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Abstract
Foulkes module F b

a is the permutation module of the set of partition of ab elements into size
a each. F b

a
∼= 1SawrSb ↑Sab . The study goes back to 1942, when Thrall computed the structure

of F b
2 and F 2

b . In 1950, Foulkes while analysing the structure of F n
m for some specific m and n

observed that Fm
n can be embedded in F n

m when m < n and thus conjectured that if a < b, F a
b

can be embedded in F b
a . I will describe the progress on Foulkes conjecture and briefly explain

the methods used by Tom Mckay and Eugenio Giannelli to prove their results. I will also
explain the structure of F b

a ↓SK×Sab−k as a direct sum of permutation modules and study the
structure of such permutation modules.
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1 Representation Theory of Sn

1.1 Representation Theory of Finite Groups

Definition 1. A representation Φ of a finite group G is an homomorphism from G→ GL(V ),
where GL(V ) is the automorphism group of V over field K.The degree of Φ is defined to be
the dimesion of V .

Let Φ : G → GL(V ). Then G acts on V by

gv = φ(g)v, where g ∈ G and v ∈ V . (1)

Thus, V is a KG module.
If W is subspace of V then W is submodule of V , if

hw ∈ W, ∀ h ∈ G and w ∈ W. (2)

Definition 2. For a KG module V , V is reducible if ∃ a nontrival submodule W . If V is not
reducible then V is irreducible or simple.

Let G be a finite group and V be an infinite dimensional KG module. Choose an element
v1 in V . Consider the submodule V1 generated by {gv1 : for g ∈ G}. Clearly V1 is finite dimen-
sional non trivial subspace of V . Therefore V is reducible.

Let V and W be KG modules. G acts on V ⊕W as

g(v + w) = gv + gw, ∀ g in G, v in V and w in W (3)

V ⊕KGW is a KG mdoule isomorphic to V ⊕W under the G action described in above.

V is a semisimple or completely reducible KG module if for each every submodule U of V ,
∃ a complement W such that V = U ⊕KGW . Let V be semisimple. Then

V = ⊕KGVi (4)

where each Vi is irreducible.

Theorem 3. Maschhke’s Theorem: Suppose char(K) - |G|, then every finite dimensional
KG module is semisimple.

If char(K)
∣∣ |G|, then let ε : KG→ K, given by ε(

∑
g∈G agg) =

∑
g∈G ag. ε is a KG module

homomorphism, thus ker(ε) is KG submodule. Since char(K)
∣∣ | G |, t =

∑
g∈G g ∈ Ker(ε).

If V is any submodule of KG, then for v =
∑

g∈G bgg, tv = (
∑

g∈G bg)t, Thus, tv ∈ Ker(ε).
Therefore KG is not semisimple, since Ker(ε) does not have a complement in KG.

Definition 4. Let H 6 G and V be a KG module. Then H acts naturally on V . The KH
module which comes from this action is called VH .
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Definition 5. Let H 6 G and V be a KH module with the set of basis elements {vi | i ∈
[1, 2..n]}. If the index of H in G is t and h1, h2, h3..., ht are the coset representatives, then let
hjV be the vector space generated by formal basis {hjvi | i ∈ [1, 2..n]}. hiV ∼=K V . The
Induced module V G is defined as

V G ∼=K ⊕hjV (5)

If for a given g in G, ghi = hjh for some h in H, then V G is a KG module under the following
action.

g(hiv) = hj(hv), ∀ v in V . (6)

A class function f is a map from G→ C which is constant on conjugacy classes of G. That
is f(hgh−1) = f(g) for each h in G. Let CG denote the space of class functions of G over C.

For any two class functions f and h we can define an inner product 〈., .〉G by

〈f, h〉G =
1

|G|
·
∑
g∈G

f(g) · h(g) (7)

If V is CG module and Φ is the corresponding representation then we define φ : G → C the
character of Φ by

φ(g) = trace(Φ(g)) (8)

Clearly, φ is a class function. φ is an irreducible character if the corresponding representation
Φ is irreducible.

Let Φ1 and Φ2 be representations of G. Then Φ1 and Φ2 are equivalent if ∃ T : V1 → V2,
such that T is invertible and T · Φ1(g) · T−1 = Φ2(g) for all g in G.

If φ1 and φ2 are two irreducible CG characters. With the help of Schur’s Lemma we get
the Orthogonality Relation. If Φ1 and Φ2 are the representations corresponding to φ1 and
φ2, then

(φ1, φ2)G = 0 if Φ1 is not equivalent to Φ2 (9)

and
(φ1, φ2)G = 1 if Φ1 and Φ2 are equivalent (10)

One of the consequences is that complex characters of irreducible representations form or-
thonormal basis for CG, and thus,

Corollary 6. The number of irreducble represenations of G over C is equal to number of
conjugacy classes.

Frobenius Reciprocity Theorem is very useful in determining the irreducible charcaters
of G given the irreducible characters of H 6 G

Corollary 7. Frobenius Reciprocity
Let H 6 G. φ and ψ are complex characters of H and G respectively. Let φG be the character
of the representation ΦG and let ψH be the character of ΨH . Then

〈φ, ψH〉H = 〈φG, ψ〉G (11)
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1.2 Symmetric Groups

Let N = {1, 2, ...n}. The symmetric group Sn is the set of permutations of N , with composotion
as the group operation. Suppose σ ∈ Sn, then for any g ∈ Sn,

σ(i) = k ⇐⇒ g · σ · g−1(g(i)) = g(k). (12)

A cyclic permutation σt = (a1a2..at) is defined as

σt(ai) = ai+1when i is less then t (13)

and σt(at) = a1. Any permutation σ is a disjoint product of cyclic permutation σt.

The type of a permutation is a tuple which represents the size of each disjoint cycle. It is
easy to see that for each partition λ = (λ1, λ2...λt) of n, we have a permutation of type λ.

Thus, by the above discussion, the number of conjugacy classes of Sn is equal to the num-
ber of partitions of n.

Let λ = (λ1, λ2...λt) be a partition of n. A composition (λ1, λ2, .., λt) of n is a partition
λ1 ≥ λ2 ≥ ..λt. Let λ = (λ1, λ2...λt) be a partition of. Young diagram of λ is a 2 dimensional
diagram with n boxes put together such that, there are t rows, and jth row has λj boxes.
For example, Young diagram of λ = (5,3,2) is,

On the set of Young diagrams we have a partial order called the dominance order.

Definition 8. Domninance Order
Let λ = (λ1, λ2, ...λt1) and µ = (µ1, µ2, ...µt2) be partitions of n, then we say that λ D µ or λ
dominates µ, if

j∑
i=1

λi >
j∑
i=1

µi for all j in N (14)

For a young digaram of λ we can fill the boxes with numbers from {1, 2..., n}. There are n!
various combinations in which we can fill the boxes. Each such combination is called a Young
Tableau.

For example let µ = (3, 1, 1) be partition of 5, then

t1 = 1 2 3

4

5

t2 = 1 3 4

2

5

t1 and t2 are Young tableaux of shape µ.

Let t be a tableau of shape µ. σ ∈ Sn is a row stablizer if σ(j) is in the row as j in t.
The subgroup of row stabalizers is Rt. Similarly, we can define the set of column stabalizers
Ct.
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Definition 9. Let µ = (µ1, µ2, .., µr) be a partition of n and t a tableau of shape µ. Rt =
Sµ1 × Sµ2 × ..× Sµr . The Young Tabloid {t} is the subpartition of [1, 2..n] with parts the rows
of t. Clearly, it is determined by Rt 6 Sn and Sn acts on it naturally.

For example:

t = 1 2 3

4

5

{t} =

1 2 3

4

5

The action of Sn over µ tabloids gives rise to a permutation module Mµ.

Mµ ∼= 1Rt ↑Sn (15)

Now, let t be a µ tableau and kt =
∑

σ∈Ct sgn(σ)σ. Then the polytabloid et is an element
of Mµ as,

et = ktet (16)

The permutation module of Sn over the action on the set of µ polytabloids is called the Specht
Module Sµ. This is a cyclic module since

σ · kt · σ−1 = kσt. (17)

On Mµ, we can define a non-singular, symmetric and Sn invariant bilinear form 〈., .〉, by defining
it on the tabloids. If {t1} and {t2} are Mµ tabloids.

〈{t1}, {t2}〉 = 1, if {t1} = {t2} (18)

〈{t1}, {t2}〉 = 0, otherwise (19)

With the help of this bilinear form, we get the following result

Submodule Theorem
Let Sµ

⊥
be the orthogonal space to Sµ with respect to the bilenear form of Mµ. If U ⊆ Mµ,

then either Sµ ⊆ U or U ⊆ Sµ
⊥

.

With the help of submodule thereom, we can in turn prove that if Sµ ∩ Sµ⊥ 6= Sµ, then
Sµ ∩ Sµ⊥ is the unique maximal submodule of Sµ and thus,

Sµ

Sµ ∩ Sµ⊥
is irreducible. (20)

If char(F ) = 0, then Sµ ∩ Sµ⊥ = 0, thus Sµ is irreducible.

Another major consequence of Submodule Theorem is,
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Corollary 10. Suppose char(F ) = 0. If we have a non trivial homomorphism Sλ →Mµ, then
λD µ

Thus, Sµ is an irreducible CG mdoule and for two distinct partitions µ and λ, Sµ � Sλ as
a consequence of previous corollary.

We define a total ordering ≤ on the set of µ tabloids, given by
{t1} ≤ {t2}, if and only if, ∃ i such that

1) when j ≥ i, j is the same row of {t1} and {t2}.
2) i is in the higher row of {t1} then {t2}.

Definition 11. Standard Tableau: A tableau t is standard, if the entries in t are increasing
in each row from left to right and each column from top to bottom.

An example of a standard tableau is

t =

1 3 5

2 4

6

If ts is standard tableau, then ets is standard polytabloid.

Any element v in Sµ is a linear combination of standard polytabloids [1]. Let ts be standard
tabloid. Then, σts ≤ ts. Thus, the set of standard polytabloids ets is linearly independent.
Therefore

The dimension of Specht module Sµ is the number of standard µ tableaux.

Studying properties of Specht modules is an interesting topic in itself. How does Specht module
behave when we restrict it to subgroups? In the rest of the chapter we focus on this question.

Theorem 12. Branching Theorem:
Let Sµ be the specht module of Sn. Then

Sµ ↓Sn−1 = ⊕Sµ′ ,

where a Young diagram of µ
′

is obtained by removing one box from a corner in such a way that
we get a Young diagram of partition µ′ of n− 1.

The proof of the branching theorem is complicated. James[9.3] [1] is a good reference.

Consider the subgroups Sk × Sn−k of Sn, what about the induced module Sµk ⊗ Sµn−k ↑Sn .
Thanks to the Littlewood Richardson Principle, we know the exact way to compute the
given induced module. For that let us introduce the concept of sequences.

A sequence a just a string of n integers. A sequence s is said to be of type ν, where ν is
partition of n, if each number i occurs νi times in the sequence s.

In a sequence s each element can be determined as good or bad in the following way.
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1) All 1′s are good.
2) An element i+ 1 at position j is good if and only if the number of good is is strictly greater
then the number of good (i+ 1)s at postions before j.

For example,

2 1 2 3 2
×XXX×

Suppose ν ′ and ν are partitions of n. Then s(ν ′, ν) is the set of sequences of type ν in which
there are atleast νprimei entries of good i.

Definition 13. Let λ and ν be partition of Sn and Sm respectively and [λ] be the young
diagram of λ. Let (Sλ)[ν′,ν] be the KSm+n module,

(Sλ)[ν′,ν] = ⊕aµSµ (21)

where aµ = 0, unless λi < µi for all i, in which case aµ is the number of ways of filling the
boxes in [µ]/[λ] such that,

1) The entries in each row are increasing from left to right.

2) The entries in each column are increasing from top to bottom.

3) When read from right to left in succesive rows, the sequence obetained belongs to s(ν ′, ν).

Theorem 14. Littlewood Richardson Principle:

Sλ ⊗ Sν ↑Sn= (Sλ)[ν,ν′] (22)

The proof of Littlewood Richardson Principle uses the concept of sequences and ordering
among various types of sequences. For proof refer to James[16.2] [1].

The next chapter will introduce a special kind of Sn module called the Foulkes Module. As
seen in the Littlewood Richardson Principle, we can compute the irreducible coefficients of
Sµk ⊗ Sµn−k ↑Sn . What about the irreducible summands of (1Sa wr Sb ↑Sab)? Our goal is to
understand.
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2 Foulkes Module

Let a, b ∈ N, The Foulkes Module is the permutation module

F b
a = 1SawrSb :↑Sab . (23)

The Foulkes module can be visualized in many ways. For example,

1) Consider the set T of ab elements. Let

Hb
a = {hba

∣∣ where hba is partition of T into b sets of size a each}. (24)

It is easy to see that the natural action of Sab on Hb
a gives rise to the permutation module

isomorphic to F b
a .

2) A function f in n variables, is symmetric if f(x1, x2, .., xn) = f(xσ(1), xσ(2), .., xσ(n)), where
σ ∈ Sn. In general, a function f ′, is symmetric if f ′(x1, x2, .., xn, ..) = f ′(xσ(1), xσ(2), .., xσ(n), ..),
where σ is a permutation of N
Let α = (α1, α2, .., αl) be a partiton of k and xα = xα1

1 · xα2
2 · ·x

αl
l . The symmetric function f

of degree k is obtained by symmetrization of the monomial xα for some α ` k. The ring of
symmetric functions Λ is a generated by the elementery symmetric functions fk =

∑
xα, where

α = (1k).

Definition 15. Let x = (x1, x2, .., xl) and λ = (λ1, λ2, .., λl) be a weakly decreasing sequence

of non negative integers. Let Mλ = [x
λj
i ] and aλ = det(Mλ). If δ = (l− 1, l− 2, .., 0). Then the

Schur function sλ is defined as

sλ =
aλ+δ

aδ
(25)

An important generating set of Λ is the set of Schur functions.

Λ = 〈sµ
∣∣µ ` n, n ∈ N〉 (26)

Definition 16. The Plethysm [2] of symmetric functions f and g =
∑

cα x
α, α = (α1, α2, ...),

is defined as
f ◦ g = f(y1, y2, ..) (27)

where yi is given by the following

Π(1 + yit) = Π(1 + xαt)cα (28)

Let φm and φn be characters of Sm and Sn repectively, then we can define multiplication by

φm ∗ φn = (φm × φn) ↑Smn . (29)

Let χλ be the character of Sλ where λ is a partition of n. The characteristic map [2] ch
⊕n∈NC(Sn)→ Λ is defined on the generators:

ch(χλ) = sλ (30)

The characteristic map is an isomorphism and ch(f ba) = s(b) ◦ s(a), where f ba is the character of
F b
a . Thus, Plethysms can be used to study Foulkes module.
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An important object of study in Representation of Symmetric Groups and in turn Algebraic
Combinatrics is the structure of Foulkes Module. Till date, we only know the structure of F b

a ,
when a or b is 2 or 3 [3] [4].

An interesting question in the study of Foulkes module is the Foulkes Conjecture, which states
that, if a < b, F a

b can be embedded in F b
a .

The orgin of this problem goes back to 1950 [3], when H.O. Foulkes, while computuing the
coefficents in the plethysm of Schur functions, observed such a pattern. Thrall [5], which
studying the plethysm of s(2) and s(a) as a sum of Schur functions, computed the coefficients
and proved the conjecture when a = 2.

In 2000, S.C. Dent [4], computed the irreducible constituents of Foulkes Module and thus
proved the conjecture for a = 3.

Let λ be a partiton of n and λ′ be the conjugate partition. The standard map, St : Mλ

→ Mλ′ is defined as,

St({t}) =
∑
g∈Rt

g{t′} (31)

where, {t} is a λ tableaux, and t′ is the λ′ tableaux, where (i, j)’th entry of t is the same as
(j, i)’th entry of t′.

Let, N(Rt) be the normalizer of Rt is Sn. Consider the permutation module F λ = 1N(Rt) ↑Sn .
Then, F λ ⊆ Mλ and moreover,

St(Mλ) ⊆ F λ′ (32)

The S.W.S conjecture due to Siemens, Wagner and Stanley [6], states that the standard map
is injective on F λ whenever λ dominates λ′. In general the conjecture false. However Tom
Mckay [7], proved it under a certain condition.
The conditions are as follows.

1) Let µ be the Young diagram obtained by removing the leftmost column of λ. S.W.S conjec-
ture is true for F µ.
2) In each box of the left most column, number of boxes below it is not larger then the number
of boxes below it.

Note that F (ab) is isomorphic to Foulkes module F b
a . S.W.S conjecture is true for λ = (44).

Therefore, Foulkes Conjeture is true when a = 4. Now, suppose S.W.S conjecture is true for
λ = (aa) for some a then Foulkes Conjecture is true for the same a. In 2015, Cheung, Iken-
meyer and Mkrtchyan [8] showed that the standard map is inejctive on F (65), thus proving the
Foulkes Conjecture for a = 5. One important conclusion that came out of their paper is that
the standard map is not injective for λ = (55). One advantage of the standard map is that, by
computing it for a fixed a and b, we might be able to prove Foulkes Conjecture for a, b1, where
b1 is greater then b.

Even when S.W.S conjecture fails, so one particular map is not injective. It still could be
true that F λ is a submodule of F λ′ when λ dominates λ′.
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Giannelli [9], in 2013, proved that hook characters don’t belong in the Foulkes character. In
other words,

〈f ba, χ(n−r,1r)〉 = 0 (33)

Suppose, α is a partition of m with l parts, such that k > l, and ab − k − m α1 + 1. Let
[k : α] be the partition (ab − k − m,α1 + 1, α2 + 1, .., αt + 1, 1k−t), which is the partition α
submerged inside the hook (ab − k −m, 1k). Then, in the same paper Giannelli proved that,
for n =

∑t
j=2 αj, if α1 <

1
2
(k − n)(k − n+ 1),

〈f ba, χ[k,α]〉 = 0. (34)

He analysed the decomposition of F b
a ↓Sk×Sab−k to the direct sum of permutation modules.

Let Ω be the set of partitions of k such that µ ∈ Ω if and only if µ is a subpartion of (ab). Let
Pλ = {Aλb

∣∣Aλb ∈ Hb
a such that type Aλb ∩ {1, 2, ...k} is λ} and V λ be the permutation module

of Pλ under the action of Sk × Sn−k

F ab|Sk×Sn−k = ⊕λ∈ΩV
λ (35)

Theorem 17. Let a = 2, then

V (1b) ∼= ⊕λSλ ⊗ Sλ (36)

for λ partiton of b.

Proof. First we shall prove that there is a submodule U of V(1b) such that U ∼= Sλ ⊗ Sλ.
Let t1 and t2 be two standard λ tableaux such that {λk + 1, λk + 2, ...., λk+1} and {λk + 1 +
b, λk + 2 + b, ...., λk+1 + b} belong to k − 1’st row of t1 and t2 respectively.

Let Ct1 and Ct2 be the sets of column stabilizers of t1 and t2 respectively. Let et1 = ktt1
and et2 be the standard polytabloid. Consider the homomorphism
φλ : Sλ1 ⊗ Sλ2 −→ V (1b), given by

et1 ⊗ et2 −→ kt2 · kt1{(1, b+ 1), (2, b+ 2), ...(b, 2 · b)} (37)

Since et1 ⊗ et2 generates the irreducible module Sλ1 ⊗ Sλ2 , therefore if the image of the map
above is nonzero, then it has to be isomporphic to Sλ ⊗ Sλ.
Consider the map φC : Ct2 → Ct1 , given by

τ → σ (38)

τ(b+ i) = b+ k ⇐⇒ σ(i) = k (39)

Now, the action of τ ∈ Ct2 to the element F = {(1, b + 1), (2, b + 2)...(b, 2 · b)} is the same as
action of φC(τ) on F and thus the action on V (1b). Let τ in Ct2 , then

sgn(τ)τ(kt1F ) =
( ∑
σ∈Ct1

(sgn(τ)τ) · sgn(σ)σ
)
F (40)
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=
( ∑
σ∈Ct1

(φC(τ)sgn(φC(τ))) · (sgn(σ)σ)
)
F (41)

=
( ∑

(φC(τ))·(σ)∈Ct1

sgn((φC(τ)) · (σ))(φC(τ)) · (σ)
)
F (42)

Therefore kt2 · kt1F is not zero, since kt1F is nonzero. thus the image of φλ is non zero and
therefore U = Im(φλ) ∼= Sλ ⊗ Sλ

We obtained that for each partion λ of b, Sλ ⊗ Sλ is embedded in V (1b). These are noni-
somorphic, therefore

⊕λ Sλ ⊗ Sλ ⊆ V (1b). (43)

On the other hand

dim(⊕λSλ ⊗ Sλ) = b! = dim(V (1b)) (44)

Therefore,

⊕λ Sλ ⊗ Sλ ∼= V (1b) (45)

The nice structure of V (1b) for a = 2, gives rise to the question of whether we can generalize
for larger a. The rest of the chapter focuses on this question.
Consider the submodule Uε ⊆ V (1b) as follows.

Uε = 〈
∑
σ∈SG

sgn(σ)σ{(1, X1), (2, X2), (3, X3)...(b, (Xb))}〉 (46)

where SG is the permutation group of {1, 2, ..b} and Xi is the set {b + (i − 1) · a, b + (i − 1) ·
a+ 1, .., b+ i · a− 1}.

Proposition 18. If ε ⊗ Sµ is embedded in V (1b), then ε ⊗ Sµ is embedded in Uε, where ε is
the sign character.

Proof. Any non trivial element u of ε ⊗ Sµ as a submodule of V(1b) can be expressed as a linear
combination of of elements of type {(1, Y1), (2, Y2), (3, Y3)...(b, (Yb))}, where Yi’s are disjoint sub-
sets of {b+1, b+2, ..., ab}, of size a each. Choose an element {(1, Z1), (2, Z2), (3, Z3)...(b, (Zb))}
such that its coefficient in u is not 0. Since

{(1, Z1), (2, Z2), (3, Z3)...(b, (Zb))} = σ{(1, X1), (2, X2), (3, X3)...(b, (Xb))} (47)

for some σ ∈ permutation group of {b+1, b+2, ..., ab} and τu= sgn(τ)u for any τ in the permuta-
tion group of {1, 2, .., b}. Therefore the coefficient of sgn(σ) σ {(1, Z1), (2, Z2), (3, Z3)...(b, (Zb))}
is the same as the coefficient of {(1, Z1), (2, Z2), (3, Z3)...(b, (Zb))} in u for any σ in Sn. Thus,

ε⊗ Sµ ⊆ Uε (48)
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Consider the Sa−1wrSb module U generated by
∑

τ∈Sb sgn(τ){Xτ(1), Xτ(2), .., Xτ(b)}.
Now, clearly U ∼= Inf

Sa−1wrSb
Sb

ε and

Vε = Inf
Sa−1wrSb
Sb

ε ↑S(a−1)·b)= 〈
∑
τ∈Sb

sgn(τ){Xτ(1), Xτ(2), .., Xτ(b)}〉 (49)

The previous equation is true because the induced module of a cyclic module is cyclic with the
same generator.

Theorem 19. ε ⊗ Vε
∼= Uε

Proof. ε is generated by e(1b). Then, the map φaε : ε ⊗ Vε −→ Uε, given by

e(1b) ⊗
∑
τ∈Sb

sgn(τ){Xτ(1), Xτ(2), .., Xτ(b)} −→
∑
σ∈SG

sgn(σ)σ{(1, X1), (2, X2), (3, X3)...(b, (Xb))}

(50)
Since both are cyclic modules and φaε maps one generator to the other thus φaε is K Sk ⊗ Sn−k
module homomorphism. Since dimension of ε ⊗ Vε is equal to dimension of Uε. Therefore ε ⊗
Vε ∼= Uε.

Further, Paget and Wildon [10] have computed the minimal irreducicle constituents of
Foulkes Module. More importantly, when a is even S(ab) is a submodule of F b

a .

Suppose λ and µ are partitions of k and n− k respectively. Then,

〈f ba ↓Sk×Sn−k , χλ × χµ〉 = 0 (51)

implies that, if every constituent of Sλ⊗Sµ ↑Sn is not a submodule of F b
a . Thus, studying the

restrictions of Foulkes Module can be helpful in proving Foulkes Conjecture.

I am trying to study the restrictions of Foulkes Module to elementary abelian subgroups, and
further with the help of elementary abelian subgroups, studying Foulkes Module restricted to
Sylow-p subgroups.
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