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Abstract

This thesis analyzes the methodology used by James Maynard in his paper named ”Small

gaps between primes” where he proved there are infinitely many intervals of length 600 which

contain at least 2 primes, and of length Cm3e4m for some constant C > 0 and any m ≥ 1

which contain at least m + 1 primes. In the thesis, I present Maynard’s method following

the exposition of Terence Tao [9], adding further details, expanding calculations, and giving

explanatory examples.
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Chapter 1

Introduction

Number theory is one of the most important and at the same time interesting branches of

mathematics. What makes it even more interesting is that there are certain problems in

number theory which are very hard to solve although their statements are easy to understand.

One of the most famous such problems is the twin prime conjecture which states there are

infinitely many primes p such that p + 2 is also prime. Despite of trying to prove the

conjecture over many years, it is still an open problem. In the last two decades, however,

several groundbreaking results were proven in the area. The goal of this thesis is to present

Maynard’s one.

In the exposition, we follow Tao’s blog post [9]. Section 1.1 gives a brief history about

the problem without defining any mathematical concept or definition. Section 1.2 introduces

the problem and defines it in a more mathematical way.

1.1 Historical Review

In 1846, French mathematician Alphonse de Polignac stated that every even number can

be written as the difference of two primes in infinitely many different ways. Twin prime

conjecture is a special case of this statement where the even number is 2. One of the biggest

results concerning about this conjecture was the well-known prime number theorem. The

prime number theorem [7, p. 179-180] states that

π(x) ∼ x

log x
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where π(x) is the number of primes up to x. It follows from the prime number theorem that

the average gap between two consecutive primes pn and pn+1 is ∼ log pn, in particular,

lim inf
n→∞

pn+1 − pn
log pn

≤ 1

where pn denotes nth prime. In 1915, Norwegian mathematician Viggo Brun [2] made an

important progress on twin prime conjecture by proving even if there are infinitely many

twin primes, they are rare i.e. up to x there are at most Cx/(log x)2 for some constant

C > 0. Later in 1939, Hungarian mathematician Paul Erdős [4] published a paper named

”The Difference of Consecutive Primes” where he improved the consequence of the prime

number theorem and proved

lim inf
n→∞

pn+1 − pn
log pn

< 1− c, for some c > 0.

Erdős’s result was the very first unconditional bound strictly less than 1 for the quantity

although before him, Hardy and Littlewood and later Rankin considered the same problem

and proved it is less or equal to 2/3 and 3/5 respectively assuming Riemann hypothesis.

The next big breakthrough came up in 2005 when Daniel Goldston, Janos Pintz, and Cem

Yıldırım [5] started a new approach to this problem. Instead of pairs, one might consider

k0-tuples of integers close to each other for some k0 > 2 and can try to prove that two

members of the k0-tuple are primes infinitely often. This idea turned out to be extremely

successful. In this path, they published a paper called ”Primes in Tuples I” where they

improved Erdős’s result and proved

lim inf
n→∞

pn+1 − pn
log pn

= 0.

In other words, there exists arbitrarily large x such that (x, x+ ε log x] contains at least two

primes for any ε > 0. Later in April, 2013, Yitang Zhang [11] proved in a groundbreaking

paper that there are infinitely many prime tuples which have difference less or equal to

70000000 i.e.

lim inf
n→∞

(pn+1 − pn) ≤ 70000000.

Of course, the importance of this result was not about the bound itself, it was rather about

showing that the gap between two consecutive primes is infinitely often smaller than a finite

number. The same year in November, James Maynard [6] published a paper called ”Small

Gaps between Primes” where he improved Zhang’s result and proved
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lim inf
n→∞

(pn+1 − pn) ≤ 600.

Nonetheless, what made Maynard’s technique even more powerful was that using this tech-

nique, he not only proved it for prime tuples, but also he could prove the finite gaps between

prime m-tuples i.e.

lim inf
n→∞

(pn+m − pn) <∞

for every fixed m ∈ N. In this thesis, we will prove Maynard’s result by following Tao’s post

[9]. In fact, it is not the best result so far found; in 2014, a group of number theorists united

under the name Polymath8b [8] to further improve Maynard’s result, and they achieved the

best result so far obtained by proving

lim inf
n→∞

(pn+1 − pn) ≤ 246.

1.2 Definition of the Problem

For all m ∈ N define

Hm := lim inf
n→∞

(pn+m − pn), (1.1)

where pn denotes the nth prime. In other words, Hm is the least quantity with the property

that there are infinitely many intervals length Hm which contains at least m + 1 primes.

With this notation in mind, Maynard’s result shows that H1 ≤ 600, and the best result

so far found by Polymath8b shows that H1 ≤ 246. In fact, the twin prime conjecture is

equivalent to H1 = 2.

Let an admissible k0-tuple be defined as a increasing tuple H = (h1, . . . , hk0) of integers

such that for every prime p there exist an n ∈ N and i ∈ 1, . . . , k0 such that hi 6≡ n (mod p).

As an example of an admissible set we can pick the set (0, 2) as n = 1 does the job since

both 0 and 2 are incongruent to 1 modulo to p for any prime p. On the other hand, the set

(0, 1) is not an admissible set as for p = 2, there is no such an n since for every number n,

either n or n− 1 is divisible by 2. Now we define DHL[k0, j0] for 1 ≤ j0 ≤ k0 where DHL

stands for “Dickson-Hardy-Littlewood” to be as following:

Conjecture. If H is an admissible k0-tuple, then there are infinitely many translates n+H
which contains at least j0 primes.

Then the prime tuple conjecture is the assertion that DHL[k0, j0] holds for ∀k0, j0 ∈ N.

On the other hand, if we can show that DHL[k0,m + 1] holds, then obviously, we get that

Hm ≤ hk0 − h1 whenever (h1, . . . , hk0) is an admissible k0-tuple.
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In the subsequent chapters, we give a criterion for DHL and show the criterion holds

for some sieve. Then we introduce Maynard’s theorem, and using this criterion, we find an

admissible set of length 600 to give the bound for H1. Lastly, again using the criterion and

doing some further calculations, we bound Hm for all m ≥ 1 which proves the theorem.
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Chapter 2

Main Ingredients for the Proof

This chapter gives the main ingredients for the proof of the theorem. Having these results

in hand, the proof of the theorem for case m = 1 will follow immediately, however, for

m ≥ 2, we will need a little more work which will be done in Chapter 3. Section 2.1 gives

the criterion for DHL to be held and proves it. Section 2.2 introduces the sieve asymptotics

and in the subsections, we show that indeed, the defined sieve holds the hypotheses of the

criterion.

2.1 Criterion for DHL

Let us define

w := blog log log xc

and W :=
∏

p<w p where p stands for a prime (the convention is meant throughout the whole

thesis). Let θ(n) be defined as a quantity log n if n is prime, and 0 otherwise. We take all

O(), o() or � asymptotically with x tending to infinity unless otherwise stated. Then we

have the following criterion for DHL.

Lemma 1. [9, Lemma 4] Let k0 ≥ 2 and m ≥ 1 be fixed integers. Suppose that for each fixed

admissible k0-tuple H and each congruence class b (mod W ) such that b + h is coprime to

W for all h ∈ H, there exists a non-negative weight function ν : N → R+, fixed quantities

α, β > 0 depending only on k0 and quantities B,R > 0 depending on x with the upper bound∑
x≤n≤2x:n≡b (W )

ν(n) ≤ (α + o(1))B
x

W
, (2.1)
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the lower bound ∑
x≤n≤2x:n≡b (W )

ν(n)θ(n+ hi) ≥ (β − o(1))B
x

W
logR (2.2)

for all hi ∈ H, and the key inequality

logR

log x
>
m

k0

α

β
. (2.3)

Then DHL[k0,m+ 1] holds.

Proof. Consider the expression

∑
x≤n≤2x:n≡b (W )

ν(n)

(
k0∑
i=1

θ(n+ hi)−m log 3x

)
,

First of all, using the hyphotesis (2.1), (2.2), and (2.3), we show that this expression is

positive for sufficiently large x.

∑
x≤n≤2x:n≡b (W )

ν(n)

(
k0∑
i=1

θ(n+ hi)−m log 3x

)

=
∑

x≤n≤2x:n≡b (W )

ν(n)

k0∑
i=1

θ(n+ hi)−
∑

x≤n≤2x:n≡b (W )

ν(n)m log 3x

=

k0∑
i=1

∑
x≤n≤2x:n≡b (W )

ν(n)θ(n+ hi)−m log 3x
∑

x≤n≤2x:n≡b (W )

ν(n)

≥ k0(β − o(1))B
x

W
logR−m(log 3x)(α + o(1))B

x

W

= B
x

W
k0β log x

(
logR

log x
− o(1)− mα

k0β
− mα log 3

k0β log x
− o(1)

)
.

Thus using hypothesis (2.3), and taking x sufficienly large, we can make the error term and

the negative quantity smaller than the difference logR
log x
− mα

k0β
which gives the positiveness of

the expression. On the other hand, as we have n + hi < 3x for sufficiently large x, the

expression is positive only if the set n+ h1, . . . , n+ hk0 contains at least m+ 1 primes.

Hence our aim in the rest of the chapter is to find a suitable weight function ν which

satisfies the given hypotheses.
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2.2 Sieve Asymptotics

Let’s introduce the hypothesis EH[θ] for a given parameter 0 < θ < 1: if Q ≤ xθ, and A ≥ 1

is any fixed number, then∑
q≤Q

sup
a∈(Z/qZ)×

∣∣∆(Λ1[x,2x]; a (q))
∣∣� x log−A x (2.4)

where

∆(α; a (q)) :=
∑

n≡a (q)

α(n)− 1

φ(q)

∑
(n,q)=1

α(n).

The Elliott-Halberstam conjecture [3] states EH[θ] holds for all 0 < θ < 1. Bombieri-

Vinogradov [1], [10] theorem is that EH[θ] holds for all 0 < θ < 1/2.

Lemma 2. [9, Proposition 5] Suppose there exists θ ∈ (0, 1) such that EH[θ] holds, and set

R = xc/2 for some fixed c ∈ (0, θ). Let f : [0,+∞)k0 → R be a fixed symmetric1 smooth

function supported on the simplex

∆k0 := {(t1, . . . , tk0) ∈ [0,+∞)k0 : t1 + . . .+ tk0 ≤ 1}.

Then we can find a non-negative weight function ν satisfying the bounds (2.1), (2.2) with

B :=

(
W

φ(W )

)k0 1

logk0 R
, (2.5)

α :=

∫
∆k0

f1,...,k0(t1, . . . , tk0)
2 dt1 . . . dtk0 , (2.6)

β :=

∫
∆k0−1

f1,...,k0−1(t1, . . . , tk0−1, 0)2 dt1 . . . dtk0−1 (2.7)

where

fi1,...,ij(t1, . . . , tn) :=
∂j

∂ti1 . . . ∂tij
f(t1, . . . , tn)

stands for the mixed partial derivatives of f .

We prove Lemma (2) by constructing the weight function ν. Namely, the sieve we are

1By symmetric, we mean a function which is invariant under any permutation of the coordinates of its
argument.
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going to use is defined as following:

ν(n) :=

 ∑
d1,...,dk0∈S:

di|n+hi for all i=1,...,k0

(
k0∏
i=1

µ(di)

)
f

(
log d1

logR
, . . . ,

log dk0
logR

)
2

(2.8)

where S denotes the square-free integers, and µ is the Möbius function.

Our aim is to show that with this ν, α and β defined in (2.6) and (2.7) satisfy the bounds

(2.1) and (2.2) defined in Lemma (1).

2.2.1 Proof of the Existence for α

In this section, we prove that with the predefined weight function ν, the α defined in

Lemma (2) satisfies hypothesis (2.1) in Lemma (1).

Using (2.8) and interchanging sums, we can rewrite the left hand side of (2.1) as following:

∑
d1,...,dk0 ,d

′
1,...,d

′
k0
∈S

(
k0∏
j=1

µ(dj)µ(d′j)

)

f

(
log d1

logR
, . . . ,

log dk0
logR

)
f

(
log d′1
logR

, . . . ,
log d′k0
logR

)
∑

x≤n≤2x:n≡b (W );

[dj ,d
′
j ]|n+hj for all j=1,...,k0

1.

Now we show that n + h0, . . . , n + hk0 have no common factor. Suppose n + hi and n + hj

for i 6= j have a common factor, then consider:

gcd(n+ hi, n+ hj) ≤ |hi − hj| < w.

We get that if they have a common factor p, then it is less than w, hence it divides W .

Because of the choice of b (mod W ), if n ≡ b (mod W ), for such primes p|W ,

n+ h ≡ b+ h 6≡ 0 (mod p)

which gives contradiction. Now as we have n + h0, . . . , n + hk0 have no common factor,

clearly, the inner sum vanishes if [d1, d
′
1], . . . , [dk0 , d

′
k0

] are not coprime. For the case they are
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coprime, the inner sum can be estimated by

x

W [d1, d′1] . . . [dk0 , d
′
k0

]
+O(1).

By the definition, the function f vanishes outside the simplex

∆k0 := {(t1, . . . , tk0) ∈ [0,+∞)k0 : t1 + . . .+ tk0 ≤ 1}.

Hence it will vanish unless we have d1 . . . dk0 , d
′
1 . . . d

′
k0
≤ R. With this in mind, the contri-

bution of the error term O(1) can be bounded by

O

 ∑
d1,...,dk0 ,d

′
1,...,d

′
k0

:d1...dk0 ,d
′
1...d

′
k0
≤R

1

 = O

 ∑
d1,...,dk0 :d1...dk0≤R

1

2 ,

In fact, the sum shows the number of ways that the numbers up to R can be written as a

product of k0 numbers. We compute the sum using the following lemma.

Lemma 3. Let τk(n) the number of ways that a number n can be written as a product of

k ≥ 1 numbers. Then we have ∑
n≤x

τk(n)� x logO(1) x

where O(1) depends on k.

Proof. We prove the lemma by induction. For k = 1, it is trivial as we have∑
n≤x

τ1(n) =
∑
n≤x

1 = x+O(1) = x logO(1) x.

Now we assume the statement holds for k − 1 and prove it for k∑
n≤x

τk(n) =
∑
n≤x

∑
d|n

τk−1

(n
d

)
=
∑
d≤x

∑
n≤x,
d|n

τk−1

(n
d

)
=
∑
d≤x

∑
m≤x

d

τk−1(m)

�
∑
d≤x

(x
d

logO(1) x

d

)
≤
∑
d≤x

x

d
logO(1) x = x logO(1)x

∑
d≤x

1

d
� x logO(1) x.

This completes the proof.

Hence using the lemma we get the summand in the error term is bounded by� R logO(1)R,

and the error term can be nicely bounded by R2 logO(1)R. Since R = xc/2 and c < 1/2 < 1,
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we get the contribution of the error term is negligible. Thus to conclude the proof of (2.1),

recalling (2.1) and (2.5), it suffices to show

∑
d1,...,dk0 ,d

′
1,...,d

′
k0
∈S:

[d1,d′1],...,[dk0 ,d
′
k0

] coprime

(
k0∏
j=1

µ(dj)µ(d′j)

)
f
(

log d1
logR

, . . . ,
log dk0
logR

)
f
(

log d′1
logR

, . . . ,
log d′k0
logR

)
[d1, d′1] . . . [dk, d′k]

= (α + o(1))

(
W

φ(W )

)k0 1

logk0 R
.

(2.9)

Now we extend the function f : [0,+∞)k0 → R to a smooth compactly supported function

f : Rk0 → R, and we continue referring it f as well. Using Fourier inversion, we express f

in the following form:

f(t1, . . . , tk0) =

∫
Rk0

η(~s)e−
∑k0

j=1(1+isj)tj d~s (2.10)

where ~s := (s1, . . . , sk0) and η : Rk → C is a smooth function with rapid decay bounds

|η(~s)| � (1 + |~s|)−A (2.11)

for any fixed A > 0. Hence using (2.10), the left hand side of (2.9) can be rewritten as∫
Rk0

∫
Rk0

η(~s)η(~s′)H(~s, ~s′) d~sd~s′ (2.12)

where ~s′ := (s′1, . . . , s
′
k0

) and

H(~s, ~s′) :=
∑

d1,...,dk0 ,d
′
1,...,d

′
k0
∈S:

[d1,d′1],...,[dk0 ,d
′
k0

] coprime

(
k0∏
j=1

µ(dj)µ(d′j)

) ∏k0
j=1 d

−(1+isj)/ logR
j (d′j)

−(1+is′j)/ logR

[d1, d′1] . . . [dk0 , d
′
k0

]
.

(2.13)

We can factorize H(~s, ~s′) as an Euler product

H(~s, ~s′) =
∏
p>w

(
1−

k0∑
j=1

(
p−1−(1+isj)/ logR + p−1−(1+is′j)/ logR − p−1−(1+isj)/ logR−(1+is′j)/ logR

))
.
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In particular, we have the crude bound

|H(~s, ~s′)| ≤
∏
p>w

(1 + 3k0p
−1/ logR) ≤

∏
p>w

(
1 + p−1/ logR

)3k0 ≤

(∏
p>w

(
1 + p−1/ logR

))3k0

≤
(
ζ

(
1 +

1

logR

))3k0

� (logR)3k0 = logO(1)R.

Hence combining this with (2.11), we get that the contribution to (2.12) is negligible when

we take |~s| ≥
√

logR or |~s′| ≥
√

logR. Therefore, we restrict our integral in (2.12) to the

region |~s|, |~s′| ≤
√

logR. Recalling that ζ(s) = 1
s−1

(1 + o(1)) for <s > 1, s tending to 0 and

using the bound W = O(log log x), we have the following Euler product approximations in

this region:

∏
p>w

(
1− p−1−(1+isj)/ logR

)
= ζ

(
1 +

1 + isj
logR

)−1 ∏
p≤w

(
1− p−1−(1+isj)/ logR

)−1

= (1 + o(1))

(
1 + isj
logR

)∏
p≤w

(
1− p−1

)−1

= (1 + o(1))
W

φ(W )

(
1 + isj
logR

)
.

(2.14)

Also, we can prove the following identity by simply multiplying the left hand side of the

equation and using p > w and w tends to infinity:

k0∏
j=1

(
1− p−1−(1+isj)/ logR

) (
1− p−1−(1+is′j)/ logR

)
1− p−1−(1+isj)/ logR−(1+is′j)/ logR

=

k0∏
j=1

(
1− p−1−(1+isj)/ logR

) (
1− p−1−(1+is′j)/ logR

)(
1 + p−1−(1+isj)/ logR−(1+is′j)/ logR + o

(
1

p2

))

= 1−
k0∑
j=1

(
p−1−(1+isj)/ logR + p−1−(1+is′j)/ logR − p−1−(1+isj)/ logR−(1+is′j)/ logR

)
+ o

(
1

p2

)
.

(2.15)
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Thus using (2.14) and (2.15) and recalling
∑

p>w
1
p2

= o(1), we get

H(~s, ~s′) = (1 + o(1))

k0∏
j=1

∏
p>w

(
1− p−1−(1+isj)/ logR

) (
1− p−1−(1+is′j)/ logR

)
1− p−1−(1+isj)/ logR−(1+is′j)/ logR

= (1 + o(1))

(
W

φ(W )

)k0 1

logk0 R

k0∏
j=1

(1 + isj)(1 + is′j)

1 + isj + 1 + is′j
.

Now we again use (2.11) to get rid of the error term and remove our restriction to |~s|, |~s′| ≤
√

logR. Hence we get that it suffices to prove

∫
Rk0

∫
Rk0

η(~s)η(~s′)

k0∏
j=1

(1 + isj)(1 + is′j)

1 + isj + 1 + is′j
d~sd~s′ = α.

To prove this, we repeatedly differentiate (2.10) under the integral sign and get

f1,...,k0(t1, . . . , tk0) = (−1)k0
∫
Rk0

η(~s)e−
∑k0

j=1(1+isj)tj

k0∏
j=1

(1 + isj) d~s.

Hence taking the square of both sides

f1,...,k0(t1, . . . , tk0)
2 =

∫
Rk0

∫
Rk0

η(~s)η(~s′)e−
∑k0

j=1(1+isj+1+is′j)tj

k0∏
j=1

(1 + isj)(1 + is′j) d~sd~s
′;

and to conclude the proof of (2.1), we simply integrate this by using Fubini’s theorem for

t1, . . . , tk0 ∈ [0,+∞) and use (2.6).

2.2.2 Proof of the Existence for β

In this section, we prove that with the predefined weight function ν, the β defined in

Lemma (2) satisfies hypothesis (2.2) in Lemma (1). Using the symmetry hypothesis on

f , it suffices to prove for the case i = k0 as all other cases follow similarly. Again using (2.8),

we can rewrite the left hand side of (2.2) as following:

∑
d1,...,dk0 ,d

′
1,...,d

′
k0
∈S

(
k0∏
j=1

µ(dj)µ(d′j)

)
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f

(
log d1

logR
, . . . ,

log dk0
logR

)
f

(
log d′1
logR

, . . . ,
log d′k0
logR

)
∑

x≤n≤2x:n≡b (W );

[dj ,d
′
j ]|n+hj for all j=1,...,k0

θ(n+ hk0).

By definition, θ(n) vanishes unless n is prime, and here observing that n+ k0 is comparable

to x, thus it exceeds R, we get that the inner sum vanishes unless dk0 = d′k0 = 1. In this

case, we have ∑
d1,...,dk0−1,d

′
1,...,d

′
k0−1∈S

(
k0−1∏
j=1

µ(dj)µ(d′j)

)

f

(
log d1

logR
, . . . ,

log dk0−1

logR
, 0

)
f

(
log d′1
logR

, . . . ,
log d′k0−1

logR
, 0

)
∑

x≤n≤2x:n≡b (W );

[dj ,d
′
j ]|n+hj for all j=1,...,k0−1

θ(n+ hk0).

As in the previous section, the inner sum vanishes unless [d1, d
′
1], . . . , [dk0−1, d

′
k0−1] are co-

prime, and one of the functions involving f vanishes unless

d1 . . . dk0−1, d
′
1 . . . d

′
k0−1 ≤ R. (2.16)

Now we define the discrepancy for any modulus q as

E(q) := sup
a∈(Z/qZ)×

∣∣∣∣∣∣
∑

x≤n≤2x:n+hk0=a (q)

θ(n+ hk0)−
x

φ(q)

∣∣∣∣∣∣ . (2.17)

Here we can use (2.4), and to replace the Λ function with θ function, we observe that∑
n≤x

Λ(n) =
∑
n≤x

θ(n) +O
(
x1/2 log2 x

)
and using prime number theorem, we have∑

n≤x

Λ(n) = x+O
(
xe−c1

√
log x
)

for some c1 > 0.

14

C
E

U
eT

D
C

ol
le

ct
io

n



The error terms are negligible, and R = xc/2 and 0 < c < θ, hence we can use Bombieri-

Vinogradov theorem to get ∑
q≤WR2

E(q)� x log−A x (2.18)

for any fixed A > 0. On the other hand, using the Chinese remainder theorem, the sum∑
x≤n≤2x:n≡b (W );

[dj ,d
′
j ]|n+hj for all j=1,...,k0−1

θ(n+ hk0)

can be written as ∑
x≤n≤2x:n+hk0≡a (q)

θ(n+ hk0)

where

q := W

k0−1∏
j=0

[dj, d
′
j] (2.19)

and a(q) is a primitive residue class, and by (2.16), we have q ≤ WR2. By (2.18), we have

∑
x≤n≤2x:n+hk0≡a (q)

θ(n+ hk0) =
x

φ(W )
∏k0−1

j=0 φ([dj, d′j])
+O

(
E

(
W

k0−1∏
j=0

[dj, d
′
j]

))
.

Now we look at the error term which we can bound by

O

 ∑
d1,...,dk0−1,d

′
1,...,d

′
k0−1:d1...dk0−1,d

′
1...d

′
k0−1≤R

E

(
W

k0−1∏
j=0

[dj, d
′
j]

) .

Here using the fact that there are O(τ(q)O(1)) ways of choosing d1, . . . , dk0−1, d
′
1, . . . , d

′
k0−1

which satisfies (2.19), and again recalling q ≤ WR2, we can bound the expression by

�
∑

q≤WR2

τ(q)O(1)E(q).
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Here using Cauchy-Schwarz inequality and (2.18), we have

=

 ∑
q≤WR2

τ(q)O(1)E(q)

21/2

�

 ∑
q≤WR2

τ(q)O(1)
∑

q≤WR2

E(q)2

1/2

�

 ∑
q≤WR2

τ(q)O(1)E(q)
∑

q≤WR2

E(q)

1/2

� (x log−A x)1/2

 ∑
q≤WR2

τ(q)O(1)E(q)

1/2

(2.20)

for any fixed A. On the other hand, we have the crude bound E(q) � x
q

logO(1) x. Substi-

tuting this in (2.20), we get

�
(
x log−A x

)1/2

 ∑
q≤WR2

τ(q)O(1)x

q
logO(1) x

1/2

�
(
x log−A x

)1/2
(
x logO(1) x

)1/2

 ∑
q≤WR2

τ(q)O(1)

q

1/2

.

Now we wish to bound
∑

q≤WR2
τ(q)O(1)

q
. Consider the following expression [7, equation 2.31]

∑
q≤y

τ(q)O(1) � y logO(1) y.

Using this, we also have ∑
y/2≤q≤y

τ(q)O(1) � y logO(1) y.

Then
2

y

∑
y/2≤q≤y

τ(q)O(1) � 2 logO(1) y.

Then ∑
y/2≤q≤y

τ(q)O(1)

q
≤

∑
y/2≤q≤y

τ(q)O(1)

y/2
� 2 logO(1) y.

Applying this in the log2 y many intervals [y/2, y], [y/4, y/2], etc. and picking up� logO(1) y

in each of them, their sum is at most logO(1) y. Substituting this back, we bound the error

by

�
(
x log−A x

)1/2
(
x logO(1) x

)1/2 (
logO(1)

(
WR2

))1/2

.
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Hence we get the error term is negligible. Thus to conclude the proof of (2.2), again recalling

(2.2) and (2.5), it suffices to prove

∑
d1,...,dk0−1,d

′
1,...,d

′
k0−1∈S

(
k0−1∏
j=1

µ(dj)µ(d′j)

)

f
(

log d1
logR

, . . . ,
log dk0−1

logR
, 0
)
f
(

log d′1
logR

, . . . ,
log d′k0−1

logR
, 0
)

∏k0−1
j=0 φ([dj, d′j])

= (β − o(1))

(
W

φ(W )

)k0−1
1

logk0−1R
.

From this point on, we can proceed in the same way as we did in Section 2.2.1 to prove (2.9)

by replacing k0 and f(t1, . . . , tk0) with k0 − 1 and f(t1, . . . , tk0−1, 0) respectively. However,

the only notable difference comes with the presence of Euler totient function which primarily

changes the H(~s, ~s′) function which was defined in (2.13). Let’s now define a new function

H̃(~s, ~s′) :=
∑

d1,...,dk0 ,d
′
1,...,d

′
k0
∈S:

[d1,d′1],...,[dk0 ,d
′
k0

] coprime

(
k0∏
j=1

µ(dj)µ(d′j)

) ∏k0
j=1 d

−(1+isj)/ logR
j (d′j)

−(1+is′j)/ logR

φ([d1, d′1]) . . . φ([dk0 , d
′
k0

])
.

(2.21)

Let’s fix a set of d1, . . . , dk0 and d′1, . . . , d
′
k0

and consider the prime factorization of
∏k0

i=1[di, d
′
i].

Recalling [d1, d
′
1], . . . , [dk0 , d

′
k0

] are all coprime and di and d′i for 1 ≤ i ≤ k0 are square free

integers, we get each prime occurs only once in the prime factorization of the product. Hence

we may suppose

[d1, d
′
1] . . . [dk0 , d

′
k0

] = p1 . . . pl for some l ∈ N.

Then we get

φ([d1, d
′
1]) . . . φ([dk0 , d

′
k0

]) = (p1 − 1) . . . (pl − 1).

Hence we can write the summand in (2.21) for each fixed set d1, . . . , dk0 and d′1, . . . , d
′
k0

as(
k0∏
j=1

µ(dj)µ(d′j)

) ∏k0
j=1 d

−(1+isj)/ logR
j (d′j)

−(1+is′j)/ logR

(p1 − 1) . . . (pl − 1)
. (2.22)

Using 1
p−1

= 1
p

+O( 1
p2

), we get the following bound for (2.22)

(
k0∏
j=1

µ(dj)µ(d′j)

)(
k0∏
j=1

d
−(1+isj)/ logR
j (d′j)

−(1+is′j)/ logR

)(
l∏

j=1

(
1

pj
+O

(
1

p2
j

)))
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=

(
k0∏
j=1

µ(dj)µ(d′j)

)(
k0∏
j=1

d
−(1+isj)/ logR
j (d′j)

−(1+is′j)/ logR

)(
1

p1 . . . pl
+

l∑
j=1

O

(
1

p2
j

))
.

Finally, using
∑

p>w
1
p2

= o(1), we get

H̃(~s, ~s′) = H(~s, ~s′) + o(1).

Hence we conclude the error term coming with the presence of Euler totient function is

negligible. This completes the proof.
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Chapter 3

Proof of the Theorem

This chapter introduces the main theorem and gives the proofs for different cases. Section

3.1 introduces the theorem in two different versions and gives a Corollary of Lemma (2) with

a proof. The following subsections show how the theorem follows from the corollary for the

cases m = 1 and m ≥ 2 respectively.

3.1 Theorem Statement

Let’s recall (1.1). Then with this notation, we have

Theorem 1. Unconditionally, we have the following bounds:

• H1 ≤ 600.

• Hm ≤ Cm3e4m for an absolute constant C and any m ≥ 1.

Using the DHL notation introduced in the conjecture, we can rewrite the theorem in

the following form.

Theorem 2 (DHL version). Unconditionally, we have the following bounds:

• DHL[105, 2].

• DHL[k0,m+ 1] for sufficiently large k0 and 4m < log k0 − 2 log log k0 − 2.

In this section, we are going to prove a corollary of Lemma (2), and using this corollary,

we will prove the theorem for different cases in the subsections.

Let the quantity Mk0 be defined as

Mk0 := sup
f
k0

∫
∆k0−1

f1,...,k0−1(t1, . . . , tk0−1, 0)2 dt1 . . . dtk0−1∫
∆k0

f1,...,k0(t1, . . . , tk0)
2 dt1 . . . dtk0

(3.1)
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where f ranges over all smooth symmetric functions f : [0,+∞)k0 → R that are supported

on the simplex

∆k0 := {(t1, . . . , tk0) ∈ [0,+∞)k0 : t1 + . . .+ tk0 ≤ 1}.

Then using this, we have the following corollary.

Corollary. Let EH[θ] hold for some θ ∈ (0, 1), and let k0 ≥ 2, m ≥ 1 be integers such that

Mk0 >
2m

θ
. (3.2)

Then DHL[k0,m+ 1] holds.

Proof. We show (3.2) implies that for some f , (2.3) holds, hence the hypothesis of Lemma (1)

are satisfied. Note that the denominator and numerator of (3.1) show α and β which were

defined in (2.6) and (2.7) respectively. We choose f such that k0β
α

is close enough to Mk0

such that k0β
α
> 2m

θ
. Using this f we can write α and β by (2.6) and (2.7) as

α =

∫
∆k0

f1,...,k0(t1, . . . , tk0)
2 dt1 . . . dtk0 ,

β =

∫
∆k0−1

f1,...,k0−1(t1, . . . , tk0−1, 0)2 dt1 . . . dtk0−1.

Then

k0
β

α
>

2m

θ

which is equivalent to
θ

2
>
m

k0

α

β
. (3.3)

On the other hand, recalling R = xc/2 and 0 < c < θ, we can write the left hand side of

(2.3) as
logR

log x
=

log xc/2

log x
=
c

2
.

We can take c as close to θ as we please to get

logR

log x
=
c

2
>
m

k0

α

β

which is (2.3). This concludes the proof.

Substituting F := f1,...,k0 and using the fundamental theorem of calculus and approxi-
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mation argument to remove the smoothness hypothesis on F , we can write (3.1) as

Mk0 := sup
F
k0

∫
∆k0−1

(
∫∞

0
F (t1, . . . , tk0−1, tk0) dtk0)

2 dt1 . . . dtk0−1∫
∆k0

F (t1, . . . , tk0)
2 dt1 . . . dtk0

where F ranges over all bounded measurable functions supported on the simplex.

3.1.1 Proof for Case m = 1

We are going to use the corollary for the case k0 = 105. Namely, we have

M105 > 4. (3.4)

We do not prove this inequality in this thesis, but give a sketch of the proof. This can be

proven by taking

F = 1∆k0

d∑
i=1

ai(1− P1)biP ci
2

for different real coefficients ai and non-negative integers bi and ci, where

P1(t1, . . . , tk0) := t1 + . . .+ tk0

and

P2(t1, . . . , tk0) := t21 + . . .+ t2k0 .

Doing some further calculations which were done in Maynard’s original paper and using the

computer, we can get the result.

Now in (3.2), we can set m = 1. Since we have strict inequality in (3.4), by Bombieri-

Vinogradov theorem, we can take θ as close to 1/2 as we please to satisfy (3.1). Hence by

the corollary, we get DHL[105, 2] holds. This proves the first part of the Theorem (2).

To prove the first part of the Theorem (1), we have the following admissible 105-tuple

(0, 10, 12, 24, 28, 30, 34, 42, 48, 52, 54, 64, 70, 72, 78, 82, 90, 94, 100, 112, 114, 118,

120, 124, 132, 138, 148, 154, 168, 174, 178, 180, 184, 190, 192, 202, 204, 208, 220,

222, 232, 234, 250, 252, 258, 262, 264, 268, 280, 288, 294, 300, 310, 322, 324, 328,

330, 334, 342, 352, 358, 360, 364, 372, 378, 384, 390, 394, 400, 402, 408, 412, 418,

420, 430, 432, 442, 444, 450, 454, 462, 468, 472, 478, 484, 490, 492, 498, 504, 510,

528, 532, 534, 538, 544, 558, 562, 570, 574, 580, 582, 588, 594, 598, 600)
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found by Engelsma. Using this and recalling Hm = hk0 − h1, we get H1 ≤ 600. This

concludes the proof.

Remark. In fact, we can show M5 > 2. Hence if we assume Elliott-Halberstam conjecture,

we can take θ as close to 1 as we please and get DHL[5, 2] holds. Taking admissible 5-tuple

(0, 2, 6, 8, 12), we get H1 ≤ 12.

3.1.2 Proof for Case m ≥ 2

In this paper, as we follow Tao’s blog post, we do not prove the second part of the theorem.

Instead, we are going to prove a slightly weaker version which Tao proves in his post [9].

Namely, we prove unconditionally, we have

DHL[k0,m+ 1] for sufficiently large k0 and 4m < log k0 − 4 log log k0 −O(1). (3.5)

As the bound 4m < log k0 − 4 log log k0 − O(1) is satisfied if k0 ≥ Cm4e4m for sufficiently

large C and m large enough. Also, using the fact that one can establish an admissible k0-

tuple of length O(k0 log k0) by simple taking first k0 primes greater than k0 which is trivially

an admissible k0-tuple. Then in other words, unconditionally, we have

Hm ≤ Cm5e4m for an adjusted absolute constant C and m ≥ 1.

Now we prove (3.5). In fact, after the corollary, we want to show

Mk0 > log k0 − 4 log log k0 −O(1). (3.6)

From this point on using the same reasoning as in Section 3.1.1, we conclude (3.5). Here we

use the following function

F = 1∆k0
F0

where F0 is the tensor product

F0(t1, . . . , tk) =

k0∏
i=1

k
1/2
0 g(k0ti)

and g : [0,+∞)→ R is supported on some interval [0, T ] with the normalization∫ ∞
0

g(t)2 dt = 1. (3.7)
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Hence the function F is clearly symmetric and supported on the simplex

∆k0 := {(t1, . . . , tk0) ∈ [0,+∞)k0 : t1 + . . .+ tk0 ≤ 1}.

Now let’s consider the fraction

k0

∫
∆k0−1

(∫∞
0
F (t1, . . . , tk0−1, tk0) dtk0

)2
dt1 . . . dtk0−1∫

∆k0
F (t1, . . . , tk0)

2 dt1 . . . dtk0
.

Bounding F by F0 and using Fubini’s theorem and (3.7), we can nicely bound the denomi-

nator by ∫
∆k0

F (t1, . . . , tk0)
2 dt1 . . . dtk0 ≤ 1.

Thus we get the following lower bound for Mk0

Mk0 ≥ k0

∫
∆k0−1

(∫ ∞
0

F (t1, . . . , tk0−1, tk0) dtk0

)2

dt1 . . . dtk0−1.

Now we consider the inner integral

∫ ∞
0

F (t1, . . . , tk0−1, tk0) dtk0 =

∫ ∞
0

1∆k0

k0∏
i=1

k
1/2
0 g(k0ti) dtk0 . (3.8)

We observe that if tk0 >
T
k0

, then k0tk0 > T , and as g is supported on the interval [0, T ], we

get g(k0tk0) = 0. Hence we are interested only in the region tk0 ≤ T
k0

. But in this region, the

simplex ∆k0 is equivalent to

t1 + . . .+ tk0−1 ≤ 1− T

k0

.

Hence we can write (3.8) as

∫ ∞
0

F (t1, . . . , tk0−1, tk0) dtk0 =

(
k0−1∏
i=1

k
1/2
0 g(k0ti)

)
k

1/2
0

∫ ∞
0

g(k0tk0) dtk0

=

(
k0−1∏
i=1

k
1/2
0 g(k0ti)

)
k
−1/2
0

∫ ∞
0

g(t) dt
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whenever we have t1 + . . .+ tk0−1 ≤ 1− T
k0

. Hence we get

Mk0 ≥ k0

∫
t1+...+tk0−1≤1− T

k0

((
k0−1∏
i=1

k
1/2
0 g(k0ti)

)
k
−1/2
0

∫ ∞
0

g(t) dt

)2

dt1 . . . dtk0−1

=

(∫ ∞
0

g(t) dt

)2 ∫
t1+...+tk0−1≤1− T

k0

(
k0−1∏
i=0

k
1/2
0 g(k0ti)

)2

dt1 . . . dtk0−1.

From now on, we use probabilistic methods to lower bound the last quantity. LetX1, . . . , Xk0−1

be independent, identically distributed non-negative real random variables with probabil-

ity density g(t)2; this is well-defined due to the normalization on g. We observe that(∏k0−1
i=1 k

1/2
0 g(k0ti)

)2

is the joint probability density of 1
k0

(X1, . . . , Xk0−1). Thus we get

Mk0 ≥
(∫ ∞

0

g(t) dt

)2

P(X1 + . . .+Xk0−1 ≤ k0 − T ).

Here we use Chebyshev’s inequality to lower bound the probability. We assume the mean

(k0 − 1)µ of X1, . . . , Xk0−1, where µ :=
∫ T

0
tg(t)2 dt, is less than k0 − T or the even stronger

(k0 − 1)µ < k0 − T. (3.9)

The variance of X1, . . . , Xk0−1 is k0−1 times the variance of a single Xi which we can bound

by

Var(Xi) ≤ EX2
i ≤ TEXi = Tµ.

Hence by Chebyshev’s inequality, we get

P(X1 + . . .+Xk0−1 ≤ k0 − T ) = 1−P(X1 + . . .+Xk0−1 > k0 − T )

= 1−P(X1 + . . .+Xk0−1 − (k0 − 1)µ > k0 − T − (k0 − 1)µ)

≥ 1−P(|X1 + . . .+Xk0−1 − (k0 − 1)µ| > k0 − T − (k0 − 1)µ)

≥ 1− (k0 − 1)Tµ

(k0 − T − (k0 − 1)µ)2

where we use (3.9) to avoid 0 division in the last inequality. Using k0−1 < k0 and assuming

k0 − T > k0µ, we can make some simplifications:

P(X1 + . . .+Xk0−1 ≤ k0 − T ) ≥ 1− k0Tµ

(k0 − T − k0µ)2
.
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Also, dividing both numerator and denominator by k0 and assuming µ ≤ 1, we can further

simplify and get

P(X1 + . . .+Xk0−1 ≤ k0 − T ) ≥ 1− T

k0(1− T/k0 − µ)2
.

Hence we get

Mk0 ≥
(∫ T

0

g(t) dt

)2(
1− T

k0(1− T/k0 − µ)2

)
(3.10)

with g : [0, T ]→ R satisfying (3.7) and

µ =

∫ T

0

tg(t)2 dt < 1− T

k0

which also implies (3.9). In particular, we set the function g of the form

g(t) =
c

1 + At

with A := log k0 and T := k0 log−3 k0. In order to satisfy (3.7), we need to have

1 =

∫ ∞
0

g(t)2 dt =

∫ T

0

g(t)2 dt =

∫ T

0

(
c

1 + At

)2

dt = c2

∫ T

0

1

(1 + At)2
dt

= c2

[
− 1

A

1

(1 + At)

]T
0

= c2 T

1 + AT
.

.

Hence we get

c2 =
1 + AT

T
= A+

1

T
= log k0 +

log3 k0

k0

= log k0 +O(1).

Thus we have

c = log1/2 k0 +O(log−1/2 k0).
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We also compute µ as

µ =

∫ T

0

t

(
c

1 + At

)2

dt = c2

∫ T

0

t

(1 + At)2
dt =

c2

A2

[
log(1 + At) +

1

1 + At

]T
0

=
c2

A2

(
log(1 + AT ) +

1

1 + AT
− 1

)
=

c2

A2
log(1 + AT ) +

1

A2T
− c2

A2

=
1 + log k0

k0

log k0

log(1 + k0 log−2 k0) +
log k0

k0

−
1 + log k0

k0

log k0

=

(
1

log k0

+
1

k0

)(
log k0 − 2 log log k0 +O

(
log(k0 log−2 k0)

))
+

log k0

k0

− 1

log k0

− 1

k0

= 1− 2 log log k0

log k0

+
log k0

k0

− 2 log log k0

k0

+
log k0

k0

− 1

log k0

− 1

k0

+O

(
1

log k0

)
= 1− 2 log log k0

log k0

+O

(
1

log k0

)
.

Substituting this back, we get

T

k0(1− T/k0 − µ)2
= O

(
1

log k0

)
.

Lastly, for the integral of g, we have∫ T

0

g(t) dt =

∫ T

0

c

1 + At
dt =

c

A
log [1 + At]T0 =

c

A
log(1 + AT )

=
c

A
log(1 + k0 log−2 k0)� c

A
(log k0 − 2 log log k0)

= log1/2 k0 − 2 log−1/2 k0 log log k0 +O(log−1/2 k0).

Putting these back to (3.10), we get the result. This completes the proof.

Remark. Again, if we assume Elliott-Halberstam conjecture, we can take θ as close to 1 as we

please and get DHL[k0,m+ 1] holds for sufficiently large k0 and 2m < log k0− 4 log log k0−
O(1).

Remark. We have Mk0 ≤ k0
k0−1

log k0 for every k0 ∈ N by Corollary 6.4 of [8]. In particular,

if we set k0 = 50, we get M50 < 4, hence we fail to prove DHL[50, 2] with this method.

However, the latest result [8] uses some modification (based on Zhang’s ideas [11]) to prove

DHL[50, 2] which is equivalent to H1 ≤ 246.
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