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ABSTRACT

In this thesis, I quantify several aspects of success, defined as the collective re-
sponse to individual performance in five different domains: science, film, mu-
sic, literature, and urban spaces. The general goal of my work is to provide new
insights into the evolution of success in these five domains. To achieve that, I
particularly focus on the role of networking behavior and the effect of the social
fabric of the studied fields on the emergence of success.

Each chapter tackles different questions related to the temporal unfolding
and the determinants of success in different social domains. First, I build on a
previous modeling approach to describe the evolution of scientific careers and
capture the role of randomness in science, music, literature, and film. In addi-
tion, I extend the discussion on the role of randomness to networking by ana-
lyzing the co-evolution of success and collaboration networks. Second, I zoom
in to the field of electronic music. After uncovering the rise and fall of different
DJ communities, I test a definition of mentorship and show the controversial
effects mentoring has on the mentees’ prospected success. Third, I analyze the
time evolution of the popularity of urban venues and reveal that their success
trajectories follow several substantially different shapes over time. Moreover,
I present machine-learning-based modeling efforts on understanding what are
the most influential urban features predicting what direction a venue’s success
will take. Finally, I outline the main contributions of my thesis work and discuss
several possible real-world applications.
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CHAPTER 1

INTRODUCTION

Throughout history, exceptionally productive and successful people, from sci-
entists to artists, have made a long-lasting impact on culture and society. How-
ever, our understanding of the emergence of their success and the evolution of
their careers is still vague and incomplete. For example, Albert Einstein, who
authored more than a hundred scientific papers from 1901-1955, published his
four most influential articles in 1905 at a time he was 25 years old [1, 2]. On
the other contrarily, George Orwell, a classic example of late-bloomers [3], pub-
lished his two most famous novels, Animal Farm and 1984, during the last years
of his career [4]. Picasso paired exceptional productivity with success as he
executed more than twenty-thousand paintings, while Mendel, the founder of
modern genetics, wrote only seven publications [5–7].

These anecdotal examples illustrate that outstanding recognition and suc-
cess in creative fields can come in diverse forms, apparently with less regard
for experience, biological or career age, and overall productivity [8]. Therefore
I ask: what are the major components that drive success? How much does suc-
cess depend on the individuals themselves? What could be the role of external
random factors? And how does the interplay – the network – of the individuals
fit into the picture? How can we use the recently available large-scale databases
combined with tools of network analysis and data science to answer these ques-
tions?

Social psychology has been studying career patterns of eminent artists and
scientists for decades, attempting to capture common patterns throughout disci-
plines and ages [8–13]. While these early-stage studies produced several impor-
tant and pioneering ideas and theories, they lack quantitative evidence, since
most of them are based on case-studies or the analysis of small datasets cover-
ing only small, biased samples of high-achievers. Therefore, the generality of
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2 CHAPTER 1. INTRODUCTION

these findings is questionable at the scale of entire populations of artists, scien-
tists, etc. Fortunately, during recent years, the availability of online platforms
and large datasets covering science (e.g., Web of Science [2]), film (e.g., Internet
Movie Database, IMDb [14]), music (e.g., Discogs [15]), or even urban venues
(e.g., Foursquare [16]) opened the door to test old theories and build new ones,
which even led to the birth of a new data-driven field, computational social
science [2, 14–21].

A driving area of the research aiming to quantify success under the umbrella
of computational social science has been focusing on describing and modeling
the success of scientists [22, 23]. These research projects include thorough anal-
yses of how to measure the impact of scientific papers and how to extend those
measurements to the success of individuals, most typically via various func-
tions of the number of citations papers receive [24, 25]. In addition, interesting
work has been published on understanding statistical properties and temporal
evolution of scientific impact, just as much as its implications on research eval-
uation and policymaking [26–29]. Other researchers attempted to incorporate
interdisciplinary differences to capture the boundaries of different fields, such
as computer science and physics and discussed the effects of interdisciplinarity
on success [30–33].

Researchers’ interests have looked beyond science and started analyzing
other creative domains as well, both by applying well-established methodolo-
gies and ideas developed for studying success in science, and inventing new
ones, resulting in the emergence of the science of success [34]. For instance, Yin
and co-authors proposed a mechanistic model of success and failure in the en-
trepreneurial ecosystem [35]. Lacasa et al. focused on individual success in the
show business by using data from the IMDb [14, 36], while Yucesoy et al. took
tennis as an example to capture and measure the differences between perfor-
mance and success [37].

While fundamental work has been done on the study of entire disciplines
by analyzing populations of individuals both within and outside of science, im-
portant contributions have been published on the level of individual success as
well. For instance, previous work discussed the mobility of researchers with
regards to impact and institutional prestige [38, 39], research interest evolution
and topical changes of scientists [40], and how scientific credit is allocated for
follow-up works [41]. Further research attempted to model the evolution and
age dynamics of individual careers, both focusing on high achievers, entire pop-
ulations, and the comparisons of these two directions [42–45]. The work of Sina-
tra et al. [43] introduced a modeling approach named the Q-model, which I am
building on in this dissertation. This model allows us to decompose scientific
impact into two components: one encoding the individuals’ ability to generate
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3

impact, and one representing all external fluctuations (luck). Both components
align with existing works discussing the role and nature of individual merit and
luck in success [46–48].

Investigating entire disciplines from science to music is just as important for
understanding the universalities of success as modeling the dynamics of indi-
viduals; one represents the macroscopic while the other the microscopic per-
spective. Not surprisingly, researchers also started to combine the micro- and
macroscopic aspects to track down the role of the individuals in the social fabric
of their fields – in other words, taming the network effects in success. It has been
shown that individuals’ network position, for instance, captured by degree cen-
trality or constraint, has a certain predictive power on success in creative fields
like jazz or science [49–55]. Brian Uzzi and his colleagues reported that the col-
laboration network structure of artists working on Broadway musicals shows
clear relations to both the financial and the artistic success of the field during
1945-1990 [56, 57]. These findings of Uzzi et al. were already pointing towards
future research on team success [58, 59], while Bonaventura et al. discussed the
role of the employee-networks and the flow of people between companies in
the success of start-ups [60].

This thesis aims to contribute to the science of success by building on hy-
potheses from the social sciences, relying on large-scale datasets, and elaborat-
ing on previously introduced quantitative tools and methods of network and
data science to fulfill multiple goals. First, I apply previously introduced meth-
ods to model creative career success on new data sources and creative fields.
Then I use these results to decompose randomness’ and the individuals’ contri-
bution to success to compare 28 different creative domains such as mathematics,
pop music, and literature. After that, I compare the temporal dynamics of the
individuals’ career success to the underlying evolution of the network struc-
ture and relate that to the individuals’ peak success. Next, I zoom on to the
highly collaborative and widely popular field of electronic music and propose a
rank-dynamics-based method to capture the existence of an all-time elite. I also
present a network-based analysis of the occurrence, rise, and fall of the differ-
ent electronic music artist communities. In addition, I propose a network-based
mechanism, aligning well to the literature on mentorship, that may be responsi-
ble for the observed long-standing elite and the highly ephemeral rest of the DJ
world. Finally, I adopt analytical tools on the temporal evolution of success to
study the popularity of urban venues over time. By clustering the success tra-
jectories of these establishments, I manage to identify six distinct shapes their
success follows over time. I also rely on features supported by urban theories to
build machine learning models and evaluate the best predictors of each success-
shape, which at the end turn out to be metrics related to the social environment
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4 CHAPTER 1. INTRODUCTION

of the urban spaces.
The main goal of this thesis is to give a deeper understanding of how suc-

cess and popularity evolve in such diverse domains as science, music, and ur-
ban venues. For that, I build on the tools of network science and combine net-
work analysis with several statistical and machine learning methods to provide
new insights into the temporal evolution of success in various fields. My work
presents novel results on quantifying success in several ways. I show generic
results on the modeling and characteristics of the evolution of careers from the
timing of careers, the causality and mentorship in electronic music, and the
popularity dynamics of urban venues. In addition, I highlight the unique and
universal role of social networks in achieving success. Social networks seem
to affect success from predicting the timing of big hits and opening the gates of
early-career individuals to the top to the success and prosperity of urban spaces,
connecting seemingly strikingly different domains of life, further emphasizing
the role of networks in social phenomena.

The thesis is structured as follows:

• Chapter 2: I review previous work and introduce the field of science of
success, including foundational works on social psychology and data-
driven research both on individual and group success.

• Chapter 3: I extend earlier work on mechanistic and statistical modeling of
individual careers in creative fields to propose a framework for capturing
the role of luck and demonstrate it during the analysis of 28 creative pro-
fessions. In addition, I discuss the role of randomness in the networking
behavior of individuals by analyzing the co-evolution of network posi-
tions and impact.

• Chapter 4: I focus on the field of electronic music, and first show the exis-
tence of a long-standing elite, then explain the existence and formation of
this elite by studying the underlying co-release network of electronic mu-
sic artists. As a dominant mechanism, I propose and study mentorship, a
special form of networking behavior.

• Chapter 5: I study the temporal evolution of the popularity of urban
venues and identify six distinct clusters of them. I also build urban theory-
inspired machine learning models to extract the main predictors of venue
success, with a particular focus on social features, such as the venues’ vis-
itors network.
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CHAPTER 2

RELATED WORK

In this chapter, I review previous work on researching various aspects of suc-
cess. On the one hand, research on the emergence of excellence was initially
done in social psychology disciplines. On the other hand, in recent years,
many data-driven quantitative works from network, data, and computational
social science [20] started to tackle similar problems, revisited old hypotheses,
and proposed new directions, even leading to the birth of the science of suc-
cess [23, 34].

First, I introduce the results of several qualitative and small-scale studies on
creative career success, in particular on its temporal evolution, that later served
as inspiration for large-scale, more data-driven studies. After that, I connect
these results to recent researches closer to network and data science by first in-
troducing ways of defining, measuring, and characterizing success in the era of
big data. I highlight the differences between direct success measures, e.g., the
number of citations a scientific publication receives, and indirect measures, such
as the network centrality of a paper in the citation network of articles. Next, I
show how these measures can be used to reconstruct success and popularity
trajectories as time series, and how these time series can be used to understand
the evolution of impact over time by statistical analysis, mechanistic modeling,
and machine learning techniques. Finally, in the last section of this chapter, I
focus on the relationship between the networking behavior of creative individ-
uals, and the success and prosperity of their entire fields, from science to music.
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6 CHAPTER 2. RELATED WORK

2.1 Research on success originated in social sciences

2.1.1 Psychological research on excellence

Career development psychology has been an active discipline for decades, with
many researchers being interested in the understanding of the ideational pro-
cess behind creative production. Since Lehman [9], some of the major directions
of these studies have been the temporal evolution of creative careers (age or pro-
ductivity curves) and the link between quality and quantity [61, 62].
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Figure 2.1. Modeled productivity curve.
Illustration of a theoretical age curve based on Eq. (2.1) showing the productivity of

the individual as a function of its age based on Simonton’s work [11, 12].

One of the first mathematical descriptions of creative career evolution was
given by Simonton [11, 12], who explained how the age-curves shape over time
(Figure 2.1). He built on a widely accepted theory by Campbell [10, 63]. Camp-
bell’s theory claims that the ideational process of creative work is Darwinian,
meaning that the manner of the variation and selection of these combinations
is unpredictable and disregards whether a certain combination is advantageous
(and leads to a successful product) or not. With the help of Campbell’s the-
ory, Simonton proposed a differential-equation-based model on how the hu-
man mind constructs numerous combinations of ideas, concepts, and prior
knowledge during creative work, which eventually results in creative products,
like scientific papers, songs, and poems, presented to the public [11, 12]. The
model’s main working hypothesis is that the creative individuals have an ini-
tial level of ”creative potential” C, that is consumed with a rate α during creative
ideation and results in a collection of ideations, from which during the second
step these ”works-in-progress” became elaborated into finished products with
a rate of β. In the next step, Simonton defined productivity (p), as the number
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2.1. Research on success originated in social sciences 7

of contributions at time t, in the following form:

p(t) = c(e−αt − e−βt). (2.1)

Simonton also supported the validity of his model by empirical findings and
compared the predictions of his model to smaller sets of data. For instance, by
the analysis of individual careers, he found that the predicted number of patents
over the career of Thomas Edison showed a 0.87 correlation to the actual num-
ber of patents Edison filed. Besides that, Simonton also found agreements be-
tween his model’s predictions on peak productivity age, and the observations
of Adams (1946) and Dennis (1966) based on several hundreds of creative in-
dividuals from professions such as lyric poetry, pure mathematics, and theo-
retical physics [8, 64]. Building further research on this conceptual framework,
Simonton pointed out interdisciplinary differences and found zero correlation
between eminence and age at the best contribution (while observed negative
correlation at the age of the first, and positive correlation at the age of the last
contribution) on a set of 2,026 scientists and inventors [65].

Simonton’s model also served as empirical evidence in the debate between
Dennis and Lehman [66, 67] on age effects on achievements, a finding that later
became known in the psychology literature as the ”equal-odds-rule” [6]. This
rule states that during a creative career each product has the same chance of be-
ing the most successful. Simonton also argued that the linkage between quality
and quantity is a probabilistic consequence of the ”equal-odds-rule” [12]. His
explanation, following Lehman’s work [9], relied on the observation that the
more average products someone creates, the higher her chance to create some-
thing exceptional. Feist arrived at similar results by studying an elite sample
of 99 physicists and chemists, concluding that the quantity and the impact of
research are positively related [68].

2.1.2 Social network research and success

Extending the theories on individual careers and teams, researchers like Bayer
et al. started early work on understanding scientific collaborations [70]. Along
these lines, the article of Beaver and Rosen [69] discussed how the prevalence
of scientific collaborations (Figure 2.2) in the fields of biology, chemistry, and
physics accelerated the professionalization of science and increased the quality
of research mostly due to institutional changes and improvements on funding
schemes [69, 71]. These findings were later supported by the analysis of the pro-
files of 443 scientists by Lee and Bozeman [72]. Further research also found that
the number of authors significantly correlates to the papers’ acceptance rate to
prestigious journals showing direct evidence on the advantages of networking
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8 CHAPTER 2. RELATED WORK
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Figure 2.2. Prevalence of scientific collaborations.
Illustration on the increasing fraction of scientific collaborations over time based on

the work of Beaver and Rosen [69].

in science [70, 73]. Following these results in Section 3.5, I am going to dive
deeper into the effects of peers and networking on success amongst mathemati-
cians, film directors, and pop musicians.

Kram et al. discussed the different types of network ties and the possible
enhancing outcomes of both peer and mentor relationship pairs based on in-
terviews the authors conducted [74, 75]. Later, Higgins et al. formalized these
relationships in terms of the topology of the so-called developmental network
structure: a network of junior individuals and their supporting senior mentors.
Higgins et al. used this network construction to differentiate mentees based on
two dimensions: the developmental relationship intensity (typical strength of
ties to the mentors) and the developmental relationship diversity (a quantity
proportional to the range within which the tie weights vary) [76]. Based on
these two properties of the developmental relationship, strength and diversity,
the authors proposed four protégé profiles: i) receptive (weak ties, low diver-
sity); ii) traditional (strong ties, low diversity); iii) opportunistic (weak ties, high
diversity); and iv) entrepreneurial (strong ties, high diversity). I am going to
build on this knowledge in Chapter 4 and present a data-driven analysis of the
benefits and limitations of mentorship via the example of electronic music.

As these few cited works illustrate, in the field of development psychology,
pioneering theories and important findings had been published even decades
ago [6, 77]. However, most of them were only studied on small and possibly
heavily biased datasets of high achievers. Consequently, they lack general con-
clusions on the large populations of creative individuals. Yet, they serve as an
excellent theoretical foundation and starting point for today’s data-driven re-
search, which I am going to review in the following section.
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2.2. Data-driven research on success 9

2.2 Data-driven research on success

Here I review publications that build on theoretical ideas and concepts on suc-
cess and take advantage of the recent availability of large-scale data sets cover-
ing creative domains. First, I introduce ways of capturing the success of creative
products, such as scientific publications and books. Then, I summarize research
that goes beyond creative products and studies various aspects of individual
careers represented as time series of creative products. Finally, I zoom out from
individual-based research and discuss the works that cover the characteristics
of entire fields or were carried out on the network aspects of success in creative
domains.

2.2.1 Measuring success

Following the The Formula: The universal laws of success (Barabási, A.-L. ) [34],
I define success as a measurable response of a collective audience to the per-
formance of the individual [37]. The notion of success varies across fields. For
example, it can be expressed by the box office revenue of movies, the number of
signatures of online petitions, the popularity of urban venues, the prizes of sci-
entists, and the rankings of athletes. Despite the high diversity of fields where
success can be defined, to carry out a quantitative analysis of success, and to
capture universal laws and hidden patterns, we require success to be measur-
able. The most straightforward way of such measurements relies on pre-defined
quantities, such as box office revenue and popularity. However, success can also
be captured with network measures, for example, by the influence of a ground-
breaking research paper or an old-time classic movie. In the next subsections, I
am going to refer to these as direct and indirect success measures.

Measuring success directly

The emergence of success has been widely studied in science [23], due to the
recent availability of databases such as the Web of Science [2] and Google
Scholar [18]. To quantify the impact of scientific publications, the most widely
used measure is the number of citations a publication receives, which naturally
emerges and captures the number of future work relying on a particular pa-
per. Citations are cumulative measures of impact, which also seem to follow
the Matthew effect: the more citations a paper has, the more future citations
it may receive. [78–81]. However, not all these citations represent positive en-
dorsements but sometimes express criticism. Yet, the works of Radicchi et al.
and Catalini et al. found that ”there is no bad publicity” in science either, as
criticized papers typically became highly cited [82, 83]. In addition, citation
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10 CHAPTER 2. RELATED WORK

counts vary broadly across different scientific fields due to the different citation
traditions, which jeopardizes fair comparisons across disciplines. Therefore, the
use of citation counts as a measure of success led to concerns, debates, and the
emergence of alternative ways of capturing impact [84–87].

While the number of citations is a natural way of measuring academic
impact, measures of different origins, such as social media and other on-
line outlets, have occurred as well. They together are referred to as alt-
metrics [88, 88, 89]. These measures aim to connect academic research to
the outer world and capture its societal impact. In some cases, these two
may deviate from each other at a surprising level. For instance, Zuccala et
al. [28] and Kousha et al. [90] both compared the citation-based (scholarly) and
the altmetrics-based (non-scholarly) success of academic books across several
fields. Afterward, they both reported low and moderate correlations, indicat-
ing that scholarly and non-scholarly impacts are considerably different.

Inspired by the examples of the previous paragraphs, I propose the follow-
ing categorization of direct success measures, as I am going to build on these
both in the upcoming part of the literature review and in the later chapters:

1. The origin of the measure can be based: i) on experts’ (probably) less bi-
ased opinion, such as the Nobel-prize [91] or movie critics; or ii) on the
opinion of a wider audience (which is more likely to be biased by external
factors [92, 93]), such as the number of individuals listening to a certain
song on a music providing service (as in Chapter 3-4) or the number of
visitors an urban venue has (as in Chapter 5).

2. The statistical behavior of the measures can either be i) aggregated over
time, such as average ratings of books [94]; ii) cumulated over time, like
the number of citations from peer-reviewed articles scientific publications
receive [24] (as in Chapter 3); iii) or have a linear distribution as derived
from the previous ones in the shape of rankings [95–100], like that of the
Top 100 DJs (as in Chapter 4).

As a final note on direct success measures, mostly represented by citation
counts with a rather simple definition, I would like to reference a list of sugges-
tions and warnings on avoiding the false judgment of evaluating success, which
is of high importance due to its role in scientific research evaluation. These
thoughts summarized in Nature News in an article titled ”Bibliometrics: the
Leiden Manifesto for research metrics” by Hicks et al. [101] in the form of the
following ten principles listed in Table 2.1.

On the one hand, in this summary of direct success measures, I illustrated
the diversity of success measures, and I pointed out a few issues, such as the
rich-get-richer phenomenon. On the other, I highlighted the importance of these
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2.2. Data-driven research on success 11

1 Quantitative evaluation should support qualitative, expert assessment.
2 Measure performance against the research missions of the institution, group or researcher.
3 Protect excellence in locally relevant research.
4 Keep data collection and analytical processes open, transparent and simple.
5 Allow those evaluated to verify data and analysis.
6 Account for variation by field in publication and citation practices.
7 Base assessment of individual researchers on a qualitative judgment of their portfolio.
8 Avoid misplaced concreteness and false precision.
9 Recognize the systemic effects of assessment and indicators.
10 Scrutinize indicators regularly and update them.

Table 2.1. Warnings on research evaluation.
Ten suggestions on fair research evaluation in the work ”Bibliometrics: the Leiden

Manifesto for research metrics” by Hicks et al. [101]

measures for instance in individuals’ performance evaluation, policy-making,
and funding distribution, which not surprisingly led to the rapid growth of the
field Scientometrics [102–107]. For the sake of simplicity, during the rest of this
thesis, if not mentioned otherwise, I am going to refer to cumulative measures
as impact.

Measuring success indirectly

While the previously introduced, more standardized methods directly define
specific dimensions of success, indirect methods have been proposed as well.
A widely studied group of these indirect measures are building on the tools of
network science: define relations between creative products, such as citations
of papers, or references of feature movies, and associate success with network
centrality measures [108–116].

These relation-networks of creative products can be defined in different
ways. Typically, the nodes of the networks are the individual scientific papers
or other creative products, and the links between them represent similarities
(e.g., topical overlaps or the number of shared collaborators) or causality (e.g.,
references or citations). In the latter case, the citations are not simply used to
quantify the magnitude of success, but also the influence of the individual pa-
pers within their field as their centrality may emerge via the other connecting
articles. This centrality can be measured in various ways, for instance, by mod-
ified versions of the PageRank [117] algorithm, such as DivRank [118], CiteR-
ank [119], and PrestigeRank [120]. The advantages of these algorithms have
been demonstrated: they allowed researchers to identify so-called ”scientific
gems” in the literature as well as groundbreaking patents that are highly in-
fluential yet poorly cited [26, 121, 122]. In addition, network approaches have
been used in the world of cinema, by relying on cinematic citations between
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12 CHAPTER 2. RELATED WORK

more than 40,000 international feature films to identify the leading creations in
the movie industry [123].

2.2.2 Quantitative results on scientific impact

The most common way of measuring the impact of scientific papers as of today
is by the number of citations publications receive. However, there is not even
explicit agreement on one of the most simple properties of impact, the shape of
the distribution function of citations counts. Previous research, dating back to
the middle of the ’90s, reported contradicting findings, namely that the citation
distribution follows log-normal, power-law, and even exponential distributions
depending on the type of data and selection criteria used [124–128].

A frequently mentioned issue with raw citation count as a success metric is
its high diversity across different disciplines due to different citation traditions
of various fields. To account for these differences, Radicchi and his colleagues
proposed an impact-transformation method in 2008, assuming log-normal cita-
tion distributions, and tested its statistical validity on the Web of Science and
the American Physical Society data bases [2, 127, 129]. Their method rescales
the citation distribution of different fields by dividing citations by the average
number of citations on a particular field, such as mathematics, biology, and var-
ious branches of physics.

Another major criticism against the use of citation counts as the ultimate
measure of success and research evaluation is its shortcomings on temporal dif-
ferences. The reason is that the number of citations increases by a steady ∼ 4%
every year, which means that the total number of citations doubles every 12
years [29], possibly due to the rich-get richer-phenomenon. Building on the
Web of Science database, Petersen et al. have published a correction method to
account for this inflation and offer a way to factor out the first-mover advan-
tage [2, 29, 130].

Connecting to the temporal behavior of citation counts, a major finding has
been published by Wang et al. [27] modeling the long-term dynamics of scien-
tific impact. They have proposed a mechanistic model, including i) preferential
attachement [131] that models highly cited papers being more central; ii) aging
effects capturing that scientific papers are cited subsequently; and iii) a fitness
parameter that represents the intrinsic differences between papers in terms of
their novelty and scientific importance. Based on these components, they con-
struct, formulate, and solve a Master-equation. Then they find that the number
of citations c a paper i receives by time t after its publication can be expressed
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2.2. Data-driven research on success 13

as:

ct
i = m

[
eλiΦ

(
ln t−µi

σi

)
− 1
]

, where (2.2)

Φ(x) =
1√
2π

∫ x

−∞
e−y2/2dy. (2.3)

In Eq. (2.2) m shows the average number of references a new paper has, λi
captures the relative importance of a paper, µi measures the immediacy (typical
time needed for a paper to reach its citation peak), and σi captures the decay rate
of the number of new citations over time. They tested the validity of this model
on both papers published during 1950-1980 in the Physical Review corpus and
those published in 1990 by 12 specific prominent journals, such as Science and
Cell [27]. In addition, Yucesoy et al. have explicitly shown that Wang et al. ’s
model also holds for describing the success of books, captured by the number
of copies sold over time [132].

The majority of the studied publications follow the dynamics of Eq. (2.2)
and reach their peak in a few years after their publication, followed by a sta-
ble decay in their yearly citation count. However, a smaller fraction of research
papers shows an entirely different behavior with a heavily delayed recognition.
A classic example of these so-called sleeping beauties was the article that later
became the starting point of modern genetics by Gregor Mendel published in
1866 [133]. In this case, it took more than three decades for the scientific com-
munity to recognize its importance [134].

Later on, many of the sleeping beauties turned out to be of major impor-
tance; therefore, researchers became interested in identifying them [135], for
instance, by estimating the likelihood of a paper becoming a sleeping beauty.
Such methods typically build on the temporal analysis of thousands of papers’
citation evolution by quantifying attributes such as the awakening time of pa-
pers and the jump in impact right after their awakening happens [136, 137].

The temporal evolution of impact, even expressed by cumulative measures
such as citation count, has been studied outside of science as well. For instance,
Rossetti et al. have analyzed the temporal dynamics of the product sales at
the retail company Coop, and the play count of songs on the music provid-
ing service LastFM [138, 139]. By clustering the popularity time series of these
items, they reported the existence of two main clusters: early adaptors, and late
adopters with a shifted peak. These two reported shapes seem to align well with
the scientific impact evolution proposed by Wang et al. [27] and to the observed
dynamics of the sleeping beauties. I am going to build on these models, ap-
proaches, and ideas when studying the statistics of success measures of creative
fields in Chapter 3, and when evaluating the temporal trends of the popularity
of urban venues in Chapter 5.
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14 CHAPTER 2. RELATED WORK

2.2.3 Measuring scientific fields

During the history and evolution of science, different scientific fields emerged.
While some fields are easy to distinguish, such as mathematics and political
science, others are much closer to each other, like biology and medicine. These
commonalities could imply potential mutual influence, spreading of results and
knowledge, and collaborations, leading to the prosperity of innovation. There-
fore not surprisingly, researchers asked: is it possible to capture the differences
between scientific fields in a quantitative way [140, 141]? Is it possible to deter-
mine the clear boundaries of different disciplines?

One possible start of answering these questions is the analysis of the net-
work structure of scientific papers, e.g., based on their citations or references.
These networks have been studied since the 1960s [142]. However, one of the
first large-scale analysis building on 1M articles aimed at extracting the back-
bone structure of science was only published in 2005 [143]. Later, Porter and
Rafols defined a measure called integration score [144] and used this measure
on the Web of Science database to estimate the level of interdisciplinarity. They
reported the values of the integration score and its changes during 1975-2005
for six scientific fields. Further investigations of these networks, extended by
analysis on paper titles, abstracts, and the Physics and Astronomy Classifica-
tion Scheme (PACS) of the American Physical Society [2, 145], resulted in a
deeper understanding of the structure and evolution of science and scientific
disciplines. This includes the birth and decay dynamics of scientific fields, the
identification of the boundaries of physical sciences, and trending research di-
rections in physics [31, 33, 146, 147].

Interdisciplinary research indeed allows scientists to explore and learn about
previously untouched areas in the hope of new findings and applications. How-
ever, are there any measurable advantages of combining different branches of
science? Uzzi et al. have shown that references can proxy exceptional suc-
cess: they have reported that atypical combinations of previous knowledge
and novel ideas can boost the success of scientific publications, traced down
by the disciplinarity distribution of the publications’ references [148]. Later,
Mukherjee et al. studied millions of papers and patents, and measured the
age difference between the publication time of the papers and patents and the
works they are referring [149]. They found that papers that cite previous works
with a low average age and high variance in age double their chance of arriv-
ing into the 5% most cited articles. This finding seems to be universal across
all studied branches of science and technology. Moreover, they reported that
multi-authored papers are much more likely to reach this hotspot than single-
authored articles.

Not only has the relationship between success and the combination of re-
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2.2. Data-driven research on success 15

search interests been studied so-far, but also the topical interests and fields of
activities of the individuals. In an article published in 2017, Jia et al. have stud-
ied the evolution of the research interest of physicists by characterizing their
research profiles using the well-structured PACS codes [40, 145]. For each sci-
entist, they generated a topic (PACS) vector g with elements counting the num-
ber of times a certain topic occurred over the career of the individual, and slit it
into the first m papers and the rest, characterized by gi and g f . From this, they
defined the research interest change as:

J = 1−
gi · g f

||gi||||g f ||
, (2.4)

and measured its value over the population of ∼ 15, 000 scientists with at least
16 publications (reportedly, the exact choice of m does not influence the trends
found). Moreover, they proposed a random-walk based mechanistic model that
reproduced these measured values well.

These works show interesting examples and practical tools for capturing
topical changes, which I am going to take advantage of when studying the
genre-differences of communities of electronic music artists in Section 4.4.

2.2.4 Capturing individual career success

In the previous subsection, I reviewed the different approaches of describing
and mapping the various branches of science by relying on large-scale data and
the aggregated properties of tens of thousands of individuals. Here I aim to
zoom in from this meta-level perspective into the micro-level and review the
literature on the evolution of individual careers with a particular focus on sci-
ence. My motivation to do this is that both Chapter 3 and Chapter 4 of this
thesis is focusing on creative careers, while Chapter 5 tackles certain aspects of
the temporal success evolution of urban venues. In the following, I am consid-
ering careers to be time series, for instance, as the sequence of publications each
attached with various features such as impact and affiliation.

Deville et al. [38] have investigated the migration-patterns of physicists by
analyzing 420,000 scientific papers, 237,000 individuals, and roughly 4,000 in-
stitutions. They reconstructed the researchers’ careers defined as their affili-
ation sequence and used their relocation traces to build their migration net-
work. In this network, the centralities of institutions naturally define a rank-
ing between them, which they used to uncover that moving from an elite to a
lower-rank place on average results in a modest decrease in performance while
moving from a lower-ranked place to an elite institutions does not result in sig-
nificant performance improvements. This finding suggests that already well-
performing scientists do not gain much from institutional prestige; however,
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16 CHAPTER 2. RELATED WORK

research accommodated to the circumstances of an elite place suffers from a
downgrading move.

An early way of measuring the success of individuals is based on their pro-
ductivity (e.g., the number of papers scientists they published, N) [150]. How-
ever, as the work of Simonton and others uncovered, quality and quantity are
not the same, just correlated. Hence productivity is not always a good proxy of
quality. The most established methods on measuring individual success are
rather based on the number of citations of the individuals’ papers received,
which, in practical terms, is similar to the number of ratings books received or
the number of times people vote for a movie [151]. Multiple measures have been
proposed derived from the researchers’ citation history, just as the total number
of citations or the total number of citations within a specific time window. Yet,
these measures often suffer from similar shortcomings such that citation counts
themselves, for instance, the rich-get-richer phenomenon. Another individual
measure, the h-index [25], defined as the highest number h of a scientists’ pa-
pers having at least h citations, was suggested to correct for some of these issues
and is today widely used. Besides, a review article by Wildgaard et al. collected
108 different measures in 2014, including the h-index, to illustrate the diversity
and complexity of measuring the scientific impact of individuals [152]).

One of the latest measures meant to capture individuals’ excellence is the
so-called Q parameter introduced by Sinatra et al. [43] based on a quantitative
modeling approach. First, they proved for scientific careers at a large scale that
the ”equal-odds-rule” or ”random-impact-rule” first proposed by Simonton [6]
holds. The ”equal-odds-rule” states that the probability of each paper a scientist
publishes has the same probability of being the most successful one. To quantify
this, they measured scientific impact as the number of citations a publication
receives during the first ten years after its publication. Then, building on these
findings, they proposed an impact decomposition method called the Q-model,
that decouples the success Si,α of paper α by author i into two components:

Si,α = pαQi, (2.5)

where pα corresponds to all external random factors (luck), while Qi encodes
the typical success of the individuals. According to the authors’ findings [43],
Qi can be approximated in the following way:

Qi = e〈log Si,α〉−µp , (2.6)

where µp is the average of all the measured pα values of a certain field. This
method highlights that, on the one hand, it is possible to untangle the role of
luck in science. On the other, it proposes a way to measure individual success
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2.2. Data-driven research on success 17

(Q) that is not sensitive to the inflation and accumulation of citations but cap-
tures the individual’s intrinsic ability to generate work with impact of a certain
level. It also turns out that the Q parameter has a surprisingly high predictive
power on Nobel-prizes compared to previous measures and predictive mod-
els [153–155]. In Chapter 3, particularly in Section 3.3-3.4.2 of this dissertation, I
build on this model and expand the review on the work of Sinatra et al. in more
details.

While the random-impact-rule states that the biggest hit occurs at random,
Liu et al., following the work of Sinatra et al., reported that the largest few hits,
also known as hot streaks, occur together, showing a high degree of temporal
correlation over a relatively short fraction of the entire career, yet accounting
for the main body of total impact the individual has gathered [44]. To explain
their findings, they also proposed a probabilistic model for career evolution, the
”hot hand model”, which shows good agreements with the observed hot streak
patterns on large-scale career data of scientists, movie directors, and artists.

The Q-model captures both the driving and the luck component of the dy-
namics of career success. Connected to these thoughts, later work on career
evolution also attempted to capture the shapes of age-curves by clustering them
(e.g., late and early bloomers) using time series analysis tools [156, 157]; while
the role and mechanism of luck on success by Gaussian agent-based models had
been studied by Biondo et al. [158]. Petersen et al. proposed a stochastic model
on career longevity that also reproduces the observed rich-get-richer effect [79].
Jones et al. also studied the shape of age-curves in terms of the timing of the
great achievement over the career of Nobel laurates [159]. They have reported
that the chronological time has more effect than the scientific discipline, under-
lined both an interdisciplinary difference and a temporal trend on how science
as a whole evolves.

Taken together, several interesting features, such as geographical move-
ments and the timing of the best hit have been studied for scientific careers.
Moreover, mechanistic models have also been proposed to describe certain
characteristics of these careers. For the work described in Chapter 3 I rely on
these findings and further extend them.

2.2.5 Networks from the individuals’ perspective

In the earlier subsections, I introduced the individual-based aspects of creative
career success; however, these creative products are usually the results of col-
laborative efforts. This trend of collaborations is reflected in the dominance of
multi-authored scientific papers above single-authored ones [69, 70, 160], and
in the positive effects of larger team size on the expected impact [70, 73, 161],
implying that network effects should be considered as well.
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18 CHAPTER 2. RELATED WORK

On the one hand, like earlier works, such as Higgins et al. [76] showed, the
network roles, and consequently, contributions to a project can highly differ
from junior to senior authors of scientific publications. On the other hand,
the citation numbers, the basic units of academic success, are equally dis-
tributed across the co-authors of the papers. This equal distribution may have
been aligned to the early trend of alphabetic author-orders [162]; however, the
author-order of publications typically implies the level of involvement of the
contributors during recent times. The lack of clarity on the level of contribu-
tions by the co-authors motivated several research projects to estimate the real
credit of each author and try to approximate the actual share of the individu-
als [97, 163, 164]. Shen et al. [41] proposed an algorithm to compute the con-
tributed share of each author to a given paper. Their method is based on a
network-spreading assumption where they study which authors keep publish-
ing on similar topics the most. They validated their result by using Nobel-prize
winning papers, where they managed to identify the actual laureates with an
accuracy nearing 90%.

This example on co-authorships already hints the importance of how net-
works can reveal far richer information about creative success than direct mea-
sures. In particular, Petersen studied 166,000 collaboration records and de-
fined so-called super ties corresponding to the large (at least 50%) overlap in
the publication history of the collaborators [51] – a type of collaboration sim-
ilar to what Kram. et al. referred to as peers [74, 75]. Petersen’s regression
analysis revealed that these super ties come with above-average productivity
and an increase of 17% in total citations showing clear quantitative proof of the
advantages of life-long partnerships. These findings demonstrate the clear ad-
vantage of having strong ties, while classical social network theory argues for
the ”strength of weak ties [165]. The work of Pan and Saramäki further elab-
orates on the ”strength of strong ties” in scientific collaborations [166]. They
reported that scientific collaborations behave differently from regular social net-
works [165] by the strong ties being the information bottlenecks. Their reason-
ing is rooted in the mechanisms shaping the scientific social graph’s structure,
such as the underlying space of knowledge and ideas and the typical ways of
sharing and processing information (such as group work). In addition, the fa-
mous friendship paradox [167] had been confirmed, moreover, generalized be-
tween co-authors [167, 168], stating that ”your friends have on average higher
characteristics than you have”, where characteristics include the number of co-
authors, the number of citations, and the number of publications.

Such mechanisms, for example, team formation, have also been studied in
more detail to better understand how the need and desire to extend knowl-
edge and increase team prosperity may work. For instance, Milojević showed
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2.2. Data-driven research on success 19

that the typical team size over time could be well-modeled by a Poissonian
process [169]. Guimera and his colleagues [56] proposed a different proba-
bilistic model on team formation with three simple parameters: the size of the
teams, the fraction of new team members in new products, and the likelihood
of incumbents to repeat earlier collaborations. By testing different values of
these parameters, they observed two distinct phases of the global team struc-
ture: it either consists of multiple small components, or a giant component
emerges, which also aligns well with the proposed phenomenon of invisible
colleges [170]. The authors tested their model against real data covering the
Broadway musical industry and several scientific disciplines, like social psy-
chology and astronomy, and confirmed their findings.

Based on the analysis of 150 000 self-organized, online team projects Klug
et al. reported that the most successful teams’ members had the most diverse
backgrounds and experience [171]. Similarly, Bonaventura et al. investigated
the role of diversity, however, by studying the advantages of interdisciplinary
collaborations in science, where they defined diversity as the entropy of the
published articles’ PACS codes [32]. On the one hand, they observed that the
most successful scientists are either highly specialized (low diversity) or highly
interdisciplinary (high diversity). On the other hand, they found that having a
more heterogeneous collaboration network tends to be significantly more suc-
cessful on average.

As work on scientific credit shares has shown, not all team players have the
same role and importance. In fact, having good mentors can offer various ad-
vantages to the proteges’ future success, such as having Nobel laureate mentors
increases the chance of becoming a laureate in the future [172–174]. One of the
first data-driven studies on mentorship focused on mathematics [175]. In that
article, the authors studied the number of mentees each researcher had, dis-
cussed the effect of having prolific mentors on the future mentoring patterns of
the used-to-be mentees, and found that the number of mentees correlates with
the mentors’ academic success [175]. Advantageous mentorship, also known
as the Chaperone-effect, exists in other fields of science as well, according to
Sekara. al. [176]. Their findings reveal that publications by chaperoned authors
have a significantly higher impact than those who did not have such mentors.
Yet, the effect varies across scientific disciplines being the highest in interdisci-
plinary research, and the lowest in mathematics.

Good mentors and prominent central authors not only affect the future suc-
cess of mentees but show limited advantages for citation rates as well, as it has
been shown on the careers of 450 high-profile researchers authoring 83,693 ar-
ticles combined [177]. More specifically, it turned out that the reputation of the
central author, measured as the total number of citations he/she ever received,
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20 CHAPTER 2. RELATED WORK

seems to boost citation rate until a citation threshold cx ≈ 40; however, this
effect disappears for highly cited papers.

In this subsection, I reviewed several major findings on the individuals and
their social surroundings to highlight what has already been discovered on
the relationship between networks and success. I plan to further extend this
knowledge by studying the dynamical aspects and the temporal co-evolution
of success and network position for film directors, mathematicians, and pop
musicians as a main component of Section 3.5 in Chapter 3, and focus on the
particular networking behavior of mentoring in electronic music in Section 4.5
of Chapter 4. In the next subsection, I zoom out from the micro-level network
scope and discuss global network properties and their relation to success.

2.2.6 Networks of creative fields

In this subsection, I review the network aspects from another angle: how does
the embeddedness of the individual into the social fabric of its community relate
to its success, and what does global network information tell on success?

One of the first large-scale analyses of collaboration networks covering
physics, biomedical research, and computer science, was done by M. E. J. New-
man in 2001. In his work, Newman defined scientific collaboration networks as
social networks in which each node is a scientist, and the weight of the undi-
rected link between each pair of them is the number of publications they co-
authored [178–180]. His descriptive results measure basic local statistics, such
as the nodes’ degree distribution and the number of authors per paper, and ob-
serve typically power-laws describing these distributions. On the global scale,
he observes a small-world phenomenon, meaning that the distance (number of
intermittent edges) between each pair of authors is low and scales logarithmi-
cally by the number of nodes in the networks, which also served as a basis of
an efficient way of computing betweenness centrality [181, 182]. His pioneering
work served as a starting point of collaboration analysis on various fields, such
as econophysics, finance, political science, and scientometrics [183–186].

Significant work has been done about quantifying success in the realm of
art and culture. Gleiser and Danon studied the collaborations and community
structure of jazz musicians and reported correlations between the community
structure, locations, and even racial segrgation [187, 188]. Park et al. studied the
properties of both the collaboration and the similarity network of 32,377 con-
temporary pop musicians collected from a platform called Allmusic [189, 190].
They found only ∼ 15− 50% of overlap in edges between the two networks.
Then, they compared the basic measures, such as degree- and betweenness dis-
tribution, between the social- and the similarity networks and conclude that the
collaboration network gives more objective insights into the studied social sys-
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2.2. Data-driven research on success 21

tem. The authors later investigated the topology and evolution of western clas-
sical musicians as well, and reported a superlinear preferential attachment-like
growing process [131, 191]. By processing and analyzing data of 5M releases
by 3.5M artists present on Discogs, it also has been shown that the collabora-
tion structure and the emerging communities in music can be related to musical
genres and used as a basis of classification [192].

Uzzi and Spiro studied the small-worldness of Broadway musicals during
1945-1989, where they found a curvilinear relationship between the global clus-
tering coefficient and both the artistic and financial success of the musicals.
They reported that for low and high clustering values success of the industry
stays low; however, moderate clustering is associated with prosperity [57, 193].
While clustering is based on triangular topology, Krumov reported that in the
field of computer science, box motifs are a better proxy of success since they are
associated with the highest mean citation per collaboration [194, 195]. Based on
his findings in jazz music, Vedres argues that forbidden triads are the key to
the emergence of such prominent artists like Miles Davis [53, 196]. At the same
time, Budner and Grahl point out the importance of building a large number of
bridges in the collaboration network of the artists who ever entered the Rolling
Stone Magazine’s list of ”500 Greatest Albums of All Time” and the ”1001 Al-
bums You Must Hear Before You Die” lists [197].

Besides music, collaborations in the film industry have been targets of re-
searchers as well. For instance, Auber et al. in 2003 showed that the small-world
property holds for a smaller subset of actors being linked based on movies they
costarred [198]. Kitsak et al. proposed a method based on the k-core [199] de-
composition to capture the influence of the nodes during the spreading pro-
cess, such as the ones described by the SIS and SIR epidemics models, in actors
costarring network [200–202]. Later research also went on to study the core-
periphery structure defined by the k-cores to infer success and performance in
film. Cattani and Ferriani found that those with an intermediate position be-
tween the center and the periphery of the collaboration network are the most
beneficial in terms of creative production in the Hollywood film industry [203].
To support their findings, they presented a regression-based model and used
data covering 2137 high-profile movies from 1992-2003. Similar advantages of
brokering between the core and the periphery have been shown in the Hungar-
ian Film Industry by Juhász et al. [204].

Finally, I summarize several pieces done on predictive modeling of success
that include network features. Previous research not only focused on the struc-
ture and description of collaboration networks and their relation to success but
also presented time series and correlation analysis, regression models, and pre-
dictive modeling on the evolution of success based on the authors’ network po-
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22 CHAPTER 2. RELATED WORK

sitions, captured by various centrality measures [205–209]. For example, Sarigöl
et al. studied scientific collaborations via more than 100,000 publications from
the field of computer science and discussed the link between network centrality
and success measured by citation counts[50]. They have built machine learning
models to predict whether a publication is going to be highly cited (fall into the
top 10% most cited papers) five years after the publication. For this prediction,
they relied on the degree centrality k-core centrality, eigenvector centrality, and
the betweenness centrality of the authors in the co-publishing network. Jadidi
et al. confirmed the predictive power of network features, such as closure and
brokerage, to success as well. They measured success both by the h-index and
the raw citations counts [210]. Jadidi et al. also tested for gender differences
in success and did not report any significant differences between the relation of
collaboration patterns to impact between different genders.

Wachs and co-authors discussed the role of the network positions of graphic
designers in novelty and success in an online social network [54]. They found
that designers producing novel work while having a highly constrained net-
work are much more likely to be successful than those with an open, less co-
hesive network. Fraiberger et al. [211] quantified reputation and success in art
by analyzing the exhibition history of half a million artists worldwide and re-
constructed the directed co-exhibition network of institutions where these ex-
hibitions took place. They show that network correlates to prestige, a measure
determined by experts; and that early-career exhibitions at high-prestige insti-
tutions predict stable, longstanding success while starting at low-prestige insti-
tutions leads to high dropout rates and limited chances of success.

In the following chapters of this dissertation, I am going to build on the find-
ings mentioned above first in Chapter 3, where I extract the temporal dynamics
of the individuals’ network positions based on field level collaborations. Next,
in Chapter 4 I am going to analyze the evolution of electronic music via the co-
release patterns of top DJs, while in Chapter 5 I relate the popularity of urban
venues to the underlying social network of their visitors.
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CHAPTER 3

SUCCESS AND LUCK IN CREATIVE
CAREERS

3.1 Introduction

Luck is considered to be one of the crucial ingredients to achieve success
in life, yet only a little research has tried to understand its quantitative nature
so far [47, 48, 213]. For instance, in science, the movie industry, music, and
art, the occurrence of the highest impact work and a hot streak within a cre-
ative career are challenging to predict. However, fundamental questions are
still unanswered, such as: are there domains that are more exposed to luck than
others? Here I aim to tackle this question and provide new insights on the role
of randomness in impact in creative careers in three ways. First, I systematically
untangle luck and individual ability to generate impact in the movie, music, and
book industries, and in science. Second, I compare the luck factor between these
fields and describe the different domains’ characteristics. Finally, I show the role
of randomness in the relationship between collaboration network positions and
career hits and highlight the surprising presence of randomness in networking.
Taken together, the analysis presented in this chapter suggests that luck con-
sistently affects career impact across all considered sectors and improves our
understanding in pinpointing the key elements in driving success.

This chapter is based on the article ”Success and luck in creative careers” [212], where I
analyzed the data and obtained all numerical analyses, Roberta Sinatra conceived the study,
and the authors, Milan Janosov, Federico Battiston, and Roberta Sinatra collaboratively drafted,
revised, and edited the manuscript. At the time of the submission of this dissertation, this
publication was under the second round of revision at EPJ Data Science, while by the time of
the thesis defense it was accepted for publication in EPJ Data Science.
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24 CHAPTER 3. SUCCESS AND LUCK IN CREATIVE CAREERS

As reviewed earlier in Section 2.1, research in developmental psychology
has studied careers of prominent artists and scientists for decades, advocating
the importance of chance for the successful unfolding of careers in various cre-
ative professions [9–12]. In recent years, the availability of big databases on sci-
entific publications [2] and artistic records, from books to movies [36, 123, 132],
has made it possible to test several previously proposed hypotheses on a large
scale, as the short review in Section 2.2 also illustrates. For instance, previ-
ous work [43, 44] on the analysis of thousands of creative careers have shown
that the biggest hit of an individual occurs randomly within one’s career, a
finding earlier published as the equal-odds-rule [11]. This rule explains the
variability in the occurrence of creative individuals’ best hits. Yet, career hits
are not only the results of luck but also of other individual and team proper-
ties [23, 27, 56, 148, 210, 214, 215]. While previous literature suggests that luck
and individual ability are both necessary to excel in art and science [79, 213, 216–
218], the quantification of the role of luck across different creative domains is
still lacking. In which creative fields are individuals more likely to go from rags
to riches and vice-versa? Does the position of an individual in a network predict
the occurrence and the timing of a hit, or does the hit forecast future centrality?

In this chapter, I propose a framework combining earlier theories to quantify
and compare luck fluctuations in impact across creative careers from movies,
music, literature, and science [127, 132]. Do these random fluctuations have
the same magnitude across careers? To answer this, I build on the mathemat-
ical framework known as the Q-model proposed in Ref [43] and outlined in
Subsection 2.2.4 to decompose the impact into two components, one represent-
ing external random fluctuations that can be interpreted as luck, and another
depending only on the individuals’ success history. I show that this model is
consistent with the classical test theory [219], also known as the true score the-
ory [220], stating that the measured value of a particular observable attribute
consists of the sum of its true – error-free – score, and a stochastic error term.
I designed a specific index to capture randomness and found that the value of
such randomness slightly varies depending on the creative fields. This implies
that randomness plays a universal role in achieving success across the studied
creative fields.

Such low heterogeneity in the role of randomness also aligns with my find-
ings on the temporal relationship between networking and impact. Namely,
I found that two networking behaviors co-exist: for some individuals success
peaks first, and the central network role follows, while for others, it happens
the other way around. However, illustrating the role of randomness, it occurs
by chance which individual falls into which category. To carry out these analy-
ses, I rely on a large-scale data set covering more than four million individuals
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3.2. Data description 25

from the beginning of the 20th century up until 2017.
This chapter is organized as follows. First, I introduce the data sets I am

using, including the possible ways of measuring success. Second, I review the
modeling approach Q-model and test the validity of its requirements. Third, I
connect the Q-model impact decomposition method with the classical test the-
ory to quantify the role of luck within each field and discuss the observed differ-
ences across fields. Finally, I elaborate on the role of randomness, also affecting
the collaboration patterns of the individuals via comparing the temporal evolu-
tion of their network position to their impact evolution.

3.2 Data description

3.2.1 Data collection

I collected information and built a database by using four data sources on the
film, music, and book industries, and across scientific fields, covering 28 differ-
ent types of creative professions total during the period of June-August 2017.

1. First, I scraped and processed individual profiles from the Internet Movie
Database (IMDb [14]) and compiled a data set of 803,013 people working
in the movie industry as movie directors, producers, art directors, sound-
track composers, and scriptwriters, altogether contributing to 1,297,275
movies. The IMDb offers different metrics, such as average rating, rating
count, metascore [221], gross revenue, the number of user and critic re-
views to evaluate the success of movies, which I collected, and attached
to the individuals based on their profiles. During this process, I used the
website’s Advanced Title Search functionality1 following the IMDb’s poli-
cies to list all the identifiers of the relevant movies with at least five user
ratings.

2. Using Discogs [15, 19] I collected the discographies of musicians from nine
genres: electronic, rock, pop, funk, folk, jazz, hip-hop, and classical mu-
sic. While Discogs provides good coverage on music discographies, it
lacks success metrics. Therefore I extended my dataset with song play
counts by matching song titles extracted from Discogs to the ones avail-
able on LastFM [138] via its public API. This way, I constructed a database
of 379,366 musicians who released 31,841,981 songs.

3. I crawled the biography profiles of authors from Goodreads [222] to cover
the book industry, where the success of books is measured by the average

1http://www.imdb.com/search/title
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26 CHAPTER 3. SUCCESS AND LUCK IN CREATIVE CAREERS

user rating of a book, the total number of ratings, and the number of edi-
tions a book has, from which I used the rating count for further analysis.
The book-dataset I compiled contains information about 2,069,891 authors
and 6,604,144 books total.

4. I used Thomson Reuters’ Web of Science database [2] to reconstruct the ca-
reer trajectories of 1,204,688 scientists from the fields of chemistry, mathe-
matics, physics, applied physics, space science and astronomy, zoology,
geology, agronomy, engineering, theoretical computer science, biology,
environmental science, political science, and health science, altogether au-
thoring approximately 87.4 million papers. In this database, the success
of creative products, scientific papers, is measured by the number of ci-
tations they received during the first ten years after their publication (to
align to previous work on quantifying success [43]).

3.2.2 Measuring success

While the data sources provided several possibilities to measure success on dif-
ferent fields, I decided to measure the impact of creative products (movies,
songs, books, and articles) by using the so-called cumulative measures intro-
duced in Subsection 2.2.1 (e.g., citation count) and disregarded other measures
(e.g., average rating of movies). The exact measures I picked are the following:
the rating counts for movies and books; the play counts for songs; and the num-
ber of citations received within the first ten years after publication for scientific
papers [24]. The reason behind this choice was that all these measures show
similar statistical properties with the more widely studied citation counts (Sub-
section 2.2.2), which made further modeling and the adaptation of existing tools
easier. Such a common property shared across the studied impact distributions
is that these measures can be well-fitted by log-normal functions, which I show
in Figure 3.1 for four example professions (film directors, pop musicians, book
authors, and mathematicians). These fits, evaluated by R2 values, showed that
the log-normal function indeed is a good model to describe the impact distribu-
tions in my datasets (for the R2 values see Table 3.1).

To carry out comparative measurements across creative professionals, I had
to ensure that the impact values vary within the same range for the studied
fields. For this reason I applied a linear min-max rescaling method similar to
ones previously used [129] to transform the success measure distributions in the
different fields (S f ):
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Figure 3.1. Impact distributions modeled by log-normal functions for four
example fields.
Impact (S) distributions measured as the rating counts for movies and books, the play counts

for songs, and the number of citations of mathematicians. The grey dots represent the data
points, while the dashed colored lines show the binned trend (10 bins, percentile binning).
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Figure 3.2. Rescaled impact distributions.
Rescaled impact distributions based on Eq. (3.1) for all the 28 studied fields.

S f →
S f − r f

min

r f
max − r f

min

· (tmax − tmin) + tmin, where (3.1)

r f
min = min S f , (3.2)

r f
max = max S f , (3.3)
tmin = min

(
∪g Sg), (3.4)

tmax = max
(
∪g Sg). (3.5)

The results of the rescaling are shown on Figure 3.2.
Next, I associated the transformed measures of each creative product to their

creators to reconstruct individual careers as time series consistently across pro-
fessions. As practical examples, in Figure 3.3 I illustrate careers in the four dif-
ferent datasets: movie director Stanley Kubrick, pop singer Michael Jackson,
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Figure 3.3. Career examples for four example professions.
a, Stanley Kubrick as a film director, where the horizontal axis shows the release year of his
movies, and the vertical axis shows the impact of each movie, captured by the number of

ratings they received. b, The career of Michael Jackson represented by the series of his releases
and their songs’ impacts captured by the total play counts on the music providing service

LastFM. c, The career of Agatha Christie shows her publication dates and the their impact as
the number of ratings they received on Goodreads. d, Publication history of the mathematician

Paul Erdős based on his record in the Web of Science database. The papers’ impact is
measured by the total number of citations 10 years after publication.
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3.3. The Q-model: decomposing impact through luck and individual ability 29

writer Agatha Christie, and mathematician Paul Erdős. As the statistical de-
scriptions and modeling during the upcoming sections are going to illustrate,
this time series representation of careers offers a practical framework to con-
duct quantitative analysis on the careers, such as capturing the role of luck or
comparing the co-evolution of impact and network position.

3.3 The Q-model: decomposing impact through
luck and individual ability

In this section, I introduce an impact-decomposition method called the Q-model
outlined in Subsection 2.2.4, developed to model scientific careers. I describe the
basic assumptions the model builds on and test its requirements on all the data
sets I am studying. Then I illustrate its predictive power in terms of the biggest
hit of the individuals. Next, I integrate the Q-model with the true score theory.
Finally, I use this combined framework to capture the role of randomness in
creative success.

3.3.1 The random-impact-rule

As the examples in Figure 3.3 show, Kubrick’s highest impact movie was one
of his last ones, while Michael Jackson had his biggest hit at a relatively early
stage. This suggests that a career’s biggest hit may occur at any time, agreeing
with former findings in the psychology literature [10–12]. Indeed, a rigorous
analysis of my data revealed that any work in a career has an equal chance to
be the highest impact work, following the random-impact-rule, consistently with
what others previously found for large data sets of artists and scientists [43, 44].
I tested the validity of this rule in the following way: first, I denoted the produc-
tivity of the individual by N, while the best product has a chronological rank
of N∗. In case the random-impact-rule holds for a certain set of individuals
(N − N∗ pairs), P(N∗/N) is well-approximated by a uniform U(0, 1) distribu-
tion. Then I compared the measured P(N∗/N) to the randomized case where
I reshuffled careers randomly, conducted the same measurement on P(N∗/N),
repeated this randomized measurement a hundred times, and took the aver-
age distributions of these randomizations. In addition, to reduce noise, I tested
the cumulative distribution function (CDF) of these distributions instead of the
originals. Finally, I evaluated the random-impact-rule by measuring R2 values
between the data and the randomized case (Table 3.1).

For this measurement, I had to limit the analysis to careers with sustained
productivity, which means the introduction of a filtering threshold based on the
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Field R2
random R2

S R2
N R2

p R2
Q

Agronomy 0.99955 0.99955 0.988 0.9808 0.9419
Applied Physics 0.99979 0.99979 0.982 0.9572 0.9654
Biology 0.99967 0.99967 0.984 0.9884 0.9822
Book authors 0.97773 0.97773 0.894 0.9796 0.9796
Chemistry 0.99963 0.99963 0.989 0.9945 0.996
Classical musicians 0.96694 0.96694 0.963 0.9444 0.9933
Electronic music artists 0.99553 0.99553 0.947 0.9857 0.9813
Engineering 0.99973 0.99973 0.986 0.9776 0.9793
Environmental science 0.99969 0.99969 0.968 0.9932 0.9933
Folk musicians 0.96508 0.96508 0.923 0.981 0.973
Funk musicians 0.95236 0.95236 0.934 0.9916 0.988
Geology 0.99967 0.99967 0.982 0.9885 0.9824
Health Science 0.99962 0.99962 0.991 0.9689 0.9811
Hip-hop artists 0.94326 0.95512 0.882 0.9915 0.9875
Jazz musicians 0.96488 0.96488 0.869 0.989 0.9844
Mathematics 0.99969 0.99969 0.983 0.9856 0.9778
Movie art directors 0.97207 0.97207 0.922 0.9989 0.9994
Movie directors 0.9982 0.9982 0.96 0.9914 0.9875
Movie producer 0.99941 0.99941 0.916 0.9817 0.974
Physics 0.99972 0.99972 0.989 0.9961 0.9972
Political Science 0.99973 0.99973 0.984 0.9913 0.9844
Pop musicians 0.99407 0.99407 0.903 0.9742 0.9844
Rock musicians 0.95565 0.95565 0.948 0.9934 0.9952
Script writers 0.99957 0.99957 0.877 0.9841 0.9751
Soundtrack composers 0.99923 0.99923 0.974 0.9801 0.9822
Space Science or Astronomy 0.99959 0.99959 0.965 0.9928 0.9922
Theoretical Computer Science 0.99954 0.99954 0.982 0.9918 0.9886
Zoology 0.9996 0.9996 0.976 0.9807 0.9206

Table 3.1. Results of model fittings supporting the Q-model.
The table shows the goodness of the fit for the random-impact-rule against the randomized

null model, and the goodness of the fit of the log-normal model to the impact (S), productivity
(N), and the p and Q distributions.
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3.3. The Q-model: decomposing impact through luck and individual ability 31

number of creative products each individual has. For individuals in the film
industry and science, I set limits to 10 movies and papers (except art-directors,
for whom it was 20), while in literature, it was 50 books per author, and in
music, 80 songs per artist. The latter, relatively high threshold for musicians, is
due to the fact releases usually containing multiple songs.

3.3.2 Introducing the Q-model
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Figure 3.4. Productivity distributions.
The distribution of the individuals’ productivity (N) for film directors, pop musicians, book
authors, and mathematicians. On the figure the grey dots represent the data points while the

dashed colored lines show the binned trend (10 bins, percentile binning). I evaluated the
goodness of fit by the R2 value.

As the heavy-tailed log-normally distributed impact measures in Subsection
3.2.2 illustrate, individual products’ impact can differ broadly from each other.
These broad differences are reproduced and explained for scientific careers by
the modeling approach called Q-model, a mechanistic stochastic model on cre-
ative career evolution. According to this model, the impact of a certain creative
product α created by an individual i (Si,α) can be decomposed as the product of
two independent factors Si,α = Qi pi,α, where Qi is a variable specific to the indi-
vidual and only depends on its career history, and pi,α is a probabilistic variable,
independently drawn for every creative product from a field-specific distribu-
tion.

In addition, the Q-model is building on the random-impact-rule and the log-
normality of the impact- and productivity distributions (four example fields in
Figure 3.1-3.4, and the goodness of the log-normal fit for all the studied fields
in Table 3.1). Moreover, as seen in the following, the Q-model requires both N,
Q, and p to be independent, and Q and p following log-normal distributions as
well.

The Q-model assumes that when the distribution of the impact can be de-
scribed by log-normal functions (as shown in Subsection 3.2.2), then the impact
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32 CHAPTER 3. SUCCESS AND LUCK IN CREATIVE CAREERS

can be expressed as the trivariate log-normal distribution of three variables.
These three variables are (i) the productivity of the individuals (the number of
papers they publish, N); (ii) an individual based ”quality” parameter only de-
pending on the individual’s prior works’ success (Q); and (iii) a random param-
eter representing stochastic outer factors (p). By transforming these variables to
the logarithmic space (N̂ = log N, Q̂ = log Q, p̂ = log p), the impact distribu-
tion P(Ŝ) can be written as:

P(Ŝ) = P( p̂, Q̂, N̂) =
1√
(2π)3

exp
(
− 1

2
(X− µ)TΣ−1(X− µ)

)
, (3.6)

where X = ( p̂, Q̂, N̂), µ = (µN, µp, µQ) is the average vector of the trivariate

normal distribution, and Σ is its covariance matrix: Σ =

 σ2
p σp,Q σp,N

σp,Q σ2
Q σQ,N

σp,N σQ,N σ2
N

.

To obtain the covariance matrix Σ of the trivariate log-normal distribution of
Eq. 3.6, I used a CMA-ES algorithm [223, 224] (Covariance Matrix Adaptation
Evolution Strategy), from which I obtained the parameters and summarized
them in Table 3.2. The showed results are consistent with the reported findings
of scientific careers in Ref [43]. By using these constants obtained by the op-
timization, I computed the values for Q and p for all the careers and creative
products, from which I fitted the P(Q) and P(p) distributions by log-normal
functions to validate the consistency of the analysis (Figure 3.5 and Table 3.1).

Finally, I showed that the Q parameter is robust over the course of individ-
ual careers in artistic domains as well, complementing the earlier analysis of
Sinatra et al. on scientific careers [43]. These tests further support the use the
Q-parameter of the individuals as reliable measures of success. I computed
the correlation between Q parameters measured early and late in a career, and
found a high correlation between the two, while I found low correlations be-
tween Q and N (Figure 3.6 and Table 3.3). These findings are in good agreement
with the results reported about scientific careers [43].

3.3.3 Predictions of the Q-model

In the previous subsection, I introduced the Q-model and showed that its’ re-
quirements consistently hold for all the studied fields: the random-impact-rule,
the low correlations between Q,p, and N, and the log-normality of these quan-
tities alongside that of S. This way, I obtained a model that decomposes the
observed impact S into two components, an individual-based quality parame-
ter Q that captures the individuals’ ability to generate high-impact work, and
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Figure 3.5. Measurements on the Q-model.
Figure a-d) and e-h) illustrate how the values of Q and p are distributed, showing the data

points by grey dots and the fitted log-normals by dashed coloured lines for movie directors,
pop musician, book authors, and mathematicians.
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Figure 3.6. Comparison of Q parameters between early and final stages of
careers in film, music, and literature.
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Field µN µp µQ σN σQ σp σpQ σpN σQN

Agronomy 4.467 2.148 4.147 1.711 0.452 0.514 -0.069 0.025 -0.005
Applied Physics 4.521 1.224 2.938 1.823 0.399 0.452 -0.046 -0.015 0.012
Movie art directors 4.214 4.557 3.877 1.606 0.437 0.465 -0.047 0.030 0.037
Biology 4.305 2.334 4.078 1.867 0.434 0.519 -0.072 -0.074 -0.027
Books authors 3.514 2.868 5.571 1.682 0.396 0.476 -0.054 -0.014 -0.062
Chemistry 4.366 2.462 4.586 1.629 0.440 0.485 -0.059 -0.132 0.083
Classical musicians 5.313 4.762 5.896 1.873 0.488 0.502 -0.072 0.024 0.003
Soundtrack composer 3.687 3.935 5.312 1.634 0.358 0.416 -0.030 0.005 -0.059
Movie directors 4.174 4.673 4.992 1.783 0.426 0.469 -0.053 0.097 -0.017
Electronic music artists 5.144 4.531 3.761 1.833 0.345 0.415 -0.035 0.026 0.038
Engineering 4.976 2.170 3.768 1.601 0.457 0.500 -0.063 0.017 0.046
Environmental Science 3.489 2.112 4.194 1.517 0.445 0.512 -0.063 0.034 -0.025
Folk musicians 5.246 4.071 6.260 1.744 0.434 0.475 -0.054 -0.026 -0.060
Funk musicians 5.608 3.612 6.081 1.656 0.447 0.477 -0.058 -0.076 0.011
Geology 4.592 4.749 4.441 1.802 0.374 0.435 -0.037 0.071 -0.056
Health Science 4.114 3.986 3.513 1.702 0.448 0.494 -0.061 0.048 -0.023
Hip-hop artists 5.354 4.703 5.433 1.472 0.481 0.495 -0.068 -0.072 -0.078
Jazz musicians 4.380 3.340 5.337 1.695 0.379 0.413 -0.030 -0.022 -0.099
Mathematics 4.557 4.662 4.212 1.647 0.378 0.434 -0.040 -0.030 -0.102
Physics 4.552 1.760 3.396 1.571 0.383 0.454 -0.046 0.055 0.037
Political Science 4.723 2.889 4.041 1.807 0.384 0.461 -0.055 -0.002 0.010
Pop musicians 6.071 2.553 4.421 1.911 0.417 0.454 -0.046 -0.024 0.018
Movie producers 3.823 4.424 4.010 1.499 0.397 0.476 -0.052 -0.081 -0.019
Psychology 4.565 4.696 4.514 1.000 0.737 2.013 0.220 0.009 -0.012
Rock musicians 5.518 3.858 3.643 1.572 0.451 0.509 -0.069 -0.017 0.046
Space Science Astronomy 5.231 2.164 2.523 1.672 0.371 0.462 -0.046 -0.056 0.094
Theoretical Computer Science 4.058 4.781 4.216 1.799 0.426 0.456 -0.045 -0.006 0.042
Script writers 3.024 2.944 4.128 1.620 0.461 0.516 -0.073 -0.005 -0.073
Zoology 4.058 3.655 3.523 1.723 0.377 0.429 -0.042 -0.028 -0.048

Table 3.2. Optimization results for the trivariate log-normal impact distribu-
tion.

The table reports the parameters of the P(N), P(Q), and P(p) distributions obtained by a
CMA-ES evolutionary optimization algorithm for all the studied fields.
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3.3. The Q-model: decomposing impact through luck and individual ability 35

Field CorrelationsNQ CorrelationsQearly−Qlate

Book authors 0.047 0.947
Classical musicians 0.184 0.956
Electronic music artists 0.063 0.947
Folk musicians 0.067 0.96
Funk musicians 0.022 0.953
Hip-hop artists 0.037 0.948
Jazz musicians 0.101 0.951
Movie art directors -0.144 0.96
Movie directors 0.096 0.972
Movie producers 0.063 0.981
Plot writers -0.005 0.974
Pop musicians 0.141 0.959
Rock musicians -0.029 0.968
Soundtrack composers 0.106 0.955
hline

Table 3.3. Robustness of the Q-model.
Correlations values between productivity (N) and the Q parameter; and the correlations

between Q measured at early and late career stages for the different artistic fields.

a probabilistic term p that encodes random external fluctuations. After this, I
tested the predictive power of the Q-model on how accurately it can reproduce
the impact of the biggest hit of the individuals based on their quality parameter
and the effects of luck. For that, I compared the scaling of the highest impact
work with productivity as predicted by the Q-model, and showed that the Q-
model gives significantly better results than a more simple model based on the
random-impact-rule (R-model).

First, in the random model, I generated sets of careers on each field based on
the random-impact-rule. To ensure that the set of synthetic random careers was
directly comparable to the data, I constructed them by randomly reshuffling
the time events of the individual careers from the data, repeated this random-
ization 100 times, and averaged the results. Second, I built a set of synthetic
careers by using the Q-model. For that, I combined the given career length Ni
and measured Qi parameter of the individual i for every individual, and ran-
domly redistributed the possible pj parameters (picking exactly Ni pj values for
individual i) among the individuals’ creative products. Then I computed the
expected impacts of the synthetic careers by using the equation of the Q-model
(Si,α = Qi pi,α) for every creative product separately. Then I repeated this pro-
cess 100 times. Finally, I measured the highest impact work as a function of
career length on the data and the two types of synthetic careers. On the one
hand, I found a good agreement between the prediction of the Q-model to the
data. On the other hand, I reported that it performs much better than the simple
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36 CHAPTER 3. SUCCESS AND LUCK IN CREATIVE CAREERS

Field R2 Field R2

Funk musicians 0.636 Biology 0.991
Electronic music artists 0.700 Space Science or Astronomy 0.991
Movie art directors 0.704 Zoology 0.992
Script writers 0.808 Geology 0.993
Soundtrack composer 0.812 Applied Physics 0.994
Hip-hop artists 0.812 Engineering 0.994
Book authors 0.823 Theoretical Computer Science 0.994
Classical musicians 0.868 Chemistry 0.995
Rock musicians 0.871 Mathematics 0.996
Movie directors 0.918 Physics 0.998
Movie producers 0.925 Political Science 0.999
Pop musicians 0.968 Health Science 1.000
Agronomy 0.985 Environmental Science 1.000
Jazz musicians 0.987 Folk musicians 0.938

Table 3.4. Goodness of the predictions of the Q-model.
The table reports the goodness of the fit of the Q-model to the highest impact works, expressed

by the R2 values.

R-model on predicting the success of the highest impact work, suggesting that
the Q-model is a sufficient approach to capture this phenomenon. These results
are shown for four example fields in Figure 3.7, and the goodness of the fit for
all the fields is summarized in Table 3.4.
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Figure 3.7. Comparing the R-model and the Q-model to the data.
The figure shows a comparison between the predictions of the Q-model on the highest impact
works of the individuals as the function of their productivity to the random model and to the

original data. The models are evaluated by the R2 values relative to the data (Table 3.4).

3.4 Capturing the role of randomness in impact

3.4.1 Luck in the Q-model

Following the earlier results, the values of the covariance matrix of the triviarate
impact-distribution (Eq. (3.3.2, Table 3.2) pinpoint a general conclusions about
the behavior of the probabilistic term p. As the cross-terms of the covariance
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Figure 3.8. Rescaled cumulative impact distribution for four example fields.
The figures show the individuals’ Qi-rescaled impact distribution P(pi,α = Si,α/Qi) and how
they collapse onto roughly the same aggregated curve, marked by continuous colored lines.

The distribution of 50 randomly chosen individuals is visualized by light grey lines.

matrix σp,Q and σp,N are close to zero (and significantly smaller than the other
matrix elements), the distribution P(p) does not depend on variables related to
the individuals’ careers (such as N and Q). This implies the impact rescaled
by the individual parameter Q, i.e. pi,α = Si,α/Qi, should collaps on the same
distribution for all individuals on a given field. As turns out, this is the case for
the studied data sets, illustrated in Figure 3.8. Since the rescaled pi,α = Si,α/Qi
distribution is independent of any individual variables but universal for a given
creative field, former research concluded that p can be interpreted as a “luck
factor” contributing to impact [43].

3.4.2 Combining the Q-model with the classical test theory

After introducing the Q-model and validating it on the data sets I use, I com-
bined it with the classical test (or true score) theory [220, 225–227] to show a use
case of this impact decomposition method: the comparison of the fluctuations
in luck and variations in the typical impact across different creative fields in a
quantitative fashion.

First, recall the impact decomposition Si,α = Qi pi,α presented in Section 3.3
and the log-normality of its components, and transform the Q-model into the
log-space in the following way:

Ŝi,α = Q̂i + p̂i,α, (3.7)

where Ŝi,α = log Si,α, Q̂i = log Qi and p̂i,α = log pi,α. I also note, based on earlier
findings that Qi and pi,α are independent, since the covariance σ2

pQ ≈ 0, then
σ2

p̂Q̂
≈ 0. After these transformations, Eq. (3.7) takes exactly the form proposed
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=

a Observed value
(e.g. S)
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(e.g. Q)
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(e.g. p)

b Field A, R 0

P(p)
P(Q)

Field B, R 1

P(p)
P(Q)

Figure 3.9. Illustration of the classical test theory.
a, According to the classical test theory, the normal distribution of an observed variable (green
in the example, e.g., success S) can be decomposed as the sum of the distributions of the true
score (blue, e.g., Q) and the error term (red, e.g., p). b, Illustrates the randomness index R on

two extreme examples: on Field A the distribution of p̂ is narrow (has a low variance
compared to Q̂), therefore randomness has a negligible role (R→ 0). On the contrarily, Field B
has a narrow Q̂ and broad p̂ distribution meaning that the individual’s luck dominates impact

(R→ 1).

by the classical test theory [47, 48] for decomposing the observed value of a cer-
tain measurable. According to this statistical theory, the normally distributed
observed value of an attribute, in this case Ŝ, can be decomposed as the sum of
two variables both following normal distributions under the condition of them
being uncorrelated. One of these two variables encodes the true, error-free score
of the observed quantity, in this case corresponding to Q̂, and the other variable
encodes a random error term, in paralel to p̂. The two normal distributions
of the variables Q̂i and p̂i,α are in line with previous studies, suggesting that
any individual variables like merit and skill, and globally experienced quanti-
ties such as luck, are typically normally distributed [46–48, 213, 219, 228]. The
principles of the true score theory are also illustrated in Figure 3.9a.

Building on Eq. (3.7), on the properties of normal distributions and on the
measured attributes of Q and p distributions, I express the variance of the dis-
tribution of Ŝi,α, σ2

Ŝ
, as:

σ2
Ŝ = σ2

Q̂ + σ2
p̂, (3.8)

where σ2
p̂ and σ2

Q̂
are the variance of the distributions of p̂ and Q̂, respectively.

This decomposition allowed me to measure the relative importance of the luck
component compared to the individual component in determining impact fluc-
tuations. Being inspired by previous work discussing the role of luck in sports
and business [47, 48], my colleagues and I introduced the index R capturing the
proportion of luck in the overall impact variance as:

R =
σ2

p̂

σ2
Q̂
+ σ2

p̂
=

σ2
p̂

σ2
Ŝ

. (3.9)
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3.4. Capturing the role of randomness in impact 39

The R index reads as follows. When individuals in a domain have a similar
ability to generate impact, captured by a narrow Q̂ distribution, differences in
impact are mainly driven by the term corresponding to p, interpreted as luck,
which leads to R → 1. In contrast, when p has a low variance compared to
S, then R → 0, and luck plays only a small role (Figure 3.9b). Therefore this
index allows the comparison of the role of randomness across different creative
professions covered by the analyzed data sets. In addition, to ensure that the
distinction between different fields based on R is sound, we conducted pairwise
Mann-Whitney U tests to compare the distributions of Q and p between each
possible pairing of professions. We found that there is not a single pair of fields
in our dataset, which have both indistinguishable Q and p distributions at the
same time (Figure 3.10).
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Figure 3.10. Results of the Mann–Whitney U test comparing the Q and p
distributions.

The figure shows the pairwise p significance values of test comparing the a, Q and b, p
distributions of the different creative professions.

3.4.3 Randomness in creative careers

Now that I managed to combine two existing approaches, the Q-model, and
the true score theory in a mathematical framework, I use it to investigate the
role of luck on different creative fields by answering the question: in which cre-
ative domains are impact-inequalities driven more by luck than by individual
ability? Using the Q-model, first I measured σ2

Q̂
and σ2

p̂ for all the 28 creative
professions from the film, music, and book industries, and in science. Figure
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Figure 3.11. Comparing the role of randomness across 28 professions .
a, I show the studied 28 creative fields on the

(
σ2

Q̂
, σ2

p̂

)
plane, marking fields from different

data sets with different colors. I denoted a fitted line by continuous black line and added the
diagonal as continuous grey line as a reference. The gradient-coloring of the background

changes in a diagonal direction, illustrating that the points being on the same off-diagonal line
have the same σ2

Ŝ
. b, The table shows the values of the R randomness index based on Eq. (3.9)

for the different fields.
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3.4. Capturing the role of randomness in impact 41

3.11a shows all these professions placed alongside these two dimensions. Since
the data points seem to be organized along a single line, I conducted a linear
regression between σ2

p̂ and σ2
Q̂

(black dashed line on Figure 3.11a), where I de-
termined a linear relationship with a slope of≈ 0.71, intersection of 0.18, and an
r value of 0.85. Because σ2

Ŝ
= σ2

p̂ + σ2
Q̂

and the regression slope is equal to the ra-

tio σ2
p̂/σ2

Q̂
, the measured slope being smaller than 1 indicates that as σ2

Ŝ
increases

(illustrated by the shading on Figure 3.11a), the value of σ2
Q̂

increases faster than

σ2
p̂. Hence large fluctuations in impact are dominated by large fluctuations in

individual ability, captured by Q, rather than fluctuations in luck. Figure 3.11a
offers several other interesting findings as well. On the one hand, I observed
that all the studied fields are placed above the diagonal line (σ2

p̂ > σ2
Q̂

), indi-
cating that within each domain fluctuations in luck are broader than those in
the typical career impact. On the other hand, I did not see any domain-specific
clustering on the

(
σ2

Q̂
, σ2

p̂

)
plane, which implies that the studied domains do not

differ from each other in the role of luck.
From these computed variance values, it is straightforward to measure the

randomness index R of Eq. (3.9) and to use it for a comparison of the character-
istics of career success across domains (Figure 3.11b). The comparison reveals
that first, within the movie industry, producers’ careers are the most driven by
luck, followed by composers; and second, being an art director is associated
with the lowest R index, suggesting that achieving high impact as an art direc-
tor is significantly less likely to happen by chance than in other careers within
the movie industry. Since both professions rely on creative writing, it is inter-
esting to compare the randomness index of scriptwriters (R = 0.528) and book
authors (R = 0.546). The values of the indices show that writing for the movie
industry is less determined by luck than in the book industry, probably reflect-
ing the positive effects of working in a more collaborative environment.

In music, classical and hip-hop are the most robust against luck fluctuations
as they are associated with the lowest randomness indices of our data set, R =
0.507. This could be explained by classical music being more dependent on
skills, experience, deliberate practice, and musical training, as well as the more
traditional schooling system of the style. Regarding hip-hop music, one could
speculate that as being mostly an underground genre, it is less exposed to the
rich-get-richer effect and is much less organized, leaving more space for rising
juniors and a larger possibility to alternative ways of success. In contrast, the
most popular genres, namely electronic music (R = 0.546) and rock music (R =
0.530) are on the other side of the range with top R values. These two genres
contain the largest number of one-hit-wonder careers, and impact consistently
has more pronounced fluctuations.
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42 CHAPTER 3. SUCCESS AND LUCK IN CREATIVE CAREERS

Regarding science, I found a wider range of randomness, with space sci-
ence and astronomy (R = 0.555) and political science (R = 0.546) being at the
luck-end of the range for the highest R-index fields. On the other hand, theo-
retical computer science (R = 0.517) and engineering (R = 0.523) are the least
influenced fields by luck fluctuations.

3.5 Role of randomness in collaborations

In the previous sections, I reviewed the Q-model and analyzed the role of ran-
domness in impact focusing on individual careers of 28 creative professions.
However, typically, movies, songs, and scientific publications are the results of
teamwork, as the overview in Subsection 2.2.5 points out as well. Therefore
next, I ask: can collaborations between individuals improve, for instance, in the
lights of previous findings (Subsection 2.2.6), our ability to predict the timing of
career hits? How do success and network positions relate to each other? Ear-
lier research already suggests a connection between network positions and the
magnitude of the biggest hit [50, 82, 215, 229–231], which here I aim to extend to
the temporal dimension and compare the co-evolution of these two alongside
the career trajectories. For the sake of simplicity, here I focus on one example
profession from each collaborative dataset: movie directors, pop musicians, and
mathematicians.

3.5.1 Constructing collaboration networks

First, I reconstructed the temporal aggregated network of movie directors, pop
musicians, and mathematicians at a yearly resolution from the beginning of the
20th century by using the cast lists of movies, lists of featured artists on pop
releases, and co-authors of mathematics articles. In these weighted undirected
networks, each individual is represented by a node, and the strength of the
connection between two nodes at year T is proportional to the intensity of their
collaboration. To compute the tie weights, first, I took the set of products, e.g.,
publications or movies, each individual i contributed to up until year T (Pi(T)).
Then, I measured the weight of the connection between nodes i and j at year T
as wij(T), the Jaccard-index of the sets of works of the two individuals i and j:

wij(T) =
|Pi(T) ∩ Pj(T)|
|Pi(T) ∪ Pj(T)|

, (3.10)

that is the number of works both individuals collaborated on, divided by the
total number of works they contributed to until year T.
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3.5. Role of randomness in collaborations 43

Based on this definition, the giant component of the final aggregated collab-
oration network of movie directors consist of 8,091,208 links between 184,220
people, the network of pop musicians measures as 52,366 artists connected by
8,232,349 edges, and for mathematicians, I obtained 94,755 connections between
27,401 scientists. The temporal growth of these networks measured as the num-
ber of edges over time is visualized in Figure 3.12a, showing a clear exponential
trend with the network of mathematicians being the two orders of magnitudes
smaller than the other two, most likely due to the way smaller typical time
size in comparison to e.g., film. To further illustrate the network evolution of
these fields, I visualized changes of the clustering coefficient over time in Figure
3.12b, which clearly shows that movie directors are increasingly more embed-
ded in the social fabric of their field. In contrast, clustering in mathematics
(most likely due to the slow increase in team sizes) increases, while pop music
shows the opposite behavior.
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Figure 3.12. Temporal evolution of the collaboration networks.
The panel a, shows the size of the collaboration network between movie directors,

mathematicians, and pop musicians over time, while panel b, illustrates how the average
clustering of these networks evolves during the observation period.

3.5.2 Correlation between impact and network position

In this subsection, I analyze the temporal evolution of the network position of
the film directors, pop musicians, and mathematicians, measured by the degree
centrality, PageRank centrality, clustering coefficient, node strength, between-
ness centrality, closeness centrality, network constraint [232], and coreness cen-
trality [199]. In addition, I computed the correlations of the different network
measures, which are shown in Figure 3.13. These correlation measurements
show that while several measures, such as node degree and node strength, are
highly correlated, others are not, covering significantly different angles of the
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network perspectives, which also justifies the usage of these measures for fur-
ther analyses.
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Figure 3.13. Correlations of network measures.
The figures show the correlations between the different network measures for the three

studied creative professions at three example years (1996, 2006, 2016).

After computing the centralities in the networks over time, I created the net-
work measure time series for each individual, where time events correspond to
the works of the individual’s career in chronological order. Then I compared
the average-normalized network time series (n(t)) to the average-normalized
impact time series (i(t)) on the level of the individuals and found that they
are in general correlated. However, they are typically shifted. I estimated this
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3.5. Role of randomness in collaborations 45

Movie directors Pop musicians Mathematicians
Success peaks first 40.24± 0.07 44.19± 0.17 45.31± 0.18
Network peaks first 43.88± 0.08 45.39± 0.16 46.09± 0.19
Number of individuals 6,830 7,192 18,703

Table 3.5. Fraction of the individuals showing different networking patterns.
The table show the fraction of individuals for which the network or the impact peaks first,
averaged across the eight different network measures. The table also shows the number of

individuals used for this analysis.

shifting parameter τ by aligning the network and impact time series so that the
correlation between the two becomes maximal:

τ = arg max
(
[Corr

(
i(t + ∆τ), n(t)

))
∆τ

. (3.11)

For the sake of simplicity, I normalized these time series n(t) and i(t) by their
average values. This is illustrated in Figure 3.14 by two examples. On the one
hand, for the career of George Lucas as a movie director, I measured τ = −1,
meaning his success peaks first, and his network position followed by exactly
one movie. On the other hand, the case of Francis Ford Coppola shows the
complementary behavior: network peaks first, and success only comes later,
delayed by a few movies as the observed τ = 5 implies.
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Figure 3.14. Network position and timing of the biggest hit for movie direc-
tors.
The figure shows the normalized impact of the movie directors compared to their normalized

page rank centrality a, for George Lucas illustrating the case where the peak in impact is
followed by the peak in the network position (τ = −1) and b, for Francis Ford Coppola

showing the opposite behavior when network centrality peaks first (τ = 5), followed by the
impact.

Following the idea of these two examples, I analyzed all individuals in my
dataset and found that indeed, there are two major groups of individuals: those
for whom the network measures peak before the highest impact work occurs,
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46 CHAPTER 3. SUCCESS AND LUCK IN CREATIVE CAREERS

Pop music Mathematicians Film directors

d p d p d p
PageRank 0.129 0.557 0.273 <0.001 0.142 0.600
Degree 0.129 0.515 0.269 <0.001 0.121 0.795
Clustering 0.114 0.698 0.292 <0.001 0.158 0.479
Strength 0.177 0.582 0.191 0.558 0.078 0.999
Betweenness 0.154 0.752 0.172 0.692 0.095 0.981
Closeness 0.143 0.839 0.156 0.772 0.068 1.000
Constraint 0.121 0.940 0.164 0.726 0.109 0.945
Coreness 0.146 0.805 0.179 0.613 0.059 1.000

Table 3.6. Results of the Kolmogorov-Smirnov test between the randomized
and the measured network parameters for the τ distributions.

The network positions are captured by PageRank centrality, degree centrality, clustering
coefficient, node strength, betweenness centrality, closeness centrality, constraint, and coreness

centrality. The distributions of the corresponding values for the professions of pop music,
mathematics, and movie directors can be found in Figure 3.15. The table reports both the

measured KS distance values (d) and their statistical significance (p).

and those for whom the network peak occurs after, and only a significantly
smaller fraction for whom network and success peaked at the same time. The
exact number of individuals for whom this network analysis was possible to
carry out and the fraction of the different networking behaviors are summarized
in Table 3.5.

3.5.3 Randomness in networking
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Figure 3.15. Distribution of the shifting parameter τ.
The panels show the distributions of the measured shift parameter τ (coloured lines)

comparing to the randomized case (grey lines) between the film directors’, pop musicians’ and
mathematicians’ PageRank and impact time series. The corresponding Kolmogor-Smirnov

tests’ results are in Table 3.6.

As there seems to be two complementary networking behavior describing
the studied creative professions, the question naturally arises: how may these
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3.5. Role of randomness in collaborations 47

Pop music Mathematicians Film directors

d p d p d p
PageRank 0.074 <0.001 0.039 <0.001 0.041 <0.001
Degree 0.029 <0.1 0.085 <0.001 0.068 <0.001
Clustering 0.073 <0.001 0.029 <0.01 0.057 <0.001
Strength 0.131 <0.001 0.203 <0.001 0.078 <0.001
Betweenness 0.24 <0.001 0.075 <0.001 0.113 <0.001
Closeness 0.099 <0.001 0.061 <0.001 0.094 <0.001
Constraint 0.088 <0.001 0.071 <0.001 0.032 <0.001
Coreness 0.065 <0.001 0.083 <0.001 0.039 <0.001

Table 3.7. Results of the Kolmogorov-Smirnov test between the S distribu-
tions.

Individuals are split based on the sign of their τ parameter. We used the following network
measures: PageRank centrality, degree centrality, clustering coefficient, node strength,

betweenness centrality, closeness centrality, constraint, and coreness centrality. The table
reports both the measured KS distance values (d) and their statistical significance (p).

Pop music Mathematicians Film directors

d p d p d p
PageRank 0.048 <0.1 0.022 <0.001 0.02202 <0.1
Degree 0.032 <0.1 0.076 <0.001 0.05878 <0.001
Clustering 0.073 <0.01 0.054 <0.001 0.00662 <0.001
Strength 0.131 <0.001 0.203 <0.001 0.078 <0.001
Betweenness 0.240 <0.001 0.075 <0.001 0.113 <0.001
Closeness 0.099 <0.001 0.061 <0.001 0.094 <0.001
Constraint 0.088 <0.001 0.171 <0.001 0.032 <0.001
Coreness 0.065 <0.001 0.083 <0.001 0.039 <0.001

Table 3.8. Results of the Kolmogorov-Smirnov test between the Q distribu-
tions.

Individuals are split based on kind of career, while their network positions are captured by
their PageRank centrality, degree centrality, clustering coefficient, node strength, betweenness
centrality, closeness centrality, constraint, and coreness centrality. The table reports both the

measured KS distance values (d) and their statistical significance (p).

groups differ e.g., in their expected success, and can we tell the differences be-
tween them? To test these, I constructed synthetic careers where I randomly
reshuffled both the network and the impact time series of each empirical ca-
reer trajectory of the data sets and conducted the same measurement of the τ
shifting parameter for each of them. Afterward, I compared the distribution of
the shifting parameter measured both on the original and the randomized data.
My surprising findings revealed that the two distributions are closely overlap-
ping, as seen in Figure 3.15 in the case when network centrality is measured by
PageRank. I confirmed this observation for all the eight studied network mea-
sures and three creative professions as well by conducting the double-sided
Kolmogorov-Smirnov test (see the results in Tabel 3.6).

As my previous analysis showed, whether an individuals’ network or suc-
cess peaks first, it happens totally by chance, from which I expected their suc-
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48 CHAPTER 3. SUCCESS AND LUCK IN CREATIVE CAREERS

cess to be independent of this behavior as well. I tested this by comparing the
distribution of success S and the individuals’ Q parameters for the three stud-
ied fields between these two groups and by comparing the distributions using
the Kolmogorov-Smirnov test, and I found no significant differences. In other
words, regardless of whether success or network peaks first, the expected suc-
cess of the individuals stays the same. The results for the case of PageRank
centrality are visualized in Figure 3.16, while the results of a thorough compar-
ison splitting the individuals based on all the centrality measures are in Table
3.7-3.8.

In conclusion, on the role of randomness, I have uncovered two compli-
mentary networking behaviors: individuals for whom network peaks first, and
those for impact peaks first. However, this distinction seems to happen at ran-
dom, showcasing another example of the role of randomness. This also implies
that network properties do not improve our understanding of predicting the
timing of the biggest hits, which is also in line with the random-impact-rule
described earlier.
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Figure 3.16. Success distributions for different networking behaviors
Success measured by impact (S) and Q distributions, where individuals are split based on their

professions (director, pop musician, mathematician), while their network centralities are
captured by their degree, PageRank, and clustering.
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3.6 Discussion

In this chapter, I reviewed the modeling approach called Q-model and showed
how its criteria are fulfilled on the four large-scale datasets I collected covering
the film, book, and music industries and science. Then I applied this model
to hundreds of thousands of creative careers reconstructed from my database
to decompose the success of individuals into two independent components de-
fined by the model. One of these is expressing the ability of an individual to
have a consistently high or low typical impact, captured by the Q-parameter,
and the other one is associated with random fluctuations, as shown during my
analysis, corresponding to luck.

Connecting the Q-model to the classical test theory, I managed to compare
the importance of the two components Q and p across the 28 studied creative
professions and found that on average fluctuations in impact of single creative
works are more influenced by luck than by individual ability and that the fluc-
tuations in the individual parameter are more pronounced for fields with large
fluctuations in impact. In addition, I found that professions within different do-
mains are not clustered based on the relative magnitude of these fluctuations,
which suggests that the magnitude of luck is not a distinctive feature of creative
domains but instead is a universal attribute.

Further building on the combination of the Q-model and the classical test
theory and earlier research on the role of luck, I defined the randomness index
as the relative ratio of the variance of the random component to that of suc-
cess. The analysis of this index shows that its values vary in a relatively narrow
range, which further confirms the lack of distinct typical scales of random fluc-
tuations associated with the four different domains investigated in the paper.
In this narrow range of randomness, I have found that on the one hand, profes-
sions with the highest exposure to luck are those of film producers, electronic
music artists, book authors, and scientists working in the fields of space science
and political science. On the other hand, randomness has the lowest influence
on fields such as hip-hop and classical music and theoretical computer science.

Finally, I studied the relationship between individuals’ network position and
success and found another surprising dimension of success where luck plays a
major role. In fact, the temporal correlation between success and centrality in
the collaboration network for movie directors, pop musicians, and mathemati-
cians as a case study revealed that two distinct classes of creative careers exist
regardless of their creative domain. Individuals belonging to the first group
produce their most successful work first and become well-connected in the net-
work only after the occurrence of the hit, while people falling into the second
category show the inverse of this behavior and first build favorable connections,
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and only produce their big hit afterward. However, as my comparative analy-
sis showed, whether an individual falls into the first or the second category has
no more regularities than the random case. This lays in line with earlier work,
e.g., the random-impact-rule, illustrating the difficulties of predicting the tim-
ing of an individual’s biggest hit. Furthermore, I found no difference between
individuals’ success and Q parameter and group the individual belongs to.
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CHAPTER 4

COMMUNITIES AND MENTORSHIP IN
ELECTRONIC MUSIC

4.1 Introduction

The emergence of success in creative professions, such as music, has been
studied extensively, as the number of cited works in Section 2.2.5-2.2.6 also il-
lustrates. However, the mechanisms connecting individual success to collabo-
ration is not yet fully understood. This chapter contributes to this line of work
by analyzing longitudinal data on the co-releasing and mentoring patterns of
popular electronic music artists appearing in the annual Top 100 ranking of the
DJ Magazine [99, 233].

Throughout history, music has been one of the most powerful forms of ex-
pressing culture and identity. Music is typically the result of teamwork, a col-
laborative effort of individuals with various backgrounds and behaviors, as also
seen in Section 3.5. Consequently, the world of musicians is a complex social
ecosystem, encompassing a great variety of genres, trends, tools, and audiences.
Even earlier works, mostly originated in developmental psychology [234–236],
started to analyze career patterns in music (for details see Section 2.1). Later,
many researchers [21, 23, 34, 45, 237], including myself as detailed in Chapter 3,
started to incorporate large-scale data sets and further investigate the roots of

This chapter is based on the article ”Elites, communities and the limited benefits of mentor-
ship in electronic music ” [231], that has been accepted for publication in Scientific Reports, a
journal of the Nature Research family, before the submission of this dissertation. In this paper,
I proposed the idea of the project and performed the data collection and analysis. All authors,
Milan Janosov, Federico Musciotto, Federico Battiston, and Gerardo Iñiguez designed the mea-
surements and contributed to the manuscript.
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individual success in music. For example, previous research studied the role of
forbidden triads and the relational field in jazz [53, 238]. Other researchers at-
tempted to capture large-scale features of the musical world, such as extracting
collaboration patterns and community structures or identifying genres of var-
ious scenes like classical music, jazz, and the Rolling Stone Magazine’s list of
’500 Greatest Albums of All Time’ [188, 191, 192, 197]. More recent works have
also analyzed the changes of trends and fashion cycles in music over time [239–
241].

Despite these results, a clear connection between the success of individu-
als and their role in the social fabric of music scenes is lacking. Here I aim to
fill this gap by investigating the well-defined ecosystem of artists working on
electronic music. For this, I focus on the annual top 100 ranking of the DJ Mag-
azine [233, 242] (DJs as disc jockeys) from 1997 to 2018, a period during which
electronic music transitioned from the outskirts of music to become one of its
most popular fields. Despite this recent popularity, electronic music has only
produced a handful of stars, while the majority of DJs and producers remain
unknown.

The goal of this chapter is to provide a deeper understanding of how super-
star DJs and producers (since a significant fraction of DJs also act as producers)
emerge by analyzing the interplay between individual success. For this, I quan-
tify success as the DJs’ positions in the top 100 DJ ranking lists, and the under-
lying interaction network is modeled by the co-releases of the artists based on
Discogs [15, 19]. I also discuss the community structure and dynamics of the DJ
world and show examples of the main success trends of the DJ communities.
Moreover, similarly to studies on science and academic success [176], I uncover
the existence of mentoring in electronic music, which both aligns with earlier re-
search on peers and mentor-protegé relationships (Section 2.1) and shows con-
troversial effects on the expected later-success of the mentees.

This chapter is structured as follows. First, I present an analysis of the dy-
namics of the DJ ranking list [98, 243–246] to measure the most stable subset of
star DJs. Then I connect this dynamics with the underlying co-release network
of electronic music artists and analyze their collaboration patterns. Finally, I
provide and test a definition of mentorship and study its relations to success.

4.2 Data

To carry out the proposed analysis, I combined the following four data sources:

1. The annual top 100 rankings of DJs from the official website of the DJ
Magazine [233] and related sources [247, 248]. This ranking list represents

C
E

U
eT

D
C

ol
le

ct
io

n



4.3. Dynamics of the top 100 ranking list 53

a direct way of measuring success by the terms of Section 2.2.1, and is
derived from the cumulative number of votes coming from the DJ Mag-
azin’s poll filled out by several million people [99] every year. While the
raw vote counts are unpublished, the rankings are publicly available from
the years 1997 to 2018 and contain ∼540 electronic music artists.

2. Like in Chapter 3, I used discography profiles from Discogs [15, 19], an on-
line crowd-sourced music discography platform that lists the production
of 46,063 artists active on electronic music, comprising 1,103,769 releases
up to December 2018. The discography data includes collaborations, fea-
turing appearances, and remixes, yet it lacks information on the popular-
ity of the produced songs.

3. To complement the lack of popularity measure, similarly to Chapter 3,
I collected song play count information by matching the song titles ex-
tracted from Discogs to the public API of LastFM [138].

4. I collected genre information from Wikipedia about half of the DJs that
have available profiles on the platform and extracted the consistent genre-
keywords each profile contained. This way, I attached every artist with a
set of specific genre tags, such as trance and deep house.

These sources combined allowed me to reconstruct the ranking trajectory and
collaboration evolution of the DJs and associated both popularity numbers and
genre tags to them as additional information.

4.3 Dynamics of the top 100 ranking list

During the 22 year-long history of the top 100 ranking of the DJ Magazine, more
than five hundred DJs have made it to the top 100. Yet, the electronic music
scene has only seen a handful of stars in the ranking list for extended periods.
Eleven artists have been crowned as No. 1 DJ in the world during 1997-2018, a
sign of the prominence of figures like Carl Cox, Tiësto, and Armin van Buuren.
Conversely, success has been ephemeral for most of the artists: almost 170 DJs
have been in the top 100 only once (with average rank 〈r〉 ∼ 75.3), and 99 just
made it twice (with average rank 〈r〉 ∼ 72.8). The heterogeneous dynamics of
the ranking are also shown in Figure 4.1, where DJs’ careers are represented as
ranking time series.
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Figure 4.1. Visualizing the top 100 ranking over time.
Temporal evolution of the rank of the top 100 DJs [233]. Each artist is denoted by a single line,
while colors indicate the part of the ranking list DJs have visited (red – top 10, blue – bottom

50, grey – in-between). The graph also shows a few examples by thickened lines, such as
Armin van Buuren.

4.3.1 Regime change in the ranking

This strong heterogeneity raises questions, such as what positions and regions
in the top 100 can be associated with well-established success, and where is suc-
cess just ephemeral? Where is the boundary of being a star DJ, if any? For in-
stance, DJ Magazine releases the names of all top 100 DJs, and the top 10 is often
treated specially as well. While both 10 and 100 seem to be arbitrary thresholds
of success, I managed to identify a real threshold that emerges naturally from
the dynamics of the ranking. For that I computed a measure characterizing the
ranking list called rank diversity d(r) [243], which counts the number of different
names that appear at a given rank r during the observation period, normalized
by the length of this period (T). For instance, 11 different DJs have ever reached
the No. 1 position during T = 22 years, therefore d(1) = 11/22. The distribu-
tion of the rank diversity in Figure 4.2a shows that a regime-change happens
between the upper and lower parts of the ranking. The values of the rank di-
versity also show a significant level of noise due to limitations on the size of
the dataset. Therefore, to capture the real threshold separating the top from the
rest, I used the following method. First, I split the ranking into upper and lower
tiers based on an arbitrary threshold of r. After that, I took the rank diversities
separately over these two segments and measured their variances σi. Finally, I
compared the lower and the upper tiers of the ranking based on the variance
difference between them:

∆σd(r) = |σd,ρ(ρ ≤ r)− σd,ρ(ρ > r)|. (4.1)
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Figure 4.2. Capturing regime change in the top 100 ranking.
a, Rank diversity d(r), defined as the number of individuals that have ever occupied rank r,
normalized by the length of the observation window. b, Variance difference ∆σd(r) captured
by rank diversity between the top and the bottom of the ranking (see Eq. 4.1). Inset: Zoomed

excerpt of the transition regime between the boundary of the real top and the rest (axes are the
same as in the main plot).

By computing Equation 4.1 for varying arbitrary thresholds (i.e., r values), I
observed monotonously non-decreasing behavior for ∆σd(r) in ranks 1–18 and
slowly decreasing behavior after rank 22 (Figure 4.2b). In addition, I neglected
the end of the ranking due to boundary effects. Based on the transition between
these two regimes (highlighted on the inset of Figure 4.2b as a maximum in
variance difference), I estimated the best splitting threshold separating the top
of the ranking from its bottom as r∗ ≈ 20± 2. During the rest of this chapter,
I will refer to the top 20 as the real top-tier of the ranking list and call top DJs
those who have made it to the top 20 at least once.

Rank diversity d(r) shows a clear difference between high-tier and low-tier
DJs, implying that it is more difficult to break into the top 20 than to catch lower
positions of the ranking. As a consequence, once DJs make it to the top 20, they
usually are able to maintain their positions with more ease than those at lower
ranks (i.e., large r). In particular, I found that the yearly rank difference ∆r of
DJs (Figure 4.3a) has different trends for top DJs than for those who never make
it there: the chances of not changing rank (step size of zero) is twice as high
for top DJs than for the rest. Surprisingly, all DJs have similarly low chances
of extremely large rank jumps, even from the top (low r) where there is more
rank-space to fall. Yet, unexpectedly, large jumps do exist. For instance, a great
success of recent years, the American DJ duo The Chainsmokers, started at r =
97 in 2014 and jumped forward by 79 places to r = 18, while the Russian trio
Swanky Tunes entered the top 100 at r = 97 in 2015, made a huge jump to
r = 27 the year after, but then fell back to r = 99 in 2017. In addition, those
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Figure 4.3. Comparing the top and the bottom of the ranking.
a, Yearly step size distribution (∆r), defined as the individuals’ rank differences between two

consecutive years, comparing top DJs who have ever been in the top 20 (red line) with the rest
(blue line), where a positive sign means a drop to larger r values, i.e., decline in success. b, The

entry rank distribution of the artists placing in the top and the bottom of the ranking (by
splitting it at r = 20).

DJs who make it to the real top seem to have a different start, measured by their
entry positions. The distribution of the entry positions is shown in Figure 4.3b:
for later top DJs, it is skewed towards better ranks, while for bottom DJs, it is
skewed towards lower ranks.

4.3.2 Ranking and popularity

The top 100 rankings are based on the results of a popularity poll resulting in a
public opinion-based cumulative success measure. Therefore I expected other
known measures, such as the play count of the artists’ songs, to show similar
trends and high correlations to the rankings. To test this hypothesis, I collected
the song play count information of the top DJs based on LastFM [138] keeping
track of both the total play count of their discography and the play counts of
their songs throughout 2019 with five measurements (December 2018, Febru-
ary, March, April, and May 2019). Surprisingly, in each case ( annual/total play
counts) and measurement times, I found significantly low (< 0.4) correlations
between play counts and rankings (results are summarized in Table 4.1). The
unexpectedly low correlations between DJs’ ranks and their total annual play
counts on LastFM are suggesting a dichotomy between quality and success sim-
ilar to findings in other creative domains [93, 211, 249]. From this observation, a
question follows: if raw popularity is not enough for success, what else do DJs
need to reach the top of their profession? To answer this question, I propose a
network-based explanation based on the collaboration and co-release patterns
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of the DJs.

December 20 February 17 March 22 Apr 19 May 26
Total play count
of songs in 2018 14.7M 17.9M 27.2M 17.8M 18.0M

Rank in 2018 year vs. play count
of songs released in 2018 0.394 (0.0091) 0.393 (0.0008) 0.371 (0.0007) 0.346 (0.0017) 0.35 (0.0015)

Best rank ever vs. total
play count over the career 0.262 (3.3·10−6) 0.321 (3.2·10−6) 0.332 (8.7·10−8) 0.318 (4.8·10−7) 0.319 (4.2·10−7)

Table 4.1. Play count and ranking correlations.
Correlation (and related p-values) between DJs’ best and average ranks by 2018 and the play

counts of their songs released in 2018. The measurements were conducted on different
occasions with a few month differences during 2-3 day-long crawling periods (marked by their
starting dates). The changing trend of total play counts shows how songs released in 2018 are

losing popularity in 2019.

4.4 Co-release network in the DJ world

As the previous section shows, the top 100 DJs, considered to be a unique and
elite club of artists already, is split into two: a real circle of long-standing stars
(as my analysis shows, the top 20), and the rest with ephemeral success. Since
my first hypothesis stating that this phenomenon can be explained by raw pop-
ularity failed, I asked: are there any network effects that keep this handful of
stars at the top, and result in a faster dynamics of rank change at the bottom?
What is the relationship between the social fabric of DJs and the observed dy-
namics of the top 100 rankings? To tackle these questions, I constructed and
analyzed the co-release network of the top 100 DJs based on their profiles as
electronic music artists on Discogs [15], which contain different types of the re-
leases, such as singles and remixes, each artist contributed to.

4.4.1 Building and describing the co-release network

First, I extracted all the releases and their contributors from the electronic music
category in Discogs. Then defined the network as follows: each DJ who made
it to the top 100 is represented by a node, and the strength of the connection
between each pair of artists is measured by the number of releases they co-
occurred on. Due to a large number of remixes and best-of collections, this
definition resulted in a dense network with a giant component of 15,403 edges
distributed among 486 nodes. Therefore I applied a network filtering algorithm,
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the recently introduced noise-corrected filter [250], with which I filtered out ∼
88% of edges while keeping ∼ 86% of nodes. The backbone-filtered network is
visualized on Figure 4.4.

Then, I computed the network centralities of the DJs to compare those met-
rics with success, following previous results (Subsection 2.2.5). I measured the
network positions of the artists by their degree centrality, betweenness central-
ity, PageRank centrality, and their clustering coefficients, and I used both the
best and the average rank of the DJs within the ranking as success measures.
Unexpectedly, I found low (∼ 0.2) correlations between network positions and
success, as summarized in Table 4.2, which means that the most successful DJs
are not the most central ones on average, contradicting with previous findings
(Section 2.2.5). This, and the visual observation of Figure 4.4 indicated that
success should be related to the community structure rather than the global
network properties.

Degree Betweenness PageRank Clustering

Best rank 0.263 (<10−6) 0.234 (<10−6) 0.261 (<10−6) 0.109 (0.012)

Average rank 0.207 (<10−6) 0.172 (<10−6) 0.202 (<10−6) 0.09 (0.011)

Table 4.2. Correlation between centrality and success.
The correlations (and related p values) between the different centrality measures (degree

centrality, betweenness centrality, PageRank centrality, and clustering coefficients) and the best
and the average ranks of the top 100 artists.

4.4.2 DJ Communities

As Figure 4.4 shows, this network does not have a single core or a core-
periphery structure but is rather polycentric with multiple smaller communi-
ties. To further investigate the modularity of the network, I used an estab-
lished heuristic algorithm to extract communities [251] similar to earlier works
about scientific and musical communities (Subsection 2.2.3-2.2.6). I conducted
the community-detection only at the final stage of the network. This assump-
tion has two major arguments. First, as turns out later, these communities are
centered around top-tier DJs, whose communities therefor are fixed. Second,
the rest of the DJs only stay in the ranking for a few years, and during such
a short period it is very unlikely for an artist to change its musical profile so
drastically that it changes community. With this method, I managed to extract
seven communities covering 92% of the nodes in the giant component of the
top DJ network. Surprisingly, each community includes one or two DJs who
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Figure 4.4. Top 100 DJ network.
Temporally aggregated and back-bone filtered [250] co-release network of top 100 DJs. DJs are
represented by nodes and co-releases by links between them, with link width proportional to
the number of releases the DJs collaborated on. Node size is proportional to the DJ’s best rank

(larger size means lower r and higher success). Node colors show the detected music
communities [251]. Top 20 DJs are labeled by their names.
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Figure 4.5. The evolution of the top 100 DJ network.
Temporal growth of DJ communities, with size measured as the number of DJs in a given
year’s top 100 ranking. Black stars denote the entry years of the named (later No. 1) DJs.

once earned the No. 1. DJ title – in other words, the communities seem to be
clustered around star DJs.

Next, I studied the temporal evolution of DJ communities by measuring
their size, defined as the number of top 100 DJs in each group, over time. I
found that the communities, named after their leading artists, rise and fall over
time distinctively, highlighting how new artist communities form and old ones
fade away. Furthermore, I found that these former and current No. 1. DJs, as
shown by the star symbols in Figure 4.5, are amongst the earliest members of
their communities. These temporal trends are in agreement with recent findings
on changes in fashion cycles and the roles of the elite in them [239].

In addition, I observed a connection between the growth of the communi-
ties and the success of their leading artists. For instance, how the mainstream
of electronic music emerged in the community of Sasha and Tiësto, and how
the latest electronic dance music trends started to grow around Dimitri Vegas
& Like Mike and Martin Garrix. The size and success of the communities are
shown in parallel in Figure 4.6, which pinpoints a significant correlation of
≈ 0.73 on average between the evolution of the size of communities and the
average rank of the three most successful artists of each community. This obser-
vation further supports the major role leading artists play, besides being early
members, in the growth of their community.

How do these DJ communities differ from each other? One possibility ac-
cording to the literature is that musical genres (such as techno, house, and
trance) reflect these differences [192, 197, 198]. To test this hypothesis, I col-
lected genre information on the top DJs from Wikipedia. Out of the 420 artists
present in the giant component, 251 have genre information, from a pool of 64
subgenres of electronic music, with 3.2 tags per DJ on average. Then I used a
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Figure 4.6. Temporal dynamics of communities in electronic music.
Average popularity of the three highest-ranked DJs of each community (colored dashed lines),

and the size of the community (shaded area) over time. Titles include the Spearman rank
correlation rs between the two quantities over time.
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Figure 4.7. Average time scales of DJ communities.
The average debut year, peak year (reaching the highest average rank), and drop-out year for

the detected communities, different colors denoting the different communities.
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mathematical formalization similar to Eq. (2.4) and reconstructed the genre-tag
distribution of each community, characterized by the genre vector gi for com-
munity i such that gi,j equals to the number of DJs in community i that are as-
sociated with genre tag j. For instance, if there are only two genres (e.g., techno
and house music), and one community has 10 techno DJs, then its genre vector
is g = (10, 0). However, if a community has five techno and five house DJs,
then its genre vector is g = (5, 5). In this way, I computed the genre-similarity
Γ of two communities, l and m, as the cosine-similarity of their genre vectors:

Γl,m =
gl · gm

|gl||gm|
. (4.2)

These computed similarity scores are shown in Table 4.3. I found that the major
genres in the newly emerging communities are usually moderately different,
with an average cosine similarity of Γ ≈ 0.445, in agreement with recent results
on changes in fashion trends [239].

Community1 Community2 Γ12

Paul van Dyk Armin Van Buuren & Paul Oakenfold 0.842
Sasha & Tiësto Carl Cox 0.821
David Guetta Martin Garrix & Dimitri Vegas & Like Mike 0.764
Sasha & Tiësto David Guetta 0.691
Hardwell Martin Garrix & Dimitri Vegas & Like Mike 0.61
Sasha & Tiësto Armin Van Buuren & Paul Oakenfold 0.566
Carl Cox David Guetta 0.558
Carl Cox Armin Van Buuren & Paul Oakenfold 0.489
David Guetta Armin Van Buuren & Paul Oakenfold 0.444
David Guetta Paul van Dyk 0.443
Hardwell David Guetta 0.414
Paul van Dyk Martin Garrix & Dimitri Vegas & Like Mike 0.413
Paul van Dyk Sasha & Tiësto 0.391
Carl Cox Paul van Dyk 0.354
Hardwell Paul van Dyk 0.342
Martin Garrix & Dimitri Vegas & Like Mike Armin Van Buuren & Paul Oakenfold 0.324
Hardwell Armin Van Buuren & Paul Oakenfold 0.276
Sasha & Tiësto Martin Garrix & Dimitri Vegas & Like Mike 0.224
Sasha & Tiësto Hardwell 0.166
Hardwell Carl Cox 0.166
Martin Garrix & Dimitri Vegas & Like Mike Carl Cox 0.138

Table 4.3. Cosine similarities of the genre distributions of top DJ communi-
ties.

The similarities show that the two most alike communities are both focused
on trance and progressive, have a similarity score of Γ ≈ 0.84, and are led by
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Figure 4.8. Genre similarities and peak time differences of DJ communities.
The graph shows the relationship between the debut year difference in years (τ) and

genre-profile similarity (Γ) for each pair of communities with an average Spearman correlation
rΓτ ≈ 0.62. The red line shows the results of a linear regression.

Paul van Dyk and Armin van Buuren. I also measured that these two com-
munities are the closest in time, with average debut years of 2005 and 2006. In
contrast, the two most different communities are led by Martin Garrix (joined in
2013) and Carl Cox (joined in 1997), with a similarity score of Γ ≈ 0.14 and with
more than a decade difference in typical debut years. While DJs in the former
group are mostly playing house music, the latter is more focused on techno.

As these time differences already suggest, the further two communities peak
(its DJs reach their highest average rank) from each other (at time tp,i for com-
munity i), the more different their genre profiles (g) are. I quantified this effect
by computing the time difference between peak years of the pair of communi-
ties l and m:

τl,m = |tp,l − tp,m|, (4.3)

and correlating these values with the genre-similarity score Γl,m. Visualized in
Figure 4.8, I got an average Spearman correlation of rΓτ ≈ 0.62, supporting
the claim that the closer two communities peak in time, the more similar their
genre distributions are. After conducting a linear regression shown in Figure
4.8, it turned out that the typical relative change in genre-profiles is roughly
about ∼ 3% per year. The main trends of these genre differences, illustrated by
genre tags, are summarized in Table 4.4: while in the late 1990s and early 2000s
house and techno were the most popular genres, by the middle of the 2000s
trance and progressive house started gaining popularity.

Overall, I can report that the top 100 DJs form different, temporarily sep-
arated communities, and these communities represent slight changes in musi-
cal trends. Each community typically has one or two leading figures, who are
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Lead DJs (debut year) Genre 1 Genre 2 Genre 3 Average
debut year

Sasha (1997),
Tiësto (2000) house electronica techno 2000

Carl Cox (1997) house techno electronica 2002

Armin van Buuren (2001),
Paul Oakenfold (1997) trance progressive house electronica 2005

Paul van Dyk (1997) ,
John Digweed (1997) trance progressive house progressive trance 2006

David Guetta (2005 ) house electro house progressive house 2008

Hardwell (2011) hardstyle progressive house dutch house 2012

Dimitri Vegas &
Like Mike (2011),
Martin Garrix (2013)

electro house progressive house big room house 2013

Table 4.4. Genre distributions in DJ communities.
Name and debut year of the No. 1 DJs of each community, the three most frequent genres of

the DJ communities, and the average debut year of the artists in each group.

one of the first and usually the most successful members of their communities.
These observations suggest that top, central DJs act as gatekeepers by contin-
ually renewing the field of electronic music, and they shape both music trends
and communities by bringing in new artists. In the rest of this chapter, I further
explore the existence of such a mentorship effect.

4.5 Mentorship in electronic music

The previous results showed that most communities in the electronic music
scene contain one or two No. 1 DJs who joined in the early stages of each com-
munity’s life-cycle. How do these groups form? What are the major social forces
shaping the DJ world? Do newcomers join existing groups independently, or
are they more likely to be brought in by their former collaborators? In other
words, does collaborating with the 100 DJs help new artists make it to the top
100 as well?

C
E

U
eT

D
C

ol
le

ct
io

n



4.5. Mentorship in electronic music 65

0 20 40 60 80 100

Limit of mentors' best rank

0.0

0.1

0.2

0.3

0.4

0.5

Fr
ac

tio
n 

of
 m

en
to

re
d 

DJ
sa

Data
Real top threshold

20 40 60 80

Best rank

0.006

0.008

0.010

0.012

0.014

0.016

0.018

Be
st

 ra
nk

 d
ist

rib
ut

io
n

b
Mentees
Non-mentees

Figure 4.9. Mentorship in electronic music.
a, Fraction of DJs who have been mentored by artists with a best rank not lower than the limit
rank measured on the horizontal axis. The vertical line represents the threshold of the top 20,

who mentored more than 30% of all the mentored DJs. b, Comparison between the
(percentile-binned) distribution of the best rank of the DJs who were mentored (blue line) and

those who were not (red line).

4.5.1 The existence of mentorship

Known success stories and anecdotes, like the Rolling Stone magazine’s take
on Afrojack and David Guetta [252], suggest that mentoring plays an important
role. In addition, most of the record labels of the star DJs have their demo-drop
platforms to encourage young DJs’ engagement [253, 254]. To investigate this
hypothesis, also supported by findings introduced in Section 2.1, such as the
work of Kram et al. [74, 75], I defined mentorship [76, 176] among top DJs in
the following way. DJ1 is the mentor of DJ2 if they both made it to the top 100
ranking respectively at times t1 and t2 (with t1 < t2) and if they first appeared
on the same release earlier than t2. My measurements revealed that about half
of the DJs that ever made it to the top 100 had been mentored before, and about
30% of them were mentored by DJs with the best rank of 20 or better (Figure
4.9a). This implies that the role of the most successful individuals is central in
community building by means of mentoring of new artists.

4.5.2 The benefits and limitations of mentorship

These results suggest that the most successful DJs build communities around
themselves. Is this beneficial only for them, or does it also boost the expected
success of their mentees? To answer this question, I compare the distribution of
the best rank of top 100 DJs, differentiating between DJs that have been men-
tored before and those that have not. As Figure 4.9b shows, protegé DJs have a
significantly higher chance of achieving top ranks, and a large fraction of them
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even approaches the edge of the top 20. On the other hand, DJs who have not
been mentored typically just show up at the tail of the top 100 and have much
smaller chances of making it to the top 20.

One side of the formula is clear: mentorship boosts the expected suc-
cess of newcomers, which aligns with previous findings on mentoring in sci-
ence [175, 176]. However, the results also show a clear boundary between all-
time stars and the rest, which makes one wonder whether star DJs are star men-
tors as well? I answered this question by comparing the average best rank of
mentees to the best rank of their mentors. This comparison uncovered that pro-
tegés only profit slightly from having high-profile mentors since the mentees’
expected best rank barely improves for highly successful mentors. This fea-
ture of mentoring was captured by the low correlation between the best rank of
the mentors and the average best rank of their most successful mentees (Figure
4.10a). In other words, no matter how successful a mentor is, the expected suc-
cess of their mentees is capped and is slightly below the real top, even for the
best mentees.

0 20 40 60 80 100
Mentors' best rank

0

20

40

60

80

100

M
en

te
es

' b
es

t r
an

k

a
Best mentee
All mentee's average
Best three mentee's average
Diagonal line

0 20 40 60 80 100
Mentors's best rank

10 1

100

101

102

103

Av
er

ag
e 

nu
m

be
r o

f
 re

le
as

e 
pe

r m
en

te
es

 

b

Top 100 DJs
Top 20 DJs
Binned trend

Figure 4.10. Mentors in electronic music.
a, Average best rank of mentees as a function of mentors’ best rank. Mentees correspond to

three groups: the best mentee of a mentor (red line, Spearman rank correlation rs ≈ 0.199), the
average best rank of its the best three mentees (green line, rs ≈ 0.192), and the average best

rank of all its mentees (blue line, rs ≈ 0.035). The diagonal line illustrates the case where
mentees reach similar best ranks as their mentors. b, Number of releases normalized by the

number of mentees for mentor DJs, expressing the frequency of their mentoring activities, and
measured as a function of the mentor’s best rank. Top 20 DJs are highlighted by red (Spearman

rank correlation rs ≈ 0.04) and the rest by grey (rs ≈ −0.12).

In addition, comparing the number of mentees each DJ has, relative to the
number of releases they produce, I measured a correlation as low as rs ≈ 0.04
for the top 20 DJs (Figure 4.10b). The fact that most mentees are mentored by top
DJs is thus only due to top DJs being more productive. Therefore, seemingly,
star DJs do not carry an extra ’star-mentor’ effect; all DJs seem to follow the
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same pattern and simply release more music when they collaborate more, which
includes co-releases with new artists. A cumulative advantage process may be
in effect to help top DJs by keeping their top positions, since the more successful
DJs are, the more resources they have access to, which leads to higher chances
of recruiting new mentees, as well as producing new releases.

Inspired by previous work on the effect of mentorship in scientific ca-
reers [51, 255], I further extended my analysis on the effects and the charac-
teristics of mentoring on DJ success. It turned out that the most likely scenario
is that mentees work together with the same mentor twice during their careers,
as shown in Figure 4.11a. This finding is in close relation to the results on aca-
demic careers by Li et al. [255], which emphasizes the importance of rare, more
precisely, ”one-off” collaborations in academia. Testing the statistical signifi-
cance of this difference of one vs. two-times collaboration between academia
and electronic music is beyond the scope of this dissertation. However, a pos-
sible suggestion for more thorough analyses lay along the lines of the different
production rates of the two fields.
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Figure 4.11. Mentee-mentor relationships.
a, Binned distribution of the number of times mentored DJs worked with the various mentors

they had. b, Mentees’ average best rank as a function of the entry-time difference ∆t
(experience gap) between every possible mentor and mentee pair.

Finally, I measured the effects of the experience gap between mentors and
mentees on the mentees’ success. I defined this experience gap as the top 100-
entry-time difference between each pair of mentor and mentee who worked
together:

∆t = tmentor − tmentee. (4.4)

The distribution of ∆t visualized in Figure 4.11b highlights that the best rank
of mentees is insensitive to the experience gap for ∆t < −4. I confirmed this
by measuring the Spearman rank correlation between the entry-year difference
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of mentors and mentees and the mentees’ best rank for ∆t < −4, which has a
value of ∼ 0.030 for top 20 mentors and ∼ 0.027 for all the DJs. However, for
∆t > −5, the graph shows a slightly stronger correlation of ∼ 0.275 for top 20
DJs and ∼ 0.121 when all the DJs are included. These results imply that only
smaller entry-time (i.e., experience) differences boost the success of mentees,
which may be rather related to the effects of joining trending communities than
be the direct influence of the mentors themselves.

Taken together, the presented results point out that mentorship plays a vital
role in the rise of new DJs and the growth of their prolific environment. Still,
mentorship alone is not enough to explain the emergence of superstars. Such
events seem to depend on (as of now) unknown mechanisms that cannot be
inferred solely by an analysis of the music co-release network.

4.6 Discussion

Electronic music, one of the most popular music genres, has evolved into a
complex ecosystem, with DJs and producers releasing and collaborating across
multiple subgenres over the past two decades. Here I have investigated the
temporal evolution of this field, focusing on how to pinpoint and distinguish
a long-standing elite from the rest of the electronic music artists. I have also
proposed potential mechanisms that could lead to the differences between elite
musicians and less successful artists. First, I connected the dynamics of the
top 100 ranking list of DJs to their underlying co-release activities to infer ma-
jor driving factors of success. I reported that the historical top 100 splits into
two distinct regimes in terms of the stability of their dynamics, showing the
existence of a persistent elite in the DJ world. From collaboration patterns, I
showed that those superstars who have reached the No. 1 position usually tend
to lead segregated communities, which rise, peak, and fall separately over time,
often representing changes in genres. I also saw that a major social force driving
these communities is mentorship since new DJs usually join the top 100 after co-
releasing music with already established artists. DJs who have been mentored
before typically achieve significantly higher success, yet their chances of over-
coming their mentors are slim. I observed that while star DJs exist, star mentors
do not: the success of mentors has little influence on the expected success of
their mentees.

While my results highlight interesting and major patterns in the growing
ecosystem of electronic music artists, they have some limitations as well. The
top 100 ranking of DJs reflects the opinion of a particular segment of electronic
music fans, mostly limited to online platforms. Live shows and festivals, also a
major platform of electronic music, are disregarded. This shortcoming may be
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alleviated by incorporating data from social media and other music providing
platforms (to have a less biased picture of the online landscape), or by using
information about live shows, ticket and record sales, to connect this work with
offline behavior. Another major question is how well these findings can be gen-
eralized to other genres. Are the observed phenomena particular to electronic
music, or do rock, pop, and other musical genres follow similar trends? Since
various rankings exist for other genres, such as in Billboard Magazin [95], and
collaboration and co-release data are also available (for instance, on Discogs),
most of this analysis could be replicable and may be tested soon.

Possible venues of related future research include an understanding of the
differences between the trajectories of those who never make it to the top 100
against those who do and the analysis of the early-career patterns of these two
groups. As a step further from descriptive analysis, an interesting direction is
the development of predictive models that capture not only the next top 100 or
No. 1 DJ’s identities but also the next new entries: people who are already out
there with the potential for becoming the stars of the next generation. An even
more pressing issue is gender bias – the fraction of female DJs is shockingly
low in the top 100, and this analysis could be used to track down the roots of
this pronounced gender gap. I would also suggest to study musical features
and extract various descriptors of the audio data itself, as well as combine the
collaboration network with co-follow networks extracted from multiple social
media outlets.

In this chapter and the corresponding publication, I have proposed a first
attempt to understand the emergence of success in electronic music by obtain-
ing quantitative findings on the existence and behavior of an exclusive elite of
star DJs and producers. These results not only give insights into an interesting
and vividly dynamic social system but also offer a good starting point for fur-
ther research and policy suggestions. These include directions such as how to
make electronic music more inclusive and less biased, help junior artists to be
less exposed to long-standing stars, and take steps towards more merit- (and
less business-based) spaces for artistic creativity.
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CHAPTER 5

SUCCESS EVOLUTION OF URBAN
VENUES

5.1 Introduction

In this chapter, I study the dynamics of the success of urban venues, such as
restaurants, parks, and museums. To capture their popularity, I rely on large-
scale data covering the area of Greater London from the location-based online
social network application Foursquare City Guide [16]. I show that the aggre-
gated overall popularity measures (for instance, the total number of visitors
or likes a venue receives) are misleading because the venues’ success trajecto-
ries can take distinctively different shapes over time, resembling substantially
different success-outcomes. This implies that their success shows more com-
plex patterns than previously thought and that even established venues with a
similar popularity level can have completely different future perspectives. In
particular, I find that venues can take six different popularity trajectories: they
can either monotonously rise or fall over time, follow a rise & fall, or a fall & rise
arc, show early ephemeral success or become underdogs.

Next, I map out the possible factors that could influence which shape a
venue’s trajectory will take alongside the following three dimensions. First, I
elaborate on what different places have to offer to their visitors, such as gas-
tronomical and restorative experiences [256, 257], or the possibilities of social

This chapter is based on the working paper ”Six shapes of success”, where Milan Janosov
conducted the experiments and analyzed the results. All authors, Milan Janosov, Luca
Maria Aiello, and Daniele Quercia conceived the experiments and contributed to writing the
manuscript.
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encounters [258–261]. In addition, I include both the effects of the pricing [262]
of the venues and their uniqueness comparing to their competitors [263]. Sec-
ond, I analyze the location of the venues and their impact on venue success.
This includes the density, the popularity, the availability of different amenities,
and the various functional roles of the different neighborhoods such as residen-
tial and metropolitan areas [264–269]. Finally, I cover several dimensions of the
people who flow through these venues. Visitors can influence the success of
urban spaces in many ways, such as the regularity of their visits, their finan-
cial allowances, and economic status, or their social status [270–277]. Taken
together, I describe each urban venue by these three types of attributes: i) the
venues’ characteristics (what); ii) the neighborhood and location of the venues
(where); and iii) the clientele profile of these urban spaces (who).

Finally, I use machine learning models to capture the driving factors of ur-
ban success. To that end, first, I use binary classifiers to compare successful and
unsuccessful venues. Then I build classifiers to capture the essential features
predicting which of the six success shapes a given venue would take. My anal-
ysis reveals that the most predictive group of features in each case belong to the
who category highlighting the importance of the urban venues’ social embed-
dedness.

5.2 Data

5.2.1 Data description

Foursquare City is a popular location-based online social network platform
with ∼ 110M venues visited by more than ∼ 50M registered users world-
wide [16, 278]. Foursquare provides a public API (https://developer.
foursquare.com) to access their endpoints, which I used to collect the infor-
mation about all the 178,321 venues and the 243,487 users that visited them in
Greater London.

The application offers multiple features and actions for its users: they can
like venues, write tips about them, upload multiple pictures by tagging the par-
ticular locations, and checking-in at venues. In addition, users can connect to
other users and follow their activities – building an underlying social network
and making the social fabric of the different cities visible. These user activities
are also reflected in the level of venues in the aggregated number of user likes,
tips, check-ins, and photos each venue receives over time, providing a natural
way of measuring popularity on Foursquare.

The presented data collecting and processing procedure resulted in a
database comprising information about both venues, users, and their neigh-
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5.2. Data 73

borhoods as follows.

Venue data. The basic information Foursquare provides about venues are:

• Geographical coordinates (latitude and longitude);

• Price range;

• Taxonomical category (e.g. Event, Food, Nightlife, etc.); and

• Time-stamped user interactions (likes, tips, check-ins, picture uploads).

User data. Foursquare provides different information-fields about its users as
well. From those, I collected the profile of every Foursquare user who interacted
with any of the venues at least once (e.g., liked or uploaded a picture). The
available fields on each user profile are the following:

• Home location;

• Gender;

• Full list of time- and location-tagged activities; and

• List of friends.

To have a broader picture of the underlying social system of the Foursquare
users, I extended my data collection to not only the users mentioned above but
to all their friends as well and collected the same metadata about them, too.

Neighborhood data. I extended my database with neighborhood-level infor-
mation from other sources:

• The number of inhabitants for the city of London [279]; and

• The Index of Multiple Deprivation (IMD score) that reflects the economic
conditions of the neighborhoods [280].

I introduce these measures in detail in Subsection 5.4.
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5.2.2 Data cleaning

In this analysis, I wanted to capture the popularity of the venues from the per-
spective of the local visitors; therefore, I had to filter out those users who were
not residents in the city of London. However, only 28,327 of the 243,487 users
listed London in their homeCity attribute, 74,217 of the users were specifically
from other cities, and 140,943 users didn’t specify their home location at all.
Moreover, only 2,487 out of the 28,327 Londoners shared their exact coordinates
for their home location, which I used as ground-truth information for inferring
the home coordinates of the rest of the users for the upcoming feature engineer-
ing processes.
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Figure 5.1. Visitors’ venue distribution and the DBSCAN method.
a, Shows the probability distribution of the number of venues each user visited (Nu). b, The

panel illustrates the DBSCAN algorithm [281] on an example of a user’s visited venues, where
the algorithm found seven distinct spatial clusters marked by different colors. The largest

turned out to be Cluster 1, and the estimated home location of the user was the centroid of it
marked by a blue cross.

While users typically visit multiple venues (Figure 5.1a), only 2.8k London-
ers shared their home coordinates, illustrating that users usually don’t show
Foursquare activities at home. Therefore, to infer the home location coordinates
of the remaining users, I followed a quantitative approximative approach in-
spired by previous works by Cheng et al. [270] and Noulas et al. [261].

First, I had to decide whether those 140,943 users with unknown home cities
are from London or not. Second, if they were from London, I had to approxi-
mate their home coordinates. For these, I used the DBSCAN spatial clustering
algorithm and its Scikit Learn implementation [281, 282] to detect the spatial
clusters of the visited venues of the users. Next, I picked the largest cluster for
each user and considered that to be the home area of those particular users. As
the final step, I assumed the home location (most likely location on average) to
be the centroid of that cluster, and kept those users whose centroid fall within
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the boundaries of London. The DBSCAN method is illustrated in Figure 5.1b
by using the set of locations a randomly chosen user visited.

DBSCAN has two parameters given a distance metric, which I chose to be
Euclidian for the sake of simplicity: eps describing the maximum distance be-
tween two points so that they can be considered to be in the neighborhood of
each other, and min representing the number of points in a neighborhood for
a point to be considered as a core point, including the point itself. To pick the
most suitable parametrization of the DBSCAN model, I tested various values of
eps in the range of (0.0005, 0.2) and the values of min in the range of (2,10) and es-
timated the home location of the 2,487 users for which I had ground-truth infor-
mation. I found the error between the estimated and ground-truth coordinates,
measured as the Euclidian distance between these two points, to be minimal at
eps = 0.02 and min = 3, and without setting any thresholds to the minimum
number of venues a user visited. Later, I used these setttings approximate the
home location of the rest of the users. With this particular parametrization of
the DBSCAN model, I managed to associate spatial coordinates to all the Lon-
doners, which represent the most likely spatial location of the individuals, and
arriving to a set of 101k users with London-based home coordinates.

5.2.3 Measuring urban success
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Figure 5.2. Measures of urban success.
a, The figure shows the distribution of the different success measures S (number of likes,

check-ins, tips, and photos) on Foursquare for the city of London. b, The matrix shows the
pairwise correlations between the four available success measures for London.

Foursquare provides several ways to measure the popularity of the urban
venues present on their platform based on user activities [260]. These are the
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76 CHAPTER 5. SUCCESS EVOLUTION OF URBAN VENUES

number of users that checked-in at certain venues, the number of tips given
about the venues, the number of photos uploaded, and the number of likes
received. These measures, similarly to other measures such as the citation and
play count distributions in the previous chapters, are based on the response of
a wider audience, and their distributions follow heavy-tailed functions (Figure
5.2a). Besides, since all these quantities depend on the typical number of users
that interact with a venue, they are all highly correlated (Figure 5.2b) with an
average correlation of 0.919.

While the statistics in Figure 5.2a shows aggregated information, the dataset
I used includes timestamps on each activity at a sub-second resolution, allowing
us to reconstruct the popularity time series of the different venues over time.
I carried out the present analysis by using like count as the success measure
(unless noted otherwise); however, as the correlations of Figure 5.2b suggests,
this particular choice should not influence the key findings.

5.3 Success trajectories

In this chapter, I aim to better understand the temporal properties of success,
namely, the shapes of the popularity trajectories of the different venues (simi-
larly to the age-curves of creative careers). To analyze that, first, I defined and
transformed the venues’ trajectories as popularity time series. Then, I used ma-
chine learning techniques to extract and quantify the different shapes of urban
success.

5.3.1 Measuring and transforming success trajectories

Venue success, e.g., the number of likes a venue i received at time t, is a variable
denoted by Si(t) in the interval of time t ∈ [0, T]. While the temporal resolution
of my data is on the scale of seconds, this resolution does not directly provide
information on the much slower life-cycles of urban venues. Therefore I binned
the time dimension into time slots of 6 months, which yields up to 11 points
on my dataset’s duration of 5.5 years. In addition, I restricted the analysis to
established venues that have been present for at least 2.5 years (5 semesters)
in the studied dataset, which resulted in 21,758 venues. To this end, I denoted
the semester-binned temporal popularity by si(t). Next, to rule out the tem-
poral changes in the popularity of the platform itself from the popularity of
the venues, I normalized each time series by the average popularity of all the
venues in each time-bin, accounting for the inflation of the popularity measure
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Figure 5.3. Success trajectories of urban venues.
The figure shows the transformed, discretized and normalized popularity trajectories of 500

randomly picked venues with shaded lines.

as the platform gained and lost popularity over time:

si(t) :=
si(t)

∑T
t=0 si(t)

. (5.1)

Finally, as I intended to capture general trends across all kinds of venues disre-
garding their raw popularity, I had to ensure that their popularity trajectories
are comparable by re-scaling each trajectory’s values by its mean:

si(t) :=
si(t)

1
|V| ·∑j∈V sj(t)

. (5.2)

After conducting these initial transformations, the venues’ success trajecto-
ries show little regularities at first (Figure 5.3). In the following subsection, I am
going to use machine learning techniques to show how to extract an underlying,
hidden structure from these seemingly random time series.

5.3.2 Clustering success trajectories

Here I introduce the clustering of the 21,758 senior venues of London based on
their normalized popularity trajectories (si(t)) in an unsupervised fashion to see
whether particular trends emerge.

First, I had to find a way to measure the similarity (distance) between the
popularity time series. For this, I used Dynamic Time Warping (DTW) [283], a
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78 CHAPTER 5. SUCCESS EVOLUTION OF URBAN VENUES

widely used method in signal processing and time series clustering [284]. The
DTW method finds the best temporal alignment between two time series of
arbitrary lengths and estimates the lowest distance between those two.

Building on this distance metric, I used hierarchical clustering [285, 286],
an agglomerative clustering technique that initially assigns each time series to a
cluster of its own, and then combines them hierarchically by merging the closest
pairs of clusters based on their DTW distance at every iterative step until they
all belong to one giant cluster. The closeness of the clusters can be captured in
different ways. Here I used the complete-linkage variant of this algorithm that
measures the distance d between two clusters Ca and Cb as the similarity of their
most dissimilar members [287]:

d(Ca, Cb) = max
si∈Ca,sj∈Cb

DTW(si, sj). (5.3)

Compared to other linkage methods, the complete-linkage variant typically re-
sults in more compact clusters [288, 289].

The most important shortcoming of hierarchical clustering is the difficulty
of estimating the number of clusters that naturally emerge from the data [290].
To resolve this problem, I used the so-called gap statistics [291], which deter-
mines the quality of clustering by comparing the instances’ homogeneity within
the measured clusters against randomly assigned cluster identifiers. The gap
statistics indicated ten as the optimal number of groups. However, upon visual
inspection, it became apparent that while the success time series within clusters
were very homogeneous, some pairs of clusters contained time series with very
similar trajectories. Therefore, I merged the ten clusters into six higher-level
clusters in an algorithmic fashion (corresponding to the six distinct shapes) us-
ing the following definitions:

(1) Ephemeral and (2) Underdog. Clusters whose vast majority of success tra-
jectories (> 75%) are mostly flat except for a sharp initial drop (Ephemeral) or
a final peak (Underdog). Those curves are characterized by high differences
between i) the first and last values in their popularity time series and ii) the
variance σ of the values over the first and last thirds of the time series. For the
Ephemeral group, this is expressed as: si(tstart)� si(tend)∧σ(si(tstart), . . . , si(

1
3 ·

tend))� σ(si(
2
3 · tend), . . . , si(tend)). In addition, I used the same formula for un-

derdogs but by replacing� with� to capture the increasing trend.

(3) Rise and (4) Fall. Venues thats’ success trajectories are dominated (> 75%)
by steadily increasing (rise) or decreasing (fall) trends. To uncover these linear
relationships, I used a linear regression to model the time slots of a series (tstart

C
E

U
eT

D
C

ol
le

ct
io

n



5.3. Success trajectories 79
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Figure 5.4. Clustered success trajectories.
The figure shows the six typical success trajectory clusters by visualizing 200 random

examples from each. The centroids of the clusters are marked by the red line, while the
individual venues’ popularity time series are shown in blue.
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80 CHAPTER 5. SUCCESS EVOLUTION OF URBAN VENUES

to tend) as a function of the success values at those times (si(tstart) to si(tend)),
namely: t ∼ α + βsi(t). When the resulting R2 was higher than 0.75 , then due
to the strong increasing linear relationship between time and success I classified
the venue into the Rise/Fall category based on the sign of the regression line’s
slope.

(5) Rise & fall and (6) Fall & rise. Clusters of venues whose vast majority of
success trajectories (> 75%) can be fitted by a U-shaped curve [292] (Fall & rise)
or an inverse U-shaped curve (Rise & fall) with R2 > 0.75.

With these definitions, I managed to classify all the relevant venues into one
of these six shapes, which are visualized in Figure 5.4.

5.4 Describing urban spaces

My analysis reveals that the success trajectories of urban venues follow six dis-
tinct shapes. From this, the question arises: what decides which of these six
shapes is a certain venue’s trajectory going to take? What are the most impor-
tant features deciding whether a venue will be an all-time classic or disappears
shortly after it opened? To answer these questions, I explored three different
directions on potential driving factors. These three families of features capture
the nature of the venues (what), their location and neighborhood (where), and
the people who visit them (who). Most of these features can directly be derived
from the data provided by Foursquare, while in some cases, I also included
external sources of data.

5.4.1 Features describing the venues’ characteristics (what)

Venue category. The top-level category of the venues in the Foursquare tax-
onomy, which takes a categorical value from Arts & Entertainment, College &
University, Event, Food, Nightlife Spot, Outdoors & Recreation, Professional &
Other Places, Residence, Shop & Service, Travel & Transport. This feature gives
basic information on what the different venues have to offer to their visitors.

Price category. This is the price tier of the venue, on a scale from 1 to 4
(least to most expensive), as determined by Foursquare (https://developer.
foursquare.com/docs/api/venues/managed). A venue’s price has effects on its
popularity in several ways. First, the more affordable a venue is, the larger the
pool of potential customers is. Second, the price can easily have a priming effect
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Figure 5.5. Urban features describing the venues’ characteristics (what).
a-b, The histograms of the senior Londoner venues’ categories and price ranges. c, The

distribution of the categories’ uniqueness score of these venues.

on how people judge their experience as well by putting venues into a different
niche [262].

Uniqueness score. A necessary condition for commercial competitive advan-
tage is heterogeneity [263]: a venue’s offer must differ from competing busi-
nesses in the same area. To capture these aspects, I defined the uniqueness score
of a venue i in an area a in the following way. First I calculated the average Eu-
clidean distance between the location of i and the locations of all the venues
in a that belong to the same category of i, and then normalized by the average
distance between i and of all the other venues within that area, to account for
venue density:

uniquenessi =
〈d(i, j|categoryi = categoryj)〉j,

〈di,j〉j
. (5.4)

The distributions of these features are shown in Figure 5.5.

5.4.2 Features describing the venues’ neighborhoods (where)

The location of a venue impacts its success opportunities for various reasons,
such as population density and economic development. For instance, it has
been shown before that the composition of Foursquare venues in an area is
predictive of its economic deprivation [293]. To quantify these effects, first, I
defined the venue areas using the official geographic partitioning provided by
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Figure 5.6. Urban features describing the venues’ neighborhoods (where).
The panels show the probability distributions of the measures characterizing urban

neighborhoods (on the level of Wards) and individual venues’ locational attributes for the city
of London.

the census of the UK. In the case of the city of London, these units are called
Wards, 638 areas defined by the Office for National Statistics [279] and designed
to contain about 13k residents each on average. To account for these mentioned
dimensions of neighborhoods, I used the following measures:

Population density. Population density of urban areas fosters the flow of mo-
bility and information as well as interpersonal interactions and increasing op-
portunities for businesses [265, 294]. Therefore, population density is a key
component for the development of different functional areas [266]. To measure
the population density, I gathered the number of residents and the surface of
the area of each Ward from the census data of London [280], and computed
population density as the number of inhabitants per square kilometer.

Residential score. Due to its significantly different role for not being a social
place, I decided to handle residential areas separately. To assess the extent to
which a venue i is in a residential area, I computed the average distance of i
from other Foursquare venues under the category Residence within the same
area i is located in:

residentiali = 〈d(i, j|categoryj = residential)〉j. (5.5)

IMD score. I relied on the UK Index of Multiple Deprivation [280] (IMD),
available at Ward level for London. The IMD score is a composite measure
of deprivation across several domains, such as education, barriers to housing,
crime, employment, and access to healthcare. I collected this index for the year
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5.4. Describing urban spaces 83

2015, which falls about in the middle of the period captured by my Foursquare
data.

Bohemian index. The Bohemian index [268, 269] uses occupation data to es-
timate the bohemian population of a given area [295]. It is computed as the
fraction of people employed in arts, entertainment, and recreation over the to-
tal population of residents.

The distributions of these measures are shown in Figure 5.6.

5.4.3 Features describing the venues’ visitors (who)

The success of venues depends just as much on where they are located, and
what they are offering to their visitors, as on the people who decide to visit
them. To capture these social aspects, I extracted several features describing the
clientele-profile of the Londoner venues and aggregated these measures to the
level of the venues themselves.
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Figure 5.7. Urban features describing the venues’ visitors (who).
The panels show the probability distributions of the measures characterizing the venues’

visitors.

Regulars. It has been reported before that a steady influx of regular visitors se-
cures a consistent level of popularity over time [270, 271]. Therefore, I estimated
the ratio of the returning visitors by the frequency of their photo-uploads (since
this the most typical repeated action). I computed the regularity score as the
ratio between the number of users who uploaded photos of the venue i in at
least two distinct days (|Upics2+

i |) and the total number of users who uploaded
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84 CHAPTER 5. SUCCESS EVOLUTION OF URBAN VENUES

photos of the venue (|Upics
i —):

regularsi =
|Upics2+

i |
|Upics

i |
. (5.6)

Purchasing diversity. It also has been shown that liveliness of the urban
fabric benefits from mixing people of varied social and economic extrac-
tions [272, 273]. To this end, I measured the purchasing diversity of the visitors
of the different venues in the following way. For every user u, I computed the
probability density function of the price ranges of the venues u interacted with
through likes, tips, or photos. As a result, u is described with a four-dimensional
user price vector Au = [αu,1, αu,2, αu,3, αu,4], ∑j αu,j = 1, whose entries represent
the probability of user u visiting a venue of price range from 1 (cheapest) to 4
(priciest). Given a target venue i, I obtained a venue price vector Ci by summing
the price vectors of all the users who interacted with i at least once (Ui):

Ci,k = ∑
u∈Ui

αu,k, (5.7)

and by normalizing it I obtained a probability distribution:

C̄i,k =
Ci,k

∑j Ci,j
. (5.8)

From this, I defined the diversity of purchasing power of venue i’s visitors by
computing the Shannon entropy of Ci:

diversityi = −∑
k

C̄i,k · log C̄i,k. (5.9)

Gender balance. Since the advantages of bringing people together from dif-
ferent walks of life are good predictors of the socio-economic development of
the neighborhoods [296], I decided to include the most basic meta-information
I have about Foursquare users: their gender. I estimated the gender balance of
venue i’s visitors by using the previously introduced measure of average gen-
der [297]:

genderi =
1
|Ui| ∑

u∈Ui

gi,u, (5.10)

where |Ui| denotes the number of visitors of venue i, and gi,u = {−1, 1} encodes
the gender (female, male) of visitor u at venue i. When genderi is negative, the
visitors are more predominantly female.
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Social prestige. The centrality of the actors on social networks [277] is a notion
of paramount importance to model such phenomena, as it captures “central”
actors who play a key role in gathering and relaying resources such as attention
or information. From this, I assumed that places that attract high-centrality
people get higher chances of increasing their popularity by leveraging on the
network of these central individuals.

To measure the individuals’ network centrality, I collected information about
all the users U0 that have interacted with venues in London and augmented
this set of users by their friends on the Foursquare social graph G. I then re-
tained only the subset Ures ⊂ U of users who are resident in the city of Lon-
don and restricted the graph of interactions to the social links among them
(Gres = {(u, v)|u ∈ Ures ∧ v ∈ Ures}). Using the friendship graph Gres, where
each user is embedded in the physical space via its predicted home coordinates,
I computed the distance-weighted PageRank centrality [117] of all visitors of
venue i to model their social prestige. The network Gres is visualized on Fig-
ure 5.8. Finally, I defined the social prestige of venue i as the average centrality
score across all visitors of venue i:

socialprestigei =
∑u∈Ui

PageRank(G, u)
|Ui|

. (5.11)

The distributions of these features are shown in Figure 5.7.

5.4.4 Features summary

Table 5.1 summarizes the features described in detail in this subsection covering
three different domains of urban venues along the question of what are these
venues offering, where are they located, and who are their typical visitors.

Category Measure Short definition

What
Venue category The primary category of the venue.
Price category The price category of the venue.
Uniqueness score The relative density of the venues’ category within its neighborhood.

Where
Population density Number of inhabitants per square kilometre.
Residential score Average distance of residential venues.
IMD Score Score for living environment conditions.
Bohemian index Fraction of people employed in arts, entertainment and recreation.

Who
Regulars Fraction of returning visitors.
Purchasing diversity Diversity in purchasing power of the venues’ visitors.
Gender balance The relative ratio of the number of people of different genders.
Social prestige Average pagerank of the venues’ customers from theor social network.

Table 5.1. Summary of urban features
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Figure 5.8. The social graph of Foursquare users resident in London.
The nodes of the network represent the different Foursquare users that have given or predicted

home coordinates within London. The visualization layout is placing the nodes on a plane
based on their estimated home coordinates (latitude and longitude), while the color of the
nodes shows the values of their PageRank centralities, the nodes’ sizes are proportional to

their degree (number of connections a user has).C
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5.5 Predicting venue success

In this section, I use the extracted features to first classify venues as successful
and unsuccessful ones in a binary way, and then show how the different features
can predict the shape of the venues’ success trajectories.

5.5.1 Binary success classification

I first built a predictive model to differentiate between successful or unsuccess-
ful venues. For this, I considered a venues’ cumulative success, calculated as
the total number of likes it received during the observational period T:

Si = ∑
t∈[0,T]

Si(t), (5.12)

based on the terminology of Subsection 5.3.1. I repeated the same binarization
with check-in, and tip counts as well to generalize my findings.

Next, I split the venues into quartiles based on their Si values’ place in the
global P(Si) distribution and discriminated between venues that fall into the
top quartile of the success distribution (successful, positive examples) and those
falling in the bottom quartile (unsuccessful, negative examples). This formula-
tion effectively prunes the middle quartiles and makes it possible to focus on
the classification of venues whose success pattern is distinct from the average
case. By this procedure, I also ensured a perfectly balanced ratio of positive to
negative examples in each class.

For the prediction, after trying several simpler models (e.g. decision tree,
random forest), I trained an XGBoost [298, 299] classifier, a classifier that proved
itself most effective in a wide range of classification and regression tasks [300].
XGBoost is based on tree boosting: an ensemble of ‘weak’ decision trees—called
estimators, that combined yield very accurate predictions. I ran XGBoost with:
250 estimators; a maximum depth of the individual decision trees of 5; a learn-
ing rate of 0.1 (i.e., the rate at which the influence of old trees is reduced in
successive iterations of the model to prevent overfitting), which was proved to
lead to good generalization error [301]; and a subsample size of 0.8 (fraction of
training data that is randomly subsampled before growing each tree).

Next I used this XGBoost classifier with the what, where, and who features
summarized in Table 5.1. As the XGBoost is robust against scaling, the only pre-
processing I carried out is the one-hot-encoding of the only categorical feature,
venue category. During the classification, I measured the performance of the
model through average accuracy (accuracy =

# correctly classified venues
# total venues ) over 10-

fold cross-validation, which is an appropriate measure since I have a balanced
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Figure 5.9. Correlations between urban features.
The correlation matrix shows the relationship between the derived urban features (Table ??).
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sample and no particular distinction between the two classes. In addition, I
tested the co-linearity of the features and found that they show minor redun-
dancies: a cross-correlation analysis shows most signals are orthogonal (Figure
5.9), with slight (either negative or positive) correlations between features be-
longing to the same feature groups.
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Figure 5.10. Binarized success prediction results.
The figure shows the prediction accuracies of the binary classification of venue success where
success is measured as a, the number of likes b, the number of check-ins c, and the number of

tips the venues received.

The prediction results, summarized in Figure 5.10, indicate that it is pos-
sible to precisely tell apart successful and unsuccessful venues: on average,
the model classifies correctly ∼ 85% of the instances when relying on all the
features, regardless of the success measure of choice (e.g., like count, check-in
count, tip count). The performance drops considerably when training the model
on only the what or where features. More interestingly, a model trained on the
who features only suffers only a slight performance drop compared to the full
model.

I investigated the practical functionality of the XGBoost: the estimation of
the importance of the different features when predicting the number of likes,
check-ins, and tips each venue received. The ten most predictive features are
visualized in Figure 5.11. The results show that indeed the most predictive fea-
tures concern the clientele of the urban venue. First and foremost, their pur-
chasing power and the diversity of it. Another major predictor is the fraction
of regular visitors, which is a good signal on how well the successful venues
manage to build up their pool of visitors and keep their engagement high. In
addition, in the case of check-in counts, which is probably associated with more
relaxed activities, such as sitting down for dinner or lunch, are very typical at
venues serving food. On the other hand, the location features show only mod-
erate predictive power, among which, the Bohemian-index performs the best.
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Figure 5.11. Feature importances in binary prediction.
The figure shows the relative importance of each feature in the case of binary success

classification and different measures of success.

This suggests that the most successful areas are the trending, artistic, so-called
”hipsterish” parts of London.

5.5.2 Six-shape prediction

6 classes 5 classes 4 classes
Number of venues 900 4290 7128
Prediction accuracy 0.287 0.239 0.267
Random accuracy 1/6

1/5
1/4

Prediction over random 72% 19% 7%

Table 5.2. Six-shape prediction accuracies.
The number of venues, the prediction accuracies and the random baseline values for the cases

of using all the six shapes, and when I drop the first and second least frequent ones.

In this subsection, I show predictive results on how the previously intro-
duced urban features may signal the different success trajectories each venue
will follow over time. I compared several cases on shape-prediction as the
number of different venues in different classes was not equally distributed,
and I aimed to make balanced predictions. Therefore I used all the six shapes,

C
E

U
eT

D
C

ol
le

ct
io

n



5.5. Predicting venue success 91

then dropped the least common, and then the two least common shapes and
repeated the predictions.

To carry out this prediction, I used a similar setup to the binary classifica-
tion of Subsection 5.5.1 with the XGBoost classifier, with the difference of using
multiple class labels. Namely, I used 250 estimators and 5-fold cross-validation.
In addition, I carried out a grid-search on the parameter range of max depth :
[4,5] , learning rate : [0.1, 0.2, 0.3], and. subsample : [0.7, 0.8, 0.9]. I summarize
the prediction accuracies in Table 5.2, showing that surprisingly I got the most
accurate model with the largest number of classes. While the reported accuracy
scores are not high on an absolute scale, this is the first study ever conducting
such measurements, and my best results still outperform the random cases by
more than 70%.
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Figure 5.12. Six-shape success prediction results.
The figure shows the feature importances in case of the success-shape prediction where a, I

used all the six classes, or down-sampled the data set to b, five c, or four classes.

By studying the relative feature importances in the success-shape prediction,
my results highlight the particular role of the social capital of the venues even
further. On the one hand, figure 5.12 shows that in each classification setup,
there were only either one what or where features in the top five. For instance,
the venues’ uniqueness, and the residential score, fitting into previous theo-
ries [258–261, 263]. On the other hand, all the rest of the top five features were
along the social dimension with relative feature importance scores higher than
10%. In particular, a venue’s social prestige seems to play the most important
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92 CHAPTER 5. SUCCESS EVOLUTION OF URBAN VENUES

role in deciding which trajectory its success takes, pinpointing the importance
of the social fabric each venues’ visitors are embedded into. On the contrary,
category-related features, for instance, the venue price range or the food cate-
gory, turn out to be a poor predictor with importance lower than 2%. Finally,
all the features describing the neighborhood, such as the Bohemian-index or the
IMDB score average at the importance of around 5− 7%.

5.6 Discussion

In this chapter, I built on the location-based online social service Foursquare
City to understand the dynamics of the successful evolution of urban venues
of various kinds. First, the temporal clustering of the normalized popularity
trajectories (success shapes) of the urban venues revealed that urban success
is not binary, but it has six distinct shapes: venues’ popularity time series can
simply rise or fall, rise & fall or fall & rise, show ephemeral success or turn out
to be underdogs.

Second, I collected different urban features based on the literature that can
characterize urban venues alongside three dimensions. I named these dimen-
sions as i) what, describing the characteristics of the venues themselves (e.g.,
venue category or price range); ii) where, summarizing the typical features of the
neighborhood of the venues (e.g., economic development); iii) and who, a group
of features representing the clientele and social embeddedness of the venues
(e.g., fraction of regular visitors).

Third, I conducted a machine-learning-based predictive analysis to estimate
the importance and predictability of urban success. I showed that when I con-
sider success to be binary, then whether a venue is going to be successful or
not can be predicted with a relative accuracy of ∼ 85%. Moreover, my analysis
showed that the most predictive feature group is the who features describing
the social environment of the venues. Furthermore, my predictions on the six
shapes of success with an accuracy 70% higher than the random case reveal
that the importance of the social features is just as pronounced when it comes
to predicting the dynamics of the success as in the binary case.

In conclusion, my work revealed that urban success has an unexpected prop-
erty: the temporal evolution of the popularity of urban venues follows six
distinct shapes: the rise, fall, rise & fall, fall & rise, ephemeral, and under-
dog curves. By deriving relevant features describing urban spaces along the
where, what, and who dimensions, I also built machine learning models predict-
ing venue success. This modeling approach revealed that both the binarized
success and the temporal success trajectory of the urban venues mostly depend
on the venues’ clientele, implying that the key to success is to become unique
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5.6. Discussion 93

social melting pots.
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CHAPTER 6

CONCLUSION

In this thesis, I studied several aspects of the evolution of success on five dif-
ferent domains of life: science, music, film, literature, and urban spaces, split
across three chapters corresponding to three publications and working papers.

First, I built on an existing modeling approach called the Q-model to decom-
pose creative impact in science, music, film, and literature. By combining the
Q-model with classical test theory, I proposed a framework to compare the role
of randomness on 28 creative professions, such as film directors, pop musicians,
and mathematicians. I compared the temporal evolution of the impact and the
network position of creative individuals and found that there is an even split
between those individuals for whom network peaks first and success follows,
and those whose success peaks first and their network centrality follows. How-
ever, my analysis showed that these two substantitially different networking
behaviors do not result in significant differences in expected success.

Second, I studied the dynamics of the Top 100 ranking of the most popular
DJs and identified a clear threshold that separates a long-standing elite from the
rest of the DJ world. I found that these all-time star DJs are typically centering
different clusters of artists. My analysis showed that these clusters rise and fall
distinctively over time, reflecting changes in musical trends. Moreover, I pro-
posed a mentorship definition that captures the role of senior artists in building
the communities around them. This mentorship turned out to give clear advan-
tages for the mentees, but limit their chances of becoming all-time stars at the
same time.

Third, my analysis of the evolution of the popularity of urban venues re-
vealed that urban success has six distinct shapes: urban venues’ popularity tra-
jectories can (1) rise or (2) fall over time, can follow (3) rise & fall or (4) fall &
rise arcs, or can be either (5) ephemeral or (6) underdog. To further elaborate
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96 CHAPTER 6. CONCLUSION

on these six shapes, I derived several features describing venues based on their
profile, their neighborhoods’ properties, and different features of their clientele.
Surprisingly, the best predictors of urban success turned out to be the social
features describing the urban venues’ visitors, including their social prestige
estimated by their network properties.

The three papers covered in this dissertation all contribute to the literature
in unique ways in themselves and offer several ways for direct practical appli-
cations from scientific policymaking to urban planning. For instance, the first
contribution of Chapter 3 is to show that the Q-model holds for different fields
other than the already studied scientific ones. This serves as further proof of
the validity and practical usefulness of the Q-parameter capturing success with
the prospect of applications on several fields as a universal success metric. Fur-
thermore, since the results presented in Chapter 3 highlight that the influence
of random fluctuations in creative impact is comparable to the magnitude of the
individuals’ contribution, my findings alert the readers on the shortcomings of
using exclusively citation-based metrics for research impact evaluation.

My work in Chapter 4 on the emergence and decay of DJ-communities not
only uncovered the existence of a small elite but also highlighted a possible
mechanism responsible for this, which has important practical implications. As
now a data-driven understanding of some basic rules of the DJ world is clear,
new doors open to design a better mentoring system. This could include find-
ing better ways of including and leaving more space for underserved individu-
als. Another important direction would be tracking down biases in a pragmatic
data-driven fashion, for instance, the striking gender gap in electronic music.
In a broader sense, the tools and ideas I presented about mentorship do not
strictly apply to electronic music or rely on any specific attributes of that pro-
fession. They could easily be adapted to study the benefits and limitations of
mentorship and success in other commercial environments, from organizational
development to human resources.

The results presented in Chapter 5 showed a surprising effect of social net-
works on urban spaces: they seem to be the key for venue success. This has
interesting implications on both urban planning and marketing strategies in
general since, apparently, building up a coherent social network matters more
than the location and the profile of urban venues. In addition, this draws ur-
ban planners’ attention to the importance of creating unique social melting pots
rather than extravagant but less human-friendly environments, also suggesting
future collaborations between the fields of social psychology and urban plan-
ning & informatics.

In conclusion, this thesis deepened our understanding of the evolution of
success in five different domains by presenting unique and new scientific re-
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sults. On the one hand, I show several examples of the temporal aspects of
success, such as the relation of creative individuals’ big hits and the success
shapes of urban spaces. On the other, I relate success to the underlying social
networks from collaboration networks to mentorship, and the effect of social
factors on urban success, highlighting a universal role of the network effects in
success. Furthermore, as this brief concluding chapter also outlines, my find-
ings not only have academic importance and interest but are directly related
to real-life problems and offer practical solutions. I truly believe that the work
presented in this thesis is a unique interdisciplinary contribution to the scien-
tific literature, in particular at the interface of network science, data science, and
computational social science.
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Trajectory stability in the traveling salesman problem. Complexity 2018
(2018)

C
E

U
eT

D
C

ol
le

ct
io

n

https://amf-festival.com


118 BIBLIOGRAPHY

[246] Morales, J.A., Colman, E., Sánchez, S., Sánchez-Puig, F., Pineda, C.,
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