Equality in some Geometric Inequalities

Pavlos Kalantzopoulos

Supervisor: Károly Böröczky

June 12, 2020

A thesis submitted in fulfilment of the requirements for the degree of Practical Mathematics Specialization Program

Central European University

Declaration of Authorship I, Pavlos Kalantzopoulos, declare that this thesis entitled, "Equality in some Geometric Inequalities" and the work presented in it are my own.

I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at this University.

•Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated.

• Where I have consulted the published work of others, this is always clearly attributed. Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

Abstract

A simply way to prove Bollobas-Thomason inequality is via the Geometric Brascamp-Lieb inequality due to Liakopoulos. The same author found the dual Bollobas-Thomason as an application of the Reverse Brascamp-Lieb inequality. Here we show the equality case of the Bollobas-Thomason inequality, via the characterization of the equality case of Geometric Brascamp-Lieb inequality due to Valdimarsson. In addition, we give a partial characterization of the equality case of the dual Bollobas-Thomason inequality. This allows us to have the equality case of the dual Bollobas-Thomason inequality.

Contents

1	Introduction	5
2	The determinantal inequality and structure theory for rank one Geometric Brascamp- Lieb data	8
3	The determinantal inequality corresponding to the higher rank Brascamp-Lieb inequal- ity	11
4	Further structural theory of a Geometric Brascamp-Lieb data	13
5	Optimal transportation and the Reverse Brascamp-Lieb inequality	14
6	The equality case of the Reverse Brascamp Lieb inequaltiy (partial)	17
7	The equality cases of the Bollobas-Thomason inequality and in its dual	19

1 Introduction

For a proper linear subspace E of \mathbb{R}^n ($E \neq \mathbb{R}^n$ and $E \neq \{o\}$), let P_E denote the orthogonal projection into E. We write e_1, \ldots, e_n to denote an orthonomal basis of \mathbb{R}^n . For a compact set $K \subset \mathbb{R}^n$ with aff K = m, we write |K| to denote the *m*-dimensional Lebesgue measure of K.

The starting point of my thesis is the classical Loomis-Whitney inequality [45].

Theorem 1 (Loomis, Whitney) If $K \subset \mathbb{R}^n$ is compact and affinely spans \mathbb{R}^n , then

$$|K|^{n-1} \le \prod_{i=1}^{k} |P_{e_i^{\perp}}K|, \tag{1}$$

with equality if and only if $K = \bigoplus_{i=1}^{n} K_i$ where aff K_i is a line parallel to e_i .

Meyer [53] provided a dual form of the Loomis-Whitney inequality where equality holds for affine crosspolytopes.

Theorem 2 (Meyer) If $K \subset \mathbb{R}^n$ is compact convex with $o \in int K$, then

$$|K|^{n-1} \ge \frac{n!}{n^n} \prod_{i=1}^k |K \cap e_i^{\perp}|,$$
(2)

with equality if and only if $K = \operatorname{conv}\{\pm \lambda_i e_i\}_{i=1}^n$ for $\lambda_i > 0, i = 1, \dots, n$.

We note that various Reverse and dual Loomis-Whitney type inequalities are proved by S. Campi, R. Gardner, P. Gronchi [47].

To consider a genarization of the Loomis-Whitney inequality and its dual form, we set $[n] := \{1, \ldots, n\}$, and for a non-empty proper subset $\sigma \subset [n]$, we define $E_{\sigma} = \lim\{e_i\}_{i \in \sigma}$. For $s \geq 1$, we say that the not necessarily distinct proper non-empty subsets $\sigma_1, \ldots, \sigma_k \subset [n]$ form an s-uniform cover of [n] if each $j \in [n]$ is contained in exactly s of $\sigma_1, \ldots, \sigma_k$.

The Bollobas-Thomason inequality [11] reads as follows.

Theorem 3 (Bollobas, Thomason) If $K \subset \mathbb{R}^n$ is compact and affinely spans \mathbb{R}^n , and $\sigma_1, \ldots, \sigma_k \subset [n]$ form an s-uniform cover of [n] for $s \geq 1$, then

$$|K|^s \le \prod_{i=1}^k |P_{E_{\sigma_i}}K|. \tag{3}$$

We note that additional the case when k = n, s = n - 1, and hence when we may assume that $\sigma_i = [n] \setminus e_i$, is the Loomis-Whitney inequality Therem 1.

Liakopoulos [44] managed to prove a dual form of the Bollobas-Thomason inequality. For a finite set σ , we write $|\sigma|$ to denote its cardinality.

Theorem 4 (Liakopoulos) If $K \subset \mathbb{R}^n$ is compact convex with $o \in int K$, and $\sigma_1, \ldots, \sigma_k \subset [n]$ form an s-uniform cover of [n] for $s \ge 1$, then

$$|K|^{s} \ge \frac{\prod_{i=1}^{k} |\sigma_{i}|!}{(n!)^{s}} \cdot \prod_{i=1}^{k} |K \cap E_{\sigma_{i}}|.$$
(4)

However, unlike for Loomis-Whitney inequality and its dual form, neither the equality cases of the Bollobas-Thomason inequality nor of its dual are known. The characterization of the equality cases of Theorem 3 and Theorem 4 is the main focus of this thesis.

Let $s \ge 1$, and let $\sigma_1, \ldots, \sigma_k \subset [n]$ be an *s*-uniform cover of [n]. We say that $\tilde{\sigma}_1, \ldots, \tilde{\sigma}_l \subset [n]$ form a 1-uniform cover of [n] induced by the *s*-uniform cover $\sigma_1, \ldots, \sigma_k$ if $\{\tilde{\sigma}_1, \ldots, \tilde{\sigma}_l\}$ consists of all non-empty distinct subsets of [n] of the form $\bigcap_{i=1}^k \sigma_i^{\varepsilon(i)}$ where $\varepsilon(i) \in \{0, 1\}$ and $\sigma_i^0 = \sigma_i$ and $\sigma_i^1 = [n] \setminus \sigma_i$. We observe that $\tilde{\sigma}_1, \ldots, \tilde{\sigma}_l \subset [n]$ actually form a 1-uniform cover of [n]; namely, $\tilde{\sigma}_1, \ldots, \tilde{\sigma}_l$ is a partition of [n].

Theorem 5 Let $K \subset \mathbb{R}^n$ be compact and affinely span \mathbb{R}^n , and let $\sigma_1, \ldots, \sigma_k \subset [n]$ form an suniform cover of [n] for $s \geq 1$. Then equality holds in (3) if and only if $K = \bigoplus_{i=1}^l P_{E_{\tilde{\sigma}_i}} K$ where $\tilde{\sigma}_1, \ldots, \tilde{\sigma}_l$ is the 1-uniform cover of [n] induced by $\sigma_1, \ldots, \sigma_k$.

Concerning the dual Bollobas-Thomason inequality Theorem 4, we have a similar result.

Theorem 6 Let $K \subset \mathbb{R}^n$ be compact convex with $o \in \text{int} K$, and let $\sigma_1, \ldots, \sigma_k \subset [n]$ form an suniform cover of [n] for $s \geq 1$. Then equality holds in (4) if and only if $K = \text{conv}\{K \cap F_{\tilde{\sigma}_i}\}_{i=1}^l$ where $\tilde{\sigma}_1, \ldots, \tilde{\sigma}_l$ is the 1-uniform cover of [n] induced by $\sigma_1, \ldots, \sigma_k$.

According to Liakopoulos [44] (see also Section 7), a simply way to prove Theorem 3 and Theorem 4 is via the Geometric Brascamp-Lieb inequality Theorem 7 and its Reverse form Theorem 8. In particular, we prove the equality case Theorem 5 of the Bollobas-Thomason inequality via the characterization of the equality case Theorem 9 due to by Valdimarsson [59] of the Brascamp-Lieb inequality. In addition, we prove Theorem 10 characterizing the equality case of the Reverse Brascamp-Lieb inequality in a special case that yields the understanding of equality in the dual Bollobas-Thomason inequality.

We say that the proper linear subspaces E_1, \ldots, E_k of \mathbb{R}^n and $c_1, \ldots, c_k > 0$ form a Geometric Brascamp-Lieb data if they satisfy

$$\sum_{i=1}^{k} c_i P_{E_i} = I_n.$$
 (5)

The name "Geometric Brascamp-Lieb data" comes from the following theorem, originating in the work of Brascamp, Lieb [14].

Theorem 7 (Brascamp, Lieb) For the proper linear subspaces E_1, \ldots, E_k of \mathbb{R}^n and $c_1, \ldots, c_k > 0$ satisfying (5), and for non-negative $f_i \in L_1(E_i)$, we have

$$\int_{\mathbb{R}^{n}} \prod_{i=1}^{k} f_{i} (P_{E_{i}} x)^{c_{i}} dx \leq \prod_{i=1}^{k} \left(\int_{E_{i}} f_{i} \right)^{c_{i}}.$$
(6)

For the Brascamp-Lieb inequality Theorem 7, Brascamp, Lieb [14] proved the rank one case when dim $E_i = 1$ for i = 1, ..., k, and Lieb [46] proved the general case. We note that equality holds in Theorem 7 if $f_i(x) = e^{-\pi ||x||^2}$ for i = 1, ..., k; and hence, each f_i is a Gaussian density. Actually, Theorem 7, which is an important special case of the general Brascamp-Lieb inequality, is named Geometric Brascamp-Lieb inequality by Bennett, Carbery, Christ, Tao [10]. The form Geometric Brascamp-Lieb inequality of the otherwise more general Brascamp-Lieb inequality was discovered by Ball [2, 3].

Answering a conjecture by Ball, a Reverse form of the Geometric Brascamp-Lieb inequality was proved by Barthe [5]. We write $\int_{\mathbb{R}^n}^*$ to denote outer integral for a possibly non-integrable function.

Theorem 8 (Barthe) For the proper linear subspaces E_1, \ldots, E_k of \mathbb{R}^n and $c_1, \ldots, c_k > 0$ satisfying (5), and for non-negative $f_i \in L_1(E_i)$, we have

$$\int_{\mathbb{R}^n}^* \sup_{x = \sum_{i=1}^k c_i x_i, x_i \in E_i} \prod_{i=1}^k f_i(x_i)^{c_i} \, dx \ge \prod_{i=1}^k \left(\int_{E_i} f_i \right)^{c_i}.$$
(7)

Let E_1, \ldots, E_k the proper linear subspaces of \mathbb{R}^n and $c_1, \ldots, c_k > 0$ satisfy (5). Valdimarsson [59] introduced the so called independent subspaces and the dependent space. We write J to denote the set of 2^k functions $\{1, \ldots, k\} \to \{0, 1\}$. If $\varepsilon \in J$, then let $F_{\varepsilon} = \bigcap_{i=1}^k E^{\varepsilon(i)}$ where $E_i^0 = E_i$ and $E_i^1 = E_i^{\perp}$ for $i = 1, \ldots, k$. We write J_0 to denote the subset of $\varepsilon \in J$ such that dim $F_{\varepsilon} \ge 1$, and such an F_{ε} is called independent following Valdimarsson [59]. Readily F_{ε} and F_{ε} are orthogonal if $\varepsilon \neq \tilde{\varepsilon}$ for $\varepsilon, \tilde{\varepsilon} \in J_0$. In addition, we write F_{dep} to denote the orthogonal component of $\bigoplus_{\varepsilon \in J_0} F_{\varepsilon}$. In particular, \mathbb{R}^n can be written as a direct sum of pairwise orthogonal linear subspaces in the form

$$\mathbb{R}^n = \left(\oplus_{\varepsilon \in J_0} F_{(\varepsilon)} \right) \oplus F_{\mathrm{dep}}.$$
(8)

Here it is possible that $J_0 = \emptyset$, and hence $\mathbb{R}^n = F_{dep}$, or $F_{dep} = \{o\}$, and hence $\mathbb{R}^n = \bigoplus_{\varepsilon \in J_0} F_{\varepsilon}$ in that case.

Now we quote the special case of Valdimarsson's [59] characterization of the equality case of the Brascamp-Lieb inequality that we need to handle the Bollobás-Thomason inequality.

Theorem 9 (Valdimarsson) For the proper linear subspaces E_1, \ldots, E_k of \mathbb{R}^n and $c_1, \ldots, c_k > 0$ satisfying (5) and $F_{dep} = \{o\}$, let us assume that equality holds in (6) for non-negative $f_i \in L_1(E_i)$, $i = 1, \ldots, k$, with positive integral. Writing F_1, \ldots, F_l to denote the independent subspaces, there exist $\theta_i > 0$ for $i = 1, \ldots, k$ and $h_j : F_j \to [0, \infty)$ for $j = 1, \ldots, l$ such that

$$f_i(x) = \theta_i \prod_{F_j \subset E_i} h_j(P_{F_j}(x))$$
 for Lebesgue a.a. $x \in E_i$

Theorem 10 clarifies the equality conditions in the Reverse Brascamp-Lieb inequality in some special cases that cover say the recent dual Bollobas-Thomason inequality Theorem 6. We say that a function $h : \mathbb{R}^n \to [0, \infty)$ is log-concave if $h((1 - \lambda)x + \lambda y) \ge h(x)^{1-\lambda}h(y)^{\lambda}$ for any $x, y \in \mathbb{R}^n$ and $\lambda \in (0, 1)$; or in other words, $h = e^{-W}$ for a convex function $W : \mathbb{R}^n \to (-\infty, \infty]$.

Theorem 10 For the proper linear subspaces E_1, \ldots, E_k of \mathbb{R}^n and $c_1, \ldots, c_k > 0$ satisfying (5) and $F_{dep} = \{o\}$, let us assume that equality holds in (7) for non-negative $f_i \in L_1(E_i)$, $i = 1, \ldots, k$, with positive integral. Writing F_1, \ldots, F_l to denote the independent subspaces, there exist $\theta_i > 0$ and $w_i \in E_i$ for $i = 1, \ldots, k$ and log-concave $h_j : F_j \to [0, \infty)$ for $j = 1, \ldots, l$ such that

$$f_i(x) = \theta_i \prod_{F_j \subset E_i} h_j(P_{F_j}(x - w_i))$$
 for Lebesgue a.a. $x \in E_i$.

Theorem 10 explains the term "independent subspaces" because the functions h_j are chosen freely and independently of each other on F_j .

2 The determinantal inequality and structure theory for rank one Geometric Brascamp-Lieb data

We first discuss the basic properties of a set of vectors $u_1, \ldots, u_n \in S^{n-1}$ and constants $c_1, \ldots, c_n > 0$ occurring in the Geometric Brascamp-Lieb inequality; namely, satisfying

$$\sum_{i=1}^{k} c_i u_i \otimes u_i = I_n.$$
⁽⁹⁾

This section just retells the story of Section 2 of Barthe [5] in the language of Bennett, Carbery, Christ, Tao [10].

Lemma 11 For $u_1, \ldots, u_k \in S^{n-1}$ and $c_1, \ldots, c_k > 0$ satisfying (9), we have

(i)
$$\sum_{i=1}^{k} c_i = n;$$

(ii) $\sum_{i=1}^{k} c_i \langle u_i, x \rangle^2 = ||x||^2 \text{ for all } x \in \mathbb{R}^n;$

- (iii) $c_i \leq 1$ for i = 1, ..., k with equality if and only if $u_j \in u_i^{\perp}$ for $j \neq i$;
- (iv) u_1, \ldots, u_k spans \mathbb{R}^n , and k = n if and only if u_1, \ldots, u_n is an orthonormal basis of \mathbb{R}^n and $c_1 = \ldots = c_n = 1$;
- (v) if L is a proper linear subspace of \mathbb{R}^n , then

$$\sum_{\iota_i \in L} c_i \le \dim L,$$

with equality if and only if $u_1, \ldots, u_k \subset L \cup L^{\perp}$.

Remark If $\sum_{u_i \in L} c_i = \dim L$ in (v), then $\lim\{u_i : u_i \in L\} = L$ and $\lim\{u_i : u_i \in L^{\perp}\} = L^{\perp}$. *Proof:* Here (i) follows from comparing the traces of the two sides of (9), and (ii) is just an equivalent form of (9). To prove $c_j \leq 1$ with the characterization of equality, we substitute $x = u_j$ into (ii).

Turning to (iv), let us assume that $u_1, \ldots, u_n \in S^{n-1}$ and $c_1, \ldots, c_n > 0$ satisfy (9). We consider $w_j \in S^{n-1}$ for $j = 1, \ldots, n$ such that $\langle w_j, u_i \rangle = 0$, $i = 1, \ldots, n$, and (ii) shows that $u_j = \pm w_j$ and $c_j = 1$.

For (v), let $v_i = \sqrt{c_i} u_i$ for i = 1, ..., k, and we observe that (ii) is equivalent with

$$\sum_{i=1}^{k} \langle v_i, x \rangle^2 = \|x\|^2 \text{ for all } x \in \mathbb{R}^n$$
(10)

where (i) yields that

$$\sum_{i=1}^{k} \|v_i\|^2 = n.$$
(11)

If $u_i \notin L$, then let $\tilde{v}_i = P_{L^{\perp}} v_i$. We deduce that if $x \in L^{\perp}$, then

$$||x||^{2} = \sum_{i=1}^{k} \langle v_{i}, x \rangle^{2} = \sum_{u_{i} \notin L} \langle \tilde{v}_{i}, x \rangle^{2}.$$
 (12)

It follows from (i) and (ii) (compare (10) and (11)) applied in L^{\perp} instead of \mathbb{R}^n that

$$\dim L^{\perp} = \sum_{u_i \notin L} \|\tilde{v}_i\|^2 \le \sum_{u_i \notin L} \|v_i\|^2 = \sum_{u_i \notin L} c_i.$$
(13)

In turn, we conclude the inequality in (v). If equality holds in (v), then $||v_i|| = ||\tilde{v}_i||$ whenever $u_i \notin L$; therefore, $u_1, \ldots, u_k \subset L \cup L^{\perp}$. \Box

Let $u_1, \ldots, u_k \in S^{n-1}$ and $c_1, \ldots, c_k > 0$ satisfy (9). Following Bennett, Carbery, Christ, Tao [10], we say that a non-zero linear subspace V is a critical subspace with respect to u_1, \ldots, u_k and c_1, \ldots, c_k if

$$\sum_{u_i \in V} c_i = \dim V.$$

In particular, \mathbb{R}^n is a critical subspace according to Lemma 11. We say that a critical subspace V is indecomposable if V has no proper critical linear subspace. In addition, we say that a non-empty subset $\mathcal{U} \subset \{u_1, \ldots, u_k\}$ is indecomposable if $\lim \mathcal{U}$ is an indecomposable critical subspace.

In order to understand the equality case of the rank one Brascamp-Lieb inequality, Barthe [5] indicated an equivalence relation on $\{u_1, \ldots, u_k\}$. First, we write that $u_i \bowtie u_j$ if there exists a subset $\mathcal{U} \subset \{u_1, \ldots, u_k\}$ of cardinality n - 1 such that both $\{u_i\} \cup \mathcal{U}$ and $\{u_j\} \cup \mathcal{U}$ are independent. We define \sim to be the transitive completion of \bowtie on $\{u_1, \ldots, u_k\}$, and hence \sim is an equivalence relation on $\{u_1, \ldots, u_k\}$.

Lemma 12 For $u_1, \ldots, u_k \in S^{n-1}$ and $c_1, \ldots, c_k > 0$ satisfying (9), we have

- (i) a proper linear subspace $V \subset \mathbb{R}^n$ is critical if and only if $\{u_1, \ldots, u_k\} \subset V \cup V^{\perp}$;
- (ii) if V, W are proper critical subspaces with $V \cap W \neq \{o\}$, then V^{\perp} , $V \cap W$ and V + W are critical subspaces;
- (iii) the equivalence classes with respect to \sim are the indecomposable subsets of $\{u_1, \ldots, u_k\}$;
- (iv) the proper indecomposable critical subspaces are pairwise orthogonal, and any critical subspace is the sum of some indecomposable critical subspaces.

Proof: (i) directly follows from Lemma 11 (v), and in turn (i) yields (ii).

We prove (iii) and and first half of (iv) simultatinuously. We say that a subset $\mathcal{D} \subset \{u_1, \ldots, u_k\}$ is minimally dependent if \mathcal{D} is dependent and no proper subset of \mathcal{D} is dependent. Since u_1, \ldots, u_k spans \mathbb{R}^n , $u_i \bowtie u_j$ for $i \neq j$ is equivalent with the existence of a minimal dependent set $\mathcal{D} \subset \{u_1, \ldots, u_k\}$ satisfying $u_i, u_j \in \mathcal{D}$. This new formulation shows that if V_1, \ldots, V_m are the linear hulls of the equivalence classes with respect to \sim , then V_1, \ldots, V_m are complementary; or in words, dim $V_1 + \ldots + \dim V_m = n$.

We deduce from Lemma 11 (v) that each V_i is a critical subspace, and if $i \neq j$, then V_i and V_j are orthogonal.

Next let $\mathcal{U} \subset \{u_1, \ldots, u_k\}$ be an indecomposable set, and let $V = \lim \mathcal{U}$. We write $I \subset \{1, \ldots, m\}$ to denote the set of indices i such that $V_i \cap \mathcal{U} \neq \emptyset$. Since V is a critical subspace, we deduce from Lemma 11 (v) that $V_i \cap V$ is a critical subspace for $i \in I$, as well; therefore, I consists of a unique index p as \mathcal{U} is indecomposable. In particular, $V = V_p$.

It follows from Lemma 11 (v) that $\{u_1, \ldots, u_k\} \subset V \cup V^{\perp}$; therefore, there exists no minimally dependent subset of $\{u_1, \ldots, u_k\}$ intersecting both \mathcal{U} and its complement. We conclude that $V = V_p$.

Finally, the second half of (iv) follows from (i) and (ii). \Box

Proposition 13 For $u_1, \ldots, u_k \in S^{n-1}$ and $c_1, \ldots, c_k > 0$ satisfying (9), if $t_i > 0$ for $i = 1, \ldots, k$, then

$$\det\left(\sum_{i=1}^{k} c_i t_i u_i \otimes u_i\right) \ge \prod_{i=1}^{k} t_i^{c_i}.$$
(14)

Equality holds in (14) if and only if $t_i = t_j$ for any u_i and u_j lying in the same indecomposable subset of $\{u_1, \ldots, u_k\}$.

Proof: To simplify expressions, let $v_i = \sqrt{c_i}u_i$ for i = 1, ..., k.

In this argument, I always denotes some subset of $\{1, \ldots, k\}$ of cardinality n. For $I = \{i_1, \ldots, i_n\}$, we define

$$d_I := \det[v_{i_1}, \dots, v_{i_n}]^2$$
 and $t_I := t_{i_1} \cdots t_{i_n}$.

For the $n \times k$ matrices $M = [v_1, \ldots, v_k]$ and $\widetilde{M} = [\sqrt{t_1} v_1, \ldots, \sqrt{t_k} v_k]$, we have

$$MM^T = I_n \text{ and } \widetilde{M}\widetilde{M}^T = \sum_{i=1}^k t_i v_i \otimes v_i.$$
 (15)

It follows from the Cauchy-Binet formula that

$$\sum_{I} d_{I} = 1$$
 and $\det\left(\sum_{i=1}^{k} t_{i} v_{i} \otimes v_{i}\right) = \sum_{I} t_{I} d_{I},$

where the summations extend over all sets $I \subset \{1, ..., k\}$ of cardinality n. It follows that the discrete measure μ on the n element subsets of $\{1, ..., k\}$ defined by $\mu(\{I\}) = d_I$ is a probability measure. We deduce from inequality between the arithmetic and geometric mean that

$$\det\left(\sum_{i=1}^{k} t_i v_i \otimes v_i\right) = \sum_{I} t_I d_I \ge \prod_{I} t_I^{d_I}.$$
(16)

The factor t_i occurs in $\prod_I t_I^{d_I}$ exactly $\sum_{I,i\in I} d_I$ times. Moreover, the Cauchy-Binet formula applied to the vectors $v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_k$ implies

$$\sum_{I,i\in I} d_I = \sum_I d_I - \sum_{I,i\notin I} d_I = 1 - \det\left(\sum_{j\neq i} v_j \otimes v_j\right)$$
$$= 1 - \det\left(\mathrm{Id}_n - v_i \otimes v_i\right) = \langle v_i, v_i \rangle = c_i.$$

Substituting this into (16) yields (14).

We now assume that equality holds in (14). Since equality holds in (16) when applying arithmetic and geometric mean, all the t_I are the same for any subset I of $\{1, \ldots, k\}$ of cardinality n with $d_I \neq 0$. It follows that $t_i = t_j$ whenever $u_i \bowtie u_j$, and in turn we deduce that $t_i = t_j$ whenever u_i and u_j lie in the same indecomposable set by Lemma 12 (i).

On the other hand, Lemma 12 (ii) yields that if $t_i = t_j$ whenever u_i and u_j lie in the same indecomposable set, then equality holds in (14). \Box

Combining Lemma 12 and Proposition 13 leads to the following:

Corollary 14 For $u_i \in S^{n-1}$ and $c_i, t_i > 0$, i = 1, ..., k satisfying (9), equality holds in (14) if and only if there exist pairwise orthogonal linear subspaces $V_1, ..., V_m, m \ge 1$, such that $\{u_1, ..., u_k\} \subset V_1 \cup ... \cup V_m$ and $t_i = t_j$ whenever u_i and u_j lie in the same V_p for some $p \in \{1, ..., m\}$.

3 The determinantal inequality corresponding to the higher rank Brascamp-Lieb inequality

We consider proper linear subspaces E_1, \ldots, E_k of \mathbb{R}^n and $c_1, \ldots, c_k > 0$ satisfying the Geometric Brascamp-Lieb condition

$$\sum_{i=1}^{k} c_i P_{E_i} = I_n.$$
(17)

We now connect (17) to (9). For i = 1, ..., k, let dim $E_i = n_i$ and let $u_1^{(i)}, ..., u_{n_i}^{(i)}$ be any orthonormal basis of E_i . In addition, for i = 1, ..., k, we consider the $n \times n_i$ matrix $M_i = \sqrt{c_i} [u_1^{(i)}, ..., u_{n_i}^{(i)}]$. We deduce that

$$c_i P_{E_i} = M_i M_i^T = \sum_{j=1}^{n_i} c_i u_j^{(i)} \otimes u_j^{(i)} \text{ for } i = 1, \dots, k;$$
 (18)

$$I_n = \sum_{i=1}^k c_i P_{E_i} = \sum_{i=1}^k \sum_{j=1}^{n_i} c_i u_j^{(i)} \otimes u_j^{(i)} = \sum_{i=1}^k \sum_{j=1}^{n_i} c_j^{(i)} u_j^{(i)} \otimes u_j^{(i)}$$
(19)

and hence $u_j^{(i)} \in S^{n-1}$ and $c_j^{(i)} = c_i > 0$ for i = 1, ..., k and $j = 1, ..., n_i$ form a Geometric Brascamp-Lieb data like in (9).

Lemma 15 For proper linear subspaces E_1, \ldots, E_k of \mathbb{R}^n and $c_1, \ldots, c_k > 0$ satisfying (17),

- (i) if $x \in \mathbb{R}^n$, then $\sum_{i=1}^k c_i \|P_{E_i}x\|^2 = \|x\|^2$;
- (ii) if $V \subset \mathbb{R}^n$ is a proper linear subset, then

$$\sum_{E_i \cap V \neq \{o\}} c_i \dim(E_i \cap V) \le \dim V$$
(20)

where equality holds if and only if $E_i = (E_i \cap V) + (E_i \cap V^{\perp})$ for i = 1, ..., k; or equivalently, when $V = (E_i \cap V) + (E_i^{\perp} \cap V)$ for i = 1, ..., k.

Proof: For i = 1, ..., k, let dim $E_i = n_i$ and let $u_1^{(i)}, ..., u_{n_i}^{(i)}$ be any orthonormal basis of E_i such that if $V \cap E_i \neq \{o\}$, then $u_1^{(i)}, ..., u_{m_i}^{(i)}$ is any orthonormal basis of $V \cap E_i$ where $m_i \leq n_i$.

For any $x \in \mathbb{R}^n$ and i = 1, ..., k, we have $||P_{E_i}x||^2 = \sum_{j=1}^{n_i} \langle u_j^{(i)}, x \rangle^2$, thus Lemma 11 (ii) yields (i).

Concerning (ii), Lemma 11 (v) yields (20). On the other hand, if equality holds in (20), then V is a critical subspace for the rank one Geometric Brascamp-Lieb data $u_j^{(i)} \in S^{n-1}$ and $c_j^{(i)} = c_i > 0$ for i = 1, ..., k and $j = 1, ..., n_i$ satisfying (19). Thus Lemma 15 (ii) follows from Lemma 11 (v). \Box

Following Bennett, Carbery, Christ, Tao [10], we say that a non-zero linear subspace V is a critical subspace with respect to the proper linear subspaces E_1, \ldots, E_k of \mathbb{R}^n and $c_1, \ldots, c_k > 0$ satisfying (17) if

$$\sum_{E_i \cap V \neq \{o\}} c_i \dim(E_i \cap V) = \dim V.$$

In particular, \mathbb{R}^n is a critical subspace by calculating traces of both sides of (17). For a proper linear subspace $V \subset \mathbb{R}^n$, Lemma 15 yields that V is critical if and only if V^{\perp} is critical, which is turn equivalent saying that

$$E_i = (E_i \cap V) + (E_i \cap V^{\perp}) \text{ for } i = 1, \dots, k;$$
 (21)

or in other words,

$$V = (E_i \cap V) + (E_i^{\perp} \cap V)$$
 for $i = 1, \dots, k.$ (22)

Again, a critical subspace V is indecomposable if V has no proper critical linear subspace, and we call the Geometric Brascamp-Lieb data of proper linear subspaces E_1, \ldots, E_k of \mathbb{R}^n and $c_1, \ldots, c_k > 0$ satisfying (17) indecomposable if there exists no proper critical subspace.

The following was pointed out in Valdimarsson [59].

Lemma 16 If E_1, \ldots, E_k are proper linear subspaces of \mathbb{R}^n and $c_1, \ldots, c_k > 0$ satisfying (17), and V, W are proper critical subspaces with $V \cap W \neq \{o\}$, then $V^{\perp}, V \cap W$ and V + W are critical subspaces.

Proof: The fact that V^{\perp} is also critical follows directly from (21).

Concerning $V \cap W$, we need to prove that if i = 1, ..., k, then

$$(V \cap W) \cap E_i + (V \cap W)^{\perp} \cap E_i = E_i.$$
⁽²³⁾

For a linear subspace $L \subset E_i$, we write $L^{\perp_i} = L^{\perp} \cap E_i$ to denote the orthogonal complement within E_i . We observe that as V and W are critical subspaces, we have $(V \cap E_i)^{\perp_i} = V^{\perp} \cap E_i$ and $(W \cap E_i)^{\perp_i} = W^{\perp} \cap E_i$. It follows from the identity $(V \cap W)^{\perp} = V^{\perp} + W^{\perp}$ that

$$E_{i} \supset (V \cap W) \cap E_{i} + (V \cap W)^{\perp} \cap E_{i} = (V \cap E_{i}) \cap (W \cap E_{i}) + (V^{\perp} + W^{\perp}) \cap E_{i}$$

$$\supset (V \cap E_{i}) \cap (W \cap E_{i}) + (V^{\perp} \cap E_{i}) + (W^{\perp} \cap E_{i})$$

$$= (V \cap E_{i}) \cap (W \cap E_{i}) + (V \cap E_{i})^{\perp_{i}} + (W \cap E_{i})^{\perp_{i}}$$

$$= (V \cap E_{i}) \cap (W \cap E_{i}) + [(V \cap E_{i}) \cap (W \cap E_{i})]^{\perp_{i}} = E_{i},$$

yielding (23).

Finally, V + W is also critical as $V + W = (V^{\perp} \cap W^{\perp})^{\perp}$. \Box

We deduce from Lemma 16 that any crtical subspace can be decomposed inro indecomposable ones.

Corollary 17 If E_1, \ldots, E_k are proper linear subspaces of \mathbb{R}^n and $c_1, \ldots, c_k > 0$ satisfy (17), and W is a critical subspace or $W = \mathbb{R}^n$, then there exist pairwise orthogonal indecomposable critical subspaces $V_1, \ldots, V_m, m \ge 1$, such that $W = V_1 + \ldots + V_m$ (possibly m = 1 and $W = V_1$).

For a non-zero linear subspace $L \subset \mathbb{R}^n$, we say that a linear transformation $A : L \to L$ is positive definite if $\langle Ax, y \rangle = \langle x, Ay \rangle$ and $\langle x, Ax \rangle > 0$ for any $x, y \in L \setminus \{o\}$. The following is indicated in Barthe [5].

Proposition 18 (Barthe) For proper linear subspaces E_1, \ldots, E_k of \mathbb{R}^n and $c_1, \ldots, c_k > 0$ satisfying (17), if $A_i : E_i \to E_i$ is a positive definite linear transformation for $i = 1, \ldots, k$, then

$$\det\left(\sum_{i=1}^{k} c_i A_i P_{E_i}\right) \ge \prod_{i=1}^{k} (\det A_i)^{c_i}.$$
(24)

Equality holds in (24) if and only if there exist linear subspaces V_1, \ldots, V_m where $V_1 = \mathbb{R}^n$ if m = 1and V_1, \ldots, V_m are pairwise orthogonal indecomposable critical subspaces spanning \mathbb{R}^n if $m \ge 2$, and $\lambda_1, \ldots, \lambda_m > 0$ such that each E_i is spanned by the subspaces $E_i \cap V_j$ for $j = 1, \ldots, m$, and if $E_i \cap V_j \neq \{o\}$, then $E_i \cap V_j$ is an eigenspace of A_i with eigenvalue λ_j .

Proof: For i = 1, ..., k, let dim $E_i = n_i$, let $u_1^{(i)}, ..., u_{n_i}^{(i)}$ be an orthonormal basis of E_i consisting of eigenvectors of A_i , and let $\lambda_j^{(i)} > 0$ be the eigenvalue of A_i corresponding to $u_j^{(i)}$. In particular det $A_i = \prod_{j=1}^{n_i} \lambda_j^{(i)}$ for i = 1, ..., k. In addition, for i = 1, ..., k, we set $M_i = \sqrt{c_i} [u_1^{(i)}, ..., u_{n_i}^{(i)}]$ and B_i to be the positive definite transformation with $A_i = B_i B_i$, and hence

$$c_i A_i P_{E_i} = (M_i B_i) (M_i B_i)^T = \sum_{j=1}^{n_i} c_i \lambda_j^{(i)} u_j^{(i)} \otimes u_j^{(i)}.$$

We deduce from Lemma 13 and (19) that

$$\det\left(\sum_{i=1}^{k} c_i A_i P_{E_i}\right) = \det\left(\sum_{i=1}^{k} \sum_{j=1}^{n_i} c_i \lambda_j^{(i)} u_j^{(i)} \otimes u_j^{(i)}\right)$$
$$\geq \prod_{i=1}^{k} \left(\prod_{j=1}^{n_i} \lambda_j^{(i)}\right)^{c_i} = \prod_{i=1}^{k} (\det A_i)^{c_i}.$$
(25)

Finally, if we have equality in (24), and hence also in (25), then Corollary 14 implies that there exist pairwise orthogonal critical subspaces $V_1, \ldots, V_m, m \ge 1$ spanning \mathbb{R}^n and $\lambda_1, \ldots, \lambda_m > 0$ (where $V_1 = \mathbb{R}^n$ if m = 1) such that if $E_i \cap V_j \ne \{o\}$, then $E_i \cap V_j$ is an eigenspace of A_i with eigenvalue λ_j . We conclude from (21) that each V_j is a critical subspace, and from Corollary 17 that each V_j can be assumed to be indecomposable. Finally, (21) yields that each E_i is spanned by the subspaces $E_i \cap V_j$ for $j = 1, \ldots, m$. \Box

4 Further structural theory of a Geometric Brascamp-Lieb data

This section describes the structure of the Brascamp-Lieb data consisting of proper linear subspaces E_1, \ldots, E_k of \mathbb{R}^n and $c_1, \ldots, c_k > 0$ satisfying (17) based on Valdimarsson [59]. We deduce from Lemma 15 (i) and (22) that if V is a critical subspace, then writing $P_{E_i \cap V}^{(V)}$ to denote the restriction of $P_{E_i \cap V}$ onto V, we have

$$\sum_{E_i \cap V \neq \{o\}} c_i P_{E_i}^{(V)} = I_V \tag{26}$$

where I_V denotes the identity transformation on V.

If each E_i in the Geometric Brascamp-Lieb data is one dimensional, then Lemma 12 (iii) says that lower dimensional indecomposable critical subspaces are pairwise orthogonal, and hence there exists a unique decomposition of \mathbb{R}^n as a direct some of indecomposable critical subspaces. This is a very useful property in light of Proposition 18. However, the uniqueness of a decomposition of \mathbb{R}^n into indecomposable critical subspaces does not hold in general for a Geometric Brascamp-Lieb data if some E_i is of higher dimension (see examples in Valdimarsson [59]).

In general, the structure of a Geometric Brascamp-Lieb Data is described by Valdimarsson [59]. We write J to denote the set of 2^k functions $\{1, \ldots, k\} \to \{0, 1\}$. If $\varepsilon \in J$, then let $F_{(\varepsilon)} = \bigcap_{i=1}^k E^{(\varepsilon(i))}$ where $E_i^{(0)} = E_i$ and $E_i^{(1)} = E_i^{\perp}$ for $i = 1, \ldots, k$. We write J_0 to denote the subset of $\varepsilon \in J$ such that dim $F_{(\varepsilon)} \ge 1$, and such an $F_{(\varepsilon)}$ is called independent following Valdimarsson [59]. Readily $F_{(\varepsilon)}$ and $F_{(\tilde{\varepsilon})}$ are orthogonal if $\varepsilon \neq \tilde{\varepsilon}$ for $\varepsilon, \tilde{\varepsilon} \in J_0$. In addition, we write F_{dep} to denote the orthogonal component of $\bigoplus_{\varepsilon \in J_0} F_{(\varepsilon)}$. In particular, \mathbb{R}^n can be written as a direct sum of pairwise orthogonal linear subspaces in the form

$$\mathbb{R}^n = \left(\oplus_{\varepsilon \in J_0} F_{(\varepsilon)} \right) \oplus F_{\mathrm{dep}}.$$
(27)

Here it is possible that $J_0 = \emptyset$, and hence $\mathbb{R}^n = F_{dep}$, or $F_{dep} = \{o\}$, and hence $\mathbb{R}^n = \bigoplus_{\varepsilon \in J_0} F_{(\varepsilon)}$ in that case. We deduce from (21) that

each independent subspace $F_{(\varepsilon)}, \varepsilon \in J_0$, and F_{dep} are critical subspaces. (28)

It follows from Lemma 15 (i) that

$$\cap_{i=1}^{k} E_{i} = \{o\} \text{ and } \cap_{i=1}^{k} E_{i}^{\perp} = \{o\}.$$
(29)

Therefore J_0 does not contain the two constant functions in J.

Lemma 10 in Valdimarsson [59] states the following crucial property of independent subspaces and general critical subspaces.

Lemma 19 (Valdimarsson) If the proper linear subspaces E_1, \ldots, E_k of \mathbb{R}^n and $c_1, \ldots, c_k > 0$ satisfy (17), $F_{(\varepsilon)}$, $\varepsilon \in J_0$, is an independent subspace and V is a critical subspace, then

$$V = \left(V \cap F_{(\varepsilon)}\right) + \left(V \cap F_{(\varepsilon)}^{\perp}\right)$$

Lemma 20 If the proper linear subspaces E_1, \ldots, E_k of \mathbb{R}^n and $c_1, \ldots, c_k > 0$ satisfy (17), and V is an indecomposable critical subspace, then either $V \subset F_{dep}$, or there exists independent subspace $F_{(\varepsilon)} \supset V, \varepsilon \in J_0$.

Proof: We observe that the intersection of V with any critical subspace is either $\{o\}$ or V by Lemma 16, therefore combining Lemma 19 with (27) and (28) yields the statement. \Box

5 Optimal transportation and the Reverse Brascamp-Lieb inequality

For a C^2 function φ on \mathbb{R}^n , we write $D\varphi$ the first derivative and $D^2\varphi$ the Hessian of φ . Combining Corollary 2.30, Corollary 2.32, Theorem 4.10 and Theorem 4.13 in Villani [60] on the Brenier type based on McCann [51, 52] for the first two, and on Caffarelli [16, 17, 18] for the last two theorems, we deduce the following:

Theorem 21 (Brenier,McCann,Caffarelli) If f and g are C^1 positive probability density function on \mathbb{R}^n , then there exists a C^2 convex function φ on \mathbb{R}^n (unique up to additive constant) such that $D\varphi : \mathbb{R}^n \to \mathbb{R}^n$ is bijective and

$$f(x) = g(D\varphi(x)) \cdot \det D^2\varphi(x) \text{ for } x \in \mathbb{R}^n.$$
(30)

In particular, the derivative $D\varphi$ of the convex potential is a transportation map between the measures determined by f_1 and f_2 .

Proof of Theorem 8 based on Barthe [5]. First we assume that each f_i is a C^1 positive probability density function on \mathbb{R}^n , and let us consider the Gaussian density $g_i(x) = e^{-\pi ||x||^2}$ for $x \in E_i$. According to Theorem 21, if i = 1, ..., k, then there exists a C^2 convex function φ_i on E_i such that for the C^1 transportation map $T_i = \nabla \varphi_i$, we have

$$g_i(x) = \det \nabla T_i(x) \cdot f_i(T_i(x)) \text{ for all } x \in E_i.$$
(31)

It follows from (34) that $\nabla T_i = D^2 \varphi_i(x)$ is positive definite symmetric matrix for all $x \in E_i$. For the C^1 transformation $\Theta : \mathbb{R}^n \to \mathbb{R}^n$ given by

$$\Theta(y) = \sum_{i=1}^{k} c_i T_i \left(P_{E_i} y \right), \qquad y \in \mathbb{R}^n,$$

its differential

$$d\Theta(y) = \sum_{i=1}^{k} c_i \nabla T_i \left(P_{E_i} y \right)$$

is positive definite by Proposition 18. It follows that $\Theta : \mathbb{R}^n \to \mathbb{R}^n$ is injective (see [5]). Therefore Proposition 18, (34) and Lemma 15 (i) imply

$$\int_{\mathbb{R}^{n}}^{*} \sup_{x=\sum_{i=1}^{k} c_{i}x_{i}, x_{i}\in E_{i}} \prod_{i=1}^{k} f_{i}(x_{i})^{c_{i}} dx$$

$$\geq \int_{\mathbb{R}^{n}}^{*} \left(\sup_{\Theta(y)=\sum_{i=1}^{k} c_{i}x_{i}, x_{i}\in E_{i}} \prod_{i=1}^{k} f_{i}(x_{i})^{c_{i}} \right) \det \left(d\Theta(y) \right) dy$$

$$\geq \int_{\mathbb{R}^{n}} \left(\prod_{i=1}^{k} f_{i} \left(T_{i} \left(P_{E_{i}}y \right) \right)^{c_{i}} \right) \det \left(\sum_{i=1}^{k} c_{i} \nabla T_{i} \left(P_{E_{i}}y \right) \right) dy$$

$$\geq \int_{\mathbb{R}^{n}} \left(\prod_{i=1}^{k} f_{i} \left(T_{i} \left(P_{E_{i}}y \right) \right)^{c_{i}} \right) \prod_{i=1}^{k} \left(\nabla T_{i} \left(P_{E_{i}}y \right) \right)^{c_{i}} dy$$

$$= \int_{\mathbb{R}^{n}} \left(\prod_{i=1}^{k} g_{i} \left(P_{E_{i}}y \right)^{c_{i}} \right) dy = \int_{\mathbb{R}^{n}} e^{-\pi ||y||^{2}} dy = 1.$$
(32)

Finally, the reverse Brascamp-Lieb inequality (7) for arbitrary non-negative integrable functions f_i follows by scaling and approximation (see Barthe [5]). \Box

Given proper linear subspaces E_1, \ldots, E_k of \mathbb{R}^n and $c_1, \ldots, c_k > 0$ satisfying (17), we say that the non-negative integrable functions f_1, \ldots, f_k with positive integrals are extremizers if equality holds in (7). In order to ensure that we only deal with positive smooth functions, we use convolutions. More precisely, Lemma 2 in Barthe [5] states the following.

Lemma 22 Given proper linear subspaces E_1, \ldots, E_k of \mathbb{R}^n and $c_1, \ldots, c_k > 0$ satisfying (17), if f_1, \ldots, f_k and g_1, \ldots, g_k are extremizers in the Reverse Brascamp-Lieb inequality (7), then the same holds for $f_1 * g_1, \ldots, f_k * g_k$.

Given proper linear subspaces E_1, \ldots, E_k of \mathbb{R}^n and $c_1, \ldots, c_k > 0$ satisfying (17), let us discuss the translation invariance of the Reverse Brascamp-Lieb inequality. For non-negative integrable function f_i on E_i , $i = 1, \ldots, k$, let us define

$$F(x) = \sup_{x = \sum_{i=1}^{k} c_i x_i, x_i \in E_i} \prod_{i=1}^{k} f_i(x_i)^{c_i}.$$

We observe that for any $e_i \in E_i$, defining $\tilde{f}_i(x) = f_i(x + e_i)$ for $x \in E_i$, i = 1, ..., k, we have

$$\widetilde{F}(x) = \sup_{x = \sum_{i=1}^{k} c_i x_i, x_i \in E_i} \prod_{i=1}^{k} \widetilde{f}_i(x_i)^{c_i} = F\left(x - \sum_{i=1}^{k} c_i e_i\right).$$
(33)

Proposition 23 For the proper linear subspaces E_1, \ldots, E_k of \mathbb{R}^n and $c_1, \ldots, c_k > 0$ satisfying (5) and $F_{dep} = \{o\}$, let us assume that equality holds in (7) for non-negative $f_i \in L_1(E_i)$, $i = 1, \ldots, k$, with positive integral. Then writing F_1, \ldots, F_l to denote the independent subspaces, there exist integrable $h_{ij}: F_j \to [0, \infty)$ for $i = 1, \ldots, k$ and $j = 1, \ldots, l$ with $F_j \subset E_i$ such that

$$f_i(x) = \prod_{F_j \subset E_i} h_{ij}(P_{F_j}x) \text{ for } x \in E_i.$$

Proof: For i = 1, ..., k and $x \in E_i$, let $g_i(x) = e^{-\pi ||x||^2}$, and hence g_i is a probability distribution on E_i , and $g_1, ..., g_k$ are extremizers in the Reverse Brascamp-Lieb inequality (7). Let $f_1, ..., f_k$ be extremizers in (7). We may assume that each f_i is a probability distribution on E_i , i = 1, ..., k.

Case 1 Each f_i is positive and C^1 .

As in the proof of Theorem 8 above, let φ_i be Brenier's C^2 convex potential on E_i such that

$$g_i(x) = \det D^2 \varphi_i(x) \cdot f_i(D\varphi_i(x)) \text{ for all } x \in E_i.$$
(34)

We write $T_i = D\varphi_i : E_i \to E_i$ and $\nabla T_i = D^2\varphi_i$ to denote the transportation map and its derivative, respectively, for i = 1, ..., k where ∇T_i is positive definite. According to (33), we may assume that

$$T_i(o) = o \text{ for } i = 1, \dots, k.$$
 (35)

If equality holds in (7), then equality holds in the determinantal inequality in (32), therefore we apply the equality case of Proposition 18. In particular, for any $x \in \mathbb{R}^n$, there exist $m_x \ge 1$ and linear subspaces $V_{1,x}, \ldots, V_{m_x,x}$ where $V_1 = \mathbb{R}^n$ if $m_x = 1$ and $V_{1,x}, \ldots, V_{m_x,x}$ are pairwise orthogonal indecomposable critical subspaces spanning \mathbb{R}^n if $m_x \ge 2$, and $\lambda_{1,x}, \ldots, \lambda_{m_x,x} > 0$ such that if $E_i \cap V_{j,x} \ne \{o\}$, then writing $\widetilde{P}_{i,j,x}$ to denote the orthogonal projection into $E_i \cap V_{j,x}$, we have

$$\nabla T_i(P_{i,j,x}x)|_{E_i \cap V_{j,x}} = \lambda_{j,x} I_{E_i \cap V_{j,x}}; \tag{36}$$

and in addition, each E_i satisfies

$$E_i = \bigoplus_{E_i \cap V_{j,x} \neq \{o\}} E_i \cap V_{j,x}.$$
(37)

Let us consider a fixed E_i , $i \in \{1, ..., k\}$. It follows from (37) and Lemma 20 that if $E_i \cap F_p \neq \{o\}$ for $p \in \{0, ..., l\}$ and $x \in \mathbb{R}^n$, then $F_p \subset E_i$, and

$$F_p = \bigoplus_{\substack{E_i \cap V_{j,x} \neq \{o\}\\V_{j,x} \subset F_p}} E_i \cap V_{j,x};$$

therefore, (36) yields that if $y \in E_i$, then

$$\nabla T_i(y)(F_p) = F_p. \tag{38}$$

Since applying again (37) and Lemma 20 yields that

$$E_i = \bigoplus_{E_i \cap F_p \neq \{o\}} F_p, \tag{39}$$

we deduce from combining (38) and (39) that for any $y \in E_i$, we have

$$\nabla T_i(y) = \bigoplus_{E_i \cap F_p \neq \{o\}} \nabla T_i(y)|_{F_p}.$$
(40)

In turn, (40) and $T_i(o) = o$ (cf. (35)) imply that if $y \in E_i$, then

$$T_i(y) = \bigoplus_{E_i \cap F_p \neq \{o\}} T_i(P_{F_p}y).$$

$$\tag{41}$$

It follows from (41) that there exist $\theta_i > 0$ and positive integrable functions h_{ip} on F_p whenever $E_i \cap F_p \neq \{o\}$ for $i \in \{1, \dots, k\}$ and $p \in \{1, \dots, l\}$ such that if $y \in E_i$, then

$$f_i(y) = \theta_i \prod_{\substack{F_p \subset E_i \\ p > 1}} h_{ip}(P_{F_p}y)$$
(42)

Case 2 f_1, \ldots, f_k are any extremizers in the Reverse Brascamp-Lieb inequality (7).

According to Lemma 22, $f_i * g_i$ are positive and C^1 extremizers, and hence they are of the of form as in (42). The use of Fourier transform shows that the original f_1, \ldots, f_k are of the same form except for the fact that functions h_{ip} may not be positive on \mathbb{R}^n . \Box

6 The equality case of the Reverse Brascamp Lieb inequality (partial)

Given Proposition 23, the only extra ingredient we need is the Prekopa-Leindler inequality Theorem 24 (proved in various forms by Prekopa [55, 56], Leindler [43] and Borell [12]) whose equality case was clarified by Dubuc [20] (see the survey Gardner [25]). In turn, the Prekopa-Leindler inequality (43) is of the very similar structure like the Brascamp-Lieb inequality (7).

Theorem 24 (Prekopa, Leindler) For $\lambda_1, \ldots, \lambda_m \in (0, 1)$ with $\lambda_1 + \ldots + \lambda_m = 1$ and integrable $\varphi_1, \ldots, \varphi_m : \mathbb{R}^n \to \mathbb{R}_+$, we have

$$\int_{\mathbb{R}^n}^* \sup_{x = \sum_{i=1}^m \lambda_i x_i, \, x_i \in \mathbb{R}^n} \prod_{i=1}^m \varphi_i(x_i)^{\lambda_i} \, dx \ge \prod_{i=1}^m \left(\int_{\mathbb{R}^n} \varphi_i \right)^{\lambda_i},\tag{43}$$

and if equality holds and the left hand side is positive and finite, then there exist a log-concave function φ and $a_i > 0$ and $b_i \in \mathbb{R}^n$ for i = 1, ..., m such that $\sum_{i=1}^m \lambda_i b_i = o$ and

$$\varphi_i(x) = a_i \,\varphi(x - b_i)$$

for Lebesgue almost all $x \in \mathbb{R}^n$, $i = 1, \ldots, m$.

Proof of Theorem 10 Our starting point is the statement and notation of Proposition 23, and hence let F_1, \ldots, F_l be the independent critical subspaces. It follows from (33) that we may assume that $b_i = 0$ for $i = 1, \ldots, k$.

First we verify that for each F_j , j = 1, ..., l, we have

$$\sum_{F_j \subset E_i} c_i = 1. \tag{44}$$

For this, let $x \in F_j \setminus \{o\}$. We observe that for any E_i , either $F_j \subset E_i$, and hence $P_{E_i}x = x$, or $F_j \subset E_i^{\perp}$, and hence $P_{E_i}x = o$. We deduce from (5) that

$$x = \sum_{i=1}^{k} c_i P_{E_i} x = \left(\sum_{F_j \subset E_i} c_i\right) \cdot x,$$

which formula in turn implies (44).

Since $F_1 \oplus \ldots \oplus F_l = \mathbb{R}^n$ and F_1, \ldots, F_l are critical subspaces, (21) yields for $i = 1, \ldots, k$ that

$$E_i = \bigoplus_{F_j \subset E_i} F_j; \tag{45}$$

therefore, the Fubini theorem implies

$$\int_{E_i} f_i = \prod_{F_j \subset E_i} \int_{F_j} h_{ij}(x) \, dx \tag{46}$$

On the other hand, using again $F_1 \oplus \ldots \oplus F_l = \mathbb{R}^n$, we deduce that if $x = \sum_{j=1}^l z_j$ where $z_j \in F_j$ for $j \ge 1$, then $z_j = P_{F_j}x$. It follows from (45) that for any $x \in \mathbb{R}^n$, we have

$$\sup_{\substack{x=\sum_{i=1}^{k}c_{i}x_{i},\\x_{i}\in E_{i}}} \prod_{i=1}^{k} f_{i}(x_{i})^{c_{i}} = \prod_{j=1}^{l} \left(\sup_{\substack{P_{F_{j}}x=\sum_{F_{j}\subset E_{i}}c_{i}x_{ji},\\x_{ji}\in F_{j}}} \prod_{F_{j}\subset E_{i}} h_{ij}(x_{ji})^{c_{i}} \right).$$
(47)

We deduce from (44) and the Prekopa-Leindler inequality Theorem 24 that for fixed $j \in \{1, ..., l\}$, we have

$$\int_{\mathbb{R}^n}^* \sup_{\substack{P_{F_j} x = \sum_{F_j \subset E_i \\ x_{ji} \in F_j}} \prod_{c_i x_{ji}, F_j \subset E_i} h_{ij}(x_{ji})^{c_i} dx \ge \prod_{F_j \subset E_i} \left(\int_{F_j} h_{ij}(x) dx \right)^{c_i}.$$
(48)

Now in the case of the special functions f_i of Proposition 23, combining (48) with (46), (47) and the Fubini Theorem yields the Reverse Brascamp-Lieb inequality (7). On the other hand, if equality holds

in (7), then equality holds in (48) for j = 1, ..., l. According to the equality case of the Prekopa-Leindler inequality Theorem 24, for any fixed $j \in \{1, ..., l\}$, there exists a log-concave function h_j on F_j , and there exists $a_{ij} > 0$ and $w_{ij} \in F_j$ for any $i \in \{1, ..., m\}$ with $F_j \subset E_i$ such that

$$h_{ij}(x) = a_{ij}h_j(x - w_{ij})$$
 for Lebesgue a.a. $x \in F_j$

In turn, we conclude Theorem 10 by choosing

$$w_i = \sum_{F_j \subset E_i} w_{ij}$$

for any $i \in \{1, \ldots, k\}$. \Box

7 The equality cases of the Bollobas-Thomason inequality and in its dual

We will denote with $\sigma_i^0 = \sigma_i$ and $\sigma_i^1 = [n] \setminus \sigma_i$. When we write $\tilde{\sigma_1}, \ldots, \tilde{\sigma_l}$ for the induced cover from $\sigma_1, \ldots, \sigma_k$, we assume that the sets are distinct.

Lemma 25 For $s \ge 1$, let $\sigma_1, \ldots, \sigma_k \subset [n]$ form an s-uniform cover of [n], and let $\tilde{\sigma}_1, \ldots, \tilde{\sigma}_l$ be the 1-uniform cover of [n] induced by $\sigma_1, \ldots, \sigma_k$. Then

(i) for any fixed orthonormal basis e_1, \ldots, e_n , the subspaces $E_{\sigma_i} := \{e_j : i \in \sigma_i\}$ satisfy

$$\sum_{i=1}^{k} \frac{1}{s} P_{E_{\sigma_i}} = I_n$$
(49)

i.e. form a geometric Brascamp Lieb data.

(ii) the elements $\tilde{\sigma}_i$ have the following form: there is $r \in [n]$ so that,

$$\tilde{\sigma_i} := \bigcap_{r \in \sigma_i} \sigma_i^0 \cap \bigcap_{r \notin \sigma_i} \sigma_i^1 \tag{50}$$

(iii) the subspaces $F_{\tilde{\sigma}_i} := \lim\{e_j : j \in \tilde{\sigma}_i\}$ are the independent subspaces of the data (49) and $F_{dep} = \{o\}.$

Proof:

- (i) Since $\sigma_1, \ldots, \sigma_k$ form a s-uniform cover, every $e_i \in \mathbb{R}^n$ is contained in exactly s of $E_{\sigma_1}, \ldots, E_{\sigma_k}$. So (i) follows.
- (ii) Let $\sigma_1, \ldots, \sigma_k$ be just subsets of [n]. We take a $I \subseteq [k]$ of cardinality s, and we consider the set

$$A_I := \bigcap_{i \in I} \sigma_i^0 \cap \bigcap_{i \notin I} \sigma_i^1.$$

If, after a replacement of 0 by 1 (1 by 0) in the left (right) big intersection we have that the new A_I is not empty, then there is $\tau \in [n]$ so that τ is contained in exactly s - 1 (s + 1) from

 $\sigma_1, \ldots, \sigma_k$. Now with the additional property that $\sigma_1, \ldots, \sigma_k \subset [n]$ form an *s*-uniform cover of [n], we have that any $\tilde{\sigma}_i$ has the form of A_I , and also for some $r \in [n]$

$$I \subseteq \{i \in [k] : r \in \sigma_i\}$$

Since both cardinalities of the above sets is s we conclude to (50).

(iii) If we prove the independence of the subspaces, then immediate we have that $F_{dep} = \{o\}$ since for each $r \in [n]$ we have that $r \in A_{I_r}$ where $I_r = \{i \in [k] : r \in \sigma_i\}$, namely one of the subspaces $F_{\sigma_1}, \ldots, F_{\sigma_l}$ contains e_r and so they span \mathbb{R}^n . Now the independance follows from the easy observation,

$$\bigcap_{j=1}^{k} (\ln\{e_i : i \in \sigma_j\})^{\varepsilon(j)} = \ln\{e_i : i \in \bigcap_{j=1}^{k} \sigma_j^{\varepsilon(j)}\}$$

where, when ε takes the value 1, the left ε is the orthogonal complement in \mathbb{R}^n and the right ε is the complement in [n].

Let us introduce the notation that we use when handling both the Bollobas-Thomason inequality and its dual. Let $\sigma_1, \ldots, \sigma_k$ be the *s* cover of [n] occuring in Theorem 5 and Theorem 6, and hence $E_i = E_{\sigma_i}, i = 1, \ldots, k$, satisfies

$$\sum_{i=1}^{k} \frac{1}{s} \cdot P_{E_{\sigma_i}} = I_n.$$

$$(51)$$

Let $\tilde{\sigma}_1, \ldots, \tilde{\sigma}_l$ be the 1-uniform cover of [n] induced by $\sigma_1, \ldots, \sigma_k$. It follows that

$$F_j = E_{\tilde{\sigma}_j}$$
 for $j = 1, \dots, l$ are the independent subspaces, (52)

$$F_{\text{dep}} = \{o\}. \tag{53}$$

For any $i \in \{1, \ldots, k\}$, we set

$$I_i = \{j \in \{1, \dots, l\} : F_j \subset E_i\},\$$

and for any $j \in \{1, \ldots, l\}$, we set

$$J_j = \{i \in \{1, \dots, k\} : F_j \subset E_i\}$$

For the reader's convenience, we restate Theorem 3 and Theorem 5 as Theorem 26, and Theorem 4 and Theorem 6 as Theorem 27.

Theorem 26 (Bollobas, Thomason) If $K \subset \mathbb{R}^n$ is compact and affinely spans \mathbb{R}^n , and $\sigma_1, \ldots, \sigma_k \subset [n]$ form an s-uniform cover of [n] for $s \geq 1$, then

$$|K|^{s} \le \prod_{i=1}^{k} |P_{E_{\sigma_{i}}}K|.$$
(54)

Equality holds if and only if $K = \bigoplus_{i=1}^{l} P_{F_{\tilde{\sigma}_i}} K$ where $\tilde{\sigma}_1, \ldots, \tilde{\sigma}_l$ is the 1-uniform cover of [n] induced by $\sigma_1, \ldots, \sigma_k$ and $F_{\tilde{\sigma}_i}$ is the linear hull of the e_i 's with indeces from $\tilde{\sigma}_i$.

Proof: We denote with $E_i := E_{\sigma_i}$, where from Lemma 25 (i) these subspaces compose a geometric data. We start with a proof of Bollobas-Thomason inequality. It follows directly from the Brascamp-Lieb inequality as

$$|K| = \int_{\mathbb{R}^n} 1_K(x) \, dx \le \int_{\mathbb{R}^n} \prod_{i=1}^k 1_{P_{E_i}(K)} (P_{E_i}(x))^{\frac{1}{s}} \, dx$$
$$\le \prod_{i=1}^k \left(\int_{E_i} 1_{P_{E_i}(K)} \right)^{\frac{1}{s}} = \prod_{i=1}^k |P_{E_i}(K)|^{\frac{1}{s}}$$
(55)

where the first inequality is from the monotonicity of the integral while the second is Brasmap-Lieb inequality Theorem 7. Now, if equality holds in (55), then on the one hand,

$$1_K(x) = \prod_{i=1}^k 1_{P_{E_i}(K)}(P_{E_i}(x))$$

and on the other hand, if F_1, \ldots, F_l are the independent subspaces of the data, which from Lemma 25 (iii) they span \mathbb{R}^n , namely $F_{dep} = \{0\}$, by Theorem 9 there are integrable functions $h_j : F_j \to \mathbb{R}$, such that, for Lebesgue a.a. $x_i \in E_i$

$$1_{P_{E_i}K}(x_i) = \theta_i \prod_{j \in I_i} h_j(P_{F_j}(x_i))$$

Therefore from the previous two, we have for $x \in \mathbb{R}^n$

$$1_{K}(x) = \prod_{i=1}^{k} \theta_{i} \prod_{j \in I_{i}} h_{j}(P_{F_{j}}(P_{E_{i}}(x)))$$

Now, since for $j \in I_i$ we have $F_j \subset E_i$ we can delete the P_{E_i} on the above product. Thus, for $\theta = \prod_{i=1}^k \theta_i$, we have for Lebesgue a.a. $x \in \mathbb{R}^n$

$$1_{K}(x) = \theta \prod_{i=1}^{k} \prod_{j \in I_{i}} h_{j}(P_{F_{j}}(x)) = \theta \prod_{j=1}^{l} h_{j}(P_{F_{j}}(x))^{|J_{j}|}.$$
(56)

Now, for $x \in K$ the last product on above is constant, so

$$\theta = \frac{1}{\prod_{i=1}^{l} h_j(P_{F_j}(x_0))^{|J_j|}}$$
(57)

for some $x_o \in K$. For $j = 1, \ldots, l$ we set $\varphi_j : F_j \to \mathbb{R}^n$, by

$$\varphi_j(x) = \frac{h_j(x + P_{F_j}(x_0))^{|J_j|}}{h_j(P_{F_j}(x_0))^{|J_j|}}$$

We see that $\varphi_i(o) = 1$ and also (56) and (57) yields

$$1_{K-x_0}(x) = \prod_{j=1}^{l} \varphi_j(P_{F_j}(x))$$
(58)

For $m \in \{1, \ldots, l\}$, taking $x \in F_m$ in (58) (and hence $\varphi_j(P_{F_j}(x)) = 1$ for $j \neq m$) shows that

$$1_{K-x_0}(y) = \varphi_m(y),$$

for Lebesgue a.a. $y \in F_m$. Therefore (58) and the ortgonality of the F_j 's,

$$K - x_0 = \bigcap_{j=1}^{l} P_{F_j}^{-1}(P_{F_j}(K - x_o)) = \bigoplus_{j=1}^{l} P_{F_j}(K - x_o),$$

completing the proof of Theorem 26.

To prove Theorem 27, we use two small observations. First if M is any convex body with $o \in int M$, then

$$\int_{\mathbb{R}^n} e^{-\|x\|_M} \, dx = \int_0^\infty e^{-r} n r^{n-1} |M| \, dr = n! |M|.$$
(59)

Secondly, if F_j are pairwise orthogonal subspaces and $M = \operatorname{conv} \{M_1, \ldots, M_l\}$ where $M_j \subset F_j$ is a dim F_j -dimensional compact convex set with $o \in \operatorname{relint} M_j$, then for any $x \in \mathbb{R}^n$

$$\|x\|_{M} = \sum_{i=1}^{l} \|P_{F_{j}}x\|_{M_{j}}.$$
(60)

In addition, we often use the fact, for a subspace F of \mathbb{R}^n and $x \in F$, then $||x||_K = ||x||_{K \cap F}$.

Theorem 27 (Liakopoulos) If $K \subset \mathbb{R}^n$ is compact convex with $o \in \text{int}K$, and $\sigma_1, \ldots, \sigma_k \subset [n]$ form an s-uniform cover of [n] for $s \geq 1$, then

$$|K|^{s} \ge \frac{\prod_{i=1}^{k} |\sigma_{i}|!}{(n!)^{s}} \cdot \prod_{i=1}^{k} |K \cap E_{\sigma_{i}}|.$$
(61)

Equality holds if and only if $K = \operatorname{conv} \{E_{\tilde{\sigma}_i} \cap K\}_{i=1}^l$ where $\tilde{\sigma}_1, \ldots, \tilde{\sigma}_l$ is the 1-uniform cover of [n] induced by $\sigma_1, \ldots, \sigma_k$.

Proof: We define

$$f(x) = e^{-\|x\|_K},\tag{62}$$

which is a log-concave function with f(o) = 1, and satisfying (cf (59))

$$\int_{\mathbb{R}^n} f(y)^n \, dy = \int_{R^n} e^{-n\|y\|_K} \, dy = \int_{R^n} e^{-\|y\|_{\frac{1}{n}K}} = n! \left|\frac{1}{n}K\right| = \frac{n!}{n^n} \cdot |K|.$$
(63)

We claim that

$$n^{n} \int_{\mathbb{R}^{n}} f(y)^{n} \, dy \ge \prod_{i=1}^{k} \Big(\int_{E_{i}} f(x_{i}) \, dx_{i} \Big)^{1/s}.$$
(64)

Equating the traces of the two sides of (49), we deduce that, $d_i := |\sigma_i| = \dim E_i$

$$\sum_{i=1}^{k} \frac{d_i}{sn} = 1.$$
(65)

For $z = \sum_{i=1}^{k} \frac{1}{s} x_i$ with $x_i \in E_i$, the log-concavity of f and its definition (62), imply

$$f(z/n) \ge \prod_{i=1}^{k} f(x_i/d_i)^{\frac{d_i}{ns}} = \prod_{i=1}^{k} f(x_i)^{\frac{1}{ns}}.$$
(66)

Now, the monotonicity of the integral, and Reverse Brascamp Lieb inequality, give

$$\int_{\mathbb{R}^n} f(z/n)^n \, dz \ge \int_{\mathbb{R}^n}^* \sup_{z=\sum_{i=1}^k \frac{1}{s} x_i, \, x_i \in E_i} \prod_{i=1}^k f(x_i)^{1/s} \, dz \ge \prod_{i=1}^k \left(\int_{E_i} f(x_i) \, dx_i \right)^{1/s}. \tag{67}$$

Making the change of variable y = z/n we conclude to (64). Computing the right hand side of (64), we have

$$\int_{E_i} f(x_i) \, dx_i = \int_{E_i} e^{-\|x_i\|_K} \, dx_i = \int_{E_i} e^{-\|x_i\|_{K \cap E_i}} \, dx_i = d_i! |K \cap E_i|. \tag{68}$$

Therefore, (63), (64) and (68) yield (61).

Let us assume that equality holds in (61), and hence we have two equalities in (67). We set

$$M = \operatorname{conv}\{K \cap F_j\}_{1 \le j \le l}.$$

Clearly, $K \supseteq M$. For the other inclusion, we start with $z \in int K$, namely $||z||_K < 1$. Equality in the first inequality in (67) means,

$$\left(e^{-\|z/n\|_{K}}\right)^{n} = \sup_{z=\sum_{i=1}^{k} \frac{1}{s}x_{i}, x_{i} \in E_{i}} \prod_{i=1}^{k} e^{-\|x_{i}\|_{K} 1/s},$$

or in other words,

$$\|z\|_{K} = \frac{1}{s} \cdot \inf_{z = \sum_{i=1}^{k} \frac{1}{s} x_{i}, x_{i} \in E_{i}} \sum_{i=1}^{k} \|x_{i}\|_{K} = \inf_{z = \sum_{i=1}^{k} y_{i}, y_{i} \in E_{i}} \sum_{i=1}^{k} \|y_{i}\|_{K}.$$
 (69)

We deduce that there exist $y_i \in E_i$, $i = 1, \ldots, k$ such that

$$z = \sum_{i=1}^{k} y_i \text{ and } \sum_{i=1}^{k} \|y_i\|_K < 1,$$
 (70)

Therefore, from (70), then (60) and after the triangle inequality for $\|\cdot\|_{K\cap F_i}$, we have

$$\|z\|_{M} = \left\|\sum_{i=1}^{k} \sum_{j \in I_{i}} P_{F_{j}} y_{i}\right\|_{M} = \sum_{i=1}^{k} \left\|\sum_{i \in I_{i}} P_{F_{j}} y_{i}\right\|_{K \cap F_{j}} \le \sum_{i=1}^{k} \sum_{i \in I_{i}} \left\|P_{F_{j}} y_{i}\right\|_{K \cap F_{j}}.$$
 (71)

It suffices to show that

$$K \cap E_i = \operatorname{conv}\{K \cap F_j\}_{j \in I_i} \tag{72}$$

because then, from (71), applying (60) and (70), we have

$$||z||_{M} \leq \sum_{j=1}^{l} \sum_{i \in J_{j}} ||P_{F_{j}}y_{i}||_{K \cap F_{j}} = \sum_{i=1}^{k} ||y_{i}||_{K \cap E_{i}} < 1,$$

which means $z \in M$. Now, to show (72), we start with the equality case of the Reverse Brascamp-Lieb inequality which has been applied in (67). From Theorem 10, there exist $\theta_i > 0$ and $w_i \in E_i$ and log-concave $h_j : F_j \to [0, \infty)$, namely $h_j = e^{-\varphi_j}$ for a convex functon φ_j , such that

$$e^{-\|x_i\|_{K\cap E_i}} = \theta_i \prod_{j \in I_i} h_j (P_{F_j}(x_i - w_i)).$$
(73)

for Lebesgue a.a. $x_i \in E_i$. For $i \in [k]$ and $j \in I_i$ we set, $\psi_{ij} : F_j \to \mathbb{R}$ by

$$\psi_{ij}(x) = \varphi_j \left(x - P_{F_j} w_i \right) - \varphi_j \left(-P_{F_j} w_i \right) + \frac{\ln \theta_i}{|I_i|}$$

We see

$$\psi_{ij}(o) = 0 \text{ and } \psi_{ij} \text{ is convex on } F_j.$$
 (74)

and also (73) yields, for $x \in E_i$

$$e^{-\|x\|_{K\cap E_i}} = \exp\left(-\sum_{j\in I_i}\psi_{ij}(P_{F_j}x)\right).$$
 (75)

For $x \in F_j$, we apply λx to (75) with $\lambda > 0$, and we have from $\psi_{im}(o) = 0$ for $m \in I_i \setminus \{j\}$ that

$$\psi_{ij}(\lambda x) = \lambda \psi_{ij}(x) \text{ and } \psi_{ij}(x) > 0.$$
 (76)

We deduce from (74) and (76) that ψ_{ij} is a norm. Therefore, $\psi_{ij}(x) = ||x||_{C_{ij}}$ for some $(\dim F_j)$ -dimensional compact convex set $C_{ij} \subset F_j$ with $o \in \operatorname{relint} C_{ij}$. Now (75) becomes,

$$\|x\|_{K \cap E_i} = \sum_{j \in I_i} \|P_{F_j} x\|_{C_{ij}}$$

and hence by (60) we conclude to

$$K \cap E_i = \operatorname{conv} \{C_{ij}\}_{j \in I_i}.$$

In particular, if $i \in [k]$ and $j \in I_i$, then $C_{ij} = (K \cap E_i) \cap F_j = K \cap F_j$, and hence we have (72) and the proof is finished.

References

- K. M. Ball: Volumes of sections of cubes and related problems. In: J. Lindenstrauss and V.D. Milman (ed), Israel seminar on Geometric Aspects of Functional Analysis 1376, Lectures Notes in Mathematics. Springer-Verlag, 1989.
- [2] K. M. Ball: Volume ratios and a reverse isoperimetric inequality. J. London Math. Soc. 44 (1991), 351–359
- [3] K. M. Ball: Convex geometry and functional analysis. In: W B. Johnson, L. Lindenstrauss (eds), Handbook of the geometry of Banach spaces, 1, (2003), 161–194.

- [4] F. Barthe: Inégalités de Brascamp-Lieb et convexité. C. R. Acad. Sci. Paris 324 (1997), 885-888.
- [5] F. Barthe: On a reverse form of the Brascamp-Lieb inequality. Invent. Math. 134 (1998), 335– 361.
- [6] F. Barthe: A continuous version of the Brascamp-Lieb inequalities. Geometric Aspects of Functional Analysis, Lecture Notes in Mathematics Volume 1850, 2004, 53–63.
- [7] F. Barthe, D. Cordero-Erausquin: Invariances in variance estimates. Proc. London Math. Soc. 106 (2013), 33–64.
- [8] F. Barthe, D. Cordero-Erausquin, M. Ledoux, B. Maurey: Correlation and Brascamp-Lieb inequalities for Markov semigroups. Int. Math. Res. Not. 10 (2011), 2177–2216.
- [9] F. Behrend: Über einige Affininvarianten konvexer Bereiche. (German) Math. Ann. 113 (1937), 713–747.
- [10] J. Bennett, T. Carbery, M. Christ, T. Tao: The Brascamp–Lieb Inequalities: Finiteness, Structure and Extremals. Geom. Funct. Anal. 17 (2008), 1343–1415.
- B. Bollobas, A. Thomason: Projections of bodies and hereditary properties of hypergraphs. Bull. Lond. Math. Soc. 27, (1995), 417–424.
- [12] C. Borell: The Brunn-Minkowski inequality in Gauss spaces. Invent. Math, 30 (1975), 207–216.
- [13] K. J. Böröczky, M. Henk: Cone volume measure and stability. arXiv:1407.7272.
- [14] H. J. Brascamp, E. H. Lieb: Best constants in Young's inequality, its converse, and its generalization to more than three functions. Adv. Math. 20 (1976), 151–173.
- [15] S. Brazitikos, A. Giannopoulos, P. Valettas, B.-H. Vritsiou: Geometry of isotropic convex bodies. Mathematical Surveys and Monographs 196, American Mathematical Society, Providence, RI, 2014.
- [16] L.A. Caffarelli: A localization property of viscosity solutions to the Monge-Ampère equation and their strict convexity. Ann. of Math. (2) 131, (1990), 129-134.
- [17] L.A. Caffarelli: Interior W^{2,p} estimates for solutions of the Monge-Ampère equation. Ann. of Math. (2), 131 (1990), 135-150.
- [18] L.A. Caffarelli: The regularity of mappings with a convex potential. J. Amer. Math. Soc., 5 (1992), 99-104.
- [19] E. Carlen, D. Cordero-Erausquin: Subadditivity of the entropy and its relation to Brascamp-Lieb type inequalities. Geom. Funct. Anal. 19 (2009), 373–405.
- [20] S. Dubuc: Critères de convexité et inégalités intégrales. Ann. Inst. Fourier Grenoble, 27 (1) (1977), 135–165.
- [21] L. Dümbgen: Bounding standard Gaussian tail probabilities. arxiv:1012.2063v3
- [22] A. Figalli, F. Maggi, A. Pratelli: A refined Brunn-Minkowski inequality for convex sets. Annales de IHP (C) Non Linear Analysis 26 (2009), 2511–2519.

- [23] A. Figalli, F. Maggi, A. Pratelli: A mass transportation approach to quantitative isoperimetric inequalities. Invent. Math. 182 (2010), 167–211.
- [24] N. Fusco, F. Maggi, A. Pratelli: The sharp quantitative isoperimetric inequality. Ann. of Math. 168 (2008), 941–980.
- [25] R. Gardner: The Brunn-Minkowski inequality. Bull. Amer. Math. Soc. 39 (2002), 355–405.
- [26] A. Giannopoulos, V. Milman: Extremal problems and isotropic positions of convex bodies. Israel J. Math. 117 (2000), 29–60.
- [27] A. Giannopoulos, V. Milman: Euclidean structure in finite dimensional normed spaces. Handbook of the geometry of Banach spaces, Vol. I, 707–779, North-Holland, Amsterdam, 2001.
- [28] A. Giannopoulos, M. Papadimitrakis: Isotropic surface area measures. Mathematika 46 (1999), 1–13
- [29] R. D. Gordon: Values of Mills' ratio of area to bounding ordinate and of the normal probability integral for large values of the argument. Ann. Math. Statist. 12 (1941), 364–366.
- [30] H. Groemer: Stability properties of geometric inequalities. Amer. Math. Monthly 97 (1990), no. 5, 382–394.
- [31] H. Groemer: Stability of geometric inequalities. Handbook of convex geometry, Vol. A, B, 125– 150, North-Holland, Amsterdam, 1993.
- [32] H. Groemer, R. Schneider: Stability estimates for some geometric inequalities. Bull. London Math. Soc. 23 (1991), no. 1, 67–74.
- [33] P. M. Gruber: Convex and discrete geometry. Grundlehren der Mathematischen Wissenschaften, Springer, Berlin, 2007.
- [34] P. M. Gruber, F. E. Schuster: An arithmetic proof of John's ellipsoid theorem. Arch. Math. 85 (2005), 82–88.
- [35] B. Grünbaum: Partitions of mass-distributions and of convex bodies by hyperplanes. Pacific J. Math. 10 (1960), 1257–1261.
- [36] O. Guedon, E. Milman: Interpolating thin-shell and sharp large-deviation estimates for isotropic log-concave measures. Geom. Funct. Anal. 21 (2011), 1043–1068.
- [37] W. Gustin: An isoperimetric minimax. Pacific J. Math. 3 (1953), 403–405.
- [38] F. John: Polar correspondence with respect to a convex region. Duke Math. J. 3 (1937), 355–369.
- [39] R. Kannan, L. Lovász, M. Simonovits: Isoperimetric problems for convex bodies and a localization lemma. Discrete Comput. Geom. 13 (1995), 541–559.
- [40] B. Klartag: A Berry-Esseen type inequality for convex bodies with an unconditional basis. Probab. Theory Related Fields **145** (2009), 1–33.
- [41] B. Klartag: On nearly radial marginals of high-dimensional probability measures. J. Eur. Math. Soc. 12 (2010), 723–754.

- [42] B. Klartag, E. Milman: Centroid bodies and the logarithmic Laplace transform-a unified approach. J. Funct. Anal. 262 (2012), 10–34.
- [43] L. Leindler: On a certain converse of Hölder's inequality. II. Acta Sci. Math. (Szeged) 33 (1972), 217–223.
- [44] Liakopoulos, D.-M.: Reverse Brascamp-Lieb inequality and the dual Bollobás-Thomason inequality. Arch. Math. (Basel) 112 (2019), 293–304.
- [45] L. H. Loomis, H. Whitney: An inequality related to the isoperimetric inequality, Bull. Amer. Math. Soc, 55 (1949), 961–962.
- [46] E. H. Lieb: Gaussian kernels have only Gaussian maximizers. Invent. Math. 102 (1990), 179– 208.
- [47] S. Campi, R. Gardner, P. Gronchi: Reverse and dual Loomis-Whitney-type inequalities. Trans. Amer. Math. Soc., 368 (2016), 5093–5124.
- [48] E. Lutwak: Selected affine isoperimetric inequalities. In: Handbook of convex geometry, North-Holland, Amsterdam, 1993, 151–176.
- [49] E. Lutwak, D. Yang, G. Zhang: Volume inequalities for subspaces of L_p . J. Diff. Geom. 68 (2004), 159–184.
- [50] E. Lutwak, D. Yang, G. Zhang: Volume inequalities for isotropic measures. Amer. J. Math. 129 (2007), 1711–1723.
- [51] R.J. McCann: Existence and uniqueness of monotone measure-preserving maps. Duke Math. J., 80 (1995), 309-323.
- [52] R.J. McCann: A convexity principle for interacting gases. Adv. Math. 128 (1997), 153-179.
- [53] M. Meyer: A volume inequality concerning sections of convex sets. Bull. Lond. Math. Soc., 20 (1988),15–155.
- [54] C. M. Petty: Surface area of a convex body under affine transformations. Proc. Amer. Math. Soc. 12 (1961), 824–828,
- [55] A. Prékopa: Logarithmic concave measures with application to stochastic programming. Acta Sci. Math. (Szeged) 32 (1971), 301–316.
- [56] A. Prékopa: On logarithmic concave measures and functions. Acta Sci. Math. (Szeged) 34 (1973), 335–343.
- [57] R. Schneider: Convex bodies: the Brunn-Minkowski Theory. Cambridge University Press, Cambridge, 1993, Second expanded edition, 2014.
- [58] S.I. Valdimarsson: Geometric Brascamp-Lieb has the optimal best constant. J. Geom. Anal. 21 (2011), 1036-1043.
- [59] S.I. Valdimarsson: Optimisers for the Brascamp-Lieb inequality. Israel J. Math. 168 (2008), 253-274.
- [60] C. Villani: Topics in optimal transportation. AMS, Providence, RI, 2003.