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Abstract

Let Ω be a non-empty set. A bijection of Ω onto itself is called a permutation of Ω and
the set of all permutations forms a group under composition of mapping. This group
is called the symmetric group on Ω and denoted by Sym(Ω) (or Sym(n) or Sn where
|Ω| = n). A permutation group on Ω is a subgroup of Sym(Ω).

Until 1850’s this was the definition of group. Although this definition and the ax-
iomatic definition are the same, usually what we first learn is the axiomatic approach.
The reason is to not to restrict the group elements to being permutations of some set Ω.

Let G be a permutation group. Let ∼ be a relation on Ω such that α ∼ β if and only
if there is a transformation g ∈ G which maps α to β where α, β ∈ Ω. ∼ is an equivalence
relation on Ω and the equivalence classes of ∼ are the orbits of G. If there is one orbit
then G is called transitive.

Assume that G is intransitive and Ω1, . . . ,Ωt are the orbits of G on Ω. G induces a
transitive permutation group on each Ωi, say Gi where i ∈ {1, . . . , t}. Gi are called the
transitive constituents of G and G is a subcartesian product of its transitive constituents.
So we can build any permutation group from transitive permutation groups.

A transitive permutation group G acting on Ω is primitive if and only if there are no
non-trivial G-invariant partitions of Ω. So we can not break down the action into smaller
ones. Hence, primitive permutation groups are the starting point for any investigation
about permutation groups.

A base Σ of G is a non-empty subset of Ω with the property that only the identity
element can fix every element in Σ. Bases have been studied since 1960’s and have been
very useful both theoretically (for an example see [3]) and computationally (see [65]). In
Chapter 2 we give a detailed explanation of base, base size and Pyber’s conjecture for
the base size of primitive permutation groups.

In Chapter 3 we prove the conjecture for the affine type primitive groups, which was
the last unfinished type.

In our proof, another invariant of permutation groups is used, namely the distinguish-
ing number. The distinguishing number of G, denoted by d(G) or dΩ(G), is the minimal
number of colors needed to color the elements of Ω in such a way that the stabilizer in G
of this coloring is trivial. Chapter 1 gives the background material about the distinguish-
ing number and the distinguishing number of certain permutation groups, including the
bound for transitive permutation groups.

The new results in Chapter 1 and Chapter 3 are from our joint work with Zoltán
Halasi and Attila Maróti [24].
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The last chapter is about the random bases for coprime primitive linear groups. We
show that if G ≤ GL(V ) is a coprime primitive linear group then the probability that a
random 11-tuple in V is a base for G tends to 1 as |V | → ∞. This result is from our
joint paper with Zoltán Halasi and Károly Podoski [25].
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Chapter 1

The Distinguishing Number of a
Transitive Permutation Group

1.1 Introduction

We use the term ”distinguishing number” as Albertson and Collins [1] introduced for
graphs in 1996. They defined the distinguishing number of a graph as the minimum
number of colors needed to color the vertices of the graph in such a way that only the
identity automorphism preserves the coloring.

Let G be a permutation group acting on a finite set Ω. The distinguishing number
of G, denoted by d(G) or dΩ(G), is the minimal number of colors needed to color the
elements of Ω in such a way that the stabilizer in G of this coloring is trivial. If we collect
the points with the same color in one set then we get a partition of Ω which is called a
distinguishing partition.

First, I would like to give some elementary properties of the distinguishing number.

Proposition 1.1.1. A permutation group has distinguishing number 1 if and only if it
is the trivial group.

Proposition 1.1.2. Let G be a permutation group of degree n. Then d(G) = n if and
only if G = Sym(n) and d(G) = n− 1 if and only if G = Alt(n).

The action of G on Ω, where n = |Ω| > 1, induces an action on the set of all colorings
of Ω using d(G) colors. This action contains a regular orbit and hence we have the
following result.

Proposition 1.1.3. If G is a permutation group of degree n > 1, then n
√
|G| < d(G).

For any normal subgroup N of G we define d(G/N) to be the minimal number of
colors needed to color the points of Ω such that the stabilizer of this coloring in G is
contained in N .

Proposition 1.1.4. For any H ≤ G and N C G, we have max{d(H), d(G/N)} ≤ d(G) ≤
d(N)d(G/N).

Proposition 1.1.5. Let G be a permutation group acting on a finite set Ω. The following
are equivalent:
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CHAPTER 1. THE DISTINGUISHING NUMBER OF A TRANSITIVE PERMUTATION GROUP

(1) G has distinguishing number 2;

(2) There is a subset of Ω whose setwise stabiliser in G is the identity;

(3) G has a regular orbit on the power set of Ω.

Solvable permutation groups and primitive permutation groups which are different
than the alternating and the symmetric group have small distinguishing numbers. Seress
[63] proved that if G is an arbitrary solvable permutation group, then there is a partition
P of Ω into at most five parts such that only the identity element of G fixes P .

In [17] and [20], Cameron, Neumann and Saxl showed that if G is primitive on Ω and
Alt(n) � G then in all except finitely many cases G has a regular orbit on the power set of
Ω which means that d(G) = 2. Moreover, the probability that a uniform random subset
has trivial setwise stabilizer tends to 1 as n → ∞. In his paper which was published in
1997 [64], Seress gave the exact list of the 43 primitive permutation groups which are not
alternating or symmetric group and have distinguishing number greater than 2. Three
years later Dolfi [23] calculated the distinguishing numbers of these exceptional 43 groups.
He proved that 38 of them have distinguishing number 3 and the rest have distinguishing
number 4.

The distinguishing number of quasi-primitive groups different from alternating and
symmetric groups is bounded by 4 (Lemma 1.2.6). Recently Devillers, Morgan and
Harper [21] improved this result. They proved that the quasi-primitive groups that are
not primitive have distinguishing number 2, and the semiprimitive groups that are not
quasi-primitive have distinguishing number 2 except when the group is GL(2, 3) in its
degree 8 action where d(GL(2, 3)) = 3.

In the following section the main target is to investigate the distinguishing number of
transitive permutation groups.

1.2 The Distinguishing Number of a Transitive Per-

mutation Group

For a finite group H acting on a set X and for a subset Y of X, the setwise and the
pointwise stabilizers of Y in H are denoted by NH(Y ) and CH(Y ), respectively. If Y =
{y1, . . . , ys} for s ≥ 1 we use the notation CH(y1, . . . , ys).

Let G ≤ Sym(Ω) and Γ = {∆1, . . . ,∆k} be a partition of Ω permuted by G. Let
Hj = NG(∆j) for each j and N = ∩kj=1Hj. Then each Hj acts naturally on ∆j with
kernel CG(∆j), hence Hj/CG(∆j) ≤ Sym(∆j). Furthermore, G acts on Γ with kernel N ,
so K := G/N ≤ Sym(Γ).

The first goal of this section is to give an upper bound for the distinguishing number
d(G) = dΩ(G) of G in terms of the distinguishing numbers d(K) = dΓ(K) of K and
d(Hj) = d∆j

(Hj) of Hj, and the degrees k and |∆j|.
In the lemma below, we do not assume the transitivity of G on Γ, but we assume that

|∆1| = |∆2| = . . . = |∆k| = m for some 1 < m < |Ω|.
Lemma 1.2.1. If Hj acts trivially on ∆j (i.e. Hj = CG(∆j)) for every 1 ≤ j ≤ k, then

d(G) ≤ d m
√
d(K)e.
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1.2. THE DISTINGUISHING NUMBER OF A TRANSITIVE PERMUTATION GROUP

Proof. Hj = CG(∆j) for every 1 ≤ j ≤ k means that each orbit of G on Ω has at most one
common point with the block ∆j for every j. Thus we can define a function f : Ω 7→ [m]
where [m] := {1, . . . ,m} such that the restriction of f to ∆j is bijective for every j and

f is constant on every orbit of G. Set c = d m
√
d(K)e.

We define a c-coloring λ of Ω in the following way. Let us choose a d(K)-coloring
α : Γ 7→ {0, 1, . . . , d(K) − 1} of Γ such that only the identitiy of K fixes α. For every
j ∈ [k] write α(∆j) in its base c-expansion, so

α(∆j) = a1(j)c0 + a2(j)c1 + . . .+ as+1(j)cs,

where a1(j), . . . , as+1(j) ∈ {0, . . . , c − 1}. Note that s ≤ m − 1 by the definition of
c. If s < m − 1, let us define as+2(j) = . . . = am(j) = 0. Now, for any x ∈ ∆j let
λ(x) = af(x)(j) ∈ {0, . . . , c− 1}. We claim that only the identity element of G preserves
λ. By assumption, N = 1, so it is enough to show that if g ∈ G fixes λ then it also fixes
α. Let g ∈ G fix λ and ∆j · g = ∆j′ for some j, j′ ∈ [k]. For x ∈ ∆j, af(x)(j) = λ(x) =
λ(x · g) = af(x·g)(j

′). Since f is constant on every orbit of G, af(x)(j) = af(x)(j
′) for every

x ∈ ∆j. f is a surjective map, hence ai(j) = ai(j
′) for all i ∈ [m]. So α(∆j) and α(∆j′)

have the same base c-expansion, which means that ∆j and ∆j′ have the same color with
respect to the α-coloring. Therefore g must be the identity element.

From now on, let us assume that the action of G is transitive (so Hj/CHj(∆j) ≤
Sym(∆j) are permutation isomorphic for all j ∈ [k]).

Lemma 1.2.2. Suppose that d(H1) ≤ c for some constant c. Then d(G) ≤ c · d m
√
d(K)e.

Proof. Since d(H1) ≤ c for each j, there are colorings χj : ∆j 7→ {0, . . . , c− 1}, such that
any element of Hj fixing this coloring acts trivially on ∆j. Let χ : Ω 7→ {0, . . . , c − 1}
be the union of these colorings, that is, χ(x) = χj(x) for x ∈ ∆j. Then Lemma 1.2.1

can be applied to the stabilizer of χ in G, so there exist a d m
√
d(K)e-coloring λ : Ω 7→{

0, . . . , d m
√
d(K)e − 1

}
such that only the identity of G fixes both colorings λ and χ.

Finally, we can encode the pair (χ, λ) by a c · d m
√
d(K)e-coloring µ of Ω by choosing a

suitable bijection function, e.g. let µ(x) = c · λ(x) + χ(x).

Now let the action of H1 on ∆1 be primitive. We say that the action of H1 on ∆1 is
large if m = |∆1| ≥ 5 and Alt(∆1) ≤ H1/CH1(∆1) ≤ Sym(∆1). By the results of Seress
[64, Theorem 2] and Dolfi [23, Lemma 1], if H1 is not large, then d(H1) ≤ 4. With the
lemma above we have the following result:

Corollary 1.2.3. If H1 is not large, then d(G) ≤ 4 · d m
√
d(K)e.

Now assume that the action of H1 is large and N 6= 1. We can still apply the lemma
above, but with this method we get a large upper bound for d(G). In the lemma following,
a better bound is calculated. For that reason, we examine the structure of N .

Let Gi be groups for i ∈ I where I is a non-empty set and H be a subgroup of the
direct product

∏
i∈I Gi. H is called a subdirect product of

∏
i∈I Gi if each projection

pj : H → Gj is surjective. It is called diagonal subgroup if all pj’s are injective. If each
pj is an isomorphism (which implies that all Gj are isomorphic) then H is called a full
diagonal subgroup. Let I = {1, . . . , k} for some positive integer k and Gj ' G for all
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CHAPTER 1. THE DISTINGUISHING NUMBER OF A TRANSITIVE PERMUTATION GROUP

j ∈ I. If H is a full diagonal subgroup of
∏

i∈I Gi, then H = {(g, gz2 , gz3 , . . . gzk)|g ∈ G}
where z2, z3, . . . , zk ∈ Aut(G) are fixed.

For the case where all Gi are non-abelian simple groups, Scott [62] described the
structure of H as follows:

Proposition 1.2.4. If H is a subdirect subgroup of a direct product
∏

i∈I Gi of non-
abelian simple groups, then it is the direct product of

∏
Dj where each Dj is a full

diagonal subgroup of the subproduct
∏

i∈Ij Gi and Ij form a partition of I.

If the action of H1 is large, i.e. Alt(m) ≤ H1/CH1(∆1) for m ≥ 5, then the socle
of N , denoted by Soc(N), is a subdirect product of alternating groups Alt(m). By the
proposition above, the socle of N is of the form

∏
j Dj where each Dj is isomorphic to

Alt(m) and is a full diagonal subgroup of a subproduct
∏

`∈Ij C` where C` ∼= Alt(m).

Since G is transitive on Γ and Soc(N) C G, the subsets Ij form a partition of Γ with
parts of equal size. (Moreover, they form a system of blocks for the action of G on Γ.)
Let us denote the size of each part Ij by t. In accordance with [14], we will refer to this
number as the linking factor of N . Thus, we have

Alt(m)k/t ≤ N ≤ Sym(m)k/t. (1.1)

Lemma 1.2.5. Let us assume that H1 is large and N 6= 1 with linking factor t. Then
d(G) ≤ 2 · d t

√
me · d m

√
d(K)e.

Proof. By definition, N fixes all the ∆i’s, so we can see any element n of N as (σ1, . . . , σk)
where σi ∈ Sym(∆i) for each i ∈ [k]. We order the blocks according to the full diagonal
parts of the socle of N . Let {∆(u−1)t+1, . . . ,∆(u−1)t+t} be the set of the blocks correspond-
ing to the u-th diagonal part according to our ordering. Denote the union of these blocks
by Ωu. Let Du be the restriction of the Soc(N) to Ωu. Then

Du = Soc(N)|Ωu = {(σz1 , σz2 , σz3 , . . . , σzt)|σ ∈ Alt(m)},

for some fixed 1 = z1, z2, . . . , zt ∈ Aut(Alt(m)).

If m 6= 6 then Aut(Alt(m)) ' Sym(m). However when m = 6, the automorphism
group of Alt(6) is larger than Sym(6) where |Aut(Alt(6)) : Sym(6)| = 2. Hence, if m 6= 6,
any automorphism of Alt(m) is conjugation by an element of Sym(m). This does not
change the cycle decomposition of the element.

First let us assume that m 6= 6. Then zi ∈ Sym(m) for all i ∈ [t]. The action of
N on {∆(u−1)t+1, . . . ,∆(u−1)t+t} is either isomorphic to Alt(m) or Sym(m) and moreover,
the permutation actions of N on ∆(u−1)t+1, . . . ,∆(u−1)t+t are equivalent via the elements
z2, . . . , zt. Then we can re-enumerate the elements of ∆j for all j ∈ {(u−1)t+1, . . . , (u−
1)t + t} according to this equivalence. Therefore, we can apply suitable bijections
{∆(u−1)t+1, . . . ,∆(u−1)t+t} → [t] and ∆j → [m] for every j ∈ {(u−1)t+1, . . . , (u−1)t+t}
and identify Ωu with [m]× [t] = {(i, j)|1 ≤ i ≤ m, 1 ≤ j ≤ t} in such a way that we get

N |Ωu ≤ {(σ, . . . , σ) |σ ∈ Sym([m]},
Du = Soc(N)|Ωu = {(σ, . . . , σ) | σ ∈ Alt([m])},

4
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1.2. THE DISTINGUISHING NUMBER OF A TRANSITIVE PERMUTATION GROUP

and the action of any n ∈ N on Ωu = [m] × [t] is given as (i, j) · n = (i · σ, j)
for some σ ∈ Sym(m). Under this identification, ∆j = {(i, j) | i ∈ [m]} for every j ∈
{(u− 1)t+ 1, . . . , (u− 1)t+ t}.

Soc(N) is a characteristic subgroup of N and N C G, so Soc(N) C G. Ωu corresponds
to a diagonal subgroup of Soc(N). Therefore, we get that Ωu is a block of imprimitivity
for the action of G on Γ. Let h ∈ Hj for some j ∈ {(u− 1)t+ 1, . . . , (u− 1)t+ t}. Since
Hj is by definition the stabiliser of ∆j, it follows that h fixes Ωu setwisely. Moreover, it
permutes the ∆i’s for (u− 1)t + 1 ≤ i ≤ (u− 1)t + t. Hence h|Ωu ∈ Sym([m]) o Sym([t])
meaning that h|Ωu = (σ(h,1), . . . , σ(h,t)) · πh for some σ(h,i) ∈ Sym([m]) where i ∈ [t] and
πh ∈ Sym([t]). If n ∈ Soc(N) then n|Ωu = (σ, . . . , σ) for some σ ∈ Alt([m]). The
action of h on Ωu must normalize Du. So nh|Ωu = (σ′, . . . , σ′) for some σ′ ∈ Alt([m]).
(i, j) · n = (i · σ, j) and (i, j) · nh = (i · σ′, j) for all (i, j) ∈ Ωu. This implies that
σ(h,1) = . . . = σ(h,t). Hence there exists a σh ∈ Sym([m]) such that h|Ωu = (σh, . . . , σh) ·πh
and

(i, (u− 1)t+ w) · h = (i · σh, (u− 1)t+ w · πh)

for every i ∈ [m] and w ∈ [t].

First let us assume that t ≥ m. We define a 2-coloring χ of Ω = [m]× [k] as

χ(i, j) =

{
1 if i ≤ j (mod t) ≤ m
0 if i > j (mod t) or j (mod t) > m.

The coloring χ of Ωu

∆(u−1)t+1 ∆(u−1)t+2 ∆(u−1)t+3 . . . . . . ∆(u−1)t+m−1 ∆(u−1)t+m ∆(u−1)t+m+1 . . . . . . ∆(u−1)t+t

1 1 1 . . . . . . 1 1 0 . . . . . . 0
0 1 1 . . . . . . 1 1 0 . . . . . . 0
0 0 1 . . . . . . 1 1 0 . . . . . . 0
0 0 0 . . . . . . 1 1 0 . . . . . . 0
...

...
...

...
...

...
...

0 0 0 . . . . . . 1 1 0 . . . . . . 0
0 0 0 . . . . . . 0 1 0 . . . . . . 0

That is, each Ωu is colored in the same way; only the first w elements of ∆(u−1)t+w

are colored with 1, if w > m then no element of ∆(u−1)t+w is colored with 1. (Notice that
if j is a multiple of t then here j (mod t) means t (not 0).)

Now, let h ∈ Hj for some j = (u − 1)t + v, v ≡ j (mod t) preserving χ. If the
action of h on Ωu is given by (σh, πh) ∈ Sym([m]) × Sym([t]), then σh must fix each set
[w], w ∈ [m], i.e. σh = id[m]. It follows that h ∈ Hj acts trivially on ∆j. So the elements
of the stabilizer of this coloring are acting trivially on each ∆i for i ∈ [k] and we have a
group as in the Lemma 1.2.1. We apply this lemma to the stabilizer of χ in G to get a
d m
√
d(K)e-coloring λ of Ω such that only the identity element of G preserves both χ and

λ. Finally, as in the last paragraph of the Lemma 1.2.2, the pair (χ, λ) can be encoded
with the 2d m

√
d(K)e-coloring µ(x) := 2 · λ(x) + χ(x).

Now, let t < m. First we define a 2-coloring χ of Ω = [m]× [k] in a similar way as for
the previous case:

χ(i, j) =

{
1 if i ≤ j (mod t)
0 if i > j (mod t)

.
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CHAPTER 1. THE DISTINGUISHING NUMBER OF A TRANSITIVE PERMUTATION GROUP

The coloring χ of Ωu and blocks of Tj
∆(u−1)t+1 ∆(u−1)t+2 ∆(u−1)t+3 . . . . . . ∆(u−1)t+t−1 ∆(u−1)t+t

Λ1 1 1 1 . . . . . . 1 1
Λ2 0 1 1 . . . . . . 1 1
Λ3 0 0 1 . . . . . . 1 1
Λ4 0 0 0 . . . . . . 1 1
...

...
...

...
...

...
Λt−1 0 0 0 . . . . . . 1 1
Λt 0 0 0 . . . . . . 0 1

Λt+1 0 0 0 . . . . . . 0 0
...

...
...

...
...

...
Λm 0 0 0 . . . . . . 0 0

Let Tj = CHj(χ) be the stabilizer of χ in Hj. Since the number of points colored with
1 is different in each ∆i, the elements of Tj setwisely stabilize them. If h ∈ Tj ≤ Hj

then h acts on Ωu coordinatewise and at the same time it setwisely stabilizes each ∆i.
Therefore {Λi = {(i, (u− 1)t+ w) |w ∈ [t]} is a system of blocks of imprimitivity for Tj.
If h ∈ Tj fixes Λi setwise then it must act on Λi trivially. Now we define a new coloring
which is analogous to the construction of λ given in the proof of Lemma 1.2.1. We have
Λi instead of ∆j, the setwise stabilizer of Λi instead of Hj and m-coloring of {Λ1, . . . ,Λm}
instead of the d(K) coloring of Γ. So, there is a coloring βu : Ωu 7→ {0, . . . , d t

√
me − 1}

for every u such that if h ∈ H(u−1)t+v fixes both χ and βu, then it acts trivially on Ωu.

Let β : Ω 7→ {0, . . . , d t
√
me−1} be the union of the βu’s. So, if h ∈ Hj is fixing both χ

and β then it is pointwisely stabilizing ∆j. If G′ = CG(χ)∩CG(β) then H ′j = NG′(∆j) =
CG′(∆j). Thus, we get that Lemma 1.2.1 can be applied for the intersections of the

stabilizers of χ and β. There is a d m
√
d(K)e-coloring λ : Ω 7→

{
0, . . . , d m

√
d(K)e − 1

}
such that only the identity element of G fixes all of the colorings χ, β, λ. Finally, we
can encode the triple (χ, β, λ) with the 2 · d t

√
me · d m

√
d(K)e-coloring µ of Ω given as

µ(x) := 2 · d t
√
meλ(x) + 2 · β(x) + χ(x).

Now the only case which is missing is the m = 6 case. We again start with the
restriction of the Soc(N) on Ωu:

Du = Soc(N)|Ωu = {(σz1 , σz2 , σz3 , . . . , σzt)|σ ∈ Alt(6)}

for some fixed 1 = z1, z2, . . . , zt ∈ Aut(Alt(6)). Suppose that zi /∈ Sym(6) for some i.
(Otherwise, the same argument works as for m 6= 6.) We claim that |{i | zi ∈ Sym(6)}| =
t
2
. Let Gu be the restricted action of NG(Ωu) to Ωu. Since Ωu is a block of imprimitivity

and ∆i’s are blocks as well, Gu acts on {∆(u−1)t+1, . . . ,∆(u−1)t+t} transitively. Let ∼ be a
relation on {∆(u−1)t+1, . . . ,∆(u−1)t+t} such that ∆i ∼ ∆j if and only if ziz

−1
j ∈ Sym(6). It

is obvious that ∼ is an equivalence relation. Since we assumed that there is a zi /∈ Sym(6),
there are two equivalence classes. The equivalence classes of ∼ gives us a new system of
blocks of imprimitivity. Therefore t must be even and |{i | zi ∈ Sym(6)}| = t

2
.

As in the previous case, we can re-enumerate the the elements of each Ωu in such a
way that Du = {(σ1, . . . , σt)|σi ∈ Alt(6) for all i ∈ [t]} where σi = σ for i ∈ {1, . . . , t

2
}

and σi = σz for i ∈ { t
2

+ 1, . . . t} where σ ∈ Alt(6) and z ∈ Aut(Alt(6)) \ Sym(6). Let

Ω
(1)
u = ∪(u−1)t+ t

2

i=(u−1)t+1∆i and Ω
(2)
u = ∪(u−1)t+t

i=(u−1)t+ t
2

+1
∆i. Then {Ω(1)

u ,Ω
(2)
u } is a system of blocks
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1.2. THE DISTINGUISHING NUMBER OF A TRANSITIVE PERMUTATION GROUP

for Gu.

If t = 2, 2 · d t
√
me = 2 · d

√
6e = 6. By Lemma 1.2.2, d(G) ≤ 6 · d 6

√
d(K)e since m = 6.

Hence, when t = 2 the lemma is satisfied.

Now assume that t ≥ 4. Then 2 · d t
√
me = 2 · d t

√
6e = 4. We define a 4 coloring χu of

Ωu as the following:

The coloring χu of Ωu

Ω
(1)
u Ω

(2)
u

∆(u−1)t+1 ∆(u−1)t+2 ∆(u−1)t+3 . . . ∆(u−1)t+ t
2

∆(u−1)t+ t
2

+1 ∆(u−1)t+ t
2

+2 ∆(u−1)t+ t
2

+3 . . . ∆(u−1)t+t

0 0 0 . . . 0 3 3 0 . . . 0
1 0 0 . . . 0 2 3 0 . . . 0
1 1 0 . . . 0 2 2 0 . . . 0
2 1 0 . . . 0 1 2 0 . . . 0
2 2 0 . . . 0 1 1 0 . . . 0
3 2 0 . . . 0 0 1 0 . . . 0

Suppose that g ∈ Gu is fixing χu. Then it must fix the blocks Ω
(1)
u and Ω

(2)
u . Fur-

thermore, the restriction of g on each of Ω
(1)
u and Ω

(2)
u has the form (σg, πg) where σg

is permuting the rows and πg is permuting the columns. Obviously, σg must be trivial.
Let χ be the union of χu colorings. We apply Lemma 1.2.1 to the stabilizer of χ to get
a d m

√
d(K)e-coloring λ. If µ(x) := 4 · λ(x) + χ(x) then only the identity element of G

preserves µ. Therefore, d(G) ≤ 4 · d m
√
d(K)e = 2 · d t

√
me · d m

√
d(K)e.

A permutation group G ≤ Sym(Ω) is called quasi-primitive if every non-trivial normal
subgroup of G is transitive on Ω. Clearly, every primitive permutation group is quasi-
primitive.

Lemma 1.2.6. If G ≤ Sym(Ω) is a (finite) quasi-primitive permutation group, then
d(G) ≤ 4 or Alt(Ω) ≤ G ≤ Sym(Ω).

Proof. We prove this lemma by induction on n where n = |Ω|. If G is a primitive
permutation group, then by Seress [64, Theorem 2] and Dolfi [23, Lemma 1], d(G) ≤ 4
or Alt(Ω) ≤ G ≤ Sym(Ω). Now assume that G is not primitive but quasi-primitive. Let
Γ be a system of blocks for G with k = |Γ| < n maximal. Let K be the action of G
on Γ, i.e. if ϕ : G 7→ Sym(Γ) is the homomorphism associated with the action of G
on Γ then K ∼= G/ ker(ϕ). Then ker(ϕ) C G but it is not transitive, hence ker(ϕ) = 1
and so K ∼= G. Since a distinguishing partition of Γ for K naturally gives rise to a
distinguishing partition of Ω for G, we have dΩ(G) ≤ dΓ(K). By induction, d(G) ≤
d(K) ≤ 4 or Alt(Γ) ≤ K ≤ Sym(Γ). Thus we may assume that Alt(Γ) ≤ K ≤ Sym(Γ)
with k ≥ 5. We claim that the size of each block should be at least k − 1. Assume
that H1 = NG(∆1) acts on ∆1 non-trivially. H1 also acts on {∆2, . . . ,∆k}. Since G acts
on Γ faithfully and Alt(Γ) ≤ G, we have H1 ' Alt(k − 1) or H1 ' Sym(k − 1). Thus
|∆1| ≥ k − 1 unless H1 ' Sym(k − 1) and CH1(∆1) ' Alt(k − 1) or k = 5, H1 ' Alt(4)
and CH1(∆1) ' (Alt(4))′. In the first case, G ' Sym(Γ), G′ ' Alt(Γ) and Gα < G′ < G
for any α ∈ Ω. G′ is a non-trivial normal subgroup of G which is not transitive on Ω,
which contradicts with the assumption that G is quasi-primitive. In the second case we
have K = Alt(Γ), so dΩ(G) ≤ dΓ(K) ≤ 4 holds.

Now, for each i with 0 ≤ i ≤ k − 1, we color i letters in block i + 1 with 1 and the
rest with 0.
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CHAPTER 1. THE DISTINGUISHING NUMBER OF A TRANSITIVE PERMUTATION GROUP

Coloring of Ω
∆1 ∆2 ∆3 . . . . . . ∆k−1 ∆k

0 1 1 . . . . . . 1 1
0 0 1 . . . . . . 1 1
0 0 0 . . . . . . 1 1
0 0 0 . . . . . . 1 1
...

...
...

...
...

0 0 0 . . . . . . 1 1
0 0 0 . . . . . . 0 1
0 0 0 . . . . . . 0 0
...

...
...

...
...

0 0 0 . . . . . . 0 0

If g ∈ G is fixing this coloring then it fixes all the blocks setwisely, i.e. g ∈ ker(ϕ). This
way we colored the elements of Ω with 2 colors in such a way that the stabilizer in G of
this coloring is trivial. Thus d(G) ≤ 2.

A permutation group is defined to be innately transitive if there is a minimal normal
subgroup of the group which is transitive. Such groups were introduced and studied by
Bamberg and Praeger [6]. Every quasi-primitive permutation group is innately transitive.
The next theorem is a partial generalization of Lemma 1.2.6. It considers a class of groups
which contains the class of innately transitive groups.

Theorem 1.2.7. Let M C G ≤ Sym(Ω) be transitive permutation groups where Ω is finite
and M is a direct product of isomorphic simple groups. Then d(G) ≤ 8 or Alt(Ω) ≤ G ≤
Sym(Ω).

Proof. We prove the claim using induction on n = |Ω|. By Lemma 1.2.6 we may assume
that G is not a quasi-primitive permutation group.

As before, let Γ = {∆1, . . . ,∆k} be a system of blocks of imprimitivity for the action
of G. Let Γ consists of minimal blocks, each of size m and let N be the kernel of the
action of G on Γ. Set K = G/N , a subgroup of Sym(Γ).

First let us assume that N = 1. By the induction hypothesis, d(G) = dΩ(G) ≤
dΓ(K) ≤ 8, or G ∼= Alt(Γ) or G ∼= Sym(Γ) with k ≥ 9. In the latter case G is quasi-
primitive, sinceM = Soc(G) is the only minimal normal subgroup ofG and it is transitive.
The claim follows. So from now on N is non-trivial.

Now assume that the action of H1 on ∆1 is not large. MN/N is a direct product of
isomorphic simple groups and moreover it is a transitive normal subgroup of K. So by
the induction hypothesis d(K) ≤ 8 or K is an alternating or symmetric group of degree at
least 9 in its natural action on Γ. If d(K) ≤ 8 then by Corollary 1.2.3 d(G) ≤ 4·d m

√
8e ≤ 8

for m ≥ 3, and by Lemma 1.2.2 d(G) ≤ 2 · d 2
√

8e ≤ 8 for m = 2. Now suppose that the
latter case holds. If m ≥ k − 1, then again by Corollary 1.2.2 d(G) ≤ 4 · d k−1

√
ke ≤ 8.

If m < k − 1, consider the image M of M under the natural homomorphism from G to
K = G/N . Since M C G acts transitively on Γ, the group M is a non-trivial normal
subgroup of K. Thus M ∼= Alt(k) or M ∼= Sym(k) with k ≥ 9. Since M is a quotient
group of M and M is a direct product of isomorphic simple groups, M must be a direct
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1.2. THE DISTINGUISHING NUMBER OF A TRANSITIVE PERMUTATION GROUP

product of copies of Alt(k). Since m < k − 1, the stabilizer of ∆1 in M acts trivially on
∆1, and this contradicts with the transitivity of M .

If the action of H1 on ∆1 is large, then R = soc(N) is a subdirect product of k many
copies of Alt(m), so it is isomorphic to a direct product of, say, r copies of Alt(m) where
m ≥ 5 (by Proposition 1.2.4). Furthermore, since G acts transitively on Γ, the normal
subgroup R of G is in fact a minimal normal subgroup of G.

We claim that R ≤ M . Suppose otherwise. Then R ∩M = 1 implies that R is con-
tained in the centralizer C of M in Sym(Ω). Since M is transitive, C must be semiregular.
However R is not semiregular. Thus R ≤M .

In fact, R < M since M is transitive on Γ and R is not. Furthermore, since R, and
thus M , is a direct product of copies of Alt(m), we must have k ≥ m. By the fact that
M acts transitively on Γ, it also follows that M acts transitively on the set of r direct
factors of R. But every subnormal subgroup of M is also normal in M , which forces
r = 1 and so the linking factor of N is k.

By Lemma 1.2.5, d(G) ≤ 2 · d k
√
me · d m

√
d(K)e = 4 · d m

√
d(K)e. By the induction

hypothesis, d(K) ≤ 8 (in which case d(G) ≤ 8 by the previous inequality) or K is an
alternating or a symmetric group of degree k ≥ 9. But in the latter case Alt(m) ∼=
MN/N = Soc(K), so m = k (and d(K) ≤ m). Thus d m

√
d(K)e = 2 and so d(G) ≤ 8 by

Lemma 1.2.5.

Now we are ready to calculate the upper bound for the distinguishing number of
transitive permutation groups.

Theorem 1.2.8. Let G be a transitive permutation group of degree n > 1. Then n
√
|G| <

d(G) ≤ 24 n
√
|G|.

Proof. First suppose that G ≤ Sym(Ω) is a quasi-primitive permutation group. By
Lemma 1.2.6, we may assume that n = |Ω| ≥ 24 and Alt(Ω) ≤ G ≤ Sym(Ω). In this case
we have d(G) ≤ n < 24 n

√
n!/2 ≤ 24 n

√
|G| where the second inequality follows from the

fact that 1
2
(n/3)n < n!/2. Thus we may assume that G ≤ Sym(Ω) is not a quasi-primitive

permutation group.

Let M be a minimal normal subgroup in G which does not act transitively on Ω, so
M is isomorphic to a direct product of isomorphic simple groups. Let an orbit of M on
Ω be ∆, and let Γ be the set of orbits of M on Ω. Let the size of Γ be k and H be
the stabilizer of ∆ in G. As before, denote the distinguishing number of H acting on ∆
by d∆(H). Since M C H is transitive on ∆, Theorem 1.2.7 implies that d∆(H) ≤ 8 or
Alt(∆) ≤ H/CH(∆) ≤ Sym(∆).

Case 1. d∆(H) ≤ 8.

By Lemma 1.2.2, d(G) ≤ 8
⌈
m
√
d(K)

⌉
where K is the action of G on Γ and m = |∆|.

Since K is a transitive group on k points, by induction we have d(K) ≤ 24 k
√
|K|. If

m ≥ 8, then

d(G) ≤ 8
⌈
m
√
d(K)

⌉
≤ 8

⌈
m

√
24 k
√
|K|
⌉
≤ 16 m

√
24 k
√
|K| ≤ 24 n

√
|K| ≤ 24 n

√
|G|.

If m ≤ 7 then we can use the previous estimate with 8 replaced by m. Using that
2m m
√

24 < 24 for m ≤ 7 we get that d(G) ≤ 24 n
√
|G| .
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CHAPTER 1. THE DISTINGUISHING NUMBER OF A TRANSITIVE PERMUTATION GROUP

Case 2. Alt(∆) ≤ H/CH(∆) ≤ Sym(∆) with |∆| = m ≥ 9.

In this case the action of H on ∆ is large. Let the kernel of the action of G on Γ be
N with linking factor t. Since M ≤ N , we know that N 6= 1. Set ε = 1 if t = 1 and ε = 2
if t 6= 1. Then Lemma 1.2.5 implies that

d(G) ≤ 2d t
√
med m

√
d(K)e ≤ 4ε t

√
m m
√
d(K) = 4ε

mk
√
mmk/t m

√
d(K).

Set c = 4 · 21/mt · 31/t. By use of the inequality 1
2
(m/3)m < m!/2 = |Alt(m)|, we have

that d(G) is at most

4ε
mk
√
mmk/t m

√
d(K) < 4ε

mk

√
((m!/2) · 2 · 3m)k/t m

√
d(K) = c · ε n

√
(|Alt(m)|)k/t m

√
d(K).

As noted in Equation 1.1, we have that Alt(m)k/t ≤ N . This gives the inequality d(G) <
c · ε n

√
|N | m

√
d(K). By the induction hypothesis, we have d(K) ≤ 24 k

√
|K|. Thus

d(G) < c · ε m
√

24 n
√
|N | n
√
|K| ≤ 4 · ε · 21/9t31/t 9

√
24 n
√
|G| < 24 n

√
|G|.
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Chapter 2

The Base Size of Finite Permutation
Groups

2.1 The Concept of the Base

The concept of a base for a permutation group was first introduced by Sims [66] in the
1960s. Let G be a permutation group acting on a finite set Ω of size n. A subset (or an
ordered list) Σ of Ω is called a base for G if the pointwise stabilizer of Σ in G is trivial.

If g ∈ G then its action is uniquely determined by its action on a base. Assume not
and let there be another element h ∈ G that acts on the base the same way as g. Then
gh−1 fixes all the points of the base so it must be the identity element, that is, g = h. If
we can find a base with small size then we need less memory to store the elements of the
permutation group.

Let Σ = [x1, . . . , xb] be a base of G where the elements are denoted as an ordered
sequence. Let Gi be the pointwise stabilizer of [x1, . . . , xi] in G. A generating set S
for G with base Σ is called a strong generating set relative to Σ if 〈S ∩ Gi〉 = Gi for
0 ≤ i ≤ b. Bases and strong generating sets are used in many permutation group
theoretic algorithms [65], such as calculating the order, testing whether g ∈ G for some
g ∈ Sym(Ω), identifying the isomorphism type of a given simple group, choosing a random
element of G. The permutation group algorithms usually run faster if we have a small
base.

A base is minimal if no proper subset of it is a base and the base size of G on Ω,
denoted by b(G), is the cardinality of the smallest base for G. In general, a minimal base
is not necessarily the smallest one (which has the smallest size among all bases of the
group). For example, if G = Sym(3) acting on Ω = {1, 2, . . . , 9} where Ω1 = {1, 2, 3} and
Ω2 = {4, 5, . . . , 9} are the orbits of G such that G acts on Ω1 in the natural way and on
Ω2 in a regular way, then both {1, 2} and {4} are minimal bases for G.

If Σ = [x1, . . . , xb] is a base of G then G = G0 ≥ G1 ≥ G2 ≥ . . . ≥ Gb = 1 is
a chain of subgroups of G. If no base point is fixed by the stabiliser of the previous
points in the base, i.e. all the inclusions of the subgroup chain is strict, then the base is
called irredundant. Irredundancy may change with the reordering of the base elements.
For example, if G = {(1), (35)(46), (12)(3456), (12)(3654)} then both [1, 3] and [3] are
irredundant bases. But if we reorder the first base, [3, 1] is not an irredundant base
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CHAPTER 2. THE BASE SIZE OF FINITE PERMUTATION GROUPS

anymore. However if Σ is minimal then it is irredundant in any ordering.

Some straightforward examples are given below.

Example 2.1.1.

(1) A permutation group has base size 1 if and only if it has a regular orbit.

(2) If G ≤ Sym(Ω) is sharply k-transitive (i.e. for any two k-tuples of distinct elements
of Ω, there is a unique element in G mapping one to the other) then b(G) ≤ k since
the stabiliser of any k-tuple is trivial.

(3) The base sizes of Sym(Ω) and Alt(Ω) with their natural action on Ω are |Ω|−1 and
|Ω| − 2, respectively.

(4) Considering the natural action of G = GL(V ) on V , a set of vectors B ⊂ V is a
smallest base for G if and only if B is a basis of V in a linear algebraic sense.

Let Σ be a minimal base for G. If we color each point of Σ and the set Ω \ Σ with a
different color then we get a distinguishing partition. Therefore;

Proposition 2.1.2. d(G) ≤ b(G) + 1.

If Σ = [x1, . . . , xb] is a minimal base then |Gi : Gi+1| ≥ 2 for all i ∈ {1, . . . , b} since
Gi � Gi+1. Moreover, every element of G is uniquely determined by its action on the
base. Therefore we have the following bounds:

Proposition 2.1.3. 2b(G) ≤ |G| ≤ nb(G).

Let B be an irredundant base for G with size d. Then 2d ≤ |G| ≤ nb(G), and d ≤
b(G) log n (base of the logarithms is 2 unless otherwise stated).

We can find a base with using the greedy algorithm and approximate b(G). The
greedy algorithm of Blaha [8] says that always choose a base point αi ∈ Ω from a largest
orbit of Gi−1. The point is that, we want to reach the identity as soon as possible by the
chain of point stabilizers. He proved the following:

Theorem 2.1.4 (Blaha, [8, Theorem 4.4]). Let G be a permutation group with min-
imal base size b(G). Then any base found by the greedy algorithm has size at most
O(b(G) log log n).

Proof. Let H be a subgroup in G and let Σ be a smallest base for G on Ω, so |Σ| = b(G).
Denote Σ as an ordered b(G)-tuple [x1, . . . , xb(G)]. H acts on the set of b(G)-tuples of Ω
and the H-orbit of Σ is regular since Σ is a base for H. Assume that all the orbits of H
on Ω has size smaller than |H|1/b(G). Then the size of the orbit of Σ can not be as big as
the order of |H|. So H has an orbit of size at least |H|1/b(G). If α is an element from the
largest orbit of H, then by Orbit-Stabilizer theorem we get that |Hα||Oα| = |H| where
Oα is the orbit of α under the action of H. By the assumption, |Oα| ≥ |H|1/b(G) and so
|Hα| ≤ |H|1−1/b(G).

Now we use the greedy algorithm to choose b(G) log log n base points. Their stabilizer
has order at most
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2.1. THE CONCEPT OF THE BASE

|G|

(
1− 1

b(G)

)b(G) log logn

≤ (nb(G))e
− 1
b(G)

b(G) log logn

= (nb(G))
1

elog logn = n
b(G)
logn = 2b(G);

so if we choose b(G) more base points by any irredundant method completes a base.

Now, I would like to briefly mention the computational complexity of finding mini-
mum bases. In Computational Complexity Theory a problem is assigned to be in P if its
solution time is bounded by a polynomial time. So P class basically includes all the prob-
lems that can be solved by a reasonably fast program. NP stands for ’non-deterministic
polynomial time’. NP includes all the problems where checking whether a given solution
is really a solution takes a reasonable amount of time. A problem is called NP-hard if
an algorithm for solving it can be translated into one for solving any NP problem. If a
problem is both NP and NP-hard then it is called an NP-complete problem.

In 1972 Karp [43] gave a list of 21 problems which are NP-complete. One of these
problems is the ’exact cover problem’. Let X be a set and C be a collection of subsets of
X. An exact cover is a subcollection C ′ of C such that each element in X is contained
in exactly one subset in C ′. The exact cover problem is a decision problem to determine
whether an exact cover exists. If |X| = 3q and C is a collection of 3 element subsets of
X, then the exact cover problem is denoted by X3C.

Blaha [8] showed that the problem of finding b(G) for a permutation group G is NP-
hard. He proved that the corresponding decision problem, which is called the ’minimum
base problem’ and denoted by MB, is NP-complete. Let G be a subgroup of Sym(n)
given by generators and N ≤ n be a positive integer. MB asks whether there exists a
base for G of size no more than N .

Blaha reduced the problem of having an exact cover by three-sets to MB. First he
proved the NP-completeness of MB in cyclic groups in the following theorem:

Theorem 2.1.5 (Blaha [8, Theorem 3.1]). MB is NP-complete even if G is constrained
to be a cyclic group.

Proof. Let X be a set of cardinality 3q and C be a collection of three element subsets
of X where |C| = r. Assume without loss of generality that each x ∈ X is contained in
at least one c ∈ C. Let P = {p1, p2, . . . , p3q} be the set of the first 3q primes. Define
an injective map f : X → P . For c = {x, y, z} ∈ C let sc = f(x)f(y)f(z). Now let
n =

∑
c∈C sc and construct an element σ of Sym(n) with cycle decomposition consisting

of r disjoint cycles where there is a cycle of length sc for each c ∈ C. So an instance
of MB is created with G = 〈σ〉 and N = q. Prime number theorem implies that n is
O(r(q log q)3). Hence the reduction above is polynomial-time.

Let B = {b1, b2, . . . , bk} ⊆ [n] where bi is a point from the cycle with length sci and
k ≤ q. An element σt of G fixes bi if and only if sci divides t. Thus, σt pointwisely fixes
B if and only if s := lcm(sc1 , sc2 , . . . , sck)|t. So, the pointwise stabiliser of B is 〈σs〉. If
B is a base, then σs must be the identity element. Therefore, |G| must divide s. Since
each x ∈ X is contained in at least one c ∈ C, every prime from P divides a suitable sci .
This implies that |G| =

∏3q
i=1 pi. Since all sci are the product of exactly 3 primes, a base
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CHAPTER 2. THE BASE SIZE OF FINITE PERMUTATION GROUPS

of size k exists if and only if s =
∏3q

i=1 pi = |G|. s = |G| if and only if k = q and the sci
are relatively prime where 1 ≤ i ≤ k. The sci are relatively prime if and only if the three
element sets ci are disjoint. Therefore B = {b1, b2, . . . , bk} is a base for G with k ≤ q if
and only if k = q and the sets c1, c2, . . . , ck cover X.

In the above reduction if we increase 3q, the size of X3C, then the sizes of the orbits
of the cyclic group increases as well. To avoid the possibility that if the orbits of the
group are restricted then MB problem can be solved efficiently, Blaha shoved that MB is
still NP-complete for an elementary abelian group.

Theorem 2.1.6 (Blaha [8, Theorem 3.2]). MB is NP-complete even if G is constrained
to be an elementary abelian 2-group with orbits of size 8.

Finally, I give the following remark which states a relation between the base size on
the power set and the distinguishing number:

Remark 2.1.7. For the action of G on the power set P (Ω) of Ω we have bP (Ω)(G) =
dlog(d(G))e. More in general for the action of G on the set P q(Ω) of all partitions of Ω
into at most q parts, we have bP q(Ω)(G) =

⌈
logq(d(G))

⌉
.

2.2 The Base Size of Primitive Permutation Groups

In this chapter, I would like to briefly remind the discoveries that have been made about
the base sizes of primitive permutation groups. Pyber [58] showed that there exists
a universal constant c > 0 such that almost all subgroups G of Sym(n) satisfy that
b(G) > cn. So, if one wants to find a better upper bound on b(G), then restriction on G
is needed. Since the primitive permutation groups are the building blocks of every finite
permutation group, it is very natural to restrict our group as primitive.

Since the nineteenth century the minimal base size of primitive permutations groups
which are not containing the alternating group is widely studied. In 1889 Bochert [9]
showed that if G is a primitive permutation group of degree n not containing the alternat-
ing group then b(G) ≤ n/2. This bound was improved by Babai [3] to b(G) < 4

√
n log n

for uniprimitive (primitive but not doubly transitive) groups G, and to the estimate
b(G) < 2c

√
logn for a universal constant c > 0, for doubly transitive groups, in [4].

The bound for the doubly transitive primitive permutation groups was improved to
b(G) < c(log n)2 where c is a universal constant by Pyber [59]. These estimates are
elementary in the sense that their proofs do not require the Classification of Finite Sim-
ple Groups (CFSG). Using CFSG Liebeck [47] classified all primitive permutation groups
G of degree n with b(G) ≥ 9 log n.

Let G be an almost simple primitive permutation group. We say that G is standard
if either G has alternating socle Alt(m) and the action is on subsets or partitions of
{1, . . . ,m}, or G is a classical group acting on an orbit of subspaces (or pairs of subspaces
of complementary dimension) of the natural module. Otherwise G is said to be non-
standard. A well known conjecture of Cameron and Kantor [19] asserts that there exists
an absolute constant c such that b(G) ≤ c for all non-standard primitive permutation
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2.2. THE BASE SIZE OF PRIMITIVE PERMUTATION GROUPS

groups G. In case G has an alternating socle, this was established by Cameron and
Kantor [19]. Later in [18, p. 122] Cameron wrote that c can probably be taken to be 7,
and the only extreme case is the Mathieu group M24 in its natural action. He added that
perhaps, with finitely many exceptions, the correct bound is actually 5. The Cameron-
Kantor conjecture was proved by Liebeck and Shalev in [50], and Camerons’s bound of
7 was established in the series of papers [52], [54], [10], [12], [13], [11]. The proofs are
probabilistic and use bounds on fixed point ratios.

Let d be a fixed positive integer. Let Γd be the class of finite groups G such that G does
not have a composition factor isomorphic to an alternating group of degree greater than
d and no classical composition factor of rank greater than d. Babai, Cameron and Pálfy
[5] showed that if G ∈ Γd is a primitive permutation group of degree n, then |G| < nf(d)

for some function f(d) of d. Babai conjectured that there is a function g(d) such that
b(G) < g(d) whenever G is a primitive permutation group in Γd. Seress [63] proved this
for G a solvable primitive group by establishing the bound b(G) ≤ 4. Babai’s conjecture
was proved by Gluck, Seress, Shalev [31]. Later, Liebeck and Shalev [50] showed that in
Babai’s conjecture the function g(d) can be taken to be linear in d.

We have already seen that log |G|/ log n ≤ b(G) holds for any finite permutation group
G ≤ Sym(Ω) with n = |Ω|. It was asked by Pyber [58] that whether log |G|/ log n is the
right magnitude for b(G), at least if G is primitive. More precisely, he asked, whether
there exists a universal constant c > 0 such that

b(G) < c
log |G|
log n

for every finite primitive permutation group G of degree n. Here the primitivity
condition is needed. Assume not and let G = Z2wrZk with its natural action. G is a
transitive imprimitive group of degree 2k and b(G) = k = log |G| − log k. If it satisfies

the inequality above then log |G| − log k < c log |G|
log 2k

for some constant c. Since |G| = 2kk

we get the inequality log 2k log 2k < c log 2kk. Whatever is the constant c, there is always
a k which does not satisfy the inequality. Therefore for the conjecture the primitivity
condition is necessary.

Pyber’s conjecture is an essential generalization of the known upper bounds for b(G),
the weaker form of the Cameron-Kantor conjecture, and Babai’s conjecture.

In the past, Pyber’s conjecture has been verified for all non-affine primitive permu-
tation groups. For non-standard (almost simple) permutation groups Pyber’s conjecture
follows from the proof of the Cameron-Kantor conjecture, and for standard (almost sim-
ple) permutation groups Pyber’s conjecture was settled by Benbenishty in [7]. Primitive
permutation groups of diagonal type were treated by Gluck, Seress, Shalev [31, Remark
4.3] and Fawcett [27]. For primitive groups of product type and of twisted wreath product
type the conjecture was established by Burness and Seress [14]. From these results one
can deduce the general bound

b(G) < 45
log |G|
log n

for a non-affine primitive permutation group G of degree n.

In the next chapter we finish the proof of Pyber’s conjecture by showing that there
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CHAPTER 2. THE BASE SIZE OF FINITE PERMUTATION GROUPS

exists an absolute constant c such that

b(G) ≤ 45
log |G|
log n

+ c

holds for every finite primitive permutation group of affine type. Recently, Halasi,
Liebeck and Maróti [34] improved this result. They showed that 45 can be replaced by
2 for every finite primitive permutation group. Moreover, they also stated that 2 is the
best possible multiplicative constant.
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Chapter 3

Pyber’s Base Size Conjecture for
Groups of Affine Type

3.1 Introduction

A primitive permutation group of affine type G acting on a set Ω is defined to be a
primitive permutation group with a unique regular abelian normal subgroup V . V is
elementary abelian and regular, hence we can identify Ω with V . Denote the stabilizer
of the zero vector in G by H. The group H can be viewed as a subgroup of GL(V ) and
G = V oH ≤ AGL(V ). It is obvious that b(G) = bV (G) = bV (H) + 1.

For an affine primitive permutation group G = V oH, where (|H|, |V |) = 1, Pyber’s
conjecture was first established by Gluck and Magaard in [30] by showing that b(G) ≤ 95.
They investigated the regular orbits of H-modules. Halasi and Podoski decreased this
bound to 3 in [36] by showing that coprime linear groups have a base of size 2. Solvable
or more generally, p-solvable affine primitive permutation groups also satisfy Pyber’s
conjecture (where p is the prime divisor of the degree). In these cases, Seress [63] and
Halasi and Maróti [35] established the best possible bound; b(G) ≤ 4. Fawcett and
Praeger [28] proved Pyber’s conjecture for affine primitive permutation groups G = V oH
in case where H preserves a direct sum decomposition V = V1 ⊕ . . . ⊕ Vt and H is close
to a full wreath product GL(V1)wrL with L a permutation group of degree t satisfying
any of four given properties.

Since G is a primitive permutation group, H is maximal in G and acts irreducibly and
faithfully on V . The action of H on V may or may not preserve a non-trivial direct sum
decomposition of the vector space V . In the first case V is said to be an imprimitive H-
module, and in the latter case V is called a primitive H-module. We call H an imprimitive
linear group or a primitive linear group if V is imprimitive or primitive, respectively.

Liebeck and Shalev [52], [53] proved Pyber’s conjecture for the case where H is a prim-
itive linear group. They gave a characterization of primitive linear groups of unbounded
base size. (There is a similar characterization of primitive linear groups of large orders
due to Jaikin-Zapirain and Pyber [40, Proposition 5.7].) They calculated the folloving
bound for H where it acts on V primitively:

Theorem 3.1.1 (Liebeck, Shalev [52],[53]). There exists a universal constant c > 0 such

that if H acts primitively on V , then bV (H) ≤ max{18 log |H|
log |V | + 30, c}.
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CHAPTER 3. PYBER’S BASE SIZE CONJECTURE FOR GROUPS OF AFFINE TYPE

In this chapter, we complete the proof of Pyber’s conjecture by handling the case of
affine primitive permutation groups G = V o H where V is an imprimitive irreducible
FpH-module. Let V = ⊕ti=1Vi be a decomposition of V into a sum of subspaces Vi of V
that is preserved by the action of H. For every i with 1 ≤ i ≤ t, let Hi = NH(Vi) and let
Ki = Hi/CHi(Vi) ≤ GL(Vi) be the image of the restriction of Hi to Vi. The group H acts
transitively on the set Π = {V1, . . . , Vt} since it is irreducible on V . Let N be the kernel
of this action and let P be the image of H in Sym(Π). So N = ∩ti=1Hi and P ' H/N .

Lemma 3.1.2. If K1 is trivial, then bV (H) = dlog|V1| dΠ(P )e.

Proof. K1 = 1 implies that every orbit of H in ∪ti=1Vi contains exactly one element from
every subspace Vi. Thus we can define a one-to-one correspondence αij : Vi → Vj between
any pair of subspaces Vi and Vj such that αij(v) = h(v) for every v ∈ V and for every
h ∈ H satisfying h(Vi) = Vj.

Assume that b is a positive integer. Let ws = v
(1)
s + v

(2)
s + . . .+ v

(t)
s be vectors in V for

1 ≤ s ≤ b decomposed with respect to the direct sum decomposition V = ⊕ti=1Vi. Let ∼
be an equivalence relation on Π where Vi ∼ Vj if and only if (v

(i)
1 , . . . , v

(i)
b ) corresponds

to (v
(j)
1 , . . . , v

(j)
b ) under αij, i.e. αij(v

(i)
s ) = v

(j)
s for every 1 ≤ s ≤ b. The partition defined

by ∼ is a distinguishing partition for P on Π if and only if the set {w1, . . . , wb} is a base

for H on V . For any i, the number of different vectors of the form (v
(i)
1 , . . . , v

(i)
b ) with

entries from Vi is |V1|. So bV (H) is the smallest integer such that |V1|bV (H) is at least
dΠ(P ). Thus bV (H) = dlog|V1| dΠ(P )e.

In the proof above the transitivity of P is not needed. Hence it is also correct if P is
not transitive and Ki = 1 for all i ∈ {1, . . . , t}.

Now we find a bound for the base size of H where K1 is not trivial but has a bounded
base size on V1.

Theorem 3.1.3. Assume that bV1(K1) ≤ b for some constant b. Then we have

bV (H) ≤ b+ 1 + log 24 +
log |P |
log |V |

.

Proof. For every Ki choose a base {v(i)
1 , v

(i)
2 , . . . , v

(i)
b } ⊂ Vi where 1 ≤ i ≤ t. Let ws =∑t

i=1 v
(i)
s for every 1 ≤ s ≤ b and L = ∩sCH(ws). Hence L ∩Hi = CL(Vi) for every i. So

we can apply Lemma 3.1.2 for L, and we get bV (H) ≤ b + dlog|V1| dΠ(P )e. By Theorem

1.2.8 dΠ(P ) ≤ 24 t
√
|P |. Therefore

bV (H) ≤ b+ 1 + log|V1|(24 t
√
|P |) ≤ b+ 1 + log 24 +

log |P |
t log |V1|

= b+ 1 + log 24 +
log |P |
log |V |

.

Thus Pyber’s conjecture is valid if bV1(K1) is bounded. From now on we will focus on
the case where K1 doesn’t have a bounded base on V1. In the following section I explain
the tools that are going to be used later while examining this case.
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3.2. PRELIMINARIES

3.2 Preliminaries

After this point, it will be more useful for us to use group representation approach. So,
instead of considering H as a fixed subgroup of GL(V ), let it be a fixed abstract group
and let X : H → GL(V ) be a representation of H. With this method we can reduce the
problem of finding a suitable small base for H to some representations of H where X(H)
is easier to deal with.

The second modification is to extend the base field to consider vector spaces over Fq
where q is a p-power. We might need this to be able to use Theorem 1 of Liebeck and
Shalev [53], in which they gave the structure of primitive linear groups of unbounded
base size. Clearly, bV (X(H)) doesn’t depend on whether we view V as an Fp-space or
as an Fq-space. If V is a vector space over Fq, we use V (p) to denote V as an Fp vector
space.

Again we assume that V = ⊕ti=1Vi is a direct sum decomposition of V where Vi
are Fq-spaces for i ∈ {1, . . . , t}. Let X : H → GL(V ) be a representation of H where
X(H) permutes the set Π = {V1, . . . , Vt} transitively. Thus, the representation X is
equivalent to the induced representation IndHH1

(X1) where X1 : H1 → GL(V1) is a linear
representation of H1. The third modification is to generalize the concept of linear and
projective representations in order to make the reduction argument work.

Definition 3.2.1. Let V be a finite vector space over Fq and T ≤ GL(V ) any subgroup.
We say that a map X : H → GL(V ) is a (mod T )-representation of H if the following
two properties hold:

(1) X(g) normalizes T for every g ∈ H;

(2) X(gh)T = X(g)X(h)T for every g, h ∈ H.

Definition 3.2.2. Let T ≤ GL(V ) and X1, X2 : H → GL(V ) be two (mod T )-
representations of H. We say that X1 and X2 are (mod T )-equivalent if there is an
f ∈ NGL(V )(T ) such that X1(g)T = fX2(g)f−1T for all g ∈ G.

If X : H → GL(V ) is a (mod T )-representation, we define the corresponding base
size of H as the following

bX(H) := bV (X(H)T ). (3.1)

Equivalent (mod T )-representations have the same base size. In the special case
when H ≤ GL(V ) and X : H → GL(V ) is the inclusion map, then bV (H) ≤ bX(H)
holds.

For T = 1, a (mod T )-representation is the same as a linear representation.

Now let T = Z(GL(V )) ' F×q be the group of all scalar transformations on V .
Then a (mod T )-representation of H is the same as a projective representation of H.
Furthermore, in this case T -equivalence of two (mod T )-representations of H means that
they are projectively equivalent. Slightly more generally, if X : H → GL(V (p)) is any
map satisfying (1) of Definition 3.2.1 (still with the assumption that V is an Fq-space
and T ' F×q ), then X(h) acts on T by a field automorphism σ(h) ∈ Aut(Fq) for any
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CHAPTER 3. PYBER’S BASE SIZE CONJECTURE FOR GROUPS OF AFFINE TYPE

h ∈ H. So X(H) is contained in the semilinear group ΓL(V ) = GL(V )oAut(Fq). In the
following, we will also call such a (mod T )-representation X : H → ΓL(V ) a projective
representation. Furthermore, for any projective representation X : H → ΓL(V ), we
will denote the associated homomorphism H → PΓL(V ) by X (which we again call a
projective representation).

For the remainder, we consider the special case where V = ⊕ti=1Vi is a direct sum of
Fq-spaces, and

TV = {g ∈ GL(V )|g(Vi) = Vi and g|Vi ∈ Z(GL(Vi)) ∀1 ≤ i ≤ t} ' (F×q )t. (3.2)

If a direct sum decomposition of a vector space U is given, then TU will always denote
the appropriate subgroup defined by the above formula.

If q > 2 and X : H → GL(V ) is an arbitrary map, then X satisfies (1) of Definition
3.2.1 (with T = TV ) if and only if the direct sum decomposition V = ⊕ti=1Vi is preserved
by X(H). In particular, if X happens to be a linear representation of H preserving the
direct sum decomposition V = ⊕ti=1Vi , then X is also a (mod TV )-representation of H.

A further observation is that if X : H → GL(V (p)) is a (mod TV ) -representation,
then the restricted map Xi : Hi → GL(Vi) is a projective representation of Hi. (Here Xi is
defined so that first we take the restriction of X to Hi, then we restrict the action of X(Hi)
to Vi.) Conversely, if X1 : H1 → ΓL(V1) is any projective representation, then the induced
representation X = IndHH1

(X1) : H → GL(V (p)) will be a (mod TV )-representation of H
transitively permuting the Vi , and it is easy to see that every (mod TV )-representation
of H transitively permuting the Vi can be obtained in this way. Here the induced repre-
sentation X = IndHH1

(X1) can be defined with the help of a transversal in H to H1, so it
is not uniquely defined. However, it is uniquely defined up to (mod TV ) -equivalence, so
this will not be a problem for us.

So, for the remainder, we assume that the groups H1 ≤ H are fixed, and we consider
representations of the form X = IndHH1

(X1), where X1 : H1 → ΓL(V1) is a projective
representation of H1.

In the following two sections we consider two special cases, which we will respectively
call alternating-induced and classical-induced classes. Here alternating-induced means
that K1 = H1/CH1(V1) is isomorphic to an alternating or symmetric group, and V1 as
an FqK1-module is the deleted permutation module for K1. Similarly, classical-induced
means that K1 is a classical group (maybe over some subfield Fq0 ≤ Fq) with its natural
action on V1. Then in the last section of this chapter we show how the general case can
be reduced to one of these modules.

3.3 Alternating-induced Representations

In this section we only consider linear representations X : H → GL(V ) and Xi : Hi →
GL(Vi) such that X = IndHHi(Xi) for all i. We also assume that for all i with 1 ≤ i ≤ t,
the groups Ki = Xi(Hi) ≤ GL(Vi) are isomorphic to some alternating or symmetric
group of degree k where k is at least 7, and Ki acts on Vi such that, as an FqKi -module
(q is a power of p), Vi is isomorphic to the non-trivial irreducible component of the
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3.3. ALTERNATING-INDUCED REPRESENTATIONS

permutation module obtained from the natural permutation action of Ki on a fixed basis
of a vector space of dimension k over Fq. In this situation we say that V ' IndHH1

(V1)
is an alternating-induced FqH-module, and X : H → GL(V ) is an alternating-induced
representation.

In the following proposition we describe the construction of the module Vi . This is a
well-known construction (see [44, p. 185], for example).

Proposition 3.3.1. Let K ' Alt(k) or Sym(k) and consider its action on an Fq vector
space U of dimension k ≥ 5, defined by permuting the elements of a fixed basis {e1, . . . , ek}
of U . Let us define the subspaces

U0 =
{∑

i

αiei | αi ∈ Fq,
∑
i

αi = 0
}

and W =
{
α
(∑

i

ei
)
| α ∈ Fq

}
.

(1) If p - k, then U = U0 ⊕W , W is isomorphic to the trivial FqK-module and U0 is
the unique non-trivial irreducible component of the FqK-module U .

(2) If p|k, then U ≥ U0 ≥ W , both U/U0 and W are isomorphic to the trivial FqK-
module and U0/W is the unique non-trivial irreducible component of the FqK-
module U .

We can apply this proposition to each pair Ki , Vi to define FqKi -modules Ui and
their submodules Ui,0 and Wi such that either Vi ' Ui,0 (for p - k) or Vi ' Ui,0/Wi (for
p|k). Then the original action of H on V may be defined by using the action of H on

U := ⊕iUi. Moreover, if we choose a basis {e(i)
1 , . . . , e

(i)
k } ⊂ Ui for every i as in Proposition

3.3.1 in a suitable way, then {e(i)
j |1 ≤ i ≤ t, 1 ≤ j ≤ k} will be a basis of U such that H

acts on U by permuting the elements of this basis.

The next lemma says that bV (H) is bounded by a linear function of bU(H).

Lemma 3.3.2. With the above notation, bV (H) ≤ 2bU(H) + 3 for k ≥ 7.

Proof. First we define three vectors w1, w2, w3 ∈ U1.0⊕U2,0 . . .⊕Ut,0 as linear combinations

of {e(i)
j | 1 ≤ i ≤ t, 1 ≤ j ≤ k}, the basis vectors of U , as the following.

w1 =
t∑
i=1

(e
(i)
1 − e

(i)
2 ), w2 =

t∑
i=1

(e
(i)
2 − e

(i)
3 ), w3 =

t∑
i=1

(e
(i)
3 − e

(i)
4 ).

Let L = CH(w1, w2, w3) be the pointwise stabilizer of these three vectors in H. So

{e(i)
j | 1 ≤ i ≤ t} are L-invariant subsets for 1 ≤ j ≤ 4.

Let {u1, . . . , ub} ⊂ U be a base for H of size b = bU(H). Now, for any u ∈ {u1, . . . , ub},
we define two vectors ue, uf ∈ U1,0⊕U2,0⊕. . .⊕Ut,0 as the following. Write u =

∑
i,j aije

(i)
j

and define
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CHAPTER 3. PYBER’S BASE SIZE CONJECTURE FOR GROUPS OF AFFINE TYPE

ue =
∑
i

∑
j>2

aije
(i)
j +

∑
i

βie
(i)
1 , for βi = −

∑
j>2

aij,

uf =
∑
i

∑
j≤2

aije
(i)
j +

∑
i

γie
(i)
3 , for γi = −(ai1 + ai2).

The above definition of the βi and γi ensures that the projection of ue and uf

to any Ui is really in Ui,0. Furthermore, if l ∈ L fixes ue, then because of the L-
invariant subsets of the basis vectors that are mentioned above, we get that l must
fix both

∑
i βie

(i)
1 and

∑
i

∑
j>2 aije

(i)
j . Similarly, if l ∈ L fixes uf then it must fix both∑

i γie
(i)
3 and

∑
i

∑
j≤2 aije

(i)
j . As a consequence, every element of CL(ue, uf ) must also

fix
∑

i

∑
j>2 aije

(i)
j +

∑
i

∑
j≤2 aije

(i)
j = u. Applying this construction to u1, . . . , ub we get

that

{w1, w2, w3, u
e
1, u

f
1 , u

e
2, u

f
2 , . . . , u

e
b, u

f
b }

is a base of size 2b+ 3 for H acting on U1,0 ⊕ U2,0 ⊕ . . .⊕ Ut,0.

If p - k, since V ' U1,0 ⊕ . . .⊕ Ut,0 as FqH-modules, we are done.

Now assume that p|k and W = W1⊕. . .⊕Wt where Wi is the 1-dimensional submodule
of Ui,0 for all i with 1 ≤ i ≤ t. For any x ∈ U , let x̄ = x + W ∈ U/W be the associated
element of x in the factor space. We claim that

{w̄1, w̄2, w̄3, ū
e
1, ū

f
1 , ū

e
2, ū

f
2 , . . . , ū

e
b, ū

f
b }

is a base for H acting on (⊕iUi,0)/W ' V .

Let zi =
∑

j e
(i)
j for every 1 ≤ i ≤ t, so {z1, . . . , zt} is a basis for W . An element g ∈ H

fixes ws (where s ∈ {1, 2, 3}) if and only if there are field elements λ1, . . . , λt such that

g(ws) = ws +
∑

i λizi. But g permutes the basis vectors in {e(i)
j | 1 ≤ i ≤ t, 1 ≤ j ≤ k}

and also the subspaces {Ui,0 | 1 ≤ i ≤ t}. A consequence of this is that the projection of
g(ws) to any Ui,0 must be a non-zero linear combination of exactly two basis vectors from

{e(i)
j | 1 ≤ j ≤ k}. Since k ≥ 7, this can happen only if λi = 0 for every 1 ≤ i ≤ t, i.e.

when g fixes ws. So CH(ws) = CH(ws) for every s with 1 ≤ s ≤ 3. The same argument
can be applied to prove that CH(ufs ) = CH(ufs ) for every 1 ≤ s ≤ b.

Finally, let us assume that g ∈ CH(w1, w2, w3) = L and g(ues) = ues for some 1 ≤ s ≤ b.
Again this means that g(ues) = ues +

∑
i λizi for some field elements λ1, . . . , λt. But the

linear combination we used to define ues contains no e
(i)
2 with non-zero coefficient. In other

words ues is contained in the L-invariant subspace generated by {e(i)
j | j 6= 2, 1 ≤ i ≤ t},

so this must also hold for g(ues) = ues +
∑

i λizi, which implies that λi = 0 for every i, i.e.
CL(ues) = CL(ues) holds. We proved that

CH(w1, w2, w3, u
e
1, u

f
1 , . . . , u

e
b, u

f
b ) = CH(w1, w2, w3, u

e
1, u

f
1 , . . . , u

e
b, u

f
b ) = 1,

as claimed.

We can now prove Pyber’s conjecture for alternating-induced groups.
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3.4. CLASSICAL-INDUCED REPRESENTATIONS WITHOUT MULTIPLICITIES

Theorem 3.3.3. If H ≤ GL(V ) is an alternating-induced linear group, then

bV (H) ≤ 15 + 2
log |H|
log |V |

.

Proof. By definition, k ≥ 7. With using the same notation as above let H act on U by
permuting the basis B = {e(i)

j | 1 ≤ i ≤ t, 1 ≤ j ≤ k}. This action is clearly transitive, so
we can use Theorem 1.2.8 to conclude that we can color the basis vectors by using at most
24 kt
√
|H| colors such that only the identity of H fixes this coloring, i.e. dB(H) ≤ 24 kt

√
|H|.

Now any vector u ∈ U can be seen as a coloring of this basis by using at most |Fq| = q
colors. By Remark 2.1.7, it follows that

bU(H) ≤ dlogq(dB(H))e ≤ dlogq(24 kt
√
|H|)e < 6 +

log |H|
kt log q

= 6 +
log |H|
log |U |

.

By Lemma 3.3.2, bV (H) ≤ 2bU(H) + 3 ≤ 15 + 2(log |H|/ log |V |).

3.4 Classical-induced Representations without Mul-

tiplicities

In this subsection let q be a power of the prime p, V = ⊕ti=1Vi be a direct sum of Fq
vector spaces, and define TV as in Equation 3.2. Let k denote the Fq-dimension of each Vi.
Throughout this subsection we will assume that k ≥ 9 holds. We also use the notation
Hi, Π, N defined in Section 3.2.

Let X : H → GL(V (p)) be a (mod TV )-representation of H such that X(H)TV
acts on Π = {V1, . . . , Vt} in a transitive way. This means that X = IndHHi(Xi), where
Xi : Hi → ΓL(Vi) is a projective representation of Hi for every 1 ≤ i ≤ t. Then there is an
associated homomorphism X : H → NGL(V (p))(TV )/TV defined by X(h) := X(h)TV /TV .
For the remainder of this subsection let L = X(H) be the image of this homomorphism.
Note that the action of H on Π induces an action of L on Π.

In this subsection we additionally assume that X is classical-induced, i.e. for each
i, the image Ki of the homomorphism Xi : Hi → PΓL(Vi) is some classical group i.e.
Si = Soc(Ki) ≤ PΓL(Vi) is isomorphic to some simple classical group S over some subfield
Fq0 of Fq. Because of our assumption k ≥ 9, the group generated by all inner, diagonal
and field automorphisms of S (for the remainder, we denote this group by IDF(S)) has
index at most 2 in Aut(S).

For an H-block ∆ ⊆ Π let V∆ := ⊕Vi∈∆Vi, and X∆ : NH(∆) → GL(V∆(p)) be
the (mod TV∆

)-representation of NH(∆) defined by taking the restriction of X(h) to
V∆ for all h ∈ NH(∆). In particular, XΠ = X and X{Vi} = Xi holds for each Vi ∈ Π.
Moreover, let the associated homomorphism X∆ be X∆(h) := X∆(h)TV∆

/TV∆
. Define

L∆ = X∆(NH(∆)) and S∆ := Soc(X∆(CH(∆))) C L∆. If X∆(CH(∆)) = 1, then we set

S∆ = 1. Finally let S̃∆ ≤ NH(∆) be the inverse image of S∆ under the function X∆.

Then Xi is defined on S̃∆ for each Vi ∈ ∆ and it induces a homomorphism on S∆, which
we also denote by Xi : S∆ → PΓL(Vi).

The next defined condition will be our additional assumption in this subsection.
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Definition 3.4.1 (Multiplicity condition). If ∆ ⊆ Π is an H-block such that S∆ ' S
and all Xi : S∆ → PΓL(Vi) for Vi ∈ ∆ are projectively equivalent, then |∆| = 1.

A consequence of this assumption is the following.

Proposition 3.4.2. Suppose that X is classically-induced and let ∆ ⊆ Π be an H-block
such that S∆ ' S. If the multiplicity-free condition holds, then |∆| ≤ 2.

Proof. First note that ∆′ ⊂ ∆ is any H-block, then the assumption S∆ ' S implies that
S∆′ ' S. For simpler notation, let us assume that ∆ = {V1, . . . , Vd} for d = |∆|. By
assumption, S∆ is a diagonal subgroup of S1 × . . . × Sd ' Sd. So, S∆ can be identified
with {(s, sz2 , . . . , szd)| s ∈ S}, where z2, . . . , zd ∈ Aut(S) are fixed automorphisms. If
z−1
i zj ∈ IDF(S), then Xi : S∆ → PΓL(Vi) and Xj : S∆ → PΓL(Vj) are projectively

equivalent. The relation Vi ∼ Vj ⇐⇒ z−1
i zj ∈ IDF(S) defines an NH(∆)-congruence on

∆. Using that |Aut(S) : IDF(S)| ≤ 2 and the first sentence of the proof, we get that
there is an H-block ∆′ ⊂ ∆ such that |∆′| ≥ |∆|/2, S∆′ ' S and all Xi : S∆′ → PΓL(Vi)
for Vi ∈ ∆′ are projectively equivalent. Thus, the result follows from the multiplicity-free
condition.

For the rest of this section let ∆ ⊆ Π be an H-block. The group S∆ is either trivial
or is a subdirect product of isomorphic simple classical groups. As in Proposition 1.2.4,
this means that S∆ is a direct product of diagonal subgroups corresponding to a partition
∆ = ∪i∆i of ∆ into equal-size parts. Again, we call the size of the parts of this partition
the linking factor of S∆. Note that the ∆i themselves are H-blocks and S∆i

' S for
each i. Hence, by Proposition 3.4.2, the linking factor of S∆ is at most 2. As before, let
N = CH(Π) be the kernel of the action of H on Π.

Recall that X1 : H1 → ΓL(V1) and K1 = X1(H1). The base size of K1 is defined as in
the Equation 3.1. The following result is a consequence of the Theorem 3.1.1.

Theorem 3.4.3. With the above assumption, there exists a universal constant c > 0 such
that bX1(K1) ≤ 18 log |K1|

log |V1| + c.

Now we can prove Pyber’s conjecture for such classical-induced representations.

Theorem 3.4.4. There exists a universal constant c > 0 such that if X : H → GL(V )
is a (mod TV )-representation of H (with respect to some direct sum decomposition
V = ⊕ti=1Vi), which is a classical-induced representation possessing the multiplicity-free

condition, then bX(H) ≤ 45 log |H|
log |V | + c.

Proof. Suppose that X(N) 6= 1. Then Soc(X(N)) = SΠ for the H block Π, so Soc(X(N))
is a subdirect product of the simple classical groups Si with linking factor at most 2.
Thus |N | ≥ |S1|t/2 ≥ |K1|2t/5 (see [33, Page 18]). Therefore, by the Theorem 3.4.3 above,
we have the following

bX1(H1) = bX1(K1) ≤ 45
log |N |
log |V |

+ c.

By modifying the Theorem 3.1.3, we get bX(H) ≤ 45 log |H|
log |V | + c for another universal

constant c > 0.
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From now on we assume that X(N) = 1. This means that L = X(H) acts faithfully on
Π. Let M be a normal subgroup of H which strictly contains ker(X) such that X(M) is a
minimal normal subgroup of L and let ∆ be an orbit ofM on Π. LetM∆ := X∆(M) C L∆.
Notice that ∆ ⊆ Π is anH-block of size at least 2 andM∆ is a direct product of isomorphic
simple groups.

We first assume that S∆ 6= 1. Then S∆ is a subdirect product of the non-abelian,
isomorphic simple classical groups from the set {Si|Vi ∈ ∆}.

If M∆ centralizes S∆, then all Xi : S∆ → PΓL(Vi) for i ∈ ∆ are projectively equivalent
since M is transitive on ∆. This contradicts our multiplicity-free assumption. So we
assume that M∆ does not centralize S∆. Since both M∆ and S∆ are normal subgroups
in L∆, this implies that M∆ ∩ S∆ 6= 1. In particular M∆ and M∆ ∩ S∆ are isomorphic
to some powers of the (non-abelian) simple classical group S. Since M∆ is transitive
on ∆, we have that |∆| ≥ 5 and S∆ cannot contain a nontrivial, proper M∆-invariant
normal subgroup. But M∆∩S∆ 6= 1 is normal in both M∆ and S∆. Since any subnormal
subgroup of M∆ is normal in M∆, we get that S∆ is simple, so S∆ ' S has linking factor
|∆| ≥ 5. This contradicts with 3.4.2.

Now only the case where S∆ = 1 is left. Then L∆ and M∆ act faithfully and
transitively on ∆. Moreover M∆ is a normal subgroup of L∆ and it is isomorphic
to a direct product of isomorphic simple groups. By Theorem 1.2.7 d∆(L∆) ≤ 8 or
Alt(∆) ≤ L∆ ≤ Sym(∆).

If d∆ ≤ 9, then by Remark 2.1.7 bP (∆)(L∆) ≤ 3, and so bV∆
(L∆) ≤ 3 (any subset of ∆

can be represented by a vector in V∆ whose projection to Vi ∈ ∆ is non-zero if and only
if Vi is an element of the subset). Thus, bX∆

(NH(∆)) ≤ bV∆
(L∆) + bV∆

(TV∆
) ≤ 4. If we

apply Theorem 3.1.3 for V∆ instead of V1 we get the following

bX(H) ≤ bX∆
(NH(∆)) + 1 + log 24 +

log |P |
log |V |

≤ log |H|
log |V |

+ 10.

If d∆(L∆) > 9, then m := |∆| ≥ 9 and Alt(∆) ≤ L∆ ≤ Sym(∆). In this case for
any Vi ∈ ∆, either X∆(Hi) ' Alt([m − 1]) or X∆(Hi) ' Sym([m − 1]) must hold. But
this is a contradiction since Si is composition factor of X∆(Hi) ant it is a simple classical
group.

3.5 Eliminating Small Tensor Product Factors From

the Ki

In this section we will reduce the affine case to the case where each Ki acts on Vi either
as a big classical group (possibly over a field extension Fq of Fp) or as an alternating
or symmetric group on the non-trivial irreducible component of its natural permutation
module. So we will reduce the affine case to the case where the action of H is alternating-
induced or multiplicity-free classical-induced. This will close the affine case since bounds
for these types were proven in the previous two subsections.

Lemma 3.5.1. Let L be a finite group and let W be a faithful, finite-dimensional L-
module. For a positive integer l. let V be the direct sum of l copies of the L-module W .
Then bV (L) = dbW (L)/le.
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CHAPTER 3. PYBER’S BASE SIZE CONJECTURE FOR GROUPS OF AFFINE TYPE

Proof. Let b′ := bW (L) and {x1, x2, . . . , xb′} ⊂ W be a minimal base for L with respect
to its action on W . Set b := db′/le and denote the vectors

y1 = (x1, x2, . . . , xl), y2 = (xl+1, xl+2, . . . , x2l), . . . , yb = (x(b−1)l+1, . . . , xb′ , 0, . . . , 0) ∈ V.

The set {y1, y2, . . . , yb} is a minimal base for L on V .

We now consider the case where the projective representation X1 : H1 → ΓL(V1)
preserves a proper tensor product decomposition V1 = U1 ⊗W1 over Fq where U1 and
W1 are Fq vector spaces and 2 ≤ l := dimFq(U1) ≤ dimFq(W1). Using that H transitively
permutes the subspaces V1, . . . , Vt, it follows that each Xi : Hi → ΓL(Vi) preserves a
corresponding tensor product decomposition Vi = Ui ⊗Wi.

By taking the composition of Xi with the projection map to Wi, one can define new
projective representations Yi : Hi → ΓL(Wi). Let Y : H → GL(W (p)) be the induced
representation Y = IndHH1

(Y1), where W can be identified with W1⊕ . . .⊕Wt. The key to
our reduction argument is the following lemma, which gives an upper bound for bX(H)
in terms of bY (H).

Lemma 3.5.2. With the above notation we have bX(H) ≤ dbY (H)/le+ 4.

Proof. We use the construction of Liebeck and Shalev (see the proof of [51, Lemma 3.3]).

For each 1 ≤ i ≤ t there exist three vectors v
(i)
1 , v

(i)
2 , v

(i)
3 ∈ Vi such that

CGL(Ui)⊗GL(Wi)(v
(i)
1 , v

(i)
2 , v

(i)
3 ) ≤ idUi ⊗GL(Wi).

Additionally, for some generator α of F×q and for each 1 ≤ i ≤ t, let v
(i)
4 = αv

(i)
1 . Let

vj =
∑t

i=1 v
(i)
j for j ∈ {1, 2, 3, 4} and L := CH(v1, v2, v3, v4). The choice of v

(i)
1 and v

(i)
4

guarantees that Xi(L∩Hi) ⊂ GL(Ui)⊗GL(Wi) for each i. So, by the displayed formula
above Xi(L∩Hi) ⊂ idUi ⊗GL(Wi). Therefore, the restriction map Xi : L∩Hi → ΓL(Vi)
is projectively equivalent to an l = dimFq Ui multiple of Yi : L ∩Hi → ΓL(Wi).

Let ∆1, . . . ,∆s ⊂ Π be the orbits of L on Π, V∆j
= ⊕Vi∈∆j

Vi and W∆j
= ⊕Vi∈∆j

Wi

for every 1 ≤ i ≤ s. Then V∆j
’s are X(L)-invariant, meaning that X = ⊕sj=1X∆j

on
L, where the (mod TV∆j

)-representation X∆j
: L → GL(V∆j

(p)) is defined by taking

the restriction of X(L) to V∆j
. We can similarly define the (mod TW∆j

)-representations

Y∆j
: L → GL(W∆j

(p)) and establish the decomposition Y = ⊕sj=1Y∆j
on L. This

means that if Vα ∈ ∆j is arbitrary, then X∆j
= IndLL∩Hα(Xα) and Y∆j

= IndLL∩Hα(Yα).
Since Xα on L is projectively equivalent to the l multiple of Yα on L, and induction of
representations preserves multiplicity, we get that X∆j

is (mod TV )-equivalent to the l
multiple of Y∆j

on L for every 1 ≤ j ≤ s. So, X = ⊕sj=1X∆j
is (mod TV )-equivalent

to the l multiple of Y on L. By Lemma 3.5.1, we get that bX(L) = dbY (L)/le. Since
bX(H) ≤ bX(L) + 4 and bY (L) ≤ bY (H) hold trivially, the result follows.

Corollary 3.5.3. With the same notation, if bY (H) ≤ c1 · log |H|
log |W | + c2 for some constants

c1 and c2 ≥ 10, then bX(H) ≤ c1 · log |H|
log |V | + c2.

Proof. By Lemma 3.5.2 and by the assumption

bX(H) ≤
⌈
bY (H)

l

⌉
+ 4 ≤ c1

log |H|
l log |W |

+
c2

l
+ 5 ≤ c1

log |H|
log |V |

+ c2.
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3.5. ELIMINATING SMALL TENSOR PRODUCT FACTORS FROM THE KI

Since Theorem 3.1.3 gives a bound for the base size where K1 ≤ GL(V1) ' GL(k, p)
has a bounded base, K1 is a primitive irreducible linear group with unbounded base size.

Primitive groups of unbounded base size were characterized by Liebeck and Shalev in
[52, Theorem 1, Proposition 2]. In the following, we collect some of these properties in a
form which will be most convenient for our use. In these papers, the authors stated their
theorems in terms of a tensor product of several linear groups, but for our purpose it is
better to pack together all but the one with the largest dimension.

We use some notation which are mostly taken from [32]. Let U = Uk(p) be a vector
space of dimension k over Fp. Let H ≤ GL(Uk(p)) be a primitive linear group. Let q = pf

be the largest power of p such that one can extend scalar multiplication on U to be an
Fq-vector space U = Uk/f (q) such that H ≤ ΓL(Uk/f (q)) ≤ GL(Uk(p)).

If Fq0 is a subfield of Fq, then Cl(r, q0) ≤ GL(Uk(p)) denotes a classical linear group
over Fq0 for some subfield Fq0 ≤ Fq and for some r ≥ 9. (This lower bound on r is
assumed because we want to apply the result of Section 3.4.)

Theorem 3.5.4 (Liebeck, Shalev [51],[53]). Let H ≤ GL(Uk(p)) be a primitive lin-
ear group of unbounded base size and q = pf be maximal such that H ≤ ΓL(Uk/f (q)).
Then there is a tensor product decomposition U = U1 ⊗ U2 over Fq such that 1 ≤
dim(U1) < dim(U2) and H preserves this tensor product decomposition, that is, H ≤
NΓL(Uk/f (q))(GL(U1) ⊗ GL(U2)). Let H0 = GL(Uk/f (q)) ∩H and let H0

2 be the image of

the projection of H0 to GL(U2), that is H0
2 := {b ∈ GL(U2) | ∃a ∈ GL(U1) : a⊗ b ∈ H0}.

Then one of the following holds.

(1) H0
2 ' Sym(m)×F×q or Alt(m)×F×q for some m such that U2 is the unique non-trivial

irreducible component of the natural m-dimensional permutation representation of
Sym(m). In that case dimFq(U2) = m− 1 unless p|m, when dimFq(U2) = m− 2.

(2) H0
2 is a classical group Cl(r, q0) ≤ GL(r, q) over some subfield Fq0 ≤ Fq, where

r = dimFq(U2).

Now we apply this theorem to Ki ≤ GL(Vi) where 1 ≤ i ≤ t. We can extend
scalar multiplication on each Vi to become an Fq-vector space for some q = pf to get
a tensor product decomposition Vi = Vi,1 ⊗ Vi,2 satisfying the statements of Theorem
3.5.4. In this way, V = Vs(q) becomes a vector space over Fq (where sf = dimFp(V )) and
X : H → GL(V (p)) is a (mod TV )-representation of H with TV ' F×q .

Now we can prove Pyber’s conjecture for affine groups. The following theorem proves
a more general statement for (mod TV )-representations. To get the original statement,
take an irreducible imprimitive linear group H ≤ GL(V ) with the identity.

Theorem 3.5.5. There exists an absolute constant c ≥ 10 such that if X : H →
GL(V (p)) is a (mod TV )-representation of H (with respect to some direct sum decompo-
sition V = ⊕ti=1Vi) induced from a primitive projective representation X1 : H1 → ΓL(V1),
then

bX(H) ≤ 45
log |H|
log |V |

+ c.

Proof. By Theorem 3.1.1, we may assume that V is an imprimitive X(H)TV -module, i.e.
t > 1.
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We use induction on the dimension of V1. Note that if dim(Vi) is bounded (or, more
generally, if bX1(H1) is bounded), then the result follows from Theorem 3.1.3.

By our assumption, X1(H1)Z(GL(V1)) ≤ ΓL(V1) is a primitive semilinear group, so
Theorem 3.5.4 can be applied. Thus, an Fq vector space structure can be defined on
each Vi (where Fq is a (not necessarily proper) field extension of the base field of Vi) such
that there is a tensor product decomposition Vi = Ui ⊗Wi over Fq preserved by Xi(Hi).
Furthermore, l := dimFq(Ui) < dimFq(Wi).

First let us assume that the tensor product decomposition Vi = Ui⊗Wi is proper, i.e.
l ≥ 2. Let Yi : Hi → ΓL(Wi) be the projective representation and Y : H → GL(W (p)) be
the (mod TW )-representation for W = ⊕ti=1Wi defined in the paragraph before Lemma

3.5.2, so Y = IndHH1
(Y1). By induction, bY (H) ≤ 45 log |H|

log |W | + c for some constant c ≥ 10,
so the result follows by Corollary 3.5.3.

So we can assume that l = 1. We can also assume that dimFq Vi ≥ 9 by the second
paragraph of this proof.

If X1(H1)Z(GL(V1)) satisfies part (1) of Theorem 3.5.4, then there is a (trivial) ten-
sor product decomposition V1 = U1 ⊗W1 with dimFq U1 = 1 fixed by X1(H1) and maps
λ1 : H1 → GL(U1) ' F×q and X ′1 : H1 → GL(W1) such that X ′1 is a linear represen-

tation of H1 and X ′1(H1) ' Sym(m) or Alt(m). This means X ′ = IndHH1
(X ′1) : H →

GL(W ) is an alternating-induced representation (where W = ⊕ti=1Wi), so bX′(H) ≤
2(log |H|/ log |W |) + 15 by Theorem 3.3.3. Finally, bX(H) ≤ bX′(H) by Lemma 3.5.2 and
|W | = |V |, so bX(H) ≤ 2(log |H|/ log |V |) + 19 and we are done.

From now on, we may assume that X1(H1)Z(GL(V1)) satisfies the second part of
Theorem 3.5.4, where X is classical induced. In order to use Theorem 3.4.4, we should
reduce it to satisfy the multiplicity-free condition. For this let ∆ ⊂ Π be a maximal
H-block violating the multiplicity free condition, i.e. |∆| ≥ 2, S∆ ' S and the repre-

sentations Xi : S̃∆ → ΓL(Vi) for Vi ∈ ∆ are all projectively equivalent. To simplify the
notation, we may assume that ∆ = {V1, V2, . . . , Vs} with s = |∆| > 1 and k = dimV1. Let
X∆ : NH(∆)→ GL(V∆(p)) be the (mod TV∆

)-representation defined by the restriction of
X (where TV∆

is defined by the decomposition V∆ = ⊕Vi∈∆Vi). Then X = IndHNH(∆)(X∆).

Let U∆ be an s-dimensional vector space over Fq with fixed basis f1, . . . , fs and let
W∆ be a k-dimensional vector space over Fq with fixed basis e1, . . . , ek. Furthermore, let
{b1, . . . , bk} be a basis of V1. By assumption, for each 2 ≤ i ≤ s there are isomorphisms

ϕi : V1 → Vi and scalar maps λi : S̃∆ → F×q such that Xi(h) = λi(h)ϕiX1(h)ϕ−1
i for every

h ∈ S̃∆. We also define ϕ1 : idV1 and λ1 : S̃∆ → {1}. Now, {ϕi(bj)|1 ≤ i ≤ s, 1 ≤ j ≤ k} is
a basis of V∆. Let Φ : V∆ → U∆⊗W∆ be the isomorphism defined by Φ(ϕi(bj)) := fi⊗ej.
By identifying V∆ and U∆ ⊗W∆ via Φ, we get that for any h ∈ S̃∆, the matrix form of
X∆(h) with respect to the basis {f1 ⊗ e1, f1 ⊗ e2, . . . , fs ⊗ ek} is the Kronecker product
of matrices D(h) ⊗ A(h) where is the matrix form of X1(h) with respect to the basis
{b1, . . . , bk} while D(h) is the diagonal matrix with entries λ1(h), . . . , λs(h) in its main

diagonal. Since X∆(S̃∆) is normalized by X∆(NH(∆)), we can apply [44, Lemma 4.4.3(ii)]
to see that X∆(NH(∆)) is contained in the Kronecker product of a group of monomial
matrices and a group of matrices isomorphic to some classical group.

This means that we have a tensor product decomposition V∆ = U∆ ⊗W∆ preserved
by X∆(NH(∆)). Taking the composition of X∆ with the projections to the factors of
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3.5. ELIMINATING SMALL TENSOR PRODUCT FACTORS FROM THE KI

this tensor product decomposition, we can define the maps Y∆ : NH(∆)→ GL(U∆) and
Z∆ : NH(∆) → ΓL(W∆) such that Y∆(NH(∆)) consists of monomial matrices, while
Z∆(NH(∆)) is some classical group (modulo the group of scalar transformations). Then
we can induce these representations to H to get the monomial representation (with
transitive permutation part) Y = IndHNH(∆)(Y∆) and classical-induced representation

Z = IndHNH(∆)(Z∆). Note that Z satisfies the multiplicity-free condition by the maxi-
mality of ∆. Furthermore, let U := ⊕iU∆i

, W := ⊕iW∆i
, where {∆ = ∆1, . . . ,∆t/|∆|} is

the orbit of ∆ under the action of H on the power set of Π. Thus, Y : H → GL(U(p))
and Z : H → GL(W (p)).

If dimU∆1 ≥ dimW∆1 , then bY (H) ≤ log |H|
log |U | + 10 by Theorem 3.1.3 where b = 1, so

we get bX(H) ≤ log |H|
log |V | + 10 by Corollary 3.5.3.

Similarly, if dimU∆1 ≤ dimW∆1 , then Z : H → GL(W (p)) is multiplicity-free
classical-induced representation, so Theorem 3.4.4 can be applied to conclude that bZ(H) ≤
45 log |H|

log |W | + c for a suitable constant c ≥ 10. Using Corollary 3.5.3 again, we get that

bX(H) ≤ 45 log |H|
log |V | + c holds.
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Chapter 4

Random Bases For Coprime Linear
Groups

4.1 Introduction

Let V be a finite vector space. A linear group G ≤ GL(V ) is called coprime if (|G|, |V |) =
1. Gluck and Magaard [30] proved that if G is a coprime linear group then b(G) ≤ 94.
In [36] Halasi and Podoski improved this result by showing that the minimal base size
of a coprime linear group is bounded by 2 and moreover this bound is sharp. Burness,
Liebeck and Shalev [12] proved that if G is a finite almost simple group in a primitive
faithful non-standard action then b(G) ≤ 7 (with equality if and only if G is a Mathieu
group M24 in its natural action of degree 24). Moreover, they showed that if G is a finite
almost simple group, and Ω is a primitive non-standard G-set then the probability that
a random 6-tuple in Ω is a base for G tends to 1 as |Ω| → ∞. Based on this random base
result and the bound estimated by Halasi and Podoski, Pyber [60] asked the following
question: If G ≤ GL(V ) is a coprime linear group, is there an absolute constant c such
that the probability of a random c-tuple in V being a base for G tends to 1 as |V | → ∞.

In our joint paper with Halasi and Podoski * we answered this question affirmatively
by showing that if G is a coprime primitive linear group then the probability that a
random 11-tuple in V is a base for G tends to 1 as |V | → ∞. In this chapter we deal
with this question and our answer to it.

For any positive integer c let us define the probability

Pb(c,G, V ) := P (random v1, . . . , vc ∈ V is a base for G).

Remark 4.1.1. Let V be an n-dimensional vector space over the finite field Fq.

(1) Let Z = Z(GL(V )) ' F×q denote the group of scalar transformations on V . If
G ≤ GL(V ) is a coprime linear group on V , then so is GZ ≥ G and we have
Pb(c,G, V ) ≥ Pb(c,GZ, V ). Therefore, for the rest of this paper we will always
assume that G contains Z.

(2) The assumption “primitive” is necessary here. To see this, let H ≤ GL(n, q) be
the group of all invertible diagonal matrices, so H ' (F×q )n. Then v1, . . . , vc ∈ Fnq
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CHAPTER 4. RANDOM BASES FOR COPRIME LINEAR GROUPS

is a base for H if and only if for each 1 ≤ i ≤ n the i-th component of some vj is
non-zero. For any fixed i, this has probability (1− 1/qc), so we have

Pb(c,H,Fnq ) =
(

1− 1

qc

)n
,

which is close to zero for any fixed c and big enough n. If (q, n) = 1, then one can add
the regular permutation action of Cn on the components of Fnq to get the coprime
irreducible linear group G = HoCn ≤ GL(n, q) satisfying limn→∞ Pb(c,G,Fnq ) = 0.

4.2 Bounds on Pb(c,G, V ) in Terms of Supports and

Character Ratios

Definition 4.2.1. For a linear group G ≤ GL(V ) and a g ∈ G the fixed-point space and
the support of g are defined as

Fix(g) := {v ∈ V | g(v) = v} and Supp(g) := dim(V )− dim(Fix(g)).

Furthermore, let the minimum support of G be defined as

MinSupp(G) := min
16=g∈G

Supp(g).

We use the notation FixV (g), SuppV (g) and MinSuppV (G) if we also want to highlight
the vector space on which the group acts.

Let Z = Z(GL(V )) ' F×q denote the group of scalar transformations on V .

Remark 4.2.2. If G strictly contains Z, then MinSupp(G) equals

min
g∈G\Z

(
dim(V )−max

λ∈F×q
(dim(ker(g − λ · idV )))

)
.

In order to get bounds for MinSuppV (G) in case of G ≤ GL(V ) is a quasisimple
coprime linear group, we will use results from character ratios of complex irreducible
characters of such groups.

Definition 4.2.3. For a finite group G and χ ∈ Irr(G) with χ(1) 6= 1 let us define the
maximal character ratios

mr(G,χ) := max
g/∈Z(χ)

|χ(g)|
χ(1)

and mr(G) := max
χ∈Irr(G), χ(1)6=1

mr(G,χ).

Clearly, mr(G) < 1 for every finite group G.

The connection between minimal support and maximal character ratio is described in
the following Lemma.
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Lemma 4.2.4. Let V be an n-dimensional vector space over the finite field Fq and let
G ≤ GL(V ) be a non-Abelian coprime irreducible linear group. Then we have

MinSuppV (G) ≥ dim(V )

2

(
1−mr(G)

)
.

Moreover, if χ ∈ Irr(G) is any irreducible component of the Brauer character associ-
ated to V , then

MinSuppV (G) ≥ 1

2

(
χ(1)− max

g/∈Z(χ)
|χ(g)|

)
.

Proof. Let Fq be the algebraic closure of Fq and let V = V ⊗ Fq be the FqG-module
arising from the FqG-module V . Let V = V1 ⊕ . . . ⊕ Vt be the decomposition of V into
irreducible FqG-modules. Then the corresponding representations G 7→ GL(Vi) form a
single Galois conjugacy class by [38, Theorem 9.21], so SuppVi(g) = 1

t
SuppV (g) holds for

every g ∈ G. Let χi : G 7→ C be the irreducible Brauer character associated to Vi for each
1 ≤ i ≤ t. Since (q, |G|) = 1, we get χi ∈ Irr(G) by [38, Theorem 15.13]. Furthermore,

χi(1) = dim(Vi) and [χi〈g〉, 1〈g〉] = dim(FixVi(g)).

For any g ∈ G we have χ1(g) = (χ1(1)−k) ·1 + ε1 + . . .+ εk where k = SuppV1
(g) and

ε1, . . . , εk are o(g)-th root of unity. Then |χ1(g)| ≥ χ1(1)−2k = χ1(1)−2 SuppV1
(g) holds,

so 2 MinSuppV1
(G) ≥ χ1(1) − maxg/∈Z(χ1) |χ1(g)|. (Note that the assumption that G is

non-Abelian implies that the χi are non-linear characters. Furthemore, if 1 6= g ∈ Z(χ1),
then SuppV (g) = dim(V ), so MinSuppV (G) = ming/∈Z(χ1) SuppV (g) must hold.) It follows
that

2 MinSuppV (G) = 2tMinSuppV1
(G) ≥ t(χ1(1)− max

g/∈Z(χ1)
|χ1(g)|)

= tχ1(1)(1−mr(G,χ1)) ≥ dim(V )(1−mr(G)).

Now, the first inequality proves the second claim, while the second inequality proves
the first claim.

Lemma 4.2.5.

Pb(c,G, V ) ≥ 1−
∑

16=g∈G

1

qc·Supp(g)
≥ 1− |G|

qc·MinSupp(G)
≥ 1− 1

|V |c(1−mr(G))/2−2
.

In particular, Pb(c,G, V ) ≥ 1− 1
|V |ε for c ≥ 4+2ε

1−mr(G)
.

Proof.

P ({v1, . . . , vc} ⊆ V is not a base for G) ≤
∑

16=g∈G

P (g(vi) = vi, ∀ 1 ≤ i ≤ c)

=
∑

16=g∈G

(
|Fix(g)|
|V |

)c
=
∑

16=g∈G

1

qc·Supp(g)
≤ |G|
qc·MinSupp(G)

≤ |V |2

(qn)c(1−mr(G))/2
=

1

|V |c(1−mr(G))/2−2
,

and the claim follows.
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4.3 Bounds for Character Ratios and for Minimal

Supports of Quasisimple Linear Groups

The goal of this section is to give lower bounds for minimal supports of coprime qua-
sisimple groups G ≤ GL(V ) in terms of |G| and dim(V ).

First we handle the case when G is a sporadic group or a finite quasisimple group of
Lie type. For such groups, we use bounds for their maximal character ratios mr(G).

Theorem 4.3.1. Let G be a finite quasisimple group such that G/Z(G) is not an alter-
nating group.

(1) If G/Z(G) is a sporadic simple group, then mr(G) < 0.54.

(2) If G = G(r) is a finite quasisimple group of Lie type over the field Fr, then

mr(G) ≤

{
max

(
1√
r−1

, 9
r

)
if r > 9;

19
20

if r ≤ 9.

Proof. We checked part (1) for the covering groups of the sporadic simple groups by using
the GAP [68] Character table library and also the undeposited GAP package FUtil to
turn cyclotomic complex numbers into floating ones in order to be able to compare the
values of |χ(g)| for various g and χ.

Regarding part (2), it is a simplified version of a result of Gluck [29]. (For a summary
of his results, see also [48, Theorem 2.4]).

Remark 4.3.2. For simple groups of alternating type there is no general upper bound
for mr(G) smaller than 1. Moreover it can be shown that for every ε > 0, the number of
irreducible characters χ ∈ Irr(Sm) (or χ ∈ Irr(Am)) satisfying mr(Sm, χ) > 1 − ε is not
bounded if m is large enough.

Corollary 4.3.3. Let V be a vector space over the finite field Fq and let G = Z · G0 ≤
GL(V ) where G0 is a coprime quasisimple irreducible linear group which is not of alter-
nating type. Then MinSuppV (G) ≥ 1

40
dim(V ).

Proof. By Theorem 4.3.1, we have mr(G) = mr(G0) ≤ 19
20

, so the claim follows from
Lemma 4.2.4.

Now, we handle the case when Soc(G/Z(G)) is an alternating group.

Theorem 4.3.4. Let G = Sm and χ = χ(λ) ∈ Irr(G) corresponding to the partition
λ = (λ1 ≥ . . . ≥ λk) of [m]. Then χλ(1)− χλ((123)) ≥ 1

m−1
χλ(1) unless

λ ∈ {(m); (1, . . . , 1)}.

Proof. First, we introduce some notation. Let λ = (λ1 ≥ . . . ≥ λk) be a partition of m,
different from the two exceptional ones given in the theorem. For any natural numbers
i1, . . . , ik let χλ−{i1,...,ik} be the character of Sm−k corresponding to the Young diagram
obtained from the diagram of λ by deleting the last cells of the i1-th,. . . ,ik-th row in
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that order with the assumption that λ − {i1, . . . , is} is a valid Young diagram for each
1 ≤ s ≤ k. Otherwise, we define χλ−{i1,...,ik} as the constant zero function on Sm−k.

By the Murnaghan-Nakayama rule (see [41, 21.1]),

χλ((123)) ≤
∑

ν∈{λ−rh(3)}

χν(1) +
∑

ν∈{λ−rh(1,1,1)}

χν(1)

=
∑

ν∈{λ−rh(3)}

χν(1) +
∑

ν∈{λ−rh(3)}

χν(1)

where {λ − rh(∗)} denotes the set of partitions of m − 3 which we can get from the
Young-diagram of λ be removing a rim 3-hook of type (∗) such that the remaining cells
form a valid Young diagram.

On the other hand, by using the branching rule (three times) one gets

χλ(1) =
∑
i,j,k

χλ−{i,j,k}(1).

Let ν ∈ {λ − rh(3)}. Then ν = λ − {i, i, i} for some (unique) i. Now, there is a
j 6= i such that τ = λ−{i, i, j} is a valid Young diagram. Then both induced characters
(χτ )Sm−2 and (χν)Sm−2 contain χλ−{i,i} as a component which results χν(1) ≤ χλ−{i,i}(1) ≤
(m− 2)χτ (1). The same argument can be applied to any ν ∈ {λ− rh(3)}. It follows that

χλ(1) ≥
∑
i

χλ−{i,i,i}(1)
(

1 +
1

m− 2

)
+
∑
i

χλ−{i,i,i}(1)
(

1 +
1

m− 2

)
≥ m− 1

m− 2
χλ((123)).

Hence χλ(1)− χλ((123)) ≥ 1
m−1

χλ(1) which proves the claim.

This result will be adequate for our purposes only if the degree of χ is large enough.
In order to get an overall picture about the form of Young diagrams defining characters of
small degree, we will use a result of Rasala [61]. In what follows, we use the terminology
from Rasala’s paper. For any partition λ of m, let |λ| = m be the order of λ and let λ∗ be
the partition dual to λ. The partition λ is called primary, if λ ≥ λ∗, where ≥ denotes the
standard ordering on partitions. If λ = (λ1 ≥ . . . ≥ λk) is a partition of k and m ≥ λ1 +k,
then let m/λ denote the partition of m defined as m/λ = (m − k ≥ λ1 ≥ . . . ≥ λk) and
let ϕλ(m) := χm/λ(1) be the degree of the character of Sm associated to m/λ. (Note that
ϕλ(m) is a polynomial in m by [61, Theorem A].) For any set P of partitions of k and
for m large enough, let L(P,m) := {ϕλ(m) |λ ∈ P} and let δ(P,m) be the largest degree
in L(P,m). Then P is said to be m-minimal, if for every primary partition µ of m either
χµ(1) > δ(L, P ) or µ = m/λ for some λ ∈ P .

By [61, Main Theorem 1.] (for k = 3) we have

Theorem 4.3.5. Let P3 be the set of all partitions of order at most 3, that is, P3 =
{∅; (1); (2); (1, 1); (3); (2, 1); (1, 1, 1)}. Then P3 is m-minimal for every m ≥ 15.

Thus, by using the hook length formula and the Murnaghan-Nakayama rule we can
calculate the exact values of χλ(1) and χλ((123)) when χλ(1) is among the first seven
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CHAPTER 4. RANDOM BASES FOR COPRIME LINEAR GROUPS

smallest character degrees of Sm for m ≥ 15. Otherwise, we get a reasonably large
lower bound for χλ(1). (Note that λ or λ∗ is primary and χλ(1) = χλ

∗
(1), χλ((123)) =

χλ
∗
((123)) holds for every partition λ of m.)

Corollary 4.3.6. Let λ be a partition of m for m ≥ 15 and let χλ ∈ Irr(Sm) be the
character of Sm associated to λ. Then χλ(1) and χλ((123)) are as given in Table 4.1 or

λ or λ∗ χλ(1) = χλ
∗
(1) χλ((123)) = χλ

∗
((123))

(m) 1 1

(m− 1, 1) m− 1 m− 4

(m− 2, 2) 1
2
m(m− 3) 1

2
(m− 3)(m− 6)

(m− 2, 1, 1) 1
2
(m− 1)(m− 2) 1

2
(m− 4)(m− 5)

(m− 3, 3) 1
6
m(m− 1)(m− 5) 1

6
(m− 3)(m− 4)(m− 8) + 1

(m− 3, 2, 1) 1
3
m(m− 2)(m− 4) 1

3
(m− 3)(m− 5)(m− 7)− 1

(m− 3, 1, 1, 1) 1
6
(m− 1)(m− 2)(m− 3) 1

6
(m− 4)(m− 5)(m− 6) + 1

Table 4.1: Character values of Sm when the degree is small.

χλ(1) > 1
3
m(m− 2)(m− 4).

Now, we give an analogue of Corollary 4.3.3 for alternating-type groups.

Corollary 4.3.7. Let V be a vector space over the finite field Fq and let G = Z · G0 ≤
GL(V ) where G0 is a coprime irreducible linear group and G0/Z(G0) ' Am for some
m ≥ 5. Let us assume that V is not a component of the natural permutation FqAm-

module. Then MinSuppV (G) ≥ 1
16

√
dim(V ).

Proof. As in the proof of Lemma 4.2.4, MinSuppV (G) = t ·MinSuppV1
(G) and dim(V ) =

t·dim(V1) where V1 is an (absolutely) irreducible component of FqG-module V ⊗Fq. Then

the claim clearly follows if we prove that MinSuppV1
(G) ≥ 1

16

√
dim(V1). In other words,

we can assume that V is absolutely irreducible. First let us assume that G0 ' Am for
some m ≥ 9. Let ϕ ∈ Irr(Am) be the Brauer character associated to V and χ ∈ Irr(Sm)
above ϕ, i.e. [χAm , ϕ] 6= 0. Then either χAm = ϕ (if χ is not self-dual) or χAm = ϕ+ϕ(12)

(if χ is self-dual). In the latter case ϕ((123)) = χ((123))/2, since the conjugacy class
(123)Sm does not split in Am. Let ε be 1 or 1/2 according to these cases, so ϕ(1) = εχ(1)
and ϕ((123)) = εχ((123)). By [61, Result 2.], we have dim(V ) = εχ(1) ≥ 1

2
m(m− 3). If

ϕ((123)) < 0, then SuppV ((123)) ≥ 1
2

dim(V ) ≥ 1
4

√
dim(V ) holds trivially. Otherwise,

by using Lemma 4.2.4 and Theorem 4.3.4 we get that

SuppV ((123)) ≥ 1

2
(ϕ(1)− |ϕ((123))|) =

ε

2
(χ(1)− χ((123))) =

εχ(1)

2(m− 1)

=
dim(V )

2(m− 1)
≥
√
m(m− 3)/2

√
dim(V )

2(m− 1)
≥ 1

4

√
dim(V ).
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For any element 1 6= g ∈ Am there are x, y ∈ Am such that [g, x, y] is a three-cycle.
Applying Lemma 4.4.3 twice, we get that SuppV (g) ≥ 1

4
SuppV ((123)) ≥ 1

16

√
dim(V ).

Now, let us assume that m > 7 and G0 is the universal covering group of Am, so G0 '
2.Am. Let z ∈ G0 be the generator of Z(G0) ' C2 and let ḡ ∈ Am denote the image
of any g ∈ G0 under the natural surjection by G0 7→ Am. Then z acts on V as a scalar
transformation z(v) = −v for all v ∈ V , so SuppV (z) = dim(V ). Let t ∈ G0 such that
t̄ = (12)(34). By Theorem [37, Theorem 3.9], t and tz are conjugate, so z = [h, t] for

some h ∈ G0. It follows that SuppV (t) ≥ 1
2

SuppV (z) = dim(V )
2

by Lemma 4.4.3. (In
fact, by using this argument to tz instead of t one can prove equality here.) Now, for
any g ∈ G0 \ Z one can choose x, y ∈ G such that [ḡ, x̄, ȳ] is conjugate to t̄. Using again
Lemma 4.4.3 twice, we get that SuppV (g) ≥ 1

4
SuppV (t) = 1

8
dim(V ) ≥ 1

16

√
dim(V ).

For the remaining cases, dim(V ) ≤
√
|G0| < 162, so 1

16

√
dim(V ) < 1 ≤ MinSuppV (G)

follows.

The next result gives a bound to the order of most coprime quasisimple linear groups
similar to that of |G| ≤ |V |2 = q2 dim(V ) but using the minimal support MinSuppV (G)
instead of dim(V ).

Theorem 4.3.8. Let V be a vector space over the finite field Fq and let G = Z · G0 ≤
GL(V ) where G0 is a coprime quasisimple irreducible linear group.

Then one of the following holds:

(1) logq |G| ≤ d ·MinSuppV (G) with d = 5.

(2) G0 ' Am and V is the non-trivial irreducible component of the natural permutation
module of Am over Fq.

(3) G0 = G0(r) is a finite quasisimple group of Lie type over the finite field Fr with
r ≤ 43, and |V | is bounded by an absolute constant.

Proof. For any sporadic group S, let Ŝ be its universal covering group and let q(S) be
the smallest prime not dividing the order of S. By using GAP [68], we checked that for

every χ ∈ Irr(Ŝ), the inequlity

logq(S) |Ŝ| < d · (χ(1)− max
g∈Ŝ−Z(χ)

|χ(g)|)/2

holds with d > 4.22. (The largest value is attained for 2.J2.) Now, if G ≤ GL(V )
is any finite quasisimple group with sporadic simple quotient S = G/Z(G), then G is

a homomorphic image of Ŝ, and we can view V as an irreducible FqŜ-module (where

q ≥ q(S)). Now, if χ ∈ Irr(Ŝ) is any irreducible component of the Brauer character
corresponding to V ⊗ Fq, then

logq |G| ≤ logq(S) |Ŝ| < d · (χ(1)− max
g∈Ŝ−Z(χ)

|χ(g)|)/2

≤ d ·MinSuppV (Ŝ) ≤ d ·MinSuppV (G)

also holds with d > 4.22 by Lemma 4.2.4.

37

C
E

U
eT

D
C

ol
le

ct
io

n



CHAPTER 4. RANDOM BASES FOR COPRIME LINEAR GROUPS

Next, let G ' Am for some m ≥ 15. Then we have m < q by the coprime assumption.
Let us assume that V is not a component of the natural permutation FqAm-module.
Let ϕ ∈ Irr(Am) be an irreducible component of the Brauer character associated to V
and χ ∈ Irr(Sm) above ϕ. By the proof of Corollary 4.3.7, we have ϕ(1) = εχ(1), and
ϕ((123)) = εχ((123)), where ε is 1/2 or 1 if χ is self-dual or not. If χ is one of the
characters given in Table 4.1, then χ is not self-dual. In that case we have

SuppV ((123)) ≥ 1

2
(χ(1)− |χ(123)|) ≥ 3

2
(m− 3)

by using Lemma 4.2.4 and the last five rows of Table 4.1. Otherwise, χ(1) > 1
3
m(m −

2)(m− 4), so we have

SuppV ((123)) ≥ 1

2
(ϕ(1)− |ϕ(123)|) ≥ 1

4
(χ(1)− |χ(123)|)

≥ χ(1)

4(m− 1)
>
m(m− 2)(m− 4)

12(m− 1)
≥ m− 3

holds if ϕ(123) ≥ 0. However, if ϕ(123) < 0, then SuppV ((123)) ≥ 1
2

dim(V ) ≥ m − 3
holds trivially. Thus, SuppV ((123)) ≥ m − 3 holds in any case. Now, for any element
1 6= g ∈ Am there are x, y ∈ Am such that [g, x, y] is a three-cycle. Applying Lemma
4.4.3 twice, we get that SuppV (g) ≥ 1

4
SuppV ((123)) ≥ m−3

4
holds for any 1 6= g ∈ Am.

Thus, d ·MinSuppV (G) ≥ d(m−3)
4
≥ m ≥ logm(m!) ≥ logq |G| holds for d ≥ 5.

Now, let m ≥ 12 and let G0 be the universal covering group of Am, so G0 ' 2.Am.
By the proof of Corollary 4.3.7, we have MinSuppV (G) ≥ 1

8
dim(V ). Using [45, Main

Theorem] we get that

d ·MinSuppV (G) ≥ d

8
dim(V ) ≥ d

8
min{χ(1) |χ ∈ Irr(G), χ(z) 6= χ(1)}

≥ d · 2bm/2c−4 ≥ m ≥ logq |G|

holds for d ≥ 3.25. For the remaining members of Alternating groups and their covers
(i.e for Am, 12 ≤ m ≤ 14), for 2.Am(m = 5 or 8 ≤ m ≤ 11) and for 6.A6, 6.A7 we used
the same algorithm as for sporadic groups.

Finally, let G0 = G0(r) be a quasisimple group of Lie type over a finite field Fr with
(r, q) = 1. In that case we will use results about character ratios of such groups given by
Gluck in [29]. (For a summary of his results, see also [48, Theorem 2.4]).

First, suppose that r ≥ 47. By [29], we have

mr(G) ≤ max
( 1√

r − 1
,
9

r

)
<

1

5
.

By using [57, Theorem 1.] and Lemma 4.2.4,

logq |G| ≤ 2n = 5 · 2n

5
≤ 5 ·MinSuppV (G)

For the rest of the proof, suppose that r ≤ 43. Since χ(1) − 2 Supp(g) ≤ |χ(g)| for any
χ ∈ Irr(G), we have that

1

2
χ(1)

(
1− |χ(g)|

χ(1)

)
≤ Supp(g).
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Using that mr(G) ≤ 19
20

also holds for all quasisimple groups of Lie-type by [29], we obtain
that

dim(V )

8
≤ 5 MinSuppV (G)

by using Lemma 4.2.4 again. Since (see [44, Table 5.3.A]) dim(V ) ≥ rO(m) (where m
denotes the rank of G0(r)) and logq |G| = O(m2 log r), there exist only finitely many
possible pairs (m, r) such that logq |G| > 5 MinSuppV (G). Furthermore, for any fixed
(m, r), the inequality logq |G| ≤ 5 MinSuppV (G) still holds provided that |V | is large
enough.

We close this section by handling the case (2) in Theorem 4.3.8. In this case MinSuppV (G)
is bounded. (It is 1 and 2 for G0 ' Sm and G0 ' Am, respectively.)

Theorem 4.3.9. Let U be an m-dimensional vector space over Fq, and let G = Sm with
its natural permutation action on U . Assuming that (|G|, |U |) = 1, we have

P (random u ∈ U c is a base for G) > 1− 1

mc−2
for any c ≥ 3.

Hence three random vectors form a base for G with high probability if m is large.

Proof. The FqG-module V c can be naturally identified with Mm×c(q), the space of m×c-
matrices over Fq. Under this identification, G acts on Mm×c(q) by permuting the rows
of each element of Mm×c(q) in a natural way. Hence, a matrix a ∈ Mm×c(q) is a base
for G if and only if the rows of a are pairwise different elements of M1×c(q), the space
of c-dimensional row vectors over Fq. Thus, the probability in question is equal to the
probability that m random elements of M1×c(q) are pairwise different, which is

m−1∏
i=0

qc − i
qc

>

(
qc − q
qc

)m
≥
(

1− 1

mc−1

)m
≥ 1− 1

mc−2
,

where the first and second inequalities follows since m < q by the coprime assumption.
The claim follows.

Corollary 4.3.10. Let V be an n dimensional vector space over the finite field Fq and
let G = Z · G0 ≤ GL(V ) be a coprime linear group, where G0 ' Sm or G0 ' Am and V
is the non-trivial irreducible component of the natural FqG0-module. Then we have

P (random v ∈ V c is a base for G) > 1− 1

nc−2
for any c ≥ 3.

Proof. First, note that Fix(g) = 0 for every g ∈ G \ G0, so a v ∈ V c is a base for G if
and only if it is a base for G0. Second, let U = V ⊕ U0, where U0 is the trivial module
for G0. For any random vectors u1, . . . , uc ∈ U let vi be the projection of ui to V along
U0. Then u1, . . . , uc is a base for G0 if and only if v1, . . . , vc is a base for G0, so the claim
follows from Theorem 4.3.9.
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CHAPTER 4. RANDOM BASES FOR COPRIME LINEAR GROUPS

4.4 Proof of the Main Theorem

In this section we prove the following theorem

Theorem 4.4.1. Let V be an n-dimensional vector space over the finite field Fq and let
G ≤ GL(V ) be a coprime primitive linear group. Then for any c ≥ 11, the probability
Pb(c,G, V ) is close to zero if |V | is large enough. More precisely, one of the following
holds.

(1) Pb(c,G, V ) ≥ 1− 3

q( c2−5)
√
n ;

(2) There is an Fkq vector space structure on V for some field extension Fkq ≥ Fq (possibly
k = 1) and a tensor product decomposition V = V1⊗FkqU over Fkq with 1 ≤ dim(U) <

dim(V1) ≤ n/k such that G ≤ ΓL(Fkq , n/k) and H = G ∩ GL((Fkq , n/k) preserves
this tensor product decomposition. Furthermore, H = H1 ⊗H2 with H1 ≤ GL(V1),
H2 ≤ GL(U) are absolutely irreducible linear groups, and S1 = Soc(H1/Z(H1)) is
a non-Abelian simple group.

(a) If S1 is not an alternating group, then

Pb(c,G, V ) ≥ 1−
( 1

q(c−4)
√

dim(V )
+

2

|V |(c−10)/80

)
;

(b) If S1 ' Am for some m and V1 is not an irreducible component of the natural
permutation FkqAm-module, then

Pb(c,G, V ) ≥ 1− 3

q
c−10

16

√
dim(V )

;

(c) If S1 ' Am for some m and V1 is the non-trivial irreducible component of the
natural permutation FkqAm-module, then

Pb(c,G, V ) ≥ 1− 3

nc−2
.

In other words, this theorem proves that for a coprime primitive linear group, the
probability that a random 11-tuple in V is a base for G tends to 1 as |V | → ∞.

Let V be an n-dimensional vector space over the finite field Fq and let G ≤ GL(V ) =
GL(n, q) be a coprime primitive linear group, which is maximal, i.e. there is no coprime
subgroup L ≤ GL(V ) strictly containing G. In the following, we give a structure theorem
of such groups very similar to a result about maximal solvable primitive linear group (see
[64, Lemma 2.2] and [67, §§19–20]). Our proof uses ideas similar to those can be found
in [32], [36], and [67].

In the following, we extend the vector space structure on V by defining multiplication
on V with elements from a (possibly) larger field Fqk ≥ Fq for some k | n. In that way,
V will be both an Fq-vector space and an Fqk-vector space at the same time.

We will use the notation V = Vn(q), V = Vd(q
k) or V = V (qk) if we would like to

highlight the base field and/or the dimension of V .
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4.4. PROOF OF THE MAIN THEOREM

Theorem 4.4.2. Let V = Vn(q) be an n-dimensional vector space over the finite field
Fq and let G ≤ GL(V ) be a maximal coprime primitive linear group. Then the following
statements hold.

(1) There is a unique maximal Abelian subgroup Z ≤ GL(V ), which is normalised by
G. Moreover, Z is contained in G.

(2) Z is cyclic and Z ∪ {0} ' Fqk for some k | n.

(3) There is a (unique and maximal) Fqk vector space structure V = Vd(q
k) on V for

d = n/k such that G ≤ ΓL(d, qk)).

(4) Let H := G∩GL(d, qk). Then Z ≤ H = CG(Z) C G, furthermore Z = Z(GL(d, qk))
is the group of scalar transformations on Vd(q

k) and G/H is included into the Galois
group Gal(Fqk ,Fq).

(5) Let N = F ∗(H) be the generalised Fitting subgroup of H. Then N/Z is the socle of
H/Z. Furthermore, Vd(q

k) is an absolutely irreducible FqkN-module.

(6) Let N1, . . . , Nt be the set of minimal normal subgroups of H above Z. Then there is
an absolutely irreducible FqkNi-module Vi for every i such that V ' V1⊗F

qk
. . .⊗F

qk

Vt. Furthermore, N = N1 ⊗ N2 ⊗ . . . ⊗ Nt and H = H1 ⊗ H2 ⊗ . . . ⊗ Ht where
Ni C Hi ≤ GL(Vi(q

k)) for every i.

(7) If Ni/Z is Abelian, then Ni = ZRi where Ri ≤ Ni is an extraspecial ri-group for
some prime ri of order r2li+1

i . Furthermore, |Ni/Z| = r2li
i and dimF

qk
(Vi) = rlii .

(8) If Ni/Z is a direct product of s many isomorphic non-Abelian simple groups, then
there is a tensor product decomposition Vi = W1 ⊗ . . .⊗Ws preserved by Ni. Then
Ni = K1⊗. . .⊗Ks where Ki = SiZ for each i, and the Si ≤ GL(Wi) are isomorphic
quasisimple absolutely irreducible groups. Finally, Hi permutes the Ki-s and the
Wi-s in a transitive way.

Proof. Let A ≤ GL(V ) be any Abelian subgroup normalised by G and P is the (unique)
Sylow-p subgroup of A for p = char(Fq). Then P is normalised by G. Then 0 6=
FixV (P ) = ∩p∈P FixV (p) ≤ V is G-invariant. Since V is an irreducible FqG-module, we
get that P = 1, so |A| is coprime to |V |. Therefore, GA ≥ G is a coprime linear group,
so A ≤ G by the maximality of G and part of (1) is proved.

Let Z ≤ GL(V ) be a maximal Abelian subgroup normalised by G. By the previous
paragraph, Z C G. Since G ≤ GL(V ) is primitive linear, V is a homogeneous FqZ-
module. If V = V1 ⊕ . . . ⊕ Vd is a decomposition of V into (isomorphic) irreducible
FqZ-modules, then Z ' ZVi ≤ EndZ(Vi) ' Fqk for some k ≥ 1 by using Schur Lemma.
Then 〈Z〉Fq (the subalgebra of End(V ) generated by Z) is isomorphic to the field Fkq , and
it is invariant under the conjugation by elements of G. It follows that 〈Z〉Fq \ {0} ' F∗q is
an Abelian subgroup of GL(V ) normalised by G. Therefore, (2) follows by the maximality
of Z.

Identifying Z∪0 ≤ End(V ) with Fkq , it defines an Fqk vector space structure on V . The
conjugation action of G on Z ∪{0} = Fqk defines a homomorphism σ : G 7→ Gal(Fqk ,Fq).
Now, for any g ∈ G, α ∈ Fkq and v ∈ V we have g(αv) = (gαq−1)g(v) = ασ(g)(v), so G is
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included into the semilinear group ΓL(Vd(q
k)) = ΓL(d, qk). The subgroup H is just the

kernel of σ, so (4) and part of (3) follows.

Let B C G be any Abelian normal subgroup, α ∈ Z a generator of Z and b ∈ B.
Then bαb−1 = ασ(b) = αq

s
for some 0 ≤ s < k, so [b, α] = αq

s−1 ∈ B is centralised
by b. Changing b to b−1 if necessary, we can assume that 0 ≤ s ≤ k/2. This means
(αq

s−1)q
s

= αq
s−1, so qk − 1 | (qs − 1)2 < qk − 1. Therefore, s = 0. Thus, B ≤ CG(Z), so

BZ ≥ Z is an Abelian normal subgroup in G. By the maximality of Z, we get B ≤ Z,
which completes the proof of both (1) and (3).

Let M = F (H) be the Fitting subgroup of H. Then Z(M) is an Abelian normal
subgroup of G, so Z(M) = Z by the maximality of Z. Let n by the nilpotency class of
M . If n = 1 then M = Z. Otherwise, we claim that n = 2. Assuming that n ≥ 3, we
have 1 6= γn(M) ≤ Z, and [γn−1(M), γn−1(M)] ≤ [γ2(M), γn−1(M)] ≤ γn+1(M) = 1, so
γn−1(M) is an Abelian normal subgroup of G, so it must contained in Z. This forces
γn(M) = 1, a contradiction. Therefore, n ≤ 2, that is, M/Z is Abelian.

Let R be a Sylow-r-subgroup of M for some prime r dividing |M/Z|. The commutator
map defines a symplectic bilinear function from R/Z into Z(R) = R ∩ Z. Therefore, for
any x, y ∈ R we have [xr, yr] = [x, y]r

2
= [xr

2
, y]. If rs is the exponent of R/(R ∩ Z)

for some s ≥ 2, then Rrs−1
Z is an Abelian normal subgroup of G, so Rrs−1 ≤ Z, a

contradiction. Thus, we get R/(R∩Z) is an elementary Abelian r-group. Using this and
the above commutator identity it also follows that R′ ≤ Z is of exponent r. It follows
that R = (R ∩ Z)R0 for some extraspecial r-group R0.

By the previous two paragraphs, F (H)/Z is exactly the direct product of the minimal
Abelian normal subgroups of H, so F (H)/Z is contained in Soc(H/Z). Since N =
F ∗(H) is the central product of F (H) and the layer E(H), where E(H)/Z is the direct
product of the minimal non-Abelian normal subgroups of H/Z it follows that N/Z =
Soc(H/Z) as claimed. By [32, Lemma 12.1], Vd(q

k) is an absolutely irreducible FqkH-
module. If the irreducible FqkN -components of Vd(q

k) were not be absolutely irreducible,
then Z(CGL(Vd(qk))(N)) would be the multiplicative group of a proper field extension of Fqk
normalised by G, which again contradicts with the maximility of Z. Now, let us assume
that Vd(q

k) = U⊕. . .⊕U is a direct sum of smany isomorphic absolutely irreducible FqkN -
modules for some s ≥ 2. By [44, Lemma 4.4.3(ii)], there is a tensor product decomposition
U⊗F

qk
W of Vd(q

k) such that N ≤ GL(U)⊗1W ≤ GL(U)⊗GL(W ) and G ≤ NΓL(V )(N) ≤
NΓL(V )(GL(U)⊗GL(W )). Let L = {1U ⊗ hW | ∃hU ∈ GL(U) such that hU ⊗ hW ∈ H}.
If L = Z, then Vd(q

k) is not irreducible as an FqkH-module, a contradiction. We have
L ≤ GL(V ) is a coprime linear group normalised by G, so LG ≤ GL(V ) is coprime.
Using the maximality of G we get that L < G. But then Z < L ≤ H clearly centralises
N = F ∗(H), a contradiction. So, Vd(q

k) is an absolutely irreducible FqkN -module, and
(5) is proved. Now, (6) follows by a combined use of [55, Corollary 18.2/(a)] and [44,
Lemma 4.4.3(iii)].

If Ni/Z is Abelian, then it is a minimal Abelian normal subgroup of H/Z so it is
elementary Abelian ri-group for some prime ri. Using the same argument as in paragraph
6 of this proof, one can find the extraspecial ri-group Ri by taking the full inverse image
of a maximal non-degenerate subspace of R/R′ where R is the Sylow-ri subgroup of Ni.
For this subgroup, it clearly follows that Ni = ZRi, and |Ri| = r2li+1

i for some integer.
Furthermore, since Vi is an absolutely irreducible FqkNi-module, it must be an absolutely

irreducible FqkRi-module. It is well-known that extraspecial ri-group of order r2li+1
i has
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4.4. PROOF OF THE MAIN THEOREM

a unique faithfull absolutely irreducible ordinary representation, and this representation
has degree rlii , which finishes the proof of (7).

Finally, (8) can again be deduced from [55, Corollary 18.2/(a)] and from the fact that
Ni/Z is a minimal normal subgroup in Hi/Z.

Lemma 4.4.3. Let G be a group, K be a field and let V be an arbitrary finite dimensional
KG-module.

(1) For any g, h ∈ G we have Supp([g, h]) ≤ 2 Supp(g).

(2) If N C G such that V is absolutely irreducible as a KN-module, then MinSupp(N) ≤
2 MinSupp(G).

Proof. Let us consider the subspaces U = Fix(g) and W = Fix(h−1gh) of V . Then we
have

dim(U) + dim(W )− dim(U ∩W ) = dim(U +W ) ≤ dim(V ).

Using that dim(U) = dim(W ) = dim(V ) − Supp(g) we get dim(U ∩ W ) ≥ dim(V ) −
2 Supp(g). On the other hand U ∩W ≤ Fix([g, h]) holds trivially, so

Supp([g, h]) = dim(V )− dim(Fix([g, h])) ≤ dim(V )− dim(U ∩W )

≤ dim(V )− (dim(V )− 2 Supp(g)) = 2 Supp(g),

and part (1) follows.

For part (2), let 1 6= g ∈ G be any element. If [g,N ] = 1, then g acts as a scalar
transformation on V by [38, Theorem 9.2], so Supp(g) = dim(V ) ≥ MinSupp(N). Oth-
erwise, there is an element n ∈ N such that [g, n] 6= 1. Then we have MinSupp(N) ≤
Supp([g, n]) ≤ 2 Supp(g). Thus, MinSupp(N) ≤ 2 Supp(g) for every 1 6= g ∈ G, which
proves that MinSupp(N) ≤ 2 MinSupp(G).

Lemma 4.4.4. Let V1, . . . , Vk be finite dimensional vector spaces over the field Fq and
Z < G1 ≤ GL(V1), . . . , Z < Gk ≤ GL(Vk) be coprime linear groups. Consider the group
G := G1 ⊗ . . .⊗Gk acting on the tensor product V := V1 ⊗ . . .⊗ Vk in a natural way.

(1) Let g = g1⊗ . . .⊗ gk ∈ G with gj ∈ Gj for each j and let us assume that gi /∈ Z for
some i. Then

SuppV (g) ≥ MinSuppVi(Gi) ·
dim(V )

dim(Vi)

or SuppV (g) ≥ 1
2

dim(V ).

(2) As a consequence

MinSuppV (G) = min
i

{
MinSuppVi(Gi) ·

dim(V )

dim(Vi)

}
,

or MinSuppV (G) ≥ 1
2

dim(V ).

Proof. To prove part (1), first we consider the case k = 2. Let n1 = dim(V1), n2 =
dim(V2), so n = dim(V ) = n1n2. Furthermore, let 1 6= g = g1 ⊗ g2 ∈ G1 ⊗ G2 be an
element of G with g1 /∈ Z. Since the action is coprime, g1 and g2 are diagonalisable over
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CHAPTER 4. RANDOM BASES FOR COPRIME LINEAR GROUPS

Fq. Let α1, . . . αs ∈ Fq be the different eigenvalues of g1 with multiplicity k1, k2, . . . , ks.
We can assume that k1 is the largest among the ki. Let l1, . . . , ls be the multiplicities of
α−1

1 , . . . , α−1
s in the characteristic polynomial of g2 (Some of them can be zero). Then

SuppV (g) = SuppV (g1 ⊗ g2) = n− dim(FixV (g1 ⊗ g2))

= n−
s∑
i=1

kili ≥ n−
s∑
i=1

k1li ≥ (n1 − k1)n2.

If α1 ∈ Fq, then we can substitute g1 by α−1
1 g1 and g2 by α1g2 (since both G1 and G2

contains all the scalar transformations), so we can assume that α1 = 1. Now, since g1 6= 1,
we get SuppV (g) ≥ (n1 − k1)n2 = SuppV1

(g1)n2 ≥ MinSuppV1
(G1) · dim(V2).

Now, let us assume that α1 /∈ Fq. Then there is an algebraic conjugate element of α1

(different from α1) under the action of Gal(Fq,Fq) which is also an eigenvalue of g1 with
the same multiplicty as α1. In particular, k1 ≤ n1/2. Thus,

SuppV (g) ≥ (n1 − k1)n2 ≥ (n1/2)n2 =
dim(V )

2
.

By changing the role of g1 and g2 in the proof and by using induction on k, we get the
claim of part (1).

Finally, if SuppVi(gi) = MinSuppVi(Gi) for some gi /∈ Z, then

SuppV (1⊗ . . .⊗ 1⊗ gi ⊗ 1⊗ . . .⊗ 1) = MinSuppVi(Gi) ·
dim(V )

dim(Vi)
,

so part (2) follows by using part (1).

Proof of Theorem 4.4.1. Let G ≤ GL(V ) be a coprime primitive linear group. Without
loss of generality we can assume that G is maximal among such subgroups of GL(V ).
Let Z be the unique maximal Abelian subgroup in GL(V ) which is normalised by G and
H be the intersection of G and GL(d, qk) as in Theorem 4.4.2. If g ∈ G \H then there is
a z ∈ Z such that [g, z] 6= 1. By Lemma 4.4.3, SuppV (g) ≥ 1

2
SuppV ([g, z]) = 1

2
dim(V ).

Therefore if c > 4, then∑
g∈G\H

1

qc·SuppV (g)
≤ |G \H|
q
c
2

dim(V )
≤ |V |

2

|V | c2
≤ 1

|V | c2−2
.

Now let g be an element of H = H1 ⊗ . . . ⊗ Ht. So g = (g1, . . . , gt) where gi ∈ Hi for
all i ∈ [t] and g preserves the tensor product decomposition V = V1 ⊗ . . . ⊗ Vt over Fkq
as in Theorem 4.4.2 (6) and dimF

qk
(Vi) = di for all i (therefore d = dimF

qk
(V ) =

∏t
i=1 di

and dim(V ) = dimFq(V ) = k ·
∏t

i=1 di). We can assume that in this decomposition the
dimensions of the vector spaces are decreasing, i.e. d1 ≥ d2 ≥ . . . ≥ dt ≥ 2. Let gi /∈ Z
for some i 6= 1. Then by Lemma 4.4.4,

SuppV (g) ≥ MinSuppVi(Hi) ·
dim(V )

dim(Vi)
≥ k

∏
j 6=i

dj.

Since 2
∏

j 6=i dj ≥ 2t−1d1 ≥
∑t

i=1 d1 and k
∏

j 6=i dj ≥ k
√∏t

j=1 dj ≥
√

dim(V ) we get that

c · SuppV (g) ≥ 2k
t∑
i=1

di + (c− 4)
√

dim(V ).
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Hence,

∑
g∈H\H1

1

qc·SuppV (g)
≤

∏t
i=1 |Hi|

q2k
∑t
i=1 di+(c−4)

√
dim(V )

≤ q2k
∑t
i=1 di

q2k
∑t
i=1 di+(c−4)

√
dim(V )

=
1

q(c−4)
√

dim(V )
.

Now assume that g ∈ H1. In this case SuppV (g) = SuppV1
(g) · d

d1
. By Theorem 4.4.2,

Z ≤ N1 ≤ H1 ≤ GL(V1(qk)) where N1 is a minimal normal subgroup above Z and N1/Z
is characteristically simple. Therefore, it is either an elementary Abelian group, a direct
product of non-Abelian simple groups, or a non-Abelian simple group.

First, if N1/Z is elementary Abelian, then N1 = Z · P where P is an extraspecial
r-group for a prime r with r | qk − 1. Then V1(qk) is an absolutely irreducible FqkP -
module. If n ∈ P \ Z then n has exactly r different eigenvalues on V1 (or on V ) each
with the same multiplicity. It follows that MinSuppV (N1) ≥ r−1

r
dim(V ) ≥ 1

2
dim(V ), so

MinSuppV (H1) ≥ 1
4

dim(V ) by Lemma 4.4.3. In this case,

∑
g∈H1

1

qc·SuppV (g)
≤ |H1|
q
c
4

dim(V )
≤ |V |2

q2 dim(V )+( c
4
−2) dim(V )

≤ 1

|V | c4−2
.

Next, let N1/Z is a direct product of s ≥ 2 many isomorphic non-Abelian simple
groups. By Theorem 4.4.2 (8), the action of N1 = K1⊗ . . .⊗Ks on V1 preserves a tensor
product decomposition V1 = W1 ⊗ . . . ⊗Ws over Fkq , where dimF

qk
(Wi) = s

√
d1 ≥ 2 for

every i. Using [57, Theorem 1], we get that

|N1| ≤
s∏
i=1

|Ks| ≤
s∏
i=1

|Wi|2 = q2ks s
√
d1 .

On the other hand, H1/N1 acts faithfully on {W1, . . . ,Ws} and |H1/N1| is coprime to q,
so |H1/N1| ≤ qs by [36, Corollary 2.4]. Therefore, |H1| ≤ q2ks s

√
d1+s. By Lemma 4.4.3 and

by Lemma 4.4.4,

SuppV1
(g) ≥ 1

2
MinSuppV1

(N1) ≥ k

2
· d1

s
√
d1

.

Therefore,

c SuppV (g) ≥ 5kd1
(s−1)/s +

( c
2
− 5
)
k
√
d1 ·

d

d1

≥ 2ks s
√
d1 + s+

( c
2
− 5
)√

dim(V ).

So,

∑
16=g∈H1

1

qc·SuppV (g)
≤ |H1|
qc·MinSuppV (H1)

≤ q2ks
s√
d1+s

q2ks s
√
d1+s+( c

2
−5)
√

dim(V )

≤ 1

q( c
2
−5)
√

dim(V )
.
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Finally, let N1/Z be a non-Abelian simple group. If d1 ≤
√
d, then we can use the same

argument as in the previous paragraph to get that∑
16=g∈H1

1

qc·SuppV (g)
≤ 1

q(c−2)
√

dim(V )
.

Summarizing the bounds given until this point, we get that

Pb(c,G, V ) ≥ 1−
∑

16=g∈G

1

qc·SuppV (g)
≥ 1−

( 1

|V | c2−2
+

1

q(c−4)
√

dim(V )

+
1

q( c
2
−5)
√

dim(V )

)
≥ 1− 3

q( c
2
−5)
√

dim(V )
,

which is case (1) of Theorem 4.4.1.

Now, let us assume that d1 ≥
√
d. If |V1| = qkd1 is bounded by the constant ap-

pearing in part (3) of Theorem 4.3.8, then |V | is also bounded. Hence we can assume
that either part (1) or part (2) of Theorem 4.3.8 holds. By Lemma 4.4.3, we also have
MinSuppV (H1) ≥ 1

2
MinSuppV (N1).

IfN1/Z is not an alternating group, then MinSuppV (N1) ≥ 1
40

dim(V ) and 5·MinSuppV (N1) ≥
logq |H1| by using Corollary 4.3.3, Theorem 4.3.8/(1) and Lemma 4.4.4/(2). Thus, we
have ∑

16=g∈H1

1

qc·SuppV (g)
≤ 1

|V |(c−10)/80
.

So, in this case we get that

Pb(c,G, V ) ≥ 1−
( 1

|V | c2−2
+

1

q(c−4)
√

dim(V )
+

1

|V |(c−10)/80

)
≥ 1−

( 1

q(c−4)
√

dim(V )
+

2

|V |(c−10)/80

)
,

which is case (2)/a of Theorem 4.4.1.

Finally, let N1/Z ' Am for some m. If V1 is not an irreducible component of the
natural FkqAm permutation module, then we have MinSuppV (N1) ≥ 1

16

√
dim(V ) and

5 ·MinSuppV (N1) ≥ logq |H1| by using Corollary 4.3.7, Theorem 4.3.8/(1) and Lemma
4.4.4/(2). Thus, we have ∑

16=g∈H1

1

qc·SuppV (g)
≤ 1

q
c−10

16

√
dim(V )

and

Pb(c,G, V ) ≥ 1−
( 1

|V | c2−2
+

1

q(c−4)
√

dim(V )
+

1

q
c−10

16

√
dim(V )

)
≥ 1− 3

q
c−10

16

√
dim(V )

.

Finally, if V1 is the non-trivial irreducible component of the natural FkqAm-module, then
with the use of Corollary 4.3.10 we get that

Pb(c,G, V ) ≥ 1−
( 1

|V | c2−2
+

1

q(c−4)
√

dim(V )
+ 1− Pb(c,H1, V )

)
≥ 1− 3

nc−2
,
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which completes the proof of Theorem 4.4.1.
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