conditions
that govern its stable motifs. Nevertheless, we found that the robust channel-
ing of its dynamics along a limit cycle is intrinsic to this network. Thus, the
Phase Switch balances the need to stably maintain the cell at each checkpoint
with the need for a robust limit cycle when checkpoints are cleared without is-
sue. The methodology described in this chapter can be used to understand the
complex oscillation that emerges from the coupling of the Phase Switch and the
Restriction Switch in the presence of growth factors. As explained in Deritei et
al. 2016 [60] and Chapter 4 and illustrated in Figure 4.6, this attractor recapitu-
lates the cell cycle in the presence of the checkpoints we removed in this study
while toggling the combinations of the module attractors. Analyzing the con-
ditionally stable motifs of the coupled model could shed light on an even more
comprehensive coarse-grained logical network that drives the cell cycle, and of-
fer further insight on dynamical modularity. I briefly address our preliminary
results on the coarse-graining of the full cell cycle model in Section 9.2.

The analysis of the cell cycle model, under general asynchronous update
with the stable motif analysis of the Restriction Switch, is presented in the next
chapter.
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CHAPTER 7

ANALYSIS OF THE CELL CYCLE
MODEL UNDER GENERAL
ASYNCHRONOUS UPDATE

In this chapter I am going to present the results of extending the analysis of the
Phase Switch Oscillator (PSO) presented and discussed in Chapter 6 to the full
cell cycle model published in [60] and introduced in Chapter 4. As a reminder,
the cell cycle model includes the Phase Switch module, the Restriction Switch
module, as well as 4 abstract nodes. We simulate the cell cycle model under
general asynchronous update to study its behavior subject to variable timing.
We then present a more general method to generate the “backbone” of the com-
plex attractor encompassing a probabilistic view of the relevant trajectories the
model can take. We also analyze the stable motif structure of the Restriction
Switch module, and how the stable motifs change as a result of the coupling
with the Phase Switch. With this, we explain the role and behavior of the Re-
striction Switch in the complex dynamics of the cell cycle.

7.1 The cell cycle model maintains its relevant be-
havior under general asynchronous update

We are using the same 21 node cell cycle model that we already discussed in de-
tail in Chapter 4, however, since we are assuming constant growth factor stimu-
lation the GF input node is permanently set to 1. This leads to the node Myc also
being turned permanently on. As these nodes are fixed we can slightly simplify
our model to 19 node system by substituting the values of GF and Myc. We
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sampled the complex attractor of the model (for the sampling method see 3.1.5)
emerging from general asynchronous update. The resulting sample of the state
transition graph is shown in Figure 7.1. The node colors represent the closeness
of each state to the attractors of the Phase Switch and Restriction Switch. We
identify four distinct parts of the graph: three loops representing three differ-
ent cyclic paths and a central “spine” where the loops join and diverge from.
The largest loop robustly follows the cell cycle trajectory of the synchronous
update, highlighted with the wider purple edges (as seen also in Figure 4.6).
This loop, the same way as the synchronous limit cycle, toggles the attractors
of its constituent modules, as the colors of the nodes representing the states in-
dicate. This behavior adheres to the rules of dynamical modularity discussed
in detail in Chapters 4 and 5. We would like to highlight that in some cases
the asynchronous update reveals pathways where the dynamical modularity is
even more pronounced than it is when using synchronous update. For exam-
ple, the Before RP attractor state of the Restriction Switch is approached more
(yellow-green nodes on the bottom left of Figure 7.1) by the complex attractor
than by the synchronous limit cycle (marked by the nodes connected by the
purple edges).

The nodes on the complex attractor are labeled if they have some outstand-
ing biological significance and/or are highly probable states. One such promi-
nent state just before the turning on of Cdc25A is labeled G1+PRP. This state has
almost perfect overlap with the G0/G1 attractor of the Phase Switch, and per-
fect overlap with the past restriction point (Past RP) attractor of the Restriction
Switch. Contrary to the “textbook” description of restriction point passage (ir-
reversible commitment to division) between phases G0/G1 and G2, one can see
that the states corresponding to the G1 phase (nodes with blue primary color)
have the Restriction Switch nodes already in the Past RP phase (represented by
pink secondary color). The only time the Restriction Switch is in the Before RP
phase along the main loop is where the Phase Switch is in the G2 phase (yellow
primary color and green secondary color). As the attractor follows the main
loop and progresses into the G2 phase, there are several states where the attrac-
tor perfectly matches the node states of the G2 attractor we see in an isolated
Phase Switch. The most prominent such state in our sample is labeled G2 +
BRP. This phenomenon is actually in accordance with biological observations,
where cells exposed to constant growth factor stimulation can pre-commit to
the next cell cycle even before the cytokinesis of the mother cell [63]. The pre-
commitment is visible on the complex attractor on the main loop around in the
SAC phase where the nodes are colored with a combination of brown and pink,
meaning that the Restriction Switch is already past the restriction point. There is
also a “tangent” trajectory that we can observe along the G2 section of the main
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Figure 7.1. State transition graph (STG) representation of the complex attractor of
the Cell Cycle. Each circle represents a state of the Cell Cycle, which is made up of
the states of all the 19 nodes. The node sizes represent the visitation probabilities of
the corresponding states. States with visitation probability less than 0.5% are omitted.
Each node is composed of two colors. If a system state overlaps with an attractor of the
Phase Switch or Restriction Switch by at least 80%, the node is colored with the color
representing the relevant attractor, namely blue for G0/G1, yellow for G2 and brown for
SAC in the case of the Phase Switch (color on the left) and light green for the Before RP,
pink for the Past RP in the case of the RS (color on the right). System states that have
less than 80% overlap with an attractor state are shown in grey. For simplicity, we omit
the self-loops that correspond to the cases where a node state is re-evaluated but does not
change. The state transitions corresponding to the synchronous update are shown in
purple. Transitions where the abstract node Replication turns on are highlighted with
red. The three nodes with labels represent nodes of biological significance: G1+PRP
indicates the first growth phase following cell cycle commitment (past the restriction
point), G2+BRP indicates the second growth phase where the restriction switch reset to
its uncommitted state, SAC marks the spindle assembly checkpoint.
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loop, where the Restriction Switch is actually never reset, it only goes through
a more neutral state (shown in grey) between the G2 and SAC phases.

The small blue-green loop is partially an artifact of our model’s simplified
treatment of DNA replication. In cells, starting the process of DNA replication
is irreversible. Cells that start the S phase cannot reset to G1 even if they lose
CyclinE or Cdc25A activity. Instead, these cells pause in S-phase until they can
resume DNA replication. The irreversible nature of commitment to replication
could have been incorporated in the model by making the Replication node
self-sustaining. We did not do this because this assumption can easily result in a
separate stable S-phase attractor that is more stable than an S-phase arrest might
be. Thus, asynchronous update allows a model trajectory in which Replication
turns ON (red edges), which turns CyclinD1 OFF, which pushes the Restriction
Switch back to its uncommitted state (marked in green secondary color), which
then turns Replication OFF without achieving the outcome of replication, the
ON state of the 4N DNA node. This trajectory constitutes the first part of the
blue-green loop: the Phase Switch is in the G1 phase (blue primary color) and
the Restriction Switch goes from committed to uncommitted (pink to grey to
green secondary color). As CyclinD inhibition is subsequently lost, and growth
stimulation goes on, the Restriction Switch commits once more (grey and then
pink) thus the loop converges into the ”committed G1” spine.

The ”middle” yellow/grey/red loop is a consequence of a somewhat differ-
ent non-biological feature of the model, which has been since corrected in the
updated model published in Sizek et al. [90] discussed in Chapter 8. Following
the state transitions along this loop reveals that they represent a full cycle of
the Phase Switch alone, without ever engaging DNA replication or metaphase
(see Section 6.2). Our model allows this to occur due to the fact that it only fac-
tors in the existence of replicated sister chromatids (4N DNA) in the logic gates
of the SAC checkpoint node Mad2, and the abstract process node Metaphase
itself. In live cells, however, key regulators of the mitotic CyclinB/Cdk1 com-
plex, such as Cdc25C and Cdc25B (see [90]) are controlled by localization to
structures along replicated sister chromatids [91, 92, 93]. For example, Cdc25C
is initially activated by a small pool of Cyclin B / Cdk1 (below the ON-threshold
of Cdk1 in our model) which starts out at the replicated centrosomes. Moreover,
the pool of mitotic Cdc25C co-localized with active Chk1/Cyclin B is found on
condensed chromosomes, again requiring the presence of 4N DNA [94]. By
ignoring this requirement, our model allows the cell cycle control machinery
to enter a mitotic state without 4N DNA and allows the Phase Switch to go
through G2→ SAC→ G1 without the processes triggered and monitored by it
in live cells.
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7.2 The backbone of the complex attractor

The same way as we did in Section 6.2 we construct the backbone of the com-
plex attractor. This allows us to answer two questions. First, how robustly
does the general asynchronous attractor follow the synchronous one, and as
such how faithful it is to the biological features of the cell cycle? Second, what
non-trivial transitions are created by the noisy update and their probabilities to-
gether with the constituting node changes? The robustness analysis including
only the states of the synchronous cycle is shown in Figure 7.2. Looking at this
figure we can conclude that the main asynchronous loop is a fairly robust oscil-
lation with the transitions that follow the synchronous cycle have probabilities
above 0.5. The transition probabilities are somewhat smaller between the states
labelled (4,4,8);(1,5), (7,5,3);(0,6), (7,5,5);(0,6). These states are also part of the
“spine” of the complex attractor, where the extra, non-biological, loops begin.

In contrast to the case of the PSO, where we had one consistent cycle, in this
case, we have some new, unexpected features – in the form of the extra loops –
that we would also like to preserve in the backbone. To do this, it is not sufficient
to only use the states of the synchronous attractor as proxy nodes, because that
only captures the main loop. To include relevant nodes from every distinct loop
we adapt a local version of betweenness centrality that gives high betweenness
values for nodes in sections of the graph that are part of a consistent trajectory,
such as the loops. We also wanted to capture states where the complex attractor
reaches maximal overlap with a module attractor. In cases where there were
multiple states with the same overlap value, we chose the most visited state.
The union of the top 15 nodes of highest local betweenness, the 13 states of the
synchronous limit cycle, and the 5 most probable maximally overlapping states
(one for each module-attractor) make up the set of proxy nodes that we use to
generate the backbone shown in Figure 7.3.

In Figure 7.3 one can see that the compressed attractor with the selected
proxy nodes maintains the key structural features of the complex attractor
shown in Figure 7.1. As the 13 states of the synchronous cycle are included, the
most prominent structural feature of the figure is the main loop. The nodes of
the synchronous cycle, as well as the transitions between them, are highlighted
with purple. Along the main loop, we observe a few side-trajectories that are
biologically interesting and are consequences of the asynchronous update. The
first such trajectory is the restriction point reset during the G2 phase, reached at
the node (6,10,6);(5,1); this is the only point along the cycle where the Restric-
tion Switch is in the Before RP state. There is also the yellow-grey node labeled
(5,11,5);(2,4), a state that perfectly overlaps the G2 attractor of the Phase Switch
and is also more probable than any close-to-G2 state of the synchronous cycle.
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Figure 7.2. The shared backbone of the synchronous limit cycle and asynchronous
complex attractor. The nodes represent the thirteen states of the synchronous limit
cycle (the nodes connected by purple edges in Figure 7.1); the node labels indicate the
overlap of the corresponding state with the three Phase Switch and Restriction Switch
attractors (in the order G0/G1, G2, SAC and Before RP and Past RP). The purple
edges represent single state transitions obtained by the synchronous update. These state
transitions also appear in the asynchronous state transition graph, either as edges or as
paths. The dashed edges indicate cases where paths exist in the asynchronous state
transition graph that skip a state visited by the synchronous state transition graph.
The nodes are colored to represent module attractor proximity, according to the same
coloring scheme as explained in Figure 7.1. Edge labels of the state transition edges
indicate the probability of the state transition when using asynchronous update. State
transitions with a probability of less than 0.1 are omitted from this figure.
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This state (5,11,5);(2,4) also behaves as a shortcut along the states associated
with G2. The grey node labeled (4,8,8);(2,4) is a state of strong convergence and
it also represents the transition between the G2 and SAC phases. The red-pink
node labeled (3,5,11);(1,5) is a state where the system reaches perfect overlap
with the SAC attractor of the Phase Switch, and it is also a state where the Re-
striction Switch pre-commitment occurs.

The blue-pink node labelled (10,4,4);(0,6) is relevant for several reasons.
First, it is one of the most visited states along the “spine”. The reason for this
is that both extra loops converge onto this state with relatively high probability.
The “middle” loop also starts from this state and it can loop back into it. The
state (10,4,4);(0,6) also reaches a better overlap with the G0/G1 attractor of the
Phase Switch than any state along the synchronous cycle.

Each of the extra loops is captured by three nodes of the backbone. The
smaller blue-green loop consists of the states and transitions (11,5,3);(5,1) →
(10,4,4);(5,1)→ (10,4,4);(4,2). The most likely transition to start the loop is from
the state represented by the blue-grey node (10,6,2);(2,4), which has incoming
edges from three states of the synchronous cycle. From this state there is an ap-
proximately 50% chance of transitioning into the state (11,5,3);(5,1). (11,5,3);(5,1)
is interesting because it has a perfect overlap with the G0/G1 attractor of the
Phase Switch and it is as close as possible to the Before RP state of the Restric-
tion Switch, i.e. it is the best representation of a cell before ”textbook” restric-
tion point passage in G1 we get in this version of the model. All three back-
bone nodes of the loop have a nonzero chance of transitioning into (10,4,4);(0,6),
where the Restriction Switch is Past RP once again; the loop eventually ends up
in (10,4,4);(0,6) 100% of the time. By this, we can conclude that this loop is one
of the most robust sections of the complex attractor. This loop can also be inter-
preted as a sort of oscillation of the Restriction Switch as it starts from the Past
RP phase, goes through the Before RP phase (with the exception of Myc) and
then goes back to Past RP, while the nodes of the Phase Switch are relatively
stable in the G1 phase.

The middle loop where the Phase Switch oscillates without a completed
replication is captured by the nodes (7,7,3);(2,4) → (8,6,4);(2,4) → (3,7,9);(2,4).
It has a circa 10% chance of initiating from (10,4,4);(0,6). It’s less prominent
on the backbone, but it’s visible on the complex attractor that this loop toggles
through the G2 and SAC phases of the Phase Switch. However, the nodes with
the highest local betweenness that were selected as proxies are more transitional
and thus are colored grey. The loop robustly converges into the red-grey state
labeled (3,7,9);(2,4) but afterward there is a lot of freedom in where the trajecto-
ries return to the spine of the complex attractor. The two transitions that have
a probability larger than 10% are to the proxy states (10,4,4);(0,6) (closing the
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loop) and (7,5,5);(0,6) (part of the synchronous cycle). Every other transition
from (3,7,9);(2,4) has a likelihood of less than 10% and thus is not shown on the
figure.

Figure 7.3. The backbone of the synchronous limit cycle and asynchronous complex at-
tractor. The nodes represent the thirteen states of the synchronous limit cycle (the nodes
connected by purple edges in Figure 7.1) and other selected “proxy nodes”; the node
labels indicate the overlap of the corresponding state with the three Phase Switch and
Restriction Switch attractors (in the order G0/G1, G2, SAC and Before RP and Past
RP). The purple edges represent single state transitions obtained by the synchronous
update. These state transitions also appear in the asynchronous state transition graph,
either as edges or as paths. The dashed edges indicate cases where paths exist in the
asynchronous state transition graph that skip a state visited by the synchronous state
transition graph. The nodes are colored to represent module attractor proximity, ac-
cording to the same coloring scheme as explained in Figure 7.1. Edge labels of the
state transition edges indicate the probability of the state transition when using asyn-
chronous update. State transitions with a probability of less than 0.1 are omitted from
this figure.
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7.3 Stable motif analysis of the Restriction Switch
module

Following the logic of Chapter 6 we conduct the stable motif analysis of the
Restriction Switch, the same way as we did for the Phase Switch in Section 6.1.
The stable motif succession diagram of the Restriction Switch shown in Figure
7.4, reveals four stable motifs and no conditionally stable motifs, which means
that if any of the stable motifs locks in, it will directly lead into its corresponding
attractor. The stable motifs R0 and R1 both lead the Restriction Switch into the
Before RP attractor while the stable motifs R2 and R3 lead the Restriction Switch
into the Past RP attractor.

7.4 Stable motifs of the Restriction Switch are mod-
ified in the full cell cycle model

In Figure 7.5 we indicate the additional regulators of the Restriction Switch in
the cell cycle model. The detailed description of the regulatory interactions dis-
cussed in this section, supported by references from the experimental literature
can be found in [60] Supplementary Tables S1 and S3. The Boolean rules and
the coupling interactions discussed here are also listed in Tables 4.2 and 4.6.

When considering solely the Restriction Switch module Myc is activated by
E2F1, however, in the full cell cycle model active growth factor stimulation is
sufficient to activate Myc regardless of the status of E2F1. The rule Myc changes
from Myc* = E2F1 in the isolated Restriction Switch to Myc* = GF or E2F1. Be-
cause of this, in the case of constant GF stimulation Myc is permanently turned
on. It is worth noting that in most of our analysis when we study the cell cycle
(instead of the G0 quiescent attractor) we work with GF=Myc=1.

The activation of Cyclin E is done by an active E2F1 but only in the absence
of RB and p27Kip1, both of which bind Cyclin E. The rule of Cyclin E in the
Restriction Switch is: CyclinE* = E2F1 and not RB and not p27Kip1. In the
context of the larger model the activation also requires the presence of Cdh1 or
that the cell is not in metaphase. The Cdh1 contingency is not direct but com-
presses a chain of regulation events involving molecules that are not explicitly
included in our model. The fact that Cyclin E cannot activate during metaphase
either is encoded by the inhibition from the Metaphase abstract node, which
also encompasses multiple regulation events. The rule of Cyclin E in the cou-
pled model is thus: CyclinE* = (Cdh1 or not Metaphase) and (E2F1 and not RB
and not p27Kip1)

The activation of the E2F1 transcription factor is contingent on the absence
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Figure 7.4. Distinct sequences of stable motifs that commit the Restriction Switch to
its attractor states. The stable motifs are shown in the expanded network formalism
where a virtual node labeled by the name of the corresponding node represents the state
1 of the node (dark grey background); a virtual node labeled by the node name preceded
by ∼ represents the state 0 of the node (white background). Stable motifs R0, R1, R2
and R3 are the stable motifs of the Restriction Switch when considered in isolation.
Each path terminates in one of the two point attractors (Before Restriction Point, Past
Restriction Point), visualized in the Restriction Switch regulatory network using a
white background for the off state of a node and dark grey for the on state. The outline
color of the two attractors corresponds to the color-code used for differentiating the two
attractors in Section 4.1.C
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Figure 7.5. The Restriction Switch module and its inputs from the rest of the cell
cycle model (highlighted with green edges). All the nodes of the Restrictions Switch are
affected by external regulators. Edges with terminal arrows indicate positive regulation,
edges that end in open circles indicate negative regulation, and edges that have endings
on both sides (i.e., bidirectional edges) indicate the superposition of two edges with
opposite directions. The white nodes represent the nodes of the Restriction Switch, the
light grey nodes are nodes of the Phase Switch, the dark grey nodes are abstract nodes.
The black node represents the Growth Factor input.
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of active RB and it can be turned on by an active Myc or it can sustain its own
activity in the absence of RB. This leads to the rule: E2F1* = (not RB) and (E2F1
or Myc). In the larger model, the activity of E2F1 is also contingent on the
absence of Cyclin A, as Cyclin A directly binds E2F1. Thus both RB and Cyclin
A can deactivate E2F1, which modifies the rule of E2F1 to: E2F1* = not (CyclinA
or RB) and (E2F1 or Myc)

p27Kip1 is bound by Cyclin D and its associated Cdk complexes, while Cy-
clin E can mark p27Kip1 for degradation. Within the Restriction Switch module
p27Kip1 can only activate in the absence of both: p27Kip1* = not (CyclinD1 or
CyclinE). However, in the context of the full model, the degradation induced
by Cyclin E only happens when Cyclin A is also active. In addition, the Cy-
clin B-Cdk1 complex phosphorylates p27Kip1 in a way that promotes its export
from the nucleus. The extended rule of p27Kip1 is: p27Kip1* = (not (CyclinB
and Cdk1)) and (not (CyclinD1 or (CyclinA and CyclinE)))

The RB complex is bound and phosphorylated by Cyclin D and its Cdk com-
plex. It can also be deactivated by CyclinE but p27Kip1 can counteract the effect
of Cyclin E, leading to the rule: RB* = (not CyclinD1) and ((not CyclinE) or
p27Kip1) Similarly to p27Kip1, the inhibitory effect of Cyclin E on RB is con-
tingent on an active Cyclin A. RB also can be deactivated by an active Cyclin
B-Cdk1 complex, and thus the rule becomes: RB* = not (CyclinB and Cdk1)
and (not CyclinD1) and (p27Kip1 or not (CyclinA or CyclinE))

CyclinD1 is activated by the simultaneous presence of Myc and E2F1 and an
already active CyclinD1 can sustain its own activation in the presence of either
Myc or E2F1: CyclinD1*= (Myc and E2F1) or (CyclinD1 and (Myc or E2F1))
Instead of stringing additional regulations to the rule of CyclinD1, in the full cell
cycle model the rule of CyclinD1 is modified to: CyclinD1* = (not Replication)
and ((GF and (Myc or E2F1)) or (Myc and E2F1)) Ongoing replication inhibits
CyclinD1 (thus the not Replication), furthermore, the presence of GF overrides
the self-loop of CyclinD1. In the case of constant growth factor stimulation, i.e.
GF=Myc=1, CyclinD1 is only regulated by Replication. In other words, if we
substitute the ON values of GF and Myc into the model the rule of CyclinD1 is
reduced to: CyclinD1* = not Replication

These modifications change the stable motifs of the Restriction Switch. Un-
like the Phase Switch, the stable motifs of the isolated Restriction Switch do not
simply become conditionally stable motifs of the full cell cycle. Figure 7.6 sum-
marizes how the stable motifs of the Restriction Switch change in the cell cycle
model.

When Myc is fixed to 1 the stable motif R0 (not shown) is reduced to a single
virtual node (∼E2F1) that is not self-sustaining. The modification of the rule
of CyclinD1 remove the self-loop of ∼CyclinD1 conditioned on ∼E2F1 and re-
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Figure 7.6. The stable motifs of the Restriction Switch (see Figure 7.4) change in the
cell cycle model due to the modifications to the rule of CyclinD1 and the substitution of
GF=Myc=1. The motifs are shown in the expanded network formalism where a virtual
node labeled by the name of the corresponding node represents the state 1 of the node
(dark grey background); a virtual node labeled by the node name preceded by ∼ repre-
sents the state 0 of the node (white background). Conditions external to the motifs as
well as the directional arrow representing their effect are marked with a dashed outline.
On the bottom right panel, the green dashed arrows represent interactions that are not
part of the CSM but are sufficient to elicit a virtual node or condition of the motif and
thus greatly contribute to the motif’s stabilization.
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duce R1 to a smaller cycle. This smaller cycle becomes a CSM conditioned on
∼CyclinD1. R2 has two conditions that are the two states of CyclinA, thus they
are contradicting. In order for a conditionally stable motif to be able to stabilize,
all of its conditions need to be fulfilled simultaneously. This can never be the
case for R2 in the cell cycle, thus it is not a CSM. Yet, a subset of the R2 motif is
a CSM that is conditioned on ∼Cyclin A and ∼p27Kip1 (see bottom right panel
of Figure 7.6. R3 becomes acyclic, CyclinD1 → ∼RB → E2F1, with the activa-
tion of E2F1 also contingent on∼CyclinA. Thus R3 is not a CSM in the cell cycle
model.

7.5 The coupling between the Phase Switch and the
Restriction Switch is asymmetric

The lack of clearly emerging CSMs from the stable motifs of the Restriction
Switch raises the question: what sustains the attractors of the Restriction Switch
in the complex attractor of the cell cycle model? We can see on the complex at-
tractor (Figure 7.1) as well on the backbone (Figures 7.2 and 7.3) that from the
SAC section (brown primary color) of the cycle along the spine all the way until
the start of the G2 section the Restriction Switch is reliably stabilized in its Past
RP attractor (pink secondary color). The biological interpretation of this is what
we called pre-commitment to the next cell cycle in the presence of growth fac-
tors (see Section 7.1). The constituent states of the Past RP attractor can stabilize
conditionally due to the surviving subset of the R2 motif, the R2’ CSM. On the
bottom right panel of Figure 7.6 we show the R2’ motif with some of its imme-
diate upstream regulators and regulatory interactions highlighted with green
dashed outline. This shows that the lack of ongoing replication (indicated by
the ∼Replication virtual node) is sufficient to turn on CyclinD1, which is suffi-
cient to turn off both p27Kip1 and RB. As Replication is on for only a relatively
short period of time in the cell cycle, this is a likely chain of events. If the other
condition, ∼CyclinA is also fulfilled, R2’ can stabilize, making E2F1 and Cy-
clinE turn on. In Figure 7.7 we show the complex attractor of the cell cycle
with nodes colored in cases where the Restriction Switch has at least 5 out of 6
nodes matching either of the two Restriction Switch attractors. The deactivation
(orange edges) and eventual reactivation of CyclinA (red edges) mark the be-
ginning and the end of the reliably stable Past RP (pink) section of the complex
attractor. It is important to note that E2F1 would not be able to turn on without
Myc also being permanently on. Constant GF stimulation is also an implied
condition in this case.

The role of the Restriction Switch is to allow or halt the Phase Switch to pass
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from G1 to G2. We have seen that the Phase Switch locks into the G0/G1 attrac-
tor if the P0 stable motif (∼Cdc25A, ∼CyclinA) stabilizes (see Figure 6.2). P0 is
a conditionally stable motif of the cell cycle model, contingent on the off state
of either E2F1 or Cyclin E (see Figure 6.3). Our analysis of the PSO has shown
that the on state of Cdc25A, and satisfying E2F1’s regulation of Cyclin A, is suf-
ficient to let the oscillation proceed towards G2. The simultaneous activation of
E2F1 and Cyclin E is sufficient and necessary to activate Cdc25A, thus letting
the cycle proceed. In theory, Cyclin A combined with either E2F1 or Cyclin E
could also activate Cdc25A, but this never happens in practice, because the acti-
vation of Cyclin A requires an already active Cdc25A. This means that Cdc25A
is merely reinforced by Cyclin A, and both E2F1 and Cyclin E are needed for its
activation. An active E2F1 is also needed for the subsequent activation of Cyclin
A. Other than these interactions the Restriction Switch has no direct influence
on the Phase Switch. As the biological intuition suggests, the Restriction Switch
creates a checkpoint that can halt the autonomous cycling of the Phase Switch
at the boundary of G1 and G2.

The degree of coupling between the two switches is not symmetric. As we
have discussed earlier, the Phase Switch regulates most nodes of the Restriction
Switch and affects its behavior as the cell cycle progresses. The CyclinB - Cdk1
complex (which we consider active when both CyclinB and Cdk1 are on) is
active in the mitotic (M) phase of the cell cycle (see Section 2.1.1 and Figure 4.6),
and inhibits RB and p27Kip1 of the Restriction Switch. Thus CyclinB together
with Cdk1 can also trigger or reinforce the pre-commitment in the presence of
growth factors (as can CyclinD1) via contributing to the stabilization of the R2’
CSM (see Figure 7.6 bottom right panel). Based on autonomous oscillation we
observed in the PSO model (Chapter 6) and the interaction patterns between the
Phase Switch and the Restriction Switch we discussed above, a more general
cell cycle picture emerges. The PSO behaves as a “motor” at the core of the cell
cycle, which can robustly cycle through the cell cycle phases. Decision-making
modules, such as the Restriction Switch, can halt the oscillation, or let it proceed.
The decision-making modules are regulated by external signals but also receive
feedback from the core module. It is worth investigating how other modules
not explicitly included in this model, or included in the form of abstract nodes,
interact with the PSO. Our model presented in Chapter 8 has three new modules
that offer a straightforward next step in investigating this question in the future.
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Figure 7.7. The state of CyclinA determines the period during which the Restriction
Switch is near the Past Restriction state. As in Figure 7.1, each circle represents a
state of the cell cycle, which is made up of the states of all the 19 nodes. The node
sizes represent the visitation probabilities of the corresponding states. If a system state
overlaps with an attractor of the Restriction Switch by at least 80%, the node is colored
with the color representing the relevant attractor, namely light green for the Before RP,
pink for the Past RP. System states that have less than 80% overlap with a Restriction
Switch attractor state are shown in grey. The state transitions corresponding to the
synchronous update are shown in purple. Transitions where the node CyclinA turns on
are highlighted with red and transitions where CyclinA turns off are highlighted with
orange. The three nodes with labels represent nodes of biological significance: G1+PRP
indicates the first growth phase following cell cycle commitment (past the restriction
point), G2+BRP indicates the second growth phase where the restriction switch reset to
its uncommitted state, SAC marks the spindle assembly checkpoint.
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CHAPTER 8

A FIVE MODULE MODEL OF THE CELL
CYCLE

In this chapter, I am going to present a new Boolean model – a significant ex-
pansion of the cell cycle model introduced in Chapter 4, by three other modules
in addition to the Phase and Restriction Switches. These new modules are also,
as the original two, dynamical modules, with relevant functional roles when
viewed in isolation, while also contributing to the larger emergent behavior
of the global system. The construction of this model was largely driven by the
many observations and experimental data on the aberrant cell cycle progression
observed in cancerous cells. The focus, in this case, is the interaction between
the core drivers of the cell cycle and the PI3K/AKT signaling pathway. The model
explains the details of aberrant cell cycle behavior in the case of hyperactive
PI3K along with a number of other nontrivial predictions that have experimen-
tal validation in the literature.

This chapter is based on the paper titled Boolean model of growth signaling,
cell cycle and apoptosis predicts the molecular mechanism of aberrant cell cycle pro-
gression driven by hyperactive PI3K [90], published in PLOS Computational Biol-
ogy, co-authored by Herbert Sizek, Andrew Hamel, Sarah Campbell, Erzsébet
Ravasz Regan and myself, with acknowledged contribution and guidance from
Réka Albert. My own contribution was in making the comparison of differ-
ent update schemes – particularly, as the model was built with synchronous
update being the main way of validation, making the analysis with different
forms of asynchronous update and verifying which of the predictions still hold
with stochastic timing added to the model. I also implemented some of the ”in-
silico” experimental simulations and developed the code that constitutes the
accompanying notebook for the paper.
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102 CHAPTER 8. A FIVE MODULE MODEL OF THE CELL CYCLE

8.1 Biological background of the PI3K/AKT signal-
ing pathway’s role in the cell cycle and the oscil-
lation of the p110 catalytic sub-unit

The PI3K/AKT signaling pathway plays a role in most cellular functions. As
such it is linked to cancer progression, including cell growth, proliferation, cell
survival, tissue invasion, and angiogenesis. It is generally recognized that hy-
peractive PI3K/AKT are oncogenic due to their boost to cell survival, cell cycle
entry, and growth-promoting metabolism. The dynamics of PI3K and AKT1
during cell cycle progression are highly nonlinear. In addition to the negative
feedback that reduces PI3K activity, the protein expression of its subunits has
been shown to oscillate in dividing cells. Here I present a proposed Boolean
model of growth factor signaling that can reproduce PI3K oscillations and link
them to cell cycle progression and apoptosis.

As discussed in earlier chapters, mammalian cells require extracellular
growth signals to divide and specific survival signals to avoid programmed cell
death (apoptosis) [95]. The pathways leading to proliferation, quiescent sur-
vival, or apoptosis are not fully independent; rather, they have a large degree
of cross-talk. For example, most pathways activated by mitogenic growth sig-
nals such as PI3K→ AKT1 and MAPK signaling also promote survival [96, 97].
Moreover, several regulatory proteins required for normal cell cycle progres-
sion, such as E2F1, Myc, and cyclin-dependent kinases (Cdks) can promote
apoptosis as well [98, 99]. As several of our most intractable diseases – cancer,
cardiovascular problems, and cellular aging-related complications – all involve
dysregulation of these processes [100, 101]. The widely studied PI3K→ AKT1
pathway is a major relay for growth and survival signals [102], as phosphory-
lated AKT1 has more than a hundred known direct targets [103, 104]. There is
mounting evidence, however, that PI3K→ AKT1 activity during cell cycle pro-
gression is more complex [103, 104]. Overactive AKT1 in cancer cells has been
associated with driving cells into senescence (an aging cell state characterized
by permanent cell cycle arrest) [105, 106]. More intriguing are studies showing
that active FoxO3 and/or FoxO1 (also part of the growth signaling pathway)
not only block cell cycle entry but are paradoxically required for its subsequent
completion [107].

There are several known feedback mechanisms that can explain the pulse-
like spike and subsequent attenuation of AKT1 following growth factor stimula-
tion (detailed in the introduction of [90]), but most of these only explain changes
in the activity of PI3K and/or AKT1. There is further evidence, however, that
the p110 catalytic subunit of the PI3K enzyme complex is itself rapidly degraded
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8.2. Assembling a five-module Boolean model 103

following PI3K/AKT1 activation. Its rapid disappearance immediately termi-
nates the AKT1 activity peak triggered by growth stimulation, and it is followed
by its slow re-accumulation over the next few hours. As a result, PI3K protein
levels, PI3K activity, and AKT1 activity all oscillate during the cell cycle, an oscil-
lation that is critical for healthy cell cycle progression. Current computational
models of the regulation of mammalian cell life and death do not account for
dynamic p110 expression [108]. High PI3K activity is itself the trigger for its
own degradation.

The proposed model is bringing together several separately published, dis-
connected pieces of evidence regarding p110 protein and mRNA regulation
[109, 110, 111]. The resulting growth signaling layer is then connected to an
updated version of the cell cycle model (Chapter 4), as well as the molecular
network responsible for survival vs. apoptosis.

8.2 Assembling a five-module Boolean model

Using a modular approach proposed in [60] discussed in Chapter 4, the pro-
posed model collects the key signaling pathways driving cell cycle commitment
in a new Growth Signaling module responsible for the dynamics of PI3K, AKT1,
MAPK and mTORC. This module replaces the simple Growth Factor (GF) input
node of the previous model, although it has its own input nodes. At the core
of the new model are the two switches discussed thoroughly in this work: the
Restriction Switch (section 4.1) guarding the initial commitment to DNA syn-
thesis, the Phase Switch driving cell cycle progression from G2 to M and back
to G1 (Section 4.2, Chapter 6), expanded to account for the mitotic role of the
Plk1 gene [112]. A new regulatory switch is added to model replication origin
licensing, that simply put makes sure that the same DNA is not replicated twice
in the same cell. Finally, several published models of the survival vs. apoptosis
decision are synthesized into the Apoptotic Switch. These modules are tied to-
gether into an 87-node network by direct regulatory crosstalk, as well as a few
nodes that represent cellular processes we do not track in molecular detail (e.g.,
DNA Replication, mitotic spindle assembly or cytokinesis).

8.2.1 The Growth Signaling module – modeling the dynamic
regulation of the p110 expression during growth factor
signaling

The Growth Signaling module incorporates the molecular drivers of p110 dy-
namics found in the literature, specifically mechanisms that can drive rapid
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104 CHAPTER 8. A FIVE MODULE MODEL OF THE CELL CYCLE

p110 degradation and gradual re-synthesis. [109, 110]. This module models
two major mechanisms, with the biological and mechanistic details discussed
in Sizek et al. [90]. First, PI3K activation initiates a negative feedback loop lead-
ing to its own degradation, independently of its effect on AKT1. The network
representation of this negative feedback is shown by the red links in Figure 8.1.
In the model and in Figure 8.1 p110 is represented by p110 H, which is an ab-
stract node whose OFF state indicates normal p110 activity and whose ON state
indicates a higher-than-normal level of p110 activity.

The second mechanism the model considers is p110 re-synthesis. Studies
of the p110 promoter indicate it is positively regulated by FoxO3 [111]. The
hypothesized mechanism is that reactivation of FoxO3 in the G2 phase of the
cell cycle after the initial AKT1 activation subsides, is the driving force behind
p110 re-synthesis (Figure 8.1 A, orange links).

The degradation and resynthesis of p110 on 8.1 can be observed by follow-
ing the different colored arrows. The node p110 H has two inputs (not count-
ing the self-loop), an inhibition from NeddL4, which represents the NeddL4-
catalyzed degradation of p110 and activation from FoxO3, which represents
the FoxO3-catalyzed (re)synthesis of p110. The degradation is initiated when
NeddL4 turns on. The re-synthesis can happen if NeddL4 is off and FoxO3 is
on. The activation of NeddL4 is part of the negative feedback loop highlighted
in red. This loop indicates that p110 indirectly activates the driver of its degra-
dation. The orange loop indicates that p110 indirectly inactivates FoxO3. The
inhibition of FoxO3 is no longer sustained after the p110 level goes down, en-
abling re-synthesis of p110. In summary, both the inhibition and activation links
are embedded in negative feedback loops that together are causing the module
to oscillate.

To integrate these negative feedback loops with the canonical PI3K / AKT
signaling cascade activated by growth receptors separate Boolean nodes were
introduced to track basal vs. peak PI3K and AKT activity (Figure 8.1; Boolean
rules: [90] S1 Table A). The model can thus distinguish between survival sig-
naling in a low growth factor environment (where basal PI3K and AKT are
ON) and peak PI3K/AKT activation following the arrival of a strong mitogenic
stimulus. Complemented by a linear MAPK cascade and mTORC1/2 signaling,
this non-linear PI3K/AKT axis dominates the behavior of the resulting Boolean
Growth Signaling module.

Modeling the two feedback loops controlling p110 expression in isolation
shows that they generate a sustained, robust oscillation (Figure 8.2), even
though the model does not account for the fact that p110 degradation is signif-
icantly faster than its re-synthesis. This oscillation is the only attractor state of
the small module regardless of the update scheme. As Figure 8.2 indicates, the
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8.2. Assembling a five-module Boolean model 105

Figure 8.1. Growth Signaling Module of the Boolean model, including the
degradation/re-synthesis circuit in control of p110 expression (left, dark green), basal
PI3K/AKT signaling (middle), downstream effectors of AKT1 (mTORC1 signaling,
GSK3 & FoxO1, bottom), and the MAPK cascade (right). Edges types: →: activation;
a: inhibition; thick red links: p110 degradation; thick orange loop: p110 re-synthesis.
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106 CHAPTER 8. A FIVE MODULE MODEL OF THE CELL CYCLE

synchronous attractor cycle clearly maps onto the cyclic succession of complex
attractor states of the general asynchronous model. In addition to never leaving
the complex attractor shown in Figure 8.2, asynchronous time series repeatedly
walk through cycles of states that resemble the synchronous limit cycle. Within
the context of the larger Growth Signaling module, this oscillation only occurs
under ongoing high growth factor stimulation.

Figure 8.2. Periphery: sequence of network states along the synchronous limit cycle
of the core PI3K circuit. Orange/blue borders: ON (expressed and/or active) / OFF
(not expressed and/or inactive) node. Middle: state transition graph of the general
asynchronous model (one random node updated per timestep; sampled for 10,000 steps),
yielding a complex limit cycle that covers the synchronous cycle. Node size: visitation
frequency; label: most similar synchronous cycle state; node color: overlap to the most
similar synchronous cycle state (one minus normalized Hamming distance)
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8.2. Assembling a five-module Boolean model 107

8.2.2 The core cell cycle elements and the Origin Licensing
Switch

First,the switch-like restriction point control guarding cell cycle entry is added
by reusing the Restriction Switch (Figure 8.3 A, blue subgraph & box; detailed
in Section 4.1).
Second, the Phase Switch (detailed in Section 4.2) has been added and expanded
to account for the regulation and key functions of Polo kinase 1 (Plk1) (Figure
8.3, purple subgraph & box) [112]. Plk1 is activated in early G2 by the FoxM1
transcription factor [113], but evidence of decreased Plk1 expression in the ab-
sence of FoxO3 [107] and/or FoxO1 [114] during G2 also connects Plk1 avail-
ability to the dynamics of PI3K→ AKT1 a FoxO signaling. The updated Phase
Switch still retains three steady states, matching the activity pattern of this net-
work in G0/G1, at the G2 checkpoint, and at the Spindle Assembly Checkpoint
(SAC). In this version of the Phase Switch, Mad2 acts as an external node to the
module.

Origin Licensing Switch

The third addition is a small switch that tracks the assembly, licensing and firing
of replication origins, shown in Figure 8.3 A, brown subgraph & box; (more de-
tails in [90] Methods & Model, Boolean Network Modules Representing Distinct
Cellular Regulatory Functions Growth Factor Signaling). The Boolean rules of
the Origin Licensing Switch are shown in Table 8.1. This two-state switch re-
produces the stability of assembled Pre-Origin of Replication Complexes; its
two steady states correspond to unlicensed and licensed origins.

node regulatory function
Pre RC* = ORC and Cdt1 and Cdc6
Cdt1* = Pre RC and ORC and Cdc6
ORC* = Pre RC and Cdt1 and Cdc6
Cdc6* = Pre RC and ORC and Cdt1 and Cdc6

Table 8.1. Regulatory functions (Boolean rules) of the Origin Licensing Switch

Abstract and supporting nodes

Fourth, progression and completion of cell cycle processes not modeled in
molecular detail had been accounted for via the Replication and 4N DNA
nodes (as in Chapter 4), an unattached kinetochore node (U Kinetochore)
to denote incomplete mitotic spindle assembly, and an attached kinetochore
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108 CHAPTER 8. A FIVE MODULE MODEL OF THE CELL CYCLE

node (A Kinetochore) to mark the completion of the mitotic spindle (Figure
8.3 B, orange nodes). Finally, key regulators of the coupling between regu-
latory switches and cell cycle processes such as S-phase checkpoint signaling
(Chk1), the unattached kinetochore sensor Mad2 (previously part of the Phase
Switch module), and a marker of contractile ring assembly and cytokinesis
(Ect2) linked these modules (Methods & Model, [90] Boolean Network Modules
Representing Distinct Cellular Regulatory Functions Growth Factor Signaling;
Boolean rules: S1 Table E).

8.2.3 The Apoptotic Switch

To account for the apoptotic effects of growth factor withdrawal and death
due to mitotic failure, published models of apoptotic commitment were syn-
thesized to create a detailed Boolean regulatory switch (Figure 8.3 B, dark red
subgraph & box; Boolean rules in Table 8.2) [115, 116, 60, 117, 118, 119, 120, 121].
This switch has two stable states corresponding to survival and apoptosis, and
it is flipped when extrinsic signals from death receptors or intrinsic signals
due to mitotic failure trigger Mitochondrial Outer Membrane Permeabilization
(MOMP), which leads to the activation of the executioner Caspase 3 activity
[115]. While the positive feedback loops that stabilize apoptosis are common
to most models, the signals that trigger mitotic catastrophe have not yet been
modeled. To do this Caspase 2 activation had been incorporated for the case of
prolonged or perturbed metaphase [122, 123]. Literature indicates that a nor-
mal mitotic progression is a balancing act on the part of Cyclin B/Cdk1 and
Plk1. On one hand, both kinases phosphorylate and inhibit the anti-apoptotic
BCL2/BCL-XL proteins, priming cells for apoptosis [124, 125, 126]. On the other
hand, Cyclin B/Cdk1 also inhibits Caspase 2, keeping cells alive as long as mi-
tosis is not stalled [127]. In addition to the loss of Cdk1 activity, metaphase cells
also undergo Caspase 2 mediated apoptosis in the absence of Plk1 [128]. The
model captures this balance of pro- and anti-apoptotic signals such that loss
of Cdk1 or Plk1 activity before cells clear the spindle assembly checkpoint can
push them to mitotic catastrophe.

8.3 The network of linked regulatory models re-
produces environment-dependent proliferation,
quiescence, and/or apoptosis

Linked together, the modules generate a dense 87-node Boolean model with 375
links shown in Figure 8.3 B.
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Figure 8.3. Modular Boolean model reproduces quiescent, apoptotic, and cell cycle
phenotypes expected in various extracellular environments. (A) Stable attractor states
of isolated regulatory switches. Blue / light brown / purple / dark red boxes: stable
states of the Restriction / Origin of Replication Licensing / Phase / Apoptotic Switch.
Orange / blue node border: ON / OFF state. (B) Network representation of the Boolean
model partitioned into regulatory switches and processes. Gray: inputs representing
environmental factors; green: Growth Signaling; dark red: Apoptotic Switch; light
brown: Origin of Replication Licensing Switch; blue: Restriction Switch; purple: Phase
Switch; orange: cell cycle processes and molecules that bridge between the multi-stable
modules. Black →: activation; red a: inhibition. (C) Cell phenotypes predicted for
every combination of no/low/high growth-factors (x-axis) and Trail exposure (y-axis).
Network-wide ON/OFF state of each attractor, along with the molecular signatures that
define each phenotype are detailed in S2 Table. Blue fragmented cells: apoptotic states
(#1-6); gray elongated cells: quiescent/non-dividing states (#7-8); cells with mitotic
spindle: cell undergoing repeated cycles (#9). Yellow circle around nucleus: 4N DNA
content; double-/single-headed arrows between cells: reversible/ irreversible phenotypic
transitions in response to changing environments; green arrow: change in growth factor
levels; red: change in Trail exposure.
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110 CHAPTER 8. A FIVE MODULE MODEL OF THE CELL CYCLE

node regulatory function
Casp9* = Casp3 or (not IAPs and Cyto C)
IAPs* = not SMAC
Casp2* = Casp3
BID* = Casp8 or (not MCL 1 and Casp2 and not BCLXL and not BCL2)
Casp3* = (Casp9 and Casp8) or (Casp9 and Casp3) or (Casp8 and Casp3)

or (not IAPs and Casp9) or (not IAPs and Casp8) or (not IAPs and
Casp3)

MCL 1* = not Casp3 and not Casp2
BAK* = (not MCL 1 and BIM and not BCLXL) or (BID and not BCL2) or

(BID and not BCLXL) or (not MCL 1 and BID) or (not MCL 1 and
BIK and not BCLXL) or (BIM and BID) or (BIK and BID)

SMAC* = BAX or BAK
Casp8* = Casp3
BIK* = not MCL 1 and not BCLXL and not BCL2
BCLXL* = (not Casp3 and not BAD) or (not Casp3 and BCL2)
Cyto C* = BAX or BAK
BIM* = not MCL 1 and not BCLXL and not BCL2
BAD* = Casp8 or Casp3
BCL2* = (MCL 1 and not Casp3 and not BIM and not BIK and not BAD)

or (not Casp3 and not BIM and not BIK and BCLXL and not BAD)
BAX* = (BIM and not BCLXL) or (BIK and not BCLXL and not BCL2) or

(BID and not BCLXL and not BCL2) or (BIM and BID) or (BIM and
BIK) or (BIM and not BCL2) or (not MCL 1 and BIM)

Table 8.2. Regulatory functions (Boolean rules) of the Apoptotic Switch model

The model reproduces the cell-cycle dependent role of PI3K, AKT1 and
FoxO proteins [107, 129]. As expected, it generates straightforward behaviors
such as lack of cell cycle commitment in the absence of high p110 expression
[129], or G1 shortening in the presence of hyperactive PI3K / AKT1. The nov-
elty and value of the model, however, stems from its ability to reproduce more
intricate, non-intuitive phenotypic outcomes. First, the model reproduces the
path to apoptosis in the event of a mitotic catastrophe [122]. Second, the model
generates four distinct cell fates in response to Plk1 inhibition, depending on
the timing of Plk1 loss [112]:

1. G2 arrest [130],

2. mitotic catastrophe [112, 131, 132, 133],

3. premature anaphase and chromosome mis-segregation leading to aneu-
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ploidy (the presence of an abnormal number of chromosomes in a cell)
[134],

4. failure to complete cytokinesis following telophase [135, 136, 137], which
can lead to genome duplication [134]

Third,the model can replicate failure of cytokinesis and accumulation of bin-
ucleate telophase cells driven by hyperactive PI3K / Ak1 or FoxO inhibition
[107].

The synchronous dynamics of the full model is heavily constrained by the
switch-like behavior of its modules, as evidenced by the small number of tightly
coordinated behaviors (phenotypes) it generates. Indeed, when the state space
of the network is sampled extensively using noisy synchronous update, every
attractor corresponds to a distinct cellular phenotype. These attractors are char-
acterized in detail in [90] S2 Table, along with key molecular signatures that
allow the matching of each attractor to a specific phenotype. Figure 8.3 C sum-
marizes the attractors according to the extracellular environment (combination
of input values) each phenotype occurs in; namely, the absence / low abun-
dance / high abundance of growth factors (x-axis in Figure 8.3 C) combined
with the presence / absence of the apoptotic signal Trail (y-axis). The matching
of experimentally documented cell behaviors (in multiple cell types) with the
attractors of the model is detailed in Table 1 of Sizek et al. [90]. As biologically
expected, irreversible apoptosis is stable in every environment. Moreover, the
ongoing presence of saturating Trail (i.e., Trail input is ON 100% of the time)
destabilizes every other cell state, leaving apoptosis as the only stable option
[138, 139, 140, 141]. Similarly, the complete absence of growth / survival signals
also leads to apoptosis [142, 143, 144]. In contrast, low levels of growth signal-
ing support quiescent cell states, and the model identifies two distinct forms.
First is a healthy cell state with 2N DNA content (Fig 8.3 C, the elongated cell
with the blue nucleus on). Second, the model also produces a G0-like state rep-
resenting cells that have failed to complete mitosis or cytokinesis in the past,
now stuck with a 4N DNA content (Fig 8.3 C, the elongated cell with a yellow
circle around the nucleus). Finally, exposure to high growth factor levels results
in a cyclic attractor representing continuously cycling cells (Fig 8.3 C, mitotic
cell).
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112 CHAPTER 8. A FIVE MODULE MODEL OF THE CELL CYCLE

Figure 8.4. Module-level switches toggle each other to generate the cell cycle, locking
PI3K oscillations to the rhythm of division. Dynamics of regulatory molecule expres-
sion/activity during cell cycle entry from G0, showcasing the phase-locking of PI3K
oscillations to the cell cycle. X-axis: time-steps; y-axis: nodes of the model organized in
modules; orange/blue: ON/OFF; white boxes & arrows: first two peaks of AKT1 activa-
tion with respect to DNA replication; black dashed lines: cytokinesis; lime arrows: first
AKT1-high pulse in each division cycle.
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8.4 The model’s trajectory is robust to fluctuations in
signal propagation and reproduces the cell cycle
with synchronous and asynchronous update

To test whether the orderly progression through the cell cycle is robust to ran-
dom fluctuations in signal arrival time as they propagate through the network,
we tested the model’s behavior under random order asynchronous update (see
Section 3.1.2). As steady states of a Boolean model remain the same regardless
of the update scheme, we focused on the cell cycle. As Figure 8.5 shows, a ran-
dom update order does not abolish the model’s capacity to execute a correct
cell cycle sequence, but it does introduce several non-biological behaviors as
well. First, the signals that couple successful DNA replication to the establish-
ment of a G2 state are lost under a subset of update orders, leading to a G2→
G1 transition followed by a new cell cycle. Second, the signals that drive cy-
tokinesis can also be disrupted by certain update orders. Third, the balance of
pro- and anti-apoptotic signals during metaphase can tip in favor of apoptosis
as if the cell experienced mitotic catastrophe. Interestingly, all three cell cycle
errors are common in cell populations experiencing knockdown or overexpres-
sion of a variety of cell cycle regulators [108, 112, 145], leading us to conclude
that the asynchronous model with random update order mimics the occasional
short-term loss of regulators.

In order to create a restricted random order that forbids asynchronous state
transitions resulting from these non-physiological breaks in signal transduction,
we identified the nodes and processes that deviated from their expected activ-
ity every time a particular error occurred. We then created an asynchronous
version of the model with biased random update. To do this, we placed a small
subset of nodes at the start or at the end of the update order, depending on
their activation status (11 nodes; list and rationale in Sizek et al. [90] S3 Table).
Using this biased update our model repeatedly and correctly executes the cell cy-
cle, in spite of the asynchronous update. Our update bias did not completely
eliminate non-biological behaviors, but the incidence of these errors drastically
decreased. As these errors do occasionally occur in naturally occurring cells, we
choose not to restrict our update order to the point where we eliminate them. In
order to quantify the rate at which the two update schemes produce normal cell
cycle events vs. different errors, we ran a series of simulations at varying levels
of growth factor and Trail stimulation. We did this by setting GFH or Trail ON
with probability p in each time-step, OFF otherwise.[90] Figure 5B indicates
that the asynchronous model with biased update shows a similar response to
growth factors and Trail as the synchronous model.
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114 CHAPTER 8. A FIVE MODULE MODEL OF THE CELL CYCLE

Figure 8.5. Dynamics of regulatory molecule activity during cell cycle entry from
G0 using random order asynchronous update (example time-course chosen to illustrate
errors). X-axis: time-steps; y-axis: nodes organized in modules; orange/blue: ON/OFF.
Black arrows: robust PI3K oscillations; white box: normal cell cycle; white circles:
common cell cycle progression errors (labeled).
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The apoptotic fixed-point is reachable from the cell cycle under both ran-
dom order and biased random order asynchronous update, indicating that the
cell cycle is not, strictly speaking, a complex attractor. Nevertheless, starting
an asynchronous time series from any state along the synchronous cell cycle
attractor results in long time-courses featuring repeated (if occasionally incor-
rect) cycles, indicating that the system’s state space has a meta-stable region that
traps its dynamics in a way that resembles complex attractors. In order to test
whether this meta-stable collection of states is also a cycle, we sampled the state
transition graph of the asynchronous model with both update schemes (ran-
dom order and biased random order) by starting 10 independent time courses
of 1000 steps from each state along the synchronous cell cycle. In order to sam-
ple the meta-stable basin rather than the path to the apoptotic attractor, we pre-
maturely interrupted each run if it reached a fixed point. We then merged all
observed states and transitions and visualized the largest strongly connected
component, shown in Figure 8.6. To test whether these state transition graphs
are consistent robust execution of the cell cycle, we classified each state as repre-
senting G1, S, G2, metaphase, anaphase, telophase, and cytokinesis depending
on the ON/OFF state of key processes ([90] S6 Fig). Instead of a cycle, however,
the resulting network revealed distinct regions of state-space representing G1, S
and G2, then a few highly restricted and often-visited paths through anaphase
and to lesser extent cytokinesis. Thus, asynchronous update indicates that there
may be widespread molecular heterogeneity in G1, S and G2, but most of the
network we model locks into a few unique states during anaphase.

It is worth noting that the model features two internal oscillators, the core
cell cycle and the PI3K degradation / re-synthesis cycle. As Figure 8.5 and
[90] Figure 5 indicate, these two cycles are not completely phase-locked under
asynchronous update. As the cell cycle proceeds, the small PI3K oscillator and
the downstream mTORC1 pathway can be found in nearly any state. The sole
exception is anaphase, where the two cycles appear to synchronize. To show
that the heterogeneity is chiefly due to the growth pathway, we projected the
state transition graph of each asynchronous model onto a subspace where each
model state represents a unique ON/OFF state within the core cell cycle mod-
ules, regardless of the state of all other nodes (Restriction Switch, Origin Licens-
ing Switch, Phase Switch and abstract nodes). This process collapsed the com-
plex state transition graph of the biased model onto a clear cyclic flow of tran-
sitions, representing normal cell cycle progression (Figure 8.6, bottom right). In
contrast, the random asynchronous model’s dynamics has a loop correspond-
ing to the cell cycle, but it is dominated by prominent “backward” transitions
representing endoreduplication from G2 (Figure 8.6, top right).

An extensive list of the biological predictions of the different emergent be-
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Figure 8.6. (A) State transition graph of the random order (top) vs. biased random
order (bottom) asynchronous models, sampled for 10 independent runs of 1000 time-
steps starting from each of the 21 synchronous cell cycle attractor states (cut short if the
model reached apoptosis). The largest strongly connected component of each resulting
state transition graph representing the cell cycle pseudo-attractor. (B) Projection of
each state transition graph onto the sub-space defined by the expression of core cell
cycle modules (bottom). Nodes: a collection of all states that have identical core cell
cycle node activity but differ in the activity of nodes in other modules such as Growth
Signaling, illustrated by linked black circles from (A) to (B); Node color: cell cycle phase
best approximated by each sampled state; node size: state visitation count; node label:
most similar synchronous cell cycle state; black loop (top) & black cycle (bottom): areas
of the projected state transition graph with a cyclic pattern of transitions that match the
cell cycle; orange arrow (top): direct G2 → S transition (endo-reduplication); orange
box (bottom): G0-like pause in the G1 phase of the cell cycle, forming a distinct module
apart from the G1 states of cells that pre-commit in their previous cycle.
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haviors of the model are summarized in [90] Table 2 and described them in
detail in [90] S1 Text A-D.
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CHAPTER 9

SUMMARY AND OUTLOOK

9.1 Summary of the thesis

In Chapters 1 and 2 I have presented a case for the need for systemic, network-
based approaches to better understand the underlying natural principles of
the biology of cells. These systemic modeling approaches, more specifically
Boolean dynamic models, have consistently proven useful in a diverse range of
biological problems. During our research, we have predominantly focused on
the topic of the cell cycle – the main driving process of the proliferation of cells.

In Chapter 3 I have defined and introduced the key concepts and method-
ological tools that we used to obtain the results presented in this work.

In Chapter 4 I have introduced the Boolean model of the cell cycle published
in 2016 [60] as the interaction of two Boolean switches or modules. The two
modules, the Restriction Switch and the Phase Switch, both have biologically
relevant steady states but when they are coupled together a global cyclic at-
tractor (limit cycle) emerges. The global limit cycle toggles the attractors of
its constituent modules in a sequence of events consistent with the biological
knowledge of the cell cycle. Thus the two modules keep their functionality in
the coupled system while contributing to global phenotypes that are nontriv-
ial combinations of the module-phenotypes. We call this property dynamical
modularity and hypothesize that this could be a general feature of biological
systems, which need to be both robust and adaptive to different environments.

In Chapter 5 I have defined the three principles of dynamical modularity
that have to be simultaneously true for a system to exhibit the behavior we ob-
served in the case of the cell cycle. We also introduced three measures that quan-
tify the three principles and make them possible to measure on any Boolean
model where we know dynamical modules. We show that the dynamical mod-
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120 CHAPTER 9. SUMMARY AND OUTLOOK

ularity is a non-trivial property of the cell cycle model as randomized versions
of it almost always fail at least one of the principles.

In Chapter 6 I have discussed our discovery and analysis of an even more
elementary network at the core of the cell cycle, which is driving the cell be-
tween the checkpoints, published in 2019 [62]. The Phase Switch Oscillator is
a subgraph of the previously published Phase Switch model and it exhibits an
extremely robust oscillation between the phases of the cell cycle, which are the
attractors of the original Phase Switch model. We explained this behavior with
a new concept, the conditionally stable motif, which is a generalization of the
concept of stable motif introduced by Zañudo and Albert [61]. Conditionally
stable motifs cause often large parts of the network to stabilize as long as just
a few nodes outside the motif maintain a specific state, thus creating ”funnels”
in state space that lead to robust trajectories. Leveraging the interaction of con-
ditionally stable motifs we presented a way to reduce the 8 node model into a
3 node version that still keeps the relevant features of the larger model. This
reduction presents an alternative view on dynamical modularity.

In Chapter 7 I have presented our analysis of the full cell cycle model (both
modules coupled) with general asynchronous update using some of the meth-
ods applied in Chapter 6. We showed that the full model’s complex attractor is
also a considerably robust oscillation, however, it exhibits some non-biological
behaviors in the presence of stochastic timing, such as completing the cycle
without a replicated DNA. We also explained how the stable motif structure
of the Restriction Switch module is affected by the coupling interactions, and
we discuss its overall role in the cell cycle progression.

In Chapter 8 I have discussed a more recent model, published in 2019 [90]
that builds on the cell cycle model discussed in Chapter 4 by adding three ad-
ditional modules. First, a growth factor module with an internal oscillator of
its own, involving the PI3K and p110 molecules (which are often found to be
hyperactive in cancerous cells), second, the Apoptotic Switch that can drive the
model into steady states corresponding to apoptosis (programmed cell death)
and the Origin Licensing Switch that makes sure the DNA is only replicated
once within the same cell. The coupled model of 87 nodes has a limit cycle
and several steady state attractors and it makes several non-trivial biological
predictions confirmed by the literature. My analysis has shown that the main
cycle also maintains many of its features under timing variability (general asyn-
chronous update).
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9.2 Possible directions for future research and dis-
cussion

An important follow-up research direction is to generalize the coarse-graining
methods presented in 6.5. Such a method has important practical implications
in reducing the state-space of larger models while keeping the essential emer-
gent behaviors. Moreover, it can also reveal theoretical insights into how dy-
namical modularity emerges in natural decision-making systems. One of our
main conclusions in Chapter 6 was that conditionally stable motifs (CSMs) cap-
ture the feedback mechanisms that make the trajectories of the dynamical sys-
tem robust to stochastic timing while also driving them towards specific at-
tractors. We’ve seen in the case of the Phase Switch Oscillator (PSO) that the
interaction between the groups of CSMs explained both the robust oscillation
and the sequential approach of the Phase Switch attractors by the complex at-
tractor. For the Phase Switch Oscillator, the so-called ”cycle graph” – a graph
representation of all overlapping CSMs (see Supplementary Figure 10.3) had
6 disjoint components that perfectly corresponded to the 6 possible states of
the three groups that formed the meta-nodes of the coarse-grained model (Cyc,
Cyclosome, UbcH10). The three meta-nodes of the PSO behave as dynamical
modules: all three are bistable when considered in isolation and when linked,
the coupled model fulfills the principles of dynamical modularity (Chapter 5):
the global attractor is a non-trivial combination of the meta-node states, and no
meta-node state is lost in the global attractor. The only problem is with fulfill-
ing the Switch Quality Measure, which requires multiple global attractors, but
in this case, we only have one. Further investigation into dynamical modularity
is needed to reveal (i) how CSMs contribute to or form dynamical modules and
(ii) the rules of coupling such modules so that a dynamically modular global
attractor emerges.

The identification of the dynamical modules of the cell cycle model work
(Phase Switch, Restriction Switch, Apoptotic Switch, etc.) was the result of bi-
ological intuition based on my collaborator Dr. Ravasz-Regan’s years of work
with experimental data and literature. However, our work with the PSO has
given us a first case where we could identify dynamical modules purely from
the model, using the expanded network formalism and the concept of condi-
tionally stable motifs instead of specific biological knowledge.

We have already taken steps towards applying the coarse-graining method-
ology on the full cell cycle model. Unfortunately, cycle-graph of the model does
not yield internally consistent disjoint components the same way the PSO does,
so any general coarse-graining method we adapt has to have some extra con-
ditions. We propose to relax the criterion of meta-node (dynamical module)
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122 CHAPTER 9. SUMMARY AND OUTLOOK

membership and only track nodes that interact with nodes of other meta-nodes.
We also have an algorithm for finding of emergent higher-level logical rules be-
tween the meta-nodes using truth table manipulation. I believe these are impor-
tant steps towards a better understanding of the overall dynamical hierarchy of
biological systems.

Regarding the three measures of dynamical modularity discussed in Chap-
ter 5 we are aware that some are very complicated and difficult to comprehend.
Their complexity developed mainly due to the difficulty of comparing cyclic at-
tractors made up of many states to each other and to single state attractors. The
measures are also filled with conditions and constraints encoding biological in-
tuitions. For example, biological intuition suggests that in the case where both
a module attractor and the global attractor are cyclic, dynamical modularity is
only fulfilled if the states of the cyclic module attractor are visited in the same
order in the global attractor as in the module. The current implementation of
the AMM Measure includes a large penalty if the order of visitation is scram-
bled. It may be fruitful to consider simplified versions of these measures that
relax some of the many constraints.

Another logical follow-up to this work is further extending our analysis on
the 5 module Sizek et al. model [90] discussed in Chapter 8, involving the sta-
ble motif analysis of the new modules such as the Apoptotic Switch and Origin
Licensing Switch. Such an analysis can have important implications in control-
ling the cell cycle in non-intuitive ways. While our analysis of the Phase Switch,
described in Chapter 6, indicated stable motifs of a module can become condi-
tionally stable motifs of the full system, our analysis of the Restriction Switch
suggests other possibilities: the module stable motifs may destabilize by having
contradictory conditions, or may reduce in size. Our preliminary analysis sug-
gests that the stability of the attractors of the Origin Licencing and the Apoptotic
Switch is very asymmetrical. The stable motifs of the Survival attractor are all
very large, comparable to the size of the module, suggesting that maintained
stability requires a lot of conditions to be fulfilled simultaneously. Conversely,
the cascade leading to Apoptosis can be triggered by a single node (Casp3) and
can lock in by the activation of just another node (Casp8 or Casp9). Similarly, in
the case of the Origin Licencing Switch the Licensed state is only self-sustaining
if all of the nodes are on, while the Unlicensed state has several smaller motifs
that can individually lock in the attractor. It is encouraging that the stable motif
formalism once again captures biological intuitions into the more formal net-
work terms and give us means to make predictions for interaction and control.
It would be interesting to investigate how the asymmetric stability is handled
by the other modules coupled to these switches, and how it manifests in the
global attractor. Our Switch Stability Measure (defined in Chapter 5) of dynam-
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ical modularity is a way to quantify how well the relative probability of the
module-attractors is maintained in the global attractor. Based on that, the next
step would be understanding the mechanistic principles of the coupling that
maintain (or balance) the asymmetry in different environments.

The internal PI3K oscillator exhibits an oscillation robust to timing variabil-
ity. The expanded network of this oscillator, shown in Figure 9.1, is simpler
than that of the PSO (compare with Figure 6.7 ). It does not have conditionally
stable motifs except for a self-loop on p110H. This seems to be an efficient way
of generating simple natural oscillations with some delay, however, it would be
worthwhile to see how robust it is to external perturbations as compared to an
oscillator reinforced by a lot of positive feedback loops such as the PSO.

If our coarse-graining methods advance to a stage where we can apply them
to the Sizek et al. model, we could create a higher-level model of the cell cycle
that has all the relevant features but has a much smaller state-space.

Figure 9.1. The expanded network of the PI3K oscillator. The expanded network re-
veals the logical relationships that make the oscillation possible: a negative feedback loop
closing two parallel chains of linear activation (and deactivation). The only condition-
ally stable motifs are the two states of p110H (visible as bidirectional edges between a
composite node and the virtual nodes).

A potential application for our cell cycle model is a better understanding of
Alzheimer’s disease. Multiple experimental studies are suggesting that before
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and during the onset of Alzheimer’s disease the naturally quiescent (G0) neural
cells re-enter the cell cycle [146, 147, 148]. This re-entry then results in apopto-
sis, which then leads to the gradual degradation of the brain. As many of these
emergent processes are already included in our models, adapting the models to
neurons would be relatively straightforward. Then applying the methodology
discussed in this work could help us understand (probably non-trivial) mech-
anistic details of why the re-entry into the cell cycle happens and why it leads
to apoptosis. This understanding will lead to predictions of how to reverse the
process. For instance, Cyclin B is a key molecule that the experimenters de-
tect in a significantly larger concentration in the brains of Alzheimer’s patients
[148]. We have shown in Section 6.6 that timed over-expression (forced on state)
or knock-out (forced off state) of Cyclin B can theoretically drive the cell cycle
into any of its main phases. An intervention involving the knock-out of Cyclin
B together with another cell cycle regulator could potentially reset the cell cycle
into G0. Conversely, over-expressing Cyclin B and simultaneously preventing
the apoptosis cascade would drive cells to finish the cell cycle then settle. All
this requires a profound understanding of how the dynamical modules of the
system interact: Prevention of an apoptotic cascade necessitates an understand-
ing of the interaction of the core cell cycle modules with the apoptosis module.
Triggering or halting cell cycle entry requires an understanding of the interac-
tion of the growth signaling and core cell cycle modules. The Sizek et al. model
includes many of the key modules and coupling interactions and it is a good
stepping stone for further research. As pharmaceutical giants such as Pfizer are
ending funding for Alzheimer’s research due to lack of any breakthrough [149],
our systemic approach could potentially provide a viable alternative research
direction.

When working with Boolean models one has to be conscious about the im-
plicit simplifications and assumptions. The binary abstraction of gene activity
is often not justified, as there can be more than two different levels of effective
molecular concentration and thus simple Boolean logic is not sufficient to plau-
sibly encode the biochemical interactions. In these cases, multi-level models
and ODE models offer viable alternatives. Another issue is the timing of events,
as there is no straightforward way to encode the duration of biological processes
into a Boolean model. Because of this we usually test the two extremes: ev-
erything happening in perfect synchrony (synchronous update scheme) or any
event can happen at random times (general asynchronous update scheme). The
biological truth is usually somewhere between the two extremes, and the fea-
tures that are maintained in both extreme cases are usually reliable biological
predictions. I have shown multiple examples of such comparisons of timing;
however, one always has to consider the actual biological system and adjust the
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particularities of a model in a case by case basis.

9.3 Conclusion

There is overwhelming support of the need for a more holistic, systems-level
understanding of biology. A systems-level analysis is not just a method to com-
prehensively synthesize a large amount of experimental data available, but also
a path to explore the design principles [150] of life and evolution. Our goal is to
apply the same modeling approach that made physics successful: based on the
integration of small-scale, local interactions we explain the emergent macro-
scopic behavior of a system. In this work, I argued that the same principles
are operating at multiple scales of the hierarchy of interactions in living organ-
isms. We used the Boolean dynamic systems framework, which offers a useful
abstraction of complex biochemistry into networks of logical decision-makers.
What we have found is that the interacting simple decision-makers on one scale
(such as genes) cooperate in creating dynamical modules that make decisions
on a higher scale. The dynamic behaviors at an even higher scale represent com-
binations of the states of the decision making modules. The Boolean models of
the cell cycle I presented (Chapters 4 and 8) confirm this view. First, the dy-
namic behaviors that emerge from the local interactions of the nodes accurately
match the known biology, second, the dynamic behavior is a combination of
the decisions of lower-level decision-making modules. Moreover, the decision-
making modules are themselves emergent from the interactions of simple bi-
nary nodes (which encode lower level biochemical decisions). Our effort to
formulate the principles of dynamical modularity and quantify their presence
is a step towards a better understanding of the general principles that give rise
to the simultaneous robustness and adaptive nature of living organisms.

I also presented our discovery of an internal oscillator that cycles between
the checkpoints of the cell cycle and can be halted by the modules responsible
for the checkpoints (Chapter 6). We introduced a general concept, the condi-
tionally stable motif (a part of a network that stabilizes to specific states as long
as conditions external to it are fulfilled), which can explain how robust trajec-
tories and oscillations emerge in nature. We demonstrated that conditionally
stable motifs are also useful in explaining the robust decision-making process
of dynamical modules and as such they help to understand the emergence of
dynamical modularity (see Sections 6.1 and 6.5). This framework is general
enough to be further utilized to explore and simplify other biological systems
(see 9.2).

In terms of biological and medical applicability, the models presented in this
work can be useful tools in the hands of any research team doing experiments
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126 CHAPTER 9. SUMMARY AND OUTLOOK

that interact with the core regulators of the cell cycle. In the case of molecules
targeted for knock-out and/or overexpression, using these models to simulate
the downstream effects of the interventions (in the larger context of the cell)
is straightforward and can save a lot of time and resources. Moreover, when
only the desired end state of a cell is known (e.g. apoptosis or quiescence),
our models combined with methods from control theory can suggest non-trivial
interventions that drive the system into the desired state. All of the applications
above have already been used for Boolean models of other biological systems
and have been experimentally validated (as discussed in Section 1.4).

Cancer is ultimately an aberration of the cell cycle, where the checkpoints no
longer function properly and cells start to grow and divide without control. The
multiple forms of cancer indicate that this complex system can go awry in many
different ways. Targeted cancer therapies (e.g. by small molecules) would be
more effective by considering the tangled web of nonlinear interactions in the
larger network. Our preliminary investigation of the literature on Alzheimer’s
disease indicates that a model of the cell cycle adapted to neurons could help
understand the disease and predict interventions to cure it (see 9.2).

Finally, I would like to emphasize the scientific and philosophical value in
finding the general organizing principles of the dynamical decision-making hi-
erarchy of interactions inside living organisms. Our research has shown cases
where we can identify general principles, such as the principles of dynamical
modularity, but further generalizing and perfecting them will take considerable
effort. I do believe it can be a worthy one.
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CHAPTER 10

APPENDIX

10.1 Implementations

10.1.1 IPython notebook reproducing the main results of Chap-
ter 6

For synchronous and asynchronous simulation of the dynamic models of the
Phase Switch and Phase Switch Oscillator we used the BooleanNet python li-
brary available at: https://github.com/ialbert/booleannet.

The identification of the stable motifs was done using the Java library avail-
able at: https://github.com/jgtz/StableMotifs. The building of the expanded
network based on the regulatory functions was done using the BooleanDOI
python library available at: https://github.com/yanggangthu/BooleanDOI.

A descriptive supplementary Jupyter Notebook that reproduces our main
computational results of Chapter 6 is available at: https://github.com/
deriteidavid/conditionally stable circuits. The notebook includes the follow-
ing implementations:

1. Creating a BooleanNet instance of the PSO model.

2. Identifying the synchronous attractor by simulation.

3. Sampling the complex attractor with general asynchronous update
scheme, where the resulting state transition graph can be arbitrarily fil-
tered and exported into a graphml object. This includes the comparison
of the states with the Phase Switch attractors.

4. Determining the full state transition graph of the PSO and using the
PageRank algorithm to validate the filtered sample.
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5. Determining the coarse-grained ‘backbone’ of the complex attractor.

6. Generating the expanded network of the PSO.

7. Finding the conditionally stable motifs of the PSO.

10.1.2 IPython notebook reproducing the main results of Chap-
ter 8

To simulate the dynamics of the Boolean model and work through key
methods, see: https://github.com/deriteidavid/cell cycle apoptosis Sizek
etal PloSCompBio 2019.

The code in this notebook uses the BooleanNet python library available at
https://github.com/ialbert/booleannet.

The notebook includes the following implementations:

1. Simulating for the PI3K oscillator (synchronous and general asynchronous
update).

2. Sampling and visualizing the general asynchronous state transition graph
of the PI3K oscillator.

3. Simulating the full model with random order asynchronous and biased
asynchronous update.

4. Sampling the full state space of the individual network modules.

5. Mapping the cell cycle pseudo-attractor of the full model

6. Simulating the full model with probabilistically changing inputs.

10.2 Supplemetary Material

10.2.1 Supplementary Table 10.1: Probability of state transi-
tions among pairs of states of the synchronous limit
cycle in the complex attractor found by general asyn-
chronous update

The first two columns indicate the start and end state. The paths do not go
through any other nodes of the synchronous limit cycle. The paths of the com-
plex attractor (indicated in the fourth column) are grouped by the nodes that
change state along the path. The turning on of a node is indicated by the node
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name and the turning off is indicated by preceding the node name by∼. If there
are paths that involve fewer or more node state changes than the synchronous
limit cycle, the third column separately indicates the probability of the path that
involves the same node state changes as the synchronous limit cycle (prefaced
by “Synch”) and the probability of shorter (prefaced by “S”) or longer paths
(prefaced by “L”) that have the same end state. The probability of longer paths
is generally much smaller than the probability of shorter paths. The probabil-
ity of the shorter path between states labelled (5,6,3) and (8,3,2) represents the
probability of a system trajectory from the G2 state to the G0/G1 state through
an SAC-like state that has UbcH10=0 (see dashed edges in the right panel of
Figure 6.12).

Starting
state End state Transition

probability States that change on the path (ignoring permutations)

(8, 3, 2)
G0/G1 (7, 4, 1) 1 CyclinA

(1, 4, 7)
post-SAC (2, 3, 6) 1 ∼CyclinB

(5, 2, 3) (6, 3, 4) 1 ∼Cdc20

(6, 3, 4) (8, 3, 2)
G0/G1 1 ∼pAPC, ∼UbcH10

(2, 7, 6)
post-G2

(1, 6, 7)
near-SAC 1 pAPC

(5, 6, 3) (2, 7, 6)
post-G2

0.8333 Synch: Cdk1, CyclinB, UbcH10

0.0003

L: CyclinB, Cdk1, pAPC, ∼CyclinA, Cdc20, ∼CyclinB,
Cdh1, ∼Cdc20, ∼pAPC, CyclinA, ∼Cdh1, UbcH10,
CyclinB
L: CyclinB, Cdk1, pAPC, ∼CyclinA, Cdc20, ∼CyclinB,
Cdh1, ∼Cdc20, ∼Cdk1, ∼pAPC, CyclinA, Cdk1, ∼Cdh1,
UbcH10, CyclinB
L: Cdk1, CyclinB, pAPC, ∼CyclinA, Cdc20, ∼CyclinB,
Cdh1, ∼Cdc20, ∼pAPC, ∼Cdc25C, CyclinA, ∼Cdh1,
UbcH10, CyclinB, Cdc25C

(1, 6, 7)
near-SAC

(1, 4, 7)
post-SAC 0.75 ∼CyclinA, Cdc20

(2, 3, 6) (5, 2, 3) 0.6111 Synch: ∼Cdc25C, Cdh1, ∼Cdk1

0.0002
L: ∼Cdc25C, Cdh1, ∼Cdc20, ∼pAPC, ∼UbcH10, CyclinA,
∼Cdh1, UbcH10, CyclinB, pAPC, ∼CyclinA, Cdc20,
∼Cdk1, ∼CyclinB, Cdh1

(7, 4, 1) (2, 7, 6)
post-G2

0.5000 Synch: ∼Cdh1, CyclinB, UbcH10, Cdc25C, Cdk1

105
L: ∼Cdh1, CyclinB, Cdc25C, Cdk1, pAPC, ∼CyclinA,
Cdc20, ∼CyclinB, Cdh1, ∼Cdc20, ∼pAPC, CyclinA,
∼Cdh1, UbcH10, CyclinB

(7, 4, 1) (5, 6, 3)

0.4166 Synch: ∼Cdh1, Cdc25C

0.0001

L: ∼Cdh1, CyclinB, Cdc25C, Cdk1, pAPC, ∼CyclinA,
Cdc20, ∼CyclinB, Cdh1, ∼Cdc20, ∼Cdk1, ∼pAPC, CyclinA,
∼Cdh1
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L: Cdc25C, Cdk1, ∼Cdh1, CyclinB, pAPC, ∼CyclinA,
Cdc20, ∼CyclinB, Cdh1, ∼Cdc20, ∼pAPC, ∼Cdc25C,
CyclinA, ∼Cdh1, ∼Cdk1, Cdc25C
L: ∼Cdh1, CyclinB, Cdc25C, Cdk1, pAPC, ∼CyclinA,
Cdc20, ∼CyclinB, ∼Cdk1, UbcH10, Cdh1, ∼Cdc20,
∼UbcH10, ∼pAPC, CyclinA, ∼Cdh1

(1, 6, 7)
near-SAC (2, 3, 6) 0.25 Cdc20, ∼CyclinB, ∼CyclinA

(2, 3, 6) (8, 3, 2)
G0/G1

0.2006 Synch: ∼Cdc25C, Cdh1, ∼Cdc20, ∼pAPC, ∼UbcH10,
∼Cdk1

0.0002

L: ∼Cdc25C, Cdh1, ∼Cdc20, ∼pAPC, ∼UbcH10, CyclinA,
∼Cdh1, CyclinB, pAPC, ∼CyclinA, ∼Cdk1, Cdh1, ∼pAPC,
∼CyclinB
L: ∼Cdc25C, Cdh1, ∼Cdc20, ∼pAPC, ∼UbcH10, CyclinA,
∼Cdh1, CyclinB, pAPC, ∼CyclinA, Cdc20, ∼Cdk1,
∼CyclinB, Cdh1, ∼Cdc20, ∼pAPC
L: ∼Cdc25C, Cdh1, ∼Cdc20, ∼pAPC, ∼UbcH10, CyclinA,
∼Cdh1, CyclinB, pAPC, ∼Cdk1, Cdc25C, ∼CyclinA,
∼pAPC, Cdh1, ∼CyclinB, ∼Cdc25C
L: ∼Cdc25C, Cdh1, ∼Cdc20, ∼pAPC, ∼UbcH10, CyclinA,
∼Cdh1, UbcH10, CyclinB, pAPC, ∼CyclinA, ∼Cdk1,
∼pAPC, Cdh1, ∼CyclinB, ∼UbcH10

(2, 3, 6) (6, 3, 4)

0.1111 Synch: ∼Cdc25C, Cdh1, ∼Cdc20, ∼Cdk1

105

L: ∼Cdc25C, Cdh1, ∼Cdc20, ∼pAPC, ∼UbcH10, CyclinA,
∼Cdh1, UbcH10, CyclinB, pAPC, ∼CyclinA, ∼Cdk1,
Cdh1, ∼CyclinB
L: ∼Cdc25C, Cdh1, ∼Cdc20, ∼pAPC, ∼UbcH10, CyclinA,
∼Cdh1, UbcH10, CyclinB, pAPC, ∼CyclinA, Cdc20,
∼Cdk1, Cdh1, ∼Cdc20, ∼CyclinB
L: ∼Cdc25C, Cdh1, ∼Cdc20, ∼pAPC, ∼UbcH10, CyclinA,
∼Cdh1, UbcH10, CyclinB, pAPC, ∼Cdk1, Cdc25C,
∼CyclinA, Cdh1, ∼CyclinB, ∼Cdc25C

(5, 6, 3) (1, 4, 7)
post-SAC 0.0601 Synch: Cdk1, CyclinB, pAPC, ∼CyclinA, UbcH10, Cdc20

(5, 6, 3) (1, 6, 7)
near-SAC

0.0555 Synch: Cdk1, CyclinB, pAPC, UbcH10
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L: Cdk1, CyclinB, pAPC, ∼CyclinA, Cdc20, ∼CyclinB,
Cdh1, ∼Cdc20, ∼pAPC, ∼Cdc25C, CyclinA, ∼Cdh1,
UbcH10, CyclinB, pAPC, Cdc25C

(2, 3, 6) (2, 7, 6)
post-G2

0.031

S: Cdh1, ∼Cdc20, ∼pAPC, ∼UbcH10, CyclinA, ∼Cdh1,
CyclinB, UbcH10
S: ∼Cdc25C, Cdh1, ∼Cdc20, ∼pAPC, ∼UbcH10, CyclinA,
∼Cdh1, UbcH10, CyclinB, Cdc25C
S: ∼Cdk1, Cdh1, ∼Cdc20, ∼pAPC, ∼UbcH10, CyclinA,
Cdk1, ∼Cdh1, CyclinB, UbcH10

0.004

Synch: ∼Cdc25C, Cdh1, ∼Cdc20, ∼pAPC, ∼UbcH10,
CyclinA, ∼Cdh1, UbcH10, CyclinB, ∼Cdk1, Cdc25C, Cdk1
L: ∼Cdc25C, Cdh1, ∼Cdc20, ∼pAPC, ∼UbcH10, CyclinA,
∼Cdh1, UbcH10, CyclinB, pAPC, ∼Cdk1, ∼pAPC,
Cdc25C, Cdk1
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L: ∼Cdc25C, Cdh1, ∼Cdc20, ∼pAPC, ∼UbcH10, CyclinA,
∼Cdh1, UbcH10, CyclinB, pAPC, ∼CyclinA, ∼Cdk1,
∼pAPC, CyclinA, Cdc25C, Cdk1
L: Cdh1, ∼Cdk1, ∼Cdc20, ∼UbcH10, ∼pAPC, CyclinA,
Cdk1, ∼Cdh1, CyclinB, UbcH10XCdh1, ∼Cdc20,
∼UbcH10, ∼pAPC, CyclinA, ∼Cdh1, CyclinB, UbcH10

(7, 4, 1) (1, 4, 7)
post-SAC 0.0300 ∼Cdh1, CyclinB, Cdc25C, Cdk1, pAPC, ∼CyclinA,

UbcH10, Cdc20

(7, 4, 1) (1, 6, 7)
near-SAC 0.0277 ∼Cdh1, CyclinB, Cdc25C, Cdk1, pAPC, UbcH10

(5, 6, 3) (2, 3, 6) 0.0266 Cdk1, CyclinB, pAPC, ∼CyclinA, Cdc20, ∼CyclinB,
UbcH10

(2, 3, 6) (5, 6, 3) 0.0187

S: Cdh1, ∼Cdk1, ∼Cdc20, ∼UbcH10, ∼pAPC, CyclinA,
∼Cdh1
Synch: ∼Cdc25C, Cdh1, ∼Cdc20, ∼pAPC, ∼UbcH10,
CyclinA, ∼Cdh1, ∼Cdk1, Cdc25C

(5, 6, 3) (8, 3, 2)
G0/G1

0.0138 S: Cdk1, CyclinB, pAPC, ∼CyclinA, Cdc20, ∼CyclinB,
Cdh1, ∼Cdc20, ∼Cdk1, ∼pAPC, ∼Cdc25C

0.0006
Synch: Cdk1, CyclinB, pAPC, ∼CyclinA, Cdc20,
∼CyclinB, ∼Cdc25C, UbcH10, Cdh1, ∼Cdc20, ∼pAPC,
∼UbcH10, ∼Cdk1

(7, 4, 1) (2, 3, 6) 0.0133 ∼Cdh1, CyclinB, Cdc25C, Cdk1, pAPC, ∼CyclinA, Cdc20,
∼CyclinB, UbcH10

(2, 3, 6) (7, 4, 1)
0.0118 Synch: ∼Cdc25C, Cdh1, ∼Cdc20, ∼pAPC, ∼UbcH10,

CyclinA, ∼Cdk1

106
L: ∼Cdc25C, Cdh1, ∼Cdc20, ∼pAPC, ∼UbcH10, CyclinA,
∼Cdh1, CyclinB, pAPC, ∼CyclinA, ∼Cdk1, Cdh1, ∼pAPC,
CyclinA, ∼CyclinB

(7, 4, 1) (8, 3, 2)
G0/G1 0.0072

S: ∼Cdh1, CyclinB, Cdc25C, Cdk1, pAPC, ∼CyclinA,
Cdc20, ∼CyclinB, Cdh1, ∼Cdc20, ∼Cdk1, ∼pAPC,
∼Cdc25C
Synch: ∼Cdh1, CyclinB, Cdc25C, Cdk1, pAPC, ∼CyclinA,
Cdc20, ∼CyclinB, ∼Cdc25C, UbcH10, Cdh1, ∼Cdc20,
∼pAPC, ∼UbcH10, ∼Cdk1

(5, 6, 3) (5, 2, 3) 0.0067 Cdk1, CyclinB, pAPC, ∼CyclinA, Cdc20, ∼CyclinB,
∼Cdc25C, UbcH10, Cdh1, ∼Cdk1

(2, 3, 6) (1, 4, 7)
post-SAC 0.0040

S: Cdh1, ∼Cdc20, ∼UbcH10, ∼pAPC, CyclinA, ∼Cdh1,
CyclinB, pAPC, ∼CyclinA, UbcH10, Cdc20
S: Cdh1, ∼Cdk1, ∼Cdc20, ∼UbcH10, ∼pAPC, CyclinA,
Cdk1, ∼Cdh1, CyclinB, pAPC, ∼CyclinA, UbcH10, Cdc20
S: ∼Cdc25C, Cdh1, ∼Cdc20, ∼pAPC, ∼UbcH10,
CyclinA, ∼Cdh1, UbcH10, CyclinB, pAPC, ∼CyclinA,
Cdc25C, Cdc20
Synch: ∼Cdc25C, Cdh1, ∼Cdc20, ∼pAPC, ∼UbcH10,
CyclinA, ∼Cdh1, UbcH10, CyclinB, pAPC, ∼Cdk1,
Cdc20, Cdc25C, Cdk1, ∼CyclinA

(2, 3, 6) (1, 6, 7)
near-SAC 0.0036

S: Cdh1, ∼Cdc20, ∼UbcH10, ∼pAPC, CyclinA, ∼Cdh1,
CyclinB, pAPC, UbcH10
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S: ∼Cdc25C, Cdh1, ∼Cdc20, ∼pAPC, ∼UbcH10, CyclinA,
∼Cdh1, UbcH10, CyclinB, pAPC, Cdc25C
S: Cdh1, ∼Cdk1, ∼Cdc20, ∼UbcH10, ∼pAPC, CyclinA,
Cdk1, ∼Cdh1, CyclinB, pAPC, UbcH10
Synch: ∼Cdc25C, Cdh1, ∼Cdc20, ∼pAPC, ∼UbcH10,
CyclinA, ∼Cdh1, UbcH10, CyclinB, pAPC, ∼Cdk1,
Cdc25C, Cdk1
L: ∼Cdc25C, Cdh1, ∼Cdc20, ∼pAPC, ∼UbcH10, CyclinA,
∼Cdh1, CyclinB, pAPC, ∼Cdk1, Cdc25C, ∼pAPC, Cdk1,
pAPC, UbcH10

(7, 4, 1) (5, 2, 3) 0.0034 ∼Cdh1, CyclinB, Cdc25C, Cdk1, pAPC, ∼CyclinA,
Cdc20, ∼CyclinB, ∼Cdc25C, UbcH10, Cdh1, ∼Cdk1

(5, 6, 3) (6, 3, 4) 0.0005 Cdk1, CyclinB, pAPC, ∼CyclinA, Cdc20, ∼CyclinB,
∼Cdc25C, UbcH10, Cdh1, ∼Cdc20, ∼Cdk1

(5, 6, 3) (7, 4, 1) 0.0004

S: Cdk1, CyclinB, pAPC, ∼CyclinA, Cdc20, ∼CyclinB,
Cdh1, ∼Cdc20, ∼pAPC, ∼Cdc25C, CyclinA, ∼Cdk1
Synch: Cdk1, CyclinB, pAPC, ∼CyclinA, Cdc20,
∼CyclinB, ∼Cdc25C, UbcH10, Cdh1, ∼Cdc20, ∼pAPC,
∼UbcH10, CyclinA, ∼Cdk1

(7, 4, 1) (6, 3, 4) 0.0002
∼Cdh1, CyclinB, Cdc25C, Cdk1, pAPC, ∼CyclinA,
Cdc20, ∼CyclinB, ∼Cdc25C, UbcH10, Cdh1, ∼Cdc20,
∼Cdk1

10.2.2 Supplementary Figure 10.1: The distribution of the du-
ration of sustained ON or OFF states of each node on the
asynchronous complex attractor of the Phase Switch Os-
cillator.

Using general asynchronous update, we sampled an extensive number of tra-
jectories of the system on the complex attractor, where each node alternates
between being ON and OFF. Each row corresponds to a node. The first figure
in the row indicates the distribution of how long this node is ON (with the me-
dian in red), the second figure indicates the duration of how long this node is
OFF, and the third figure indicates the distribution of the duration of a consec-
utive on and off period. If the complex attractor were a deterministic cycle, the
duration of a consecutive on and off period for any node were 16 time steps
(i.e. each of the 8 nodes turning on once and turning off once). The observed
medians are very close to 16. The split between the on and off periods is even
(median ON and OFF duration of 8) for five nodes and more asymmetric for
three nodes, namely Cdc20, CyclinB, UbcH10. These three nodes also exhibit
a slightly asymmetric pattern in the synchronous limit cycle, namely a 3 to 6
split of the nine steps as compared to the 4 to 5 split of the rest of the nodes (see
Figure 6.5).
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Figure 10.1. The distribution of the duration of sustained ON or OFF states of each
node on the asynchronous complex attractor of the Phase Switch Oscillator.
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10.2.3 Supplementary Table 10.2: Conditionally stable motifs
of the Phase Switch Oscillator can cause the destabiliza-
tion of their own conditions

Name
Virtual nodes of the conditionally stable
motif

Virtual node that serves as con-
dition

C3 ∼CyclinA, Cdh1, ∼CyclinB UbcH10
C4 ∼CyclinA, ∼Cdk1, Cdh1, ∼CyclinB UbcH10
C5 ∼CyclinA, ∼Cdk1, Cdh1, ∼Cdc25C UbcH10
C11 ∼Cdh1, CyclinB, Cdk1, Cdc25C ∼Cdc20 or ∼pAPC
C13 pAPC Cdc20
C14 pAPC, Cdc20 ∼Cdh1

Table 10.2. The conditionally CSMs of the PSO network that cause their own destabi-
lization. The first column is the identifier of the CSM. The second column contains the
node states (virtual nodes on the expanded network where refers to the 0 state) making
up the CSM. The third column is the state that serves as the condition that needs to be
sustained for the CSM to be stable. The opposite state is contained in the logic domain
of influence of the CSM. Such destabilization does not happen in the Phase Switch be-
cause the stable motifs either stabilize, or violate, the condition of each CSM (see Figure
6.2).

10.2.4 Supplementary Figure 10.2

Illustration of a conditionally stable motif causing its own destabilization. The
conditionally stable motif C3, highlighted in green, is conditioned on UbcH10,
emphasized with the dashed outline. The yellow nodes are the logical domain
of influence (LDOI) of C3, i.e. states that will stabilize as long as C3 is stable.
The on state of UbcH10, highlighted with orange, is also part of the LDOI but
marks the destabilization of C3.
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Figure 10.2. Illustration of a conditionally stable motif causing its own destabilization.
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10.2.5 Supplementary Table 10.3

List of attractors that arise when the node state listed in the “Intervention”
column is held fixed. Columns denoted by node names give the steady state
value of the respective node (grey background highlights locked nodes), and
the Overlap column gives the overlap of this steady state with each of the three
Phase Switch attractors in the order (G0/G1, G2, SAC); see Methods a detailed
definition of the overlap. The next column indicates the closest Phase Switch
attractor(s). Arrows to / from phenotypes in parentheses point to other attrac-
tors with near-maximum overlap, indicating that the network is stuck close to
the boundary between two Phase Switch states. The final column gives the
conditionally stable motifs (as defined in Figure 6.9) for which the intervention
satisfied a condition; these become stable motifs in the modified system and
underlie the resulting attractor. In case there are multiple separate CSMs with
the same label, e.g. C6, we refer to the specific CSM with a numeral that indi-
cates its position in the group, e.g. C6 1 is the first in the box labeled C6 (P5) in
Figure 6.9. A node state listed in the final column indicates that the interven-
tion is a sufficient condition for setting this state. The interventions UbcH10=0,
Cdc25c=1, and Cdk1=1 each result in a single complex attractor in which each
remaining node oscillates; in this case no conditionally stable motif becomes a
stable motif, and the steady state overlap is not well-defined.
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10.2.6 Supplementary Figure 10.3

The cycle graph constructed for the Phase Switch Oscillator. Each node of this
graph represents a positive feedback loop of the regulatory network with node
states (top row of each node label) that become self-sustaining when the state of
certain other nodes (bottom row of each node label) is held fixed. As in previ-
ous figures the OFF state of a node is represented by a preceding the respective
node name. An undirected edge between nodes of the cycle graph indicates that
the nodes states of the two cycles and their associated conditions are mutually
compatible and non-disjoint. Every node and every consistent connected sub-
graph of the cycle graph corresponds to a conditionally stable motif. Note that
in this case, all connected subgraphs are consistent. The largest connected sub-
graphs correspond to the meta-nodes Cyc (a subgraph of 10 cycles in the top
left), Cyc (an 8-cycle subgraph in the top right), pAPC/Cdc20 (a four-clique
in the bottom right), UbcH10 (triangle in the bottom left), pAPC/Cdc20 (two
cycles connected by an edge) and UbcH10 (single cycle).

Figure 10.3. The cycle graph constructed for the Phase Switch Oscillator
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