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Introduction

Investigating transformation groups is a fruitful field of mathematical research. In this thesis we
study the birational and the biregular automorphism groups of algebraic varieties. Our main focus
will be on the boundedness and Jordan properties.

Definition 0.1 (Definition 2.9 in [Po11]). A group G is called bounded if there exists a constant
b = b(G) ∈ Z+, only depending on G, such that the order of an arbitrary finite subgroup H 5 G
is at most b.

Definition 0.2 (Definition 2.11 in [Po11]). A group G is called Jordan if there exists a constant
J = J(G) ∈ Z+, only depending on G, such that every finite subgroup H 5 G has an Abelian
subgroup A 5 H of index bounded above by J .

Both of these definitions were introduced by V. L. Popov ([Po11]). They are closely related,
there are are various interactions between them (see Theorem 1.11).

The history of Jordan type properties of birational automorphism groups started with the
paper of J.-P. Serre ([Se09]) in 2009. He proved that the Cremona group of rank two over an arbi-
trary field of characteristic zero enjoys the Jordan property. Also he raised the question, whether
this holds for higher rank Cremona groups.
In 2011 V. L. Popov together with Yu. G. Zarhin proved that the birational automorphism group
of a surface over a field of characteristic zero is Jordan, save the case when the surface is birational
to the direct product of an elliptic curve and the projective line ([Po11], [Za14]).
Since then many authors have contributed to the subject ([BZ15a], [BZ15b], [BZ19], [Hu18],
[MZ15], [Po11], [Po14], [PS14], [PS16], [PS18a], [Se09], [Za15]).

One of the central results of Jordan type theorems for birational automorphism groups is due
to Yu. Prokhorov and C. Shramov ([PS16]). They affirmatively answered the question of J.-P.
Serre and vastly generalized the result. Their proof is based on two pillars, on the Minimal Model
Program and on the boundedness of Fano varieties (with mild singularities). At the time of their
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CHAPTER 0. INTRODUCTION

article, the theorem about boundedness of Fano varieties was known as the Borisov-Alekseev-
Borisov conjecture. In 2016, C. Birkar verified the conjecture in his acclaimed article ([Bi16]), and
by doing so, he completed the proof. Now we state the main theorem of [PS16].

Theorem 0.1. Let d be a non-negative integer. There exists a constant J = J(d) ∈ Z+, only
depending on d, such that if X is an arbitrary d dimensional rationally connected variety over
some field k of characteristic zero, and G 5 Bir(X) is an arbitrary finite subgroup of its birational
automorphism group, then there exists an Abelian subgroup A 5 G with index at most J .

The theorem is even stronger than stating that the birational automorphism group of a ra-
tionally connected variety is Jordan, as it finds Jordan constants for all at most d dimensional
rationally connected varieties at once.

Another greatly influential article of the field also comes from the work of Yu. Prokhorov and
C. Shramov ([PS14]). Amongst many interesting results they proved the following theorem.

Theorem 0.2. The birational automorphism group of a non-uniruled variety over a field of charac-
teristic zero is Jordan.

Also in [PS14], Yu. Prokhorov and C. Shramov defined solvably Jordan groups (Definition 8.1
in [PS14]), and proved that the birational automorphism group of a variety is solvably Jordan
(answering a question of D. Allcock).

Definition 0.3. A group G is called solvably Jordan or nilpotently Jordan of class at most c if
there exists a constant J = J(G) ∈ Z+, only depending on G, such that every finite subgroup
H 5 G contains a subgroup K 5 H such that the index of K in H is bounded by J , and K is
solvable or nilpotent of class at most c, respectively.

Theorem 0.3. The birational automorphism group of a variety over a field of characteristic zero
is solvably Jordan.

We have seen that the birational automorphism group of many varieties are Jordan, however
even amongst surfaces one can find a counterexample. On the other hand, if we replace the Abelian
property with the slightly weaker solvability property, then the birational automorphism group
of every variety enjoys the solvably Jordan property. This naturally raises the question that how
much we can weaken the condition of commutativity. One of the main results of this thesis is
that the birational automorphism group of a d dimensional variety is nilpotently Jordan of class
at most d (Theorem 3.1).

Theorem 0.4. The birational automorphism group of a d dimensional variety over a field of
characteristic zero is nilpotently Jordan of class at most d.
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CHAPTER 0. INTRODUCTION

It is also worth to have a look at differential geometry for a moment. In the mid-nineties É.
Ghys conjectured that the diffeomorphism group of a smooth compact real manifold is Jordan
([Gh97]). By the work of I. Mundet i Riera and others, in many cases the conjecture was verified
([MR10], [MR16], [MR18], [MRSC19], [Zi14]). However in 2014, B. Csikós, L. Pyber and E. Szabó
found a counterexample ([CPS14]). Its construction was analogous to Yu. G. Zarhin’s one. Hence,
É. Ghys improved on his conjecture, and proposed the problem of showing that the diffeomorphism
group of a compact real manifold is nilpotently Jordan ([Gh15]). As the first trace of evidence, I.
Mundet i Riera and C. Saéz-Calvo showed that the diffeomorphism group of a 4-fold is nilpotently
Jordan of class at most 2 ([MRSC19]).

Yu. Prokhorov and C. Shramov finish their article [PS14] with some questions. One of them
asks whether the birational automorphism group of a conic bundle over an Abelian variety enjoys
the Jordan property. It is a logical step to investigate these kind of varieties, as the main examples
of varieties with non-Jordan birational automorphism group are provided by the direct product
of a projective line and an Abelian variety. In [BZ15b] T. Bandman and Yu. G. Zarhin showed
that the birational automorphism group of a non-trivial conic bundle over an Abelian variety is
Jordan. One of the key steps in their proof was to show that the birational (hence the biregular)
automorphism group of a non-trivial Brauer-Severi curve (the generic fibre of a non-trivial conic
bundle) is bounded. In this thesis we generalize this result to automorphism groups of forms of
admissible flag varieties (Theorem 4.1). (Later on we will precisely define what do we mean by
admissibility (Definition 4.2). For the moment, we note that most flag varieties are admissible.)
Our main result is the theorem below.

Theorem 0.5. Let k be a field of characteristic zero, containing all roots of unity. Let the k-
variety X be a form of an admissible flag variety. Then either the automorphism group Autk(X)
is bounded, or X is birational to a direct product variety Y × P1, in other words X is ruled.

Another aspect of our motivation was that, we would have liked to study conditions which
imply that the birational automorphism group of a rationally connected variety is bounded. We
hope that by performing a smooth regularization (Lemma 3.2), we can delegate the question to
investigating finite subgroups of the biregular automorphism group. The Minimal Model Program
produces Mori fibrations for rationally connected varieties, whose generic fibres are Fano varieties
over function fields. Hence Fano varieties over function fields could play an important role in an
inductive argument. One of the more accessible examples of these kind of varieties are forms of
flag varieties, therefore we chose to examine them.

The thesis is structured in the following way. In Chapter 1 we elaborate more on the history
of Jordan type properties and sketch the proofs of some of the cornerstone theorems. In Chapter
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CHAPTER 0. INTRODUCTION

2 we collect results about some important objects of the field. First we have a look at the Mini-
mal Model Program, then we summarize results about uniruled and rationally connected varieties
and the maximal rationally connected fibration. Chapter 3 contains one of our main theorems,
the theorem about the nilpotently Jordan property of the birational automorphism group, while
Chapter 4 contains the other main theorem of this thesis, which is about the boundedness of the
automorphism groups of forms of admissible flag varieties.

Unless stated otherwise, fields are of characteristic zero and we use the conventions of [Ha77]
and [Ko96]. By a variety over a field k (which is not necessarily algebraically closed), we mean an
integral separated scheme which is of finite type over the field k.

xii
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Chapter 1

History

In this chapter we look through the history of Jordan type properties for transformation groups
and elaborate on some of the proofs of the most important theorems. We mainly focus on the
algebraic geometrical setting, however at the end of the chapter we will have an outlook to diffe-
rential geometry as well.

The Cremona group Cr(n, k) of rank n over a field k is the group of the birational auto-
morphisms of the projective space Pnk . Investigating it has a long and rich history. The general
observation is that this group is very large, however it is more accessible on the level of its finite
subgroups. Moreover the system of finite subgroups of Cr(n, k) share same similarities with the
system of finite subgroups of the general linear group GL(n, k). One example of this phenomenon
is the Jordan property which we will define and explore below.
C. Jordan proved the following beautiful theorem ([Jo878]).

Theorem 1.1. Let n be a positive integer. There exists a constant J = J(n) ∈ Z+, only depending
on n, such that if G 5 GL(n,C) is a finite subgroup of the complex general linear group of degree
n, then it has an Abelian subgroup A 5 G with index bounded (above) by J .

Motivated by the theorem V. L. Popov introduced the concept of Jordan groups (Definition
2.11 in [Po11]).

Definition 1.1. A group G is called Jordan if there exists a constant J = J(G) ∈ Z+, only
depending on G, such that every finite subgroup H 5 G has an Abelian subgroup A 5 H of index
bounded by J .

Before moving forward it is worth to point out a couple of things about the theorem and the
definition.

It does not make any difference in the above theorem and definition if we require A to be
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CHAPTER 1. HISTORY

normal. Indeed, if H1 5 H is a subgroup of index I (I ∈ Z+), then H has a subgroup of index at
most II which is normal. To see this, notice that H1 has at most I many different conjugations,
as their number is bounded by the index of the normalizer subgroup of H1. The intersection of
the subgroups conjugate to H1 is clearly normal in H, and its index is bounded by II .

Informally, the Jordan property means that all finite subgroups of G are close to being Abelian.
More precisely, if H is an arbitrary finite subgroup of the Jordan group G, the H can be built up
as an extension of a “large” Abelian group (i.e. an Abelian normal subgroup of bounded index)
and something “small” (i.e. a quotient group of bounded cardinality).

Theorem 1.1 holds for any field k of characteristic zero with the same constant J . Indeed, if
G 5 GL(n, k) is a finite subgroup, then, as G only uses finitely many elements from the ground
field, it can be embedded to GL(n, l), where l is a finite extension of the prime field Q. In turn,
GL(n, l) can be embedded to GL(n,C), hence G is isomorphic to a finite subgroup of the complex
linear group, which shows our claim.

On the other hand, in the characteristic p world (where p is a prime number), we have to be
contented with a slightly weaker claim. Jordan’s theorem still holds for the system of those finite
subgroups whose order is relatively prime to the characteristic, however if we would like to treat
all finite subgroups of a general linear group over a field of characteristic p, we have to pay special
attention to the subgroups whose orders are divisible by p. For example, let k be an algebraically
closed field of characteristic p, and denote by Fpm the finite field with pm elements (m ∈ Z+). The
special linear groups SL(2,Fpm) over the various finite fields Fpm are all finite subgroups of the
general linear group GL(2, k). They can have arbitrary large order, however their Abelian normal
subgroups have at most two elements. Hence GL(2, k) is not Jordan in the sense of the above
definition. See [BF66] for further discussion.

Several proofs are known to Theorem 1.1. C. Jordan’s argument is based on analyzing the
cardinalities and the “shapes” of the centralizer subgroups of various elements of g ∈ G, and then
deriving an equation which involves the cardinality of G and the cardinalities of the centralizer
subgroups. Besides the original source, a really nice and detailed treatment can be found in [Br11].
The modern way is due to Frobenius ([Fr911]). By Weyl’s unitary trick (i.e. choosing a hermitian
metric on Cn and averaging it by the help of the finite group G) we can assume that the finite
group G is a subgroup of the unitary group. Then using the commutator shrinking property (which
states that in the unitary group if two elements are sufficiently close to the identity element, then
their commutator are even closer to the identity), one can show that the elements sufficiently close
to the identity form a nilpotent normal subgroup. It can also be shown that the index of this
group is bounded in terms of n. With a slight amount of extra work we can even find an Abelian
subgroup of bounded index. The interested reader can look it up at [CR62], Theorem 36.13.

Investigating finite subgroups of the complex plane Cremona group Cr(2,C) was culminated
in an essentially complete, however heavily involved classification by I. V. Dolgachev and V. A.
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CHAPTER 1. HISTORY

Iskovskikh ([DI09]). In [Se09] J.-P. Serre examined the Cremona group of rank two over arbitrary
fields, and he even found some far reaching structural results for the complex plane Cremona
group (Theorem 5.3 in [Se09]).

Theorem 1.2. The complex plane Cremona group Cr(2,C) is Jordan.

Of course the result also holds over arbitrary fields of characteristic zero (with the same con-
stant), and J.-P. Serre also proved the corresponding theorem for characteristic p fields and for the
system of those finite subgroups whose cardinality is relatively prime to p. Moreover he raised the
question whether higher rank Cremona groups enjoy the Jordan property (6.1 in [Se09]). This was
answered affirmatively by Yu. Prokhorov and C. Shramov in [PS16]. The work of Yu. Prokhorov
and C. Shramov relied on the Borisov-Alekseev-Borisov conjecture, which has later been verified
by C. Birkar ([Bi16]).

Another possible way for generalizing Theorem 1.2 is considering the birational automorphism
groups of complex algebraic surfaces. Using the fact that a surface has a smooth projective minimal
model V. L. Popov was able to show that the birational automorphism group of a complex surface
is Jordan, except the case when the surface is birational to the direct product of an elliptic curve
and the projective line (Theorem 2.32 in [Po11]). This later case was handled by Yu. G. Zarhin
in [Za14], he showed that this product variety provides a counterexample.

Up to nowadays still the product of the elliptic curve and the projective line is the main
building block for finding counterexamples, so it is worth to spare a look at it. The n-Heisenberg
group is a finite group which is isomorphic to the group of upper triangular 3 × 3 matrices with
Z/nZ-valued entries which contains ones on their main diagonals. Note that the n-Heisenberg
group is a central extension of the normal group Z/nZ and the group Z/nZ × Z/nZ. Also note
that Z/nZ× Z/nZ is a subgroup of the biregular automorphism group of an elliptic curve.
Fix an elliptic curve E. For every n ∈ Z+, we can find a line bundle such that the automorphism
group of its total space contains the n-Heisenberg group, in such a way that the central subgroup
Z/nZ acts fibrewise via scalar multiplication on the fibres, while the quotient group Z/nZ×Z/nZ
descends to the given automorphism group of the base space E. Since the total space of a line
bundle over E is birational to E ×P1, the above argument shows that Bir(E ×P1) contains every
n-Heisenberg group. This prevents the birational automorphism group from enjoying the Jordan
property.
An easy way to see this is that, first notice that the Heisenberg groups are not commutative.
Secondly, if p is an arbitrary prime number, then the p-Heisenberg group is a finite p-group, hence
its proper subgroups have index at least p. As the prime p can be arbitrary large, we cannot find a
Jordan constant for a group which contains every p-Heisenberg group. So Theorem 2.23 in [Po11]
combined with Theorem in 1.2 [Za14] gives us a the following theorem.
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CHAPTER 1. HISTORY

Theorem 1.3. Let S be a complex algebraic surface. The birational automorphism group Bir(S)
is Jordan if and only if S is not birational to the product of an elliptic curve and the projective
line.

The case of curves are much more simple, for the sake of completeness we also state it (see
Theorem 2.23 in [Po11]).

Theorem 1.4. The birational automorphism group of a complex algebraic curve is Jordan.

In [Po11] V. L. Popov also introduced another interesting class of groups (Definition 2.9
in[Po11]).

Definition 1.2. A group G is called bounded if there exists a constant b = b(G) ∈ Z+, only
depending on G, such that the order of an arbitrary finite subgroup H 5 G is at most b.

Observe that boundedness implies the Jordan property. Moreover there are various interac-
tions between the two properties. For example if G is an arbitrary group and N EG is a normal
subgroup with the property that G/N is bounded, then G is Jordan if and only if N is Jordan
(Lemma 2.11 in [Po11]).

As mentioned previously, using the arsenal of the Minimal Model Program (MMP) and bounded-
ness of Fano varieties ([Bi16]) Yu. Prokhorov and C. Shramov were able to answer J.-P. Serre’s
question about the Jordan property of higher rank Cremona groups. Furthermore, they found a
much more general result (Theorem 1.8 in [PS16]).

Theorem 1.5. Let d be a non-negative integer. There exists a constant J = J(d) ∈ Z+, only
depending on d, such that if X is an arbitrary d dimensional complex rationally connected variety,
and G 5 Bir(X) is an arbitrary finite subgroup of its birational automorphism group, then there
exists an Abelian subgroup A 5 G with index bounded by J .

As usual it does not make any difference if we state the theorem for complex rationally con-
nected varieties or for rationally connected varieties over an arbitrary field of characteristic zero.
Also we can require A to be normal in G.

Observe that the result of the theorem is even stronger then saying that the birational auto-
morphisms group of a rationally connected variety is Jordan, as it finds the same Jordan constant
for all (at most) d dimensional rationally connected varieties.

An important ingredient of the proof is the fact that Fano varieties (of fixed dimension) with
mild singularities form a bounded family. This finiteness result is a starting point of an inductive
argument. At the time when the article was written, this statement was known as the Borisov-
Alexeev-Borisov (BAB) Conjecture. Since then it was proved by C. Birkar in his celebrated article
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CHAPTER 1. HISTORY

[Bi16] (Theorem 1.1). (For a survey paper on the work of C. Birkar and its connection to the
Jordan property, the interested reader can consult with [Ke19].)

The idea of the proof is the following. After regularizing X we can assume that the finite
group G acts on it by regular automorphisms. After replacing G with a bounded index subgroup
we can find a fixed point on X, which we denote by P . There is an induced faithful G action
on the tangent space TP X, hence we can apply Jordan’s theorem about general linear groups to
G, which finishes the proof. Of course the hardest part of the argument is to show the existence
of the fixed point. It is based on two pillars. By running the Minimal Model Program we can
delegate the question to finding fixed points on lower dimensional rationally connected varieties,
in other words the MMP allows us to perform induction on the dimension. Secondly, since Fano
varieties form a bounded family we can find a fixed point on them after replacing the finite group
G with a bounded index subgroup (where the bound only depends on the dimension of the Fano
variety). This allows us to start the induction.
As the Jordan property of the birational automorphism groups of rationally connected varieties is
one of the central results of the subject, we spend some time on having a closer look at how the
proof works.

One of the important aspects of only dealing with finite subgroups of the birational automor-
phism group is that we can perform a smooth regularization (see Definition-Lemma 3.1 in [PS14]),
i.e. we can replace X with a smooth projective variety birational to X on which G acts faithfully
by regular automorphisms. So from now on, we can assume a biregular G-action.
The main auxiliary result which we are aiming for reads as follows (Theorem 4.2 of [PS14]).

Theorem 1.6. Let d be a natural number. There exists a constant R = R(d) ∈ Z+, only depending
on d, with the following property. If X is a rationally connected complex projective variety of
dimension at most d, and G 5 Aut(X) is an arbitrary finite subgroup of its automorphism group,
then there exists a subgroup H 5 G 5 Aut(X) such that H has a fixed point in X, and the index
of H in G is bounded by R.

Besides that, this theorem is rather interesting on its own merits, as we have seen earlier, it
almost immediately implies the Jordan property.

Note that, by the existence of G-equivariant resolution of singularities, it is enough to prove
the theorem for smooth varieties. In the followings we show the main steps of the proof.

Let X be a smooth complex projective rationally connected variety endowed with a group
action of a finite group G 5 Aut(X). We will run a G-equivariant MMP on it, then investigate
the possible terminal states of the MMP and the steps of the program. The terminal state is
either a Fano variety or a Mori fibre space, in either cases we will find that, after replacing G
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CHAPTER 1. HISTORY

with a bounded index subgroup, it contains a strictly smaller dimensional rationally connected G-
equivariant closed subvariety. This subvariety can be pulled back to a strictly smaller dimensional
rationally connected G-equivariant closed subvariety at each step of the Minimal Model Program,
i.e. if Xi 99K Xi+1 is the i-th morphism of the MMP run on X, and Xi+1 contains a subvariety
with the above properties, then so does Xi. (Note that, at these steps we do not need to replace
G with a bounded index subgroups.) Finally we will find a strictly smaller dimensional rationally
connected G-equivariant closed subvariety of X, and we can apply induction on the dimension.
This will finish the proof.
The key lemma for pulling back rationally connected varieties is the following (Corollary 3.7 in
[PS16]).

Lemma 1.1. Let X and Y be complex normal quasi-projective varieties endowed with biregu-
lar actions of a finite group G. Assume that X has Kawamata log terminal singularities. Let
f : X → Y be a surjective G-equivariant proper morphism with connected fibers, such that the
anticanonical bundle of X is f -ample. Let T $ Y be a strictly smaller dimensional rationally
connected G-equivariant closed subvariety of Y , then there exists a strictly smaller dimensional
rationally connected G-equivariant closed subvariety Z $ X, which dominates T .

The lemma is designed to be applicable to the steps of a G-equivariant MMP. Indeed, the
conditions on the singularities and on the morphisms are satisfied by the Mori fibration and the
divisorial contractions of the MMP, meanwhile with a slight amount of extra work a similar state-
ment can be derived for flips.

We can run a G-equivariant MMP on our smooth complex rationally connected variety by
the famous result of C. Birkar, P. Cascini, C. D. Hacon and J. McKernan (Corollary 1.3.3 in
[BCHM10]).
First have a look at Fano varieties as possible outputs of the MMP. Denote our Fano variety by
F , and let d = dimX = dimF be the dimension. By boundedness of Fano varieties a fixed power
(denote it by m; m is bounded by some function of d) of the anticanonical divisor embeds any
Fano variety of dimension at most d to a fixed dimensional (denote it by N ; N is bounded by
some function of d) projective space, where we also have a bound on the degree (again, bounded
by some function of d) of the embedded Fano variety.
As the anticanonical divisor is functorial, the embedding of our Fano variety, also embeds G into
the automorphism group of the projective space. Moreover, we can lift G to the general lin-
ear group GL(N + 1,C) (as the G-action on the projective space derives from the G-action on
H0(F,−mKF )). Hence we can apply Jordan’s theorem to G to find a bounded index Abelian
subgroup of it, so we can assume that G is Abelian. Whence, we can find (N + 1) G-equivariant
linearly independent hyperplanes of PN (as G is a finite Abelian group). After intersecting some of
them with F , we can find at most degF many points on F which G permutes amongst themselves.
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CHAPTER 1. HISTORY

Therefore a subgroup of G of index at most (degF )! fixes a point on F . (Note that a point is a
zero dimensional rationally connected variety.)
The other possible outcome for the MMP is a Mori fibre space f : Y → Z, where Y is birational
to X and 0 < dimZ < dimX. In particular Z is rationally connected (as f is surjective and Y
is rationally connected), hence we can apply induction on the dimension of the variety. So after
replacing G with a bounded index subgroup, we can find a fixed point on Z. By Lemma 1.1 we
can pull it back to a rationally connected closed subvariety of Y .
To sum it up, if Y is the output of the MMP, then, after replacing G with a bounded index
subgroup, we can find a strictly smaller dimensional rationally connected G-invariant subvariety
of Y . After a repeated application of Lemma 1.1 to the steps of the MMP, we can pull it back to
X. So X contains a strictly smaller dimensional rationally connected G-invariant subvariety. We
can apply induction on the dimension, to find the fixed point, and finish the proof.

To enclose our discussion about the proof of Theorem 1.5, we shortly sketch the proof of Lemma
1.1. It is based on two claims.
The first one is a theorem of T. Graber, J. Harris, and J. Starr (Corollary 1.3 in [GHS03]).

Theorem 1.7. Let X and Y be proper complex varieties and let f : X → Y be a dominant
morphism between them. If Y and the general fibers of f are rationally connected, then X is
rationally connected.

The second one is Lemma 3.4 in[PS16]. It is based on ideas from [HM07].

Lemma 1.2. Let X and Y be complex normal quasi-projective varieties endowed with biregular ac-
tions of a finite group G. Assume that X has Kawamata log terminal singularities. Let f : X → Y
be a surjective G-equivariant proper morphism with connected fibers, such that the anticanonical
bundle of X is f -ample. Let T $ Y be a strictly smaller dimensional G-equivariant closed subva-
riety of Y , then there exists a strictly smaller dimensional G-equivariant closed subvariety Z $ X,
which dominates T and a general fiber of f |Z : Z → T is rationally connected.

Clearly the two claims immediately imply Lemma 1.1. Now we focus on the proof of Lemma
1.2.
The strategy is the following. We will construct T as a union of centres of non-Kawamata log
terminal (non-klt) singularities. By general properties of centres of non-klt singularities and by
the assumption that the anticanonical bundle of X is f -ample one can show that a general fibre
of f |Z is rationally connected.
We can choose a G-invariant f -ample (non-complete) linear system such that the base locus of the
linear system is T . Hence for some members of the linear system H1, H2, ..., Hn we have ∩Hi = T .
We can also require that, if Hi is one of the elements of H1, H2, ..., Hn, then so does gHi for any
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CHAPTER 1. HISTORY

g ∈ G. Let DY = H1 + ...+Hn (we can assume that n� 1), and let D = f ∗DY . Consider the log
pair (X, cD) where c ∈ Q is a parameter. If we raise the value of c, the singularities of (X, cD)
can quickly get very bad over the points of T as T j Hi for every i. Let c be the log canonical
treshold, then the union of non-klt centres lies above T and dominates it. As there is only finitely
many non-klt centres, we can pick one, denoted by Z0, which dominates T . Let Z = ⋃

g∈G gZ0.
Let S be the union of those non-klt centres which do not dominate T . Let Y ◦ = Y \ f(S),
X◦ = f−1(Y ◦) and Z◦ = Z ∩X◦. Then Z◦ is a minimal G-centre of of non-klt singularities (i.e.
a G-orbit of a minimal centre of non-klt singularities) of the log pair (X◦, cD|X◦). By results
on minimal centres of non-klt singularities one can show that the connected components of Z◦
are irreducible, moreover that the fibres of f |Z◦ are connected. This in turn, implies that Z is
irreducible. Hence Z is a G-equivariant subvariety which dominates T .
We are left with the task to show that the general fibers of f |Z are rationally connected. The
usual form of Kawamata’s subadjunction theorem tells us that if (X,E) is a strictly log canonical
pair and Z is a minimal non-klt centre, then one can find a divisor EZ on Z such that (Z,EZ) is
klt, moreover we have (KX +E)|Z ∼Q KZ +EZ . Yu. Prokhorov an C. Shramov proved a relative
version of it, which can be applied to the general fibers of f |Z : Z → T . Using this relative version
and the assumption that the anticanonical bundle of X is f -ample, they deduced that the general
fibers of f |Z are varieties of Fano type. (We call a variety V Fano type if it is normal and there
exists a Q-divisor ∆ on it, such that the pair (V,∆) is klt, and −(KV + ∆) is nef and big.) As
varieties of Fano type are rationally connected, this finishes the proof.
This concludes our discussion on the proof of Theorem 1.5.

Another hugely important article of the subject [PS14] is also due to Yu. Prokhorov and
C. Shramov. Amongst many interesting theorems they proved the ones below. The first one is
Theorem 1.8 ii) of [PS14].
Theorem 1.8. The birational automorphism group of a complex non-uniruled variety is Jordan.

To put this theorem in context recall the concept of the maximal rationally connected (MRC)
fibration. It builds up a complex variety as a fibration where the general fibers are rationally con-
nected and the base is non-uniruled. Theorem 1.5 and Theorem 1.8 shows us the Jordan property
hold for both of the building blocks.

Before discussing other results of [PS14] we introduce new Jordan type properties. The defi-
nition of solvably Jordan groups first appeared in [PS14] (Definition 8.1).
Definition 1.3. A group G is called solvably Jordan or nilpotently Jordan of class at most c if
there exists a constant J = J(G) ∈ Z+, only depending on G, such that every finite subgroup
H 5 G has a solvable subgroup or a nilpotent subgroup of class at most c K 5 H of index
bounded by J , respectively.
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CHAPTER 1. HISTORY

We can introduce yet another Jordan type property, which will prove itself to be very useful.
It was first defined by T. Bandman and Yu. G. Zarhin (Definition 1.1 in [BZ15b]). Its importance
was realized by A. Klyachko (see Theorem 1.11 for its properties).

Definition 1.4. A group G is called strongly Jordan if it is Jordan, and there exists a constant
r = r(G) ∈ Z+, only depending on G, such that every finite Abelian subgroup A 5 G can be
generated by r elements.

A second result of [PS14] which we would like to discuss is Proposition 8.6 of [PS14]. The
questions, which the theorem answers, was raised by D. Allcock.

Theorem 1.9. The birational automorphism group of a complex variety is solvably Jordan.

We have seen that the birational automorphism group of a variety enjoys the Jordan property
in many cases, however even amongst surfaces there is a counterexample. It is logical to examine
what happens if the condition of commutativity is slightly weakened. The first candidate to look
at is solvability. Theorem 1.9 tells us that the solvable Jordan property holds for the birational
automorphism group of all varieties.
In this thesis we make another step in this direction, and show that if we replace solvability by
the stronger nilpotency condition, then the theorem about the birational automorphism groups
remains true (Theorem 3.1). We also give a bound on the nilpotency class.
As usual the field of complex numbers is not important, Theorem 1.8 and Theorem 1.9 hold over
any field of characteristic zero.

A third theorem of [PS14] (Theorem 1.4 of [PS14]) which we would like to mention is slightly
different in flavour.

Theorem 1.10. Let k be a field which is finitely generated over Q, and let X be a variety over
k. Then the birational automorphism group of X is bounded.

This answers a question of J.-P. Serre. He asked that if k is a finitely generated field over
Q, then is it possible to find a constant which bounds the order of the finite subgroups of the
automorphism group of the field k.

The key for proving the above mentioned theorems is Proposition 6.2 in [PS14]. To properly
state it, we need to introduce a couple of definitions.

If X is a normal projective variety (over a field of characteristic zero), then we denote its class
group (i.e. the group of Weil divisors modulo linear equivalence) by Cl(X). We use Cl0(X) to
denote the subgroup of the class group which is formed by (the equivalence classes of) divisors
algebraically equivalent to zero.
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CHAPTER 1. HISTORY

Definition 1.5. Let X be a normal projective variety over a field of characteristic zero. The
Neron-Severi group of X is the group of Weil divisors modulo algebraic equivalence. In formula
NS(X) = Cl(X)/Cl0(X). We use NSQ(X) to denote the Neron-Severi group with rational coeffi-
cients NSQ(X) = NS(X)⊗Q.

Note that if X is a smooth projective variety, then, by the Neron-Severi theorem, NS(X) is a
finitely generated Abelian group. One can show that the same holds for the Neron-Severi group
of normal projective varieties. Indeed, a resolution of singularities X̃ → X induces a surjective
group homomorphism NS(X̃)→ NS(X) (where the equivalence classes of the exceptional divisors
map to zero). Since NS(X̃) is finitely generated, so does NS(X).

Following an idea of C. Birkar, Yu. Prokhorov and C. Shramov introduced a very interesting
concept, the concept of quasi-minimal models (Section 4 in [PS14]).

Definition 1.6. Let X be a variety over a field of characteristic zero, and let M be an effective
Q-divisor. M is Q-movable if there exists n ∈ Z such that nM is an integral divisor, and the
linear system generated by nM does not have a fixed component.

Definition 1.7. Let X be a projective variety with terminal singularities over a field of charac-
teristic zero. X is a quasi-minimal model if the canonical divisor KX is the limit of Q-movable
Q-Cartier Q-divisors Mj (j ∈ Z+) in the Neron-Severi group NSQ(X).

By the results of [BCHM10] it can be shown that if X is a non-uniruled variety, the there
exists a quasi-minimal model birational to X.
Moreover any birational map between two quasi-minimal models is an isomorphism in codimen-
sion one. In particular, if X is a quasi-minimal model, then its birational automorphism group
Bir(X) induces a group action on its Neron-Severi group NS(X).

Now we are ready to to state Proposition 6.2 of [PS14].

Proposition 1.1. Let X be a smooth projective variety over a field of characteristic zero. Let
φ : X 99K Z be the maximal rationally connected (MRC) fibration, where Z is a quasi-minimal
model. (Note that, we can require Z to be a quasi-minimal model, as the MRC fibration is defined
up to birational equivalence. Moreover the base of the fibration is non-uniruled, hence it has a
quasi-minimal model.) Let L be an ample divisor on Z. Finally, let ρ be the generic point of Z,
and Xρ be the generic fibre of φ. (Note that Xρ is rationally connected.) If G 5 Bir(X) is an
arbitrary finite subgroup of the birational automorphism group, then we have the following short
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exact sequence of groups.

1→ Gρ → G→ GZ → 1
1→ Galg → GZ → GNS → 1
1→ GL → Galg → GAb → 1

where we have the following properties

• Gρ is a finite subgroup of the birational automorphism group of the rationally connected
variety Xρ,

• GZ is a finite subgroup of the birational automorphism group of the non-uniruled variety Z,
• GNS is a finite subgroup of the automorphism group of the Neron-Severi group of Z, i.e.
GNS 5 Aut(NS(Z)),

• Galg is a finite group, which acts (not necessarily faithfully) on each of the algebraic equiva-
lence classes of the Weil divisors of Z,

• GAb is a finite subgroup of the automorphism group of an Abelian variety of fixed dimension
(here by automorphism we mean those transformations which respect the variety structure,
but not necessarily preserve the group structure),

• GL is a finite subgroup of the birational automorphism group Bir(Z), which preserve the
equivalence class of L in the class group.

Now we sketch the proof of the proposition.
Note that requiring X to be smooth and projective is just a technicality. We mainly interested in
the properties of the birational automorphism group. Since we work in characteristic zero, we can
replace an arbitrary variety with a smooth and projective one which is birational to it.
Since the MRC-fibration is functorial there is an induced birational G-action on the base Z which
makes the rational map φ G-equivariant. Let GZ be the image group GZ = Im(G → Bir(Z)).
Clearly the kernel of G→ GZ acts via birational automorphisms on the generic fibre Xρ. Choosing
Gρ to be the kernel Ker(G→ GZ) establishes the first short exact sequence.
Since we choose Z to be a quasi-minimal model, GZ acts on the Neron-Severi group. Let GNS

be the image group GNS = Im(GZ → Aut(NS(Z))). Let Galg be the kernel of this action, i.e.
Galg = Ker(G → GNS). Clearly Galg is a finite group which acts (not necessarily faithfully) on
each of the algebraic equivalence classes of the Weil divisors of Z. This establishes the second
short exact sequence.
Let ClL(Z) j Cl(Z) be the subset of the class group formed by the (equivalence classes of) divisors
algebraically equivalent to the fixed ample divisor L. ClL(Z) can be endowed with the structure
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CHAPTER 1. HISTORY

of an Abelian variety (where dim ClL(Z) = dimH1(X,OX)). Clearly Galg has an induced ac-
tion on the variety ClL(Z), however it not necessarily preserves the group structure of it. Let
GAb be the image group GAb = Im(Galg → Aut(ClL(Z))). Let GL be the kernel of this action
GL = Ker(Galg → GAb). Clearly, GL is a finite subgroup of the birational automorphism group
Bir(Z), which preserve the equivalence class of L. This establishes the third short exact sequence,
and finishes the proof of the proposition.

We can analyze further the structures of the groups arising in Proposition 1.1 to draw the con-
clusions of Theorem 1.8 and Theorem 1.9. For Theorem 1.10, Proposition 1.1 is crucial, however
there are some additional conclusions which are needed and which we do not expose here. (Still we
decided to state the proposition for arbitrary fields, to illustrate that it is important for Theorem
1.10).

To make the description easier we extend the concept of Jordan, solvably Jordan and bounded-
ness properties to families of groups (as it was done by Yu. Prokhorov and C. Shramov). A family
of groups G is called uniformly Jordan, uniformly strongly Jordan, uniformly solvably Jordan or
uniformly bounded if there exists a constant C = C(G), only depending on the family, such that if
G ∈ G, then G is Jordan, strongly Jordan, solvably Jordan or bounded, respectively, with constant
C (i.e. we can find a constant which works for every member of the family simultaneously).
Fix X,Z and L as in the proposition above. Let GZ be the family of those groups which can arise
in Proposition 1.1 as the group GZ (i.e. it is the family of some finite subgroups of Bir(Z)) for the
various choices of the finite group G. Let G, Gρ, GNS, Galg, GAb and GL be the families of groups
defined accordingly.
Since Xρ is rationally connected, the family Gρ is uniformly Jordan (Theorem 1.5).
One can show that the automorphism group of a finitely generated Abelian group is bounded.
Since NS(Z) is a finitely generated Abelian group, this implies that the family GNS is uniformly
bounded.
The automorphism group of an Abelian variety is the extension of the normal Abelian group
formed by the rational points of the Abelian variety and a subgroup of a general linear group with
integer coefficients.
By a theorem of H. Minkowski if l is a finitely generated field extension of Q and m is an integer,
then the general linear group GL(m, l) is bounded.
Moreover the n-torsion subgroup of a group formed by the rational points of a d-dimensional
Abelian variety over an algebraically closed field of characteristic zero is (Z/nZ)2d. This implies
that the finite subgroups of the group formed by the rational points of a d-dimensional Abelian
variety can be generated by 2d elements.
Putting these together implies that the automorphism group of an Abelian variety is an extension
of a normal Abelian group, whose finite subgroups can be generated by boundedly many elements,
and a bounded group. Therefore the family GAb is uniformly strongly Jordan.
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Since L is ample, X ∼= Proj⊕H0(X,nL). Hence those birational automorphisms of X which pre-
serve the equivalence class of L, defines biregular automorphisms. Moreover they also extends to
automorphisms which makes the closed embeddingX ∼= Proj⊕H0(X,nL) ↪→ P0(H0(X,L)∗) ∼= PN
equivariant. Let Bir(Z,L) be the group of birational automorphisms which preserves the class of
L. By the above considerations, Bir(Z,L) embeds into PGL(N + 1, k). Assume that Bir(Z,L) is
not finite, then the orbits of its one-paramter subgroups (which are isomorphic to Ga or Gm) are
rational curves, which contradicts the assumption that Z is non-uniruled. Hence Bir(Z,L) is a
finite group, and GL is the family of its subgroups. In particular GL is bounded.

As we have already seen there is a lot of interaction between the Jordan type and the bound-
edness properties. Here we state them more detailedly (see Section 2 and Lemma 8.4 of [PS14]).

Theorem 1.11. Let K, G and Q be families of groups. Assume that if G ∈ G, then there exists
K ∈ K and Q ∈ Q such that, G sits in the short exact sequence of groups

1→ K → G→ Q→ 1.

1. If the family K is uniformly Jordan and the family Q is uniformly bounded, then the family
G is uniformly Jordan.

2. If the family K is uniformly strongly Jordan and the family Q is uniformly bounded, then
the family G is uniformly strongly Jordan.

3. If the family K is uniformly bounded and the family Q is uniformly strongly Jordan, then
the family G is uniformly strongly Jordan.

4. If the families K and Q are uniformly solvably Jordan, then the the family G is uniformly
solvably Jordan.

Using the above theorem we have the following. As GL is uniformly bounded and GAb is uni-
formly strongly Jordan, Galg is uniformly strongly Jordan.
As Galg is uniformly strongly Jordan and GNS is uniformly bounded, GZ is uniformly strongly
Jordan.
If X is non-uniruled, then Z and X are birational, hence GZ is the family of the finite subgroups
of the birational automorphism group Bir(X). Putting these together implies that birational au-
tomorphism group of a non-uniruled variety (over a field of characteristic zero) is strongly Jordan.
This finishes the proof of Theorem 1.8.
Now, we know that the families Gρ and GZ are uniformly solvably Jordan (as they are even uni-
formly Jordan). Hence the family G is solvably Jordan. Hence Bir(X) is solvably Jordan. This
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finishes the proof of Theorem 1.9.

Yu. Prokhorov and C. Shramov enclose their article with a couple of questions. One of them
asks about the Jordan property of the birational automorphism group of a conic bundle over an
Abelian variety. It is a reasonable next step in the investigation. As a consequence of Theorem
1.3 we know that the birational automorphism group of a the product of an Abelian variety
and the projective line does not enjoy the Jordan property. Therefore it is logical to deepen the
examination in this direction and have a look on other P1-fibration over Abelian varieties.
The question was answered by T. Bandman and Yu. G. Zarhin in [BZ15b]. They found that
the the birational automorphism group of a non-trivial conic bundle over an Abelian variety is
Jordan. Their strategy was the following. Let f : X → A be a non-trivial conic bundle over the
Abelian variety A, and let Xρ be the generic fibre of f . Since f defines a non-trivial conic bundle,
Xρ is a non-trivial Brauer-Severi curve. An Abelian variety is non-uniruled, and the fibres of f
are rationally connected, hence f is an MRC fibration. Let G 5 Bir(X) be an arbitrary finite
subgroup. Just as in Proposition 1.1, we have a short exact sequence of finite groups

1→ Gρ → G→ GA → 1,

where Gρ is a finite subgroup of the birational automorphism group of the Brauer-Severi curve
Xρ (note that Bir(Xρ) = Aut(Xρ)), while GA is a finite subgroup of the birational automorphism
group of the Abelian variety A.
Since an Abelian variety is non-uniruled, by Theorem 1.8, we know that the family of groups
arise as GA for the various choices of the finite group G is uniformly strongly Jordan. Hence by
Theorem 1.11, to show that Bir(X) is Jordan it is enough to prove that the family of groups arise
as Gρ for the various choices of the finite group G is bounded. In other words, it is enough to
show that the automorphism group of a non-trivial Brauer-Severi curve is bounded. Using linear
algebra, T. Bandman and Yu. G. Zarhin were able to prove it, and found that the bound on the
order of the finite subgroups is four.
In this thesis we generalize the result on the automorphism groups of Brauer-Severi curves. We
show that, if X is a form of an admissible flag variety, then its automorphism group is bounded
or X is ruled (Theorem 4.1). (We will precisely define later what we mean by admissibility. For
now, we only note that, most flags are admissible.)
We were also motivated by the following problem, we wanted to find conditions which imply
boundedness of the birational automorphism group of rationally connected varieties. Because of
the Minimal Model Program it is worth to study automorphism groups of Fano varieties over
function fields. One of the easiest examples of Fano varieties over function fields is forms of flag
varieties.
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The question of examining Jordan type properties for automorphisms groups of different geo-
metric structures flourishes. Besides the above mentioned results, there have been many different
problems considered by various authors in the recent years. (In what follows, we assume that the
ground field is of characteristic zero, if we do not say it otherwise.)
Using algebraic group theoretic methods S. Meng and D.-Q. Zhang showed that the automor-
phism group of a projective variety is Jordan ([MZ15]), while F. Hu proved the characteristic p
counterpart of it ([Hu18]).
In [BZ15a] T. Bandman and Yu. G. Zarhin proved the Jordan property for the biregular auto-
morphism groups of quasi-projective surfaces. They also proved it for the biregular automorphism
group of certain higher dimensional quasi-projective varieties in [BZ19].
Yu. Prokhorov and C. Shramov classified three dimensional varieties with non-Jordan birational
automorphism groups ([PS18a]). In that work the result on the boundedness of the automorphism
groups of non-trivial Brauer-Severi curves was also proved to be useful. They also investigated
bounds on the Jordan constants of birational automorphism groups of rationally connected 3-
dimensional varieties ([PS17]), and the Abelian property and bounds on the number of generators
of finite p-subgroups of the birational automorphism groups of rationally connected 3-dimensional
varieties ([PS18b]). Furthermore, they also studied the automorphism groups of certain low di-
mensional compact complex manifolds ([PS18c], [PS19]).

The landscape is strikingly similar in differential geometry. The techniques are fairly different,
still the results converge to similar directions. In the following we briefly review the history of the
question of Jordan type properties of diffeomorphism groups of smooth compact real manifolds.
(We note that there are many other interesting setups which were considered by differential ge-
ometers; for a very detailed account see the Introduction of [MR18].) As mentioned in [MR18],
during the mid-nineties É. Ghys conjectured that the diffeomorphism group of a smooth compact
real manifold is Jordan, and he proposed this problem in many of his talks ([Gh97]). The case
of surfaces follows from the Riemann-Hurwitz formula (see [MR10]), the case of 3-folds are more
involved. In [Zi14] B. P. Zimmermann proved the conjecture for them using the geometrization of
compact 3-folds (which follows from the work of W. P. Thurston and G. Perelman). I. Mundet i
Riera also verified the conjecture for several interesting cases, like tori, projective spaces, homology
spheres and manifolds with non-zero Euler characteristic ([MR10],[MR16], [MR18]).
However in [CPS14] B. Csikós, L. Pyber and E. Szabó found a counterexample. Their construction
was remarkably analogous to the one of Yu. G. Zarhin. They showed that, if the manifold M is
diffeomorphic to the direct product of the two-sphere and the two-torus or to the total space of
any other smooth orientable two-sphere bundle over the two-torus, then the diffeomorphism group
contains n-Heisenberg groups for arbitrary large integers n. Hence Diff(M) cannot be Jordan. As
a consequence, É. Ghys improved on his previous conjecture, and proposed the problem of showing
that the diffeomorphism group of a compact real manifold is nilpotently Jordan ([Gh15]). As the
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first trace of evidence, I. Mundet i Riera and C. Saéz-Calvo showed that the diffeomorphism group
of a 4-fold is nilpotently Jordan of class at most 2 ([MRSC19]). It is worth to mention that their
proof uses the classification theorem of finite simple groups via the result of [MRT15].
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Chapter 2

Tools

In this chapter we collect results and tools which will be useful in the remainder of the thesis.

2.1 Minimal Model Program
As we could have seen in Chapter 1 the Minimal Model Program plays a central role in developing
the theory of Jordan type properties for birational automorphism groups of varieties. Hence we
dedicate a short section to summarize some of the results of this very powerful and beautiful
theory. The section is mainly based on [Bi12], and we also used [Le17]. During the section we will
work over the field of the complex numbers.

2.1.1 Overview
One of the ultimate goals of any branch of mathematics is classifying the objects of its investi-
gation. In algebraic geometry we mainly interested in varieties. Therefore a central problem is
to classify varieties up to isomorphisms. Since varieties show a great deal of diversity, it could
be fruitful to consider other variants of the question. We could try to classify varieties up to
birational equivalence.
By Hironaka’s famous theorem on the resolution of singularities, every birational class contains
a smooth projective variety. At this point, it could be worth to mention that, alongside with
Kodaira’s vanishing theorem, Hironaka’s theorem are the main reasons behind that the MMP
has much stronger results in characteristic zero, then in characteristic p. Without these two vital
elements the field proved itself to be extremely difficult.
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Each birational class of curves contains exactly one smooth projective model. Furthermore
they can be distinguished by the genus.
Recall that for a smooth projective variety X the genus is the dimension of the vector space of the
global sections of the canonical line bundle ωX . The Weil divisor (unique up to linear equivalence)
corresponding to the canonical line bundle is the canonical divisor, it is denoted by KX . During
the MMP we heavily focus on the properties of the canonical divisor.
Smooth projective curves split into three categories according to their genera. If the genus is zero
then the curve is isomorphic to the projective line; if it is one, then the curve is elliptic; while
if the genus is larger or equal to two then the curve is of general type. These three categories
behaves radically differently. In case of the projective line, the degree of the canonical divisor is
negative and the curve admits a metric with constant positive curvature; in case of elliptic curves,
the degree of the canonical divisor is zero, and the curves admit flat metrics; while in the general
case, the degree of the canonical divisor is positive (hence it is ample), and the curves admits
metric with constant negative curvature. We will see that, by the help of the MMP, there is hope
to preserve some version of this trichotomy for higher dimensional varieties.

To understand the MMP for surfaces, let’s recall Castelnuovo’s theorem first. Let S be a
smooth projective surface. If E is a curve on S such that E is isomorphic to the projective line,
and its selfintersection is −1, then there exists a smooth surface S1 and a birational morphism
f : S → S1, which contracts exactly E. More precisely, f : S → S1 is the blowing-up of S1 in the
smooth point f(E) = Q ∈ S1. So the theorem tells us that, if the curve E looks like an exceptional
divisor of blowing-up a smooth point, then, indeed, we can construct the corresponding blowing-
up morphism. We call E a −1-curve, and f the blowing down of S along E.
Let S be an arbitrary smooth projective surface. If S contains a −1-curve E, then we can blow
it down, and replace S by the smooth surface S1. We can repeat this process as long as we find
a −1-curve. The process must terminate after a finite number of steps, since the Picard number
drops by one after each step. Let S0 be the output of the above described algorithm.
It turns out that S0 has strong numerical properties. Moreover S0 is either isomorphic to the
projective plane, or it is a ruled surface over some curve, or its canonical divisor KS0 is nef (i.e.
it has non-negative intersection against any curve of S0). S0 can be classified even more precisely
by the help of the Kodaira dimension.

Definition 2.1. LetX be a smooth projective variety. We call the non-negative integer h0(X,ω⊗mX )
the m-th plurigenus of X (m ∈ Z+).
The Kodaira dimension κ(X) of the smooth projective variety X is defined as follows. If every
plurigenus of X is zero, then κ(X) = −∞, otherwise

κ(X) = min
{
a ∈ Z+

0

∣∣∣∣0 < lim sup
m→∞

h0(X,ω⊗mX )
ma

}
.

18

C
E

U
eT

D
C

ol
le

ct
io

n



CHAPTER 2. TOOLS 2.1. MINIMAL MODEL PROGRAM

The Kodaira dimension is either −∞, or it can take values between zero and the dimension of
the variety.

If κ(S0) = −∞, then S0 is either the projective plane or a P1-fibration over some curve (ruled
surface). If κ(S0) = 0, then S0 is either a K3-surface, an Enrique surface, an Abelian variety or a
hyperelliptic surface. In all of these cases, some power of the canonical line bundle is trivial, more
precisely 12KS0 = 0. If κ(S0) = 1, then S0 is an elliptic surface, i.e. a surface fibred over a curve
such that the general fibres are smooth elliptic curves. In this case, for a general fibre F , KF = 0.
If κ(S0) = 2, then S0 is of general type. Moreover if κ(S0) = 0, then the canonical divisor KS0 is
nef and a sufficiently large power of it is basepoint free.

As one might expect the case of higher dimensions are considerably more difficult. A fun-
damental problem is that we need to find an object which replaces the role of −1-curves. This
question was solved by S. Mori, who introduced to concept of extremal rays. In case of a smooth
projective variety one can think about it as follows. The Mori-Kleiman cone NE(X) of a smooth
projective variety X is the closure of the cone generated by the effective 1-cycles inside H2(X,R).
(It is important to take the closure.) An extremal ray is a one dimensional extremal face of this
cone in the sense of convex geometry. The Cone Theorem tells us that, if KX is negative against
an extremal ray, then the ray contains an irreducible curve C, moreover there is a morphism which
contracts exactly those curves which belong to the given ray in NE(X).
Another great advantage of extremal rays is that, it helps us to find analogues of ruled sur-
faces which works well for our purposes in higher dimensions. A Mori fibration is a contrac-
tion f : Y → Z (between normal projective varieties) of a KY -negative extremal ray such that
dimZ < dim Y .
To state the two main predictions of the MMP, we need to introduce the concept of minimal
varieties. A minimal variety is a normal projective variety with mild singularities and (most
importantly) with nef canonical divisor.

Conjecture 2.1 (Minimal Model). Let X be a smooth projective variety.

• If κ(X) = −∞, then X is birational to the total space of a Mori fibration.
• If κ(X) = 0, then X is birational to a minimal variety.

Conjecture 2.2 (Abundance). Let X be a minimal variety. There exists a normal projective
variety Y , an ample divisor A on Y and a contraction morphism f : X → Y (i.e. a morphism
with connected fibres) such that

mKX = f ∗A,

for some positive integer m. In particular,
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• a curve C on X is contracted to a point if and only if KX .C = 0,
• the dimension of Y is equal to the Kodaira dimension of X, dim Y = κ(X) = 0 .

Note that the variety Y in the Abundance Conjecture is nothing else but the canonical model
of X, in formula Y ∼= Proj⊕H0(X,mKX).
The two conjectures together imply that, up to birational equivalence every variety either admits
a fibration, where for a general fibre F the canonical divisor KF is either antiample (in case of
a Mori fibre space), or it is a torsion, i.e. KF ∼Q 0 (in case of 0 5 κ(X) < dimX), or up to
birational equivalence (i.e. after replacing X with its canonical model) the canonical divisor KX of
X is ample (in case of κ(X) = dimX). (Note that generally a variety admits many fibrations for
which the general fibres have ample canonical divisors. So in the third case, where κ(X) = dimX,
we stated something much stronger, we stated that the canonical divisor of the variety is ample.)
The above discussion shows us that, if the conjectures hold, we preserved the trichotomy observed
at curves. Up to birational equivalence every variety can be built up from varieties, for which the
canonical divisor is either antiample, torsion or ample.
Another way to look at the Abundance Conjecture is that, it tells us that a numerical property
implies a sectional one. This is quite rare, from intersection theory generally does not follow any
kind of holomorphic information.
Also note that the above results hold for the classification of the minimal models of smooth surfaces.

There are many problems in higher dimensions which cannot be seen in the case of surfaces.
Even if one starts with a smooth variety X, after contracting a KX-negative extremal ray, we can
end up with a singular variety. So the MMP needs to handle singularities.
Let f : X → Y be a contraction of a KX-negative extremal ray. f can have three types. Either
dimX > dim Y , in this case f is a Mori fibration. If the exceptional locus of f is one codimen-
sional (i.e. f contracts at least one prime divisor), then f is a divisorial contraction. The most
problematic case is when f is a small contraction, i.e. when the exceptional locus is at least two
codimensional.
If f : X → Y is a small contraction, then the canonical divisor of Y cannot be Q-Cartier. Since
the MMP is governed by the numerical properties of the canonical divisor, it means that we cannot
continue the algorithm of the MMP with Y . Therefore we need to do something else, we need to
perform a flip.
So let f : X → Y be a small contraction of aKX-negative extremal ray. The flip of this contraction
f is the following diagram.

X
φ //

f
��

X+

f+
}}

Y,
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where X+ is a normal projective variety, f+ : X+ → Y is a birational morphism, which is
also a contraction of small type, such that KX+ is ample over Y . In particular it implies that
φ : X 99K X+ is a birational map which induces an isomorphism in codimension two.
Existence of flips (for log canonical pairs, see Definition 2.15) is a central question of the MMP.
Now it is settled in many cases.
Note that, while divisorial contractions drop the Picard rank, hence they can be repeated only
finitely many times, flips (i.e. replacing X by X+) preserves the Picard rank.

Conjecture 2.3 (Termination of flips). Under mild conditions there is no infinite sequence of
flips.

Now we have collected many of the ingredients of the MMP. In the next section we describe
what does it mean to run the MMP.

2.1.2 The algorithm

In this section we briefly sketch how the algorithm of the MMP works.

Let X be a projective normal variety with mild singularities. If the canonical divisor is nef,
then the algorithm stops, and we found the minimal model.
If KX is not nef then we can find a KX-negative extremal ray in the Mori-Kleiman cone NE(X).
By the Cone Theorem, the extremal ray can be contracted. Let f : X → Y be the contraction of
the extremal ray.
If dimX > dim Y , then we found a Mori fibration and the algorithm stops.
If f is a divisorial contraction, then we replace X by Y , and start the algorithm from the begin-
ning.
If f is a contraction of small type, then we perform a flip φ : X 99K X+. We replace X by X+,
and start the algorithm form the beginning.

To make the MMP work, one need to secure that the algorithm stops. Since the Picard number
is lowered by each divisorial contraction, there could only be a bounded number of them. To show
that there is no infinite sequence of flips, one could either prove Conjecture 2.3, or one could use
some special kind of flips (like flips with scaling), and prove that they only produce finite length
sequences.

Even if we are able to run the MMP, we still need to deal with the Abundance Conjecture to
fully finish the program.
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2.1.3 Definitions and the Cone and Contraction Theorem
In this section we precisely define the objects which are needed to state some of the results of
the MMP, and about which we talked in the previous sections. However we will work in greater
generality then in the previous two sections. We will consider the relative setting (i.e. we allow
a base scheme to be present), moreover instead of varieties we will consider pairs. These changes
do not affect the general philosophy, however they allow greater flexibility for the MMP.
Recall that in the whole section we work over the field of complex numbers.

Definition 2.2. Let X and Y be varieties, and f : X → Y be a projective morphism between
them. f is called a contraction if f∗OX = OY . If f is a contraction, then it has connected fibres
(Corollary 11.3 of Chapter 3 in [Ha77]).

Remark 2.1. By Stein factorization (Corollary 11.5 of Chapter 3 in [Ha77]), using the notion of
the definition above, if Y is normal, then f is a contraction if and only if f has connected fibres.

Definition 2.3. Let X and Y be varieties and f : X → Y be a birational morphism between
them. The exceptional locus of f is the set formed by those x ∈ X for which the rational map
f−1 is not regular in f(x). It is denoted by Exc(f).

Definition 2.4. Let X and Z be normal varieties and f : X → Z be a projective morphism
between them.

• An R-divisor on X is an R-linear combination of prime divisors on X.

• An R-Cartier divisor on X is an R-linear combination of Cartier divisors on X.

• Two R-divisors D1 and D2 on X are linearly equivalent over Z, if their difference is an
R-linear combination of principal divisors on X and a pullback of an R-linear divisor on Z.
It is denoted by D1 ∼R,Z D2.

• Two R-divisors D1 and D2 on X are numerically equivalent over Z, if their difference is an
R-divisor which has zero intersection number against every curve contained in a fiber of f .
It is denoted by D1 ≡Z D2.

• An R-divisor on X is a ample over Z (or f -ample) if it is an R+-linear combination of ample
divisors on X over Z (in the usual sense).

• An R-divisor on X is nef over Z (or f -nef), if it has non-negative intersection against any
curve contained in a fiber of f .
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• An R-divisor D on X is big over Z (or f -big) if

0 < lim sup
m→∞

h0(Xf , bmD|Xf
c)

mdimXf
,

where Xf is the generic fibre of f . Equivalently, D is f -big if D ∼R,Z A+G, where A is an
ample R-divisor on X over Z and G is an effective R-divisor on X.

• An R-divisor D on X is semiample over Z, if there exists a normal variety Y , an ample R-
divisor A over Z on Y and a projective morphism g : X → Y over Z such that D ∼R,Z g

∗A.
• An R-divisor on X is pseudo-effective over Z (or f -pseudo-effective) if its numerical class

over Z (i.e. its numerical class against the curves contained in the fibres of f) is the limit of
the numerical classes of f -big R-divisors on X.

All the definitions make sense if we use the field of the rational numbers Q instead of the field of
the real numbers R.

Definition 2.5. Let X be a normal variety. We call X Q-factorial, if every divisor on X is
Q-Cartier.

Remark 2.2. If X is a smooth variety, then it is Q-factorial.
Remark 2.3. One can show that if f : X → Y is a birational morphism between varieties, and
Y is normal and Q-factorial, then every irreducible component of Exc(f) is one codimensional
(Remark 1.40 in [De01]).

Definition 2.6. Let X be a normal variety. Denote by U the largest open subvariety of X which
is smooth. Define the canonical divisor KX as the closure of the canonical divisor KU of U .

Definition 2.7. Let X be a normal variety. Denote by U the largest open subvariety of X which
is smooth, and let i : U ↪→ X be the corresponding open immersion. For a divisor D on X, define
OX(D) as i∗OU(D|U). This gives a reflexive sheaf.

Remark 2.4. Since we required X to be normal in the previous two definitions, the singular locus
Xsing = X \ U has codimension at least two. Therefore a divisor is uniquely defined by its
restriction to U . Moreover it can be shown that, if X is projective, then OX(KX) agrees with the
dualizing sheaf (Proposition 5.75 in [KM98]).

Of course the definition of Q-Cartier divisors, do not use the fact that the ground field is C.
In the next definition, we define one of the central objects of birational geometry, Fano varieties.

Definition 2.8. Let F be a normal projective variety over an (arbitrary) ground field k. F is
called Fano, if its canonical divisor is Q-Cartier and antiample.
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Definition 2.9. Let X and Z be normal quasi-projective varieties, and let f : X → Z be a
projective morphism between them.

• Let Z1(X/Z) be the free Abelian group generated by the curves of X, which are contracted
to a point by f .

• Two R-1-cycles V1, V2 ∈ Z1(X/Z)⊗R are numerically equivalent over Z, if for any R-Cartier
divisor D on X, we have D.V1 = D.V2. It is denoted by V1 ≡Z V2.

• The Neron-Severi space N1(X/Z) is the R-vector space of the R-1-cycles modulo numerical
equivalence over Z. In formula N1(X/Z) = (Z1(X/Z) ⊗ R)/ ≡Z . By the Neron-Severi
theorem, it is finite dimensional.

• The Mori-Kleiman cone NE(X/Z) is the closure of the cone generated by the effective R-1-
cycles inside the Neron-Severi space N1(X/Z).

• Let N1(X/Z) be the R-vector space of the R-Cartier divisors modulo numerical equivalence
over Z. In formula N1(X/Z) = (Pic(X)⊗ R)/ ≡Z .

• The intersection gives a pairing between N1(X/Z) and N1(X/Z). Hence they are both finite
dimensional R-vector spaces of the same dimension. This dimension is called the relative
Picard number of X over Z, and it is denoted by ρ(X/Z).

Remark 2.5. If D is an R-Cartier divisor on X, then we use the notation NE(X/Z)D>0 for
NE(X/Z)D>0 = {C ∈ NE(X/Z)|D.C > 0}. Governed by similar logic we can use the nota-
tion NE(X/Z)D<0 as well.

Definition 2.10. Let C be a convex cone a in Rn (n ∈ Z+
0 ) with vertex in the origin. A subcone

F j C is called an extremal face if ∀x, y ∈ C x + y ∈ F implies that x, y ∈ F . An extremal face
is called an extremal ray if it is one dimensional.

Remark 2.6. Note that there is a partial correspondence between extremal faces of NE(X/Z) and
contraction morphisms over the base scheme Z.
Let g : X → Y be a contraction over the base scheme Z to a normal quasi-projective variety Y . If
a divisor D on X is the pullback of some divisor A on Y , which is ample over Z, then D is nef over
Z (as it is semiample) and it is numerically trivial on exactly those curves which are contracted
by g. In other words the hyperplane defined by D in the Neron-Severi space N1(X/Z) contains
exactly one extremal face F of the Mori-Kleiman cone NE(X/Z), and g contracts those curves
whose numerical classes belong to F .
Unfortunately, not all extremal faces can be contracted (some of them cannot even be represented
by effective curves), however the Cone Theorem will show us that KX-negative extremal rays can
be contracted.
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Definition 2.11. Let X and Z be normal quasi-projective varieties, and let f : X → Z be a
projective morphism between them. Let R be an extremal ray of the Mori-Kleiman cone NE(X/Z).
A morphism φ : X → Y over the base variety Z is called a contraction of the extremal ray R, if

• Y is a normal quasi-projective variety over Z,
• f is a contraction,
• most importantly, for any curve C j X, C maps to a point of Y , if and only if the numerical

class of C belongs to R.

Definition 2.12. We call (X/Z,B) a pair if

• X is a normal quasi-projective variety over the base variety Z; the base variety Z is normal
and quasi-projective, and there is a projective (structure) morphism f : X → Z between X
and Z,

• B is an R-divisor, and the coefficients of its prime divisors are drawn from the interval [0, 1],
• KX +B is R-Cartier.

B is called the boundary divisor. If the base variety Z = SpecC, or we are not interested in its
presence, we simply use the notation (X,B). (Note that, if the base variety is SpecC, then X is
projective.)

Definition 2.13. LetX be a normal variety and letD be a R-divisor on it. A projective birational
morphism f : X → Y is called a log resolution of X and D, if

• Y is a smooth variety,
• Exc(f) is a divisor,
• Exc(f) ∪ (f−1)∗ SuppD is a simple normal crossing divisor.

X and D are log smooth, if the identity map gives a log resolution.

Remark 2.7. By Hironaka’s theorem log resolutions exist.

Definition 2.14. Let (X,B) be a pair, and let f : Y → X be a log resolution of it. If we choose
the canonical divisors KX and KY (from their linear equivalence classes) in a such a way that
f∗KY = KX , then we can write KY as KY = f ∗(KX +B) + A for some R-divisor A on Y .
The discrepancy of a prime divisor E on Y is the coefficient of E in A. One can show that the
discrepancy only depends on the prime divisor E and the boundary divisor B, and on the variety
X. In particular it does not depend on the chosen resolution. We denote the discrepancy of the
prime divisor E by d(E,X,B).
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Remark 2.8. Since discrepancies do not depend on the chosen log resolutions, and the possible
prime divisors (which can occur on log resolutions) are determined by the valuation rings of
k(X)|C, it makes sense to talk about the discrepancies of prime divisors (without mentioning log
resolutions).
Remark 2.9. The main reason for considering pairs is the adjunction formula. In its simplest form
it states that if X is a smooth variety and S is a smooth subvariety of X, then (KX +S)|S = KS.
This opens the possibility to use induction on the dimension of the variety.
Also note that the prime divisors of A are either exceptional divisors or the birational transfor-
mations of the components of B.

Definition 2.15. Let (X,B) be a pair.

• (X,B) has terminal singularities if for any log resolution f : Y → X and for any exceptional
prime divisor E on Y , we have d(E,X,B) > 0.

• (X,B) has canonical singularities if for any log resolution f : Y → X and for any exceptional
prime divisor E on Y , we have d(E,X,B) = 0.

• (X,B) has purely log terminal singularities if for any log resolution f : Y → X and for any
exceptional prime divisor E on Y , we have d(E,X,B) > −1 (in this case we call the pair
(X,B) plt).

• (X,B) has Kawamata log terminal singularities if for any log resolution f : Y → X and for
any prime divisor E on Y , we have d(E,X,B) > −1 (in this case we call the pair (X,B)
klt).

• (X,B) has ε-log canonical singularities (for some real number 0 < ε 5 1) if for any log
resolution f : Y → X and for any prime divisor E on Y , we have d(E,X,B) = −1 + ε (in
this case we call the pair (X,B) ε-lc).

• (X,B) has log canonical singularities if for any log resolution f : Y → X and for any prime
divisor E on Y , we have d(E,X,B) = −1 (in this case we call the pair (X,B) lc).

• (X,B) has divisorially log terminal singularities if there exists a log resolution g : V → X
such that for any prime divisor G on Y , we have d(G,X,B) > −1 (in this case we call the
pair (X,B) dlt).

Remark 2.10. Note that the only difference between plt and klt singularities is that, the definition
of a klt pair requires that the boundary divisor has coefficients (for its prime divisors) in the
interval [0, 1), while in the case of plt pairs the coefficients can be drawn from [0, 1]. As the next
lemma shows it has some consequences.

Lemma 2.1. Let (X,B) be a pair, and let f : Y → X be an arbitrary log resolution of it.
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• (X,B) has terminal singularities if d(E,X,B) > 0 for any exceptional prime divisor E on
Y .

• (X,B) has canonical singularities if d(E,X,B) = 0 for any exceptional prime divisor E on
Y .

• (X,B) has Kawamata log terminal singularities if d(E,X,B) > −1 for any prime divisor E
on Y .

• (X,B) has ε-log canonical singularities if d(E,X,B) = −1 + ε for any prime divisor E on
Y (ε ∈ R, 0 < ε 5 1).

• (X,B) has log canonical singularities if d(E,X,B) = −1 for any prime divisor E on Y .

Remark 2.11. The above lemma does not hold for plt and dlt pairs.
Remark 2.12. Let X and Y be normal quasi-projective varieties and let f : Y → X be a bira-
tional projective morphism between them. Let D be a Cartier divisor on X, let E1, E2, ..., Em
be exceptional prime divisors on Y , and let a1, a2, ..., am be positive integers (m ∈ Z+). Then
H0(X,D) ∼= H0(Y, f ∗D +∑

aiEi) canonically.
Hence if (X, 0) is a terminal or a canonical pair, and f : Y → X is any log resolution, then
H0(X, rKX) ∼= H0(Y, rKY ) canonically (r ∈ Z+). In particular X and Y have isomorphic canoni-
cal rings and canonical models.
Also note that, if (X,B) is an lc pair and f : X → Y is a log resolution, then we can uniquely find
effective R-divisors Γ = 0 and E = 0 such that f∗Γ = B, f∗E = 0 and KY + Γ = f ∗(KX +B) +E
(where f∗KY = KX). Hence, by the same argument as above, the pairs (X,B) and (Y,Γ) have
canonically isomorphic log canonical rings

R(X,KX +B) =
∞⊕
r=0

H0(X, br(KX +B)c) ∼=
∞⊕
r=0

H0(Y, br(KY + Γ)c) = R(Y,KY + Γ)

and log canonical models.
On the other hand if (X,B) is a pair and f : Y → X is a log resolution such that there exists
a prime divisor E on Y with d(E,X,B) < −1, then for any positive integer l we can find a log
resolution g : V → X and an exceptional prime divisor G on V with d(G,X,B) < −l.
Remark 2.13. Smooth varieties have terminal singularities. During the MMP the discrepancies
cannot decrease (this means that in some sense singularities improve), hence a minimal model or
a Mori fibre space (the possible terminal states of the MMP) of a smooth variety has terminal
singularities. This explains the name.
On the other hand, one can show that canonical models have canonical singularities, hence the
name.
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Theorem 2.1 (Cone and Contraction Theorem). Let (X/Z,B) be a klt pair with a rational boun-
dary divisor. There exists a countable set of KX +B-negative extremal rays {Ri|i ∈ I} (I is some
index set of countable cardinality) with the following properties.

• NE(X/Z) = NE(X/Z)KX+B>0 +∑
i∈I Ri.

• If A is an ample divisor on X over Z, and ε ∈ R+ is a (small) positive number, then there
exists a finite subset F j I such that NE(X/Z) = NE(X/Z)KX+B+εA>0 +∑

f∈F Rf ,
in other words {Ri} is discrete in NE(X/Z)KX+B<0.

• Ri can be contracted (∀i ∈ I).
• ∀i ∈ I there exists a curve Ci on X, such that the numerical class of Ci belongs to Ri, and

0 5 −(KX +B).Ci < 2 dimX.
• If f : X → Y is the contraction belonging to the (KX + B)-negative extremal ray R, and L

is a Cartier divisor on X such that L.R = 0, then there exists a Cartier divisor M on Y
such that L ∼Z f ∗M .

Remark 2.14. The theorem describes the Mori-Kleiman cone. Its main feature is that it looks
nicely on the (KX + B)-negative side: it is generated by only countable many rays which can
only accumulate at the hyperplane defined by the R-Cartier divisor KX +B. Note that, a similar
theorem can be stated for lc pairs (Theorem 1.4 in [Fu11]).

Definition 2.16. Let X and Y be normal quasi-projective varieties, and let f : X → Y be a
contraction between them.

• f is a divisorial contraction, if it is a birational projective morphism such that the codimen-
sion of Exc(f) is one.

• f is a small contraction, if it is a birational projective morphism such that the codimension
of Exc(f) is at least two.

• f is a fibration if dimX > dim Y .

Definition 2.17. Let (X/Z,B) an lc pair, and let f : X → Y be a small contraction of a
(KX +B)-negative extremal ray. A log flip of this flipping contraction is the following diagram.

X
φ //

f
��

X+

f+
}}

Y,

• X+ is a normal quasi-projective variety, which is projective over the base variety Z,

28

C
E

U
eT

D
C

ol
le

ct
io

n



CHAPTER 2. TOOLS 2.1. MINIMAL MODEL PROGRAM

• f+ is a birational contraction over the base variety Z, such that the codimension of Exc(f+)
is at least two,

• KX+ + B+ is ample over Y , where B+ is the birational transformation of the boundary B,
i.e. B+ = φ∗B.

Definition 2.18 (Minimal Model, Mori Fibre Space). Let (X/Z,B) and (Y/Z,BY ) be lc pairs
and let φ : X 99K Y be a birational map between X and Y , which satisfies the following properties.

• φ−1 does not contract any divisor,
• BY is the birational transformation of B, i.e. BY = φ∗B,
• if E is a prime divisor (of a log resolution of (X,B)), then d(E,X,B) 5 d(E, Y,BY ), with

strict inequality if E is a prime divisor contracted by φ.

Then,

• (Y/Z,BY ) is a minimal model if KY +BY is nef,
• (Y/Z,BY ) is a Mori fibre space, if there exists a (KY +BY )-negative extremal ray such that

for the corresponding contraction g : Y → T , dimT < dimX.

Remark 2.15. Any birational map between normal varieties which are projective over some base
scheme is defined outside a codimension two set. Hence it makes sense to talk about the divisors
which are contracted by φ or φ−1.
Remark 2.16. As noted earlier if X is smooth, then (X, 0) is terminal. If the MMP can be run on
it, then its terminal state (Y, 0) is terminal as well because of the condition on the discrepancies. In
particular, if Y results a Mori fibre space, then the generic fibre of g : Y → T is terminal. Indeed,
by adjunction, the general fibres of g are terminal, hence so does the generic fibre. (Terminal
singularities for varieties over arbitrary fields of characteristic zero are defined the same way as
for varieties over the field of the complex numbers.)

Definition 2.19 (Log Minimal Model Program). Let (X/Z,B) be an lc pair. The following
algorithm is called the Log Minimal Model Program if all steps exist. If KX + B is nef over Z,
then the algorithm stops, and we found a minimal model for (X/Z,B). If KX + B is not nef,
then we can find a (KX +B)-negative extremal ray, and there exists a corresponding contraction
f : X → Y . If dimX > dim Y , then we found a Mori fibre space and the algorithm stops. If f
is a divisorial contraction, then we replace (X/Z,B) with (Y/Z,BY ), where BY = f∗B, and start
the algorithm form the beginning. If f is a small contraction, then we perform a flip, and replace
(X/Z,B) with (X+/Z,B+), and start the algorithm form the beginning.
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2.1.4 Conjectures and results of the Minimal Model Program
In this section we collect some conjectures and results of the MMP.

Conjecture 2.4 (Minimal Model). Let (X/Z,B) an lc pair. There exists a minimal model or a
Mori fibre space for (X/Z,B).

Conjecture 2.5 (Abundance). Let (X/Z,B) an lc pair such that KX + B is nef over Z, then
KX +B is semiample over Z.

Conjecture 2.6. Let (X/Z,B) an lc pair such that KX +B is a Q-divisor. Then the log canonical
algebra

R(X/Z,KX +B) =
⊕
m=0

f∗OX(bm(KX +B)c)

is a finitely generated OZ-algebra, where f : X → Z is the given structure morphism.

Conjecture 2.7 (Termination of flips). Any sequence of flips for a log canonical pair terminates.

The following is the main result in the note of C. Birkar (Theorem 10.1 in [Bi12]). It is based
on the theorems of [BCHM10].

Theorem 2.2. Let (X/Z,B) a klt pair such that the boundary B is a big divisor. Then,

• if KX +B is pseudo-effective over Z, then (X/Z,B) has a minimal model (Y/Z,BY ). More-
over abundance holds, i.e. KY +BY is semiample over Z.

• if KX +B is not pseudo-effective over Z, then (X/Z,B) has a Mori fibre space.

The next two corollaries of Theorem 2.2 can also be found in [Bi12] (Corollary 10.2 and
Corollary 10.3).

Corollary 2.1. Let (X/Z,B) a klt pair such that KX +B is a Q-divisor. Then the log canonical
algebra

R(X/Z,KX +B) =
⊕
m=0

f∗OX(bm(KX +B)c)

is a finitely generated OZ-algebra, where f : X → Z is the given structure morphism.

Corollary 2.2. Log flips exists for klt pairs.

The main result of [BCHM10] gives the following corollary for smooth varieties (Corollary 1.1.1
in [BCHM10]).
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Theorem 2.3. Let X be a smooth variety of general type, i.e. let X be a smooth variety such that
KX is big. Then,

• X has a minimal model,
• X has a canonical model,
• the canonical ring R(X,KX) = ⊕

m=0 H0(X,mKX) is finitely generated.

For non-pseudo effective divisors Corollary 1.3.2 in [BCHM10] gives the following result.

Theorem 2.4. Let (X/Z,B) a klt pair such that X is Q-factorial, and KX + B is not pseudo-
effective over Z. Then we can run a Minimal Model Program on (X/Z,B) which results a Mori
fibre space.

Remark 2.17. The above theorem does not claim that the MMP always results a Mori fiber space.
It claims that if we choose the steps of the MMP carefully enough, then the algorithm terminates
at a Mori fibre space.

We will use the following corollary of Theorem 2.4 in this thesis.

Corollary 2.3. Let X and Z be smooth projective varieties, and f : X → Z be a projective
morphism between them. If KX is not f -pseudo-effective, then we can run a MMP on X over Z
and end up with a Mori fiber space g : X → Y over Z. In particular, the generic fibre of g is a
Fano variety with terminal singularities.

Indeed, we can run the MMP on X over Z and end up with a Mori fibre space by Theorem
2.4. In Remark 2.16, we have already seen that the generic fibre of g is terminal. By adjunction
the general fibres of g are Fano varieties, hence the generic fibre of g is a Fano variety as well.
This proves Corollary 2.3.

2.2 Uniruled and rationally connected varieties
It is an important question to identify classes of varieties which looks like the projective space Pn.
The first natural candidates are rational varieties. However it turns out that many varieties which
share a lot of common properties with the projective space fail to be rational.
Uniruledness try to capture the phenomena that a variety is covered by a family of rational curves,
while rational connectedness try to capture the phenomena that any two points of the variety can
be connected by a rational curve.
Both of these classes can be studied by the help of rational curves, and they behave very well.
They are invariant under birational transformations, moreover if the variety is smooth and the
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ground field is algebraically closed, then they are invariant under smooth deformations, they can be
detected locally by a single rational curve, furthermore they imply sectional properties of algebraic
tensors. In fact, conjecturally, they are equivalent with sectional properties of algebraic tensors.
In addition, because of the maximal rationally connected fibration, up to birational equivalence,
any variety can be viewed as a fibred space where the base is non-uniruled (hence it lack of rational
curves) and the fibres are rationally connected.
The material of this section is based on Chapter 4 of [De01], [De11] and Chapter 4 of [Ko96].
During this section we work over a ground field of characteristic zero.

2.2.1 Uniruled varieties
As we have discussed previously uniruled varieties are worth to study since they provides a pos-
sible way to generalize the notion of rationality. On the other hand they are of primal interest
from the point of view of the MMP. Their canonical divisors are not pseudo-effective (hence their
Kodaira dimensions are −∞), and the MMP produces Mori fibrations for them. Usually, for a
given uniruled variety, the possible Mori fibre space structures are not unique, and it is very hard
to figure out which part of them fall into the same birational equivalence category. Hence it seem
reasonable to investigate uniruled varieties directly.

Let k be a field of characteristic zero. Unless stated otherwise we assume that the ground field
is k during this section.

Definition 2.20. A n-dimensional varietyX is called uniruled, if there exists an (n−1)-dimensional
variety Y and a dominant rational map f : P1 × Y 99K X.

Remark 2.18. Uniruledness is invariant under birational transformations.
Remark 2.19. If there exists a variety Z and a dominant rational map f : P1 × Z 99K X such
that there exists a closed (but not necessarily k-rational!) point z ∈ Z such that the rational map
P1 × {z} 99K X is non-constant, then X is uniruled. Indeed, we can shrink Z to make it affine
(hence quasi-projective). The condition on the non-constant rational map secures us that, if we
take a general (dimX − 1)-dimensional linear space section of Z, we end up with a variety Z1 for
which P× Z1 99K X is dominant, so X is uniruled.
Remark 2.20. In the definition of uniruledness, if X is proper, then we can require f to be a
dominant morphism.
Indeed, without loss of generality, we can assume that Y is a smooth projective variety. A rational
map from a normal variety to a proper one is defined outside a codimension two subset.
So let U j P1 × Y be he largest open subvariety where the rational map f is defined. Its
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complement Z = (P1 × Y ) \U has codimension at least two. Hence Z projects to a proper closed
subvariety of Y , denote it by V . Let Y1 be the open subvariety Y1 = Y \V . Then f : P1×Y1 → X
defines a morphism.

The next proposition is the content of Chapter 2.1 of [De01].

Theorem 2.5. Let X be a projective variety and A an ample divisor on it. For an arbitrary
positive integer d, there exists a quasi-projective scheme Mord(P1, X) which parametrizes the mor-
phisms P1 → X with degree d with respect to the given ample divisor A.

Remark 2.21. It is important to point out that Mord(P1, X) parametrizes morphisms of degree d,
not their image. An r-sheeted branched cover of a degree e one-dimensional closed subvariety has
degree er as a morphism.

Definition 2.21. Using the notation of the previous theorem, we introduce a couple of objects.

• Let evd : P1 ×Mord(P1, X)→ X be the evaluation map.
• Let Mor(P1, X) denote the scheme which parametrizes the morphisms P1 → X, in for-

mula Mor(P1, X) = ⊔
d Mord(P1, X). Let ev : P1 ×Mor(P1, X) → X be the corresponding

evaluation map.
• Let Md(P1, X) denote the quasi-projective scheme which parametrizes the morphims P1 → X

of degree at most d, in formula Md(P1, X) = ⊔
e5d More(P1, X). Let ev5d : P1×Md(P1, X)→

X be the corresponding evaluation map.

Lemma 2.2. Let X be a projective variety and A an ample divisor on it. Let d be an arbitrary
positive integer. The image of the evaluation map ev5d : P1 ×Md(P1, X)→ X is closed in X.

This is Lemma 3.7 in[De11]. The proof is based on the following idea. Rational curves of
degree at most d on X, can only degenerate into union of lower degree rational curves.
Hence the analytic picture is the following. Let V be the set of those points which are contained
in a rational curve of degree at most d. Let x be a point in the boundary of V . Take a sequence
in V whose limit is x. Take rational curves of degree at most d through every point in the given
sequence. A limit (of a subsequence) of these rational curves contains x, and it is a union of
rational curves. Hence the claim follows.
Remark 2.22. Let X be a projective variety, endowed with some ample divisor A. X is unir-
uled if and only if there exists a positive integer d ∈ Z+ such that the evaluation map evd :
P1 ×Mord(P1, X)→ X is dominant.
Assume X is uniruled. Let f : P1 × Y → X be the dominant morphism constructed in Remark
2.20. It factors as P1 × Y → ⊔

d P1 ×Mord(P1, X) → X by the universal property. As Y is con-
nected, f factors as P1×Y → P1×Mord0(P1, X)→ X for some d0 ∈ Z+. Hence evd0 is dominant.
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Assume that evd is dominant. After taking the reduced scheme structure on an irreducible com-
ponent of Mord0(P1, X), we can find a variety Z, such that there exists a morphism P× Z → X,
which is dominant, and for some closed point z ∈ Z, P1 × {z} → X is a non-constant morphism.
Remark 2.19 finishes the proof.

Proposition 2.1. Let the ground field k be algebraically closed. If X is a uniruled projective
variety, then through every closed point of X there is a projective line of degree at most d (for
some d ∈ Z+).

Proof. By Remark 2.22 evd is dominant. Hence by Lemma 2.2, ev5d is surjective. This implies
the claim.

Remark 2.23. If k is not algebraically closed, then Mor(P1, X) might not have k-rational points,
hence ev5d does not give morphisms from P1

k.

Proposition 2.2. Let the ground field k be uncountable and algebraically closed. A variety is
uniruled if and only if there exists a rational curve (the image of P1 by a non-constant rational
map) through any general closed point of the variety.

Proof. If X is uniruled, then it is birational to a projective uniruled variety, which implies one
direction of the claim by Proposition 2.1.
Assume that there is a projective line through a general point of X. Shrink X to an affine variety,
then take its projective closure. So we can assume that X is projective. By the assumption
ev : ⊔d P1 ×Mord(P1, X) → X is surjective. So X is covered by the union of the images of ev5d,
which are closed sets by Lemma 2.2. Since k is of uncountable cardinality, one of the closed sets
must be equal to the whole space X, hence there exists d0 such that ev5d0 is surjective. This in
turn implies that evd1 is dominant for some (d1 5 d0). By Remark 2.22 X is uniruled, this finishes
the proof.

Remark 2.24. An provides an example of a uniruled variety which does not contain any projective
line. It is uniruled, hence it contains many rational curves.
Remark 2.25. F. Bogomolov and Yu. Tschinkel constructed varieties over the algebraic closure of
finite fields, such that every closed point lies on a rational curve, and the variety is not uniruled
(Theorem 1.1 in [BT05]). It shows that to secure that a variety is uniruled it is not enough to
require that every point lies on a rational curve. (Note that in this example the ground field is of
characteristic p.)
Remark 2.26. Proposition 2.2 and Remark 2.25 illustrate the power of Definition 2.20. On the
one hand it gives back our geometric intuition. On the other hand, it can exclude varieties from
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the uniruled class even if they are covered with rational curves. The problem in this case is that,
there is no algebraic family of rational curves covering the variety. To put it another way, the
definition excludes those projective varieties from the uniruled class for which, there cannot be
found collection of bounded degree rational curves which covers the variety.
Another great advantage of Definition 2.20 is that, it can deal with varieties which does not even
have rational points.
Remark 2.27. If one generalizes the notion of ruled varieties to schemes (see Definition 1.1 in
Chapter 4 of [Ko96]), then one can show that a variety X is uniruled if and only if Xk = X×Spec k
is uniruled. (Note that Xk need not to be a variety in general, it need not to be integral.)
The basic idea is that, it is enough to consider projective varieties. They are uniruled if and
only if the evaluation map is dominant for a given degree. The scheme Mord(P1, X) behaves
well under changing the ground field, i.e. Mord(P1, X) × Spec k ∼= Mord(P1

k
, Xk). Hence evd :

P1 ×Mord(P1, X) → X is dominant if and only if evd,k : P1
k
×Mord(P1

k
, Xk) → Xk is dominant,

which implies the claim.
We can also define ruled varieties which will be an important class for us in this thesis.

Definition 2.22. A d-dimensional variety X is called ruled, if there exists a (d− 1)-dimensional
variety Y and a birational map f : P1 × Y 99K X.

Remark 2.28. Unlike uniruledness, ruledness is not a geometric notion. As we will see later, there
exists varieties such that X is not ruled, but Xk = X × Spec k is ruled. We will show that non-
trivial Brauer-Severi curves and surfaces provides example for this phenomenon. (See Theorem
4.2 and Remark 4.16.)

In the remainder of this section the ground field k will be algebraically closed (and of charac-
teristic zero).

Definition 2.23. Let X be a smooth variety over the algebraically closed field k. Let f : P1 → X
be a non-constant morphism of the projective line to X.

• f is called free, if the vector bundle f ∗TX is generated by global sections.
• f is called very free, if the vector bundle f ∗TX ⊗OP1(−1) is generated by global sections.
• f is called r-free (r ∈ Z+), if the vector bundle f ∗TX ⊗ OP1(−r) is generated by global

sections.

Remark 2.29. We know that any vector bundle over P1 is the direct sum of line bundles. Hence
f ∗TX ∼=

⊕
iO(ai) for some integers ai. f is free if ai = 0, very free if ai = 1 and r-free if ai = r

(∀i).
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Remark 2.30. Let f be a free rational curve, and denote its image by C. Then KX .C 5 −2.
Indeed, using image factorization and resolution of singularities for curves, f can be factorized as
f = h ◦ gr, where gr : P1 → P1 is a morphism of degree r, and h : P1 → X is a generically
injective morphism from the projective line. f is free if and only if h is free. On the other hand
OP1(2) ∼= TP1 5 g∗TX as h is generically injective. Hence KX .C = − deg(g∗TX) 5 −2.
Remark 2.31. Note that, if gr : P1 → P1 is a morphism of degree r and f is a very free morphism,
then f ◦ gr is r-free.

An explicit calculation on tangent spaces shows the following proposition (Proposition 4.8 and
Proposition 4.9 in [De11] for the first claim, and Corollary 3.5.3 of Chapter 2 of [Ko96] for the
second claim).

Proposition 2.3. Let X be a smooth projective variety over the algebraically closed field k. Let
f : P1 → X be a non-constant morphism of the projective line to X. Let red(Mor(P1, X)) the
reduced closed subscheme of Mor(P1, X) (supported on the whole space). Denote by evred the
corresponding evaluation morphism.

• The rational curve f is free if and only if ev : P1×Mor(P1, X)→ X is smooth along P1×{f}.
• Moreover if evred : P1 × red(Mor(P1, X)) → X is smooth at (f, p), for some p ∈ P1, then f

is free.

Remark 2.32. As smoothness is an open property, freeness is an open property as well. Hence we
can deform free rational curve into free rational curves.
Remark 2.33. For an arbitrary positive integer d, we can use the notation
red(Mord(P1, X)) and evd,red : P1 × red(Mord(P1, X)) → X accordingly. As Mor(P1, X) =⊔
d Mord(P1, X) is a disjoint union, Proposition 2.3 holds for them as well.

Theorem 2.6. Let X be a smooth projective variety over the algebraically closed field k. X is
uniruled if and only if there exists a free rational rational curve f : P1 → X.

Proof. Assume that the morphism f gives a free rational curve. Let d be the degree of f . Then by
Proposition 2.3 (and by the remark following it) evd is smooth at (f, p) for any p ∈ P1. Smoothness
is an open property, hence there exists an open dense subscheme U j P1×Mord(P1, X) such that
evd |U is smooth. A smooth morphism is dominant, hence evd is dominant. By Remark 2.22 it
implies one direction of the claim.
Let X be uniruled. Then evd is dominant for some positive integer d (Remark 2.22). Hence evd,red
is dominant as well. Let V be an irreducible component of P1 × red(Mord(P1, X)), for which
evd,red |V is dominant. V is a variety, therefore by Generic Smoothness (Lemma 10.5 of Chapter
3 in [Ha77]), there exists an open dense subvariety U j V such that evd,red |U is smooth. This
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implies that evd,red is smooth along a non-empty open subvariety U1 of P1 × red(Mord(P1, X))
(U1 j U). Let (p, f) be an arbitrary closed point of U1. By Proposition 2.3 and Remark 2.33 f is
free. This finishes the proof.

The moral of the proof is the following. The evaluation map is smooth at (f, p) if and only if
f is free. If f is free, then the evaluation map is smooth in a non-empty neighbourhood, hence it
is dominant, hence X is uniruled. If X is uniruled, then the evaluation map is dominant, hence
by Generic Smoothness it is smooth in a non-empty neighbourhood, which implies the existence
of a free rational curve.

Theorem 2.7. Let X and T be varieties over the algebraically closed field k. Let f : X → T be a
smooth projective morphism between them. Assume that for a closed point t ∈ T , the fibre Xt of
f is uniruled. Then all fibres of f are uniruled.

We can use free rational curves to prove this theorem. Let B j T be the set for which the
fibers are uniruled. It is enough to show that B is open and closed.
Roughly speaking, deformations of a free rational curve lying in the fibre Xt give free rational
curves lying in the neighbouring fibres. This shows openness. A limiting argument finds rational
curves passing through the general points of fibers lying over the boundary of B, this shows
closedness (at least when k is uncountable).

Proposition 2.4. Let X be a uniruled smooth projective variety over the algebraically closed field
k. The images of free rational curves cover a dense open subset of X.

Proof. Let f be a free rational curve of degree d. Then evd is smooth at (p, f) for any p ∈ P1.
Hence evd is smooth in a neighbourhood U j P1×Mord(P1, X) of (p, f), hence evd |U is dominant.
Since the image of the dominant morphism evd |U is constructible, it contains an open dense set
V j X. Hence V j X is covered by the image of free rational curves (freeness follows from
Proposition 2.3). This prove the claim.

Theorem 2.8. Let X be a smooth projective variety over the algebraically closed field k. All
plurigenera of X vanishes, i.e. H0(X,mKX) = 0 (∀m ∈ Z+). In other words, κ(X) = −∞.

Proof. Let x ∈ X be a general closed point. Let f : P1 → X be a free rational curve passing
through x (Proposition 2.4), and let C be the image of f . Decompose f as h◦gr, where gr : P1 → P1

is a degree r morphism, and h : P1 → X is a generically injective morphism. We have seen that
KX .C 5 −2 (Remark 2.30). deg f ∗ω⊗mX = r deg h∗ω⊗mX = rmKX .C 5 −2, hence f ∗ω⊗mX cannot
have any global sections on P1 except the zero section. Therefore all global sections of ω⊗mX vanish
along C. In particular, all global sections of ω⊗mX vanish at x. As it holds for all general points ofX,
a global section of ω⊗mX vanishes along a dense open set, hence it is zero. So H0(X,mKX) = 0.
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S. Mori conjectured that, the converse also holds.

Conjecture 2.8. Let X be a positive dimensional smooth projective variety over the algebraically
closed field k. If κ(X) = −∞, then X is uniruled.

Remark 2.34. As noted in [BDPP13] the conjecture can be break into two parts.

• If KX is pseudo-effective, then κ(X) = 0.
• If KX is not pseudo-effective (which implies that κ(X) = −∞), then X is uniruled.

The second problem is answered positively in [BDPP13] by analytic methods.

2.2.2 Rationally connected varieties
The notion of rationally connected varieties is born out of the search for properties which makes
a variety very similar to the projective space. It turned out that instead of global properties we
need to focus on a special one. Namely that Pn contains a lot of rational curves. Even any two
points of Pn can be connected by them.

Let k be a field of characteristic zero. Unless stated otherwise, we assume that the ground
field is k during this section.

First we introduce a notation.

Definition 2.24. Let U, Y and X be k-schemes, and let g : U → Y and u : U → X be morphisms
between them. We use the notation u(2) for the morphism induced by u form U ×Y U to X ×X,
in formula u(2) : U ×Y U → X ×X.
In particular, let Y be a scheme, U = P1×Y and g : P1×Y → Y be the natural projection. Then
U ×Y U ∼= P1 × P1 × Y and u(2) : P1 × P1 × Y → X ×X

Remark 2.35. For example, if X is a projective variety, then we have ev(2) : P1×P1×Mor(P1, X)→
X ×X.

Definition 2.25. Let X be a variety. We call X rationally connected, if it is proper, and there
exists a variety Y and a morphism e : P1 × Y → X such that e(2) : P1 × P1 × Y → X × X is
dominant.

Remark 2.36. As we required X to be proper, we could have allowed e to only be a rational map,
and we would have arrived to an equivalent definition. Indeed, assume that e is rational. As we
have seen in Remark 2.20, Y can be replaced with Y1 such that, they are birational, and e defines
a morphism e1 : P1 × Y 1 → X such that e1

(2) remains dominant.
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Remark 2.37. Because of the previous remark, if X1 and X2 are proper birationally equivalent
varieties, then X1 is rationally connected if and only if X2 is rationally connected.
Moreover, if a rationally connected variety dominates a proper variety, then the proper one is
rationally connected as well.
Also observe that, rationally connectedness implies uniruledness.
Remark 2.38. The definition intuitively means that a general pair of points can be connected by a
rational curve. We required e to be a morphism in the definition to emphasize that, we would like
the image of projective lines to connect the points not only their rational images. In particular it
excludes spaces like An (of course it is not proper either).

Proposition 2.5. Let the ground field k be uncountable and algebraically closed. A proper variety
is rationally connected if and only if for a general pair of points there exists a proper rational curve
(the image of P1 by a morphism) containing them.

Proof. The image of a dominant morphism between varieties contains a dense open set, as it
is constructible, this implies one direction. If any general pair of points can be joined by a
projective line, then ev(2) is dominant, hence evd(2) is dominant for some positive integer d, as k
is uncountable, this implies the other direction of the claim.

Remark 2.39. F. Bogomolov and Yu. Tschinkel constructed varieties over the algebraic closure of
finite fields, such that every pair of closed point lies on a chain of proper rational curves, and the
variety is not rationally chain connected (Section 5 in [BT05]). (See Remark 2.25 and Remark
2.26 for similar results.)

Theorem 2.9. Let X be a projective variety, let x ∈ X be a closed point and A an ample divisor
on it. For an arbitrary positive integer d, there exists a quasi-projective scheme Mord(P1, X, 0 7→ x)
which parametrizes morphisms P1 → X, with degree d with respect to the given ample divisor A,
which takes 0 = [0 : 1] ∈ P1 to x ∈ X.

Definition 2.26. Using the notation of the previous theorem, we introduce a couple of objects.

• Let evd,x : P1 ×Mord(P1, X, 0 7→ x)→ X be the evaluation map.
• Let Mor(P1, X, 0 7→ x) denote the scheme which parametrizes the morphisms P1 → X, which

take 0 = [0 : 1] ∈ P1 to x ∈ X, in formula Mor(P1, X, 0 7→ x) = ⊔
d Mord(P1, X, 0 7→ x). Let

evx : P1 ×Mor(P1, X, 0 7→ x)→ X be the corresponding evaluation map.

Just like in Proposition 2.3, an explicit calculation on tangent spaces shows the following
Proposition (Proposition 4.8 and Proposition 4.9 in [De11] for the first claim, and Corollary 3.5.3
of Chapter 2 of [Ko96] for the second claim).
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2.2. UNIRULED AND RATIONALLY CONNECTED VARIETIES CHAPTER 2. TOOLS

Proposition 2.6. Let X be a smooth projective variety over the algebraically closed field k, let
x ∈ X be a closed point. Let f : P1 → X be a non-constant morphism of the projective line to X,
which takes 0 = [0 : 1] ∈ P1 to x ∈ X. Let red(Mor(P1, X), 0 7→ x) the reduced closed subscheme of
Mor(P1, X, 0 7→ x) (supported on the whole space). Denote by evred,x the corresponding evaluation
morphism.

• The rational curve f is very free if and only if evx : P1 ×Mor(P1, X, 0 7→ x)→ X is smooth
along (P1 − {0})× {f}.

• If evred,x : P1 × red(Mor(P1, X, 0 7→ x)) → X is smooth at (f, p), for some p ∈ P1 − {0},
then f is very free.

Remark 2.40. As smoothness is an open property, very freeness is an open property. So Proposition
2.6 tell us that, a very free rational curve can be deformed to a very free rational curve, even if
we fix the image of one of its points. Actually, a similar statement can be formulated for r-free
rational curves a well. Then we can fix the image of r many points. (Recall that covering a very
free rational curve r-times gives an r-free rational curve.)
Remark 2.41. For an arbitrary positive integer d, we can use the notation
red(Mord(P1, X, 0 7→ x)) and evd,x,red : red(Mord(P1, X, 0 7→ x)) → X accordingly.
As Mor(P1, X, 0 7→ x) = ⊔

d Mord(P1, X, 0 7→ x) is a disjoint union, Proposition 2.6 holds for
them as well.

Lemma 2.3. Let X be a smooth projective variety over the algebraically closed field k. X is ratio-
nally connected if and only if, there exists a positive integer d such that evd,x : P1×Mord(P1, X, 0 7→
x)→ X is dominant for a general closed point x ∈ X.

Proof. Let e : P1 × Y → X be the morphism in the definition of rationally connectedness. First
notice that the morphism defined by the closed points of Y are of constant degree. Indeed, e(2)

factorizes as P1×P1×Y → ⊔
d P1×P1×Mord(P1, X)→ X×X. Since Y is connected it factorizes

as P1×P1×Y → P1×P1×Mord(P1, X)→ X×X for some positive integer d. This means that the
morphism defined by Y have degree d. Let U be an open subvariety in the image of the dominant
morphism e(2). Let i : U ↪→ X × X and let p = π2 ◦ i : U ↪→ X × X → X. The morphism p
is dominant. Hence there exists an open subset V j X, such that fibres over V has dimension
equal to dimX. In other words, if x ∈ V , then the image of some morphism of degree d from the
projective line joins x with a dense open set of X (the points of the fibre of p over x). Since the
automorphism group of the projective line is transitive, evd,x : P1 ×Mord(P1, X, 0 7→ x) → X is
dominant if x is general (i.e. for x ∈ V ). This finishes one direction of the proof.
Assume that evd,x is dominant for a general x ∈ X. Let Z j X ×X be the closure of the image
of evd(2) endowed with the reduced subscheme structure. Denote by j : Z ↪→ X × X the closed
immersion of Z. By assumption the fibres of π2◦j : Z ↪→ X×X → X are equal to X for a general
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CHAPTER 2. TOOLS 2.2. UNIRULED AND RATIONALLY CONNECTED VARIETIES

closed point x ∈ X. Hence dimZ = dimX ×X, therefore Z = X ×X, i. e. evd(2) is dominant.
As Mord(P1, X) is a quasi-projective scheme, this implies that X is rationally connected.

The following theorem is the analogue of Theorem 2.6 for rationally connected varieties. The
proof is almost the same.

Theorem 2.10. Let X be a smooth projective variety over the algebraically closed field k. X is
rationally connected if and only if there exists a very free rational rational curve f : P1 → X.

Proof. Assume that the morphism f gives a very free rational curve such that f(0) = x for
some x ∈ X. Let d be the degree of f . Then by Proposition 2.6 evd,x is smooth at (f, p) for
any p ∈ P1 − {0}. Smoothness is an open property, hence there exists an open dense subscheme
U j P1×Mord(P1, X, 0 7→ x) such that evd,x |U is smooth. A smooth morphism is dominant, hence
evd,x |U is dominant, therefore evd,x is dominant. Let V j X be a dense open subset contained
in the image of the dominant morphism evd,x |U . If (p, f) ∈ U (for some p ∈ P1 − {0}), then f
is very free by Proposition 2.6. Hence if y ∈ V is a closed point, then there exists a very free
morphism whose image passes through y. Since the automorphism group AutP1 is transitive, for
any closed point y ∈ V there exists very free morphism which maps 0 ∈ P1 to y. So the above
argument shows that evd,y is dominant for y ∈ V . Then by Lemma 2.3, we proved one direction
of the claim.
Let X be rationally connected. Then evd,x is dominant for some general point x ∈ X and for
some positive integer d (Lemma 2.3). Hence evd,x,red is dominant as well. Let V be an irreducible
component of P1 × red(Mord(P1, X, 0 7→ x)), for which evd,x,red |V is dominant. V is a variety,
therefore by Generic Smoothness (Lemma 10.5 of Chapter 3 in [Ha77]), there exists an open dense
subvariety U j V such that evd,x,red |U is smooth. This implies that evd,x,red is smooth along a
non-empty open subvariety U1 of P1 × red(Mor(P1, X, 0 7→ x)) (U1 j U). Let (p, f) be arbitrary
closed point in U1 such that 0 6= p. By Proposition 2.6 f is very free. This finishes the proof.

Remark 2.42. The proof of the above theorem shows that through a general point of rationally
connected smooth projective variety there is a very free rational curve. However there is a much
stronger result (Theorem 3.9 in Chapter 4 of [Ko96]).

Theorem 2.11. Let X be a rationally connected smooth projective variety over the algebraically
closed field k. Let x1, x2, ..., xm ∈ X be an arbitrary finite set of points (where m is an arbitrary
positive integer). There exists a morphism f : P1 → X such that

• f is very free,
• the image of f contains the given finite set of points x1, x2, ..., xm ∈ X,
• f is an immersion if dimX = 2 and an embedding if dimX = 3.
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2.2. UNIRULED AND RATIONALLY CONNECTED VARIETIES CHAPTER 2. TOOLS

One of the tricks of the proof is that, an r-sheeted branched cover of a very free rational curve
gives an r-free rational curve. Also notice that, from the MMP for surfaces, we know that for
smooth projective surfaces over algebraically closed fields the notion of rational and rationally
connected varieties are equivalent.

For smooth projective varieties the notions of rationally connectedness and rationally chain
connectedness are equivalent. This is the content of the theorem below (Theorem 3.10 in Chapter
4 of [Ko96]). It has very important consequences in deformation theory. The proof is rather
technical, we do not present it.

Theorem 2.12. Let X be a smooth projective variety over the algebraically closed field k. X is
rationally connected if and only if any two closed points can be connected by a chain of proper
rational curves, i.e. there exists a morphism f : C → X, where C is a connected curve such
that the irreducible components of C (with the reduced scheme structure) are isomorphic to the
projective line, moreover the image of C contains the given two points.

The counterpart of Theorem 2.7 for rationally connected varieties is the theorem below (The-
orem 3.11 in Chapter 4 of [Ko96]).

Theorem 2.13. Let X and T be varieties over the algebraically closed field k. Let f : X → T be
a smooth projective morphism between them. Assume that for a closed point t ∈ T , the fibre Xt of
f is rationally connected. Then all fibres of f are rationally connected.

Finally we have the counterpart of Theorem 2.8.

Theorem 2.14. Let X be a smooth projective variety over the algebraically closed field k. The
global sections of the tensor powers of the Kähler differentials vanish, i.e. H0(X, (Ω1

X)⊗m) = 0
(∀m ∈ Z+).

Proof. Let x ∈ X be a general closed point. Let f : P1 → X be a very free rational curve passing
through x (Theorem 2.11), and let C be the image of f . f ∗(Ω1

X)⊗m = (f ∗TX)−⊗m, hence by the
definition of very freeness, it is isomorphic to a direct sum ⊕

i=1...qO(−ai), where ai is a positive
integer (∀1 5 i 5 q, q ∈ Z+). Hence f ∗(Ω1

X)⊗m cannot have any global sections on P1, except
the zero section. Therefore all global sections of (Ω1

X)⊗m vanish along C. In particular, all global
sections of (Ω1

X)⊗m vanish at x. As it holds for all general points of X, a global section of (Ω1
X)⊗m

vanishes along a dense open set, hence it is zero. So H0(X, (Ω1
X)⊗m) = 0.

D. Mumford conjectured that, the converse also holds.

Conjecture 2.9. Let X be a smooth projective variety over the algebraically closed field k. If
H0(X, (Ω1

X)⊗m) = 0 ∀m ∈ Z+, then X is rationally connected.
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CHAPTER 2. TOOLS 2.2. UNIRULED AND RATIONALLY CONNECTED VARIETIES

One of the most important classes of rationally connected varieties are Fano varieties (see
Theorem 2.13 of Chapter 5 of [Ko96]). We recall a couple of theorem about them to enclose the
section.

Theorem 2.15. Let F be a smooth Fano variety over the algebraically closed field k. Then F is
rationally connected.

Fano type varieties are also rationally connected as proved recently by C. D. Hacon and J.
McKernan (Corollary 1.13 in [HM07]). Recall the definition of pairs (Definition 2.12; also note
that we defined them for varieties over the field of complex numbers).

Theorem 2.16. Let (X,B) be a klt pair such that the boundary B is a Q-divisor, and −(KX +B)
is nef and big. Then X is rationally connected.

Moreover Fano varieties with mild singularities form a bounded family. That was the long
standing Borisov-Alekseev-Borisov conjecture, which has been proved recently in the famous article
by C. Birkar (Theorem 1.1 in [Bi16]).

Theorem 2.17. Let d be a non-negative integer, and ε be a positive real number. The collection
formed by those at most d-dimensional complex projective varieties X for which there exists an
R-boundary divisor B such that

• (X,B) be is an ε-lc pair,
• −(KX +B) is nef and big

is a bounded family.

In this thesis we will use the following corollary of the previous theorem. (Recall that terminal
singularities can be defined for varieties over arbitrary fields of characteristic zero the same way
as they are defined for complex varieties.)

Corollary 2.4. Let d be a non-negative integer. There exist positive integers n = n(d) and
m = m(d), only depending on d, such that if

• k is an arbitrary field of characteristic zero,
• F is an arbitrary Fano variety over the ground field k, with terminal singularities,

then

• −mKF is very ample and,
• dimk H0(F,−mKF ) 5 n.
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2.2. UNIRULED AND RATIONALLY CONNECTED VARIETIES CHAPTER 2. TOOLS

Proof. Fix k and F with the properties described by the theorem. There exists a finitely generated
field extension l0|Q and a Fano variety F0 over l0 such that F ∼= F0 ×l0 Spec k. Consider an
embedding of fields l0 ↪→ C, and let F1 ∼= F0×l0 SpecC. Since complex Fano varieties with terminal
singularities of bounded dimension form a bounded family (Theorem2.17), there exist constants
m = m(d), n = n(d) ∈ N, only depending on d, such that m-th power of the anticanonical divisor
embeds F1 into the n1-dimensional complex projective space, where n1 5 n + 1. Since the m-th
power of the anticanonical divisor is defined over any field, this embedding is defined over any field,
in particularly over k. So we have a closed embedding of the form F ↪→ Pn1

k
∼= P(H0(X,−mKF )∗).

This, in particular, implies that −mKF is very ample and dimk H0(X,−mKF ) 5 n.

2.2.3 Maximal Rationally Connected Fibration
In this section we work over the field of complex numbers to avoid technical difficulties. Let X be a
smooth variety. Call two closed points of X equivalent if they can be joined by a chain of rational
curves. It turns out that, under some mild conditions we can find an open subvariety X0 such
that, there is a fibration φ0 : X0 → Z0 for which the fibres are more or less the equivalence classes
of the above defined relation. Hence the fibres are rationally chain connected. Since we work over
the field of complex numbers, we can shrink Z0 and assume φ0 to be smooth (by Generic Smooth-
ness on the base, Corollary 10.7 of Chapter 3 in [Ha77]). Hence the fibres of φ0 are rationally
connected, as the notion of rationally connectedness and rationally chain connectedness coincide
for smooth varieties (Theorem 2.12). This gives us the maximal rationally connected fibration.

The maximal rationally connected fibration exists and is unique up to birational equivalence
by Theorem 5.2 and Theorem 5.4 of Chapter 4 in [Ko96].

Theorem 2.18. Let X be a smooth proper complex variety. The pair (Z, φ) is called the maximal
rationally connected (MRC) fibration if

• Z is a complex variety,
• φ : X 99K Z is a dominant rational map,
• there exist open subvarieties X0 of X and Z0 of Z such that φ descends to a proper morphism

between them φ0 : X0 → Z0 with rationally connected fibres,
• if (W,ψ) is another pair satisfying the three properties above, then φ can be factorized through
ψ. More precisely, there exists a rational map τ : W 99K Z such that φ = τ ◦ ψ.

The MRC fibration exists and is unique up to birational equivalence.

Moreover the MRC fibration is functorial in the following sense (Theorem 5.5 of Chapter 4 in
[Ko96]).
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CHAPTER 2. TOOLS 2.2. UNIRULED AND RATIONALLY CONNECTED VARIETIES

Theorem 2.19. Let X1 and X2 be smooth proper complex varieties. Let (Z1, φ1) and (Z2, φ2) be
the corresponding the maximal rationally connected fibrations. If f : X1 99K X2 is a dominant
map, then there exists a rational map g : Z1 99K Z2 such that g ◦ φ1 = φ2 ◦ f .

In particular we have the following corollary, which immediately follows from Theorem 2.19.

Corollary 2.5. Let X be a smooth proper complex variety and (Z, φ) be its MRC fibration. Let
G be a finite group which acts on X by birational transformations. There is an induced G action
on Z by birational transformations which makes the rational map φ G-equivariant.

By Complement 5.2.1 of Chapter 4 of [Ko96], we can characterize the MRC fibration the
following way. (The original definition works over any fields, for this one we need that the ground
field is uncountable.)

Theorem 2.20. Let X be a smooth proper complex variety. The pair (Z, φ) is the maximal
rationally connected (MRC) fibration if

• Z is a complex variety,
• φ : X 99K Z is a dominant rational map,
• there exist open subvarieties X0 of X and Z0 of Z such that φ descends to a proper morphism

between them φ0 : X0 → Z0 with rationally connected fibres,
• if z ∈ Z0 is a very general point and C j X is a rational curve (i.e. the image of P1

by a non-constant rational map) passing through z, then C is contained in the fibre of the
morphism φ : X0 → Z0 over z.

The base of the MRC fibration is non-uniruled, this follows from the work of T. Graber, J.
Harris and J. Starr. The next theorem is Corollary 1.3 in [GHS03].

Theorem 2.21. Let X and Y be proper complex varieties and let f : X → Y be a dominant
morphism between them. If Y and the general fibers of f are rationally connected, then X is
rationally connected.

Theorem 2.22. Let X be an arbitrary smooth proper complex variety and (Z, φ) be its MRC
fibration. Then Z is non-uniruled.

Proof. We can assume that Z is projective. Pick a very general (in the sense of Theorem 2.20)
closed point z ∈ Z. Let f : P1 → Z be a morphism whose image passes through z. Let C j Z be
the image of f (endowed with the reduced scheme structure). Let V0 j X0 be the inverse image
of C ∩Y0 by φ0 (see Theorem 2.18 for the notion), and let V j X be its closure endowed with the
reduced scheme structure. We will show that V is rationally connected (clearly it is proper). Let
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2.2. UNIRULED AND RATIONALLY CONNECTED VARIETIES CHAPTER 2. TOOLS

Y be the irreducible component of the product P1 ×Z X0 which dominates P1 (where X0 is the
open subvariety of X in the definition of the MRC fibration) endowed with the reduced scheme
structure. Let p : Y → P1 be the projection map. Replace Y with a birational projective variety,
then resolve the indeterminacies of p. As the next step resolve the singularities of Y . Hence we can
assume that p : Y → P1 is a dominant morphism of smooth projective varieties. Y is birational
to the closed subvariety V j X. This implies that the fibres of Y → P1 are rationally connected.
Hence by Theorem 2.21, Y is rationally connected. As Y and V are birational proper varieties, V
is rationally connected. Therefore V j X contains many rational curves passing through the fibre
over z, but not lying in the fibre over z. (Note that a proper rational curve of V not lying in any
fibre of φ|V projects dominantly to C.) This contradicts Theorem 2.20 and finishes the proof.

Another interesting application of Theorem 2.21 is that S. Mori’s conjecture implies D. Mum-
ford’s one.

Theorem 2.23. S. Mori’s conjectures (Conjecture 2.8)) implies D. Mumford’s conjecture (Con-
jecture 2.9).

Proof. LetX be a d-dimensional smooth complex variety (d ∈ Z+) and (Z, φ) be its MRC fibration.
We can assume that Z is smooth and projective. We will show that ifX is not rationally connected,
then H0(X, (Ω1

X)⊗N) 6= 0 for some positive integer N .
If X is not rationally connected, then by Theorem 2.21, Z is a positive dimensional non-uniruled
variety. Let e = dimZ (e ∈ Z+). Hence by S. Mori’s conjecture, there exists a non-zero global
section σ ∈ H0(Z, ω⊗mZ ) for some m ∈ Z+. Since X is smooth and Z is projective, φ is defined in
codimension one, hence we can pull back ω⊗mZ to define φ∗ω⊗mZ on X, and φ∗σ gives a non-zero
global section of it. Moreover H0(X,φ∗ω⊗mZ ) embeds into H0(X, (Ωe

X)⊗m) by Generic Smoothness
on the base (Corollary 10.7 of Chapter 3 in [Ha77]). (Indeed, for a smooth morphism it clearly
holds, and φ0|φ−1

0 (V ) : φ−1
0 (V ) → V is smooth for some open dense subvariety V j Z.) On the

other hand, we have an injection of sheaves (Ωe
X)⊗m ↪→ (Ω1

X)⊗em. Hence φ∗σ defines a non-zero
global section of (Ω1

X)⊗em, therefore H0(X, (Ω1
X)⊗em) 6= 0.
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Chapter 3

Finite subgroups of the birational
automorphism group are ‘almost’
nilpotent

As we have seen before, the birational autmorphism group of many varieties are Jordan ([BZ15a],
[BZ15b], [BZ19], [MZ15], [Po11], [Po14], [PS14], [PS16], [PS18a], [Se09]). However, even amongst
surfaces the direct product of an elliptic curve and the projective line provides a counterexample
to this property (Theorem 1.2 in [Za14]). Yu. Prokhorov and C. Shramov proved that the bi-
rational automorphism group of a variety is solvably Jordan (Proposition of 8.6 in [PS14]). The
picture is remarkable similar in differential geometry. In many cases it is proved that compact
real manifolds have Jordan diffeomorhism groups ([MR10], [MR16], [MR18], [MRSC19], [Zi14]),
however B. Csikós, L. Pyber and E. Szabó found a counterexample (Theorem 1 in [CPS14]).
Their construction was analogous to Yu. G. Zarhin’s one. Moreover E. Ghys conjectured that
the diffeomorphism group of a compact real manifold is nilpotently Jordan ([Gh15]). As the first
trace of evidence, I. Mundet i Riera and C. Saéz-Calvo showed that the diffeomorphism group of
a 4-fold is nilpotently Jordan of class at most 2 (Theorem 1.1 in [MRSC19]). Motivated by these
antecedents, we investigate the nilpotently Jordan property for birational automorphism groups
of varieties.

The material of this chapter is based on [Gu19].

3.1 Introduction
First, let us recall the definitions of various Jordan type properties.
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3.1. INTRODUCTION
CHAPTER 3. FINITE SUBGROUPS OF THE BIRATIONAL AUTOMORPHISM GROUP

ARE ‘ALMOST’ NILPOTENT

Definition 3.1. A group G is called Jordan, solvably Jordan or nilpotently Jordan of class at
most c (c ∈ N) if there exists a constant J = J(G) ∈ Z+, only depending on G, such that every
finite subgroup H 5 G has a subgroup K 5 H such that |H : K| 5 J and K is Abelian, solvable
or nilpotent of class at most c, respectively.

(The notion of Jordan groups and solvably Jordan groups was introduced by V. L. Popov (Defi-
nition 2.1 in [Po11]) and Yu. Prokhorov and C. Shramov (Definition 8.1 in [PS14]), respectively.)

Theorem 3.1. The birational automorphism group of a d dimensional variety over a field of
characteristic zero is nilpotently Jordan of class at most d.

We show in Lemma 3.1 that it is enough to consider varieties over the field of the complex
numbers.

The idea of the proof stems from the following picture. Let X be a d dimensional complex
variety. We can assume that X is smooth and projective. Let G 5 Bir(X) be an arbitrary finite
subgroup. Consider the MRC (maximal rationally connected) fibration φ : X 99K Z (Theorem
2.18). Because of the functoriality of the MRC fibration, a birational G-action is induced on
Z, making φ G-equivariant. After a smooth regularization (Lemma 3.2) we can assume that
both X and Z are smooth and projective, G acts on them by regular automorphisms and φ is
a G-equivariant morphism. Since the general fibres of φ are rationally connected, we can run
a G-equivariant relative Minimal Model Program over Z on X (Theorem 3.3). It results a G-
equivariant Mori fibre space % : W → Y over Z.

X
∼= //

φ   

W
% //

��

Y

ψ~~
Z

We can understand the G-action on X by analyzing the G-actions on ψ : Y → Z and on
% : W → Y . We will apply induction on the relative dimension e = dimX − dimZ to achieve
this (Theorem 3.9). Actually, we will prove a slightly stronger theorem then Theorem 3.1 and will
show that Bir(X) is nilpotently Jordan of class at most (e+ 1). The base of the induction is when
e = 0. Then X is non-uniruled and a theorem of Yu. Prokhorov and C. Shramov (Theorem 1.8
in [PS14]) shows us that the birational automorphism group of X is Jordan.
Otherwise, the inductive hypothesis will show us that H = Im(G → AutC(Y )) has a bounded
index nilpotent subgroup of class at most e. To perform the inductive step, we will take a closer
look at the G-action on the generic fibre Wη → Spec k(Y ). We will use two key ingredients.
The first one is based on the boundedness of Fano varieties, and will allow us to embed G into
the semilinear group GL(n, k(Y )) o AutC(k(Y )), where n is bounded in terms of e (Proposition
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CHAPTER 3. FINITE SUBGROUPS OF THE BIRATIONAL AUTOMORPHISM GROUP
ARE ‘ALMOST’ NILPOTENT 3.2. SOME GROUP THEORY

3.4). The second one is a Jordan type theorem on certain finite subgroups of a semilinear group
(Theorem 3.7). Putting these together will finish the proof.

The chapter is organized in the following way. In Section 3.2 we recall the definition and some
basic facts about nilpotent groups. In Section 3.3 we collect results about finite birational group
actions on varieties. Section 3.4 deals with the proof of the Jordan type theorem on semilinear
groups (Theorem 3.7). Finally, in Section 3.5 we prove our main theorem.

3.2 Some group theory
We recall the definition of nilpotent groups and some of their basic properties.

Definition 3.2. Let G be a group. Let Z0(G) = 1 and define Zi+1(G) as the preimage of
Z(G/Zi(G)) under the natural quotient group homomorphism G → G/Zi(G) (i ∈ N). The
series of groups 1 = Z0(G) 5 Z1(G) 5 Z2(G) 5 ... is called the upper central series of G.
Let γ0(G) = G and let γi+1(G) = [γi(G), G] (i ∈ N, and [, ] denotes the commutator operation).
The series of groups G = γ0(G) = γ1(G) = γ2(G) = ... is called the lower central series of G.
G is called nilpotent if one (hence both) of the following equivalent conditions hold:

• There exists n ∈ N such that Zn(G) = G.
• There exists n ∈ N such that γn(G) = 1.

If G is a nontrivial nilpotent group, then there exists a natural number c for which Zc(G) = G,
Zc−1(G) 6= G and γc(G) = 1, γc−1(G) 6= 1 holds. c is called the nilpotency class of G. (If G is
trivial, then its nilpotency class is zero.)

Remark 3.1. Note that Z1(G) is the centre of the groupG, while γ1(G) is the commutator subgroup.
A non-trivial group G is nilpotent of class one if and only if it is Abelian.
Nilpotency is the property between the Abelian and the solvable properties. The Abelian property
implies nilpotency, while nilpotency implies solvability.

The following proposition describes one of the key features of nilpotent groups. They can be
built up by successive central extensions.

Proposition 3.1. Let G be a group and A 5 Z(G) be a central subgroup of G. If G/A is nilpotent
of class at most c, then G is nilpotent of class at most (c+ 1).

We will use also the two properties below about nilpotent groups.
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Proposition 3.2. Let G be a nilpotent group of class at most n. Fix n− 1 arbitrary elements in
G, denote them by g1, g2, ...gn−1, and let 1 5 j 5 n be an arbitrary integer. The map ϕj defined
by the help of iterated commutators of length (n− 1)

ϕj : G→ γn−1(G)
g 7→ [[...[[[[...[[g1, g2], g3]...], gj−1], g], gj]...], gn−1]

gives a group homomorphism.

Proposition 3.3. Let G be a group. G is nilpotent of class at most n if and only if ∀g1, g2, ..., gn+1 ∈
G: [[...[[g1, g2], g3]...], gn+1] = 1.

Remark 3.2. Typical examples of nilpotent groups are finite p-groups (where p is a prime number).
If we restrict our attention to finite nilpotent groups, even more can be said. (Recall that a Sylow
p-subgroup of a finite group is a maximal p-group contained in the group.) A finite group is
nilpotent if and only if it is the direct product of its Sylow subgroups (Theorem 6.12 in [CR62]).

3.3 Finite group actions on varieties
In this section we introduce techniques which help us to solve partial cases of our problem and
help us to build up the full solution from the special cases.

3.3.1 Reduction to the field of the complex numbers
We show that it is enough to prove Theorem 3.1 over the field of the complex numbers.

Lemma 3.1. It is enough to prove Theorem 3.1 over the field of the complex numbers.

Proof. Let k be a field of characteristic zero and X be a variety over k. First assume that X
is geometrically integral. We can fix a finitely generated field extension l0|Q and an l0-variety
X0 such that X ∼= X0 ×l0 Spec k. Fix a field embedding l0 ↪→ C and let X∗ ∼= X0 ×l0 SpecC.
For an arbitrary finite subgroup G 5 Bir(X) we can find a finitely generated field extension l1|l0
such that the elements of G can be defined as birational transformations over the field l1. Hence
G 5 Bir(X1), where X1 ∼= X0 ×l0 Spec l1. We can extend the fixed field embedding l0 ↪→ C to a
field embedding l1 ↪→ C. Therefore X∗ ∼= X0 ×l0 SpecC ∼= X1 ×l1 SpecC, and we can embed G
into the birational automorphism group of the complex variety X∗. As the birational class of the
complex variety X∗ only depends on the birational class of the variety X, it is enough to examine
complex varieties. This proves the lemma when X is geometrically integral.
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If X is not geometrically integral then, it is still geometrically reduced as we work in characteris-
tic zero. We can still construct the l0-variety X0, the l1-scheme X1 and the complex scheme X∗.
Therefore G 5 Bir(X) embeds into Bir(X∗) just like in the geometrically integral case. There
exists a constant only depending on the birational class of X such that X∗ has C many irreducible
components. Therefore a finite subgroup H 5 G of index at most C! leaves all irreducible com-
ponents of X∗ invariant. Hence H has a nilpotent subgroup of class at most d of bounded index
by the complex case. The bound on the index only depends on the birational classes of the com-
ponents of X∗, hence it only depeneds on the birational class of X. Therefore G has a nilpotent
subgroup of class at most d of bounded index, where the bound on the index only depends on the
birational class of X. This finishes the proof.

3.3.2 Jordan property
Let us recall a theorem of Yu. Prokhorov and C. Shramov (Theorem 1.8 in [PS14] and Theorem
1.8 in [PS16]). It will serve us as a starting point of an inductive argument in the proof of our
main theorem and will be an important ingredient when we look for bounds on the number of
generators of finite subgroups of the birational automorphism group (Theorem 3.4).

Theorem 3.2. Let X be variety over a field of characteristic zero. Assume that X is either
non-uniruled or rationally connected. Then the birational automorphism group of X is Jordan (in
other words, it is nilpotently Jordan of class at most 1).

3.3.3 Smooth regularization
The next lemma is a slight extension of the well-known (smooth) regularization of finite group
actions on varieties (Lemma-Definition 3.1. in[PS14]).

Lemma 3.2. Let X and Z be complex varieties and φ : X 99K Z be a dominant rational map
between them. Let G be a finite group which acts by birational automorphisms on X and Z
in such a way that φ is G-equivariant. There exist smooth projective varieties X∗ and Z∗ with
regular G-actions on them and a G-equivariant projective morphism φ∗ : X∗ → Z∗ such that X∗
is G-equivariantly birational to X, Z∗ is G-equivariantly birational to Z and φ∗ is G-equivariantly
birational to φ. In other words, we have a G-equivariant commutative diagram.

X
∼= //

φ
��

X∗

φ∗

��
Z

∼= // Z∗
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Proof. Let k(Z) 5 k(X) be the field extension corresponding to the function fields of Z and X,
induced by φ. Take the induced G-action on this field extension and let k(Z)G 5 k(X)G be the
field extension of the G-invariant elements. Consider a projective model of it, i.e. let %1 : X1 → Z1
be a (projective) morphism, whereX1 and Z1 are projective varieties such that k(X1) ∼= k(X)G and
k(Z1) ∼= k(Z)G, and %1 : X1 → Z1 induces the field extension k(Z1) ∼= k(Z)G 5 k(X)G ∼= k(X1).
By normalizing X1 in the function field k(X) and Z1 in the function field k(Z) we get projective
varieties X2 and Z2, moreover %1 induces a G-equivariant morphism %2 : X2 → Z2 between them.
As the next step, we can take a G-equivariant resolution of singularities Z̃2 → Z2. After replacing
Z2 by Z̃2 and X2 by the irreducible component of X2 ×Z2 Z̃2 which dominates Z̃2, we can assume
that Z2 is smooth. Hence G-equivarianlty resolving the singularities of X2 finishes the proof.

3.3.4 Minimal Model Program and boundedness of Fano varieties
Applying the results of the famous article by C. Birkar, P. Cascini, C. D. Hacon and J. McKernan
([BCHM10]) enables us to use the arsenal of the Minimal Model Program. As a consequence, we
can examine rationally connected varieties (fibres) with the help of Fano varieties (fibres). For
the later we can use boundedness results because of yet another famous theorem by C. Birkar
([Bi16]). (This theorem was previously known as the BAB Conjecture).

Theorem 3.3. Let X and Z be smooth projective complex varieties such that dimZ < dimX.
Let φ : X → Z be a dominant morphism between them with rationally connected general fibres.
Let G be a finite group which acts by regular automorphisms on X and Z in such a way that φ is
G-equivariant. We can run a G-equivariant Minimal Model Program (MMP) on X relative to Z
which results a Mori fibre space. In particular, the Minimal Model Program gives a G-equivariant
commutative diagram

X
∼= //

φ

  

W //

��

Y

~~
Z

where W is G-equivariantly birational to X, dim Y < dimX and the generic fibre of the morphism
between W and Y is a Fano variety with terminal singularities.

Proof. By Corollary 2.3, we can run a relative MMP on φ : X → Z (which results a Mori fibre
space) if the canonical divisor of X is not φ-pseudo-effective. It can be done equivariantly if
we have finite group actions. (See Chapter 2.2 in [KM98] and Section 4 of [PS14] for further
discussions on the topic.) So, it remains to show that the canonical divisor of X is not φ-pseudo-
effective.
By generic smoothness, a general fibre of φ is a smooth rationally connected projective complex
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variety. Therefore if x is a general closed point of a general fibre F , then there exists a free rational
curve Cx running through x, lying entirely in the fibre F (Proposition 2.4). Since Cx is a free
rational curve, Cx.KX 5 −2 (Remark 2.30). Since the inequality holds for every general closed
point of every general fibre, KX cannot be φ-pseudo-effective.

The lemmas and the theorems above open the door for us to use induction on the relative
dimension of the MRC fibration while proving Theorem 3.1. So we only need to deal with Fano
varieties of bounded dimensions.

Proposition 3.4. Let e be a natural number. There exists a constant n = n(e) ∈ N, only
depending on e, with the following property. If

• k is a field of characteristic zero,
• F is a Fano variety over the field k of dimension at most e with terminal singularities,
• G is a finite group which acts faithfully on F by regular automorphisms of the Q-scheme F ,

and acts on Spec k by regular automorphisms of the Q-scheme Spec k, in such a way that
the structure morphism F → Spec k is G-equivariant,

then G can be embedded into the semilinear group ΓL(n, k) ∼= GL(n, k)oAut k in such a way that
composition G ↪→ ΓL(n, k)� Aut k corresponds to the G-action on Spec k.

Proof. Fix k, F and G with the properties described by the theorem. By Corollary 2.4 there
exist constants n = n(e),m = m(e) ∈ N, only depending on e, such that m-th power of the
anticanonical divisor is very ample and dimk H0(F,−mKF ) 5 n. So we have a closed embedding
of the form F ↪→ Pn1

k
∼= P(H0(X,−mKF )∗), for some non-negative integer n1 5 n− 1 .

By the functorial property of a (fixed) power of the anticanonical divisor, an equivariant G-action
is induced on the commutative diagram below.

F �
� //

��

P(H0(X,−mKF )∗)

vv
Spec k

Since F ↪→ P(H0(X,−mKF )∗) is a closed embedding, the semilinear action of G on the vector
space H0(X,−mKF ) is faithful. Hence G embeds into ΓL(H0(X,−mKF )). Clearly G → Aut k
corresponds to the G-action on Spec k. Since dimk H0(X,−mKF ) 5 n, G embeds into ΓL(V ) for
some n-dimensional k-vector space V in such a way that G→ Aut k corresponds to the G-action
on Spec k. This finishes the proof.
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3.3.5 Bound on the minimal size of a generating set of some groups
Now we turn our attention on finding bounds on the minimal size of a generating set of finite
subgroups of the birational automorphism group of varieties. It will be important for us when we
will investigate commutator relations (Lemma 3.5), and it will be crucial to have a bound on the
size of a generating set of the group.
The next theorem and its proof are essentially due to Y. Prokhorov and C. Shramov. (We use
the word essentially as they only considered the case of finite Abelian subgroups (Remark 6.9 of
[PS14]).) It is also important to note that the proof of Remark 6.9 of [PS14] uses the result of C.
Birkar about the boundedness of Fano varieties (Theorem 1.1 in [Bi16]).

Theorem 3.4. Let X be a variety over a field of characteristic zero. There exists a constant
m = m(X) ∈ Z+, only depending on the birational class of X, such that if G 5 Bir(X) is an
arbitrary finite subgroup of the birational automorphism group, then G can be generated by m
elements.

Proof. First we show the theorem in the special cases when X is either non-uniruled or rationally
connected. By Remark 6.9 of [PS14] and Theorem 2.17, there exists a constant m = m(X) ∈ Z+,
only depending on the birational class of X, such that if A 5 Bir(X) is an arbitrary finite Abelian
subgroup of the birational automorphism group, then A can be generated by m elements. Since
Bir(X) is Jordan when X is non-uniruled or rationally connected (Theorem 3.2), the result on the
finite Abelian groups implies the claim of the theorem in both of these special cases.
Now let X be arbitrary. Arguing as in the proof of Lemma 3.1 we can assume that X is a complex
variety. Consider the MRC fibration φ : X 99K Z. By Lemma 3.2 we can assume that both X
and Z are smooth projective varieties, and G acts on them by regular automorphisms. Let ρ be
the generic point of Z, and let Xρ be the generic fibre of φ. Xρ is a rationally connected variety
over the function field k(Z).
Let Gρ 5 G be the maximal subgroup of G acting fibrewise. Gρ has a natural faithful action on
Xρ, while G/Gρ = GZ has a natural faithful action on Z. This gives a short exact sequence of
groups

1→ Gρ → G→ GZ → 1.

By the rationally connected case there exists a constant m1(Xρ), only depending on the birational
class of Xρ, such that Gρ can be generated by m1(Xρ) elements. By the non-uniruled case there
exists a constantm2(Z), only depending on the birational class of Z, such thatGZ can be generated
by m2(Z) elements. So G can be generated by m(Xρ, Z) = m1(Xρ) + m2(Z) elements. Since
m(Xρ, Z) only depends on the birational classes of Xρ and Z, and both of the birational classes
of Xρ and Z only depend on the birational class of X, this finishes the proof.

In case of rationally connected varieties we will use a slightly stronger version of the theorem.
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To prove it, first recall the theorem of Yu. Prokhorov and C. Shramov about fixed points of
rationally connected varieties (Theorem 4.2 of [PS14]).

Theorem 3.5. Let e be a natural number. There exists a constant R = R(e) ∈ Z+, only depending
on e, with the following property. If X is a rationally connected complex projective variety of
dimension at most e, and G 5 Aut(X) is an arbitrary finite subgroup of its automorphism group,
then there exists a subgroup H 5 G 5 Aut(X) such that H has a fixed point in X, and the index
of H in G is bounded by R.

Theorem 3.6. Let e be a natural number. There exists a constant m = m(e) ∈ Z+, only depending
on e, with the following property. If k is an arbitrary field of characteristic zero, X is a rationally
connected variety over k of dimension at most e, and G 5 Bir(X) is an arbitrary finite subgroup
of the birational automorphism group, then G can be generated by m elements.

Proof. Fix k, X and G with the properties described by the theorem. Arguing as in the proof of
Lemma 3.1, we can assume that k is the field of the complex numbers.
Using Lemma 3.2, we can assume that X is smooth and projective and G is a finite subgroup of
the biregular automorphism group Aut(X).
By Theorem 3.5, we can assume that G has a fixed point in X. Denote it by P .
By Lemma 4 of [Po14] G acts faithfully on the tangent space of the fixed point P . So G can be
embedded into GL(TP X), whence G can be embedded into GL(e,C). Therefore the claim of the
theorem follows from Lemma 3.3. This finishes the proof.

3.4 The general semilinear group
This section contains the group theoretic ingredient of the proof of the main theorem.

Theorem 3.7. Let c, n and m be positive integers. Let F be the family of those finite groups G
which have the following properties.

• There exists a field k of characteristic zero containing all roots of unity such that G is a
subgroup of the semilinear group ΓL(n, k) ∼= GL(n) o Aut k.

• Every subgroup of G can be generated by m elements.
• The image of the composite group homomorphism G ↪→ ΓL(n, k)� Aut k, denoted by Γ, is

nilpotent of class at most c (c ∈ N) and fixes all roots of unity.

There exists a constant C = C(c, n,m) ∈ Z+, only depending on c, n and m, such that every finite
group G belonging to F contains a nilpotent subgroup H 5 G with nilpotency class at most (c+ 1)
and with index at most C.
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First, we recall a slightly strengthened version of Jordan’s theorem.

Theorem 3.8. Let n be a positive integer. There exists a constant J = J(n) ∈ Z+, only depending
on n, such that if a finite group G is a subgroup of a general linear group GL(n, k), where k is a
field of characteristic zero, then G contains a characteristic Abelian subgroup A 5 G of index at
most J .

Remark 3.3. The only claim of the above theorem which does not follow immediately from Theorem
2.3 in [Br11] is that we require the Abelian subgroup of bounded index A 5 G to be characteristic
(i.e. invariant under all automorphisms of G) instead of being normal (i.e. invariant under the
inner automorphisms of G). In the following we will prove some lemmas which help us to deduce
the above variant of the theorem from the one which can be found in [Br11].

Lemma 3.3. Let n be a positive integer. There exists a constant r = r(n) ∈ Z+, only depending
on n, such that if a finite group G is a subgroup of a general linear group GL(n, k), where k is a
field of characteristic zero, then G can be generated by r elements.

Proof. It is enough to prove the lemma when k is algebraically closed, so we can assume it.
By Theorem 2.3 in [Br11], G contains a diagonalizable subgroup of bounded index. Since finite
diagonal groups of GL(n, k) can be generated by n elements, the lemma follows.

Lemma 3.4. Let J and r be positive integers. There exists a constant L = L(J, r) ∈ N, only
depending on r and J , such that if G is a finite group which can be generated by r elements, then
G has at most L many subgroups of index J .

Proof. Fix an arbitrary finite group G which can be generated by r elements. We can construct an
injective map of sets from the set of index J subgroups of G to the set of group homomorphisms
from G to the symmetric group of degree J . Since G can be generated by r elements the later set
has boundedly many elements, hence the former set has boundedly many elements as well. So we
only left with the task of constructing such an injective map.
Let S be a set with J elements. We can identify the symmetric group of degree J , denoted by
SymJ , with the symmetry group of the set S. Fix an arbitrary element x ∈ S. For every index
J subgroup K 5 G, fix a bijection µK between the set of the left cosets of K and the set S,
subject to the following condition, K is mapped to the fixed element x, i.e. µK(K) = x. Let
H 5 G be an arbitrary subgroup of index J . G acts on the set of the left cosets of H by left
multiplication. Using the bijection µH , this induces a group homomorphism φH : G→ SymJ . The
constructed assignment is injective as the stabilizator subgroup of x in the image group ImφH
uniquely determines H.

Proof of Theorem 4.4. Let k be an arbitrary field of characteristic zero, and let G be an arbitrary
finite subgroup of GL(n, k). By Theorem 2.3 in [Br11] G contains an Abelian subgroup A 5 G of
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index bounded by J0 = J0(n). Consider the set S of the smallest index Abelian subgroups of G.
By Lemma 3.3 and Lemma 3.4 there exists a constant L = L(n), only depending on n, such that
S has at most L many elements. Take the intersection of the subgroups contained in S, it gives a
characteristic Abelian subgroup of index at most JL0 .

Next we prove a lemma about nilpotent groups.

Lemma 3.5. Let c, J and m be positive integers. There exists a constant C = C(c, J,m) ∈ N,
only depending on c, J and m, such that if

• G is a nilpotent group of class at most (c+ 1),
• G can be generated by m elements,
• the cardinality of γc(G) is at most J ,

then G has a nilpotent subgroup H 5 G of class at most c whose index is bounded by C.

Proof. Fix a generating system g1, ..., gm ∈ G. Consider the group homomorphisms (Proposition
3.2)

ϕi1,i2,...,ic : G→ γc(G)
g 7→ [[[...[[gi1 , gi2 ], gi3 ]...], gic ], g],

where 1 5 i1, i2, ..., ic 5 m, i.e. for every ordered length c sequence of the generators we assign a
group homomorphism using the iterated commutators. Let H be the intersection of the kernels.

H =
⋂

15i1,i2,...,.ic5m
Kerϕi1,i2,...,ic

Using the fact that the length c iterated commutators give group homomorphisms in every vari-
able if we fix the other variables (Proposition 3.2), one can show that all the length c iterated
commutators of H vanish. Hence H is nilpotent of class at most c (Proposition 3.3).
On the other hand H is the intersection of mc many subgroups of index at most |γc(G)| 5 J .
Hence the index of H is bounded in terms of c, J and m. This finishes the proof.

Now we are ready to prove the main theorem of the chapter.

Proof of Theorem 3.7. Let k be an arbitrary field of characteristic zero containing all roots of
unity, and let G be an arbitrary finite subgroup of ΓL(n, k) belonging to F . Consider the short
exact sequence of groups given by

1→ N → G→ Γ→ 1,
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where N = GL(n, k) ∩ G and Γ = Im(G → Aut k). By Theorem 4.4, N contains a characteristic
Abelian subgroup of index bounded by J = J(n) ∈ Z+. Since A is characteristic in N and N is
normal in G, A is a normal subgroup of G.
Consider the natural semilinear action of G on the vector space V = kn. Since A is a finite
Abelian subgroup of GL(V ) and the ground field k contains all roots of unity, A decomposes V
into common eigenspaces of its elements: V = V1 ⊕ V2 ⊕ ... ⊕ Vr (r 5 n). As A is normal in
G, G respects this decomposition, i.e. G acts on the set of linear subspaces {V1, V2, ..., Vr} by
permutations. The kernel of this group action, denoted by G1, is a bounded index subgroup of
G (indeed |G : G1| 5 r! 5 n!). Furthermore, A is central in G1, i.e. A 5 Z(G1). To see this,
notice that on an arbitrary fixed eigenspace Vi (1 5 i 5 r) A acts by scalar matrices in such a
way that all scalars are drawn from the set of the roots of unity. Since G1 leaves Vi invariant by
definition and Im(G1 → Aut k) fixes all roots of unity, our claim follows. After replacing G with
the bounded index subgroup G1, we can assume that A 5 Z(G).
As A is a central subgroup of G, we can consider the quotient group G = G/A. By Proposition
3.1, we only need to prove that G has a bounded index nilpotent subgroup of class at most c. Our
strategy will be that, first we prove that G has a bounded index nilpotent subgroup of class at
most (c+ 1), then we will apply Lemma 3.5.
Let N = N/A, and consider the short exact sequence of groups

1→ N → G→ Γ→ 1.

The number of elements of N is bounded by J(n), by the definition of A, and Γ is nilpotent of
class at most c, by the definition of G.
G acts on N by conjugation, and the kernel of this action is the centralizer group CG(N) = {g ∈
G| ng = gn ∀n ∈ N}. Therefore G/CG(N) embeds into the automorphism group of N which
has cardinality at most J !. Hence CG(N) has bounded index in G. Hence, after replacing G with
CG(N), N with N ∩CG(N) and Γ with the image group Im(CG(N)→ Γ), we can assume that G
is the central extension of the Abelian group N and nilpotent group Γ whose nilpotency class is
at most c. Therefore we can assume that G is nilpotent of class at most (c+ 1) (Proposition 3.1).
Notice that γc(G) maps to γc(Γ) = 1, which implies that the former group is contained in N . So
|γc(G)| 5 |N | 5 J . Hence we are in the position to apply Lemma 3.5, which finishes the proof.

Remark 3.4. In the above proof we only used the assumption that G can be generated by m
elements via Lemma 3.5. So if we omit this condition from Theorem 3.7, we can still prove that
there exists a constant D = D(n) ∈ Z+, only depending on n (not even on c), such that if G
belongs to the corresponding family of groups, then G contains a nilpotent subgroup H 5 G with
nilpotency class at most (c+ 2) and with index at most D.
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3.5 Proof of the Main Theorem
Using the techniques developed in the previous sections, we will prove our main theorem.

Theorem 3.9. Fix a non-uniruled complex variety Z0. Let FZ0 be the collection of 5-tuples
(X,Z, φ,G, e), where

• X is a complex variety,
• Z is a complex variety, which is birational to Z0,
• φ : X 99K Z is a dominant rational map such that there exist open subvarieties X1 of X

and Z1 of Z such that φ descends to a proper morphism between them φ1 : X1 → Z1 with
rationally connected fibres,

• G 5 Bir(X) is a finite group of the birational automorphism group of X, which also acts by
birational automorphisms on Z in such a way that φ is G-equivariant,

• e ∈ N is the relative dimension e = dimX − dimZ.

Then the following claims hold.

• There exist constants {mZ0(e) ∈ Z+| e ∈ N}, only depending on e and the birational class of
Z0, such that if the 5-tuple (X,Z, φ,G, e) belongs to FZ0, then G can be generated by mZ0(e)
elements.

• There exist constants {JZ0(e) ∈ Z+| e ∈ N}, only depending on e and the birational class of
Z0, such that if the 5-tuple (X,Z, φ,G, e) belongs to FZ0, then G has a nilpotent subgroup
H 5 G of nilpotency class at most (e+ 1) and index at most JZ0(e).

Proof. (Proof of the First Claim) Let (X,Z, φ,G, e) be an arbitrary 5-tuple belonging to FZ0 . By
Lemma 3.2 we can assume that both X and Z are smooth projective varieties, and G acts on
them by regular automorphisms. Let ρ be the generic point of Z, and let Xρ be the generic fibre
of φ. Xρ is a rationally connected variety of dimension e over the function field k(Z).
Let Gρ 5 G be the maximal subgroup of G acting fibrewise. Gρ has a natural faithful action on
Xρ, while G/Gρ = GZ has a natural faithful action on Z. This gives a short exact sequence of
groups

1→ Gρ → G→ GZ → 1.
By Theorem 3.6 there exists a constant m1(e), only depending on e, such that Gρ can be gener-
ated by m1(e) elements. By Theorem 3.4 there exists a constant m2(Z), only depending on the
birational class of Z, such that GZ can be generated by m2(Z) elements. So G can be generated
by mZ0(e) = m1(e) +m2(Z) elements. Since mZ0(e) only depends on e and the birational class of
Z0, this finishes the proof of the first claim.
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(Proof the Second Claim) We will apply induction on e. If e = 0, then X and Z0 are birational,
hence G 5 Bir(Z0) and the claim of the theorem follows from Theorem 3.2. So we can assume
that e > 0 and the claim of the theorem holds if the relative dimension is strictly smaller than e.
Let (X,Z, φ,G, e) be a 5-tuple belonging to FZ0 . After regularizing φ in the sense of Lemma
3.2, we may assume that X and Z are smooth projective varieties, G acts on them by regular
automorphisms and φ is a G-equivariant (projective) morphism.
Hence by Theorem 3.3, we can run a relative G-equivariant MMP on φ : X → Z. It results a
G-equivariant commutative diagram

X
∼= //

φ   

W
% //

��

Y

ψ~~
Z

where % : W → Y is a Mori fibre space and ψ : Y → Z is a dominant morphism with rationally
connected general fibres (as so does φ). Let H be the image of G → AutC(Y ), and let f be
the relative dimension f = dim Y − dimZ. The 5-tuple (Y, Z, ψ,H, f) clearly belongs to FZ0 .
Moreover, since f < e, we can use the inductive hypothesis. Let H1 5 H be the nilpotent
subgroup of nilpotency class at most (f + 1) and index at most JZ0(f). After replacing H with its
bounded index subgroup H1 (and G with the preimage of H1), we can assume that H is nilpotent
of class at most e.
Let η ∼= Spec k(Y ) be the generic point of Y , and letWη be the generic fibre of %. Since % : W → Y
is a Mori fibre space, Wη is a Fano variety over k(Y ) with terminal singularities. Furthermore, G
acts on the structure morphism Wη → Spec k(Y ) equivariantly by scheme automorphisms. Hence
we can apply Proposition 3.4, and we can embed G into ΓL(n, k(Y )) ∼= GL(n, k(Y )) o Aut k(Y )
where n = n(e) only depends on e (since dimWη 5 e). Moreover, the image group Γ = Im(G ↪→
ΓL(n, k(Y )) � Aut k(Y )) corresponds to the G-action on Spec k(Y ), therefore it corresponds to
the H-action on Y . Hence Γ fixes all roots of unity, as Y is a complex variety, and Γ is nilpotent
of class at most e, as so does H. Furthermore, by the first claim of the theorem, every subgroup
of G can be generated by m = mZ0(e) elements (where m only depends on e and the birational
class of Z0). So we are in the position to apply Theorem 3.7 to the group G, which finishes the
proof.

To finish the chapter, we prove our main theorem.

Proof of Theorem 3.1. Let X be a d dimensional complex variety. We can assume that X is
smooth and projective. We can also assume that X is uniruled by Theorem 3.2. Let G 5 Bir(X)
be an arbitrary finite subgroup of the birational automorphism group of X. Let φ : X 99K Z be
the MRC fibration, and let e = dimX − dimZ be the relative dimension. By the functoriality
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of the MRC fibration (Corollary 2.5), G acts on the base Z by birational automorphisms making
the rational map φ G-equivariant. Hence the 5-tuple (X,Z, φ,G, e) belongs to the collection FZ
defined in the previous theorem. Therefore G has a nilpotent subgroup of class at most (e+1) and
index at most JZ(e). Since e < d (as X is uniruled), moreover the relative dimension e and the
birational class of the base Z only depends on the birational class of X, the theorem follows.
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Chapter 4

Boundedness properties of
automorphism groups of forms of flag
varieties

The material of this chapter is based on [Gu18].

4.1 Introduction
Before stating our main theorem we need to introduce a couple of definitions and notations. Let
us recall the definition of bounded groups.

Definition 4.1 (Definition 2.9 in [Po11]). A group G is called bounded if there exists a constant
C ∈ N such that every finite subgroup of G has smaller cardinality than C.

Let V be a finite dimensional vector space (over an arbitrary field). A flag is a strictly increas-
ing sequence of linear subspaces of V (with respect to the the containment order). By Fl(d1 < d2 <
... < dr, V ) or simply by Fl(d, V ) we denote the flag variety of the sequence of linear subspaces
of V (flags) of dimensions determined by the strictly increasing sequence of non-negative integers
d = (d1, d2, ..., dr), where dr 5 dim V . We also use the notation Fl(d < e, V ) governed by similar
logic, using the strictly increasing sequence of non-negative integers d < e = (d1, ..., dp, e1, ..., eq)
(eq 5 dim V ). If d1 = n then the notation d − n stands for the strictly increasing sequence of
non-negative integers d− n = (d1 − n, ..., dr − n).
If no confusion can arise we omit the specification of the vector space or the strictly increasing
sequence of non-negative integers or both of them. When we say Fl(d, V ) is a flag variety, we im-
plicitly assume that V is a vector space over some field and d = (d1, ..., dr) is a strictly increasing
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sequence of non-negative integers, where dr 5 dim V .

Definition 4.2. We call a flag variety admissible, if its automorphism group is the projective
general linear group, otherwise we call it non-admissible.

Later on we will see that a flag variety is admissible unless it is isomorphic to a flag variety
Fl(d1 < ... < dr, V ), where 0 < d1, dr < dim V , dim V = 3 and ∀i = 1, ..., r di + dr+1−i = dim V .
Notice that the conditions 0 < d1 and dr < dim V are technical assumptions, they do not exclude
any isomorphism class of flag varieties. The automorphism group of the non-admissible flag variety
Fl(d, V ) is PGL(V ) o Z/2Z. (See Theorem 4.4 for further details.)

Definition 4.3. Let k be a field. The k-variety X is a form of a flag variety if X × Spec k ∼=
Fl(d, Vk) where k is the algebraic closure of k, Vk is a finite dimensional k-vector space, and d is
a strictly increasing sequence of non-negative integers.

Now we are ready to state the main theorem of the chapter.

Theorem 4.1. Let k be a field of characteristic zero, containing all roots of unity. Let the k-
variety X be a form of an admissible flag variety. Then either the automorphism group Autk(X)
is bounded, or X is birational to a direct product variety Y × P1, in other words X is ruled.

Before moving further we recall the definition of Jordan groups.

Definition 4.4 (Definition 2.1 in [Po11]). A group G is called Jordan if there exists a constant
J ∈ N such that for every finite subgroup H 5 G there exists an Abelian normal subgroup A 5 H
such that |H : A| < J .

In [BZ15b] T. Bandman and Yu. G. Zarhin answered a question of Yu. Prokhorov and C.
Shramov ([PS14]) by showing that the birational automorphism group of a conic bundle over a
non-uniruled base is Jordan when it is not birational to the trivial P1-bundle over the non-uniruled
base. One of the major steps in their proof was to show that the birational (and hence the bireg-
ular) automorphism group of a non-trivial Brauer-Severi curve is bounded. This follows from our
theorem as a special case. (They also showed that the cardinalities of the finite subgroups of the
automorphism group are bounded by four.)
The result on the boundedness of the automorphism groups of non-trivial Brauer-Severi curves
was also used by Yu. Prokhorov and C. Shramov when they classified three dimensional varieties
with non-Jordan birational automorphism groups ([PS18a]).

Another aspect of our motivation is that, we would like to investigate conditions which imply
that the birational automorphism group of a rationally connected variety is bounded. We hope

64

C
E

U
eT

D
C

ol
le

ct
io

n
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that by regularizing actions of finite subgroups of the birational automorphism groups (Lemma
3.2), and by the help of the Minimal Model Program, this question can be reduced to studying
finite subgroups of the automorphism groups of Fano varieties over function fields. As a special
case we investigated boundedness properties of automorphism groups of forms of flag varieties.

The definitions of the Jordan and the boundedness properties was introduced by V. L. Popov.
They are closely related. Boundedness implies the Jordan property, while a typical strategy for
proving that a group is Jordan is to show that the group sits in an exact sequence where the
normal subgroup is Jordan and the quotient group is bounded ([Po11], Lemma 2.11). A survey
of results concerning these properties of groups and the relations between them can be found in
[Po14] and in Section 2 of [PS14].
Research about investigating Jordan properties for birational and biregular automorphism groups
of varieties was initiated by J.-P. Serre in [Se09] and V. L. Popov in [Po11]. Recently many authors
have contributed to the subject ([BZ15a], [BZ15b], [BZ19], [Hu18], [MZ15], [Po11], [Po14], [PS14],
[PS16], [PS18a], [Se09], [Za15]).

The idea of our proof is the following. A form of a flag variety can be viewed as a flag variety
equipped with a twisted Galois action. The automorphism group of the form embeds into the
automorphism group of the flag variety, and its action commutes with the twisted Galois action.
If the automorphism group of the form is not bounded, then the commutation imposes condition
on the twisted Galois action. Using this, we may construct a Galois equivariant rational map
from the flag variety to a smaller dimensional variety. It turns out that this rational map in-
duces a vector bundle structure on the open subset of the flag variety where the map is defined
and the twisted Galois action respects the vector bundle structure. By results of Galois descent,
we descend the vector bundle structure to an open subvariety of the form. This proves our theorem.

We use the admissibility hypothesis to construct the Galois equivarant rational map from our
flag variety to a smaller dimensional variety. Although the rational map can be constructed any-
way, we use the admissibility condition when we endow the target space with a Galois action which
makes the rational map equivaraint. For a more detailed discussion see Remark 4.8 and Remark
4.13.

In general, it is a very hard question to decide whether a variety is ruled or not. Amongst
forms of (admissible) flag varieties we can find examples to both cases.
Indeed, flag varieties are rational, therefore they are ruled. On the other hand non-trivial Brauer-
Severi curves and surfaces provide examples of non-ruled forms of admissible flag varieties. Non-
trivial Brauer-Severi curves are non-ruled essentially as a consequence of their definition, while
the case of non-trivial Brauer-Severi surfaces will be explored in Section 4.6. Here we only state
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the corresponding theorem.

Theorem 4.2. Let k be a field of arbitrary characteristic. Let X be a Brauer-Severi surface over
k. X is ruled if and only if it is trivial.

The chapter is organized in the following way. In Section 4.2 we recall the necessary knowledge
about automorphism groups of flag varieties and Galois descent. In Section 4.3 we construct the
rational maps which will give us the vector bundle structure. It is followed by Section 4.4, where
we analyze the effect of the commuting group actions when the automorphism group of the form
of the flag variety is not bounded. Finally, Section 4.5 contains the proof of our theorem. We
enclose our chapter with a discussion on Brauer-Severi surfaces in Section 4.6.

4.1.1 Conventions
To make the reading of the chapter easier, we collect our conventions here. Unless explicitly stated
otherwise all fields are assumed to be of characteristic 0. For a field k we use k to denote its (fixed)
algebraic closure.
By a vector space we mean a finite dimensional vector space. Sometimes in the notation of a
vector space we make explicit the field over which the vector space is defined. When we say Vk is
a vector space, we mean that Vk is a vector space defined over the field k.
Let V be a vector space over a field k. By Link(V ) we denote the k-linear automorphism group of
V . (During the article we will encounter situations, where V is a vector space over a field l, where
k 5 l, however we need to consider its k-linear automorphism group.)
By a variety we mean a separated, integral scheme of finite type over a field.
Let X be an arbitrary scheme over a field k. By Autk(X) we denote the k-scheme automorphism
group of X. (During the article we will encounter situations, where X is a variety over a field l,
where k 5 l, and we need to consider its k-scheme automorphism group.)
Let X be a variety, by Bir(X) we denote the birational automorphism group of X.

4.2 Preliminaries

4.2.1 Automorphism groups of flag varieties
In this section we collect results about automorphism groups of flag varieties. First, we recall the
definition of the automorphism group scheme.

Definition 4.5. Let X be a scheme over a base scheme S. Consider the assignment T 7→
AutT (X × T ) between S-schemes and abstract groups. It gives rise to a contravariant functor
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AX : (Sch/S)op → Gr from the category of S-schemes to the category of groups. ((Sch/S)op
denotes the opposite category of the category of S-schemes). If AX can be represented by an
S-scheme Y , then we call Y the automorphism group scheme of X, and denote it by AutS(X) or
simply by Aut(X). (In case of S = Spec k, for some field k, we also use the notation Autk(X).)

Remark 4.1. Note that the definition implies that AutT (X×T ) ∼= AutS(X)×T for any S-scheme
T (by the adjoint property of restriction and extension of scalars).
It is also worth pointing out that an immediate consequence of the definition is the following.
For a k-scheme X, if Aut(X) exists, then the group of its k-rational points is isomorphic to the
automorphism group of X, in formula (Autk(X))(k) ∼= Autk(X).

The following theorem of H. Matsumura and F. Oort secures the existence of the automorphism
group schemes for flag varieties (Theorem 3.7 in [MO67]).

Theorem 4.3. Let k be a field of arbitrary characteristic, and let X be a proper k-scheme. The
automorphism group scheme Aut(X) exists and it is of locally finite type over k.

Armed with the concept of automorphism group schemes, we can make our first step towards
describing the automorphism groups of flag varieties.

Proposition 4.1. Let k be a field, V be a k-vector space and Fl(d, V ) be a k-flag variety. The
group scheme PGL(V ) is a closed subscheme of Autk(Fl(d, V )).

Proof. Clearly the functor of points of the group scheme of the projective general linear group
Hom(−, PGL(V )) is a subfunctor of AFl(d,V ) defined in Definition 4.5. Therefore we have a mor-
phism of group schemes ϕ : PGL(V )→ Autk(Fl(d, V )).
The kernel of ϕ is trivial. Indeed, PGL(V ⊗l) embeds into Autl(Fl(d, V )×Spec l) ∼= Autl(Fl(d, V ⊗
l)) for any field extension l|k. Therefore the kernel has a unique rational point over any field. Since
we work in characteristic 0, this implies that the kernel is trivial (by smoothness).
Since the kernel is trivial and ϕ is a smooth morphism (as the characteristic is 0), ϕ is a closed
immersion (Lemma 38.7.8, [Stack]).

Remark 4.2. Consider flag varieties of the form Fl(d1 < ... < dr, V ), where 0 < d1, dr < dim V ,
dim V = 3 and ∀i = 1, ..., r di+dr+1−i = dimV . (Notice that the conditions 0 < d1 and dr < dim V
are technical assumptions, they do not exclude any isomorphism class of flag varieties.)
In the next theorem we will show that non-admissible flag varieties are exactly flag varieties of
the above form. In this remark we will construct an order two automorphism for them, called τ ,
which lies outside PGL(V ) and normalizes it. This strengthens the previous proposition, since the
existence of τ implies that in case of flag varieties of the above form PGL(V ) o Z/2Z is a closed
subscheme of the automorphism group scheme.
The involution τ can be constructed in the following way. For an arbitrary flag variety Fl(e,W )
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(not necessarily of the form considered in the beginning of the remark) we can examine the dual
map:

∗ : Fl(e1 < e2 < ... < eq,W )→ Fl(m− eq < m− eq−1 < ... < m− e1,W
∗)

U1 < U2 < ... < Uq 7→ Uq
⊥ < Uq−1

⊥ < ... < U1
⊥,

where m = dimW , W ∗ is the dual space of W and for an arbitrary linear subspace U 5 W
U⊥ = {ϕ ∈ W ∗|ϕ|U ≡ 0} is the annihilator subspace.
Consider a flag variety Fl(d, V ) of the form introduced in the beginning of the remark, and fix
a linear automorphism j0 : V ∗ → V such that j−1

0 maps a (fixed) basis of V to its dual basis
(V ∗ denotes the dual space of V ). j0 induces an isomorphism j : Fl(d, V ∗) → Fl(d, V ). With a
little amount of work it can be checked that the automorphism τ = j ◦ ∗ is an involution outside
the projective general linear group, and that τ normalizes the projective general linear group. (If
dim V = 2, then τ would be an element of the projective general linear group.)

Our next tool is the result of H. Tango (Theorem 2 in [Ta76]). By the use of Schubert calculus
he gave a description of the automorphism groups of flag varieties over algebraically closed fields
(of arbitrary characteristic).
Just as in the previous remark, when we state the next theorem we will use the technical assump-
tion that a flag does not contain the trivial linear subspace and the whole vector space (i.e. 0 < d1
and dr < dim V ).

Theorem 4.4. Let k be a field, V be a k-vector space and let d denote a strictly increasing
sequence of integers d1 < ... < dr, where 0 < d1 and dr < dim V . The automorphism group of the
k-flag variety Fl(d, V ) is PGL(V ) (with its natural action on the variety), except the case when
3 5 dim V and di + dr−i+1 = dimV for all i = 1, ..., r. In this later case the automorphism group
is PGL(V ) o Z/2Z.

Proof. When k is algebraically closed, this is Tango’s theorem (Theorem 2 in[Ta76]).
As a first step towards describing the case when k is not algebraically closed, we prove a stronger
version of the theorem. We prove that the automorphism group scheme has the form which
naturally corresponds to the form of the automorphism group described by the theorem, i.e. it is
PGL(V ) or a PGL(V ) o Z/2Z accordingly.
Observe that the automorphism group scheme of a complex flag variety has the desired form.
Indeed, by Tango’s theorem, the automorphism group of a complex flag variety is either PGL(V )
or PGL(V )oZ/2Z. Therefore the group of the closed points of the automorphism group scheme of
a complex flag variety gives back the groups described by our theorem. Combining this fact with
the result of Proposition 4.1, which states that PGL(V ) is a closed subscheme of the automorphism
group scheme of a complex flag variety, we can conclude our claim for the automorphism group
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scheme of an arbitrary C-flag variety.
As the next step, note that it is enough to show that the our claim for automorphism group
schemes holds for flag varieties over Q. Indeed, let Fl(d, Vk) be an arbitrary flag variety over
an arbitrary field k. By choosing a basis of Vk, we can find a Q-vector space WQ such that
WQ⊗k ∼= Vk and Fl(d, Vk) ∼= Fl(d,WQ)×Spec k. Hence Remark 4.1 implies that Autk(Fl(d, Vk)) ∼=
AutQ(Fl(d,WQ))× Spec k. The result follows, as PGL(WQ)× Spec k ∼= PGL(Vk).
Let Fl(d, UQ) be an arbitrary flag variety over Q. Since base changing the ground field does not
affect dimensions, the group schemes PGL(UQ) and AutQ(Fl(d, UQ)) has the same dimension by
the complex case. As PGL(UQ) is connected, and it is a closed group scheme of AutQ(Fl(d, UQ))
(Proposition 4.1), we conclude that it is the identity component.
A similar logic applies to the number of connected components. Indeed, the number of connected
components cannot decrease after base changing the ground field. Hence using the case of complex
flag varieties and the result of Remark 4.2, our claim for the automorphism group schemes follows.
Now we can turn back our attention to the automorphism groups. We conclude our proof by
taking rational points of the automorphism group schemes and using Remark 4.1.

Remark 4.3. Notice that Theorem 4.4 gives a new characterization of admissible flag varieties.
This new characterization only uses dimensions of the linear subspaces of a flag of the variety and
the dimension of the under lying vector space.
Remark 4.4. The projective general linear group has a natural action on the set of d-dimensional
linear subspaces of the underlying vector space (for every fixed d, where 0 5 d 5 n and n is the
dimension of the underlying vector space). These actions are compatible with the action of the
projective general linear group on the flags of the vector space. Sometimes we use this observation
without further notice. A similar statement holds for twisted Galois actions on admissible flag
varieties (check Remark 4.8).
The automorphism group PGL(V )oZ/2Z of a non-admissible flag variety also has a natural action
on the set of the union of d-dimensional and (n−d)-dimensional linear subspaces of the underlying
vector space. However some group elements swap the dimensions. A similar kind of claim can be
formulated for the twisted Galois actions on non-admissible flag varieties (check Remark 4.8).

4.2.2 Galois descent
We collect results about Galois descent and fields in general. First we start with a couple of
technical claims. The next lemma can be proved by standard techniques using the finiteness
condition built in the definition of a variety.

Lemma 4.1. Let k be a field. Let X and Y be k-varieties and ϕ : X → Y be a morphism
between them. There exists a finite Galois extension l|k such that X, Y and ϕ are defined over l.
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More precisely, there exists X ′, Y ′ l-varieties and ϕ′ : X ′ → Y ′ morphism between them such that
X ′ × Spec k ∼= X, Y ′ × Spec k ∼= Y and ϕ′ × id ∼= ϕ.

Remark 4.5. Let the k-variety X be a form of a flag variety. By Lemma 4.1, we can find a
finite Galois extension l|k such that X × Spec l ∼= Fl(d,Wl). Indeed, applying the lemma to the
isomorphism between X × Spec k and Fl(d, Vk) proves the claim.

Remark 4.6. If the k-variety X is a form of a flag variety, then X is projective. Indeed if X×Spec k
is projective, then the same holds for X as well (Proposition 14.55 in [GW10]).

Definition 4.6. Let k be a field, and let the k-variety X be a form of a flag variety. If l|k is a
field extension such that X × Spec l ∼= Fl(d, Vl), then we call l a splitting field for X. By Remark
4.5 l|k can chosen to be a finite Galois extension.

Now we turn our attention to results about descents. This part of the section is mainly based
on [Ja00].

Definition 4.7. Let l|k be a Galois extension with Galois group Γ. We call a pair (X,T ) a quasi-
projective l-scheme equipped with a twisted Galois action, if X is a quasi-projective l-scheme and
T : Γ → Autk(X) is a group homomorphism satisfying the following commutative diagram (for
every σ ∈ Γ):

X

��

T (σ) // X

��
Spec l S(σ) // Spec l

where S(σ) : Spec l→ Spec l is the morphism of schemes induced by σ−1 : l→ l.
If no confusion can arise we denote the pair (X,T ) simply by X. (Observe that S(σ) is induced
by σ−1 since there is an antiequivalence of categories between affine schemes and rings. Therefore
using the inverse is necessary to define an action of the Galois group.)

The following theorem can be found in [Ja00] (Theorem 2.2.b).

Theorem 4.5. Let l|k be a finite Galois extension with Galois group Γ. There is an equivalence
between the category of quasi-projective k-schemes and the category of quasi-projective l-schemes
equipped with a twisted Γ-action. The equivalence functor is given by X 7→ X × Spec l.

Remark 4.7. Since the theorem is about equivalence of categories, it also says that Galois equiv-
ariant morphisms descend to morphisms of the underlying k-schemes.
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Definition 4.8. Let l|k be a Galois extension with Galois group Γ and let Vl be an n-dimensional
vector space over l. Let b = (v1, ..., vn) be a basis of Vl. There is a twisted Galois action Ab : Γ→
Link(Vl) defined by

Ab(σ) : Vl → Vl

v = α1v1 + α2v2 + ...+ αnvn 7→ σ(α1)v1 + σ(α2)v2 + ...+ σ(αn)vn,

where the αi’s are coefficients from the field l (i = 1, ..., n) and σ ∈ Γ is an arbitrary element
of the Galois group. For a flag variety Fl(d, Vl) this induces a twisted Galois action, denoted by
Bb : Γ→ Autk(Fl(d, Vl)).

Fl(d, Vl)

��

Bb(σ) // Fl(d, Vl)

��
Spec l S(σ) // Spec l

It might seem counterintuitive that the diagram contains S(σ), which is induced by σ−1. However
after realizing that this means we pull back functions using σ−1 , we can also realize that it forces
us to use σ when we want to ‘push forward’ scalars.
Notice that if T is an arbitrary twisted Galois action on Fl(d, Vl), then for every σ ∈ Γ the
morphism T (σ)Bb(σ)−1 is an element of the automorphism group of the flag variety, therefore
T (σ) can be written as T (σ) = aσ ◦Bb(σ) where aσ ∈ Autl(Fl(d, Vl)). (Of course aσ also depends
on the basis b, although we decided to omit it in the notation.)

Remark 4.8. Let l|k be a Galois extension with Galois group Γ, Vl be an l-vector space and Fl(d, Vl)
be an l-flag variety with a twisted Galois action T : Γ → Autk(Fl(d, Vl)). Choose a basis of Vl,
denote it by b. We saw in the previous definition that T (σ) = aσ ◦Bb(σ).
Assume that the flag variety is admissible, then aσ is an element of PGL(Vl), therefore it has a
natural action on the set of linear subspaces of Vl. Bb(σ) can also be endowed with a natural action
on the set of linear subspaces of Vl (via Ab(σ)). This enables us to endow T (σ) with a natural
action on the set of linear subspaces of Vl . Moreover, this action is compatible with the action of
T (σ) on the flags. In formula T (σ)(Z1 < .. < Zr) = (cσ ◦ Ab(σ))(Z1) < ... < (cσ ◦ Ab(σ))(Zr) for
any flag Z1 < ... < Zr ∈ Fl(d, Vl). Sometimes we use this observation without further notice.
If the flag variety is non-admissible then we can also formulate a similar claim. However if
aσ 6∈ PGL(V ) then the di-dimensional linear subspace of the image flag T (σ)(Z1 < .. < Zr)
depends on the (dim V − di)-dimensional linear subspace of the flag Z1 < ... < Zr. The existence
of these ‘dimension-swapping’ morphisms can pose problems when we try to construct Galois
equivariant morphisms from non-admissible flag varieties.
Remark 4.9. If l|k is a finite Galois extension (such that l 5 k) with Galois group Γ and Vl is an l-
vector space, then {σ 7→ aσ} gives an element in the first group cohomology H1(Γ,Autl(Fl(d, Vl)).
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The elements of the first group cohomology are in 1-to-1 correspondence with the forms of
Fl(d, Vl) × Spec k ∼= Fl(d, Vl ⊗ k) split by l. For further informations on this, see Theorem
14.88 in[GW10]. Also Theorem 3.6 and Theorem 4.5 in [Ja00] give results of similar flavour in the
case of Brauer-Severi varieties.

Theorem 4.6. Let l|k be a finite Galois extension with Galois group Γ. Let X, Y be quasi-
projective l-schemes equipped with twisted Galois actions, and let φ : X → Y be a Galois equivari-
ant morphism of l-schemes such that the triple (X, Y, φ) forms a vector bundle. Moreover, let the
Galois action respect the vector bundle structure (respect the addition and twist the multiplication
by scalar operations). Then there exist X ′, Y ′ quasi-projective k-schemes and φ′ : X ′ → Y ′ mor-
phism of k-schemes such that (X ′, Y ′, φ′) forms a vector bundle and X ′×Spec l ∼= X, Y ′×Spec l ∼=
Y , φ′ × id ∼= φ.

Proof. By Theorem 2.2.c in [Ja00], a locally free sheaf of finite rank E equipped with a Galois
action compatible with the Galois action on the underlying quasi-projective l-scheme Y comes from
a locally free sheaf (of the same rank) on the quasi-projective k-scheme Y ′, where Y ′×Spec l ∼= Y .
Since there is a 1-to-1 canonical correspondence between finite rank vector bundles and locally
free sheaves of finite rank, the result follows.

4.3 Rational maps of flag varieties
Let k be a field and k be its algebraic closure. Let V be a vector space over k. Assume V = V1⊕V2 is
a direct sum decomposition, dim V = n and dim Vi = ni (i = 1, 2). Consider the strictly increasing
sequences of non-negative integers d = (d1, d2, ..., dp) and e = (e1, e2, ..., eq), where dp 5 n1 < e1
and eq 5 n. We are going to investigate the rational maps

φ1 : Fl(d, V ) 99K Fl(d, V1)
Z1 < ... < Zp 7→ pr(Z1) < ... < pr(Zp)

where pr : V → V1 is the projection along V2, Zi’s (i = 1, ..., p) are the vector spaces forming the
flag (dimZi = di),

φ2 : Fl(e, V ) 99K Fl(e− n1, V2)
W1 < ... < Wq 7→ W1 ∩ V2 < ... < Wq ∩ V2

where Wj’s (j = 1, ..., q) are the vector spaces forming the flag (dimWj = ej),

ψ : Fl(d < e, V ) 99K Fl(d, V1)× Fl(e− n1, V2)
Z1 < ... < Zp < W1 < ... < Wq 7→ (pr(Z1) < ... < pr(Zp),W1 ∩ V2 < ... < Wq ∩ V2)
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where Zi’s (i = 1, ..., p) and Wj’s (j = 1, ..., q) are the vector spaces forming the flag (dimZi = di,
dimWj = ej).
Clearly all of these are rational maps. φ1 is defined on the open subvariety

U1 = {Z1 < ... < Zp ∈ Fl(d, V )|Zp ∩ V2 = {0}},

φ2 is defined on the open subvariety

U2 = {W1 < ... < Wq ∈ Fl(e, V )|W1 t V2} = {W1 < ... < Wq ∈ Fl(e,V)|W1 + V2 = V },

and ψ is defined on the open subvariety

U = {Z1 < ... < Zp < W1 < ... < Wq ∈ Fl(d < e, V )|Zp ∩ V2 = {0},W1 + V2 = V }.

We can check that U1, U2 and U are open subvarieties. Indeed, let αp be the tautological vector
bundle on the flag variety Fl(d, V ) corresponding to the dp-dimensional linear subspaces of V ,
and let β1 be the tautological vector bundle on the flag variety Fl(e, V ) corresponding to the
e1-dimensional linear subspaces of V . Let ρ be the global section of the hom-vector bundle
Homk(αp, V/V2) induced by the projection V → V/V2, and let τ be the global section of the
hom-vector bundle Homk(β1, V/V2) induced by the projection V → V/V2. U1 is the open locus
where ρ has maximal rank, while U2 is the open locus where τ has maximal rank. Combining the
above arguments, we can also show that U is an open subvariety.

Proposition 4.2. Using the notation introduced in this section, the following holds. The triples
(U1,Fl(d, V1), φ1), (U2,Fl(e−n1, V2), φ2) and (U,Fl(d, V1)×Fl(e−n1, V2), ψ) form vector bundles.

Proof. To see this, first, consider the fiber of φ1 over an arbitrary flag S1 < ... < Sp ∈ Fl(d, V1).
Notice that if Z1 < ... < Zp is in the fiber, then it is uniquely determined by Zp. Indeed pr induces
and isomorphism between Zp and Sp, so there is a unique linear subspace of Zp which maps to Si
(i = 1, ..., p).
The dp-dimensional linear subspaces of V which are mapped to Sp are parametrized by Hom(Sp, V2).
If f ∈ Hom(Sp, V2), then the graph of f considered as a linear subspace of V determines Zp. More
precisely

Zp = {v + f(v)|v ∈ Sp}. (4.3.1)

On the other hand, Zp gives an element in Hom(Sp, V2) by the composition pr′◦t, where t : Sp → Zp
is the inverse of the linear isomorphism between Zp and Sp induced by pr and pr′ : V → V2 is the
projection along V1. These two constructions are inverse to each other, which shows our claim on
the fiber.
The argument can be globalized. It shows that U1 is isomorphic to the total space of the vector
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bundle corresponding to the locally trivial sheaf of finite rank HomO(γp, V2 ⊗ O), where γp is
the sheaf of sections of the tautological bundle of the flag variety Fl(d, V1) corresponding to the
dp-dimensional linear subspaces and O is the structure sheaf of Fl(d, V1).
A similar argument shows that U2 is the total space of the vector bundle corresponding to the
locally trivial sheaf of finite rank HomO(V1⊗O, (V2⊗O)/η1), where η1 is the sheaf of sections of
the tautological bundle of the flag variety Fl(e− n1, V2) corresponding to the e1− n1-dimensional
linear subspaces and O is the structure sheaf of Fl(e−n1, V2). (By the properties of η1, (V2⊗O)/η1
is a locally trivial sheaf of finite rank).
Indeed, again, notice first that an element W1 < ... < Wq ∈ Fl(e, V ), which is in the fiber over
T1 < ... < Tq ∈ Fl(e − n1, V2), is uniquely determined by W1. Since Wj should contain both
W1 and Tj, moreover W1 ∩ Tj = W1 ∩ V2 = T1, we have Wj = W1 + Tj by dimension counting
(j = 1, ..., q).
The e1-dimensional linear subspaces W1 < V , such that W1 ∩ V2 = T1, are parametrized by
Hom(V1, V2/T1). For g ∈ Hom(V1, V2/T1) consider the linear subspace

W ′
1 = {u(v) + g(v) ∈ V/T1|v ∈ V1} (4.3.2)

of the quotient space V/T1, where we use u to denote the quotient morphism u : V → V/T1.
Finally, let

W1 = u−1(W ′
1). (4.3.3)

Conversely, assume W1 is given. Identify V1 , V2/T1 and W1/T1 with linear subspaces of V/T1.
Let p1 : V/T1 → V1 be the projection along V2/T1, and p2 : V/T1 → V2/T1 be the projection along
V1. p1 induces an isomorphism q1 : W1/T1 → V1. Let g ∈ Hom(V1, V2/T1) be g = p2 ◦ q−1

1 . These
two constructions are inverse to each other. The argument globalizes. This proves our claim.
For ψ we can use similar constructions. The fiber over (S1 < ... < Sp, T1 < ... < Tq) is parametrized
by a linear subspace E < Hom(Sp, V2)×Hom(V1, V2/T1) for which the constructions, described in
the previous paragraphs, yield linear subspaces Zp and W1 satisfying Zp < W1.
This condition is equivalent to Zp 5 W1 by dimension counting, which in turn is equivalent
to Zp + T1 5 W1. Using the projection u : V → V/T1, our condition is u(Zp) 5 u(W1). By the
construction of Zp andW1 from (f, g) ∈ Hom(Sp, V2)×Hom(V1, V2/T1), the condition is equivalent
to

(u+ u ◦ f)(Sp) 5 (u+ g)(V1).

Consider the identification V/T1 = V1 ⊕ V2/T1.

{(v, u ◦ f(v)) ∈ V1 ⊕ V2/T1|v ∈ Sp} = (u+ u ◦ f)(Sp) 5
(u+ g)(V1) = {(v, g(v)) ∈ V1 ⊕ V2/T1|v ∈ V1}
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This is equivalent to u ◦ f = g ◦ i, where i : Sp → V1 is the inclusion map. Let F be the surjective
map of linear spaces given by

F : Hom(Sp, V2)× Hom(V1, V2/T1)→ Hom(Sp, V2/T1)
(f, g) 7→ u ◦ f − g ◦ i.

Then E = KerF . Once again, this construction globalizes. U ⊂ Fl(d < e, V ) is the total space
of the vector bundle corresponding to a locally trivial sheaf of finite rank E . (E is the kernel of
a surjective morphism of locally trivial sheaves of finite rank, hence it is locally trivial of finite
rank.)

Remark 4.10. Let A1, A2 and A be the complements of the open subvarieties U1, U2 and U in the
appropriate flag varieties and endow them with the reduced scheme structure. A short calculation
shows that

A1 = {Z1 < ... < Zp ∈ Fl(d, V )| dim(Zp ∩ V2) > 0},

A2 = {W1 < ... < Wq ∈ Fl(e, V )| dim(W1 ∩ V2) > e1 − n1},

A = {Z1 < ... < Zp < W1 < ... < Wq ∈ Fl(d < e, V )|
dim(Zp ∩ V2) > 0 or dim(W1 ∩ V2) > e1 − n1}.

Hence A1, A2 and A are union of Schubert cells. Recall that an a-dimensional Schubert cell is
isomorphic to the a-dimensional affine space Aa. (For more details on Schubert cells the interested
reader can consult with Chapter 10.2 in [Fu97].)

Remark 4.11. By Lemma 4.1 we can find a finite Galois extension l|k (where l 5 k) such that φ1, φ2,
ψ, U1, U2, U and A1, A2, A are defined over l. Moreover we can require that, the decompositions
of A1, A2 and A into the union of Schubert cells exist over the field l. In particular, this implies
that, the sets of l-rational points are dense in A1, A2 and A (as the same claim holds for the affine
spaces).
Furthermore, since a vector bundle structure over a variety can be defined only using finitely many
elements from the ground field, we can secure that Proposition 4.2 also holds over l.
During Section 4.5 we will work over a finite Galois extension l|k and use the notation introduced
in this section (more precisely its corresponding counterpart which is defined over the field l).
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4.4 Group actions on forms of flag varieties
We recall some theorems about birational automorphism groups. To start with, we recall the
notion of strongly Jordan groups. It first appeared in [BZ15b].

Definition 4.9 (Definition 1.1 in[BZ15b]). A group G is called strongly Jordan if it is Jordan,
and there exists a constant r ∈ N such that every finite Abelian subgroup A 5 G can be generated
by r elements, in other words the rank of an arbitrary finite Abelian subgroup is smaller than r.

Theorem 4.7. Let X be a variety. If X is either rationally connected or non-uniruled, then the
birational automorphism group Bir(X) is strongly Jordan.

Proof. If X is rationally connected then the birational automorphism group is Jordan by Theorem
1.8 of [PS16] and Theorem 1.1 of [Bi16]. If X is non-uniruled then the birational automorphism
group is Jordan by Theorem 1.8 of [PS14].
Furthermore, Remark 6.9 of [PS14] and Theorem 1.1 of [Bi16] shows that the ranks of the finite
Abelian subgroups of the birational automorphism group of an arbitrary variety is bounded by a
constant depending only on the variety.
Putting together these results proves the theorem.

Theorem 4.8. Let X be a variety. Let G 5 Bir(X) be an arbitrary subgroup of the birational
automorphism group. Assume that G is not bounded. Then there exist elements of G of finite and
arbitrary large order.

Proof. Assume that there exists a constant N ∈ N such that if g ∈ G is an element of finite order,
then the order of g is smaller than N . We will show that this implies the boundedness of G.
By Proposition 6.2 of [PS14] for an arbitrary variety X (using the MRC-fibration) we can fix a
rationally connected variety Xrc over some function field and a non-uniruled variety Xnu over the
ground field such that an arbitrary finite subgroup G0 5 G(5 Bir(X)) is an extension of finite
groups Grc and Gnu, where Grc 5 Bir(Xrc) and Gnu 5 Bir(Xnu). (Note that, if the MRC-fibration
is trivial, then either the group Grc or the group Gnu is trivial, which does not pose any problem
in our argument.)
We know that Bir(Xrc) and Bir(Xnu) are strongly Jordan groups. Denote the corresponding
Jordan constants by Jrc and Jnu respectively, and denote the constants bounding the ranks of
finite Abelian subgroups by rrc and rnu respectively. Since Xrc and Xnu only depend on X, Jrc,
Jnu and rrc, rnu only depend on X as well.
We will use the following easy observation. Let A be a finite Abelian group. Assume that A can
be generated by r elements and the order of an arbitrary element a ∈ A is smaller than N . Then
the cardinality of A is smaller than rN .
Grc is isomorphic to a finite subgroup of G0, therefore the order of an arbitrary element of Grc is
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smaller than N . Grc has an Abelian subgroup of rank at most rrc and of index smaller than Jrc.
Hence |Grc| < Jrcr

N
rc.

Gnu is the homomorphic image of G0, therefore the order of an arbitrary element of Gnu is smaller
than N . Gnu has an Abelian subgroup of rank at most rnu and of index smaller than Jnu. Hence
|Gnu| < Jnur

N
nu.

Therefore |G0| < JrcJnu(rrcrnu)N . Since G0 was an arbitrary finite subgroup ofG, and all constants
depend only on X, G is bounded. This contradiction finishes the proof.

Definition 4.10. Let k be a field and let the k-variety X be a form of a flag variety. Let l be
a splitting field for X such that l|k is a Galois extension. Fix an isomorphism ϕ : Fl(d, V ) →
X × Spec l. Let T : Gal(l|k) → Autk(Fl(d, V )) be the twisted Galois action defined by T (σ) =
ϕ−1 ◦ (id × S(σ)) ◦ ϕ, where σ is an arbitrary element of Gal(l|k) and S(σ) : Spec l → Spec l is
induced by σ−1 : l→ l. We call T the Galois action corresponding to ϕ.

Let the variety X be a form of an admissible flag variety and assume that its automorphism
group is not bounded. In the next lemma we will examine the effect of the commutation of the
automorphism group of X (viewed as a subgroup of the automorphism group of the corresponding
flag variety) and the corresponding twisted Galois action.

Lemma 4.2. Let k be a field containing all roots of unity. Let the k-variety X be a form of an
admissible flag variety. Let l be a splitting field for X such that l|k is a Galois extension. Assume
that the automorphism group Autk(X) is not bounded. Let X × Spec l ∼= Fl(d, V ) (where V is an
l-vector space), and let T : Gal(l|k)→ Autk(Fl(d, V )) be the corresponding twisted Galois action.
We can choose a basis b of V such that it splits as b = b1∪b2 (b1, b2 6= ∅), giving rise to a direct sum
decomposition V = V1⊕V2 such that ∀σ ∈ Gal(l|k): T (σ) = aσ ◦Bb(σ) (see Definition 4.8), where
aσ ∈ Autl(Fl(d, V )) = PGL(V ) respects this decomposition, i.e. an arbitrary lift cσ ∈ GL(V ) of
aσ is contained in GL(V1)×GL(V2) < GL(V ).

Proof. The isomorphism X × Spec l ∼= Fl(d, V ) induces an isomorphism Autl(X × Spec l) ∼=
Autl(Fl(d, V )) = PGL(V ). Let n = dimV , and fix a finite order element g ∈ Autk(X) with order
larger than n!. It exists by the previous theorem. g can be viewed as an element in PGL(V ) since
Autk(X) 5 Autl(X × Spec l).
Let h be a fixed lift of g to GL(V ) such that the order of h is equal to the order of g, it exists since
k contains all roots of unity. Notice that h is of finite order, hence it is semisimple (since we are
in characteristic 0). Let b be a basis of V consisting of eigenvectors of h. Again, this basis exists
as k contains all roots of unity and h is of finite order (hence its eigenvalues are roots of unity).
Let V ∼= Vλ1 ⊕ Vλ2 ⊕ ... ⊕ Vλr be the direct sum decomposition corresponding to the eigenspaces
of hn!. Since gn! 6= 1, the linear transformation hn! cannot be a scalar multiply of the identity,
therefore it has at least two distinct eigenspaces, i.e. r = 2. Let V1 = Vλ1 and V2 = Vλ2 ⊕ ...⊕Vλr .
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The basis b splits as b1 ∪ b2, where bi is a basis of Vi. Indeed, an eigenspace of hn! is a direct sum
of the eigenspaces of h.
Moreover, since h is chosen to be of finite order: h ◦ Ab(σ) = Ab(σ) ◦ h, as k contains all roots of
unity by assumption.
The action of g on X × Spec l commutes with the natural Galois action. Indeed the action of g
derives from a group action on X, while the natural Galois action derives form a group action on
Spec l. Using the isomorphism Autl(X × Spec l) ∼= PGL(V ), this leads us to g ◦ (aσ ◦ Bb(σ)) =
(aσ ◦ Bb(σ)) ◦ g. Since h and Ab(σ) commutes, the same holds for g and Bb(σ), hence g ◦ aσ =
aσ ◦ g ∈ PGL(V ).
Lift this equation to GL(V ): hcσ = νσcσh, where cσ is an arbitrary lift of aσ, and νσ ∈ l only
depends on σ (as we keep h fixed throughout our argument).
Let v1, v2, ..., vn ∈ V be a basis consisting of eigenvectors of h, i.e. hvi = µivi (µi ∈ l; i = 1, ...., n).
Consider the basis cσv1, cσv2, ..., cσvn, it is also a basis consisting of eigenvectors of h. Indeed,
h(cσvi) = νσcσhvi = νσµi(cσvi). Since the eigenvalues of h are uniquely determined, multiplication
with νσ must permute them. Therefore νσ is a root of unity, with order less than or equal to
n (∀σ ∈ Gal(l|k)). Hence hn!cσ = cσh

n!. Therefore cσ ∈ GL(V1) × GL(V2) < GL(V ) (∀σ ∈
Gal(l|k)).

Remark 4.12. A similar, but much more technical, statement can be formulated including the case
of non-admissible flag varieties. Since we will not use it, we decided only to state the simpler
version which applies to admissible flags.

4.5 Proof of the Main Theorem

In this section we prove Theorem 4.1. The strategy for the proof is the following. Instead of
working with X, we will consider a flag variety equipped with a twisted Galois action. Using
the splitting established in Lemma 4.2 and the constructions introduced in Section 4.3, we will
build a Galois equivariant morphism from the flag variety to a lower dimensional variety, which is
isomorphic to the Galois equivariant projection morphism of a vector bundle. Finally, by the use
of Galois descent, we achieve the desired result.

If Autk(X) is bounded, then the claim of the main theorem (Theorem 4.1) holds, so in the
followings we assume otherwise.
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4.5.1 Setup of the proof of the Main Theorem
Notation

Let k be a field of characteristic 0, containing all roots of unity. Let the k-variety X be a form of
an admissible flag variety.
We will use the notations of φ1, φ2, ψ and U1, U2, U introduced in Section 4.3 (see also Remark
4.11).
Let l be a splitting field for X such that l|k is a finite Galois extension (see Definition 4.6). Let
X × Spec l ∼= Fl(d0, V ) (where V is an l-vector space), and let T : Gal(l|k) → Autk(Fl(d0, V ))
be the corresponding Galois action (see Definition 4.10). Let b be the basis of V established in
Lemma 4.2, b = b1 ∪ b2 and V = V1 ⊕ V2 be the corresponding decompositions. By enlarging l
if necessary, we can assume that φ1, φ2, ψ and U1, U2, U are defined over l (see Remark 4.11),
Proposition 4.2 holds over l, moreover we can require that the sets of l-rational points in the
complements of U1, U2 and U are dense (see Remark 4.11). Let

A = Ab : Gal(l|k)→ Link(V ),
B = Bb : Gal(l|k)→ Autk(Fl(d0, V ))

be the corresponding twisted Galois actions (see Definition 4.8). Finally, let n = dimV and
ni = dimVi (i = 1, 2).
There are three different cases depending on the sequence d0 = (d0,1 < d0,2 < ... < d0,r) and on
dim V1 = n1. Case 1: d0,r 5 n1, Case 2: n1 < d0,1 and Case 3: d0,1 5 n1 < d0,r. All of them should
be handled similarly.

In the followings we will explicitly deal with Case 3. This contains all the necessary techniques
and calculations involved in Case 1 and Case 2. At the end of each step we remark some of the
necessary changes to deal with the other cases.

Construction of the Galois actions on the target spaces

Let’s assume Case 3. We will investigate ψ, at the end of the section we will note the changes for
the other two cases. Split d0 as d = (d1 < ... < dp) and e = (e1 < ... < eq), where dp 5 n1 < e1
and d0 = (d1 < ... < dp < e1... < eq). The basis b1 and b2 induce the following actions.

A1 = Ab1 : Gal(l|k)→ Link(V1)
B1 = Bb1 : Gal(l|k)→ Autk(Fl(d, V1))

A2 = Ab2 : Gal(l|k)→ Link(V2)
B2 = Bb2 : Gal(l|k)→ Autk(Fl(e− n1, V2))
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By Lemma 4.2 ∀σ ∈ Gal(l|k): T (σ) = aσ ◦ Bb(σ) (aσ ∈ PGL(V )), and an arbitrary lift of aσ,
denoted by cσ, splits, i.e. cσ ∈ GL(V1) × GL(V2). For every σ ∈ Gal(l|k) fix a lift cσ, and let
cσ,1 ∈ GL(V1) and cσ,2 ∈ GL(V2) be its components. Let aσ,1 ∈ PGL(V1) and aσ,2 ∈ PGL(V2) be
the images of cσ,1 and cσ,2 respectively. Since all steps in our construction was compatible with
the decomposition V = V1 ⊕ V2,

Q1 : Gal(l|k)→ Autk(Fl(d, V1))
σ 7→ aσ,1 ◦B1(σ),

Q2 : Gal(l|k)→ Autk(Fl(e− n1, V2))
σ 7→ aσ,2 ◦B2(σ)

define twisted Galois actions for Fl(d, V1) and Fl(e− n1, V2) respectively. Putting them together

Q : Gal(l|k)→ Autk(Fl(d, V1)× Fl(e− n1, V2))
σ 7→ (aσ,1 ◦B1(σ))× (aσ,2 ◦B2(σ))

defines a twisted Galois action on Fl(d, V1)× Fl(e− n1, V2).
In Case 1 and Case 2 we do not need to introduce the notations d and e. In Case 1 we need to
consider a Q1-like action on Fl(d0, V1) (we denote it by R1), while in Case 2 we need to consider
a Q2-like action on Fl(d0 − n1, V2) (we denote it by R2).

4.5.2 Steps of the proof of the Main Theorem
Galois equivariance of the rational maps φ1, φ2 and ψ

To show the Galois equivariance of φ1, φ2 and ψ we need to check two things, the invariance of
the open subvariety where the rational maps are defined (U1, U2 and U , respectively), and the
equivariance of the corresponding morphisms from the open subvarieties to the target spaces.

Lemma 4.3. The open subvarieties U1, U2 and U are invariant under the Galois actions, i.e.
∀σ ∈ Gal(l|k) T (σ)Ui = Ui (i = 1, 2) and T (σ)U = U .

Proof. We consider the case of U , the proof for the other two cases are almost verbatim.
Let σ ∈ Gal(l|k) be an arbitrary element of the Galois group. First notice that l-rational points
of a flag variety can be identified with the flags of the underlying vector space.
We will show that an l-rational point (i.e. a flag) belongs to U if and only if it belongs to T (σ)U .
Notice that the l-rational points of the open subvariety U ⊂ Fl(d < e, V ) are given by

{Z1 < ... < Zp < W1 < ... < Wq|Zp ∩ V2 = {0},W1 + V2 = V }.
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V1, V2 and V are invariant under the natural actions of cσ and A(σ) by construction. Hence

T (σ)(Z1 < ... < Zp < W1 < ... < Wq) =
(cσ ◦ A(σ))(Z1) < ... < (cσ ◦ A(σ))(Zp) <

(cσ ◦ A(σ))(W1) < ... < (cσ ◦ A(σ))(Wq)

satisfies the defining equation of the l-rational points of U if and only if Z1 < ... < Zp < W1 <
... < Wq ∈ U .
Consider the complements of U and T (σ)U as topological subspaces in the underlying topological
space of Fl(d < e, V ). They are homeomorphic Zariski closed sets, moreover they contain exactly
the same set of l-rational points. We have chosen the field l in such a way that the l-rational
points in the complement of U form a dense set. Putting these together implies that complement
of U and T (σ)U are equal. Hence T (σ)U = U as open subvarieties.

Recall the definitions of the Galois actions R1, R2 and Q from Section 4.5.1.

Lemma 4.4.

1. The morphism φ1 : U1 → Fl(d0, V1) is equivariant for the twisted Galois actions T and R1.

2. The morphism φ2 : U2 → Fl(d0 − n1, V2) is equivariant for the twisted Galois actions T and
R2.

3. The morphism ψ : U → Fl(d, V1)×Fl(e−n1, V2) is equivariant for the twisted Galois actions
T and Q.

Proof. First notice that l-flag varieties can be covered by affine spaces Am
l , where m is the ap-

propriate dimension. Therefore the l-rational points form a dense set (as the same holds for Am
l ).

Hence, to show that two morphisms whose domains and target spaces are built up from open sub-
varieties of l-flag varieties are equal, it is enough to show that they are equal on l-rational points,
which can be identified with flags. (Also note that checking Galois equivariance is equivalent to
checking equality of morphisms.)
From now on we will deal with the case of ψ and note the necessary changes at the end of the
proof for the other two cases. The twisted Galois action T on the l-rational points (i.e. on the
flags) is given by the formula

T (σ)(Z1 < ... < Zp < W1 < ... < Wq) =
(cσ ◦ A(σ))(Z1) < ... < (cσ ◦ A(σ))(Zp) <

(cσ ◦ A(σ))(W1) < ... < (cσ ◦ A(σ))(Wq)
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where Z1 < ... < Zp < W1 < ... < Wq is an arbitrary flag of the open subvariety U and σ ∈ Gal(l|k)
is an arbitrary element of the Galois group. While the twisted Galois action Q is given by the
formula

Q(σ)(S1 < ... < Sp, T1 < ... < Tq) =
((cσ,1 ◦ A1(σ))(S1) < ... < (cσ,1 ◦ A1(σ))(Sp),

(cσ,2 ◦ A2(σ))(T1) < ... < (cσ,2 ◦ A2(σ))(Tq))

where (S1 < ... < Sp, T1 < ... < Tq) is an arbitrary l-rational point of the product variety
Fl(d, V1)×Fl(e−n1, V2) and σ ∈ Gal(l|k) is an arbitrary element of the Galois group. Comparing
these equations with the definition of ψ shows that for verifying the Galois equivariance of ψ it is
enough to check that the followings hold.

pr ◦ (cσ ◦ A(σ))(Z) = (cσ,1 ◦ A1(σ)) ◦ pr(Z)
(cσ ◦ A(σ))(W ) ∩ V2 = (cσ,2 ◦ A2(σ))(W ∩ V2),

where Z and W are arbitrary linear subspaces of V and pr : V → V1 is the projection along V2.
For the first equation, consider an arbitrary vector v ∈ V . It can be written as v = v1 + v2 where
vi ∈ Vi (i = 1, 2).

(pr ◦ cσ ◦ A(σ))(v) = (cσ,1 ◦ A1(σ))(v1) = (cσ,1 ◦ A1(σ) ◦ pr)(v)

Hence the first equation is satisfied. For the second one, letW 5 V be an arbitrary linear subspace.

(cσ ◦ A(σ))(W ) ∩ V2 = (cσ ◦ A(σ))(W ) ∩ (cσ ◦ A(σ))(V2) =
(cσ ◦ A(σ))(W ∩ V2) = (cσ,2 ◦ A2(σ))(W ∩ V2),

where we used that V2 is invariant under cσ ◦A(σ) and that cσ ◦A(σ) is a bijection from V to V .
Hence the second equation is satisfied too, which shows that ψ is Galois equivariant.
For the case of φ1 we need to perform the steps corresponding to the Z1 < ... < Zp-part of the
above argument, meanwhile for the case of φ2 we need to perform the steps corresponding to the
W1 < ... < Wq-part.

Galois equivariance of the vector bundle structure

Lemma 4.5. The vector bundles (U1,Fl(d0, V1), φ1), (U2,Fl(d0 − n1, V2), φ2) and (U,Fl(d, V1)×
Fl(e−n1, V2), ψ) are Galois equivariant. In other words, the Galois actions respect the addition and
twist (by the corresponding element of the Galois group) the multiplication by scalar operations.
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Proof. Again using the fact that l-rational points of l-flag varieties form a dense set, it is enough
to check that the vector bundle structure is respected on the l-rational points, i.e. on the flags.
As usual we assume the case of (U,Fl(d, V1) × Fl(e − n1, V2), ψ) and note the necessary changes
for the other two cases at the end of the proof.
Let Z1 < ... < Zp < W1 < ... < Wq ∈ U be an arbitrary flag lying over (S1 < ... < Sp, T1 < ... <
Tq) ∈ Fl(d, V1) × Fl(e − n1, V2). As we have seen before, its image under T (σ) (σ ∈ Gal(l|k)) is
the flag

(cσ ◦ A(σ))(Z1) < ... < (cσ ◦ A(σ))(Zp) < (cσ ◦ A(σ))(W1) < ... < (cσ ◦ A(σ))(Wq) ∈ U

which lies over

((cσ,1 ◦ A1(σ))(S1) < ... < (cσ,1 ◦ A1(σ))(Sp),
(cσ,2 ◦ A2(σ))(T1) < ... < (cσ,2 ◦ A2(σ))(Tq)) ∈ Fl(d, V1)× Fl(e− n1, V2).

Using these formulas and the equations (4.3.1), (4.3.2) and (4.3.3) which construct the flag Z1 <
... < Zp < W1 < ... < Wq ∈ U from (f, g) ∈ E < Hom(Sp, V2) × Hom(V1, V2/T1) (and the
corresponding equations for the image of the flag), we can see that the image of the flag corresponds
to

(cσ,2 ◦ A2(σ)) ◦ f ◦ ((cσ,1 ◦ A1(σ))−1 ∈ Hom((cσ,1 ◦ A1(σ))(Sp), V2)
(cσ,2 ◦ A2(σ)) ◦ g ◦ ((cσ,1 ◦ A1(σ))−1 ∈ Hom(V1, V2/(cσ,2 ◦ A2(σ))(T1)),

where
(cσ,2 ◦ A2(σ)) : V2/T1 → V2/(cσ,2 ◦ A2(σ))(T1)

is the σ-linear homomorphism induced by cσ,2 ◦ A2(σ) : V2 → V2. Therefore we have a Galois
action on the vector bundle structure which respects the addition and twists the multiplication by
scalar operations. (Observe that the formula of the action does not depend on the choice of the
lift cσ as both cσ,1 and cσ,2 derives from the same lift.)
Again for the other two cases we only need to carry out half of the proof. For the case of
(U1,Fl(d0, V1), φ1) we need the part which corresponds to Z1 < ... < Zp and f , for the case of
(U2,Fl(d0 − n1, V2), φ2) we need the other half which corresponds to W1 < ... < Wq and g.

Galois descent

We can finish our proof by the help of Galois descent.
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Proof of Theorem 4.1. For Case 3 we can summarize the results of the previous lemmas in the
following way. We constructed a Galois equivariant commutative diagram of l-varieties, where ψ
is a Galois equivariant projection of a vector bundle structure.

U

ψ

��

� � // Fl(d < e, V )

tt
Fl(d, V1)× Fl(e− n1, V2)

Generally (including all three cases) we can say that, there is a Galois equivariant commutative
diagram of l-varieties

W

π

��

� � i // Fl(d0, V )

zz
Y

where W is an open subvariety of Fl(d0, V ) and (W,Y, π) is a Galois equivariant vector bundle
(Lemma 4.5).
Finally, we can use results of Galois descent (Theorem 4.5 and Theorem 4.6) to achieve a commu-
tative diagram over k with the same properties.

W ∗

π∗

��

� � // X

}}
Y ∗

W ∗ is an open subvariety of X, therefore they are birational. SinceW ∗ is a vector bundle over Y ∗,
W ∗ is birational to Pm × Y ∗ for some m > 0. Putting these together shows that X is birational
to Pm × Y ∗.

Remark 4.13. Now we can reflect on the role of the admissibility condition. In the proof above
we showed that we can endow Fl(d, V1), Fl(e− n1, V2) and Fl(d, V1)×Fl(e− n1, V2) with twisted
Galois actions which makes the morphism φ1, φ2 and ψ Galois equivariant. If Fl(d, V ) is non-
admissible then Fl(d, V1) and Fl(e − n1, V2) must be admissible. In this case there exists a pair
(T, σ) where T : Gal(l|k) → Autk(Fl(d, V )) is a twisted Galois action and σ ∈ Gal(l|k) is such
that T (σ) = aσ ◦ Bb(σ) is ‘dimension-swapping’, i.e aσ /∈ PGL(V ) (see Remark 4.8). Because
of this dimension-swap we cannot construct Galois actions on the target spaces which makes the
morphisms φ1, φ2 and ψ Galois equivariant.
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4.6 Brauer-Severi surfaces
We analyze the question of non-ruledness of non-trivial Brauer-Severi surfaces. We need to intro-
duce a couple of new concepts. We will not explain them in full detail, the interested reader is
referred to [GS06], [Ja00] and [Ko16] for further information on the subject. During this section
we can relax the condition that the ground field is of characteristic zero.

Definition 4.11. Let k be a field, and let X and Y be Brauer-Severi varieties over k with dimen-
sions n and m respectively. Let ϕ : X 99K Y be a rational map. ϕ is called twisted linear if it is
linear over k, i.e. the composite map Pn ∼= X × Spec k 99K Y × Spec k ∼= Pm is linear.
We call the pair (X,ϕ) a twisted linear subvariety of Y if the composite map is induced by a linear
injection. (Notice that in the case of a twisted linear subvariety ϕ can be extended to a morphism
of varieties.) If no confusion can arise we denote the pair (X,ϕ) simply by X.
We call X a minimal twisted linear subvariety of Y , if it is a twisted linear subvariety and has
minimal dimension amongst the twisted linear subvarieties. By Theorem 28 in [Ko16] the isomor-
phism class of a minimal twisted linear subvariety is well defined.
We call the Brauer-Severi variety Y minimal if the only twisted linear subvariety of Y is itself (up
to isomorphism).
For an arbitrary Brauer-Severi variety P we will denote a fixed minimal twisted linear subvariety
by Pmin.

Lemma 4.6. Let k be a field and let X be a Brauer-Severi curve or a Brauer-Severi surface over
k. X is non-trivial if and only if X is minimal.

Proof. If X is a non-minimal Brauer-Severi curve then X has a 0-dimensional twisted linear sub-
variety, i.e. X has a k-rational point. Then by Châtelet’s theorem X is trivial (Theorem 5.1.3 in
[GS06]).
If X is a non-minimal Brauer-Severi surface then X either has a k-rational point or a one codi-
mensional twisted linear subvariety. In both cases X is trivial by versions of Châtelet’s theorem.
The other directions are trivial.

Definition 4.12 (Definition-Lemma 31 in [Ko16]). We call two Brauer-Severi varieties X and Y
similar or Brauer equivalent if Xmin ∼= Y min.

Remark 4.14. There is a canonical correspondence between central simple algebras and Brauer-
Severi varieties over a given field k (Theorem 5.1 in[Ja00]). We can also introduce the Brauer
equivalence relation on the central simple algebras in a natural way. The canonical correspondence
between central simple algebras and Brauer-Severi varieties respects these equivalence relations.
Furthermore we can endow the central simple algebras with operations (tensor product and taking
the opposite algebra), which respect the Brauer equivalence relation and turn the equivalence
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classes into a commutative group, called the Brauer group (Chapter 2.4 in [GS06]).
A similar construction can be carried out purely geometrically.

Theorem 4.9. We can introduce operations on Brauer-Severi varieties which turns the Brauer
equivalence classes into a commutative group which is naturally isomorphic to the Brauer group.
(For further details see Section 4 and 5 of [Ko16].)

Remark 4.15. If X and Y are Brauer-Severi varieties we will use the notation X ⊗ Y for the
binary operation introduced in Theorem 4.9. We will use the notation X⊗m to denote the m-fold
‘product’ of X with itself (m ∈ Z+).

Theorem 4.10 (Amitsur’s theorem, Proposition 45 in [Ko16]). Let X and Q be Brauer-Severi
varieties. The following two conditions are equivalent: Q is similar to X⊗m for some positive
integer m; there is a rational map ϕ : X 99K Q.

Definition 4.13. Let k be a field and X be a projective k-variety. The index of X is the greatest
common divisor of the degrees of all 0-cycles on X. It is denoted by ind(X).

Lemma 4.7 (Lemma 51 in [Ko16]). Let X be a Brauer-Severi variety and m be a positive integer,
then the index of X⊗m divides the index of X.

Theorem 4.11 (Theorem 53 in [Ko16]). Let X be a Brauer-Severi variety. Then ind(X) =
ind(Xmin) = dimXmin + 1.

Lemma 4.8. Let k be a field and X be a Brauer-Severi surface over k. If X is ruled then either
X is trivial or there exists a rational map ϕ : X 99K Q, where Q is a non-trivial Brauer-Severi
curve.

Proof. If X is ruled then it is birational to P1
k ×Q, where Q is a smooth projective curve. Notice

that if Q is birational to P1
k, then X has k-rational points, therefore X is trivial by Châtelet’s

theorem. So we can assume that Q is not isomorphic to the projective line.
Denote Q× Spec k by Qk. Since X is a Brauer-Severi surface, P1

k
×Qk is rational.

Therefore we can take a general rational curve c : P1
k
→ P1

k
× Qk (i.e. we can take a general

morphism of the projective line to P1
k
×Qk) and we can compose c with the canonical projection

P1
k
→ P1

k
×Qk → Qk. Since c is general, the composite is dominant (i.e. the rational curve does not

lie in a fiber over Qk). Hence we get a non-trivial morphism from a projective line to the smooth
curve Qk. This implies that Qk is isomorphic to the projective line, i.e. Q is a Brauer-Severi curve.
As Q is not isomorphic to the projective line, Q is non-trivial.
The composite X 99K P1

k ×Q→ Q, where the first map is the birational isomorphism giving the
ruledness and the second is the canonical projection, gives a rational map X 99K Q from X to a
non-trivial Brauer-Severi curve.
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Proof of Theorem 4.2. If the Brauer-Severi surface X is trivial, then it is ruled.
Assume that X is non-trivial and ruled. By the previous lemma there is a rational map ϕ : X 99K
Q, where Q is a non-trivial Brauer-Severi curve.
By Amitsur’s theorem (Theorem 4.10) Q is similar to X⊗m for some positive integer m. Hence
Qmin ∼= (X⊗m)min by the definition of similarity.
We can consider indices:

2 = dimQ+ 1 = dimQmin + 1 = ind(Qmin) = ind((X⊗m)min) = ind(X⊗m),

by Lemma 4.6 and by Theorem 4.11. On the other hand ind(X⊗m) divides ind(X) by Lemma 4.7,
and

ind(X) = dimXmin + 1 = dimX + 1 = 3,

by Theorem 4.11 and Lemma 4.6. Since 2 does not divide 3, we arrived to a contradiction. Hence
a non-trivial Brauer-Severi surface cannot be ruled. This finishes the proof.

Remark 4.16. Brauer-Severi surfaces corresponds canonically to degree three central simple al-
gebras (Theorem 5.1 in[Ja00]). (The degree of a central simple algebra is the square root of its
dimension, it is a positive integer.) By Wedderburn’s theorem degree three central simple alge-
bras are cyclic algebras (Chapter 15.6 in [Pi82]). Moreover, if k is a field of characteristic zero
containing all roots of unity, then cyclic algebras over k are given by the following presentation:

k < x1, x2|xm1 = a, xm2 = b, x1x2 = ωx2x1 >,

where m ∈ Z+, a, b ∈ k∗ and ω is a primitive m-th root of unity (Corollary 2.5.5 in [GS06]).
We call a central simple algebra over k split if it is isomorphic to a matrix ring over k. It is
equivalent with the corresponding Brauer-Severi variety being trivial. A cyclic algebra of the
above presentation (where k is a field of characteristic zero containing all roots of unity) is split if
and only if b is a norm from the field extension k( m

√
a)|k (Corollary 4.7.7 in [GS06]).

Putting these together, one can show that

C(t1, t2) < x1, x2|x3
1 = t1, x

3
2 = t2, x1x2 = e2πi/3x2x1 >

corresponds to a non-trivial Brauer-Severi surface over a field of characteristic zero containing all
roots of unity.
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