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Abstract

Hyper-parameter optimization is a thoroughly investigated discipline in optimization theory,
statistics and machine learning. While it is crucial to configure the hyper-parameters properly,
the most widely used grid search technique has some hidden issues that impacts the efficiency
of the learning algorithm. Such an issue is that the mentioned method does not take statisti-
cal significance of out-of-sample forecasting performance into consideration when choosing
the hyper-parameter yielding the minimal loss. The following paper proposes an extension
of this approach to make the modeling more robust to random fluctuation. The Model Con-
fidence Set algorithm terminates at a superior set of hyper-parameters that are statistically
indistinguishable at a given a significance level with respect to the loss their generated mod-
els produce. It is shown empirically and theoretically, that averaging over the predictions of
such a superior set is more efficient with respect to out-of-sample loss than taking the pre-
diction of a single realization of the ”minimum-yielding” hyper-parameter. The theoretical
argument is based on showing a specific example, where the limitations of the grid search
method are reached. The empirical study examines the predictability of the evolution of the
novel Covid-19 infectious disease in New York state, U.S.A. Extending the famous SEIR
dynamic system with gamma distributed latent and infectious periods gives rise to hyper-
parameter optimization in disease prediction.

Keywords: global optimization, hyper-parameter optimization, model selection, Model Con-
fidence Set, autoregressive processes, maximum likelihood estimator, infectious disease mod-
els, SEIR model, gamma distribution
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Chapter 1

Introduction

The ultimate objective of a typical learning algorithm A is to find a function g that minimizes
some expected loss Lg(x) over independent and identically distributed samples x having a
directly not observable distribution Gx. A is a functional that maps a (train) data set X (finite
set of samples from Gx) to a function g. Very often a learning algorithm produces g through
the optimization of a training criterion with respect to a set of parameters θ . However, the
learning algorithm itself may have additional features called hyper-parameters λ , so we are
only able to produce results conditionally on it. As a result g = gλ = Aλ (X) for an arbitrary
training set X .

For example we can take a (Un)n∈N autoregressive process, meaning Un =
λ

∑
i=1

θiUn−i + εn,

where θ1,...,λ ∈R+ and for all n∈N εn is standard normally distributed and Eεnεm = 0 for all
n 6= m . In this setup the θ vector is called the parameter vector, and the lag λ ∈ N is called
the hyper-parameter of this model. The parameters are optimized through Aλ , however λ

is a predefined characteristic of the model itself. Therefore the value of the hyper-parameter
has to be set before the learning process begins.

From now on it is a matter of taste how we choose λ , however we can define some rules of
thumb. What we really need in practice is a way to choose λ so as to minimize generalization
error ELAλ (X)(x), where X is a data set from the distribution Gx and x is a realization of such
a random variable. From the previous example it is easily seen that for every possible λ , Aλ

might perform an inner optimization as well.

In general we assume that λ is point in the space Λ spanned by the possible hyper-parameters.
The problem of finding the best fitting λ ∈ Λ is called the problem of hyper-parameter opti-
mization. This paper proposes a Model Confidence Set extension of the most widely applied
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grid search algorithm for this difficult optimization problem, which is of great importance in
the field of machine learning and statistics.

λ
(∗) = argmin

λ∈Λ

ELAλ (X)(x) (1.0.1)

The map Ψ from λ ∈ Λ to R+, Ψ(λ ) = LAλ (X)(x) is called the hyper-parameter response

function (Bergstra & Bengio (2012)). Thus hyper-parameter optimization equals to the min-
imization of the expectation Ψ(λ ) over λ ∈ Λ. This function is also called the response

surface in experimental design literature.

In general we do not have efficient algorithms for performing the optimization implied by
Equation 1.0.1. Theoretically we cannot even evaluate the expectation over Gx. Know-
ing in general very little about the response surface Ψ or the search space Λ, the domi-
nant strategy for finding an appropriate λ is to choose some number n of trial points P =

{λ (1),λ (2), . . . ,λ (n)}, to evaluate Ψ(λ ) for each one and return that particular λ (i) that worked
best.

λ
(∗) = argmin

λ∈Λ

ELAλ (X)(x) = argmin
λ∈Λ

EΨ(λ )≈ argmin
λ∈{λ (1),λ (2),...,λ (n)}

EΨ(λ )

The different algorithms differ in the way of choosing the trial points {λ (1),λ (2), . . . ,λ (n)}.

The most widely used strategy is the grid search (e.g. Larochelle et al. (2007) and Hinton
et al. (2006)) If Λ is a set indexed by K configuration variables, then the grid search requires
that we choose a set of values for each variables (S(1), . . . ,S(K)). In grid search the set of

trials is formed by assembling every possible combination of values, hence n =
K
∏
i=1
|S(i)|. This

product over K sets makes grid search suffer from the curse of dimensionality as the number
of joint values grows exponentially with the number of hyper-parameters (Bellman (1961)).

There are several reasons why grid search prevails as the state of the art despite decades of
research into global optimization (Nelder & Mead (1965); Kirkpatrick et al. (1983); Powell
(1994); Weise (2009)) and the publishing of several hyper-parameter optimization algorithms
(Nareyek (2003); Weihs et al. (2006); Hutter et al. (2011)):

• Grid search is simple to implement and parallelization is trivial

• Grid search typically finds better λ (∗) than purely manual sequential optimization

2
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• Grid search is reliable in low dimensional spaces (1d, 2d)

In this paper I propose using the Model Confidence Set approach (MCS) pioneered by Hansen
et al. (2011) as an extension. The method is quite similar to the grid search in a sense, that we
need to predefine a set (S(1), . . . ,S(K)) from the same configuration space as would be spanned
by a regular grid. However, the later fully explained algorithm yields an iterative sequence
of hypothesis tests, where in every iteration, the procedure sequentially prunes the worst per-
forming hyper-parameter one by one with respect to their common user-defined loss function,
until the first non-rejection takes place. Hence the initial trial set shrinks to a set where every
λ (i) is statistically indistinguishable as a forecast performer at a given significance level α .
With that said, the model confidence set covers the ground true hyper-parameter with proba-
bility 1−α . Hence the coverage is binomially distributed, with parameters n and 1−α , thus
in expectation out of n trials, the MCS contains the true value n ·(1−α) times. Assuming the
algorithm has terminated at a set MCS = P∗, we take all λ ∈ P∗ and define the loss ensemble
as LAP∗(X)(x) =

1
|P∗| ∑

λ∈P∗
LAλ (X)(x) . This is the loss function produced by the MCS approach

which needs to be compared with the best grid search loss.

In spite of the fact that MCS has not been used for hyper-parameter optimization, it performs
remarkably well in other areas such as forecast combination. Samuels & Sekkel (2017) an-
alyzes the effects of trimming the set of models prior to averaging their predictions1. They
used the Model Confidence Set approach, which takes into account the statistical significance
of the out-of-sample forecasting performance. In an empirical application to the forecasting
of U.S. macroeconomic indicators, they find significant gains in out-of-sample forecast accu-
racy from using the proposed trimming method.

Bernardi & Catania (2018) have built an R package called MCS to illustrate how the MCS
sequence of tests delivers the superior set of models having equal predictive ability in terms
of a user supplied loss function discriminating models with respect to the desired model
characteristics such as forecast performances. They have applied the algorithm to different
models belonging to the ARCH family to predict financial losses. They found that the use of
MCS remarkably improves VaR forecast performance.

There are papers that do not share the dominance of the proposed approach. Aparicio &
López de Prado (2018) evaluated the performance of the Model Confidence Set in a simple
machine learning trading strategy problem, as they state that most of the model selection
methods available in modern finance are subject to backtest overfitting. However, they have

1Averaging the forecasts from a range of models often improves upon forecasts based on a single model,
with equal weight averaging working particularly well (Timmermann (2006)).
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found that MCS is not robust to multiple testing and that it requires a very high signal-to-noise
ratio to be utilizable.

This paper is organized as follows. Chapter 2 introduces the Model Confidence Set approach
forked to the objective of hyper-parameter optimization. Chapter 3 shows an encouraging
example to shed light on the comparative advantage of MCS over the grid search method.
That chapter assumes a very specific Data Generating Process – an autoregression – to see that
models generated by the different hyper-parameters can cause very flat loss curves. The next
chapter is an empirical investigation to compare how MCS and grid search works ”outside
the laboratory”. In light of the outbreak of novel corona virus – Covid-19 – I try to build
models to predict the future values of the disease. Based on Wearing et al. (2005a), I build
a complex system of delayed differential equations with two hyper-parameters and several
parameters.

Some of the upcoming figures are available interactively at this2 webpage. Additionally, I
have created an online appendix for the thesis. Visit the website if you would like to see how
the implementation of the models happened in code. The appendix can be found by clicking
here3.

2https://rpubs.com/kujbika
3https://github.com/kujbika/MCS_in_hyperparam_optim_APPENDIX
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Chapter 2

The Model Confidence Set in
hyper-parameter optimization

2.1 Assumptions

I now introduce how the Model Confidence Set algorithm developed by Hansen et al. (2011)
applies to hyper-parameter optimization. Let

• the trial set of hyper-parameters λ be P = {λ (1),λ (2), . . . ,λ (n)}, where n =
K
∏
i=1
|S(i)|,

where S(i) is the set of the ith configuration variable from 1 to K.

• (Ω,F ,P) be a probability space

• Y : Ω×R+→ R be the underlying stochastic process that we aim to model1

• M : P(P)→P(A ) be a bijection from a set of P to a set of learning algorithms2. For
example M(P) = (Aλ )λ∈P, M(λ ) = Aλ .

• X be the training data set, i.e. a finite set of samples from a common distribution Gx

• Ψ : P×R+ → R, Ψ(λ , t) = LM(λ )(X)(t) be the response surface or hyper-parameter
response function defined on the set of models and on the time. For example assuming
L2-norm loss Ψ(λ , t) = (Yt −gAλ (X)(xt))

2, where Yt is the value of the process at time
t , X is the train set and xt form the predictors of Yt based on X .

1In other words, Y = Yt is random function, that we can only observe through random noises.
2P stands for the power set.
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• d : (P×P)× t, di j(t) = Ψ(i, t)−Ψ( j, t) be the difference function between the losses
of the models generated by i and j at given time t.

• α ∈ (0,1) be the (fixed) significance level.

Hence the ingredients for our MCS recipe have been listed. di j(t) as a (R,BR) measurable
function is a random variable for every time t for every fixed i, j. In the followings assume,
that the expectation of di j,t is time-homogeneous i.e the expectation of the loss Edi j(t) =

Edi j, ∀t ∈ R+ is constant throughout time, thus it depends only on i and j.

2.2 The algorithm

2.2.1 The hyper-parameters construct a well-ordered set

Definition 1. Define % ⊆ P×P the relation between hyper-parameters i and j with the fol-
lowing properties:

i % j ⇐⇒ Edi j ≤ 0

Furthermore we say, that i and j are equivalent if i % j and j % i, i.e. Edi j = 0.3

Remark. (P,%) is a totally ordered set.

Indeed, % is antisymmetric, transitive, reflexive and for any i, j ∈ P i % j or j % i.

Theorem 2. (P,%) is well-ordered.

Proof. Recall that a set is well-ordered, if a total order relation is defined on it having that
every non-empty subset of the set has a least-element. The least-element is necessarily unique
up to equivalence. Formally let S ⊂ P, then the model generated by j is the least-element of
the set S, if i % j, ∀i ∈ S.

Suppose that |S| = n ∈ N. In that case the set d(S) of all the difference function values along
S has n2 elements, and d(S) ⊂ R. Now we remain to prove that every finite subset of R is
well-ordered, with the total order relation ≤.

The proof is on induction: Every singleton is trivially well-ordered (if the set is {x}, then
x ≤ x is a well-order). Let’s see now A = {r1,r2, ...,rn}. We need that every B ⊂ A has a
least-element. Of course, |B|< |A|, so by the induction hypothesis A is well-ordered.

3i is preferred to j if the loss assigned to i is not greater than the loss of j.
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Corollary. There exists uniquely a superior set P∗ = {i ∈ P : i % j, ∀ j ∈ P}.

Remark. By the uniqueness property of the proof of the above theorem, P∗ consists of models,
that are equivalent to each other in a sense, that for each k ∈ P∗ EΨ(i) = EΨ( j). 4 Note that
Edi j ≤ 0∀i ∈ P∗, ∀ j /∈ P∗, that is the expected loss is minimal in P∗ across P.

The Model Confidence Set approach aims to find P∗, without directly knowing the expecta-
tion of the di j random variables. For the procedure, only a sample of the losses are observable.

2.2.2 Hypothesis testing

For an arbitrary subset A ∈P(P), let the null hypothesis H0,A be the event that {Edi j =

0 ∀i, j ∈ A}. The alternative hypothesis H1,A is the exact complement. Introduce the equiv-

alence test δA, that tests H0,A at a α significance level. As a convention, we let δA = 0 and
δA = 1 correspond to the cases where H0,A are accepted and rejected, respectively. Define
an elimination rule eA that ranks the hyper-parameters in (A,%)5, and chooses the one that
produces A’s least-element with respect to the relation %(by the well-ordered principle it is
always achievable). Thus the elimination rule chooses the hyper-parameter that produces the
biggest expected loss.

The algorithm, visualized by Figure 2.2.1, is as follows.

1. Initially set A = P.

2. Test H0,A using δA at level α .

(a) If the null hypothesis gets rejected, apply the elimination rule and construct A

with throwing the least element, then repeat the procedure from Step 1.

(b) Otherwise define P̂1−α = A

The algorithm terminates at a set P̂1−α , which consists of the set of surviving hyper-parameters
(those that survived all tests without being eliminated), is referred to as the model confidence

set. Hansen et al. (2011) has shown that given some condition P̂1−α consists of hyper-
parameters that covers the grand true value with probability 1−α . At theorem 3 I clarify
those assumptions.

4In the followings, I will not write t as a parameter, as we assumed that the loss differences are time-
homogeneous.

5% ⊆ P×P, i% j ⇐⇒ Edi j ≥ 0
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Sequential testing is key for building MCS. However, econometricians often worry about
false discoveries, due to p-hacking, i.e such a testing procedure can ”accumulate” Type 1 er-
ror with unfortunate consequences (for example Leeb & Pötscher (2003) or Ioannidis (2005)).
The MCS procedure does not suffer from this problem because the sequential testing is halted
when the first hypothesis is accepted.

Note that P̂1−α is dependent on the sample of course, and is seen through randomness. The
natural question is at what extent P̂1−α reflects the actual P∗? The below results shows that
the term confidence set is appropriate in this context.

Figure 2.2.1: The MCS algorithm in a UML Activity diagram

Own figure

Theorem 3. Finite and asymptotic termination of the MCS algorithm

If the following three conditions hold:

• lim
n→∞

P(δA = 1|H0,A)≤ α , meaning δ is a valid-test

• limsup
n→∞

P(δA = 1|H1,A) = 1, meaning δ has a power of 1 asymptotically

• lim
n→∞

P(eA ∈ P∗|H1,M) = 0, meaning asymptotically any element thrown out is almost

surely not in the superior set,

then:

• liminf
n→∞

P(P∗ ⊂ P̂1−α)≥ 1−α , hence the confidence set nomenclature

• lim
n→∞

P(i ∈ P∗|i /∈ P∗) = 0

• lim
n→∞

P(P∗ = P̂1−α) = 1, if |P∗|= 1
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Furthermore, if P(δA = 1,eA ∈P∗)≤α), meaning there is coherency between the equivalence

test and the elimination rule, then the main result holds on a finite sample as well: P(P∗ ⊂
P̂1−α)≥ 1−α .

You might ask at this point: do we have such a δ -test and such an elimination rule? I will
return to this question at section 2.2.4.

2.2.3 The MCS p-values

In this section I introduce the notion of MCS p-values. The goal of defining such values it
to study what hyper-parameters will make it into the MCS. Thus for this section, we do not
terminate the algorithm at the first rejection. This is only a technical detail, the algorithm
itself of course terminates at some point. However, as it turns out the MCS contains hyper-
parameters that have some property in common.

The elimination rule eA defines a sequence of random sets P = A1 ⊃ A2 ⊃ ·· · ⊃ An, where
Ai = {eAi, . . . ,eAn}. So eA1 is the first hyper-parameter to be eliminated in the event Ho,P is
rejected, eA2 is second element to be eliminated and so forth.

Definition 4. The MCS p-values: Let pH0,Ai
denote the p-value associated with the null hy-

pothesis H0,Ai , with the convention that pH0,An
≡ 1. The MCS p-value for model eA j ∈ P is

defined by p̂eA j
= max

i≤ j
(pH0,Ai

)

Thus the MCS p-values form a monotonically increasing sequence. Since An consists of a
single hyper-parameter, the null hypothesis H0,An simply states that the last surviving model
generated by that hyper-parameter is as good as itself, making the convention pH0,An

≡ 1
logical. Such p-values are convenient because they make is easy to determine whether a
particular object is in P̂1−α for any α . Thus the MCS p-values are an effective way to convey
the information in the data.

One possible realization of the MCS p-values are seen at Table 2.1.

Theorem 5. The MCS p-value, p̂i, is such that i ∈ P̂1−α if and only if p̂i ≥ α for any i ∈ P =

{λ (1),λ (2), . . . ,λ (n)}.

Proof. Suppose that p̂i < α and determine the k for which i = eAk . Since p̂i = p̂Ak =

max
j≤k

(pH0,A j
), it follows that H0,A1, . . . ,H0,Ak are all rejected at a significance level α . Hence

the first accepted hypothesis must occur after i = eAkhas been eliminated. So p̂i < α implies
i /∈ P̂1−α .
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Suppose now that p̂i = p̂Ak ≥α . Then for some j≤ k, we have pH0,A j
≥α , in which case H0,A j

is accepted at significance level α that terminates the MCS procedure before the elimination
rule gets applied. So p̂i ≥ α must imply i ∈ P̂1−α . Hence the proof.

Table 2.1: MCS p-values
Note that the MCS p-values for some models do not coincide with the p-values for the corresponding null
hypothesis. For example, the MCS p-value for eA3 (the third hyper-parameter to be eliminated) exceeds the
p-value for H0,A3 , because the p-value associated with H0,A2 - a null hypothesis tested prior to H0,A3 - is larger.

Elimination rule p-value for H0,Ak MCS p-value

eA1 = eP pH0,A1
= 0.01 p̂eA1

= 0.01

eA2 pH0,A2
= 0.04 p̂eA2

= 0.04

eA3 pH0,A3
= 0.02 p̂eA3

= 0.04

eA4 pH0,A4
= 0.07 p̂eA4

= 0.07

eA5 pH0,A5
= 0.05 p̂eA5

= 0.07

. . . . . . . . .

eA2 pH0,An
≡ 1 p̂eAn

= 1

2.2.4 The existence of such a system

Hansen et al. (2011) has shown some particular choices of δ equivalence tests and e elim-
ination rules that match the above mentioned criteria. Hence this section develop two tests
based on the authors.

2.2.4.1 The equivalence test

Let A consists of k hyper-parameters (k ≤ n). Define the d̄i j =
1
m

m
∑

t=1
di j(t) and d̄i =

1
k ∑

j∈A
d̄i j.

Here d̄i j measures the relative sample loss between the models generated by the ith and the jth

hyper-parameter, while d̄i is the sample loss of the model generated by the ith hyper-parameter
relative to the average across hyper-parameters in A.

We can now construct the t-statistics ti j =
d̄i j√

Ṽar(d̄i j)
and ti = d̄i√

Ṽar(d̄i)
, where Ṽar denotes the

variance estimator of the respective variances. The first statistic ti j is used in the famous
Diebold and Mariano test (see Diebold & Mariano (1995) and West (1996)).

These statistics form the basis of H0,A, as e.g. if for A ⊂ P, where A = (λ (1), . . . ,λ (k)), then
H0,A = {EΨ(λ (1)) = EΨ(λ (2)) = . . .= EΨ(λ (k)) = 0}= {E(Ψ(i)−Ψ( j)) = 0,∀i, j ∈ A}.

10

C
E

U
eT

D
C

ol
le

ct
io

n



Corollary. The test statistics with the desired properties (described at Theorem 3) for H0,A

is given by Tmax,A = max
i∈A

ti and TR,A = max
i, j∈A
|ti j|.

Unfortunately the distribution of these statistics are not in a closed form, as they depend on
the covariance of such t-tests for example, and they are too complex in this setup. However,
fortunately the relevant distributions can be estimated with bootstrap methods that implicitly
deal with the nuisance parameters.

2.2.4.2 The elimination rule

Characterization of the MCS procedure needs an elimination rule that satisfies the assump-
tions of Theorem 3. Fortunately, such a rule comes free for the Tmax,A or the TR,A test statistics.

Case 1. For the test statistic Tmax,A , emax,A = argmax
i∈A

ti is a natural elimination rule, be-

cause a rejection of the null hypothesis identifies the null EΨ(i) = 0 false for
i = emax,A. In this case the rule eliminates that particular model that contributes
the most to the test statistic, or that particular model has the largest standardized
excess loss relatively.

Case 2. On the other hand, eR,A = argmax
i∈A

sup
j∈A

ti j is a coherent choice for the statistic TR,A,

because this model is such that teR,A j
= TR,A for some j ∈ A

Proposition. Let δmax,A and δR,A denote the test statistics Tmax,A and TR,A respectively. Then

(δmax,A,emax,A) and (δR,A,eR,A) both satisfy the coherency assumption to make the MCS works

for finite samples as well.

Proof. 14th page in the paper of Hansen et al. (2011).

2.3 A simulation experiment

In the following I present a simulation experiment directly from the work of Hansen et al.

(2011). The design sets the losses across models dependent, that is, Lt ∼N (µ,∑), where
the loss vector consist of 10 elements and the covariance matrix has structure ∑i, j = ρ |i− j|

for three different setups: ρ = 0,0.5 and 0.75. The mean vector takes the form of µ =

(0, . . . ,0, 1
5 , . . . ,

1
5)

T so that the number of zero elements define the number of elements of
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the superior set P∗. They made a report showing the simulation results for the case when
|P∗| = 1,2 or 5. The authors used the Tmax stat to obtain the results. The simulation results
are presented at Figure 2.3.1.

Figure 2.3.1: How MCS works on dependent losses
The left panels display the frequency at which P̂90% contains P∗at various sample sizes. The right panel present
the average number of models in P̂1−α . The two upper panels contain the results for the case when |P∗| = 1.
The panels at the middle show the results in the case |P∗|= 2. The two plots below describes the behaviour of
the MCS procedure when |P∗|= 5.

Source of figure: Hansen et al. (2011) 28th page (Figure 1.)
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Chapter 3

An encouraging example - modeling an
autoregressive process

3.1 The goal of the chapter

Grid search and MCS behaves similarly in a sense, that both needs to compute losses for all
possible configurations. MCS shrinks to the superior set containing the ground true values
of the hyper-parameters yielding minimal losses. Grid search always chooses a singleton set
that produces the minimal loss in a realization of an experiment.

When the loss realizations decrease sharply, the grid search method chooses the best hyper-
parameter with a high probability. Note that in this case the MCS also chooses this hyper-
parameter too as the singleton superior set. Therefore, MCS and grid search performs sim-
ilarly, unless the loss realizations are flat. In that case - as MCS always takes into account
the statistical unassertavity - MCS remarkably outperforms its competitor. Hence, the goal
of this chapter is to show that such an experiment (like the one presented at section 2.3) truly
exists in the ”real life”. It would imply that the use of MCS statistically dominates the use of
grid search.

Fortunately, as we shall see, an autoregression fulfills all the criterion to show the usability
of the proposed hyper-parameter optimization method.
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3.2 An autoregressive process - assumptions

Let us take the autoregressive process as an example. That is:

1. The underlying discrete stochastic process follows an autoregressive trend, with pa-
rameter p ∈ N, meaning,

Yt = α +φ1Yt−1 + · · ·+φpYt−p + εt ,

where ∀t ∈ N, εt ∼N (0,σ2) and α ∈ R, φ ∈ Rp, σ2 ∈ R+ are fixed constants.

2. Suppose that the roots of the characteristic polynomial H(z) = 1− (φ1z+ · · ·+ φpzp)

lie within the unit circle and so, there exists a stationary solution Yt of the equation. If
that holds, lim

t→∞
EYt =

α

1−
p
∑

i=1
φi

, lim
t→∞

Var(Yt) := D2.

3. For every i 6= j, Eεiε j = 0, so the process is homoskedastic and the error terms are
uncorrelated.

Our modeling assumption are the followings:

1. There is an initial set of orders to experiment on the grid, containing the true value p:
P = (p, p1, . . . , pn−1). P is the set of hyper-parameters.

2. For every i ∈P,we model the the process assuming the order of the autoregressive
process is exactly i. The (α,φ1, . . . ,φi,σ

2)T vector is found via an inner optimization,
in this case by maximizing the likelihood, that Y follows an autoregressive trend with
order i.

3. The loss function is the L2-norm.

3.3 The inner optimization - maximum-likelihood estima-
tors

Fix i ∈P. Let n be the greatest number in P.

Let θi = (φi,σ
2
i )

T be the vector of parameters to find, where φi = [α,φ1, . . . ,φi]
T . Given a

single trajectory y of Y up to time t, which parameters maximize the likelihood that given
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the process is sampled from an AR(i), the actual data is observed? In other terms, which
configuration of the hyper-parameter θi maximizes the joint density function f of y given that
Y follows an AR(i)?

fθi(y0,y1, . . . ,yi, . . . ,yp, . . . ,yT ) = fθi(yT |yT−1,yT−2, . . . ,y1) fθi(y1, . . .yT−1) = · · ·=

= fθi(y1, . . . ,yn)
T

∏
j=n+1

fθi(y j|y j−1, . . . ,y1)

Assuming the first n observations are deterministic, ∀ j ∈ 1, . . . ,T fθi(y j|y j−1,y j−2, . . . ,y1) = fθi(y j|y j−1, . . . ,y j−i), i f j ≥ n

1, i f j ≤ n
. By this assumption, the joint density function to maxi-

mize is:
T

∏
j=n+1

fθi(y j|y j−1, . . . ,y1)

In practice, this approach is called the conditional maximum likelihood estimation. That is,
the first n observations are handled to be deterministic, thus their density must equal one.
The method that takes the first n arguments as random variables is called the exact maximum
likelihood estimation. However, the solution of the exact one is not closed for any ordered
autoregressive process (Miller (1995)). In the scope of the current paper we aim to obtain
analytically tractable results, thus we apply the conditional ML approach.

Furthermore, by the properties of an autoregressive stochastic process y j|y j−1, . . . ,y j−i ∼
N (xT

i φi,σ
2). This yields given that xt,i = [1,yt−1, . . . ,yt−i]

T the partial likelihood function:

fθi(y j|y j−1, . . . ,y1)=
1√

2πσ2
exp

(
−
(y j− xT

j,iφi)
2

2σ2

)
= exp

(
−1

2
log(2πσ

2)−
(y j− xT

j,iφi)
2

2σ2

)

fθi(y j|y j−1, . . . ,y1) = exp(h(θi) j)

The quantity y j− xT
j,iφi is called the residual for the j-th observation, measures the vertical

distance between the data point y j and the hyper plane xT
j,iφi, and thus assesses the degree of

fit between the actual data and the model.
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It follows, that the log-likelihood function to be maximized is

g(θi) =
T

∑
j=n+1

h(θi) j =−(T −n−1)
1
2

log(2πσ
2)−

t

∑
j=n+1

(y j− xT
j,iφi)

2

2σ2

Now let Xi = [xT,i,xT−1,i, . . . ,xn+1,i]
T be an ((T −n−1)× (i+1)) matrix and y= [yT ,yT−1, . . . ,yn+1]

T

be an T −n−1 length vector. With this

g(θi) =−(T −n−1)
1
2

log(σ2
i )−

1
2σ2 (y−Xiφi)

T (y−Xiφi)

The vector of
∼
φi which maximizes g(θi) is called the maximum-likelihood estimator for φi.

By the chain rule

dg(θi)

dφi
=− 1

2σ2
d(y−Xiφi)

T (y−Xiφi)

d(y−Xiφi)

d(y−Xiφi)

dφi
=− 1

2σ2 2(y−Xiφi)
T (−Xi)=

1
σ2 (y−Xiφi)

T Xi

If Xi is not degenerate, meaning it has rank i, then
∼
φi is optimal if and only if

y−Xi
∼
φi = 0

y = Xi
∼
φi⇒ XT

i y = XT
i Xi

∼
φi⇒ (XT

i Xi)
−1XT

i y =
∼
φi

∼
φi indeed yields the global maxima, as the objective function is concave: dg2(θi)

dφ 2
i

=− 1
σ2 XT X ,

which is a negative semi definite matrix.

Regarding σ2 one can state that

dg(θi)

dσ2 =−(T −n−1)
1

2σ2 +
1
2

1
σ4 (y−Xi

∼
φi)

T (y−Xi
∼
φi)

∼
σ2

i is optimal if and only if

−(T −n−1)
1

2
∼

σ2
i

+
1
∼

σ4
i

(y−Xi
∼
φi)

T (y−Xi
∼
φi) = 0

∼
σ

2
i =

(y−Xi
∼
φi)

T (y−Xi
∼
φi)

T −n−1
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The formula fulfills our intuition, as the variance maximum-likelihood estimator of σ2, is the
average of the squared sum of the residuals for the non-deterministic part of the time series.

The product XT
i Xi is symmetrical matrix, and its inverse is the cofactor matrix of φi

1, closely
related to its covariance matrix, Cφi

2. The matrix (XT
i Xi)

−1XT
i is called the Moore-Penrose

pseudo inverse matrix (Moore (1920)) of Xi
3. From now on refer to this matrix as X−1

MP,i. This
formulation highlights the point that estimation can be carried out, if and only if, there is
no perfect multicollinearity between the different lags of y (which would cause the normal
matrix to has no inverse).

After we have estimated
∼
φ i, the predicted values will be ŷ=X

∼
iφi =Piy, where Pi =Xi(XT

i Xi)
−1XT

i =

XiX−1
MP,i is the projection matrix onto the space V spanned by the columns of Xi. Thus the di-

mension of its target space is p. The matrix Pi is symmetric and idempotent (P2
i = Pi) and

relate to the data matrix Xi via the identity PiXi = Xi.

The error terms can be reformulated as y−Piy = (I−Pi)y. I−Pi or the annihilator matrix is
also a symmetric projector, as (I−Pi)

2 = I−Pi. The rank of the annihilator matrix is T −

n−1− i. It also holds that (I−Pi)Xi = 0. Hence
∼

σ2
i = (y−Xi

∼
φi)

T (y−Xi
∼
φi)

T−n−1 = ((I−Pi)y)T ((I−Pi)y)
T−n−1 =

((I−Pi)(Xiφi+ε))T ((I−Pi)(Xiφi+ε))
T−n−1 = ((I−Pi)ε)

T ((I−Pi)ε)
T−n−1 = εT (I−Pi)

T (I−Pi)ε
T−n−1 = εT (I−Pi)ε

T−n−1 .

3.4 Finite results

In the followings, I analyze the connection between
∼
θi and θ . For that purpose, we have to

distinguish three different cases, where i < p, i = p, and i > p. ε is a (T−n−1) length vector
in this setup, where every entry is normally distributed with mean zeros, and the covariance
matrix ∑ is ∑ = diag(σ2).

First case: i equals to p

Note that if i equals to p, then

∼
φp = X−1

MP,p · y = X−1
MP,p(Xpφ + ε) = φ +X−1

MP,pε

1I will show some asymptotic results about the cofactor matrix later on.
2which will turn out to be

∼
σ2

i (X
T
i X)−1

i
3The nomenclature is appropriate, as Xi is not square in almost all the cases, hence Xi is not invertible.

However X−1
MP,iXi = 1i
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ε is normally distributed, so is its linear combination. X is a random matrix, however
EX−1

MP,pε|X is the null vector, which yields that EX−1
MP,pε = 0 via the tower rule of conditional

expectation. As a result
∼
φp is an unbiased estimator of the variable φ . The Gauss-Markov

theorem states, that in this case the estimator is BLUE: best linear unbiased estimator (Theil
(1971)).

Proposition 6.
∼
φp centered at φ and normed by its standard deviation is jointly t-distributed.

Proof.
∼
φp = X−1

MP,p ·y where y∼N (Xpφ ,diag(σ2)T−n−1). As a result,
∼
φp∼N (φ ,C), where

C = (XT
p Xp)

−1XT
p ∑Xp(XT

p Xp)
−1 = (XT

p Xp)
−1XT

p σ
21T−n−1X(XT

p Xp)
−1 = σ

2(XT
p Xp)

−1

4Now let us move on to the variance estimator. I−Pp is a projection as discussed, so the
only eigenvalues it can have are 0 and 1. Hence there exists a orthogonal matrix V , such that
V T (I−Pp)V = ∆ = diag(1, . . . ,1,0, . . . ,0). The trace of a projection matrix is the dimension
of the target space, so tr(I−Pp) = T − n− 1− p. Since the trace is also the sum of the
eigenvalues multiplied by their multiplicity, we necessarily have that 1 is an eigenvalue with
multiplicity T −n−1− p and zero is an eigenvalue with multiplicity p. Thus ∆ has T −n−
1− p ones in the diagonal.

Now let K =V T ε̂ =V T (1−Pp)y =V T (1−Pp)(Xpφp+ε) =V T (1−Pp)ε . Since (1−P)ε ∼
N (0,(1−Pp)σ

21T−n−1), we have K ∼N (0,σ2∆)5, and therefore KT−n−p = KT−n−p+1 =

KT = 0. It follows that ||K||
2
2

σ2 ∼ χ2
T−n−1−p. Further, as V is orthogonal ||K||2 = ||ε̂||2, thus

∼
σ2

p

σ2 · (T −n−1) =
(y−Xp

∼
φp)

T (y−Xp
∼
φp)

σ2 ∼ χ
2
T−n−1−p (3.4.1)

Of course it implies that E
∼

σ2
p = σ2 T−n−1−p

T−n−1 , so the maximum-likelihood estimator for σ2 is

biased (but asymptotically unbiased). It is also true that Var(
∼

σ2
p) = 2T−n−1−p

(T−n−1)2 σ2.

XT
p X is a positive semi-definite, symmetrical matrix, so there exists a representation R−1DR=

XT
p Xp, where D = diag(dl)l=1,...,p is diagonal. Define

√
(XT

p Xp)−1 as R−1DR.

From the conditional multi-normality of
∼
φp, it follows is that 1

σ

√
(XT

p Xp)−1(
∼
φp − φp) ∼

N (0,1p). Additionaly, from 3.4.1 it turns out that 1
∼

σp

√
(XT

p Xp)−1(
∼
φp− φp) ∼ tT−n−1−p.

4
∑is the covariance matrix of ε , not the summing operator

5σ2V T (1−Pp)
T 1T−n−1(1−Pp)V = σ2V T (1−Pp)V = σ2∆
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Hence the claim. Note that the covariance matrix of 1
∼

σp

√
(XT

p Xp)−1
∼
φp is given by diag

(
T−n−3−p
T−n−1−p

)
.6

Later on, it is more interesting if we investigate the properties of ξp =
1
∼

σp
(
∼
φp−φp). As a linear

combination of the previous random vector, its expectation is still zero, and its covariance
matrix is diag

(
T−n−3−p
T−n−1−p

)
XT

p Xp.

Second case: i is less than p

In the case when i is less than p, Xi is a (T − n− 1× (i+ 1)) matrix, but the ”real” matrix
Xpwould have a shape (T − n− 1× (p+ 1)). Observe that the first i columns in Xi and Xp

are identical. Denote the ”leftover” ((T −n−1)× (p− i)) matrix with A. Construct Xp as
Xi · [Ii, B], where Ii is the i× i identity matrix. By easy calculations, B = (XT

i Xi)
−1XT

i A =

X−1
MP,iA, therefore

∼
φi = X−1

MP,i(Xi · [Ii, X−1
MP,iA] ·φ + ε) = [Ii, X−1

MP,iA] ·φ +X−1
MP,iε

This of course yields that
∼
φi is biased unless all (φ j) j>i = 0, as for example

∼
φ1 = φ1 +αφ3 +

βφ4 + γφ5 + cε1, with some constant α,β ,γ coming from the first row of X−1
MPA.

Proposition 7.
∼
φi centered at its expectation and normed by its standard deviation is jointly

t-distributed.

Proof. From Proposition 6 we have a unitary matrix W , such that W T (I−Pi)W = ∆, where
∆ is a diagonal matrix filled with ones and zeros. The trace of a projection matrix is the
dimension of the target space, so tr(I−Pi) = T −n−1− i. Thus ∆ has T −n−1− i ones in
the diagonal.

Now let K = W T ε̂ = W T (I − Pi)y
(I−Pi)Xi=0

= W T (I − Pi)(Xi · [Ii, X−1
MP,iA] · φ + ε) = W T (I −

Pi)ε . Since (I−Pi)ε ∼ N (0,(I−Pi)σ
21T−n−1), we have K ∼ N (0,σ2∆), and therefore

KT−n−i = KT−n−i+1 = KT = 0. It follows that ||K||
2
2

σ2 ∼ χ2
T−n−1−i. Further, as W is orthogonal

||K||2 = ||ε̂||2, thus

∼
σ2

i
σ2 · (T −n−1) =

(y−Xi
∼
φi)

T (y−Xi
∼
φi)

σ2 ∼ χ
2
T−n−1−i (3.4.2)

6All the results are conditioned on X
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Of course it implies that E
∼

σ2
i = σ2 T−n−1−i

T−n−1 ≥ E
∼

σ2
p , so the maximum-likelihood estimator

for σ2 is biased. Also, Var(
∼

σ2
i ) = 2 T−n−1−i

(T−n−1)2 σ2 ≥Var(
∼

σ2
p).

From this point the proof continues accordingly.

Based on claim 7 , we can tell that 1
∼
σi

√
(XT

i Xi)−1(
∼
φi− [1i, X−1

MP,iA] ·φp)∼ tT−n−1−i. Note that

the actual covariance matrix of 1
∼
σ

√
(XT

i Xi)−1
∼
φi is diag(T−n−3−i

T−n−1−i).

As previously, if ξi =
1
∼
σ
(
∼
φi−[Ii, X−1

MP,iA]·φp), then Eξi = 0 and Var(ξi)= diag
(T−n−3−i

T−n−1−i

)
XT

i Xi.

Third case: i is greater than p

In the last case, we investigate what happens when i is actually greater than p. In this case

Xp = Xi ·

(
1p

0

)
, so

∼
φi = X−1

MP,i(Xp = Xi ·

(
1p

0

)
·φp + ε) = Xp =

(
1p

0

)
φ +X−1

MP,iε =
φ

0
+X−1

MP,iε,

so
∼
φi is an unbiased estimator of the variable φ , if we extend φwith p− i zeros.

Proposition 8.
∼
φi centered at its expectation and normed by its standard deviation is jointly

t-distributed.

Proof. From 6 we have a orthogonal matrix Z, such that ZT (I − Pi)Z = ∆, where ∆ is a
diagonal matrix filled with ones and zeros. The trace of a projection matrix is the dimension
of the target space, so tr(I−Pi) = T −n−1− i. Thus ∆ has T −n−1− i ones in the diagonal.

Now let K = ZT ε̂ = ZT (I−Pi)y
(I−Pi)Xi=0

= ZT (I−Pi)(Xi ·

(
1p

0

)
· φ + ε) = W T (I−Pi)ε .

Since (I−Pi)ε ∼N (0,(I−Pi)σ
21T−n−1), we have K∼N (0,σ2∆), and therefore KT−n−i =

KT−n−i+1 = KT = 0. It follows that ||K||
2
2

σ2 ∼ χ2
T−n−1−i. Further, as W is orthogonal ||K||2 =

||ε̂||2, thus
∼

σ2
i

σ2 · (T −n−1) =
(y−Xi

∼
φi)

T (y−Xi
∼
φi)

σ2 ∼ χ
2
T−n−1−i (3.4.3)

Of course it implies that E
∼

σ2
i = σ2 T−n−1−i

T−n−1 ≤ E
∼

σ2
p , so the maximum-likelihood estimator
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for σ2 is biased. Also, Var(
∼

σ2
i ) = 2 T−n−1−i

(T−n−1)2 σ2 ≤Var(
∼

σ2
p).

From this point the proof continues accordingly.

According to aforementioned proposition, 1
∼
σi

√
(XT

i Xi)−1(
∼
φi−

(
1p

0

)
·φ)∼ tT−n−1−i. The

covariance matrix of 1
∼
σi

√
(XT

i Xi)−1
∼
φi is diag

(T−n−3−i
T−n−1−i

)
. If ξi =

1
∼
σi
(
∼
φi−

(
1p

0

)
·φp), then

Eξi = 0 and Var(ξi) = diag
(T−n−3−i

T−n−1−i

)
XT

i Xi.

3.4.1 Conclusion

To sum up the findings related to finite sampling, see Table 3.1.

Table 3.1: Maximum-likelihood estimators in terms of order i
i < p i = p i > p

∼
σ2

i

E Asy. unbiased Asy. unbiased Asy. unbiased
- ≥ ≥

Var
Asy. goes to 0 Asy. goes to 0 Asy. goes to 0

- ≥ ≥
∼
φi

E Finitely/Asy. biased Unbiased Unbiased
Var ≤ ≤ -

Example. Table 3.2 outputs a single realization of the maximum likelihood estimators for a
trajectory of a chosen AR(4) process.
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Table 3.2: maximum likelihood estimators for an AR(4) model in terms of order i
This table shows a single realization of the maximum likelihood estimators for all the parameters of an autore-
gressive process, in terms of its order. In the experiment, I assumed that Y follows a 4-order autoregressive
trend, with parameters α = 5,φ1 = 0.8,φ2 = 0.25,φ3 =−0.4,φ4 = 0.1,σ2 = 1.8. The rows stands for the mod-
elled order, and the columns contain the estimated parameters. I simulated a 10000 length AR(4) trajectory,
with an initial value of y0 = 2.

i
∼
α

∼
φ1

∼
φ2

∼
φ3

∼
φ4

∼
φ5

∼
φ6

∼
φ7

∼
σ2

1 4.389 0.781 - - - - - - 2.0490
2 4.244 0.755 0.033 - - - - - 2.0469
3 5.631 0.766 0.280 -0.327 - - - - 1.8289
4 5.083 0.798 0.252 -0.401 0.097 - - - 1.8117
5 5.090 0.798 0.252 -0.401 0.099 -0.001 - - 1.8119
6 5.105 0.798 0.252 -0.402 0.099 0.001 -0.003 - 1.8122
7 5.100 0.798 0.252 -0.402 0.100 0.001 -0.004 0.001 1.8124

3.5 Asymptotic results

3.5.1 The cofactor matrix

If we assume, that y is already in its stationary state, and the process runs since infinite amount
of time, then we can make the following conclusions. Let m = α

1−
p
∑

i=1
φi

denote the stationer

expectation of y. Let γm define the covariance structure of y in terms of the lag m = 0, . . . ,∞
(γ0 is the stationary variance D2). Of course, (γm)m>p = 0.

As described above, for the fixed order i ∈P , Xi =


1 yT−1 . . . yT−i

1 yT−2 . . . yT−i−1

1 yT−3 . . . yT−i−2

. . . . . . . . . . . .

 with T −

n−1 rows and i+1 columns. Let f : Rm×n→ Rm×n, such that f (X)k,l =
Xk,l√

m . Now treat T

as if it was a feature of the matrix Xi. Accordingly, denote the matrix by XT,i. For every fixed
T ∈ N, the followings hold for the matrix N = f (XT,i)

T f (XT,i):

• N1,1 =
1

T−n−1
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• Whenever k > 1, l > 1, Nk,l = Nl,k =


1

T−n−1

T
∑

t=n+1
y2

t−k i f k = l

1
T−n−1

T
∑

t=n+1
yt−kyt−l otherwise

• If k = 1 or l = 1, Nk,l = Nl,k =
1

T−n−1

T
∑

t=n+1
yt−k

By stationarity, E lim
T→∞

1
T−n−1

T
∑

t=n+1
y2

t−k = lim
T→∞

E 1
T−n−1

T
∑

t=n+1
y2

t−k = lim
T→∞

(D2yT +E2yT )= lim
T→∞

D2yT +

lim
T→∞

E2yT = γ0 +m2 = D2 +( α

1−
p
∑

i=1
φi

)2. The lim and the expectation is interchangeable in the

first round, as e.g 1
T−n−1

T
∑

t=n+1
y2

t−k ≤ max
t∈(0,T )

(y2
t ) , and by stationarity max

t∈(0,T )
(y2

t ) has finite ex-

pectation, so the dominated convergence theorem is applicable. Also, by the strong low of

large numbers, 1
T−n−1

T
∑

t=n+1
y2

t−k converges to its expectation strongly.

By the very same reason, 1
T−n−1

T
∑

t=n+1
yt−kyt−l converges almost surely to γ|k−l|+m2, while

1
T−n−1

T
∑

t=n+1
yt−k converges to m = α

1−
p
∑

i=1
φi

with probability one.

As a result, we can state that

lim
T→∞

N = lim
T→∞

f (XT,i)
T f (XT,i)= lim

T→∞

1
T −n−1

XT
T,iX =


1 m m m . . .

m γ0 +m2 γ1 +m2 γ2 +m2 . . .

m γ1 +m2 γ0 +m2 γ1 +m2 . . .

m γ2 +m2 γ1 +m2 γ0 +m2 . . .

. . . . . . . . . . . . . . .

 .

(3.5.1)
The matrix has i+ 1 columns and rows. Hence the cofactor matrix (XT

T,iX)−1 indeed does
reflect the covariance structure of y. Observe, that the entries do not depend on the particular
choice of i!

3.5.2 Parameter estimations

We have seen in proposition 7, 6 and 8, that the theoretical distribution of
∼
φi is t, regardless of

what i∈P is. Trivially, they obtain different degrees of freedom, but these are monotonically
increasing in T .

23

C
E

U
eT

D
C

ol
le

ct
io

n



Lemma. A t-distributed random variable converges weakly to a standard normal, as the

degree goes to infinity.

Proof. Let (Xn)n∈N have standard t-distribution , so it can be formulated as Xn =
Z√
χ2n
n

, where

Z ∼N (0,1), and χ2
n is a Chi-square distributed random variable with n degrees of freedom

(independent of Z). By definition χ2
n =

n
∑
1

N2
i , where Ni ∼ i.i.d N (0,1). When n tends to

infinity χ2
n converges in probability to its expectation 1 (weak law of large numbers). As a

consequence, by Slutsky’s theorem, Xn converges weakly to Z.

Based on Lemma 3.5.2:

∀i ∈P, lim
T→∞

1
∼
σi
(
∼
φi−E

∼
φi)∼N (0,XT

i Xi),

or according the 3.5.1 result, and introducing RSS, the residual sum of squares (RSS = (y−

Xi
∼
φi)

T (y−Xi
∼
φi) =

∼
σ2

i · (T −n−1) ), this yields

∀i ∈P, lim
T→∞

1√
RSS

(
∼
φi)∼N (E

∼
φi,


1 m m . . .

m γ0 +m2 γ1 +m2 . . .

m γ1 +m2 γ0 +m2 . . .

. . . . . . . . . . . .

)

3.6 L2 norm loss - asymptotic partial flatness

Assume we have a complete history of a single trajectory y of Y ∼ AR(p) until T ∈ N, and
we would like to predict the next value of y for T + 1. Assume Y is determined by θ = θp.
yT+1 is given by xT

T+1,pφp + ε , where ε ∼N (0,σ2). On the other hand, the forecast based

on our model is ,ŷi = xT
T+1,i

∼
φi .

In order to determine which hyper-parameter i to choose as best, we must investigate how the
respective predictions behave at future unknown values. An equivalent formulation is that
knowing how the loss functions corresponding to the different orders are distributed across
the orders gives us all information we need to distinguish among the hyper-parameters.

According to the model’s assumption, the loss function associated to i is given by by Li =

(yT+1− ŷi)
2. The difference y− ŷ is asymptotically normally distributed (as a linear combi-

nation of normal variables). Thus y− ŷ≈ E(y− ŷ)+Ni(0,Var(y− ŷ)) = E(y− ŷ)+ std(y−
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ŷ)Ni(0,1). It means that the loss associated with the modeling order i is Li ≈ E2(y− ŷi)+

Var(y− ŷi)χ
2
i +2E(y− ŷi) ·std(y− ŷi)Ni(0,1). The different χ2

i and the normal variables are
dependent, hence the notation. The expectation of such a loss is ELi≈E2(y− ŷi)+Var(y− ŷ)

approximately.

For all i ≥ p, i ∈P , E2(y− ŷi) = 0, as the estimators are unbiased. For the other hyper-
parameters in the initial set of P , the square of the expectation of the prediction residual is
greater than zero. Asymptotically, the variance of the predicted underlying shrinks to zero
(as the variance of the estimators also), thus

∀i ∈P, ELi =

a2, i f i < p

0 otherwise
.

Corollary. The theoretical P∗ set for an autoregressive process is asymptotically the hyper-

parameter set A = i ≥ p, i ∈P. In the long run, the Model Confidence Set is A at any

significance level.

Also, for the P∗ set we can tell that ∀i∈ P∗,Li ≈ σ2χ2
i , as the variance of the new observation

is σ2 and the variance of the prediction shrinks to zero asymptotically. Note that for this set χ2
i

is highly dependent across the different orders (correlation is nearly one). The loss associated

with the MCS superior set is LMCS ≈ 1
|P|

|P|
∑ Li
i=1
≈ σ2 1

n

n
∑
1

χ2
i . Hence ELMCS = ELi = σ2 for all

i ∈ P∗.

3.7 A simulation result

Figure 3.7.1 displays a realization of loss values in a 10 ahead prediction setup. I simulated
3000 levels of a trajectory of an AR process with (α,φ1,φ2,φ3,φ4,σ

2)= (5,0.8,0.25,−0.4,0.1,1.2).
10 observations have been taken out as the validation set, and on the remaining 2990 obser-
vations, I applied the maximum likelihood estimators for the parameters, and predicted the
remaining 10 level via them. The L2-norm loss of the predictions are displayed in the figure.
In this particular trajectory the model generated by the hyper-parameter (order) 3 yielded the
minimal mean loss. As we can see, the losses are indeed highly correlated.

Figure 3.7.2 shows how the MCS and grid search losses are distributed in a simple experiment
with 10.000 observations. In each round I simulated 1000 levels of a trajectory of an AR
process with (α,φ1,φ2,φ3,φ4,σ

2) = (5,0.8,0.25,−0.4,0.1,1.2). The last observation has
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Figure 3.7.1: A realization of loss values associated with the different orders in a 10-ahead
prediction setup

The interactive version of the plot can be found by clicking here.

been taken out as the test set. 10 observations have been taken out as the validation set,
and on the remaining 989 observations, I applied the maximum likelihood estimators for the
parameters, and predicted the remaining 10 level via them. Grid search chooses the parameter
that yielded the minimal mean loss, while MCS contains the losses associated with the orders
4 to 8. I predicted the last observation via the grid search and the MCS model.

The mean MCS loss in this particular experiment is 3.0513. The respective mean grid search
loss is 3.0883. The t-statistics that tests whether the means of the losses equal has a p-value
less than 0.0001. Thus we can reject the hypothesis with almost 100% confidence that the
MCS loss equals to the grid search loss.

Out of the 10 000 observations, 5258 times the MCS algorithm yielded the less loss. If the
grid search and the MCS approach would uniformly generate the less loss, than the number
of such a difference count would follow a binomial distribution with parameters n = 10000
and p = 0.5. Accordingly, the corresponding 5258 number would have been sampled with
probability less than 0.000001. Thus we can reject the statement at almost 100% confidence
that MCS and grid search are equally explanatory with respect to the future predictions.
Figure 3.7.3 confirms these findings. It is seen, that in this particular simulation grid search
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produced higher losses more times than MCS.

Figure 3.7.2: Joint density function of the MCS and grid search loss based on a simulation

Figure 3.7.3: Relative count for given loss levels for MCS and grid search losses based on a
simulation
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Figure 3.7.4 is the main conclusion of the theoretical experiment. I applied the same exper-
iment as before but instead of once, 250 times. The figure shows how the mean MCS and
the mean grid search losses are distributed. One point in the below plot represents an 1000
length loop error vector.

The MCS loss was 1.22 in average, which is almost Eσ2χ2
i , as discussed above. The differ-

ence from 1.2 is statistically not significant, as the t-statistic that tests whether the loss is 1.2
has a p-value 0.25.

It turned out that the two mean losses are significantly differ from each other at a 1% signif-
icance level. The p-value associated to the t-statistics that tests whether the loss difference
equals to zero is 0.008. Based on the previous findings, this concludes that MCS algorithm
yields significantly less loss than grid search.

Figure 3.7.4: Mean MCS and grid search losses based on a simulation

An interactive version of this plot is seen by clicking here.
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Chapter 4

Empirical investigation - in light of
predicting infectious diseases

At the time of writing this paper (early spring of 2020), there is a considerable outbreak of
the novel corona virus disease (Covid-19). Hence the incentive is given to test whether MCS
can beat the grid search method in forecasting the epidemic curve.

4.1 The MN-SEIR model extended to capture contact trac-
ing and isolation

4.1.1 Introducing the SEIR model family

The most commonly used framework for epidemiological systems is the susceptible-infectious-
recovered (SIR) class of models, in which the host population is categorized according to
infection status as either susceptible, infectious or recovered, respectively (Kermack & McK-
endrick (1927)). Subsequent refinements of the model have incorporated an additional ex-
posed (infected but not yet infectious) class so that the model became SEIR.

One of the fundamental mathematical assumptions in such models is that the rate of leaving
the exposed and the infectious class is constant, irrespective of the period already spent in that
class. While this makes the mathematics very easy to handle, this assumption gives rise to
exponentially distributed latent and infectious periods, which is epidemiologically unrealistic
for most infections (Sartwell et al. (1950), Bailey (1975), Wearing et al. (2005a)). A more
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realistic approach is to assume that the probability of leaving a class is a function of time
spent inside, which is small at first and increasing after the mean infectious/latent period is
reached. For example in the case of the infectious class one could model such a phenomena
with the following integral equation:

I(t) = I(0)PI(t)+
t∫

τ=0

βIS(τ)I(τ)
N

PI(t− τ)dτ

where I(t) is the number of infectious people at time t, PI(t) is the probability of remain-
ing infectious after τ periods, βI is the infection transmission rate parameter of the model to
estimate, S(t) is the number of susceptible people at time t, and N is the number of the

population. As a result, the expected time being infectious denoted with 1
γ

is
∞∫
0
PI(τ)dτ

(Hethcote & Tudor (1980)). Note that the time being infectious is non-negative, hence

Etin f ect. =
∞∫
0
1− Ftin f ect (τ)dτ , so the probability density function of this time is given by

pI(t) =−dPI(τ)
dτ

.

In terms of the exposed class E(t), the expected time spent in it is often denoted by 1
σ

. A
similar differential equation holds there, of course applying a different multiplier βE , and a
different probability density function pE(t).

From modeling purposes, the question is how to choose pI(t) and pE(t) to match the empiri-
cal evidences.

4.1.2 Configure the MN-SEIR modeling setup

In the following paragraph I demonstrate the setup for the infectious class, however the exact
same holds for the exposed one as well, but with different parameters of course.

Lloyd (2001) propose that a realistic or empirically provable distribution can be obtained by
choosing p(t) to be a gamma probability density function, with parameters γ and n (σ and m

for the exposed class). The expectation of such a variable is 1
γ
( 1

σ
), which fulfills our require-

ments described in the previous subsection. However, using the fact that the gamma distri-
bution is a sum of exponentially distributed variables we introduce n (m) different infectious
(exposed) class (I(1), . . . , I(n)) ((E(1), . . . ,E(m))), with nγ (mσ) being the rate of sequential
progression through the sub classes. Equivalently, the time spent in each infectious class is
exponentially distributed with 1

nγ
( 1

mσ
) expectation, so that the whole infectious period is 1

γ
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( 1
σ

) in expectation, and it follows the proposed gamma distribution. The effects of n on the
distribution of the infectious period is seen at figure 4.1.1. Table 4.1 summarizes the estimates
of the hyper-parameters m,n for some famous diseases.

Table 4.1: Latent and infectious period duration together with the respective gamma param-
eters
Estimates of expected time spent in the exposed and the infectious class, respectively, together with the as-
sociated gamma-distribution parameter for four diseases. The latent period and infectious period columns are
measure in days.

Disease Latent period 1
σ

m Infectious period 1
γ

n

Measles 8 ~20 5 ~20
Foot-and-Mouth 3.5 13 4.3 17

SARS 5.36 2 5-6 3
Smallpox 14 40 8.6 4

Source: Wearing et al. (2005a), 3rd page
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Figure 4.1.1: Gamma-distributed infectious periods and their effects on the epidemic curve
In figure A the change in probability of remaining infectious is seen as a function of time when the number of
subdivisions within the infected class increases from n = 1 to n = 100. Note that the mean duration of being
infectious is the same for all n: 1 week. If n = 1 the distribution of this time is exponential, and as n grows, the
time shrinks to constant one week.
In figure B, we can see the consequences of changes in n for the SIR-type epidemic. For the same basic
reproductive ratio R0 = 5, and the same average infectious period γ = 1, larger values of n lead to a steeper
increase in prevalence and an epidemic of shorter duration.

Source: Wearing et al. (2005a), 3rd page.
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4.1.2.1 Contact tracing and quarantine

To incorporate contact tracing and isolation into the model, Wearing et al. (2005b) proposed
another extension of the model, while still dealing with gamma-distributed latent and infec-
tious periods. In this model, isolation of newly infectious cases occurs at a daily rate dI after
a delay of τD days, which represents a period when infected individuals are infectious but
asymptomatic or undetectable (IA).

A fraction of q of those who had contact with an infectious and symptomatic person (IS) (but
did not contract the infection) are removed to the quarantined susceptible class. An identical
fraction of newly exposed individuals are also quarantined.

4.1.2.2 Why this model?

One can surely ask why I have chosen such a model to forecast the Covid-19 related issues.
The answer is two folded.

First, it is based on logical assumptions about how an epidemic evolves. This means that con-
figuring the right parameters enables us to better understand the underlying disease. This is
undoubtedly an advantage compared to the machine learning algorithms which are generally
considered as ”black-box” learning algorithms.

Secondly, we lack the data. For an arbitrary machine learning algorithm to learn we need a
great amount of data, however we only have at most 2, 2.5 months daily observations in the
Covid-19 disease. This makes all the mentioned learning algorithms fail in practice.

4.1.3 Main modeling equations

The following equations were introduced by Wearing et al. (2005a), however I made a slight
change in the formulation.

To catch that people does not contact as often as before, as the epidemic increases, I assumed
that the contact number decreases to a minimum of k0. The minimal contact size is meaning-
ful, because for example people has to do some shopping even in the middle of an epidemic.
The rate how k(t) shrinks is λ .

dk
dt =−

k(t)−k0
λ

dS
dt =−

(k(t)bI(t)+qk(t)(1−b)IS(t))S(t)
N +

qk(t)(1−b)S(t−τQ)IS(t−τQ)
N
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dSQ
dt = qk(t)(1−b)S(t)IS(t)

N − qk(t)(1−b)S(t−τQ)IS(t−τQ)
N

dE1
dt = k(t)b(I(t)−qIS(t))S(t)

N −mσE1(t)

dEi
dt = mσEi−1(t)−mσEi(t), i = 2, ...,m

dIA,1
dt = mσEm(t)−nγIA,1(t)−PI,1(t)

dIA,i
dt = nγIA,i−1(t)−nγIA,i(t)−PI,i(t), i = 2, ...,n

dIS,1
dt = PI,1(t)− (nγ +dI)IS,1(t)

dIS,i
dt = PI,i(t)+nγIS,i−1(t)− (nγ +dI)IS,i(t), i = 2, ...,n

dQ
dt = qk(t)bS(t)IS(t)

N +dIIS(t)

dR
dt = nγ(IA,n(t)+ IS,n(t))

where

PI,i(t) = mσEm(t− τD)e−nγτD
(nγτD)

i−1

(i−1)!

is the expected number of infectious individuals at time t that are still in infectious class i

after a fixed delay of τD days.

Of course, IA(t) =
n
∑

i=1
IA,i(t), IS(t) =

n
∑

i=1
IS,i(t) and I(t) = IA(t)+ IS(t). Observe that here R

represents those that recovered or died before they could be isolated/quarantined. Hence the
total number of ”recovered”1 will be Q+R as the epidemic dies out, since Q keeps track of all
those infected who are isolated, and effectively removed from the infectious population. N is
the total population size. Figure 4.1.2 describes the different states and the possible direction
of the flow among them.

To conclude, observe that the parameters and the of the above described system of differ-
ential equations are K0,λ ,b,q,σ ,γ,τD,τQ,dI,N. From this list, N and τQ can be handled as
constants: N is the population size and τQ is the susceptible quarantine period which is fixed
by the government. The hyper-parameters of the system are m and n.

1I consider dead as recovered, as the only meening of it mathematically is they left the population without
remaining susceptible or infectious.
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Figure 4.1.2: The MN-SEIR model extended to match contact tracing and isolation

Own figure, implemented according to Wearing et al. (2005b)

4.1.4 Limitations of the model

The presented MN-SEIR model extended to capture contact tracing and isolation is a great
mathematical model, but has some limitations. Always keep these limitations in mind when
analyzing the results.

First and foremost, mathematically speaking the model is the solution of the above defined
system of differential equation, hence a vector of functions. These functions are determinis-
tic, thus knowing all the parameters of them is equivalent to knowing the whole past, present
and future states of the different classes. As the model does not allow randomness, we view
it as the description of the expected system dynamics.

Secondly, the SIR family of models assume homogeneous mixing across the different pop-
ulation groups. It says that an individual is for example as likely to meet an elderly as a
young man, irrespective of their attributes. This is obviously not true in real life. Again, all
we can say that it captures the system dynamics in expectation. Actually, there are models
that differentiate within the population groups, e.g. the K-SEIR model presented by Lipton
& de Prado (2020), but they are extremely hard and computationally exhaustive to estimate.

Lastly, I assumed that the number of contacts in time is an exponentially decreasing function,
which is true for the first part of an epidemic, but loses its truth afterwards. Hence the model
is not really applicable to forecast very far in the future. Instead, it is more than great to make
statements about the upcoming several days.
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4.2 Data

I made the empirical investigation on the data that describes how New York state, U.S.A
has been affected by the Covid-19 corona virus. The data is provided by the John Hopkings
Whiting School of Engineering, Center of Systems Science and Engineering. They reserve
a public GitHub repository (click here to see), where an update of the numbers happen on a
daily basis.

I downloaded the global time series data from the repository on the 9th of May, 2020 and
filtered out all the entries that were based on non New York state numbers. The filtered data
set is seen at the online appendix of this paper (click here), under the name curve.csv. The
data covers all the officially confirmed (infectious, recovered plus dead) individuals on each
day. Based on the data, the first observation of a Covid-19 infectious individual happened
on the third of March, 2020. On the 9th of May, 2020 the confirmed cases summed up to
330.407. See Figure 4.2.1 that displays the data.

Figure 4.2.1: Covid-19 total confirmed cases in New York state, U.S.A as of the 9th of May,
2020

An interactive version of the plot can be found here.
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4.3 The research

I implemented the above mentioned dynamic system in R, using the deSolve package2. The
package provides the dede function, which is useful for solving delayed differential equa-
tions, like these. The code is found the online appendix linked to this paper.

As noted in the introduction, the hyper-parameter optimization involves an inner search where
all the parameters of the problem gets configured for a particular grid point m, n. For this
optimization problem I applied the optimParallel function of the optimParallel package3 to
utilize the computational power of the chosen computer.

The data set contains 68 days of observations. The training set X train is the first 44 observa-
tions. On this set, I perform the inner optimization to optimize the parameters within each
group m,n. The next 15 observations are in the validation set of the model, where predictions
of each models and actual values are evaluated with respect to the L2 norm loss function.

The predictions on the validation set make it possible to apply the grid search and the Model
Confidence Set. Grid search chooses the model, that minimizes the sum of the validation
errors, while MCS returns a set of models that contains the best at a significance level α. I
have chosen α to be 10%.

I compare the effectiveness of the two hyper-parameter optimization procedure by predicting
levels for the remaining 9 observations: grid search uses the superior model to predict, while
MCS uses all the ones in the superior set and then takes an average.

4.4 Results

4.4.1 Test errors - the competitor models

The best performed model (on the validation set) was the one with hyper-parameters m =

3,n = 44. Its mean squared error on the validation set is 8.000.831 which is an approximate
2.829 absolute difference in forecasting the total cases. The average case number on the
validation set was ~260.119, thus the error is approximately 1%.

2https://cran.r-project.org/web/packages/deSolve/index.html
3https://cran.r-project.org/web/packages/optimParallel/index.html
4In the appendix, you can see some explanatory figures related to the best performed model to understand

some aspects of the Covid-19 disease.
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The Model Confidence set contains 8 models at a 10% significance level. These 8 are(
m

n

)
=

((
2
1

)
,

(
3
2

)
,

(
3
3

)
,

(
3
4

)
,

(
3
5

)
,

(
5
2

)
,

(
5
3

)
,

(
5
5

))
. The set

produces a mean squared error of 12.173.559, which is an approximate 3489 absolute dif-
ference in forecasting the total cases. The result is not surprising, as the minimum (which is
chosen by grid search) is less than all the other errors. The MCS validation error is approxi-
mately 1.34%.

4.4.2 Validation errors - the final results

In the followings I present the forecast errors produced by the grid search and the MCS
forecast. I have chosen two ways to look at the results, and in both ways I compared the two
error vectors with a t-statistics. That is, the null-hypothesis was that difference of the error
terms are zero, and the alternative hypothesis was its complement. The validation dataset
contains 9 observations, thus the t-distribution has 8 degrees of freedom.

The MCS results are a slight worse than the grid search results with respect to the actual val-
ues of the time series. Grid search has produced a mean squared error of 156.152.219, while
for MCS this number is 398.902.923. The difference is significant at any normal significance
level. These levels are an approximate absolute differences of 3.9% and 6.3%, respectively.
Figure 4.4.1 displays the forecasts.

Figure 4.4.1: Forecast Covid-19 cases New York state, U.S.A - MCS vs grid search
Total confirmed cases and their forecasts via grid search and MCS based on the MN-SEIR model. The two
vertical lines separate the train, test and validation data sets. Grid search performed significantly better at any
normal significance level.

An interactive plot of the same figure can be accessed by clicking here.
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However, by the nature of the problem, if a big shock happens, then that method wins, that
was closer to the shock when it happened. This is equivalent to saying that the methods
proposed are extremely sensitive to outliers. In our case, a shock happened in the validation
set, which made the grid search won in forecasting the actual case number. All in all, we
cannot rely on the cumulative confirmed cases when deciding which model is the better.

On the other hand, it is more interesting to investigate which method forecasts the new cases
greater (i.e. the derivative of the function). This approach decreases the effect of an underlier.
If we choose this approach, then MCS and grid search performs statistically indistinguishable
at any normal significance level, as the p-value of the difference is 34.1%. The first produced
an approximate 19.6% error, while the latter produced 18.3%. This approach is displayed at
Figure 4.4.2.

Figure 4.4.2: Forecasting new confirmed Covid-19 cases, New York state, U.S.A
New confirmed cases and their forecasts via grid search and MCS based on the MN-SEIR model. The two ver-
tical lines separate the train, test and validation data sets. The two approaches are statistically indistinguishable
(p-value is 34.1%) with respect to the test errors.

See the interactive version of the figure by clicking here.
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Chapter 5

Conclusion

This paper proposes using the novel Model Confidence Set approach to solve hyper-parameter
optimization problems. The algorithm reacts to the hidden issues in the most frequently ap-
plied grid search method in the topic. That is, the latter approach does not take statistical
confidence and finite sampling into consideration when choosing the minimum loss yielding
hyper-parameter.

On the contrary, the MCS algorithm returns a set that contains the ground true hyper-parameter(s)
at a given confidence level. Given a well-behaving δ -test and a coherent elimination rule,
the set where the algorithm terminates scales with the confidence level and the sample size,
while remains powerful. Within this superior set, the hyper-parameters are statistically indis-
tinguishable at the given confidence level with respect to the out-of-sample user defined loss
their models produce. Thus MCS is an extension of the grid search method taking the actual
variance of the respective losses into consideration.

After mathematically describing how the proposed algorithm works, I have shed light on the
application of the MCS along an encouraging example. If the underlying process we aim
to forecast is an autoregression, then asymptotically the out-of-sample loss curve is partially
flat, meaning that the best hyper-parameter set contains all the orders greater than or equal to
the original order. In that case, MCS significantly outperforms its ancestor, as the minimum
yielding hyper-parameter set is observed to be singleton only because of randomness.

The second part is an empirical investigation about the performance of MCS applied to pre-
dicting future levels of an infectious disease. At the time of writing this thesis, there is a
significant outbreak of the novel Covid-19 epidemic, hence the incentive is given to investi-
gate that. I have extended the famous SEIR-model to capture gamma distributed latent and
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infectious periods as well as contact tracing and isolation. The model is then a solution of
a complex dynamic system with 10 parameters and 2 hyper-parameters. I applied the opti-
mization on official data describing how the disease evolved in New York state, U.S.A up to
May 9, 2020. It turned out that the model has a great explanatory power. However, there are
some limitations of the model, which are needed to be considered when analyzing the results.

In the validation dataset, we cannot reject the hypothesis that the L2-norm loss produced by
MCS and grid search are statistically different at any significance level. This can be explained
by the lack of data: I only have approximately 2 months’ daily observations as of writing this
paper to analyze, which makes it hard to produce significant results.

Asymptotically, MCS shrinks to the superior hyper-parameter set with probability one. If
that set is a singleton, then asymptotically MCS contains the exact same hyper-parameter
as the one chosen by grid search. Hence the differences come out when a finite sample is
considered. If that happens, MCS takes randomness into consideration, which makes it more
robust than the traditional grid search. If the referred set is not a singleton, then MCS always
outperforms the latter, as derived in the respective section of this paper.
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Chapter 6

Appendix

All the below figures represent the best fitting MN-SEIR model extended to catch contact
tracing and isolation. They describe how each state evolved in the Covid-19 epidemic in
New York state, U.S.A as of May 9, 2020 according to the presented dynamic system.

The best fitting one has three exposed and four infectious classes, and the parameters it has
are the followings: K0 ≈ 9.917, λ ≈ 10.022, b ≈ 0.0682, q ≈ 0.3618, σ ≈ 0.885, γ ≈
0.058, τD ≈ 0.6336, dI ≈ 0.8997.

All of the plots listed below are available at https://rpubs.com/kujbika.

Prediction of new confirmed cases. An interactive version of this plot is seen by clicking here.
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An estimation of the evolution of the susceptible class. An interactive version of this plot is seen by clicking
here.

An estimation of the evolution of the susceptible quarantine class. An interactive version of this plot is seen by
clicking here.
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An estimation of the evolution of the infectious quarantine class. An interactive version of this plot is seen by
clicking here.

As estimation of the evolution of the infectious classes. An interactive version of this plot is seen by clicking
here.
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As estimation of the evolution of the exposed class. An interactive version of this plot is seen by clicking here.
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