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Abstract

In Chapter 1 we give a brief introduction into the analysis of Boolean functions. Several
equivalent definitions of noise sensitivity are discussed. We highlight the complex rela-
tionship between noise sensitivity/stability and the pivotal set. In particular, answering a
question of G. Kalai, we construct a noise stable sequence of monotone, transitive Boolean
functions which have many pivotals with high probability. This part of the chapter is
based on the solo paper [Ga19+].

In Chapter 2 we introduce the central concept of our thesis. For a sequence of functions
fn : {−1, 1}Vn −→ R defined on increasing configuration spaces we talk about sparse
reconstruction if there is a sequence of subsets Un ⊆ Vn of coordinates satisfying |Un| =
o(|Vn|) such that knowing the coordinates in Un gives us a non-vanishing amount of
information about the value of fn.

We first show that if the underlying measure is a product measure, then for transitive
functions no sparse reconstruction is possible. We discuss the question in different ways,
measuring information content in L2 and with entropy. We also highlight some interesting
connections with cooperative game theory. Furthermore, we show that the left-right
crossing event for critical planar percolation on the square lattice does not admit sparse
reconstruction either. These results answer questions posed by I. Benjamini.

Chapter 3 extends the question of sparse reconstruction to some larger classes of
sequences of measures. We find that if the average correlation of spins in a sequence of
spin systems decays slower than 1/|Vn|, then sparse reconstruction is possible. We also
investigate the question for sequences converging to a finitary factor of IID system and
we find that the expected coding volume plays a crucial role in determining whether there
is sparse reconstruction or not.

Finally, we apply our results and methods to investigate Ising models on sequences
of locally convergent graphs. We show that there is sparse reconstruction for low tem-
perature and critical Ising models, and that there is no sparse reconstruction on the high
temperature Curie-Weiss model.

Chapters 2 and 3 are based on joint research with Gábor Pete.
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Chapter 1

Noise Sensitivity and the Pivotal Set

1.1 Introduction to Noise Sensitivity and Noise Sta-

bility

1.1.1 Basic Definitions

Noise Sensitivity for Boolean functions was introduced in the seminal work of Benjamini,
Kalai and Schramm [BKS99]. One of the main motivations behind this concept was
understand the behavior of crossing events for critical Bernoulli percolation, but it turned
out to be of interest on its own right.

A sequence of Boolean functions is called noise sensitive if distorting each input bit
with any fixed small probability asymptotically destroys all information on the original
value of fn. Here comes the formal definition:

Definition 1.1.1 (Noise Sensitivity). Let ε be a positive real number. For a uniform
random vector ω ∈ {−1, 1}kn denote ωε the random vector which we obtain from ω by
resampling each of its bits independently with probability ε. A sequence of non-degenerate
functions fn : {−1, 1}kn −→ {−1, 1} is noise sensitive if and only if for every ε > 0

lim
n→∞

Var(E[fn | ωε])
Var(fn)

= 0 (1.1.1)

The parity of the number of −1s is a noise sensitive function. The most renowned
example of a noise sensitive Boolean function, which initiated the whole investigation is
the left right crossing event in critical planar percolation (see Section 2.5.1).

We note that the above definition naturally extends to R-valued functions in case
in the definition we substitute asymptotic decorrelation with asymptotic independence.
(For binary-valued function decorrelation is equivalent to independence.)

Our main interest will be non-degenerate sequences. A sequence of Boolean functions
fn : {−1, 1}Vn −→ {−1, 1} is called non-degenerate if there exists an ε > 0 such that for
all n

−(1− ε) < E[fn] < 1− ε,
where the expectation is taken according to the uniform measure on {−1, 1}Vn .

Remark 1.1.1. The usual definition of noise sensitivity is slightly different. In [GS15] a
sequence of Boolean functions is said to be noise sensitive if for every ε > 0

lim
n→∞

E[fn(ωε)fn(ω))]− E[fn]2 = 0.

1
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2 CHAPTER 1. NOISE SENSITIVITY AND THE PIVOTAL SET

This basically means that the expected covariance between fn and fn applied to the noisy
input decays to 0 as n approaches to infinity. It is easy to see that the usual definition
and ours are equivalent for non-degenerate functions, see Theorem 1.1.4. We have a
preference for this form since it features the notion of clue (Definition 2.1.1), one of the
central concepts in this work. Using the concept of clue, Definition (1.1.1) states that
limn clue(fn | ωε) = 0

The notion of noise sensitivity has applications in complexity theory and social choice
theory. In an influential article ([MOO05]) it was proved that among low influence se-
quences of Boolean functions Majority is the most noise stable — see the definition below
— (’Majority is the stablest’ theorem). This fact has some far reaching consequences in
complexity theory. It turns out that assuming the Unique Games Conjecture it follows
that it is NP-hard to better approximate the Max-Cut problem then the best known
algorithm (Goemans-Williamson algorithm, [GW95]).

In the social choice theory framework a Boolean function f : {−1, 1}n −→ {−1, 1}
can be interpreted as a voting scheme or an aggregation rule. Each coordinate stands for
a voter and the values −1 or 1 represents a choice between two alternatives. f may be
seen as rule telling how the individual votes aggregate to a group decision. In this setup
noise sensitivity of a voting system means that even if a small ε ratio of the votes are
corrupted there is a reasonable chance that this will change the outcome of the election.
See [K05] for applications of noise sensitivity in the social choice theory setting.

The case opposite to noise sensitivity is a sequence where the value of the function is,
when the amount of noise is small enough, highly correlated with the value of the noisy
version. This phenomenon is expressed by the notion of noise stability:

Definition 1.1.2 (Noise Stability). A sequence of functions fn : {−1, 1}kn −→ {−1, 1}
is noise stable if and only if

lim
ε→0

sup
n

P[fn(ω) 6= fn(Nε(ω))] = 0. (1.1.2)

The most important examples of noise stable functions are the majority function
defined as

Maj2n+1 =

{
1 if

∑
i ω(i) > 0

−1 if
∑

i ω(i) < 0,

and the dictator which equals ωi for a specific coordinate i ∈ V (i.e., the dictator).

1.1.2 The Fourier-Walsh expansion

We introduce a function transform on the hypercube which turns out to be an essential
tool in the analysis of Boolean functions. We still consider the uniform measure P1/2 :=
(1

2
δ−1 + 1

2
δ1)⊗Vn . We can introduce the natural inner product (f, g) = E[fg] on the space

of real functions on the hypercube.

Definition 1.1.3 (Fourier-Walsh expansion). For any f ∈ L2({−1, 1}V ,P1/2) and ω ∈
{−1, 1}V

f(ω) =
∑
S⊂V

f̂(S)χS(ω), χS(ω) :=
∏
i∈S

ωi (and χS(∅) := 1). (1.1.3)
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1.1. INTRODUCTION TO NOISE SENSITIVITY AND NOISE STABILITY 3

This is in fact the Fourier transform, the event space naturally identified with the
group ZV2 by assigning a generator gx to every x ∈ V . The functions χS are in fact the
characters of ZV2 .

It is straightforward to check that the functions χS form an orthonormal basis with
respect to the inner product so Parseval’s formula applies and therefore∑

S⊆V

f̂(S)2 = ‖f‖2 .

Noting that f̂(∅) = E[f ], we also have

Var(f) =
∑
∅6=S⊆V

f̂(S)2. (1.1.4)

For a subset T ⊆ V let us denote by FT the σ-algebra generated by the bits in T . So FT
expresses knowing the coordinates in T . It turns out that the conditional expectation of
any function f : {−1, 1}n −→ R with respect to FT can be expressed in terms of the
squared Fourier-Walsh expansion coefficients see, [GS15]:

E[f | FT ] =
∑
S⊆T

f̂(S)χS.

The proof is fairly simple: we only need to observe that if S ⊆ T then E[χS | FT ] = χS
in any other case E[χS | FT ] = 0.

Using (1.1.4) we get a concise spectral expression for the variance of the conditional
expectation:

Var(E[f | FT ]) =
∑
∅6=S⊆T

f̂(S)2. (1.1.5)

Fourier-Walsh transformation as eigenbasis of the noise operator

Consider a continuous time simple random walk {ωt : t ∈ [0,∞)} on the hypercube.
More precisely, we have a rate 1 Poisson clock for every i ∈ V , and each time the clock
of i rings the bit ωi is re-randomised according to the uniform measure. It is easy to
see that after time t the joint distributions of (ω0, ωt) and (ω, ωε) are the same with the
conversion ε = 1− e−t.

So, on the one hand, we have the original interpretation of noise sensitivity and stabil-
ity reminiscent to information theory. That is, we try to compute a piece of information
(represented by the value of fn) but the input is corrupted with noise. The question
addressed by noise sensitivity is the following: can we recover the original information?

On the other hand, we have a more geometric/probabilistic kind of interpretation.
We perform a simple random walk on the discrete hypercube and we have a subset of
vertices An (represented via fn = 11An). The question is whether after an arbitrary small
but fixed amount of time we can remember if we started the walk from a vertex in An or
not.

One can also think about the Fourier-Walsh expansion in a more probabilistic way.
Observe the functions χS are the eigenfunctions of the simple random walk on the hy-
percube or.

Indeed, observe that for any i ∈ V E[ωεi |ωi] = (1 − ε)ωi, and using that for any
coordinates i 6= j we have E[ωεi |ωi] and E[ωεj|ωj] are independent, we have for any S ⊆ V :

E[χS(ωε)|ω] = (1− ε)|S|χS(ω).

C
E

U
eT

D
C

ol
le

ct
io

n



4 CHAPTER 1. NOISE SENSITIVITY AND THE PIVOTAL SET

Let us introduce the operator

Tε[f ](ω) := E[f(ωε)|ω]

for any f : {−1, 1}n −→ R. Based on the above and the linearity of conditional expecta-
tion:

Tε[f ] =
∑
S⊂V

(1− ε)|S|f̂(S)χS(ω). (1.1.6)

This shows that the function χS is eigenfunction of the operator Tε[ ].

Using now Parseval’s formula it is an easy calculation to establish the following spec-
tral description of noise sensitivity and noise stability.

Theorem 1.1.2. [GS15] A sequence of functions fn : {−1, 1}Vn −→ R is noise sensitive
if and only if for any k ∈ N

lim
n→∞

1

Var(fn)

∑
0<|S|<k

f̂n(S)2 = 0,

and noise stable if and only if for every ε there is a large enough k such that

lim
n→∞

1

Var(fn)

∑
|S|>k

f̂n(S)2 < ε.

The Spectral Sample

It turns out to be useful to think about the squared Fourier coefficients f̂(S)2 as a random
subset of the spins called the spectral sample We can normalize this measure to get a
probability measure. The random subset Sf distributed accordingly is called the spectral
sample.

Definition 1.1.4 (Spectral Sample). Let f ∈ L2({−1, 1}V ,P1/2). The spectral sample
Sf of f is a random subset of V chosen according to the distribution

P[Sf = S] =
f̂(S)2

‖f‖2 , for any S ⊆ V.

The advantage of this concept is that it introduces a new and rather compact language,
where the concepts that we introduced so far admit straightforward translations. Indeed,
noise sensitivity of a sequence of functions is equivalent to the fact that the respective
spectral measure — the measure corresponding to the spectral sample — is concentrated
on large subsets, while noise stability means that the Spectral Sample is concentrated on
bounded subsets. So we get the following (which is, in fact no more than a rephrasing of
Theorem 1.1.2:

Proposition 1.1.3 (Noise sensitivity and stability via Spectral Sample). A sequence of
functions fn : {−1, 1}kn −→ R is
(1) noise sensitive if conditioned on the events |Sfn| 6= 0, |Sfn| → ∞ in probability,
(2) noise stable if the sequence |Sfn| is tight.)
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1.1. INTRODUCTION TO NOISE SENSITIVITY AND NOISE STABILITY 5

Another concept that translates very well to the Spectral Sample language is the
notion of clue. The clue of a function f with respect to a subset of coordinates U , defined
as clue(f | U) = Var(E[f | FU ])

Var(f)
(see Definition 2.1.1) is one of the central concepts of this

work. Using (1.1.4) and (1.1.5) we get that

clue(f | U) = P[Sf ⊆ U |Sf 6= ∅]. (1.1.7)

This observation, as we shall see is one of the key steps in the (first) proof Theorem 2.1.1.

1.1.3 Equivalent Characterisations of Noise Sensitivity

Here we collect a few statements that are equivalent to noise sensitivity. These equiva-
lences are fairly easy and implicitly known to the community, but (some of them) have
not been explicitly spelled out and it seems to be of some use to include them here.

For a set V we introduce the level p Bernoulli random subset B(V )p of V . That is,
each i ∈ V is in B(V )p with probability p, independently from what happens to the other
elements.

Theorem 1.1.4. Let fn : {−1, 1}Vn −→ {−1, 1} be sequence of non-degenerate Boolean
functions. The following statements are equivalent

1. fn is noise sensitive.

2. For every ε > 0
lim
n→∞

E[fn(ωε)fn(ω))]− E[fn]2 = 0

3. Let E[clue(fn | B(Vn)p)] := E
[

Var(E[fn | B(Vn)p])
Var(fn)

]
(See Definition 2.1.1), where B(Vn)p

is the Bernoulli p random subset of Vn. For every p ∈ (0, 1)

lim
n→∞

E[clue(fn | B(Vn)p)] = 0.

4. Let Pfn be the uniform measure on {fn = 1} and consider a simple random walk
{X t : t ∈ [0,∞)} on the hypercube with initial distribution Pf . Denote by Ptf [ω]
the measure according to the distribution of X t. Then for every t > 0

lim
n→∞

‖P− Ptf‖1 = 0.

5. For every ε ∈ (0, 1)
lim
n→∞

E[fn(ωε) | fn(ω) = 1] = E[f ].

6. For every ε ∈ (0, 1)

E[fn(ωε) | ω]
P−→ E[f ].

Proof. (1⇔ 2)
Note that E[χS(ω)χS(ωε)] =

∏
i∈S E[ω(i)ωεi ] = (1 − ε)|S|. Consequently, for general

functions, using that E[χS1(ω)χS2(ω
ε)] = 0 whenever S1 6= S2 we have the following

formula

E[f(ω)f(ωε)]− E[fn]2 =
∑
∅6=S⊂V

f̂(S)2E[χS(ω)χS(ωε)] =
∑
S⊂V

f̂(S)2(1− ε)|S|.
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6 CHAPTER 1. NOISE SENSITIVITY AND THE PIVOTAL SET

At the same time (1.1.6) shows that

Var(E[fn(ωε) | ω]) =
∑
∅6=S⊂V

f̂(S)2(1− ε)2|S|.

Since (ωε, ω) has the same distribution as (ω, ωε) we have Var(E[fn(ωε) | ω]) = Var(E[fn(ω) | ωε]).
By assumption fn is non-degenerate, therefore 1/Var(fn) is just a constant factor and
the equivalence follows.

(1⇒ 3)

E[Var(E[f | B(Vn)p])] = E[
∑
∅6=S⊂V

f̂(S)211S⊆B(Vn)p ]

=
∑
∅6=S⊂V

f̂(S)2P[S ⊆ B(Vn)p] =
∑
∅6=S⊂V

f̂(S)2p|S|.

Using p = 1− ε and noting again that the variance of fn is of constant order, we get the
desired equivalence.

(1⇒ 4)
We note that from a probabilistic perspective 1

2
‖ ‖1 is the total variation distance

of measures.
Observe that the Radon-Nikodym derivative

dPfn
dP is 2

E[fn]+1
if fn(ω) = 1 and 0 other-

wise, thus for any ω ∈ {−1, 1}Vn

dPfn
dP

(ω) =
fn(ω) + 1

E[fn] + 1
.

Similarly,
dPtfn
dP

(ω) =
E[fn(ωt) + 1 | ω]

E[fn] + 1
.

So we can write

‖P− Ptfn‖1 =
∑

ω∈{−1,1}Vn

|P[ω]− Ptfn [ω]| = 1

2|Vn|

∑
ω∈{−1,1}Vn

∣∣∣∣1− E[fn(ωt) | ω] + 1

E[fn] + 1

∣∣∣∣.
Using the Cauchy-Schwarz inequality we get

‖P−Ptfn‖1 ≤
∑

ω∈{−1,1}Vn

√
1

2|Vn|

(√
1

2|Vn|

∣∣∣∣1− E[fn(ωt) | ω] + 1

E[fn] + 1

∣∣∣∣
)
≤
∥∥∥∥1− E[fn(ωt) | ω] + 1

E[fn] + 1

∥∥∥∥
2

.

Now we can use the Fourier-Walsh transform to conclude that

‖P− Ptfn‖1 ≤
√

1

E[fn] + 1

∑
S⊂V

f̂(S)2e−2|S|t.

(4⇒ 5)
Let Xt as before the simple random walk with initial distribution Pfn and t such that

1− e−t = ε.

E[fn(ωε) | fn(ω) = 1] = E[fn(Xt) | fn(X0) = 1] = Ptf [fn = 1]− Ptf [fn = −1].
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1.1. INTRODUCTION TO NOISE SENSITIVITY AND NOISE STABILITY 7

By assumption, for large enough n the total variation distance between Ptf and the uniform
measure is smaller than δ, and therefore

|E[fn(ωε) | fn(ω) = 1]− E[fn]| < 2δ.

(5⇒ 6)
Indirectly assume, that for a δ > 0 and for all n

P[|E[fn(ωε) | ω]− E[fn]| > δ] > c,

for some c > 0. But then E[|E[fn(ωε) | ω] − E[fn]|] > δc, so either |E[fn(ωε) | fn(ω) =
1] − E[fn]| or |E[fn(ωε) | fn(ω) = −1] − E[fn]| is greater than δc for all n, which is in
contradiction with our assumption.

(6⇒ 1)
Since with high probability E[fn(ωε) | ω] is δ-close to E[fn] and otherwise |E[fn(ωε) | ω]−

E[fn]| ≤ 2, it is clear that Var(E[fn(ωε) | ω]) tends to 0 as n goes to ∞.

Again we remind the reader that the usual definition of noise sensitivity is not nor-
malized with the variance. In the original article [BKS99] noise sensitivity is defined
according to Property 6 above, while in [GS15] it is defined with Property 2. This means
that in the usual setting degenerate sequences are automatically noise sensitive.

The intuition behind this is that with high probability we know everything about a
degenerate sequences of functions and what else a probabilist can ask for? Our point
is that it might be meaningful to differentiate between degenerate sequences as well,
depending on the speed of decorrelation. Also, defining noise sensitivity via covariance
or conditional variance is semantically vague, as these notions – in contrast with clue or
correlation – are not dimensionless concepts expressing information content.

It might be of interest to point out that some of the above statements do not admit a
straightforward generalization for the degenerate case which is equivalent to the definition
we suggest. Statements 1 and 3 are obviously equivalent even for degenerate sequences,
while statement 2 only needs to be rescaled by the variance.

The other statements, however, are not that easy to extend to the degenerate case.
As for statement 4, if the set {fn = 1} is small then there is no chance that after a
constant amount of time Ptf will be close to the stationary measure P. This suggests that
one needs to rescale time according to the density of {fn = 1}. Similar problems arise for
statements 5 and 6, which are vacuous for degenerate functions. Perhaps one needs to
impose some additional requirements on the speed of convergence to differentiate noise
sensitive functions from the rest.

Here we defined noise sensitivity with respect to the uniform measure on the hyper-
cube. But one may wonder if this concept can be extended to different probability spaces.
One of the difficulties of such an extension lies in finding a suitable notion of noise that
can be quantified and preserves the probability measure.

In case is there is a natural dynamics with stationary measure Q, noise can be thought
of as running the dynamics for some fixed time according to some suitably chosen time
scale. This idea is used in [F15] to define noise sensitivity for Markov Chains. However,
there are many cases, for example the low temperature Ising models, for which it is not
easy to find a suitable process.

We would like to point out that Statement 3 from Theorem 1.1.4 could be the basis of
noise sensitivity concept that does not rely on some dynamics. The average clue of a level
p Bernoulli subset can be extended without any difficulty for any probability measure.
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8 CHAPTER 1. NOISE SENSITIVITY AND THE PIVOTAL SET

One difficulty might be to find the right scaling. If fro example the probability measure
in question has a lower entropy and there is a lots of structure, it is possible that after
learning the bits of a 1 − ε-density subset we know the whole configuration with a non-
vanishing probability. In this way all function can have non-vanishing clue, thus there are
no noise sensitive sequences. One might fix this by relaxing the conditions of Statement
3. Instead of requiring limn→∞ E[clue(fn | B(Vn)p)] = 0 for all 0 < p < 1, one may specify
some it to hold for some particular sequences of pn.

1.2 Noise Sensitivity versus Pivotals

1.2.1 Pivotal set, Influence and the Spectrum

In [KKL88], way before noise sensitivity, a very natural discrete partial derivative concept
had been introduced and studied for Boolean functions. We introduce the influence of
variables and the pivotal set and investigate its relationship with the previously intro-
duced concepts.

We are going to use the following notation: for a configuration ω ∈ {−1, 1}V we
denote by ωj the configuration which is the same as ω except its jth coordinate which is
flipped.

Definition 1.2.1 (Pivotal Set). Let f : {−1, 1}V −→ {−1, 1} and ω ∈ {−1, 1}V . We
call a coordinate j pivotal for f with respect to ω if f(ω) 6= f(ωj). The pivotal set Pf

is the (ω-measurable) random set of pivotal coordinates.

The influence of a variable is the probability that it is pivotal.

Definition 1.2.2 (Influence). Let f : {−1, 1}V −→ {−1, 1} than for an j ∈ V the
influence of the coordinate j is

Ij(f) := P[f(ω) 6= f(ωj)].

The total influence is defined as I(f) :=
∑

j∈V Ij(f).

Perhaps unsurprisingly the influence also admits a concise formulation in terms of the
Fourier-Walsh transform:

Ij(f) =
∑
S:j∈S

f̂ 2(S) and I(f) =
∑
S:⊆V

|S|f̂ 2(S). (1.2.1)

This is easy to derive by calculating the Fourier-Walsh expansion of ∂if = f(ωj)−f(ω). A
remarkable consequence is the following link between the spectral sample and the pivotal
set: I(f) = E[|Sf |]. On the other hand, by definition I(f) = E[|Pf |], so the expected
size of these random sets is the same. In fact even more is true.

Proposition 1.2.1. Let f : {−1, 1}V −→ {−1, 1} then for every i, j ∈ V

P[i ∈Pf ] = P[i ∈ Sf ] and P[i, j ∈Pf ] = P[i, j ∈ Sf ].

For a proof, see [GS15] Corollary IX.7. The fact that the one dimensional marginals
are equal follows directly from (1.2.1). The equality of the two dimensional marginals is a
consequence of a generalization of (1.1.7), the so-called random restriction lemma which
originally appeared in [LMN93], but can also be found in [GS15] (Proposition IX.5).
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1.2. NOISE SENSITIVITY VERSUS PIVOTALS 9

The sudden idea that the two random sets might follow the same distribution can
be easily discarded as already on three bits one can find counterexamples. Still, these
observations raise the possibility of characterising noise sensitivity and stability with
the help of influences or the pivotal set. According to Proposition 1.1.3, a sequence of
function is noise sensitive when the spectral sample is typically large, and Proposition
1.2.1 suggests that there might be some connection between the sizes of the Spectral
Sample and the Pivotal Set.

Indeed, in some well-studied cases the two distributions show similar behavior. For
example, this is the case for the crossing event in critical planar percolation. In [GPS10]
a thorough analysis of the Fourier expansion shows that both the Fourier spectrum and
the pivotal set is typically on sets larger than nε for some ε > 0. See [GPS10] or Chapter
X in [GS15] for further details on the similarities and differences between the distribution
of the spectrum and the pivotal set.

Another important example is the Majority Maj2n+1. This function is noise stable,
that is, most of its Spectral Sample is concentrated on small (bounded) subsets although
the average size of the spectrum is going to infinity on the order of

√
n (this can be easily

verified ). Similarly, the pivotal set is typically empty since in order to have a pivotal bit
one must have

∑
i∈n ω(i) = ±1.

At the same time this example shows that Spectral Sample does not need to be
concentrated, i.e. their expected size in general does not indicate noise sensitivity or
stability.

It would be quite useful to infer noise sensitivity via influences. While the Fourier-
Walsh transform is a strong theoretical tool, it is very challenging to calculate or even
estimate the spectrum of a sequence of Boolean functions (see for example [GPS10],
a highly technical paper that estimates the typical size of the Spectral Sample for the
crossing event of planar percolation). On the other hand, the influences are usually easier
to calculate and in particular, the pivotal set is easy to simulate via a uniformly random
string of bits, while there is no efficient way to sample the spectral sample (although
it is worth mentioning that according to [BV93] show that there is at least an efficient
quantum algorithm for computing the Fourier-Walsh transform of certain functions).

Still there is one very important and slightly mysterious result that links noise sensi-
tivity to influences:

Theorem 1.2.2 ([BKS99]). Let fn : {−1, 1}Vn −→ {−1, 1} if

lim
n→∞

∑
j∈Vn

Ij(fn)2 = 0

then fn is noise sensitive.

The proof is not long, but rather technical. It uses the method of hypercontractivity,
an analytic tool introduced already in [KKL88]. The converse is not true in general,
exemplified by the parity function, but it is true for monotone Boolean functions. We note
that

∑
j∈Vn Ij(fn)2 in the pivotal set language means the expected size of the intersection

of two independent samples of the pivotal set. This interpretation will show up again.
As we shall see, the covariance of two functions can be expressed as an integral of the
size of the intersection of two p-dependent pivotal sets, see (2.1.5).
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10 CHAPTER 1. NOISE SENSITIVITY AND THE PIVOTAL SET

1.2.2 A paradoxical sequence

Apart from Proposition 1.2.1 and Theorem 1.2.2 there is no further known general con-
nection between the behaviour of Sf and Pf .

Indeed [GS15] Section XII.2 features a number of ’paradoxical’ sequences . Among
others, a sequence of a noise sensitive sequence of monotone, non-degenerate functions
has been constructed for which the pivotal set is empty with high probability or a noise
stable sequence which has many pivotals with high probability.

Along these lines the following question was posed by Gil Kalai: Is there a sequence
of Boolean functions fn : {−1, 1}Vn −→ {−1, 1} such that fn is transitive, monotone and
noise stable, but at the same time P[Pn(ω) 6= ∅] > c for some constant c > 0 for all
n ∈ N?

Let Γ be a group acting on the set of coordinates V . This action can be extended
in the natural way to the configuration space {−1, 1}V , and in turn to any function f :
{−1, 1}V −→ R. For a Boolean function f , and for γ ∈ Γ we denote by fγ(x) := f(x−γ)
the action of Γ on the function f .

Definition 1.2.3 (Transitive function). A function f : {−1, 1}V −→ R is transitive if
there is a transitive group action Γ on V such that for every γ ∈ Γ, we have fγ = f .

In the language of social choice theory the transitivity of a voting scheme can be
interpreted as each voters are treated the same.

We are going to show that the answer to the question above is positive.

Theorem 1.2.3. There exists a sequence of transitive monotone functions fn : {−1, 1}kn −→
{−1, 1} such that fn is transitive, noise stable and limn P[Pn > an] = 1 (here Pn is the
pivotal set, see below) for some sequence of integers an →∞.

Our result is another indication that, apart from the known connections, in general,
the spectral sample and the pivotal set of a sequence can show very different behavior.

Remark 1.2.4. One can relax the stability condition to the lack of noise sensitivity. In this
case the answer is almost trivial. Here is a sketch of a sequence of monotone functions
which is transitive, not noise sensitive and the pivotal set is nonempty with a uniformly
positive probability.

Take a noise sensitive sequence gn of monotone, transitive, non-degenerate Boolean
functions on kn bits with the property that its pivotal set is non-empty with a probability
larger then a c > 0 for all large n. For example the standard Tribesn function satisfies
these conditions. Let Majkn be the Majority function on the same kn bits. Now let

fn =

{
Tribesn if Majkn = −1
1 if Majkn = 1.

It is easy to verify that fn is monotone, transitive and admits pivotals with a positive
probability. At the same time it is asymptotically positively correlated with Majkn and
therefore cannot be noise sensitive. (Observe that a noise sensitive and a noise stable
sequence must be asymptotically uncorrelated.)

In the sequel, we shall construct a sequence of functions fn : {−1, 1}kn −→ {−1, 0, 1}
with the following properties:

1. fn is transitive
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1.2. NOISE SENSITIVITY VERSUS PIVOTALS 11

2. lim
n

P[fn = 0] = 1

3. lim
n

P[∃ i, j ∈ [kn] : fn(ωi) = 1 and fn(ωj) = −1] = 1.

(Recall that ωi denotes ω with its ith coordinate flipped.) We will call a sequence of
functions bribable if it satisfies the above conditions. The name is coming from the
Social Choice Theory interpretation. It is an impartial (transitive) monotone voting
scheme (this time with three possible results) with the property that although in most
of the times the result is the same, with high probability we can buy the votes of some
people who can turn the result in a particular direction.

It might be also interesting to think of the bribable sequence geometrically. We
may consider the subset of the hypercube on which the value of the bribable function is
nonzero. This results in a sequence of invariant and monotone subsets of the hypercube
with density going to 0, but with the property that almost any vertex of the hypercube
is a neighbour, meaning that it can be reached from the set by an edge.

Using a bribable sequence fn one can easily construct a transitive noise stable Boolean
function which admits a pivotal bit with high probability. Namely, let Majn denote the
majority function on the corresponding bit set. Let

gn =

{
Majn if fn = 0
fn if fn 6= 0.

Obviously gn is noise stable because of property 2 of fn. On the other hand, conditioned
on {fn = 0} there is a pivotal bit with high probability because of property 3 of the
sequence fn.

It is also straightforward to verify that if we choose a bribable sequence fn which is
monotone then the resulting gn sequence will be monotone as well.

Again looking at this from the social choice perspective, this is an impartial, transi-
tive voting scheme, which is noise stable - that is, small random perturbations, such as
miscounting or a few (random) people changing there mind in the last moment are not
likely to effect the results. However, with high probability there are some powerful voters
who can change the result of the voting, if they change their mind.

Construction of a monotone bribable sequence

Now we turn to the construction of a monotone bribable sequence. Define the Boolean
function Tribes(l, k) : {−1, 1}lk −→ {0, 1} as follows: we group the bits in k l-element
subsets, these are the so called tribes. The function takes on 1 if there is a tribe T
such that for every i ∈ T : ω(i) = 1, and 0 otherwise. The Tribes function is standard
example, when kn and ln are defined in such a way that the function is non-degenerate. It
is well know that such a sequence testifies that the Kahn-Kalai-Linial theorem about the
maximal influence of sequences of Boolean functions (Theorem 1.14 in [GS15]) is sharp.

We are going to show that in case the two sequences ln, kn are properly chosen, a
slight modification of Tribes(ln, kn) is bribable.

Proposition 1.2.5. Suppose that ln and kn are sequences such that

lim
n→∞

(
1− 1

2ln

)kn
= 1 (1.2.2)
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12 CHAPTER 1. NOISE SENSITIVITY AND THE PIVOTAL SET

and

lim
n→∞

knln
1

2ln
=∞ (1.2.3)

then the sequence of functions fn(ω) := Tribes(ln, kn)(ω)− Tribes(ln, kn)(−ω) is bribable.
Moreover, there is a sequence of positive integers an →∞ such that P[|Pn| > an]→ 1

Proof. Let us call a tribe T pivotal if there is exactly one j ∈ T such that ω(j) = −1.
Define the random variable Xn as the number of pivotal tribes in a configuration. Note
that E[Xn] = knln

1
2ln

.
It is clear that conditioned on the event {Tribes(ln, kn) = 0} we have |Pn| = Xn,

where |Pn| denotes the pivotal set of Tribes(ln, kn). Consequently, for the respective
conditional expected values:

E[Pn|Tribes(ln, kn) = 0] = E[Xn|Tribes(ln, kn) = 0].

We can write Xn =
∑kn

j Yj where Yj is the indicator of the event that the jth tribe
is pivotal. For any j ∈ [kn] we have

P[Yj = 1|Tribes(ln, kn) = 1] =
P[Yj = 1]P[Tribes(ln, kn − 1) = 1]

P[Tribes(ln, kn) = 1]
≤ P[Yj = 1],

using that if the jth tribe is pivotal and there is a full 1 tribe then the latter is among
the remaining kn − 1 tribes. This implies

E[Xn|Tribes(ln, kn) = 1] ≤ E[Xn] ≤ E[Xn|Tribes(ln, kn) = 0]

and therefore

E[Pn|Tribes(ln, kn) = 0] ≥ E[Xn] = knln
1

2ln
→∞.

As Xn is binomially distributed with E[Xn]→∞, being the sum of i.i.d 0− 1-valued
random variables, there is a an →∞ such that

lim
n→∞

P[Xn > an] = 1.

Note that

P[Tribes(ln, kn) = 0] =

(
1− 1

2ln

)kn
and this probability tends to 1 as n approaches ∞ by our assumption. So clearly

P[Xn > an and Tribes(ln, kn) = 0] = P[|Pn| > an, and Tribes(ln, kn) = 0]→ 1

and therefore also
lim
n→∞

P[|Pn| > an | Tribes(ln, kn) = 0] = 1.

The same argument can be repeated for −Tribes(ln, kn)(−ω). The event that neither
Tribes(ln, kn)(ω) nor Tribes(ln, kn)(−ω) happens while the pivotal set of both is larger than
an still holds with high probability. That is, we find pivotal bits for both Tribes(ln, kn)(ω)
and Tribes(ln, kn)(−ω) with high probability and thus push fn = Tribes(ln, kn)(ω) −
Tribes(ln, kn)(−ω) to 1 or −1, respectively.

Furthermore Tribes(ln, kn)(ω)− Tribes(ln, kn)(−ω) is monotone increasing as the sum
of monotone increasing functions.
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1.2. NOISE SENSITIVITY VERSUS PIVOTALS 13

Now it only remains to show that with an appropriate choice of the sequences kn and
ln (1.2.2) and (1.2.3) are satisfied.

First, note that (
1− 1

2ln

)kn
→ 1 if and only if

kn
2ln
→ 0,

or equivalently
log kn − ln → −∞, (1.2.4)

while after taking the logarithm in both sides (1.2.3) becomes

log kn + log ln − ln →∞. (1.2.5)

If we now choose ln = log kn + 1
2

log log kn then clearly (1.2.4) is satisfied. As for (1.2.5),
using that log ln ≥ log log kn

log kn + log ln − ln ≤ log kn + log log kn − (log kn +
1

2
log log kn) =

1

2
log log kn →∞.

Finally, we note that the argument remains valid with some elementary modifications
in case if, instead of the uniform measure we endow the hypercube with the product
measure Pp = (1− pδ−1 + pδ1)⊗kn for some p ∈ (0, 1).

The case of general sequences of pn

So far we assumed that the hypercube is endowed with the uniform measure. Now we
consider a sequence of measures where the hypercube {−1, 1}mn is endowed with the
measure Ppn = (1− pnδ−1 + pnδ1)⊗kn .

In the argument used to prove Proposition 1.2.5 we only made use of the uniform
measure in explicit calculations. Therefore in the general case we simply have to replace
(1.2.2) with

lim
n→∞

(
1− plnn

)kn
= 1 (1.2.6)

and (1.2.3) with
lim
n→∞

knln(1− pn)pln−1
n =∞, (1.2.7)

respectively. Furthermore, the above asymptotics should hold as well when we replace pn
with qn = 1− pn, since we want to use simultaneously the function Tribes(ln, kn)(−ω).

From now on we will write mn/ln instead of kn. The question we would like to answer
is the following: What conditions we need to impose on the sequences mn and pn so that
we can find an appropriate sequence ln � mn that both (1.2.6) and (1.2.7) are satisfied?

First we note that in case 0 < infn pn ≤ supn pn < 1 the argument used in the uniform
case keeps working. So we are going to investigate two cases: when limn pn = 0 and when
limn pn = 1.

Case 1 : limn pn = 0 Using that plnn → 0 and taking logarithm from (1.2.6) we get

mn

ln
log (1− plnn ) � −mn

ln
plnn → 0,

which, after taking logarithm again, becomes

logmn − log ln − ln log
1

pn
→ −∞. (1.2.8)
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14 CHAPTER 1. NOISE SENSITIVITY AND THE PIVOTAL SET

Taking logarithm from (1.2.7), we get

dn := logmn − (ln − 1) log
1

pn
→∞ (1.2.9)

omitting the term log qn → 0. Expressing logmn from (1.2.9) and plugging it into (1.2.8)
we obtain

dn − log
1

pn
− log ln = dn − log

ln
pn
→ −∞. (1.2.10)

First, in case log 1
pn
≥ o(logmn), we can set ln so that ln log 1

pn
� logmn. Like this we

have dn � log 1
pn

and thus (1.2.10) becomes − log ln and both conditions are satisfied.

On the other hand, in n case log 1
pn

= c logmn + o(logmn) for some c ∈ (0, 1), and

suppose that c = p
q

+ α where p does not divide q and α < 1
q
. Under these conditions let

us set ln = bq/pc+ 1. Then dn = ( q mod p
q
−α) logmn− o(logmn). From our assumptions

it is clear that ( q mod p
q
− α) > 0 and thus (1.2.8) is satisfied. For (1.2.10) we have

( q mod p−p
q

− α) logmn − logbq/pc which clearly tends to infinity, so again our conditions
are satisfied.

This fails to work in general, when c = 1/k. If log 1
pn

= 1/k logmn + o(logmn) with

the o(logmn) tending to infinity we set ln− 1 = k, and we are OK. But if the error term
is bounded, (surprisingly) we don’t know how to handle the case.

Case 2 : limn pn = 1 In this case plnn = (1 − qn)ln � e−qnln using that qn tends to 0.
Now let us suppose that we can choose ln such that plnn � e−qnln → 0. That is we have
the condition qnln →∞

Under these assumptions taking logarithm from (1.2.6) gives:

mn

ln
log (1− plnn ) = −mn

ln
plnn = −mn

ln
e−qnln → 0

After taking logarithm one more time we get the equivalent

logmn − log ln − qnln → −∞. (1.2.11)

While taking logarithm from (1.2.7) we get

dn := logmn − log
1

qn
− qnln →∞ (1.2.12)

where we ignored the term log 1
pn
→ 0. We can express ln in terms of mn, qn and dn and

plug it into (1.2.11):

logmn−
(

log(logmn − log
1

qn
− dn) + log

1

qn

)
− (logmn − log

1

qn
− dn) =

dn − log(log (qnmn)− dn)→ −∞.

If we choose dn as for example 1
2

log log(qnmn), then (1.2.11) and (1.2.12) are satisfied.
It is also straightforward to verify that whenever qnmn → ∞ then ln < mn moreover
qnln →∞ is consistent with this choice of dn, and it also guarantees that, in particular,
ln →∞.

This analysis shows that if there is an o < α1 such that pn, qn ≥ 1/nα (except for
pn, qn = n−1/k for k ∈ N ) then we still have a sequence of Boolean functions with the
properties of Theorem 1.2.3.
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1.2. NOISE SENSITIVITY VERSUS PIVOTALS 15

1.2.3 Volatility

Another dynamical property of Boolean functions, which may look, at first glance, almost
the same as noise sensitivity, is volatility, studied in [JS16]. It roughly says that if we are
updating the input bits in continuous time, then the output changes very often.

Our construction also implies, see Corollary 1.2.8 below, that every (monotone)
Boolean function is close to a (monotone) Boolean function that has many pivotals with
high probability. As functions with these properties are also volatile, this is a strength-
ening of Theorem 1.4 in [F18].

Let Xn(t) be the continuous time random walk on the kn hypercube (where Xn(0)
is sampled according to the stationary measure) with rate 1 clocks on the edges. For a
sequence of Boolean functions fn let Cn denote the (random) number of times fn(Xn(t))
changes value in the interval [0, 1]. The following concepts where introduced in [JS16].

Definition 1.2.4 (Volatility, tameness). A sequence of functions fn : {−1, 1}kn −→
{−1, 1} is called volatile if the sequence Cn tends to ∞ in distribution and tame, if the
sequence Cn is tight.

It is a (rather intuitive) fact that a non-degenerate noise sensitive sequence is volatile
(Proposition 1.17 in [JS16]) and all tame sequences are noise stable (Proposition 1.13 in
[JS16]). The Maj function, for example, is noise stable, but not tame and not volatile
either.

Now we are going to relate our conditions to volatility.

Lemma 1.2.6. Let fn : {−1, 1}kn −→ {−1, 1} be a sequence of Boolean functions with the
property that there is a sequence of positive integers an →∞ such that P[|Pn| > an]→ 1
(where Pn denotes the pivotal set of of fn). Then fn is volatile.

Proof. Let An := {|Pn| ≤ an}. It is clear that E[
∫ 1

0
11Xn(t)∈Andt] = P[|Pn| ≤ an]→ 0 so

for every ε for large enough n it holds that

E[

∫ 1

0

11Xn(t)∈Andt] < ε2

and therefore, using Markov’s inequality

P[

∫ 1

0

11Xn(t)∈Andt > ε] < ε.

By Lemma 1.5 in [JS16] volatility is equivalent with the condition

lim
n

P[Cn = 0] = 0.

Now we show that P[Cn = 0] can be arbitrary small. If we choose n large enough so that
e−(1−ε)an < ε

P[Cn = 0] ≤ P[

∫ 1

0

11Xn(t)∈Andt > ε]+P[

∫ 1

0

11Xn(t)∈Andt ≤ ε and Cn = 0] ≤ ε+e−(1−ε)an < 2ε,

where we used that Cn = 0 can only hold as long as no pivotal bit is switched during the
time we are outside of An.

Hence we obtain the following
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16 CHAPTER 1. NOISE SENSITIVITY AND THE PIVOTAL SET

Corollary 1.2.7. There exists a noise stable and volatile sequence of transitive monotone
functions.

We say that the sequences fn and gn o(1)-close to each other if limn P[fn 6= gn] = 0.
In [F18] it is proved (Theorem 1.4) that for every sequence of Boolean functions there is
a volatile sequence o(1)-close to it and in this sense volatile sequences are dense among
all sequences of Boolean functions. Our construction has a similar conclusion. Using
the fact that any sequence of Boolean functions can be slightly modified with a bribable
sequence in the same way as we did with Maj, we obtain the following strengthening of
Theorem 1.4 from [F18]:

Corollary 1.2.8. Any sequence of (monotone) Boolean functions is o(1)-close to a
(monotone) volatile sequence with the property that P[Pn > an] → 1 for some sequence
of integers an →∞.

Although here we consider the uniform measure on the hypercube the same type of
questions are meaningful when the uniform measure is replaced by the sequence of product
measures Ppn = (1−pnδ−1+pnδ1)⊗kn . It has to be noted that Theorem 1.4 in [F18] is valid
for basically all possible sequences pn under which the question is meaningful, while our
construction works in a slightly more restricted range of sequences pn. Most importantly,
our results extend to all sequences pn that satisfy 0 < lim inf pn ≤ lim sup pn < 1.

Furthermore, in [F18] a sequence of Boolean functions is constructed which is noise
stable and volatile, but at the same time it is not o(1)-close to any non-volatile sequence.
Such a sequence, of course, cannot be obtained with a small modification from some
non-volatile stable sequence.

This naturally lead to the following questions:

Question 1.2.9. Is there a transitive, noise stable (volatile?) sequence fn such that
P[Pn(ω) 6= ∅] → 1 and fn is not o(1)-close to any sequence which does not have these
properties?

We think that the answer is positive to this question.

Question 1.2.10. Is there a transitive, monotone and noise stable (volatile?) sequence
fn such that P[Pn(ω) 6= ∅]→ 1 and fn is not o(1)-close to any sequence which does not
have these properties?

This looks more difficult and it might be the case that the answer is negative.

1.2.4 An alternative construction of a bribable sequence

Here we sketch a completely different way of constructing a bribable sequence. Its dis-
advantage is that it is non-monotone therefore it only implies a somewhat weaker result.
We shall include here because the ideas in it might be of interest.

Let L, k ∈ N be such that L > 6k and n =
(

L
2k+1

)
. In fact, we are going to identify

the set of bits [n] with the 2k + 1 element subsets of [L].
Define for j = 1, 2, . . . L the subset of bits Hj ⊂ [n] by

Hj :=

{
t ∈
(

L

2k + 1

)
: j ∈ t

}
.
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1.2. NOISE SENSITIVITY VERSUS PIVOTALS 17

We introduce a spin system indexed by j = 1, 2, . . . L which is a factor of the ω:

σj := χHj(ω) =
∏
t∈Hj

ωt

That is, we multiply all the ωt bits corresponding to subsets that contain j.
The crucial property of this spin system with respect to the original bits is the following

simple observation:

Lemma 1.2.11. For every 2k+ 1 element subset t ⊆ [L] the corresponding bit ωt has the
following property: If one flips the value of ωt then the values of all the spins σj : j ∈ t
are flipped, while all the other spins σk : k /∈ t are kept unchanged.

Proof. Flipping the value of any bit t that is in Hj will change the value of σj = χHj(ω)
and it will obviously not change the value of any σl = χHl(ω) which does not contain t.
By definition, t is contained in Hj if and only if j is contained in t. Since every for every
2k + 1 element subset there is a corresponding bit t the statement follows.

Lemma 1.2.12. If ωt, t ∈
(

L
2k+1

)
is a uniform i.i.d spin system, then so is {σj, j ∈ [L]}.

Proof. First we observe that if for any ∅ 6= S ⊆ [L] it holds that E[σS] = E[
∏

j∈s σj] = 0
then the random variables {σj, j ∈ [L]} are independent, unbiased coin flips.

We show this by induction with respect to L. For L = 1 the statement is trivially
true. Now suppose we have a system of L− 1 spins which satisfies the condition above.
By the induction hypothesis this is a uniform i.i.d spin system.

It is easy to see that any event A which is measurable with respect to {σj, j ∈ [L− 1]}
is independent from σL. Indeed, 1A can be written as a linear combination of functions
σS : S ⊆ [L− 1] (i.e. the Fourier-Walsh transform of 1A), but E[σSσL] = E[σS∪{L}] = 0
and consequently Cov(1A, σL) = 0. This shows that σL is independent from the σ-algebra
generated by {σj, j ∈ [L− 1]}. Together with E[σL] = 0, this shows that {σj, j ∈ [L]} is
a uniform i.i.d spin system. Now we are going to show that E[σS] = 0 for any ∅ 6= S ⊆ [L].

Indeed,

σS =
∏
j∈s

σj =
∏
j∈S

∏
t∈Hj

ωt =
∏
j∈S

∏
t:j∈t

ωt.

Notice that for any particular subset t ∈
(

L
2k+1

)
, the bit ωt appears in this product for

all j ∈ S for which j ∈ t also holds, that is |S ∩ t| times. So we get that

σS =
∏

t∈( L
2k+1)

ω
|S∩t|
t .

Consequently, σS is uniform on ±1 whenever there exist some 2k + 1 element subset
t for which |S ∩ t| is odd. But this is always true. Indeed, in case |S| ≥ 2k+ 1 then there
exists a t ∈

(
L

2k+1

)
such that t ⊆ S, and therefore |S ∩ t| = |t| = 2k + 1. If |S| < 2k + 1

we can choose one element from S and another 2k elements from L \S (which is possible
since L > 4k) and then |S ∩ t| = 1.

Now we can define the sequence fn.
Let k = dL 1

2
+εe, and define the following two events:

An :=

∑
j∈[L]

σj ≥ 2k
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18 CHAPTER 1. NOISE SENSITIVITY AND THE PIVOTAL SET

and

Bn :=

∑
j∈[L]

σj ≤ −2k

 .

Now let fn := 11An − 11Bn .
It is clear that lim

n
Pr[fn = 0] = lim

n
(1− Pr[An]− Pr[Bn]) = 1 because of the Central

Limit Theorem. At the same time, conditioned on the event {fn = 0} (which happens
with high probability) we can always find (many) bits that change fn to 1 or −1, respec-
tively.

Indeed, define M+ = {j ∈ [L] : σj = 1} and M− in a similar way. Obviously, |M+|+
|M−| = L and −2k < |M+| − |M−| < 2k on {fn = 0}. So |M+| > L/2 − k > 2k using
that L > 6k. (In fact, |M+| = L/2− o(L) while 2k + 1 = o(L).) By symmetry, the same
lower bound holds for M−. So we can always choose a t ⊆ M+ and a t′ ⊆ M+ with
t, t′ ∈

(
L

2k+1

)
.

On the other hand
∑

j∈[L] σj = |M+|− |M−| increases (decreases) by 4k+ 2 whenever

we change the value of any t ⊆ M+ (t′ ⊆ M−). Therefore, as −2k < |M+| − |M−| < 2k
holds on {fn = 0}, by changing the value of a bit t (or respectively t′) as above one can
achieve that

∑
j∈[L] σj ≥ 2k (respectively,

∑
j∈[L] σj ≤ −2k).

1.2.5 Revealment

The fundamental paper [BKS99] used hypercontractivity estimates to prove that crossing
events are noise sensitive. There is, however another tool coming from the theory of
randomised algorithms that allows for more quantitative noise sensitivity results. Once
noise sensitivity is established, one can take different sequences εn → 0 and investigate
whether the asymptotic decorrelation survives or not if the original input is perturbed
with a small εn noise.

A randomized algorithm A for a Boolean function {−1, 1}V −→ {−1, 1} queries the
bits ωj for j ∈ V one by one, in such a way that the decision of the bit to ask next might
be made based on the outcome of the values already learned and on external randomness
as well.

The revealment of a randomized algorithm for a Boolean function f is the maximum
probability that a particular bit is queried during the algorithm. The revealment of the
Boolean function is the infimum of the revealments over all randomized algorithms.

Definition 1.2.5 (Revealment). Let JA ⊆ V denote the random set of coordinates
queried by the algorithm A until it learns the value of f . Let R denote all possible
random algorithms on {−1, 1}V The revealment of f is

δf = inf
A∈R

max
j∈V

P[j ∈ JA] (1.2.13)

Now the important result that links noise sensitivity to this notion is the following
([SS10]):

Theorem 1.2.13 ( Revealment and Noise Sensitivity). Let f : {−1, 1}V −→ {−1, 1}
then ∑

|S|=k f̂(S)2

‖f‖2
2

≤ δfk (1.2.14)

If the revealment δn of a sequence of Boolean functions fn goes to 0 then it is noise
sensitive. Moreover, δn gives a quantitative bound for noise sensitivity.
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Chapter 2

Sparse Reconstruction in Product
Measures

2.1 L2-Clue and Sparse Reconstruction for Transitive

Functions

Let G be a vertex transitive graph with vertex set V and let us put uniformly random
bits (we will think about them as ±1) on the vertices of the graph. Now take an event
which is itself invariant under a transitive group of graph automorphisms. The question
we are going to investigate is the following: Is it possible that knowing the bits of a small
subset of vertices specified in advance (independently from the value of the bits) will give
enough information to decide whether the event has occurred or not?

In this section we will answer this question and some of its generalizations. In order
to make this question precise we need to measure the amount of information we gain
about an event by learning a subset of the coordinate values of a configuration. For a
subset of vertices U ⊆ V let FU denote the σ-algebra generated by the bits of vertices in
U .

Definition 2.1.1 (L2-Clue). Let f : {−1, 1}V −→ R and U ⊆ V .

clue(f | U) =
Var(E[f | FU ])

Var(f)

In the definition we allowed for any real function f , not only events (which may
be represented by their indicator functions), as the definition extends naturally. This
concept first appeared under this name in [GPS10].

The notion of cluef (U) quantifies the proportion of the total variance of f attributed
to the variance of the function projected onto FU . The clue is always a number between
0 and 1, as a projection can only decrease the variance.

It is worth noting that

clue(f | U) =
Cov2(f,E[f | F(U)])

Var(f)Var(E[f | F(U)])
= Corr2(f,E[f | F(U)]). (2.1.1)

using that Cov(f,E[f | F(U)]) = Var(E[f | F(U)]), since conditional expectation is an
orthogonal projection.

19
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20 CHAPTER 2. SPARSE RECONSTRUCTION IN PRODUCT MEASURES

Natural it may seem, clue is obviously not the only possible way to quantify the
information content of a subset of coordinates about a function. Later on in this section
we will consider a few alternatives.

We continue formalising the informal question posed at the beginning. We introduce
the concept of sparse reconstruction which essentially formalizes the question we asked
for general functions. We should emphasize that this is one of the central concept of this
thesis.

Definition 2.1.2 (Sparse Reconstruction). Let fn : {−1, 1}Vn −→ {−1, 1} be a sequence
of Boolean functions and let µn =. We say that there is Sparse Reconstruction for fn if
there is a sequence of subsets Un ⊆ Vn such that for some c > 0

lim inf
n

clue(fn | Un) > c

We are now ready to formulate our question. Is there a fn : {−1, 1}Vn −→ {−1, 1} be
a sequence of transitive Boolean functions for which there is Sparse Reconstruction?

The answer turns out to be negative. The following theorem provides a sharp upper
bound on the clue of not only Boolean, but general real-valued transitive functions.
The proof is surprisingly short and it demonstrates the power of the notion of spectral
sample in an impressive way. (For an introduction on the Fourier-Walsh transform on
the hypercube and the spectral sample see Section 1.1.2).

Theorem 2.1.1 (Clue of Transitive Functions). If f : {−1, 1}V −→ R transitive, U ⊆ V
then

clue(f | U) ≤ |U |
|V |

Proof. Let X be a uniformly random element from the spectral sample Sf of f condi-
tioned on being non-empty. Because f is transitive X is uniform on V . Using (1.1.7) we
get the following:

clue(f | U) = P[S ⊆ U |S 6= ∅] ≤ P̃[X ∈ U ] =
∑
u∈U

P̃[X = u] =
|U |
|V |

, (2.1.2)

where P̃ denotes the probability measure conditioned on {S 6= ∅}.

Remark 2.1.2. The bound in Theorem 2.1.1 is sharp, as it is testified by the function∑
v∈V ωv.

It is worth to point out that the result does not only apply for sequences of Boolean
functions, but also for any sequences of real-valued functions, no matter bounded or not.

Remark 2.1.3. There is no obvious way to relax the condition of transitivity. We now
sketch an example of a sequence of Boolean functions where the individual influences
Iv(fn) (see Definition 1.2.2) are (almost) equal for every n, however there is a sparse

subset of coordinates Un (i. e. limn
|Un|
|Vn| = 0) such that limn cluefn(Un) = 1.

Let an be a sequence of integers such that an →∞. Let us define the non-symmetrical
majority functions

Majan(n) =

{
1 if

∑
i ω(i) > an

√
n

−1 if
∑

i ω(i) < an
√
n.
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2.1. L2-CLUE AND SPARSE RECONSTRUCTION FOR TRANSITIVE FUNCTIONS21

We can choose an in such a way that for some small ε > 0

Ii(Majann ) =

(
n

n/2+2an
√
n

)
2n

∼ 1

n2/3

holds. The Tribes function Tribes(ln, kn) — which has already been defined in Chapter
1 just before Proposition 1.2.5 — is known to be balanced if ln = log n − log log n and
kn = n/ln. Let us denote this balanced version of the tribes on n bits by Tribes(n). An
easy calculation shows that Ii(Tribesn) ∼ logn

n
.

Let Vn = Mn ∪ Tn with |Mn| = mn and |Tn| = tn. Now we define our function as
follows:

fn :=

{
Majan(ωMn) if Tribes(ωTn) = 1
Maj−anωMn) if Tribes(ωTn) = −1.

We adjust the size of Mn and Tn in such a way that the influence of each coordinate is
the same. So we have the equation log tn

tn
= 1

m
2/3
n

, or equivalently

mn =

(
tn

log tn

)3/2

.

So the density of Tn goes to 0 compared to |Vn| = tn+mn. At the same time, from the Cen-
tral Limit Theorem it is clear that limn P[Majan(mn) = 1] = 0 and limn P[Maj−an(mn) =
1] = 1. Consequently, limn cluefn(Tn) = 1.

Remark 2.1.4. Here we point out an interpretation of the random element X of the spec-
tral sample appearing in the proof of Theorem 2.1.1. This setup also has some interesting
connections with one of the key lemmas in Chatterjee’s book on superconcentration and
chaos [C14].

For a function f : {−1, 1}V −→ R we define the stability of f at level p as

Stabf (p) :=
∑
S⊆Vn

f̂(S)2p|S|.

Stability has two interpretations. On the one hand, it measures the noise stability of f :
that is, if f is defined on the p-correlated bit sets x and y, then Stabf (p) = E[f(x)f(y)].
On the other hand, it is also the closely related to the expected clue of a Bernoulli random

set of coordinates Bp of density p:
Stabf (p)

Var(f)
= E[clue(f | Bp)].

Stability can be generalized as a polynomial of |V | variables. Then the quantity

Stabf (x)

Var(f)
=

1

Var(f)

∑
S⊆V

f̂(S)2
∏
i∈S

xi

can be interpreted as the expected clue of a random subset where the bit i is selected
with probability xi, independently from other bits.

Denote by p the vector with all of its coordinates is equal to p and for a j ∈ V take
the partial derivative of Stabf (p) with respect to the jth coordinate. We obtain that

∂Stabf (p)

∂pj
=
∑
S3j

f̂(S)2p|S|−1.
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22 CHAPTER 2. SPARSE RECONSTRUCTION IN PRODUCT MEASURES

Now here is the relationship withX, the uniformly random element of the spectral sample:∫ 1

0

∂Stabf (p)

∂pj
dp =

∑
S3j

f̂(S)2 1

|S|
= Var(f)P[X = j]. (2.1.3)

The above quantity can be understood as the average increase in clue over all p values,
induced by a small increase in the probability of selecting j into the random set. This
interpretation becomes even more explicit in the cooperative game theory framework (see
Proposition 2.4.1 below).

Now we get to the connection with Chatterjee’s work. Let f, g : {−1, 1}V −→ {−1, 1}
be monotone Boolean functions. We start by expressing P[j ∈Pf (ω)∩Pg(ω

1−p)] in terms
of the Fourier-Walsh transform.

Observe that for any monotone f : {−1, 1}V −→ {−1, 1}, we have

∇jf(ω) = f(ω|ωj = 1)− f(ω|ωj = −1) =
∑
S3j

f̂(S)χS\j(ω).

As j is in Pf (ω) if and only if ∇jf(ω) = 2 and otherwise ∇jf(ω) = 0, we get that

11i∈Pf (ω) =
1

2

∑
S3j

f̂(S)χS\j(ω).

Now recall that

E[χT (ω)χS(ω1−p)] =

{
0 if T 6= S,
p|S| if T = S,

and thus, whenever f and g are monotone, we have

P[j ∈Pf (ω) ∩Pg(ω
1−p)] = E[11j∈Pf (ω)11j∈Pg(ω1−p)] =

1

4

∑
S3j

f̂(S)ĝ(S)p|S|−1. (2.1.4)

(We note that this formula is almost a generalization of Lemma 2.7 in [RS18].) Using
that

∑
j∈V P[j ∈Pf (ω) ∩Pg(ω

1−p)] = E[|Pf (ω)∩Pg(ω
1−p)|], we get from (2.1.4) that

∫ 1

0

E[|Pf (ω) ∩Pg(ω
1−p)|]dp =

1

4

∑
j∈V

(∑
S3j

f̂(S)ĝ(S)
1

|S|

)
=

1

4
Cov(f, g). (2.1.5)

This is essentially a special case of Lemma 2.1 from [C14] (referred to as “covariance
lemma”), where the Markov process is the random walk on the hypercube. At the same,
time setting g = f , by (2.1.3) we have

P[X = j] =
1

Var(f)

∫ 1

0

∂Stabf (p)

∂pj
dp =

4

Var(f)

∫ 1

0

P[j ∈Pf (ω) ∩Pf (ω
1−p)]dp,

which is a coordinate-wise localized version of the covariance lemma.

One may ask whether a result similar to Theorem 2.1.1 can be derived in case we
replace the {−1, 1} space in the domain with something more complicated or if we replace
the product measure with some other measure. A natural idea in this direction is to try
to generalize the concept of spectral sample. We might take again Equation (1.1.7) as a
starting point.
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2.1. L2-CLUE AND SPARSE RECONSTRUCTION FOR TRANSITIVE FUNCTIONS23

Observe that the quantity clue(f |U) is well defined for any U ⊆ V on any product
space XV , no matter what the probability measure is. So one would like to use equation
(1.1.7) as the definition for a generalised spectral sample. As the probabilities P[S ⊆ U ]
are known for all U , one can also calculate the probabilities P[S = T ] for all T . Once
we have this generalised spectral sample in hand (depending on the function, the space
and the underlying measure) we might be able to repeat the argument in the proof of
Theorem 2.1.1.

Unfortunately this strategy fails in general. The problem is that nothing guarantees
that the quantities P[S = T ] that we get from the Möbius inversion are non-negative.
Nevertheless, in case the underlying measure is a product measure, the above strategy
works as the quantities P[S = T ] turn out to be non-negative. As we will show, this
follows directly from the so-called Efron-Stein decomposition ([OD14], Section 8.2), a
generalization of the Fourier-Walsh transform for product measures.

We will need the following simple observation, which turns out to be crucial. In fact,
as we shall see Efron-Stein decomposition as well as the possibility of a spectral sample,
ultimately depends on Fubini’s Theorem.

Lemma 2.1.5. Let f ∈ L2(Ωn, π⊗n) and let K,L ⊆ [n]. Then

E[E[f | FL] | FK ] = E[f | FL∩K ].

Proof. Rewriting the conditional expectations as integral, and using Fubini’s theorem,∫
XKc

(∫
XLc

f(XL, xLcdxLc)

)
dxKc =

∫
XKc∪Lc

f(XL∩K , xKc∪Lc)dxKc∪Lc .

Theorem 2.1.6 (Efron-Stein decomposition, 1981). For f ∈ L2(Ωn, π⊗n), there is a
unique decomposition

f =
∑
S⊆[n]

f=S ,

where f=S is a function that depends only on the coordinates in S, and (f=S, f=T ) = 0
whenever S 6= T .

Proof. Our proof follows the ideas from [OD14].
Notice first that assuming such a decomposition exists, then much like in the case of

the hypercube,

E[f | FT ] =
∑
S⊆T

f=S.

Indeed, since E[f | FT ] only depends on coordinates in T , for every S 6⊆ T we expect
that E[f | FT ]=S = 0. Therefore using the (assumed) orthogonality (f,E[f | FT ]) =∑

L⊆T (f=L,E[f | FT ]=L) and since E[f | FT ] maximizes (f, g) among all g FT -measurable

functions, we have f=L = E[f | FT ]=L for every L ⊆ T .
This means that we can reconstruct the functions f=S via a Mü bius inversion (in this

case, an exclusion-inclusion principle) from the conditional expectations:

f=S =
∑
L⊆S

(−1)S−LE[f | FL].
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24 CHAPTER 2. SPARSE RECONSTRUCTION IN PRODUCT MEASURES

It is obvious from the construction that f=T only depends on coordinates in T . So what
is left to show is that f=T and f=S are orthogonal, if they are not equal. First we show
that if g is FT -measurable and S \ T 6= ∅ then f=T and g are orthogonal. We can pick
an i ∈ S \ T and write the above inner product as

E[gf=S] =
∑

L⊆S\{i}

(−1)S−LE[gE[f | FL]]− E[gE[f | FL∪{i}]],

using that (−1)S−L and (−1)S−L∪{i} has opposite signs. Conditioning on T and after on
L before taking the expectation and applying Lemma 2.1.5 twice gives that

E[gE[f | FL]] = E[E[g | FT∩L]E[f | FT∩L]] =

E[E[g | FT∩(L∪{i})]E[f | FT∩(L∪{i})]] = E[gE[f | FL∪{i}]].

We used that T ∩ (L∪{i}) = T ∩L, since i /∈ L and i /∈ T . This shows that E[gf=S] = 0.
From this to E[f=Tf=S] and switching the roles, it follows E[f=Tf=S] = 0 if either
S \ T 6= ∅ or T \ S 6= ∅ which is equivalent to T 6= S.

Observe that this is indeed a generalization of the Fourier-Walsh transform, with
f=S = f̂(S)χS. What is important for our purpose is that we can again define a Spectral

Sample P[S = S] := ‖f=S‖2
‖f‖2 for every square-integrable function, as in the case of the

hypercube and thus Theorem 2.1.1 generalizes for product measures.

Theorem 2.1.7 (Small clue theorem for product spaces). Let f ∈ L2(Ωn, π⊗n) and
suppose that there is a G ≤ Sn acting on the n copies of Ω transitively. Suppose f is
invariant under the action of G. If U ⊆ [n], then

clue(f | U) ≤ |U |
n
.

The proof is exactly the same as for Theorem 2.1.1, the only difference being that
we need to use the Efron-Stein decomposition instead of the Fourier-Walsh transform to
build the Spectral Sample.

2.2 Other approaches to measuring “clue”

2.2.1 Significance and Influence of subsets

We would like to make a small detour to discuss some possible alternatives to “clue”
as defined in Definition 2.1.1. Given a Boolean function f : {−1, 1}V −→ {−1, 1}
and an underlying probability measure P, we basically want to quantify the amount
of information a subset of the coordinates gives us about the function f . We will denote
the size of the coordinate set V by n.

We start with a sort of dual to clue.

Definition 2.2.1. The significance of a subset U ⊆ V is

sig(f | U) =
E[Var(f | FUc)]

Var(f)
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2.2. OTHER APPROACHES TO MEASURING “CLUE” 25

We call it a dual, because we have sig(f | U) = 1 − clue(f | U c). It expresses how
much additional information we are still missing on average if we know the values of the
bits outside of U . We have the following description of sig(f | U) in terms of the spectral
sample:

sig(f | U) = P[Sf ∩ U 6= ∅].
This shows that for product measures sig(f | U) ≥ clue(f | U). In general, this

inequality does not hold. (sig(f | U) > clue(f | U) whenever clue(f | U) + clue(f | U c) >
1, which can easily happen if the underlying measure has lots of dependencies.) Also
Theorem 2.1.1 is not true if we replace clue by sig. For example, any subset U ⊆ V has
significance 1 with respect to the parity function χV , which is obviously transitive. The
famous “It Aint Over Till Its Over” Theorem proved in [MOO05] which can be stated
that for sequences of functions with low maximal influence for arbitrary small (but fixed)
ε the average significance of a Bernoulli random subset of level 1− ε is not vanishing.

We mention a similar concept introduced in [BL89]. For a subset U ⊆ V the influence
of U is defined as follows:

I(f | U) = P[f is not determined by the bits on U c]

Influence is, however, much weaker then sig (in the sense that it is easier to have high
influence than to have high significance). Like in social choice theory, one may think
about coordinates as individual agents trying to influence the value (outcome) of f by
the values of the respective bits. In this framework the influence of a subset quantifies
the probability that the set of agents in U can change the value of f by coordinating
their values. While in this setting coordinates are allowed to cooperate, the significance
rather quantifies the average gain of information (measured in variance) for a uniformly
random configuration of U .

We can again take the dual concept of influence, the combinatorial equivalent of
clue, which is the probability that the subset U is a witness. For a Boolean function
f : {−1, 1}V −→ {−1, 1} and a configuration ω ∈ {−1, 1}V a subset W ⊆ V is a witness
for f if ωW already decides the value of f .

W (f | U) = P[f is determined by the bits on U ]

Obviously, I(f | U) ≥ W (f | U) holds irrespective of what the measure is, and also
I(f | U) ≥ sig(f | U), which entails after taking the dual in both sides, that clue(f | U) ≥
W (f | U).

There are still many questions to be investigated. For the left-right crossing event
LRn for critical planar percolation, when Un is a sub-square, it is proved in [GPS10] that
I(LRn | Un) � sig(LRn | Un). For Majn on the other hand, this is not the case. As it is
easy to check, I(Majn | U) � sig(Majn | U) for any sequence of subsets with constant
density.

Question 2.2.1. Characterise sequences of Boolean functions such that for any sequence
of subsets with constant density I(fn | U) � sig(fn | U) holds, or where I(fn | Un) �
sig(fn | Un), respectively.

2.2.2 Clue via entropy

Our setup remains the same, but we formulate it in a somewhat different way. Let
{Xv : v ∈ V } be a set of real-valued discrete random variables defined in a common
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probability space. Let G be a group acting on V transitively and we assume that the
joint distribution of {Xv : v ∈ V } is invariant under the group action. We introduce the
following notation for a S ⊆ V we have XS = {Xj : j ∈ S} and as before FS denotes
the σ–algebra generated by XS. The variables Xv : v ∈ V obviously play the role of the
coordinates. Let f : RV 7→ R and let Z = f(XV ). In this section we are going to discuss
an alternative way of measuring the amount of information a subset S ⊆ V of coordinates
contains about the function f . In the sequel we use concepts from information theory
and define an information-theoretic clue accordingly.

Our main interest is still the special case where the variables Xv and Z are ±1-valued
variables (spins) (the case f : {−1, 1}V −→ {−1, 1}), but all the argument we present
here work in this slightly more general framework.

For sake of completeness we start with some classical definitions.
For a (possibly vector valued) random variable (or a probability distribution) entropy

measures the amount of randomness or information.

Definition 2.2.2 (Entropy). Let X be a discrete random variable. Then the entropy of
X is

H(X) = −
∑

x∈Ran(X)

P[X = x] logP[X = x].

We will also need the concept of conditional entropy. The entropy of X conditioned
on the random variable Y expresses how much randomness remains in X on average if
we learn the value of Y .

Definition 2.2.3 (Conditional Entropy). Let X and Y be two discrete random variables
defined on the same probability space. The conditional entropy of X given Y is

H(X|Y ) = E[H(X)|Y ].

The mutual information quantifies the common information present in two variables.
In a way it measures how far the joint distribution of the two variables is from being
independent.

Definition 2.2.4 (Mutual Information). Let X and Y be two discrete random variables
defined on the same probability space. Suppose that H(X) and H(Y ) are both finite
then the mutual information between X and Y is:

I(X : Y ) = H(X) +H(Y )−H(X, Y ) = H(X)−H(X|Y ). (2.2.1)

Now the definition of clue in this framework. Although are main focus is still Boolean
functions on the hypercube, we define the notion more generally

Definition 2.2.5 (I-Clue). Let Xv : v ∈ V be a finite family of discrete real valued
random variables defined on the same probability space and for some f : RV −→ R lets
consider the random variable Z = f(XV ). The information theoretic clue (I-clue) of f
with respect to U ⊆ V is

clueI(f | U) =
I(Z : XU)

H(Z)
.

Note that if Z is XU -measurable then H(Z|XU) = 0 and therefore I(Z : XU) = H(Z),
while if Z is independent from XU then I(Z : X) = 0, in accordance with what we expect
from a clue type notion.
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2.2. OTHER APPROACHES TO MEASURING “CLUE” 27

As for the cases discussed before, here too we can introduce the dual (which expresses
again how much information we are missing if we don’t know the coordinates in U .)

sigI(f | U) = 1− I(Z : ωUc)

H(Z)
=
H(Z | ωUc)
H(Z)

.

I-clue versus L2-clue

In the sequel, besides the L2 version of clue, we shall also use the entropy based I-clue.
Hence the following result is of some importance.

Proposition 2.2.2. Let µ be a measure on {−1, 1}n and σ = (σ1, . . . σn) a spin system
distributed according to µ.

Let f : {−1, 1}n −→ R with |f(x)| ≤ K, and let Z = f(σ). For any U ⊆ [n]

Var(E[Z | FU ])

Var(Z)
≤ K2 min((δf/2)2, 1)

pmin

I(Z, σU)

H(Z)
, (2.2.2)

where δf = min{x − y : x, y ∈ Ran(f), x 6= y}, and pmin := min{P(Z = x) : x ∈
Ran(f), P(Z = x) > 0}.

We note that this estimate is very poor in many cases, in particular, for a sequence
of functions with the cardinality of the range going to infinity. Nevertheless, we do not
see a clear way to improve it in general. For our main focus, Boolean functions, however,
the inequality is sharp.

Proof. First we show that

Var(E[Z | FU ]) ≤ 2K2I(Z, σU).

Our argument follows Lemma 4.4 in [Tao05]. First we fix some notations. Let z ∈ Ran(f)
and u ∈ {−1, 1}U . Then

pz := P[Z = z], pu := P[σU = u], pz|u := P[Z = z |σU = u].

Now, with this notation we have

Var(E[Z | FU ]) =
∑

u∈{−1,1}U
pu(E[Z]− E[Z |σU = u])2,

and for a fixed u ∈ {−1, 1}U

(E[Z]− E[Z |σU = u])2 =
∑

z∈Ran(f)

(pzz − pz|uz)2 =

∑
z∈Ran(f)

z2(pz − pz|u)2 ≤ K2
∑

z∈Ran(f)

(pz − pz|u)2.

So we get that

Var(E[Z | FU ]) ≤ K2
∑

u∈{−1,1}U

∑
z

(pz − pz|u)2. (2.2.3)

C
E

U
eT

D
C

ol
le

ct
io

n
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With the notation h(x) := −x log x for x ∈ [0, 1] (where h(0) := 0) we can write the
mutual information as

I(Z, σU) = H(Z)−H(Z|σU) =
∑
z

h(pz)−
∑

u∈{−1,1}U
puh(pz|u)

 (2.2.4)

Using linear Taylor expansion with error term around pz for h(pz|u), we get the following
estimate:

h(pz|u) = h(pz) + h′(pz)(pz|u − pz)−
1

2p∗z|u
(pz|u − pz)2

with some p∗z|u between pz|u and pz, using for the error term that h′′(x) = − 1
x
. Substituting

this estimate into (2.2.4), we observe that the terms with h′(pz) cancel, since for any
z ∈ Ran(f) we have

∑
u∈{−1,1}U pu(pz|u − pz) = pz − pz = 0. Therefore we obtain that

∑
u∈{−1,1}U

∑
z

(pz − pz|u)2

p∗z|u
= 2I(Z, σU).

As 0 < p∗z|u < 1 we can conclude, using (2.2.3) that

Var(E[Z | FU ]) ≤ K2
∑

u∈{−1,1}U

∑
z

(pz − pz|u)2

p∗z|u
≤ 2K2I(Z, σU).

Now we turn to the denominator. We have to show that the entropy can be bounded by
the variance, that is H(Z) ≤ CVar(Z), with C = (2pmin min((δf/2)2, 1))

−1
.

In case f is Boolean and thus Z takes on ±1 almost surely, the entropy can be
expressed as a function of x = E[Z]. A quadratic Taylor expansion around 0 gives the
following asymptotics:

H(Z) = −
(

1− x
2

log
1− x

2
+

1 + x

2
log

1 + x

2

)
= 1− 1

ln 4
x2 −O(x4),

where log denotes base 2 logarithm.
Recall that pmin = min(P[f = 1],P[f = −1]). Then |E[Z]| = 1 − 2pmin. At the same

time, a simple calculation shows that if |E[Z] ≤ 1− c, that is, c ≤ 2pmin then

H(Z) ≤ 1− 1

ln 4
E[Z]2 ≤ 1

c
(1− E[Z]2) ≤ 1

2pmin

Var(Z).

In case f is still binary valued and max(f) − min(f) = δf we can get a a ±1-valued
function by an affine transformation. So we have :

H(Z) ≤ 1

2pmin min((δf/2)2, 1)
Var(Z). (2.2.5)

We continue by induction on |Ran(f)|, the cardinality of the range of f . We have just
proved the claim when |Ran(f)| ≤ 2.

Now let |Ran(f)| > 2 and for some x ∈ R we define the event A := {Z > x}. We
choose an x in such a way that both P[A] and P[Ac] are positive.
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2.2. OTHER APPROACHES TO MEASURING “CLUE” 29

According to the law of total variance

Var(Z) = Var(E[Z | FA]) + E[Var(Z | FA)],

where FA is the σ-algebra generated by A. At the same time we decompose the entropy
according to A as well:

H(Z) = H(Z, 11A) = H(11A) +H(Z | 11A),

using that A is Z-measurable.
Obviously, pmin ≤ min(P[A],P[Ac]) and it is also clear that |E[Z |A]−E[Z |Ac]| ≥ δf ,

hence using (2.2.5) for E[Z | FA] (which is indeed binary valued), we get that

H(11A) = H(E[Z | FA]) ≤ 1

2pmin min((δf/2)2, 1)
Var(E[Z | FA]).

Conditioned on either A or Ac the range of f is smaller then Ran(f), so by the induction
hypothesis we have

H(Z |A) ≤ 1

2pmin min((δf/2)2, 1)
Var(Z |A),

together with the respective upper bound for H(Z |Ac). So we get

H(Z | 11A) = P[A]H(Z |A) + P[Ac]H(Z |Ac) ≤ 1

2pmin min((δf/2)2, 1)
E[Var(Z | FA)].

In particular, this result shows that for a non-degenerated sequence of Boolean func-
tions, no sparse reconstruction with respect to clueI implies no sparse reconstruction with
respect to clue.

2.2.3 Clue via distances between probability measures

In this section we introduce a somewhat different approach to measure the information
content of a subset of coordinates about a Boolean function. We can interpret a Boolean
function as the density of a probability measure, the uniform measure conditioned on
the set of configurations {ω ∈ {−1, 1}V : f(ω) = 1}. If we think about a Boolean
function as a function mapping to {0, 1} instead of {−1, 1}, it is indeed treating f like a
(probability) density function.

More generally, every f : {−1, 1}n −→ R≥0 with E[f ] > 0 can be interpreted as a
density, and can be used to define another probability measure on the same space by

Q[ω] :=
1

E[f ]
f(ω)P[ω], ω ∈ {−1, 1}n . (2.2.6)

Now that we turned our function to a measure we can think about the information
content in terms of distance of probability measures. For example, total variation distance
between two measures on a discrete space is given by

δ(P,Q) :=
1

2

∑
ω∈Ω

|P[ω]−Q[ω]|. (2.2.7)
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In this framework, the total information content of the function is measured by its distance
from the original measure P. How can we now quantify the information content of a subset
of coordinates? We can simply take the marginals (projections) of the respective measures
P and Q with respect to a subset of coordinates U and take their distance.

clueTV (f | U) =
δ(P|U ,Q|U)

δ(P,Q)
.

We can express this in a somewhat more familiar form, using L1 distance. Let f be the
density of Q, then with Z := f(ω) we have δ(P,Q) = 1

2E[Z]
E[|Z − E[Z]|], as it can be

easily calculated if we substitute (2.2.6) into (2.2.7). In a similar way we get that

δ(P|U ,Q|U) =
1

2E[Z]

∑
ω∈{−1,1}U

P[ω] |E[Z|FU ](ω)− E[Z]| = 1

2E[Z]
E[E[Z|FU ](ω)− E[Z]],

and, as a consequence,

clueTV (f | U) =
E[|E[Z|FU ]− E[Z]|]

E[|Z − E[Z]|]
, (2.2.8)

which is clearly just an L1 version of the original definition (Definition 2.1.1). Without
going into details we mention that again one can define a dual notion by sigTV (f | U) =
1− clueTV (f | U c).

Let us compare clue and clueTV for Boolean functions. More precisely let f : {−1, 1}n −→
{−1, 1} and let Z ′ = (Z + 1)/2 the corresponding {0, 1}-valued random variable. A sim-
ple calculation shows that Var(Z) = 2E[|Z ′ − E[Z ′]|]. At the same time, using Cauchy-
Schwarz inequality:

E[|E[Z ′|FU ]− E[Z ′]|] =
∑

ω∈{−1,1}U

√
P[ω]

√
P[ω] |E[Z ′|FU ](ω)− E[Z]|

≤
∑

ω∈{−1,1}U
P[ω] (E[Z ′|FU ](ω)− E[Z])

2
= Var(E[Z ′|FU ]) =

1

4
Var(E[Z|FU ]),

and consequently

clueTV (f ′ | U) ≤ 1

8
clue(f | U).

We emphasize that this is true irrespective of the underlying measure. In particular, this
means that Theorem 2.1.1 remains true if we replace clue by clueTV .

There is another way to measure distance between probability measures which relies
on concepts from information theory. The Kullback-Liebler (KL) divergence or relative
entropy is defined as follows.

Definition 2.2.6 (Relative entropy). Let Q and P measures on the same discrete prob-
ability space Ω, where Q� P. the relative entropy between Q and P is

D(Q||P) = −
∑
x∈Ω

Q(x) log
Q(x)

P(x)
.
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Observe that although it means to express a concept of distance between two distri-
butions, the relative entropy is not a metric. In particular D(Q||P) 6= D(P||Q).

Now we can define yet another concept of clue according to the same logic as for
the total variation distance. Let f : {−1, 1}V −→ R≥0 and let Q denote the probability
measure on {−1, 1}V with density f . If D(Q||P) expresses the total ’information distance’
between Q and P , we can interpret the quantity D(QU ||PU) as the ’information distance’
restricted to the respective subset of coordinates. Hence we define the KL-divergence
clue.

clueKL(f | U) :=
D(QU ||PU)

D(Q||P)
.

One can easily derive that

D(Q||P) = Ent(Z),

where Z = f(ω) as usual and Ent(Z) := E[Z logZ] − E[Z] logE[Z] (the expectation is
taken with respect to P and in case f(ω) = 0 we have, by continuity, f(ω) log f(ω) = 0).
Similarly, we have D(Q||P) = Ent(E[Z|U ]), and thus we obtain the following formula
reminiscent to (2.2.8)

clueKL(f | U) =
Ent(E[Z|U ])

Ent(Z)
.

We mention that Ent(Z) and Var(Z) together with the respective concepts of clue can be
examined in the general framework of Φ-entropies (see for example [BLM13], Chapter 14
and 15). The main idea is that for a convex function R≥0 → R one can assign a respective
Φ-entropy for every integrable random variable X by

HΦ(X) = E[Φ(X)]− Φ(E[X]).

It turns out that under some general analytic conditions on Φ many important properties
we require from an information measure remains valid forHΦ(X) (for example, it is always
non-negative because of Jensen’s inequality). In particular, we get HΦ(X) = Var(X)
when Φ(x) = x2 and HΦ(X) = Ent(X) with Φ(x) = x log x.

2.3 Sparse Reconstruction with respect to I-clue and

KL-clue

In this section we show some equivalents of Theorem 2.1.7 for the I-clue and KL-clue.
We note that the following theorem, as well as the definition of I-Clue only works well in
the discrete case, as the continuous counterpart of entropy, differential entropy has some
drawbacks (for example, it can be negative). The notation and setup follows Section
2.2.2.

Theorem 2.3.1. Let {Xv : v ∈ V } be discrete valued, i.i.d, random variables with finite
entropy. Let f : Ωn −→ R be a transitive function and Z = f({Xv : v ∈ V }). Then

clueI(f | U) ≤ |U |
n
. (2.3.1)

For the proof we will use the following well-known inequality which finds numerous
applications in combinatorics. For a proof see for example [LyP].
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Theorem 2.3.2 (Shearer’s inequality). Let X1, X2, . . . Xn random variables defined on
the same probability space. Let S1, S2 . . . , SL subsets of [n] such that for every i ∈ [n]
there are at least k among S1, S2 . . . , SL containing i. Then

kH(X[n]) ≤
L∑
l=1

H(XSl).

First we need the following consequence of Shearer’s inequality.

Lemma 2.3.3. Suppose X1, X2, . . . Xn are independent. Let S1, . . . SL be a system of
subsets of [n] such that each i ∈ [n] appears in at most k sets. Then

L∑
j

I(Z : XSj) ≤ kI(Z : X[n]) (2.3.2)

Proof. Without loss of generality we can assume that each i appears in exactly k sets.
Indeed, if this is not the case, we can always add some additional subsets so that this
condition is satisfied. While adding new sets the right hand side of the inequality does
not change and the left hand side can only increase.

Since the variables Xi are independent:

L∑
j

H(XSj) =
∑
j

∑
i∈Sj

H(Xi) = k
∑
i∈[n]

H(Xi) = kH(X[n]) (2.3.3)

On the other hand, using Shearer’s inequality

−
L∑
j

H(XSj |Z) ≤ −kH(X[n]|Z) (2.3.4)

Using that I(Z : XSj) = H(XSj)−H(XSj |Z) and adding up (2.3.3) and (2.3.4) completes
the proof.

Now the proof of the clue-theorem:

Proof. Recall that G acts transitively on V . We assume that both the product measure
µ and the function f are G-invariant. Let U ⊆ V arbitrary. then for each g ∈ G

I(Z : XU) = I(Z : XUg)

where U g = {ug : g ∈ G}.
Observe that v ∈ U g ⇐⇒ vg−1 ∈ U ⇐⇒ u = vg−1. For each pair of v ∈ V and u ∈ U
there are |Gv| such g, where Gv is the stabilizer subgroup of G with respect to v. (Since
the action is transitive such a g exists, moreover the cardinality of the stabilizer subgroup
Gv is the same for every v ∈ V .) The conclusion is that each v ∈ V appears in exactly
|U ||Gi| translated version of U . Applying Lemma 2.3.3 gives

|G|I(Z : XU) =
∑
g∈G

I(Z : XUg) ≤ |U ||Gv|I(Z : XV ) = H(Z),

which is what we wanted since |G| = n|Gv| by the orbit-stabilizer theorem.
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The concept of clue and I-clue are close to each other as long as the variables Zn
are non-degenerate, in the sense that the variables Zn are uniformly bounded and their
variance is Ω(1). In particular, for a non-degenerated sequence of Boolean functions no
sparse reconstruction with respect to I-clue implies no sparse reconstruction with respect
to the original, L2 version. This follows from Proposition 2.2.2. In full generality, however,
we cannot say anything. In light of this, it is remarkable that we have the exact same
bound (at least in the case product measures) for the clue and I-clue.

Interestingly enough, along the same logic one can prove the respective version of
Theorem 2.1.7 and Theorem 2.3.1 for clueKL. We should emphasize that, in contrast with
mutual information, relative entropy is a concept that remains meaningful for continuous
random variables as well. So Theorem 2.3.5 holds for all product measures like 2.1.7.
The following Shearer-type inequality holds:

Lemma 2.3.4. Let P be a product measure on the hypercube (in fact, any product measure
will do) and and µ another probability measure on the same space satisfying µ� P.

Let S1, . . . SL be a system of subsets of V such that each i ∈ V appears in at most k
sets. Then

L∑
j

D(µSi ||PSi ≤ kD(µ||P).

In our application, of course µ is the measure with density f . It is easy to recognise
that Lemma 2.3.4 is a close relative of Lemma 2.3.3. The proof of this Lemma is also
a straightforward consequence of Shearer’s inequality (Theorem 2.3.2), for a proof see
[GLSS12]. The corresponding clue theorem follows in the same way as Lemma 2.3.3
implies Theorem 2.3.1.

Theorem 2.3.5. Let {Xv : v ∈ V } be Ω- valued, i.i.d, random variables . Let f : Ωn −→
R be a transitive function and Z = f({Xv : v ∈ V }). Then

clueKLf (U) ≤ |U |
n

(2.3.5)

It is worth noting that for sequences of transitive Boolean functions on the hypercube
there is no sparse reconstruction no matter which version of clue we wish to choose.
Indeed clueTV and I (influence) are dominated by clue so Theorem 2.1.1 applies, while
for clueI and clueKL it has been shown in the present section (Theorem 2.3.1 and Theorem
2.3.5).

2.4 Sparse Reconstruction and Cooperative Game

Theory

The field of cooperative game theory starts with the following setup: there is a set of
players which we denote by V here (to be consistent) and the game is defined by assigning
a positive real number v(S) to every subset S of the players. Usually it is assumed that
v(∅) = 0. The function v : 2V −→ R is referred to as the characteristic function. This
aims to model a situation where individuals can gain profit, but the profit may change
(typically increases) in case certain individuals cooperate and form a coalition. Thus v(S)
is the common payoff of the individuals in S provided that they cooperate.
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Cooperative game theory is mostly concerned with finding some sort of fair distribu-
tion of the payoff given the characteristic function v. One of these concepts is the Shapley
value, which aims to distribute the payoff based on the average marginal contribution of
the individuals.

Definition 2.4.1 (Shapley value).

φi(v) =
1

|V |
∑

S⊆V \{i}

v(S ∪ {i})− v(S)(|V |−1
|S|

) (2.4.1)

Observe that for a given f : {−1, 1}V −→ {−1, 1} we can define a cooperative game
via vf (U) := Var[E[f | FU ]] for any U ⊆ V . Besides fitting the mathematical definition,
it also fits into the interpretation of the theory. It is a sort of information game, where
the payoff depends on how accurately we know a piece of information (represented by
the value of the function). Each individual possesses one piece of information (the value
of the corresponding coordinate) but only together they determine the valuable piece of
information.

In the proof of Theorem 2.1.1 we introduced the random element X of the index set,
which is a uniformly random element of the Spectral Sample. In fact, X is distributed
according to the Shapley value.

Proposition 2.4.1. Let f : {−1, 1}V −→ R. Then

φi(vf )

vf (V )
= P[X = i].

Proof. Without loss of generality we may assume that Var(f) = 1. Let n = |V |. First,
observe that

P[X = u] =
∑
u∈S

f̂(S)2 1

S

Now we calculate φi(vf ) via Fourier-Walsh expansion and show that it equals to P[X = u].

Using that vf (S) =
∑

T⊆S f̂(T )2 we get that

φi(v) =
1

n

∑
S⊆V \{i}

∑
T⊆S f̂(T ∪ {i})2(

n−1
|S|

) =
1

n

∑
T⊆V \{i}

f̂(T ∪ {i})2
∑

S⊆[n]\{i}:T⊆S

1(
n−1
|S|

)
For a fixed T there are

(
n−1−|T |
k−|T |

)
k-element subsets S which contain T . Therefore we have

φi(v) =
1

n

∑
T⊆V \{i}

f̂(T ∪ {i})2

n−1∑
k=|T |

(
n−1−|T |
k−|T |

)(
n−1
k

)
With some elementary manipulation of the binomial coefficients we get that(

n−1−|T |
k−|T |

)(
n−1
k

) =

(
k
|T |

)(
n−1
|T |

) .
Now we apply the so called Hockey-stick identity —

∑n−1
k=|T |

(
k
|T |

)
=
(

n
|T |+1

)
— and we get

the desired formula.
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Given how naturally the Shapley value arises in the proof of Theorem 2.1.1, it is
perhaps not surprising that there is proof that does not use Fourier-Walsh transform,
only simple concepts from cooperative game theory and Combinatorics. The advantage
of this approach is that it makes it more clear the conditions under which a small clue
theorem can be true. It should also be noted that this approach entails both the L2 and
the entropy version of the theorem.

We introduce another concept of fair distribution which is related to our topic. the
core defines those distributions of the profit in which every coalition of players gets in
total at least as much as they deserve (according to the characteristic function).

Definition 2.4.2 (Core). The core of a cooperative game v with set of playeres V is the
set C(v) ⊆ R|V | in such a way that x ∈ C(v) if and only if∑

i∈V

xi = v(V ),

and for every S ⊂ V ∑
i∈S

xi ≥ v(S).

We have the following simple observation.

Lemma 2.4.2. Let v be a transitive game. If the Shapley value vector φ(v) is in the core
C(v) then for every S ⊆ V

v(S) ≤ |S|
|V |

v(V ).

Proof. For transitive games, obviously φi(v) = v(V )
|V | . Using that φ(v) ∈ C(v), we get that

v(S) ≤
∑
i∈S

φi(v) =
|S|
|V |

v(V ).

We are going to show that a class of cooperative games, the so-called convex games,
satisfy the conditions of Lemma 2.4.2.

Definition 2.4.3 (Convex games). A cooperative game v is convex if the characteristic
function is supermodular. That is, for every subset of players S, T ⊆ [n]

v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ). (2.4.2)

Recall that with any function f on a product space we can associate a game vf by
vf (U) := Var[E[f | FU ]]. We have another game if we define the information we gain via
information theoretic concepts (see Definition 2.2.5):

vIf (S) = I(Z : XS).

It is not difficult to see that for product measures, both vf and vIf are convex games. The
entropy version is immediate from the submodularity of entropy, which can be written
as:

−H(XS|Z)−H(XT |Z) ≤ −H(XS∩T |Z)−H(XS∪T |Z).

C
E

U
eT

D
C

ol
le

ct
io

n



36 CHAPTER 2. SPARSE RECONSTRUCTION IN PRODUCT MEASURES

Using that for independent variables the submodularity inequality is sharp we get

H(XS)−H(XS|Z) +H(XT )−H(XT |Z) ≤
H(XS∩T )−H(XS∩T |Z) +H(XS∪T )−H(XS∪T |Z).

For the L2 version, the supermodularity of Var(E[f | FU ]) follows easily from the
spectral description. Here we present an argument that does not require Fourier-Walsh
expansion or Efron-Stein decomposition.

Proposition 2.4.3. Let f : XV −→ R, where XV is endowed with a product measure.
The set function (cooperative game) vf (S) = Var(E[f | FS]) for (S ⊆ V ) is supermodular
(convex).

Proof. First observe that whenever S ⊆ T then E[E[f | FT ] | FS] = E[f | FS] by the
towering property, and, using that conditional expectation is an orthogonal projection,
we get that

Var(E[f | FT ])− Var(E[f | FS]) = Var(E[f | FT ]− E[f | FS]),

and therefore (2.4.2) can be rewritten as

Var(E[f | FT ]− E[f | FS∩T ]) ≤ Var(E[f | FS∪T ]− E[f | FS]). (2.4.3)

Fix S, T ⊆ V such that S ⊆ T . Using Lemma 2.1.5 for (T \ S)c and T , we get

E[f | FS] = E[E[f | F(T\S)c ] | FT ].

Note that this is the only place in the argument where the fact that the underlying
measure is a product measure is exploited.

This identity allows us to write E[f | FS∩T ] = E[E[f | F(T\(S∩T ))c ] | FT ] and E[f | FS] =
E[E[f | F((S∪T )\S)c ] | FS∪T ]. Since T \ (S ∩ T ) = (S ∪ T ) \ S = T \ S, (2.4.3) becomes

Var(E[f − E[f | F(T\S)c ] | FT ]) ≤ Var(E[f − E[f | F(T\S)c ] | FS∪T ]),

which always holds, because orthogonal projection cannot increase the variance (L2-
norm).

The subgame vU denotes the game v with its domain restricted to the subset U ⊆ [n].

Lemma 2.4.4. If v is a convex and transitive game, then S ⊆ T implies

φi(vS) ≤ φi(vT )

Proof. We are going to show this when T = S ∪ {j}. Let |S| = k We have

φi(vS) =
1

k

∑
L⊆S\{i}

v(L ∪ {i})− v(L)(
k−1
|L|

) ≤ 1

k + 1

∑
L⊆T\{i}

v(L ∪ {i})− v(L)(
k
|L|

)
and

φi(vT ) =
1

k + 1

 ∑
L⊆S\{i}

v(L ∪ {i})− v(L)(
k
|L|

) +
∑

L⊆S\{i}

v(L ∪ {i, j})− v(L ∪ {j})(
k
|L|+1

)
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It is a straightforward calculation to verify that for any l ≤ k

1

k

1(
k−1
l

) =
1

k + 1
(

1(
k
l

) +
1(
k
l+1

))

and therefore, using that by supermodularity, v(L∪{i})−v(L) ≤ v(L∪{i, j})−v(L∪{j}),
we get

φi(vS) =
1

k + 1

 ∑
L⊆S\{i}

v(L ∪ {i})− v(L)(
k
|L|

) +
∑

L⊆S\{i}

v(L ∪ {i})− v(L)(
k
|L|+1

)
 ≤ φi(vS∪{j})

Now Lemma 2.4.4 implies that if v is a convex game then for any S ⊂ V

v(S) =
∑
i∈S

φi(vS) ≤
∑
i∈U

φi(v), (2.4.4)

and therefore φ(v) is indeed in the core. By Proposition 2.4.3 for any real function f the
game vf is convex (if the underlying measure is a product measure), so using (2.4.4) we
see that Lemma 2.4.2 applies and we obtain Theorem 2.1.7 (and Theorem 2.3.1, if we
replace vf with vIf in the argument above).

Observe that for a transitive game with a non-empty core the Shapley value, i.e.,
the uniform vector, will always be in the core. It is because the core is convex and
itself is invariant under the group action. Therefore, one could weaken the condition of
Proposition 2.4.2 by only requiring the non-emptiness of the core. A classical result in
Cooperative Game Theory (see for example [BDT08] Theorem 2.4) gives necessary and
sufficient conditions for this. It has to be said, however, that on a practical level, the
conditions of this theorem are not very easy to verify.

Theorem 2.4.5 (Bondareva-Shapley). The core of the game v is non-empty if and only
if for every α : 2V \ ∅ → [0, 1] such that for every i ∈ V∑

S⊆V : i∈S

α(S) = 1

it holds that ∑
S⊆V

α(S)v(S) ≤ v(V )

2.5 Sparse Reconstruction for Planar Percolation

2.5.1 A Brief Introduction to Percolation Theory

Percolation theory arose historically in statistical mechanics in the 60s. The motivation
was to understand the percolation of some liquid in a porous body. This is modeled by
a random graph whose vertices, called sites, correspond to points in the body and the
edges represent possible links between sites. Percolation theory aims at understanding
some distributional properties of the connected components (referred to as clusters) in
the above random graph.
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There are a number of possible models depending on the randomization procedure.
Here our focus is the most straightforward model, Bernoulli edge percolation. In this
model each edge is open (meaning that the liquid can flow), independently from the
status of any other edge. Edge percolation refers to the fact that the 0 − 1 random
variables, which decide whether locally the fluid can pass, are assigned to edges contrary
to site percolation, where they are assigned to the vertices of the graph.

As we want to have an automorphism invariant model we require that each edge of
the graph has the same probability p to be open. In case the graph is infinite, it is a
question of particular interest whether for a particular value of p the graph contains an
infinite cluster or not. This is a tail event, consequently for any value of p either there
is or there is not such a cluster, almost surely. A simple coupling argument shows that
by increasing p we can only introduce an infinite cluster. It has been shown accordingly
that any infinite connected graph admits a critical value pc:

Definition 2.5.1 (Critical Probability). pc = inf {p : Pp(∃ ∞ cluster) = 1}

It tuns out that the critical model in many graphs displays interesting, fractal-like
features. There is a universality principle coming from statistical physics which connects
the behaviour of various graph models around phase transition. The idea is that, although
the low level description of models may differ, ultimately they all describe the same high-
level phenomenon. Physicists believe that any graph percolation that comes from a nice
d -dimensional lattice describes the same ’ideal’ d-dimensional percolation at the critical
probability pc, only in possibly different frames.

This principle suggests the existence of so-called critical exponents, which describe
the probability of important observables of the percolation at the phase transition (i.e.
at p = pc) via universal power laws. For example, although the value of pc may vary
from graph to graph, the Hausdorff dimension of the connectivity clusters at criticality is
believed to be the same. Physicists can calculate the value of these exponents and they
believe that these values are universal in the sense above. Nevertheless, from the point
of view of the mathematician, little is actually known.

In this chapter we consider Bernoulli edge percolation on the n×n square lattice with
p = 1/2. Our main focus will be the left right crossing event LRn. This is the event that
there exist to vertices x from the left boundary of the square and y from the right in such
a way that there is a path consisting of open edges between x and y.

It can be shown that when p = 1
2

then P[LRn] tends to 1
2

as n → ∞. Every per-
colation configuration on a square (or, in fact, any planar) lattice induces a percolation
configuration on the dual lattice. In the dual lattice the sites are faces and two faces are
connected in configuration if the two faces are bordered with an edge which is closed in
the original percolation.

The proof uses two observations. First, that (n− 1)× n rectangles are self dual and
second that there is a left-right crossing in the original configuration if and only if there
is an up-down crossing in the dual configuration. In the sequel, we shall also make use
of this rotational symmetry of the percolation model.

This suggests that the critical probability for Z2 is pc = 1
2
. This is indeed the case,

but it is far from trivial to prove this. It has to be noted that in case p < 1
2

(p > 1
2
) the

probability of LRn goes to 0(1) exponentially fast.
Critical planar percolation has been more extensively studied, and there has been

some important developments in the last few decades. The main breakthrough was by
Smirnov [Sm01], who showed that in the case of the triangular lattice the universality

C
E

U
eT

D
C

ol
le

ct
io

n



2.5. SPARSE RECONSTRUCTION FOR PLANAR PERCOLATION 39

conjecture of the physicists holds, in particular the value of the critical exponent is as
predicted. For the square lattice, however (and for any planar lattice) no similar result
has been proved.

Arm exponents

There is a family of critical exponents that we would like to highlight since it plays an
important part in the sequel.

The 1-arm event on Z2 — we only consider this lattice, but the arm events can be
defined for any transitive planar lattice — A1(R) is the event that there is a path of
open edges from 0 to a site (vertex) which is at graph distance R away from the origin.
The event A1(r, R) is the event that there is path of open edges starting somewhere in
distance at most r from 0 and ending at a site which is at distance R from the origin.
It is conjectured based on the above universality principle that in any reasonable lattice
(on Z2, in particular)

α1(R, r) := P[A1(R)] �
( r
R

) 5
48

+o(1)

.

This was, in fact proven for site percolation on the triangular lattice in [Sm01]. Up until
today this is the only lattice where the value of this (and many other) exponents are
verified.

There are other arm events that are of interest, for example the four arm event, which
is closely related to the pivotals of the crossing event LRn. In case of the four arm event
we also require that every second arm needs to go trough dual edges. That is, two arms
of open paths is separated by two dual arms on each side.

In our proof we are going to use another event, the 3-arm event in a half plane which
we denote by A+

3 (R, r). This is the event that there are two paths of open edges in
the positive half plane Z × N starting at distance r from the origin and reaching until
distance R, and the two open arms are separated with a similar arm consisting of dual
edges (which is also entirely in the half plane Z× N ).

It turns out that the exponent of A+
3 (R, r) is known for Z2. There is a combinatorial

argument that does not rely on the universality conjecture. The heuristics is, strange as
it may seem, that fractional arm exponents are hard, while integer arm exponents are
approachable.

Proposition 2.5.1 ([LSW02]). For the Z2 lattice

P[A+
3 (R, r)] = α+

3 (R, r) �
( r
R

)2

.

Our result

In the sequel we are going to show that the left-right crossing event in critical planar
percolation cannot be reconstructed from a sparse subset of spins, by this answering a
question posed by Itai Benjamini.

First observe that we can use the framework of Boolean functions, since an edge
percolation configuration can be described as an element in {−1, 1}E, where E is the
edge set of the graph on which we percolate.So LRn : {−1, 1}E(R) −→ {−1, 1} denotes
the indicator function of the planar crossing event, where R is the n × n square. More
precisely, LR(ω) is 1 if there is a connected path of open edges (1s) connecting some
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vertex on the left side with some vertex on the right side of the n × n square. in ω and
−1 otherwise.

In the sequel we will use a slight modification of this setup. We are going to the
embed the n × n square into the torus Z2

n) and think about the crossing event as a
Boolean function LRn : {−1, 1}E(Z2

n) −→ {−1, 1}. For LRn we simply ignore the extra
edges of the torus, that is if e /∈ E(R) then the value of ωe does not influence LRn.

The reason for this embedding is that we shall use the symmetries of the torus, in
order to make us of the results of the previous section. In particular, now we can translate
LRn with some element of Z2

n and still get a function defined on {−1, 1}E(Z2
n). One may

object that Theorem 2.1.1 does not apply directly since the left-right crossing is not a
transitive event. Nevertheless, we are going to argue that the left-right crossing event is
not too far from being transitive.

Here is a brief summary of what we are going to do: let us denote by LRn the character-
istic function of the left-right crossing . We will show that for every ε there is a correspond-
ing sublattice Hε ⊆ Z2

n the size of which only depends on ε with the following property:
MHε [LRn], the average of the LRn translates on the Hε lattice, is close to a transitive (that
is, Z2

n-invariant) function M [LRn] in the sense that Corr(MHε [LRn],M [LRn]) ≥ 1−O(
√
ε).

This will be shown in Lemma 2.5.5. The function M [LRn] is, in fact, the projection of LRn
onto the space of Z2

n-invariant functions. As we shall see, Lemma 2.5.3 tells us that in
case two functions are highly correlated their clues with respect to any particular subset
is also close.

Now if the crossing event LRn had uniformly positive clue with respect to some se-
quence of subsets Un, the function MHε [LRn] would also have high clue with respect to
the union of the original subset Un and its Hε-translates, which is still small since the size
of Hε does not grow with n. But this is impossible because then in turn the transitive
function M [LRn], being highly correlated with MHε [LRn], would also have had uniformly
positive clue with respect to a sparse sequence of subsets, which is in contradiction with
Theorem 2.1.1.

While this question has not been investigated in this general form, in [GPS10] there
have already been a number of partial results concerning the information content of
some particular sparse subsets. Based on a deep analysis of the Fourier spectrum of the
percolation crossing event upper bounds for the clue of some particular sequences of small
subsets of bits has been established.

Here are a few examples of this sort of results from [GPS10]. If U c
n is a random set of

bits of density n−
3
4

+ε, than clue(Un) → 0. Also, it is known that if every disk of radius

n
3
8
−ε contains a bit from U c

n, then clue(Un) → 0. On the other hand, if U c
n has a scaling

limit of Hausdorff-dimension strictly less than 5
4
, then clue(Un)→ 1.

It is also known that there is a revealment algorithm for the crossing event of the
percolation (on the triangular lattice) with revealment δ ∼ n−( 1

4
+o(1)) ([SS10]). This, in

particular, implies that any sequence of sets Sn of size n
1
4
−ε is asymptotically clueless,

since denoting the random set of queried bits by Jn, we have:

P[Sn ∩ Jn 6= ∅] ≤ E|Sn ∩ Jn| =
∑
i∈Sn

P[i ∈ Jn] ≤
∑
i∈Sn

δ = |Sn|n−
1
4

+o(1) → 0

whenever |Sn| � n
1
4
−ε. That is, with high probability, Sn is disjoint from Jn and therefore

conditioned on this event the bits in Sn do not influence the value of the function. From
this it is not difficult to conclude that Sn cannot have a large clue.
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2.5.2 Projections and Clue

In this section we present some general results that are necessary to prove that there is
no Sparse Reconstruction for the crossing event. We are going to use the upcoming two
simple lemmas to estimate how much a projection can distort correlations. The geometric
intuition is that in case the correlation of two functions is high and the projection is not
too ’radical’ (meaning here that it does not decrease the norm drastically), then the
projection will roughly preserve the correlation. Note that these results are completely
general, i.e., we do not make use of the fact that the underlying measure is a product
measure.

The space of functions over a given configuration space {−1, 1}V and a corresponding
probability measure (the uniform measure in this case) can be endowed with a Hilbert
space structure via the inner product 〈f, g〉 := E[fg]. In order to state the following
Lemmas in full generality, we introduce a generalization of clue for closed linear subspaces,
making use of the Hilbert space structure. It is the logical extension of clue as it was
defined previously for σ-algebras (See Definition 2.1.1).

Let µ be a probability measure and let H be a closed subspace of L2(S, µ). (In our
applications we always have S = {−1, 1}V for some finite set V .) Denote by PH the
orthogonal projection onto this subspace. For any f ∈ L2(S, µ) we define the clue of f
with respect to the subspace H as

clue(f | H) =
Var(PH[f ])

Var(f)
.

Lemma 2.5.2. Let f, g ∈ L2(S, µ) satisfying

Corr(f, g) ≥ 1− ε.

Let U be a subspace of L2(S, µ) and let us denote by P the orthogonal projection onto this
subspace. Assume that

clue(f | U) ≥ c, and clue(g | U) ≥ c.

Then
Corr(P [f ], P [g]) ≥ 1− ε

c
.

Proof. Without loss of generality we may assume that E[f ] = E[g] = 0 and Var(f) =
Var(g) = 1, since both clue and correlation are invariant under linear transformations.
As in this case they are equivalent, we may use ‖ ‖2 instead of the variance, depending
on the context.

Using that Var(f) = Var(g) = 1, we get

‖f − g‖2 = Var(f − g) = Var(f) + Var(g)− 2
√

Var(f)Var(g)Corr(f, g)

= 2(1− Corr(f, g)) ≤ 2ε.

In a similar fashion, we get for the respective projections that

‖P [f ]− P [g]‖2 = Var(P [f ]− P [g])

= Var(P [f ]) + Var(P [g])− 2Cov(P [f ], P [g])

=
√

Var(P [f ])Var(P [g])

(
Var(P [f ])

Var(P [g])
+

Var(P [g])

Var(P [f ])
− 2Corr(P [f ], P [g])

)
.
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Using first that Var(f) = Var(g) = 1 and after our assumption, we get

√
Var(P [f ])Var(P [g]) =

√
Var(P [f ])

Var(f)

Var(P [g])

Var(g)
≥ c.

On the other hand
Var(P [f ])

Var(P [g])
+

Var(P [g])

Var(P [f ])
≥ 2,

so we conclude that

‖P [f ]− P [g]‖2 ≥ 2c(1− Corr(P [f ], P [g])).

Finally, putting together estimates for ‖f − g‖2 and ‖P [f ]−P [g]‖2 and using that P
being a a projection cannot only increase the L2 norm we conclude that

2ε ≥ ‖f − g‖2 ≥ ‖P [f ]− P [g]‖2 ≥ 2c(1− Corr(P [f ], P [g]).

After reordering this inequality the statement follows.

Lemma 2.5.3. Let f, g ∈ L2(S, µ) with

Corr(f, g) ≥ 1− ε.

Let P denote the orthogonal projection onto the subspace U of L2(S, µ) and suppose that

clue(f | U) ≥ c.

Under these conditions,
clue(g | U) ≥ c− 2ε

and
Corr(P [f ], P [g]) ≥ 1− ε

c− 2ε
.

Proof. Again, without loss of generality we may assume that E[f ] = E[g] = 0 and
Var(f) = Var(g) = 1 and therefore we may use ‖ ‖2 instead of variance, like previ-
ously.

Using that P [f ] is the closest point to f in U for every h ∈ U

‖f − P [f ]‖2 ≤ ‖f − h‖2.

Therefore with the triangle inequality we get

‖g − P [g]‖2 ≤ ‖g − P [f ]‖2 ≤ ‖g − f‖2 + ‖f − P [f ]‖2. (2.5.1)

Recall that, since P is an orthogonal projection for every f ∈ L2(S, µ) we have

‖P [f ]‖2 + ‖f − P [f ]‖2 = ‖f‖2 (2.5.2)

As in Lemma 2.5.2, Corr(f, g) ≥ 1− ε implies ‖g − f‖2 ≤ 2ε.
On the other hand, by our assumptions,

clue(f | U) =
‖P [f ]‖2

‖f‖2
= ‖P [f ]‖2 ≥ c.
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Thus (2.5.2) shows that ‖f − P [f ]‖2 ≤ 1− c. Plugging the estimates into (2.5.1) we can
write (using that dividing by ‖g‖2 = 1 does not change the equation)

‖g − P [g]‖2

‖g‖2
≤ 2ε+ (1− c).

Using (2.5.2) again, we get

1− clue(g | U) ≤ 2ε+ 1− c

from which clue(g | U) ≥ (c− 2ε) is immediate.
We can apply Lemma 2.5.2 to get that Corr(P [f ], |P [g]) ≥ 1− ε

c−2ε

2.5.3 No Sparse Reconstruction for critical planar percolation

Let 0 < δ < 1. For a t ∈ Z2
n we will denote the rectangle t + [−bδnc, bδnc]2 ⊂ Z2

n by
Rδ(t). It is straightforward to see that 4(δn− 1)2 ≤ |Rδ(t)| ≤ 4(δn)2.

Lemma 2.5.4. Let Rδ := Rδ(0) = [−bδnc, bδnc]2 as above. Then there is a K > 0 such
that for every d1,d2 ∈ Rδ

Corr(LRd1
n , LR

d2
n ) ≥ 1−Kδ

Proof. Let d ∈ Rδ. We are going to show that

P[LRn 6= LRd
n] ≤ O(δ).

From this the statement of the lemma follows. Indeed, for any d1,d2 ∈ Rδ

Corr(LRd1
n , LR

d2
n ) = 1− 2P[LRd1

n 6= LRd2
n ] = 1− 2P[LRn 6= LRd2−d1

n ] ≥ 1−O(δ).

Let us assume that d = (0, t). Observe (see Figure 2.5.3) that the event
{
LRn 6= LRd

n

}
entails a 3-arm event in a half plane from radius O(δ) to distance O(1).

_
+

Figure 2.5.1: If LR 6= LRd
n, then we have a 3-arm event in a half plane.

As the grid size approaches to zero, the probability of the 3-arm event is in quadratic
order by Proposition 2.5.1:

α+
3 (δ, 1) = O(δ2)

The 3-arm event happens in one of O(1
δ
) different δ × δ boxes, so, by the union bound,

P[LRn 6= LRd
n] ≤ α+

3 (δ, 1)O(
1

δ
) = O(δ).
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In case d = (t, 0) we have exactly the same argument exploiting the π/2 rotational
symmetry of the model (switching to the dual lattice and using that LRn does not happen
if and only if there is a dual up-down crossing).

The case of a general d ∈ Rδ now easily follows. If
{
LRn 6= LRd

n

}
, then either{

LRn 6= LRdx
n

}
or
{
LRn 6= LRdy

n

}
, where dx and dy are the projections of d onto the

first and the second coordinates, respectively.
As a consequence, P[LRn 6= LRd

n] ≤ P[LRn 6= LRdx
n ] + P[LRn 6= LRdy

n ] ≤ O(δ).

Our proof uses the idea that the percolation crossing event is almost transitive, so
we define a linear operator that maps any function to a transitive one. Let V a finite
set and let Γ be a group acting on V . Recall that Γ also acts on the configuration space
{−1, 1}V by ωγv := ωv−γ and, in turn, this extends to an action of Γ on the functions
f : {−1, 1}V −→ R. For any γ ∈ Γ we have fγ(ω) := f(ω−γ).

Let us assume that Γ acts transitively on V . We define a natural averaging operator
that turns an arbitrary function f : {−1, 1}V −→ R into a Γ-invariant and thus transitive
function (Definition 1.2.3 ) on the same space:

Definition 2.5.2 (Magnetization). Let f : {−1, 1}V −→ R and Γ a group acting transi-
tively on V . Then the magnetization of f is

M [f ] :=
1

|Γ|
∑
γ∈Γ

fγ. (2.5.3)

In fact, as we shall see in Section 3.2.3, magnetization is the orthogonal projection
onto the space of transitive functions. We will also use the following notation: for a
H ⊂ Γ and f : {−1, 1}V −→ R let

MH [f ] :=
1

|H|
∑
γ∈H

fγ,

that is, the average of H-translates of f .
For a number δ > 0 we shall also consider a coarser lattice of mesh size δ. More

precisely, we define the sublattice Hδ := {bnδc, 2bnδc, . . . , Lbnδc}2, where L is the largest
integer such that Lbnδc < n (that is, L = b n

bnδcc). Obviously, n
nδ
− 1 ≤ n

bnδc − 1 ≤ L ≤
n
bnδc ≤

n
nδ−1

, so 1/δ − 1 ≤ L ≤ 1/δ +O (1/n) and therefore(
1

δ
− 1

)2

≤ |Hδ| ≤
1

δ2
+O

(
1

n

)
.

In the following lemma we compare the function MZ2
n [LR], which is obviously transi-

tive, as Z2
n acts transitively on the vertices of the torus, and MHδ [LR], the average of the

translates of the crossing event over the δn-lattice.

Lemma 2.5.5. Let δ > 0. Then

Corr(MZ2
n [LR],MHδ [LR]) ≥ 1−O(

√
δ).

Proof. We consider a new spin system σ on the Z2
n torus which is a factor of the uniform

Bernoulli percolation on the edges. Namely, at every vertex v ∈ Z2
n, we set σv = LRv

n.
The outline of the proof is as follows: First we observe that for any δn× δn square on

the δ-lattice the value of σ is the same on the four vertices of the square, with probability
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2.5. SPARSE RECONSTRUCTION FOR PLANAR PERCOLATION 45

1 − O(δ). For a fixed configuration we call a square on the δn-lattice good if this is the
case, bad otherwise.

The second step is to show that the event that there exists a point t inside a good
square such that σt differs from the value of σ on the vertices of the square also happens
with probability at most 1 − O(δ). These two claims together suffice to show that the
average on the δn-lattice already gives a good approximation about the average on the
entire torus Z2

n.
Define the event A :=

{
σ0 = σ(0,nδ) = σ(nδ,0) = σ(nδ,nδ)

}
. By Lemma 2.5.4 and the

union bound,

P[Ac] ≤ 2(P[σ0 6= σ(0,δ)] + P[σ0 6= σ(δ,0)]) ≤ O(δ).

Because of the translation invariance of the measure, this means that on average all
except O(δ) portion of the 1

δ2
small squares are good, that is, we have:

E[|bad squares|] ≤ O(δ)|Hδ| ≤ O(δ) O

(
1

δ2

)
= O

(
1

δ

)
. (2.5.4)

Let B denote the event that for every t ∈ Z2
n∩ [0, δn]2 the values σt are the same. We are

going to show that P[Bc ∩ [0, δn]2 is a good square] ≤ O(δ). In other words, if a square
on the δn lattice has the same value on all of the four vertices of the square then with
high probability this is the value everywhere inside the square.

First, observe that the event Bc ∩ {[0, δn]2 is a good square} implies the existence of
an alternating triple t1, t2, t3 on a vertical or horizontal line segment of length at most nδ
on the torus such that σt1 = σt3 but σt1 6= σt2 . Indeed, if there is a t on the boundary
of the square such that σt 6= σvi , the statement is true. If this is not the case, there is a
vertex t inside the square σt 6= σvi , but for any vertex b on the boundary of the square
σt 6= σb so again the statement holds.

This configuration, in a similar way to Lemma 2.5.4, implies the existence of two
3-arm events in two disjoint half planes both from distance δ to O(1) (see Figure 2.5.3),
and this enables us to give an upper bound on P[Bc | [0, δn]2 is a good square]. Let us

+
_

+

Figure 2.5.2: σt1 6= σt2 and σt2 6= σt3 results in two 3-arm events in two disjoint half
planes

denote by d the distance on the unit square of the two δ boxes where the two 3-arm events
start. Clearly, there are two, independent 3-arm events for half plane from distance δn to
dn
2

(as they are supported on disjoint bits) and also two 3-arm event for half plane from
distance dn

2
to O(1)n. The former two are also independent as they are realized in two

disjoint half planes so again they are supported on disjoint bits. Thus the probability of

C
E

U
eT

D
C

ol
le

ct
io

n



46 CHAPTER 2. SPARSE RECONSTRUCTION IN PRODUCT MEASURES

this is, by Proposition 2.5.1,(
α+

3 (δ, d/2)
)2 (

α+
3 (d/2, O(1))

)2
= O

(
(δ/d)2)O ((d/1)2) = O(δ4),

independently from the distance d.
One of the 3-arm events can be started at any of O(1/δ2) different δn× δn-boxes and

once this is fixed, the second one can be chosen O(1/δ) different ways (since it has to
be δ close to the other one in at least one of the coordinates). Therefore the two 3-arm
events can be realized in O(1/δ3) different ways, and the union bound gives that

P[Bc ∩ [0, δn]2 is a good square] ≤ O(1/δ3)O(δ4) = O(δ). (2.5.5)

Let us call a δn× δn square perfect, if it is good and for any t in the box the σt values are
the same as those in the vertices of the square. A square is imperfect, if it is not perfect.
So expression (2.5.5) says that the probability that a square is good, but not perfect is
small. Therefore, putting together (2.5.4) and (2.5.5) we get that

P[ [0, δn]2 is perfect] ≥ 1− P[ [δn]2 is bad]− P[Bc ∩ [0, δn]2 is good] ≥ 1−O(δ).

We are now ready estimate to the correlation. We first use Markov’s inequality to bound
the probability that at least

√
δ ratio of all squares are imperfect:

P
[
|imperfect squares| >

√
δ(1/δ)2

]
= P

[
|imperfect squares| > δ−3/2

]
≤ O(1/δ)

δ−3/2
= O(

√
δ).

Note that the respective magnetizations restricted onto an imperfect square are equal,
so the difference between MZ2

n [LR] and MHδ [LR] comes only from imperfect squares.

Therefore, on the event
{
|imperfect squares| ≤

√
δ(1/δ)2

}
we have∣∣∣MZ2

n [LR]−MHδ [LR]
∣∣∣ ≤ O(

√
δ),

using that magnetization on any set is between −1 and 1, and thus the respective differ-
ences are at most 2 on imperfect squares. So

P[|MZ2
n [LR]−MHε2 [LR]| ≤

√
δ] ≥ 1−O(

√
δ),

which implies
Corr(MZ2

n [LR],MHδ [LR]) ≥ 1−O(
√
δ),

again because |MZ2
n [LR]−MHδ [LR]| ≤ 2.

Now we are ready to prove the main result of this section.

Theorem 2.5.6. There is no sparse reconstruction for the left-right crossing in critical
planar percolation.

Proof. Let Un ⊆ Z2
n be a sparse sequence of subsets, i.e., limn

|Un|
n2 = 0. Indirectly, we

assume that there is a c > 0 such that clue(LRn | Un) > c for every large n.
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2.5. SPARSE RECONSTRUCTION FOR PLANAR PERCOLATION 47

We start by giving an outline of the proof. Fix an arbitrary small δ > 0. Using
the indirect assumption that there is a sparse sequence of subsets with clue greater than
c > 0, we are going to show that the average of the translated crossing events on the
δ-lattice MHδ [LRn] also has clue greater than c′ > 0 for a larger, but still sparse sequence
of subsets U δ

n (where c′ depends only on δ, but does not depend on n).
At the same time Lemma 2.5.5 shows that the average of the translates on the δ-

lattice and the average of all translates MZ2
n [LRn] are highly correlated. Therefore, the

same sequence of sparse subsets also gives us positive amount of clue about MZ2
n [LRn].

Nevertheless, this is in contradiction with Theorem 2.1.1, which claims that a sequence
of sparse subsets cannot give asymptotically positive clue about a transitive function.

For a given δ, we define the set U δ
n = ∪t∈HδU t, where U t = {u + t : u ∈ U}. So U δ

n

is the union of all Hδ-translates of U . Clearly, clue(LRn | U δ
n) ≥ c. We shall choose the

appropriate value of δ at the end of the proof.
As the Bernoulli measure is Z2

n-invariant, we clearly have Var(LRn) = Var(LRt
n) for

every t ∈ Z2
n and therefore

Var(MHδ [LRn]) =
1

|Hδ|2
∑

h,g∈Hδ

Cov(LRh
n, LR

g
n)

=Var(LRn)
1

|Hδ|2
∑

h,g∈Hδ

Corr(LRh
n, LR

g
n)

≤Var(LRn).

We are now ready to bound clue(MHδ [LRn] | U δ
n) from below. We will denote by P the

projection (conditional expectation, from the probabilistic point of view ) onto FUδn . Let
h1 and h2 ∈ Z2

n. Then

Cov(P [LRh1
n ], P [LRh2

n ])

Var(LRn)

=

√
Var(P [LRh1

n ])Var(P [LRh2
n ])

Var(LRn)
Corr(P [LRh1

n ], P [LRh2
n ])

=

√
clue(LRh1

n | U δ
n)clue(LRh2

n | U δ
n)Corr(P [LRh1

n ], P [LRh2
n ])

≥c Corr(P [LRh1
n ], P [LRh2

n ]),

(2.5.6)

where used that clue(LRh
n | U δ

n) > c for any h ∈ Hδ.
We fix another grid size θ, which is coarser than δ so 0 < δ < θ. Now we have

clue(MHδ [LRn] | U δ
n)

=
Var(P [MHδ [LRn]])

Var(MHδ [LRn])

≥ 1

|Hδ|2

∑
h1,h2∈Hδ Cov(P [LRh1

n ], P [LRh2
n ])

Var(LRn)

≥ c

|Hδ|2
∑

h1,h2∈Hδ

Corr(P [LRh1
n ], P [LRh2

n ])

≥ c

|Hδ|2
∑
h∈Hδ

∑
d∈Rθ(h)∩Hδ

Corr(P [LRh
n], P [LRd

n])

(2.5.7)
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48 CHAPTER 2. SPARSE RECONSTRUCTION IN PRODUCT MEASURES

We remind the reader that Rθ(h) is the square with side length 2θn around h. In the
estimation above we first used the upper bound for Var(MHδ [LRn]) after (2.5.6) and finally
that LRn is monotone, and therefore, by the FKG-inequality Cov(P [LRh1

n ], P [LRh2
n ] ≥ 0.

By Lemma 2.5.4 there exists a K > 0 such that

Corr(LRh
n, LR

d
n) ≥ 1−Kθ

for every h ∈ Z2
n and d ∈ Rθ(h). Applying Lemma 2.5.2 for LRh

n, LRd
n and P , and

choosing θ small enough so that 2Kθ < c/2, we get that

Corr(P [LRh
n], P [LRd

n]) ≥ 1− Kθ

c− 2Kθ
≥ 1− 2Kθ

c
.

Plugging this back into (2.5.7), and using that |Hδ| = 1
δ2

and |Rθ(h)∩Hδ| = |Rθ ∩Hδ| =
4θ2/δ2, and thus |Rθ(h) ∩Hδ|/|Hδ| = θ2 for any h, we obtain the following bound:

clue(MHδ [LRn] | U δ
n) ≥ c

|Hδ|2
|Hδ||Rθ ∩Hδ|

(
1− 2Kθ

c

)
=
|Rθ ∩Hδ|
|Hδ|

c

(
1− 2Kθ

c

)
=θ2(c− 2Kθ)

≥θ2 c

2
.

(2.5.8)

At the same time, by Lemma 2.5.5, there is some L > 0 such that

Corr(MHδ [LRn],MZ2
n [LRn]) ≥ 1− L

√
δ.

Now choose δ ≤ θ4 c2

16L
so that L

√
δ ≤ θ2 c

4
. Applying Lemma 2.5.3 again with MHδ [LRn]

and M [LRn] we get from (2.5.8) that for all n ∈ N

clue(M [LRn] | U δ
n) ≥ θ2 c

2
− L
√
δ ≥ θ2 c

4
. (2.5.9)

But M [LRn] is transitive and |U δ
n| = 1

δ2
|Un| = o(n2) and therefore Theorem 2.1.1, tells

us that clue(M [LRn] | U δ
n) −→ 0, which is in contradiction with (2.5.9).
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Chapter 3

Sparse Reconstruction in Spin
Systems

3.1 Introduction

In Chapter 2 we introduced the concept of sparse reconstruction for a sequence of
(Boolean) functions. We have seen that in case the underlying measure is a product mea-
sure the clue of a transitive function with respect to a subset of coordinates is bounded
by the density of the subset. In particular, there is no sparse reconstruction for sequences
of transitive functions.

In this Chapter we broaden our view. We shall investigate what happens if we replace
the product measure with some different measure. We typically consider a sequence of
locally convergent finite transitive graphs Gn(Vn, En) and a corresponding sequence of
measures Pn on {−1, 1}Vn which are invariant under the automorphisms of the corre-
sponding graph Gn. (Our definition allows for somewhat greater generality, but most of
the interesting cases fits in this framework.) Under what conditions can we ensure that
some version of Theorem 2.1.7 remains true?

Perhaps unsurprisingly, we have only few results that apply for general sequences of
spin systems (an alternative way to call the transitive measures on the hypercube). The
general intuition is that if in a spin system there is not too much dependency, i.e., in some
sense it is close to a product measure, we expect that there is no sparse reconstruction,
while if a spin system admits lots of dependency, sparse reconstruction for some transitive
function is possible.

Our guinea pig spin system in this work will be the Ising model on a sequence of
transitive graphs, in particular, on the d-dimensional torus Zdn. For Ising measures, the
intuition above comes down as follows: For high temperature models we expect that
no sparse reconstruction is possible for a transitive function, while for low temperature
models, there is enough dependency to make sparse reconstruction possible. As we shall
see, it is not difficult to show that below the critical temperature the magnetization, and
the majority as well can be reconstructed from a sparse sequence of subset. This follows
from the fact that the low temperature Ising model is not ergodic (See Proposition 3.2.3).

More interestingly, it turns out that — at least on the tori Zdn — the magnetization and
the majority as well can be reconstructed on the sequence of critical Ising measures too.
This follows from Corollary 3.2.7, which claims that if the susceptibility of a sequence of
spin systems (see (3.2.2)) approaches infinity then sparse reconstruction is possible from
a sequence of sparse random set of spins. It is a well known fact in Statistical Physics
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50 CHAPTER 3. SPARSE RECONSTRUCTION IN SPIN SYSTEMS

that susceptibility explodes at the critical temperature, hence the result.
As for the high temperature models, we conjecture that no sparse reconstruction is

possible, but at present we cannot prove it in full generality. Nevertheless, we have some
partial results. On the one hand, in Section 3.4.3 we use the concept of I-clue (Definition
2.2.5) and entropy estimates to show that for the high temperature Curie-Weiss model
(i.e., the Ising model on the complete graph) there is no sparse reconstruction.

In Section 3.3 we investigate sequences tending to finitary factor of IID measure on
Zd. Applying Theorem 2.1.7 we can show that no sparse reconstruction is possible from
a sequence of subsets with density much lower then (1/ log n)d, for a finitary factor of
IID measure with exponentially decaying coding radius. As high temperature Ising is
known to be a finitary factor of IID with the required conditions (as proven in [BS99]),
this theorem applies to the high temperature Ising model.

Susceptibility seems to be a key concept for factor of IID spin models as well. If the
expected coding volume of a factor of IID system is finite then there is no sparse recon-
struction for the magnetization from a spin system converging to this measure (in some
appropriate sense, which we define in the sequel). This follows from the fact that finite
expected coding volume implies finite susceptibility (Lemma 3.3.1). Therefore the key
question here is whether finite expected coding volume implies no sparse reconstruction.
A positive answer would be another indication that susceptibility plays a crucial role in
these kind of problems.

It is, however, possible that the susceptibility is a distraction. This is why it would
be crucial to understand the low temperature + Ising measure, i.e, the Ising measure
conditioned to have positive total magnetization. In the Statistical Physics community
it is usually regarded to be similar to the high temperature model. In particular, sus-
ceptibility is finite for the + Ising measure. Still, there are some important differences.
First, in contrast with high temperature models, the magnetization has subexponential
tail (because the Ising model is a Markov field and we only need to pay the price of the
negative spins on the boundary of a cluster of −s). Second, it was proven in [BM02], (for
not unrelated reasons) that the usual Glauber dynamics for the low temperature + Ising
measure has no spectral gap (again contrary to high temperature Ising).

We hoped to be able to reconstruct a low probability event, for example, the event
that the size of the largest volume − cluster is larger than its median from a sparse grid.
Should our efforts be successful, it would be the first natural example where susceptibility
is finite, still sparse reconstruction is possible.
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3.2. RESULTS FOR GENERAL SPIN SYSTEMS 51

3.2 Results for General Spin Systems

3.2.1 Basic concepts, facts and questions

We have seen in Chapter 2 (Theorem 2.1.1 and Theorem 2.1.7) that if we endow the
configuration space with a product measure then sparse reconstruction is not possible for
transitive functions. That is, for any sequence of transitive functions and any sequence
of subsets of the coordinates the clue of the sequence vanishes as n goes to infinity. In
this present Chapter we will investigate the same sort of questions for different sequences
of probability measures.

In order to ensure that the question makes sense we will have to require certain
conditions from the sequence of probability measures Pn in question. In general, the
measure Pn on {−1, 1}Vn is invariant under the action of some group Γn, where Γn acts
transitively on the coordinate set Vn, although we also introduce a notion of sparse
reconstruction that does not rely on symmetries (see Definition 3.2.2).

We pose an additional requirement, namely that the sequence of probability measure
has to be weakly convergent. This is partly to discard very irregular sequences of measures
and partly in hope that certain properties of the limiting measure will indicate whether
the sequence admits sparse reconstruction or not.

It turns out, however, that if we want to anchor our sequence to a limiting spin system,
we need a stronger link than weak convergence of measures. We also need to ensure that
the symmetries in the sequence and in the limit are consistent. In case Pn or P is not
invariant under the full automorphism group of Gn or G, respectively, we may falsely
call two rooted neighbourhoods isomorphic, because they might be isomorphic as rooted
graphs, nevertheless they have different distributions (as the measure P is invariant under
a different group action).

The setup we choose here is not the most general possible, but it includes all the
situations we are interested in and most of those we can think of. So let G = (V,E) be a
transitive, edge-labelled graph (with possible orientation of the edges). With other words,
we assume Aut(G) act on G transitively (preserving the labels as well). The edge labels
and directed edges are necessary to distinguish neighbourhoods that are isomorphic as
rooted graphs labels, but fail to have the same distribution.

We now consider a sequence {Gn(Vn, En) : n ∈ N} of edge-labelled, directed graphs,
that converges to G in the Benjamini–Schramm sense. This means that for every finite,
rooted and edge-labelled directed graph B, the probability that the R-ball around a
uniformly randomly chosen vertex from Gn is isomorphic to B converges as n→∞ (see
[BS01]). This is, in general defined for a random limit, a distribution on the possible
realisations of the R-ball, for all R ∈ N. In our case, where G is a deterministic and
transitive graph, it means that more and more of the R-neighbourhoods in the graph
sequence become isomorphic to the R-neighbourhood on G, as n → ∞. If, as it is the
case in most of our applications, the graph sequence consists of deterministic, transitive
graphs, this means that for large enough n the R-balls in Gn stabilize according to G
(also known as local convergence of graphs). Nevertheless, this setup allows convergence
to G via sequences of non-transitive or random graphs.

For each n we define a (usually Aut(Gn)-invariant) measure Pn on {−1, 1}Vn . Note
that any particular configuration σ ∈ {−1, 1}V on the vertex set can be seen as an edge
and vertex-labelled graph. Thus Gn, its vertex configuration endowed with the measure
Pn, can be identified with a vertex- and edge-labelled random graph, which we shall
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52 CHAPTER 3. SPARSE RECONSTRUCTION IN SPIN SYSTEMS

represent with the pair (Gn,Pn) .
The sequence of finite vertex- and edge-labelled, directed random graphs {(Gn,Pn) :

n ∈ N} is required to converge to a transitive, Aut(G)-invariant, vertex- and edge-labelled
directed graph (G,P) in the Benjamini–Schramm sense. It is, in fact just the same as
weak convergence of measures, but it is a convenient to interpret this convergence in
the Benjamini–Schramm setup. We will call such a sequence {(Gn,Pn) : n ∈ N} a
convergent spin system, where {Gn} alone, and also decorated with vertex labels as
{(Gn,Pn)} are both Benjamini–Schramm convergent. This will be the object of our
investigations throughout this chapter.

Often, however, when we do not explicitly make use of the limit of the spin system,
it is more natural to think about Pn as a measure on {−1, 1}Vn , where Vn is the vertex
set of a finite (in most cases) transitive graphs. Therefore, in the sequel we shall often
talk about simply a sequence of measures Pn, and omit the random graph interpretation
lurking in the background.

Now that our framework is set, we are going to list a few possible notions of Sparse
Reconstruction. While these concepts are equivalent for sequences of product measures
(they all fail), when we allow for different sequences of measures, the picture becomes
richer.

Definition 3.2.1 ((Weak) Sparse Reconstruction). Let {(Gn,Pn) : n ∈ N} be a sequence
of finite transitive spin systems that Benjamini–Schramm converges to the spin system
(G,P). Let fn : {−1, 1}Vn −→ R. There is Sparse Reconstruction for fn in Pn if there is

a sequence of subsets of spins Un ⊆ Vn with limn
|Un|
|Vn| = 0 such that

clue(fn | Un) > c

for some constant c > 0.
There is Weak Sparse Reconstruction (briefly: WSR) for {(Gn,Pn) : n ∈ N} if there

exists a sequence of transitive functions fn : {−1, 1}Vn −→ R such that there is Sparse
Reconstruction for fn.

There is Sparse Reconstruction (briefly: SR) for Pn if there exist a sequence of tran-
sitive, non-degenerate Boolean functions fn such that there is Sparse Reconstruction for
fn.

The difference between WSR and SR lies in that in the latter case we also require
non-degeneracy of the sequence. It is not difficult to show (based on Corollary 3.2.10)
that whenever there is WSR, there is also a possibly degenerate sequence of Boolean
functions for which there exists sparse reconstruction.

We will give an example of a sequence of measures for which there is WSR, but no SR.
(See the example under Corollary 3.2.7.) Of course, for sequences of product measures,
there is neither SR, nor WSR.

There is an alternative version of sparse reconstruction that does not require any
symmetry of the sequence of graphs or the corresponding measures Pn .

Definition 3.2.2 (Random Sparse Reconstruction). Let {(Gn,Pn) : n ∈ N} be a se-
quence of finite spin systems that Benjamini–Schramm converges to the spin system
(G,P). For every n let Un be a random subset of Vn independent from the spin system
with the property that

δn = max
j∈Vn

P[j ∈ U ]→ 0.
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3.2. RESULTS FOR GENERAL SPIN SYSTEMS 53

The quantity δn is called the revealment of Un.
There is random sparse reconstruction (briefly, RSR) for {(Gn,Pn) : n ∈ N} if there

is a sequence of Boolean functions fn : {−1, 1}Vn −→ {−1, 1} and a Un as above such
that

E[clue(fn | Un)] > c

for some c > 0.

Remark 3.2.1. It is easy to see that in case SR holds for a sequence (Pn, Gn) then RSR as
well (in case SR is meaningful). Instead of the the deterministic set Un we define Un as a
uniformly random Aut(Gn) translate of Un. Because of the transitivity of fn the clue is

invariant under automorphisms, and δn = |Un|
|Vn| . Also, with some minor modifications of

the proof of Theorem 2.1.1 one can show that for product measures RSR does not hold
either.

The two concepts are, however, not equivalent in general. We give an example to
demonstrate this. Let Gn = Z2n and consider the following Aut(Z2n)-invariant measure.
We first choose a uniformly random edge and after we sample the n spins to the left
from this edge as IID Bernoulli(3

4
) variables and the remaining spins as IID Bernoulli(1

4
),

respectively. First observe that there is no WSR in this system. Indeed, take a sparse
sequence of subsets Un ⊆ Z2n and consider the σ-algebra Fn generated by FUn and the
uniformly random edge that determines the “border”. For any sequence of transitive
functions we have clue(fn | Un) → 0 by Theorem 2.1.7, since conditioned on the “bor-
der” edge, the spin system is distributed as a product measure (with the factors having
equal variances), and therefore a sparse sequence of subsets has a vanishing clue. Since
clue(fn | Un) ≤ clue(fn | Fn), WSR is not possible in this system.

At the same time a single bit can be reconstructed from a Bernoulli random set of
density log n/n. Indeed, observe that with probability (log n − 2)/ log n → 1 we learn
whether we in the 3

4
-side or the 1

4
-side of the cycle. This in turn gives positive amount

of information on the value of the bit. Applying this construction with Ber(1 − ε) and
Ber(ε), we can get clue arbitrarily close to 1.

In the above example the limiting spin system is Ber(ε) or Ber(1 − ε) on Z with
probability 1/2–1/2, which is not ergodic. We do not know whether this can happen in
case the limiting measure P is ergodic. More generally we can ask the following

Question 3.2.2. Suppose that for a transitive, convergent sequence of spin systems Pn
there is Random Sparse Reconstruction. Under what condition does this imply that there
is also Sparse Reconstruction for Pn?

There are two reasons why RSR is of interest. First, as already mentioned, it allows
us to investigate sparse reconstruction for sequences of spin systems which do not exhibit
symmetries. One example is to take the sequence of random d-regular graphs on n
vertices, and put finitary factor of IID measures as Pns (see Definition 3.3.1). This
sequence is known to BS-converge to the d-regular (infinite) tree (see [LyP], Chapter 6).
Another point is that RSR can be directly applied to G, without defining a sequence of
converging measures (or with other words Gn = G, for every n ∈ N). Indeed one can
take a sequence of random finite set Un ⊆ V on the infinite vertex set of G with vanishing
revealment. Therefore one can hope that by understanding the relation between SR and
RSR, we have better chances to link SR to the properties of the limiting spin system.

Indeed, one of the first natural question that comes into mind is whether the existence
of Sparse Reconstruction is the attribute of the limiting measure. That is, if Pn and Qn
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54 CHAPTER 3. SPARSE RECONSTRUCTION IN SPIN SYSTEMS

are sequences of measures sharing the same weak limit, then either both of the sequences
admit SR (WSR), or both do not. The answer to this question is, in general, negative.

It is possible to construct a sequence Pn weakly converging to a product measure,
which admits sparse reconstruction. Indeed, let Pn be the following measure on {−1, 1}Zn .

We choose a uniformly random i ∈ Zn and around i in a neighborhood of size bn 2
3 c we

flip a fair coin and make every spin in the interval +1 or −1 according to the coin flip.
Outside this interval the spins are IID coin flips. Now it is easy to see that Majority can
be reconstructed from this sequence.

One can choose U simply to be the multipliers of n
1
2 . With high probability we can

identify where the long + or − interval is and again with high probability, whether it is
+ or − will tell us the Majority. At the same time, as it is easy to check, this spin system
weakly converges to the product measure on {−1, 1}Z.

It seems intuitive that if the limiting spin system is not ergodic, then there is some sort
of sparse reconstruction in the sequence. This is, however, not true in general. First, the
example in Remark 3.2.1 shows a sequence weakly converging to a not ergodic measure
without (weak) sparse reconstruction. There is an even simpler example for a sequence
without even RSR: Let Gn be a path of 2n vertices, and put IID Bernoulli(3

4
) measure

on the first n vertices and IID Bernoulli(1
4
) to the remaining vertices. It is obvious that

the limiting measure is the same, but now there is no RSR. Nevertheless, in case Gn is
an expander sequence, we have RSR. (For a review on expanders, see [Lu94].)

First we give the relevant definitions. For a finite graph G the Cheeger constant is

h(G) = min{|∂(W )|
|W |

: W ⊆ V (G), |W | ≤ 1

2
|V (G)|},

where ∂(W ) = {(x, y) ∈ E(G) : x ∈ W, y /∈ W}.

Definition 3.2.3 (Expander sequence). A sequence {Gn(Vn, En) : n ∈ N} of bounded
degree graphs with |Vn| → ∞ is an h-expander for some h > 0, if

h(Gn) > h

for every n ∈ N.

Proposition 3.2.3. Let {(Gn,Pn) : n ∈ N} be a sequence of spin systems, where {Gn} is
an h-expander sequence with maximum degree D and let (G,P) the limiting spin system.

If the Aut(G)-invariant measure P is not Aut(G)-ergodic, then there is (Random)
Sparse Reconstruction for {(Gn,Pn) : n ∈ N}.

Proof. As the limiting measure P is not ergodic, there is a transitive event A with non
trivial probability. As any measurable event can be approximated with an event depend-
ing on a finite subset of the coordinates (a cylinder event) with desired accuracy, for any
δ > 0 one can choose such an event Aδ satisfying

P[A4Aδ] < δ,

where A4B is the symmetric difference of the events A and B. Now pick a root o ∈ V
and choose R ∈ N large enough so that Aδ is BR(o)-measurable (that is, the coordinates
on which Aδ depends are inside the ball BR(o). Since G is transitive, all R-balls are
isomorphic on G, so for any x ∈ V we can define the FBR(o)-measurable event Axδ . Using
that A is invariant, it is clear that Axδ is an equally good approximation of A and thus

P[Axδ4A
y
δ ] < 2δ
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3.2. RESULTS FOR GENERAL SPIN SYSTEMS 55

for any x, y ∈ V . Suppose that x and y are neighbors (so (x, y) ∈ E(G)). We can choose
R2 large enough so that both Axδ and Ayδ are FBR2

(x)-measurable.
Now choose n large enough so that the R2 balls are isomorphic both in Gn and G and

in (Gn,Pn) and (G,P) (as vertex decorated graphs) with probability at least 1− δ — this
is possible because of the Benjamini–Schramm convergence.

For every v ∈ Vn one can identify the ball BR2(x) on G with the ball BR2(v) on Gn

via a rooted isomorphism with large probability. Using the same isomorphism one can
define the BN(v)-measurable events Avδ and Auδ on {−1, 1}Vn for any (u, v) ∈ E(Gn).

Observe that for any u, v ∈ Vn, with (u, v) ∈ E we have by the choice of n

Pn[11Avδ 6= 11Auδ ]

= Pn[Avδ4Auδ ] < Pn[Axδ4A
y
δ ] + δ + P[BR2(v) is not isomorphic to BR2(x)]

< 4δ.

Define the random variable Jn as the number of edges (u, v) in Gn such that {11Avδ 6=
11Auδ }. Fix an ε > 0. Clearly, E[Jn] < 4δ|En| and therefore by Markov’s inequality

Pn
[
Jn ≥

2hε

D
|En|

]
≤ 4δ/(

2hε

D
),

which, by a suitable choice of δ can be made arbitrary small as h and D and ε are
constants.

Now observe that the event {Jn < 2hε
D
|En|} implies |

∑
v∈Vn (211Avδ − 1)| > (1− ε)|Vn|.

Indeed, if this is not the case then both {v ∈ Vn : Avδ} and its complement has at least
ε|Vn| element. So by the expansion property, there are at least |Vn|hε ≥ 2|En|hε/D edges
between {v ∈ Vn : Avδ} and its complement (we used that D|Vn| ≥ 2|En|). But for all
these edges (u, v) we have 11Avδ 6= 11Auδ and therefore Jn ≥ 2hε

D
|En| as well.

Observe that there is RSR for 11Auδ from the random set BR(v) for a uniformly chosen
v ∈ Vn (recall thatAvδ isBR(v) -measurable). As the probability that |

∑
v∈Vn (211Avδ − 1)| >

(1− ε)|Vn| is close to 1 the randomly chosen 11Auδ coincides with Avδ with probability 1− ε.
At the same time, since Gn is of bounded degree, it is clear that the revealment of this
random set goes to 0.

Moreover, in case (Gn,Pn) is a transitive sequence, the event
{∑

v∈Vn (211Avε − 1) > 0
}

,
that is, the majority of the events Avε can be reconstructed from BR(v) for a fixed v ∈ Vn.
The argument is essentially the same as for RSR.

Using the first part of the argument it is easy to show that in case (G,P) is not Aut(G)-
ergodic, there is Random Sparse Reconstruction for (G,P) (that is, for the sequence
(Gn,Pn) = (G,P)).

We have seen that for a non ergodic measure on (G,P) it is possible that a sequence
of spin systems converging to (G,P) admits SR or does not. The same holds for product
measures. Can we always disturb a sequence to change its “natural” behavior? We
hope that such a pathological behavior can only happen when the limit is a not ergodic
measure.

Question 3.2.4. Is there an ergodic Aut(G)-invariant spin system (G,P) such that when-
ever (Gn,Pn) converges to (G,P) (in the above sense) there is SR for (Gn,Pn)?

An interesting example is the critical Ising model on Z2, which is ergodic, but admits
sparse reconstruction. The magnetization, i.e., the sum of spins can be reconstructed
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56 CHAPTER 3. SPARSE RECONSTRUCTION IN SPIN SYSTEMS

(see Proposition 3.4.1). At the same time, one can take the sequence of critical Ising
measures on the torus Z2

n conditioned on Mn = 0. It can be shown that this spin
system also converges to the critical Ising on Z2, but the magnetization clearly cannot
be reconstructed. In this model, however, we suspect that other transitive functions can
still be reconstructed.

Another line of questions concerns whether it is true that if in some sense Pn contains
less randomness (or less information) then Qn and Qn admits SR, then is it true that Pn
admits SR as well. Of course, the important point here is how we make the expression
’contains less randomness’ precise?

A natural attempt is to express the degree of randomness in a sequence with asymp-
totic entropy.

Definition 3.2.4 (asymptotic entropy). Let {Pn} be a sequence of measures. The asymp-
totic entropy of the sequence is

H({Pn}) := lim
n→∞

H(Pn)

nH(Pn[ |σ0])

if it exists, where Pn[ |σ0] is the distribution of an individual spin.

It turns out that H({Qn}) > H({Pn}) and {Qn} having SR does not imply that {Pn}
has SR. First, the above example of a spin system that weakly converges to a product
space and still admits SR testifies that it can happen that the asymptotic entropy is 1
(as large as it can possibly be) but still there is Sparse Reconstruction.

At the same time, there exits also a sequence (Gn,Pn) with H({Pn}) = 0 in such a
way that (Gn,Pn) admits no WSR. The example is again a version of Remark 3.2.1. The
only modification is that after cutting the cycle, we sample the two halves according to
Ber(εn) and Ber(1 − εn), respectively, for some sequence εn → 0. This takes care of the
asymptotic entropy. Using the chain rule for entropy one gets:

H(Pn) = H(Pn | cut) +H(cut) = εnn+ log n = o(n),

where cut is the uniformly random place where the cycle is cut.
We do not know if such an example exists for ergodic measures.

Question 3.2.5. Let (Gn,Pn) converge to the Aut(G)-ergodic spin system (G,P). If
H({Pn}) = 0, then is it true that there is SR for (Gn,Pn)?

Another way of expressing that P has no more randomness then Q is to say that P is a
factor of (Q, Hn). In fact, according to Ornstein-Weiss theory , on amenable graph this is
equivalent to the question above (see [OW87]). Indeed, it is possible that there is SR for
the sequence Qn while the sequence Pn, which is a factor of Qn, does not admit SR. For
example one can take take kn independent copies of critical Ising model on the torus, for
some kn →∞. As we shall see (Theorem 3.4.5) there is sparse reconstruction for the the
two-dimensional critical Ising, and it is easy to see that if there is sparse reconstruction
from a model, then there is also sparse reconstruction for the spin system with arbitrary
number of independent copies of it. However, if the factor spin system is the product of
the spins of all the kn copies at a given vertex, it is easy to believe that the law of this
spin system converges to the uniform measure.

We see that sparse reconstruction is not monotone with respect to the most common
ways of measuring information. It would be interesting to find some invariant of sequences
of spin systems which behaves well with sparse reconstruction.
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3.2. RESULTS FOR GENERAL SPIN SYSTEMS 57

3.2.2 Reconstruction from random sets

In this section we state some general results. The setup is as before. We consider a
sequence {σn : n ∈ N} where σn is a {−1, 1}Vn-valued random variable with law Pn. We
also assume that for each n there is a group Γn acting transitively on Vn and the law Pn
of σn is invariant under this group action. In particular, for every j ∈ Vn the distribution
of σnj is the same, where we denote by σnj the projection of σn to the jth coordinate, a
±1-valued random variable.

We will sometimes consider this setup with a slight generalization: we allow that the
random variables σnj are not binary, but R-valued. In order to point out the difference
in this case we will denote our sequence with φn instead of σn. Clearly, if a statement or
definition works with φn it also does with σn.

We introduce the notation mn := |Vn|. We define the magnetization operator as

Mn[φ] :=
1

mn

∑
j∈Vn

φnj . (3.2.1)

Compare this with Definition 2.5.2. The only difference is that here we are concerned
with the magnetization of a spin system, so here f = Id and the magnetisation is a
property of the underlying measure Pn.

The term ’magnetization’ comes from statistical physics, more specifically the Ising
model (see section 3.4), a spin model which is central in this work. In the Ising model
the value of the spins can be thought of as the charge of a particle, and in this framework
the magnetization is interpreted as the charge of the whole field.

For the next definition it is useful to assign one vertex of Vn as root, denoted by 0 (as
all vertices look the same the choice of the root does not change anything). We define
the susceptibility of the random variable φn as

Sn(φ) := S(φn) =
∑
j∈Vn

Cov(φn0 , φ
n
j ). (3.2.2)

The concept of susceptibility is borrowed from the Ising model as well. It can be
shown that for the Ising model this quantity measures the change in the magnetic field
of the system upon a small change in the external magnetic field, hence the name. Note
that if absolute convergent, the susceptibility can also be defined for (countably) infinite
spin systems as well.

By the Γn-invariance of the measure,
∑

j∈Vn Cov(φn0 , φ
n
j ) =

∑
j∈Vn Cov(φnk , φ

n
j ) for any

k ∈ Vn and therefore

Var(Mn[φ]) =
1

m2
n

∑
k∈Vn

∑
j∈Vn

Cov(φnk , φ
n
j ) =

1

mn

∑
j∈Vn

Cov(φn0 , φ
n
j ).

Thus we have the following relationship between M [φ] and S(φ):

Var(Mn[φ]) =
Sn(φ)

mn

. (3.2.3)

Furthermore, using translation invariance again,

1

mn

Sn(φ)

Var(φn0 )
=

1

mn

∑
j∈Vn

Corr(φn0 , φ
n
j ) = Corr(φn0 , φ

n). (3.2.4)
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where Corr(φn0 , φ
n) is the average correlation between the random variable φn0 and its

translates.
The next proposition states that in case the average correlation defined above is

sufficiently high for a spin system then the magnetization can be reconstructed from a
sparse random set with high probability.

Proposition 3.2.6 (Sparse Reconstruction from random sets). Let {φn : n ∈ N} be
a sequence of RVn-valued random variables with distribution invariant under the group
action of Γn on Vn. Suppose that

Corr(φn0 , φ
n)� 1

|Vn|
.

Then there is a sequence of numbers kn = o(mn) such that for a uniform random subset
Hkn of size kn and for any ε > 0

lim
n→∞

P[clue(Mn[φ] | Hkn) > 1− ε] = 1.

Proof. Let us introduce the shorthand notations Mn := Mn[φ] and Sn := Sn(φ). We
give a lower bound for E

[
Corr(Mn,E[MH[σn]

∣∣ H])
]
, the average correlation between the

total magnetization and the magnetization of a uniformly random subset of kn spins.
For any subset Un ⊆ Vn, define the random variable

MUn
n :=

1

|Un|
∑
j∈Un

φnj

We have

Cov(Mn,M
Un
n ) =

1

mn|Un|
∑
j∈Un

∑
i∈Vn

Cov(φnj , φ
n
i ) =

1

mn

Sn.

Recall that Var(Mn) = 1
mn
Sn as well, and therefore once we fix the size of Un then

Corr(Mn,M
Un
n ) depends only on the quantity Var(MUn). We now consider a uniformly

random set of spins of size kn = |Un| and write the average correlation between the
magnetization of the system and the magnetization of the random set. Let H denote the
random set of kn spins we know.

Observe that by Jensen’s inequality

E
[
Corr(Mn,E[MH

n

∣∣ H])
]

=

√
Sn
mn

E

 1√
Var(MH

n

∣∣ H)


≥
√
Sn
mn

1√
E[Var(MH

n

∣∣ H)]
,

(3.2.5)

and therefore it is enough to estimate the expected variance of the magnetization of a
uniform random subset of kn elements. So we can write

E
[
Var(MH ∣∣ H)

]
=

1

k2
n

E

[
E

[ ∑
i,j∈Vn

Cov(φni , φ
n
j )11i∈H11j∈H

∣∣ H]]

=
1

k2
n

∑
i,j∈Vn

E
[
11i∈H11j∈HCov(φni , φ

n
j )
]
.
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Since

E
[
11i∈H11j∈HCov(φni , φ

n
j )
]

=

{
kn
mn

Var(φnj ) if i = j
kn(kn−1)
mn(mn−1)

Cov(φni , φ
n
j ) if i 6= j,

we get, using the notation Var(φnj ) = sn (because of invariance it does not depend on j):

E[Var(MH ∣∣ H)] =
1

mnkn

∑
i∈Vn

sn +
kn − 1

kn

1

mn(mn − 1)

∑
i 6=j

Cov(φni , φ
n
j )

=
kn − 1

kn

1

mn(mn − 1)

∑
i,j∈Vn

Cov(φni , φ
n
j ) + sn

(∑
i∈Vn

1

mnkn
− kn − 1

kn

1

mn(mn − 1)

)

=
kn − 1

kn

1

mn(mn − 1)
mnSn + sn

(
1

kn

(
1− kn − 1

mn − 1

))
=
kn − 1

kn

1

mn − 1
Sn + sn

(
1

kn

(
1− kn − 1

mn − 1

))
.

Now we can give a lower bound for the average correlation over all subsets of size kn.
Substituting back into (3.2.5), we get

E
[
Corr(Mn,E[MH

n

∣∣ H])
]
≥

√
Sn

√
mn

√
kn−1
kn

1
mn−1

Sn + sn

(
1
kn

(
1− kn−1

mn−1

))
=

(
kn − 1

kn

mn

mn − 1
+
sn
Sn

(
mn

kn

(
1− kn − 1

mn − 1

)))− 1
2

�
(

1 +
sn
Sn

mn

kn

)− 1
2

�
(

1 +
1

knCorr(φn0 , φ
n)

)− 1
2

,

using that on the one hand, (kn − 1)/(mn − 1) −→ 0, by assumption and that on the
other hand, Sn/snmn = Corr(φn0 , φ

n), by (3.2.4).
If now knCorr(φn0 , φ

n) −→ ∞ then the right hand side tends to 1 as n goes to ∞.
Since by assumption Corr(φn0 , φ

n)� 1
mn

, we can choose a sequence kn such that

Corr(φn0 , φ
n)� 1

kn
� 1

mn

.

In this case E
[
Corr(Mn,E[MH

n

∣∣ H])
]
→ 1 and therefore, as correlations can be at most

1, the correlation Corr(Mn,E[MH
n

∣∣ H]), and thus its square, the clue (see (2.1.1)) tends
to 1 with high probability.

We would like to highlight the special case when φn0 = σn0 is uniform {−1, 1}-valued
for all n.

Corollary 3.2.7. Suppose that {σn : n ∈ N is a sequence of {−1, 1}Vn-valued random
variables with distribution invariant under the group action of Γn on Vn and Var(σn0 ) = 1

If Sn(σ)→∞, or equivalently Var(Mn[σn])� 1
mn

, then there is a sequence of numbers

kn = o(mn) such that for a uniform random subset Hkn of size kn and for any ε > 0

lim
n→∞

P
[
clue(Mn[σ] | Hkn) > 1− ε

]
= 1.
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Proof. It is straightforward to check that Sn(σ)→∞ is equivalent to Corr(φn0 , φ
n)� 1

mn
,

when Var(σn0 ) is constant.

In order to conclude SR we need to reconstruct non-degenerate Boolean functions,
and therefore it is an important question whether Sparse Reconstruction of the total
magnetization implies Sparse Reconstruction for the Majority function. In fact, in case
the Magnetization is not concentrated, there is no reason for this implication to hold. We
might think about the following example:

Let us take the convex combination of a uniform IID measure and a measure in
which all the spins are +1 or all the spin are −1 with probability 1

2
, respectively. With

probability 1√
n

we choose the ±-system and with probability 1 − 1√
n

we choose the IID

system. Now it is clear that in this mixed system Var(Mn) � n, and consequently,
by Theorem 3.2.6 the magnetization can be reconstructed, while Majority (or any other
non-degenerate Boolean function) cannot. So in this sequence of measures there is Weak
Sparse Reconstruction, but no Sparse Reconstruction.

The following proposition gives sufficient conditions under which Maj can also be
reconstructed.

Proposition 3.2.8. Let σn be a sequence of spin systems as above. Suppose there is a
sequence of naturals an such that an√

mn
→∞ and for every large n it holds that

P

[
|
∑
j∈Vn

σnj | ≥ Kan

]
> c, (3.2.6)

for some c > 0. Then there is a sequence pn → 0 such that for the random set Bpn (in
which every element is chosen independently with probability pn) and arbitrary ε > 0

P [clue(Maj | Bpn) > 1− ε] > c.

Proof. Conditionally on the event A =
{
|
∑

j∈Vn σ
n
j | ≥ Kan

}
the expectation of the sum

|
∑

j∈Bpn σ
n
j | in a Bernoulli sample can be bounded as follows:

E

[
E

[
|
∑
j∈Bpn

σnj |

∣∣∣∣∣ Bpn
] ∣∣∣∣∣ A

]

=E

| ∑
j∈Vn:σnj =1

11j∈Bpn −
∑

k∈Vn:σnk=−1

11k∈Bpn |

∣∣∣∣∣∣ A


=pnE[|
∑
j∈Vn

σnj |] ≥ Kanpn.

Now we compute its variance, using that the events {j ∈ Bpn} and {k ∈ Bpn} are
independent, whenever k 6= j:

Var

(
E

[ ∑
j∈Bpn

σnj

∣∣∣∣∣ Bpn
] ∣∣∣∣∣ A

)

=Var

 ∑
j∈Vn:σnj =1

11j∈Bpn −
∑

k∈Vn:σnk=−1

11k∈Bpn

∣∣∣∣∣∣ A


=mnpn(1− pn).
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This means that for every ε there exists a C > 0 such that

P

[∣∣∣∣∣E
[ ∑
j∈Bpn

σnj

∣∣∣∣∣ Bpn
]∣∣∣∣∣ > Kanpn − Cε

√
mnpn

∣∣∣∣∣ A
]
> 1− ε,

since the total magnetization of the sample follows binomial distribution.
In case one chooses pn to satisfy anpn �

√
mnpn then, conditioned on A, the fluctua-

tions of the random sample are small compared to the sample magnetization. Therefore,
still conditioned on A, the majority of the sample coincides with the majority of the
original system with high probability.

Formally, choose n large enough so that Cε
√
mnpn ≤ K

2
anpn. Then we have

P

[∣∣∣∣∣E
[ ∑
j∈Bpn

σnj

∣∣∣∣∣ Bpn
]∣∣∣∣∣ > K

2
anpn

∣∣∣∣∣ A
]
> 1− ε,

and this of course entails {Maj = Maj(E[σn
∣∣ Bpn ])} (the latter random function is the

majority on the random bits of Bpn). Therefore, conditioned on A, the magnetization
can be reconstructed from Bpn with high probability.

It remains to verify that the condition anpn �
√
mnpn is consistent with our assump-

tions. Indeed, equivalently we can write

pn �
mn

a2
n

,

which means that pn is of order o(1) by the assumption that an√
mn
→∞. Therefore, Bpn

is sparse with high probability. In particular, there exits also a sequence of subsets Un
with density tending to 0 and the majority has uniformly positive clue with respect to
this sequence.

Moreover, with small additional cost — a couple of independent samples — we can
learn with high probability whether A holds or not, thus we know if the magnetization
of the random set gives a good guess for the total magnetization or not.

3.2.3 The 3-Correlation Lemma

First we discuss a slight generalization of the concepts of magnetization and susceptibility.
Let us consider a spin system σ distributed according to P, with coordinate set V and
group action Γ, as before.

Recall that for a function f : {−1, 1}V −→ R fγ denotes the γ-translated version of
f . Since P is Γ-invariant, Z := f(σ) and Zγ := fγ(σ) has the same distribution. One can
define magnetization (as we have already done in Chapter 2 see (2.5.2)) and susceptibility
for arbitrary function on the configuration space by:

M [f,P] = M [Z] :=
1

|Γ|
∑
γ∈Γ

Zγ,

and

SP(f) = S(Z) :=
1

|Γv|
∑
γ∈Γ

Cov(Z,Zγ),
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where Γv is the stabilizer subgroup of an arbitrary vertex. In case the action of Γ on V is
not free, that is the stabilizer subgroup of a vertex is not trivial then for every Z we count
every term of the form Cov(Z,Zγ) exactly |Γv| many times. Indeed, as |Γ| = |V ||Γv| we
have |Γv| times too many terms in the susceptibility, hence the factor 1/|Γv|. Warning: in
case Z has additional symmetries it is possible that there are still repetitions in the sum of
S(Z) and it is perfectly fine. For example when Z itself is transitive, that is Γ-invariant,

thus Cov(Z,Zγ) = Var(Z) for every γ and in this case S(Z) = |Γ|
|Γv | = |V |Var(Z).

It is easy to verify that the identity (3.2.3) continues to hold in this more general
setting:

Var(M [Z]) =
S(Z)

|V |
.

Along the lines of (3.2.4) (recalling that |Γ| = |V ||Γv|), we again have

1

|V |
S(Z)

Var(Z)
=

1

|Γ|
∑
γ∈Γ

Corr(Z,Zγ) = CorrΓ(Z,Z). (3.2.7)

In the sequel, to simplify notation we are going to avoid the factor 1/|Γv|, that is,
we implicitly assume that the action of the group on the coordinate set is free. We
emphasize, however, that all the results are true without assuming a free action.

Observe that for any measurable Z the system of random variables {Zγ γ ∈ Γ} is a
Γ-invariant family (although possibly the same random variables appear multiple times),
so Equation (3.2.1) in fact already covers this case.

The following statement, although it follows from some elementary facts by straight-
forward calculations, has a few interesting consequences.

Lemma 3.2.9 (3-Correlation Lemma). Let σ = {σj : j ∈ V } be a spin system with
Γ-invariant distribution, where Γ acts transitively on V . Let f : {−1, 1}V −→ R be a
Γ-invariant (thus transitive) function and let Z := f(σ). Then

Corr(Z,M [E[Z | FU ]])Corr(E[Z | FU ],M [E[Z | FU ]]) = Corr(Z,E[Z | FU ]).

Proof. As in (2.1.1), we have:

Corr(Z,E[Z | FU ]) =
Var(E[Z | FU ])√

Var(Z)
√

Var(E[Z | FU ])
=

√
Var(E[Z | FU ])

Var(Z)
.

Now we turn to the left hand side. First, observe that

Cov(Z,M [E[Z | FU ]]) =
1

|V |
∑
γ∈Γ

Cov(Z,E[Z | FUg ]) = Var(E[Z | FU ]),

observing that Z is transitive and therefore Cov(Z,E[Z | FUγ ]) is the same for any γ ∈ Γ.
Since by (3.2.3) Var(M [E[Z | FU ]]) = S(E[Z | FU ])/|V |, we get

Corr(Z,M [E[Z | FU ]]) =
Var(E[Z | FU ])√

Var(Z)

√
|V |

S(E[Z | FU ])
. (3.2.8)

As for the second factor, we can write the covariance as follows

Cov(E[Z | FU ],M [E[Z | FU ]]) =
1

|V |
∑
j∈V

Cov(E[Z | FU ],E[Z | FUj ])

=
S(E[Z | FU ])

|V |
.
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So we get for the respective correlation:

Corr(E[Z | FU ],M [E[Z | FU ]])

=
S(E[Z | FU ])/|V |√

Var(E[Z | FU ])S(E[Z | FU ])/|V |

=

√
S(E[Z | FU ])

|V |Var(E[Z | FU ])

(3.2.9)

It is now easy to check that upon multiplying (3.2.9) with (3.2.8), one gets Corr(Z,E[Z | FU ])
as stated.

We may write any σ-measurable random variable Z in the place of E[Z | FU ] in (3.2.9)
and compare it with (3.2.7). This gives rise to the following, somewhat bizarre identity:

CorrΓ(Z,Z) = Corr2(Z,M [Z]) (3.2.10)

Now we state a few consequences of Lemma 3.2.9.

Corollary 3.2.10. If in a spin system σn there is weak sparse reconstruction, then there
is also weak sparse reconstruction with clue tending to 1.

Proof. By assumption, there exist a sequence of subsets Un ⊆ Vn with |Un| = o(Vn) and
a sequence of functions of fn : {−1, 1}Vn −→ R with

clueσn(fn | Un) > c,

for some c > 0. Let Zn = fn(σn). Recalling that clue(fn | Un) = Corr2(Zn,E[Zn | FUn ]),
it follows, using Lemma 3.2.9 that

c < Corr2(Zn,E[Zn | FUn ]) ≤ Corr2(E[Zn | FUn ],M [E[fn | FUn ]]).

According to (3.2.10) this means that

c < Corr(E[Zn | FUn ],E[Zn | FUγn ]). (3.2.11)

Now we consider the spin system {E[Zn | FUγn ] : γ ∈ Γ} and apply the argument in
Proposition 3.2.6. We introduce the notation φnγ := E[Zn | FUγn ].

Now recall from the proof of Proposition 3.2.6 that the expected correlation with
respect to Hkn , a uniformly random subset of coordinates with kn elements is given by

E
[
Corr(M [φn],E[M [φn]H

∣∣ H])
]
≥
(

1 +
1

knCorrΓ(φn, φn)

)− 1
2

.

So taking into account (3.2.11) it follows that

E
[
Corr(M [φn],E[M [φn]H

∣∣ H])
]
≥
(

1 +
1

knc

)− 1
2

.

Let kn be a sequence of integers such that kn −→ ∞, but |Un|kn � |Vn|. From this
choice it is immediate that E

[
Corr(M [φn],E[M [φn]H

∣∣ H])
]
−→ 1. On the other hand,

for a fixed set sampled from Hkn , the function E[M [φn]H
∣∣ H] depends on kn coordinates

of φn, and ultimately on at most |Un|kn coordinates of σn (since each φng depends on Un
coordinates of σn), which is sparse, by our choice of kn.

Since the expected correlation tends to 1, there is a sequence of kn element subsets
which reconstructs M [E[Zn | FUn ]] with high probability.
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We continue with another consequence of Lemma 3.2.9, which provides a potential
tool to show that there is no WSR for a particular spin system.

Corollary 3.2.11. For a sequence of Γn-invariant spin system σn there is no weak sparse
reconstruction if and only if there is an ε > 0 such that for every sequence of subsets
Un ⊆ Vn with Un � Vn and every Zn sequence of FUn-measurable random variables

CorrΓ(Zn, Zn) < 1− ε (3.2.12)

for every n ≥ N , where the average is taken over all γ ∈ Γn.

Proof. Indirectly, assume that 3.2.12 holds but there exists a sequence of subsets Un ⊆ [n]
and a sequence of transitive functions fn with lim inf clue(fn |Un) = c > 0. By Corollary
3.2.10, we may assume that limn clue(fn | Un) = 1.

Set Zn = fn(σn). If n is large enough then

1− ε ≤ Corr2(Zn,E[Zn | FUn ]) ≤
Corr2(E[Z | FU ],M [E[Z | FU ]]) = Corr(E[Zn | FUn ],E[Zn | FUγn ]),

where we first used Lemma 3.2.9, and after (3.2.10). As E[Zn | FUn ] is obviously FUn-
measurable, this is in contradiction with our assumptions, so there is no WSR for the
sequence σn.

In order to show how Corollary 3.2.11 can be applied we give yet another proof for
Theorem 2.1.7. For this we need the following:

Lemma 3.2.12. Let P be the uniform measure on {−1, 1}V and let f : {−1, 1}V −→ R.
Let Γ a group acting on V transitively.

If f is FU -measurable for some U ⊆ [n] then

S(f) ≤ |U |.

Proof. Observe that for γ ∈ Γ

fγ =
∑
S⊆V

f̂(S)χSγ =
∑
S⊆V

f̂(S−γ)χS,

and therefore
f̂γ(S) = f̂(S−γ).

We can now express the susceptibility of f in terms of the Fourier-Walsh transform of f .

S(f) =
∑
γ∈Γ

Cov(f(ω), fγ(ω)) =
∑
γ∈Γ

∑
S⊆V

f̂(S)f̂(S−γ) =
∑
S⊆V

∑
γ∈Γ

f̂(S)f̂(S−γ).

The sum can be partitioned according to Γ-orbits of subsets. Let O denote the set of
Γ-orbits of the subsets of V . Then

S(f) =
∑

Γ·S∈O

∑
γ1,γ2∈G

f̂(Sγ1)f̂(Sγ1−γ2) =
∑

Γ·S∈O

(∑
γ∈Γ

f̂(Sγ)

)2

.

Because of the transitivity of the action for a particular u ∈ U there are exactly |U |
translations such that γ · u ∈ U as well. Because f is FU -measurable f̂(Sγ) can have
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3.2. RESULTS FOR GENERAL SPIN SYSTEMS 65

nonzero coefficients only if Sγ ⊆ U . So each orbit Γ ·S contains at most |U | subsets with
non-zero Fourier coefficient, and therefore, by the Cauchy-Schwartz inequality:(∑

γ∈Γ

f̂(Sγ)

)2

≤ |U |
∑
γ∈Γ

f̂ 2(Sγ), (3.2.13)

and thus we get

S(f) =
∑

Γ·S∈O

(∑
γ∈Γ

f̂(Sγ)

)2

≤ |U |Var(f(ω)).

Combining the above result with Corollary 3.2.11 we immediately get the promised
alternative proof for Theorem 2.1.1. Indeed, for any sequence of FUn-measurable functions
fn, one has

Corr(fn(ω), fγn (ω)) =
S(fn)

|Vn|Var(fn(ω))
≤ |Un|
|Vn|

→ 0.

Remark 3.2.13. It is straightforward to generalise the above result to general product
measures (Theorem 2.1.7), if one replaces the Fourier-Walsh transform with the Efron-
Stein decomposition (see Theorem 2.1.6).

Remark 3.2.14. In equation 3.2.13 there is equality when f =
∑

j∈U ωj and therefore the
inequality of Lemma 3.2.12 is sharp.

Further observations

First, we want to point out that whenever Γ is a group acting on V (the action does not
need to be transitive here), then the operator MΓ is the orthogonal projection onto the
space of Γ-invariant functions with respect to the inner product 〈f, g〉 := E[fg]. This can
be proved as follows. Let Z be a random variable and recall that

MΓ[Z] :=
1

|Γ|
∑
γ∈Γ

Zγ.

First, it is obvious from the definition that MΓ[Z] = Z whenever Z is Γ-invariant.
For any σ ∈ Γ ∑

γ∈Γ

E [Z Zγ] =
∑
γ∈Γ

E [ZσZγ], (3.2.14)

since, by the Γ-invariance of the measure, E [ZσZγ] = E [Z Zγ−σ]. This allows us to write

E[MΓ[Z]2] =
1

|Γ|2
∑
γ∈Γ

∑
σ∈Γ

E [ZγZσ] =
1

|Γ|
∑
γ∈Γ

E [ZγZ] = E
[
ZMΓ[Z]

]
.

So we conclude that

E
[
(Z −MΓ[Z])MΓ[Z]

]
= 0,

which shows that MΓ is indeed a projection operator.
This indicates that the question sparse reconstruction can be formulated from a more

general perspective. Let F and G be two σ-subalgebras of a probability measure space.
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66 CHAPTER 3. SPARSE RECONSTRUCTION IN SPIN SYSTEMS

Then one can ask how much do the information content of these σ-algebras overlap. One
way to measure this is as follows:

C(F ,G) := sup{Corr(X, Y ) : X F -measurable, Y G-measurable}.

We have to immediately point out out that this concept does not behave at all like (an
inverted) distance. For example, both F and G has zero distance from the σ-algebra
generated by F ∪ G, while F and G can be arbitrary far from each other (meaning that
C(F ,G) is close to 0.)

The relation to (weak) sparse reconstruction is the following: For a sequence of Γn-
invariant spin systems let Tn denote the σ-algebra generated by Γn invariant functions.
Now it is straightforward to see that no WSR on this spin system from the sequence of
subsets Un is equivalent with limnC(Tn,FUn) = 0. Apart from a slightly more abstract
view on the question, this language also reveals that there is an implicit symmetry in
our sparse reconstruction question. We could as well ask if there is sparse reconstruction
from Tn with respect to a function which depends only on coordinates from Un.

We mention that C(F ,G) could be defined via a different information distance mea-
sure. For example, instead of Corr(X, Y ) one could use I(X, Y ) (see Definition 2.2.4).

Lemma 3.2.9 suggests an iterative method to find functions with high clue. Let us
introduce the notations

PU [Z] := E[Z | FU ], and TU [Z] := M [PU [Z]].

Now we can rewrite the statement of Lemma 3.2.9 in this language. For every Γn-
invariant random variable Z it holds that

Corr(Z, TU [Z])Corr(PU [Z], TU [Z]) = Corr(Z,PU [Z]).

In case Corr(Z, TU [Z]) < 1, this obviously implies Corr(PU [Z], TU [Z]) > Corr(Z,PU [Z]).
Since PU [TU [Z]] is the function that (among FU -measurable variables) maximizes the
correlation with TU [Z], one has Corr(PU [Z], TU [Z]) ≤ Corr(PU [TU [Z]], TU [Z]). This two
observations results in the following inequality:

Corr(PU [TU [Z]], TU [Z]) > Corr(Z,PU [Z]).

This means that applying the operator TU to a given function we can increase the
clue whenever Corr(Z, TU [Z]) < 1. So starting from an arbitrary Γn-invariant random
variable Z we can increase the clue by iteratively applying the operator TU . In case
Corr(Z, TU [Z]) = 1, that is, if Z is an eigenfunction of TU , the iteration comes to an end.
So when TU admits an eigenbasis it is sufficient to calculate the clue of the eigenfunc-
tions since in that case T nU [Z] converges to the linear combination of some eigenfunctions
belonging to the same eigenspace.

Unfortunately, for most spin systems it is not easy to find such eigenfunctions. In order
to at least illustrate the idea, we again turn to the product measure. For simplicity, we
discuss the case of the uniform measure on {−1, 1}V . In this case, there is an eigenfunction
corresponding to every Γ-orbit.

Indeed, let Γ · S be a Γ-orbit of S, as before and define ξΓ·S := 1√
|Γ·S|

∑
T∈Γ·S χT (we

add the normalization to ensure that ξΓ·S has variance 1 ). Then

PU [ξΓ·S] =
∑

γ∈Γ: Sγ⊆U

χSγ .
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3.2. RESULTS FOR GENERAL SPIN SYSTEMS 67

and therefore

TU [ξΓ·S] = MΓ[PU [ξΓ·S]] = C(Γ · S, U)ξΓ·S,

where

C(Γ · S, U) :=
|{γ ∈ Γ : Sγ ⊆ U}|

|Γ|

denotes the fraction of translations of the subset S which are contained in U .

One can easily check the functions ξΓ·S form an orthonormal basis for the space of
Γ-invariant functions. Indeed, every transitive function f can be represented in this basis
as

f =
∑

Γ·S∈O

f̂(Γ · S)ξΓ·S,

where O stands for the set of Γ-orbits of 2V and f̂(Γ · S) is the respective coefficient of
f in this basis.

Moreover, limn→∞ T
n
U [f ] is contained in the eigenspace corresponding to the largest

eigenvalue with nonzero coefficient in f . In particular, if f has non-zero energy on level
1 (the linear part) then T nU [f ] tends to the magnetization. The reason is, as it is easy to
verify, that for any given U ⊆ [n] the eigenvalue C(Γ · S, U) is maximized by the orbit
of the singletons. So yet again we witness the extremal role played by the magnetisation

We note that one can express the conditional variance of transitive functions in a neat
way using the basis {ξΓ·S : Γ · S ∈ O}:

Proposition 3.2.15. Let f be a transitive function and let U ⊆ [n]. Then

Var(E[f | FU ]) =
∑

Γ·S∈O

C(Γ · S, U)f̂ 2(Γ · S), (3.2.15)

where the expectation and variance are taken according to the uniform measure.

Proof. For convenience, assume that Var(f) = 1. Now, using (1.1.7) we have

Var(E[f | FU ]) = P[S ⊆ U |S 6= ∅]

=
∑

Γ·S∈O

P[S ∈ Γ · S, S 6= ∅]P[S ⊆ U |S ∈ Γ · S, S 6= ∅].

The first factor can be expressed in terms of the transitive basis:

P[S ∈ Γ · S, S 6= ∅] =
∑

∅6=T∈Γ·S

f̂(T )2 = |Γ · S|f̂(S)2 = f̂(Γ · S)2.

Observing, that by the orbit counting lemma, |Γ · S||ΓS| = |Γ|, where ΓS is the stabilizer
of S, we obtain that

P[S ⊆ U |S ∈ Γ · S, S 6= ∅] =
|{T ∈ Γ · S : T ⊆ U}|

|Γ · S|
= C(Γ · S, U).
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3.3 Factor of IID measures

3.3.1 Introduction

In this section we investigate sequences of spin systems that converge to finitary factor
of IID systems. As this is a class of measures that are relatively approachable, it is an
obvious choice trying to understand them. Moreover, some of the Ising models can also
be described in this framework.

Definition 3.3.1 (Finitary Factor of IID systems). Let G = (V,E) be a transitive graph.
A spin system on {−1,+1}V with distribution µ is a factor of IID, if there is a measurable
map ψ : [0, 1]V → {−1,+1}V such that if X ∼ Unif[0, 1]V then the spin system defined
by

σv := ψ(Xv) v ∈ V (G)

is distributed w.r.t. µ.
A factor map is called finitary, if additionally, there almost surely exists a random

coding radius R <∞, for which it holds that ψ(Xv) is determined by {Xu : u ∈ BR(v)},
including the value of R.

Finitary factor of IID systems are measures that we can generate with a local algo-
rithm that stops after a finite running time. The motivation to investigate these measures
originally comes from ergodic theory, as finitary factor maps are in fact the continuous
measure preserving maps between spin systems (see, for example [BS99]). At the same
time as computational power keeps increasing simulations has become an important (al-
though not strictly mathematical) tool to understand the behavior of some systems. This
is, however, possible only when there is an efficient distributed way to sample from the
distribution we want to understand. For finitary factor of IID measures (spin systems)
thanks to the local algorithm, can be sampled by a distributed system from an IID
measure. From a practical point of view, the additional condition of being finitary guar-
antees that one can sample from the spin system, since σv is actually determined by a
finite neighbourhood of Xv. Nevertheless, again from a practical point of view, if we have
no control over the vertices u ∈ V (G) for which Xu needs to be revealed to learn σv, this
condition is still not enough.

Therefore, those finitary factor if IID systems where the coding volume Volv = |BR(v)|
(i.e, the number of uniform random variables one needs to reveal in order to learn the
value of a particular spin) has finite expected value, bear special importance.

We would like to investigate under what conditions can we conclude that there is or
there is no sparse reconstruction (or some of its variant) for a sequence µn converging
to a Finitary factor of IID. In light of some negative results presented in Section 3.2.1
it is not clear that such results exist at all. Therefore, we narrow down the setup and
introduce a stronger concept of convergence. In this section we only consider sequences
of spin systems which themselves are factors of IID and, in particular, are generated by
(a possibly truncated version of) the same local algorithm that we see in the limit.

For n ∈ N we generate the spin system σn as follows: For a vertex v ∈ V we try to
generate σv according to φ as a factor of IID, using independent uniformly distributed
vertex labels on V . Let ρv be the largest r such that Bv(r) is isomorphic to the r-ball on
G. If for the coding radius Rv, we have Rv ≤ ρv, we generate σv according to φ based on
the labels. Otherwise, we use some alternative local algorithm that uses only the labels
on vertices in Bv(ρv). It is clear that as n → ∞, the probability that any given vertex
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3.3. FACTOR OF IID MEASURES 69

σv is obtained with φ, tends to 1, thanks to the Benjamini–Schramm convergence. Also
we note that {Gn,Pn}, where Pn is the distribution of σn, converges to (G,P) in the
Benjamini–Schramm sense.

We first present a naive approach to argue that in case {(µn, Gn) : n ∈ N} converges
to a ffIID measure with finite expected coding volume, there should not be sparse re-
construction. The idea is that for each u ∈ Un one can learn the value of σv by asking
at most Volv IID variables on average, which is a finite number. So we have to reveal
at most Volv|Un| IID variables in total which is much less then the total number of IID
variables in the system, so by Theorem 2.1.7, there is no sparse reconstruction.

The reason why this idea cannot be directly implemented can be exemplified by The-
orem 1.2.13, which tells us that a transitive function can be reconstructed from a low
revealment set of coordinates in case the coordinates are queried iteratively in an adaptive
way. This is indeed the case for the ffIID spins, where the subset of IID random variables
are revealed according to a prescribed algorithm.

At the same time the setup here is quite different from Theorem 1.2.13, which suggests
that from this adaptive set there will be no reconstruction. First, while the subset we
query is adaptive, it is not our choice to decide which vertex to reveal next. Second,
since the algorithm is localised, with high probability we will ask a deterministic sparse
subset, the union of large enough balls around the vertices in Un. In fact, as we shall see
this naive idea is behind the proof of Theorem 3.3.8, which states, though under stronger
conditions, that there is no SR for an ffIID measure with finite expected coding volume.

3.3.2 Convergence of susceptibility

In order to show that for ffIID measures there really is a connection beween the se-
quence and the limit, we have to show that the susceptibility converges. Let S+(f) :=∑

g∈Aut(G) |Cov(f, f g)|. The following result, which states that for a ffIID measure finite
expected coding volume implies finite susceptibility, is an easy generalisation of Theorem
4.3 in [BS99].

Lemma 3.3.1. Let X be a ffIID process with |Xi| ≤ K almost surely on a transitive
graph G of polynomial growth (that is, |Bo(r)| ≤ Crd for some d > 0), and let Ro denote
the coding radius of X0. Suppose that the expected coding volume E[Vol0] is finite. Then

S(X) ≤ S+(X) ≤ 9K23dE[Vol]. (3.3.1)

Proof. Let Xj := Xv − E[Xv], the centered version of the original spin. For v ∈ G let
d(o, v) = max(|j1|, |j2| . . . , |jd|).

|Cov(Xo, Xv)|

≤
∑

max(k,l)≥ d(o,v)
2
−1

|Cov(Xo11Ro=k, Xv11Rv=l)| +
∑

max(k,l)<
d(o,v)

2
−1

|Cov(Xo11Ro=k, Xv11Rv=l)|

≤ 4K2
∑

max(k,l)≥ d(o,v)
2
−1

P[Ro = k,Rv = l] +
∑

max(k,l)<
d(o,v)

2
−1

E[X011Ro=k]E[Xj11Rv=k]

≤ 8K2
∑

k≥ d(o,v)
2
−1

P[Ro = k] +

 d(o,v)
2
−2∑

k=0

E[X011Ro=k]

2

.
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Since X0 has 0 expected value d(o,v)
2
−2∑

k=0

E[X011Ro=k]

2

=

 ∑
k≥ d(o,v)

2
−1

E[X011Ro=k]


2

≤ K2
∑

k≥ d(o,v)
2
−1

P[Ro = k],

and therefore

|Cov(Xo, Xv)| ≤ 9K2
∑

k≥ d(o,v)
2
−1

P[Ro = k]

= K2
∑

k : 2k+1≥d(o,v)

P[2Ro + 1 = 2k + 1]

≤ K2
∑

i≥d(o,v)

P[2Ro + 1 = i].

Summing this for all v ∈ V we get that∑
v∈G

|Cov(Xo, Xv)| ≤ 9K2
∑
v∈G

∑
i≥d(o,v)

P[2Ro + 1 = i]

= 9K2
∑
i

∑
v∈G:d(o,v)≤i

P[2Ro + 1 = i]

= 9K2
∑
i

|Bo(i)|P[|Bo(2Ro + 1)| = |Bo(i)|]

= 9K2E[|Bo(2Ro + 1)|] ≤ 9K2E[|Bo(3Ro)|]
≤ 9K23dE[Vol].

Now we are ready to prove that under the same conditions the susceptibility of finitely
supported functions converges.

Lemma 3.3.2. Let σ be a ffIID spin system on a graph G distributed according to µ.
Suppose that the sequence of spin systems {(µn, Gn) : n ∈ N} converges to (µ,G) in the
above, ffIID sense.

Let F ⊆ V (G) finite and let f : {−1,+1}F → R. Then, there is a sequence of subsets
Fn ⊆ Vn with |Fn| = |F | and a sequence fn : {−1,+1}Fn → R, such that fn

w−→ f . If
S(f) =∞, we have

lim
n→∞

S(fn) =∞.

Moreover, if Eµ[Volv] <∞ and G is of polynomial growth, then

lim
n→∞

S(fn) = S(f).

Proof. First we define the sequence Fn ⊆ Vn and the corresponding sequence of functions
fn. Choose a vertex o ∈ F and large enough radius R so that F ⊆ Bo(R). If n is large
enough then the ball Bo(R) in G and Bo′(R) in Gn for some o′ ∈ Vn are isomorphic. We
choose a subset Fn ⊆ Bo′(R) as the image of such an isomorphism. Now fn is just the
composition of f and the isomorphism between the corresponding R-balls.
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3.3. FACTOR OF IID MEASURES 71

We continue by showing that for every γ ∈ Aut(G)

lim
n→∞

Covµn(f, fγ) = Covµ(f, fγ).

First we note that if F is a finite subset in V (G), then we can define the (random)
coding radius RF of F , as the smallest radius such that the union of RF -balls around
the elements of F determine the value of all the spins in F . Note that we have RF =
maxv∈F Rv ≤ |F |R0 (here R0 is the coding radius of a spin).

Choose first N large enough so that P[max(RF , RF γ ) > N ] ≤ 2|F |P[R0 > N ] <
ε/max(f 2) and after choose K ∈ N such that K ≥ 2(N + R) + d(o, oγ). (Recall that
o ∈ F and F ⊆ Bo(R).) Now with probability 1 − ε/max(f 2) both f and fγ can be
computed from the uniform labels {Xu : u ∈ Bo(K)}. If now n is large enough so that
the K-ball is isomorphic on Gn and on G, decomposing the covariance on µn with respect
to A := {max(RF , RF γ ) ≤ n} we get

Covµn(f, fγ) = P[A]Covµ(f, fγ|A) + P[Ac]Covµn(f, fγ|Ac),

and consequently, using that P[Ac] < ε/max(f 2) and that Cov(f, fγ|Ac) ≤ max(f 2) both
according to µ and µn, we obtain that

|Covµn(f, fγ)− Covµ(f, fγ)| ≤ P[Ac]2 max(f 2) ≤ 2ε.

In case Sµ(f) =∞, then by Fatou’s lemma, we have

Sµ(f) =
∑
γ

lim
n

Covµn(f, fγ) ≤ lim
n

∑
γ

Covµn(f, fγ) = lim
n
Sµn(f) (3.3.2)

so, limn Sµn(f) =∞ as well.
For a subset F ⊆ V we defineBF (k) := ∪v∈FBv(k). Obviously, |BF (k)| ≤ |F ||Bv(k)| =

|F |Volσ. Now we can consider the spin system {fγ : γ ∈ Γ} and applying Lemma 3.3.1
we get that

Sµ(f) ≤ CEµ[Volf ] ≤ C|F |Eµ[Volσ],

for some C ∈ R. Observe that Eµn [Volσn ] ≤ Eµ[Volσ] for any n ∈ N, since the algorithm
generating µn queries at most as many vertex values as does µ, and therefore, applying
Lemma 3.3.1 this time for the finite graph Gn, we have

Sµn(f) ≤ CEµn [Volσn ] ≤ CEµ[Volσ],

and thus in (3.3.2) we have equality by the dominated convergence theorem, hence the
second statement.

With this stronger notion of convergence, we finally have a few results where the
limiting sequence decides whether there is sparse reconstruction or not:

Corollary 3.3.3. If (µ,G) be an ffIID measure with Sµ =∞. Let {(µn, Gn) : n ∈ N} be
a sequence of ffIID spin systems converging to (µ,G) in the prescribed sense. Then there
is weak sparse reconstruction for µn.

Proof. By Lemma 3.3.2, this means that the absolute susceptibility in µn tends to ∞ as
n goes to∞. By Corollary 3.2.7, it follows that in this case there is sparse reconstruction
for µn.
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72 CHAPTER 3. SPARSE RECONSTRUCTION IN SPIN SYSTEMS

Proposition 3.3.4. Let F ⊆ V (G) and fn be a sequence of functions depending on the
spins in Fn, where |Fn| ≤ M for every n ∈ N, and assume that {(µn, Gn) : n ∈ N} be a
sequence of ffIID spin systems converging in the prescribed sense to (µ,G), an ffIID system
with bounded expected coding radius. Then there is no random sparse reconstruction (see
Definition 3.2.2) for fn on µn.

In particular, the proposition holds if µn = µ, where µ is an ffIID with finite expected
coding radius.

Proof. First we note that if F is a finite subset in V (G), then the (random) coding radius
RF of F , that is, the smallest radius such that the union of RF -balls around the elements
of F determine the value of the spins in F , has also finite expected value. Indeed, this
follows from the trivial bound RF = maxv∈F Rv ≤ |F |R0 (here R0 is the coding radius of a
spin). Recall that BF (k) = ∪v∈FBv(k) and that clearly |BF (k)| ≤ |F ||Bv(k)|. Therefore,
taking into account that the coding radius on the finite graph is at most the coding radius
in the infinite one, we get that RFn ≤MR0 for every n ∈ N (recall that M is the universal
bound on the size of Fn).

Let Hn be a random subset of Vn with revealment δn tending to 0. Let Zm = fn(σn).
For a change we will use information theoretic clue here but one can replace I(Zn,Hn)
with Var(E[Zn | FUn ]) (and H(Zn) with Var(Zm)) and the argument works in the same
way.

E[I(Zn,Hn)] =
∑
H⊆Vn

P[Hn = H]I(Zn, H)

=
∑
RFn=k

∑
H⊆Vn

P[RFn = k,Hn = H]11{BF (k)∩H 6=∅}I(Zn, H),

where we used the fact that conditioned on the event {RFn = k, BF (k) ∩ H = ∅}, we
have I(Zn, H) = 0. Since I(Zn, H) ≤ H(Zn) for any H ⊆ Vn and P[RFn = k,Hn = H] =
P[RFn = k]P[Hn = H] we get

E[I(Zn,Hn)] ≤ H(Zn)
∑
H⊆Vn

P[Hn = H]

 ∑
k≥d(H,F )

P[RFn = k]


= H(Zn)

∑
r

P[d(Hn, F ) = r]

(∑
k≥r

P[RFn = k]

)
.

At the same time, from the union bound and that the revealment of Hn is δn, we get the
following estimate

P[d(Hn, F ) = r] = P[∃h ∈ Hn : h ∈ BF (r)] ≤
∑

v∈BF (r)

P[v ∈ Hn] ≤ δn|BF (r)|. (3.3.3)

Since E[RFn ] <∞, one can choose a large enough L ∈ N such that∑
k≥L

P[RFn = k] ≤M E[Rv11{Rv≥L}] < ε.
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3.3. FACTOR OF IID MEASURES 73

Now we split the sum above according to L:

∑
r

P[d(Hn, F ) = r]

(∑
k≥r

P[RFn = k]

)

≤
L∑
r=1

P[d(Hn, F ) = r]E[RFn ] +
∞∑

r=L+1

P[d(Hn, F ) = r]ε

≤ δn

L∑
r=1

|BF (r)|+ ε,

where we used that (3.3.3) to bound the first term and that trivially
∑∞

r=L+1 P[d(Hn, F ) = r] ≤
1 for the second term. Since δn → 0, for large enough n the first term will be at most ε
as well. So,

E[I(Zn,Hn)]

H(Zn)
≤ 2εH(Zn)

H(Zn)
= 2ε

for every large n.

3.3.3 Finite expected coding volume and magnetisation

In this section we are going to show that the magnetization cannot be reconstructed from
an ffIID sequence converging to an ffIID measure with finite expected coding volume,
whenever S(fn) 6= 0. We will use Lemma 3.3.1 to show that in that case the magnetization
is close to the magnetization of a block factor of IID system, but the latter admits no
SR.

If we have a ffIID system σ, for a positive integer L one can consider an L block
factor of IID σL that approximates (the distribution of) σ as follows: First, σLv = σv
whenever the local algorithm ψ generating σ stops before going outside from the ball
Bv(L). Otherwise, we sample σLv according to the distribution of σv conditioned on
Bv(L) independent from everything outside of Bv(L). This block factor can be put on a
finite graph Gn approximating G in the same way as the original ffIID.

Lemma 3.3.5. Let X be a finitary factor of an IID spin system with finite expected
coding volume and |Xi| ≤ K a.s. on a transitive graph G of polynomial growth. Let R0

denote the coding radius of X0. For L ∈ N let XL be the L block factor approximation of
X. Let EL := X −XL (which is obviously also a ffIID spin system). Then

S(EL) ≤ CE[Vol11R0>L] (3.3.4)

where the constant C depends only on K and the dimension d.

Proof. Observe that Cov(EL
0 , E

L
j ) = 0 whenever min(R0, Rv) ≤ R, since EL

j ≡ 0 when-
ever Rv ≤ R. After this straightforward observation we just repeat the calculation as in
Lemma 3.3.1.

We can differentiate two cases. If L < d(o,v)
2
− 1 then we simply copy the calculation

of Lemma 3.3.1. In case L ≥ d(o,v)
2
− 1 we have

Cov(EL
0 , E

L
j ) =

∑
max(k,l)>L

Cov(EL
0 11R0=k, E

L
j 11Rv=k) ≤ 9K2

∑
k>L

P[R0 = k].
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74 CHAPTER 3. SPARSE RECONSTRUCTION IN SPIN SYSTEMS

Therefore, upon summing the covariances we get∑
v∈G

Cov(EL
0 , E

L
j )

≤ 9
∑
v∈G

∞∑
k≥max(L+1,

d(o,v)
2
−1)

P[R0 = k] ≤ 9K2E[|Bo(2Ro + 1)|11R0>L]

≤ 9K2E[|Bo(3Ro)|] ≤ 9K23dE[Vol11R0>L].

We shall use the following estimate from [GPS10], which we present without proof.

Lemma 3.3.6. [GPS] If εmax(‖f‖ , ‖g‖) ≥ ‖f − g‖ then

∑
S⊆[N ]

∣∣∣∣∣ f̂(S)2

‖f‖2 −
ĝ(S)2

‖g‖2

∣∣∣∣∣ ≤ 4ε

(1− ε)2
(3.3.5)

Proposition 3.3.7. Let G be a graph of polynomial growth and (µ,G) a finitary factor
of i.i.d. measure with finite expected coding volume. Let {(µn, Gn)} be a sequence of ffIID
spin systems converging to (µ,G). Let X distributed according to µ. If Xv is almost
surely bounded and Sµ 6= 0 then there is no sparse reconstruction for the magnetization
on µn.

Proof. Let {Xn} be a sequence of spin systems distributed according to µn and let Mn

denote the corresponding magnetization. Recall that Var(Mn) = Sµn/n. Observe that
for every large n ∈ N we have c ≤ Sµn ≤ C for some positive constants c and C. Indeed,
on the one hand, Sµ 6= 0 and from Lemma 3.3.1 we know that finite expected coding
volume implies finite susceptibility. So 0 < Smu <∞. On the other hand, Lemma 3.3.2
states that limn Sµn = Sµ. Consequently,

b

n
≤ Var(Mn) ≤ B

n
.

Let us denote by XL
n the L-block factor approximation of Xn and with ML

n the corre-
sponding magnetization. Obviously, a similar lower and upper bound holds for Var(ML

n )
as well.

Since X has finite expected coding volume, by Lemma 3.3.5, for every ε there is an L
such that for every large n we have S(EL) ≤ bε, where EL = X −XL. Also let us define
EL
n = Xn −XL

n the version of EL on Gn. According to Lemma 3.3.2 S(EL
n ) −→ S(EL),

so S(EL
n ) ≤ 2bε for every large n. Therefore, using the estimate for Var(Mn[EL]) in the

proof of Lemma 2.5.2 we get√
Var(Mn)Var(ML

n )2(1− Corr(Mn,M
L
n )) ≤ Var(Mn −ML

n ) =
S(EL

n )

n
≤ 2bε

n
.

Recall that Var(Mn) and Var(ML
n ) are both at least b

n
, so we get that

1− Corr(Mn,M
L
n ) ≤ ε (3.3.6)

Indirectly, suppose that there is a sequence of subsets Un ⊆ Vn with |Un| = o(|Vn|) such
that clue(Mn | Un) ≥ c for some c > 0 for all large n. Then Lemma 2.5.3 would imply
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3.3. FACTOR OF IID MEASURES 75

that clue(ML
n | Un) ≥ c− 2ε. But if we choose L large enough so that ε < c/4 small, we

get that

clue(ML
n | Un) ≥ c/2 > 0.

But this would mean that on the sequence of spin systems XL
n there is sparse reconstruc-

tion for the magnetization. Nevertheless, this is impossible: XL is a block-factor, which
means that independently from n every spin Xv can be computed almost surely from the
IID variables in Bv(L) the ball of radius L around v. For every large n the cardinality
of Bv(L) is a constant: K := |Bv(L)|. A transitive function of XL

n is also a transitive
function of the IID variables and the spin values of Un can be always computed if we
know IID variables in Bu(R) for every u ∈ Un, which is at most K|Un| variables. So
this would imply that for a sequence of product measures there is sparse reconstruction
for a transitive function from a sequence of subsets of K|Un| = o(|Vn|) variables, which
contradicts Theorem 2.1.7.

We sketch a different argument which might be also of interest. We can think of the
above functions as functions of the i.i.d bits instead of that of the factor. It is clear
that the size of the Fourier spectrum of ML

n is at most R. According to Lemma 3.3.6,
together with (3.3.6) shows that at least 1−O(ε) proportion of the Fourier energy of Mn

is concentrated on sets of size at most R as well.

Now take a random translate Uk of U , which because of symmetry contains the same
information as U and query all the bits which are necessary to learn the spins in Uk.
This algorithm is symmetric on the bits and it queries on average at most |U |E[Vol] bits,
where Vol is the coding volume. If we denote by J the random set of queried bits we
have:

nP[i ∈ J ] = E[d(o, v)] ≤ |U |E[Vol0] = o(n) (3.3.7)

By the Revealment Theorem (Theorem 1.2.13), for every fixed k

∑
|S|=k

M̂n

2
(S)

‖Mn‖2 ≤
k|U |E[Vol0]

n
→ 0. (3.3.8)

But this is in contradiction with the fact that a large part of the Fourier energy is
concentrated on bounded degree (below L) .

It is not difficult to extend this result. Take a sequence of uniformly bounded functions
fn with uniformly bounded support Fn. Without much effort one can prove that in case
lim inf S(fn) > 0 there is no SR for the sequence M [fn]. The additional requirement
lim inf S(fn) 6= 0 is slightly disturbing, but up to now we could not find a clear way to
eliminate.

3.3.4 A partial no SR result

We know from Corollary 3.3.3 that if the susceptibility for a factor of IID is infinite,
then there is WSR. At the same time Lemma 3.3.1 says (using Lemma 3.3.2) that if the
expected coding volume is finite then the susceptibility cannot grow to infinity and thus
as we have just learned, there is no SR for the magnetisation (unless the susceptibility is
0) . But does this mean that there is no SR at all in this case? The following theorem,
which relies on the IID case, gives a partial answer to this question.
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Theorem 3.3.8. Let µ be a finitary factor of IID on Zd with the property that P[R > t] <
exp(−ct)], where R is the coding radius, and µn is a factor of IID sequence converging to
µ (in the sense specified above). Let fn : {−1, 1}Vn −→ {−1, 1} be sequence of transitive,
non-degenerate Boolean functions.

Then for any subset Un ⊆ Vn satisfying |Un| = o(nd/ logd n),

clue(fn | Un)→ 0.

Proof. Let Un ⊆ Vn and for u ∈ Un let Ru denote the (random) coding radius of the spin
σu. For any r be a positive integer, by the union bound

P[∀ u ∈ Un : Ru < r] = 1− P[∃ u ∈ Un : Ru ≥ r] > 1− |Un| exp(−cr)

By definition, whenever {∀ u ∈ Un : Ru < r} happens, the spins in Un can be calculated
from at most |Un|rd independent uniformly distributed variables. Denote the set of this
bits by Jn(r) =

⋃
u∈Un Br(u)

Let us choose a sequence of integers rn in such a way that

|Jn(r)| ≤ |Un|rdn � |Vn| = nd, (3.3.9)

and at the same time

lim
n

1− |Un| exp(−crn) = 1. (3.3.10)

Now we can consider gn := fn(ψ(X)), the same function as fn but interpreted as a func-
tion of the uniform IID variables X. Obviously gn is transitive as well. On the one hand,
it follows from Theorem 2.1.7 using the condition (3.3.9) that clueUnif

(
gn | FJn(r)(X)

)
→ 0.

On the other hand, conditioned on the event {∀ u ∈ Un : Ru < r},

E[fn|FUn(σ)] = Eµn [gn|FJn(r)(X)] (3.3.11)

and by (3.3.10) this happens with high probability.
Observe that if one chooses rn = K log nd with sufficiently large K, (3.3.9) and (3.3.10)

are both satisfied (for the latter using our assumption on the size of Un).
Let us denote by G the minimal σ-algebra for which both Jn(r) and the random set

of uniform variables necessary to compute the spins of Un are measurable. So E[gn
∣∣ G] =

E[fn
∣∣ FUn(σ)]. Since FJn(r) ⊆ G by the definition of G, we have, by Pythagoras’s Theorem∥∥E[gn

∣∣ G]
∥∥2

=
∥∥E[gn

∣∣ FJn(r)]
∥∥2

+
∥∥E[gn

∣∣ G]− E[gn
∣∣ FJn(r)(X)]

∥∥2
.

Subtracting the common squared expectation we get

Var
(
E[gn

∣∣ G]
)

= Var
(
E[gn

∣∣ FJn(r)]
)

+
∥∥E[gn

∣∣ G]− E[gn
∣∣ ωVn ]

∥∥2
. (3.3.12)

By Theorem 2.1.7, clue(gn | FJn(r)) → 0 and thus Var
(
E[g

∣∣ FJn(r)]
)
→ 0 as well, while

the second term is smaller then 2P[E[fn|FUn(σ)] 6= E[gn|FJn(X)] ] which tends to 0 by
(3.3.11).

We should point out that it is at this point we use the fact that fn, and thus gn is a
non-degenerate sequence. Indeed, if Var(gn)→ 0 then Var

(
E[gn

∣∣ G]
)

= o(Var(gn)) does
not follow from the fact that the second term in (3.3.12) goes to 0.
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The reader might wonder whether this result can be improved. Three natural direction
comes into mind. First, can we write o(nd) instead of = o(nd/ logd n) in the condition
of the theorem? Second, can we substitute the exponential decay of the coding volume
with some weaker condition (for instance, with finite expected coding volume)? Third,
do we really need to assume non-degeneracy of the sequence?

We start by answering the third question, positively. We show an ffIID sequence
converging to a ffIID spin system on Z in which one can reconstruct a sequence of functions
surely, from a set of coordinates of constant size. The local algorithm is as follows: Read
the bits starting from 0 going to the right along the x-axis, until one finds two consecutive
bits with equal value. This value will be the spin σ0 that we write at 0.

On the one hand this simple ffIID system admits a finite expected coding volume. It
also have a special structure, one can quickly verify, that, almost surely, the string −+−
and +−+ is not contained in a configuration. Let us define the same rule on finite cycles,
and in case the algorithm does not stop inside the cycle, then set σ0 = ω0.

Observe that on Zn one can reconstruct the event {R0 > n} from 3 consecutive bits.
Indeed, we can see − + − or + − + if and only if {R0 > n} holds. Of course, this is a
highly degenerate sequence of events, as the probability is exponentially small.

However, one can tweak this example to reconstruct a non-degenerate sequence that
can be reconstructed. Define the same algorithm on Z2. So the algorithm only asking bits
to the right direction on the x-axis. Now let’s take a sequence of graphs Gn = Zn × Z2n

and put the same ffIID measure on it. On each copy Zn the P[Ry > n] = 2−n, so the
expected number of y coordinates on which this happens in 1, and therefore the sequence
of events {∃y : Ry > n} is non-degenerate and it can be reconstructed from 3n spins.
Ironically, the density of this subset is not much lower then the upper bound n2/ log2 n
in Theorem 3.3.8, so roughly speaking Theorem 3.3.8 turns out to be sharp.

Still, this example feels unsatisfactory, because it undermines an idea implicit in our
project. We would like to have or not have sparse reconstruction based on the properties
of the limiting ffIID measure, which is meant to concentrate all relevant information from
a consistent sequence of finite spin systems. In this case, however, it is the very error of
the approximation that we can reconstruct. Therefore we suggest a strengthening of the
concept of convergence for ffIID spin systems.

For a sequence of ffIID spin systems {(Pn, Gn) : n ∈ N} let ρn be the largest radius
such that for every v ∈ Vn the ball Bv(ρn) is isomorphic to the corresponding ρn-ball on
G. We say that a sequence of ffIID spin systems (Pn, Gn) converges to the ffIID (P, G)
regularly if the sequence of approximations Pn satisfies

lim
n→∞

P[∃v ∈ Vn : Rv > ρn] = 0.

That is, we require that the approximation is regular enough so that the probability of
any error to occur should go to 0. Using this condition, we can restate the main question
concerning ffIID measures:

Question 3.3.9. Suppose that a sequence of ffIID spin systems (Pn, Gn) converges to the
ffIID (P, G) regularly, where (P, G) has finite expected coding volume. Is it true that there
is no sparse reconstruction on (Pn, Gn)?
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3.4 Sparse Reconstruction for the Ising Model

3.4.1 A short introduction to the Ising model

The Ising-model is one of the simplest and certainly the best understood and investigated
model in Statistical Physics (for an introduction see [Pet] Section 13.1 or [T11]). It models
a magnetic field, in which particles can have positive (+1) or negative (−1) charges
randomly, but particles that are close to each other have a tendency to have the same
(or in the antiferromagnetic case, the opposite) charge . Formally, there is an underlying
finite graph G, which describes the geometry of being close. There is an energy function
of the form −βH(σ), on the configuration space {−1, 1}V called the Hamiltonian, which
is inversely proportional with the probability :

µβ[σ] :=
1

Zβ
e−βH(σ).

Here β > 0 is interpreted as the inverse temperature and the partition function Zβ
is a normalization factor that makes µ a probability measure. The Hamiltonian H :
{−1, 1}Vn −→ R is defined as:

H(σ) = −J
∑

(x,y)∈E

σxσy − h
∑
x∈V

σx,

where the parameter J describes the strength of the interaction, while h is the external
magnetic field.

One of the most interesting features of the Ising model is that on many graph sequences
it exhibits phase transition (similarly to the Bernoulli percolation model), that is, there
are some critical inverse temperature values (denoted by βv), where the behavior of the
model changes radically.

The phase transition, however, can be clearly observed only in on infinite model. It
turns out that the Ising model can be defined as a weak limit of finite models on certain
infinite graphs. The laws of finite models, however, may differ according to the boundary
conditions. One of the important features of the phase transition is, that typically (in
particular on Zd) for β > βc, there are more than one possible Ising limiting measures.
On Zd for example, if one takes the weak limit of finite Ising models on the discrete
hypercubes [−n, n]d with + boundary conditions we get a different limiting measure than
with − boundary conditions. This is not the case for β ≤ βc, where there is a unique
limiting Ising measure.

Another remarkable fact is that at the critical temperature the susceptibility of the
model blows up. Therefore high temperature models have finite, while low temperature
ones have infinite susceptibility. As we already mentioned, this concept has a special
significance in the Ising model thanks to the formula

βS =
∂M

∂h
, (3.4.1)

where M is the magnetization. The interpretation is, and hence the name, that it ex-
presses the reactivity of the magnetization to an external magnetic field. This is in
accordance with the two different measures: as the susceptibility becomes infinite, an
arbitrary small external field can determine whether the model will turn out to be in the
+ measure or in the − one (this phenomenon is called spontaneous magnetization).
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It is an important fact that the Ising model can be also described via a coupling with
a percolation model. This is referred to as the FK–Ising model (FK stands for Fortuin
and Kasteleyn), or more generally, the random cluster model. On a finite graph G one
performs an edge percolation according to the law

φp,2(ω) =
1

Z

∏
e∈E

pω(e)(1− p)1−ω(e)2k(ω)

where p ∈ (0, 1) and k(ω) is the number of connectivity clusters.
It turns out that if one assigns an independent fair coin flip for each connectivity

cluster of the resulting random graph, the law of the spin system will be that of an Ising
model with inverse temperature β, where p = 1− e−βJ . This connection often proves to
be useful and some concepts of the Ising model gain a new interpretation in the random
cluster model. For instance, as one can easily verify, the susceptibility of the Ising model
is just the expected cluster size of a uniformly chosen vertex.

The random cluster model can also be defined for infinite graphs via a weak limit
and the above correspondence with the Ising model remains true as well. The phase
transition can also be interpreted in terms of the random cluster model: the critical
inverse temperature βc is the critical point of the corresponding percolation, i.e., the
point where an infinite open cluster is created.

3.4.2 Results for the Ising model on Zd
n

In this section we collect the results we have about sparse reconstruction on the Ising
models. We start by the case of low temperature models, which is the most straightfor-
ward to handle.

Proposition 3.4.1. Let {σn} be the sequence of Ising models on Zdn. Then the Majn
sequence of Boolean function can be reconstructed from a sequence of sparse subsets in
case β > βc (low temperature).

Proof. It can be shown, that when β > βc, then the sequence {σn} on the torus converges
to the Ising measure 1

2
µ+ + 1

2
µ on Zd, where µ+ and µ− are the weak limits of Ising

measures on d-dimensional hypercubes with + and − boundary conditions, respectively.
Thus the limiting measure is a convex combination of two measures, thus non-ergodic.
This in itself is not enough though to conclude the existence of sparse reconstruction (see
the discussion before Proposition 3.2.3).

Let us consider the coupling of σn with the corresponding random cluster model.
Since the random cluster model is also supercritical, there is an infinite cluster almost
surely in the limiting infinite random cluster measure. Moreover, it was shown in [Pi96]
(Theorem 1.1) that with high probability there is one giant cluster of size at least Cnd

for some C while the remaining clusters are much smaller, of size o(nd). (In fact, this
was only proven for β below the so-called slab threshold for the FK model when d > 2,
but it was shown in [Bo05] that this coincides with the critical β.)

Switching back to the Ising model this shows that Majn is determined by the bit
assigned to the giant cluster, with high probability. So on Zdn, |Mn| > Cnd, with high
probability and therefore, by Proposition 3.2.8, the majority can be reconstructed from
a sparse random set. It is not difficult to show that Majn can be reconstructed from a
deterministic sparse sequence of spins as well.
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80 CHAPTER 3. SPARSE RECONSTRUCTION IN SPIN SYSTEMS

As for the high temperature models, our result is based on the fact that the high
temperature Ising turn out to be ffIID measure (see [BS99]).

Theorem 3.4.2 (Van den Berg-Steif, 1999). For β < βc, the unique Ising measure µ on
Zd is a finitary factor of Unif[0, 1]Z

d
, with coding radius P[R > t] < exp(−ct).

This allows us to use the results of Section 3.3, in particular Theorem 3.3.8 which
holds exactly for ffIID spin systems with exponential decay of the coding radius. So, we
get as a corollary of Theorem 3.3.8:

Theorem 3.4.3. Let {µn} be a sequence of subcritical Ising measures (i.e., β < βc) on
the tori Zdn. Then there is no reconstruction on {µn} from sequences of subsets Un ⊆ Zdn
with |Un| = o(nd/ logd n). Furthermore, there is no sparse reconstruction for the Majn.

Proof. The first claim is a direct consequence of Theorem 3.3.8, the second one follows
from Proposition 3.3.7.

For critical models, however, sparse reconstruction is possible.

Proposition 3.4.4 (Sparse Reconstruction for Critical Ising from random subsets). Let
{µn} be a sequence of critical Ising measures (i.e., β = βc) on the tori Zdn. Then the
magnetization and the function Majn can be reconstructed with high clue from a sparse
random subset of spins with a uniformly positive probability.

Proof. According to [Si80], we have limn→∞ S(σfn) = ∞ at β = βc where sigmafn is the
Ising model on [−n, n]d with free boundary conditions (that is, no magnetization on the
boundaries of the square). In order to transfer this result to the torus, we need the fact
that there is only one infinite Ising measure at critical temperature. This was shown in
[Y52] for d = 2 first, in [AF86] for d > 3, and recently in [ADS13] for d = 3.

This means that the sequence of Ising models on the torus converges weakly to the
same measure as the free one, which satisfies S(σfn)→∞. This implies that the respective
covariances converge to the same value as well. Since all covariances are non-negative we
can apply the dominated convergence theorem, and thus we obtain that S(σn) → ∞ as
well. Therefore, by Corollary 3.2.7, the magnetization can be reconstructed from a sparse
random subset of spins.

We are going to show that
E[M4

n] ≤ 3E[M2
n]2.

Indeed, then the Paley-Zygmund inequality implies that for arbitrary ε > 0

E[|Mn| > εE[M2
n]] = E[M2

n > ε2E[M2
n]] ≥ (1− ε2)2

3
,

and by Proposition 3.2.8 with probability 1/3− ε2 we have

clue(Majn | Bpn) > 0.99

for every large n. First, the so-called Lebowitz inequality (or Gaussian bound, see [Le74])
says that for any x, y, u, v ∈ Zdn (in fact, on finite graphs in general)

E[σxσyσuσv] ≤ E[σxσy]E[σuσv] + E[σxσu]E[σyσv] + E[σxσv]E[σuσy].

We can sum the above inequalities for all possible quadruples x, y, u, v ∈ Zdn, and thus we
get that

E[M4
n] ≤ 3E[M2

2n]2,

as promised.
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3.4. SPARSE RECONSTRUCTION FOR THE ISING MODEL 81

Using some state-of-the-art results on two dimensional critical Ising model, we can
say something stronger on Z2

n.

Theorem 3.4.5 (Sparse Reconstruction for Critical Ising on Z2
n). At β = βc on Z2

n, the
total magnetization Mn can be reconstructed with high clue from a sublattice Hsn of grid
size sn as long as sn = o(n

7
4 ). That is,

lim
n→∞

clue(Mn | Hsn) = 1.

Moreover,
lim
n→∞

clue(Majn | Hsn) = 1.

Proof. It was shown in [CHI15] that

Eσ(x)σ(y)→ c ‖x− y‖−
1
4

for some c > 0 (here ‖ ‖ stands for the Euclidean norm), and this allows us to compute
the correlation between the magnetisation Mn and the sparse magnetisation M sn

n on the
sn-lattice, up to factors of size o(1).

We consider a sequence of sublattices of the original square [−n, n]2. Such a latticeHsn

can be either described by the size sn of the lattice or by number of lattice points along a
line segment of length n, which we denote by kn. We have the relation n ≤ knsn < n+sn,
we allow some overlap to make sure that there is a vertex in every interval of length sn.
We will use the shorthand notation M sn

n for the magnetization of Hsn .
Just like in the proof of Theorem 3.2.6, we have Var(Mn) = Cov(Mn,M

sn
n ) = Sn/n

2,
and therefore

Corr(Mn,M
sn
n ) =

√
Sn

n2Var(M sn
n )

We use a standard trick: We divide the square Z2
n into logarithmically increasing annuli

with respect to Euclidean distance. Let us define two sequences: ηn > 0 with ηn → 0 and
0 < δn → ∞, but δ = o(n). We will estimate the susceptibility Sn on every concentric
annulus between the radii δn(1 + ηn)k and δn(1 + ηn)k+1 and the central circle of radius
δnn. Since we need a lower bound for Sn, we are going to estimate E[σ(0)σ(x)] for all x

in the kth annulus by c
(
δn(1 + ηn)k+1

)− 1
4 . Thus we have∑

x∈Z2
n: ‖x‖≤n

E[σ(0)σ(x)]

≥ 1 + cπδ
7
4
n +

logηn (n/δn)−1∑
k=0

πδ2
n

(
(1 + ηn)2(k+1) − (1 + ηn)2k

)
cδ
− 1

4
n (1 + ηn)−

k+1
4

= 1 + cπδ
7
4
n + cπδ

7
4
n
ηn(2 + ηn)

(1 + ηn)
1
4

logηn (n/δn)−1∑
k=1

(1 + ηn)
7k
4

= 1 + cπδ
7
4
n + cπδ

7
4
n
ηn(2 + ηn)

(1 + ηn)
1
4

(
n

δn

) 7
4 1

ηn

= 1 + cπδ
7
4
n + cπ

(2 + ηn)

(1 + ηn)
1
4

n
7
4 .
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82 CHAPTER 3. SPARSE RECONSTRUCTION IN SPIN SYSTEMS

We need to estimate the sum of covariances between the spin at (0, 0) with any other
spin in the square [−n, n]2. The estimation above, however, works only for those spins
which are in the circle of radius n. To get around this problem, we shall take a large
K ∈ N, and approximate the square from below (and, in the sequel, from above) with
the union of K pieces of circular sector of equal central angle of 2π/k, but of changing
radii. For a fixed central angular sector we choose its radius as the maximal radius such
that the respective circular sector is inside the square. We shall denote by rn,l this radius
for the lth sector, where l ∈ [K]. In turn, each annulus is cut into k sectors and thus,
when summing up the annular sectors belonging to the same angular sector, we get just
the same sum as above, with a constant factor of 1/K and with differing upper bounds
of summation for every sector:

Sn =
∑
x∈Z2

n

E[σ(0)σ(x)]

≥ 1 + cπδ
7
4
n + cπ

(2 + ηn)

(1 + ηn)
1
4

1

K

K∑
l=1

logηn (rn,l/δn)−1∑
k=1

(1 + ηn)
7k
4

= 1 + cπδ
7
4
n + cπ

(2 + ηn)

(1 + ηn)
1
4

1

K

K∑
l=1

r
7
4
n,l.

We turn to estimating the denominator. Observe that

Var(M sn
n ) =

1

k2
n

∑
x∈Hsn

E[σ(0)σ(x)].

So we only need to deal with the “sparse susceptibility”. We are going to apply the same
strategy as above for Sn. In order to make sure that the estimation for the number of
vertices of Hsn in a particular annulus is accurate, we set the condition sn � ηnδn � δn.
Otherwise the only difference is that now we give an upper bound and therefore we are

going to estimate E[σ(0)σ(x)] for all x in the kth annulus by c
(
δn(1 + ηn)k

)− 1
4 . We also

split the sum into K terms according to sectors as before. Again, the upper bound of
summation is differ according to sector: For a fixed central angular sector we sum until
the minimal radius such that the intersection of the square and the respective angular
sector falls in to the circular sector. We denote this radius by Rn,l for l ∈ [K]. So we get∑
x∈Hsn

E[σ(0)σ(x)]

≤ 1 + cπ

(
δn
sn

)2

+
1

K

K∑
l=1

logηn (Rn,l/δn)−1∑
k=0

π

(
δn
sn

)2 (
(1 + ηn)2(k+1) − (1 + ηn)2k

)
cδ
− 1

4
n (1 + ηn)−

k
4

= 1 + cπδ2
ns
−2
n + cπδ

7
4
n s
−2
n ηn(2 + ηn)

1

K

K∑
l=1

logηn (Rn,l/δn)−1∑
k=1

(1 + ηn)
7k
4

= 1 + cπδ2
ns
−2
n + cπ(2 + ηn)s−2

n

1

K

K∑
l=1

R
7
4
n,l.

For every ε > 0, one may choose K large enough so that rn,l ≥ (1 − ε)Rn,l for every

C
E

U
eT

D
C

ol
le

ct
io

n



3.4. SPARSE RECONSTRUCTION FOR THE ISING MODEL 83

l ∈ [K]. Choosing such a K and putting together the two estimates we obtain that

Corr2(Mn,M
sn
n )

≥ k2
n

n2

1 + cπδ
7
4
n + cπ (2+ηn)

(1+ηn)
1
4
n

7
4

1 + cπδ2
ns
−2
n + cπ(2 + ηn)s−2

n n
7
4

≥ (knsn)2

n2

1 + cπδ
7
4
n + cπ (2+ηn)

(1+ηn)
1
4

(1− ε) 7
4

1
K

∑K
l=1R

7
4
n,l

s2
n + cπδ2

n + cπ(2 + ηn) 1
K

∑K
l=1R

7
4
n,l

.

Choose the sequence sn in such a way that s2
n = o(n

7
4 ), that is, sn = o(n

7
8 ) and let δn =

o(n
7
4 ) as well. We claim that with this choice the above correlation can be arbitrary close

to 1− ε for large n. Indeed, first note that (knsn)2

n2 ≥ 1, so the first factor can be ignored.

Observe that n
7
4 ≤ 1

K

∑K
l=1 R

7
4
n,l ≤ (

√
2n)

7
4 and therefore under these conditions in both

the numerator and the denominator, the first two terms are negligible in comparison with
the third one. Recalling that ηn → 0, we get that for all large n

Corr2(Mn,M
sn
n ) ≥ 1− 2ε.

This shows that the magnetization can be reconstructed from Hsn , as we stated. In
general, however, this does not imply that Majn can be reconstructed from Hsn . In
order to see this we show that the scaling limit of the magnetisation, which exists by
[CGN15] and the scaling limit of the sparse magnetisation has the same distribution.
This follows from the fact that the moments of Mn and M sn

n are asymptotically the same
by Proposition 3.5 in [CGN15] (proving exponential tails in the scaling limit). Indeed, we
have just shown this for the second moment above. Using the n-point function established
in [CHI15] and the technology from Section 3.3 in [CGN15] this equality can be extended
for higher moments.

We also have to note that although the results we used are established for the square
lattice, not the torus, by the classical unicity result (see [Y52]), stating that there is only
one Ising measure at criticality on Z2, implies that these results are equally valid for the
torus.

The following is likely to be true, but still not within easy reach:

Conjecture 3.4.6. The equivalent of Theorem 3.4.5 is true for the sequence Zdn for every
d > 2 as well.

An exciting area of research is to investigate a sequence tending to the + measure of
a supercritical (low temperature model). As we mentioned in Section 3.1, if a transitive
function was possible to reconstruct, then it would not be the magnetisation, as this
measure has finite susceptibility. On the other hand, all the natural models we investi-
gated has the property that whenever there is SR, magnetization can be reconstructed.
Also, different proofs of Theorem 2.1.1 stating no SR for product measures highlight
the extremal role played by magnetisation (in particular the first one and the one using
Proposition 3.2.3): indeed, in case of product measures, for any sparse sequence of subsets
it is the transitive function that achieves the highest clue possible.

Question 3.4.7. Is there a sequence {µn} of Ising measures converging to the supercrit-
ical + measure on Zd such that there is
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84 CHAPTER 3. SPARSE RECONSTRUCTION IN SPIN SYSTEMS

1. SR for {µn}?

2. RSR for {µn} ?

As it was mentioned in Section 3.1, the results of [BM02] suggest that the answer
might be positive.

3.4.3 The Curie-Weiss model

In this section we shall return to the argument of Theorem 2.3.1 to show that there is
no sparse reconstruction for the subcritical Curie-Weiss model, the Ising model on the
complete graph Kn.

The Curie-Weiss measure is defined trough the following Hamiltonian:

H(σ) = − 1

n

∑
(x,y)

σxσy − h
∑
x∈[n]

σx.

We have a normalisation term 1
n
, since in this sequence of graphs the vertex degree is

growing linearly with n.

Theorem 3.4.8. There is no sparse reconstruction for the subcritical Curie-Weiss model
with 0 external magnetic field.

We divide the proof of the theorem into a few steps.

Lemma 3.4.9. Let σ[n] be a sequence of spin systems and suppose that there is a C > 0
such that for every n

H(σ[n]) ≥ n− C,
then there is no sparse reconstruction for σ[n].

Proof. The proof repeats that of Lemma 2.3.3 and Theorem 2.3.1. First observe that

L∑
j

H(σ(Sj)) ≤
∑
j

∑
i∈Sj

H(σ(i)) = k
∑
i∈[n]

H(σ(i)) ≤ k(H(σ[n]) + C), (3.4.2)

were for the last inequality we used the condition of the Lemma. In turn, together with
the Shearer inequality as in 2.3.4, we obtain that

L∑
j

I(Z, σ(Sj)) ≤ k(I(Z, σ[n]) + C).

Now we can use this inequality just as in the proof of Theorem 2.3.1 to get that

nI(Z, σU) ≤ |U |(I(Z, σ[n]) + C).

Obviously, (|U |(I(Z, σ[n]) + C)/n = o(1), which is exactly what we wanted to show.

Theorem 3.4.10 (Tail of subcritical Curie-Weiss). If β < βc = 1 then

lim
n

P[Mn > C
√
n] =

√
1− β

2π

∫ ∞
x

exp {−1− β
2

t2dt},

where Mn :=
∑n

i=1 σ(i) is the total magnetisation.
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3.4. SPARSE RECONSTRUCTION FOR THE ISING MODEL 85

For a proof of this result see [T11], Chapter 3, Theorem 11.

Lemma 3.4.11. Let σ[n] denote a subcritical Curie-Weiss model on n spins and let

Mk =
k∑
i=1

σ(i). Then, for every t > 0 and positive integer 0 < i ≤ n,

P[Mi > t
√
n] ≤ e−Ct

2

1− 4e−
t2

4

, (3.4.3)

for some positive constant C.

Proof. First we are going to show that for every t > 0 and 0 < i ≤ n we have

P[Mn ≤
t

2

√
n | Mi > t

√
n] ≤ 4e−

t2

4 . (3.4.4)

Let us now fix an 1 ≤ i ≤ n. Conditioned on the event {Mi > C
√
n} we may consider

a coupling between the process Mi+k and the simple random walk Sk : k = 1, 2, . . . n− i,
where each time Mi+k decreases (that is, σk = −1) Sk decreases as well.

As long as Mi+k ≥ 0 such a coupling exists because σk+1 conditioned on the mag-
netization of the first i + k spins already revealed, is a Bernoulli random variable with
expectation mn−i−k(β,

Mi+k

2n
) > 0 independent from the value of any of the individual

spins revealed before.
Therefore, using the above coupling:

P[Mn ≤
t

2

√
n | Mi > t

√
n]

≤ P[min
k
{Mi+k} ≤ 0 | Mi > t

√
n] + P[Mn ≤

t

2

√
n and min

k
{Mi+k} > 0 | Mi > t

√
n]

≤ P[minS1, S2, . . . Sn−i ≤ −t
√
n] + P[Sn−i ≤ −

t

2

√
n]

≤ 2P[Sn−i > t
√
n] + P[Sn−i = t

√
n] + P[Sn−i ≥

t

2

√
n] ≤ 4e−

t2

4 .

For the second inequality we used the monotone coupling between Mi+k and the simple
random walk Sk, while in the second one we used the symmetry of the SRW with respect
to the origin and the standard result that P[{maxS1, S2, . . . Sn−i} ≥ l] = 2P[Sn−i >
l] + P[Sn−i = l]. Finally in the last row we used the Gaussian estimate for the tail of a
binomially distributed random variable.

After using the definition of conditional probability and rearranging (3.4.4)

P[Mi > t
√
n] ≤

P[Mn >
t
2

√
n and Mi > t

√
n]

1− 4e−
t2

4

.

Using that, by Theorem 3.4.10,

P[Mn >
t

2

√
n and Mi > t

√
n] ≤ P[Mn >

t

2

√
n] ≤ e−Ct

2

,

we obtain

P[Mi > t
√
n] ≤ e−Ct

2

1− 4e−
t2

4

.
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86 CHAPTER 3. SPARSE RECONSTRUCTION IN SPIN SYSTEMS

Now we are ready to show that the condition of Lemma 3.4.9 is satisfied for the
subcritical Curie-Weiss model.

Lemma 3.4.12. The subcritical Curie-Weiss model with a fixed inverse temperature β
and with h = 0 satisfies the conditions of Lemma 3.4.9, that is, denoting the Curie-Weiss
model on n spins by σβ[n], there exist a positive constant C such that for all large enough
n

H(σβ([n])) ≥ n− C.

Proof. According to the chain rule of entropy,

H(σβ[n]) =
n−1∑
k=0

H(σ(k + 1) | σ[k]). (3.4.5)

Because of the lack of geometry all the information is encoded in the sum of the spins,
i.e., the magnetization. Therefore we can write:

H (σ(k + 1) | σ([k])) =
∑
t

P [Mk = t]H (σ(k + 1) |Mk = t), (3.4.6)

where again Mk =
k∑
i=1

σ(i).

Since σ(k) is a Bernoulli random variable its conditional distribution, and thus its
conditional entropy is determined by the conditional expected value E[σ(k+1) = 1 |Mk =
t]. That is,

H (σ(k + 1) |Mk = t) = h (E[σ(k + 1) = 1 |Mk = t]) , (3.4.7)

where

h(x) :=
1− x

2
log

1− x
2

+
1 + x

2
log

1 + x

2
= 1− 1

ln 4
x2 +O(x4), (3.4.8)

using the Taylor expansion of h around 0. Let us compute the Hamiltonian conditioned
on the event that the sum of the first k spins is t:

Hn,0(σ |Mk = t) =− 1

2n

(∑
i,j>k

σ(i)σ(j)−
∑
i≤k

σ(i)
∑
l>k

σ(l)

)
− 1

2n

∑
i,j≤k

σ(i)σ(j)

=− t

2n

∑
i>k

σ(i)− 1

2n

∑
i,j>k

σ(i)σ(j)− t2

2n
.

This shows that conditioned on the event {Mk = t} the spin system σ([n] \ [k]) has
the law of a Curie-Weiss model on n−k spins with parameters (β, t

2n
). As a consequence,

E [σ(k + 1) |Mk = t] = mn−k

(
β,

t

2n

)
,

where mn (β, h) := 1
n
E[Mn(σβ,h[n])] is the expected magnetization per site.

Using a first order approximation for mn−k
(
β, t

2n

)
around h = 0 we get that

mn−k(β,
t

2n
) = mn−k(β, 0) +

t

2n

∂m

∂h
+O

(
t2

n2

)
.
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3.4. SPARSE RECONSTRUCTION FOR THE ISING MODEL 87

Recall, that by (3.4.1), ∂mn
∂h
≤ ∂m

∂h
= βS where S denotes the limiting susceptibility at

inverse temperature β . It is well known (see for example [Pet] Section 13.1) that the
susceptibility is finite in the subcritical (high temperature) regime (or, which is the same
the variance of the magnetisation is O(n)). Obviously mn(β, 0) = 0, so the first order
approximation says that for every t ≥ 0

E [σ(k + 1) |Mk = t] = βS
t

2n
+O

(
t2

n2

)
.

From Equation (3.4.7), taking into account the expansion of h as in (3.4.8) we obtain
that

H (σ(k + 1) |Mk = t) = 1− C t2

n2
+O

(
t3

n3

)
. (3.4.9)

We introduce the following notation:

f(t) = P [Mk = t] ,

F (t) =
t∑

s=0

P [Mk = s] = P [0 ≤Mk ≤ t] ,

h(t) = 1−H (σ(k) |Mk = t) .

Now we can rewrite (3.4.6)

H (σ(k + 1) | σ[k])

=
∑
t

P [Mk = t]H (σ(k + 1) |Mk = t)

= 1−
∑
t

P [Mk = t] (1−H (σ(k + 1) |Mk = t))

= 1−
k∑

t=−k

f(t)h(t).

In what follows, we are going to give an upper bound on
∑k

t=0 f(t)h(t) which will
result in a lower bound for H (σ(k + 1) | σ[k]), and in turn for H(σ[n]).

According to summation by parts, we have:

k∑
t=0

f(t)h(t) =F (k)h(k)− F (0)h(0) +
k−1∑
t=0

F (t)(h(t+ 1)− h(t)) =

=F (k)h(k) +
k−1∑
t=0

(F (k)− P [Mk > t])(h(t+ 1)− h(t)) =

=
k−1∑
t=0

P [Mk > t] (h(t+ 1)− h(t)),

where we first used that F (0) = 0, and after that
∑k−1

t=0 F (k)(h(t+ 1)− h(t)) = F (k)h(k).
Now we split the above sum into three parts and bound them separately.

k−1∑
t=0

P [Mk > t] (h(t+ 1)− h(t)) =

L
√
n−1∑
t=0

(. . . ) +
n

3
4−1∑

t=L
√
n

(. . . ) +
k−1∑
t=n

3
4

(. . . ).
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Let us start with the first sum:
L
√
n−1∑
t=0

P [Mk > t] (h(t+ 1)− h(t)) ≤
L
√
n−1∑
t=0

h(t+ 1)− h(t) = h(L
√
n)− h(0).

Since h(0) = 0 and h(L
√
n) = C L2n

n2 +O
(
n3/2

n3

)
by the approximation of (3.4.9), we get

L
√
n−1∑
t=0

P [Mk > t] (h(t+ 1)− h(t)) ≤ CL2 1

n
+O

(
1

n3/2

)
.

Now we turn to the second sum. By Lemma 3.4.11

n
3
4−1∑

t=L
√
n

(P [Mk > t] (h(t+ 1)− h(t)) ≤
n

3
4−1∑

t=L
√
n

(h(t+ 1)− h(t))
e−

Ct2

n

1− 4e−
t2

4n

.

First note that t = o(n), so it is valid to use the first order approximation to get

h(t+ 1)− h(t) =
2t+ 1

n2
+O

(
t2

n3

)
=
Ct+ o(t)

n2
.

One can choose L large enough so that for every large n both

e−
Ct2

n ≤
(
t2

2n

)−2

and
(

1− 4e−
t2

4n

)
≥ 1

2
(3.4.10)

are satisfied whenever t ≥ L
√
n. With such an L we have:

n
3
4−1∑

t=L
√
n

(h(t+ 1)− h(t))
e−

Ct2

n

1− 4e−
t2

4n

≤ C

n2

n
3
4−1∑

t=L
√
n

t

(
t

2
√
n

)−4

= C ′
n

3
4−1∑

t=L
√
n

t−3.

Therefore, approximating the sum with the respective integral, we get that

n
3
4−1∑

t=L
√
n

P [Mk > t] (h(t+ 1)− h(t)) ≤ C”(L
√
n)−2 − n−

3
2 ) ≤ C”

1

L2n
.

Finally, using the tail estimation of Lemma 3.4.11 and (3.4.10):

k−1∑
t=n

3
4

P [Mk > t] (h(t+ 1)− h(t)) ≤ 1

2

k−1∑
t=n

3
4

e−
Ct2

2n = o

(
1

n

)
,

where we used the trivial bound h(t+ 1)− h(t) ≤ 1.

Now we can put everything together, using that
k∑
t=1

f(t)h(t) =
−1∑
t=−k

f(t)h(t).

1−H (σ(k)|σ([k − 1])) ≤ 2
k−1∑
t=0

P [Mk−1 > t] (h(t+ 1)− h(t)) ≤ C

(
L2 +

1

L2

)
1

n
+o

(
1

n

)
and therefore, substituting this estimate into the chain rule, we have that for some con-
stant K > 0

H(σβ([n])) =
n∑
k=1

H(σ(k)|σ([k − 1])) ≥ n

(
1−K 1

n
+ o

(
1

n

))
= n−K + o (1) .
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